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MICROSTRIP ANTENNAS

Microstrip circuitry consists of a metal strip or patch on a dielectric substrate backed by a metal ground plane.
Microstrip antennas are becoming increasingly popular owing to their advantages in size, cost, conformity to
the supporting structure, low profile, and ease of fabrication. By using simple etching techniques, it is possible
to fabricate a wide variety of microstrip circuits, including arrays of antennas, feeding networks, and active
devices such that preamps or distributed transmitters can be conveniently placed next to the antenna elements.
In addition, diode phase shifter circuits can also be etched on the substrate to form single-board phased arrays.
This article describes the microwave properties of patch antennas.

The dimensions of microstrip patch antennas are large in comparison with the width of conventional
microstrip lines. The ma purpose of a patch antenna is to confine microwave energy to a small finite region.
Such confinement may be achieved with the resonant behavior of a finite guided structure supporting standing
modes. Electromagnetic energy radiates from that part of the patch that is open to free space, similar to a
slot cut along the side of a waveguide. To continuously radiate microwave energy away, the patch needs to be
electrically connected to a so-called feeder line. When the characteristic impedance of the feeder line matches
the impedance of radiation waves, power is directly dumped into the confined space of the patch without
causing much reflection. This means that all of the input power to the patch is radiated away into free space. A
conventional transmission line radiates little power, because the fringing fields alternate in sign over a short
distance, resulting in cancellation of their radiated field. In microstrip circuitry, power also radiates from open
circuits and from discontinuities, such as corners. The radiated power is small, however, because the radiation
impedances there are usually much higher than the characteristic impedance of the microstrip transmission
line encompassing these discontinuities.

This article introduces two calculation methods capable of describing antenna performance quantitatively.
The first method is less rigorous, but it has the advantage of being more analytical and hence can be applied
with ease. Called the resonant cavity model, it assumes perfect metal boundaries at the metal patch and
ground plane and magnetic-wall boundary conditions at the periphery, or sides of the patch antenna. It is
well known, that there are fringing fields at the periphery of the patch antenna. The influence of such fields
may be included in this approximate analysis by extending the linear dimension of the patch antenna by
a small amount consistent with the depth of the fringing fields. Radiation and material imperfections are
then considered as perturbations to the lossless cavity. As such, the resonant frequency, far-field pattern,
input impedance, radiation linewidth, and efficiency are all calculable. The only shortcoming of this simple
cavity model is that it is not able to address the possibility of the propagation of surface waves. Surface wave
generation becomes significant in comparison with patch radiation for a thick substrate with high dielectric
constant.

The second calculation method concerns Green’s function analysis. In general, a Green’s function is defined
as the solution of a differential or integral equation resulting from a (delta-function) point source satisfying the
required (hogeneous) boundary conditions. Thus, under arbitrary source excitation, the solutn of the equation
can be obtained by a superposition ofreen’s functions, still satisfying the boundary conditions. In the presence
of a point (dipole) current source in the background of a stratified structure consisting of dielectric or magnetic
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layers, the excited electromagnetic field is termed a dyadic Green’s function from the vectorial nature of the
source field and the observer field. Although the construction of the dyadic Green’s function is straightforward,
this article pays special attention to its physical interpretations as it appeared in the original work by 1.

Actually, Sommerfeld solved for the first time the Green’s functions associated with a horizontal point
dipole and a vertical point dipole in the presence of a semiinfinite conductor half-space: the Earth (1). Radio
waves are radiated into free space either directly from the point dipole source or indirectly from the image
dipole source induced by the (imperfect) ground plane, the Earth’s surface. These are called spatial waves,
because they exhibit a 1/r spatial dependence, where r denotes the distance from the original source point (or
image point) to the observer point. However, Sommerfeld also showed a second kind of radiation field, which
is tied to the air–earth interface exhibiting a 1/ dependence, where ρ denotes the 2-D distance between the
source point projected on the Earth’s surface to the observer point located also on the Earth’s surface (1). They
are called surface waves, because they decay exponentially when departing away from the air–earth interface.
This article explains how the spatial wave solutions and the surface wave solutions are constructed from a
(horizontal) point dipole source in the presence of a layered dielectric or magnetic structure.

By using the dyadic Green’s function, the general field solution in a stratified structure with external
current excitation can then be formulated in terms of an integral equation, which is subsequently solved by ap-
plying the numerical Galerkin method. This article outlines procedures to calculate engineering parameters of
general microstrip antennas and gives calculation results for circular microstrip antennas, including radiation
frequencies, bandwidths, far-field patterns, input impedances, effects of feeder-line position, and interference
between antennas. Recent developments on printed-circuit antennas are briefly reviewed, including the impor-
tant broadband technique employing stacked parasitic elements to achieve high gain and low cross-polarization
levels. More sophisticated treatments on microstrip antennas may be found in Ref. 2.

Cavity Model

A microstrip patch antenna is a narrow-band device, and typically, the bandwidth covers approximately 5
percent of the radiation frequency. When the bandwidth, �f , can be related to the Q of a resonator

it implies that power dissipation is not significant and the circuit of a microstrip patch antenna can be
approximated as a low-loss cavity resonator. This suggests that the performance of a microstrip patch antenna
can be analyzed using a perturbation method. That is, the zeroth order solution of the antenna is described
in terms of the eigen modes, or normal modes, of a lossless cavity. Losses are then added to the analysis as
first-order perturbations, including conductor loss, dielectric loss, and radiation loss. Magnetic loss can also be
included in the total loss if ferrites are used as the substrate material.

Analogous to radiation loss, surface wave loss may also be treated as a perturbation in the cavity model.
Radiation and surface wave losses may be represented as leaky waves from the antenna, the former directly
from air and the latter from the guided structure of the substrate. However, the analysis of surface-wave loss
may be difficult, because it involves Sommerfeld-type integrals where simple poles and branch cuts appear in
the complex k plane (1). Usually, surface waves are included only in a full-wave analysis in which Maxwell
equations are solved numerically in the microstrip geometry.

In contrast, the cavity model is easier to apply, allowing engineering parameters of a microstrip patch
antenna to be calculated analytically, including bandwidth, input impedance, radiation efficiency, and near-
field and far-field patterns. Furthermore, the physical meaning of normal modes is evident in the cavity
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Fig. 1. Feeding the rectangular patch antenna by a microstrip line. The resonant cavity locates directly under the patch
bound by a magnetic wall, shown shaded in the figure.

model. For example, the left- or right-hand polarized radiation from a microstrip ferrite patch antenna can be
readily calculated by using the cavity model. The cavity model provides satisfactory quantitative answers if
surface wave losses are minimal. Surface wave losses are minimal for a thin substrate exhibiting low dielectric
constant, but not for a thick substrate with high dielectric constant. Also, for microstrip patches in proximity
to each other a full-wave analysis is required, since the cavity model is not sufficient to describe these complex
situations. The full-wave analysis involving the use of dyadic Green’s functions is discussed later.

Resonant Frequency. Let a metal patch be deposited on top of a dielectric substrate backed by a ground
plane. The patch considered here is either of rectangular or circular geometry. Only dielectric substrates are
considered. Analysis of patch antennas with ferrite substrates may be found in Ref. 3. In the cavity model one
assumes a lossless substrate in which the cavity is bounded by an electric and a magnetic wall. The metal
surfaces of the microstrip patch and the ground plane may be approximated as perfect conductors or electric
walls, but the peripheral surface surrounding the antenna cavity directly under the patch is assumed to be a
magnetic wall. This is illustrated in Fig. 1, in which a microstrip rectangular patch antenna is represented by
a cavity with its periphery shown shaded as a magnetic wall. An electric or magnetic wall is defined such that
the tangential component of the electric or magnetic field vanishes at the wall boundary. Thus, a normal metal
boundary condition approaches that of an electric wall if the value of conductivity goes to infinity. A magnetic
wall imposes imaginary boundary conditions that insulate the inside of the cavity from the outside, allowing
no electromagnetic energy to propagate across it.

Under quasi-static assumptions a magnetic wall can be located at the periphery of a patch antenna,
provided that it encloses the total volume of the antenna plus its fringing fields. That is, the effective volume
of the cavity is slightly larger than the physical one, so that it accounts for both the electromagnetic energy
stored directly under the metal patch and its fringe. This is shown in Fig. 2, for the case of a circular microstrip
antenna, where the effective radius of the cavity is larger than that of the metal patch. Thus, the resonant
length at the side of a rectangular patch antenna, denoted as L′ = L + 2�, is larger than the physical length,
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Fig. 2. Feeding the circular patch antenna by a coax line. Due to the fringing-field effect the effective radius of the
resonator is larger than its physical value.

L, and the effective increment in length due to the fringing-field effect (4) is 2� with

where d is the thickness of the substrate, εeff denotes the effective dielectric constant of the patch cavity (5)
given by

and εr is the dielectric constant of the substrate material. The rationale behind Eq. (3) is that, depending on
the ratio of d/L, electric field lines can still propagate away from the cavity region, and so εeff < εr, and εeff ≈
εr if d/L � 1. The resonant frequency of the cavity resonator is therefore

where c denotes the speed of light in vacuum and n the order of the resonant mode (n = 1 for the fundamental
mode).

Based on the same fringing-field consideration, we expect that for a circular patch antenna the effective
resonant radius of the cavity, denoted as R′ = R + �, is larger than the physical radius of the metal patch (6),
denoted as R, and

as shown in Fig. 2. A similar expression for εeff as Eq. (3) is expected for a circular microstrip cavity. However,
such an expression is lacking in the present literature. We therefore use the value of εr for εeff , bearing in mind



MICROSTRIP ANTENNAS 5

that this approximation is true only when R � d. The resonant frequency of the cavity is, therefore

where X′
mn is the nth zero of the derivative of the Bessel function Jm(x) of order m.

We note that the above expressions for resonant frequencies for rectangular and circular microstrip patch
antennas [ Eqs. (4) and (6)] are derived based on the cavity model according to which standing modes are
excited within the cavity. At high frequencies the quasi-static assumption is no longer valid, and surface waves
of high orders are generated and propagating away from the cavity region guided by the dielectric substrate.
In this case, magnetic-wall boundary conditions are not appropriate at the periphery of the antenna cavity.
For these situations we must resort to a rigorous full-wave analysis to adequately address the leaky feature
of surface waves—for example, by using the dyadic Green’s functions to be discussed later. In the following we
use εr for εeff and L and R for L′ and R′, respectively, with the difference understood.

Normal Modes and Feeder-Line Excitations. The normal modes excited in a microstrip patch an-
tenna are usually transverse electric (TE) waves exhibiting no nodal points along the z axis, the direction
perpendicular to the substrate plane. Thus, the normal mode solutions show no z dependence, and the electro-
magnetic components can be uniquely solved from Ez, satisfying the following Helmholtz equation

where ∇t denotes the transverse part of the del operator (with respect to the z axis), kmn is given by

ωmn is the angular frequency, and {m, n} refers to the index of the normal mode. The boundary condition
imposed on Ez is that the derivative of Ez along the normal direction of the boundary vanishes at the magnetic
wall. Once Ez is solved from Eq. (7), the corresponding H field is

where ez denotes the unit vector along the z axis.
Let the rectangular patch be located at 0 ≤ x ≤ L, and 0 ≤ y ≤ W, [see Fig. 1]. The normal modes therefore

are

with the corresponding modal wavenumber

For a circular cavity of radius R the normal modes are, [see Fig. 2]
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and the modal wavenumber is determined by the zeroing condition of the derivative of Bessel functions of order
m

and (ρ, φ, z) denotes the cylindrical coordinate.
Let us consider the patch antenna excited by either a microstrip line at the edge of the patch, Fig. 1.

or a coax feeder directly under the patch, Fig. 2. The angular frequency of the external driving field is ω =
2πf . We expect that cavity to be driven with maximum intensity when the frequency of excitation approaches
the normal mode frequencies, Eq. (8). This phenomenon is generally known as forced oscillation, and it occurs
commonly in many branches of physics. Thus, at resonance, the cavity is driven by the external field undergoing
forced oscillation giving rise to maximum radiation efficiency. We first consider the excitation of the cavity by
a microstrip feeder line. The boundary conditions for the cavity are that electric walls are located at metal
boundaries and magnetic walls at the periphery which is not adjacent to the microstrip feeder line. At the
input junction between the cavity and the feeder line, we define a window where we assume that the excitation
currents are uniformly distributed, producing a uniform magnetic field there

Here n denotes the unit vector pointing outward along the normal direction of the window, and h0 is a
constant specifying the excitation current. In Fig. 1 the excitation-current window is located on the shad area
directly under the microstrip feeder line with n being coincident with −ey. The excitation field governed by
Eqs. (7) and (9) can be uniquely solved subject to the boundary condition of Eq. (14).

For the rectangular patch depicted in Fig. 1, let the microstrip feeder connection to the patch at the line
segment a ≤ x ≤ b, and y = 0. The excitation field therefore is

where
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and

Note that at ω = ωmn, Am = ∞, indicating that when the frequency of the external driving field equals one
of the normal mode frequencies, only that normal mode will be excited in the cavity responsible for radiation.
However, when losses are included, other modes with much smaller amplitudes can also be excited at resonance.

For the circular patch we consider the microstrip feeder line to join the metal patch at the arc −α ≤ φ ≤
α, and ρ = R. The excitation field can be then written as follows

where

and ζ and k are given in Eq. (19). Again, from Eqs. (25) and (26) it is seen that the coefficient of Cn goes to
infinity if normal mode frequencies are approached [Eq. (13)].

Let us consider the excitation of the patch antenna by a coax line directly under the patch. We may assume
the coax line to possess an inner filament of zero diameter ending in a point charge at the junction with the
patch (see Fig. 2). The excitation current density therefore is
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In the presence of a driving current it appears as an inhomogeneous term at the right-hand side of Eq.
(7):

The boundary conditions are the same as those leading to normal mode solutions—that is, electric walls
at metal boundaries and magnetic walls at the periphery of the patch cavity. Thus, Eq. (29) can be solved in
terms of normal mode solutions:

Here Eqs. (30) and (31) are for a rectangular patch and a circular patch, respectively, and the normal
modes, Ez

mn
z(x, y) and Emn

z(ρ, φ), are given in Eqs. (10) and (12). Equations (30) and (31) imply that when k
approaches kmn, the normal mode {m, n} acquires an infinite amplitude. The corresponding magnetic field can
be derived using Eq. (9).

Thus, for the rectangular patch, we have
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For the circular patch we have

where δij is the Kronecker delta function and

In Eqs. (32) to (34) and (35) to (37), kmn is given by Eqs. (11) and (13), respectively, and ζand k are defined
in Eq. (19). Once the excitation fields are known, Eqs. (16) to (18), (22) to (24), (32) to (37), losses of various
kinds, and hence the quality factor, Q, of the patch cavity can be calculated, as discussed later.

Input Impedance. Having solved the electromagnetic fields inside a lossless patch cavity, we can
relax the assumption of perfect electric and magnetic walls and allow electromagnetic energy to propagate
across these boundaries. This results in ohmic loss and radiation (surface wave) loss. Dielectric and magnetic
losses occur in the interior of the patch cavity, assuming a lossy medium exhibiting complex permittivity and
permeability, respectively. We consider first the radiation loss.

The Kirchhoff–Huygens principle, which is a vector analog of Green’s theorem, states that the electro-
magnetic field inside a closed volume, V, can be derived by the volume charge and current distributions inside
V and the surface charges and currents distributed on the enclosing surface of V, denoted as S. The effective
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electric surface current density, K e, magnetic surface current density, K m, and electric surface charge density,

, are (7), respectively,

where n denotes the unit outward vector normal to S, and ε is the permittivity. Thus, if we consider the outside
volume of the patch cavity as the volume V, we conclude that the effective magnetic current density on the
magnetic wall is

where n denotes the unit outward vector normal to the magnetic wall, with sign opposite that is Eq. (38), and
the factor of two accounts for the presence of the ground plane. Ke and 
 do not appear on a magnetic wall.

The radiation field arising from the magnetic current density K m can be derived by using the same
formula describing the electric current density K e converted from the duality rule (7). The duality rule states
that the electromagnetic theory remains valid if all of the elic quantities are changed into the corresponding
magnetic quantities and the magnetic quantities are changed into the negative of the corresponding electric
quantities. Thus, the vector potential associated with K m can be written as (8)

where d denotes the thickness of the substrate, Cm the contour of the magnetic wall with counterclockwise
tangential unit vector t, e r the unit vector along r, a vector connecting the coordinate origin toward the
observation point, and

is the wavenumber in air. In Eq. (40) primed quantities originate at the source and assume |r − r′| � d.
The fields in the far-zone are

where
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is the wave impedance in air (= 377 �). We therefore have

where e θ and eφ denote unit vectors along the θ and φ directions at the observation point r. By using Eq.
(45) the far-field radiation associated with a circular patch antenna fed by a microstrip line, Eq. (22), is, for
example,

where it is understood that the ratio of sin mα to mα is 1 when m = 0. The far-field radiation pattern can be
calculated by using the following equation:

and the total radiated power is then

Conductor loss and dielectric loss can be derived with ease (7). The conductor loss is given by

where Sc denotes the metal surface with Rs the surface resistance

and σ is the conductivity of metal. The dielectric loss is given by

where Vc denotes the volume of the cavity and tan δ is the dielectric loss tangent.
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The radiation or antenna efficiency is the ratio of radiated power to input power, or

The total stored electric energy is then

Since, by definition, at resonance the stored magnetic energy, Wm, equals the stored electric energy, We,
we have for the total stored electromagnetic energy

From the definition of Eq. (1), the total Q factor of the cavity is

upon which the voltage standing wave ratio (VSWR) bandwidth can be defined. We define Smax to be the
maximum value of VSWR that can be tolerated. We then have (9)

Typically, Smax = 2.
The input susceptance B, of the antenna can be calculated from the lossless patch cavity, which is a

zeroth-order quantity. However, the input conductance, G, must be calculated from the total loss of the cavity,
which is a first-order quantity. Thus

where I and V are the averaged input current and voltage experienced at the input feeder position. For a coax
feed with excitation current expressed by Eqs. (27) and (28), assuming a thin inner filament as shown in Fig.
2, I is known and V can be calculated from Ez evaluated at the input position multiplied by the thickness of
the substrate d. We therefore have
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for rectangular and circular patch antennas, respectively. For a microstrip feed, the input voltage is obtained
according to Faraday’s law by averaging Ez over the feeder-line window joining the cavity multiplied by the
thickness of the substrate, d. The input current can be derived by applying Ampere’s law at the feeder-line
window, which is ho times the transverse length of the window, that is, ho (b − a) for the rectangular antenna
and ho (2αR) for the circular antenna. We therefore have

for rectangular and circular patch antennas, respectively. Here kmn in Eq. (60) is given by Eq. (13) and βm in
Eq. (61) is given by Eq. (18).

From Eqs. (59), (60) and (62), we note that at the normal mode frequencies the input susceptance B =
0, and hence B1 = ∞. These points are called antiresonance points as plotted in the Smith chart (see Fig. 3,
example for). The resonant points are defined to be purely resistive when the input resistance of the antenna
matches the feeder-line impedance, resulting in zero reflection. Therefore, B− 1 = 0 at resonance. The resonance
point occurs slightly above the antiresonance frequency, which requires participation of normal modes of all
orders, although the normal mode responsible for antiresonance is excited with the greatest intensity. Thus,
by definition, at resonance the capacitive part of the stored energy equals the inductive part, rendering the
overall input reactance zero. In calculating the susceptance, we should also include the capacitance associated
with near-field excitation. However, its contribution has been accounted for as the increment in the effective
resonance length of the antenna, [See Eqs. (2) and (5)]. The input impedance is

We note that, in reality, at antiresonance, B is finite due to the presence of losses occurring at the antenna
patch cavity.

One severe drawback of the cavity model is that it is not able to address the surface-wave loss. 10 estimated
that surface-wave excitation is not important if d/λ0 < 0.09 for εr = 2.3 and d/λ0 < 0.03 for εr = 10, where
λ0 is the free-space wavelength. The criterion given by 11 is more quantitative: d/λ0 < 0.07 for εr = 2.3, and
d/λ0 < 0.0023 for εr = 10, if the antenna is to emit no more than 25 percent of the total radiated power as surface
waves. Recent work by Fonseca et al. showed that the size of the patch is also a parameter (12), as discussed in
more detail in the next section. When ferrite material is used as the substrate, magnetic loss can be estimated
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Fig. 3. Integration contours for Sommerfeld integrals illustrating contribution from spatial wave and surface wave
excitations.

using a formula similar to Eq. (51):

where µ′′ denotes the imaginary part of the permeability. In concluding this section we note that the cavity model
depicts a semiempirical picture where the parameters have been adjusted to fit experiments, for example, the
effective dielectric constant εeff , Eq. (3), and the increment in the resonant length of the patch, �, Eqs. (2) and
(5). Nevertheless, the calculated radiation pattern and input impedance compare very well with measurements
(13).

Dyadic Green’s Function

As we have mentioned in the previous section, the open structure of a microstrip patch antenna can be
rigorously accounted for only in a full-wave analysis resorting to numerical solutions. Maxwell’s equations
can be explicitly solved numerically in the frequency domain or in the time domain using the generic 3-D
finite-element and finite-difference methods (14). However, it is more informative to use the dyadic Green’s
functions, since the electromagnetic fields generated by a point dipole-current source has already been solved
analytically in the same microstrip geometry, which is termed the dyadic Green’s function. The electromagnetic
fields excited by a patch antenna can then be composed as superposition’s of the point-dipole solutions in the
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context of a conventional Green’s function method. The numerical technique applies only when the Galerkin
method is used to solve the resultant integral equations relating the unknown current variables to local electric
fields distributed across the metal patch boundaries.

The physical meaning of the Green’s function is clear, and surface waves have been used with equal
importance as spatial waves in the Green’s function formalism. Furthermore, the Green’s function solution
usually requires 2-D calculations, in contrast to the generic 3-D computational methods. This is true when the
metal thickness is much smaller than the thickness of the substrate, as is usually the case. Material losses can
be readily included in the Green’s function if complex permittivity and permeability values are used. It turns
out that efficient CAD tools can be constructed using the dyadic Green’s function solutions, which calculate
engineering parameters of a microstrip antenna, including radiation frequency, far-field pattern, efficiency,
input impedance, and so on and analyze the cross-talk problem inherent in common microstrip circuitries.

To illustrate the physics in the application of a Green’s function, we have decided not to regenerate
many mathematical formulas in this section. Instead, we concentrate on Sommerfeld’s approach to the Green’s
function analysis (1), because it lends itself to a more physical understanding of the problem. We wish to
introduce the methodology leading to the formulation of the dyadic Green’s function for a general stratified
structure, consisting of a finite number of dielectric and magnetic layers as constituents. We assume this layered
structure is infinite in both horizontal and vertical directions, although it is possible to include finite substrate
and radiation space by employing periodic boundary conditions, for example. Also, we assume the current
distribution is two-dimensional, resulting in 2-D analysis on the Galerkin elements. The finite conductivity of
the ground plane can be accounted for by invoking complex permittivity of the conductor layer (1). Results of
calculations are cited mainly from Ref. 15. Background material can be found in Ref. 16.

Point-Dipole Solutions. We start by introducing the vector potential, A, and scalar potential, V, in
electrodynamics subject to a Lorentz gauge (17), which has been implicitly used by 1

This results in uncoupled equations for A and V as follows:

where J and ρ are the current and charge densities, respectively, and normally ρ = 0 (oscillating charges can
not easily be realized physically). We note that Eq. (68) does not specify A uniquely for a finite volume under
consideration (17). However, this gauge freedom is almost fixed for a system of infinite volume, because the only
source-free radiation for the entire space are the incoming waves from infinity, which can be readily checked
out and excluded from the solution of A by performing proper gauge transformation. From Eq. (67), the scalar
potential V is obtained from the divergence of A, and hence only the vector potential A needs to be solved.

We are now solving the vector potential, A(x, y, z), Eq. (68), induced by a point dipole current source, J 0(x,
y, z), in the background of a dielectric or magnetic layered structure. A point dipole is also called a Hertzian
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dipole, which can be approximated by a dipole antenna whose arms are much smaller than the wavelength of
radiation (1). Assuming the point dipole to be located at ( 0, 0, z0), the current density associated with the point
dipole is

where I 0 dl (= finite) denotes the strength of the dipole. Without loss of generality we assume I 0 is along the
x direction. From Eq. (68) we know that Ax is nonzero, corresponding to the radiation field from a horizontal
dipole. This is the only field that would be induced in empty space by the point dipole of Eq. (70). In the
presence of the layered structure, however, Az is also nonzero, because of the oblique reflection of Ax from
the layer interfaces, corresponding to the radiation field from a vertical dipole in the absence of the stratified
structure. Finally, Ay is identically zero as implied by the symmetry of the problem.

We require the tangential components of E and H to be continuous across the layer interfaces, which can
be directly written down from Eqs. (65) and (66). According to 1, these boundary conditions can be integrated
with respect to the transverse coordinates, x and y, and the constants of integration can be justified as zeros
by letting x and y go to infinity. For example, suppose one boundary condition requires the derivative of the
function f (x, y, z) with respect to x to be continuous across an interface. If f (x, y, z) vanishes as x goes to infinity,
either decreasing exponentially to zero as for a decaying wave or averaging to zero as for an oscillating wave,
we can integrate this boundary condition with respect to x and conclude that the function f (x, y, z) itself must
be continuous across the interface. As such, the boundary conditions imposed on the vector potential A = Ax e
x + Az e z as derived by Sommerfeld are the continuity conditions on the following four quantities (1)

Therefore there are four boundary conditions at each layer interface.
Recognizing the fact that the layered structure is homogeneous in the transverse directions, say, x and y,

it implies that the Helmholtz equation, Eq. (68), can be conveniently solved in the transverse Fourier-spectral
domain. For a given transverse spectral vector, kt = [kx, ky], we denote the corresponding spectral-domain
vector potential components as x(kx, ky, z) and x(kx, ky, z) which relate to Ax(x, y, z) and Ax(x, y, z) via double
Fourier integrals, respectively. For each layer that does not contain the dipole source, we solve the Helmholtz
equation, Eq. (68), to obtain the following solutions:

where a, b, c, d are four unknowns to be determined by the boundary conditions and γ is given by

where ε and µ are the permittivity and permeability of the layer under consideration. For the uppermost layer
a = 0 = c and for the lower most layer b = 0 = d, as required by the boundary conditions at z = ± ∞. For the
layer that contains the dipole source, we integrate Eq. (68) from z = z0

− z = z0
+ and note that the double

Fourier transform of the function δ(x) δ(y) is 1/2π, and we derive the following discontinuity requirement on
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∂ x(kx, ky, z)/∂z on both sides of the plane z = z0

We therefore insert a fictitious interface at z = z0 assuming different values of a, b, c, d of for the two
subregions above and below this interface [Eqs. (72) and (73)], but with the same value of γ [Eq. (74)]. The
boundary conditions imposed on this fictitious interface are the same as before, except that the requirement
on the continuity of the quantity εµ(∂Ax/∂z) is now being replaced by Eq. (75). If the z0 plane occurs at a single
layer interface of the stratified structure, no virtual interface needs to be created; we need only replace the
continuity requirement on µ(∂Ax/∂z) by Eq. (75).

Thus, we arrive at 4N unknowns with 4N boundary conditions for N interfaces, including the fictitious
one, if there is one. In the boundary conditions we replace [Eq. (71)] the operator ∂/∂x by −jkx, and ∂/∂z by ±γ,
whichever is applicable according to Eqs. (72) and (73). The 4N boundary conditions now become algebraic
ones and hence the 4N unknowns can be solved. The amplitudes of these unknowns are all proportional to the
dipole strength I0 d l, which can be conveniently chosen to be 1, as required by the Green’s function. The vector
potentials Ax(x, y, z) and Az(x, y, z) can then be solved from x(kx, ky, z) and x(kx, ky, z) by applying the inverse
two-dimensional Fourier transforms. The electric and magnetic fields can finally be obtained by using Eqs. (65)
to (67).

Material imperfection results in losses of various kinds, upon which the permittivity and permeability
values become complex numbers. The dielectric loss is described by a loss tangent, tanδ, and the permittivity
takes the form of ε0εr(1 − jtanδ), where εr denotes the dielectric constant. For a demagnetized magnetic
substrate, the permeability is µ0(µ′ +jµ′′) and µ′ and µ′′ are the real and imaginary parts of the relative
permeability (3). For a metal conductor the permittivity contains both the displacement current and the
conduction current and hence the permittivity is modified as ε0 − jσ/ε, where σ denotes the conductivity. This is
the permittivity that was explicitly considered by 1, solving the electromagnetic fields generated by a Hertzian
dipole in response to the earth’s surface.

If a perfect metal is used as the ground plane, the electromagnetic field will not penetrate into it. Therefore,
the boundary condition on the metal surface is that the tangential components of the electric field vanish, and
it implies

Thus, we have 4N − 2 unknowns and 4N − 2 boundary conditions for a layered structure possessing a
perfect metal ground plane.

Actually, the interface boundary conditions [Eq. (71)] specify the flection and transmission of electro-
magnetic waves from one layer to another, and x is proportional to the magnetic field component and z is
proportional to the electric field component. Oblique-angle reflection and transmission can be readily written
down in terms of Snell’s law (18) and hence the coefficients of x and z, [Eqs. (72) and (73)] are determined
with relation to the preceding and succeeding layers. Thus, without the need of solving the boundary conditions
explicitly, [Eq. (71)], all of the a, b, c, d coefficients for the layers are correlated with each other and only four
unknowns remain, corresponding to those at the outermost layers (top and bottom), which can now be solved
by using the boundary conditions at the fictitious interface imposed by the point dipole [Eq. (75)], and so on.
For example, if the last layer is a perfect metal, the a, b, c, d coefficients of the layer adjacent to it satisfy the
following relationships

which are recognized as the total reflection condition. Equation (77) can be shown to be identical to Eq. (76).
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For completeness, we list the transverse spectral-domain vector potential induced by a horizontal point
dipole located on top of a dielectric substrate backed by a perfect metal ground plane

and DTE and DTM are defined by

Here the dipole is located at the plane z = 0, the dielectric substrate is of a thickness d and permittivity ε,
and γ0 and γ are given by Eq. (74) with subscript 0 referring to air. The zeros of Eqs. (80) and (81) correspond to
surface-wave TE and TM modes, respectively. While there exists at least one TM surface mode, it is not always
the case that TE surface modes will be excited. The threshold for TE mode excitation is

Sommerfeld Integrals. Within each layer the dipole field solutions are obtained by inverse Fourier
transforms of x(kx, ky, z) and z(kx, ky, z) over the two-dimensional kx − ky plane, or, equivalently, kρ − kφ

plane. Here (kρ, kφ) denotes the polar coordinate and (kx, ky) the Cartesian coordinate. In general

and

as can be checked from the boundary condition of Eq. (71). In other words, x is an even function of kx and z
is an odd function of kx, as implied by the symmetry of the problem. Therefore, after integration over kφ, we
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obtain

Although, Eqs. (85) and (86) can be numerically integrated, as discussed later, it is instructive to discuss
a procedure outlined by 1. Actually, Eqs. (85) and (86) are termed Sommerfeld integrals. The most significant
discovery of Sommerfeld was that the seemingly real integration starting at the fixed point kρ = 0 can be
converted into a complex kρ integration over a path, W, that closes at infinity (See Fig. 4

where H0
(2) are Hankel functions of the second kind of order 0 and 1, respectively. In Fig. 4, the contour W is

detoured slightly in the complex kρ plane in order not to run into branch cuts and poles such that the integrands
remain finite and single valued. Only two-layer substances are illustrated in Fig. 4, where the air is denoted by
the subscript 0 and a dielectric layer is denoted by the subscript 1. For example, the respective permittivities
for air and the dielectric layer are ε0 and ε1 (the permeability of the dielectric layer is assumed to be µ0, the
same as air). In Fig. 4, k0 and k1 are the branch points given by

and ρ is the smallest zero assumed by the function DTM, see Eq. (81). It is understood that more branch points,
and hence more branch cuts, will appear in Fig. 4 if more layers are presented in the layered structure. Also,
more simple poles will appear if DTE and DTM of Eqs. (80) and (81) admit more zeros. In Fig. 4, the branch
point at kρ = 0 is associated with the Hankel functions H0

(2); For Eq. (88), this branch point, and hence its
associated branch cut, is replaced by a simple pole due to the different singular behavior of H1

(2) at the origin.

According to Sommerfield, the couour W shown in Fig. 4 can be analytically deformed into three or more
components surrounding the respective branch cuts and simple pole, denoted as Q0, Q1, and P. 1 showed that
contour integrals of Q0 and Q1 give rise to spatial wave radiation, and for a large (spherical) distance r, they
exhibit the following asymptotic dependence

Actually, Q0 is due to the free-space dipole radiation, and Q1 is the radiation wave diffracted by the
dielectric layer (or from the image dipole induced by that layer) (1). Assume the air-dielectric interface is
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Fig. 4. Input impedance loci of the cited antenna. The solid line is from calculation, and small circles represent measure-
ments made in Ref. 13.

Fig. 5. Radiation profile of the cited antenna (13) in the φ = 0◦ plane.

located at z = 0. For z > 0, contribution form contour P has the following asymptotic forms
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Fig. 6. Radiation profile of the cited antenna (13) in the φ = 90◦ plane.

Fig. 7. Calculated radiation frequency as a function of substrate thickness (fed by microstrip line).

They are surface waves tied to the interface and decrease at a rate proportional to 1/ in the lateral
directions, in contrast to the spatial wave radiation exhibiting a 1/r dependence, [Eq. (90)].

In the presence of material losses, the branch points and simple poles associated with spatial and surface
waves, respectively, acquire imaginary components, which are then pushed off from the real axis toward the
lower half of the complex kρ plane. As such, numerical integration of Eqs. (65) and (66) can be properly carried
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Fig. 8. Calculated radiation resistance as a function of substrate thickness (fed by microstrip line).

out. However, care needs to be taken to avoid large truncation errors. Integration of kρ along the real positive
axis can be distinguished in three regions

Region I 0 < kρ < k0

Region II k0 < kρ < kc

Region III kc <kρ < ∞

Here, kc denotes a cutoff wavenumber to be discussed later. In Region I the integrands are well behaved.
However, at the resonant frequencies of a metal patch dictated by the cavity model, both the numerator and
denominator of the integrand vanish, although their ratio remains finite. We call these geometric resonant
points quasisingularities (15). Near these quasisingular points the numerator and denominator need to be
expanded in Taylor series upon which their common zeros cancel out.

All of the surface poles are contained in Region II, and, conventionally, the upper bound of Region II, kc,
is defined to be 10 times the real part of the largest surface pole occurring at the integrand. In Region II the
integrand behaves wildly in the vicinity of a surface pole. When coming across a surface pole, the integrand
transits from positive infinity to negative infinity, resulting in sharp cancellation during numerical integration.
To circumvent this difficulty we expand the integrand in Laurent series in the vicinity of a surface pole kp = p,
and the quasisingular terms (with negative exponents) are then evaluated analytically (remember p is now a
complex number). Equivalently, the singular part of integration is obtained via residual calculations. After the
singular part is subtracted from the integrand, the integrand becomes regular and can then be numerically
integrated in Region II.

In Region III we are involved with integration of Bessel functions at infinity, which oscillate indefinitely
as infinity is approached without exhibiting a strict period. This renders the conventional extrapolation scheme
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Fig. 9. Calculated radiation linewidth as a function of substrate thickness (fed by microstrip line).

inaccurate. To perform integration in this region we consider asymptotic expansion of Bessel functions

where � denotes the gamma functions. As such, integrands are written in series containing terms of the
following form

which can be readily evaluated by exploiting sine and cosine integrals and their derivatives if p is a positive
integer, or error functions and their derivatives if p is a positive half-integer larger than 1 (15).

When gyromagnetic layers appear in the layered structure, instead of using the vector potential A, it
is more convenient to express the electric field E and magnetic field H directly in the formulation. This is
because the dispersion relation for a gyromagnetic medium together with the associated E and H fields are
already known (3), which can be readily used to compose the boundary conditions at the layer interface and the
metal patch position. We are still working in the transverse Fourier spectra domain but do not use the point
dipole solutions. Thus, as before, by starting from the outermost layer interfaces, we postulate the unknown
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Fig. 10. Input impedance loci of the antenna for several coax feeder positions.

coefficients for Et and Ht and translate the field components layer after layer until reaching the interface
containing the metal patch. For dielectric layers, the field solutions can be expressed in the form of Eqs. (72)
and (73) relating Et and Ht on both sides of the layer. For a gyromagnetic layer, a similar expression is used,
except that the propagation constant γ in Eqs. (72) and (73) become nondegenerate; together with the four a,
b, c, d coefficients, these propagation constants need to be solved from a quartic dispersion relation (19). This
nondegeneracy for wave propagation with respect to different propagation direction and polarization comes
from the tensor behavior of the permeability, called Polder tensor (3). In principle, there is no fundamental
difference in handling dielectric and magnetic layers, except that more algebraic steps are involved in solving
the dispersion relation imposed by the Polder tensor. At the metal patch boundary the discontinuity in Ht gives
rise to surface current densities th relates to Et through Ohm’s law and are expressed in the form of an integral
equation discussed later.

Numerical Solutions. The dyadic Green’s function, G(r, r′), is defined as the electric field at location
r produced by a unit point dipole located at r′. We can solve the current distribution over a microstrip metal
patch of negligible thickness deposited on a layered structure backed by a ground plane. Therefore, r and r′ are
both located at the metal patch, and essentially we have a two-dimensional problem with the third dimension,
the z-direction, being absorbed into the Green’s function. Thus, we are required to solve the following integral
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equation

where S denotes the metal patch with surface impedance Rs = (1 + j) . The first term in Eq. (95) is
the electric field returned by the background layered structure the second term relates to the Ohm’s current
(induction and conduction), and Ee is the electric field generated by an external current. Of special concern, in
Eq. (95), te results from integration along the z-axis, and hence it defines the effective thickness of the metal
patch to be either the skin-depth thickness, δ = (2/µω0σ)1/2, or the physical thickness of the metal patch, t,
whichever is smaller. For a perfect metal patch, te = 0. Thus, te represents the singular behavior of the current
distribution exhibiting a delta-function profile in the thickness direction. However, we expect that te will not
appear in the final expressions evaluating engineering parameters of the antenna, as is the case in Eqs. (96),
(98), (99), and (103). In Eq. (95) we have used ρ and ρ′ as the two-dimensional position vectors on the metal
patch for which the z coordinate is clear.

We denote by {Jmn(ρ)} a complete orthonormal vector basis for currents on the metal patch. We note that
{Jmn(ρ)} is the regular part of the surface current density, and the singular part is factored out in Eq. (97) as
te

− 1, characterizing, again, the delta-function-like distribution of surface current along the z-direction. Thus,
the dimension of J mn is amperes permeter. We apply the Galerkin’s method to convert the integral equation
[Eq. (95)], into the following matrix form

where [ amn ] are the unknown coefficients to be solved expressed in terms of the current basis {Jmn(ρ)},

and [ Bmnm′n′ ] the matrix elements derived from Eq. (95)

where I denotes the identity dyad. The inhomogeneous term of Eq. (96), [ bmn ], is associated with current
driving given by



26 MICROSTRIP ANTENNAS

where E mn is the electric field generated by Jmn, Je is the driving current density, and integration is over the
whole volume, V. In Eq. (99) the reciprocity theorem has been used, which states that a response of a system
to a source is unchanged when the source and observer are interchanged (20). The unit drive-current density
may be specified as

Equations (100) and (101) are for coax and microstrip feeders, respectively, In Eqs. (100) and (101), S(x)
denotes the step function and

Therefore, assuming unit excitation current, the input impedance is

The radiation field associated with a point (Hertzian) dipole located at the air dielectric interface of a
microstrip structure is (16)

where
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and

The radiation pattern for a given patch current distribution J(ρ), Eq. (107), is therefore

where ζ0 = (η0/ε0)1/2 and ko = 2π/λ0 = ω (ε0η0)1/2 are, respectively, the impedance and wavenumber in air.
A convenient current basis can be derived from the intrinsic functions associated with the metal patch

geometry (21). We define a set of current potential {ψmn(ρ)} satisfying the two-dimensional Helmholtz equation

from which the current basis {Jmn(ρ)} is defined as

The boundary condition imposed on {Jmn(ρ)} is that the current is not allowed to flow across the metal
patch boundary, or, at the patch boundary

where n denotes the unit outward normal at the metal patch boundary. That is

Equation (112) determines the eigenvalues kmn in Eq. (109). The current potential can thus be determined,
and, for a rectangular patch located at 0 ≤ x ≤ L, 0 ≤ y ≤ W, we have

For a circular patch located at 0 ≤ ρ ≤ R, we have
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Fig. 11. Calculated radiation frequency as a function of coax feeder position.

and βmn denotes the root of the derivative of the Bessel function, Jm
′(x)

The advantages of using current potentials are that not only the vector Galerkin equations are converted
into a scalar ones, but also most of the integrations can be carried out analytically, including those required
to perform inverse transverse Fourier transforms, rendering only one-fold Sommerfeld-type integrals to be
evaluated numerically. This is true even in the presence of multiple patches exhibiting close coupling. We note
that the current basis introduced in Eq. (110) corresponds to the normal-mode currents appearing in the cavity
model of the antenna resonator. Because the basis current is defined as the gradient of a scalar function [the
current potential, Eq. (110)], we call it an irrotational current (21).

In the following we present the results of some calculations for circular microstrip patch antennas (15).
For rectangular patch antennas, see Ref. 22. The first calculation applies to the published data of a circular
antenna characterized by the following parameters (13): R = 6.75 cm, d = 0.1588 cm, εr = 2.62, and tan δ

= 0.001. The calculated resonance frequency of the fundamental mode is 0.7936 GHz (15), which compares
exactly with the measured value of 0.794 GHz (13). This is contrasted with the calculation for a cavity model
presented in the first section, which predicts a resonant frequency of 0.805 GHz (13). The calculated input
impedance of the antenna is shown in Ref. 15, which compares nicely with measurements shown as small
circles in Fig. 3 (13). Figures 5 and 6 show the calculated radiation pattern of the antenna in the φ = 0◦ and
φ = 90◦ planes, respectively. We note that only copolarized radiations are generated from the fundamental
mode excitation; the cross-polarized field cancels out for the two m = 1 and m = −1 modes at the fundamental
resonant frequency.

The second patch antenna geometry considered is a microstrip disk of radius R = 1 cm, which is fed by
either a coax line or a microstrip line (15). The substrate has of dielectric constant εr = 2.2, loss tangent tan
δ = 0.001, whose thickness d that varies Figures 7 to 9, assuming α = 0.2 rad, show the calculated resonant
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Fig. 12. Calculated radiation resistance as a function of coax feeder position.

frequency, input impedance, and radiation linewidth of the fundamental mode as a function of the substrate
thickness, respectively. In Fig. 7 the calculated resonant frequency of the antenna decreases monotonically
with the substrate thickness d, indicating that the effective dimension of the patch resonator increases with d,
as expected for a leaky cavity. Figure 8 shows that the input impedance of the antenna is relatively a constant,
unless d becomes very small, say, smaller than 0.05 cm. In Fig. 9, we see that the radiation bandwidth increases
with d, d hence the Q factor of the antenna decreases with d. This finding is consistent with Fig. 7 which exhibit
the leaky feature of the antenna patch cavity.

Figure 10 shows the calculated input impedance loci of the above circular antenna of substrate thickness
d = 0.1 cm fed by a coax line located at (ρ0, 0). In Fig. 10, the parameter re is defined as re = ρ0/R, and re
= 1.0, 0.8, 0.6, and 0.416. For each feeder location, the two resonance frequencies shown in Fig. 10 are the
resonance frequencies of the probe-inductance in parallel with the detuned patch-resonator, forming a parallel-
resonant circuit, and the resonance frequency of the probe-inductance in series with the detuned patch-parallel
resonator, forming a series-resonant circuit. The field distribution of the patch at both frequencies shows very
little difference, and the patch is operated at the same resonance mode yet more or less detuned from its
resonance frequency, which occurs between these two frequencies. It can be seen from Fig. 10 that these
resonant frequencies appear only if 0.416 ≤ re ≤ 1. For re ≤ 0.416, no patch resonance can possibly be excited.
Figure 11 shows the calculated radiation frequency as a function of re, or ρ0. It is seen in Fig. 11 that radiation
frequency remains roughly constant for 0.6 ≤ re ≤ 1, which increases rapidly when re is further reduced. Figure
12 shows the calculated input resistance as a function of re, or ρ0. From Fig. 12, we see that the input impedance
decreases with re or ρ0, and hence it is possible to design 50 � input resistance of the antenna by feeding the
antenna at re = 0.442 (or re = 0.488 for 75 � input impedance).

Finally, we consider the interaction between two identical circular microstrip patch antennas excited by
microstrip feeders of equal amplitude and phase. Let the antennas be deployed in parallel exhibiting the same
parameters considered before: R = 1 cm, d = 0.1 cm, εr = 2.2, and the feeder lines having 50 � resistance
(width 0.312 cm). The separation between the antennas is designated R 12 measured between their respective
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Fig. 13. Calculated and measured input impedance loci of two coupled patch antennas.

centers. Figure 13 shows the calculated and measured input impedance for the coupled case, R 12 = 2 cm (the
patches are touching each other), and the uncoupled case, R 12 = 5 cm (the patches are separated by 3 cm at
their edges). Measurements were performed with respect to patch antennas fabricated using RT/Duroid 5880
material (Rogers Co., Chandler, AZ). The measured resonant frequencies were 5.514 and 5.561 GHz for the
coupled and uncoupled cases, respectively, which compare almost exactly with their calculated values of 5.5137
and 5.5642 GHz. The resonant frequencies of the patches and their input impedance have also been calculated
as a function of the patch separation, R 12. These are shown in Figs. 14 and 15, respectively, with measurements
shown as solid squares. From Fig. 14, it is seen that the resonant frequency changes most rapidly when R12
is small, say, when 2 ≤ R 12 ≤ 3 cm. Further increase in R12 does not change the resonance frequency much.
However, the input impedance does show long-range interference between two patch antennas. As shown in
Fig. 15 the input impedance is still increasing when the two antennas are separated by 5 cm, although the rate
of increase has slowed compared with its initial rate at R12 = 2 cm.

We conclude that the leaky feature of an antenna cavity can be well characterized by using a full-wave
analysis outlined previously. Among many numerical methods, the dyadic Green’s function approach might
prove to be the simplest one to apply, not only because the analysis is two dimensional, but also because
the evaluation of the scalar Galerkin elements involves only onefold Sommerfeld-type integrals. Surface-wave
generation is significant for a thick dielectric substrate with large dielectric constant. The coupling between
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Fig. 14. Calculated and measured resonant frequency of two coupled patch antennas as a function of their separation
distance.

microstrip elements is of long-range nature, although the radiation frequency of a patch is less influenced by
its neighboring antenna elements.

Recent Developments

Wideband Techniques. A microstrip patch antenna is inherently narrowband, stemming from the
cavity model that an electromagnetic resonator confining energy locally in space with little dissipation is
necessarily a high-Q, and hence narrowband, device. For a high-Q resonator the generation of surface waves
is insignificant. For a thin substrate, this condition amounts to d/λ0 < 0.07 for εr = 2.3 and d/λ0 < 0.023 for
εr = 10, as stated previously (10,11). For a microstrip antenna fabricated on a thin substrate the impedance
bandwidth is typically 1% to 3%. This is in contrast to the bandwidth of 16% of a half-wave dipole with a radius
to length ratio equal to 0.01, and 70% of a medium-length helix operating in the axial mode.

A number of techniques have been proposed to increase the bandwidth of a microstrip patch antenna.
These techniques are generally classified into three categories. The first category involves a straightforward
approach based on the use of a thick substrate whose dielectric constant is small. The second approach is
to design a matching network to enhance the bandwidth (23). The third method uses parasitically coupled
elements in a variety of ways to produce closely spaced multiple resonances of the antenna (24,25).

By using a thick substrate whose dielectric constant is considerably different from that of air, surface
waves will be generated and inevitably reduce the radiation efficiency and introduce interference between
array elements. To resolve this problem, air cavities or holes may be introduced with the substrate to effectively
reduce the dielectric constant of the patch. For example, 26 machined closely spaced holes in a Duroid substrate
underneath a microstrip patch to lower the effective dielectric constant of the antenna. Using a micromachining
technique, Zheng et al. measured a 12.8% impedance bandwidth on cavity-backed microstrip patch antennas
fabricated on silicon wafers (27).
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Fig. 15. Calculated and measured input impedance at resonance of two coupled patch antennas as a function of their
separation distance.

The bandwidth of the antenna is primarily determined by the rate of transition that the imaginary
part of the impedance changes sign at resonance, as discussed previously. Thus, it is possible to introduce
a cancellation mechanism on the input inductance so as to smooth the impedance variation. For example,
the inductance associated with the long wire-lead of the coax probe will limit the bandwidth to <10% for a
thick substrate. By etching a small circular slot around the probe on the patch, capacitance is introduced that
cancels the probe inductance to produce a bandwidth of 16% (28). Recently, with the use of a U-shaped slot,
a substantial increase in bandwidth (32%) has been demonstrated (29). Alternatively, an L-shaped probewire
has been shown to result a bandwidth of 28 percent (30).

The third method to achieving broadband operation is to couple the microstrip patch antenna parasitically
with other dielectric resonators characterized by approximately the same resonant frequency of the patch. For
an isolated patch the resonant frequency is determined by its lateral dimension. In the presence of fringe fields
at the patch periphery, however, the boundary of the antenna is neither sharply nor rigidly defined, leading to
a slightly larger effective dimension of the patch, as described by Eqs. (2) and (5) for rectangular and circular
microstrip patches, respectively. Thus, in contrast to a metal cavity, patch antennas have soft boundaries, which
in turn give rise to finite bandwidth in radiation: the softer the boundary, the wider the bandwidth. For this
reason, a patch antenna fabricated on a thick substrate will show a wide bandwidth. Similarly, when coupled
together, many soft-boundary microstrip resonators or patches, the overall radiation bandwidth is consequently
enlarged.

The disadvantage of using a thick substrate is that, besides its cost, surface waves may be generated
in the substrate so as to reduce the antenna feeding efficiency. By using multiple electromagnetically coupled
patches this disadvantage can be overcome. Electromagnetically coupled patches can be deployed either side by
side (laterally coupled geometry) or layer by layer (vertically coupled geometry). For laterally coupled patches,
the antenna size will increase considerably, ultimately restricting its usage large-array applications (31).
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The two-layer electromagnetically coupled patch antenna consisting of a driven (feeder) patch in the
bottom and a parasitic (radiating) patch on the top has been investigated by several authors. For circular
(32), equitriangular (33), and rectangular (34) patches, experimental results have shown an enhanced gain
and impedance bandwidth with low cross-polarization levels as compared with the conventional single-layer
microstrip antenna. Actually, like a Yogi antenna, the gain of a stacked antenna can be increased to above 20
dBi at any scan angle if the thickness of the substrate and multiple superstrate layers is chosen pperly (35).
Therefore, using stacked parasitic elements in microstrip arrays could improve the overall array performance,
offering a higher gain and broad bandwidth, meeting with the same array design criteria of a conventional
single-layer microstrip array but with fewer array elements.

Size Reduction. Microstrip antennas have a number of advantages over conventional antennas,
namely, small size, light weight, low production cost, and natural conformity. For many applications, how-
ever, for example, hand-held mobile communications systems, half-wave microstrip antennas etched on a
low-cost dielectric substrate are still too large to be accommodated on a portable phone. A well-known method
of reducing the size of a half-wave patch to a quarter wave is to introduce an electric-shorting wall at one of the
radiating edges. Hiraswa and Haneishi (36) have shown that the length of the patch can be made sufficiently
shorter than a quarter wave by replacing the shorting wall with a shorting pin at the corner of the patch.
Recently, Wong and Lin have shown that by replacing the shorting pin with a chip resistor of low resistance,
antenna size can be further reduced, with an additional increase in bandwidth (37).

The other approach to reduce antenna size is to use a meandered geometry of the patch antenna (36).
By meandering the patch, the effective electrical length is larger than the physical length. Consequently, the
resonant frequency of the meandered antenna can be much lower than that of a conventional design with the
same physical length (38).

Finally, we note that not only is it possible to achieve high gain for printed circuit antennas, it is also
feasible to shape the radiation pattern in a prescribed manner. Some very interesting phenomena, such as
radiation into the horizon, radiation pattern monodirectionality, and azimuthal-dependent radiation have been
found possible (39). Furthermore, laterally coupled patches can serve as adaptive array antennas, because the
phase of radiation from a parasitic element can be adjusted via a varactor diode inserted at some feeding
position (40). The important feature of an adaptive array antenna is that it can provide beam steering as
required by many communications and traffic control systems (41).
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