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LOOP ANTENNAS

The IEEE Standard Definitions of Terms for Antennas (see
Ref. 1) defines the loop antenna as ‘‘an antenna whose con-
figuration is that of a loop,’’ further noting that ‘‘if the current
in the loop, or in the multiple parallel turns of the loop, is
essentially uniform and the loop circumference is small com-
pared with the wavelength, the radiation pattern approxi-
mates that of a magnetic dipole.’’ That definition and the fur-
ther note imply the two basic realms of loop antennas:
electrically small and electrically large structures.

There are more than 200 million loop antennas currently
used by subscribers of personal communications devices, pri-
marily pagers [see Ref. (2)]. More than a million a month are
currently being manufactured. Furthermore, loops have ap-
peared as transmitting arrays, such as the massive multiele-
ment loop array at shortwave station, call sign HCJB, in
Quito, Ecuador, and as fractional wavelength-size tunable
high-frequency transmitting antennas. The loop is indeed an
important and pervasive communications antenna.

The following analysis of loop antennas reveals that the
loop, when small compared with a wavelength, exhibits a ra-
diation resistance proportional to the square of the enclosed
area. Extremely low values of radiation resistance are en-
countered for such loops, and extreme care must be taken to
effect efficient antenna designs. Furthermore, when the small
loop is implemented as a transmitting resonant circuit, sur-
prisingly high voltages can exist across the resonating capaci-
tor even for modest applied transmitter power levels. The
wave impedance in the immediate vicinity of the loop is low
but at further distances (up to 2 wavelengths) exceeds the
intrinsic free-space impedance before approaching that value.

A loop analysis is summarized, which applies to loops of
arbitrary circular diameter and of arbitrary wire thickness.
The analysis leads to some detail regarding the current den-
sity in the cross section of the wire. Loops of shapes other
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than circular are less easily analyzed, and are best handled The dipole uniform current I flowing over an elemental length
by numerical methods such as moment method described in h is the dual of a ‘‘magnetic current’’ MzS � Ih and the surface
Ref. 3. area is S � h/k. The fields due to the infinitesimal loop are

Loops are the antennas of choice in pager receivers and then found from the vector and scalar potentials.
appear as both ferrite-loaded loops and as single-turn rectan-
gular shaped structures within the radio housing. Body-worn Vector and Scalar Potentials. The wave equation, in the form
loops benefit from a field enhancement due to the resonant of the inhomogeneous Helmholtz equation, is used here with
behavior of the human body with respect to vertically polar- most of the underlying vector arithmetic omitted; see Refs. 10
ized waves. In the high-frequency bands, the loop is used as to 12 for more details. For a magnetic current element source,
a series resonant circuit fed by a secondary loop. The struc- the electric displacement D is always solenoidal (the field
ture can be tuned over a very large frequency band while lines do not originate or terminate on sources), that is, in the
maintaining a relatively-constant-feed point impedance. absence of source charges the divergence is zero,
Large loop arrays of one-wavelength-perimeter square loops
have been successfully implemented as high-gain transmit- ∇∇∇ · DDD = 0 (1)
ting structures at high-power shortwave stations.

and the electric displacement field can be represented by the
curl of an arbitrary vector F,ANALYSIS OF LOOP ANTENNAS

Loop antennas, particularly circular loops, were among the DDD = ε0EEE = ∇∇∇ × FFF (2)

first radiating structures analyzed, beginning as early as
where F is the vector potential and obeys the vector identity1897 with Pocklington’s analysis of a thin wire loop excited
� 	 � � F � 0. Using Ampere’s law in the absence of electricby a plane wave (4). Later, Hallén (5) and Storer (6) studied
sourcesdriven loops. All these authors used a Fourier expansion of

the loop current, and the latter two authors discovered nu- ∇∇∇ × HHH = jωε0 EEE (3)merical difficulties with the approach. The difficulties could
be avoided, as pointed out by Wu (7), by integrating the

and with the vector identity � � (��
) � 0, where 
 repre-Green’s function over the toroidal surface of the wire. The
sents an arbitrary scalar function of position, it follows thatpresent author coauthored an improved theory (8,9) that spe-

cifically takes into account the finite dimension of the loop
HHH = −∇∇∇� − jωFFF (4)wire and extends the validity of the solution to thicker wires

than previously considered. Additionally, the work revealed
and for a homogeneous medium, after some manipulation wesome detail of the loop current around the loop cross section.
getArbitrarily shaped loops, such as triangular loops and square

loops, as well as loop arrays can be conveniently analyzed us- ∇∇∇2FFF + k2FFF = −ε0MMM + ∇∇∇(∇∇∇ · FFF + jωµ0ε0�) (5)ing numerical methods, such as by the moment method (3).

where k is the wave number and k2 � �2�0�0. Although Eq.The Infinitesimal Loop Antenna
(2) defines the curl of F, the divergence of F can be indepen-

The infinitesimal single turn current loop consists of a circu- dently defined and the Lorentz condition is chosen:
lating current I enclosing an infinitesimal surface area S, and
is solved by analogy to the infinitesimal dipole. The fields of jωµ0ε0� = −∇∇∇ · FFF (6)
an elementary loop element of radius b can be written in
terms of the loop enclosed area, S � �b2, and a constant exci- We define �2 as the Laplacian operator
tation current I (when I is rms, then the fields are also rms
quantities). The fields are ‘‘near’’ in the sense that the dis-
tance parameter r is far smaller than the wavelength but far ∇∇∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 (7)
larger than the loop dimension 2b. Hence, this is not the close
near-field region. The term kIS is often called the loop mo- Substituting the simplification of Eq. (6) into Eq. (5) leads to
ment and is analogous to the similar term Ih associated with

the inhomogeneous Helmholtz equationthe dipole moment. The infinitesimally small loop is pictured
in Fig. 1(a) next to its elementary dipole analog [Fig. 1(b)]. ∇∇∇2FFF + k2FFF = −ε0 MMM (8)

Similarly, by using Eqs. (6) and (4) it is seen that

∇∇∇2� + k2� = 0 (9)

Using Eq. (4) and the Lorentz condition of Eq. (6) we can find
the electric field solely in terms of the vector potential F. The
utility of that definition becomes apparent when we consider

I

I

h
2b

S

(a) (b) a magnetic current source aligned along a single vector direc-
tion, for example, M � zMz for which the vector potential isFigure 1. Small-antenna geometry showing (a) the parameters of
F � zFz, where z is the unit vector aligned with the z axis,the infinitesimal loop moment, and (b) its elementary dipole dual.

[Source: Siwiak (2).] and Eq. (8) becomes a scalar equation.
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Radiation from a Magnetic Current Element. The solution to Equations (15) and (16) for the magnetic fields Hr and H

of the infinitesimal loop have exactly the same form as thethe wave equation, Eq. (8), presented here, with the details
suppressed, is a spherical wave. The results are used to de- electric fields Er and E for the infinitesimal dipole, while Eq.

(17) for the electric field of the loop E� has exactly the samerive the radiation properties of the infinitesimal current loop
as the dual of the infinitesimal current element. The infini- form as the magnetic field H� of the dipole when the term kIS

of the loop expressions is replaced with Ih for the infinitesi-tesimal magnetic current element M � zMz located at the ori-
gin satisfies a one-dimensional, hence scalar form of Eq. (8). mal ideal (uniform current element) dipole. In the case for

which the loop moment kIS is superimposed on, and equalsAt points excluding the origin where the infinitesimal current
element is located, Eq. (8) is source-free and is written as a the dipole moment Ih, the fields in all space will be circu-

larly polarized.function of radial distance r,
Equations (15) to (17) describe a particularly complex field

behavior for what is a very idealized selection of sources: a
simple linear magnetic current M representing a current loop

∇∇∇2Fz(r) + k2Fz(r) = 1
r2

∂

∂r

�
r2 ∂Fz(r)

∂r

�
+ k2Fz(r) = 0 (10)

I encompassing an infinitesimal surface S � �b2. Equations
(15) to (17) are valid only in the region sufficiently far (r �which can be reduced to
kS) from the region of the magnetic current source M.

The Wave Impedance of Loop Radiation. The wave imped-
d2Fz(r)

dr2 + 2
r

dFz(r)
dr

+ k2Fz(r) = 0 (11)

ance can be defined as the ratio of the total electric field di-
vided by the total magnetic field. We can study the wave im-Since Fz is a function of only the radial coordinate, the partial
pedance of the loop fields by using Eqs. (15) to (17) for thederivative in Eq. (10) was replaced with the ordinary deriva-
infinitesimal loop fields, along with their dual quantities fortive. Equation (11) has a solution
the ideal electric dipole. Figure 2 shows the loop field wave
impedance as a function of distance kr from the loop along
the direction of maximum far-field radiation. The wave im-Fz = C1

e−jkr

r
(12)

pedance for the elementary dipole is shown for comparison.
At distances near kr � 1 the wave impedance of loop radiationThere is a second solution in which the exponent of the pha-
exceeds �0 � 376.73 �, the intrinsic free-space impedance,sor quantity is positive; however, we are interested here in
while that of the infinitesimal loop is below 376.73 �. In thisoutward traveling waves so we discard that solution. In the
region, the electric fields of the loop dominate.static case the phasor quantity is unity. The constant C1 is

related to the strength of the source current and is found by
The Radiation Regions of Loops. Inspection of Eqs. (15) tointegrating Eq. (8) over the volume including the source, giv-

(17) for the loop reveal a very complex field structure. Thereing
are components of the fields that vary as the inverse third
power of distance r, inverse square of r, and the inverse of r.
In the near-field or induction region of the idealized infinites-C1 = ε0

4π
kIS (13)

imal loop, that is, for kr � 1 (however, r � kS for the loop and
r � h for the dipole), the magnetic fields vary as the inverseand the solution for the vector potential is in the z unit vector
third power of distance.direction,

The region in which kr is nearly unity is part of the radiat-
ing near field of the Fresnel zone. The inner boundary of that

FFF = ε0

4π
kIS

e−jkr

r
zzz (14)

which is an outward propagating spherical wave with increas-
ing phase delay (increasingly negative phase) and with ampli-
tude decreasing as the inverse of distance. We may now solve
for the magnetic fields of an infinitesimal current element by
inserting Eq. (14) into Eq. (4) with Eq. (6) and then for the
electric field by using Eq. (2). The fields, after sufficient ma-
nipulation, and for r � kS (see Ref. 10), are

Hr = kIS
2π

e−jkrk2
� j

(kr)2
+ 1

(kr)3

�
cos(θ ) (15)

Hθ = kIS
4π

e−jkrk2
�

− 1
kr

+ j
(kr)2

+ 1
(kr)3

�
sin(θ ) (16)

Eφ = η0
kIS
4π

e−jkrk2
� 1

kr
− j

(kr)2

�
sin(θ ) (17)
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where �0 � c�0 � 376.730313 is the intrinsic free-space im-
pedance, c is the velocity of propagation in free space (see Ref. Figure 2. Small loop antenna and dipole antenna wave impedances

compared. [Source: Siwiak (2).]13 for definitions of constants), and I is the loop current.
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zone is taken by Jordan and Balmain (12) to be r2 �
0.38D3/�, and the outer boundary is r � 2D2/�, where D is the
largest dimension of the antenna, here equal to 2b. The outer
boundary criterion is based on a maximum phase error of �/
8. There is a significant radial component of the field in the

b

Oscillator

Detector

a

θ

Fresnel zone.
Figure 4. A metal detector employs two loops initially oriented toThe far field or Fraunhofer zone is the region of the field
minimize coupling in their near fields.for which the angular radiation pattern is essentially inde-

pendent of distance. That region is usually defined as ex-
tending from r � 2D2/� to infinity, and the field amplitudes

infinitesimally small loops; however, that angle will be nomi-there are essentially proportional to the inverse of distance
nally the same for larger loops. Hazeltine (14) used this prin-from the source. The far-zone behavior is identified with the
ciple, placing the axes of the inductors in a common planebasic free-space propagation law.
each at an angle of 54.7� with respect to the normal form the
radio chassis, to minimize the coupling between the in-The Induction Zone of Loops. We can study the induction
ductors.zone in comparison to the far field by considering induction

The same principle can be exploited in the design of azone coupling, which was investigated by Hazeltine (14), and
metal detector, as depicted in Fig. 4. The loop a is driven withwhich was applied to low-frequency radio receiver designs of
an audio frequency oscillator. Loop b, in a parallel plane andhis time. Today the problem might be applied to the design of
displaced so that nominally  � 54.7�, is connected to a detec-a miniature radio module in which inductors must be oriented
tor that might comprise an audio amplifier that feeds a set offor minimum coupling. The problem Hazeltine solved was one
headphones. Any conductive object near loop a will disruptof finding the geometric orientation for which two loops in
the balance of the system and result in an increased couplingparallel planes have minimum coupling in the induction zone
between the two loops, thus indicating the presence of a con-of their near fields and serves to illustrate that the ‘‘near-
ducting object near a.field’’ behavior differs fundamentally and significantly from

‘‘far-field’’ behavior. To study the problem we invoke the prin-
The Intermediate- and Far-Field Zones of Loops. The loop-ciple of reciprocity (see Ref. 10), which states

coupling problem provides us with a way to investigate the
intermediate- and far-field coupling by applying Eq. (18) with
Eqs. (15) and (16) for various loop separations kr. In the far-

Z
V
(EEEb · JJJa − HHHb · MMMa) dV =

Z
V
(EEEa · JJJb − HHHa · MMMb) dV (18)

field region only the H term of the magnetic field survives,
and by inspection of Eq. (16), the minimum coupling occursThat is, the reaction on antenna (a) of sources (b) equals the
for  � 0� or 180�. Figure 5 compares the coupling (normalizedreaction on antenna (b) of sources (a). For two loops with loop
to their peak values) for loops in parallel planes whose fieldsmoments parallel to the z axis we want to find the angle  for
are given by Eqs. (15) to (17). Figure 5 shows the coupling aswhich the coupling between the loops vanishes, that is, both
a function of angle  for an intermediate region (kr � 2) andsides of Eq. (18) are zero. The reference geometry is shown in
for the far-field case (kr � 1000) in comparison with the in-Fig. 3. In the case of the loop, there are no electric sources in
duction zone case (kr � 0.001). The patterns are fundamen-Eq. (18), so Ja � Jb � 0, and both Ma and Mb are aligned with
tally and significantly different. The coupling null at  � 54.7�z, the unit vector parallel to the z axis. Retaining only the
is clearly evident for the induction zone case kr � 0.001 andinductive field components and clearing common constants
for which the (1/kr)3 terms dominate. Equally evident is thein Eqs. (15) and (17) are placed into (18). We require that
far-field coupling null for parallel loops on a common axis(Hrr � H�)z � 0. Since r 	 z � �sin() and � 	 z � cos(), we
when the 1/kr terms dominate. The intermediate-zone cou-are left with 2 cos2() � sin2() � 0, for which  � 54.736�.

When oriented as shown in Fig. 3, two loops parallel to the
x–y plane whose centers are displaced by an angle of 54.736�
with respect to the z axis will not couple in their near fields.
To be sure, the angle determined above is ‘‘exactly’’ correct for
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Figure 5. Normalized induction zone, intermediate zone, and farFigure 3. Two small loops in parallel planes and with  � 54.736�

will not couple in their near fields. [Source: Siwiak (2).] zone coupling between loops in parallel planes. [Source: Siwiak (2).]
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pling shows a transitional behavior in which all the terms in the Q, the quality factor defined in (2), is inversely propor-
tional to the third power of the loop radius, a result that iskr are comparable.
consistent with the fundamental limit behavior for small an-
tennas.The Directivity and Impedance of Small Loops. The directive

If we use Eq. (22) and ignore the dipole mode terms andgain of the electrically small loop can be found from the far-
second-order terms in a/b, the unloaded Q of the loop an-field radially directed Poynting vector in ratio to the average
tenna isPoynting vector over the radian sphere:

Qloop =
6
π

�
ln
�8b

a

�
− 2

�

(kb)3
(23)

D(θ, φ) = |(EEE × HHH∗) · rrr|
1

4π

Z 2π

0

Z π

0
|(EEE × HHH∗) · rrr| sin(θ ) dθ dφ

(19)

which for b/a � 6 becomesOnly the  component of H and the � component of E survive
into the far field. If we use Eq. (16) for H and Eq. (17) for
E� and retain only the 1/kr terms, Eq. (19) yields D � 1.5 Qloop = 3.6

(kb)3
(24)

sin2() by noting that the functional form of the product of E
and H is simply sin2() and by carrying out the simple inte- which has the proper limiting behavior for small loop radius.
gration in the denominator of Eq. (19). The Q of the small loop given by Eq. (23) is indeed larger than

Taking into account the directive gain, the far-field power the minimum possible Qmin � (kb)�3 predicted by Siwiak (2)
density Pd in the peak of the pattern is for a structure of its size. It must be emphasized that the

actual Q of such an antenna will be smaller than given by Eq.
(24) due to unavoidable dissipative losses not represented in
Eqs. (22) to (24). We can approach the minimum Q but never

Pd = 1.5I2Rr

4πr2
= H2

θ η0 =
�kS

4π

k
r

I
�2

η0 (20)

go smaller, except by introducing dissipative losses.
for radiated power I 2Rr, hence, we can solve for the radiation

The Gap-Fed Loopresistance:

The analysis of arbitrarily thick wire loops follows the method
in Ref. 8, shown in simplified form in Ref. 9 and summarizedRr = (k2S)2

6π
η0 = η0

π

6
(kb)4 (21)

here. The toroid geometry of the loop is expressed in cylindri-
cal coordinates �, �, and z with the toroid located symmetri-

for the infinitesimal loop of loop radius b.
cally in the z � 0 plane. The relevant geometry is shown in

When fed by a gap, there is a dipole moment that adds
Fig. 6.

terms not only to the impedance of the loop but also to the
close near fields. For the geometry shown in Fig. 6, and using Loop Surface Current Density. The current density on the
the analysis of King and Harrison (15), the electrically small surface of the toroidal surface of the loop is given by
loop, having a diameter 2b and wire diameter 2a, exhibits a
feed point impedance given by

Jφ =
∞X

n=−∞

∞X

p=−∞
Bn,pe jnφFp (25)

where the functions Fp are symmetrical about the z axis and
are simple functions of cos(n�), where � is in the cross section

Zloop = η0
π

6
(kb)4[1 + 8(kb)2]

�
1 − a2

b2

�
· · ·

+ jη0kb
�
ln
�8b

a

�
− 2 + 2

3
(kb)2

�
[1 + 2(kb)2]

(22)

of the wire as shown in Fig. 6 and is related to the cylindrical
coordinate by z � a sin(�). These functions are orthonor-

including dipole mode terms valid for kb � 0.1. The leading malized over the conductor surface using the Gram–Schmidt
term of Eq. (22) is the same as derived in Eq. (21) for the method described in Ref. 16, yielding
infinitesimal loop. Expression (22) adds the detail of terms
considering the dipole moment of the gap fed loop as well as
refinements for loop wire radius a. The small loop antenna is F0 = 1

2π
√

ab
(26)

characterized by a radiation resistance that is proportional to
the fourth power of the loop radius b. The reactance is induc- and
tive, hence, is proportional to the loop radius. It follows that

F1 = F0

�
2

1 − (a/2b)2

�
cos(ψ) − a

2b

�
(27)

The higher-order functions are lengthy but simple functions
of sin(p�) and cos(p�).

Scalar and Vector Potentials. The electric field is obtained
from the vector and scalar potentials

2b
2a

ψ

φ

EEE = −∇∇∇� − jωAAA (28)Figure 6. Parameters of the thick-wire loop. [Source: Siwiak (2).]
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The boundary conditions require that E�, E�, and E� are zero
on the surface of the loop everywhere except at the feed gap
��� � �. Because this analysis will be limited to wire diameters
significantly smaller than a wavelength, the boundary condi-
tions on E� and E� will not be enforced. In the gap E� �
V0/2��, where V0 is the gap excitation voltage.

The components of the vector potential are simply

Aφ = 1
4π

Z
S

Z
Jφ cos(φ − φ ′) dS (29)

and

Aρ = 1
4π

Z
S

Z
Jφ sin(φ − φ ′) dS (30)
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and the vector potential is
Figure 7. Loop radiation resistance.

� = jη0

4πk

Z
S

Z
1
ρ

∂Jφ

∂φ
G dS (31)

given by

where the value of dS � [b � a sin(�)]a d�. The Green’s func-
tion G is expressed in terms of cylindrical waves to match the Hρ = −∂Aφ

∂z
(34)

rotational symmetry of the loop,
Hφ = −∂Aρ

∂z
(35)

Hz = ∂Aφ

∂ρ
+ Aφ

ρ
− 1

ρ

∂Aρ

∂ρ
(36)

G = 1
2 j

∞X

m=−∞
e− jm(φ−φ ′ )

Z ∞

−∞
Jm(ρ1 − v)H(2)

m (ρ2 − v)e− jζ (z−z′ ) dζ

(32)

The loop current across a section of the wire is found by inte-where
grating the function J� in Eq. (25) around the wire cross sec-
tion. The loop radiation impedance is then the applied volt-
age V0 in the gap divided by the current in the gap. Figure 7
shows the loop feed radiation resistance, and Fig. 8 shows the
corresponding loop reactance, as a function of loop radius kr

v =
p

k2 + ζ 2

ρ1 = ρ − a cos(ψ)

ρ2 = ρ + a cos(ψ)

for a thin wire, � � 15, and a thick wire, � � 10, where � �
2 ln(2�b/a) is Storer’s parameter (6). The thin-wire loop hasand where Jm(��) and H(2)

m (��) are the Bessel and Hankel func-
very sharp resonant behavior compared with the thick-wiretions.
loop, especially for a half-wavelength diameter (kb � 0.5)
structure. The higher resonances are less pronounced for bothMatching the Boundary Conditions. Expression (32) is now
loops. Thick-wire loops exhibit an interesting behavior in thatinserted into Eqs. (29) to (31) and the electric field is then
over a diameter of about a half wavelength, the reactance isfound from Eq. (28) and the boundary condition is enforced.

For constant � on the wire

Z π

−π

Eφe jpφ dφ = −V0

ρ

sin(pε)

pε
(33)

This condition is enforced on the wire as many times as there
are harmonics in �. Truncating the index p as described in
Ref. 9 to a small finite number P, we force E� � 0 except in
the feeding gap along the lines of constant � on the surface of
the toroid. If we truncate to P, the number of harmonics Fp in
�, and to M the number of harmonics in �, we find the radia-
tion current by solving M systems of P by P algebraic equa-
tions in Bm, p. In Ref. 9, P � 2 and M in the several hundreds
was found to be a reasonable computational task that led to
useful solutions.

Loop Fields and Impedance. With the harmonic amplitudes
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Bm, p known, the current density is found from Eq.(1). The elec-
tric field is found next from Eq. (2) and the magnetic field is Figure 8. Loop reactance.
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numerical codes, such as the numerical electromagnetic code
(NEC) described in Ref. 3, and often used in the numerical
analysis of wire antenna structures.

When the small loop is used as an untuned and unshielded
field probe, the current induced in the loop will have a compo-
nent due to the magnetic field normal to the loop plane as
well as a component due to the electric field in the plane of
the loop. A measure of E field to H field sensitivity is apparent
from Eq. (40). The electric field to magnetic field sensitivity

Table 1. Parameter Y for Various Loop Thicknesses and
b � 0.01 Wavelengths

� a/� Y

19.899 0.000003 �0.0039
17.491 0.00001 �0.0090
15.294 0.00003 �0.020
12.886 0.0001 �0.048
10.689 0.0003 �0.098
8.2809 0.001 �0.179

ratio of a simple small-loop probe is proportional to the loop
diameter. The small gap-fed loop, then, has a dipole moment,
which complicates its use as a purely magnetic field probe.

essentially always capacitive and the total impedance re-
mains well behaved.

LOOP APPLICATIONS
Small Gap-Fed Loops. The detailed analysis of the thick,

gap-fed wire loop, as shown in Refs. 8 and 9, reveals that the Loop antennas appear in pager receivers as both ferrite-
current density around the circumference of the wire, angle � loaded loops and as single-turn rectangular shaped structures
in Fig. 6, is not constant. An approximation to the current within the radio housing. When worn on a belt the loop bene-
density along the wire circumference for a small diameter fits from coupling to the vertically resonant human body. In
loop is the high-frequency bands, the loop has been implemented as

a series resonant circuit fed by a secondary loop. The struc-
ture can be tuned over a very large frequency band while
maintaining a relatively-constant-feed point impedance. One-

Jφ = Iφ

2πa
[1 − 2 cos(φ)(kb)2][1 + Y cos(ψ)] (37)

wavelength-perimeter square loops have been successfully
where I� is the loop current, which has cosine variation along implemented as high-gain transmitting structures.
the loop circumference, and where the variation around the
wire circumference is shown as a function of the angle �. Y is

The Ferrite-Loaded Loop Antenna—A Magnetic Dipolethe ratio of the first- to the zero-order mode in � and is not a
simple function of loop dimensions a and b, but can be found Let us examine a small ferrite-loaded loop antenna with di-
numerically [Siwiak (2)] and from the analysis of the preced- mensions 2h � 2.4 cm, 2a � 0.4 cm, and at a wavelength of
ing section. For the small loop Y is negative and of order about � � 8.6 m as pictured in Fig. 9. When the permeability
a/b so Eq. (37) predicts that there is current bunching along of the ferrite is sufficiently high, this antenna behaves like a
the inner contour (� � 180�) of the wire loop. Table 1 gives magnetic dipole. The magnetic fields are strongly confined to
representative values for Y as a function of a/b. the magnetic medium, especially near the midsection of the

This increased current density results in a corresponding ferrite rod, and behave as the dual of the electric dipole ex-
increase in dissipative losses in the small loop. We can infer cited by a triangular current distribution. We can therefore
that the cross-sectional shape of the conductor formed into a analyze its behavior using a small dipole analysis shown by
loop antenna will impact the loss performance in a small loop. Siwiak (2). The dipole current is replaced by the equivalent

The small loop fed with a voltage gap has a charge accu- magnetic current along the ferrite rod length 2h.
mulation at the gap and will exhibit a close near electric field. The impedance at the midpoint of a short dipole having a
For a small loop of radius b and in the x–y plane, the fields current uniformly decreasing from the feed point across its
at (x, y) � (0, 0) are derived in Ref. 9 and given here as length 2h is

Eφ = − j
η0kI

2
(38)

Zdipole = η0

6π
(kh)2 − j

η0

2π

�
ln
�2h

a

�
− 1

�

kh
(41)

where I is the loop current and

Hz = I
2b

(39)

Expression (39) is recognized as the classic expression for the
static magnetic field within a single-turn solenoid. Note that
the electric field given by Eq. (38) does not depend on any
loop dimensions, but was derived for an electrically small
loop. The wave impedance Zw at the origin is the ratio of E�

to Hz and from Eqs. (38) and (39) is

Zw = − jη0kb (40)

2h

2a

µ >>1

In addition to providing insight into the behavior of loop
probes, Eqs. (38) to (40) are useful in testing the results of Figure 9. A ferrite-loaded loop antenna. [Source: Siwiak (2).]
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The corresponding unloaded Q of the dipole antenna is

Qdipole =
3
�
ln
�2h

a

�
− 1

�

(kh)3
(42)

Equation (42) has the expected behavior of the inverse third
power with size for small antennas, and for h/a � 6

Qdipole = 4.5
(kh)3

(43)

Comparing the Q for a small dipole given by Eq. (43) with the
Q of a small loop of Eq. (24) we see that the loop Q is small
even though the same ratio of antenna dimension to wire ra-
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dius was used. We conclude that the small loop utilizes the

Figure 10. Gain-averaged body-enhanced loop response. [Source:smallest sphere that encloses it more efficiently than does the
Siwiak (2).]small dipole. Indeed, the thin dipole, here masquerading as

the analog of a long thin ferrite loaded loop, is essentially a
one-dimensional structure, while the small loop is essentially
a two-dimensional structure. benefit from the body enhancement effect. The standing adult

human body resembles a lossy wire antenna that resonatesWe can use Eqs. (41) and (42) for the elementary dipole to
examine the ferrite-loaded loop antenna since it resembles a in the range of 40 MHz to 80 MHz. The frequency response,

as seen in Fig. 10, is broad, and for belt-mounted loop anten-magnetic dipole. The minimum ideal Q of this antenna is
given by Eq. (42), 1.01 � 106. The corresponding bandwidth nas polarized in the body axis direction, enhances the loop-

antenna azimuth-averaged gain at frequencies below aboutof such an antenna having no dissipative losses would be 2 �
35 MHz f/Q � 70 MHz/1.01 � 106 � 69 Hz. A practical ferrite 500 MHz.

The far-field radiation pattern of a body-worn receiver isantenna at this frequency has an actual unloaded QA of
nearer to 100, as can be inferred from the performance of belt- nearly omnidirectional at very low frequency. As frequency is

increased, the pattern behind the body develops a shadowmounted radios shown in Table 2. Hence, an estimate of the
actual antenna efficiency is that is manifest as a deepening null with increasing fre-

quency. In the high-frequency limit, there is only a forward
lobe with the back half-space essentially completely blocked10 log(QA/Q) = −40 dB (44)
by the body. For horizontal incident polarization there is no

and the actual resultant 3 dB bandwidth is about 700 kHz. longitudinal body resonance and there is only slight enhance-
Such an antenna is typical of the type that would be used in ment above 100 MHz.
a body-mounted paging receiver application. As detailed by
Siwiak (2), the body exhibits an average magnetic field en- The Small Resonated High-Frequency Loop Antenna
hancement of about 6 dB at this frequency, so the average

The simple loop may be resonated with a series capacitor hav-belt-mounted antenna gain is �34 dBi. This is typical of a
ing a magnitude of reactance equal to the loop reactance, andfront position body-mounted paging or personal communica-
indeed is effectively implemented that way for use in thetion receiver performance in this frequency range.
high-frequency (HF) bands as discovered by Dunlavy (17).
When fed by a second untuned loop, this antenna will exhibitBody Enhancement in Body-Worn Loop Antennas
a nearly constant-feed-point impedance over a 3 : 1 or 4 : 1

Loops are often implemented as internal antennas in pager bandwidth by simply adjusting the capacitor to the desired
receiver applications spanning the frequency bands from 30 resonant frequency. The reactive part of the loop impedance
MHz to 960 MHz. Pagers are often worn at belt level and is inductive, where the inductance is given by Im�ZL� � �L,

so ignoring the higher-order terms

L =
η0kb

�
ln
�8b

a

�
− 2

�

ω
(45)

which with the substitution �0k/� � �0 becomes

L = µ0b
�
ln
�8b

a

�
− 2

�
(46)

The capacitance required to resonate this small loop at fre-
quency f is

C = 1/(2πf )2L (47)

Table 2. Paging Receiver Performance Using Loops

Paging Receiver,
at Belt, Field Strength

Frequency Band Av. Gain Sensitivity
(MHz) (dBi) (dB · �V/m)

30 to 50 �32 to �37 12 to 17
85 �26 13

160 �19 to �23 10 to 14
280 to 300 �16 10
460 �12 12
800 to 960 �9 18 to 28

Source: After Siwiak (2).
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The loop may be coupled to a radio circuit in many different
ways, including methods given in Refs. 17 and 18. When used
in transmitter applications, the small loop antenna is capable
of impressing a substantial voltage across the resonating ca-
pacitor. For a power P delivered to a small loop with an un-
loaded Q of Eq. (23) and with resonating the reactance XC

given by the reactive part of Eq. (22), it is easy to show that
the peak voltage across the resonating capacitor is

Vp =
√

XCQP (48)

by recognizing that

Vp =
√

2 Irms XC (49)

0.14   to 0.25 λ λ
λ /4

λ /4

Driven
element

Feed

Stub
tuner

Reflector
element

where Irms is the total rms loop current
Figure 11. Two-element loop array.

Irms =
�

P
Re{Zloop}

(50)

element tips severe enough to damage the antenna when op-
erated at high power levels (10 kW) in a high-altitude (10,000along with Q at the resonant frequency in Eq. (23).
ft) shortwave broadcasting application in the 25 m band.Transmitter power levels as low as 1 W delivered to a mod-
Moore sought an antenna design with ‘‘no tips’’ that woulderately efficient small-diameter (�/100) loop can result in
support extremely high electric field strengths that causedpeak values of several hundred volts across the resonating
the destructive arcing. His solution was a one-wavelength-pe-capacitor. This is not intuitively expected: the small loop is
rimeter square loop, later with a loop director element asoften viewed as a high current circuit, which is often de-
shown in Fig. 11. The configuration exhibited no arcing tend-scribed as a short-circuited ring. However, because it is usu-
encies, and a new shortwave antenna configuration was born.ally implemented as a resonant circuit with a resonating ca-

As pictured in Fig. 11, the driven element is approximatelypacitor, it can also be an extremely-high-voltage circuit as will
one-quarter wavelength on an edge. Actually, resonance oc-be shown later. Care must be exercised in selecting the volt-
curs when the antenna perimeter is about 3% greater than aage rating of the resonating capacitor even for modest trans-
wavelength. The reflector element perimeter is approximatelymitting power levels, just as care must be taken to keep re-
6% larger than a wavelength, and may be implemented withsistive losses low in the loop structure.
a stub tuning arrangement. Typical element spacing is be-As an example, consider the Q and bandwidth of a small
tween 0.14 and 0.25 wavelengths. The directivity of a quadloop antenna, 2b � 10 cm in diameter, resonated by a series
loop is approximately 2 dB greater than that of Yagi antennascapacitor and operating at 30 MHz. The example loop is con-
with the same element spacing.structed of 2a � 1 cm diameter copper rod with conductivity

� � 5.7 � 107 S/m. The resistance per unit length of round
wire of diameter 2a with conductivity � is
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