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ELECTROMAGNETIC WAVE SCATTERING

Electromagnetic wave scattering is the reradiation of electro-
magnetic energy that results when an electromagnetic field
encounters an abrupt change in electrical parameters. Typi-
cally, this occurs when an electromagnetic field is incident on
a structure or scattering object. When the original electro-
magnetic field crosses the boundary between two regions of
different material, each with different electrical properties,
the field will change as it enters the second region. Sources,
including conduction, displacement, and polarization cur-
rents, will be induced at the discontinuity between the two
regions. These currents act as sources of electromagnetic radi-
ation, much like the sources of the original incident electro-
magnetic field. This reradiation is called electromagnetic scat-
tering, because it scatters the incident electromagnetic field
from its original propagation path.

TYPES OF ELECTROMAGNETIC SCATTERING

Fundamentally, there are three types of electromagnetic scat-
tering mechanisms: reflection, refraction, and diffraction.
These scattering mechanisms can radiate specularly or dif-
fusely. Specular scattering means that electromagnetic rera-
diation travels in parallel rays. Diffuse scattering means the
spreading of the electromagnetic field as it propagates away
from the scattering object.

Specular Scattering

Of the three fundamental scattering mechanisms, the most
familiar are specular reflection and refraction. If any corners
or bends that exist at the boundary are very gradual com-
pared to the wavelength of the incident field, then the bound-
ary tends to cause specular scattering. Optical scattering is
often assumed to be specular, because most obstructing bod-
ies are electrically large compared to optical wavelengths.
Specular scattering can be modeled with the specular law of
reflection and Snell’s law of refraction.

Specular Reflection. A familiar example of specular reflec-
tion is the common reflection of a visible image in a mirror,
since the dimensions of the mirror are huge compared to the
wavelength of visible light. The ratio of the reflected field to
the incident field strength is called the reflection coefficient �.

Refraction. The energy that is not reflected from the elec-
trically large boundary is transmitted through the boundary.
The ratio of the transmitted field strength to the incident field
strength is called the transmission coefficient T. In the pro-
cess of propagating from one electrical medium to the next,
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the speed of propagation changes. This change in speed
causes a change in the propagation angle at the boundary.
This phenomenon is commonly seen with visible light at the
surface of a calm pool of water. The fact that an object ex-
tending from the air into the water appears bent is due to the
increase in the propagation velocity of light as it leaves the
water and enters the air. This phenomenon can be modeled
with Snell’s law of refraction.

Diffuse Scattering

The laws for specular scattering are only valid for electrically
large scattering bodies. If the object causing the electromag-
netic scattering is small compared to the wavelength of the
incident electromagnetic field, the induced currents would
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tend to bend around the contour, creating diffuse scattering.
Figure 1. Illustration of Snell’s law. A plane-wave electromagneticUnlike specular scattering, diffuse scattering results when
field obliquely incident onto a plane boundary, separating medium 1the electromagnetic energy spreads out as it radiates from the
(�1, 	1, �1) from medium 2 (�2, 	2, �2). A reflected field and a transmit-scattering object. The smaller the object, the more the energy
ted field scatter from this discontinuity in electrical constants.will spread as it reradiates.

A simple example of diffuse scattering is an electromag-
netic field incident upon a cylindrical conductor of small ra-
dius, where the electric field is parallel to the axis of the cylin- ronment, a cell-phone user rarely has a direct line of sight to
der. At frequencies below the microwave region of the the cell base station. Often, the communication link can only
electromagnetic spectrum, a thin copper wire will have an be established due to energy reflecting off of a nearby build-
electrically small radius. A first approximation is to assume ing, or energy diffracted around a building or over a hill.
that the current that is induced by the incident field is uni- Since typically, these obstructions are electrically large, ray-
formly distributed across the entire cross section of the wire. tracing techniques, which incorporate the laws for specular
The scattered or reradiated field from this wire is similar to reflection and diffuse diffraction at edges, are often used to
the field radiated from a wire antenna having the same linear model the propagation characteristics of the communication
current distribution. However, the total field around the wire channel.
is the superposition, or vector sum, of the scattered field and
the original incident field that would have existed without the
wire present. The scattered field, added to the incident field,

THE LAWS OF SPECTRAL REFLECTION AND REFRACTIONcreates a pattern with constructive reinforcement in some di-
rections and destructive cancellation in other directions. This

In many applications, an electromagnetic field can be as-is the function of the passive elements found on the Yagi–Uda
sumed to be a plane wave. A plane wave is a convenient ap-antenna, common in television and other VHF and UHF com-
proximation amounting to the assumption that the electro-munications.
magnetic field does not vary over the plane perpendicular toIn the Yagi–Uda antenna, only one set of elements is ac-
the direction of propagation. This approximation is similar totive. The active (or driven) element usually makes up a half-
assuming that over small geographic areas the Earth is flat.wavelength dipole antenna. The other elements are simply
For wave propagation, this assumption is valid for a smallconductive cylinders or wires that reradiate some of the en-
observation area at a great distance from the source of aergy incident on them from the active element. Depending on
spherically propagating wave.the relative lengths of these passive elements, each of their

Figure 1 shows a plane-wave electromagnetic field incidentradiated fields will add to the incident field of the active ele-
on a boundary in the xy plane. The generalized electric fieldment, to create an overall pattern of power flow (1) This focus-
will have components in the x, y, and z directions, that is,ing of energy is called antenna gain. Other forms of diffuse

scattering by electrically small bodies are not so intentional.
EEE = (x̂̂x̂xEx + ŷ̂ŷyEy + ẑ̂ẑzEz)e− jβ(sin θi x+cos θi z) (1)

Diffuse Diffraction

where � � ���	 is the phase constant or wave number inAnother form of scattering, which cannot be accounted for by
radians per meter, � is the permeability in henrys per meter,reflection or refraction, is diffraction. For electrically large
and 	 is the permittivity of the material in farads per meter.scattering bodies, diffraction appears to occur at geometrical
Imposing the tangential boundary condition for the electricdiscontinuities such as edges and corners. A first approxima-
field, the sum of the tangential components of the incidenttion is that currents induced only at these discontinuities re-
and reflected fields must be equal to that of the transmittedradiate electromagnetic energy. Diffraction is the scattering
field (2–4),mechanism that accounts for radiation filling in the region

that would have been completely blocked (shadowed) by an
opaque obstruction.

Diffraction and reflection are important scattering mecha-
nisms in communications. Whether in an urban or rural envi-
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This equality can only be true for all x when the exponents, 2. Region 2 represents a scattering body of material con-
or phases, are equal: sisting of a different permittivity 	, permeability �, and con-

ductivity �, than those of the surrounding region 1. Region 2
β1 sin θi x = β1 sin θr x = β2 sin θt x (3) is bounded by a surface S. Assume that an electric field, E1,

and its associated magnetic field H1, originate from a sourceEquation (3), proves the well-known specular law for reflec-
current density J0. This source could simply be the currenttion (5),
oscillating in a transmitting antenna. These fields propagate
undisturbed, through region 1, until they become incidentθi = θr (4)
upon the scattering body of region 2. As the fields cross the

which simply states that the angle of reflection equals the boundary between region 1 and region 2, they will be per-
angle of incidence. Equation (3) also leads to Snell’s law of turbed, that is, E2 and H2 in region 2 will generally not be
refraction, equal to the fields E1 and H1 propagating in region 1. This

abrupt change or discontinuity in electric and magnetic field
strength results in currents that are induced at the disconti-

sin θi

sin θt
=
r

µ2ε2

µ1ε1
(5)

nuity. In general these currents will be distributed through
the volume of regions 1 and 2, depending on their electricalFor most material, the permeability is the same as that of
constants.free space, � � �0. Assuming �1 � �2, Eq. (5) reduces to

According to the induction theorem, whenever there is a
discontinuity of the E and H fields crossing a boundary S be-n1 sin θ1 = n2 sin θ2

tween two media with different electrical constants, one can
where n � �	r is the index of refraction and 	r is the relative assume that induced currents at S cause the discontinuities
permittivity or dielectric constant. in the fields. The induced current can be an electric current

sheet (6–8)
ELECTROMAGNETIC THEOREMS

JJJs = n̂̂n̂n × (HHHs − HHHt) = −n̂̂n̂n × HHHi (6a)
Many electromagnetic scattering problems do not lend them-
selves to the simple application of the laws of reflection and or a fictitious, but mathematically useful magnetic current
refraction. To develop more sophisticated analysis tools, a dis-

sheetcussion of some basic electromagnetic theorems will be useful.

Uniqueness Theorem MMMs = −n̂̂n̂n × (EEEs − EEEt) = n̂̂n̂n × EEEi (6b)

Knowledge of the sources induced on the surface of a scatter-
The superscripts i, s, and t pertain to the incident, outwardlying body S enables unique solutions of the fields reradiated
scattered (reflected), and transmitted fields, respectively, andby those induced sources. Conversely, the known fields allow
n̂ is the normal unit vector pointing out of the scatteringa unique calculation of the induced sources. The electric field
body. If the scattering object is a perfect conductor, the trans-E and magnetic field H are uniquely determined if (6,7)
mitted fields vanish, leaving

1. n̂ � E, the tangential component of E, is specified on
S, JJJs = −n̂̂n̂n × HHHi = n̂̂n̂n × HHHs (7a)

2. n̂ � H, the tangential component of H, is specified on
S, and and

3. n̂ � E is specified on part of S, and n̂ � H is specified
on the remaining part of S. MMMs = n̂̂n̂n × EEEi = −n̂̂n̂n × EEEs (7b)

Induction Theorem The induction theorem alleviates the problem of knowing the
exact distribution of current densities throughout the volumeIn general, sources, such as conduction, displacement, and po-

larization currents, are induced at electrical discontinuities in of the scattering body. The assumed currents exist only on
the medium through which the incident field is propagating. the boundary S between the two media. Furthermore, the in-
Figure 2 shows a typical discontinuity represented by region duced currents can be calculated directly from knowledge of

the incident field that would have existed in the absence of
any scattering object.

Equivalence Principle

If two different sources produce the same radiating field
within a region, these sources are equivalent (8). If both re-
gions have the same electrical constants, only an inwardly
scattered (transmitted) field exists. It follows from Eq. (6)
that the fields that are incident on the boundary S can be
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replaced by the equivalent current sheets
Figure 2. A scattering body. The incident field propagates from the
source current, J0, through region 1. As this field strikes region 2, the
currents Js and Ms are induced at the surface S of the scattering body. JJJs = n̂̂n̂n × HHHs = n̂̂n̂n × HHH i (8a)
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and

MMMs = −n̂̂n̂n × EEEs = −n̂̂n̂n × EEEi (8b)

where in this case, n̂ is pointing in the direction of the trans-
mitted or scattered wave. The equivalence theorem is useful
for modeling radiation through apertures, such as a slot in a
conductive plane or a horn antenna.

DIFFRACTION

Diffraction is the scattering mechanism that neither reflects

GO shadow
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off nor transmits through a structure. Even with opaque
Figure 3. Half-screen diffraction using the GTD. The currents in-structures, allowing no transmission, diffraction accounts for duced at the edge of the conducting half screen radiate into the GO

radiation into the geometrical shadow region. This scattering shadow region.
mechanism cannot be modeled with Snell’s law. To analyze
diffraction exactly would require more knowledge about the
induced current distribution around the scattering structure Figure 3 shows a plane wave incident on a perfectly absorbing
than would typically be available. Therefore approximations half screen. The diffraction coefficient can be quite involved,
must be made to simplify the analysis. Two common ap- even for this simple scattering structure. However, away from
proaches to analyzing diffraction are the use of geometrical the shadow boundary (15),
optics and physical optics.

Geometrical Optics
EEEd = − 1

2 EEE0

√
λr

πx
e− jβr (11)

Geometrical optics (GO) is a ray-tracing technique that as- In the shadow (�x), the diffracted field given in Eq. (11) is
sumes that the electromagnetic energy travels in straight the only field present. In the region of GO illumination (�x),
parallel lines, or rays, that are perpendicular to the wave- the magnitude of the diffracted field of Eq. (11) subtracts from
front. These rays travel from the point of reradiation to the the incident field. Figure 4 illustrates the sum of the dif-
observation point. While relatively easy to implement (9,10), fracted field and the GO incident field for (a) z � 2� and (b)
GO is an approximation that relies on some important as- z � 20�. Clearly, there is a discontinuity at the transition
sumptions, primarily that the wavelength of the electromag- between the GO illumination and shadow regions, around
netic field must approach zero. Clearly, GO is an asymptotic x � 0. This is an obvious limitation of the GTD, since there
technique only valid for sufficiently high frequencies, such should be a smooth transition. One crude solution would be
that the wavelength is small compared to the dimension of to simply draw a smooth curve connecting each side of the
the obstruction. Since GO assumes infinite frequency, it ig- discontinuity through the point x � 0, E � E0/2. A more so-
nores the wave nature of the electromagnetic scattering field, phisticated method is the uniform theory of diffraction (UTD),
thus ignoring diffraction. The GO model creates an abrupt which is an extension of the GTD that forces a smooth transi-
change in energy at the transition from the illuminated re- tion between the GO illumination and shadow boundary (16).
gion to the shadow region. The abrupt change in field Many common diffraction problems, such as hilltops and

buildings, can be modeled with this half-screen or knife-edgestrength, without currents or charges to account for this dis-
approximation. However, the GTD still relies on several as-continuity, violates boundary conditions. Therefore, GO pro-
sumptions. The diffracted ray is assumed to depend entirelyvides only the crudest model, accounting only for reflection
on the incident ray and the characteristics of the discontinu-and refraction, but not for diffraction.
ity itself, such as an edge of a scattering structure (17). TheThe geometrical theory of diffraction (GTD) extends GO to
GTD is still a high-frequency asymptotic approximation, be-account for diffraction, by introducing a diffraction coeffi-
cause it assumes that the structure is electrically large andcient, D, analogous to � for reflection and to T for transmis-
conductive (18). Furthermore, the GTD suffers from the unre-sion (11–13). The total electric field ET around the obstruction
alistic discontinuity problem at the GO illumination–shadowis
boundary.

EEET = EEEg + EEEd (9)
Physical Optics

The edge-diffraction problem of Fig. 3 can also be analyzedwhere Eg is the electric field predicted by GO and is zero in
using the concept of physical optics (PO), which relies on Huy-the shadow region. The diffracted field for a plane wave of
gens’ principle. Huygens’ principle states that each point of aincidence is given by (14)
primary wavefront acts as a secondary point source. Each of
these secondary sources radiates a spherical wave (14). The
primary difference between PO and the GTD is that the GTD
assumes rays connect from the geometrical discontinuity to

EEEd(r) = DEEE0
e− jβ r

√
r

(10)
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the observation point, while PO assumes that secondary
spherical waves radiate from the unobstructed primary wave-
front. Figure 5 shows Huygens sources radiating into the GO
shadow region behind the absorbing half screen. The elemen-
tary electric field due to each secondary point source is

dEEE = EEE0

r + δ
e− jβ(r+δ) (12)

where r is the distance from the observation point to the con-
ducting half plane, and � is the additional distance to the sec-
ondary sources. From Fig. 5,

(r + δ)2 = r2 + 2rδ + δ2 = x2 + r2 (13)

GO shadow
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r

Wavefront

Conducting
half plane

Secondary
sources

z

δ

Figure 5. Half-screen diffraction using PO. The unblocked secondaryClearly, the secondary sources closest to the half screen will
sources radiate into the GO shadow region, accounting for diffraction.dominate the amplitude term in Eq. (12). Therefore, one can

make the assumption that r � � in the amplitude term, and

r2 � �2 for the phase term. Thus, Eq. (13) reduces to

δ = x2

2r
(14)

and Eq. (12) becomes

EEE = EEE0/r e− jβr
∫ ∞

x0

e− jβ x2/2r dx (15)

where r is a constant. Letting u � �2/�r x and u0 � �2/�r x0,
Eq. (15) becomes

EEE =
r

λ

2r
EEE0e− jβr

∫ ∞

u0

e− j πu2/2 du (16)

The limits of integration can be split into two terms:

EEE =
r

λ

2r
EEE0e− jβr

�∫ ∞

0
e− j πu2/2 du −

∫ uo

0
e− j πu2/2 du

�
(17)

which has the form of Fresnel cosine and sine integrals.
Equation (17) can be written as

EEE =
r

λ

2r
EEE0e− jβr { 1

2 + j 1
2 − [C(u0) + jS(u0)]

}
(18a)

where C(u0) and S(u0) are the Fresnel sine and cosine inte-
grals respectively (19–21). The solution to Eq. (18a) is similar
to the GTD solution for Fig. 3, with the exception that Eq.
(18a) for PO does not suffer the discontinuity of Eq. (11) for
GTD. In fact, Eq. (18a) has an analytic solution in the GO
illumination–shadow transition region. The total electric field
at x0 � 0 is
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Figure 4. Simulation of half-screen diffraction by the GTD. The solid
straight line represents the GO incident field. The oscillating curve EEE(x0 = 0) =
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λ
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�
1
2 + j 1

2

�
(18b)

is the diffracted field, calculated by the GTD, added to the GO field,
at a distance behind the screen of (a) z � 2 wavelengths and (b) z �

20 wavelengths. and has a magnitude of (E0/2) ��/r.



492 ELECTROMAGNETIC WAVE SCATTERING

DIFFRACTION THROUGH AN APERTURE Rather than solving the integrodifferential Eq. (19a), Am-
pere’s law can be used to obtain directly the scattered electric

The equivalence principle can be combined with PO to ana- field in the source-free region,
lyze scattering through an aperture. Figure 6 shows an elec-
tromagnetic plane wave which is incident normally on an ap- ∇∇∇ × HHH = jωεEEE (21)
erture in a conducting screen of infinite extent. While this

The distance R from each elemental source to the field pointproblem may not be realistic, it can make a good approxima-
can be obtained from the law of cosines,tion for an aperture in an electrically large conductive plane.

From the equivalence principle, the reradiated field appears
to be generated by the current sheets described in Eq. (8). R =

�
r2 + r′2 − 2rr′ cos ψ (22)

Starting from Maxwell’s equations, the electric and magnetic
fields radiated from the electric and magnetic current sources where r� cos � � x� sin � cos 
 � y� sin � sin 
. Equation (20)
are (22) would be difficult to integrate with a direct substitution of Eq.

(22). However, if the scattered field is observed in the far-field
region, R and r will be virtually parallel. The far-field limit is
usually taken to be

r ≥ 2D2

λ
(23)

EEE = − j
ωµ

4π

∫∫
S′

J′J′J′ e
− jβR

R
dx′ dz′

− ∇∇∇ ×
�

1
4π

∫∫
S′

M′M′M′ e
− jβR

R
dx′ dz′

�
(19a)

where D is the largest dimension of the aperture, in this case,
and the length of the diagonal (19). The far-field assumption

allows for the approximation R � r � r� cos � in the phase,
and R � r in the amplitude. Furthermore, in the far field,
E � �H, where � � ��/	 is the intrinsic impedance of the
surrounding medium. This eliminates the need to solve Eqs.
(19a) or (21). Since the incident plane wave is normal to the
aperture, it will not vary over the aperture. Therefore, it can

HHH = − j
ωε

4π

∫∫
S′

M′M′M′ e
− jβR

R
dx′ dz′

+ ∇∇∇ ×
�

1
4π

∫∫
S′

J′J′J′ e
− jβR

R
dx′ dz′

�
(19b)

be brought out of the integral. Then the equation for the scat-
tered magnetic field becomeswhere the primed symbols refer to the source rather than the

field. The equivalence principle allows the electric field in the
aperture to be replaced by the magnetic current sheet Ms over
a continuous conducting screen (7). The aperture is essen-
tially shorted, which cancels Js. From image theory, it ap-

H = − j
ωε

2πr
E0

∫ a/2

−a/2

∫ b/2

−b/2
e− jβ(x′ sin θ cos φ+y′ sin θ sin φ) dx′ dz′

(24)
pears as though an identical image of Ms lay on the opposite

While appearing messy, Eq. (24) is a straightforward inte-side of the screen. Since these two current sheets nearly coin-
gral. After integrating the two exponential terms, substitut-cide, the entire problem can be replaced with 2Ms at the aper-
ing the limits, and applying the identityture location, and no screen at all. Then Eq. (19b) becomes

sin α = e jα − e− jα

j2
HHH = − j

ωε

2π

∫∫
S′

M′M′M′ e− jβR

R
dx′ dz′ (20)

the scattered magnetic field in Eq. (24) becomes

H = j
abe− jβr

ηλr

�sin X
X

��sin Y
Y

�
(25a)

where

X = βa sin θ cos φ

2
(25b)

and

Y = βb sin θ sin φ

2
(25c)
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Figure 7 is a plot of Eq. (25a), with the amplitude normal-Figure 6. Coordinate system for the aperture diffraction problem.
ized. The x dimension is a � 6�, the y dimension is b � 3�,R is the vector pointing from the differential element dx dy to the
and the observation screen is z � 100� from the aperture.field point, and is the resultant vector sum of r and r�. The distance

The normal incidence was chosen for this problem to illus-from the origin to the secondary source in the aperture plane is r� �
�x�2 � y�2. trate the concept while keeping the mathematics simple.
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Figure 7. Normalized scattering pattern through the aper-
ture. The dimensions of the aperture are 6 by 3 wavelengths;
the observation screen is 100 wavelengths from the plane of
the aperture. The scattering pattern is wider in the x direc-
tion, since the x dimension of the aperture is twice the y di-
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However, Eq. (25) can be extended to oblique incidence by which indicates that the electric field scattered from a conduc-
tive plate can be calculated from the field scattered from themodifying the current source Ms. Assuming that the source of

the incident field is far from the aperture, the amplitude will aperture, by subtracting the latter from the incident field (22).
not vary significantly across the aperture. However, the phase
of each differential element of Ms. will vary. The procedure is SPECIAL CASES OF ELECTROMAGNETIC WAVE SCATTERING
the same as for this analysis, except that some angle terms
for the incident field will be added to X and Y in Eq. (25). The Rayleigh Scattering
integration then follows in a similar manner (22).

If the scattering object is much smaller than a wavelength,
its scattered energy varies inversely as the fourth power of

BABINET’S PRINCIPLE the wavelength (1,24,25). Therefore, for a given subwave-
length object, higher frequencies will scatter more than lower

Scattering from a conductive plate can be modeled in a man- frequencies. This is the basis behind the concept of Rayleigh
ner that virtually parallels the preceding solution to the aper- scattering for small scatterers. In fact, Rayleigh scattering
ture. In the case of scattering from a conductive plate, the answers the commonly asked question: Why is the sky blue?
current sources are obtained using the induction theorem. In Since the blue end of the visible spectrum has the shortest
fact, scattering through the aperture is the exact complement wavelength, blue light scatters more than the rest of the visi-
to the scattering off of the conductive plate that was essen- ble spectrum from dust, water, and even air molecules. As the
tially cut out of the conductive screen to create the aperture. scattering objects become larger, they fall into the category
If every electric parameter and the corresponding magnetic called Mie scattering.
parameter were swapped, the solutions would be identical.

Radar Cross SectionBabinet’s principle originally stated that the sum of the inten-
sities from an obstruction and its complement (i.e., a similarly Electromagnetic wave scattering is the basis by which radar
shaped aperture in an infinite screen) is equal to the intensity signals are returned to the radar receiver from a target. Since
that would have existed if no obstruction existed at all: the typical radar system employs a colocated transmit and

receive antenna, the source and observation points are the
Sa + Sc = S0 (26) same. This scenario is a specific case of electromagnetic wave

scattering, as previously discussed, and is known as mono-
While this relationship works for optics, it does not take static scattering.

account of polarization. To apply Babinet’s principle to vector As the transmitted power Pt propagates through space, it
fields, it must be modified to (23) spreads over an increasing surface area, A, resulting in de-

creased power density St � Pt /A. If Pt spreads spherically, as
with a point source or isotropic radiator, A � 4�d2, where dHa

Hi + Ec

Ei = 1 (27)
is the distance from the transmitter. A target can intercept
part of the transmitted power and scatter it in various direc-

The first term in Eq. (27) is the ratio of the field diffracted by tions. The radar cross section (RCS) is the effective area of
the aperture to the field with no screen present at all, and the the target that would return the monostatic power density
second term is the ratio of the field produced by the comple- back to the source, if this target scattered the power isotropi-
mentary screen to the conjugate source. The conjugate source cally (1,26,27). The RCS is related to the physical cross-sec-
refers to the opposite field rotated by 90�. In vector form, Eq. tional area of the target but also depends on factors such as
(27) can be rewritten as the frequency and polarization of the radar signal as well as

the target’s shape, material, and orientation to the trans-
mitter.Ec = Ei − ηHa (28)
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