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DIELECTRIC-LOADED ANTENNAS

A transmit antenna converts the energy of a guided wave in
a transmission line into the radiated wave in an unbounded
medium. The receive antenna does the reverse. The transmis-
sion lines such as waveguides, coaxial lines, and microstrip
lines use conductors mostly to confine and guide the energy,
but antennas use them to radiate it. Because the radiated
energy is in an unbounded region, phase control is often used
to direct the radiation in the desired direction. Dielectrics
play an important role in this process, and this article dis-
cusses a few representative cases. An important antenna pa-
rameter is its directivity, which is the measure of its control
over the energy flow. To increase the directivity the antenna
size must be increased, and the influence of dielectrics on
their performance changes considerably. Thus, in this article,
the use of dielectrics in antenna applications is divided into
two categories: large high-gain antenna applications and
small low-gain antenna applications.

In high-gain antenna applications, reflectors and lenses
are used extensively (1). They operate principally on the basis
of their geometry. Consequently, they are relatively low cost,
reliable, and wideband. Reflectors are usually made of good
conductors, and thus have lower loss, and because of their
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high strength they can be made light. However, reflectors suf-
fer from limited scan capability. Lenses, on the other hand,
because of transparency, have more degrees of freedom—that
is, two reflecting surfaces and the relative permittivity or re-
fractive index. They also do not suffer from aperture blockage.
However, lenses have disadvantages in large volume and
weight.

In microwave antenna applications, lenses have numerous
and diverse applications, but in most cases they are large
with respect to the wavelength. Thus, physical and geometri-
cal optics apply, and most of the lens design techniques can be
adopted from optics to microwave applications. The aperture
theory and synthesis techniques can also be used effectively
to facilitate designs. In addition, the use of optical ray path
in lens design makes the solution frequency-independent. In
practice, however, the lens size in microwave frequencies is
finite with respect to the wavelength, and the feed antenna is
frequency-sensitive. Thus, the performance of the lens an-
tenna also becomes frequency-dependent.

Natural dielectrics at microwave frequencies have reflec-
tive indices larger than unity, and for collimation they need
convex surfaces. However, artificial media using guiding
structures, such as waveguides, are equivalent to dielectrics
with refractive index less than unity, and they result in con-
cave lenses. They are usually dispersive, resulting in varia-
tion of the refractive index with frequency, and have nar-
rower operating bandwidths.
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In small antennas, dielectrics are used often to improve
the radiation efficiency and polarization of other antennas, Figure 1. Geometry of lens antennas.
such as waveguides and horns. This is important in telecom-
munication applications where polarization control is re-
quired to implement frequency reuse and minimize interfer-

in space. For an antenna, this property means that theence, especially in satellite and wireless communications.
source and image points are focused at each other and theHorn antennas and reflector feeds are examples that incorpo-
lens has two focal points. In turn, these focal points signifyrate dielectrics or lens loading to improve performance (2).
locations in space, where rays emanating from the lensAnother area of important dielectric use is insulated an-
arrive at equal phases. This property provides a mathemati-tennas, in biological applications and remote sensing with
cal relationship for describing the lens operation and,buried or submerged antennas. The use of dielectric loading
hence, its design.eliminates direct radio-frequency (RF) energy leak into the

To simplify the mathematics, the lens configuration is as-lossy environments, and it ensures radiative coupling into the
sumed to be rotationally symmetric, and the focal points aretarget objects. Often a full wave analysis is needed to provide
placed on its axis. A further simplification can be made fora proper understanding of resonance property and coupling
antenna applications, where the image point moves to infin-mechanism to the surrounding media.
ity. That is, the lens focuses a nearby source point, on its axis,Finally, the antenna miniaturization depends primarily on
to another axial point at infinity. In such a case, all rays leav-the dielectric loading. Low-loss dielectrics with medium to
ing the lens travel parallel to its axis, and their phase frontshigh relative permittivities are now available and are used
are planes normal to the lens axis. This is shown in Fig. 1,increasingly to reduce the antenna size. A number of impor-
where �r is the relative permittivity of the lens material andtant areas include dielectric-loaded waveguides and horns, di-
n � ��r is its refractive index.electric resonator antennas, and microstrip antennas. By ap-

To design the lens, one needs to determine the geometry oferture loading of waveguides and small horns, excellent
its two faces, front and back, or the coordinates x1, y1, and x2,pattern symmetry and low cross-polarization can be obtained,
y2 of points P1 and P2 (Fig. 2). There are four unknowns to bewhich are essential features of reflector and lens feeds. In ad-
determined. The equality of the phase on the phase frontsdition, the dielectric loading reduces their size and makes
requires that the electrical length between the focal pointsthem useful candidates for multiple beam applications, using
and the phase fronts be independent of the path lengths. Thisreflectors and lenses. Miniaturization of the antenna is also

an important requirement in wireless communications. Mi- provides one equation. Two other equations can be obtained
crostrip patch or slot antennas with high relative permittivity from the ray optics at the lens interface points P1 and P2,
substrates play an important role in this area, and their de- namely, Fermat’s principle of minimum path lengths. This
rivatives are used in most applications. enforces the well-known Snell’s law of refraction at the lens

surface points. An additional relationship must be generated
from the required lens properties, to enable a unique solutionDIELECTRIC LENS ANTENNAS
for the lens design.

To enforce the invariance of the ray path length, the cen-In optical terms a lens produces an image of a source point
at the image point. These points could be located anywhere tral ray passing through points A, B, and C is selected as the
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Equations (2), (5), and (6) are three fundamental equations
used to design the required lens. Without another relation-
ship, x1 may be selected as the independent variable. Then
others (i.e, x2, y1, and y2) become dependent variables to be
determined in terms of x1. The solutions give the lens profiles
in rectangular coordinates. If the lens profiles in polar coordi-
nates are required, Eqs. (2), (5) and (6) can be obtained in
terms of r1, �1, and r2, �2, the polar coordinates of P1 and P2.
Differentiating Eqs. (2) in terms of �1 and �2 gives

dr1

dθ1
= nr1r2 sin(θ2 − θ1)

r3 − n[r2 cos(θ2 − θ1) − r1]
(7)

and

dr2

dθ2
= nr1r2 sin(θ2 − θ1) + r2r3 sin θ2

r3 sin θ2 − n[r2 − r1 cos(θ2 − θ1)]
(8)
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where use is made of the following polar coordinate relation-
Figure 2. Geometry of a lens indicating ray and surface coordinates. ships:

reference, and its length from S to C is compared with that of
the ray passing through points P1, P2, and P3. This provides
the following equation:

SP1 + nP1P2 + P2P3 = SA + nAB + BC (1)

x1 = r1 cos θ1

y1 = r1 sin θ1

x2 = r2 cos θ2

y2 = r2 sin θ2

r3 = |r1 − r2| = [r2
1 + r2

2 − 2r1r2 cos(θ2 − θ1)]1/2

(9)

or Solutions of Eqs. (7) and (8) give the lens profiles in polar
coordinates, which are often more compact in form. Also, forr1 + nr3 + L1 = F + nT + L0 (2)
some simple lens configurations they result in well-known
and easily recognizable parametric equations of the conic sec-where in terms of P1 and P2 coordinates each length is given
tions, generalizing the solution.by

Examples, Simple Lenses

The lens design becomes considerably easier if one of its sur-
faces is predetermined. This eliminates one of the differential
equations, as the surface profile is already known. The planar
and spherical surfaces are among the simpler surfaces to se-

r1 = (x2
1 + y2

1)1/2

r3 = [(x2 − x1)2 + (y2 − y1)2]1/2

L1 = (x3 − x2)

L0 = x3 − (F + T )

(3)

lect. The planar surfaces are normal to the lens axis. Such
and F and T are the lens focal length and axial thickness and selections give simple profile equations. The planar surface is
are therefore constant lengths defining the lens. described by a constant x coordinate, and the spherical one is

Enforcing Fermat’s principle at points P1 and P2 results in described by a constant polar coordinate r. These simplifica-
differentiation of the path length in Eq. (1) in terms of its tions also assist in solutions of the other lens profile, for
variables x1, y1 and x2, y2 and setting it to zero. This provides which an analytic solution can also be determined. Since ei-
the slope of the lens surface profiles at each point P1 and ther of the lens profiles can be predetermined as planar or
P2. spherical, four possible solutions exist. Only two, however, re-

At point P1, one obtains sult in simple conical sections.
If the second surface S2 is assumed to be planar and nor-

mal to the lens axis, the rays arriving from the right-hand
side, parallel to the lens axis x, enter the lens unaffected and

d
dx1

[r1 + nr3 + L1] = d
dx1

[F + nT + L0] = d
dx1

L0 (4)

change direction only after the first lens surface S1. Then they
where F and T are constants. After simplification, one focus at S. That is, only the S1 surface of the lens collimates
obtains the beam. Looking from the left side, spherical rays originat-

ing from the focal point S enter the lens S1 and become paral-
lel to its axis. Thus, after leaving the lens at S2, since they
are normal to S2, their direction remains unchanged. In this

dy1

dx1
= x1r3 − (x2 − x1) nr1

(y2 − y1) nr1 − y1 r3
(5)

case, the active surface S1 of the lens is a hyperbola in a cylin-
At point P2, a similar differentiation in terms of x2 gives drical lens but is hyperboloid in a rotationally symmetric lens.

If the surface S1 is spherical, it becomes inactive, since the
focal point is a point source and rays emanating from it con-
stitute spherical waves. Thus, when S1 is predetermined as a

dy2

dx2
= (x2 − x1)n − r3

(y2 − y1)n
(6)
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and

θ1 max = cos−1
�1

n

�

= tan−1
[�D

2

�/
(F + T )

] (16)

Equation (16) shows that, for a given dielectric, the lens aper-
ture angular size is limited by its refractive index n. In other
words, with common dielectrics there is a limit on the com-
pactness of the lens. That is, the focal length F cannot be
reduced beyond the limit specified by Eq. (16).

Lens with Planar S1. In this case, both lens surfaces contrib-
ute to the beam collimation. Its surface can be determined
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similar to case (a) by enforcing x1 � F and infinite slope forFigure 3. Geometry of lens with a planar surface S2. S1 (Fig. 4). The results are (3)

spherical surface, they enter the lens unaffected. Their colli-
mation is done entirely by the lens’s second surface S2. Its
surface is again a conic section and its cross section is elliptic.
In the other two cases, both surfaces S1 and S2 of the lens
participate in beam collimation and consequently are enter-
dependent and more complex.

Lens with Planar S2. On S2, x is constant and slope is infinite

x1 = F

x2 =
{[(n − 1)T − [F2 + y2

1]1/2][(n2 − 1)y2
1 + n2F2]1/2

+n2F[F2 + y2
1]1/2}

[n2(F2 + y2
1)1/2 − [(n2 − 1)y2

1 + n2F2]1/2]

y2 = y1

[
1 + (x2 − F )

[(n2 − 1)y2
1 + n2F2]1/2

]

T = 1
2

(n − 1)−1[(4F2 + D2)1/2 − 2F] (17)
(Fig. 3), and the surface is defined by

Note that since the beam collimation is due to both surfaces,
the coordinates of S2 are now dependent on those of S1.

x2 = F + T

y2 = y1
(10)

Lens with One Spherical Surface. When S1 is a spherical sur-
face, all spherical waves originating at the focal point S passA consequence of this is L1 � L0 in Eq. (2); when we use Eqs.
through it unaffected. The second surface S2 collimates the(10), Eq. (2) becomes
beam. The geometry is shown in Fig. 5, and S2 is an ellipse
givenr1 + nr3 = F (11)

which, when using Eq. (10), becomes a function of x1 and y1. r2 = (n − 1)R
n − cos θ2

(18)
It can be solved directly to yield the profile of S1 as

where R � F � T and other parameters are defined in Fig. 5.y2
1 − (n2 − 1)(x1 − F)2 = 2(n − 1)F (x1 − F) (12)

Its equation in rectangular coordinates has the form

or, in polar coordinates,
y2 =

[[
x2 + (n − 1)R

n

]2

− x2

]1/2

r1 = (n − 1)F
n cos θ1 − 1

(13)

They represent rectangular and polar equations of a hyper-
bola, which is the lens profile on S1. They can be used also to
determine the lens thickness on the axis. For this, one can
use two extreme rays passing through its tip and the axis.
The equality of the electrical lengths gives

F + nT = r1(θ1 max) =
[�D

2

�2

+ (F + T )2

]1/2

(14)

A solution of this equation gives the lens thickness T as

n
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Figure 4. Geometry of lens with a planar surface S1.
T = (n + 1)−1

[�
(n + 1)D2

4(n − 1)
+ F2

�1/2

− F

]
(15)
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Elliptic lense with spherical surface S1

A(ρ)

A(θ1)
= 1

F

[
(n − cos θ1)3

(n − 1)2(n cos θ1 − 1)

]1/2

(22)

An inspection of these equations shows that in Eq. (21) the
amplitude ratio decreases with �1. That is, after leaving the
lens the field is concentrated near its axis. The amplitude, in
fact, drops to zero at the angle �1 max, given by Eq. (16). There-
fore, this lens enhances the field taper of the source and is a
good candidate for low sidelobe applications, but its aperture
efficiency will be low. In contrast, the amplitude ratio in Eq.
(22) increases with �1. That is, this lens corrects the ampli-
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tude taper of the source and enhances the aperture efficiency
Figure 5. Geometry of lens with a spherical surface S1. but, in the process, raises the sidelobe levels. Thus, it may

be used in applications where the aperture efficiency is more
critical than the sidelobe levels.and

For most common dielectrics the refractive index is n �
1.6, that is, �r � 2.55. For these materials the limit of the
aperture angle is �1 max � 51.3�. Within this limit the ampli-
tude ratios of Eqs. (21) and (22), normalized to axial values
are shown in Table 1. The amplitude tapering of hyperbolic

T = 1
2

(n − 1)−1[2F − (4F2 − D4)1/2]

θ2 max = cos−1
�1

n

� (19)

lenses is clearly evident. At 35� lens adds another 10 dB to
The last equation again sets a limit for the peak angular ap- the aperture field taper, and beyond 40� the lens is practically
erture of the lens for a given dielectric material. useless. For large-angle lens applications, higher dielectric

When the surface S2 is assumed spherical, then both lens constant materials must be used. Table 1 also shows the am-
surfaces participate in collimating the beam. The inner sur- plitude enhancement of elliptic lens. A 35� lens improves the
face S1 can be obtained from (3) aperture field uniformity by as much as 6.3 dB. It increases

rapidly thereafter and becomes about 10 dB and 20 dB im-
provements for lens angles of 45� and 50�, respectively. These
amplitude enhancements, however, must be accepted as theo-
retical limits, since at these wide angles the lens surface re-
flectivity will reduce the practically attainable levels. Surface
matching layers must be used to minimize the reflections.

General Lens Design

n2[r2
2 + r2

1 − 2r1r2 cos(θ1 − θ2)] = [(n − 1)T + r2 cos θ2 − r1]2

n2r1 sin(θ1 − θ2) = sin θ2[(n − 1)T + r2 cos θ2 − r1]

T =
[

4(n − 1)F2 − (n − 3)D2

4(n − 1)(n − 3)2

]1/2

+ F
n − 3

(20)

In the general lens of Fig. 2, both surfaces are profiled and
participate in collimating the beam. Thus, a more versatileEFFECT OF LENS ON AMPLITUDE DISTRIBUTION
lens can be obtained. However, Eqs. (1) to (6) showed that
there are at least four unknown coordinates (x1, y1, x2, y2) toThe lens equations, Eqs. (1) to (6), were based on the ray path
be determined. However, the optical relationships providedanalysis, or in antenna terms the phase relationships. The
only three equations, which are not sufficient to uniquely de-amplitude distributions were not considered. In practical ap-
termine the coordinates of both surfaces S1 and S2. Anotherplications, however, the amplitude distributions are also im-
relationship must be generated, which may be imposed on theportant and will influence the aperture efficiency of the lens,
amplitude distribution A(�), to control the directivity or side-sidelobe levels, and cross-polarization. To state it briefly, a
lobes. Alternatively, one may impose conditions on the aper-uniform aperture distribution gives the highest directivity,
ture phase errors. An important case is the reduction of phasebut has high sidelobes because of its high edge illumination.
errors due to the source lateral defocusing. This will allowSidelobes can be reduced by tapering the field toward the
beam scanning without excessive degradation in efficiencyedge. Excessive tapering, however, rapidly reduces the lens
and sidelobe levels. In most cases, however, the problem isdirectivity. It is therefore useful to know the influence of the
too complex for an analytic solution and a numerical approachlens on the field amplitude as well.
must be used.Assume that A(�) is the angular dependence of the wave

amplitude radiating from the focal points; and assume that
A(�), with � � r sin �, is the amplitude distribution of the ABERRATIONS
collimated beam. Then, using the conservation of power and
neglecting the reflection at the lens surface, the following am- The term aberration, which originated in optics, refers to the
plitude relationships can be obtained (1). imperfection of lens in reproduction of the original image. In
Hyperbolic lens with planar S2 antenna theory, the performance is measured in terms of the

aperture amplitude and phase distributions. The phase distri-
bution, however, is the most critical parameter and influences
the far field significantly. It is therefore used in evaluating

A(ρ)

A(θ1)
= 1

F

[
(n cos θ1 − 1)3

(n − 1)2(n − cos θ1)

]1/2

(21)
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Table 1. Amplitude Distributions for the Hyperbolic and Elliptic Lenses of Figs. 3 and 5

Amplitude Ratio,
Ray Angle, �1 (deg)

A(�)
A(�1) 0 10 20 30 35 40 45 50

Hyperbolic lens equation Relative value 1.0 0.928 0.733 0.466 0.328 0.196 0.084 0.008
[Eq. (21)] dB 0.0 �0.65 �2.70 �6.64 �9.70 �14.17 �21.5 �41.75

Elliptic lens equation Relative value 1.0 1.060 1.26 1.69 2.06 2.67 3.17 9.25
[Eq. (22)] dB 0.0 0.51 2.01 4.55 6.29 8.54 10.03 19.33

n � 1.6
�r � 2.55
�1 max � 51.3�

the performance of aperture antennas such as lenses and re- ing a Fourier transformation or diffraction integral. For one-
flectors. With a perfect lens and a point source at its focus, the dimensional errors (i.e., � � x and � � o) the effect can be
phase error should not exist. However, there are fabrication understood easily and has been investigated by Silver (1). The
tolerances, and misalignments can occur that will contribute first term is linear, and in a Fourier integral it shifts the
to aberrations. Even without such imperfections, lens anten- transform variable. It thus causes a tilt of the beam, but the
nas can suffer from aberrations. Practical lens feeds are horn gain remains the same. Using Silver’s notation, if f (x) is the
antennas and small arrays. Both have finite sizes and deviate aperture distribution and g(u) is the far field (i.e., its Fourier
from the point source (2). This means that part of the feed transform with a linear phase error), one finds with no phase
aperture falls outside the focal point, and rays emanating error
from them do not satisfy the optical relationships. Thus, on
the lens aperture the phase distribution is not uniform. Simi-
lar situations also occur when the feed is moved off axis later-
ally to scan the beam. Again, aperture phase error occurs due

g0(u) = a
2

∫ 1

−1
f (x) exp[ jux] dx (24)

to the path length differences. A somewhat different situation
arises when the feed is moved axially, front or back. In this

and with phase errorcase the phase error is symmetric, because all the rays leav-
ing the source with equal angles travel equal distances and
arrive at the aperture at an equal radial distance from the
axis—that is, on a circular ring. However, the length of the g(u) = a

2

∫ 1

−1
f (x) exp[ j(ux − αx)] dx = g0(u − α) (25)

ray increases, or decreases, with radial distance on the aper-
ture. The phase error is, therefore, quadratic on the aperture

where u � (�a/	)sin � and a is the aperture length. Equationand reduces the aperture efficiency, while raising the side-
(25) shows that the beam peak is moved from the � � 0 direc-lobes.

The general aberration (i.e., the lens aperture phase error) tion to �0, calculated by
can depend implicitly on both feed and lens coordinates and
can be difficult to comprehend. However, like all other phase-

u − α = 0error-related problems, it can also be represented as the path
length difference with a reference ray. For rotationally sym-
metric rays, the natural reference is the axial ray. The path or
length difference can then be obtained by a Taylor-type
expansion of the general ray length in terms of the axial one.
For small aberrations the first few terms in the expansion θ0 = sin−1

�
αλ

πa

�
(26)

will be sufficient to describe the length accurately. In terms of
the aperture polar coordinates � and � the expansion becomes

A quadratic phase error is symmetric on the aperture and
does not tilt the beam, but reduces its gain. For small values

L(ρ, φ) = Laxial + αρ cos φ + βρ2[1 + cos2 φ] + γ ρ3 cos φ + · · ·
(23)

of �, it can be calculated analytically (1) and is given by

where �, �, and � are constants indicating the magnitude of
each phase error. The leading term is linear in � and �, then
becomes quadratic, cubic, and so on, and the magnitude of
each depends on the nature of imperfection causing the phase
error. The even terms are caused either by an axial defocus-

g(u) = a
2

∫ 1

−1
f (x) exp[ j(ux − βx2)] dx

∼= a
2

[g0(u) + jβg′′
0(u)]

(27)

ing or by an axially symmetric error. The odd terms can be
due to a lateral displacement of the feed or can be due to

where g
0(u) is the second derivative of g0(u). Due to this phaseasymmetric errors.
error the gain decreases progressively with increasing �, andThe effects of each error can be investigated by its intro-

duction in the aperture field and determining the far field us- eventually the beam bifurcates and maxima appear on either
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degradation than others, it is desirable to eliminate it, espe-
cially that it manifests mostly in beam scanning. Feed lateral
displacements to scan the beam can readily cause coma lobes.
Fortunately, a number of lens surface modifications have
been found to reduce the effects of this error (3).

ZONED LENSES

So far, the equations used for lens design equalized the ray
path lengths. The frequency of operation, or its wavelength,
did not enter into the equations. Thus, in principle, these
lenses should function at all frequencies. However, the direc-
tivity of a lens depends on its aperture size D, and these
lenses are often used for high gain applications. This results
in large lens sizes in wavelength; and at microwave frequen-
cies, in large physical sizes, both the aperture diameter D and
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thickness T. It can, therefore, become excessively heavy and
Figure 6. Effect of quadratic phase error on the far-field pattern. difficult to use. However, the thickness of the lens can be sev-

eral wavelengths, and thus it can be reduced along the ray
path in multiple wavelengths without altering the relative

side of the axis. It also raises the sidelobe levels. Figure 6 phase change. The process starts at the edge where the thick-
shows typical pattern degradation due to this error. ness is zero. Moving down toward the axis, the thickness in-

The next important phase error is the cubic one, which has creases progressively until it becomes one wavelength. This
odd power dependence on the aperture coordinate. This error thickness can be made zero without altering the phase. The
not only tilts the beam, but also reduces the gain and asym- process can be continued K times until one arrives at the lens
metrically affects the sidelobes, raising them on one side axis. In practice, one must maintain a small thickness tm to
while reducing them on the opposite side. Its effect is there- provide adequate mechanical strength, the value of which will
fore a combination of that of the linear and quadratic phase depend on the lens size, the material strength, and applica-
errors. For small errors its far field is given by (1) tion type.

With zoned lenses, and neglecting tm because the thickness
does not exceed one electrical wavelength, its thickness is lim-
ited to 	/(n � 1). Including the minimum thickness tm, the
total thickness is limited to tm � l/(n � 1) regardless of the

g(u) = a
2

∫ 1

−1
f (x) exp[ j(ux − δx3)] dx

∼= a
2

[g0(u) + δg′′′
0 (u)]

(28)

number of zones. The path lengths in wavelength, however,
are not equal. With K zones, the ray path at the edge will be

where g�0 (u) is the third derivative of g0(u). For a few small longer by a length equal to (K � 1)	. This causes the fre-
phase errors the far fields of this phase error are shown in quency dependence of lens operation, limiting its bandwidths.
Fig. 7. They show clearly the beam tilt, the gain loss, and the Enforcing the commonly used Silver’s criterion for this aper-
rising of the sidelobes toward the beam tilt. They are known ture phase error (1) (i.e., less than 0.125	), the useful band-
as coma lobes, after the corresponding aberration in optics. width of a lens with K zones can be calculated from (1)
Also, because this phase error causes more severe pattern

Bandwidth ∼= 25
K − 1

% (29)

Equation (29) is valid for small variations of 	 and uniform
aperture distributions. For taper distributions the effects of
phase errors is smaller and the actual bandwidth can exceed
that of Eq. (29).

Zoning the lens can cause one additional, severe problem
due to shadowing. Two adjacent rays from the focus can
travel through two separate zones, resulting in a dark ring
zone on the aperture. This occurs in the transmit mode, and
it causes the loss of directivity and increased sidelobe levels.
In the receive mode, the energy falling on the shadow zones
never reaches the lens focus and diffracts into the space,
again causing reduction of gain along with increased noise
temperature. Figure 8 shows the geometry of a three-zone
lens and shadowing due to R1 and R2 rays.

Zoning without shadowing is also possible, but should be
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done on the nonrefracting surface of the lens. In a hyperbolic
lens, this should be done on the planar back surface. Shadow-Figure 7. Effect of cubic phase error on the far-field pattern.
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used, the reflection effects on the feed can be minimized by
lateral defocusing of the feed, or retuning of the feed over a
narrow bandwidth.

LENSES WITH n � 1

Lens equations (1) to (6) were developed without specifying
the value of the refractive index, and therefore they are valid
for n � 1 cases as well. However, the lens surface becomes
inverted. For instance, the hyperbolic lens equation [Eq. (13)]
for n � 1 modifies to

r1 = (1 − n)F
1 − n cos θ1

(30)

and the lens surface becomes elliptical, concave toward the

K = 2 K = 3K = 1

Shadow rings

Focus

R2

S
F

R1

tm

focus, similar to Fig. 1(b). On the inner region a minimum
thickness t is required to provide mechanical strength. ZoningFigure 8. Geometry of a zoned lens with shadowing effects.
is also possible and will cause shadowing when incorporated
on the active refracting surface. The bandwidth limitations
due to n remains the same as the dielectric lenses with n 
ing will be eliminated, but phase errors still occur at the tran-
1. However, the lens media for n � 1 such as metal platessition lines due to diffraction effects.
and waveguides are usually frequency-sensitive and exhibit
narrower bandwidths.

REFLECTION FROM LENS SURFACE

CONSTRAINED LENSES
Because the wave impedance in air and the dielectric medium
of lens are different, reflections occur for all the rays. The The function of a lens is to modify the phase front of an inci-
reflection coefficient depends both on the wave polarization dent wave, say from spherical to planar. In practice, this may
and the angle of incidence—that is, the angle of ray with the be accomplished by means other than the dielectric lenses. In
local normal on the lens surface. Neither can be avoided. With the most general case, the lens surfaces consist of a plurality
a linearly polarized wave, the relative polarization, with re- of receiving and radiating elements, interconnected by pro-
spect to the plane of incidence, changes from perpendicular to cessing elements. The received signals of one surface are mod-
parallel as the ray direction rotates on the lens surface. How- ified in amplitude and phase and are reradiated from the ele-
ever, their reflection coefficient behaves differently. For per- ments of the next surface. In passive designs, the
pendicular polarization, it increases progressively with the in- interconnection is due to transmission lines, such as parallel
cidence angle. For parallel polarization, it decreases initially; plates, waveguides, and even coaxial lines. The design process
and after vanishing at the Brewster angle, it increases rap- is similar to that of the dielectric lenses and is governed by
idly. Consequently, incidence angles must be kept small, less the path-length equation. Snell’s law, however, is not satisfied
than 30�, to minimize the polarization effects on the lens ap- at all surfaces, and the problem of surface reflection and
erture distribution. transmission must be solved through the use of the wave

The surface reflection effects can be reduced when war- equation. Nevertheless, lenses can be designed with surfaces
ranted, but this requires utilizing an impedance matching similar to that of dielectric lenses, but with inverted curva-
layer between the lens and free space. At normal and small ture (3).
angles of incidence, the refractive index of the matching layer The simplest case uses parallel plates, with spacing a, be-
can be found using a quarter-wavelength transformer rule. It tween one and one-half wavelength. When the electric field is
is the geometric means of the refractive index of the lens di- parallel to the plates, a non-TEM waveguide mode is excited
electric and that of air. In practice, a different dielectric mate- and has a wavelength 	p given in terms of the free space
rial may be used as the matching layer, or it may be synthe- wavelength 	 by
sized by preferentially removing a fraction of the dielectric
material from the lens surface, such as drilling 	/4 holes or
cutting grooves (4). However, care must be taken to determine
their polarization effects.

The surface reflections also influence the impedance mis-

λp = λ[
1 −

�
λ

2a

�2
]1/2 (31)

match at its feed. The problem is most severe in cases where
which can be used to define an equivalent refractive index asthe lens surface is coincident with one of the equiphase sur-

faces—that is, the wave front. Then, the entire reflected wave
travels back to the feed, the degree of which depends on the
lens refractive index. Since at normal incidence the reflection

n = λ

λp
=

[
1 −

�
λ

2a

�2
]

< 1 (32)

coefficient is �R� � (n � 1)/(n � 1), the reflected power is unac-
ceptably large for all common dielectrics, and a matching sur- In cylindrical lenses, when the plates and electric field are

normal to the cylinder axis, Snell’s law of refraction governsface should be used. In the event a matching layer cannot be
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the transition between the lens and outside media. But, when
they are parallel to the cylinder axis, the incident rays are
constrained to pass between the plates and Snell’s law is not
satisfied (1).

An example of the rotationally symmetric constrained lens
is the planar–elliptic surface lens of Eq. (30). It is usually
zoned to reduce its size and weight (4). Other useful transmis-
sion media are the rectangular and square waveguides, op-
erating in TE10 or TE01 modes. The waveguide dimensions
must be such that only these modes can propagate and
higher-order modes are suppressed. The square waveguide
can be used for circularly polarized applications; otherwise, it
must be avoided to reduce cross-polarization.

INHOMOGENEOUS LENSES
Spherical cap

reflector
Lens

Limits of solid
angular coverage

determined by
boundaries of cap

reflectors

In the lenses so far studied, the refractive index n was con-
Figure 10. Passive Luneberg lens reflector.stant and the shape was profiled to satisfy the ray path condi-

tion. On the other hand, if the lens shape is kept fixed, then
another parameter, such as the refractive index, must be al-
lowed to change to help in collimating the beam. This is cally significant. The refractive index values and variations
achieved in a family of lenses, with the most important ones are in reasonable range, and the lens can be synthesized. Sec-
being spherical in shape, such as Luneberg lens, Maxell’s fish- ond, the unity of its refractive index on the surface eliminates
eye, and Eaton lenses. Their spherical shape provides a per- the impedance mismatch and, consequently, the surface re-
fect three-dimensional symmetry, useful in applications, such flections. The geometry and ray paths of this lens are shown
as wide-angle scanning. They also have only a radial inhomo- in Fig. 9, with a feed horn on its surface. Scanning the feed
geneity, making them both physically and electrically sym- on its surface scans the radiated beam, without alteration.
metric. The scan limit is set only by the mechanical limitation of the

feed horn motion. With a spherical conducting cap on its sur-
Luneberg Lenses face the lens also acts as perfect reflector—that is, a backscat-

ter (Fig. 10). The main difficulty with this lens is its fabrica-The Luneberg lens refers to a family of lenses with two axial
tion problems. Multilayer shells are normally used tofoci. They can be both outside the lens or one inside and the
synthesize the refractive index inhomogeneity. Figure 11other outside. The most useful case, however, is the lens with
shows one case where 10 layers are used to construct an 18one focus on its surface, while the second one is at infinity.
in. diameter lens. While the approximation to continuouslyThat is, an axial point on the lens surface is focused to an
variable refractive index is reasonable, the wave scattering ataxial point at infinity, on the opposite side of the lens. The
the layer transitions reduces the lens efficiency.refractive index of this lens is given by

With the above refractive index, the Luneberg lens perfor-
mance is ideal at the geometrical optics limits—that is, when

n(r) =
[
2 −

� r
a

�2
]1/2

(33)

where a is the lens radius and r is the radial distance of a
point inside the lens. At the origin, the refractive index is
n(o) � 2, and on its surface it becomes unity. Both are practi-

Feed antenna

Lens

Figure 11. Multilayer spherical shell construction of a Luneberg
lens.Figure 9. Typical ray paths in a Luneberg lens.



288 DIELECTRIC-LOADED ANTENNAS

2.4

2.2

2.0

1.8

1.6

1.4

1.2

0 0.2 0.4
Radial distance (r/a)

c

a

b

d

0.6 0.8 1.0

D
ie

le
ct

ri
c 

co
n

st
a

n
t

Figure 12. Refractive index of modified Luneberg lenses.
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quencies, the wavelength is large and the lens diameter in
wavelength may not be large. Its performance (i.e., directiv- Figure 13. Phase across aperture of a constant n spherical lens.
ity) and sidelobe levels deteriorate rapidly. In such cases, the
refractive index profile can be modified to improve its perfor-
mance. This can be done by determining the excitation effi- lenses with constant refractive index. An interesting case is a
ciencies of various spherical modes and calculating its far lens with �r � 3, studied earlier by Bekefi and Farnell (6) and
field and directivity (5). The new dielectric permittivity profile recently by Mason (7). With a Huygen source feed at its sur-
is defined as face, the computed phase distribution across its aperture, for

different relative permittivities are shown in Fig. 13. For �r �
3, the phase error is below 10�, across about 60% of the aper-εr = n2 = 2B − A2

� r
a

�2
(34)

ture. It remains within acceptable range for gain calculating
over at least 70% of the aperture, resulting in excellent gainwhere the constant parameters A and B are determined to
performance over a wide range of frequencies. The only draw-maximize the gain. Three different cases are identified and
back seems to be the excitation of internal modes at theirinvestigated. Their refractive index profiles are shown in Fig.
resonance. Their effect reduces with the loss tangent of the12. Cases (b) (A � 1, B � 1.1) and (c) give larger refractive
dielectric material.indexes and are expected to perform better at lower frequen-

cies. This is investigated using the spherical harmonies, and
the results for the directivity, sidelobe levels, and beamwidths DIELECTRIC LOADED HORNS
are shown in Table 2.

Horn antennas are among the most useful and versatile an-
Constant n Spherical Lens

tennas. They have a relatively simple shape and are easy to
fabricate and use. They are used as test antennas, as feedsThe difficulty with fabrication of the inhomogeneous lenses

encouraged investigators to search for quasi-ideal spherical for reflector and lens antennas, or independently as communi-

Table 2. Performance Parameters of Modified Luneberg Lens

Luneberg Lenses Modified Luneberg Lenses

A � B � 1 A � 1 A2 � B

Beam First Side- Beam First Side- Beam First Side-
Diameter Gain Width Lobe Level Gain Width Lobe Level Gain Width Lobe Level
in 	 B Value (dB) (degrees) (dB) (dB) (degrees) (dB) (dB) (degrees) (dB)

2 1.4 14.79 30.2 �14.41 17.56 23.5 �17.15 16.85 24.0 14.79
4 1.16 20.761 15.1 �16.05 22.70 13.0 �16.9 22.0 13.25 �16.1
6 1.1 24.34 9.8 �16.9 25.75 9.0 16.97 25.17 9.1 �16.4
8 1.075 26.90 7.3 �17.1 27.98 6.7 �17.01 27.56 7.0 �16.6

10 1.04 28.78 5.8 �16.35 29.35 5.5 �15.97 29.26 5.6 �16.81
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cation antennas. Because of their diverse applications, their
electrical specifications vary considerably. As test antennas,
they are used as gain standards and required to have good
polarization isolation in the principal E and H planes. Rectan-
gular horns are commonly used for this application to simplify
the polarization definition and gain calculation. As a feed for
reflector and lens antennas, the requirements are signifi-
cantly different. While having a finite aperture size, they
must behave as a point source, have small side and back lobes
to minimize power spillovers, and have negligible cross-polar-
ization in the entire radiation zone. To achieve such stringent
requirements, their design must be precise and an accurate
solution must be known to access their performance. This is
more so with circular horns, which, consequently, have found
more widespread applications as feeds than rectangular ones.
The electromagnetic analysis, however, has shown that con-
ventional smooth wall horns cannot provide radiation pat-
terns with acceptable polarization purity and low spillover.
Corrugated horns are developed for these applications, but
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(a)

(b)

are costly and narrowband. Dielectric loading of the horn has
Figure 14. Geometry of a dielectric loaded horn.

been shown to improve the performance as well, and in cer-
tain applications it may be used to replace corrugated ones.

In applications where horn antennas are used as indepen-
dent communication antennas, the gain and aperture effi-

ture diameter, and both are dependent on the dielectric per-ciency may be the fundamental parameters to optimize. How-
mittivity. The air gap size generally increases with the hornever, to obtain high gains, the horn aperture size must
diameter, and for a given diameter there is a minimum rela-increase, which also increases the aperture phase errors. The
tive permittivity of dielectric to support the hybrid mode tophase errors can be kept low by using small cone angles, but
minimize the cross-polarization. Both flare angle and thethis increases the horn size. Thus a convenient solution in-
throat region have similar influences. Large flare angles andvolves the use of a lens at the horn aperture to reduce or
an asymmetric throat region design excite higher-ordereliminate the phase errors, by collimating the beam. Conse-
modes and thus increase cross-polarization.quently, compact high gain horns can be designed with con-

A variation of the conical dielectric loaded horn is showntrolled aperture phase and amplitude distributions, to im-
in Fig. 15. Its wall is profiled. A large flare angle near itsprove the aperture efficiency and horn gain. Alternatively,
throat reduces its axial length and results in a compact horn.lenses can be used to suitably modify the aperture distribu-
Then, its small flare angle near the aperture improves itstion in both amplitude and phase to shape the radiation pat-
cross-polarization. The profile is described by the followingterns.
equation:In this section, initially the dielectric loaded and lens cor-

rected horns will be discussed. Then the use of dielectric in
small antennas such as waveguides, microstrip antennas, and
dipoles to improve their operation in specific applications will
be considered.

r(z) = rth + 3�r
�

1 − 2z
3L

�� z
L

�2

�r = rap − rth

(35)

Dielectric Loading
where rap and rth are the horn radii at its aperture and throat.

Historically, dielectric-cone loading inside smooth wall conical A profile horn of this type was designed and optimized. Its
horns was used by Clarricoats et al. (8) and Lier (9) to simu-
late the effect of corrugations. Corrugated horns, with quar-
ter-wavelength corrugation depths, can support the hybrid
HE11 mode. This mode radiates with low cross-polarization
and can be designed to have negligible sidelobes. Introduction
of the cone dielectric, with an air gap as shown in Fig. 14
inside a smooth wall horn, was shown also to support hybrid
modes and improve the performance. Clarricoats et al. (8)
used low-dielectric-constant materials, such as foams with a
relative permittivity of 1.13. But, in Lier’s work (9), solid-di-
electric cones with a relative permittivity of 2.5 were used,
again showing good performance. Both investigators also ana-
lyzed these dielectric loaded horns using modal expansions,
and they studied the effects on the air gap, horn permittivity, ���

���
���

yyy
yyy
yyy

aperture diameter, flare angle, and the throat region. It was
found that the air gap size is strongly dependent on the aper- Figure 15. Geometry of a dielectric loaded profile horn.
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Table 3. Performance of Dielectric Loaded Linear and
Profiled Horns

Linear Profiled
Parameter Horn Horn

3 dB beam width (degrees) 14.8 13.7
10 dB beam width (degrees) 26.9 24.8
Directivity (dB) 22.1 22.5
Efficiency (percent) 61.8 68.1
Peak cross-polar (dB) �32.2 �36.0
VSWR 1.04 1.03

Rth � 1.14 cm
rup 27.7 cm
L � 30.9 cm
�r � 1.13
Air gap � 1.2 cm

performance is compared with the linear horn in Table 3. Its
cross-polarization is improved by 4 dB. The effect of length
reduction on the performance of the above profile horn is also
shown in Table 4. It shows that the performance remains
steady and comparable to a linear horn, for length reductions
by as much as 22%.

Lens Corrected Horns

In high-gain horns, the aperture diameter in wavelength is
large, and the horn length can be excessive, unless its flare
angle is made large. However, the combination of large aper-
ture size and large flare angle can cause severe aperture
phase error. This problem can be remedied by using a lens at
the horn aperture. Figure 16 shows three possible options.

F T

D

maxθ

(a)

F

r

maxθ

(b)

F T

θ

(c)
These simple lenses and others including zoned lenses may

Figure 16. Lens types for loading horn aperture.be used, and they would correct the horn aperture phase dis-
tributions. But each lens will have different influences on the
aperture amplitude distribution. The case of the first two

are shown in Fig. 17. It shows that for �r around 1.22 thelenses were investigated earlier, and Table 1 showed their
aperture amplitude distribution is nearly uniform.effect on the amplitude distribution. Type a increases the am-

plitude taper according to Eq. (21) and will reduce both side-
lobes and the aperture efficiency. Type b will compensate for

DIELECTRIC LOADED WAVEGUIDESthe amplitude taper, and according to Eq. (22) the lens per-
mittivity can be used to control the aperture distribution and,

Waveguides have small aperture size and are not as efficienthence, the horn efficiency and the pattern sidelobes. For type
radiators as horns. Part of the energy leaks out and inducesc, an analytic expression is not available and a numerical pro-
current on the outside wall, which radiates side and back-cedure must be used. However, as was indicated earlier in
ward, causing large back lobes. The wave impedances ofthis lens, both surfaces help collimating the beam. But its
waveguide modes are also different from the free-space intrin-second surface is similar to type b lens, and its influence on
sic impedance and strong reflections can occur on the aper-the aperture distirbution will be similar as well. With a hy-
ture, causing poor input impedance match. These problemsbrid mode horn, corrugated or dielectric loaded, the resulting
can be partly overcome by flaring the waveguide at its aper-aperture distributions for different lens relative permittivity
ture. However, a similar and even better performance can be
obtained by loading the waveguide by a short section of a di-
electric. The constant, size, and shape of a dielectric provide
several parameters that can be used to shape the radiation
patterns and tailor them to desired specifications. Table 5
shows the results for three different end loadings, along with
the type of performance variations one could achieve (2). Two
other examples are shown in Figs. 18 and 19, with combina-
tions of dielectric and cavity loadings (2). In Fig. 18, the end
geometry is optimized for nearly perfect pattern symmetry,
with negligible cross-polarization. Figure 20 shows its copolar
and cross-polar radiation patterns. In Fig. 19, again the com-

Table 4. Performance of Profile Horn with Length Reduction

Peak 3 dB
Length Cross-Polar Beamwidth Efficiency
(cm) (dB) (deg) %

30.9 �36.0 13.7 68.1
27.5 �36.8 13.8 64.4
24.0 �31.6 14.0 57.1
15.0 �27.6 16.1 32.0
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Figure 18. Geometry of a dielectric and cavity loaded waveguide
feed.

a ground plane by a dielectric substrate. They are low pro-
file and increasingly popular antennas for practically any
type of applications. Their radiation patterns, however, are
asymmetric with unequal E- and H-plane patterns. But,
with careful optimization, the pattern symmetry can be
achieved to minimize cross-polarization. Figure 21 shows a
case of stacked patches with a side choke for equalizing
the principal plane pattern, low back radiation, and cross-
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polarization. Similar performance can also be obtained us-
ing a dielectric resonator in lieu of a microstrip patch. TheFigure 17. Aperture amplitude distribution for a lens corrected
dimensions of the dielectric resonator are related to thehorn, 30� semiflare angle hybrid mode horn, type c lens.
wavelength by

bination was optimized for a heavily shaped radiation pattern
with again negligible cross-polarization in the forward direc-
tion. It is an ideal feed for deep parabolic reflectors with

d = 1.841λ

4nπ

[
16 +

�
πd

1.841h

�2
]1/2

(36)

small f /D � 0.25. It provides high aperture efficiency of 81%
due to its front pattern null, very low cross-polarization, and The excited mode is the TM110 mode, and it gives radiation
extremely low noise temperatures due to small f /D, the focal- similar to that of a microstrip patch. In Fig. 22, the resonator
length-to-diameter ratio. and the cavity are optimized for symmetric pattern in the

principal planes to reduce the cross-polarization. They are
shown in Fig. 23, with excellent symmetry. Both the micro-MICROSTRIP AND DIELECTRIC RESONATORS
strip and resonator antennas can be used as efficient reflec-
tors and lens feeds with high aperture efficiency and lowMicrostrip antennas are discussed in a separate article, and

they usually consist of a conducting patch separated from cross-polarization.

Table 5. Performance of Dielectric Loaded Waveguide with Shaped Dielectrics

Half-Beamwidths
Peak

3 dB 10 dB
Cross-Polarization Gain

Geometry 0 � � � 90� (dB) (dB) E Plane H Plane E Plane H Plane

0.519	

a 60°

0.1	

D = 0.6	,   �r = 2.5

b

0.6	

60°

c

0.619	

0.6

�33.95 8.28 36.82 36.18 71.47 72.51

�24.74 8.11 37.21 38.32 73.42 71.35

�24.43 13.47 19.43 20.25 33.13 35.17
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Figure 19. Geometry and radiation pattern of a shaped dielectric
and cavity loaded waveguide feed.
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Figure 20. Radiation patterns of the waveguide feed of Fig. 18.INSULATED ANTENNAS

Practically all antennas have conducting parts, but in certain
families of antennas, especially small resonant ones, the con-

of 2a, insulated by a cylindrical dielectric region of diame-duction current radiates directly. Typical examples are the
ter 2b and propagation constant k1, located in an infinitewire antennas and microstrip antennas that are often half-
exterior region of k2. With a thin-wire approximation, thewavelength resonators. In wire antennas, the current is ex-
dipole current can be represented by a sinusoidal distribu-cited by the applied voltage directly on the wire, which radi-
tion of the form (10). The time factor is assumed asates in the surrounding space. In microstrip antennas, the
exp( j�t):currents are both on the patch and on its ground plane, which

are separated by a dielectric substrate. Because of this, only
the patch current is exposed to the surrounding medium.
However, in either case, the physical constants of the medium

I(z) = − jV sin kL(h − |z|)
2Zca cos kLh

(37)

is excessively lossy: It can short-circuit the antenna current
and prevent its operation. In practice, this problem can occur
in remote sensing and biological applications. In the former
case, the antennas may be buried underground or may be
submerged in sea and ocean waters, which have high electri-
cal conductivities. In the latter case, the antennas are im-
planted into various type tissues in the body that can have
excessively high conductivities. In such cases, to ensure the
antenna operation, the conduction currents must be insulated
from the surrounding conducting medium. A simple but effec-
tive method is to use a thin dielectric coating on the antenna
conductor carrying the radiating currents. The coating will
provide insulation between the conducting antenna and the
medium, thereby eliminating the conduction current. The ex-
citation energy will then transfer into the poynting vector,
leaving the antenna.

The behavior of the insulated antennas in a medium of
complex permittivity differs considerably from that in free
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θspace, and it should be analyzed carefully. For instance,
consider a conventional dipole of length 2h, as shown in Figure 21. Geometry and radiation patterns of a stacked micro-

strip feed.Fig. 24. The wire is a good conductor and has a diameter
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Figure 22. Geometry of a dielectric resonator antenna.

where

2a

K1 K2

+– v

2b

Figure 24. Geometry of an insulated dipole antenna.

and so on. Thus, the insulation parameters should be selected

kL = k1


1 + H(2)

0
(k2b)

k2bH(2)

1
(k2b)ln

b
a




1/2

(38)

appropriately to minimize the dependence of k1 and k2.

Zca = ζ1kL

2πk1
ln
�b

a

�
(39)

MEDICAL AND BIOLOGICAL ANTENNAS

Another area that insulated antennas play an important role
ζ1 = ωµ0

k1
(40)

in is the biological and medical applications. They can be non-k1 = ω[µ1 ε1]1/2 (41)
invasive (i.e., not penetrating the body) or invasive. In either
case, the property of insulated antennas can be significantlyAnd H(2)

0 and H(2)
1 are Hankel functions of zero and first order.

different from those in free space. Thus, care must be takenNote that with a perfect insulation dielectric, k1 is real; but
in their design and analysis to ensure adequate power trans-k2 is complex due to the presence of Hankel functions in Eq.
fer to the right tissue. Noninvasive radiators are often dielec-(38). It reduces to k1 when b, the radius of the insulation,
tric loaded waveguides and horns, discussed in the previousbecomes infinitely large. In view of Eq. (38) the dipole current
section. The dielectric loading in this case is used to improvedistribution, input impedance, radiation resistance, and reso-
impedance matching and coupling to the body. Their designnance frequency can depend strongly on the radius b, propa-
is not significantly different from other dielectric loadedgation constant k1, and the propagation constant of the exte-
waveguides, except that the end shaping must prevent hotrior region, k2. The latter may not be fully known, or constant,
spots and improve penetration.during the application due to variations in moisture content,

Microstrip antennas and arrays are another type of radia-
tors suitable for noninvasive applications. However, their res-
onance property and power coupling to the body can be sensi-
tive to the extent and nature of contact to the skin. Dielectric
coating over the radiating patch or slot can insulate the an-
tenna and minimize the body’s influence. This is due to the
fact that in microstrip antennas the resonance depends on
the effective dielectric constant, and not the actual substrate
permittivity. With single-layer substrates of thickness h, this
effective permittivity, for a conductor line width of W, is given
by

εeff = εr + 1
2

+
�

εr − 1
2

��
1 + 12h

w

�−1/2

(42)

However, it can change significantly by introducing a higher
permittivity layer over the substrate. Consequently, in biolog-
ical applications, where the tissue relative permittivity can be
excessively high, due to the water content having �r � 80, the
nature of the proximity or contact with body can alter �eff sig-
nificantly (11). Because microstrip antennas are narrowband,
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or at best not wideband, the efficiency of their radiation and
coupling to the body can be deteriorated. The effect can beFigure 23. Radiation patterns of the dielectric resonator antenna.
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Figure 25. Implantable radiator types. (a) Needle radiator, (b)
sleeve antenna.

reduced by introducing a superstrate layer over the micro-
strip antenna to control the relative permittivity variations.

Invasive-type radiators can produce more uniform and
controllable heating patterns, but they require implantation
in the tissue. The most convenient types are the insulated
needle radiator, basically the end of the coaxial line. How-
ever, this type of antenna can generate strong currents on
the outer coaxial conductor and cause tissue heating behind
the antenna. An improvement can be obtained by introduc-
tion of a quarter-wavelength choke over the coaxial conduc-
tor to form a sleeve antenna. Their analysis and sensitivity
study can be carried out similar to the insulated dipole
antennas. Figure 25 shows the geometry of needle and
sleeve antennas.
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