
BACKSCATTER power of the wave number k � 2�/�. The expansion coeffi-
cients are found from the solution of the recursive system of

The scattering of waves from an object is a diffraction process boundary value problems in potential theory (pp. 848–856 of
Ref. 4). In practice it is possible to find only a few first coeffi-that transforms the incident wave into the waves propagating

from the object in all possible directions. The backscatter, or cients. Direct numerical methods are efficient tools for the so-
lution of quasi-static scattering problems (5–7).backcattering, is the scattering of waves back toward the

source of the incident wave. This process substantially de-
pends on material properties of the scattering object, its

RESONANCE SCATTERINGshape, size, and spatial orientation relative to the incident
wave, as well as on the frequency and polarization of the inci-

In the resonance frequency region, linear dimensions of scat-dent wave. One distinguishes three frequency regions with
tering objects are comparable to the wavelength of the inci-different physical properties of scattered waves. They are
dent wave. Eigen-oscillations excited by the incident wave inquasi-static, resonance, and quasi-optical regions.
the scattering object can substantially influence the scatter-
ing property. Frequencies of these oscillations are complex

QUASI-STATIC SCATTERING quantities. Their imaginary parts determine both the internal
(thermal) losses inside the object and the external losses that

In the quasi-static region (sometimes called the Rayleigh re- are due to radiation into the surrounding medium. A major
gion), the wavelength � of the incident wave is much greater contribution to RCS is given by the radiation of those eigen-
than the maximum linear dimension l of the scattering object oscillations, whose eigenfrequency real part and polarization
(� � l). At a certain time t, the scattered field at small dis- are close to the incident wave frequency and polarization. If
tances (r � �) from the object is approximately the static field the quality factor of these oscillations is quite large, the am-
created by dipoles and multipoles induced by the incident plitude and the intensity of the scattered wave sharply in-
wave in the scattering object at the same time t. Far from the crease as the frequency of the incident wave approaches the
object, the scattered field is an outgoing spherical wave. Its real part of the frequency of eigen-oscillations. This phenome-
average power flux density (over one period of oscillations) non is referred to as ‘‘resonance scattering.’’ It reveals itself,
relative to that of the incident wave, or radar cross-section for example, in scatterings from thin metallic half-wavelength
(RCS), is determined by the object’s volume rather than the long wires and narrow strips (pp. 293–303 of Ref. 2). These
shape of the object, and it is proportional to ��4. Specifically, scatterers are used, in particular, to create a chaff clutter for
this dependence explains the blue color of the cloudless sky radars. Analytical and numerical data for scattering by thin
during the day. This color is due to the predominance of blue wires are collected in chapter 12 of Ref. 3. Recent analytical
light scattered by small inhomogeneities of the air caused by results for resistive wires are presented in Ref. 8.
fluctuations of its density. The violet light, which is shorter The resonance scattering from wires can also be explained
in wavelength, undergoes stronger relative scattering and as as being due to the constructive interference of multiple cur-
a result suffers higher attenuation while propagating through rent waves arising from the wire ends. This process is investi-
the atmosphere. Analytical expressions for quasi-static RCS gated in detail in Ref. 9. The total current generated by the
of some scattering objects can be found in (1–3). For example, incident plane wave in the perfectly conducting wire (Fig. 1)
the axial RCS of perfectly conducting bodies of revolution is equals
determined by the following approximation (p. 145 of Ref. 1):

J(z) = J0(z) +
∞∑

n=1

[J+
n (z) + J−

n (z)] (3)
σ ≈ 4

π
k4V 2 ·

�
1 + e−τ

πτ

�2

(1)

with the time dependence exp(�i�t) assumed and suppressedwhere k � 2�/� is the wave number, V is the object’s volume,
here and later. The term J0(z) is the current induced by theand � is the characteristic length-to-width ratio of the object.
incident wave in the infinitely long wire (�� � z � ��). TheThis quantity � is found for each object’s shape by allowing
terms J�

n (z) and J�
n (z) are multiple current waves. Wavesthe axial dimension of the object to go to zero so as to obtain

J�
n (z) run in the positive z-direction from the left wire endthe correct result

z � �l to the right end z � �l. Waves J�
n (z) run in the nega-

tive z-direction from the right end z � �l to the left end
z � �l. The total length of the wire is L � 2l. When the waveσ = 64

9π
k4a6 (2)

J	
n (z) reaches the opposite end it undergoes diffraction and

for the circular disk with radius a. Table 8.2 in Ref. 2 (Vol. 2, transforms into the wave J

n�1(z). At the end points of the wire

pp. 558–561) contains explicit expressions for RCS found in the total current and its components satisfy the conditions
this manner for a variety of bodies of revolution. The first
term in this table (Eq. 8.1-87a on p. 558) contains a misprint. J(±l) = 0, J+

1 (−l) = −J0(−l), J−
1 (l) = −J0(l) (4)

The letter b should be replaced by h.
In this frequency region, the scattered field can be ex-

pressed in terms of a convergent series in positive integer
J+

n+1(−l) = −J−
n (−l), J−

n+1(l) = −J+
n (l), n = 1, 2, 3, . . .

(5)
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real frequencies (�� � 0), the denominator D(ka, kL) does not
vanish. But it acquires minimum values when the frequency
of the incident wave is close to the real part of the resonant
frequency (� � ��res). This occurs when kL � n� or L � n�/2
with n � 1, 2, 3, . . . and results in the current resonance.
Under the normal incidence (the direction of the incident
wave is perpendicular to the wire axis), only the odd reso-
nances (n � 1, 3, 5, . . .) are realized due to the symmetry of

z = − l z = + l

z

the incident field [Einc
z (�z) � Einc

z (z)]. Figure 2, taken from the
Figure 1. A thin wire excited by an incident wave. The radius of the classic paper (11), illustrates the resonance behavior of scat-
wire is small compared with the wavelength. Such a wire can support tering from thin wires. The incident wave direction is perpen-
traveling waves due to the multiple edge diffractions. A constructive dicular to the wire axis. The quantity A in Fig. 2 is the total
interference of these waves results in the resonance behavior of the power of the field scattered in all directions. The maximum
surface current and scattered field. scattering occurs in the directions perpendicular to the wire

and therefore in the backscattering direction as well. In Fig.
2, the quantity  � 1/[2�ln(k�)�] depends on the wire radius,

In thin wires (ka � 0.2, a is the wire radius), the multiple 2l � L is the wire length, and � � kl.
current waves are described by the following approximate ex- A similar interference of a specular reflection with surface
pressions diffracted rays (Fig. 3) explains the backscattering from per-

fectly conducting spheres and prolate spheroids at the upper
end of the resonance region [p. 149 of (2) and pp. 822–848
of (4)]. However, an important difference exists between the
resonances in scattering from wires and spheres. The reso-
nance backscattering from wires is caused by the current res-
onance in the wires and it is accompanied by a simultaneous

J+
2n(z) = −J−

1 (−l)[ψ(kL)eikL]2n−2ψ[k(l + z)]eik(l+z)

J+
2n+1(z) = J+

1 (l)[ψ(kL)eikL]2n−1ψ[k(l + z)]eik(l+z)

J−
2n(z) = −J+

1 (l)[ψ(kL)eikL]2n−2ψ[k(l − z)]eik(l−z)

J−
2n+1(z) = J−

1 (−l)[ψ(kL)eikL]2n−1ψ[k(l − z)]eik(l−z)

(6)

with n � 1, 2, 3, . . .. Function �(kz) is defined in (10) as

ψ(kz) =
2 ln

i
γ ka

ln
2ikz
γ q

− E(2kz)e−2ikz
(7)

where

and

E(x) = −
∫ ∞

x

eit

t
dt = Ci(x) + iSi(x) (8)

Functions Ci(x) and Si(x) are the well-tabulated cosine and
sine integrals, respectively. For small arguments (x � 1),
function E(x) reduces to E(x) � ln(�x) � ln(i) � O(x) and en-
sures the equality �(0) � 1. Equation (6) shows that all multi-
ple edge waves starting with secondary waves (n � 2, 3, 4,
. . .) are expressed approximately by the same function �(x).
As a result, the substitution of expressions (6) into Eq. (3)
leads to the geometric series
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Figure 2. Integral cross section of thin wires (from Ref. 11). This

∞∑
n=2

[J+
n (z) + J−

n (z)] = f (k, z, l,a)

∞∑
m=0

{[ψ(kL)eikL]2}m

= f (k, z, l,a)

D

(9)

quantity has the maximum (resonance) values for wires with the total
length L � 2l � (2n � 1)�/2, n � 1, 2, 3, . . .. Along such wires from

which contains the resonance denominator D(ka, kL) � 1 � one edge to another, each multiple edge wave acquires the phase shift
[�(kL)eikL]2. The equation D(ka, kL) � 0 defines the complex of (2n � 1)�. Due to reflection at the edge, it acquires an additional
resonant frequencies �res � ckres � ��res � i��res, where c is the phase shift of �. As a result, this wave becomes equi-phased with all
light velocity in vacuum. Due to the radiation loss, the quan- other multiple edge waves. This leads to the resonance behavior for

the current and scattered field.tity ��res � Im(�) is always negative (��res � 0). Therefore, for
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continuity creates edge waves (B and C), which can be inter-
preted as diffracted rays. They represent the second-order
contributions (12–15). Diffracted waves arising from corners
provide the third-order contributions (12–14). At the shadow

1

2 boundary on a smooth scattering surface, the incident wave
Figure 3. Backscattering from a body of revolution. The total scat- excites creeping waves (D), which propagate along the shadow
tered field consists of two components. One of them is a specular re- side of the object and radiate surface diffracted rays (E). Due
flected ray (1) and the other is a beam of diffracted rays (2) radiated to continuous radiation of these rays, the creeping waves at-
by creeping waves traveling along the shadow side of the scattering tenuate exponentially and for this reason the contribution of
body. The equi-phase interference of these two components results in surface diffracted rays (E) to backscattering is small (12,13).the resonance-like increase of the scattered field.

However, for the objects with dimensions comparable to the
wavelength, surface diffracted rays can give appreciable con-
tributions, as it is mentioned already in the previous section

increase of the scattered field in other directions. This is a
(see also Fig. 2). Diffracting waves propagating along the

true resonance effect. The resonance scattering from spheres
scattering object can undergo multiple diffractions at geomet-

and spheroids is a simple equiphase interference in the single
rical and material discontinuities and can transform into

(backward) direction without the field increase in other direc-
other types of waves. This process creates high-order contri-

tions. Additional data for the resonance backscattering can
butions to backscattering (12–15). A visual description of

be found in (4) (pp. 822–848). As in the case of quasi-static
scattering from large objects, simple quantitative estimations

scattering, direct numerical methods are also efficient for
of some contributions to backscattering, and relevant refer-

RCS calculations in the resonance frequency region (5–7).
ences are presented in (16).

High-frequency asymptotic methods are widely used to
predict scatterings in this frequency region. They include geo-QUASI-OPTICAL SCATTERING
metrical optics (GO) and its extension, geometrical theory of
diffraction (GTD); physical optics (PO) and its extension,In the quasi-optical frequency region, which is often referred

to as the high-frequency region, linear dimensions of scatter- physical theory of diffraction (PTD); and various modifica-
tions and extensions of GTD and PTD. These asymptotic tech-ers are much greater than the wavelength of the incident

wave. For example, this occurs in the scattering of decimeter niques are discussed in ELECTROMAGNETIC WAVE SCATTERING

and RADAR CROSS-SECTIONS. The present article supplementsand centimeter radar waves by such objects as ships, air-
planes, and missiles. In contrast to the quasi-static and reso- these and concentrates mainly on the physical optics. This

method is not so precise as GTD, PTD, and their extensions,nance frequency regions, the scatterings by objects in the
quasi-optical region are determined mainly by the objects’ lo- but it allows useful estimations for the scattered fields in

which many practical problems cannot be treated with othercal properties rather than by their whole volume.
Large dimensions and complex shapes of scattering objects techniques. Direct numerical methods, in their classical

forms, are not efficient in the high-frequency region. Variousallow the existence of various types of scattered fields. Some
of them are illustrated in Fig. 4. Geometrical optics rays and combinations of these methods with the asymptotic tech-

niques (so-called hybrid methods) represent a promising di-beams (A) reflected from the object provide the main contribu-
tions to backscattering. Diffraction of the incident wave at rection in the prediction of high-frequency scattering (17). Ad-

ditional information about numerical, hybrid, and asymptoticedges and at lines of curvature discontinuity or material dis-
techniques used for the solution of scattering problems can be
found in Refs. 6, 13, and 18 and in the reading list at the end
of this article.

Geometrical Optics Approximation

GO is used for approximate estimations of backscattering in
many practical problems. The basic notion of GO involves the
concept of rays. A ray is an infinitely narrow stream of the
wave field moving with the light velocity along the lines per-
pendicular to the phase fronts. These lines are called ray tra-
jectories. In free space they are straight lines. Electric and
magnetic vectors of the ray field are perpendicular to each
other and to the direction of propagation. GO reflected rays
obey simple rules (19,20): the reflected ray lies in the inci-
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dence plane which contains the incident ray and the normal
Figure 4. Backscattering from a convex opaque object. The main to the scattering surface at the reflection point (Fig. 5); the
contributor to the scattered field is beam A reflected from the front angle of reflection equals the angle of incidence (Snell’s re-
planar facet of the object. Edge waves B are created at the edges.

flection law); the power inside an elementary hypotheticalEdge waves C are created at the curvature discontinuities. At the
tube confined by neighboring rays is constant.shadow boundary, the incident wave excites creeping waves D which

GO is a good approximation for the field reflected frompropagate along the object’s surface and radiate surface diffracted
large smooth scattering objects. It provides the leading termrays E. Additional creeping waves are excited at the curvature discon-

tinuities. in the exact high-frequency asymptotic expansion of the re-
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vature is infinite. In this case, the rays reflected by the object
form the so-called reflected beams, which undergo the trans-
verse diffusion while propagating from the object and for this
reason lose their geometrical optics structure in the far zone.

Physical Optics Approximation

This method goes back to MacDonald (21) and is based on��yy
n

three concepts which are GO, canonical planar layer, andFigure 5. Reflection from a planar surface. The reflected ray lies in
equivalency principle.the plane which contains the incident ray and the unit normal vector

The first step in the physical optics (PO) approximation isn to the reflecting surface.
to use GO for the description of fields right on the scattering
surface where GO approximation is still valid. The second
step is to calculate the scattered field outside the object usingflected field. The reflection coefficient is found from the solu-
the equivalency principle described in the following. Tangen-tion of an appropriate canonical problem. For opaque homoge-
tial components (n � E, n � H) of electric and magnetic vec-neous objects, this is the Fresnel reflection coefficient, which
tors of the total field on the scattering surface (with the exter-determines the amplitude and phase of plane waves reflected
nal unit normal n) can be interpreted as equivalent magneticfrom a planar boundary of a semi-infinite homogeneous me-
and electric currentsdium [pp. 474–479 of (2)]. For opaque objects coated with thin

layers, the canonical problem is the reflection of plane waves
from an infinite planar layer. This canonical layer is tangen-
tial to the scattering object (Fig. 6). It is homogeneous in the

jjjm = −nnn × EEE (V/m)

jjje = nnn × HHH (A/m)
(11)

directions parallel to its surface and has the same material
In the PO approach, the equivalent currents are defined instructure in depth as a real layer at the reflection point T.

the GO approximation. The total electromagnetic field onThe canonical layer is placed on the planar boundary of a
the scattering object is considered approximately as the sumhomogeneous medium with the same material properties as a
of the GO incident and reflected waves (EGO � Einc � Eref,real object at the tangency point. This implies that the field
HGO � Hinc � Href). Thus, the PO surface currents are definedon a real coated object is determined exclusively by its local
asproperties in the vicinity of the reflection point. Nonlocal con-

tributions from various waves propagating along the object
are not treated with this approach. Creeping and traveling
waves [pp. 120 and 130 of (2)] are examples of such waves.

jjjPO
e = nnn × HHHGO

jjjPO
m = −nnn × EEEGO

(12)

According to this GO approach, the backscattering RCS of
smooth coated objects equals This equation defines equivalent currents only on the illumi-

nated side of the opaque scattering object. On the shadow
σ = |r(0)|2 · πR1R2 [(m)2] (10) side, these currents are assumed to be zero. In the particular

case of perfectly conducting objects, the magnetic current does
where r(0) is the reflection coefficient for the normal incidence not exist (jPO

m � 0) due to the boundary condition n � E � 0,
(� � 0) and R1, R2 are principal radii of the curvature of the and the electric current equals jPO

e � 2n � Hinc according to
scattering surface at the reflection point T. In the case of iso- the GO approximation.
tropic objects and coatings, the reflection coefficient r(0) does The scattered field is found by the integration of equivalent
not depend on the incident wave polarization. Equation (10) currents over the scattering surface S. Geometry of a sample
is not valid for objects with planar faces when R1 � R2 � �. scattering problem is shown in Fig. 7, where the quantity r is
It also fails for objects that contain ruled elements (cylindri- the distance between the integration (�, �, �) and observation
cal, conical) with a rectilinear generatrix whose radius of cur-

n

θ
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Opaque object
with a layer

Figure 6. A scattered field at the reflection point on a coated scatter-
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ing object is equal asymptotically (with kR1,2 � �) to the field which
would be reflected from a tangential layer with the same material Figure 7. Schematics of a scattering problem: S is the surface of the

scattering object; the dashed part of this surface (with the boundaryproperties. Due to losses, the contributions of rays and waves propa-
gating along the object (inside the coating) become small and can be �) is located in the shadow region which is hidden from the incident

rays.neglected.
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(R, �, �) points. In the far zone (R � k�2
max), the scattered field

is determined as

Eϑ = Z0Hϕ = ik(Z0Ae
ϑ + Am

ϕ )

Eϕ = −Z0Hϑ = ik(Z0Ae
ϕ − Am

ϑ )
(13)

AAAe,m = 1
4π

eikR

R

∫
S

jjje,me−ikρ cos 	 dS (14)

cos 	 = cos ϑ cos θ + sinϑ sin θ cos(ϕ − φ) (15)

Here, E�,� is the electric field intensity (V/m); H�,� is the
magnetic field intensity (A/m); Ae is the electric potential vec-
tor (A); Am is the magnetic potential vector (V); and Z0 �
��0/�0 � 377 (�) is the impedance of vacuum.

z
ϑ

ϑ = γ 

S

ϑ = π − γ
A

The PO approximation for the scattered field follows from
Figure 8. Directions of the forward (� � �) and specular (� � � �Eqs. (13) and (14) when the PO approximation given by Eq.
�) scattering from the plate S. The dashed line A denotes the projec-(12) is used for equivalent surface currents and the integra-
tion of the plate S.tion region is restricted to the illuminated part of the scatter-

ing surface. The line � shown in Fig. 7 is the boundary be-
tween the illuminated and shadow sides of the scattering

Reference 23 contains similar PO estimations for thinsurface S. The PO approach is usually applied to large convex
semi-transparent plates. The field on the plate surface is de-objects. However, it is also applicable to concave objects when
fined by complex reflection and transmission coefficientsthe multiple GO reflections are taken into account.
which depend on the incidence angle (�) and polarization of
the incident wave. The incident wave with an arbitrary linearAccuracy of PO. Approximate estimations for the PO scat-
polarization can be decomposed into two independent wavestered field [Eq. (13)] can be found by the application of asymp-
with orthogonal polarizations. A decomposition is chosen suchtotic techniques to the integrals [Eq. (14)] with the PO cur-
that either the electric or magnetic vector of the incidentrents [Eq. (12)]. The first term of the asymptotic expansion
wave is parallel to the plate. In the first case, denote the re-found in this way is correct for the fields scattered by smooth
flection and transmission coefficients for the electric vector asconvex objects and planar plates in the specular directions
re(�) and te(�), respectively. Similar coefficients, rh(�) andpredicted by GO. All higher-order terms in the PO asymptotic
th(�), for the magnetic vector describe the plate when the mag-expansion are incorrect. Only two exceptions exist when PO
netic vector of the incident wave is parallel to the plate. Refer-provides the exact solution. The first is the scattering from
ence 2 (pp. 479–499) contains instructions for the calculationthe infinite perfectly conducting plane. The second is the scat-
of these coefficients. Two directions of scattering are of great-tering from the semi-infinite perfectly conducting paraboloid
est interest. The first is the direction of specular reflection,of revolution illuminated by the plane wave incident along
� � � � �, and the second is the forward direction, � � �the symmetry axis (22). In the latter case, the scattered field
(Fig. 8). According to (23), the PO approximations of RCS inconsists of only the GO reflected rays. Reference 22 also
the specular direction are given byshows that PO provides the correct second term in the high-

frequency asymptotic expansion for the specular backscatter-
ing from any convex perfectly conducting bodies of revolution
when the incident wave propagates in the direction parallel
to the symmetry axis.

The first term of the PO asymptotic expansion for the field

σe(π − γ ) = 4π
A2

λ2 |re(γ )|2

σh(π − γ ) = 4π
A2

λ2 |rh(γ )|2
(17)

scattered by smooth convex objects in specular directions rep-
and in the forward direction byresents the GO reflected rays [pp. 50–62 of (2)]. Therefore, for

such objects the PO value of RCS in specular directions is
asymptotically (with k � �) equivalent to the GO estimation.
However, it is well known that GO is valid only away from
the forward direction, i.e., from the shadow boundary of the
incident rays. But PO is more general than GO and is applica-

σe(γ ) = 4π
A2

λ2 |1 − te(γ )|2

σh(γ ) = 4π
A2

λ2 |1 − th(γ )|2
(18)

ble in the vicinity of this direction. All known results show
where the quantity A is the same as in Eq. (16). This is thethat the first term of the PO asymptotic expansion for the
area of the plate projected on the plane perpendicular to thefield scattered in the forward direction is correct and leads to
direction of the incident wave. Equations (17) and (18) arethe following RCS for large opaque objects:
applicable for planar plates of an arbitrary shape under the
condition A � �2. This means that the grazing angles (� �
�/2) cannot be treated with these equations.σ = 4π

A2

λ2 [(m)2] (16)

Known results for perfectly conducting plates (�re,h(�)� � 1,
�te,h(�)� � 0) show that PO estimations given in Eqs. (17) andHere, the quantity A is the area of the scattering object pro-

jection on the plane perpendicular to the direction of the inci- (18) are correct. These equations also give the correct result,
�h(�/2) � 0, for perfectly conducting plates under the grazingdent wave propagation.
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Polarization of the PO Scattered Field. In general cases, com-
ponents E� and E� in Eq. (13) have different amplitudes and
phases. This results in the elliptic polarization of the scat-
tered field even in the case when the incident wave is linearly

1
2

polarized. This means that the electric vector of the scattered
field rotates with the angular frequency � � k � c and its end-Figure 9. The PO current given by Eq. (12) is discontinuous at the
point traces an ellipse. The direction of rotation (clockwise orshadow boundary of the scattering surface. This leads to spurious
counterclockwise) is determined by the phase shift betweenwaves (1 and 2) in the case of a smooth scattering surface.
components E� and E�. The lengths of the elliptical axes are
determined by the amplitudes of these components. Due to
diffraction, the scattered field can contain an electric field

incidence. In this case, the incident wave does not undergo component perpendicular to the incident wave polarization.
diffraction because its electric vector is perpendicular to the This phenomenon is known as depolarization, or crosspolari-
plate surface. PO describes satisfactorily the field scattered zation.
from large conducting plates not only in the specular and for- The PO field scattered by arbitrary perfectly conducting
ward directions corresponding to main lobes in the directivity objects in the backscattering direction does not contain the
pattern, but also in the directions of neighboring side lobes. crosspolarized component [p. 56 of (2)]. It is assumed only
However, PO fails to predict a field level in minimums of the that no multiple GO reflections occur on the objects’ surface.

This PO result is correct for scattering objects with certaindirectivity pattern [Figs. 7-19 and 7-20 on p. 509 of (2)] and
symmetry. These are objects with a symmetry plane paralleldoes not satisfy the reciprocity principle.
both to the electric (or magnetic) vector of the incident waveThe PO currents given by Eq. (12) are discontinuous on
and to the direction of its propagation. Each element of suchthe shadow boundary of a scattering surface. The PO field
a scattering object may create the crosspolarized component.contains spurious waves from such a boundary in the case of
But due to the symmetry, the crosspolarized components fromsmooth scattering surfaces (Fig. 9). A similar current disconti-
symmetrical elements cancel each other in the backscatteringnuity on scattering objects with edges results in edge waves.
direction (Fig. 11). A convex smooth body of revolution whoseIf the scattering edge is visible from the observation point,
symmetry axis is parallel to the incident wave direction is asuch an edge wave does exist. The PO edge waves coming
simple example of such an object. A symmetrical plate, illumi-from invisible edges are spurious shooting-through waves
nated by the plane wave whose electric (or magnetic) vector(Fig. 10). Such shooting-through waves do not occur in the
and direction of propagation are parallel to the symmetrybackscattering direction. All PO spurious waves can be re-
plane, is another example where the backscattered field doesmoved by neglecting the corresponding terms in the asymp-
not contain a crosspolarized component (Fig. 12).totic expansion of the integral in Eq. (14). For real edge

As previously stated, the first term of the PO high-fre-waves, even the first-order term of their PO asymptotic
quency asymptotic expansion represents the GO reflected ray.expansion is incorrect. This defect is remedied in PTD by the
This ray contains the crosspolarized component when theinclusion of the field radiated by the so-called nonuniform
electric vector of the incident ray makes any angle differentcurrents arising from the diffraction of the incident wave at
from 0� and 90� with the incidence plane at the reflectionedges (14,15).
point. This is the case when PO correctly describes depolar-One should emphasize a special role of PO in PTD. PO is
ization of the scattered field in the high-frequency asymptotica constitutive part of PTD. Therefore, the PO’s first- and
limit (k � �). However, PO fails to predict all depolarizationhigher-order asymptotic terms are integral parts of the PTD
effects caused by the diffraction part of equivalent surfaceasymptotic expansions for the total scattered field. For exam-
currents.ple, the terms with coefficients (3d/16a) in the PTD equations

(99) and (100) of (15) are exactly the PO’s second-order terms
in the asymptotic expansion of the field scattered by a per-
fectly conducting cylinder of finite length.
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Figure 11. Backscattering without depolarization from a symmetri-Figure 10. A scattered field is generated by the induced surface cur-
rents. Any approximations for these currents can result in the ap- cal perfectly conducting surface S. The incident wave direction is par-

allel to the symmetry plane y-z. Vectors Ecr are the cross-polarizedpearance of nonphysical components in the scattered field. In particu-
lar, the PO currents create spurious shooting-through edge waves (1, components of the reflected field. Due to the symmetry, they cancel

each other.2, and 3) passing through an opaque object.
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GO reflected field really does not depend on the incidence
angle. As a result, the bistatic RCS does not depend on the
bistatic angle and is the same as the monostatic RCS at the
bisector direction that is perpendicular to the scattering sur-
face at the reflection point. Thus, the cited equivalence be-
tween the bistatic and monostatic RCS is a pure GO effect
and is fulfilled asymptotically (with k � �) only in the ray
region, away from the shadow boundary behind the scattering
object. It is also clear that this equivalence is not applicable
when the scattered field contains multiple reflected rays aris-
ing from concave parts of the scattering surface. Reference 1
(pp. 160–183) presents additional results for bistatic RCS of

EincS

y

x some typical objects found using PO and other approxima-
tions.Figure 12. Backscattering without depolarization from a perfectly

conducting plate S. The incident wave direction is parallel to the sym- In the case of coated smooth objects, Eq. (20) leads to the
metry plane y-z. Cross-polarized components scattered by the left and bistatic RCS
right parts of the plate are symmetrical and completely cancel each
other. σ (ϑ) = |re,h(ϑ )|2πR1R2 (21)

where the reflection coefficients re,h(�) depend on the polariza-Bistatic RCS. Bistatic RCS determines the power flux den-
tion and direction of the incident wave. Therefore, the asymp-sity of electromagnetic waves scattered by the object in an
totic equivalence between bistatic and monostatic RCS can bearbitrary direction. The angle between the directions to the
valid only for those bistatic angles where �re,h(�)� � �re,h(0)�.transmitter and receiver is called the bistatic angle. Mono-

This discussion relates to the situation where the bistaticstatic, or backscattering, RCS is a particular case of bistatic
scattered field is produced by a single scattering source (theRCS when the bistatic angle equals zero. Some PO results for
reflection point). The field scattered by complex objects canbistatic RCS have already been discussed. This section ad-
have many sources (scattering centers) on the object’s surface.dresses the interrelationships between bistatic and mono-
Figure 13 illustrates the bistatic scattering from the centerstatic RCS.
located at the point (xn, yn, zn). The origin of Cartesian coordi-Using PO, one can prove the following statement:
nates is somewhere inside the scattering object. The z-axis is
directed along the bisector of the bistatic angle �. In the far

For perfectly conducting bodies which are sufficiently smooth, in
zone, the bistatic scattered field can be represented as thethe limit of vanishing wavelength, the bistatic cross section is
sum of partial contributions from all scattering centers [pp.equal to the monostatic cross section at the bisector of the bistatic
983–988 of (4)]:angle between the direction to the transmitter and receiver.

[pp. 157–160 of (1) and p. 11 of (2)]

There is a simple physical explanation for this result. As
uuu(β) = eikR

R

∑
n

vvvne−2ikzncos β
2 (22)

already stated, the first term of the PO asymptotic expansion
for the field scattered by smooth objects exactly equals the Here, u is either the electric or magnetic vector of the total
GO expression for the reflected rays. The monostatic RCS scattered field; R is the distance from the origin to the obser-
caused by these rays is given by Eq. (10). In the case of per- vation point. Vector vn determines the amplitude and polar-
fectly conducting objects, this equation reduces to ization of the wave generated by the nth scattering center.

Suppose that vectors vn and the number of scattering centers
σ = πR1R2 (19) are constant inside the angular sector 0 � � � �max. Assume

also that coordinates zn of scattering centers do not depend on
It should be noted that this equation is valid also for the bi- the bistatic angle �, while coordinates xn and yn can be func-
static RCS, which therefore does not depend on the bistatic
angle � � 2� (Figs. 5 and 6). This follows directly from Eqs.
(5.32), (6.19), and (6.20), given in Chapter 8 of (19):

EEE(r) = 1
2

EEE(0)
√

R1R2
eiks

s

HHH(r) = 1
2

HHH(0)
√

R1R2
eiks

s

(20)

These expressions describe the field reflected by smooth con-
vex objects at a far distance (s � R1,2) from the reflection point

R

x

y(xn , yn , zn)

R

/2
z

β

/2β

for any incidence angle (0 � � � �/2). In the case of reflection
from concave surfaces, the reflected field acquires the addi- Figure 13. Geometry of the bistatic scattering problem. A solid wind-
tional phase shift of (��/2) in passing through a focus of re- ing line represents a scattering object with many scattering centers
flected rays. Vectors E(0) and H(0) denote the reflected field (xn, yn, zn). The scattering direction forms the angle � with the direc-

tion of the incident wave.at the reflection point. Expressions (20) clearly show that the
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tions of this angle. Under these conditions, the monostatic Exact, numerical solutions of scattering problems for bodies
of revolution can be found, for example, in (6), (18), and (25).field scattered in the bisector direction equals

Semitransparent Disk

The geometry of this scattering problem is shown in Fig. 8.
uuu(0) = eikR

R

∑
n

vvvne−2ikzn (23)

The backscattering direction is determined by the spherical
Comparisons of Eqs. (22) and (23) show that the bistatic coordinates � � � � �, � � ��/2. The disk radius is denoted

RCS, �(�, k), at the frequency � � c �k will be equal to the by the letter a. The incident wave can have either E- or H-
monostatic RCS, �[0, kcos(�/2)], at the frequency � � c �k � polarization. In the first case, the electric vector is perpendic-
cos(�/2). This equality requires the additional assumption ular to the incidence plane and parallel to the disk face. The
that each vector vn is constant in the frequency band disk properties are described by the reflection and transmis-
[c �kcos(�/2) � � � c �k]. The derivation, some applications, sion coefficients, re(�), te(�), with respect to the electric vector.
and restrictions of this equivalence relation are presented in In the case of H-polarization, the magnetic vector of the inci-
(4) (pp. 983–988). In particular, this reference notes that this dent wave is perpendicular to the incident plane and parallel
equivalence is not true for the bistatic scattering from spheres to the disk face. The reflection and transmission coefficients,
when the bistatic angle exceeds one degree and the sphere rh(�), th(�), determine the magnetic vector on the front (z �
radius is less than 6�. Before applying this equivalence in �0) and rear (z � �0) faces of the disk, respectively. Ac-
practice, we must first check carefully that all assumptions cording to Eq. (67) in (23), the backscattering RCS is given by
made in this scattering model are really fulfilled. One can
expect that this approximate model can be reasonable only
for small bistatic angles.

σ PO
e (γ ) = |re(γ )|2πa2[J1(2ka sinγ )]2 cot2 γ

σ PO
h (γ ) = |rh(γ )|2πa2[J1(2kasinγ )]2 cot2 γ

(24)

PTD as an Extension of PO. PTD is a natural extension of
where J1(x) is the Bessel function and the incidence angle isPO (14,15,24). In PTD, the PO current given by Eq. (12) is
restricted by the values 0 � � � �/2. For perfectly conductingconsidered as the uniform component ( j0) of the total surface
disks, one should put re(�) � �1 and rh(�) � �1. Then, in thecurrent and is supplemented by the additional, nonuniform
case of the normal incidence (� � 0), Eq. (24) reduces tocomponent ( j1). In contrast to the PO current that has the GO

origin, the nonuniform current is caused by diffraction at
σ PO

e = σ PO
h = πa2(ka)2 (25)smooth bendings, sharp edges, corners, and any other geomet-

rical discontinuity and material inhomogeneity on the scatter-
Figure 7-24 on p. 514 of (2) shows that this equation is ining surfaces. Creeping and edge current waves are examples
good agreement with the exact results when ka � 5. Note alsoof such a current. The field generated by the nonuniform cur-
that Eq. (18), with A � �a2 cos �, determines the PO bistaticrent represents the PTD contribution to the scattered field.
RCS of this disk for the forward direction (� � �). PTD esti-Exact analytical expressions for nonuniform currents are not
mations for RCS of a perfectly conducting disk are presentedavailable. Therefore, one has to find their high-frequency ap-
in Chapters 2 and 5 of (14). See also pp. 514–521 of (2). Someproximations by the solution of appropriate canonical prob-
important corrections in the PTD expressions for bistatic scat-lems. In this manner, Fock developed special functions which
tering from a disk are given in (24). Contributions of multipledescribe the nonuniform current on smooth convex objects in
edge waves to forward scattering are presented in (15) (pp.the vicinity of the shadow boundary (19). The Sommerfeld so-
149–151).lution of the wedge canonical problem is used for the asymp-

totic description of the nonuniform current near perfectly con-
Circular Coneducting edges (14,15,24). The concept of uniform and

nonuniform currents plays a key role in PTD and those hybrid Geometrical parameters of a perfectly conducting cone are
techniques that combine direct numerical methods with high- shown in Fig. 14. The incident wave direction is parallel to
frequency asymptotic approximations (6,17,18). Reference 15 the symmetry axis of the cone. The PO backscattering RCS is
shows that PTD properly defines the leading term in the high-
frequency asymptotic expansions for primary and multiple
edge waves. A close connection exists between PTD and GTD.
The latter automatically follows from the PTD integrals when
they are evaluated by the stationary phase technique [pp.
136–138 of (15)]. Some PTD results are presented in the
next section.

BACKSCATTERING RCS OF SIMPLE SHAPES

This section contains examples of PO estimations for RCS of l

2a
α

simple objects. Whenever possible, these estimations are ac-
companied by more precise PTD counterparts that include the Figure 14. Backscattering from a truncated cone. The base diameter
contributions of primary edge waves generated by the nonuni- of the cone (2a) is large compared to the wavelength. The length of
form edge currents. Only objects with symmetry of revolution the cone (l) can be arbitrary. In the limiting case l � 0, the cone

transforms into a disk.are considered. All given data are taken from (15) and (16).
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perfectly conducting paraboloid equals

σ PO = 4πa2 tan2 α sin2 kl (30)

This equation can be written in another form as

σ PO = πa2 tan2 α · |e−ikl − eikl |2 (31)

which is more convenient for the physical analysis. The term
with the exponential e�ikl gives the correct contribution of the
specular reflection from the paraboloid tip. The term with thel

α

2a

exponential eikl represents the edge wave contribution and is
wrong. PTD includes the additional contribution from theFigure 15. Backscattering from a truncated paraboloid. The base di-

ameter of the paraboloid (2a) is large compared to the wavelength. nonuniform edge currents and provides the correct result,
The length of the paraboloid (l) can be arbitrary. In the limiting case given by Eq. (18.04) in (14):
l � 0, the paraboloid transforms into a disk.

given by Eqs. (17.06) and (17.09) in (15),
σ PTD = πa2

∣∣∣∣∣∣∣
tan α +

2
n

sin
π

n

cos
π

n
− cos

2α

n

e2ikl

∣∣∣∣∣∣∣

2

(32)

where n � 3/2 � �/�. When the paraboloid transforms intoσ PO = πa2 ·
∣∣∣∣ 1
ka

tan2 α sin kl − tan αeikl
∣∣∣∣
2

(26)
the disk (� � �/2 and l � 0), these expressions reduce to
Eq. (29).

where the cone length equals l � a cot �. To clarify the phys-
ics in this equation, we rewrite it as Truncated Sphere

The geometry of this scattering problem is shown in Fig. 16.
The angle � is formed by the tangent to the sphere genera-
trix and the symmetry axis. The sphere radius equals � �

σ PO = πa2
∣∣∣∣ i
2ka

tan αe−ikl −
�

tan α + i
2ka

tanα

�
eikl

∣∣∣∣
2

(27)

a/cos �, where a is the base radius. The length of the trun-
The first term (with exponential e�ikl) is related to the wave cated sphere equals l � � � (1 � sin �). It is assumed that l �
scattered by the cone tip. Comparison with the exact solution �. The PO backscattering RCS of a perfectly conducting
[Fig. 18.15 on p. 691 of (3)] shows that this PO approximation sphere equals [Eq. (19.05) in (14)]
is quite satisfactory for all cone angles (0 � � � �/2). The
second term (with the exponential eikl) describes the edge
wave contribution. This PO approximation is incorrect. PTD σ PO = πa2

∣∣∣∣ 1
cos α

− i
2ka

−
�

tan α − i
2ka

�
e2ikl
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2

(33)

takes into account the additional contribution from the non-
uniform (diffraction) currents located near the cone edge and In this equation, the first two terms represent the specular
provides a more accurate result, given by Eqs. (17.06) and reflection from the sphere, and both are correct. The third
(17.08) in (14), term (with the exponential e2ikl) gives the contribution from

the edge and it is wrong. With ka � 1, Eq. (33) simplifies to

σ PO = πa2
∣∣∣∣ 1
cos α

− tan αe2ikl
∣∣∣∣
2

(34)σ PTD = πa2 ·
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1

ka
tan2 α sin kl +

2
n

sin
π

n

cos
π

n
− cos

2α

n

eikl

∣∣∣∣∣∣∣

2

(28)

where n � 3/2 � �/�. When the cone transforms into the disk
(� � �/2, l � 0) the previous expressions reduce to

σ PO = σ PTD = πa2(ka)2 (29)

which coincides with Eq. (25).

Paraboloid

The directrix of a paraboloid is given by the equation r �
2pz where p � a tan � (Fig. 15). The length of the paraboloid l

2a

α

equals l � a2/(2p) � (a/2)cot �. The angle � is formed by the
symmetry axis z and the tangent to the directrix at the point Figure 16. Backscattering from a truncated sphere. The base diame-
z � l. The radius of the paraboloid base equals a. The incident ter of the sphere (2a) is large compared to the wavelength. The length
wave propagates in the positive direction of the z-axis. Ac- of the sphere (l) can be arbitrary. In the limiting case l � 0, the

sphere transforms into a disk.cording to Eq. (18.02) in (14), the PO backscattering RCS of a
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When � � 0, the latter gives the RCS of a hemisphere, � � usual geometrical optics reflected rays. Waves reflected
from discrete shining points located on edges, tips, and�a2. The PTD backscattering RCS is determined by Eq.

(19.12) in (14), corners are diffracted rays. The farthest shining points on
a smooth object, i.e., those located on the boundary between
visible and invisible sides of the object, create surface dif-
fracted rays.

As the orientation of the object is changed, the shining
points move along the object. Some of them can merge with

σ PTD = πa2

∣∣∣∣∣∣∣
1

cos α
+

2
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sin
π

n

cos
π

n
− cos

2α

n

e2ikl

∣∣∣∣∣∣∣

2

(35)

each other and create a brighter point. In this case our eyes
where n � 3/2 � �/�. When the sphere transforms into the (i.e., the radar) are located on a caustic is the envelope of
disk (� � �/2, � � �, l � 0), Eqs. (34) and (35) reduce exactly merged rays.
to Eq. (29). We can also observe bright shining lines and bright shin-

ing spots on the object, which contain an infinite number of
Circular Cylinder with Flat Ends continuously distributed shining points. The important prop-

erty is that the optical path through a shining point from theThe diameter and length of a perfectly conducting cylinder
source to the observer is constant for all of these points. It isare assumed to be large as compared with the wavelength of
assumed here that the source and observer are far from thethe incident wave. PO and PTD estimations for backscatter-
scattering object. All reflected waves from these points reaching RCS are developed in Chapter 3 of (14). They are also
the observer with the same phase. From the mathematicalpresented in (2) (pp. 308–312). PTD asymptotic expressions
point of view, each such point is a stationary point of the in-for bistatic RCS are given in (15) (pp. 152–154).
finite order: the derivatives (of any higher order) of the wave
phase along the shining line (or along the shining spots) are
zero at these points.BACKSCATTERING FROM COMPLEX

OBJECTS AND STEALTH PROBLEMS Shining spots and lines located on smooth parts of the scat-
tering surface generate powerful reflected beams (such as

Computer codes based on GTD, PTD, and on their hybridiza- those radiated by reflector antennas) which represent the
strongest contributors to RCS. Shining edge lines create edge-tions have been developed for prediction of high-frequency

scattering from complex perfectly conducting objects. Rele- diffracted beams whose contributions can be comparable with
those from ordinary reflected rays.vant references can be found in (16), (18), and in special is-

sues of Proc. IEEE (1989), IEEE Trans. Antennas Propag. It is difficult to model in optics the electromagnetic proper-
ties of realistic scattering surfaces for the radar frequency(1989), and Annales des Telecommunications (1995), which are

mentioned in the reading list. Note also the XPATCH code band. But the optical modeling can be used to identify the
scattering centers and to control them by an appropriate(based on the shooting-and-bouncing ray technique and PTD),

which allows the calculation of backscattering from complex shaping of the scattering surface. As it is well known, one of
the basic ideas of the current stealth technology is to use angeometries. Information about this code is published in IEEE

Trans. Anntennas Propagat. Magazine, 36 (1), pp. 65–69, appropriate body shaping and to shift all reflected beams and
rays away from the directions to the radar. See, for example,1994. Computer codes interfaced with graphical utilities of

workstations can display three-dimensional chromatic views Refs. 2, 16, and the radar cross-section handbooks mentioned
in the reading list. Some interesting details about the devel-of scattering centers and magnitudes of their contributions

to RCS. This is the end result of complicated computations. opment of stealth technology in the United States are pre-
sented in Refs. 26–28.However, a part of this can be obtained without any computa-

tions. Nature can show us the location of all scattering cen- The second idea of stealth technology is traditional: to use
radar absorbing materials (RAMs) and composite structuresters if we bring a small metallized model of the scattering

object into an anechoic optical chamber and illuminate the in order to reduce the intensity of reflected beams and rays.
References 2, 16, 29, and radar handbooks (mentioned in themodel by the light. Bright shining points (scattering centers)

seen on a scattering object are exactly those from which the reading list) describe fundamental concepts used in the de-
sign and application of RAMs. We present here some detailsradar waves will be reflected toward the radar, if we look at

the object from the light source direction. (The following text taken from Ref. 16. In order to use RAMs efficiently, it is nec-
essary to place an electric (magnetic) RAM in the regionis taken from Ref. 16 and slightly modified.)

The locations of these points do not depend on the fre- where the average electric (magnetic) field is maximal. Loca-
tion of these regions in the vicinity of real objects depends onquency of incident electromagnetic waves, and they are deter-

mined completely by the location of the light source (the ra- many factors, such as the radar frequency, geometry, size,
and electrical properties of the object, as well as properties ofdar), the observer, and the scattering object. These shining

points obey the Fermat principle. This means that the path materials intended for absorption. Identification of such re-
gions and optimization of the RAM parameters to minimizealong the ray between the source, the reflecting point, and

the observer is extremal (minimal or maximal) in compari- RCS is a very complex problem. Its solution is attainable only
in some simple cases. Most of these relate to absorbing layersson with similar paths corresponding to neighboring points

on the object’s surface. A more detailed description of the on an infinite metallic plane. From the physical point of view
such absorbing layers can be considered as open resonatorsFermat principle is presented for example in Section 3.3.2

in Ref. 20. that can support eigen-oscillations. Frequencies of eigen-oscil-
lations are complex quantities. Their imaginary part is re-Waves reflected from discrete shining points located on

the smooth parts of the scattering object represent the sponsible for the loss inside the resonator and radiation
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especially for this book and reprints of some earlier key papers.Propag., 43 (1): 11–26, 1995.

26. M. W. Browne, ‘‘Two Rival Designers Led the Way to Stealthy J. M. Bernard, G. Pelosi, and P. Ya. Ufimtsev (eds.),, Radar Cross
Warplanes,’’ in ‘‘The New York Times,’’ Science Times Section, Sections of Complex Objects, Special issue of the French journal
US, May 14, 1991. Annales des Telecommunications, 50 (5–6), May–June 1995. It is

published in English with abstracts translated into French.27. S. F. Brown, ‘‘The Secret Ship,’’ in magazine ‘‘Popular Science,’’
Contains the asymptotic analysis of RCS for higher-orderUS, October 1993.

curved surfaces, physical theory of slope diffraction, PO and PTD28. B. Rich and L. Janos, Skunk Works, Boston-New York-London:
analysis of trihedral corner reflectors, a selective review of someLittle, Brown & Company, 1994.
numerical methods for electromagnetic scattering, and some

29. K. J. Vinoy and R. M. Jha, Radar Absorbing Materials, Boston: other results.
Kluwer Academic Publishers, 1996.

The following three books contain additional information on RCS.
They include concise descriptions of basic exact and approximate
techniques for prediction of RCS, they introduce methods of RCSReading List
enhancement and reduction, and they contain a large number of

This section contains short comments on some related references. calculated and measured data for RCS of many typical simple and
P. C. Fritch (ed.), Radar Reflectivity, Special issue of the Proc. IEEE, complex objects. The books complement each other, with emphasis

53 (8), August 1965. on different aspects in the field of RCS.
The first attempt to sum up basic results in the field of RCS. A. L. Maffett, Topics for a Statistical Description of Radar Cross Sec-

Includes a comprehensive subject index, about 1500 titles (pp.
tion. New York: John Wiley & Sons, 1989.

1025–1064).
This book treats the subject of RCS with special emphasis on

J. W. Crispin Jr. and K. M. Siegel (eds.), Methods of Radar Cross statistical aspects and applications. It reflects broad interests of
Section Analysis. New York: Academic Press, 1968. the author: from historical background and perspective through

Includes a short historical survey of high-frequency approxima- analytical and numerical methods of RCS calculation and RCS
tions. Contains results of such approximations for monostatic and measurements to elements of detection theory, investigation of an-
bistatic RCS of simple objects. States a strategy of RCS calcula- isotropic layers, and the inverse problem for anisotropic materials
tions for complex objects. Some results are conveniently summa- with diagonal permittivity and permeability tensors.
rized in tables. Table 5 on p. 147 contains expressions for RCS in

A. K. Bhattacharyya and D. L. Sengupta, Radar Cross Section Analy-the Rayleigh region (for objects small in comparison with wave-
sis and Control. Boston-London: Artech House, 1991.length). High-frequency monostatic and bistatic RCS are given in

The book concentrates its attention on deliberate changes ofTables 7 and 8 on p. 168, 169, 171.
RCS (enhancement and reduction). It contains a useful table (p.G. T. Ruck, D. E. Barrick, W. D. Stuart, and C. K. Kirchbaum, Radar
108) which represents in concise form the comparison of differentCross-Section Handbook. New York: Plenum Press, 1970.
methods available for RCS analysis, with discussion of their ad-This is a real encyclopedia of RCS, which includes most results
vantages, disadvantages, and possible applications. It also comple-obtained before 1970. It contains numerous theoretical and experi-
ments other books by inclusion of the Maluzhinets function, whichmental results for both perfectly conducting and absorbing objects.
plays a fundamental role in the theory of scattering by absorbingThe physical theory of diffraction (PTD) is mentioned here as the
objects with sharp edges or with impedance discontinuities. TheSommerfeld–Macdonald technique. Equation (5.1-54), presented
computer code for the calculation of this important function is pro-on p. 351, for the bistatic RCS of an ellipsoid is incorrect. In the
vided in the appendix of the book.particular case when an ellipsoid transforms into a sphere, this

E. F. Knott, J. F. Schaffer, and M. T. Tuley, Radar Cross Section, 2ndequation does not provide the bistatic RCS for the sphere, � �

�a2. Instead it leads to the wrong quantity � � �a2/(1 � cos �)2, Ed. Boston-London: Artech House, 1993.
where � is the bistatic angle. This book presents updated material which covers most as-

pects of RCS: radar fundamentals, radar detection, RCS predic-J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi (eds.), Electro-
tion, RCS reduction, radar absorbing materials, and RCS mea-magnetic and Acoustic Scattering by Simple Shapes. New York:
surements. Chapter 14 can be especially useful for a brief review.Hemisphere Publishing Corp., 1987.
It contains a table (p. 562) with RCS estimations, as well as theContains a comprehensive collection of theoretical results for
RCS data presentation formats and data reduction recipes.RCS of simple objects which allow the exact solutions of diffraction

problems. Both low-frequency and high-frequency approximations P. Ya. Ufimtsev, Comments on diffraction principles and limitations
are presented as well. of RCS reduction techniques, Proc. IEEE, 84: 1830–1851, 1996.

M. Skolnik (ed.), Radar Handbook. New York: McGraw-Hill, 1970. RCS reduction techniques are discussed briefly from the physi-
Contains many results of measurements and calculations for cal point of view. Attention is concentrated on the physical struc-

RCS. Calculations were carried out mostly by the physical optics ture of radar waves scattered from large objects. Possible passive
approach and GTD. Analytical expressions for RCS are not given. and active techniques to control and reduce reflected beams, rays,

and shadow radiation as well as potential limitations of theseW. R. Stone (ed.), Radar Cross Sections of Complex Objects, Special
techniques are considered. In particular, it is emphasized thatissue of the Proc. IEEE, 77 (5), May 1989.
grazing reflected rays and shadow radiation cannot be eliminatedW. R. Stone (ed.), Radar Cross Sections of Complex Objects, Special
by absorbing materials.issue of the IEEE Trans. Antennas Propag. 37 (5), May 1989.

R. C. Hansen (ed.), Geometrical Theory of Diffraction. New York: IEEEThese two references contain many theoretical results concern-
ing RCS for complex objects (perfectly conducting objects with Press, 1981.
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This book consists of a collection of articles. It contains key
papers on GTD, asymptotic solutions of some canonical problems,
and applications-oriented papers.
Many scattering objects contain nonmetallic materials, compos-
ites, and various layered structures. To simplify the solution of
scattering problems for such objects, it is often practical to apply
approximate boundary conditions. These conditions are enforced
on the external surface of the object and contain important infor-
mation about the internal structure of the scattering object. As a
result, this approximation allows one to substantially reduce the
spatial region under investigation. The two following books pre-
sent the development and applications of this approximation tech-
nique.

T. B. A. Senior and J. L. Volakis, Approximate Boundary Conditions
in Electromagnetics. London: The Institution of Electrical Engi-
neering, 1995.

D. J. Hoppe and Y. Rahmat-Samii, Impedance Boundary Conditions
in Electromagnetics, Washington, D.C.: Taylor & Francis, 1995.
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