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ANTENNA RADIATION PATTERNS

An antenna is used to either transmit or receive electromagnetic waves. It serves as a transducer converting
guided waves into free-space waves in the transmitting mode or vice versa in the receiving mode. Antennas,
including aerials, can take many forms according to the radiation mechanism involved and can be divided
into different categories. Some common types are wire antennas, aperture antennas, reflector antennas, lens
antennas, traveling-wave antennas, frequency-independent antennas, horn antennas, printed and conformal
antennas, etc. (see Antennas). When applications require radiation characteristics that cannot be met by
a single radiating element, multiple elements are employed. Various configurations are utilized by suitably
spacing the elements in one or two dimensions. These configurations, known as array antennas, can produce the
desired radiation characteristics by appropriately feeding each individual element with different amplitudes
and phases, which allows increasing the electrical size of the antenna. Furthermore, antenna arrays combined
with signal processing lead to smart antennas (switched-beam or adaptive antennas), which offer more degrees
of freedom in wireless system design (1). Moreover, active antenna elements or arrays incorporate solid-state
components producing effective integrated antenna transmitters or receivers with many applications (see
Antennas and Ref. 1).

Regardless of the antenna considered, there are some fundamental figures of merit that describe its
performance. The response of an antenna as a function of direction is given by the antenna pattern. This
pattern commonly consists of a number of lobes; the largest one is called the main lobe, and the others are
called sidelobes, minor lobes, or back lobes. If the pattern is measured sufficiently far from the antenna so
there is no change in the pattern with distance, the pattern is the so-called far-field pattern. Measurements at
shorter distances yield near-field patterns, which are a function of both angle and distance. The pattern may be
expressed in terms of the field intensity (field pattern) or in terms of the Poynting vector or radiation intensity
(power pattern). If the pattern is symmetrical, a simple pattern is sufficient to completely specify the variation
of the radiation with angle. Otherwise, a three-dimensional diagram or a contour map is required to show the
pattern in its entirety. However, in practice two patterns, perpendicular to each other and to the main-lobe
axis, may suffice. These are called the principal-plane patterns for the E plane and the H plane, containing the
field vectors E and H, respectively.

Having established the radiation patterns of an antenna, some important parameters can now be consid-
ered, such as radiated power, radiation efficiency, directivity, gain, and antenna polarization. All of them will
be considered in detail in this article.

Here scalar quantities are presented in lightface italics, while vector quantities are boldface, e.g., the
electric field E (vector) of magnitude E (=|E|) (scalar). Unit vectors are boldface with a circumflex over the

letter; £ ,«ﬁ ,E and’ are the unit vectors in the x, y, z, and r directions, respectively. A dot over a symbol means
that the quantity is harmonically time-varying or a phasor. For example, taking the electric field, E represents

E=3# E, _

a space vector and time phasor, blltE.rx is a scalar phasor. The relations between them are * where

Ee*t.
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The first section of this article introduces several antenna patterns, giving the necessary definitions
and presenting the common types. The field regions of an antenna are also pointed out. The most common
reference antennas are the ideal isotropic radiator and the very short dipole. Their fields are used to show the
calculation and meaning of the different parameters of antennas covered in this article. The second section
begins with a treatment of the Poynting vector and radiation power density, starting from the general case of an
electromagnetic wave and extending the definitions to a radiating antenna. After this, radiation performance
measures such as the beam solid angle, directivity, and gain of an antenna are defined. In the third section
the concepts of wave and antenna polarization are discussed. Finally, in the fourth section, a general case of
antenna pattern calculation is considered, and numerical solutions are suggested for radiation patterns that
are not available in simple closed-form expressions.

Radiation From Antennas

Radiation Patterns. The radiation pattern of an antenna is generally its most basic requirement, since
it determines the spatial distribution of the radiated energy. This is usually the first property of an antenna that
is specified, once the operating frequency has been stated. An antenna radiation pattern, or antenna pattern,
is defined as a graphical representation of the radiation properties of the antenna as a function of space
coordinates. Since antennas are commonly used as parts of wireless telecommunication systems, the radiation
pattern is determined in the far-field region where no change in pattern with distance occurs. Using a spherical
coordinate system, shown in Fig. 1, with the antenna at the origin, the radiation properties of the antenna
depend only on the angles ¢ and 0 along a path or surface of constant radius. A plot of the radiated or received
power at a constant radius is called a power pattern, while the spatial variation of the electric or magnetic field
along a constant radius is called the amplitude field pattern. In practice, the necessary information from the
complete three-dimensional pattern of an antenna can be obtained by taking a few two-dimensional patterns,
according to the complexity of radiation pattern of the specific antenna. For most applications, a number of
plots of the pattern as a function of 6 for some particular values of ¢, plus a few plots as a function of ¢ for some
particular values of 6, give the needed information.

Antennas usually behave as reciprocal devices. This is very important, since it permits the characteri-
zation of the antenna either as a transmitting or as a receiving antenna. For example, radiation patterns are
often measured with the test antenna operating in the receive mode. If the antenna is reciprocal, the measured
pattern is identical when the antenna is in the transmit mode. If nonreciprocal materials, such as ferrites and
active devices, are not present in an antenna, its transmitting and receiving properties are identical.

The radiation fields from a transmitting antenna vary inversely with distance, whereas the variation
with observation angles (¢, 6) depends on the antenna type. A very simple but basic configuration antenna is
the ideal, or very short, dipole antenna. Since any linear or curved wire antenna may be regarded as being
composed of a number of short dipoles connected in series, knowledge of this antenna is useful. So we will use
the fields radiated from an ideal antenna to define and understand the properties of radiation patterns. An
ideal dipole positioned symmetrically at the origin of the coordinate system and oriented along the z axis is
shown in Fig. 1. The pattern of electromagnetic fields, with wavelength A, around a very short wire antenna
of length L << A, carrying a uniform current Iye/*, is described by functions of distance, frequency, and angle.
Table 1 summarizes the expressions for the fields from a very short dipole antenna as given in Refs. 2 and 3.
We have E, = H, = Hy = 0 for r »X and L «X. The variables shown in these relations are I, = amplitude
(peak value in time) of current (A), supposed to be constant along the dipole; L = length of dipole (m); w = 2nf
= radian frequency, where f is the frequency in hertz; ¢ = time (s), 8 = 27x/A = phase constant (rad/m) 6 =
azimuthal angle, (dimensionless); ¢ = velocity of light ~ 3x10% m/s; A = wavelength (m); j = complex operator
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Fig. 1. Spherical coordinate system for antenna analysis. A very short dipole is shown with the directions of its nonzero
field components.

Table 1. Fields of an Ideal or Very Short Dipole

General Expression Far Field
Component for All Regions Only
E IGLE_ftxur—ﬁr] cos f (Ejﬁ + E) 0
Jewegdmr r r?
g ILe/“=Fsing ( , jg 1 J(L /2 Iped“t—Fr) gin g
' Jweodmr r re 2eqer
IpLe/"™—Fging /1 J(L /W) Iped ™t =Fr) gin g
H dmr (Jﬁ + r_) 2r

_v—Lir= distance from center of dipole to observation point, (m) and gy = permittivity of free space = 8.85

pF/m.
Note that Ey and H, are in time phase in the far field. Thus, the electric and magnetic fields in the far
field of the spherical wave from the dipole are related in the same manner as in a plane traveling wave. Both
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Fig. 2. Radiation field pattern of far field from an ideal (very short) dipole: (a) three-dimensional pattern plot, (b) E-plane
radiation-pattern polar plot, and (c) H-plane radiation-pattern polar plot (HPBW, H-plane beamwidth).

are also proportional to sin 6. That is, both are at a maximum when 6 = 90° and a minimum when 6 = 0° (in the
direction of the dipole axis). This variation of Ey or H, with angle can be presented by a field pattern, shown
in Fig. 2, the length r of the radius vector being proportional to the value of the far field (Ey or H,) in that
direction from the dipole. The pattern in Fig. 2(a) is the three-dimensional far-field pattern for the ideal dipole,
while the patterns in Fig. 2(b, ¢) are two-dimensional and represent cross sections of the three-dimensional
pattern, showing the dependence of the fields on the angles 6 and ¢.

All far-field components of a very short dipole are functions of I, the dipole current; L/ A, the dipole length
in wavelengths; 1/r, the distance factor; je/*~#” the phase factor; and sin 6, the pattern factor, which gives
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the variation of the field with angle. In general, the expression for the field of any antenna will involve these
factors.

For longer antennas with complicated current distribution the field components generally are functions of
the above factors, which are grouped into the element factor and the space factor. The element factor includes
everything except the current distribution along the source, which is the space factor of the antenna. For
example, consider the case of a finite dipole antenna. The field expressions are produced by dividing the
antenna into a number of very short dipoles and summing all their contributions. The element factor is equal
to the field of the very short dipole located at a reference point, while the space factor is a function of the
current distribution along the source, the latter usually described by an integral. The total field of the antenna
is given by the product of the element and space factors. This procedure is known as pattern multiplication.

A similar procedure is also employed in array antennas, which are used when directive characteristics
are needed. The increased electrical size of an array antenna due to the use of more than one radiating element
gives better directivity and special radiation patterns. The total field of an array is determined by the product
of the field of a single element and the array factor of the array antenna. If we use isotropic radiating elements,
the pattern of the array is simply the pattern of the array factor. The array factor is a function of the geometry
of the array and the excitation phase. Thus, changing the number of elements, their geometrical arrangement,
their relative magnitudes, their relative phases, and their spacing, we obtain different patterns. Figure 3 shows
some of characteristic patterns of an array antenna with two isotropic point sources as radiating elements,
using different values of the above quantities, which produce different array factors.

Common Types of Radiation Patterns. An isotropic source or radiator is an ideal antenna that
radiates uniformly in all directions in space. Although no practical source has this property, the concept of the
isotropic radiator is very useful, and it is often used as a reference for expressing the directive properties of
actual antennas. It is worth recalling that the power flux density S at a distance r from an isotropic radiator
is Py/4nr?, P; being the transmitted power, since all the transmitted power is evenly distributed on the surface

of a spherical wavefront with radius r. The electric field intensity is calculated as V30F/r (using the relation
from electric circuits, power = E2/5, where 5 is the characteristic impedance of free space, 377 Q).

On the contrary, a directional antenna is one that radiates or receives electromagnetic waves more
effectively in some directions than in others. An example of an antenna with a directional radiation pattern
is that of an ideal or very short dipole, shown in Fig. 2. It is seen that this pattern, which resembles a
doughnut with no hole, is nondirectional in the azimuth plane, which is the xy plane characterized by the set
of relations [f{(¢), 6 = 7/2], and directional in the elevation plane, which is any orthogonal plane containing
the z axis characterized by [g(8), ¢ = constant]. This type of directional pattern is called an omnidirectional
pattern and is defined as one having an essentially nondirectional pattern in a given plane, which for this
case is the azimuth plane, and a directional pattern in any orthogonal plane, in this case the elevation plane.
The omnidirectional pattern—known also as broadcast-type—is used for many broadcast or communication
services where all directions are to be covered equally well. The horizontal-plane pattern is generally circular,
while the vertical-plane pattern may have some directivity in order to increase the gain.

Other forms of directional patterns are pencil-beam, fan-beam, and shaped-beam patterns. The pencil-
beam pattern is a highly directional pattern, which is used when it is desired to obtain maximum gain and
when the radiation pattern is to be concentrated in as narrow an angular sector as possible. The beamwidths
in the two principal planes are essentially equal. The fan-beam pattern is similar to the pencil-beam pattern
except that the beam cross section is elliptical in shape rather than circular. The beamwidth in one plane
may be considerably broader than in the other plane. As with the pencil-beam pattern, the fan-beam pattern
generally implies a rather substantial amount of gain. The shaped-beam pattern is used when the pattern in
one of the principal planes is desired to have a specified type of coverage. A typical example is the cosecant
pattern, which is used to provide a constant radar return over a range of angles in the vertical plane. The
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Fig.3. Three-dimensional graphs of power radiation patterns for an array of two isotropic elements of the same amplitude
and (a) opposite phase, spaced 0.5\ apart, (b) phase quadrature, spaced 0.5 apart, (c) opposite phase, spaced 0.251 apart,
and (d) opposite phase, spaced 1.5\ apart.

pattern in the other principal plane is usually a pencil-beam type, but may sometimes be circular, as in certain
types of beacon antennas.

In addition to the above pattern types, there are a number of special shapes used for direction finding
and other purposes. These include the well-known figure-of-eight pattern, the cardioid pattern, split-beam
patterns, and multilobed patterns whose lobes are of substantially equal amplitude. For such patterns, it is
generally necessary to specify the pattern by an actual plot of its shape or by a mathematical relationship.

Antennas are often referred to by the type of pattern they produce. Two terms, which usually characterize
array antennas, are broadside and endfire. A broadside antenna is one for which the main beam maximum is
in a direction normal to the plane containing the antenna. An endfire antenna is one for which the main beam
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Fig. 4. Polar plots of a linear uniform-amplitude array of five isotropic sources with 0.5-wavelength spacing between the
sources: (a) broadside radiation pattern (0° phase shift between successive elements), and (b) endfire radiation pattern
(180° phase shift).

is in the plane containing the antenna. For example, the short dipole antenna is a broadside antenna. Figure 4
shows two cases of broadside and endfire radiation patterns, which are produced from a linear uniform array
of isotropic sources of 0.5-wavelength spacing between adjacent elements. The type of radiation pattern is
controlled by the choice of phase shift between the elements. Zero phase shift produces a broadside pattern,
and 180° phase shift (for this case where the spacing between adjacent element is 0.5 1) leads to an endfire
pattern, while intermediate values produce radiation patterns with the main lobes between these two cases.

Characteristics of simple patterns. For a linearly polarized antenna, such as a very short dipole
antenna, performance is often described in terms of two patterns [Fig. 2(b, ¢)]. Any plane containing the z axis
has the same radiation pattern, since there is no variation in the fields with angle ¢ [Fig. 2(b)]. A pattern taken
in one of these planes is called an E-plane pattern, because it is parallel to the electric field vector E and passes
through the antenna in the direction of the beam maximum. A pattern taken in a plane orthogonal to an E
plane and cutting through the short dipole antenna (the xy plane in this case) is called an H-plane pattern,
because it contains the magnetic field H and also passes through the antenna in the direction of the beam
maximum [Fig. 2(c)]. The E- and H-plane patterns, in general, are referred to as the principal-plane patterns.
The pattern plots in Fig. 2(b, ¢) are called polar patterns or polar diagrams. For most types of antennas it
is a usual practice to orient them so that at least one of the principal-plane patterns coincides with one of
the geometrical principal planes. An illustration is shown in Fig. 5, where the principal planes of a microstrip
antenna are plotted. The xy plane (azimuthal plane, 6 = 7/2) is the principal E plane, and the xz plane (elevation
plane, ¢ = 0) is the principal H plane.

A typical antenna power pattern is shown in Fig. 6. In Fig. 6(a), a polar plot on a linear scale is depicted,
and in Fig. 6(b), the same pattern is shown in rectangular coordinates in decibels. As can be seen, the radiation
pattern of the antenna consists of various parts, which are known as lobes. The main lobe (or main beam or
mayjor lobe) is defined as the lobe containing the direction of maximum radiation. In Fig. 6(a) the main lobe is
pointing in the § = 0 direction. In some antennas there may exist more than one major lobe. A minor lobe is
any lobe except the main lobe. Minor lobes comprise sidelobes and back lobes. The term sidelobe is sometimes
reserved for those minor lobes near the main lobe, but is most often taken to be synonymous with minor lobe.
A back lobe is a radiation lobe in, approximately, the opposite direction to the main lobe. Minor lobes usually



8 ANTENNA RADIATION PATTERNS

H plane

E/ E plane
/

/ /// /,
: :

Fig. 5. The principal-plane patterns of a microstrip antenna: the xy plane or E plane (azimuth plane, 6 = 7/2), and the xz
plane or H plane (elevation plane, ¢ = 0).

represent radiation in undesired directions, and they should be minimized. Sidelobes are normally the largest
of the minor lobes. The level of side or minor lobes is usually expressed as a ratio of the power density in the
lobe in question to that of the main lobe. This ratio is often termed the sidelobe ratio or sidelobe level and
desired values of it depend on the antenna application.

For antennas with simple patterns, the half-power beamwidth and the sidelobe level in the two principal
planes specify the important characteristics of the patterns. The half-power beamwidth (HPBW) is defined in
a plane containing the major maximum beam, as the angular width within which the radiation intensity is
at least one-half the maximum value for the beam. The beamwidth between first nulls (BWFN) and the beam
widths 10 dB or 20 dB below the pattern maximum are also sometimes used. All of them are shown in Fig. 6.
However the term beamwidth by itself is usually reserved to describe the half-power (3 dB) beamwidth.

The beamwidth of the antenna is a very important figure of merit in the overall design of an antenna
application. As the beamwidth of the radiation pattern increases, the sidelobe level decreases, and vice versa.
So there is a tradeoff between the sidelobe ratio and beamwidth.

In addition, the beamwidth of the antenna is used to describe the resolution of the antenna: its ability to
distinguish between two adjacent radiating sources or radar targets. The most common measure of resolution
is half the first null beamwidth, which is usually used to approximate the half-power beamwidth. This means
that two sources separated by angular distances equal to or greater than the HPBW of an antenna, with a
uniform distribution, can be resolved. If the separation is smaller, then the antenna will tend to smooth the
two signals into one.

Field Regions of an Antenna. For convenience, the space surrounding a transmitting antenna is
divided into several regions, although, obviously, the boundaries of the regions cannot be sharply defined. The
names given to the various regions denote some pertinent prominent property of each region.

In free space there are mainly two regions surrounding a transmitting antenna, the near-field region and
the far-field region. The near-field region can be subdivided into two regions, the reactive near field and the
radiating near field.

The first and innermost region, which is immediately adjacent to the antenna, is called the reactive or
induction near-field region. Of all the regions, it is the smallest. It derives its name from the reactive field, which
lies close to every current-carrying conductor. In this region the reactive field, which decreases with either the
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Fig. 6. Antenna power patterns: (a) a typical polar plot on a linear scale, and (b) a plot in rectangular coordinates on a
decibel (logarithmic) scale. The associated lobes and beamwidths are also shown.

square or the cube of distance, dominates over all radiated fields, the components of which decrease with the
. . .. . D3 fn
first power of distance. For most antennas, this region is taken to extend over distances r < 0.62 i from
the antenna as long as D > A, where D is the largest dimension of the antenna and A is the wavelength (2).
For the case of an ideal or very short dipole, for which D = Az « A, this distance is approximately one-sixth



\
Y

10 ANTENNA RADIATION PATTERNS
\

u 8202 2D%)

| ////////

|
Reaclwa% Reactive /
region f | | region 7-
4 /
r4—— Mear-field region ——— Far-field region =

—

L

Fig. 7. Field regions of an antenna and some commonly used boundaries.

of a wavelength (A/27). At this distance from the very short dipole the reactive and radiation field components
are respectively equal in magnitude.

Between the reactive near-field region and far-field regions lies the radiating near-field region, which is
the region where the radiation fields dominate, but the angular field distribution still depends on the distance
from the antenna. For a transmitting antenna focused at infinity, which means that the rays at a large distance
from the antenna are parallel, the radiating near-field region is sometimes referred to as the Fresnel region, a
term taken from the field of optics. This is taken to be that between the end of reactive near-field region (r >
| DB /
0.62V " ) and the starting distance of the far-field region (r < 2D?/1)(2).

The outer boundary of the near-field region lies where the reactive field intensity becomes negligible with
respect to the radiation field intensity. This occurs at distances of either a few wavelengths or a few times the
major dimension of the antenna, whichever is the larger. The far-field or radiation region begins at the outer
boundary of the near-field region and extends outward indefinitely into free space. In this region the angular
distribution of the field is essentially independent of the distance from the antenna. For example, for the case
of a very short dipole, the sin 6 pattern dependence is valid anywhere in this region. The far-field region is
commonly taken to be at distances » > 2D?/A from the antenna, and for an antenna focused at infinity it is
sometimes referred to as the Fraunhofer region.

All three regions surrounding an antenna and their boundaries are illustrated in Fig. 7.
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Antenna Performance Measures

Poynting Vector and Radiation Power Density. In an electromagnetic wave, energy is stored in
equal amounts in the electric and magnetic fields, which together constitute the wave. The power flow is found
by making use of the Poynting vector, S, defined as

S=ExH (1)

where E (V/m) and H (A/m) are the field vectors. Since the Poynting vector represents a surface power density
(W/m?2), the integral of its normal component over a closed surface always gives the total power through the
surface. That is,

,S-dA=P (2)

where P is the total power (W) flowing out of closed surface A, and dA =RdA,f being the unit vector normal
to surface. The Poynting vector S and the power P in the above relations are instantaneous values.

Normally, it is the time-averaged Poynting vector S,,, which represents the average power density, that
is of practical interest. It is given by

S, = %Re (E x H*) (W/m?) (3)

where Re stands for the real part of the complex number and the asterisk denotes the complex conjugate.
Note that E and H in Eq. (3) are the electric and magnetic fields written as complex numbers to include the
change with time. That is, for a plane wave traveling in the positive z direction with electric and magnetic

field components in the x and y directions, respectively, the electric field is E =XE,¢e/*T while in Eq. (1) it is E

=XE,. The factor % appears because the fields represent peak values; it should be omitted for rms values.
The average power P,, flowing outward through a closed surface can now be obtained by integrating Eq.

(3):

B, =, ReS-dA = %@ARU (Ex H*) dA=Pag (W) (4)

Consider the case that the electromagnetic wave is radiated by an antenna. If the closed surface is taken
around the antenna within the far-field region, then this integration results in the average power radiated by
the antenna. This is called radiation power, P,.q, while Eq. (3) represents the radiation power density, S,y, of
the antenna. The imaginary part of Eq. (3) represents the reactive power density stored in the near field of an
antenna. Since the electromagnetic fields of an antenna in its far-field region are predominately real, Eq. (3) is
enough for our purposes.

The average power density radiated by the antenna as a function of direction, taken on a large sphere of
constant radius in the far-field region, results in the power pattern of the antenna.

As an example, for an isotropic radiator, the total radiation power is given by

2 T
Prg = ff S, dA= f f S, - Br2sind dodo] = 4nr2S; (5
A 0 0
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Here, because of symmetry, the Poynting vector S; = ‘ﬁSi(r) is taken independent of the spherical coordinate
angles 0 and ¢, having only a radial component.
From Eq. (5) the power density can be found:

P
S; = rS; :F( ”“f) (W /m?) (6)
dgr?

The above result can also be reached if we assume that the radiated power expands radially in all
directions with the same velocity and is evenly distributed on the surface of a spherical wavefront of radius r.

As we will see later, an electromagnetic wave may have an electric field consisting of two orthogonal linear
components of different amplitudes, E,o and E,q, respectively, and a phase angle between them, §. Thus, the
total electric field vector, called an elliptically polarized vector, becomes

E — ﬁET —I_j'Ev — aﬂ:ExUE‘jiruﬁ—ﬁZI + i‘E:meJ'Ltr#—ﬁE-l'l’il (7)

which at z = 0 becomes

E= _-i:EI‘_ + va — i’E_\-oeﬁw + j"',‘E“‘TOE.J:HIJF-{-ﬁ] (8)

So Eis a complex vector (phasor—vector), which is resolvable into two components £E, and SE,. The total H
vector associated withE, at z = 0, is then

H=3H, — M, = $H e/~ — §H,ge/@+—0) 9)

where ¢is the phase lag of H y with respect to E,. From Eq. (9) the complex conjugate magnetic field can be
found changing only the signs of exponents.
Now the average Poynting vector can be calculated using the above fields:

S, = %Re [(£ % ) E,,Hf — (¥ X ) E‘H:J
12Re (E H; + E,H?) (10)
Re (EqoHyo + EyoHyo) cos ¢

T ]
b,

h,

It should be noted that S, is independent of §, the phase angle between the electric field components.
In alossless medium {= 0, because the electric and magnetic fields are in time phase and E,o/H o = E,o/H

) e ) . [E2 + E2 [H? + |2
= 5, where 7 is the intrinsic impedance of the medium, which is real. If E =V 0 W0 and H =V 70 T 0
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are the amplitudes of the total E and H fields respectively, then

2 @

.El-o + E:vo

r—
f

Sav =

B =

(11)

2

= l2(H%+ ;-"a]n=%fffa”

The above expressions are the most general form of radiation power density of an elliptically polarized wave
or of an elliptically polarized antenna, respectively, and hold for all cases, including the linear and circular
polarization cases, that we will introduce later on.

Radiation Intensity. Radiation intensity is a far-field parameter, in terms of which any antenna ra-
diation power pattern can be determined. Thus, the antenna power pattern, as a function of angle, can be
expressed in terms of its radiation intensity as (2,3)

UG, ¢) = Sur?
?‘2|E( b, )|
= — r. G,
2n

r? ) .
= 2—n[|E.-,cr. 6, 9)|% + | Eyr, u..;mﬁ] (12)

Q

1 2 2
5 [lEg(r?.qﬁ}l + |Ey (6, @) ]

where
U(Y, ¢) = radiation intensity (W/unit solid angle)
S,y = radiation density, or radial component of Poynting vector (W/m?)
E1,0,¢) = total transverse electric field (V/m)
H(r,6,¢) = total transverse magnetic field (A/m)
r = distance from antenna to point of measurement (m)
n = intrinsic impedance of medium (Q2/square)

In Eq. (12) the electric and magnetic fields are expressed in spherical coordinates.

What makes radiation intensity important is that it is independent of distance. This is because in the far
field the Poynting vector is entirely radial, which means the fields are entirely transverse and E and H vary
as 1/r.

Since the radiation intensity is a function of angle, it can also be defined as the power radiated from an
antenna per unit solid angle. The unit of solid angle is the steradian, defined as the solid angle with its vertex
at the center of a sphere of radius r that is subtended by an area on the sphere equal to 2. But the area of a
sphere of radius r is given by A = 4772, so in the whole sphere there are 47r%/r? = 47 sr. For a sphere of radius
r, an infinitesimal area dA on the surface of it can be written as

dA=r*sinodode (m?) (13)
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and therefore the element of solid angle d2 of a sphere is given by

dﬂzd—:’j =sinfdbdg (sr) (14)
r

Thus, the total power can be obtained by integrating the radiation intensity, as given by Eq. (12), over the
entire solid angle of 47 as

2 E
Pog = U0, p)d2 :f f U@, ¢)sin 0dode (15)
0 0

As an example, for the isotropic radiator ideal antenna, the radiation intensity U(6,¢) will be independent
of the angles 6 and ¢, and the total radiated power will be

2 F 4
Poa = PUido = U—Lf f sinfdode = Ufh,dQ = 4r U (16)
1] 4]

or U; = P,,q/4m, which is the power density of Eq. (6) multiplied by r2.
Dividing U(6,¢) by its maximum value Uy« (6,¢), we obtain the normalized antenna power pattern,

Uis, . ) .
U@, ¢) = & (dimensionless) (17)

Unax(6, ¢)

A term associated with the normalized power pattern is the beam solid angle Qa defined as the solid
angle through which all the power from a radiating antenna would flow if the power per unit solid angle were
constant over that solid angle and equal to its maximum value (Fig. 8). This means that, for typical patterns,
the beam solid angle is approximately equal to the half-power beamwidth (HPBW), that is,

27 pm
£2p = f f Un(f, ¢) sin H{fﬁ'dfp = ‘@-41 Un(g.(,!)}dﬂ (sr) (18)
1] 0

If the integration is done over the main lobe, the main-lobe solid angle, Qy, results, and the difference of
Qa — Qum gives the minor-lobe solid angle. These definitions hold for patterns with clearly defined lobes. The
beam efficiency (BE) of an antenna is defined as the ratio Qy/Q4 and is a measure of the amount of power in the
major lobe compared to the total power. A high beam efficiency means that most of the power is concentrated
in the major lobe and that minor lobes are minimized.

Directivity and Gain. A very important antenna parameter, which indicates how well an antenna
concentrates power into a limited solid angle, is its directivity D, defined as the ratio of the maximum radiation
intensity to the radiation intensity averaged over all directions. The average radiation intensity is calculated
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Fig. 8. Power pattern and beam solid angle of an antenna.

by dividing the total power radiated by 47 sr. Hence,

Umax(9~ é} — Unmx{&u d}]

D =
Ua\r Ui.
Umax (9- QE") 4” 'Urmmt (8- qﬁ} s P
= (dimensionless) (19)
Pr'ad,'f"lﬂ' Pl'ad

since from Eq. (16), P,,¢/47w = U;. So, alternatively, the directivity of an antenna can be defined as the ratio of
its radiation intensity in a given direction (which usually is taken to be the direction of maximum radiation
intensity) to the radiation intensity of an isotropic source with the same total radiation intensity. Equation
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(19) can also be written

Umax (8, ¢)
Pr:atlf'i-'-r
AnUnyax (8, ¢)

§,.U®, p)d2

= el (20)

ﬁi—: U@, @)/ Unax(6, @) ds2
4

€., Un6,9)dQ

4m

Qa

Thus, the directivity of an antenna is equal to the solid angle of a sphere, which is 4x sr, divided by
the antenna beam solid angle Q4. We can say that by this relation the value of directivity is derived from
the antenna pattern. It is obvious from this relation that the smaller the beam solid angle, the larger the
directivity, or, stated in a different way, an antenna that concentrates its power in a narrow main lobe has a
large directivity.

Obviously, the directivity of an isotropic antenna is unity. By definition an isotropic source radiates equally
in all directions. If we use Eq. (20), Qa = 4, since U, (0, ¢) = 1. This is the smallest directivity value that one
can attain. However, if we consider the directivity in a specified direction, for example D(9, ¢), its value can be
smaller than unity.

As an example let us calculate the directivity of the very short dipole. We can calculate its normalized
radiated power using the electric or the magnetic field components, given in Table 1. Using the electric field E,
for the far-field region, from Eq. (12) we have

Te. E. 28,
ue.s) _ ©.9)  _ gin?o (21)
Unax(6.9)  |E%(0. )]

Un(6,¢) =

max

and

e 4 _ 4 _
G U0, d2 (77 [Tsin® 6dOde

3
==15 22
5 (22)

Alternatively, we can work using power densities instead of power intensities. The power flowing in a
particular direction can be calculated using Eq. (3) and the electric and magnetic far-field components given in
Table 1:

2
S, =2 ("“Lﬁ) sin®8 (W/m?) (23)
2\ 47r
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By integrating over all angles the total power flowing outwards is seen to be

Pr = —(LLE? (W) (24)
127

The directivity is the ratio of the maximum power density to the average power density. For the very short
dipole antenna, the maximum power density is in the 6 = 90° direction (Fig. 2), and the average power density
is found by averaging the total power Py from Eq. (24) over a sphere of surface area 47 r2. So

Sw _ (n/2(LLB/4r)® 3

D= = = — 2
Prjdnr?  (n/12x) (I LB)2/4nr? 2 (0)

Thus, the directivity of a very short dipole is 1.5, which means that the maximum radiation intensity is
1.5 times the power of the isotropic radiator. This is often expressed in decibels:

D=10log,d dB=10log,(15) =176 dB (26)

Here, we use a lowercase letter for the absolute value and a capital letter for the logarithmic value of the
directivity, as is a common in the field of antennas and propagation.

The gain of an antenna is another basic property for its characterization. Gain is closely associated with
directivity, which is dependent upon the radiation patterns of an antenna. The gain is commonly defined as the
ratio of the maximum radiation intensity in a given direction to the maximum radiation intensity produced in
the same direction from a reference antenna with the same power input. Any convenient type of antenna may
be taken as the reference. Many times the type of the reference antenna is dictated by the application area, but
the most commonly used one is the isotropic radiator, the hypothetical lossless antenna with uniform radiation
intensity in all directions. So

Unax (0. #) _ Unax(0. $)
U; ~ P,/4n

G = (dimensionless) (27)

where the radiation intensity of the reference antenna (isotropic radiator) is equal to the power in the input,
P;,, of the antenna divided by 4.

Real antennas are not lossless, which means that if they accept an input a power Py,, the radiated power
P..q generally will be less than P;,. The antenna efficiency k is defined as the ratio of these two powers:

F, rad — RI'
Bn B+ Riess

where R, is the radiation resistance of the antenna. R, is defined as an equivalent resistance in which the same
current as that flowing at the antenna terminals would produce power equal to that produced by the antenna.
Ross is the loss resistance, which allows for any heat loss due to the finite conductivity of the materials used to
construct the antenna or due to the dielectric structure of the antenna. So, for a real antenna with losses, its
radiation intensity at a given direction U(6, ¢) will be

U, ¢y = kU0, ) (29)

k=

(dimensionless) (28)

where Uy(0, ¢) is the radiation intensity of the same antenna with no losses.
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Using Eq. (29) in Eq. (27) yields the expression for the gain in terms of the antenna directivity:

Unax (8, ¢) _ kUnax (8, ¢) _
U; o U -

G = kD (30)

Thus, the gain of an antenna over a lossless isotropic radiator equals its directivity if the antenna efficiency
is £ = 1, and it is less than the directivity if £ < 1.

The values of gain range between zero and infinity, while those of directivity range between unity and
infinity. However, while the directivity can be computed from either theoretical considerations or measured
radiation patterns, the gain of an antenna is almost always determined by a direct comparison of measurement
against a reference, usually a standard-gain antenna.

Gain is expressed also in decibels:

G =10 log,, g (dB) (31)

where, as in Eq. (26), lowercase and capital letters mean absolute and logarithmic values, respectively. The
reference antenna used is sometimes declared in a subscript; for example, dB; means decibels over isotropic.

Polarization

Wave and antenna polarization. Polarization refers to the vector orientation of the radiated waves
in space. As is known, the direction of oscillation of an electric field is always perpendicular to the direction of
propagation. For an electromagnetic wave, if its electric field oscillation occurs only within a plane containing
the direction of propagation, it is called linearly polarized or plane-polarized. This is because the locus of
oscillation of the electric field vector within a plane perpendicular to the direction of propagation forms a
straight line. On the other hand, when the locus of the tip of an electric field vector forms an ellipse or a circle,
the electromagnetic wave is called an elliptically polarized or circularly polarized wave.

The decision to label polarization orientation according to the electric intensity is not as arbitrary as it
seems; its causes the direction of polarization to be the same as the direction of the antenna. Thus, vertical
antennas radiate vertically polarized waves, and horizontal antennas radiate horizontally polarized waves.
There has been a tendency, over the years, to transfer the label to the antenna itself. Thus people often refer
to antennas as vertically or horizontally polarized, whereas it is only their radiations that are so polarized.

It is a characteristic of antennas that the radiation they emit is polarized. These polarized waves are
deterministic, which means that the field quantities are definite functions of time and position. On the other
hand, other forms of radiation, for example light emitted by incoherent sources, such as the sun or light
bulbs, has a random arrangement of field vectors and is said to be randomly polarized or unpolarized. In
this case the field quantities are completely random and the components of the electric field are uncorrelated.
In many situations the waves may be partially polarized. In fact, this case can be seen as the most general
situation of wave polarization; a wave is partially polarized when it may be considered to be of two parts, one
completely polarized and the other completely unpolarized. Since we are mainly interested in waves radiated
from antennas, we consider only polarized waves.

Linear, Circular, and Elliptical Polarization. Consider a plane wave traveling in the positive z di-
rection, with the electric field at all times in the x direction, as in Fig. 9(a). This wave is said to be linearly
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Fig. 9. Polarization of a wave: (a) linear, (b) circular, and (c) elliptical.

polarized (in the x direction), and its electric field as a function of time and position can be described by

E, = E.o sin(wt — pz) (32)

In general the electric field of a wave traveling in the z direction may have both an x and a y component,
as shown in Fig. 9(b, c). If the two components E, and E, are of equal amplitude, the total electric field at a
fixed value of z rotates as a function of time, with the tip of the vector forming a circular trace, and the wave is
said to be circularly polarized [Fig. 9(b)].

Generally, the wave consists of two electric field components, E, and E,, of different amplitude ratios
and relative phases. (Obviously, there are also magnetic fields, not shown in Fig. 9 to avoid confusion, with
amplitudes proportional to and in phase with E, and E,, but orthogonal to the corresponding electric field
vectors.) In this general situation, at a fixed value of z the resultant electric vector rotates as a function of time,
the tip of the vector describing an ellipse, which is called the polarization ellipse, and the wave is said to be
elliptically polarized [Fig. 9(c)]. The polarization ellipse may have any orientation, which is determined by its
tilt angle, as shown in Fig. 10; the ratio of the major to the minor axis of the polarization ellipse is called the
axial ratio (AR). Since the two cases of linear and circular polarization, can be seen as two particular cases
of elliptical polarization, we will analyze the latter. Thus, for a wave traveling in the positive z direction, the
electric field components in the x and y directions are

E, = E.ysin(wt — z) (33)

E, = E, sin{wt — Bz + §) (34)
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Major axis

Minor axis

Fig. 10. Polarization ellipse at z = 0 of an elliptically polarized electromagnetic wave.

where E,o and E,( are the amplitudes in the x and y directions, respectively, and § is the time-phase angle
between them. The total instantaneous vector field E is

E = £E, sin(wt — fz) + yE,o sin(wt — fz + §) (35)

Atz =0, we have E, = E,( sin ot and E, = E, sin (vt + §). The expansion of E, gives

E, = Es(sin wt cos & + cos wt sin §) (36)

V1= (By/Ey)

Using the relation for E,, we obtain sin ot = E,/E; and cos wt = . Introduction of these into Eq.

(36) eliminates wt, giving after rearranging

2E. E, E?
E};_M.F_{:Em?a (37)
E; EEs Ej
If we define
1 2cosd 1
a= =
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Eq. (37) takes the form

aE} — bE.E, +cE} =1 (38)

which is the equation of an ellipse, the polarization ellipse shown in Fig. 10. The line segment OA is the
semimajor axis, and the line segment OB is the semiminor axis. The tilt angle of the ellipse is 7. The axial ratio
is

AR=—— (1<AR< o) (39)

From this general case, the cases of linear and circular polarization can be found. Thus, if there is only
E, (E,o = 0), the wave is linearly polarized in the x direction, and if there is only E, (E,o = 0), the wave is
linearly polarized in the y direction. When both E, and E, exist, for linear polarization they must be in phase
or antiphase with each other. In general, the necessary condition for linear polarization is that the time-phase
difference between the two components must be a multiple of 7. If § = 0, &, 27, ... and E,o = E,, the wave is
linearly polarized but in a plane at an angle of +7/4 with respect to the x axis (r = £n/4). If the ratio of the
amplitudes E,¢ and E, is different, then the tilt angle will also be different.

IfE,y = E,o and § = £ /2, the wave is circularly polarized. Generally, circular polarization can be achieved
only when the magnitudes of the two components are the same and the time-phase angle between them is an
odd multiple of 7/2.

Consider the case that § = /2. Taking z = 0, from Eq. (33), (34), and (35) at ¢ = 0 one has E =-}?Ey0,

and one-quarter cycle later, at wt = 7/2, one has E =XE,,. Thus, at a fixed position (z = 0) the electric field
vector rotates with time, tracing a circle. The sense of rotation, also referred to as the sense of polarization, can
be defined by the sense of rotation of the wave as it is observed along the direction of propagation. Thus the
above wave rotates clockwise if it is observed looking towards the source (viewing the wave approaching) or
counterclockwise if it is observed looking away from the source (viewing the wave moving away). Thus, unless
the wave direction is specified, there is ambiguity. The most generally accepted notation is that of the IEEE,
by which the sense of rotation is always taken as that with the wave it traveling away from the observer. If the
rotation is clockwise, the wave is right-handed or clockwise circularly polarized (RH or CW). If the rotation is
counterclockwise, the wave is left-handed or counterclockwise circularly polarized (LH or CCW). Yet another
way to define the polarization is with the aid of helical-beam antennas. A right-handed helical-beam antenna
radiates (or receives) right-handed waves regardless of the position from which it is viewed, while a left-handed
one radiates right-handed waves.

Although linear and circular polarizations can be seen as special cases of elliptical, usually, in practice,
“elliptical polarization” refers to other than linear or circular. A wave is characterized as elliptically polarized
if the tip of its electric vector forms an ellipse. For a wave to be elliptically polarized, its electric field must
have two orthogonal linearly polarized components, E,o and E,. If the two components are not of the same
magnitude, the time-phase angle between them must not be 0 or a multiple of 7, while in the case of equal
magnitude, the angle must not be an odd multiple of 7/2. Thus, a wave that is not linearly or circular polarized
is elliptically polarized. The sense of its rotation is determined according to the same rule as for circular
polarization. So a wave is right-handed or clockwise elliptically polarized (RH or CW) if the rotation of its
electric field is clockwise, and it is left-handed or counterclockwise elliptically polarized (LH or CCW) if the
electric field vector rotates counterclockwise.

In addition to the sense of rotation, elliptically polarized waves are characterized by their axial ratio
AR and their tilt angle . The tilt angle is used to identify the spatial orientation of the ellipse and can
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Fig. 11. Polarization states of an electromagnetic wave represented with the aid of the Poincaré sphere: (a) one octant of
the Poincaré sphere with polarization states, (b) the full range of polarization states in rectangular projection.

be measured counterclockwise or clockwise from the reference direction (Fig. 10). If the electric field of an
elliptically polarized wave has two components of different magnitude with a time-phase angle between them
an odd multiple of /2, the polarization ellipse will not be tilted. Its position will be aligned with the principal
axes of the field components, so that the major axis of the ellipse will be aligned with the axis of the larger field
component and the minor axis with the smaller one.

The Poincaré Sphere and Antenna Polarization Characteristics. The polarization of a wave can
be represented and visualized with the aid of a Poincaré sphere. The polarization state is described by a
point on this sphere, whose longitude and latitude are related to parameters of the polarization ellipse. Each
point represents a unique polarization state. On the Poincaré sphere the north pole represents left circular
polarization, the south pole right circular polarization, and the points along the equator linear polarization of
different tilt angles. All other points on the sphere represent elliptical polarization states. One octant of the
Poincaré sphere with polarization states is shown in Figure 11(a), while the full range of polarization states is
shown in Figure 11(b), which presents a rectangular projection of the Poincaré sphere.

The polarization state described by a point on Poincaré sphere can be expressed in terms of:

(1) The longitude L and latitude : of the point, which are related to the parameters of the polarization ellipse
by

L=2r and [=2¢

where 7 is the tilt angle with values 0 < 7 < 7 and ¢ = cot ~ !(F AR) with values —n/4 < ¢ < +7n/4. The axial
ratio AR is negative and positive for right- and left-handed polarization respectively.



ANTENNA RADIATION PATTERNS 23

Polarization state

€1) or (1.3)

Fig. 12. One octant of the Poincaré sphere, showing the relations of the angles t, ¢, y, and § that can be used to describe
a polarization state.

(2) The angle subtended by the great circle drawn from a reference point on the equator, and the angle between
the great circle and the equator:

great-circle angle = 2y and equator-to-great-circle angle = §

where y = tan = 1(E,¢/E) with 0 < y < 7/2 and § the time-phase difference between the components of the
electric field (—7 < § < +m).

All the above quantities 1, ¢, y, and §, are interrelated by trigonometric formulae (4), and knowing 7, ¢ one
can determine y, § and vice versa. As a result, the polarization state can be described by either of these two
sets of angles. The geometric relation between these angles is shown in Fig. 12.

The polarization state of an antenna is defined as the polarization state of the wave radiated by the
antenna when it is transmitting. It is characterized by the axial ratio AR, the sense of rotation, and the tilt
angle, which identifies the spatial orientation of the ellipse. However, care is needed in the characterization
of the polarization of a receiving antenna. If the receiving antenna has a polarization that is different from
that of the incident wave, a polarization mismatch occurs. In this case the amount of power extracted by the
receiving antenna from the incident wave will be lower than the expected value, because of the polarization
loss. A figure of merit, which can be used as a measure of polarization mismatch, is the polarization loss factor
(PLF). It is defined as the cosine squared of the angle between the polarization states of the antenna in its
transmitting mode and the incoming wave. Another quantity that can be used to describe the relation between
the polarization characteristics of an antenna and an incoming wave is the polarization efficiency, also known
as loss factor or polarization mismatch. It is defined as the ratio of the power received by an antenna from a
given plane wave of arbitrary polarization to the power that would be received by the same antenna from a
plane wave of the same power flux density and direction of propagation, whose state of polarization has been
adjusted for maximum received power.

In general an antenna is designed for a specific polarization. This is the desired polarization and is called
the copolarization or normal polarization, while the undesired polarization, usually taken orthogonal to the
desired one, is known as the cross polarization or opposite polarization. The latter can be due to a change
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of polarization characteristics during the propagation of waves, which is known as polarization rotation. In
general an actual antenna does not completely discriminate against a cross-polarized wave, due to engineering
and structural restrictions. The directivity pattern obtained over the entire direction on a representative
plane for cross polarization with respect to the maximum directivity for normal polarization is called antenna
cross-polarization discrimination, and it is an important factor in determining the antenna performance.

The polarization pattern gives the polarization characteristics of an antenna and is the spatial distribution
of the polarization of the electric field vector radiated by the antenna over its radiation sphere. The description
of the polarizations is accomplished by specifying reference lines, which are used to measure the tilt angles of
polarization ellipses, or the directions of polarization for the case of linear polarization.

Evaluation Of Antenna Pattern And Directivity (General Case)

Derivation of Electromagnetic Fields. As already pointed out, the radiation pattern of an antenna is
generally its most basic property and it is usually the first requirement to be specified. Of course, the patterns
of an antenna can be measured in the transmitting or receiving mode; in most cases one selects the receiving
mode if the antenna is reciprocal. But to find the radiation patterns analytically, we have to evaluate the fields
radiated from the antenna.

In radiation problems, the case where the sources are known and the fields radiated from these sources
are required is characterized as an analysis problem. It is a very common practice during the analysis process
to introduce auxiliary functions that will aid in the solution of the problem. These functions are known as vector
potentials, and for radiation problems the most widely used ones are the magnetic vector potential A and the
electric vector potential, F. Although it is possible to calculate the electromagnetic fields E and H directly from
the source current densities the electric current J and magnetic current M, it is simpler to calculate A and F
first and then evaluate the fields. The vector potential A is used for the evaluation of the electromagnetic field
generated by a known harmonic electric current density J. The vector potential F can give the fields generated
by a harmonic magnetic current, which, although physically unrealizable, has applications in some cases, as in
volume or surface equivalence theorems. Here, we restrict ourselves to the use of the magnetic vector potential
A, which is the potential that gives the fields for the most common wire antennas.

Using the appropriate equations from electromagnetic theory, one can express the vector potential A as

—Jpr
A= ﬁf[[ﬁ dv (40)
4 " r

where k? = »? 110g0, with o and gy the magnetic permeability and electric permittivity of the air, respectively,
and w is the radian frequency. r is the distance from any point in the source to the observation point. The fields
are then given by

(2)

E=-VV — joA (41a)

and

H=—VxA (41b)
28]
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where in 41a the scalar function V represents an arbitrary electric scalar potential, which is a function
of position. The fields radiated by antennas with finite dimensions are spherical waves, and in the far-field
region, the electric and magnetic field components are orthogonal to each other and form a TEM (transverse
electromagnetic mode) wave. Thus in the far field region, Eq. (41a) simplify to

E. =0
Ex~—joA = E, =~ —jwA, (42a)

E, = —jwA,

and

1 H =0
H=~~Fx E = H, =—=E;/n (42h)
" H, = +E;/n

So the problem becomes that of first evaluating the function A from the specified electric current density
on the antenna; then, using Eq. (42a), the E and H fields are evaluated and the radiation pattern extracted.
For example, for the case of a very short dipole the magnetic vector potential A is given by

Iy _ Ly2 i _.
A=zl "e‘f“"f dz = 22070 o~ (43)
dmr —L/2 4mr

Using Eq. (43), the fields shown in Table 1 can be evaluated.

Numerical Calculation of Directivity. Usually, the directivity of a practical antenna is easiest to
evaluate from its radiation pattern using numerical methods. This is especially true when the radiation patterns
are so complex that closed-form mathematical expressions are not available. Even when such expressions
exist, because of their complicated form the necessary integration to find the radiated power is very difficult
to perform. A numerical method of integration, like the Simpson or trapezoidal rule, can greatly simplify the
evaluation of radiated power and yield the directivity, leading in this way to a method of general application
that needs only a function or a matrix supplying the values of radiated field. However, in many cases the
evaluation of the integral that gives the radiated power, using a series approximation, has proven to give the
correct value of the directivity.

Consider the case where the radiation intensity of a given antenna can be written in the following form:

Ua, ¢) = Af(6)gig) (44)

which means that it is separable into two functions, each being a function of one variable only, and A is a
constant. Then P,,q4 from Eq. (15) will be

27 n
Pag=A L ( £ f(?g(d) sin ed&f) d¢p (45)
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If we take N equal divisions over the interval 7 of the variable 6, and M equal divisions over the interval
27 of the variable ¢, the two integrals can be calculated by a series approximation, respectively:

w N
f f(@)sinodo = Z[f(ﬂ,—} sin 6;] A6 (46a)
0 i=1
and
27 M
f gp)dp = g A, (46b)

Introducing Eq. (46a) into Eq. (45), we obtain

ra=a(3) () S felo) [ rw e}

i=1

A computer program can easily evaluate the above equation. The directivity then is given by Eq. (19),
which is repeated here:

= 4ﬁ IJFI'I]‘J.X {e ! (ﬁ}

D
F, rad

In the case that 6 and ¢ variations are not separable, P.,q can also be calculated by a computer program
using a slightly different expression,

Poi=B (%) (%) Z”j (i F(6:. ;) sin 9,-) (48)

J=1 \i=1

where we consider that in this case U (6,¢) = BF(6,¢).
For more information about radiation patterns in general and radiation patterns of specific antennas, the
reader should consult Refs. 1 and 5,6,7,8,9,10,11.
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