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RADAR SIGNAL DETECTION

Each day, we constantly make decisions. Given certain hypotheses, information is selected on which to base
each decision, and under certain conditions, we may need to determine the reliability of the information. Such
is the case in radar signal detection: A returned signal is received, and we have to decide whether a target is
present or absent. If there were no noise or interference, the decision could be made with complete confidence.
However, in reality, the received signal is usually heavily corrupted by environmental noise, interference, and
noise from the radar system itself, and so on. In order to make a reliable decision, the noise and unwanted
signals have to be suppressed with a so-called matched filter before a decision can be made.

Owing to the existence of noise and interference, radar signal detection has to be treated as a statistical
problem, regardless of whether the signal under detection is deterministic or not. This statistical formalism
of radar signal detection theory can be applied to all types of radar signals without restriction. To understand
radar signal detection, noise has to be quantitatively described. A time-limited deterministic signal can be
described as a time series, and a periodic deterministic signal can be represented as a Fourier series. In
contrast, noise cannot be represented as a deterministic function in the time or frequency domains. In other
words, we cannot predict a noise-contaminated radar signal with absolute certainty. However, with available
noise information such as the expectation, the power, or even the probability distribution of noise, we can select
a criterion on which to base our decision.

Concepts of Signal-to-Noise Ratio and Matched Filter
The signal-to-noise ratio (SNR) in radar and communication systems is defined as

The maximum output SNR, the most frequently used criterion for radar detection, is defined as the ratio of
the maximum instantaneous output signal power to the output noise power. The input SNR is a major limiting
factor for radar detection performance.

For a fixed input SNR, a linear time-invariant filter whose frequency response function maximizes the
output SNR is called a matched filter. Matched filtering transforms the raw radar data into a form that is
suitable for (1) generating the optimal decision for detection; (2) estimating the target parameters with a
minimal rms error, or (3) obtaining the maximum resolving power for a group of targets. The characteristics
of matched filters can be described by either a frequency-domain transfer function or a time-domain impulse
response function, each being related to the other by the Fourier transform. In the frequency domain, the
matched-filter transfer function H(ω) is the complex conjugate of the spectrum of the signal. Thus, in general
terms

1



2 RADAR SIGNAL DETECTION

where S(ω) is the spectrum of the input signal s(t) and T is a delay constant required to make the filter
physically realizable. The normalizing factor k and the delay constant are generally ignored in formulating the
underlying significant relationship. This simplification yields

Equation (3) reveals that the bandwidth of the receiver must be the same as that of the signal. This is
understandable, because if the bandwidth of the receiver is wide compared with that occupied by the signal
energy, extraneous noise may be introduced into the excess bandwidth, which lowers the output signal-to-noise
ratio. On the other hand, if the receiver bandwidth is narrower than the signal bandwidth, the noise energy is
reduced along with part of the signal energy. The result is again a lowered SNR. When the receiver bandwidth
is identical to the signal bandwidth as in the case of the matched filter, the output SNR is maximized. The
conjugate in Eqs. (2) and (3) allows the phases of S(ω) and H(ω) to cancel each other out, and leaves the output
signal spectrum a linear phase, e− jωT, which results in a peak at the time instant T in the output.

The corresponding time-domain relationship between the signal to be detected and the matched filter
is obtained from the inverse Fourier transform of H(ω). This leads to the result that the impulse response
of a matched filter is a replica of the time inverse of the known signal function. Thus, if h(t) represents the
matched-filter impulse response, the relationship equivalent to Eq. (2) is given by

As before, k and T can be ignored to yield the basic relationship

Figure 1 illustrates the relationship given by Eqs. (3) and (5), where s(t) is a pulsed linear frequency-
modulated (LFM) signal with the form

The phase from H(ω) is the negative of that from S(ω), while h(t) is the time reversal of the s(t).
Figure 2(a) shows a received signal, which is the signal s(t) of Eq. (6) corrupted by a 6 dB Gaussian noise;

that is, the input SNR is −6 dB. It is difficult to detect the existence of the signal s(t) from this figure. However,
after the received signal is processed by the matched filter, the detector output peak in Fig. 2(b) clearly indicates
the existence of the signal.

The output from the matched filter, as shown in Fig. 3, is the convolution between the received signal and
the matched-filter impulse response, that is,
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Fig. 1. (a) Signal s(t) and (b) matched-filter h(t) relations. Phase in units of degrees. The phase from H(ω) is the negative
of that from S(ω), while h(t) is the time reversal of s(t).

Fig. 2. (a) Signal corrupted by noise and (b) the matched-filter output. The peak in the matched-filter output indicates
the existence of the signal.

Sampling y(t) at t = T yields the maximum output signal value, that is,
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Fig. 3. Block diagram of a matched filter.

Fig. 4. Block diagram of a cross-correlation, which is another implementation of the matched filter.

where Es represents the signal energy. It can be easily verified that the expectation of y(t)max is Es, because the
second term in Eq. (8) represents the noise whose mean is zero. This can be easily seen from Fig. 2(b) in which
the maximum signal energy occurs at t = T = 2, and the maximum value is close to the expectation of Es = 0.18
in this experiment. A detailed analysis of the matched filter will be given in the section entitled “Analysis of a
Matched Filter.”

Equation (7) describes the output of the matched filter as the cross-correlation between the received
signal and a replica of the transmitted signal. This implies that the matched filter can be replaced by a
cross-correlation that performs the same mathematical operation, as shown in Fig. 4. The received signal is
multiplied by a delayed replica of the transmitted signal s(t − t1), and the product is passed through a low-pass
filter. The cross-correlation tests for the presence of a target at only one time: t1. Targets at other time delays,
or ranges, may be found by varying t1. However, this requires a longer search time. The search time can be
reduced by adding parallel channels, each containing a delay line corresponding to a particular value of t1, as
well as a multiplier and a low-pass filter.

Since the cross-correlation and the matched filter are equivalent mathematically, the choice of which one
to use in a particular radar application is determined by the practicality of implementation. The matched filter,
or an approximation, has been generally preferred in the vast majority of applications.

Decision Criteria for Radar Signal Detection
The statistical detection problem consists of examining the received radar waveform r(t) in a resolution

cell to determine which of the following two hypotheses is true. The first hypothesis H1 asserts that a target is
present, and the received signal contains the target signature and noise. The second hypothesis H0 states that
the target is absent, and only noise is present in the received signal. The problem can be compactly stated as



RADAR SIGNAL DETECTION 5

The conditional probability density function completely describes the received signal statistically in both
cases:

For reasons of simplicity, r is assumed to be a single sampled point of the received radar signal. The extension
from a single sampled point to multiple sampled points is straightforward. The likelihood ratio is defined as

The likelihood ratio �(r) is also called the likelihood statistic. It is a random variable since it is a function
of the random variable r. The maximum likelihood (ML) decision criterion, which chooses the hypothesis that
most likely causes the observed signal, is

This expression means that H1 is selected if �(r) is greater than 1; otherwise H0 is selected. It can be seen that
the ML criterion is a very simple decision criterion.

To describe the detection performance better, the probabilities of detection and false alarm are used in
radar detection. The probability of detection refers to the probability of asserting the presence of a target when
the target is indeed present

where R0 is the decision boundary. The proper value of the boundary R0 depends upon the criterion of decision.
The probability of false alarm is the probability of asserting the presence of a target when the target is actually
absent:

A sketch of the two density functions is shown in Fig. 5, where Pd and Pfa are, respectively, shown by the
vertically and the horizontally hatched areas. If the observed value r is large, we would be confident in picking
H1. If r is small, we would pick H0, as shown in Fig. 5.

Obviously, a decision rule should be selected to maximize Pd while restricting the Pfa. The simplest rule in
this class, which is extensively used in radar detection, is the Neyman-Pearson criterion. This criterion specifies
a decision boundary that maximizes the probability of detection (Pd) while maintaining a fixed probability of
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Fig. 5. Probability of false alarm Pfa and probability of detection Pd, which are functions of the threshold R0.

false alarm Pfa. The detection problem under the Neyman–Pearson criterion can be formulated as follows:

The optimum decision region can be found by using the calculus of extrema and forming the objective function

where η is a Lagrange multiplier. This can be written as

The integration interval in Eq. (17) is related to choosing the hypothesis H1, as illustrated in Fig. 5. It is clear
that J and hence Pd are maximized by choosing the hypothesis H1 when

and by choosing the hypothesis H0 when

To this end, the decision rule based on the Neyman–Pearson criterion is
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and η is determined by the required false alarm probability α. In radar detection, the choice of α is based upon
operational considerations, that is, the need to keep the false alarm rate within acceptable bounds (e.g., a few
false alarms per second). A typical value of α for radar detection is 10− 6.

Other popular criteria are the Bayes criterion and the minimum error probability (MEP) criterion. The
Bayes criterion minimizes the average cost of the decision. Symbols denoted by C00, C01, C10, and C11 represent
the costs for a correct miss (no target is declared when no target is present), a false dismissal (no target is
declared when a target is present), a false alarm, and a correct detection, respectively. Also denoted are the a
priori probabilities P(H0) and P(H1) by P0 and P1, respectively. The Bayes rule makes the likelihood ratio test

where η= [P0(C10 − C00)]/[P1(C01 − C11)]. If we select the cost of an error to be 1 and the cost of a correct decision
to be 0, C01 = C10 = 1, and C00 = C11 = 0. In this case, minimizing the average cost is equivalent to minimizing
the probability of error. Therefore, the MEP rule is the same as expression Eq. (21), but with η= P0/P1. If the a
priori probabilities are equal, that is, P0 = P1, the MEP rule coincides with the ML rule with η=1.

Implementation of Decision Criteria
Let us suppose that the observed signal r has the following Gaussian distribution conditional probability

density functions,

where µ denotes the mean of the received signal value and σ2 represents the noise variance. The likelihood
ratio test is therefore

After taking the logarithm of both sides, the criterion becomes

In Eq. (25) it is seen that the likelihood ratio test, in which �(r) of Eq. (24) is compared with a threshold η, is
transformed into a comparison of the observable r with the threshold in Eq. (25), which is a function of η. As an
example, supposing P(H0) and P(H1) are known, with P(H0)/P(H1) = 2, then the decision rules are choose H1 if
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Fig. 6. Decision thresholds for different decision criteria.

Since the a priori probability of H0 is twice that of H1, the MEP rule requires a larger value of R0 for the
selection of H0 than the ML, in which this information is not used. The MEP scheme therefore yields a better
decision rule in this case.

For a Neyman–Pearson criterion, suppose a value of Pfa = 10− 4 can be tolerated. The threshold η is
determined from

to be η= 3.72σ. So H1 is chosen if

A typical illustration of these thresholds for this example’s three decision criteria is given in Fig. 6.
An important observation is that these criteria employ the likelihood ratio test. In other words, the test is
performed by simply processing the received data to yield the likelihood ratio and then comparing it with the
threshold, which depends upon the criterion used. Thus, in practical situations where the a priori probabilities
and the cost may vary, only the threshold changes, and the computation of the likelihood ratio is not affected.

As observed previously, in radar detection it is very hard to define the Bayes cost Cij; moreover, it is
also practically impossible to define or evaluate the a priori probabilities P0 and P1, that is, the probabilities
that, in a given resolution interval, a target is present or absent. These are the main reasons why the Bayes
and minimum error probability criteria cannot be used in radar detection. In contrast, for the same reason,
the Neyman–Pearson criterion is particularly well suited to radar detection, owing to its concept of the “Pfa
threshold” fixed a priori, while Pd is maximized.
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Fig. 7. ROC curves for different values of µ.

Receiver Operating Characteristic
A graph showing the probability of detection, Pd, versus the probability of false alarm, Pfa, with the

threshold as a parameter is referred to as a receiver operating characteristic (ROC) curve. We note that the
ROC depends on the conditional density function of the observed signal under each hypothesis, that is, p(r|Hi),
i = 0, 1, and not on the assigned costs, or a priori probabilities.

Suppose that the observed signal r has the probability density functions of Eqs. (22) and (23). Varying the
threshold R0, Pd of Eq. (13), and Pfa of Eq. (14) produces the corresponding ROC curves for σ = 1 and µ = 1, 2,
3 as shown in Fig. 7.

The two extreme points on the ROC for Pfa = Pd = 1 and Pfa = Pd = 0 are easily verified. Pd of Eq. (13) may
be rewritten as a function of the likelihood ratio �(r) as

where η is the threshold of the likelihood ratio just as R0 is the threshold of the observed signal, and p�(λ|H1) in
Eq. (30) is the conditional probability density function of the variable �. Similarly, Pfa of Eq. (14) is rewritten
as

Since � is a ratio of two non-negative quantities, it takes on values from 0 to ∞. When the threshold η is 0,
the hypothesis H1 is always true and thus Pfa = Pd = 1. When the threshold η is ∞, the hypothesis H0 is always
true and thus Pfa = Pd = 0. These are clearly depicted in Fig. 7.

Of course, ROC curves may be drawn for any hypothesis test involving a threshold, but the ROC curves
have particularly useful properties for the likelihood ratio test. One is the fact that the slope of the ROC at a
particular point on the curve represents the threshold value of the likelihood ratio η. Taking the derivative of
Eqs. (30) and (31) with respect to η, we have
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and

Also,

Taking the derivative of Eq. (34) with respect to η, we obtain

Combining Eqs. (32), (33), and (35), the slope of the ROC curve obtained is

In the Neyman–Pearson criterion, the slope of the ROC curve at a particular point represents the likelihood
ratio threshold η of achieving Pd and Pfa at that point. In the Bayes criterion, the threshold η is determined by
a priori probabilities and the costs. Consequently, Pd and Pfa are determined on the point of the ROC at which
the tangent has a slope of η.

Since the ROC curves are always concave and facing downward, it is possible to determine an “optimum”
value (the knee) for Pfa, such that a small decrease of its value causes a fast decrease of Pd, while any increase
has a very small effect (the saturation zone, where the rate of change is nearly 0).

Finally, we note that the most important part of the ROC curve is the upper left-hand (northwest) corner.
This is the so-called high-performance corner, where a high-detection probability occurs with a low false-alarm
probability. This part of the plot could be stretched out by the use of appropriate (such as logarithmic) scales.

Analysis of a Matched Filter

Derivation of the Matched Filter. The matched filter achieves the maximum output SNR, which is

Consider a signal s(t) with the spectrum S(f ) and finite energy
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For the input signal s(t) and the filter with transfer function H(f ), the instantaneous power of the output signal
y(t) is

For white noise with a two-sided noise power spectral density N0/2, the output power spectral density is
|H(f )|2N0/2. Therefore, the noise power at the filter output is

Using Eqs. (39) and (40) in Eq. (37) in leads to the following:

where T denotes the time at which the maximum value of |y(t)|2 occurs.
Using Schwarz’s inequality

we obtain

It follows that the signal-to-noise ratio will be a maximum when

yielding the requirement of the matched filter. From discussions above it is evident that the maximum signal-
to-noise ratio can be expressed as

Equation (45) indicates that the detection capability of a particular signal depends only on its energy content,
and not on the time structure of the signal. However, it is necessary to process the signal through a matched
filter to obtain this condition in practice. We note that Es/N0 is defined as the input SNR, and it is clear from
Eq. (45) that the maximum output SNR for the matched filter is twice that of the input SNR if the noise is
white.
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In general case, when the noise is nonwhite (colored noise), the derivation of the matched filter can be
carried out in a similar way. If the power spectral density of the nonwhite noise is N(f ), then Eq. (40) is written
as

Therefore, by multiplying and dividing the integrand of the numerator of Eq. (41) by and using Eq.
(46):

and the maximum is achieved when

The conjugate is not needed in the denominator because N(f ) is always real (and nonnegative). If the noise
is white—that is, if N(f ) is a constant over the band of H(f )—then Eq. (48) is the same as Eq. (44) for the
white noise. The matched filter for nonwhite noise can be interpreted as the cascade of two filters. The first

one, whose transfer function is 1/ is the “whitening” filter. This filter makes the noise spectrum flat
(white). The second one is matched to the signal filtered by the whitening filter, that is, to the whitening signal

with the spectrum S(f )/ .
We note that it is not necessary that the noise be Gaussian for Eq. (45) to hold, but only that its power

spectral density be flat over the frequency band of interest. To summarize, the matched filter maximizes the
output SNR over all probability densities, provided the power spectral density (PSD) is a constant. In the event
that the noise PSD is nonwhite (colored noise), the matched impulse response corresponds to the modified

signal spectrum S∗(f )e− j2πfT/ rather than simply S∗(f )e− j2πfT.
Justification of the Signal-to-Noise Ratio Criterion. We derived the matched filter under the cri-

terion of maximizing the output SNR. We remark here that the matched filter can also be derived under
the likelihood ratio criterion (1). In this section, we want to justify the maximum output SNR criterion, and
more specifically derive the relationship between the output SNR and the system performance in terms of the
probability of error.
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The total probability of error for a radar receiver consists of the false-alarm probability Pfa and the
false-dismissal probability Pfd. A false dismissal declares no target when a target is present, that is,

For equal a priori probabilities P(H0) = P(H1) = 1/2, the total probability of error is

Supposing p(r|Hi), i = 0, 1 is a Gaussian distribution that is given by Eqs. (22) and (23), Pe can be expressed as

where

is the error function. The minimum of Pe occurs when R0 =µ/2, and

where

is the complementary error function. Recalling that µ is the expectation of the matched filter output at time T
under the H1 hypothesis
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Fig. 8. Minimum error probability Pe|min versus maximum output signal-to-noise ratio SNR|max.

and

Defining σ2 to be the variance of y(T) under the H0 or H1 hypotheses, it is given that

The application of Eqs. (55) and (57) to Eq. (53) leads to the following minimum probability of error:

It is clear from Eq. (58) that Pe|min is inversely proportional to SNR|max, because erfc(x) is a monotonic decreasing
function. In other words, a lower probability of error means a higher output SNR, and requires a higher input
SNR. Figure 8 shows the relationship between Pe|min and SNR|max. This curve should be shifted to the left by
3 dB if it is plotted with respect to the input SNR, since SNR|max is twice the input SNR. For example, a 10− 5

error probability corresponds to an output SNR of 18.6 dB, and 15.6 dB of input SNR is required. Therefore, it
is justifiable to use the signal-to-noise ratio criterion in radar detection.
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Noncoherent Detections

A received radar signal is a bandpass random process because it is modulated on a carrier. Radar detection is
classified into coherent and noncoherent detections depending upon whether the carrier phase at the receiver
is available. Specifically, the matched filter and the cross-correlation discussed previously are coherent because
they require the knowledge of the carrier phase. The envelope and all the other nonlinear detections are
noncoherent due to their ignorance of the phase information in the received signal. To understand the nonlinear
detections, we introduce the representations of bandpass signals and bandpass processes.

Representation of Band-Pass Signals. The concept of a band-pass signal is a generalization of
the concept of monochromatic signals. A bandpass signal is a signal x(t) whose spectrum X(f ) is nonzero for
frequencies in a usually small neighborhood of some high frequency f 0, that is,

where the frequency f 0 is referred to as the central frequency (carrier frequency) of the bandpass signal. A
radar signal that is modulated on a carrier is a bandpass signal. It is assumed that the band-pass signal is
real-valued. Figure 9(a) illustrates the spectrum of a bandpass signal x(t). A real-valued bandpass signal x(t)
can be represented as the real part of a complex signal x+(t), called the preenvelope or analytic signal of x(t),
where

and

is the Hilbert transform of x(t). The spectrum of the preenvelope signal is readily found from the Fourier
transform of Eq. (60) to be

The spectrum of the preenvelope signal is obtained by deleting the negative frequencies from X(f ) and multi-
plying the positive frequencies in X(f ) by two, as illustrated in Fig. 9(b).

The spectrum of the complex envelope is obtained by shifting X+(f ) to the left by f 0, that is,

and

The amplitude spectrum of x̃(t) is illustrated in Fig. 9(c).
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Fig. 9. (a) Amplitude spectrum of a band-pass signal x(t). (b) Amplitude spectrum of preenvelope x+(t). (c) Amplitude
spectrum of complex envelope x̃(t). The spectrum of x+(t) is twice the positive spectrum of x(t), and the spectrum of x̃(t) is a
low-pass version of that x+(t).

It is clear that x̃(t) is a low-pass signal, meaning that its frequency components are located around the
zero frequency. x̃(t) is the low-pass representation of the bandpass signal x(t). In general, x̃(t) is a complex signal
having xc(t) and xs(t) as its real and imaginary parts:

where xc(t) and xs(t) are low-pass signals, respectively, and are called the in-phase and quadrature components
of the bandpass signal x(t). Notice that x(t) is the real part of x+(t). Using Eq. (65), we obtain
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Fig. 10. (a) Band-pass description and (b) complex envelope description of a system. Complex envelope description
simplifies the analysis of a bandpass signal.

This is the canonical representation for a bandpass signal in terms of the in-phase component xc(t) and quadra-
ture component xs(t) of the complex envelope associated with the signal.

The complex envelope can be employed to find the outputs of bandpass systems driven by bandpass
signals. Accordingly, by analyzing the complex envelope representation of a band-pass signal, we may develop
the complex low-pass representation of the bandpass system by retaining the positive-frequency half of the
transfer function H(f ), and shift it to the left by f 0. Let H̃(f ) denote the transfer function of the complex low-pass
system so defined. The analysis of the bandpass system with transfer function H(f ) driven by the bandpass
signal with spectrum X(f ), as depicted in Fig. 10(a), is replaced by an equivalent but simpler analysis of a
complex low-pass system with transfer function H̃(f ) driven by a complex low-pass input with spectrum X̃(f ),
as shown in Fig. 10(b). The complex low-pass output ỹ(t) is obtained from the inverse Fourier transform of Ỹ(f ).
Having determined ỹ(t), we may find the desired band-pass output y(t) simply by using the relation

The bandpass to low-pass transformation is also true for bandpass random processes. X(t) is a bandpass
process if its power spectral density Sx(f ) = 0 for |f − f 0| ≥ W. X(t) can be represented by its in-phase component
Xc(t) and quadrature component Xs(t) in the same way that a bandpass signal does. Specifically,

where Xc(t) and Xs(t) are two low-pass processes representing the real and imaginary parts of the complex
envelope process X̃(t), respectively. X(t) can be found from the complex envelope process X̃(t) by

Envelope Detection and Square-Law Detection. The matched filter is the optimal detection for an
exactly known signal (i.e., phase, amplitude, and Doppler frequency are known) in a background of white noise.
However, both the matched filter and the cross-correlation need to generate a synchronous reference, which
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is difficult to realize. In a typical radar application, the range between the target and the radar represents a
very large number of transmitted signal wavelengths. This makes specifying the phase of the return signal
extremely difficult, and we usually assume that the signal phase of the return signal is a random variable
uniformly distributed over an angle of 2π rad. The matched-filter detection is often used to set a standard of
performance, as it represents the optimal detection when all signal parameters are exactly known.

The synchronization problem in the matched-filter detection is obviated in a practical system by employing
an envelope detection. The envelope V(t) of a bandpass signal x(t) is given by

The complex envelope x̃(t) can be represented more compactly as

where

The procedure for obtaining the envelope is shown in Fig. 11, which is the extraction of the in-phase and
quadrature components and the derivation of the envelope from them. Specifically, the multiplication of x(t) by
2 cos(2πf 0t) in the in-phase channel yields

The mixing operation produces two images besides the expected low-pass component. The product 2x(t)
cos(2πf 0t) is passed through an ideal low-pass filter (the integrator in Fig. 11), which rejects the images
and leaves xc(t). Similar operations in the quadrature channel produce xs(t). The square sum of the quadrature
components yields the envelope V(t).

Removing the square-root operation from Fig. 11 yields the square-law detection. A detailed performance
analysis of these detections is given in the section entitled “Performance Analysis of Coherent and Noncoherent
Detections.”

The envelope can be extracted alternatively by passing the band-pass signal x(t) through a rectifier and a
low-pass filter, as illustrated in Fig. 12. Such a description can sometimes simplify the analysis and is easier to
implement physically because the various rectifiers are readily available from the diodes and the transistors.
The output of the full-wave linear rectifier is proportional to the magnitude of its input, while the output of the
full-wave square-law (quadratic) rectifier is proportional to the squared magnitude of its input. The half-wave
rectifier, of course, gives only the positive portion of its input. Fig. 13 shows these transfer characteristics.
Referring to Fig. 12, we may write
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Fig. 11. Block diagram of the envelope detection.

where LF indicates the low-frequency portion. Also, considering the full-wave quadratic rectifier in place of the
full-wave linear rectifier, we may write

The band-pass signal x(t) in Eqs. (74) and (75) has the following form:

Then in the case of the square-law rectifier, we have

Since the envelope V(t) is slowly varying compared to the carrier frequency f 0, the first term in Eq. (77) is
concentrated around zero frequency. The fact that the term is the square of the envelope means that the
bandwidth will be somewhat greater than that of V(t). The second term in Eq. (77) will be concentrated around
2f 0 with a bandwidth that depends on both the envelope square V2(t) and the phase modulation θ(t). In most
cases of interest, the bandwidth of the total modulation will be small enough compared to f 0 so that the low-pass
filter following the rectifier will easily separate the low-frequency portion of Eq. (77).
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Fig. 12. Envelope detection with a linear rectifier.

Fig. 13. Various rectifier characteristics for (a) full-wave linear rectifier, (b) half-wave linear rectifier, (c) full-wave square-
law (quadratic) rectifier, and (d) half-wave square-law (quadrature) rectifier.

In the case of the full-wave linear rectifier, we may write

The low-pass filter will remove all of the terms in the curly bracket except for the first term. Thus, if the
bandwidth of V(t) is not too large, a very good approximation of the envelope can be obtained. A similar
analysis can be carried out to show that the half-wave linear and the half-wave quadratic rectifiers extract the
envelope V(t).

We note that the envelope detection is referred to as a linear detection, due to its transfer characteristic
stipulating that the output is proportional to the input when the input is positive, as illustrated in Fig. 13(a).
The operation of the envelope detection, however, is of course highly nonlinear, and as a result the output
consists of a dc term proportional to the envelope, plus an infinite number of harmonics of theinput at 2f 0, 4f 0,
etc. It is for this reason that the envelope detection must be passed through a low-pass filter, thus eliminating
the unwanted harmonics. Similar comments apply to the square-law detection.

Justification of the Noncoherent Detections. The justification of the envelope and the square-law
detections by the likelihood ratio criterion is given in this subsection. The radar detection process may include
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down-conversion of the carrier frequency to a more manageable intermediate frequency (IF). This step, however,
is irrelevant to the results we are going to obtain and is therefore omitted.

Consider the signal to be a carrier pulse of the form

The two hypotheses are

for 0 ≤ t ≤ T, and n(t) is a Gaussian white-noise process with two-sided spectral density N0/2.
The detection problem described by Eq. (79) consists of examining the received waveform r(t) and deter-

mining whether it consists of a signal plus noise or noise alone. The optimal detection, as previously described,
forms the likelihood ratio which is compared against a threshold.

The sampling bandwidth B, which is the reciprocal of the sampling interval, must be sufficiently large to
pass along essentially all of the signal energy, which will be the case if B ≥ 1/T. In this case, by the sampling
theorem we know that the number of samples k is given by k = 2BT. Given these conditions, the likelihood
ratio can be written as

where the noise variance σ2 is (N0/2)2B = N0B. Recall from the sampling theorem (2,3) that for any two
band-limited functions u(t) and v(t) we can write
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Applying this to Eq. (81), we have

Because the signal is of finite duration, the approximation in passing from the discrete to the continuous
representation improves as B is allowed to become very large.

In the noncoherent case, θ in Eq. (83) is unknown. Since no auxiliary information about θ is available, it
is reasonable to assume θ to be uniformly distributed over 2π rad. An average likelihood ratio is

The exponent in the integrand can be written as

where

and Eq. (84) becomes
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where V = and I0 is the modified Bessel function of order zero. The likelihood ratio test is
therefore

where the signal energy Es = A2T/2. Thus the natural logarithm of the modified Bessel function I0 is the
optimum noncoherent detection characteristic. For a large SNR, the likelihood ratio test can be approximated
as

and for a small SNR,

The implementation of the likelihood ratio test of Eq. (89) has been shown in Fig. 11, where the in-phase and
the quadrature channels generate the xc and xs in Eq. (86), respectively. Summation of the square of xc and
xs yields the square-law detection of Eq. (90). Taking the square root in addition to the square-law detection
yields the envelope detection of Eq. (89).

Performance Analysis of Coherent and Noncoherent Detections

Detection Probability Analysis. From the mean and the variances given by Eqs. (55) to (57), the
false-alarm probability Pfa for the coherent detection is determined by
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The detection probability Pd is given by

For the noncoherent detection, the in-phase and the quadrature components from Eq. (86) are

For white Gaussian noise with two-sided spectral density N0/2, we have the following quantities:

and therefore the joint probability density functions can be written as



RADAR SIGNAL DETECTION 25

under the H1 and H0 hypotheses, respectively. The averaged joint probability density function of p1(Xc, Xs|θ) is

For an envelope (V = detection, let Xc = V cos θ, Xs = V sin θ, then dXcdXs = V dV dθ. We have

which is a Rice distribution.
Under the H0 hypothesis, we substitute A = 0 and use I0(0) = 1 in Eq. (97) to obtain the following Rayleigh

distribution:

The threshold R0 is therefore determined from the false-alarm probability Pfa using

as
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And the detection probability Pd is given by

This can be put into a more convenient dimensionless form with the changing of variable x = from
which

where

For a square-law (Z = X2
c + X2

s) detection, let Xc = cos θ, Xs = sin θ; then dXcdXs = 1
2 dZ dθ. From

Eq. (96) we have

which is a noncentral χ2 distribution. Under H0, we have the following central χ2 distribution:

The threshold R0 can be determined from the false-alarm probability Pfa, which is given by

to be

The detection probability Pd is given by
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Changing the variable x = Z/N0T/4 in Eq. (108) yields a more convenient dimensionless form

where α is given by Eq. (103). Changing the variable y = in Eq. (109) leads to the interesting result that Pd
is identical to that given by Eq. (102) for the envelope detection. Note that the difference between the envelope
and the square-law detector concerns the presence or absence of the square-root operation. Supposing for a
square-law detection that an observation value is greater than R0 of Eq. (107); then the square root of this
value must be greater than R0 of Eq. (100) for the envelope detection. Therefore, the square-law detection and
the envelope detection bear the same detection characteristics.

The Pd’s in Eqs. (92), (102), and (109) show explicitly that the detection probabilities depend only on Pfa
and the signal-to-noise ratio Es/N0. Note that, in addition to Pfa, the detection threshold R0 depends on the
received signal energy in the coherent case of Eq. (91), but only on the noise and the integration time in the
noncoherent case of Eqs. (100) and (107), which is somewhat more convenient.

A comparison of coherent and noncoherent detections is presented in Fig. 14 in terms of the value of Pd
that can be achieved for a given value of Pfa as a function of signal-to-noise ratio Es/N0. We note the following:
(1) For small values of Es/N0 (say less than 3 dB) for any given value of Pfa, noncoherent detection requires from
2 dB to 3 dB more SNR than that required by coherent detection in order to achieve the same value of detection.
(2) For large values of Es/N0 (say greater than 10 dB) the difference in SNR required by the two schemes is less
than approximately 1 dB, and it is clear that with further increase Es/N0, the difference eventually becomes
negligible.

Output Signal-to-Noise Analysis. To evaluate the detection performance, we can compare output
SNRs of different schemes other than the detection probabilities we used in the last section. Recall that the
SNR is the ratio between the signal power and the noise variance. The signal power is the square of the mean
of the detection statistic under H1. Thus only the mean and the variance are required to compute the SNR.
In contrast, the detection probability requires full knowledge of the probability density function, which may
not be available sometimes. Therefore the output SNR, which is easier to obtain, is also used to evaluate the
detection performance. Of course the detection-probability-based performance evaluation, if it is available, is
more accurate than the SNR-based evaluation. In this section, the output SNR will be used to compare the
detection performance between the matched filter and the square-law detection.

The matched filter output Y for an input signal A cos(2πf 0t) can be written as

The band-pass noise n(t) can be expressed in the form
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Fig. 14. Detection probability for coherent and noncoherent detection.

Hence

Equation (112) indicates that the quadrature noise ns(t) sin(2πf 0t) has been rejected by the low-pass filter from
the output. The first term in Eq. (112) is the signal component with output signal power A2T2/4, while the
second term represents the in-phase noise component with output noise power E[n2

c(t)]T2/4. Using Ref. 2
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we obtain the output SNR

The input signal power is A2/2 and the input noise power is E[n2(t)] = σ2. The input SNR is therefore

and we have the following relationship between the input and output SNRs for coherent detection:

It is clear that coherent detection gives a 3 dB improvement in SNR. The reason for this improvement is that
the multiplier and low-pass filter in Eq. (110) eliminate the quadrature noise component ns(t) sin(2πf 0t).

On the other hand, in the noncoherent case both the in-phase and the quadrature noise components
come in to play. To analyze the square-law detection easily, we use the equivalent scheme of Fig. 12 with the
square-law rectifier characteristic of y = x2, as shown in Fig. 13(c), replacing the linear rectifier. The output Z
of a square-law detection for the following received signal:

can be written as (4)

This output can be regarded as composed of three terms. The first term, A2T/2, is the desired output signal
component with output signal power (A2T/2)2. The second term, ATnc(t), represents the carrier-noise component
with the associated output noise power A2T2σ2. The third term, 1

2 [n2
c(t) + n2

s(t)], is the self-noise component.
The associated noise power is

where E[n4(t)] = 3{E[n2(t)]}2 = 3σ4 has been used in the last step. With these results, we can write the output
SNR as
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Fig. 15. Output signal-to-noise ratios for the matched filter and the square-law detection.

If the input SNR is much larger than 1, the output SNR is approximately equal to 1
2 SNRin, with the square-law

detection thus causing a 3 dB reduction in signal-to-noise ratio. For input signal-to-noise ratios that are much
less than 1, 2SNRin is negligible compared with 1, and Eq. (120) shows that SNRout is now equal to SNR2

in. In
this case, the square-law detection causes a very serious degradation of the signal-to-noise ratio.

The relationship between SNRout and SNRin for the matched filter and the square-law detection is shown
in Fig. 15. It is clear from both Fig. 14 and Fig. 15 that the noncoherent detection is inferior to the coherent
detection for low input signal-to-noise ratios and approximates the coherent detection for high input signal-to-
noise ratios in the detection probability and the output signal-to-noise ratio.

Detection of the Linear Frequency-Modulated Signal

In the previous sections, we have considered the detection of the narrow-band signal such as the single-
frequency sinusoidal pulses given by Eq. (79). The product of time duration T and bandwidth B is essentially
1. There is an inherent conflict between long-range detection and high-range-resolution capability for such
signals. Because the received signal energy Es attenuates rapidly as the range increases, the long range
requires large transmitted signal amplitudes in order to have a sufficiently large value of Es/N0 for reliable
detection and range estimation. But all radar systems have a limitation on the peak transmitted signal power,
which imposes an upper limit on the transmitted signal amplitude. Of course the required value of Es can also
be obtained by maintaining the transmitted signal amplitude at some maximum value A and increasing the
signal duration T. In this case the signal bandwidth B, which is approximately 1/T, is small. But since the
signal bandwidth B is inversely proportional to the range resolution (5), then achieving the required Es by
increasing T reduces B, thereby degrading range-resolution capability.

On the other hand, if B can be increased essentially independently of T, there is no such conflict. This
is why modern radar systems employ large time–bandwidth product (BT) signals. In the radar system, the
earliest and most widely used large BT signal is the linear frequency-modulated (LFM) signal (1,3). In addition
to providing a solution to the long-range–high-resolution problem, the LFM signal is also a form of Doppler-
invariant waveform (3).
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We note that in military communication systems, a large time–bandwidth product signal is referred to as
a spread-spectrum signal (2). It provides resistance to jamming and has a low interception probability because
the signal is transmitted at low power. Among various spread-spectrum signals, the direct sequence spread
spectrum (DSSS) signal, where the transmitted signal is modulated by a pseudorandom sequence, is used in
code devision multiple access (CDMA) communications (6). The frequency-hopped spread spectrum (FHSS) is
another widely used spread spectrum signal in modern communication systems (2,7).

Wigner-Ville Distribution and Ambiguity Function of an LFM Signal. For an LFM signal the
analytic form is

The instantaneous frequency in Eq. (121) is

which has an initial frequency f 0 and increases at a frequency rate m. Since an LFM signal is a nonstationary
signal, the best way to describe it is through such distribution functions as the Wigner-Ville distribution (WVD)
and the ambiguity function (AF). The WVD of a signal s(t) is defined as

WVD is the Fourier transform (with respect to the delay τ) of the signal’s correlation function. It relates the
time and the instantaneous frequency of a signal. Substituting the LFM signal of Eq. (121) into this definition
yields [15]

where f i(t) is given in Eq. (122) and the sine function is defined as

Figure 16 shows the WVD for an LFM signal with f 0 = 20, m = 12, and T = 2. It is seen from the WVD that
the instantaneous frequency linearly increases with the time in accordance with Eq. (122), whereas this
relationship is not observable from the spectrum of the signal, which is also shown at the top of Fig. 16.

The ambiguity function (AF) is defined as
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Fig. 16. Spectrum (top) and WVD (bottom) of an LFM signal.

where ξ and τ denote the frequency shift and the delay, respectively. AF is the Fourier transform (with respect to
the time t) of the signal’s correlation function, and it relates the delay and the Doppler frequency (or frequency
shift). Note that the AF and the WVD form a two-dimensional (2-D) Fourier pair, that is,

where F and F
− 1 denote the Fourier and its inverse operators, respectively. Applying Parseval’s theorem∫

u(t)v∗(t) dt = ∫
U(f )V∗(f ) df to Eq. (125), we obtain

The AF can therefore be regarded as the matched-filter output with a different delay τ and frequency shift ξ.
The AF has proven to be an important tool in analyzing and constructing radar signals by relating range

and velocity resolutions. By constructing signals having a particular ambiguity function, desired performance
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Fig. 17. Ambiguity function of the LFM signal. The AF is symmetric about the origin, and its greatest value appears
above the origin.

characteristics are achieved. For example, the magnitude AF of the LFM signal in Eq. (121) is

which is shown in Fig. 17 for the same LFM signal in Fig. 16. The AF is symmetric about the origin τ = ξ = 0,
and the greatest value appears above the origin. The time delay τ is related to the range, and the frequency
shift ξ is related to the Doppler shift. Thus AF describes the range-Doppler ambiguity of the transmitted signal.
An ideal radar signal is the one whose AF is a thumbtack function because it leaves the least ambiguity in
resolving the range and Doppler shift.

Detection of Multiple LFM Signals. The matched-filter detection is the optimal detection if all of the
signal information (phase, initial frequency, and frequency rate) is available. However, these parameters are
difficult to specify because accurate values of the range, the velocity, and the acceleration of a target are not
available. Noncoherent detection is thus preferred. Next, we are going to consider the noncoherent detection
of multiple LFM signals in a noise background.

For multiple LFM signal detection, it is often the case that the frequency rate is the only parameter of
interest in practice (8). In other words, the frequency rates distinguish different LFM signals. Such a scenario
occurs in the radar detection of a small, fast-moving missile launched from a relatively slow-moving aircraft.
Multiple LFM signals can be detected by locating maxima in the frequency rate in many applications.

AF of Multiple LFM Signals. The input signal to be analyzed is modeled by a linear sum of two (may be
extended to more than two) LFM signals with frequency rates m0 and m1 as given by
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Here ωi represent the carrier (or the initial) frequency, which is proportional to the velocity of the target, and
the frequency rate mi is proportional to the acceleration. The AF defined by

is computed for the signal r(t) of Eq. (129) to yield

where

The last two terms of Eq. (131) are interference terms generated by the two LFM components in the signal r(t),
due to the nonlinearity of the AF. Using the following identity

Q1 and Q2 are combined to give

Figure 18(a) shows the AF [Eq. (133)] of a signal composed of two LFM signals which may represent two
targets with different velocities and accelerations. Although there is cross-term interference, we can identify
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Fig. 18. The ambiguity functions of a bicomponent LFM signal (a) without noise, and (b) with the additive white Gaussian
noise (SNR = −6 dB).

the two straight lines representing the bicomponent signal in Fig. 18(a). However, the two LFM signals are
not obvious if they are corrupted by noise. Figure 18(b) is identical to Fig. 18(a) except that the two signals are
corrupted by Gaussian white noise with SNR = −6 dB.

Detecting Multiple LFM Signals Using Radon-Ambiguity Transform. Recall that the Radon transform
(9), commonly used for the reconstruction of images in computer tomography, is defined by

for −∞ < s < ∞ and −π/2 < φ < π/2, where the δ function specifies the direction of integration. The parameter s
represents the shifted location of the origin. Equation (134) actually represents the sum of the values of f (x, y)
along the line that makes an angle φ with the x axis and is located at a distance s from the origin. The Radon–
Wigner transform 9, 10 is a special case when f (x, y) in Eq. (134) takes the WVD of a multicomponent LFM
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Fig. 19. (a) The WVD of a bicomponent signal. (b) the AF of the bicomponent signal.

signal. The WVD of a bicomponent signal is graphically drawn in Fig. 19(a). The Radon–Wigner transform of
Fig. 19(a) should produce two maxima in the resulting α-ω plane. Figure 19(b) is the AF of the same signal in Fig.
19(a). The AF is the 2-D Fourier transform of the WVD; thus they share the same angles of α0 and α1 as shown
in the WVD. However, the initial frequencies shown in Fig. 19(a) have disappeared in Fig. 19(b), since they
have been mapped into the phase of the AF. This also explains why the AFs of the two chirps pass through the
origin in the τ-ξ plane. Thus, by applying the Radon transform to the phase-free ambiguity function, detection
of multicomponent signals can be reduced from the 2-D search problem in the Radon–Wigner transform to a
1-D search problem. The advantage of the ambiguity function over the WVD has been shown in the kernel
design for the time-frequency analysis (11). This work can be extended to the detection of multicomponent
signals (12).

Since all directions of interest pass through the origin of the ambiguity plane, the Radon transform with
parameter s set to 0 is applied to the phase-free ambiguity function of Eq. (133). We essentially compute the
line integral along a straight line with its direction specified by the δ function δ(ξ − mτ) in the ambiguity plane.
Therefore the detection statistic can be formed by the so-called Radon-ambiguity transform (12) as

Since the infinite integrals in Eq. (135) usually diverge, it is necessary to first remove the constant term
from the integrand. Specifically, for m �= mi (i = 0, 1) and assuming m0 − m1 > 0, we have from Eq. (133)
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with

Removing the constant from Eq. (136) and substituting it into Eq. (135) yield

For m �= m0 or m1 (i.e., am �= 0), it is clear that η(m) is finite. By Eqs. (137) and (138), we have η(m) → ∞ as
m → m0 or m → m1. Therefore, by calculating η(m) and comparing it to a preset threshold, the multicomponent
signals can be detected.

Finite-Length Signal. Now we consider a bicomponent finite-length signal as given by

with the assumption that ω0 = ω1 and m0 > m1 for simplicity purposes. The modulus of the ambiguity function
of r(t) for ω= mτ can be calculated by making use of the following integral,

to yield
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Fig. 20. The η(m) of two equal-amplitude LFM signals with T = 40, m0 = 200π/T2, m1 = 100π/T2. Solid line: η(m). Dashed
line: auto terms only. Dotted line: cross-terms only. The two peaks indicate the existence of the equal-amplitude ∠FM
signals.

where

are the Fresnel integrals, and

while am in Eq. (141) is defined by Eq. (137). For |τ| ≤ T, the first two terms in Eq. (141) represent the auto
terms of the signal, while the rest express the cross-terms. Figure 20 shows the integral of Eq. (141) over τ,
that is, η(m), for two LFM signals with equal amplitudes. Also shown in Fig. 20 are the integrals of the auto
terms and cross-terms of Eq. (141).



RADAR SIGNAL DETECTION 39

Output Signal-to-Noise Ratio Analysis. The output SNR of the statistics η in Eq. (135) can be analyzed
by making use of the following quantities (12):

to find

It is seen from Eq. (142) that there is a 3 dB loss in SNR between the input and the output when the input
SNR is high, and the output SNR degrades severely when the input SNR is low, illustrating a typical nonlinear
detection characteristic.

Conclusion

We have presented the techniques of radar signal detection, as well as the related performance analyses. The
following conclusions can be drawn.

• Among various detection criteria, the Neyman–Pearson criterion is particularly well suited to radar detec-
tion, owing to its concepts of a priori fixed Pfa and maximized Pd.

• The coherent detection, in the form of a matched filter or a cross-correlation, is the optimal detection for an
exactly known signal (i.e., phase, amplitude, and Doppler frequency are known) in a background of white
noise.

• In a typical radar application, the range between the target and the radar represents a very large number
of transmitted signal wavelengths. This makes specifying the phase of the return signal extremely difficult,
and a noncoherent detection has to be used.

• The noncoherent detection is inferior to the coherent detection for low input signal-to-noise ratios and
approximates the coherent detection for high input signal-to-noise ratios.

• There is an inherent conflict between long-range detection and high-range-resolution capability for the
unity time-bandwidth signal. Large time-bandwidth signals such as an LFM signal do not have such a
conflict.

• Large time-bandwidth signals can be described by the ambiguity function or the Wigner–Ville distribution.
The Radon-ambiguity transform can be used to detect multiple LFM signals.
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