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RADAR REMOTE SENSING OF IRREGULAR STRATIFIED MEDIA

The numerous applications of radars for the detection and identification of targets and in navigation and
meteorology are well known. Its uses in remotely sensing the earth environment and planetary surfaces have
received much attention more recently. The problem of interpreting the radar signals from complex structures
makes it necessary to develop reliable analytical solutions to a wide class of realistic models of electromagnetic
scattering problems in irregular stratified media. This article deals with the evaluation of the radar cross-
sections for irregular stratified models of radar targets. To this end, scattered electromagnetic fields are
analyzed using a full wave approach.

To obtain full wave solutions for the electromagnetic fields scattered by irregular stratified media with
rough interfaces, iterative analytical and numerical approaches are used to solve generalized telegraphists’
equations developed for unbounded layered structures. Generalized telegraphists’ equations for the coupled
waveguide mode amplitudes were first derived for irregular waveguides with finite cross-sections by S. A.
Schelkunoff. For unbounded layered structures, the complete field expansions consist of the radiation term, as
well as lateral waves and guided (surface) waves of the layered medium. Exact boundary conditions are imposed
at each of the rough interfaces of the irregular layered structures. The full wave solutions are applicable to
layered structures with inhomogeneous medium parameters and irregular boundaries with a broad range of
roughness scales. They account for specular point scattering as well as diffuse (Bragg) scattering in a unified
self-consistent manner. They have been used to evaluate the like- to cross-polarized bistatic radar scatter
cross-section as well as the Mueller matrix elements that relate the incident to the scattered Stokes vectors.
They have also been used to derive the observed like- and cross-polarized backscatter enhancements that are
attributed to double scatter. The full wave approach can be used to evaluate the near-fields as well as the
far-fields excited by small-scale (including subwavelength) and large-scale fluctuations in the surface height,
complex permittivity, and permeability of the irregular stratified media.

It is well established that the perturbation theory of Rice (1) can be used to correctly predict the copolarized
and cross-polarized electromagnetic fields scattered by slightly rough two-dimensionally slightly rough surfaces
that separate two semi-infinite media characterized by distinct electrical and magnetic properties. Perturbation
theory is valid provided that the mean-square heights and slopes of the rough surfaces are of the same order of
smallness; namely, β = 4k2

0h2 � 1, σ2
s � 1, and k0h ≈ σs (where k0 is the free space electromagnetic wavenumber

of the medium above the rough interface, h is the root-mean-square height, and σs is the root-mean-square slope
of the rough surface). These analytical results, which have been extended to “tilted” slightly rough surfaces
(2), have been validated experimentally and numerically (3) for both vertically and horizontally polarized
excitations for arbitrary angles of incidence and scatter (general bistatic conditions).

It is also generally assumed that the physical optics approach (4) (which is based on the Kirchhoff approx-
imations of the surface electromagnetic fields) can be used to correctly predict the scattered electromagnetic
fields from two-dimensionally random rough surfaces provided that the radii of curvature of the rough surface
are very large compared to wavelength (namely, k2

0ρ
2 � 1, where ρ2 is the mean-square radius of curva-

ture) and conditions for deep phase modulation between the scattered field contributions from the stationary
phase (specular) points exist (5). Implicit in the physical optics approach is the requirement that the major
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contributions to the scattered fields come from regions of the rough surface that are in the vicinity of the (sta-
tionary phase) specular points on the rough surface. For this reason, for example, the single scatter physical
optics approach cannot be used to correctly predict the cross-polarized fields scattered in the plane of incidence.

The physical optics approach also fails to correctly predict the polarization (vertical and horizontal)
dependence of the backscatter cross sections when the surface slopes are very small even when the large radius
of curvature criterion is satisfied. Thus, for perfectly conducting surfaces with very large radii of curvature,
the Kirchhoff approximations for the surface current Js (Js = 2nxHi, where n is the unit vector normal to the
rough surface and Hi is the magnetic field of the incident electromagnetic waves) are correctly used to predict
the physical optics co-polarized fields provided that the specular points contribute significantly to the scattered
fields. If, however, the mean-square slopes are very small, such that for backscatter at oblique incidence no
specular points exist, the physical optics solutions fail no matter how large the radii of curvature of the rough
surface.

Because of these limitations that are inherent in the two most familiar scattering theories, researchers
have attempted to develop more rigorous scattering theories that can bridge the broad range of scattering
problems not covered by either the perturbation theory or the physical optics approach. When the small slope
and height criteria as well as the large radii of curvature criteria and conditions for deep phase modulation
and specular point scattering are satisfied, the perturbation solutions and the physical optics solutions are
in agreement with each other. When neither the perturbation nor the familiar physical optics solutions are
individually applicable to the random rough surfaces considered (as in the case of microwave backscatter
from the sea surface and the enhanced backscatter observed in controlled laboratory experiments), both the
perturbation solutions and the physical optics solutions fail (6).

This has provided the motivation to develop several versions of hybrid-perturbed physical optics ap-
proaches that combine the salient features of both of these theories (2,5,7,8,9). It has also been shown that
the enhanced backscatter that has been observed from very rough surfaces is due to multiple scattering
(10,11,12,13). One problem with these hybrid solutions based on a two-scale surface model is that the results
critically depend upon wavenumber kd where spectral splitting is assumed to occur (8). In general, using these
hybrid approaches, one cannot choose kd such that the large-scale surface hl and the small-scale surface hs (that
rides on the large scale surface) simultaneously satisfy the physical optics and the perturbation restrictions,
respectively. It has also been shown that even when a hybrid solution is used to approximately determine the
copolarized cross section through a “suitable” choice of kd, it cannot be used to determine the cross-polarized
cross section (14,15).

The full-wave solutions are not restricted to electromagnetic scattering by layered media with irregular
interfaces. Scattering due to inhomogeneities in the complex electrical permittivities and magnetic permeabil-
ities in each layer can also be accounted for in the analysis.

The full-wave solutions can also be used to determine the coupling between the radiation fields, the lateral
waves, and the guided (surface) waves of the layered structures. They can be used to determine the scattered
near fields as well as far fields. Both large-scale and small-scale (including subwavelength) fluctuations of the
rough surface and medium parameters are accounted for in the analysis.

Schelkunoff’s Generalized Telegraphists’ Equations for Bounded Irregular Waveguides and the
Use of Local Mode Expansions

Generalized telegraphists’ equations, which are based on the use of complete expansions of the electromagnetic
waves (into vertically and horizontally polarized radiation fields, lateral waves, and surface waves) as well as
on the imposition of exact boundary conditions at the rough interfaces of irregular stratified media, have been
derived (16,17,18) for electromagnetic fields scattered by irregular stratified media with rough interfaces. The
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Fig. 1. Schematic of procedures for deriving the generalized telegraphists’ equations.

analytical procedures used to derive these generalized telegraphists’ equations are similar to those advanced
by Schelkunoff (19), to solve problems of mode coupling in irregular waveguides with finite cross sections and
impedance boundary conditions. Since the field expansions do not converge uniformly on the irregular bound-
aries, Schelkunoff (19,20) employed precise mathematical procedures to avoid term-by-term differentiation of
the field expansions (infinite sets of TE and TM modes for cylindrical waveguides).

The method used to convert Maxwell’s equations into sets of generalized telegraphists’ equations for the
reflected and transmitted wave amplitudes in irregular layered structures is shown schematically in Fig. 1.
The intrinsic properties duality, reciprocity, realizability, and invariance to coordinate transformations are also
listed in Fig. 1. For open structures consisting of half-spaces (such as the irregular-layered media considered in
this work), the complete field expansions are associated with integrals along two branch cuts (the radiation and
the lateral wave terms) and residues at pole singularities (waves guided by the stratified structure) (16,17,18).

Schelkunoff’s method has also been used to solve problems of mode coupling in a wide class of irregular
waveguides such as waveguide tapers and waveguide bends, as well as in waveguides with nonperfectly
conducting surfaces that are characterized by impedance boundary conditions (19,20). In all these bounded
waveguide systems, the field expansions are expressed in terms of infinite, discrete sets of propagating and
evanescent waveguide modes associated with the characteristic equations for cylindrical waveguides with ideal,
perfectly conducting boundaries. In waveguides of arbitrarily varying cross sections with finitely conducting
boundaries, the modes of the ideal cylindrical waveguides, while complete, do not individually satisfy the correct
boundary conditions, and the mode expansions do not uniformly converge on the irregular boundaries. To keep



4 RADAR REMOTE SENSING OF IRREGULAR STRATIFIED MEDIA

his analysis rigorous, Schelkunoff (19,20), employed rather tedious, but necessary, mathematical procedures
on imposing exact boundary conditions. Thus, for example, orders of integration and differentiation are not
interchanged in order to account for the nonuniform convergence of the field expansions and the fact that
the range of the cross section variables (limits of the corresponding integrals) are not constant. The coupling
between the waveguide modes is due to the nonideal boundary conditions.

In an attempt to reduce the number of significant coupled, spurious modes that need to be accounted for
in multimode waveguides with irregular cross sections, new generalized telegraphists’ equations were derived
based on field expansions in terms of a complete set of waveguide modes that individually satisfy the boundary
conditions locally. Thus, for example, in waveguides with abrupt or gradual tapers, waveguide modes in uniform
tapers (with constant flare angles) were used in the local field expansions (21,22,23). In waveguide bends with
arbitrarily varying curvatures, the fields were expressed in terms of local annular waveguide modes (24,25)
and in waveguides with varying impedance boundaries, modes that locally satisfy the impedance boundary
conditions were used (26,27). The modal equations for the local waveguide modes were usually more difficult
to solve than those for ideal cylindrical waveguides. However, the generalized telegraphists’ equations can be
solved numerically (using the Runge–Kutta Method) more readily when the local modal expansions are used,
since coupling into the spurious local modes is bunched more tightly around the incident mode. This is because
the local modes individually satisfy the local boundary conditions in the waveguide.

These analytical and numerical results were validated experimentally in a series of controlled laboratory
experiments used to synthesize waveguide transition sections (28). These controlled laboratory studies were
first conceived by Wait (29,30,31), to study VLF radio wave propagation in scaled laboratory models of the earth-
ionosphere waveguide. In these models, the ionosphere effective boundary was simulated by an absorbing foam
material with a specified complex dielectric coefficient and thickness (manufactured by Emerson Cumming) (32,
33).The earth’s curvature was also simulated in these laboratory models using a nondissipative inhomogeneous
dielectric material to load the interior of the straight model waveguide (34,36). This experimental procedure
to stimulate curvature was carried out in the scaled model at microwave frequencies (scaling factor 106).
It is analogous to the mathematical earth-flattening technique developed by Kerr (37). The dominant mode
in the (simulated) curved model waveguide had the same characteristics of the earth-detached mode in the
earth-ionosphere waveguide. They can be expressed in terms of Airy integral functions (instead of sinusoidal
functions in empty, rectangular waveguides).

Generalized Telegraphists’ Equations for Irregular Stratified Media with one or Two Half-Spaces

Following the extensive analytical, numerical, and experimental work on electromagnetic wave propagation in
bounded irregular waveguide structures, propagation in irregular stratified structures with one or two infinite
half-spaces were analyzed using the full-wave method. Approximate impedance boundary conditions (38,39)
were replaced by exact boundary conditions at the rough interface between two media characterized by different
complex permittivities and permeabilities (16,18). Furthermore, scattering due to laterally inhomogeneous
permittivities and permeabilities in each layer of the irregular stratified media are also accounted for in the
analysis.

The initial impetus for this work was the complex and intriguing sloping beach problem considered by
Wait and Schlak (40) in which the sea was modeled (two-dimensionally) as a small-angle wedge region adjacent
to horizontal dry land. Exact modal expansions of the fields in the four wedge-shaped regions (sea water, wet
land under the sea, dry land, and free space) involve Kontorowich–Lebedev transforms (41). The relationships
between the Fourier, Watson, and Kontorowich–Lebedev transforms have been obtained through the use of
a generalized Bessel transforms (42). The analytical solution based on the Kontorowich–Lebedev transforms
involve integration over the order of the Bessel functions. Schlak and Wait (40) employed a geometric optics
approach which give exact results for parallel stratified media. However, these results were shown by them
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Fig. 2. Electromagnetic radiation in irregular layered structures.

to be nonreciprocal even for the small wedge angles they considered. King and Husting (43), who conducted a
series of controlled experiments on laboratory models, showed that the results were more accurate when the
direction of propagation was toward the apex of the wedge (rather than away from it).

Transformation of Maxwell’s Equations

In this section the full-wave procedures used to convert Maxwell’s equations into generalized Telegraphists’
equations are outlined for propagation of electromagnetic waves in irregular layered structures with two-
dimensionally rough interfaces and transversely varying electromagnetic parameters. The interested reader
will find the details of the analysis in the published literature (16,17,18). The procedures are shown schemat-
ically in Fig. 1, and the irregular layered structure is illustrated in Fig. 2. The vertical axis is y and the
interface between medium i and i + 1 is given by f (x, y, z) = y − hi,i+1(x, z) = 0. The complex permeativity ε and
permeability µ in each layer of the structure are assumed to be functions of the lateral variables x and z.
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Maxwell’s equation for the transverse (y, z) components (denoted by subscript T) of the electric E and
magnetic H fields can be expressed as follows:

and

in which the operator ∇T is

and the transverse vectors are

The electric and (dual) magnetic current densities are J (A/m2) and M (V/m2). The exact boundary condi-
tions imposed at each of the interfaces of the irregular layered structure are the continuity of the tangential
components of the electric and magnetic fields

in which n is the unit vector normal to the interfaces

The full-wave, complete expansions for the vertically (V) and horizontally (H) polarized electric and magnetic
fields are given in terms of the transverse basis functions
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in which the y-dependent scalar basis functions ψP for the vertically (P = V) and horizontally polarized waves
associated with the radiation fields, the lateral waves, and the surface waves of the layered structure are (18)

and

In the above equations, R and T are associated with the Fresnel reflection and transmission coefficients,
vr is the y component of the wave vector in medium r kr(u, vr, w), vq − 1,q = vq − 1 − vq, and the z-dependent scalar
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function is

The wave impedances and admittances for the vertically and horizontally polarized waves are

The transverse components of the electric and magnetic fields are expressed completely as follows:

and

in which the symbol �v denotes summation (integration) over the complete wave vector spectrum consisting of
the radiation term and lateral waves (associated with branch cut integrals) and the waveguide modes (or bound
surface waves) of the layered structure (associated with the residues at the poles of the reflection coefficients).
In Eqs. (17) and (18) the scalar field transforms for the vertically (P = V) and horizontally (P = H) polarized
electric and magnetic fields are

and

where the complementary (reciprocal) basis functions are
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and

in which φc(w, z) = (1/2π) exp(iwz) and use has been made of the biorthogonal relationships

In Eq. (25) the Kronecker delta δP,Q implies that the vertically (P, Q = V) and horizontally (P, Q = H) polarized
basis functions are orthogonal. Furthermore, the Dirac delta function δ(w − w′) appearing in Eq. (25) is a result
of the Fourier transform completeness and orthogonality relationships:

The corresponding completeness and orthogonality relationships satisfied by the scalar basis functions ψP

are

and
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In Eqs. (28) and (29),

in which ZV and YH are the wave impedances and admittances for the vertically and horizontally polarized
waves, respectively. Furthermore, the symbol 
(v, v′) in Eqs. (25) and (29) is the product of the Kronecker
delta δq,r and the Dirac delta function δ(v, v′) for the radiation and lateral wave terms or the Kronecker delta
δv,v′ for the bound guided (surface) waves of the layered structure. Thus the radiation fields, the lateral waves,
and the guided waves of the full-wave spectrum are mutually orthogonal (16,17). The radiation fields and the
lateral waves are associated with branch cut integrals in the complex wave number plane [with branch points
at k = k0 (uppermost medium) and k = km (lowermost medium)]. The guided waves of the layered structure are
associated with the residues at the poles of the composite reflection coefficient seen from above or below the
layered structure.

In this work, it is convenient to express the vertically and horizontally polarized scalar field transforms
[Eqs. (19) and (20)] in terms of the vertically and horizontally polarized forward wave amplitude aP and
backward wave amplitude bP as follows:

Upon substituting the complete field transforms into the transverse components of Maxwell’s equation
[Eqs. (1)–(4)], making use of the biorthogonal relationships [Eq. (28)], and imposing the exact boundary con-
ditions at each interface of the irregular layered structure [ Eq. (5)], the following generalized telegraphists’
equations are derived (see Fig. 1):

where AP and BP are associated with the source terms J and M in Eqs. (1)–(4). Furthermore, SBA
PQ and SAB

PQ
are transmission scattering coefficients, while SAA

PQ and SBB
PQ are reflection scattering coefficients. These

scattering coefficients vanish when the layered medium is horizontally stratified with homogeneous medium
in each layer. In this case, the forward and backward wave amplitudes for the vertically and horizontally
polarized waves are decoupled and analytical closed form solutions are readily obtained. However, if the rough
surface height or the complex permittivities and permeabilities are functions of x and z, the wave amplitudes
are coupled. In the general case, the basic functions ψP do not individually satisfy the irregular boundary
conditions and the complete field expansion do not uniformally converge at the boundaries. Thus, on following
precise mathematical procedures (16,17,18,19,20), the orders of integration (summation) and differentiation
cannot be interchanged. As a result, the rigorous derivations of the generalized telegraphists’ equations [Eqs.
(32) and (33)] are rather tedious.
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The intrinsic properties of the full-wave solutions are (see Fig. 1) duality, reciprocity, realizability, and
invariance to coordinate transformation. All the above properties follow directly from Maxwell’s equations.
[(1)–(4)], and they are not a result of any additional constraints imposed on the results. A two-dimensional
scalarized version of this problem has also been analyzed (44,45,46,47). When the lowermost and/or uppermost
half-space is perfectly conducting or a good conducting medium, the two boundary conditions [ Eq. (5)] at the
lowermost (and/or uppermost) interface can be replaced by a single surface impedance boundary condition:

In Eq. (34) the unit vector n is normal to the interface and points into the conducting half-space. For an
isotropic conducting half-space, the surface impedance Zs is a scalar. In general, the surface impedance can be
represented by a dyad. The impedance boundary condition has been used to simplify the analysis of irregular
layered structures (48,49,50,51). Contributions from integrals associated with one (or two) branch cuts are
eliminated when impedance boundary conditions are used.

The generalized telegraphists’s equations have also been derived for irregular multilayered cylindrical
structures (52,53,54,55) and irregular spherical structures (56,57,58).

For the irregular cylindrical and spherical layered structures, the complete expansions of the fields in
terms of cylindrical/spherical harmonies are related to the Watson transformations (59).When the innermost
regions of the cylindrical/spherical structures are highly conducting and impedance boundary conditions are
used, the contribution from the continuous portion of the wave spectrum can be ignored and the solutions are
expressed in terms of discrete waveguide modes (42). A set of generalized telegraphists’ equations similar to
Eqs. (32) and (33) have been derived for the irregular cylindrical/spherical structures (52,53,54,55,56,57,58).
However, it should be noted that for the spherical case, the wave admittances/impedances and propagation
coefficients for the forward and backward propagating wave amplitudes are not the same. For the spheri-
cal/cylindrical cases, solutions of the model (characteristic) equations are far more complicated, and numerical
techniques have been developed to trace the loci of the complex roots of the characteristic equations (60).

These procedures have been used to solve problems of electromagnetic wave propagation in naturally
occurring or man-made perturbed models of the earth-ionosphere waveguide. Experiments in controlled labo-
ratory models (based on the pioneering work by Wait) have been conducted to validate the analytical results
(29,31,34).

Iterative Solutions to the Generalized Telegraphists’ Equations and Their Relationships to the
Small Perturbation Solution and the Physical/Geometrical Solutions to Rough Surface
Scattering

Iterative analytical procedures, as well as numerical techniques, are used to solve the generalized telegraphists’
equations [Eqs. (32) and (33)] for the forward and backward wave amplitude scattered by two-dimensionally
rough surfaces (see Fig. 3). An overview of the results are shown schematically in Fig. 4. The analytical proce-
dures are dealt with first in this section. To obtain the single scatter approximations for the wave amplitudes,
the expressions for the primary fields impressed upon the rough interface due to the sources are first derived
from Eqs. (32) and (33) upon neglecting all the coupling terms manifested by the scattering coefficients SBA

PQ.
When the sources are in the far field, the primary, incident fields impressed upon the rough surface are ver-
tically and horizontally polarized plane waves propagating in the direction of the (free space) wave vector
ki

0 = ki
0xax + ki

0yay + ki
0zaz = k0ni, where ni is a unit vector and k0 = ω . Thus, the primary electric
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fields impressed upon the rough surfaces are

where RP
0 is the P = V, H polarized Fresnel reflection coefficient for waves incident from medium 0 (free

space) upon medium 1 (see Fig. 3), and aP is the unit vector in (P = V) or perpendicular (P = H) to the plane
of incidence. The primary fields are proportional to the local basis function ψP

0(v, y) given by Eq. (11). The
corresponding vertically or horizontally polarized field transforms and wave amplitudes are obtained using
Eqs. (19), (20), and (31). In view of the biorthogonality relationships [(25)], the primary wave amplitudes are
proportional to the delta functions corresponding to the polarization (Q = V, H) and direction ki

0(wi
0, vi

0, wi
0)

of the incident waves. When these expressions for the primary wave amplitudes are substituted for aQ and
bQ on the right-hand side of Eqs. (32) and (33) (with the source terms AP and BP suppressed) the (iterative)
differential equations for single scattered wave amplitudes are obtained. The solutions for these single scatter
wave amplitudes are substituted into the expressions for the field transforms [Eqs. (17) and (18)] to obtain
the single scattered fields. Since both vertically and horizontally polarized incident waves are considered and
both like- and cross-polarized scattered waves result from two-dimensionally rough surfaces, the results for
the diffuse scattered fields are presented here in matrix notation.

In Eq. (36)

where EP
s and EP

i are the vertically (P = V) and horizontally (P = H) polarized components of the scattered
fields and the incident waves (at the origin), respectively.

The 2 × 2 scattering matrix S is given by

The elements of the matrix R are
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Fig. 3. Relationships between the incident and scatter wave normals ni and nf , respectively, local tangent planes (r − rs)
· np = 0, and planes parallel to the stationary phase planes (r · rs) · ns = 0 for rough surface scattering.

The wave vectors in the scatter and incident directions are

and
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Fig. 4. Principal properties of the original and unified full-wave solutions.

where θ0 is the elevation angle (measured from the y axis and φ is the azimuth angle measured from the x axis.
Furthermore, Ci

0 = cos θi
0, C

′
0 = cos θ

′
0, Si

0 = sin θi
0, S

′
0 = sin θ

′
0. The corresponding quantities associated with

medium 1 are denoted by the subscript 1 and θ1, is related to θ0 by Snell’s law. The vector v′ is

and rs and r are position vectors from the origin to points on the rough surfaces and to the observation point,
respectively:
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Furthermore,

In Eq. (36) the integrations are over the rough surface (transverse) variables xs and zs as well as the wave
vector variables k

′
y and k

′
z. The first term Gf contains the exponent exp(ivyh) while the second term Gf

d does
not. On integrating the second term with respect to xs and zs, the delta functions are obtained:

Thus the second term Gf
d can be readily shown to be the specularly reflected wave from a flat surface at y = 0,

since RVV and RHH reduce to the Fresnel reflection coefficients for the vertically and horizontally polarized
waves and RVH → 0, RHV → 0 for the specular case k′ → ks = ki + 2k0 cos θi

0ay, v → 2k0 cos θi
0ay.

Note that the results in Eq. (36) are in complete agreement with the earlier work in which it is assumed
that the vector n normal to the rough surface is restricted to the xy plane (hz = 0) (25). This is because the
restriction does not constrain the unit vector n to lie in the scatter plane (normal to k′xki).

In the recent work by Collin (61), the author uses a different full-wave approach to the problem of
scattering of plane waves from perfectly conducting surfaces: He uses a pair of odd and even scalar basis
functions for the Dirichlet and Neumann boundary conditions. These basis functions and the corresponding
reciprocal basis functions (chosen to be their complex conjugates) are explicit functions of y and implicit
functions of x and z [through the expression for h(x, z), the rough surface height]. The resulting source free wave
equation is further (Fourier) transformed in x and z to obtain an equation with a dyadic operator for the vector
field transform (and equivalent, slope-dependent sources that account for scattering) rather than generalized
telegraphists’ equations for the scalar wave amplitude. Upon inverting the dyadic operator, evaluating the
residue at k0, and integrating by parts, Collin’s results are also shown to be in complete agreement with the
full-wave results for the perfectly conducting case (|εr| → ∞, µr = 1). Collin referred to the results for the diffuse
scattered fields (25) as the original full-wave solutions (see Fig. 4).

The above first-order iterative solutions for the single scattered fields [Eq. (36)] are restricted to rough
surfaces with small mean-square slopes σs < 0.1 (3). This is because the scattering coefficients Sαβ

PQ(α, β = A,
B) appearing in the generalized telegraphists’ equations [Eqs. (32) and (33)] are explicitly dependent on the
slopes of the rough surface. Alternatively, in Collin’s work, the equivalent source terms are slope-dependent.
However, unlike the small perturbation solution, the full-wave solutions are not restricted to rough surfaces
with small mean-square heights. Furthermore, the full-wave solutions [Eq. (36)] can be used to evaluate the
near fields, the far fields, and the fields in the intermediate region. Thus, this work can be applied to probing
subwavelength structures, an area that has attracted much interest in near field optics. In addition, the first-
order scattering results can be extended to multiple scattering. In particular, the full-wave approach has been
used to account for double scatter that is associated with observed backscatter enhancement (12).

When the observation point is at a very large distance from the rough surfaces (k1r � k0L � 1 and
k0r � k0l � 1), the integration with respect to the scatter wave vector variables (k

′
0y, k

′
0z) can be performed
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analytically using the stationary phase method. Thus, if the observation point is in the direction

the diffuse far fields scattered from the rough surface are

The expression for S(kf , ki) in Eq. (52) is the same as the expression for S(k′, ki) in Eq. (36) except that the
scatter wave vector k′ is replaced by kf , where kf

0 = k0nf [Eq. (51)] and kf
1 the wave vector for y < h(xs, zs) is

related to kf
0 through Snell’s law. Furthermore,

and

In Eq. (54), vy = k0(Ci
0 + Cf

0) = k0(cos θi
0 + cos θf

0). When the integrations with respect to xs and zs are
performed, the term Gf

D is shown to be the flat-surface quasi-specular (zero-order) scattered field which is
proportional to (4Ll/vxLvzl) sin vxL sin vzl. The expression for the quasi-specular scatter term Gf

D is the same
as the expression for the total field Gf except that rs in Gf is replaced by rt in Gf

D [Eq. (52)]. Thus, for h(xs,
zs) = 0, they are identical and Gf

s = 0.
It is readily shown that the full wave-solution [Eq. (52)] reduces to the small-height–small-slope pertur-

bation solution of Rice provided that it is assumed that k0h � 1. Thus on retaining the first two terms of the
Taylor series expansion of exp(ivyh) it follows that

In this small-height–small-slope limit, the full-wave solution is indistinguishable from the small pertur-
bation solution for the far fields scattered by slightly rough surfaces (see Fig. 3). These limiting forms of the
full-wave solutions are, however, no longer invariant to coordinate transformations since h(x, z) does not appear
in the exponent. Furthermore, it is shown that they are valid only if the height and slopes are of the same
order of smallness.

Turning now to the high-frequency limit, it is assumed that the radii of curvature of the rough surfaces
are very large compared to wavelength. The unit vector np normal to these large-scale patches of rough surfaces
is assumed to have arbitrary orientation. Thus the planes of incidence and scatter with respect to the reference
coordinate system (normal to nixay and nf xay, respectively) are not the same as the local planes of incidence
and scatter with respect to the local coordinate system (normal to nixnp and nf xnp, respectively). Furthermore,
the sines and cosines of the angles of incidence and scatter appearing in the scattering coefficients [Eqs. (39)–
(42)] are not the same as the sines and cosines of the local angles of incidence and scatter. In order to account
for the arbitrary slope of the large-scale surface, the surface element scattering matrix S(kf , ki) in Eq. (36) is
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replaced by

In Eq. (56) the matrix operator Ti decomposes the waves which are vertically and horizontally polarized with
respect to the reference plane of incidence (normal to nixay) into vertically and horizontally polarized waves
with respect to the local plane of incidence (normal to nixn). Similarly, the matrix operator Tf decomposes the
waves which are vertically and horizontally polarized with respect to the local plane of scatter (normal to nf xn)
back into vertically and horizontally polarized waves with respect to the reference plane of scatter (normal to
nf xay). Thus if ψi and ψf are the angles between the reference and local planes of incidence and the reference
and local planes of scatter, respectively, then

in which for j = i or f we have

where

Furthermore, the cosines of the local angles of incidence and scatter appearing in Sn(kf , ki) [Eq. (56)] are
given by
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while Sin
0 and Sfn

0 are the sines of the local angles of incidence and scatter. The corresponding quantities
associated with medium 1 are denoted by the subscript 1. The local angles of incidence and scatter in medium
1 are related to the local angles of incidence and scatter in medium 0 through Snell law. Implicit in Eq. (56) are
the self-shadow functions U(nf · np) and U(−ni · np) (where U is the unit step function) since the local angles
of incidence and scatter are less than 90◦. Furthermore, cos(φf − φi) and sin(φf − φi) appearing in Eq. (38) are
replaced by (62)

The above changes represented by Eq. (56) constitutes the transformation into the large-scale (patch) coordinate
system (see Fig. 5). It is readily shown that at high frequencies, the major contributions come from the vicinity
of the stationary-phase, specular points on the rough surface where np is along the bisector between nf and
−ni (see Fig. 3). Pursuant to the transformation Eq. (56) it can be shown that at these stationary-phase
points, RVV and RHH reduce to the familiar Fresnel reflection coefficients while the cross-polarized terms RVH

and RHV vanish at the specular points. Thus in these limits, the full-wave solution [Eq. (52)] reduces to the
physical optics solution for the diffuse scattered fields (4). If, in addition, Eq. (52) is evaluated analytically
using stationary-phase approximations, the full-wave solution reduces to the geometric optics solution (see
Fig. 4). However, in order to account for multiple scatter at the same rough surface, it is necessary to return to
the original form [Eq. (36)] even at high frequencies (13).

Full-Wave Solutions for the Radar Cross Sections for Multiple-Scale Rough Surfaces

The normalized bistatic radar cross sections σPQ for two-dimensionally rough surfaces are dependent on the
polarizations of the scattered (first superscript P = V, H) and incident (second superscript Q = V, H) waves.
It is defined as the following dimensionless quantity that depends on the incident and scatter wave-vector
directions:
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Fig. 5. Arbitrarily oriented patch of a rough surface.

In Eq. (64) the area Ay is the radar footprint, r is the distance from the rough surface to the far-field observation
point. When the rough-surface statistical characteristics are homogeneous though not necessarily isotropic,
the (ensemble average) full-wave radar cross section based on the original (denoted by subscript 0) full-wave
analysis [Eq. (52)] is expressed as follows:

where SPQ(nf , ni) is the surface element scattering coefficient for incident waves in the direction ni and
polarization Q = V (vertical), H (horizontal), and scattered waves in the direction nf and polarization P = V,
H. It should be noted that the scattering coefficients SPQ(nf , ni) are not functions of slope. In Eq. (65), Q(nf ,
ni) is expressed in terms of the surface height joint characteristic function χ2 and characteristic function χ as
follows:
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where k0 is the free-space wavenumber and rdt is the projection of rS1 − rS2 (where rS1 and rS2 are position
vectors to two points on the rough surface) on the mean plane (y = 0) of the rough surface y = h(x, z) (see Fig. 3):

and drdt = dxddzd. The vector v is given by Eq. (44). For homogeneous isotropic surfaces with Gaussian joint
surface height probability density functions

where vy is the y component of v [Eq. (44)], 〈h2〉 is the mean-square height and R(rd) is the normalized surface
height autocorrelation function [related to the Fourier transform of the surface height spectral density function
W(k)]. When the surface is isotropic and homogeneous, R is only a function of the distance

and Q(nf , ni) [Eq. (66)] can be expressed as follows for L, l � lc (the autocorrelation length):

where J0 is the Bessel function of order zero and

Note that Q(nf , ni) remains finite as vy → 0.
The above expressions based on the original full-wave solutions are in total agreement with solutions

based on Rice’s small perturbation solutions when the height and slopes are of the same order of smallness (3).
For these cases

and the integrals in Eq. (66) can be expressed in closed form in terms of the rough-surface height spectral
density function [the Fourier transform of the surface height autocorrelation function 〈hh′〉 = 〈h2〉R(rd)].

However, the solution [Eq. (66)] based on the original full-wave solution is not restricted to surfaces with
small mean-square heights. Since it is based on the first-order single-scatter iterative solution, it is nevertheless
restricted to surfaces with small slopes (σ2

s < 0.1).
When slopes of the rough surface are not small and the scales of roughness are very large compared to

wavelength, solutions based on the transformation [Eq. (56)] can be used. Thus, the diffuse scatter cross section
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is expressed as follows:

where the symbol ∗ denotes the complex conjugate and

The (statistical) mean scattering cross section for random rough surfaces is obtained by averaging Eq. (74) over
the surface heights and slopes at points rs1 and rs2. The coherent component of Eq. (75) is defined as

and the incoherent scattering cross section is defined as

The above expression for the radar cross sections for two-dimensional random rough surfaces involves integrals
over the random rough-surface heights and slopes and the surface variables xs1, xs2, zs1, zs2. This expression
can be simplified significantly if the radii of curvature of the large-scale (patch) surface are assumed to be
very large compared with the free-space wavelength. In this case, the slope at point 2 may be approximated
by the value of the slope at point 1 (hx2 ∼ hx1, hz2 ∼ hz1). If, in addition, the rough surfaces are assumed to be
statistically homogeneous, the cross section is expressed as follows:

in which the analytical expressions for the conditional joint characteristic functions are
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Furthermore,

where P2(nf , ni|ns) is Sancer’s (63) shadow function and ns is the value of np at the specular points.
For random rough surfaces characterized by a four-dimensional Gaussian surface high/slope coherence

matrix we obtain

and

In Eq. (85), C is the Gaussian surface height autocorrelation function and lcx, lcz are correlation lengths in the
x and z directions, respectively.

When the surface is isotropic (lcx = lcz = lc and σ2
x = σ2

z = σ2
s), Eqs. (81), (83), and (84) reduce to

where
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and

In this case, the total mean square slope is expressed as

For the assumed isotropic surface with Gaussian statistics, the four-dimensional integral [Eq. (28) with
Eqs. (86) and (88)] can be expressed as a three-dimensional integral using a Bessel function identity (4).

The resulting full-wave incoherent diffuse scatter cross section that accounts for surface height/slope
correlations is expressed as

where

Furthermore,

and
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In Eq. (93),

and

In Eq. (90), p(hx, hz) is the probability density function for the slopes (assumed here to be Gaussian).
It is shown that the above results in which the correlations between the surface heights and slopes have

been accounted for in the analysis reduce to the small perturbation results when the heights and slopes are of the
same order of smallness and reduce to the physical/geometrical results in the high-frequency limit (64). These
full-wave results have also been compared with numerical and experimental results for one-dimensionally (3)
and two-dimensionally (64) rough surfaces.

When the rough surface consists of multiple scales of roughness as in the case of sea surfaces, two scale
models have been introduced to obtain the scatter cross sections. Thus, the surface is assumed to consist of a
small-scale surface that is modulated by the slopes of the large-scale surface and the cross section is expressed
as a sum of the cross sections for the large- and small-scale surfaces. However, Brown (8) has shown that
the hybrid-perturbation–physical-optics results critically depend upon the choice of the spatial wavenumber kd
that separates the large-scale surface from the small-scale surface. To apply this hybrid-perturbation–physical-
optics approach, the Raleigh rough-surface parameter β = 4k2

0〈h2
s〉 must be chosen to be very small compared

to unity. This places a very strict restriction on the choice of kd. As a result, scattering from the remaining
surface consisting of the larger-scale spectral components with kl < kd may not be adequately analyzed using
physical optics (see Fig. 4).

The above Raleigh rough-surface parameter β does not place any restriction on the choice of kd when the
full-wave analysis is used. Furthermore, it is shown (65) that the full-wave solution for these multiple-scale
rough surfaces are expressed as weighted sums of two cross sections:

where 〈σPQ
l〉 is the cross section associated with the surface consisting of the larger spectral components

(kl < kd), while 〈σPQ
s〉 is the cross section associated with the surface consisting of the smaller spectral com-

ponents ks > kd. Scattering by the small-scale surface is modulated by the slopes of the large-scale surface,
while scattering by the small-scale surface is diminished by a coefficient (less than unity) that is equal to the
magnitude of the small-scale characteristic function squared [Eq. (69)].

Thus, using the full-wave approach, extensive use is made here of the full-wave scattering cross-section
modulation for arbitrarily oriented composite rough surfaces. Thus, the incoherent diffuse radar cross sections
of the composite (multiple scale) rough surface is obtained by regarding the composite rough surface as an
ensemble of individual patches (several correlation lengths in the lateral dimension) of arbitrary orientation
(see Fig. 5). The cross section per unit area of the composite rough surface is obtained by averaging the cross
sections of the individual arbitrarily oriented pixels. It is shown that the (unified full wave) cross section of the
composite rough surface is relatively stationary over a broad range of patch sizes. In this broad range of values
of patch sizes, the norm of the relative error is minimum.



RADAR REMOTE SENSING OF IRREGULAR STRATIFIED MEDIA 25

A patch is assumed to be oriented normal to the vector (see Fig. 5)

where a′
x, a′

y, and a′
z are the unit vectors in the fixed (reference) coordinate system associated with the mean

plane y′ = h0 = 0 and hx = ∂h/∂x, hz = ∂h/∂z. The unit vectors ax and az are tangent to the mean plane of the
patch. The angles � and τ are the tilt angles in and perpendicular to the fixed plane of incidence (the x′, y′

plane).
The cosines of the angles of incidence and scatter in the patch coordinate system can be expressed in

terms of the cosines of the angles of incidence and scatter in the fixed reference coordinate system (primed
quantities; see Fig. 5) as follows:

and

The surface element scattering coefficient for the tilted pixel is expressed as follows (66):

in which SPQ
p the elements of the 2 × 2 scattering matrix Sp are obtained from SPQ on replacing the angles θi′

0
and θf ′

0 by θi
0 and θf

0, respectively. Furthermore, cos(φf ′ − φi′) and sin(φf ′ − φi′) are replaced by the cosine and
the sine of the angle (φf − φi) between the planes of scatter and incidence (with respect to the pixel coordinate
system (see Fig. 5) (62). The matrices Tf

p and Ti
p relate to the vertically and horizontally polarized waves in the

reference coordinate system to the vertically and horizontally polarized waves in the local (patch) coordinate
system (66). Thus

where
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and

The angles � and τ can be expressed in terms of the derivatives of h(x, z) as follows:

The radar cross section (per unit area) for the tilted patch can be expressed as follows:

and

where

in which

Thus, in Eq. (108) both |DPQ
p|2 and Qp are functions of the slopes hx and hz of the tilted patch mean

plane (see Fig. 5). For a deterministic composite rough surface, the slopes (that modulate the orientation of the
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patch) are known. The radar scatter cross section for this composite surface is given by summing the fields of
the individual patches. However, if the composite surface height is random, the tilted pixel cross section (per
unit area) [Eq. (108)] for the rough surface is also a random function of the pixel orientation. Thus, in order to
determine the cross section per unit area of the composite random rough surface, it is necessary to evaluate
the statistical average of σPQ

p. The cross section of the composite random rough surface is given by

where 〈·〉 denotes the statistical average (over the slope probability density function p(hx, hz) of the tilted patch).
The mean-square slope of the tilted patch is given in terms of the surface height spectral density function

For the case kp → 0, Lp, lp → ∞, σp → 0, the cross section 〈σPQ
p〉 reduces to the original full-wave solution 〈σPQ

0〉
[Eq. (65)]. In Eq. (114), the upper limit kp is the wavenumber associated with the patch of lateral dimension
Lp = 2π/kp.

In the expression for Qp(nf , ni) [Eq. (109)], the surface height autocorrelation function for the rough
surface associated with the patch is given in terms of the Fourier transform of the surface height spectral
density function as follows:

where it is assumed that the surface is homogeneous and isotropic, k = (k2
x + k2

z)1/2.
Illustrative examples of the results obtained for the scatter cross section using the above procedures have

been published (66).
For purposes of comparisons, the generalized telegraphists’ equations [Eqs. (32) and (33)] have also been

solved numerically for one-dimensionally rough surfaces (67). The procedures used are outlined here. On
extending the range of the wave vector variable u from −∞ to ∞, the Eqs. (32) and (33) are combined into one
coupled integrodifferential equation for the forward and backward scattered wave amplitudes a(x, u) and a(x,
−u), respectively.

On extracting the rapidly changing part exp(−iux), the wave amplitudes are expressed as

The total wave amplitude is the sum of the source-dependent primary wave amplitude AP
p and the diffusely

scattered wave amplitude AP
s due to the surface roughness:
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The primary wave amplitude is obtained from Eqs. (32) and (33) on ignoring the coupling terms Sαβ
PQ. The

resulting integrodifferential equation for the diffusely scattered term AP
s is converted into an integral equation

with mixed boundary conditions. This expression is integrated by parts to get rid of the singularity in the
scattering coefficient. The resulting integral equation is solved numerically using the standard moments
method. Finally the field transforms [Eqs. (17) and (18)] are used to obtain the results for the electromagnetic
fields from the wave amplitudes. For the far fields, these expressions can be integrated analytically (over the
wavenumber variable) using stationary-phase techniques. These results show that for surfaces with small to
moderate slopes the proceeding analytical results are valid (67).

When the observation points are near the surface, it is necessary to account for coupling between the
radiation fields, the lateral waves, and the surface waves associated with rough surface scattering (68,69). When
the rough surface is assumed to be perfectly conducting, the contribution from the branch cut integral associated
with the lateral waves vanishes and there are no residue contributions (associated with surface waves) from
the singularities of the reflection coefficients. When the approximate impedance boundary condition is used,
the lateral wave contribution is eliminated.

The full-wave method can also be used to determine the fields scattered upon transmission across rough
surfaces (70). When scattering from more than one rough interface in an irregular stratified media is considered,
in general, it becomes necessary to account for scattering upon reflection and transmission across rough
surfaces. This topic is reviewed in the next section.

Full-Wave Solutions for Three Media Irregular Stratified Structures

Full-wave solutions are derived for the electromagnetic fields scattered by the two rough surfaces in a realistic
physical model of a three media environment. They account for five different scattering mechanisms that the
waves undergo, assuming that both the transmitter and receiver are above the uppermost interface of the
irregular media. Two scattering mechanisms are associated with reflection from above and below the upper
interface, and two are associated with transmission across the upper interface; the fifth is associated with
reflection from above the lower interface.

In view of the fact that in general the two rough interfaces are characterized by independent random rough
surface heights (except where the thickness of the intermediate medium vanishes) the rough surface height
joint probability density functions are characterized by a family of probability density functions associated
with the gamma functions. Multiple bounces between the two interfaces are accounted for in the analysis. The
elements of the incoherent Mueller matrix (that relates the scattered to the incident Stokes vectors) can be
obtained from the expressions for the scattered fields. From the simulated data it is possible, for instance, to
determine the optimal polarizations and the incident and scatter angles of the waves as well as the wavelength,
for purposes of suppressing or enhancing the impact of the clutter from the rough interfaces. This work can
be used to provide realistic models of electromagnetic scattering from snow-covered terrain, ice-covered sea
surfaces, naturally occurring or man-made oil slicks, and coated rough surfaces. The models can be used to
reduce the impact of signal clutter from the rough interfaces, to facilitate the detection of buried objects.

The diffusely scattered electromagnetic fields for the two irregular structures illustrated in Fig. 6 were
investigated initially. In model 1, the upper interface is flat and the lower interface is rough (71,72,73,74). In
model 2, the upper interface is rough and the lower interface is flat (75).

In this work, the model of the irregular structure considered consists of two random rough (upper and
lower) interfaces. The thickness of the coating material (film) between the two random rough interfaces is
assumed to be arbitrary. The physical mechanism for scattering from coated rough surfaces is schematically
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Fig. 6. Two previously investigated models with only one rough interface.

illustrated in Fig. 7. The upper interface for y = h01s(xs, zs) between medium 0 and medium 1 is

where the mean value of h01s is < h01s >= h01. The lower interface y = h12s(xs, zs) between medium 1 and
medium 2 is

The thickness of the coating layer, HD, is

The unit vectors normal to the large-scale rough interfaces between medium 0 and 1 and between medium 1
and 2 are

where

Using the full-wave approach (71), the diffuse first-order scattered fields can be expressed as the sum
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Fig. 7. Irregular layered model with two rough interfaces.

where EPQ
SU(r) is associated with scattering from the upper interface, and EPQ

SD(r) is associated with scattering
from the lower interface. For eiwt time harmonic plane wave excitations, the incident electric field of magnitude
EiP

0 is

In Eq. (125), aP is parallel (P = V) or perpendicular (P = H) to the reference plane of incidence (normal to
ni

0 × ay where ni
0 is the unit vector in the direction of the wave vector ki

0 for the incident waves). For plane-
wave excitations and for observation points above the upper interface y ≥ h01s(xs, zs) the scattered fields due to
the rough upper and lower interfaces are given by (72,75,76,77).
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where FPQ
mnU(m, n = 0, 1) and FPQ

11D are scattering coefficients associated with the upper and lower interfaces.
The integration is over the rough surface variables xs and zs as well as the wave number variables v0 and w of
the scattered wave vector k0. The superscripts of EPQ

s denote P (P = H, V) polarized scattered fields due to Q
(Q = H, V) polarized incident fields. The fields expressed by Eqs. (126) and (127) are at the observation point
y ≥ h01s:

The position vectors to points on the upper and lower rough interfaces are

The incident and scattered wave vectors are
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Fig. 8. Scattering upon reflections in medium 0 above the upper interface.

In Eqs. (131)–(134) the complex sines and cosines of the incident and scatter angles in medium 1 and 2 are
related by Snell’s law:

Equations (126) and (127) contain the expressions for the Fresnel reflection (RP
αβ) and transmission (TP

αβ)
coefficients for vertically and horizontally polarized waves, the wave impedance η, and refractive index n (76).

The physical interpretations of Eqs. (126) and (127) are illustrated in Figs. 8 to 12 (71,72,75,76). Equation
(126) represents scattering due to the upper rough interface, and Eq. (127) represents scattering due to the
lower rough interface. The first term on the right-hand side of Eq. (126) associated with the scattering coefficient
FPQ

00U accounts for scattering upon reflection from above the rough upper interface (see Fig. 8). The second
term in Eq. (126) associated with FPQ

01U accounts for waves that undergo multiple reflections in medium 1
and are scattered upon transmission back to 0 (see Fig. 9). The third term in Eq. (126) associated with FPQ

10U
accounts for scattering upon transmission from medium 0 to 1 followed by multiple reflections in medium 1
before wave transmission back to medium 0 (see in Fig. 10). The fourth term in Eq. (126) associated with
FPQ

11U accounts for multiple reflections in medium 1 before scattering upon reflection in medium 1 from below
the upper interface, followed by multiple reflections in medium 1 before transmission back to medium 0 (see
Fig. 11). The single term in Eq. (127) associated with the scattering coefficient FPQ

11D accounts for multiple
reflections in medium 1 before scattering upon reflection in medium 1 from above the lower interface, followed
by multiple reflections in medium 1 before transmission back to medium 0 (see Fig. 12). It is shown that for
uniform layered structures, the full-wave solutions sum up to the classical solutions (71,72,73,74,75).

The diffuse scattered fields are evaluated at a point in the far-field region above the upper interface. The
stationary phase method is used to evaluate the integrals over the scatter wave vector variables v0 and w in
Eqs. (126) and (127). Thus, the scattered far fields at rf (the position vector from origin to the receiver) are
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Fig. 9. Scattering upon transmission (across upper interface) from medium 1 to medium 0.

Fig. 10. Scattering upon transmission (across upper interface) from medium 0 to medium 1.

expressed as follows:
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Fig. 11. Scattering upon reflection (in medium 1) below the upper interface.

Fig. 12. Scattering upon reflection (in medium 1) above the lower interface.

and

where the position vectors to the mean upper and lower surfaces are
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and

The wave vectors associated with scattering in the media are

and the terms associated with multiple bounces in the coating material are

The geometric series expansions appearing in Eqs. (142) and (143) are used whenever HD(xs, zs) is not
constant, in order to perform necessary integrations by parts that explicitly involve the derivative of the rough
surface heights (75).

The normalization coefficients are

For parallel stratified structures (no roughness), the full-wave solutions reduce to the exact, classical
solution. The solutions for the like- and cross-polarized diffuse scattered fields presented here can be applied
to scattering from irregular layered media with arbitrarily varying rough interfaces such that the thickness of
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the intermediate layer is also arbitrary when random rough surfaces are considered. The rough surface height
probability density functions are characterized by a family of gamma functions rather than the standard
Gaussian probability density functions to ensure that HD(xs, zs) ≥ 0 (78).

The polarimetric solutions can be applied to remote sensing of dielectric coating materials on rough
surfaces. In particular, it is possible to determine the optimal polarizations of the transmitter and receiver such
that the presence of clutter from the rough interfaces can be suppressed, in order to facilitate the detection of
buried mines for example.
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