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PHASED ARRAY ANTENNAS

A receiving antenna is a spatial sampler of the incident electric field. It provides an estimate of the incident
field by performing a spatial averaging or integration of the impinging electric fields along the physical length
of the antenna. The purpose of a complex antenna element or an antenna array is to carry out spatial filtering,
that is, to select the incident fields arriving from some preferred directions or having some spatiotemporal
properties and to zero out the response along other directions. Two of the most prevalent applications of spatial
filtering are radio direction finding and adaptive processing.

In radio direction finding the objective is to estimate the angle of arrival and intensities of the various
signals by measuring a set of induced voltages in the elements of an antenna array. So from the given physical
dimensions and geometry of the array and the measured noise-contaminated voltages induced in the antenna
elements, the goal is to estimate both the directions of arrival and strengths of the various signals. In Fig. 1
an idealized array of omnidirectional isotropic point sources is shown. This assumption will be relaxed later
in the presentation. The goal in radio direction finding is, given the induced complex voltages Vi at each of the
antenna elements, to estimate their complex signal strengths and directions of arrival.

In adaptive processing, the objective is to extract a desired signal of interest buried in various multipaths
or reflections of the signal, strong interference, and thermal noise. Generally, it is assumed that the direction
of arrival of the signal is known whereas the angles of arrival of the undesired signals are not known. It is
desired to extract a signal of interest (SOI) from the measured complex voltages Vi at the antenna elements,
which are the sum of the signal of interest and other undesired signals, including noise. Always, however, in
this process something about the signal is assumed to be known (1). This is the prerequisite for any adaptive
system. The a priori information may be available in any of the following forms: (1) the direction of arrival
of the signal, (2) some special temporal characteristics like cyclostationarity or constant modulus, or (3) some
statistical information, such as that the desired signal and the undesired signals are statistically independent.

Stochastic Versus Direct-Data-Domain Approach

Historically, almost all algorithms in radio direction finding and adaptive processing have used algorithms
that are based on stochastic methodology so that the algorithm performs in an optimum sense on the average.
With the advent of the digital revolution, classical algorithms applied to analog systems are still being used
in digital form. The application of a direct-data-domain method is therefore very attractive, as it allows one to
obtain an optimum solution for the data on hand and not on the average for all the data sets. In addition, the
application of a direct-data-domain approach is computationally very efficient, as no covariance matrix of the
data is needed. In most algorithms it is assumed that the covariance matrix of the data is given; however, in
reality it is only the data themselves that are available. Hence one tries to approximate the covariance matrix
from the data sets. Not only is that a very computation- intensive process, but also, it is difficult to estimate
the error that is incurred in this approximation. In addition, a direct-data-domain least-squares approach has
a lower Cramer–Rao bound for the parameters of interest than a stochastic methodology (2).
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Fig. 1. An array of omnidirectional isotropic point sources.

A case is made here for applying the methodology directly to the data set at hand, which provides a direct
least-squares solution based on the available data without making any assumptions of the underlying statistics
(3). In this review we will introduce the computationally efficient and numerically robust direct-data-domain
methodology for both radio direction finding and adaptive processing. Another ramification of this approach is
that it is quite straightforward to allow for mutual coupling between the sensors collecting the data. This issue
is addressed later on.

Radio Direction Finding

In radio direction finding the technique is to estimate the complex intensities of the various signals incident
on the antenna elements from complex signal voltages measured at the terminals of the antenna. There are
several assumptions that are involved in the processing. First, the sources of the signals are assumed to be
located in the far field. Far field is defined as a distance greater than 2d2/λ, where d is the largest physical
dimension of the antenna array and λ is the wavelength of the signal. The far-field assumption implies that
the wavefront of the signal arriving at the array is essentially planar.

Another assumption that is generally used is that the antennas are omnidirectional point radiators so
that there is no mutual coupling between the elements. However, this is a highly idealized situation. It is
never true in real life, and hence, unless the electromagnetic effects (from solution of Maxwell’s equations)
are taken into account, use of pure signal-processing algorithms will not provide meaningful results in a
real environment. First, we present the methodology for estimating the direction of arrival for idealized
omnidirectional point sources. Then, the effects of mutual coupling, when using realistic antennas, can be
allowed for by electromagnetic preprocessing of the data as outlined in the section on adaptive processing
below.

Case A: Uniform Linear Array (Antenna Elements Are Uniformly Spaced). When the omnidi-
rectional point-source antenna elements are uniformly spaced, the complex voltage Vn induced in an antenna
element n is given by

where dn is the location of the nth antenna element, φi is the direction of arrival of the signal from the end-fire
direction as shown in Fig. 1, and Ai is its complex amplitude. P is the total number of signals incident on the
array and needs to be determined. For a uniformly spaced array dn = nd, where d = �χ is the interelement
spacing (as per Fig. 1). Here we have used a single snapshot, i.e., the phasors Vn are measured across the entire
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array at a single time instant. It is further stipulated that all P signals are narrowband and the wavelength of
transmission is λ. So the goal here is to estimate the 2P unknowns of Ai and φi from the measured voltages Vn.
As long as there are 2P antenna elements, the problem can be solved by fitting a sum of complex exponentials to
the voltages Vn. This is computed through the matrix-pencil approach (4,5,6), which is very robust when applied
to noisy data. Of course, in a real situation there is noise in the data and hence we need more than 2P antenna
elements. The conventionally used methodology of ESPIRIT (7,8) requires the formation of a covariance matrix,
which is computationally more intensive than the Matrix-Pencil Technique. From a statistical point of view
both the methods have similar variances for the estimates in presence of noise. However, it is important to note
that additional processing is required, as in ROOT-MUSIC, where actual directions of arrival are obtained,
which involves factoring a high-order polynomial to estimate the strengths of the various signals.

Case B: Nonuniformly Spaced Elements (Antenna Elements Are Nonuniformly Spaced).
When the antenna elements are spaced nonuniformly, then clearly the above approach based on a single
snapshot is not applicable. The processing is to be done in the time domain. In that case one uses the model

where dn is the location of the nth antenna element, f 0 is the frequency of transmission, and φi is the phase
associated with the ith incident field. Therefore, Ai is considered to be real. It is important to note in this
scenario that if there are coherent multipaths (i.e., the signal and an undesired multipath component of the
signal are in phase), a nonuniformly spaced array cannot separate them from a single snapshot without any
additional processing. Temporal information is also necessary (9). The various components can be extracted
using MUSIC (7) and many of its derivatives, and also ESPIRIT (7) may be used for a certain class of array
geometries.

Adaptive Processing Using The Spatial-Domain Least-Squares Approach

In the conventional adaptive beam-forming methodology each antenna element is weighted. The processing of
information is done over time as the correlation matrix R of the data needs to be formed (10). In the current
development we deal with a single frame or a single snapshot. A single snapshot is defined as the set of
complex voltages Vn measured at each one of the N + 1 antenna elements at a particular instant of time.
These measured voltages Vn, n = 0, 1, . . ., N, contain the desired signal plus jammer, clutter, and thermal
noise components. Hence, in this development one can allow for blinking jammers, time-varying clutter, and
coherent multipath components. The price one pays for dealing with a snapshot (frame) is that the number of
degrees of freedom is limited to N/2, as opposed to N + 1 in the covariance-matrix-based approaches. However,
this limitation is alleviated by doubling the available data, as illustrated later (11,12,13,14). In this model we
double the number of data by not only considering them in the forward direction but also conjugating them and
reversing the direction of increment of the independent variable; we call this the backward method [1]. This
type of processing can be done as long as the series to be approximated can be fitted by exponential functions
of purely imaginary argument. This is always true for the adaptive-array case. So by considering the data set
x(k) and x∗(−k) we have essentially doubled the amount of data without any penalty, as these two data sets for
our problem are linearly independent. Next we use these data to find the adaptive weights, which are related
to the directions of arrival of the jammers.

Often, due to uncertainties in the direction of arrival of the SOI, there may be signal cancellation in the
adaptive process. The expected signal (target return) may not arrive from a single predetermined angle, but,
due to refractions of the atmosphere, arrive over a finite angle extent. In addition, there is always a mismatch
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between the look-direction constraint and the true direction of arrival of the desired signal. Correction for
this uncertainty is accomplished in the least-squares procedures by establishing look-direction constraints
at multiple angles of the adaptive receiver pattern within the transmitter main-beam extent. The multiple
constraints are established by using a uniformly weighted array pattern for the same-size array as the adaptive
array under consideration. Multiple points of constraints in the received adaptive beam pattern to be formed
are chosen for the nonadapted array pattern, and a row corresponding to each constraint is implemented in
the matrix equations presented below:

Here Zi represent the various constraints along specific look directions of: the receiver beam pattern and are
defined by [Zi = exp (j2τd/λ) cos φi]. Z0 corresponds to the SOI. Here Xi are the actual voltages measured at the
ith antenna element due to SOI, jammer, clutter, and thermal noise. Wi are the adaptive weights, and Ci are
numerical prefixed values of the constraints imposed on the adapted beam to be formed. Let L be the number
of look-direction constraints, and M + 1 be the number of weights to be calculated. Therefore M −L + 1 is the
number of jammers that can be nulled.

The first L + 1 equations in Eq. (3) define the main beam constraints of the adapted receiver pattern.
The remaining equations use data from the N + 1 elements, and each entry computes the difference between
neighboring elements, thereby canceling the SOI and hence containing only undesired signal components. The
number of equations must equal the number of weights, and therefore M = L + N − M. This leads to the
relationship N = 2M − L between the number of weights, number of constraints, and number of elements.
Using the forward–backward data from a single snapshot, the maximum number of weights or the degrees of
freedom that can be achieved for a direct-data-domain approach is approximately N/1.5 + 1, as opposed to N
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+ 1 for the conventionally used statistical method. So there is a slight loss in the degrees of freedom. However,
we gain the ability to deal with a highly nonstationary environment where the signal environment may change
even from a snapshot to snapshot and thereby allow for blinking jammers.

In a phased array, the angle extent of the received beam is established by the main beam of the transmitted
wave (usually between the 3 dB points of the transmitted field pattern). Target returns within the angle extent
must be coherently processed, but with the appropriate steering vector. In that case, the excitation function Y
[right-hand side of Eq. (3)] would have several nonzero elements, depending on the number of constraints used
for the main beam. This is called a multiple-constraint receive beam pattern, as opposed to constraining it at a
single point based on the assumed direction of arrival of the signal of interest. The advantage of dealing with
multiple constraints as opposed to a single constraint in the main beam is illustrated next.

Consider a 21-element array with N = 20 and M = 11. The beam is considered to be pointed broadside (θ
= 90◦), and target returns can be expected over the main beam out to the 3 dB points (±5◦). For the broadside-
pointed array, consider a target located in the main beam at θ = 94◦ instead of θ = 90◦. The target signal-to-noise
ratio at each element is 20 dB, and we assume no jammers or clutter present. Figure 2 shows the main-beam
region of the antenna pattern after adaptation. Since the target is not at the look-direction constraint point
(i.e., θ = 90◦), the adaptive process considers it as an interfering source and attempts to null it. Because the
target is relatively near to the look-direction constraint, the process is not able to form a perfect null. Figure
3 shows the complex array gain along the target direction for 10 random samples of the noise. The point ×
represents the nonadapted array gain in the target direction. Note that the gain in the target direction is
reduced in each case. In addition, there is a wide variation in the array gain from one random sample to the
other. Now, if one were to process the returns from different pulses in a pulse burst that was to be coherently
integrated, then this variation in the received signal would have significant influence on that integration. We
now illustrate how to overcome it.

We establish a multiple constraint on the receive pattern as shown in Fig. 4 at 85◦, 87.5◦, 90◦, 92.5◦, and
95◦. So the receive signal would not be nulled if it were located anywhere within the 10◦ beam width. For this
particular case, the excitation vector Y would be of the form YT = [13, 7.72 + j8.32, 7.72 − j8.32, − 0.816 +
j7.149, − 0.816 − j07.149, 0, 0, 0, 0, 0, 0, 0, 0]. The corresponding receive beam pattern with the five constraints
is shown in Fig. 4. We now consider the same example as before. However, as seen from Fig. 5 (using the same
data from 10 random samples of noise), there is no reduction of the array gain along the direction of the target,
and for all the ten runs the array gain vectors are very nearly aligned. The five-constraint approach permits
effective radar processing across the main beam’s extent with no effect of the loss of gain in the target direction.
The adaptive process has been prevented from nulling the target.

In summary, the main-beam constraint allows the look-direction constraint to be established over a finite
beam width while maintaining the ability to adaptively null jammers in the side-lobe region. Although the
main-beam gain can become degraded if the signal becomes very strong, this does not appear to be a serious
limitation for practical radar-processing.

Incorporation Of Mutual Coupling In Adaptive Antennas

To illustrate the importance of mutual coupling between antenna elements in a phased array, we consider
signal recovery by a linear array of equispaced, thin, half-wavelength dipoles as shown in Fig. 6. However, in
this analysis the antennas can be any complex composite element. The method of moments (MOM) is used to
perform the electromagnetic analysis of the antenna array. Using a Galerkin formulation, the entries of the
MOM impedance matrix measure the interaction between the basis functions, i.e., they quantize the mutual
coupling (15,16). The electromagnetic analysis needs to be coupled with the signal-processing algorithms in
order to generate accurate and reliable results (17,18). These ideas are explained through an array of Ne
uniformly spaced isotropic point sensors as shown earlier in Fig. 1. The array receives a signal (called S) from a
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Fig. 2. Main-beam array gain with a strong target at 94◦.

known direction φ0 and some interference sources (called Ji) from unknown directions. In the absence of mutual
coupling, each individual source presents a linear phase progression across the face of the array. Therefore, the
voltage at the i-th element due to the incident fields is

where, um = cos φm, S is the complex intensity of the signal incident from direction φ0, Jm is the intensity of
the mth interference source arriving from direction φm, and ni is the additive noise at each element. Let β =
exp(jk �x u0) represent the phase progression of the signal between one element and the next. Hence, the term
Vi − β− 1Vi+1 has no signal component. This is illustrated through the last K equations of Eq. (3), where, K =
(Ne + 1)/2.

The last K − 1 rows of the matrix contain only interference and noise terms. Setting the product of these
terms with the weights to zero nulls the interference in a least-squares sense. The equation represented by the
first few rows constrains the gain of the array along the direction of the signal. It can be shown that if M + 1
≤ K, the signal can be recovered and
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Fig. 3. Complex array gain: one constraint.

Fig. 4. Uniformly weighted array pattern with the location of the five constraints.

It is important to point out that there may be signal cancellation if the actual direction of arrival of the signal
of interest is slightly different from the assumed direction of arrival. However, this can be avoided by selecting
the first row of the matrix and replacing it by placing an a priori 3 dB constraint on the receive beam width
of the adaptive pattern as the optimization process progresses. This prevents signal cancellation when there
is uncertainty in the direction of arrival.

Let us consider a signal corrupted by three jammers that are incident on the array. To focus only on the
effects of mutual coupling, it is first assumed that there is no mutual coupling between the antenna elements
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Fig. 5. Complex array gain: five constraints.

Fig. 6. A realistic adaptive antenna array.

and the voltages at the ports of the array is given by Eq. (4). These voltages are then passed to the signal
recovery subroutine to find the adaptive weight using Eq. (3), and the signal is estimated using Eq. (5). Next,
we consider a realistic antenna array as shown in Fig. 6, where each wire antenna element is centrally loaded
with an impedance.

The details of the chosen array are presented in Table 1 and illustrated in Fig. 5. The receiving algorithm
tries to maintain the gain of the array in the direction of φ0 = 45◦ while automatically placing nulls at in the
interference directions. All signals and jammers arrive from the elevation = 90◦. The base signal and jammer
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intensities and directions of arrival φi are given in Table 2. In all simulations the jammer intensities, the
directions of arrival of the jammers, and the signal intensity are used only to find the voltages input to the
receiving algorithm. The receiving algorithm itself uses only the direction of arrival of the signal; that is, only
the look direction is considered to be known.

The signal is kept constant at 1.0 V/m as given in Table 2. The intensity of the first jammer, arriving from
φ = 75◦, is varied from 1.0 V/m (0 dB with respect to the signal) to 1000.0 V/m (60 dB) in steps of 5 V/m. If
the jammers are properly nulled, we expect the reconstructed signal to have no residual jammer component.
Therefore, as the jammer strength is increased, we expect the reconstructed signal to remain constant.

Figure 7(a) presents the results on the magnitude, and Fig. 7(b) on the phase, for the adapted signal using
the receiving algorithm when mutual coupling is absent and the antenna array is considered to be an ideal one
as shown in Fig. 1. The magnitude of the reconstructed signal is indistinguishable from the expected value of
1.0 V/m. This figure demonstrates that, in the absence of mutual coupling, the receiving algorithm is highly
accurate and can still null a strong jammer.

Figure 8(a,b) show the results for the magnitude and phase, respectively, of the received signal when
using the measured voltages that are affected by mutual coupling. Here, the array consists of seven wires.
The magnitude of the reconstructed signal varies approximately linearly with respect to the intensity of the
jammer. This is because the strong jamming is not nulled and the residual jammer component completely
overwhelms the signal.

The reason the signal cannot be recovered when mutual coupling is taken into account can be understood
visually by comparing the adapted beam patterns in the ideal case of no mutual coupling with the case where
mutual coupling is present. In Fig. 9(a) we see the beam pattern for the ideal case. The pattern clearly displays
the three deep nulls at the directions of the interference. The high side lobes are in the region where there
is no interference. Because of the deep nulls, the strong interference can be completely nulled and the signal
recovered correctly. Figure 9(b) shows the beam pattern when the mutual coupling is taken into account. As is
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Fig. 7. Signal recovery for an idealized array without mutual coupling.

clear, the gain of the antenna along the signal direction is considerably reduced. The pattern nulls are shallow
and are displaced from the desired locations. The shallow nulls result in inadequate nulling of the interference;
hence the signal cannot be recovered.

The receiving antenna is next assumed to be a linear array of Ne elements as illustrated in Figure 6.
The elements are parallel, thin equispaced dipoles. Each element of the array is identically point loaded at
the center. The dipoles are x-directed, of length L and radius a, and are placed along the x axis, separated by
distance �x. The array lies in the X–Z plane.
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Fig. 8. Signal recovery for a realistic array in the presence of mutual coupling.

We begin by analyzing the response of the antenna array to an incident field Einc. Since the array is
composed of thin wires, the following simplifying assumptions are valid (15,16): (1) The current flows only
in the direction of the wire axes (here the z direction). (2) The current and charge densities on the wire are
approximated by filaments of current and charge on the wire axes (which lie in the y = 0 plane). (3) Surface
boundary conditions can be applied to the relevant axial component of the wire axes.

The integral equation that characterizes the current on the wires and describes the behavior of the array
is (15,16)

We solve this equation using the method of moments to obtain the MOM impedance matrix. The basis
functions used are piecewise sinusoids as described in Ref. 15 and shown in Fig. 10. P (chosen odd) basis
functions are used per element. Using these basis functions and a Galerkin formulation, Eq. (6) is reduced to
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Fig. 9. Antenna beam pattern, (a) for an idealized array without taking into account mutual coupling in the analysis, and
(b) for a realistic array.

the matrix equation

where I is the MOM current vector containing the coefficients of the expansion of the current in the sinusoidal
basis, V is the MOM voltage vector representing the inner product of the weighting functions and the incident
field, and Z and Y are the MOM impedance and admittance matrices respectively. Both matrices are of order
N × N, where N = NeP is the total number of unknowns used in the MOM formulation.
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Assuming that the incident field is linearly polarized and arrives from direction (θ, φ), it can be written
in the functional form as

where k = −k( cos φ sin θ + sin φ sin θ + cos φ) is the wave vector associated with the direction of arrival of
the incident signal. Using P(odd) basis functions on each antenna, the current on the structure can be written
as

where f p,n(z) is the p-th basis function on the nth element whose functional form is given by

where �z = L/(P + 1) and zp,n = z0,n + p�z. z0,n is the z-coordinate of the bottom of the n-th antenna as shown
in Fig. 10. Substituting Eq. (9) in (6) and using testing functions f q,m(z), the entries of [V] are given by

where xm is the x-coordinate of the axis of the m-th antenna. For the impedance matrix [Z] the elements are
given by
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Fig. 10. Basis functions assumed in the electromagnetic analysis using the MOM analysis.

with

For the case m = n, i.e., both subsections i and l are on the same antenna element, the term (xm − xn) is
set to a, the radius of the wire (15). An analytic expression for the entries of the MOM impedance matrix is
derived in Ref. 15.

Because of the choice of a piecewise sinusoid basis and the choice of an odd number of basis functions per
antenna element, only one basis function is nonzero at the port. This is illustrated in Fig. 10, where the basis
function ZL is the only one contributing to the current at the port. Therefore, the measured voltage at the port
of the nth antenna is given by

i.e., the measured voltage at a port of the array is directly proportional to the coefficient of the basis function
corresponding to the port. The MOM analysis results in a matrix equation that relates the coefficients of
the current expansion to the MOM voltages through the admittance matrix. Since the MOM impedance and
admittance matrices are independent of the incident fields, they can be evaluated a priori. The measured
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voltages at the ports of the antenna are related to the current coefficients by Eq. (10). Using this equation and
Eq. (7), the Ne-dimensional vector of measured voltages can be written as

where ZL is the Ne × Ne diagonal matrix with the load impedances as its entries, Yport is the matrix with the
rows of Y that correspond to the ports of the array, [V] is the MOM voltage vector of order N, i.e., the number
of unknowns in the MOM analysis, and Yport is a rectangular matrix of order Ne × N with N > Ne. Since
Yport is a rectangular matrix with more columns than rows, Eq. (9) represents an underdetermined system of
equations. Our goal is to estimate some part of V given Vmeas. Therefore, we need a method to collapse the Ne
× N matrix Yport to an Ne × Ne matrix.

The proposed method is most easily understood when illustrated with an example. If P unknowns are
used per wire element, N = NeP. Consider the case with Ne = 2 and P = 3. Then N = 6, and basis function
2 corresponds to the port on the first element, while basis function 5 corresponds, to the port on the second
element. In this case, Eq. (11) can be written as

If the signal and all the jammers are incident from approximately the same elevation θ, the entries in V
are not all independent of each other. From Eq. (7), if weighting functions i and i + 1 belong to the same array
element,

Letting α = ejk�zcosθ, we have
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Therefore, Eq. (12) can be reduced to

where V ′ is the vector of length Ne whose entries are the MOM voltages that correspond to the ports, and B is
the Ne × Ne matrix that relates the measured voltages to V ′.

Equation (18) is a relation between the measured voltages and the MOM voltages that correspond to the
ports of the array. In a practical application, the measured voltages are the given quantities and are affected
by mutual coupling. The MOM voltages on the right-hand side of Eq. (18) are the voltages that are directly
related to the incident fields and so are free from the effects of mutual coupling. Both vectors are of order Ne,
the number of ports. Therefore, this equation can easily be solved for the MOM voltages corresponding to the
ports of the antenna. Furthermore, if the elevation angle of interest (θ) is fixed, the matrix B can be evaluated
a priori. Hence the computational cost of eliminating the mutual coupling is limited to the solution of a small
matrix equation.

The open-circuit voltages are the voltages that would be measured at the ports of the array if the ports
were open-circuited. In Ref. 17 the authors assume that these voltages are free of the effects of mutual coupling.
However, the open-circuit voltage at a particular element is the voltage measured in the presence of the other
open-circuited elements. Therefore the effect of mutual coupling has been reduced but not eliminated. Mutual
coupling can be assumed to have been eliminated only when there is nothing impeding the path of the incident
fields—not even the array itself.

We proceed with the same example presented earlier, where the intensity of the incident signal is held
constant at 1.0 V/m. The intensity of the first jammer is varied from 1.0 V/m to 1000 V/m (60 dB above the
signal) in steps of 5 V/m. For each value of the jammer intensity, the MOM voltage vector is calculated and the
measured voltages are calculated. In the first scenario the measured voltages are used to find the open-circuit
voltages. The open-circuit voltages are passed to the direct-data-domain algorithm of Ref. 18. In the second
scenario Eq. (17) is used to find the voltage vector V ′. These voltages are used to recover the signal and null the
jammers using the same algorithm. If the jammers are properly nulled, the reconstructed signal magnitude
should remain constant as a function of jammer strength.

Figure 11 presents the results when the open-circuit voltages are used to recover the signal. As can be
seen, the recovered signal shows a near-linear relation to jammer strength. This indicates that the jammer
has not been adequately nulled and the residual jammer strength has overwhelmed the signal.

The results of compensating for the mutual coupling using the technique presented in this paper are
shown in Fig. 12(a) for the magnitude and 12(b) for the phase. The magnitude of the reconstructed signal
varies between 0.996 V/m and 1.004 V/m, that is, the error in the signal recovery is very small. This figure
shows that the strong jammer has been effectively nulled and the signal can be reconstructed.

The reason that the use of the open-circuit voltages is inadequate to compensate for the mutual coupling,
while the technique presented here is adequate, is illustrated using the adapted beam patterns for the two
cases. The adapted beam pattern associated with using the open-circuit voltages is shown in Fig. 13(a). The
nulls are placed in the correct locations. However, they are shallow, resulting in inadequate nulling of the
interference.

The beam pattern associated with compensating for the mutual coupling using the technique presented
in this paper is shown in Fig. 13(b). The nulls are deep and placed in the correct directions. This demonstrates
that the mutual coupling has been suppressed enough to null even a strong jammer.
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Fig. 11. Signal recovery using the open-circuit voltages.

Figures 11 and 13 allow us to conclude that using the open-circuit voltages does reduce the effect of mutual
coupling somewhat. However, the reduction is inadequate to suppress strong interference. This is because the
open-circuit voltage at an array element is the voltage in the presence of the other open-circuited elements.
The direct-data-domain technique along with the MOM presented proves to be far superior in compensating for
mutual coupling. This is because by using multiple basis functions per antenna element, the mutual-coupling
information has been represented accurately.

Effect Of Noise

To illustrate the effect of thermal noise on the adaptive signal corrupted by three jammers as given in Table 3,
we consider an array of z-directed dipoles that is centrally terminated by a 50 	 resistance. Seven unknowns
per wire are used in the MOM analysis, leading to a total of 91 unknowns. The signal-to-noise ratio was
set at 13 dB. Note that jammer 1 is a strong jammer (66 dB with respect to the signal). For each of the 13
antenna channels, a complex Gaussian random variable is added to the measured voltages due to the signal
and jammers. This set of voltages, affected by noise, is passed to the signal recovery routine described earlier.
The computational procedure is repeated 500 times with different noise samples. These 500 samples are used
to evaluate the mean and the variance of the parameter of interest. The output signal to interference plus noise
ratio (SINR) in decibels is defined as

The results of the above simulation are presented in Table 4. When the measured voltages are used
directly to recover the signal, then—mainly due to the high bias in the estimate of the signal—the output SINR
is only 6.35526 dB. The high bias can be directly attributed to the inadequate nulling of the strong jammer.
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Fig. 12. Signal recovery in a realistic array after taking mutual coupling into account: (a) magnitude, (b) phase.

However, when the mutual coupling is eliminated using the technique presented in this paper, the jammers
are completely nulled, yielding accurate estimates of the signal. The total interference power is suppressed to
nearly 20 dB below the signal.

The examples presented here illustrate how one can effectively deal with the effects of mutual coupling
between the sensors. Using the MOM with multiple basis functions per element allows us to reduce the mutual
coupling to an extent where it becomes inconsequential. Hence, the effects of mutual coupling in the analysis
have not been eliminated but rather taken into account.
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Fig. 13. Antenna beam pattern (a) using open-circuit voltages and (b) after allowing for the presence of mutual coupling.

Epilogue

For the deployment of any realistic phased arrays, the electromagnetic nature of the array must be taken
into account. We have shown that the mutual coupling between the elements of the array causes adaptive
algorithms to fail. This problem is associated with both covariance-matrix approaches (as stated earlier in Ref.
17) and the direct-data-domain approach (investigated here).

To properly characterize the antenna, the MOM is used. The use of multiple basis functions per element
in a practical manner is a major advance and provides a pragmatic approach to the design of phased-array
antennas. Recognizing that the MOM voltage vector is free from mutual coupling eliminates the mutual
coupling from consideration. By using a relationship between the entries of the MOM voltage vector, a square-
matrix equation is developed between the given measured voltages and the relevant entries of the MOM voltage
vector. It is shown that this method works very well in the presence of strong interfering sources.
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Through a successful coupling of the electromagnetic analysis with the signal-processing algorithms used
in radio direction finding and adaptive antennas, it is possible to make wide use of realistic phased-array
antennas.
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