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Introduction

Welcome to this course on Basic Electrical Technology. Engineering students of almost all
disciplines has to undergo this course (name may be slightly different in different course
curriculum) as a core subject in the first semester. It is needless to mention that how much we are
dependent on electricity in our day to day life. A reasonable understanding on the basics of
applied electricity is therefore important for every engineer.

Apart from learning d.c and a.c circuit analysis both under steady state and transient
conditions, you will learn basic working principles and analysis of transformer, d.c motors and
induction motor. Finally working principles of some popular and useful indicating measuring
instruments are presented.

The course can be broadly divided into 3 major parts, namely: Electrical circuits, Electrical
Machines and Measuring instruments. The course is spread over 10 modules covering these 3-
parts, each module having two or more lessons under it as detailed below.

Contributors

1. Modules 4, 5 and 8 by Prof. N.K. De
2. Modules 2, 3 and 10 by Prof. G.D. Ray
3. Modules 1, 6, 7 and 9 by Dr. T.K. Bhattacharya

Module-1 Introduction
Following are the two lessons in this module.

1.1 Introducing the course

Currently we are in this lesson which deals with the organization of the course material
in the form of modules and lessons.

1.2 Generation, transmission and distribution of electric power: an overview

This lesson highlights conventional methods of generating 3-phase, 50 Hz electrical
power, its transmission and distribution with the help of transmission lines and
substations. It will give you a feel of a modern power system with names and function
of different major components which comprise it.

Module-2 DC circuits

This module consists of seven lessons (2.1-2.7) starting with the fundamental concepts of electric
circuit (active and passive) elements, circuit laws and theorems that established the basic
foundation to solve dc network problems or to analyze the voltage, current and power (delivered
or absorbed) in different branches. At the end of each lesson a set of problem is provided to test
the readers understanding. Answers to these problems are located therein. The contents of each
lesson are described below.

2.1 Introduction to electrical circuits

This lesson provides some basic concepts on Kirchoff’s law, difference between linear
and nonlinear circuits, and understanding the difference between current and voltage
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2.2

23

24

2.5

2.6

sources. The mathematical models of voltage and current sources are explained and
subsequently the basic principles of voltage and current dividers are discussed. Each
topic of this lesson is clearly illustrated by solving some numerical problems.

Loop Analysis of resistive circuit in the context of dc voltages and
currents

In this lesson, loop analysis method based on Ohms law and Kirchoffs voltage law is
presented to obtain a solution of a resistive network. This technique is particularly
effective when applied to circuits containing voltage sources exclusively; however, it
may be applied to circuits containing both voltage and current sources. Several
numerical problems including both voltage and current sources have been considered to
illustrate the steps involved in loop analysis method.

Node-voltage analysis of resistive circuit in the context of dc voltages and
currents

Node voltage analysis is the most general and powerful method based on Kirchhoff’s
current law is introduced in this lesson for the analysis of electric circuits. The choice
of one the nodes as reference node for the analysis of dc circuit is discussed. The
procedure for analyzing a dc network is demonstrated by solving some resistive circuit
problems.

Wye (Y) — Delta (A) or Delta (A) — Wye (Y) transformations

The objective of this lesson is to introduce how to convert a three terminal Delta (A) /
Wye (Y) network into an equivalent Wye (Y) / Delta (A) through transformations.
These are all useful techniques for determining the voltage and current levels in a
complex circuit. Some typical problems are solved to familiarize with these
transformations.

Superposition Theorem in the context of dc voltage and current sources
acting in a resistive network

This lesson discusses a concept that is frequently called upon in the analysis of linear
circuits (See 2.3). The principle of superposition is primarily a conceptual aid that can
be very useful tool in simplifying the solution of circuits containing multiple
independent voltage and current sources. It is usually not an efficient method. Concept
of superposition theorem is illustrated by solving few circuit problems.

Thevenin’s and Norton's theorems in the context of dc voltage and
current sources in a resistive network

In this lesson we consider a pair of equivalent circuits, called Thevenin’s and Norton’s
forms, containing both resistors and sources at the heart of circuit analysis. These
theorems are discussed at length and highlighted their great utility in simplifying many
practical circuit problems.

Reduction of linear circuits to either equivalent form is explained through solution of
some circuit problems. Subsequently, the maximum power transfer to the load from the
rest of circuit is also considered in this lesson using the concept of these theorems.
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2.7 Analysis of dc resistive network in presence of one non-linear element

Volt-ampere characteristic of many practical elements (Carbon lamp, Tungsten lamp,
Semiconductor diode, Thermistor etc.) exhibits a nonlinear characteristic and it is
presented in this lesson. A common graphical procedure in case of one nonlinear
element or device in a circuit is also introduced in this lesson to analyze the circuit
behavior. This technique is also referred to as load line analysis method that is
intuitively appealing to analyze some complex circuits. Another method based on
analytic technique is described to analyze an electric circuit that contains only one
nonlinear element or device. These techniques are discussed through worked out
problems.

Module-3 DC transient

The study of DC transients is taken up in module-3, consisting of two lessons (3.1 and 3.2). The
transients in a circuit containing energy storage elements occur when a switch is turned on or off
and the behavior of voltage or a current during the transition between two distinct steady state
conditions are discussed in next two lessons. At the end of each lesson some problems are given
to solve and answers of these problems are located therein. The contents of each lesson are
described below.

3.1 Study of DC transients in R-L and R-C circuits

This lesson is concerned to explore the solution of first order circuit that contains
resistances, only single energy storage element inductance or capacitance, dc voltage
and current sources, and switches. A fundamental property of inductor currents and
capacitor voltages is discussed. In this lesson, the transient and steady state behavior in
a circuit are studied when a switch is turned on or off. The initial condition, the steady
solution and the time constant of the first order system are also discussed that uniquely
determine the system behavior. The solution of differential equation restricted to
second order dynamic systems for different types of forcing function are included in
Appendix of this, lesson. Some problems are solved and their dynamic responses are
plotted.

3.2 Study of DC transients in R-L-C circuits

The solution of second order circuit that contains resistances, inductances and
capacitances, dc voltage and current sources, and switches is studied in this lesson. In
this lesson, the transient and steady state behavior of a second order circuit are studied
under three special cases namely, (i) over damped system (ii) critically damped system
(iii) under damped system that can arise depending upon the values of circuit
parameters. Some examples are solved and their dynamic responses are shown.
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Module-4 Single phase AC circuits

There are six lessons (4.1-4.6) in this module, where the various aspects related to ac circuits fed
from single phase supply, are described.

41

4.2

4.3

4.4

4.5

4.6

Generation of single phase ac and fundamental aspects

The principle of generation of sinusoidal (ac) waveforms (single phase) in an ac
generator is first presented. Then, the two aspects — average and root mean square (rms)
values, of alternating or periodic waveforms, such as voltage/current, are described with
typical examples (sinusoidal and triangular).

Representation of sinusoidal quantities in phasor with j operator

As the phasor relations are widely used for the study of single phasor ac circuits, the
phasor representation of sinusoidal quantities (voltage/current) is described, in the lesson,
along with the transformation from rectangular (Cartesian) to polar form, and vice versa.
Then, the phasor algebra relating the mathematical operations, involving two or more
phasors (as the case may be), from addition to division, is taken up, with examples in
each case, involving both the forms of phasor representations as stated.

Steady state analysis of series circuits

The steady state analysis of series (R-L-C) circuits fed from single phase ac supply is
presented. Staying with each of the elements (R, L & C), the current in steady state is
obtained with application of single phase ac voltage, and the phasor diagrams are also
drawn in each case. The use of phasor algebra is also taken up. Then, other cases of series
circuits, like R-L, R-C and R-L-C, are described, wherein, in each case, all methods as
given, are used.

Analysis of parallel and series-parallel circuits

The application of phasor algebra to solve for the branch and total currents and the
complex impedance, of the parallel and the series-parallel circuits fed from single phase
ac supply is presented in this lesson. The phasor diagram is drawn showing all currents,
and voltage drops. The application of two Kirchoff’s laws in the circuits, for the currents
at a node, and the voltage drops across the elements, including voltage source(s), in a
loop, is shown there (phasor diagram).

Resonance in electrical circuits

The problem of resonance in the circuits fed from a variable frequency (ac) supply is
discussed in this lesson. Firstly, the case of series (R-L-C) circuit is taken up, and the
condition of resonance, along with maximum current and minimum impedance in the
circuit, with the variation in supply frequency is determined. Then, the problem of
parallel circuits and other cases, such as, lossy coil (r-L), is taken up, where the condition
of resonance is found. This results in minimum current and maximum impedance here.

Concept of apparent, active and reactive power

The formula for active (average) power in a circuit fed from single phase ac supply, in
terms of input voltage and current, is derived in this lesson, followed by definition of the

Version 2 EE 11T, Kharagpur



term, ‘power factor’ in this respect. The concept of apparent and reactive power (with its
sign for lagging and leading load) is presented, along with formula.

Module-5 Three phase AC circuits

There are only three lessons (5.1-5.3) in this module. Only the balanced star-and delta-connected
circuits fed from three-phase ac supply are presented here.

5.1 Generation of three-phase voltage, line and phase quantities in star- and
delta-connection and their relations

The generation of three-phase balanced voltages is initially presented. The balanced
windings as described can be connected in star- and delta-configuration. The relation
between line and phase voltages for star-connected supply is presented. Also described is
the relation between phase and line currents, when the windings are connected in delta.
The phasor diagrams are drawn for all cases.

5.2 Solution of three-phase balanced circuits

The load (balanced) is connected in star to a balanced three-phase ac supply. The currents
in all three phases are determined, with phasor diagram drawn showing all voltages and
currents. Then, the relation between phase and line currents is derived for balanced delta-
connected load. The power (active) consumed in the balanced load is derived in terms of
the line voltage and currents for both cases.

5.3 Measurement of three-phase power

The total power (in all three phases) is measured using two wattmeters only. This is
shown for both unbalanced and balanced cases. The phasor diagram with balanced three-
phase load is drawn. Other cases are also described.

Module-6 Magnetic circuits & Core losses
In this module there are two Lessons 21 and 22 as enumerated below.

6.1 Simple magnetic circuits

It is often necessary to produce a desired magnetic flux, in a magnetic material (core)
having a definite geometric shape with or without air gap, with the help of current
passing through a coil wrapped around the core. This lesson discusses how the concept of
circuit analogy can be introduced to tackle such problems. Both linear and non-linear
magnetic circuit problems are discussed through worked out problems.

6.2 Eddy current & hysteresis losses

These two losses are produced in any magnetic material which is subjected to an
alternating time varying fields. Generally in all types of A.C machines /equipments
working on electromagnetic principle these losses occur. In D.C machine armature too
these losses occur. In this lesson the origin of these losses are explained and formula for
estimating them are derived. Finally methods adopted to minimize these losses discussed
as losses bring down the efficiency of any machines.

Version 2 EE 11T, Kharagpur



Module-7 Transformer

Transformers are one of the most important components of the modern power system. In this
module having 6 lessons, various aspects of a transformer are explained and discussed as per the
break up given below.

71

7.2

7.3

7.4

Ideal single phase transformer

Clear concept of ideal transformer goes a long way to understand the equivalent circuit
representation of a practical transformer discussed in the next lesson. In ideal
transformer all kinds of losses are neglected and permeability of core is assumed to be
infinitely large. To have a rough and quick estimate of primary current for a given
secondary current of a practical transformer one need not consider detail equivalent
circuit but rather pretend that the transformer is ideal and apply simple relation of ideal
transformer.

Properties of ideal transformer and its principle of operation along with phasor diagram
are discussed both under no load and load condition.

Practical single phase transformer

A practical transformer has various losses and leakage impedance. In this lesson, it has
been shown how these can be taken into account in the equivalent circuit. Phasor
diagrams under no load and load condition developed. Concept of approximate
equivalent circuit discussed and meaning of equivalent circuit referred to primary and
secondary side are explained.

Testing, efficiency and regulation of transformer

Two basic tests called open circuit and short circuit test are discussed and then it is
explained how equivalent circuit parameters of a single phase transformer can be
obtained from the test data. Importance of selecting a particular side for a particular test
is highlighted.

Importance of efficiency and regulation are discussed and working formula for them
derived. Concept of all day efficiency for distribution transformer is given. Regulation
is essentially a measure of change of magnitude of the secondary voltage from no load
to full load condition and its value should be low. From the expression of regulation it
is easily identified the parameters on which it depends.

Three phase transformer

Generation, distribution and transmission of power are carried out with a 3-phase, 50
Hz system. Therefore, stepping up or down of 3-phase voltage is required. This of
course can not be done using a single phase transformer. Three separate identical
transformers can be connected appropriately to serve the purpose. A 3-phase
transformer formed by connecting three separate transformers is called a bank of 3-
phase transformer. Another way of having a three phase transformer, is to construct it
as a single unit of three phase transformer. The relative advantages and disadvantages
of the two are discussed.
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7.5

7.6

Various important and popular connections of 3-phase transformer (such as star/star,
star/delta, delta/star etc.) are discussed. The importance of dot convention while making
such connections are pointed out. Simple problems involving a 3-phase transformer
connection are worked out assuming the transformer to be ideal.

Vector grouping of various three phase transformer connection are generally not meant
for a first year course and can be avoided. However, for completeness sake and for
students who want to know more, it is included.

Autotransformer

There are transformers which work with a single winding. Such transformers are called
auto-transformers. The lesson discusses its construction and bring out differences with
two winding transformer. Here, ideal auto transformer is assumed to show how to find
out current distribution in different parts of the winding when it is connected in a
circuit. It is also pointed out how three single phase auto transformers can be connected
to transform a 3-phase voltage.

Problem solving on transformers

Few typical problems on single phase, 3-phase and auto transformers are worked out,
enumerating logical steps involved.

Module-8 Three phase induction motor

In this module consisting of six lessons (8.1-8.6), the various aspects of the three-phase induction
motor are presented.

8.1

8.2

8.3

8.4

Concept of rotating magnetic field

Before taking up the three-phase induction motor (IM), the concept of rotating magnetic
field is introduced in this lesson. The balanced three-phase winding of the stator in IM are
fed from a balanced three-phase supply. It is shown that a constant magnitude of
magnetic field (flux) is produced in the air gap, which rotates at ‘synchronous speed’ as
defined in terms of No. of poles of the stator winding and supply frequency.

Brief construction and principle of operation

Firstly, the construction of a three-phase induction motor is briefly described, with two
types of rotor — squirrel cage and wound (slip-ring) one. The principle of torque
production in a three-phase IM is explained in detail, with the term, “slip” defined here.

Per phase equivalent circuit and power flow diagram

The equivalent circuit of a three-phase IM is obtained, which is explained step by step.
Also the power flow diagram and the various losses taking place are discussed.

Torque-slip (speed) characteristic

The torque speed (slip) equation is obtained from the equivalent circuit of the rotor. The
characteristics are drawn, with typical examples, such as variation in input (stator)
voltage, and also in rotor resistance (with external resistance inserted in each phase).
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8.5

8.6

Types of starters

The need of starter in a three-phase IM to reduce the stating current drawn is first
explained. Then, three types of starters — Direct-on-line (DOL), star-delta one for use in
an IM with a nominally delta-connected stator, and auto-transformer, are described.
Lastly, the rotor resistance starter for a wound rotor (slip ring) IM is briefly presented.

Single-phase induction motor and starting methods

It is first shown that starting torque is not produced in a single phase induction motor
(IM). Then, the various types of starting methods used for single-phase IM with two
stator windings (main and auxiliary), are explained in detail. Lastly, the shaded pole
single-phase IM is described.

Module-9 DC Machines

9.1 Constructional features of DC machines

The lesson discusses the important construction features of DC machines. The induced
voltage in a rotating coil in a stationary magnetic field is always alternating in nature. The
functions of commutator segments and brushes, which convert the AC voltage to DC
form, are explained.

The examples of lap and wave windings used for armature are presented. It has been
shown that the number of parallel paths in the armature will be different in the two types
of windings. For the first time reading and depending upon the syllabus, you may avoid
this portion.

9.2 Principle of operation of D.C machines

The lesson begins with an example of single conductor linear D.C generator and motor. It
helps to develop the concept of driving force, opposing force, generated and back emf.

Concept of Driving and opposing torques in rotating machines are given first and then the
principle of operation of rotating D.C generator and motor are explained. Condition for
production of steady electromagnetic torque are discussed.

9.3 EMF and torque equations

The derivation of the two basic and important equations, namely emf and torque
equations, which are always needed to be written, if one wants to analyse the machine
performance. Irrespective of the fact that whether the machine is operating as a generator
or as a motor, the same two equations can be applied. This lesson also discusses armature
reaction, its ill effects and methods to minimize them.

The topic of calculation of cross magnetizing and demagnetizing mmf’s can be avoided
depending upon the syllabus requirement and interest.

9.4 DC Generators

The lesson introduces the types of DC generators and their characteristics. Particular
emphasis has been given to DC shunt and separately excited generators. The open circuit
characteristic (O.C.C) and the load characteristics of both kinds are discussed. It is
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explained that from O.C.C and the field resistance line, it is possible to get graphically
the load characteristic.

9.5 DC motor starting and speed control

In this important lesson, problem of starting a DC motor with full voltage is discussed,
and the necessity of starter is highlighted. The operation of a three-point starter is
explained. Various methods of controlling speed of DC shunt and series motors are
discussed. At the end, a brief account of various methods of electrical braking is
presented.

9.6 Losses, efficiency and testing of D.C machines

To calculate efficiency of any machines, it is essential to know various losses that take
place in the machine. Major losses in a DC machine are first enumerated, and
Swinburne’s test and Hopkinson’s tests are explained to estimate them.

9.7 Problem solving in DC machines

In this lesson, some typical problems of DC motors and generators are worked out. This
lesson should be consulted from other relevant lectures of the present module whenever
you feel it to be necessary.

Module-10 Measuring instruments

The magnitude of various electric signals can be measured with help of measuring instruments.
These instruments are classified according to the quantity measured and the principle of
operation. The study of DC and AC instruments for measuring voltage, current signals and
subsequently induction type energy meter, are described in this module consisting of three
lessons (10.1 10.3). at the end of each lesson (10.1 10.3), a set of problem is provided to test the
readers understanding.

10.1 Study of DC and AC measuring instruments

The general theory of permanent magnet moving coil (PMMC), moving-iron (Ml)
instruments and their constructions are briefly discussed in this lesson. PMMC
instruments are used as a dc ammeter or dc voltmeter where as MI instruments are
basically used for ac current or voltage measurements. Various torques involved in
measuring instruments are classified and explained. Subsequently, the advantages,
limitations and sources of errors of these instruments are studied therein. Idea behind the
multi-range ammeters and voltmeters are introduced by employing several values of
shunt resistors or several multiplier resistors along with the meter resistance. In this
context some problems are solved to illustrate the meaning of multi-range meters.

10.2 Study of electrodynamics type instruments

Electrodynamics meters can measure both dc signals and ac signals up to a frequency of.
The basic construction of electro-dynamometer instruments and their principles of
operation are studied in this lesson. Torque expressions for such instruments (as an
ammeter, voltmeter and a wattmeter) are derived and then mode of meter connections to
the load as an ammeter, voltmeter and a wattmeter are presented. Shunts and multipliers
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can be used for extension of meters range. A compensation technique is introduced to
eliminate the errors in wattmeter readings. In this lesson, the constructional features and
principle of operation of electro dynamometer instruments (ammeter, voltmeter and
wattmeter) have been discussed. The sources of error and their corrections are
highlighted. Some problems have been worked out for better understanding.

10.3 Study of single-phase induction type energy meter or watt-hour meter

The basic construction with different components of a single-phase induction type energy
meter is considered in this lesson. Development of torque expression and errors in energy
meters are studied. Some adjustment techniques are discussed to compensate the errors
in energy meter. Finally, the extension of meter range using instrument transformers is
discussed.
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Chapter 2

Generation, Transmission and Distribution of Electric
Power (Lesson-2)

2.1 Goals of the lesson
After going through the lesson you shall get a broad idea of the following:

1. Different methods of generating electrical power.

2. lIssues involved in transporting this power to different types of consumers located
generally at far off places from the generating stations.

3. Necessity of substations to cater power to consumers at various voltage levels.

2.2 Introduction

In this lesson a brief idea of a modern power system is outlined. Emphasis is given to create a
clear mental picture of a power system to a beginner of the course Electrical Technology. As
consumers, we use electricity for various purposes such as:

1. Lighting, heating, cooling and other domestic electrical appliances used in home.

2. Street lighting, flood lighting of sporting arena, office building lighting, powering PCs
etc.

3. lrrigating vast agricultural lands using pumps and operating cold storages for various
agricultural products.

4. Running motors, furnaces of various kinds, in industries.
Running locomotives (electric trains) of railways.

The list above is obviously not exhaustive and could be expanded and categorized in detail
further. The point is, without electricity, modern day life will simply come to a stop. In fact, the
advancement of a country is measured by the index per capita consumption of electricity — more
it is more advanced the country is.

2.3 Basic idea of generation

Prior to the discovery of Faraday’s Laws of electromagnetic discussion, electrical power was
available from batteries with limited voltage and current levels. Although complicated in
construction, D.C generators were developed first to generate power in bulk. However, due to
limitation of the D.C machine to generate voltage beyond few hundred volts, it was not
economical to transmit large amount of power over a long distance. For a given amount of
power, the current magnitude (I = P/V), hence section of the copper conductor will be large.
Thus generation, transmission and distribution of d.c power were restricted to area of few
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kilometer radius with no interconnections between generating plants. Therefore, area specific
generating stations along with its distribution networks had to be used.

2.3.1 Changeover from D.Cto A.C

In later half of eighties, in nineteenth century, it was proposed to have a power system with 3-
phase, 50 Hz A.C generation, transmission and distribution networks. Once a.c system was
adopted, transmission of large power (MW) at higher transmission voltage become a reality by
using transformers. Level of voltage could be changed virtually to any other desired level with
transformers — which was hitherto impossible with D.C system. Nicola Tesla suggested that
constructionally simpler electrical motors (induction motors, without the complexity of
commutator segments of D.C motors) operating from 3-phase a.c supply could be manufactured.
In fact, his arguments in favor of A.C supply system own the debate on switching over from D.C
to A.C system.

2.3.2 A.C generator

A.C power can be generated as a single phase or as a balanced poly-phase system. However, it
was found that 3-phase power generation at 50 Hz will be economical and most suitable. Present
day three phase generators, used to generate 3-phase power are called alternators (Synchronous
generators). An alternator has a balanced three phase winding on the stator and called the
armature. The three coils are so placed in space that there axes are mutually 120° apart as shown
in figure 2.1. From the terminals of the armature, 3-phase power is obtained. Rotor houses a field
coil and excited by D.C. The field coil produces flux and electromagnetic poles on the rotor
surface. If the rotor is driven by an external agency, the flux linkages with three stator coils
becomes sinusoidal function of time and sinusoidal voltage is induced in them. However, the
induced voltages in the three coils (or phases) will differ in phase by 120° because the present
value of flux linkage with R-phase coil will take place after 120° with Y-phase coil and further
120° after, with B-phase coil. A salient pole alternator has projected poles as shown in figure
2.1(a). It has non uniform air gap and is generally used where speed is low. On the other hand a
non salient pole alternator has uniform air gap (figure 2.1(b)) and used when speed is high.

R R

Driven at n rps by

\prime mover

Driven at n rps by
prime mover

B Y B Y
(a) Salient pole generator (b) Non salient pole generator

Figure 2.1: 3-phase generators.
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Frequency, voltage & interconnected system

The frequency of the generated emf for a p polar generator is given by /' =£n where n is speed

of the generator in rps or f =:2-n when # is in rpm. Frequency of the generated voltage is

standardized to 50 HZ in our country and several European countries. In USA and Canada it is
60 Hz. The following table gives the rpm at which the generators with different number of poles
are to be driven in order to generate 50 Hz voltage.

Number of poles of Generator 2 4 6 8 10
rpm at which generator to be driven 3000 | 1500 | 1000 | 750 600

A modern power station has more than one generator and these generators are connected in
parallel. Also there exist a large number of power stations spread over a region or a country. A
regional power grid is created by interconnecting these stations through transmission lines. In
other words, all the generators of different power stations, in a grid are in effect connected in
parallel. One of the advantages of interconnection is obvious; suppose due to technical problem
the generation of a plant becomes nil or less then, a portion of the demand of power in that area
still can be made from the other power stations connected to the grid. One can thus avoid
complete shut down of power in an area in case of technical problem in a particular station. It
can be shown that in an interconnected system, with more number of generators connected in
parallel, the system voltage and frequency tend to fixed values irrespective of degree of loading
present in the system. This is another welcome advantage of inter connected system. Inter
connected system however, is to be controlled and monitored carefully as they may give rise to
instability leading to collapse of the system.

All electrical appliances (fans, refrigerator, TV etc.) to be connected to A.C supply are therefore
designed for a supply frequency of 50 Hz. Frequency is one of the parameters which decides the
quality of the supply. It is the responsibility of electric supply company to see that frequency is
maintained close to 50 Hz at the consumer premises.

It was pointed out earlier that a maximum of few hundreds of volts (say about 600 to 700 V)
could be developed in a D.C generator, the limitation is imposed primarily due to presence of
commutator segments. In absence of commutators, present day generated voltage in alternator is
much higher, typically around 10 kV to 15 kV. It can be shown that rms voltage induced in a coil
is proportional to ¢ and n i.e., E.; < ¢ n where ¢ is the flux per pole and = is speed of the
alternator. This can be justified by intuition as well: we know that mere rotating a coil in absence
of magnetic flux (¢#) is not going to induce any voltage. Also presence of flux without any
rotation will fail to induce any voltage as you require rate of change of flux linkage in a coil. To
control the induced voltage one has to control the d.c field current as speed of the alternator gets
fixed by frequency constrain.

2.4 Thermal, hyddel & nuclear power stations

In this section we briefly outline the basics of the three most widely found generating stations —
thermal, hydel and nuclear plants in our country and elsewhere.
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2.4.1 Thermal plant

We have seen in the previous section that to generate voltage at 50 Hz we have to run the
generator at some fixed rpm by some external agency. A turbine is used to rotate the generator.
Turbine may be of two types, namely steam turbine and water turbine. In a thermal power station
coal is burnt to produce steam which in turn, drives the steam turbine hence the generator (turbo
set). In figure 2.2 the elementary features of a thermal power plant is shown.

In a thermal power plant coil is burnt to produce high temperature and high pressure steam in
a boiler. The steam is passed through a steam turbine to produce rotational motion. The
generator, mechanically coupled to the turbine, thus rotates producing electricity. Chemical
energy stored in coal after a couple of transformations produces electrical energy at the generator
terminals as depicted in the figure. Thus proximity of a generating station nearer to a coal reserve
and water sources will be most economical as the cost of transporting coal gets reduced. In our
country coal is available in abundance and naturally thermal power plants are most popular.
However, these plants pollute the atmosphere because of burning of coals.

) 3-phase A.C
Steam in Electric power
Coal
y o
]
Steam

out

Condenser

Chemical energy  Heat energy ~ Mechanical energy  Electrical
incoal = insteam —> jnturbine — energy

pump

Figure 2.2: Basic components of a thermal generating unit.

Stringent conditions (such as use of more chimney heights along with the compulsory use of
electrostatic precipitator) are put by regulatory authorities to see that the effects of pollution is
minimized. A large amount of ash is produced every day in a thermal plant and effective
handling of the ash adds to the running cost of the plant. Nonetheless 57% of the generation in
out country is from thermal plants. The speed of alternator used in thermal plants is 3000 rpm
which means 2-pole alternators are used in such plants.

2.4.2 Hydel plants

In a hydel power station, water head is used to drive water turbine coupled to the generator.
Water head may be available in hilly region naturally in the form of water reservoir (lakes etc.) at
the hill tops. The potential energy of water can be used to drive the turbo generator set installed
at the base of the hills through piping called pen stock. Water head may also be created
artificially by constructing dams on a suitable river. In contrast to a thermal plant, hydel power
plants are eco-friendly, neat and clean as no fuel is to be burnt to produce electricity. While
running cost of such plants are low, the initial installation cost is rather high compared to a
thermal plants due to massive civil construction necessary. Also sites to be selected for such
plants depend upon natural availability of water reservoirs at hill tops or availability of suitable
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rivers for constructing dams. Water turbines generally operate at low rpm, so number of poles of
the alternator are high. For example a 20-pole alternator the rpm of the turbine is only 300 rpm.

Up stream
water level
T
m Water head
Y2275 Dam H 3-phase A.C
AT l Electric power
SR = o)
L —= Discharge of water
in down stream
Potential energy Kinetic Electrical
of water = epergy energy

Figure 2.3: Basic components of a hydel generating unit.

2.4.3 Nuclear plants

As coal reserve is not unlimited, there is natural threat to thermal power plants based on coal. It
is estimated that within next 30 to 40 years, coal reserve will exhaust if it is consumed at the
present rate. Nuclear power plants are thought to be the solution for bulk power generation. At
present the installed capacity of unclear power plant is about 4300 MW and expected to expand
further in our country. The present day atomic power plants work on the principle of nuclear
fission of “*U. In the natural uranium, ?°U constitutes only 0.72% and remaining parts is
constituted by 99.27% of ***U and only about 0.05% of ?*U. The concentration of %°U may be
increased to 90% by gas diffusion process to obtain enriched ?**U. When ?*°U is bombarded by
neutrons a lot of heat energy along with additional neutrons are produced. These new neutrons
further bombard “**U producing more heat and more neutrons. Thus a chain reaction sets up.
However this reaction is allowed to take place in a controlled manner inside a closed chamber
called nuclear reactor. To ensure sustainable chain reaction, moderator and control rods are used.
Moderators such as heavy water (deuterium) or very pure carbon *2C are used to reduce the
speed of neutrons. To control the number neutrons, control rods made of cadmium or boron steel
are inserted inside the reactor. The control rods can absorb neutrons. If we want to decrease the
number neutrons, the control rods are lowered down further and vice versa. The heat generated
inside the reactor is taken out of the chamber with the help of a coolant such as liquid sodium or
some gaseous fluids. The coolant gives up the heat to water in heat exchanger to convert it to
steam as shown in figure 2.4. The steam then drives the turbo set and the exhaust steam from the
turbine is cooled and fed back to the heat exchanger with the help of water feed pump.
Calculation shows that to produce 1000 MW of electrical power in coal based thermal plant,
about 6 x 10° Kg of coal is to be burnt daily while for the same amount of power, only about 2.5
Kg of *U is to be used per day in a nuclear power stations.
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Figure 2.4: Nuclear power generation.

The initial investment required to install a nuclear power station is quite high but running
cost is low. Although, nuclear plants produce electricity without causing air pollution, it remains
a dormant source of radiation hazards due to leakage in the reactor. Also the used fuel rods are to
be carefully handled and disposed off as they still remain radioactive.

The reserve of 2°U is also limited and can not last longer if its consumption continues at the
present rate. Naturally search for alternative fissionable material continues. For example,
plutonium (**°Pu) and (***V) are fissionable. Although they are not directly available. Absorbing
neutrons, >*®U gets converted to fissionable plutonium “**Pu in the atomic reactor described
above. The used fuel rods can be further processed to extract >°Pu from it indirectly increasing
the availability of fissionable fuel. Effort is also on to convert thorium into fissionable ?**U.
Incidentally, India has very large reserve of thorium in the world.

Total approximate generation capacity and Contribution by thermal, hydel and nuclear
generation in our country are given below.

Method of generation in MW % contribution
Thermal 77 340 69.4
Hydel 29 800 26.74
Nuclear 2720 3.85
Total generation 111440 -

Non conventional sources of energy

The bulk generation of power by thermal, hydel and nuclear plants are called conventional
methods for producing electricity. Search for newer avenues for harnessing eco friendly
electrical power has already begun to meet the future challenges of meeting growing power
demand. Compared to conventional methods, the capacity in terms of MW of each non-
conventional plant is rather low, but most of them are eco friendly and self sustainable. Wind
power, solar power, MHD generation, fuel cell and power from tidal waves are some of the
promising alternative sources of energy for the future.
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2.5 Transmission of power

The huge amount of power generated in a power station (hundreds of MW) is to be transported
over a long distance (hundreds of kilometers) to load centers to cater power to consumers with
the help of transmission line and transmission towers as shown in figure 2.5.

Disc insulators.

™ Transmission line
(bare conductor)

(X
0
~

X XXX
° °
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Transmission tower
steel structure

XX
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Ground

Figure 2.5: Transmission tower.

To give an idea, let us consider a generating station producing 120 MW power and we want
to transmit it over a large distance. Let the voltage generated (line to line) at the alternator be 10
kV. Then to transmit 120 MW of power at 10 kV, current in the transmission line can be easily
calculated by using power formula circuit (which you will learn in the lesson on A.C circuit
analysis) for 3-phases follows:

I = ﬁ where cos 4 is the power factor
1, COS
_ 120x10°
J3x10x10°%0.8
s I = 8660 A

Instead of choosing 10 kV transmission voltage, if transmission voltage were chosen to be
400 kV, current value in the line would have been only 261.5 A. So sectional area of the
transmission line (copper conductor) will now be much smaller compared to 10 kV transmission
voltage. In other words the cost of conductor will be greatly reduced if power is transmitted at
higher and higher transmission voltage. The use of higher voltage (hence lower current in the
line) reduces voltage drop in the line resistance and reactance. Also transmission losses is
reduced. Standard transmission voltages used are 132 kV or 220 kV or 400 kV or 765 kV
depending upon how long the transmission lines are.

Therefore, after the generator we must have a step up transformer to change the generated
voltage (say 10 kV) to desired transmission voltage (say 400 kV) before transmitting it over a
long distance with the help of transmission lines supported at regular intervals by transmission
towers. It should be noted that while magnitude of current decides the cost of copper, level of
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voltage decides the cost of insulators. The idea is, in a spree to reduce the cost of copper one can
not indefinitely increase the level of transmission voltage as cost of insulators will offset the
reduction copper cost. At the load centers voltage level should be brought down at suitable
values for supplying different types of consumers. Consumers may be (1) big industries, such as
steel plants, (2) medium and small industries and (3) offices and domestic consumers. Electricity
is purchased by different consumers at different voltage level. For example big industries may
purchase power at 132 kV, medium and big industries purchase power at 33 kV or 11 kV and
domestic consumers at rather low voltage of 230V, single phase. Thus we see that 400 kV
transmission voltage is to be brought down to different voltage levels before finally delivering
power to different consumers. To do this we require obviously step down transformers.

Substations

Substations are the places where the level of voltage undergoes change with the help of
transformers. Apart from transformers a substation will house switches (called circuit breakers),
meters, relays for protection and other control equipment. Broadly speaking, a big substation will
receive power through incoming lines at some voltage (say 400 kV) changes level of voltage
(say to 132 kV) using a transformer and then directs it out wards through outgoing lines.
Pictorially such a typical power system is shown in figure 2.6 in a short of block diagram. At the
lowest voltage level of 400 V, generally 3-phase, 4-wire system is adopted for domestic
connections. The fourth wire is called the neutral wire (N) which is taken out from the common
point of the star connected secondary of the 6 k\/400 V distribution transformer.
To To
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Big industries industries industries
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Figure 2.6: Typical voltage levels in a power system.

Some important components/equipments in substation

As told earlier, the function of a substation is to receive power at some voltage through incoming
lines and transmit it at some other voltage through outgoing lines. So the most important
equipment in a substation is transformer(s). However, for flexibility of operation and protection
transformer and lines additional equipments are necessary.
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Suppose the transformer goes out of order and maintenance work is to be carried out.
Naturally the transformer must be isolated from the incoming as well as from the outgoing lines
by using special type of heavy duty (high voltage, high current) switches called circuit breakers.
Thus a circuit breaker may be closed or opened manually (functionally somewhat similar to
switching on or off a fan or a light whenever desired with the help of a ordinary switch in your
house) in substation whenever desired. However unlike a ordinary switch, a circuit breaker must
also operate (i.e., become opened) automatically whenever a fault occurs or overloading takes
place in a feeder or line. To achieve this, we must have a current sensing device called CT
(current transformer) in each line. A CT simply steps down the large current to a proportional
small secondary current. Primary of the CT is connected in series with the line. A 1000 A/5 A
CT will step down the current by a factor of 200. So if primary current happens to be 800 A,
secondary current of the CT will be 4 A.

Suppose the rated current of the line is 1000 A, and due to any reason if current in the line
exceeds this limit we want to operate the circuit breaker automatically for disconnection.

In figure 2.7 the basic scheme is presented to achieve this. The secondary current of the CT is
fed to the relay coil of an overcurrent relay. Here we are not going into constructional and
operational details of a over current relay but try to tell how it functions. Depending upon the
strength of the current in the coil, an ultimately an electromagnetic torque acts on an aluminum
disc restrained by a spring. Spring tension is so adjusted that for normal current, the disc does not
move. However, if current exceeds the normal value, torque produced will overcome the spring
tension to rotate the disc about a vertical spindle to which a long arm is attached. To the arm a
copper strip is attached as shown figure 2.8. Thus the arm too will move whenever the disk
moves.

CB cT Power line
%I Power line ;— o 0 Q

¢« contact

Trip coil

Trip signal to circuit
breaker if current
exceeds the rated

current.
Battery
Figure 2.7: Basic scheme of Copper strip
protection. Figure 2.8: Relay and CB.

The relay has a pair of normally opened (NO) contacts 1 & 2. Thus, there will exist open
circuit between 1 & 2 with normal current in the power line. However, during fault condition in
the line or overloading, the arm moves in the anticlockwise direction till it closes the terminals 1
& 2 with the help of the copper strip attached to the arm as explained pictorially in the figure 2.8.
This short circuit between 1 & 2 completes a circuit comprising of a battery and the #rip coil of
the circuit breaker. The opening and closing of the main contacts of the circuit breaker depends
on whether its trip coil is energized or not. It is interesting to note that trip circuit supply is to be
made independent of the A.C supply derived from the power system we want to protect. For this
reason, we expect batteries along with battery charger to be present in a substation.

Apart from above there will be other types of protective relays and various meters indicating
current, voltage, power etc. To measure and indicate the high voltage (say 6 kV) of the line, the
voltage is stepped down to a safe value (say 110V) by transformer called potential transformer
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(PT). Across the secondary of the PT, MI type indicating voltmeter is connected. For example a
voltage rating of a PT could be 6000 V/110 V. Similarly, Across the secondary we can connect a
low range ammeter to indicate the line current.

2.6 Single line representation of power system

Trying to represent a practical power system where a lot of interconnections between several
generating stations involving a large number of transformers using three lines corresponding to
R, Y and B phase will become unnecessary clumsy and complicated. To avoid this, a single line
along with some symbolical representations for generator, transformers substation buses are used
to represent a power system rather neatly. For example, the system shown in 2.6 with three lines
will be simplified to figure 2.9 using single line.

To big To medium To small
Transformer industries industries industries
Subl 11k k
G u Sub2 33 kV/11 kV 1 V/6 kV 1

j éé j Sub4

Sub3 '
To <
LT consumers r Sub5

400 V/6 kV

Figure 2.9: Single line representation of power system.

li
10 kV/400 kV 400 kV/33 kV

As another example, an interconnected power system is represented in the self explained
figure 2.10 — it is hoped that you understand the important features communicated about the
system through this figure.

HYV transmission line 3
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transformer Bl B2 B3 oa| s
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Transmission line 1 I loads

Step down To
transformer loads
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Power station 2
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Figure 2.10: Single line representation of power system.
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2.7 Distribution system

Till now we have learnt how power at somewhat high voltage (say 33 kV) is received in a
substation situated near load center (a big city). The loads of a big city are primarily residential
complexes, offices, schools, hotels, street lighting etc. These types of consumers are called LT
(low tension) consumers. Apart from this there may be medium and small scale industries
located in the outskirts of the city. LT consumers are to be supplied with single phase, 220 V, 40
Hz. We shall discuss here how this is achieved in the substation receiving power at 33 kV. The
scheme is shown in figure 2.11.

6kV 6 kV/400 V . .
Sub 1 feeders ALY Service main
P> » Service main
%é Underground cable éé (4-wires: R, Y, B & N)
‘ feeders 1
33 kV/6 kV 6KV Distribution  Service main
feeders transformer

Figure 2.11: Typical Power distribution scheme.

Power receive at a 33 kV substation is first stepped down to 6 kV and with the help of under
ground cables (called feeder lines), power flow is directed to different directions of the city. At
the last level, step down transformers are used to step down the voltage form 6 kV to 400 V.
These transformers are called distribution transformers with 400 V, star connected secondary.
You must have noticed such transformers mounted on poles in cities beside the roads. These are
called pole mounted substations. From the secondary of these transformers 4 terminals (R, Y, B
and N) come out. N is called the neutral and taken out from the common point of star connected
secondary. Voltage between any two phases (i.e., R-Y, Y-B and B-R) is 400 V and between any

phase and neutral is 230 V(:400/\/§). Residential buildings are supplied with single phase

230V, 50Hz. So individual are to be supplied with any one of the phases and neutral. Supply
authority tries to see that the loads remain evenly balanced among the phases as far as possible.
Which means roughly one third of the consumers will be supplied from R-N, next one third from
Y-N and the remaining one third from B-N. The distribution of power from the pole mounted
substation can be done either by (1) overhead lines (bare conductors) or by (2) underground
cables. Use of overhead lines although cheap, is often accident prone and also theft of power by
hooking from the lines take place. Although costly, in big cities and thickly populated areas
underground cables for distribution of power, are used.
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2.8 Conclusion

In this lesson, a brief idea of generation, transmission and distribution of electrical power is
given - which for obvious reason is neither very elaborative nor exhaustive. Nonetheless, it gives
a reasonable understanding of the system for a beginner going to undertake the course on
electrical technology. If you ever get a chance to visit a substation or power station — don’t miss
it.

Some basic and important points, in relation to a modern power system, are summarized
below:

1. Generation, transmission and distribution of electric power in our country is carried out
as 3-phase system at 50 Hz.

2. Three most important conventional methods of power generation in out country are: coal
based thermal plants, Hydel plants and nuclear plants.

3. Load centers (where the power will be actually consumed) are in general situated far
away from the generating station. So to transmit the large amount of power (hundreds of
MW) efficiently and economically over long distance, high transmission voltage (such as
400 kV, 220 kV) is used.

4. Material used for transmission lines is bare is bare copper conductors which are
supported at regular intervals by steel towers. Stack of disk type ceramic insulators are
used between the HV line and the steel tower.

5. Level of current decides the section of the line conductor and the level of voltage decides
the amount of insulation required.
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2.9

10.

11.
12.
13.

Answer the following

Name three conventional ways of generating power. Of these three, which one
contributes maximum generation in India.

What number of phases and frequency are adopted to generate, transmit and distribute
electrical power in modern power system?

Name the types of generators (alternators) used in (1) thermal plant and (2) in hydel
power plant.

In a hydel power station, the number of poles of an alternator is 24. At what rpm the
alternator must be driven to produce 50 Hz voltage?

Give some typical value of generated voltage in a power station. Why is it necessary to
step up the voltage further before transmitting?

What is a substation? What important equipments are found in a substation?

With the help of a schematic diagram explain how a overcurrent relay protects a line
during short circuit fault.

What are the functions of CT and PT in a substation?

The ammeter reading connected across a CT secondary is 3 A and the voltage reading
connected across a PT is 90 V. If the specification of the CT and PT are respectively
1000 A/5 A and 6.6 kV/110 V, What is the actual current and voltage of the line?

What is a pole mounted substation? At what voltage levels are the found in a power
system?

Why are batteries used in a substation.
Are different power stations interconnected? If so, why?
What are the differences between a coal based thermal plant and a nuclear power plant.
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Objectives

e Familiarity with and understanding of the basic elements encountered in electric
networks.

e To learn the fundamental differences between linear and nonlinear circuits.

To understand the Kirchhoff’s voltage and current laws and their applications to

circuits.

Meaning of circuit ground and the voltages referenced to ground.

Understanding the basic principles of voltage dividers and current dividers.

Potentiometer and loading effects.

To understand the fundamental differences between ideal and practical voltage

and current sources and their mathematical models to represent these source

models in electric circuits.

e Distinguish between independent and dependent sources those encountered in
electric circuits.

e Meaning of delivering and absorbing power by the source.

L.3.1 Introduction

The interconnection of various electric elements in a prescribed manner
comprises as an electric circuit in order to perform a desired function. The electric
elements include controlled and uncontrolled source of energy, resistors, capacitors,
inductors, etc. Analysis of electric circuits refers to computations required to determine
the unknown quantities such as voltage, current and power associated with one or more
elements in the circuit. To contribute to the solution of engineering problems one must
acquire the basic knowledge of electric circuit analysis and laws. Many other systems,
like mechanical, hydraulic, thermal, magnetic and power system are easy to analyze and
model by a circuit. To learn how to analyze the models of these systems, first one needs
to learn the techniques of circuit analysis. We shall discuss briefly some of the basic
circuit elements and the laws that will help us to develop the background of subject.

L-3.1.1Basic Elements & Introductory Concepts

Electrical Network: A combination of various electric elements (Resistor, Inductor,
Capacitor, Voltage source, Current source) connected in any manner what so ever is
called an electrical network. We may classify circuit elements in two categories, passive
and active elements.

Passive Element: The element which receives energy (or absorbs energy) and then
either converts it into heat (R) or stored it in an electric (C) or magnetic (L ) field is
called passive element.

Active Element: The elements that supply energy to the circuit is called active element.
Examples of active elements include voltage and current sources, generators, and
electronic devices that require power supplies. A transistor is an active circuit element,
meaning that it can amplify power of a signal. On the other hand, transformer is not an
active element because it does not amplify the power level and power remains same both
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in primary and secondary sides. Transformer is an example of passive element.

Bilateral Element: Conduction of current in both directions in an element (example:
Resistance; Inductance; Capacitance) with same magnitude is termed as bilateral element.

Rl. R!
re—— AAA}—o- — AN
— 1 —
RI-R!

Unilateral Element: Conduction of current in one direction is termed as unilateral
(example: Diode, Transistor) element.

Forward biased Reversed biased
“.| R'I

R, #R,

Meaning of Response: An application of input signal to the system will produce an
output signal, the behavior of output signal with time is known as the response of the
system.

L-3.2 Linear and Nonlinear Circuits

Linear Circuit: Roughly speaking, a linear circuit is one whose parameters do not
change with voltage or current. More specifically, a linear system is one that satisfies (i)
homogeneity property [response of o u(t) equals a times the response of u(t), S(a u(t))

= a S(u(t)) for all & ; and u(t)] (ii) additive property [that is the response of system due
to an input (o, Uu,(t)+, u,(t)) equals the sum of the response of input ¢, U,(t) and the
response of inputa, U,(t), S(eu,(t)+a,u,(t)) = « S, (t))+a, S(u,(t)).] When an
input U, (t) or u,(t) is applied to a system “S ”, the corresponding output response of the
system is observed as S(u,(t)) =Y, (t) or S(u,(t)) =Y, (t) respectively. Fig. 3.1 explains
the meaning of homogeneity and additive properties of a system.
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Fig. 3.1: Input output behavior of a system

Non-Linear Circuit: Roughly speaking, a non-linear system is that whose parameters
change with voltage or current. More specifically, non-linear circuit does not obey the
homogeneity and additive properties. Volt-ampere characteristics of linear and non-linear
elements are shown in figs. 3.2 - 3.3. In fact, a circuit is linear if and only if its input and
output can be related by a straight line passing through the origin as shown in fig.3.2.
Otherwise, it is a nonlinear system.

F 3

V (Voltage)

I (Current) ——jp

Fig. 3.2: V=l characteristics of linear element.

&

YV (Voltage)

[ {(Current) =

Fig. 3.3: V-1 characteristics of non-linear element.
Potential Energy Difference: The voltage or potential energy difference between two

points in an electric circuit is the amount of energy required to move a unit charge
between the two points.
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L-3.3 Kirchhoff's Laws

Kirchhoff’s laws are basic analytical tools in order to obtain the solutions of currents and
voltages for any electric circuit; whether it is supplied from a direct-current system or an
alternating current system. But with complex circuits the equations connecting the
currents and voltages may become so numerous that much tedious algebraic work is
involve in their solutions.

Elements that generally encounter in an electric circuit can be interconnected in
various possible ways. Before discussing the basic analytical tools that determine the
currents and voltages at different parts of the circuit, some basic definition of the

following terms are considered.
R,

b
&
Fig. 3.4: A simple resistive network
e Node- A node in an electric circuit is a point where two or more components are
connected together. This point is usually marked with dark circle or dot. The
circuit in fig. 3.4 has nodes a, b, ¢, and g. Generally, a point, or a node in an

circuit specifies a certain voltage level with respect to a reference point or node.

e Branch- A branch is a conducting path between two nodes in a circuit containing
the electric elements. These elements could be sources, resistances, or other
elements. Fig.3.4 shows that the circuit has six branches: three resistive branches
(a-c, b-c, and b-g) and three branches containing voltage and current sources (a-,
a-, and c-g).

e Loop- A loop is any closed path in an electric circuit i.e., a closed path or loop in
a circuit is a contiguous sequence of branches which starting and end points for
tracing the path are, in effect, the same node and touches no other node more than
once. Fig. 3.4 shows three loops or closed paths namely, a-b-g-a; b-c-g-b; and a-c-
b-a. Further, it may be noted that the outside closed paths a-c-g-a and a-b-c-g-a
are also form two loops.

e Mesh- a mesh is a special case of loop that does not have any other loops within it

or in its interior. Fig. 3.4 indicates that the first three loops (a-b-g-a; b-c-g-b; and
a-c-b-a) just identified are also ‘meshes’ but other two loops (a-c-g-a and a-b-c-g-
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a) are not.

With the introduction of the Kirchhoff’s laws, a various types of electric circuits
can be analyzed.

1, |R:

Mowing through

5 [ — Current I
R
R, the closed path

1 —

+

o

|
L/
(b)
Fig. 3.5: Ilustrates the Kirchhoffs laws
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Kirchhoff’s Current Law (KCL): KCL states that at any node (junction) in a circuit
the algebraic sum of currents entering and leaving a node at any instant of time must be
equal to zero. Here currents entering(+ve sign) and currents leaving (-ve sign) the node
must be assigned opposite algebraic signs (see fig. 3.5 (a), I, =1, + 1, =1, +1,—-1,=0).

Kirchhoff's Voltage Law (KVL): It states that in a closed circuit, the algebraic sum of
all source voltages must be equal to the algebraic sum of all the voltage drops. Voltage
drop is encountered when current flows in an element (resistance or load) from the
higher-potential terminal toward the lower potential terminal. Voltage rise is encountered
when current flows in an element (voltage source) from lower potential terminal (or
negative terminal of voltage source) toward the higher potential terminal (or positive
terminal of voltage source). Kirchhoff’s voltage law is explained with the help of fig.
3.5(b).

KVL equation for the circuit shown in fig. 3.5(b) is expressed as (we walk in clockwise
direction starting from the voltage source V, and return to the same point)

V,—IR — IR, =V, — IR, — IR, +V, — IR, =V, = 0

V,-V,+V, -V, =IR + IR, + IR, + IR, + IR,
Example: L-3.1 For the circuit shown in fig. 3.6, calculate the potential of points
A,B,C, and E with respect to point D . Find also the value of voltage sourceV, .

v
& : I_ B 100Lx C
...... & Mﬁ—. -
o
350 mA
50 volt
000 liml mA .
|
...... b 1 i ceene
E t D
50 vaolt

Fig. 3.6: A part of dc resistive circuit is presented

Solution Let us assume we move in clockwise direction around the close path D-E-
A-B-C-D and stated the following points.

e 50 volt source is connected between the terminals D & E and this indicates that
the point E is lower potential than D. So, V¢, (i.e., it means potential of E with
respect to D) is -50 volt and similarlyV,, =50volt orV,. =-50volt.

e 500mA current is flowing through 200Q resistor from A to E and this implies
that point Ais higher potential than E. If we move from lower potential (E) to

Version 2 EE IIT, Kharagpur



higher potential (A), this shows there is a rise in potential.
Naturally,V,c =500x107 x200 =100volt and V,;, =-50+100=50volt .

Similarly, V., =350x107 x100 = 35volt

e 'V, voltage source is connected between A & B and this indicates that the terminal
B is lower potential than A i.e., V,z =V, volt or V,, =-V,volt.. One can write the
voltage of point B with respect to D is Vy, =50-V, volt.

e One can writeKVL law around the closed-loop D-E-A-B-C-D as
Vep +Ve +Vea +Veg +Vpe =0

-50+100-V, +35-50=0 =V, =35volt.

Now we have V¢, =-50volt, V,; =—50+100 = 50volt,V,, =50-35=15volt,

Vep =15+35=50volt.

L-3.4 Meaning of Circuit Ground and the Voltages
referenced to Ground

In electric or electronic circuits, usually maintain a reference voltage that is named
“ground voltage” to which all voltages are referred. This reference voltage is thus at
ground potential or zero potential and each other terminal voltage is measured with
respect to ground potential, some terminals in the circuit will have voltages above it
(positive) and some terminals in the circuit will have voltages below it (negative) or in
other words, some potential above or below ground potential or zero potential.

Consider the circuit as shown in fig. 3.7 and the common point of connection of elements
V, &V, is selected as ground (or reference) node. When the voltages at different nodes

are referred to this ground (or reference) point, we denote them with double subscripted
voltagesVep,V,p,Vep, @and V¢ . Since the point D is selected as ground potential or zero

potential, we can write V., as V¢, V,, as V, and so on.
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R,

1 ! -
1 P
Vi volt

Fig. 3.7: A Simple de resistive circuit

In many cases, such as in electronic circuits, the chassis is shorted to the earth itself for
safety reasons.

L-3.5 Understanding the Basic Principles of Voltage Dividers
and Current dividers

L-3.5.1Voltage Divider

Very often, it is useful to think of a series circuit as a voltage divider. The basic idea
behind the voltage divider is to assign a portion of the total voltage to each resistor. In
Figure 3.8 (a), suppose that the source voltage is E . By the circuit configuration shown
one can divide off any voltage desired (V,, ), less than the supply voltage E , by adjusting

Rl’ RZ a“d R3
\_.'
‘ uul .

+ =

R, R, R,

Fig. 3.8(a): Voltage Divider
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Fig. 3.8(b): Voltage Divider With Load

From figure 3.8(a) the output of the voltage divider V,_, is computed by the relation

E R, (3.1)
R+R +...+R
Equation (3.1) indicates that the voltage across any resistor R/( R i=1,2,...n ) in a
series circuit is equal to the applied voltage (E) across the circuit multiplied by a

VOUt = I Rn =

factor — . It should be noted that this expression is only valid if the same current

2R,
j=I1

I flows through all the resistors. If a load resistor R, is connected to the voltage divider
(see figure 3.8(b)), one can easily modify the expression (3.1) by simply combining
R, & R, in parallel to find anew R, and replacingR by R in equation (3.1).

Example: L-3.2 For the circuit shown in Figure 3.9,
(1) CalculateV,, , ignoring the internal resistance R, of the source E . Use voltage
division.
(i)  RecalculateV , taking into account the internal resistance R; of the source.

What percent error was introduced by ignoring R, in part (i)?
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R, = 10012 R, = 60£1

R, = 19

E = 100volt
Fig. 3.9

Solution: Part (i): From equation (3.1) the output voltage V,
E 100
R, =
R +R, 100+ 60

considered zero.)  Similarly, V,,

across the resistor R, =

x60=37.9volt (when the internal resistance R of the source is

=37.27 volt when R;is taken into account for

calculation. Percentage error is computed as = Mx 100=1.69%

37.27
L-3.5.2 Current divider

Another frequently encountered in electric circuit is the current divider. Figure 3.10
shows that the current divider divides the source current |, between the two resistors.

L J

O 51l

I, I,

Fig. 3.10: Current Divider

The parallel combination of two resistors is sometimes termed as current divider, because
the supply current is distributed between the two branches of the circuit. For the circuit,
assume that the voltage across the branch is V and the current expression in R, resistor

can be written as
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v
R

| R R,

L= ! =—=2—or |, =——2—x]|,. Similarly, the current flowing through
I 1 1 R +R, R +R,
V| —+—
Rl R2
the R, can be obtained as |, = ; RIR x |,. It can be noted that the expression for I, has
1 + 2

R, on its top line, that for |, has R, on its top line.

Example: L-3.3 Determine 1 ,1,,l, &l using only current divider formula when
I, =4A.

—_—

410

| ..

l 612 l 0 T 50
[l I:4 [_q

Fig. 3.11
Solution- Using  the current division formula  we can  write
5 5 4x8 - 3 3
I, ) I =3 L=l = =6.4 A. Similarly, —I :gx I, =1 :§><6.4 =24A.
Furthermore, we can write |, = 6 I, = 6 I, -1 = 7879 x6.4=8.404 A and
6+(3[5) " 6+1.879 6

=87 1 —2.004A
6+1.879
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L-3.6 Potentiometer and its function

—_—
. R,
Vi T
= —
X * T
Voltmeter
RL \‘u

Fig. 3.12: A voltmeter is connected across the output
terminals of potentiometer

The potentiometer has a resistance R, and its wiper can move from top position X =X

to bottom position X =0. The resistance R, corresponds to the position X of the wiper
such that

R R R ) .

X =—L =R 2(—'3 X  (assumed that the per unit length resistance of the
X X

potentiometer is same through out its length). Figure 3.12 represents a potentiometer

whose output is connected to a voltmeter. In true sense, the measurement of the output

voltage V_ with a voltmeter is affected by the voltmeter resistance RV and the

relationship between Vj and X (Xx= wiper distance from the bottom position) can easily

be established. We know that the voltmeter resistance is very high in M Q range and

practically negligible current is flowing through the voltmeter. Under this condition, one
can write the expression for voltage between the wiper and the bottom end terminal of the
potentiometer as
V;(=1R X R
MXX :>Vout:VTX :Vout:VTX_X
X
'max 'max p

It may be noted that depending on the position of movable tap terminal the output voltage

(V,, ) can be controlled. By adjusting the wiper toward the top terminal, we can increase

V.- The opposite effect can be observed while the movable tap moves toward the

Vou G IR, =

bottom terminal. A simple application of potentiometer in real practice is the volume
control of a radio receiver by adjusting the applied voltage to the input of audio amplifier
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of a radio set. This audio amplifier boosts this voltage by a certain fixed factor and this
voltage is capable of driving the loudspeaker.

Example- L-3.4 A 500—KQ potentiometer has 110 V applied across it. Adjust the
position of R, such that 47.5 V appears between the movable tap and the bottom end

terminal (refer fig.3.12).

Solution- Since the output voltage (V,, ) is not connected to any load, in turn, we can
write the following expression

Vout = VT x X me = Rbot - Rbot -
X V& Rp V;

max

Voo g :47'05 x500000=216 - kC2.

L-3.7 Practical Voltage and Current Sources

L-3.7.11deal and Practical Voltage Sources

e An ideal voltage source, which is represented by a model in fig.3.13, is a device
that produces a constant voltage across its terminals (V =E) no matter what
current is drawn from it (terminal voltage is independent of load (resistance)
connected across the terminals)

—_— |, ’
&
I Laoad
(g
d Vi R,
Y

Fig. 3.13: Ideal de voltage source

For the circuit shown in fig.3.13, the upper terminal of load is marked plus (+) and its
lower terminal is marked minus (-). This indicates that electrical potential of upper
terminal is V| volts higher than that of lower terminal. The current flowing through the

load R, is given by the expression V, =V, =1 R and we can represent the terminal

V —1 characteristic of an ideal dc voltage as a straight line parallel to the x-axis. This
means that the terminal voltage V| remains constant and equal to the source voltage V,

irrespective of load current is small or large. The V —1 characteristic of ideal voltage
source is presented in Figure 3.14.
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e However, real or practical dc voltage sources do not exhibit such characteristics
(see fig. 3.14) in practice. We observed that as the load resistance R, connected
across the source is decreased, the corresponding load current |, increases while

the terminal voltage across the source decreases (see eq.3.1). We can realize such
voltage drop across the terminals with increase in load current provided a
resistance element (R,) present inside the voltage source. Fig. 3.15 shows the

model of practical or real voltage source of valueV, .

>
0.0 I, ——p

Fig. 3.14: V-I characteristics of ideal voltage source

The terminal V — 1 characteristics of the practical voltage source can be described by an
equation

V, =V, -I,R, (3.1
and this equation is represented graphically as shown in fig.3.16. In practice, when a
load resistance R more than 100 times larger than the source resistance R,, the source
can be considered approximately ideal voltage source. In other words, the internal
resistance of the source can be omitted. This statement can be verified using the relation

R, =100R, in equation (3.1). The practical voltage source is characterized by two
parameters namely known as (1) Open circuit voltage (V,) (ii) Internal resistance in the

source’s circuit model. In many practical situations, it is quite important to determine the
source parameters experimentally. We shall discuss briefly a method in order to obtain
source parameters.

Version 2 EE IIT, Kharagpur



Practical
Source

Fig. 3.15: Practical de voltage source model

Method-: Connect a variable load resistance across the source terminals (see fig. 3.15). A
voltmeter is connected across the load and an ammeter is connected in series with the
load resistance. Voltmeter and Ammeter readings for several choices of load resistances
are presented on the graph paper (see fig. 3.16). The slope of the line is —R_, while the

curve intercepts with voltage axis (at |, =0) is the value of V.

The V —1 characteristic of the source is also called the source’s ‘“‘regulation
curve” or “load line”. The open-circuit voltage is also called the “no-load” voltage, V..

The maximum allowable load current (rated current) is known as full-load current I

and the corresponding source or load terminal voltage is known as “full-load”
voltageVy, . We know that the source terminal voltage varies as the load is varied and this

is due to internal voltage drop inside the source. The percentage change in source
terminal voltage from no-load to full-load current is termed the “voltage regulation™ of
the source. It is defined as

Voltage regulation (%) z\%x

FL
For ideal voltage source, there should be no change in terminal voltage from no-load to
full-load and this corresponds to ‘“zero voltage regulation”. For best possible
performance, the voltage source should have the lowest possible regulation and this
indicates a smallest possible internal voltage drop and the smallest possible internal
resistance.

100

Example:-L-3.5 A practical voltage source whose short-circuit current is 1.0A and open-
circuit voltage is 24 Volts. What is the voltage across, and the value of power dissipated
in the load resistance when this source is delivering current 0.25A?

= % =1.0A (short-circuit test) V. =V, =24 volts (open-

S
circuit test). Therefore, the value of internal source resistance is obtained as

RSZV—5:24Q . Let us assume that the source is delivering current I, = 0.25A when the

SC

Solution: From fig. 3.10, |

sC
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load resistance R, is connected across the source terminals. Mathematically, we can write
the following expression to obtain the load resistance R, .

24
24+R,

=0.25 »>R_=72Q.

Now, the voltage across the load R = | R =0.25x72=18 volts., and the power
consumed by the load is given by P, =1,> R =0.0625x72=4.5 watts.

Example-L-3.6 (Refer fig. 3.15) A certain voltage source has a terminal voltage of 50 V
when =400 mA; when I rises to its full-load current value 800 mA the output voltage is
recorded as 40 V. Calculate (1) Internal resistance of the voltage source (R, ). (i1) No-load

voltage (open circuit voltage V). (iii) The voltage Regulation.

Solution- From equation (3.1) (V, =V, —I_R,) one can write the following expressions
under different loading conditions.

50=V,-04R, & 40=V,-0.8R; — solving these equations we get,V, =60V &
R,=25Q2.

Voltage regulation (%) =VOCV_AX100= 60-40

FL

x100=33.33%

L-3.7.2 Ideal and Practical Current Sources

e Another two-terminal element of common use in circuit modeling is ‘current
source’ as depicted in fig.3.17. An ideal current source, which is represented by a
model in fig. 3.17(a), is a device that delivers a constant current to any load
resistance connected across it, no matter what the terminal voltage is developed
across the load (i.e., independent of the voltage across its terminals across the
terminals).
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F Y Internal

V, =V, ; voltage
—p | g s s e ==+ drop

Y
0.0 ]

Fig. 3.16: V-1 characteristics of practical voltage source

T

'\.‘ Rl

L

I

¢ ldeal current

source

3-

Fig. 3.17(a): Ideal current source with variable load

It can be noted from model of the current source that the current flowing from the
source to the load is always constant for any load resistance (see fig. 3.19(a)) i.e.
whether R, is small (V| is small) or R, is large (V, is large). The vertical dashed line
in fig. 3.18 represents the V —|I characteristic of ideal current source. In practice,
when a load R, is connected across a practical current source, one can observe that
the current flowing in load resistance is reduced as the voltage across the current
source’s terminal is increased, by increasing the load resistance R . Since the
distribution of source current in two parallel paths entirely depends on the value of
external resistance that connected across the source (current source) terminals. This
fact can be realized by introducing a parallel resistance R, in parallel with the

practical current source |, as shown in fig. 3.17(b). The dark lines in fig. 3.18 show
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the V — 1| characteristic (load-line) of practical current source. The slope of the curve
represents the internal resistance of the source. One can apply KCL at the top
terminal of the current source in fig. 3.17(b) to obtain the following expression.

||_: _\F/Z_LorVL:ISRS_RSIL:VOC_RSIL (32)

S
S

The open circuit voltage and the short-circuit current of the practical current
source are given by V. =I1R, and I, =1, respectively. It can be noted from the
fig.3.18 that source 1 has a larger internal resistance than source 2 and the slope the
curve indicates the internal resistance R, of the current source. Thus, source 1 is

short S

closer to the ideal source. More specifically, if the source internal resistance
R, = 100R, then source acts nearly as an ideal current source.

1 ll"

/i'rm:th:nl Ccurrent

source
Fig. 3.17(b): Practical current source with variable load

L-3.7.3Conversion of a Practical Voltage Source to a Practical
Current source and vise-versa

e Voltage Source to Current Source

For the practical voltage source in fig. 3.19(a), the load current is calculated as

V

I, = . 3.3

" R,+R, (-3)

Note that the maximum current delivered by the source when R, =0 (under short-

circuit condition) is given byl =1, :\F/Q—S. From eq.(3.3) one can rewrite the

expression for load current as

I. xR

|, =—"—— 3.4

" R +R, G4
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A simple current divider circuit having two parallel branches as shown in fig.3.19 (b)
can realize by the equation (3.4).

Note: A practical voltage source with a voltage V, and an internal source resistance

. . . V
R, can be replaced by an equivalent practical current source with a current | =—

S

and a source internal resistance R, (see fig. 3.19(b)).

Practical current
SOUFCE

Ideal current sowrce
(R, = )

L
vV

L9

0.0 — |

Fig. 3.18: V-1 characteristic of practical current source

B Y

(a) (b)
Fig. 3.19: Source Conversions

e Current source to Voltage Source
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I, C) - e '
"r! = [HR'! !
YEB
(a) (k)

Fig. 3.20: Current Source to Voltage source conversion

For the circuit in fig. 3.15(a), the load voltage V, is given by

V. =I,R = R, xIy IR = LR, R =V, Ru (3.5
R,+R, R,+R, R,+R,

Equation (3.5) represents output from the voltage source across a load resistance and
this act as a voltage divider circuit. Figure 3.20(b) describes the situation that a
voltage source with a voltage value V, = | R, and an internal source resistance R, has

an equivalent effect on the same load resistor as the current source in figure 3.20(a).
Note: A current source with a magnitude of current | and a source internal resistance

R, can be replaced by an equivalent voltage source of magnitude V, = IR, and an

internal source resistance R (see fig. 3.20(b)).

Remarks on practical sources: ( i ) The open circuit voltage that appears at the
terminals A & B for two sources (voltage & current) is same (i.e., V).

(11 ) When the terminals A & B are shorted by an ammeter, the shot-circuit results
same in both cases (i.e., I,).
(i1 ) If an arbitrary resistor (R ) is connected across the output terminals A & B of

either source, the same power will be dissipated in it.

( 1v ) The sources are equivalent only as concerns on their behavior at the external
terminals.

( v ) The internal behavior of both sources is quite different (i.e., when open circuit
the voltage source does not dissipate any internal power while the current source
dissipates. Reverse situation is observed in short-circuit condition).

L-3.8 Independent and Dependent Sources that
encountered in electric circuits

e Independent Sources

So far the voltage and current sources (whether ideal or practical) that have been
discussed are known as independent sources and these sources play an important role
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to drive the circuit in order to perform a specific job. The internal values of these
sources (either voltage source or current source) — that is, the generated voltage V, or

the generated current | (see figs. 3.15 & 3.17) are not affected by the load connected

across the source terminals or across any other element that exists elsewhere in the
circuit or external to the source.

e Dependent Sources

Another class of electrical sources is characterized by dependent source or controlled
source. In fact the source voltage or current depends on a voltage across or a current
through some other element elsewhere in the circuit. Sources, which exhibit this
dependency, are called dependent sources. Both voltage and current types of sources
may be dependent, and either may be controlled by a voltage or a current. In general,

dependent source is represented by a diamond (Q)—shaped symbol as not to confuse
it with an independent source. One can classify dependent voltage and current sources
into four types of sources as shown in fig.3.21. These are listed below:

(1) Voltage-controlled voltage source (VCVS) (i1) Current-controlled voltage source
(ICVS) (iii) Voltage-controlled current source(VCIS) (iv) Current-controlled current
source(ICIS)

—_—0

T ; '
v, <> 4 Vx vit) = a v, iy <> vit) = p i,

O

i o 0
(a) VCVS {b) ICVS
i
T o O
" <+‘> Bv, =B v, i i) = v I
a o 0
(dy ICIS

(c) VCIS
Fig. 3.21: ldeal dependent (controlled) sources

Note: When the value of the source (either voltage or current) is controlled by a
voltage (V, ) somewhere else in the circuit, the source is said to be voltage-controlled
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source. On the other hand, when the value of the source (either voltage or current) is
controlled by a current (i,) somewhere else in the circuit, the source is said to be

current-controlled source. KVL and KCL laws can be applied to networks containing
such dependent sources. Source conversions, from dependent voltage source models
to dependent current source models, or visa-versa, can be employed as needed to
simplify the network. One may come across with the dependent sources in many
equivalent-circuit models of electronic devices (transistor, BJT(bipolar junction
transistor), FET( field-effect transistor) etc.) and transducers.

L-3.9 Understanding Delivering and Absorbing Power by the
Source.

It is essential to differentiate between the absorption of power (or dissipating power) and
the generating (or delivering) power. The power absorbed or dissipated by any circuit
element when flows in a load element from higher potential point (i.e +ve terminal)
toward the lower terminal point (i.e., -ve terminal). This situation is observed when
charging a battery or source because the source is absorbing power. On the other hand,
when current flows in a source from the lower potential point (i.e., -ve terminal) toward
the higher potential point (i.e., +ve terminal), we call that source is generating power or
delivering power to the other elements in the electric circuit. In this case, one can note
that the battery is acting as a “source” whereas the other element is acting as a “sink”.
Fig.3.22 shows mode of current entering in a electric element and it behaves either as
source (delivering power) or as a sink (absorbing or dissipating power).
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+ * i
+ &
—— ' — '
(a) Power absorbed by R b} Source generates power (c) Source absorbs power
1 df— —_— ]
3 *
element clement
(d) Power generated by this element {e) Power absorbed by this element

Fig. 3.22: Source and sink configurations

L.3.10 Test Your Understanding [marks distribution shown
inside the bracket]

T.1 Ifa30 V source can force 1.5 A through a certain linear circuit, how much current
can 10 V force through the same circuit? (Ans. 500 m A.) [1]

T.2 Find the source voltage V, in the circuit given below [1]
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Vaoltmeter

20
Voltmeter

Fig. 3.33
(Ans. 40 V)
T.3 For the circuit shown in Figure T.3 [1x4]
=]
L |
||? R; = 2042
==
- [
B
= i
[
:*'F'
Fig. 3.34

(a) Calculate V ,, ignoring the internal resistance of the source R, (assuming it’s

zero). Use Voltage division method. (Ans.33.333 V)
(b) Recalculate V,_,, taking into account R,. What percentage error was introduced

by ignoring R, in part (a). (Ans. 31.29 V , 6.66%)

(c) Repeat part (a) & (b) with the same source and replacing R =20Q by 20kQ &
R,=10Q by 1k Q. Explain why the percent error is now so much less than in part
(b). (Ans. 33.333 V, 33.331 V, 0.006%)

T.4 For the circuit shown in figure T.4 [1x6]
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Fig. 3.35

(a) Find , in any order, |,, I,, and | (b) Find, in any order, R, R,,and Req -
(Ans. (a) 20 mA, 30 mA and 100 mA (b) 2kQ, 3.33 kQ and 1kQ.)

T.5 Refer to the circuit shown in Figure T.5 [1x4]
) d 6

10042

1202 5000 4_|“+

Pot,

£ o -
Fig. 3.36
(a) What value of R,will balance the bridge (i.e., V, =0.0) (b) At balanced
condition, find the values of V,; & V,,. (Ans. 150Q2, 24V (a is higher potential
than ‘g’, since current is flowing from ‘a’ to ‘b’), 24V ( b is higher potential than
(b) Isgo)es the value of V., depend on whether or not the bridge is balanced? Explain

this. (Ans. No., since flowing through the 80Q branch will remain same and
hence potential drop across the resistor remains same.)
(¢) Repeat part (b) for V,, . (Ans. Yes . Suppose the value of R 4 is increased from its

balanced condition, this in turn decreases the value of current in that branch and
subsequently voltage drop across the 100Q is also decreases. The indicates that

the voltage across V,, will increase to satisfy the KVL.)

(d) If the source voltage is changed to 50 V will the answer to part (a) change?
Explain this. (Ans. No.)
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T.6 If an ideal voltage source and an ideal current source are connected in parallel, then
the combination has exactly the same properties as a voltage source alone. Justify this
statement. [1]

T.7 1If an ideal voltage source and an ideal current source are connected in series, the
combination has exactly the same properties as a current source alone. Justify this
statement. [1]

T.8 When ideal arbitrary voltage sources are connected in parallel, this connection
violates KVL. Justify. [1]

T.9 When ideal arbitrary current sources are connected in series, this connection
violates KCL. Justify.

[1]
T.10 Consider the nonseries-parallel circuit shown in figure T.10. Determine R and the
equivalent resistance R, between the terminals “a” & “b” when v, =8V .

(Appling basic two Kirchhoff’s laws) (Ans.R =4Q & R, =4Q) [3]

411

Fig. 3.37

T.11 A 20 V voltage source is connected in series with the two series-resistors
R =5Q &R, =10Q. (a) Find I, V;,, V;,. (Ans. 1.333 A, 6.6667 V, 13.33 V)

(b) Find the power absorbed or generated by each of the three elements. (8.88 W
(absorbed), 17.76 W (absorbed), 26.66 W delivered or generated (since current is leaving
the plus terminal of that source.) [2]
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T.12 Consider the circuit of figure T.12

NVW—
mT() “‘“§ J‘:tm ()lﬁ.-i

Fig. 3.38

Find powers involved in each of the five elements and whether absorbed or
generated. (Ans. 48 W (G), 36 W (A), 60 W (G), 108 W (A) and 36 W (G). ( results
correspond to elements from left to right, CS, R, VS, R, CS). [4]

T.13 For the circuit of Figure T.13 Suppose V,, =20V .

_P' IH:

) F 3
ﬁl| 1 . 41, 4

" :.*:I ‘r:vul.

Vi = R.wmg ?g T<> ‘;?
- N

v

Fig. 3.39
(a) Find the output voltage and output current. [2]

) to input voltage (V,,) i.e. Vou _ voltage
gain. [1]
(c) Find the power delivered by each source(dependent & independent sources).[2]

(b) Find the ratio of output voltage (V,

ut

(Ans. (a) 100 V, 20 A (note that 61, is the value of dependent voltage source with the

polarity as shown in fig. T.13 whereas 41, represents the value of dependent current
source) (b) 5 (voltage gain). (¢) 100 W (VS), 150 W (DVS), 2000 W (DCNS)).

T.14 Find the choice of the resistance R, (refer to Fig. T.13) so that the voltage gain is
30. (Ans. R, =1Q [1]

T.15 Find equivalent resistance between the terminals ‘a’ & ‘b’ and assume all resistors
values are 1Q). [2]
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Objectives

e Meaning of circuit analysis; distinguish between the terms mesh and loop.
e To provide more general and powerful circuit analysis tool based on Kirchhoff’s
voltage law (KVL) only.

L.4.1 Introduction

The Series-parallel reduction technique that we learned in lesson-3 for analyzing
DC circuits simplifies every step logically from the preceding step and leads on logically
to the next step. Unfortunately, if the circuit is complicated, this method (the simplify and
reconstruct) becomes mathematically laborious, time consuming and likely to produce
mistake in calculations. In fact, to elevate these difficulties, some methods are available
which do not require much thought at all and we need only to follow a well-defined
faithful procedure. One most popular technique will be discussed in this lesson is known
as ‘mesh or loop’ analysis method that based on the fundamental principles of circuits
laws, namely, Ohm’s law and Kirchhoff’s voltage law. Some simple circuit problems will
be analyzed by hand calculation to understand the procedure that involve in mesh or loop
current analysis.

L.4.1.1 Meaning of circuit analysis

The method by which one can determine a variable (either a voltage or a current) of a
circuit is called analysis. Basic difference between ‘mesh’ and ‘loop’ is discussed in
lesson-3 with an example. A “‘mesh’ is any closed path in a given circuit that does not
have any element (or branch) inside it. A mesh has the properties that (i) every node in
the closed path is exactly formed with two branches (ii) no other branches are enclosed
by the closed path. Meshes can be thought of a resembling window partitions. On the
other hand, ‘loop’ is also a closed path but inside the closed path there may be one or
more than one branches or elements.

L.4.2 Solution of Electric Circuit Based on Mesh (Loop)
Current Method

Let us consider a simple dc network as shown in Figure 4.1 to find the currents
through different branches using Mesh (Loop) current method.
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® ——P NODE
Figure 4.1

Applying KVL around mesh (loop)-1:(note in mesh-1, 1, is known as local current and

other mesh currents 1, &1, are known as foreign currents.)
V,-V,—(l,-1;)R,—(1,—1,)R, =0

Va _Vc :(R2+R4) I1_R4|2 _Rzls = R11|1_R12|2 _R13|3 (4-1)

Applying KVL around mesh (loop)-2:(similarly in mesh-2, 1, is local current and
I, &1, are known as foreign currents)

—Vb—(lz—lg)Ra—(lz—Il)R4 =0

-V, =R, L, +(Ry+R, ) I, = Ryl; =—Ry 1, + Ry, 1, =Ryl (4.2)
Applying KVL around mesh (loop)-3:

V.- LR —(I;—1,)R—(1;—1,)R, =0

V, ==R,l; = Ryl, +(R,+ R, + Ry ) I; ==Ry 1, =Ry, + Ryl (4.3)
** |n general, we can write for i" mesh (for i=1,2,....N)
D Vi =Ryl =Ryl Ry =Ryl = Ry 1y
ZVii — simply means to take the algebraic sum of all voltage sources around the "
mesh.

R, — means the total self resistance around the i"™ mesh.

R; — Means the mutual resistance between the and j™ meshes.
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Note: Generally, R; =R;; (true only for linear bilateral circuits)

I, — the unknown mesh currents for the network.

Summarize:
Step-1: Draw the circuit on a flat surface with no conductor crossovers.

Step-2: Label the mesh currents (1,) carefully in a clockwise direction.

Step-3: Write the mesh equations by inspecting the circuit (No. of independent mesh
(loop) equations=no. of branches (b) - no. of principle nodes (n) + 1).

Note:

To analysis, a resistive network containing voltage and current sources using ‘mesh’
equations method the following steps are essential to note:

e If possible, convert current source to voltage source.

e Otherwise, define the voltage across the current source and write the mesh
equations as if these source voltages were known. Augment the set of equations
with one equation for each current source expressing a known mesh current or
difference between two mesh currents.

e Mesh analysis is valid only for circuits that can be drawn in a two-dimensional
plane in such a way that no element crosses over another.

Example-L-4.1: Find the current through ‘ab-branch’ (1,,) and voltage (V,, ) across the
current source using Mesh-current method.
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loop-2

]J

- A

® — NODE

Find L, ¥, using
mesh current method.
Figure 4.2

Solution: Assume voltage across the current source is v, (‘c’ is higher potential than ‘g’
(ground potential and assumed as zero potential) and note I, = -2A (since assigned current
direction (1,) is opposite to the source current)

Loop - 1: (Appling KVL)

V,-(L-1)R,—-(l,-1,)R, =0=3=31,-2I, -1,
3, -1,=-1 (4.9)
Loop - 2: (Appling KVL)

Let us assume the voltage across the current source is v, and its top end is assigned with
a positive sign.

-, —(L,-1)R,—(I,-1,)R; =0 = —v, =-2I,+61,-4l,

21,+12+41, =V, (note: 1, =-2A) (4.5)
Loop - 3: (Appling KVL)

-LR—-(l,-1L)R,-(l;-1,))R,=0=—-1,-41,+81,=0

|,-8l,=8 (Note, I, =—2A) (4.6)
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Solving equations (4.4) and (4.6), we get |, = —g—g =-0.6956A and

I3:—§—2:—1.0869A, l,=1,-1,=039A, I, =1,-1,=-0913A and

lyy =1, — 1, =1.304A

- ve sign of current means that the current flows in reverse direction (in our case, the
current flows through 4Q resistor from “c’ to ‘b’ point). From equation (4.5), one can get
v, ==6.27 volt.

Another way: -V, +V,, +V,. =0 = v, =v,, =6.27volt.

Example-L-4.2 For the circuit shown Figure 4.3 (a) find V, using the mesh current
method.

n

. 1 6L} A
12A v,
18V

Fig. 4.3(a)

& i

6A C) mg - HE—_I

®h

® b
Fig. 4.3(b)
Solution: One can easily convert the extreme right current source (6 A) into a voltage

source. Note that the current source magnitude is 6 A and its internal resistance is6<Q.
The given circuit is redrawn and shown in Figure 4.3 (c)
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124 C ) v,
. I, 15y I,
+-— = -
»
b
Fig. 4.3(c)
Loop-1: (Write KVL, note 1,=12A)
V,—(l,-1,)x3-18=0=V, +31,=54 4.7)

Loop-2: (write KVL)
18—(1,-1,)x3-1,x6-36=0=91,=18=1,=2A
Using the value of 1,=2A in equation (4.7), we get V, =48volt.

Example-L-4.3 Find v, for the circuit shown in figure 4.4 using ‘mesh current method.
Calculate the power absorbed or delivered by the sources and all the elements.

Version 2 EE 11T, Kharagpur



10042 + | 10mA
Ligop-1 o | e
I, I,
4— -+
Loop-2
Figure 4.4

Solution: Assume the voltage across the current source is ‘v’ and the bottom end of
current source is marked as positive sign.

For loop No. 1: (KVL equation)
v—(l,—-1,)x100—-1,x100=0 = v —-2001,+1001,=0 (4.8)
It may be noted that from the figure that the current flowing through the 100Q resistor

(in the middle branch) is10mA. More specifically, one can write the following
expression

l,-1,=10x10"° (4.9)
For loop No. 2: (KVL equation)
-20-(1,-1,)x100-v—-1,x100=0 = v+2001, —100 I, =— 20 (4.10)

Solving equations (4.8)—(4.10), one can obtained the Iloop currents as
[,=—0.095 =-95mA (-ve sign indicates that the assigned loop current direction is not

correct or in other words loop current (1,) direction is anticlockwise.) and
I, =-0.105=-105mA (note, loop current (1,) direction is anticlockwise). Now the
voltage across the 100Q resistor (extreme right branch) is given by
Vg =1,x100=-0.105x100= —10.5volt. .This indicates that the resistor terminal (b)
adjacent to the voltage source is more positive than the other end of the resistor terminal
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(a). From equation (4.8) v=-8.5volt and this implies that the ‘top’ end of the current
source is more positive than the bottom ‘end’.

Power delivered by the voltage source = 20x0.105=2.1W (note that the current is

leaving the positive terminal of the voltage source). On the other hand, the power
received or absorbed by the current source = 8.5x0.01=0.085W (since current entering

to the positive terminal (top terminal) of the current source). Power absorbed by the all
resistance is given

= (0.105) 2x100+ (0.095) > x100 + (10x10™%) 2x100 = 2.015W .

Further one can note that the power delivered (P,=2.1W) = power absorbed
(P,=0.085+2.015=2.1W ) =2.1W

L.4.3 Test Your Understanding [Marks:50]
T.4.1 To write the Kirchhoff’s voltage law equation for a loop, we proceed clockwise
around the loop, considering voltage rises into the loop equation as ------- terms and
voltage drops as -------- terms. [2]

T.4.2 When writing the Kirchhoff’s voltage law equation for a loop, how do we handle
the situation when an ideal current source is present around the loop? [2]

T.4.3 When a loop current emerges with a positive value from mathematical solution of
the system of equations, what does it mean? What does it mean when a loop current

emerges with a negative value? [2]
T.4.4 In mesh current method, the current flowing through a resistor can be computed
with the knowledge of ------ loop current and ---------- loop current. [2]
T.45 Find the current through 6Q resistor for the circuit Figure 4.5 using ‘mesh
current’ method and hence calculate the voltage across the current source. [10]
34} 54}
. |
v —_; 28V :
g 6L}

Figure 4.5
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(Answer:3.18A; 13.22V)

T.46 For the circuit shown in Figure 4.6, find the current through

laes 1acs Iep @nd I using ‘mesh current” method. [12]
401
1A

OFn % 0

6A ; :
BY _[.
B D F
Figure 4.6

(Answer: 1, =—3A 1, =—3A/ I, =—2Aand I=0A)

T.4.7 Find the current flowing through the R =1kQ resistor for the circuit shown in

Figure 4.7 using ‘mesh current’ method. What is the power delivered or absorbed by the

independent current source? [10]
R, = 1ki} 1Ko

(Answer: 1mA;10mW )

T.4.8 Using ‘mesh current’” method, find the current flowing through 2Q resistor for
the circuit shown in Figure 4.8 and hence compute the power consumed by the same 2Q
resistor. [10]
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(Answer: 6 A; 72W )

Figure 4.8
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Objectives

e To provide a powerful but simple circuit analysis tool based on Kirchhoff’s
current law (KCL) only.

L.5.1 Node voltage analysis

In the previous lesson-4, it has been discussed in detail the analysis of a dc network by
writing a set of simultaneous algebraic equations (based on KVL only) in which the
variables are currents, known as mesh analysis or loop analysis. On the other hand, the
node voltage analysis (Nodal analysis) is another form of circuit or network analysis
technique, which will solve almost any linear circuit. In a way, this method completely
analogous to mesh analysis method, writes KCL equations instead of KVL equations, and
solves them simultaneously.

L.5.2 Solution of Electric Circuit Based on Node Voltage
Method

In the node voltage method, we identify all the nodes on the circuit. Choosing one of
them as the reference voltage (i.e., zero potential) and subsequently assign other node
voltages (unknown) with respect to a reference voltage (usually ground voltage taken as

zero (0) potential and denoted by (' ). If the circuit has “n” nodes there are “n-1"
node voltages are unknown (since we are always free to assign one node to zero or
ground potential). At each of these “n-1" nodes, we can apply KCL equation. The
unknown node voltages become the independent variables of the problem and the
solution of node voltages can be obtained by solving a set of simultaneous equations.

Let us consider a simple dc network as shown in Figure 5.1 to find the currents
through different branches using “Node voltage” method.
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—>
%
/
R,
VWA

R, 3 > g,

ﬁ [I é[_l.

JO Q|3

Fero Potential
or
Ciround Potential

Fig. 5.1
KCL equation at “Node-1"":
e AL =05 > ly—l,- i"'i V) - = V- = V=0
R, R, R, R, R, R,
I =1 =C6u Vi -G, V, -GV, (5.1)

where G, = sum of total conductance (self conductance) connected to Node-1.
KCL equation at “Node-2"":

Ve [V2 Vs —1,=0; 5> —l,=- 1 V, + 1.1 V, - 1 V,
R, Ry R, Ry R, R,

_Isz :_GZlV1+G22V2 —G23V3 (5-2)

KCL equation at “Node-3"":

|53 +[V2 _Vsj_l_[vl _VsJ_[ﬁj =0 Y |53 :_[ijvl _[LJVZ +{i+i+iJV3
R3 R2 Rl R2 R3 R1 RZ R3

I3 =—Gy Vi -Gy, V, +G53V, (5.3)
In general, for the i" Node the KCL equation can be written as

Zlii =—Gy V-G,V —oee +G V= -Gy Vy

where,
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Zlii: algebraic sum of all the current sources connected to ‘Node-i’,

=12 N. (Currents entering the node from current source is assigned as +ve sign
and the current leaving the node from the current source is assigned as —ve sign).

G, = the sum of the values of conductance (reciprocal of resistance) connected to the
node 'i".

G; = the sum of the values of conductance connected between the nodes 'i* and ' j'.
Summarize the steps to analyze a circuit by node voltage method are as follows:

Step-1: Identify all nodes in the circuit. Select one node as the reference node (assign as
ground potential or zero potential) and label the remaining nodes as unknown node
voltages with respect to the reference node.

Step-2: Assign branch currents in each branch. (The choice of direction is arbitrary).
Step-3: Express the branch currents in terms of node assigned voltages.

Step-4: Write the standard form of node equations by inspecting the circuit. (No of node
equations = No of nodes (N) — 1).

Step-5: Solve a set of simultaneous algebraic equation for node voltages and ultimately
the branch currents.

Remarks:
e Sometimes it is convenient to select the reference node at the bottom of a circuit
or the node that has the largest number of branches connected to it.
e One usually makes a choice between a mesh and a node equations based on the
least number of required equations.

Example-L-5.1: Find the value of the current I flowing through the battery using ‘Node
voltage” method.

IEY

l 10V
IA

¥
‘T‘() 10£2 J,

2041 ik C) J’

6A
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Solution: All nodes are indicated in fig.5.2 and “Node-g’ is selected as reference voltage.
If a voltage source is connected directly between the two nodes, the current flowing
through the voltage source cannot be determined directly since the source voltage Vg is

independent of current. Further to note that the source voltage VS fixes the voltage

between the nodes only. For the present example, the voltage of the central node is
known since it is equal to (V5 —10) volt .

KCL equation at node-a:

3= Y20, 10 +V, =30 (5.4)
10

KCL equation at node-b:

V. ~10)-V, =6+Vb_0—>va—7vb =370 (5.5)
60 10

To solve the equations (5.4)-(5.5), we need one more equation which can be obtained by
applying KCL at the central node (note central node voltage is (V, —10).

1 =Ya 10, Ve 107W  6o1 gy, v, —a05 1 = Ba=%=40) (5.6)
20 60 60

Substituting the current expression (5.6) in equation (5.4) we get,

wMﬂ =30 - 10V, -V, =220 (5.7)

Equations (5.5) and (5.7) can be solved to find V, = —50.43V and V, =16.99V .

We can now refer to original circuit (fig.5.2) to find directly the voltage across every
element and the current through every element. The value of current flowing through the
voltage source can be computed using the equation (5.6) and it is given by | =1.307 A.

Note that the current 1 (+ve) is entering through the positive terminal of the voltage
source and this indicates that the voltage source is absorbing the power, in other words
this situation is observed when charging a battery or source.

Example-L-5.2: Find the current through "ab-branch’ (1,,) and voltage (V,, ) across the
current source using Node-voltage method.
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R, = 10} R, = 40}
1 —— A WAW—
ﬁ I:I| ﬁ 2\"

J ()T
I .

T == V=3V ‘L% we el

i ¢ is the reference

=3 violtage
Fig. 5.3
Solution:
KCL at node-a: ( note V, =3V )
i=VaVo VoV :(i+ijva—ivb —ivc —i=1.33V, —vb—lvc (5.8)
R, R R R R, R 3
KCL at node-b: (note V, =0V )
- -V. V,-V
V.V :Vb Ve Lob g _{1+1+1ij _Va_lvC =0 (5.9
R, R, R, 4 2 4
KCL at node-c:
21 Ve VaVe —>(1+1ij —iva —lvb =2 (5.10)
R, R, 4 3 3° 4
Using the value of V, =3V in equations (5.8)-(5.10) we get the following equations:

V, +%vc =3.99-i (5.11)
1.75V, —%VC =3 (5.12)
0.583V, —%Vb =3 (5.13)
Simultaneous solution of the above three equations, one can get V, =6.26V , V, =2.61V
and hence Iabzvé‘F;Vb :3_2'61:0.39A ( current flowing in the direction from ‘a’ to

2

‘D).

Example-L-5.3 Determine the current, i shown in fig. 5.4 using node-voltage method ---
(a) applying voltage to current source conversion (b) without any source conversion.

Version 2 EE 11T, Kharagpur



-

4k

 AAA—g LE— 2 '?_
vl 0 MO 2w

*.;.l ground
— potential

Fig. 5.4

Solution:

Part(a):

In node voltage analysis, sometimes the solution turns out to be very simple while we
change all series branches containing voltage sources to their equivalent current sources.
On the other hand, we observed in the loop analysis method that the conversion of current
source to an equivalent voltage makes the circuit analysis very easy (see example-L4.2)
and simple. For this example, both the practical voltage sources (one is left of ‘node-a’
and other is right of ‘node-b’) are converted into practical current sources. After
transformation, the circuit is redrawn and shown in fig. 5.5(a).

a j €&4=— b
.
ImA lmA ImA
OB 1O 10 w3l OF
ImA i iy
""[ wround
= potential
Fig. 5.5(a)
KCL at node ‘b’:
i+, =2+1=3 (5.14)
KCL at node ‘a’:
1+2=3+i,—>i-i=1 (5.15)

From equations (5.14)-(5.15), one can get i =2mA (current flows from ‘b’ to ‘a’) and
L, =1mA.
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2mA

Fig. 5.5(h)

Part(b):
Let us assume i, is the current flowing through the 8V battery source from ‘right to left’
and i, is the current flowing through the 12V battery source from ‘bottom to top’(see
Fig.5.5(b)).
KCL at node ‘b’: It is assumed that the current flowing in 4kQ resistor from bottom to
top terminal. This implies that the bottom terminal of 4kQ resistor is higher potential
than the top terminal.(currents are in m A, note V, =V,))
w (5.16)

4
KCL at node ‘a’: (currents are in mA)

i=1+i > i=1+

i+i2+2:0—>i=—i2—2—>i=—(_124_vaj—2 (5.17)

From (6.16) and (5.17), we get V, =4V and i=2mA (current flows from ‘b’ to ‘a’).

L.5.3 Test Your Understanding [Marks: 50]
T.5.1 Node analysis makes use of Kirchhoff’s----------- law just as loop analysis makes
use of Kirchhoff’s --------- law. [1]
T.5.2 Describe a means of telling how many node voltage equations will be required for
a given circuit. [1]

T.5.3 In nodal analysis how are voltage sources handled when (i) a voltage source in a
circuit is connected between a non-reference node and the reference node (ii) a voltage
source connected between two non-reference nodes in nodal analysis. [4]

T.5.4 A voltage in series with a resistance can be represented by an equivalent circuit
that consists of ------------ in parallel with that ------------- : [2]

T.5.5 The algebraic sum of the currents ----------- in a node must be equal to the
algebraic sum of currents --------- the node. [2]
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T.5.6 Apply node voltage analysis to find i, and the power dissipated in each resistor in

the circuit of Fig.5.6. [10]

— | A
Y
s VO

20V

fy b 30

a g I c
|!
502 IA
(19
iy

Fig. 5.6

(Ans. i,=2.73A P,=44.63W, P, =3.8W, P,=0.333W (note—V, =5.36V, V, =4.36V)

T.5.7 For the circuit shown in fig. 5.7, find V, using the node voltage method. Calculate
power delivered or absorbed by the sources. [10]

10£2

. AA—
mmT() 1060 450 — v
ne

Fig. 5.7

(Answer: V, =72V, P = 72W (absorbed), R

(voltagesource) —

=201.8W (delivered))

currentsource)

T.5.8 Using nodal analysis, solve the voltage (V,) across the 6A current source for the
circuit of fig. 5.8. Calculate power delivered or absorbed by the sources [10]
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IA g y
T 602 T V.
el

Fig. 5.8

Va = 60V ' I:)(12A ideal current source) = 720W (del ivered )!

Answer:
( =288W (absorbed), R, =360W (delivered)

(ideal voltage source) 6 A ideal currentsource)

T.8  Determine the voltage across the 10Q resistor of fig. 5.9 using nodal analysis. [10]

1A €&¥—

—O,

i »

—MA—

10 B ™ o O

1

Fig. 5.9

a

(Answer: V, =34.29V (a is higher potential than b )
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Objectives

e A part of a larger circuit that is configured with three terminal network Y (orA)
to convert into an equivalent A (or Y ) through transformations.
e Application of these transformations will be studied by solving resistive circuits.

L.6.1 Introduction

There are certain circuit configurations that cannot be simplified by series-parallel
combination alone. A simple transformation based on mathematical technique is readily
simplifies the electrical circuit configuration. A circuit configuration shown below

}—lrl
[ W

¥

= ——

Fig. 6.1{a) One port network

is a general one-port circuit. When any voltage source is connected across the terminals,
the current entering through any one of the two terminals, equals the current leaving the
other terminal. For example, resistance, inductance and capacitance acts as a one-port.
On the other hand, a two-port is a circuit having two pairs of terminals. Each pair
behaves as a one-port; current entering in one terminal must be equal to the current living
the other terminal.

I:t —h' I| ]_‘— ‘
O — =
v, v,
= D— el =
C

Fig. 6.1{b) Twao port network

Fig.6.1.(b) can be described as a four terminal network, for convenience subscript 1 to
refer to the variables at the input port (at the left) and the subscript 2 to refer to the
variables at the output port (at the right). The most important subclass of two-port
networks is the one in which the minus reference terminals of the input and output ports
are at the same. This circuit configuration is readially possible to consider the ‘7z or A’

— network also as a three-terminal network in fig.6.1(c). Another frequently encountered
circuit configuration that shown in fig.6.1(d) is approximately refered to as a three-
terminal Y connected circuit as well as two-port circuit.
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Fig. 6.1 (¢) Fig. 6.1 (d)

The name derives from the shape or configuration of the circuit diagrams, which look
respectively like the letter Y and the Greek capital letter A.

L.6.1.1 Delta (A) — Wye (Y) conversion

C

A B
R.x

Fig. 6.1 (f)

These configurations may often be handled by the use ofa A—Y or Y —A transformation.
One of the most basic three-terminal network equivalent is that of three resistors
connected in “Delta(A)” and in “Wye(Y)”. These two circuits identified in fig.L6.1(e)
and Fig.L.6.1(f) are sometimes part of a larger circuit and obtained their names from their
configurations. These three terminal networks can be redrawn as four-terminal networks
as shown in fig.L..6.1(c) and fig.L.6.1(d). We can obtain useful expression for direct
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transformation or conversion from A to Y or Y to A by considering that for
equivalence the two networks have the same resistance when looked at the similar pairs
of terminals.

L.6.2 Conversion from Delta (A) to Star or Wye (Y)

Let us consider the network shown in fig.6.1(e) (or fig.6.1(c)—) and assumed the
resistances ( R,z ,Rzc, and R.,) in A network are known. Our problem is to find the

values of R,,R;, andR. in Wye (Y ) network (see fig.6.1(e)) that will produce the

same resistance when measured between similar pairs of terminals. We can write the
equivalence resistance between any two terminals in the following form.

Between A & C terminals:

RCA ( RAB + RBC )

Ry+R. = (6.1)
A RAB + RBC + RCA

Between C & B terminals:
Rea(Ras + R

R. +Ry = BA( AB CA) (6.2)
RAB + RBC + RCA

Between B & A terminals:
Rp (Rea+R

R, +R, = AB ( CA BC) (6.3)
RAB + RBC + RCA

By combining above three equations, one can write an expression as given below.

R,+Ry+R. = RasRec + RecRea + ReaRag (6.4)

RAB + RBC + RCA

Subtracting equations (6.2), (6.1), and (6.3) from (6.4) equations, we can write the
express for unknown resistances of Wye (Y ) network as
RAB RCA

= 6.5
§ Rue + Rec +Rea (2
R, = RueRec (6.6)
Rae + Rec + Rea
RecR
- BC cA 6.7)

RAB + RBC + RCA

Version 2 EE IIT, Kharagpur



L.6.2.1 Conversion from Star or Wye (Y) to Delta (A)

To convert a Wye (Y) to a Delta (A), the relationships R,g,Rg., and R, must be
obtained in terms of the Wye (Y ) resistances R,,R;, and R (referring to fig.6.1 (f)).

Considering the Y connected network, we can write the current expression through R,
resistor as

V, -V
|A=¥ (for Y network) (6.8)

A
Appling KCL at * N * for Y connected network (assume A, B, C terminals having

higher potential than the terminal N ) we have,
V,-V V-V V. -V,
\Z N)+( 2 N)+( ¢ N):O =V, (L+L+Lj:(V—A+V—B+V—CJ
RA RB RC RA RB RC RA RB RC

Va, Ve Vo
R, R, R.

or, =V, = 6.9
NI (6.9)
RA RB RC
For A-network (see fig.6.1.(f)),
Current entering at terminal A = Current leaving the terminal * A’
\Y \Y
| ,=—28+—2 (for A network) (6.10)
RAB AC
From equations (6.8) and (6.10),
(VA —V ) _ Vie n Viac
RA RAB RAC
Using the V,; expression in the above equation, we get
V7A+V75+V7C VA _VB+VA_VC
RA RB RC RB RC
g ( 111 j ( 111 j
— —
R« Re Re — Vae + Viac — R Re R — Vae + Viac
RA RAB RAC RA I:QAB RAC
Vie +VA
RB RC
1 1 1
R, R, R )| v. v
or A Bt/ A, ac (6.11)
RA RAB RAC

Equating the coefficients of V,; and V,. in both sides of eq.(6.11), we obtained the
following relationship.
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1 1 R, R

= = R;=R, +R; +—2-2 6.12
RAB 1 1 1 AB A B RC ( )
RaRg| —+—+—
RA RB RC
R, R
Rl = 11 — = R =Ry +R. + /I; & (6.13)
Ao RR| 8
I:QA RB RC
Similarly, |, for both the networks (see fig.61(f)) are given by

V, -V
I =M (for Y network)
R

B

I :Vi+vﬁ (for A network)
RBC BA

Equating the above two equations and using the value of V|, (see eq.(6.9), we get the final
expression as

Vec + Vﬂ
RC RA

( 1 1 1 j
Ri Re R — Vic + Vea
RB RBC I:QBA

Equating the coefficient of V. in both sides of the above equations we obtain the

following relation

! = ! :>RBC:RB+RC+RBRC

R R
* RyR. [1+1+1j A

(6.14)

R. Rs Re

When we need to transform a Delta (A ) network to an equivalent Wye (Y ) network, the
equations (6.5) to (6.7) are the useful expressions. On the other hand, the equations (6.12)
— (6.14) are used for Wye (Y ) to Delta (A ) conversion.

Observations

In order to note the symmetry of the transformation equations, the Wye (Y ) and Delta
(A) networks have been superimposed on each other as shown in fig. 6.2.
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R
Fig. 6.2

e The equivalent star (Wye) resistance connected to a given terminal is equal to the
product of the two Delta (A) resistances connected to the same terminal divided
by the sum of the Delta ( A) resistances (see fig. 6.2).

e The equivalent Delta (A) resistance between two-terminals is the sum of the two
star (Wye) resistances connected to those terminals plus the product of the same
two star (Wye) resistances divided by the third star (Wye (Y )) resistance (see
fig.6.2).

L.6.3 Application of Star (Y ) to Delta (A) or Delta (A) to Star
(Y ) Transformation

Example: L.6.1 Find the value of the voltage source (V) that delivers 2 Amps current
through the circuit as shown in fig.6.3.
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102

[_I.i.

T 152 10

112
ey
112 142
112
I 0,542
0.501
Fig. 6.3
Solution:
I=2A
1Q é i S
..i-? l1:- -=..'
C p— f\ﬁf"
+.
\-’5__ 102 %
e o
30
E

Convert the three terminals A-network (a-c-d & e-f-g) into an equivalent Y -
connected network. Consider the A-connected network ‘a-c-d’ and the corresponding
equivalent Y -connected resistor values are given as
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R :%?:069;&Oz%gzozg;&oz%?=06ﬂ

ao

Similarly, for the A-connected network ‘e-f-g’ the equivalent the resistances of Y -

connected network are calculated as

Ri?ﬂ@ﬂf%L%Q%¥§ﬂm

e0’
Now the original circuit is redrawn after transformation and it is further simplified by
applying series-parallel combination formula.

I=2 10

MW

Vs
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I= 1£2

I=
0.6 !
— 0
0903 il
ﬂr ‘.-IS- e
RIlie)

£

The source V,that delivers 2A current through the circuit can be obtained as
V,=1x3.2=2x3.1=6.2Volts .

Example: L.6.2 Determine the equivalent resistance between the terminals A and B of
network shown in fig.6.4 (a).

A
400 I 203
C e
_.. .—
s “ WW—
202 302
ELY
10} K83
B
Fig. 6.4 (a)
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Solution:

A “A’ is substituted for the °Y > between points ¢, d, and e as shown in fig.6.4(b); then
unknown resistances value for Y t0 A transformation are computed below.

R :2+4+%=8.66Q; R :3+4+%=13Q; R, =2+3+23 650

B
Fig. 6.4 (b)
Next we transform ‘A’connected 3-terminal resistor to an equivalent ‘Y’ connected
network between points ‘A’; ‘c’ and ‘e’ (see fig.6.4(b)) and the corresponding Y

connected resistances value are obtained using the following expression. Simplified
circuit after conversion is shown in fig. 6.4(c).

A

2R 64102

B

~ B
Fig. 6.4 {c)
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=2 _geaq R, =0 _r080; R =—02 | uq:
4+2+6.5 4+2+6.5 4+2+6.5
The circuit shown in fig.6.5(c) can further be reduced by considering two pairs of parallel

branches3||8.66 and 13||1 and the corresponding simplified circuit is shown in
fig.6.4(d).

A

2.0842 0.64102

% 1.2302 ﬂ.‘i.‘-ﬂ%
I B

Fig. 6.4 (d)

Now one can find the equivalent resistance between the terminals ‘A * and ‘ B’ as
R = (2.23 + 2.08) | (1.04+ 0.93)+ 0.64=2.21Q).

Example: L.6.3 Find the value of the input resistance R,, of the circuit.

pr—r 4

]

6Lk 0.652
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.-.'..-------..,._,m_'l..|I
=

Solution:

Y connected network formed with the terminals a-b-o is transformed into A connected

one and its resistance values are given below.
R, =36+124°212 _u610. R, —12+26+2212 _ 46660

R, =26+36+ 26;(236 =140

Similarly, Y connected networks formed with the terminals ‘b-c-0’ and ‘c-a-o’ are

transformed to A connected networks.

0.6x26
R, =6+0.6+ 290 57380 ; Ry =0.6+26+——— =29.20
6x26
Ry =6+ 26+ ———=34.60Q2
0.6
15%26 _ 54000 ; R, =30+26+>22% _ 1080

and, R, =15+26+
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3015

R, =30+15+ =62.31Q

Note that the two resistances are connected in parallel (140”108) between the points ‘a’

and ‘o’. Similarly, between the points ‘b’ and ‘0’ two resistances are connected in parallel
(46.66 |34.6) and resistances 54.0Q2 and 29.2Q) are connected in parallel between the
points ‘c’ and ‘o0’.

62.3112

]

6. 7442

Now Y connected network formed with the terminal ‘a-b-c’ is converted to equivalent
A connected network.
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R, = 32.11L} R, = 42.944}

6461402 62,310

—

= 19,3711

6352

138.1442

44,9511

—VV\—

»
R,. = 5.851} 6. 7442
(Rac + R C)Ra
NOW, in = b b :1937Q

- Rab + Rbc + Rca

Remarks:

e If the A orY connected network consists of inductances (assumed no mutual

coupling forms between the inductors) then the same formula can be used for
Y to AorAtoY conversion (see in detail 3-phase ac circuit analysis in Lesson-

19).

e On the other hand, the A or Y connected network consists of capacitances can be

converted to an equivalent Y or A network provided the capacitance value is

replaced by its reciprocal in the conversion formula (see in detail 3-phase ac

circuit analysis in Lesson-19).

Example: L.6.4 Find the equivalent inductance R,, of the network (see fig.6.5(a)) at the

terminals ‘a’ & ‘b’ using Y —A & A-Y transformations.
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51} 6il

o0&

0

=l »

Fig. 6.5(a)

Solution: Convert the three terminals (c-d-e) A network (see fig.6.5(a)) comprising with
the resistors to an equivalent Y -connected network using the following A-Y
conversion formula.

R, =4 har =22 10 and R, =24 _0.6660
2 12 12

€0

co

501

"

0

b o

Fig. 6.5(b)
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0 ﬁ*“’ﬂ

é 441

0.33341

b®

Fig. 6.5(c)

Similarly, the A-connected network ( f-e-b) is converted to an equivalent Y -connected
Network.

Ry =22 —060; R, =22 =30 and R, =22~ 03330
15 15 15

After the A—Y conversions, the circuit is redrawn and shown in fig.6.5(b). Next the
series-parallel combinations of resistances reduces the network configuration in more
simplified form and it is shown in fig.6.5(c). This circuit (see fig.6.5(c)) can further be
simplified by transforming Y connected network comprising with the three resistors (2Q2,
4Q), and 3.666Q ) to a A-connected network and the corresponding network parameters
are given below:

R, =2+3.666+ 200 _750. r 244422
4 3.666

=8.18Q2;

and R, =4+3.666+%:159
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50

a o—— AN
4,64k 7.54}
[} g 8.1842
0.3334} 1542
b ®
Fig. 6.5(d)

Simplified form of the circuit is drawn and shown in fig.6.5(d) and one can easily find
out the equivalent resistance R, between the terminals ‘a’ and ‘b’ using the series-

parallel formula. From fig.6.5(d), one can write the expression for the total equivalent
resistance R, at the terminals ‘a’ and ‘b’ as

R, =5+[(4.6]17.5)+(0.333]]15)]||8.18
=5+[2.85+0.272]|8.18 = 5+(3.122 | 8.18)

=7.26Q
L.6.3 Test Your Understanding [Marks: 40]
T.1 Apply Y —A orA-Y transformations only to find the value of the Current | that
drives the circuit as shown in fig.6.6. 0 [8]
_h..
|
o M\
6Lk 14} 12
T, 202 21}
1052 24} 6ok
b
&
Fig. 6.6
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(ans: 10.13Q))

T.2 Find the current | through 4€) resistor using Y —A or A-Y transformation
technique only for the circuit shown in fig.6.7. [10]

ki

W, = 100 volt =

Fig. 6.7
(ans: 7.06 A )

T.3 For the circuit shown in fig.6.8, find R, without performing any conversion.  [4]

1043
yWA
a o—l VWA YW
1042 1LY
§ 1 18]
b &
Fig. 6.8

(Ans.6 Q)
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T.4 For the circuit shown in fig.6.9, calculate the equivalent inductance R, for each

circuit and justify your answer conceptually.

1 e—AWAA
20}
10}

201

20}
Fig. 6.9(a)

[6]
20
a o—y\W\A
Ly 2
Rh'u! =:> 10
30} pL ]
b #——AAA
20
Fig. 6.9(b)

(ans. Reql = Reqz)

T.5 Find the value of Ry, for the circuit of fig.6.10 when the switch is open and when
the switch is closed. [4]

(Ans.R, =8.75Q ; R, = 7.5Q)

1042

1042 1041 % 10452

1042

Fig. 6.10
T.6 For the circuit shown in fig.6.11, find the value of the resistance ‘R’ so that the
equivalent capacitance between the terminals ‘a’ and b’ is 20.57Q.. [6]
(Ans.30Q2)
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R g 200
2 Illﬂ.% Oh
2042 3 150
-
Fig. 6.11
T.7 Y—-Aor A-Y conversion is often useful in reducing the ------------ of a resistor
network ---------- to the beginning nodal or mesh analysis. [1]

T.8 Is it possible to find the current through a branch or to find a voltage across the
branch using Y —A/A-Y conversions only? If so, justify your answer. [1]
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Lesson
4

Superposition Theorem
in the context of dc
voltage and current
sources acting in a

resistive network
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Objectives

e Statement of superposition theorem and its application to a resistive d.c network
containing more than one source in order to find a current through a branch or to
find a voltage across the branch.

L.7.1 Introduction

If the circuit has more than one independent (voltage and/or current) sources, one
way to determine the value of variable (voltage across the resistance or current through a
resistance) is to use nodal or mesh current methods as discussed in detailed in lessons 4
and 5. Alternative method for any linear network, to determine the effect of each
independent source (whether voltage or current) to the value of variable (voltage across
the resistance or current through a resistance) and then the total effects simple added.
This approach is known as the superposition. In lesson-3, it has been discussed the
properties of a linear circuit that satisfy (i) homogeneity property [response of output due
to input=a U(t) equals to a times the response of output due to input=u(t), S(au(t)) =

a S(u(t)) for all a; and u(t)= input to the system] (ii) additive property [that is the
response of U, (t)+U,(t) equals the sum of the response of U (t) and the response of
u,(t), S(u,(t)+u,(t)) = S(u,(t))+S(u,(t)) ]. Both additive and multiplicative properties
of a linear circuit help us to analysis a complicated network. The principle of
superposition can be stated based on these two properties of linear circuits.

L.7.1.1 Statement of superposition theorem

In any linear bilateral network containing two or more independent sources
(voltage or current sources or combination of voltage and current sources ), the resultant
current / voltage in any branch is the algebraic sum of currents / voltages caused by each
independent sources acting along, with all other independent sources being replaced
meanwhile by their respective internal resistances.

Superposition theorem can be explained through a simple resistive network as
shown in fig.7.1 and it has two independent practical voltage sources and one practical
current source.
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R'| L: R'.

T O

Fig. 7.1

One may consider the resistances R, and R, are the internal resistances of the voltage
sources whereas the resistance R, is considered as internal resistance of the current
source. The problem is to determine the response | in the in the resistor R, . The current
| can be obtained from

! " m
I =1 |due to E; (alone) +1 | due to E, (alone) +1 |due to I (alone)

according to the application of the superposition theorem. It may be noted that each
independent source is considered at a time while all other sources are turned off or killed.
To kill a voltage source means the voltage source is replaced by its internal resistance

(i.e. R, or R;;in other words E, or E, should be replaced temporarily by a short circuit)

whereas to kill a current source means to replace the current source by its internal
resistance (i.e. R,; in other words | should be replaced temporarily by an open circuit).

Remarks: Superposition theorem is most often used when it is necessary to determine
the individual contribution of each source to a particular response.

L.7.1.2 Procedure for using the superposition theorem

Step-1: Retain one source at a time in the circuit and replace all other sources with their
internal resistances.

Step-2: Determine the output (current or voltage) due to the single source acting alone
using the techniques discussed in lessons 3 and 4.

Step-3: Repeat steps 1 and 2 for each of the other independent sources.

Step-4: Find the total contribution by adding algebraically all the contributions due to the
independent sources.
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L.7.2 Application of superposition theorem

Example- L.7.1 Consider the network shown in fig. 7.2(a). Calculate I, and V,, using
superposition theorem.

R, =30}
R,~10} : R, =40}
' ¢—— A WA—4
q‘ [Ib
ZA
I
V.= 3volt =, ki ()T
2
Fig. 7.2(a)

Solution: Voltage Source Only (retain one source at a time):
First consider the voltage source V, that acts only in the circuit and the current

source is replaced by its internal resistance ( in this case internal resistance is infinite

(o0)). The corresponding circuit diagram is shown in fig.7.2(b) and calculate the current
flowing through the ‘a-b’ branch.

30
10 i
' —— AAA L
s 40
F1]
ol B 201
— 1

4]
=

Fig. 7.2(b)
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7 23
Req Z[(Rac +RCb)H Rab]+ Rbg =§+2=_

8
| = % A=1.043A; Now current through a to b, is given by
8
7 24

[, =—x—=0913A
ab 8 23 (atOb)

|, =1.043-0.913=0.13A

Voltage across c-g terminal :

Vig =V +V =2x1.043+4x0.13=2.61volts (Note: we are moving opposite to the

direction of current flow and this indicates there is rise in potential). Note ‘C’ is higher
potential than ‘g .

Current source only (retain one source at a time):
Now consider the current source |, =2 A only and the voltage source V, is replaced by its

internal resistance which is zero in the present case. The corresponding the simplified
circuit diagram is shown below (see fig.7.2(c)& fig.7.2(d)).

an
b
L —— A WA—3

142 5 4401

|

sh
0 (T IA
- = *
Fig. 7.2(¢)
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I

410

lm 20 C’[‘ 24 a0

(a.2)

1]

Fig. 7.2(d)

Current in the following branches:
(14/3)x2

3Qresistor = =
/3)+3

1.217A;  4Qresistor=2-1.217=0.783A

1Q resistor = (%)x0.783 =0.522A (b toa)

Voltage across 3Q) resistor (¢ & g terminals) V,, =1.217x3 =3.651volts

The total current flowing through 1Q resistor (due to the both sources) fromatob =
0.913 (due to voltage source only; current flowing from ‘@’ to ‘b”) — 0.522 ( due to
current source only; current flowing from ‘b’to ‘a’) =0.391A.

Total voltage across the current source V,, =2.61volt (due to voltage source ; ‘C’ is

higher potential than ‘g’) + 3.651volt (due to current source only; ‘C’ is higher
potential than ‘g *) = 6.26volt .

Example L.7.2 For the circuit shown in fig.7.3(a), the value of V,, and I, are fixed.
When V,, =0, the current | =4 A. Find the value of | when V_, =32V .

B 6Ll

“ug Ol

II

o -
I
=,
[

Y =

Fig. 7.3(a)
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Solution: Let us assume that the current flowing 6Q resistors due to the voltage and
current sources are given by (assume circuit linearity)

— . 4 m
I _avsl +ﬂvsz +77|s - I(due toVg;) + I(due to Vs, + I(due to lg) (71)

where the parametersa, f, and n represent the positive constant numbers. The
parameters « and £ are the total conductance of the circuit when each voltage source

acting alone in the circuit and the remaining sources are replaced by their internal
resistances. On the other hand, the parameter 7 represents the total resistance of the

circuit when the current source acting alone in the circuit and the remaining voltage
sources are replaced by their internal resistances. The expression (7.1) for current | is
basically written from the concept of superposition theorem.

From the first condition of the problem statement one can write an expression as (when
the voltage source V,; and the current source | acting jointly in the circuit and the other

voltage source V, is not present in the circuit.)
4=1=aV,+nl; =y v, + e 01, (Note both the sources are fixed) (7.2)

Let us assume the current following through the 6 Q resistor when all the sources acting
in the circuit with V, =32V is given by the expression (7.1). Now, one can determine
the current following through 6Q resistor when the voltage source V,, =32V acting

alone in the circuit and the other sources are replaced by their internal resistances. For the
circuit shown in fig.7.3 (b), the current delivered by the voltage source to the 6 Q resistor

is given by
B4} 64}

—>1

442

20}

i
Vo

. Var

Fig. 7.3(b)
V, 32

| =—S2 = % _4A
'R, (8]18)+4

€q

(7.3)

The current following through the 6 due to the voltage source Vg, =32V only is 2 A

(flowing from left to right; ie. in the direction as indicated in the figure 7.3(b)). Using
equation (7.1), the total current | flowing the 6 Q resistor can be obtained as
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_ U " " _ ' " "
I _avsl +ﬁvsz +77|s - I(due to V) + I(due to Vs, + I(due tolg) — [I(due to V) + I(due to Is):|+ I(due to Vs,

=4 A+2A=6A (note: |(y. oy, + e, =4 A (seeeq. 7.2)

Example L.7.3: Calculate the current |, flowing through the resistor3Q as shown in
fig.7.4(a), using the superposition theorem.

. “I"ﬁ 30 p 20
]

| é W VWA
ply !

b
l —— 2 volt

3A

:—__ 1 volt

}
112

Fig. 7.4 (a)

Solution: Assume that the current source 3 A ( left to the 1volt source) is acting alone in

the circuit and the internal resistances replace the other sources. The current flowing
through 3Q resistor can be obtained from fig.7.4(b)

" Ay b 20}
VW ——a—"-A\
.ﬁ- I'I
JA
g 20}

Fig. 7.4 (b)

and it is given by
2 6

Il(due to 3A current source) 3x 7 :7 A( ato b) (74)
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Current flowing through 3Q resistor due to 2V source (only) can be obtained from
fig.7.4(c)

2 volt [,=0
- | + i — b
o—| AWVE—e— A
34} 211
211

Fig. 7.4 (¢)

and it is seen from no current is flowing.

| ~0A(atob) (7.5)

2(due to 2V voltage source)

Current through 3Q resistor due to 1V voltage source only (see fig.7.3(d)) is given by

20}
a Jik b
o M—— - MW——
F 1,
24}
L1
_‘_F
O

Fig. 7.4 (d)

| %A(b to a) (7.6)

3(due to 1V voltage source) =

Current through 3Q resistor due to 3 A current source only (see fig.7.3(e)) is obtained
by
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——MA———— M
20 l IA
[EN
Fig. 7.4 (e)
2 6
I4(due to 3A current source) 3x 7: 7 A( ato b) (77)

Current through 3Q resistor due to 2V voltage source only (see fig.7.3(f)) is given by

4 30 20

— . ,M/\__I
s el P i
Illg A Pt

Fig. 7.4 (1)

| %A(b to a) (7.8)

5(due to 2V voltage source) =

Resultant current |, flowing through 3 Q resistor due to the combination of all sources is

obtained by the following expression (the algebraic sum of all currents obtained in eqgs.
(7.4)-(7.8) with proper direction of currents)

Iab = Il(due to 3 A current source) + I2(due to 2V voltage source) + I3(due to 1V voltage source) + I4(due to 3 A current source)
+ I 5(due to 2V voltage source)
6 1 6 2 9
=—+0-—+———=2=1.285(atoh)
7 7 7 7 7
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L.7.3 Limitations of superposition Theorem

e Superposition theorem doesn’t work for power calculation. Because power
calculations involve either the product of voltage and current, the square of
current or the square of the voltage, they are not linear operations. This statement
can be explained with a simple example as given below.

Example: Consider the circuit diagram as shown in fig.7.5.

126}

_\N'\vﬁ_

+
12V = = 12V

Fig. 7.5

Using superposition theorem one can find the resultant current flowing through 12Q

resistor is zero and consequently power consumed by the resistor is also zero. For power
consumed in an any resistive element of a network can not be computed using
superposition theorem. Note that the power consumed by each individual source is given

by
I:)Wl(due to 12V source (left)) =12 Wa‘ttS; I:)W 2(due to 12V source(right)) =12 watts

The total power consumed by 12 Q =24 watts (applying superposition theorem). This
result is wrong conceptually. In fact, we may use the superposition theorem to find a
current in any branch or a voltage across any branch, from which power is then can be
calculated.

e Superposition theorem can not be applied for non linear circuit ( Diodes or
Transistors ).
e This method has weaknesses:- In order to calculate load current I, or the load

voltage V| for the several choices of load resistance R, of the resistive network ,

one needs to solve for every source voltage and current, perhaps several times.
With the simple circuit, this is fairly easy but in a large circuit this method
becomes an painful experience.

L.7.4 Test Your Understanding [Marks: 40]
T.7.1 When using the superposition theorem, to find the current produced
independently by one voltage source, the other voltage source(s) must be ----------- and
the current source(s) must be -------------- . [2]
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T.7.2 For a linear circuit with independent sources p,, p,, P;......... p, and if y; is the

response of the circuit to source p;, with all other independent sources set to zero), then

resultant response Yy =:-------- . [1]
T.7.3 Use superposition theorem to find the value of the voltage v, in fig.7.6. [8]
6w
10012 +

VW |

- é 1004
2 v 10082
Wy : % Tﬁll mA

Fig. 7.6
(Ans. 14volts)

T.7.4 For the circuit shown in fig.7.7, calculate the value of source current I, that
yields | =0 if V, and V. are kept fixed at 7V and 28V . [7]

I 124} k19
=W W——

i "2 (= =

Fig. 7.7

(Ans. |, =—5.833A)

T.7.5 For the circuit shown below (see fig.7.8), it follows from linearly that we can
write V,, =al,+pV,+nV,, where a, 3, and n are constants. Find the values of

(i) (i) e (ii) B and (iii) 7. [7]
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411 4412 g 412 41}

|
. =
I, ——_Va —— ¥
b
Fig. 7.8

(Ans. a=-1; £=0.063; and 7=—0.063)

T.7.6 Using superposition theorem, find the current i through 5Q resistor as shown in
fig.7.9. [8]

Fig. 7.9
(Ans. —0.538A)

T.7.7 Consider the circuit of fig.7.10
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2042 4011

BoL2
T s0L2 BOLY  You

Fig. 7.10
(a) Find the linear relationship between V_,
(b) If V, =10V and I, =1, find V,

(c) What is the effect of doubling all resistance values on the coefficients of the linear
relationship found in part (a)? [7]

(Ans. (a) V,, =0.3333V, +6.666 1_; (b)V,, =9.999V (c) V,, =0.3333V, +13.332l,)

and input sources V, and I

ut
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Lesson
3

Thevenin’s and Norton’s
theorems in the context
of dc voltage and
current sources acting
in a resistive network
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Objectives

e To understand the basic philosophy behind the Thevenin’s theorem and its
application to solve dc circuits.

e Explain the advantage of Thevenin’s theorem over conventional circuit reduction
techniques in situations where load changes.

e Maximum power transfer theorem and power transfer efficiency.

e Use Norton’s theorem for analysis of dc circuits and study the advantage of this
theorem over conventional circuit reduction techniques in situations where load
changes.

L.8.1 Introduction

A simple circuit as shown in fig.8.1 is considered to illustrate the concept of equivalent
circuit and it is always possible to view even a very complicated circuit in terms of much
simpler equivalent source and load circuits. Subsequently the reduction of computational
complexity that involves in solving the current through a branch for different values of
load resistance (R, ) is also discussed. In many applications, a network may contain a

variable component or element while other elements in the circuit are kept constant. If the
solution for current (1) or voltage (V) or power (P) in any component of network is
desired, in such cases the whole circuit need to be analyzed each time with the change in
component value. In order to avoid such repeated computation, it is desirable to introduce
a method that will not have to be repeated for each value of variable component. Such
tedious computation burden can be avoided provided the fixed part of such networks
could be converted into a very simple equivalent circuit that represents either in the form
of practical voltage source known as Thevenin’s voltage  source
(V;, =magnitude of voltagesource, R, =internal resistance of thesource) or in the

form of practical current source known as Norton’s current source
(1, =magnitude of current source , R, =internal resistance of current source). In
true sense, this conversion will considerably simplify the analysis while the load
resistance changes. Although the conversion technique accomplishes the same goal, it has
certain advantages over the techniques that we have learnt in earlier lessons.

Let us consider the circuit shown in fig. 8.1(a). Our problem is to find a current
through R, using different techniques; the following observations are made.
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Fence or Black Box
A A | Vl"
4 l 5

b

e

-

e

_________________ B
Fig. 8.1{a): A simple de network

e Mesh current method needs 3 equations to be solved
e Node voltage method requires 2 equations to be solved
e Superposition method requires a complete solution through load resistance (R, )

by considering each independent source at a time and replacing other sources by
their internal source resistances.

Suppose, if the value of R, is changed then the three (mesh current method) or two
equations (node voltage method) need to be solved again to find the new current inR, .
Similarly, in case of superposition theorem each time the load resistance R, is changed,

the entire circuit has to be analyzed all over again. Much of the tedious mathematical
work can be avoided if the fixed part of circuit (fig. 8.1(a)) or in other words, the circuit
contained inside the imaginary fence or black box with two terminals A & B, is replaced
by the simple equivalent voltage source (as shown in fig. 8.1(b)) or current source (as
shown in fig.8.1(c)).
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I
|
|
|
|
|
|
= |
g |
|
|
|
A

-

— e —
i
-

A practical voltage source

Fig. 8.1(b): circuit 8.1{a) is equivalently replaced by
a simple practical voltage source

Nerinal
o

o

A practical current source

‘e

r--

Y.

Fig. B.1(c): Circuit 8.1{a) is equivalently replaced
by a simple practical current source

Thevenin’s Theorem: Thevenin’s theorem states that any two output terminals
(A & B, shown in fig. 8.2.(a)) of an active linear network containing independent

sources (it includes voltage and current sources) can be replaced by a simple voltage
source of magnitude V;,, in series with a single resistor Ry, (see fig. 8.2(d)) where Ry, is
the equivalent resistance of the network when looking from the output terminals A & B
with all sources (voltage and current) removed and replaced by their internal resistances
(see fig. 8.2(c)) and the magnitude of V,, is equal to the open circuit voltage across the
A & B terminals. (The proof of the theorem will be given in section- L8. 5).
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L.8.2 The procedure for applying Thevenin’s theorem

To find a current 1 through the load resistance R, (as shown in fig. 8.2(a)) using
Thevenin’s theorem, the following steps are followed:

Black Box
P . - — — — ﬂ
I A
I'l complicated | | ¢ [
L
| Linear de |
I Circuit | R, = Load resistance
I |
|
| | B
|[S— . f—
Fig. 8.2(a)

Step-1: Disconnect the load resistance (R, ) from the circuit, as indicated in fig. 8.2(b).

Black Box
P T —— — — ﬁ
1 I A
l
I'| Complicated | | | Open tir-:‘ujt
| de Circuit | voltage Vo,
I |
| s
I B MNote: The load terminals
I e S _I are open circuited
Fig. 8.2(b)

Step-2: Calculate the open-circuit voltage V;,, (shown in fig.8.2(b)) at the load terminals
(A& B) after disconnecting the load resistance (R, ). In general, one can apply any of the
techniques (mesh-current, node-voltage and superposition method) learnt in earlier
lessons to compute V;, (experimentally just measure the voltage across the load terminals
using a voltmeter).

Step-3: Redraw the circuit (fig. 8.2(b)) with each practical source replaced by its internal
resistance as shown in fig.8.2(c). (note, voltage sources should be short-circuited (just
remove them and replace with plain wire) and current sources should be open-circuited
(Just removed).
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Complicated de¢ =@ )
clreuit with all # Looking “backward™ into the

cireuit to find the resistance
between the load terminals
cquals Ry,

sources replaced
by their internal

resistances Y

Fig. 8.2(c)

Step-4: Look backward into the resulting circuit from the load terminals (A&B) , as

suggested by the eye in fig.L.8.2(c). Calculate the resistance that would exist between the
load terminals ( or equivalently one can think as if a voltage source is applied across the
load terminals and then trace the current distribution through the circuit (fig.8.2 (c)) in
order to calculate the resistance across the load terminals.) The resistance R;, is

described in the statement of Thevenin’s theorem. Once again, calculating this resistance
may be a difficult task but one can try to use the standard circuit reduction technique or
Y —A or A-Y transformation techniques.

r-------

I A
! A .
I RII |
—— !
I 5 l".'lh I
I |
I *
e = e I B

Fig. 8.2(d): Dash-portion of the circuit (Fig. 8.2(a))
is equivalently replaced by a practical
voltage source.

Step-5: Place Ry, in series with V;, to form the Thevenin’s equivalent circuit (replacing

the imaginary fencing portion or fixed part of the circuit with an equivalent practical
voltage source) as shown in fig. 8.2(d).

Step-6: Reconnect the original load to the Thevenin voltage circuit as shown in

fig.8.2(e); the load’s voltage, current and power may be calculated by a simple arithmetic
operation only.
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F_'________“

| —/

Q =

T

I le I ¢ I'I.

- | §

| Vo - T | Re

I |

I =9

I S ————— -

Fig. B.2{e)
VTh
Load current |, = (8.1)
R + R,
Voltage across the load V, = Vi xR =1 xR, (8.2)
T TR

Power absorbed by the load P, =1, *xR, (8.3)

Remarks: (i) One great advantage of Thevenin’s theorem over the normal circuit
reduction technique or any other technique is this: once the Thevenin equivalent circuit
has been formed, it can be reused in calculating load current (1), load voltage (V, ) and

load power (P, ) for different loads using the equations (8.1)-(8.3).
(i) Fortunately, with help of this theorem one can find the choice of load resistance R,

that results in the maximum power transfer to the load. On the other hand, the effort
necessary to solve this problem-using node or mesh analysis methods can be quite
complex and tedious from computational point of view.

L.8.3 Application of Thevenin’s theorem

Example: L.8.1 For the circuit shown in fig.8.3(a), find the current through
R =R, =1Q resistor (1, branch) using Thevenin’s theorem & hence calculate the

voltage across the current source (V,, ).
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- T v, =3 volt T =8

A

Fig. 8.3(a)

Solution:
Step-1: Disconnect the load resistance R, and redraw the circuit as shown in fig.8.3(b).

I —_— ]
i |
I YWWWAA
| R, = 3i} I :
! L=l |
: ve MA——c |
| _t.-l_. Vi | -1,
I —_— I R, = 40} |
| Va=h | I R, = 20} 24 |
I ' l !
I | | '
I ! 1 |
| = I
b s e e st |
Fig. 8.3(b)

Step-2: Apply any method (say node-voltage method) to calculateVs,, .

At node C:

2+1,+1,=0

24 (3_Vc) + (O_Vc)
3 6

Now, the currents I, &1, can easily be computed using the following expressions.

=V, = 6volt
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3-6 . .
|, =—2—==——=-1A (note, current |, is flowing from “c’ to ‘a’)

3 3
0-V, -6 . . Cnt gk
g :?:_1A (note, current I, is flowing from ‘c’ to “g’)

|
2 6

Step-3: Redraw the circuit (fig.8.3(b) indicating the direction of currents in different
branches. One can find the Thevenin’s voltage V;, using KVL around the closed path

‘gabg’ (see fig.8.3.(c).

IL=1A
AN

R, =30}

e I] - I.t. 1_’1.,
Ot

Fig. 8.3(c)

V=V, —Vy =3-2=1volt

Step-4: Replace all sources by their internal resistances. In this problem, voltage source
has an internal resistance zero (0) (ideal voltage source) and it is short-circuited with a
wire. On the other hand, the current source has an infinite internal resistance (ideal
current source) and it is open-circuited (just remove the current source). Thevenin’s
resistance R, of the fixed part of the circuit can be computed by looking at the load

terminals ‘a’- ‘b’ (see fig.8.3(d)).
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R, = 32
R, = 40
% & ¢ VVAA
a ﬁ b Internal resistance

R, =21} .‘;_'_-*51
. = :

Internal resistance
= (0L

Fig. 8.3(d)
Ry =(R +Ry IR, = (3+4)]12=1555Q

Step-5: Place R;, in series with V,, to form the Thevenin’s equivalent circuit (a simple

practical voltage source). Reconnect the original load resistance R, =R, =1Q to the

Thevenin’s equivalent circuit (note the polarity of ‘a’ and ‘b’ is to be considered
carefully) as shown in fig.8.3(e).

, WW——

R, ~1.5550 | il._
| 1 I
| v =1V — | g R,
I ' I
I |
Dt e e 1 :

Fig. 8.3(¢): Equivalent de circuit fig. 8.3(b) is replace by
a practical voltage source.

— VTh _ 1
R, +R,_ 1555+1

=0.39A(atob)

IL

Step-6: The circuit shown in fig.8.3 (a) is redrawn to indicate different branch currents.
Referring to fig.8.3 (f), one can calculate the voltage V,, and voltage across the current

source (V,, ) using the following equations.
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R: = I.ﬂ. b R_a = 403
2 —/V\W VWA 9«
_.. .‘_
+ 1 n3waA 0.915 A
T R, =20} l 2A
1.305 A
2
Fig. 8.3

Vyy =V, —Va, =3-1x0.39=2.61volt.

Lo

261

=1.305A; 1,=1.305-0.39=0.915A

V,, =4x0.915+2x1.305=6.27 volt.

Example-L.8.2 For the circuit shown in fig.8.4 (a), find the current 1 through 6 Q
resistor using Thevenin’s theorem.

42 volt " —

Solution:

B2 R, =61}
—ANN M
411 211 % C)T L=31A
30 volt
Fig. 8.4(a)

Step-1: Disconnect 6Q from the terminals ‘a’ and ‘b’ and the corresponding circuit

diagram is shown in fig.L.8.4 (b). Consider point ‘g’ as ground potential and other
voltages are measured with respect to this point.
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a b
c O o
— | Y,
42 valt =—— 442 20 ()T
— S VOl I=3A
2
Fig. 8.4(b)

Step-2: Apply any suitable method to find the Thevenin’s voltage (V;,) (or potential

between the terminals ‘a’ and ‘b’). KVL is applied around the closed path ‘gcag’ to
compute Thevenin’s voltage.

42-81-41-30=0 = I=1A
Now, V,, =30+4=34volt; V,,=2x3=6volt.

Vi =V =V, =V, =34—6=28volt ( note ‘a’ is higher potential than ‘b)

Step-3: Thevenin’s resistance R;, can be found by replacing all sources by their internal

resistances ( all voltage sources are short-circuited and current sources are just removed
or open circuited) as shown in fig.8.4 (c).

&2

a 1]
AW o 4
R!’h

4141 2102

Fig. 8.4(c)

R, =(8]14)+2=2% 121 _ 46660
12 3

Step-4: Thevenin’s equivalent circuit as shown in fig.8.4 (d) is now equivalently
represents the original circuit (fig.L.8.4(a).
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a

W - i

" Ry, =4.66602 '
V=28 volt ~ § R, = 66}
b
Fig. 8.4(d)
Vo, 28
I L

= = =2.625A
R, +R, 4.666+6

Example-L.8.3 The box shown in fig.8.5 (a) consists of independent dc sources and
resistances. Measurements are taken by connecting an ammeter in series with the
resistor R and the results are shown in table.

A, r~—P1
L { A)
Chrcuit R
b _
.
Fig. 8.5(a)
Table

R |

100 2A

200 15A

? 0.6 A

Solution: The circuit shown in fig.8.5(a) can be replaced by an equivalent Thevenin’s
voltage source as shown in fig.8.5(b). The current flowing through the resistor R is
expressed as

a — |
VWA o—{a
}
Yiu _ R R
b .
&
Fig. 8.5(b): Equivalent circuit of fig. 8.5(a)
Vin

(8.4)
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The following two equations are written from measurements recorded in table.
VTh

—_=2= V, -2R, =20 8.5
R +10 =2 Ry (8.5)
VYm___15- v, 15R, =30 (8.6)
Ry, +20

Solving equations (8.5) and (8.6) we get,

V;, =60 volt; R, =20Q

The choice of R that yields current flowing the resistor is 0.6 A can be obtained using
the equation (8.4).

V,, _ 60

= = =0.6 = R=80Q.
Rn+R 20+R

L.8.4 Maximum Power Transfer Theorem

In an electric circuit, the load receives electric energy via the supply sources and
converts that energy into a useful form. The maximum allowable power receives by the
load is always limited either by the heating effect (incase of resistive load) or by the other
power conversion taking place in the load. The Thevenin and Norton models imply that
the internal circuits within the source will necessarily dissipate some of power generated
by the source. A logical question will arise in mind, how much power can be transferred
to the load from the source under the most practical conditions? In other words, what is
the value of load resistance that will absorbs the maximum power from the source? This
IS an important issue in many practical problems and it is discussed with a suitable
example.

i\
. J'
D.C resistive R I,
network

Fig. 8.6(a)

Let us consider an electric network as shown in fig.8.6(a), the problem is to find
the choice of the resistance R, so that the network delivers maximum power to the load

or in other words what value of load resistance R, will absorb the maximum amount of

power from the network. This problem can be solved using nodal or mesh current
analysis to obtain an expression for the power absorbed by R, , then the derivative of this

expression with respect to R, will establish the condition under what circumstances the
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maximum power transfer occurs. The effort required for such an approach can be quite
tedious and complex. Fortunately, the network shown in fig.L.8.6(a) can be represented
by an equivalent Thevenin’s voltage source as shown in fig.L.8.6(b).

A

AAAAN 5

Ry,
R| l I'I.

E

Vi

B'H
Fig. 8.6(b): The circuit for maximum Power transfer

In fig.8.6(b) a variable load resistance R, is connected to an equivalent Thevenin circuit

of original circuit(fig.8.6(a)). The current for any value of load resistance is
VTh

I =—"—
Roy + R,
Then, the power delivered to the load is

2
2 V.
PLZIL XRL =|:ﬁ:| XRL
Th L

The load power depends on both R, and R, ; however, R, is constant for the equivalent

Thevenin network. So power delivered by the equivalent Thevenin network to the load
resistor is entirely depends on the value of R, . To find the value of R, that absorbs a

maximum power from the Thevenin circuit, we differentiate P, with respect to R, .

2 —
dP(RL) =VTh2 (RTh+RL) ZRLXERTh—'—RL) :O:>(RTh+RL)_2RL20:> RL=RTh
dR'— (RTh + RL)
(8.7)
For maximum power dissipation in the load, the condition given below must be satisfied
IPR) Ve g
dR” |, .  BRy

This result is known as “Matching the load” or maximum power transfer occurs when the
load resistance R, matches the Thevenin’s resistance Ry, of a given systems. Also, notice
that under the condition of maximum power transfer, the load voltage is, by voltage

division, one-half of the Thevenin voltage. The expression for maximum power
dissipated to the load resistance is given by
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_ VTh2
4Ry,

2

Poax = {L} xR,

R, + R, o
The total power delivered by the source
R =|L2(RTh + RL)=2X ILZ R,
This means that the Thevenin voltage source itself dissipates as much power in its
internal resistance Ry, as the power absorbed by the load R, . Efficiency under maximum
power transfer condition is given by

2
Efficiency = %xlOO —50% (8.8)

L L

For a given circuit, V;, and R;, are fixed. By varying the load resistance R, , the power
delivered to the load varies as shown in fig.8.6(c).

R,—>
Fig. 8.6(c): Power dissipated to the load as a function of B

Remarks: The Thevenin equivalent circuit is useful in finding the maximum power that
a linear circuit can deliver to a load.

Example-L.8.4 For the circuit shown in fig.8.7(a), find the value of R, that absorbs
maximum power from the circuit and the corresponding power under this condition.
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1042 | I‘i

® b
Fig. 8.7(a)

Solution: Load resistance R is disconnected from the terminals ‘a’ and ‘b’ and the
corresponding circuit diagram is drawn (see fig.8.7(b)).

10w
1042
1
3
C
H
XN 'y
S0 1042
50
2A
- 1042 I
Wy T TC) V=71
]
L J
& b
Fig. 8.7(b)

The above circuit is equivalently represented by a Thevenin circuit and the corresponding
Thevenin voltage V1, and Thevenin resistance Ry, are calculated by following the steps
given below:
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Now applying ‘Super position theorem’, one can find V1, (voltage across the ‘a” and ‘b’
terminals, refer fig. 8.7(b)). Note any method (node or mesh analysis) can be applied to

find V.
Considering only 20v source only

® b

Fig. 8.7(c)

From the above circuit the current through ‘b-c’ branch :%:1A (from ‘b’ to ‘@’)

whereas the voltage across the ‘b-a’ branch v,, =1x10=10 volt. (b’ is higher potential

than ‘a’). .. v, = — 10volt

Considering only 10v source only

10} S

512

512 l

1042

1042

Fig. 8.7(d)
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Note: No current is flowing through *cb’-branch.
. Vap = 5v (“a’ is higher potential than ‘b’)

Consider only 2 A current source only

1042

512 ‘
c
i
1042
512
1042
1A

I & b
Fig. 8.7(e)

Note that the current flowing the ‘c-a’ branch is zero
. Vap =10 v (“a@’ is higher potential than ‘b’ point).

The voltage across the ‘a’ and ‘b’ terminals due to the all sources = Vi, = Vg, (due to
20v) + Vg (due to 10v) + Vg (due to 2A source) = - 10 + 5 + 10 = 5v (a is higher
potential than the point *b”).

To computute Ryn:

Replace all voltage and current sources by their internal resistance of the circuit shown in
fig.8.7(b).
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w2 S

® b
Fig. 8.7()
Rth = Rap = ((5+5) || 10) + (10 || 10)
=5+5=10Q
Thevenin equivalent circuit is drawn below:
+ 4
s R,.=1002 g R,
V=5V —p—
i}

The choice of R, that absorbs maximum power from the circuit is equal to the value of
Thevenin resistance Ry,

R|_ = RTh =10Q

Under this condition, the maximum power dissipated to Ry is

L.8.5 Proof of Thevenin Theorem

The basic concept of this theorem and its proof are based on the principle of
superposition theorem. Let us consider a linear system in fig.L.8.8(a).
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DC resistive - * I,
Metwork with
independent

SOUFCes 0

Fig. B.8(a)

It is assumed that the dc resistive network is excited by the independent voltage and
current sources. In general, there will be certain potential difference (V,, =V;,) between

the terminals ‘a’ and ‘b’ when the load resistance R, is disconnected from the terminals.

Fig.8.8(b) shows an additional voltage source E (ideal) is connected in series with the
load resistance R, in such a way ( polarity of external voltage source E in opposition the

open-circuit voltage V. across ‘a’ and ‘b’ terminals) so that the combined effect of all
internal and external sources results zero current through the load resistance R, .

i R-L.
DC resistive —F—M
Network with = =0
i T E
independent =
SOUNces =: P

by

Fig. 8.5(b)

According to the principle of superposition, zero current flowing through R, can be
considered as a algebraic sum (considering direction of currents through R, ) of (i) current
through R, due to the external source E only while all other internal sources are replaced
by their internal resistances (all voltage sources are short-circuited and all current sources
are open circuited), and (ii) current through R, due to the combined effect of all internal
sources while the external source E is shorted with a wire. For the first case, assume the

E

current Il(: J (due to external source E only) is flowing through R, from right

m+ R
to left direction( <) as shown in fig.8.8(c).
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g
All sources _.TMJL_
are replaced R, |
by their " —— E
internals )
resistances -

b

I, 4———v 0

QO

|
éﬂlh BT

I
Fig. 8.8(c)

For the second case, the current 1, (due to combined effect of all internal sources only) is
flowing through R, with same magnitude of I, but in opposite direction (left to right).
Note that the resultant current | through the resistor R, is zero due to the combination
of internal and external sources (see fig.8.8(b)). This situation will arise provided the
voltage (V,,) across the ‘a’ and ‘b’ terminals is exactly same (with same polarity) as that
of external voltage E and this further implies that the voltage across V,, is nothing but
an open-circuit voltage (V;,) while the load resistance R, is disconnected from the
terminals ‘a’ and ‘b’. With the logics as stated above, one can find the current

T TR
circuited with a wire. In other words, the original circuit (fig.8.8(a)) can be replaced by
an equivalent circuit that delivers the same amount of current |, through R, . Fig.8.8(d)
shows the equivalent Thevenin circuit of the original network (fig.8.8(a)).

expression |, (: Vin Jfor the circuit (fig.8.8(b)) when the external source E is short-

lh.'lh —

Fig. 8.8(d)
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L.8.6 Norton's theorem

Norton’s theorem states that any two terminals A & B of a network composed of linear

resistances (see fig.8.9(a)) and independent sources (voltage or current, combination of
voltage and current sources) may be replaced by an equivalent current source and a
parallel resistance. The magnitude of current source is the current measured in the short
circuit placed across the terminal pair A & B. The parallel resistance is the equivalent

resistance looking into the terminal pair A & B with all independent sources has been
replaced by their internal resistances.

Any linear dc circuit, no matter how complicated, can also be replaced by an equivalent
circuit consisting of one dc current source in parallel with one resistance. Precisely,
Norton’s theorem is a dual of Thevenin’s theorem. To find a current 1 _ through the load

resistance R, (as shown in fig.8.9(a)) using Norton’s theorem, the following steps are
followed:

I I A
| } O * I,
| | Complicated I '
I linear I R,
I circuit " B -
I I

Fig. 8.9(a)

Step-1: Short the output terminal after disconnecting the load resistance (R, ) from the
terminals A & B and then calculate the short circuit current 1, (as shown in fig.8.9(b)).

In general, one can apply any of the techniques (mesh-current, node-voltage and
superposition method) learnt in earlier lessons to compute I, (experimentally just

measure the short-circuit current using an ammeter).

I, = shori-circuit

linecar
l current

|

I

| | Complicated |
: circuit

I

Fig. 8.9(h)
Step-2: Redraw the circuit with each practical sources replaced by its internal resistance

while the short—circuit across the output terminals removed (note: voltage sources should
be short-circuited (just replace with plain wire) and current sources should be open-
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circuited (just removed)). Look backward into the resulting circuit from the load
terminals (A& B), as suggested by the eye in fig.8.9(c).

With all voltage

A
— 0
sources are short-
circuited and all -t‘:=
current sources
— O
B

are open circuited

Fig. 8.9(c)

Step-3: Calculate the resistance that would exist between the load terminals A & B ( or

equivalently one can think as if a voltage source is applied across the load terminals and
then trace the current distribution through the circuit (fig.8.9(c)) in order to calculate the

resistance across the load terminals). This resistance is denoted as Ry, is shown in fig.8.9

(d). Once again, calculating this resistance may be a difficult task but one can try to use
the standard circuit reduction technique or Y —A or A-Y transformation techniques. It

may be noted that the value of Norton’s resistance R, is truly same as that of Thevenin’s
resistance R, in a circuit.

Step-4: Place R, in parallel with current |, to form the Norton’s equivalent circuit

(replacing the imaginary fencing portion or fixed part of the circuit with an equivalent
practical current source) as shown in fig.8.8 (d).

Step-5: Reconnect the original load to the Norton current circuit; the load’s voltage,
current and power may be calculated by a simple arithmetic operation only.

A

!
-

N
1- i R,

T L]

oy
I att
— e — — — — — — B

Fig. 8.9(d): Norton's equivalent circuit of the
original network

Load currentl, = Ry Iy (8.9)
Ry + R,
Voltage across the load V, =1, xR, (8.10)
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Power absorbed by the load P, =1, *xR, (8.11)

Remarks: (i) Similar to the Thevenin’s theorem, Norton’s theorem has also a similar
advantage over the normal circuit reduction technique or any other technique when it is
used to calculate load current (1, ), load voltage (V, ) and load power (P, ) for different

loads.
(if)Fortunately, with help of either Norton’s theorem or Thevenin’s theorem one can find
the choice of load resistance R, that results in the maximum power transfer to the load.

(iii) Norton’s current source may be replaced by an equivalent Thevenin’s voltage source
as shown in fig.L.8.1(b). The magnitude of voltage source (V;,) and its internal

resistances (R;,) are expressed by the following relations

Vi, = Iy xRy Ry, =Ry (with proper polarities at the terminals)
In other words, a source transformation converts a Thevenin equivalent circuit into a
Norton equivalent circuit or vice-verse.

L.8.7 Application of Norton’s Theorem

Example-L.8.5 For the circuit shown in fig.8.10(a), find the current through
R =R, =1Q resistor (1, branch) using Norton’s theorem & hence calculate the

voltage across the current source (V,, ).

R, = 30}
R — Rl.-. I-{l h H_:. - "l'n

a g :M VAN ' X
... 3 O

Fig, 8.10(a)

Solution:

Step-1: Remove the resistor through which the current is to be found and short the
terminals ‘a’ and ‘b’ (see fig.8.10(b)).
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Fig. 8.10(b)
Step-2: Any method can be adopted to compute the current flowing through the a-b
branch. Here, we apply ‘mesh — current’ method.
Loop-1
3-Ry(l1-12) =0, where I, =-2A
Roli=3+Ryl;=3-2x2=-1 .. 1I;=-05A

Loop-3
-Ryil;-Ry(l;-1,) =0
-31,-4(1,+2)=0
-71,-8=0
8
l.=-—=
7
8 -7+16
=0 -1)=]-05+=|=——
v =) ( 7) 14

= %A (current is flowing from ‘a’ to “b’)

Step-3: To compute Ry, all sources are replaced with their internal resistances. The
equivalent resistance between ‘a’ and ‘b’ terminals is same as the value of Thevenin’s
resistance of the circuit shown in fig.8.3(d).
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internal resistance
= g

internal resistance

= .0

MWWV
i b b 411
—_ L c
ﬂ {Look)
0

Fig. .10(c)

Step-4: Replace the original circuit with an equivalent Norton’s circuit as shown in
fig.8.10(d).

a
> £

"

Ej__lil

I,=0.643A

1

R,=1.5554}

St
VWA

Fig. %.10(d)

R, 1555
= xlN =
R, +R, 1.555+1

x0.643 = 0.39A (a to b)

IL

In order to calculate the voltage across the current source the following procedures are
adopted. Redraw the original circuit indicating the current direction in the load.
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i
|
‘¢ VWW———A———4«
-1, 40
ol R=12 304
T v,=3v % 141 C)T 24
4
a

Ve =3-1x0.39 = 2.61volt

l, = 261 =1.305A
bg 2

I, =1.305-0.39 = 0.915A (c'to b’
oV, =2%1.305+4x.915 = 6.26volt ('c'is higher potential than 'g’)

Example-L.8.6 For the circuit shown in fig.8.11(a), the following measurements are
taken and they are given in table.

— MW
I v, d
c b
» —AMA~ ’
Tk
= -
My —— , Jov 4dmA
B 18k}
18k
Fig. B.11(a)
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Table

R | Ve
Open 0 ma 1.053V
Short 0.222ma ov

? 0.108 ma ?
25kQ2 ? ?

Find the current following through the resistor when R=25kQ and voltage drop across
the resistor.

Solution: First measurement implies the Thevenin’s voltage (V;,) across the terminals
‘a’and ‘b’ =1.053V .

Second measurement implies the Norton’s current (1) through the shorted terminals ‘a’
and ‘b’ =0.222ma.
With the above two measurements one can find out the Thevenin’s resistance
R, (= Ry) using the following relation
Ry :\i:L?’%:4.74kQ

I, 0.222x10

Thevenin equivalent circuit between the terminals ‘a’ and ‘b’ of the original circuit is
shown in fig.8.11(b).

4.74k112

—MA .

R ki

1.053 —
vt -

L
Iy
Fig. 8.11{b): Therenin equivalent circuit between
the terminal “a’ and *b°

Third measurement shows that the current in resistor R is given by

_ 1053 =0.108(mA) = R=5kQ. The voltage across the 5kQ resistor is

" 4.74+R
5x0.108 = 0.54volt
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From the fourth measurement data, the current through 25k resistor is =
= Vi 1.053

Ry +R  (4.74+25)x10°
resistorV, =1 xR=0.0354x25=0.889V .

=0.0354 ma and the corresponding voltage across the

Example-L.8.7 Applying Norton’s theorem, calculate the value of R that results in
maximum power transfer to the 6.2Q resistor in fig.8.12(a). Find the maximum power

dissipated by the resistor 6.2 under that situation.

10w
R

It
YW Alp
3
|z.,r___: gsn % 50 Tz_ﬁ._

*—\VWWVW

6.242

=

Fig. 8.12{a)

Solution:

Step-1: Short the terminals ‘a’ and ‘b’ after disconnecting the 6.2 resistor. The
Norton’s current |, for the circuit shown in fig.8.12(b) is computed by using ‘mesh-
current” method.

10w
R 4[ "

WW\ |

T D7 D e OO0

————

|II-.-

(&)
e

Fig. 8.12{h)
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Loop-1:

12—-1,R-3(1, —1,)=0 (8.12)
Loop-2:
-10-5(1,—1;)-3(1,—1,)=0, note I,=—-2A (8.14)
Solving equations (8.12) and (8.14), we get
I, = 36 p L, = - 24+20R (-ve sign implies that the current is flowing from ‘b’ to

15+8R 15+8R
‘a’) and Norton’s current I, = -1, _24+20R

15+8R

Norton’s resistance R, is computed by replacing all sources by their internal resistances

while the short-circuit across the output terminal ‘a’ and ‘b’ is removed. From the circuit
diagram fig.8.12(c), the Norton’s resistance is obtained between the terminals ‘a’ and ‘b’.

R
10 51}
R ﬁ b
Ry
Fig. 8.12(c)
3R
RN:(R||3)+5:3+—R+5 (815)

Note that the maximum power will dissipate in load resistance when load resistance =
Norton’s resistance Ry =R, =6.2Q. To satisfy this condition the value of the resistance
R can be obtained from equation (8.15), we get R=2Q.. The circuit shown in

fig.8.12(a) is now replaced by an equivalent Norton’s current source (as shown in
fig.L.8.12(d)) and the maximum power delivered by the given network to the load
R, =6.2Q is thus given by
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() =

(ORI £

F 8
-

b
Fig. 8.12(d): Norton’s equivalent circuit of
original circuit

2
P L IR, = 1, [24+20R ) R, =6.61watts
4 4 \ 15+8R
L.8.8 Test Your Understanding [Marks: 60]
T.1 When a complicated dc circuit is replaced by a Thevenin equivalent circuit, it
consists of one ------- in series with one --------- : [2]
T.2 When a complicated dc circuit is replaced by a Norton equivalent circuit, it consists
of ------ in----- with one ------- . [2]
T.3 The dual of a voltage source is a ----------- : [1]
T.4 When a Thevenin theorem is applied to a network containing a current source; the
current source is eliminated by --------- it. [1]
T.5 When applying Norton’s theorem, the Norton current is determined with the output
terminals -------------- , but the Norton resistance is found with the output terminals --------
-.and subsequently all the independent sources are replaced ----------- : [3]
T.6 For a complicated circuit, the Thevenin resistance is found by the ratio of --------
voltage and ------------ current. [2]
T.7 A network delivers maximum power to the load when its -------- is equal to the -----
--- of circuit at the output terminals. [2]
T.8 The maximum power transfer condition is meaningful in ------------ and ---------
systems. [2]

T.9 Under maximum power transfer conditions, the efficiency of the system is only -----
---- %. [1]

T.10 For the circuit in fig.8.13, find the voltage across the load resistance R, =3Q using
Thevenin theorem. Draw the Thevenin equivalent circuit between the terminals ‘a’ and
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‘b’ when the load resistance R, is disconnected. Calculate the maximum power delivered
by the circuit to the load R, =3Q. [6]

112

Fig. 8.13
(Ans. V, =18 volt, P, =108W)

T.11 Solve the problem given in T.10 applying Norton’s theorem. [6]
(Ans. 1 =12A, R, =3Q)

T.12 For the circuit in fig.8.14, calculate the value of R that results in maximum power
transfer to the 10Q2 resistor connected between (i) ‘a’ and ‘b’ terminals (ii) ‘a” and ‘c’
terminals. Indicate the current direction through (a) a-b branch (b) a-c branch and their
magnitudes. [6+6]

R . 1002

—— AW AW —

Iy —— 1082 % 50

Fig. %.14

(Ans. (i) R=10Q, I, =250mA (a—>b) (i) R=30Q, I =33.3mA (a—>C))
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T.13 The box shown in fig.8.15 consists of a dc sources and resistors. Measurements are
made at the terminals ‘a’ and ‘b’ and the results are shown in the table. Find the choice of
‘R’ that delivers maximum power to it and subsequently predict the reading of the

ammeter under this situation. [6]
o gre W
DC resistive .4 "b..ﬂ‘_) ¢ I
network with
independent R
SOUrCEs ®
Fig. 8.15
Table
R I
100 2A
80Q2 0.6A

(Answer: R=20Q, P =45watts)

T.14 For the circuit shown in fig.8.16, find the value of current I, through the resistor
R, =6 using Norton’s equivalent circuit and also write the Norton’s equivalent circuit

L1 || e

parameters between the terminals'A' and 'B". [7]
1042 104}
L
+ WA
204} RIILY!

3 R, = 61} 604

1 5%

»
B
Fig. 8.16

(Ans.|, =2.1 A 1,=5.25A R, =4Q)

T.15 Find the values of design parametersR, R,and R, such that system shown in
fig.17(a) satisfies the relation between the current 1, and the voltage V, as described in
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fig.8.17(b). Assume the source voltage V,=12volt

and the value of resistance R, is the

geometric mean of resistancesR, & R;. [7]
(Ans. R =R,=R,=0.5k Q)
R| R_ﬁ ﬂ I I|__
—WW\ MWWAN——°%
T R,
— v Resistive Load
L
=Ry
-~y
b
Fig. 8.17(a)

Fig. 8.17(b): Volt-Amp. characteristics at the terminals *a’ and *b’
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Lesson
O

Analysis of dc resistive
network in presence of
one non-linear element
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Objectives

e To understand the volt (V) — ampere ( A) characteristics of linear and nonlinear
elements.

e Concept of load-line and analysis of dc resistive network having a single non-
linear element using load-line analysis.

L.9.1 Introduction

The volt-ampere characteristic of a linear resistance is a straight line through the
origin as in fig. 3.2 (see Lesson-3) but the characteristic for non-linear element for
example, diodes or lamps is not linear as in fig. 3.3 (lesson-3). Temperature effects cause
much non-linearity in lamps that are made of metals. Most materials resistance increases
(or decreases) with rise (or fall) in temperature. On the other hand, most nonmetals
resistance decreases or increases with the rise or fall in temperature. The typical tungsten
lamp resistance rises with temperature. Note, as the voltage across the lamp increases,
more power is dissipated and in turn rising the filament temperature. Further note, that
the increments of voltage produce smaller increments of current that causes increase
resistance in the filament element. Opposite effects can be observed in case of carbon
filament lamp or silicon carbide or thermistor. Additional increments of voltage produce
large increments of current that causes decrease resistance in the element. Fig.9.1 shows
the characteristics of tungsten and carbon filaments.

&

i (Amp) T Tungsten Lamp

Carbon Lamp

>
Y (volt)

Voltage —f»

Fig. %.1: Temperature effects produce two Kinds of circuit nonlinearities
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[.'.ﬂ =g .-‘l

DC resistive = +'T. Nonlinear element
network with g
independent ART Y w
SOUICES )
B
Fig. 9.2(a)
RI. A I 1] inl:

| VWA -
+ T MNonlinear element

V=V «

Fig. 9.2(b)

Let us consider a simple circuit shown in fig. L.9.2(a) that consists of independent
sources, combination of linear resistances, and a nonlinear element. It is assumed that the
nonlinear element characteristics either defined in terms of current (i(t)) (flowing

through it) and voltage (v, (t)) (across the nonlinear element) relationship or
Voltage (v, (t)) and current (i) relationships of nonlinear element can be expressed as
mathematical expression or formula. For example, consider the actual (non-ideal) V —|I

relationship of the typical diode can be expressed as | =, (ev/a —1), where 'a’ is

constant ( for germanium diode ‘a’=0.026 and silicon diode ‘a’=0.052). Assume that the
network (fig.9.2(a)) at the terminals “ A and B’ is replaced by an equivalent Thevenin
network as shown in fig. 9.2(b). From an examination of the figure one can write the
following expression:
Vi, =l,g xRy +V,s Or, Vi, — 1,5 xRy, =V,; = Thevenin terminal voltage = load voltage.
If the nonlinear element characteristic is given (note, no any analytical expression
is available) then one can adopt graphical method called load-line analysis to determine
the branch variables (I,; =i, and V,; =v.;) of nonlinear element as shown in fig.
L.9.2(a). This resulting solution is frequently referred to as the operating point (Q) for
the nonlinear element characteristic (in the present discussion, we consider a nonlinear
element is a resistor R,). This method is quite simple and useful to analysis the circuit
while the load has a nonlinear V —1 characteristic. It is very easy to draw the source
characteristic using the intercepts at points
V(t) =V, =Vy, , 1 =i, =0(0pen circuit condition) and V() =V, =0, =iy =
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Vin
RTh

values of voltage (V,g;) and current (1,;) at the terminals of the source are exactly same

as the voltage across and current in the load as indicated in fig. 9.2(a). The point of
intersection of the load and the source characteristic represents the only condition where
voltage and current are same for both source and load elements. More-specifically, the
intersection of source characteristic and load characteristic represents the solution of
voltage across the nonlinear element and current flowing through it or operating point
(Q)of the circuit as shown in fig.9.2(c). Application of load-line analysis is explained
with the following examples.

=1, (short— circuited at A &Bterminals) in two axes. It is obvious that the

F 9

=iy =—Ppp——————— 4——— Operating point (Q)

>
| > Vi
(volt)

Fig. 9.2 (c)

L.9.3 Application of load-line method

Example-L.9.1: The volt-ampere characteristic of a non-linear resistive element
connected in the circuit (as shown Fig.9.3(a)) is given in tabular form.

Table: volt-ampere characteristic of non-linear element
0 2 4 6 8 10 12 14 15

0 005 | 01 0.2 0.6 1.0 18 | 20 | 4.0

nl

nl
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2052 " 1042 516}

W —MA—— W
e N 1 -
y = 1l v — v

- !
Nonlinear
Element

502 b
Fig. 9.3 {a) A single non-linear element in the de resistive network

(1) Calculate the voltage drop V,, across the non-linear element.

(i)  For the same circuit, if the non-linear element is replaced by a linear
resistance R, find the choice of R, that will absorb maximum power
delivered by the independent sources.

Solution:
(i) The Thevenin equivalent circuit across the terminals “'a' and 'b' of fig.9.3(b) can
be obtain using ‘node-voltage’” method (or one can apply any method to find V).
250 . 1062 i 50
W——T— W ~MA—
4
0y — % 1042 — v
= I |
L
_— b {considered as ground potential)
Fig. 9.3 (b)

Node voltage at ‘c’

V.-10 V., V,+20
4+ —=
25 10 15

0 =V, =-4.52volt.

V,—(-20) -4.52+20
15

Voltage across the terminals ‘a’ and ‘b’=Thevenin equivalent voltage (V;,) =

—4.52-10%1.032=-14.48volt. (note, point ‘b’ is higher potential than the point ‘a’).

Current through “c-a’ branch = =1.032A
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Thevenin resistance (R;,):
Ry, =[(25110)+10]|15=(7.14+10)||5=3.87Q
Thevenin equivalent circuit for the network as shown in fig.9.3(b) is given below:

R,, = 3.870

W s

I,

s | - Nonlinear
¥ 14 4 clement

'3
b
Fig. 9.3(c): Therenin equivalent circuit of fig. 9.3 (h)

To construct the source characteristic (load-line), we examine the extreme conditions
under which a given source may operate. If the nonlinear load is removed (i.e. terminal
‘a’ and ‘b’ is open-circuited), the terminal voltage will be equal to the Thevenin voltage
(V;,)- On the other hand, if the nonlinear resistance is short-circuited, the current flow
RTh

The operating point of the circuit is found from the intersection of source characteristic
(load-line) and load characteristic curves as shown in fig.9.3(d). From this graph (see
fig.9.3(d)), one can find the current flowing through the nonlinear element
I, =1.15A and the voltage across the nonlinear element is V,, =10.38 Volt .

through the ‘a’ and ‘b’ terminal is 1, =1,

Version 2 EE 11T, Kharagpur



I Source characteristic
{Load-line)

_+_-----—_-----

B i e T e H’nﬁﬂxﬁ'nﬁjlﬁu‘?ﬁt_ T o
characteristhk {Load

—charactedistic)  _

j"--_

() O e S S Ty ksl
I (Amp) I
|
T o e o e i i i vl i
1 |
115 = :
) S —— T======aPg=== ==
|
DS —————— - — -t -
I
0 .
i : 1t (10.38)
| | |
I"_ \‘:"‘B o \‘:"' 1 ‘T._ vR Th _*:
:d m:.m volt lr:i 4.46 ¥ —I-:
|
: ! : '
Vo

Fig. 9.3 (d): Load-line analysis

(if) If the nonlinear resistance is replaced by a linear resistance, the maximum power
transfer condition is achieved when the linear load resistance R, =R, =3.87€. Under
such condition, the network will deliver the maximum power to the load and the
: : o V2 14.847
corresponding maximum power is givenby P =—"=

R, 4x3.87

Remarks: The primary limitation of this method (load-line analysis) is accuracy, due to
its graphical nature and thus it provides an approximate solution of the circuit.

=14.23 W

Example-L.9.2: Fig.9.4(a) shows that a nonlinear element (diode) is included in the
circuit.
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50 50
i 7.50 u
v — — &
- a -
D,
1]
Fig. 9.4 (a)

Calculate the current flowing through the diode, voltage across the diode and the power
dissipated in the diode using (i) load-line analysis (graphical) technique (ii) analytical
method. The volt-ampere characteristic of the diode is given by the expression

Vy Vy
=1, (e % —1j =10 (e Yooz —1j (9.1)
Solution:
(i) Load-line analysis method

The volt-ampere characteristics of the diode are given in tabular form using the equation
9.2).

Table: V, =voltage across the diode in volt, | = current in diode in mA
V, Ov 0.1v 0.2v 0.25v 03v 0.32v 0.35v
I OmA | 0.046mA | 2.19mA | 15mA | 102.6mA | 268mA | 702mA

Step-1: Thevenized circuit
Remove the nonlinear element (diode) and replace the rest of the circuit (as shown in
fig.9.4(b)) by a thevenin equivalent circuit (see fig.9.4(c)).

50 0
s —__:" 7.501
- ——ar
H
L —
1
Fig. 9.4 (b)
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R=1og |

FoN
'

I
.|.T -

I"'.Inulll_ " i DI

.3

Therenized circuit

Fig. 9.4(c) Thevenin equivalent circuit of fig. L.9.4(b)

Applying KVL around the closed path of the circuit as shown in fig.9.4(b), we get
4—-(5+5)x1-2=0=1 =%=O.2A

Vi, =4-5%0.2=3volt.; Ry =(5|5)+7.5=10Q

The equivalent Thevenin circuit is shown in fig.9.4(c).

Step-2: Load-line analysis

Draw the source and load (diode) characteristics on a same graph paper as shown in

fig.L.9.4(d). Note that the Thevenin parameters obtained in step-1 are used to draw the
source characteristic.
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Fig. 9.4 (d): Load-line analvsis

The operating point Q in fig.9.4(d) provides the information of the following quantities:

Voltage across the diode = V, =V, =0.33volt.

Current flowing through the diode = I, =269 mA

Power dissipated in the diode = P, , =V,, x1, =88.77mW

(ii) Analytical method

KVL equation around the loop of fig.L.9.4(c) is written as

V., — I xRy, =V, =0 (9.2)
Vi =l xRy +V, o 3=10°(e""®*)+v, (note V;, =3V, R, =10Q)

The nonlinear algebraic equation can be solved by using any numerical technique. To
solve this equation, one can consider the Newton-Raphson method to the above equation.
The above equation is rewritten in the following form

f(Vy)=10"(e""®*)+v, -3 (9.3)
f (V,)=1+0.385x10"° x g™ (9.4)
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To solve V,, Newton’s formula is used

(Vo)
Vi (newy =Va (old) _E—dj (9.5)
f(Vd) Va =V4 (old)
Initial guess of V, is assumed as V,;, = 0.36V . The final value of V, is obtained after
four iterations and they are shown below.

Iteration Vi old) Vi new)
1. 0.36 v 0.3996 v
2. 0.3996 v 0.3886 v
3. 0.3886 v 0.3845 v
4 0.3845 v 0.3842 v
Using equation (9.2), we get |, :V”;?_Vd -~ 3_01'(3)842 = 261.58mA and power
Th

dissipated in diode P, . =V,, x|, =0.3842x261.58=100.5mW .

L.9.4 Test your understanding (Marks: 30)

T.1 The volt-ampere characteristic of a unknown device (T ) is shown in fig.9.5(a) and
it is connected to a resistive circuit of fig.9.5(b).
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9 1
—pp volt

Fig. 9.5 {a): Volt-ampere characteristic of unknown device

(i) If V., =10V ,and R =150Q, plot the source characteristics

current axes.

|I+
|

. A

AMAN———= = 5= +

B
Fig. 9.5 (b)

on the voltage-

[3]

(i) Indicate the operating point on the graph and estimate the values of

I; and V; (ans. I; =43mA, and V; =3.7V)

[3]

T.2 A Thermistor with the volt-ampere characteristic (see fig.9.6(a)) given below is
connected into one arm of a bridge as shown in the circuit of fig.9.6(b).
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Fig. 9.6 (a)
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Fig. 9.6 (b): Thermistor Characteristic

(i) Determine the value of R so that the thermistor operation point is at
V; =5Volt and I; =2mA. Justify the answer using the load-line analysis
technique. (ans. R=0.5kQ ) [5]

(if) Find the new operating point of the thermister when R=300Q . Subsequently,
compute the power dissipated by the thermistor.

(Ans.5.3V; 24 mA and 12.7 mW) [5+2]
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T.9.3 The diode whose volt-ampere characteristic is given by analytical expression
\Z Vi
=1, (e % —1) =10"° (e Yoozs —1) is used in the circuit of fig.9.7.

DhA2 R=1.1kf: a

VWA W—-

V, =2y Lk -

Fig. 9.7
Using analytical method, determine the following
(i) the diode current I, , voltage V, and power dissipated by diode. [5]
(if) the diode voltage for each case while the supply voltage (V,)is changed in
succession to 30 V, 40 V and 50 V respectively. [7]

Version 2 EE 11T, Kharagpur



Module
3

R-L & R-C Transients
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Lesson
10

Study of DC transients
in R-L and R-C circuits
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Objectives

e Definition of inductance and continuity condition for inductors.

e To understand the rise or fall of current in a simple seriesR—L circuit excited
with dc source.

e Meaning of 'Time Constamt(z)' for R—L circuit and explain its relationship to
the performance of the circuit.

e Energy stored in an inductor

e Definition of capacitance and Continuity condition for capacitors.

e To understand the rise or fall voltage across the capacitor in a simple series R—C
circuit excited with dc source.

e Meaning of 'Time Constamt (z)' for R—C circuit and explain its relationship to
the performance of the circuit.

e Energy stored in a capacitor

L.10.1 Introduction

So far we have considered dc resistive network in which currents and voltages
were independent of time. More specifically, Voltage (cause — input) and current (effect
— output) responses displayed simultaneously except for a constant multiplicative factor
R (V =Rx1). Two basic passive elements namely, inductor (L) and capacitor (C) are

introduced in the dc network. Automatically, the question will arise whether or not the

methods developed in lesson-3 to lesson-8 for resistive circuit analysis are still valid. The

voltage/current relationship for these two passive elements are defined by the derivative
. i (t

(voltage across the inductor v, (t) =L d ;It( )

, Where i_(t)=current flowing through the

inductor ; current through the capacitor i.(t)=C dve (1)

, V¢ (t)= voltage across the

t t
capacitor) or in integral form as iL(t)z%ij(t)dt+iL(O) or V. (t):%ji(t)dwvC ©
0 0

rather than the algebraic equation (V = IR ) for all resistors. One can still apply the KCL,
KVL, Mesh-current method, Node-voltage method and all network theorems but they
result in differential equations rather than the algebraic equations that we have considered
in resistive networks (see Lession-3 to lesson-8).

An electric switch is turned on or off in some circuit (for example in a circuit
consisting of resistance and inductance), transient currents or voltages (quickly changing
current or voltage) will occur for a short period after these switching actions. After the
transient has ended, the current or voltage in question returns to its steady state situation
(or normal steady value). Duration of transient phenomena are over after only a few
micro or milliseconds, or few seconds or more depending on the values of circuit
parameters (like R, L, and C).The situation relating to the sudden application of dc

voltage to circuits possessing resistance (R ), inductance (L), and capacitance (C) will
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now be investigated in this lesson. We will continue our discussion on transients
occurring in a dc circuit. It is needless to mention that transients also occur in ac circuit
but they are not included in this lesson.

L.10.2 Significance of Inductance of a coil and dc transients
In a simple R-L circuit

Fig.10.1 shows a coil of wire forming an inductance and its behavior is to resist
any change of electric current through the coil. When an inductor carries current, it
produces a certain amount of magnetic flux (®) in the core or space around it. The

product of the magnetic flux (@) and the number of turns of a coil (an inductor) is called
the “flux linkage’ of the coil.
i} A ip

>

&0 J_ o Flux = @

Inductor
Fig. 111
Considering the physical fact that the voltage across the coil is directly proportional to
the rate of change of current through the inductor and it is expressed by the equation

emf = e(t)=1L ai) = L:_GL (10.1)
dt di(t)/dt
where L is the constant of proportionality called inductance of coil and it is measured in

volt —second
ampere
increases or decreases (Lenz’s Law)
di(t)
e(t)=-L e (10.2)
Let us assume that the coil of wire has ‘N turns and the core material has a relatively
high permeability (or magnetic path reluctance is very low), so that the magnetic flux
(P) produced due to current flowing through the coil is concentrated within the core
area. The basic fundamental principle according to Faraday, the changing flux through
the coil creates an induced emf (e) and it is expressed as
dd(t)
dt

=henry (H). The direction of induced emf is opposite to that of current

e(t)=— N (10.3)
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In words, Faraday’s law states that the voltage induced in a coil (inductor) is proportional
to the number of turns that the coil has, and also to the rate of change of the magnetic flux
passing through its coils. From equations (10.2) and (10.3), one can write the following
relation

_ Ndo(t) change in flux linkage N ®
di change in current I

The inductance of a coil can also be defined as flux (®) linkage per unit of current
flowing through the coil and it is illustrated through numerical example.

L

(10.4)

Example-L.10.1: Consider two coils having the same number of turns * N . One coil is
wrapped in a nonmagnetic core (say, air) and the other is placed on a core of magnetic
material as shown in fig.10.2. Calculate the inductances of both coils for same amount of
current flowing through them.

N = 200 turns, @, = 0.5 = 107" wh
A = area of coil -1

g‘ MNonmagnetic core

"

'
'
'

t

= ¢oil length

- A = area of coil -2
g‘ Magnetic core

— | ——p

= coil length

Fig. 10.2: Inductance of coil depends on the surrounding media

Case-A: Nonmagnetic material

Inductance of nonmagnetic material = =5mH

L= N @, :2oox(o.5x10*“)
I 2

Case-B: Magnetic material

Nx®d, 200x(0.05)

2

Inductance of magnetic material L, = =5H (Note: L, > L)

L.10.2.1 Inductance calculation from physical dimension of coil
A general formula for the inductance of a coil can be found by using an

equivalent Ohm's law for magnetic circuit and the formula for reluctance. This topic
will be discussed in detail in Lesson-21. Consider a solenoid-type electromagnet/toroid
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with a length much greater than its diameter (at least the length is ten times as great as its
diameter). This will produce an uniform magnetic field inside the toroid. The length ‘I ’of
a toroid is the distance around the center axis of its core , as indicated in fig.10.3 by

dotted line. Its area “ A’ is the cross-sectional area of the toroid, also indicated in that
figure.

On the surrounding media

length *I" of Toroid =
Mean magnetic path length

% A = gross=sectional
are (circular)

I = Flux inside Torodod

I = current flowing
through the coil

Fig. 10.3: A toroidal inductor

Appling ampere-circuital law for magnetic circuit (see Lesson-21) one can write the
following relation

N|:H|:>H:¥At/m (10.5)

We know, flux is always given by the product of flux density (B) and area (A) through
which flux density ids uniform. That is,

O= BxA:,uHA:,u¥A (note, y =p,xu, ) (10.6)

where B=xH andH is the uniform field intensity around the mean magnetic path

length ‘0 Substituting the equation (10.6) into the defining equation for inductance,

equation (10.4) gives

N® uN?*1A uN?A
T

Remark-1: The expression (10.7) is derived for long solenoids and toroids, computation
of inductance is valid only for those types.

L=

(10.7)
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L.10.2.2 Continuity condition of Inductors

The current that flows through a linear inductor must always be a continuous.
From the expression (10.1), the voltage across the inductor is not proportional to the
current flowing through it but to the rate of change of the current with respect to
time, % . The voltage across the inductor (v, ) is zero when the current flowing through
an inductor does not change with time. This observation implies that the inductor acts as
a short circuit under steady state dc current. In other words, under the steady state
condition, the inductor terminals are shorted through a conducting wire. Alternating
current (ac), on the other hand, is constantly changing; therefore, an inductor will create
an opposition voltage polarity that tends to limit the changing current. If current changes
very rapidly with time, then inductor causes a large opposition voltage across its
terminals. If current changes through the inductor from one level to another level
instantaneously i.e. in dt =0sec., then the voltage across it would become infinite and
this would require infinite power at the terminals of the inductor. Thus, instantaneous
changes in the current through an inductor are not possible at all in practice.

Remark-2: (i) The current flowing through the inductor cannot change instantaneously
(i.e. i(07) just right before the change of current = i(0") just right after the change of

current). However, the voltage across an inductor can change abruptly. (ii) The inductor
acts as a short circuit (i.e. inductor terminals are shorted with a conducting wire) when
the current flowing through the inductor does not change (constant). (iii) These properties
of inductor are important since they will be used to determine “boundary conditions”.

L.10.3 Study of dc transients and steady state response of a
series R-L circuit.

Ideal Inductor: Fig.10.4 shows an ideal inductor, like an ideal voltage source, has no
resistance and it is excited by a dc voltage source V.

t=10

5 = switch

(Ideal inductor,
R, = inductor

resistanee = )

it

Fiz. 10.4: An ideal inductor connected to a constant voltage source
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The switch *S’ is closed at time “t =0’ and assumed that the initial current flowing
through the ideal inductor i(0) just before closing the switch is equal to zero. To find the
system response ( i(t)— vs —t), one can apply KVVL around the closed path.

KVL
v, L 90 g _ i _V,

Vs (10.8)
dt dt L

i(t) t

jdi(t):v—l_sjdt:i(t)zv—l_sui(O) :>i(t):V—L5t (note i(0) =0 ) (10.9)

Equation (10.9) implies that the current through inductor increases with increase in time
and theoretically it approaches to infinity as t— oo but in practice, this is not really the
case.

Real or Practical inductor:

Fig.10.5 shows a real or practical inductor has some resistance and it is exactly
equal to the resistance of the wire used to wind the coil.

R, is very small

Fig. 10.5: Representation of an practical inductor

Let us consider a practical inductor is connected in series with an external resistance R,
and this circuit is excited with a dc voltage V, as shown in fig.10.6(a).

3 4 5 K, = external resistence

R, = resistance of coil
L = inductance of coil

Fig. 10.6{a): a practical inductor connected to a constant voltage source
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t=10

i(t)

Fig. 10.6(b): Equivalent representation circuit shown in fig. L.10.6{a)

Our problem is to study the growth of current in the circuit through two stages, namely;
(i) dc transient response (ii) steady state response of the system.

D.C Transients: The behavior of the current (i(t)); charge (q(t)) and the voltage (v(t))
in the circuit (like R—L; R—C: R—-L-C circuit) from the time (t(0") ) switch is closed
until it reaches its final value is called dc transient response of the concerned circuit. The
response of a circuit (containing resistances, inductances, capacitors and switches) due to
sudden application of voltage or current is called transient response. The most common

instance of a transient response in a circuit occurs when a switch is turned on or off — a
rather common event in an electric circuit.

L.10.3.1 Growth or Rise of current in R-L circuit

To find the current expression (response) for the circuit shown in fig. 10.6(a), we
can write the KVL equation around the circuit

Vi —(R+R)i(t) -v (1) =0=V,=R i(t)+L¥ (10.10)
where V, is the applied voltage or forcing function, R, is the resistance of the coil, R, is
the external resistance. One can combine the resistance of coil R to the external
resistance R, in order to obtain a simplified form of differential equation. The circuit

configuration shown in fig. 10.6(a) is redrawn equivalently in fig.10.6(b) for our
convenience. The equation (10.10) is the standard first order differential equation and its
solution can be obtained by classical method. The solution of first or second order
differential equation is briefly discussed in Appendix (at the end of this lesson-10). The
following relation gives the solution of equation (10.10)

i(t)=i () + i, (t) =A™+ A (10.11)

Here, i (t) is the complementary solution/natural solution of differential equation
(10.10). It is also sometimes called as transient response of system (i.e. the first part of
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response is due to an initial condition of the system or force free response). The second
part i, (t) of eq. (10.11) is the particular integral solution/force response or steady state
response of the system due to the forcing function ( f(t) =V ) or input signal to the

seriesR — L circuit. It may be noted the term A provide us the steady state solution of the
first order differential equation while the forcing function (or input to the system) is step
function (or constant input). More specifically, for a linear system, the steady state
solution of any order differential equation is the same nature of forcing function (f (t))or

input signal but different in magnitude. We have listed in tabular form the nature of
steady state solution of any order differential equation for various types of forcing
functions (see in Appendix). To get the complete solution of eq. (10.10), the values of
a, A, and A are to be computed following the steps given below:

Step-1: How to find the value of o ?
Assigning Vg= 0 and introducing an operator « :% in eg.(10.10) , we get a

characteristic equation that will provide us the numerical value of « . This in turn, gives
us the transient response of the system provided the constant A, is known to us.

The Characteristic equation of (10.10)is R + aL=0=a=— %

Step-2: How to obtain the constants A, and A?

It may be noted that the differential eg. (10.10) must be satisfied by the particular integral
solution or steady state solution i, (t). The value of i, (t) at steady state condition (i.e.

t— o) can be found out using the eq.(10.11) and it is given below.
Using final condition (t— o)

di(t
Vs=Ri;(t) +L¢ (10.12)
(note: at steady state (t — o) i, (t) =A=constant from eq. (10.11))
Vo-RA+LIA LAY (10.13)
dt R

Using initial condition (t =0)

Case-A: Assume current flowing through the inductor just before closing the switch *S”
(att=0 )isi(07)=0.

i(0)=i 0)=i(0")=A + A (10.14)
0=A+A=A=-A= —\%

Using the values of « , A, and A in equation (10.11), we get the current expression as
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i(t):vﬁ{l— e ‘Et} (10.15)

The table shows how the current i(t) builds up in a R-L circuit.

Actual time (t) in sec Growth of current in inductor

(Eq.10.15)
t=0 i(0)=0
L . V.
t T( R] (c) s
t=2r7 V,

i(27)=0.865 x—=
(27) A

t=37 i(37)= 0.950 XVES

t=4z i(47)=0.982 XVES

t=o7 i(57)= 0.993 XVES

Note: Theoretically at time t— oo the current in inductor reaches its steady state value

but in practice the inductor current reaches 99.3% of its steady state value at time
t=57 (sec.).

The expression for voltage across the external resistance R, (see Fig. 10.6(a))

. v -Ry
=V =i(t)R, = ES 1-e t |R; (10.16)
The expression for voltage across the inductor or coil
V -R
Vcoil (t) = Vinductor (t) =VS _VR1 (t) =VS _Es( R1)|:1 —€ - :| (1017)

Graphical representation of equations (10.15)-(10.17) are shown in Fig.10.7 for different
choices of circuit parameters (i.e., L & R)
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Fig. 10.7(a): Growth of current in R-L circuit (assumed initial current through
inductor is zero).
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Fig. 10.7(b): Voltage response in different elements of R-L circuit (assumed i, = o)

Case-B: Assume current flowing through the inductor just before closing the switch “S”
(att=0")isi(07)=i,=0.
Using  equations  (10.13) and  (10.14), we get the wvalues of

A:VES and Alzi(O)—A:io—\%. Using these values in equation (10.11), the

expression for current flowing through the circuit is given by
R R
i(t)=\%[1—e Lt}(ioe Lt] (10.18)

The second part of the right hand side of the expression (10.18) indicates the current
flowing to the circuit due to initial currenti,of inductor and the first part due to the

forcing functionV applied to the circuit. This means that the complete response of the

circuit is the algebraic sum of two outputs due to two inputs; namely (i) due to forcing
function Vg (ii) due to initial currenti, through the inductor. This implies that the

superposition theorem is also valid for such type of linear circuit. Fig.10.8 shows the
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response of inductor current when the circuit is excited with a constant voltage source V;
and the initial current through inductor is i, .

0.2

0.18

0.16

0.14

0.12

0.1

0.08

— iit) in ampere

0.06

0.04

0.02

L
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

—y lime (seconds)

Fig. 10.8: Current through inductor due to (i) forcing function ¥, only,
(ii) initial condition i, only, (iii) combined effect of (i) and (ii)

Remark-3: One can also solve this differential equation by separating the variables and
integrating.

Time constant (r) for exponential growth response (7): We have seen that the
current through inductor is represented by

i(t)=\%{1— e w

when a series R—L circuit is excited by a constant voltage source (V) and an initial
current through the inductor i, is assumed to be zero. Further it may be noted that the
current through the inductor (see fig.10.7) increases as time increases. The shape of
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. . Vv .
growing current before it reaches to a steady state value (?j entirely depends on the

parameters of R—L circuit (i.e. R & L) that associated with the exponential term
_Ry
[e L ) As “t’ grows larger and larger the transient, because of its negative exponential

factor, diminishes and disappears, leaving only the steady state.

Definition of Time Constant (r) of R—L Circuit: It is the time required for any

variable or signal (in our case either current (i(t)) or voltage (le or vL)) to reach 63.2%

R

( i.e the time at which the factor 1—6Lt]><100 in eq.(10.15) becomes

(1-51) x100= 63.2%) of its final value. It is possible to write an exact mathematical

expression to calculate the time constant (r) of any first-order differential equation.

Let “t’ is the time required to reach 63.2% of steady-state value of inductor
current (see fig. 10.6(a)) and the corresponding time “t” expression can be obtained as

t

=g !

o

- V V th 7Bt _
I(t)ZO'GBZ*ES:ES l-e V' | =>0632=1-e t =0.368 =¢ = t=

L

— =7 (sec.

; 7 (sec.)

The behavior of all circuit responses (for first-order differential equation) is fixed by a

single time constant 7 (for R—L circuitr=%) and it provides information about the

speed of response or in other words, it indicates how first or slow the system response
reaches its steady state from the instant of switching the circuit. Observe the equation
(10.15) that the smaller the time constant (7 ), the more rapidly the current increases and
subsequently it reaches the steady state (or final value) quickly. On the other hand, a
circuit with a larger time constant (z) provides a slow response because it takes longer
time to reach steady state. These facts are illustrated in fig.10.7(a). In accordance with

convenience, the time constant of an exponential term (say p(t)=p, (1—e’at) ) is the
reciprocal of the coefficient “a’ associated with the “t” in the power of exponential term.

Remark-4: An interesting property of exponential term is shown in fig. 10.7(a). The time
constant z of a first order differential equation may be found graphically from the
response curve. It is necessary to draw a tangent to the exponential curve at time ‘t =0’
and maintained the same slope until it intersects the steady state value of current curve at
P point. A perpendicular is drawn from the point P to the time axis and it intersects
the time axis at t=z(see fig. 10.7(a)). Mathematically, this can be easily verified by
considering the equation of a straight line tangent to the current curve at t =0, given by

y =mt where mis the slope of the straight line, expressed as
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dt o L

. . . Vv .
Here, we designated the value of time “t’ required to reach y from ‘0’ to ES units,

o, 5P
ECLOT Vs (10.19)
dt

assuming a constant rate (slope) of growth. Thus,

V

Yo Vs :L:r(sec.) (10.20)
R L R

It is often convenient way of approximating the time constant (r) of a circuit from the
response curve (see fig.10.7(a) for curve-2).

L.10.3.2 Fall or Decay of current in a R-L circuit

Let us consider the circuit shown in fig. 10.9(a). In this circuit, the switch ‘S’ is closed
sufficiently long duration in position “1’. This means that the current through the inductor
L Vv \ . L
reaching its steady-state value (1=—=——2—=1,) and it acts, as a short circuit i.e. the

R R+R,
voltage across the inductor is nearly equal to zero since resistance R, < R, . If the switch
‘S’ is opened at time ‘t’=0 and kept in position ‘2’ for t>0 as shown in fig. 10.9(b), this

situation is referred to as a source free circuit.

W

= Switch R=R, +R,

1
[

a4
-

%

Fig. 10.9(a)
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R=R, +R,

it)

Fig. 10.9%(b): Decay of current in K - L circuit

Since the current through an inductor cannot change instantaneously, the current through
the inductor just before (i (07) and after (i(0") opening the switch ‘S’ must be same.

Because there is no source to sustain the current flow in inductor, the magnetic field in
inductor starts to collapse and this, in turn, will induce a voltage across the inductor. The
polarity of this induced voltage across the inductor is just in reverse direction compared
to the situation that occurred during the growth of current in inductor (i.e. when the
switch *S’ is kept in position “1”). This is illustrated in fig. 10.9(b), where the voltage
induced in inductor is positive at the bottom of the inductor terminal and negative at the
top. This implies that the current through inductor will still flow in the same direction,
but with a magnitude decaying toward zero. Appling KVL around the closed circuit in
fig. 10.9(b), we obtain

di®) , piey
L= Ri()=0 (10.21)

The solution of the homogeneous (input free), first-order differential equation with
constant coefficients subject to the initial (boundary) inductor current (initial condition,

1(07)=i (O*):VFS:I ) is given by
it)=i (t)=Ae” (10.22)

where « can be found from the characteristic equation of eq.(10.21) described by

La+R =0 = a:—% (10.23)

At time t=0, the initial condition i(O):i(O*):VES is used in equation (10.22) to

compute the constant A, and it is given below.

Vs )

1(0)=A, =A="
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Using the values of A, and « in equation (10.22), we get final expression as
R

i(t) = VES e L for t>0 (10.24)

A sketch of i(t) for t >0 is shown in fig.10.10. Here, transient has ended and steady
state has been reached when both current in inductor i(t) and voltage across the inductor
including its internal resistance are zero.

Time Constant (r)for exponential decay response: For the source free circuit, it is the

time 7 by which the current falls to 36.8 percent of its initial value. The initial condition
in this case (see fig. 10.9(a) is considered to be the value of inductor’s current at the
moment the switch S is opened and kept in position 2 ’. Mathematically, z is computed
as

R
i(1)=0368x s =Ys g L' = toroC (10.25)
R R R
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Fig. 10.10: Fall of current in R-L circuit (assumed initial current through inductor is I).

Alternatively, the time constant for an exponential decay response of a circuit may be
computed graphically by adopting the steps (see equations (10.19) and (10.20)) as
discussed before. In fig.10.10, a tangent is drawn to the exponential decay curve at time
‘t=0" and maintained the same slope until the straight line intercepts time axis at time
t=7. Approximately, the value ofzr can thus be found directly from graphical

representation of exponential decay curve.

L.10.3.3 Energy stored in an inductor

Let us turn our attention to power and energy consideration for an inductor. The

instantaneous power absorbed by the inductor is expressed by product of the current

through inductori(t) and the voltage across it v(t).
: . di(t

JORVGIOROIES

Since the energy is the product of power and time, the energy absorbed by an inductor

over a period is expressed as

(10.26)
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W, jp(t)olt_ju(t)LO"(t)dt_1 L[i*()-i°(t,) ] (10.27)

0 O

where we select the current through inductor at time “t; = —co’ is i(—o)=0. Then, we

have W, :% Li%(t) and from this relation we see that the energy stored in an inductor is
always non-negative. At any consequent time at which the current is zero, no energy is
stored in the inductor. The ideal inductor (R, =0Q) never dissipates energy, but only

stores. In true sense, a physical or practical inductor dissipates a very small amount of
stored energy due to its small series resistance.

Example-L.10.2 Fig.10.11 shows the plot of current i(t) through a seriesR—L circuit
when a constant forcing function of magnitudeV, =50V is applied to it. Calculate the
values of resistance R and inductance L.

im, &
Amp.

T P T

R T < i)

>
. time (5)

=
-~

Fig. 10.11: Current -v ~time characteristic

Solution: From fig.10.11 one can easily see that the steady state current flowing through
the circuit is 10A and the time constant of the circuit 7=0.3sec. The following
relationships can be written as

i :V 10—5—RO:>R 50

steady state R

and r=£:>0.3=£:>L=1.5H
R 5

Example-L.10.3 For the circuit shown in Fig.10.12, the switch *S * has been closed for
a long time and then opens at t=0.
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i, (t)

104t t=0

v —

642

Fig. 10.12

Find,
(1) v (07) (i) i,(07), i, (07) (i) i, (07) (iv) v, (07) (V) i, (t=00) (Vi) v, (t=00)
(vii) i, (t) for t>0

Solution: When the switch S was in closed position for a long time, the circuit reached
in steady state condition i.e. the current through inductor is constant and hence, the
voltage across the inductor terminals a and b is zero or in other words, inductor acts as
short circuit i.e., (i)v,, (07)=0V . It can be seen that the no current is flowing through
6Q resistor. The following are the currents through different branches just before the
switch S ”is opened i.e.,at t =0".

20

i (0):2—£=4A and the current through 10Q resistor, i, (07) BT 2A . The

algebraic sum of these two currents is flowing through the inductor i.e., (ii)
i, (0)=2+4=6A.

When the switch *S ” is in open position
The current through inductor at time t =0" is same as that of currenti_ (07), since
inductor cannot change its current instantaneously .Therefore, the current through i, (0%)
IS given by

i, (0") =i (0")=6A.
Applying KVL around the closed loop at t=0" we get,

20-i,(0")xR=v, (0") =20-6x5=v, (0") =V, (0") =—10V
The negative sign indicates that inductor terminal ‘b’ as +ve terminal and it acts as a
source of energy or mathematically, v,, (07) =10V .
At steady state condition (t —o0) the current through inductor is constant and hence

inductor acts as a short circuit. This establishes the following relations:

v, (t=o0)=0V and i_(t =oo)=2_5°:4A (10.28)
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The circuit expression i (t) for t>0 can be obtained using the KVVL around the closed
path (see fig.10.12).

KVL equation:

—i @x5-L IO g
i ()x5 + Ld'dft) -V, (10.29)

The solution of first order differential equation due to forcing function and initial
condition is given by
R

i )=Ae" +A (10.30)
Initial and final conditions are: (i) At t=0, i,(0)=i (07)=i (0")=6A (ii) t— o,
current through inductor i, (t=0)=4A (see Eg. 10.28). Using initial and final
conditions equation (10.30) we get, A, =6-Aand A=4 —= A=2

5
From equation (10.30), we get the final expression as i, (t)=4+2e ' for t>0.

Example: L.10.4 The switch *S * is closed in position ‘1 sufficiently long time and then
it is kept in position ‘2’ as shown in fig.10.13. Compute the value of v, and i, (i) the
instant just prior to the switch changing; (ii) the instant just after the switch changes. Find

t—O*]

also the rate of change of current through the inductor at time t =07 {i e, —=

| S(switch) 1062

10A

(O =

Fig. 10.13

Solution: We assume that the circuit has reached at steady state condition when the
switch was in position ‘1. Note, at steady state the inductor acts as short circuit and
voltage across the inductor is zero.
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At t=0", the -current through and the wvoltage across the inductor are

. 10

I, (07)=

0 10+10
position *2°, current through the inductor cannot change instantaneously but this is not

true for the voltage across the inductor. At t=0", one can write the following
expressions:

i, (07)=5A and v (0")=—(10 +10)x5 =—-100V (‘b” is more + ve potential than ‘a’
terminal). Note that the stored energy in inductor is dissipated in the resistors. Now, the
rate of change of current through inductor at time t =0" is obtained as

t:0+ t t:0+ 4

x10 =5A and v, (07)=0V respectively. When the switch is kept in

Example: L.10.5 Fig. 10.14(a) shows that a switch *S’ has been in position ‘1’ for a
long time and is moved in position “ 2 at time “t=0". Find the expression v(t) for t> 0.

Gix |
A [Ty
61
T ‘: vit)
21
d

Fig. 10.14(a)

Solution: When the switch “ S’ is in position “1’, the current through inductor (using the
fundamental property of inductor currents) at steady state condition (see fig.10.14(b)) is

® L 6-3A = 1,(0)=1_(0")=3A (10.31)
6+6

I =
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Fig. 10.14{b}: Circuit diagram for the switch in position *1°

The circuit for the switch *S is in position 2’ is shown in fig.10.14 (c). The current in
inductor can be computed using following two different methods.

6Ll

I{“_ _-—

3 l Y
0 ) 642
' »l' ;) vit)
(L= BT
.l‘" d

¥on

Fig. 10.14(c)

Method-1: Using Thevenin’s theorem

Convert the part of a circuit containing independent sources and resistances into an

equivalent Thevenin’s voltage source as shown in fig.10.14.(d).
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R,, = 3£} “l r el

1 l hi}
i i “}
" L] k'
Vo = 5v -T— i
i

Fig. 10.14(d)

Using the KVL around the closed path is
9i, (t)+2 x%ﬂ (10.32)

The solution of the above equation is given by

iL(t)zAle’%t + A =i (1) +i, (©) (10.33)
where, i,(t) = complementary/natural/transient solution of eq.(10.32)

ir(t) = particular/ steady state/final solution of eq.(10.32)
The constants A, and A are computed using the initial and final conditions of the circuit

when the switch is kept in position 2.
Attime t=0,

i, (0)=i (0)=3=A +A (10.34)
At time t— oo, the current in inductor reached its steady state condition and acts as a
short circuit in a dc source network. The current through inductor is

i, (t=o0)= :56 = 0.555 amp. =i, = A (10.35)

Using the above two equations in (10.33), one can obtain the final voltage expression for
voltage v(t) across the terminals “a *and ‘b’ as

_9 _9
v, () =v(t)=5-i ()x3=5 —[2.445><e 2t+o.555]x3 = [3.339—7.335><e th v

Method-2: Mesh current method
Assign the loop currents in clockwise directions and redrawn the circuit as shown in Fig.

10.14(e). The voltage across the terminals “‘a’ and ‘b’ can be obtained by solving the
following loop equations.
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Fig. 10.14(¢)

Loop-1:
10 —6i1(t)—6(i1(t)—i2 (t))=0:>10= 12§, (t) - 61, (t)= 1, (1) = 12(1O+6| (t)) (10.36)

Loop-2:

—6i, (t)— Ldld(t) 6(i,(t) i, (t))= 0 = — 6, (1) +12i, (t)+2d|d§t) 0 (10.37)
Using the value of i (t) in equation (10.37) , we get

9i, 1) +2 x3® _5 (10.38)

To solve the above first order differential equation we must know inductor’s initial and
final conditions and their values are already known (see, =i, (07)=i,(0")=3A and

I,(t=00)= % =0.555 amp.). The solution of differential equation (10.38) provides an

expression of current i,(t) and this, in turn, will give us the expression of i (t). The
voltage across the terminals “a’ and ‘b’ is given by

di (t) ~2
b =10 —6xi, (t) =61, (t) +2——= m 3.339-7.335xe ? |V

where, i,(t), i (t) can be obtained by solving equations (10.38) and (10.36). The
expressions for i,(t) and hence i, (t) arte given below:

_9 _9
iz(t):(2.445xe 2‘+0.555J and i, (t) = 12 (10+6i, (t) ) = (1.11+1.2225e zt}
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L.10.4 Capacitor and its behavior

Fig.10.15 shows a capacitor consists of two pieces of metal (the plates) separated
from each other by a good insulator (the dielectric), with two wires (the leads) attached to
the metal plates.

§F 0
4,;-;‘&:'{—

L]

+ +4 + + ;
++ + +

3 ++ + + +
v ++ + + +

. ++ + + +

The dielectric

Battery

C = Capacitor
A = area of each plate
d = distance between two plates

Fig. 10.15: Charging of a Capacitor

A battery is connected across the capacitor to transport charge from one plate to the other
until the capacitor charge voltage buildup is equal to the battery voltage V . The voltage
across the capacitor depends on how much charge was deposited on the plates and also
how much capacitance the capacitor has. In other words, there is a relationship between
the voltage (V ), charge (Q) and capacitance (C), they are related with a mathematical
expression as

_ Q (coulumb)

V (volt)
where Q= magnitude of charge stored on each plate, V = voltage applied to the plates

and the unit of capacitance is in Farad. Although the capacitance C of a capacitor is the
ratio of charge per plate to the applied voltage but it mainly depends on the physical
dimension of the capacitor. If the area of the plates is larger, the more would be the
amount of charge stored over the surface of the plates, resulting higher value of
capacitance. On the other hand, if the spacing ‘d’ between the plates is closer,
accumulates more charge over the parallel plates and thus increases the value of the
capacitance. The quality of dielectric material has an effect on capacitance between the
plates. The good quality of dielectric material indicates that higher the permittivity,
resulting greater the capacitance. The value of capacitance can be expressed in terms
physical parameters of capacitor as

c :g_A: & & A

d

&, (= 8.85x107*?) is the permittivity of free-space, &, = relative permittivity of dielectric

material and Cis the capacitance in Farad. It is important to note that when the applied

(10.39)

where A is the area of each plate, d is the distance between the plates,
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voltage across the capacitor exceeds a certain value the dielectric material breaks down
and loses it insulation property.

L.10.4.1 Continuity condition of capacitors

To find the current-voltage relationship of the capacitor, one can take the
derivative of both sides of Eq.(10.39)
cdv®_dat) ;4 = d%® (10.40)
dt dt dt

The voltage-current relation can also be represented by another form as
t

1. . . .
v, (t) :EJ-I (t)dt+v, (t,) where v_(t,)is voltage across the capacitor at time “t,’. It can
ty
be seen that when the voltage across a capacitor is not changing with time, or, in other
words, the capacitor is fully charged and the current through the capacitor is zero (see
Eq.10.40). This means that the capacitor resembles as an open circuit and blocks the flow
of current through the capacitor. Equation (10.40) shows that an instantaneous (At=0)

change in capacitance voltage must be accompanied by an infinite current that requiring
an infinite power source. In practice, this situation will not occur in any circuits
containing energy storing elements. Thus, the voltage across the capacitor (or electric
charge q(t)) cannot change instantaneously (i.e., At=0), that is we cannot have any

discontinuity in voltage across the capacitor.

Remark-5
(i) The voltage across and charge on a capacitor cannot change instantaneously (i.e.
v,(07) just right before the change of voltage = v.(0%) just right after the change of

voltage). However, current through a capacitor can change abruptly. (ii) The capacitor
acts as an open circuit (i.e., when the capacitor is fully charged) when voltage across the
capacitor does not change (constant). (iii) These properties of capacitor are important
since they will be used to determine “boundary conditions”.

L.10.4.2 Study of dc transients and steady state response of a series
R-C circuit.

Ideal and real capacitors: An ideal capacitor has an infinite dielectric resistance and
plates (made of metals) that have zero resistance. However, an ideal capacitor does not
exist as all dielectrics have some leakage current and all capacitor plates have some
resistance. A capacitor’s leakage resistance is a measure of how much charge (current) it
will allow to leak through the dielectric medium. lIdeally, a charged capacitor is not
supposed to allow leaking any current through the dielectric medium and also assumed
not to dissipate any power loss in capacitor plates resistance. Under this situation, the
model as shown in fig. 10.16(a) represents the ideal capacitor. However, all real or
practical capacitor leaks current to some extend due to leakage resistance of dielectric
medium. This leakage resistance can be visualized as a resistance connected in parallel
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with the capacitor and power loss in capacitor plates can be realized with a resistance
connected in series with capacitor. The model of a real capacitor is shown in fig.
10.16(b).

~-

a b
Fig. 10.16(a): Symbaolic representation of an ideal capacitor

In present discussion, an ideal capacitor is considered to study the behavior of dc
transients in R—C circuit.

Very small= 10
b
2 ——AAA

"
.
=

R, e in MO
Fig. 10.16(b): Svmbaolic representation of a real capacitor

L.10.4.3 Charging of a capacitor or Growth of a capacitor voltage in
dc circuits

Let us consider a simple series R—C circuit shown in fig. 10.17(a) is connected through a
switch ‘S’ to a constant voltage source V.

: v S switch

-

e vdor=v,

:

|
Y L
' J

i(r) Initially capacitor
is charged

Fig. 10.17(a): Charging of a RC cireuit
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The switch *S * is closed at time “t =0" (see fig. 10.7(a)). It is assumed that the capacitor
is initially charged with a voltage v, (0) =v, and the current flowing through the circuit at
any instant of time “t” after closing the switch is i(t).

I 5. switch
t=10 R
i lg
| ST
= i B
s
i)
Fig. 10.17(b): Discharging of a RC circuit

The KVL equation around the loop can be written as
V, =Ri(t) +v, (t) = V, =R c% v, (t) (10.41)

The solution of the above first-order differential equation (10.41) due to forcing function
V. is given by
v, (t)=v,, (t) (natural response/transient response) + v, (t) (steady-state response)

= Ae”+A (10.42)
The constants A, and A are computed using the initial and boundary conditions. The
value of « is obtained from the characteristic equation given by (see in detail in
Appendix)

RCa+1l=0= ¢« =—i
RC

Eq. (10.42) is then rewritten as

1
V()= Ae RS+ A (10.43)
At steady state, the voltage across the capacitor is v, (o)=v., =A which satisfy the
original differential equation (10.41). i.e.,

d ch
V,=RC
dt

+vy =R Cdd_? +A = A=V

Using the initial condition (at t=0) in equation (10.43), we get
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1

V(0)=v,=Ae © +A= A =v,~ A=V, -V,
The values of A , A, and Eqg. (10.43) together will give us the final expression for
capacitor voltage as

_it —it —it
V.(D)=(v,—-Vs)e "¢ +Vg = v (t)=V; (l—e Re J +v,e R¢ (10.44)
Thus,
V, t<0
V. (t) = _ 1y -1y
<) vc(t):V{l—e RCJ+v0e RC t>0

Response of capacitor voltage with time is shown in fig. 10.18.

Special Case: Assume initial voltage across the capacitor at time ‘t=0" is zero i.e.,
v,(0)=v,=0. The voltage expression for capacitor at any instant of time can be written
from Eq.(10.44) with v, (0)=v,=0.

Sy
Voltage across the capacitance v, (t)=V,[1-e ~¢ (10.45)
c S
_ 1y
Voltage across the resistance v, (t)=V,—v_(t)=V, e R¢ (10.46)
R S c S
1
-t
Charging current through the capacitor i (t)= VER = VESe RC (10.47)

Charge accumulated on either plate of capacitor at any instant of time is given by

q(t)=Cv, ()=C Vs [1—e_“tJ=Q(1—e_RCtJ (10.48)

where Q is the final charge accumulated in the capacitor at steady state ( i.e., t—>).
Once the voltage across the capacitor v_(t) is known, the other quantities (like,
Vg (1), 1(t), and q(t)) can easily be computed using the above expressions. Fig. 10.19(a)
shows growth of capacitor voltage v, (t) for different choices of circuit parameters
(assumed that the capacitor is initially not charged). A sketch for q(t) and i(t) is shown
in fig. 10.19(b).
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v =3 involt

v (t) —voltage across the capacitor (in volt)

1 2 3 4 2 1] 7
—— i (in seconds)

Fig. 10.18: Voltage across the capacitor due to
(i) the forcing function V, acting alone

(i) discharge of capacitor initial voltage v,
(i) Combine effect of (i) and (ii)
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Fig. 10.1%(b): Svstem response due to the forcing function V, (assumed capacitor
initial voltage v = 0)

Following the definition given in section L.10.3.1, time constant of each of the
exponential expressions described in Egs. 10.45 to 10.48 may be found as z=RC (for

RC circuit).

L.10.4.4 Discharging of a capacitor or Fall of a capacitor voltage in dc
circuits

Fig. 10.17(b) shows that the switch “S ’ is closed at position ‘1’ for sufficiently
long time and the circuit has reached in steady-state condition. At ‘t=0" the switch’S " is

opened and kept in position “2’ and remains there. Our job is to find the expressions for
(i) voltage across the capacitor (v,) (i) voltage across the resistance (Vv )(iii) current
(i (t)) through the capacitor (discharging current) (iv) discharge of charge (q(t))through
the circuit.

Version 2 EE 11T, Kharagpur



Solution: For t< 0, the switch *S” in position 1. The capacitor acts like an open circuit
to dc, but the voltage across the capacitor is same as the supply voltage V. Since, the
capacitor voltage cannot change instantaneously, this implies that

V. (07) =V (07)=Vs

When the switch is closed in position “2°, the current i(t) will flow through the circuit

until capacitor is completely discharged through the resistanceR . In other words, the
discharging cycle will start at t=0. Now applying KVL around the loop, we get

R c% +v, (t)=0 (10.49)

The solution of input free differential equation (10.49) is given by

v, (t)=Ae" (10.50)
where the value of « is obtained from the characteristic equation and it is equal to
a= —%. The constant A, is obtained using the initial condition of the circuit in

Eqg.(10.50). Note, at “t=0"( when the switch is just closed in position ‘2 ’) the voltage
across the capacitor v, (t)=V; . Using this condition in Eq.(10.50), we get

I
V(0)=V.= Ae R = A =V,

Now the following expressions are written as
1

Voltage across the capacitance v, (t)=V; e Re (10.51)
1
-t
Voltage across the resistance v, (t)= -v,_ (t)= -V, e "¢ (10.52)
1
-t
Charging current through the capacitor i (t)= VER =— VESe RC (10.53)

An inspection of the above exponential terms of equations from (10.51) to (10.53) reveals
that the time constant of RC circuit is given by

7=RC (sec.)
This means that at timet =z, the capacitor’s voltage v, drops to 36.8% of its initial value

(see fig. 10.20(a)). For all practical purposes, the dc transient is considered to end after a
time span of 5z. At such time steady state condition is said to be reached. Plots of above

equations as a function of time are depicted in fig. 10.20(a) and fig. 10.20(b) respectively.
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= Voltage (in volis)

— { (in seconds)
Fig. 10.20(a): Discharge of capacitor voltage with time in R-C circuit
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Fig. 10.200{b): System response due to capacitor discharge

L.10.5 Energy stored in a capacitor

The ideal capacitor does not dissipate any of the energy supplied by the source. It
stores energy in the form of an electric field between the conducting plates. Let us
consider a voltage source V is connected to a series R—C circuit and it is assumed that

the capacitor is initially uncharged. The capacitor voltage (v.(t)) and current (i, (t))
waveforms during the charging period are shown in fig.10.21 (see the expressions (10.45)
and (10.47)) and instantaneous power ( p, (t) =v,(t)xi(t)) supplied to the capacitor is

also shown in the same figure.
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it) — inamps, p A1) — in volt-amp

v (1) — in volts

16 =

vekt)

pedt) = vedt) . ity

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Fig. 10.21: Instantaneous power delivered to the capacitor

Let us consider the instantaneous power supplied to the capacitor is given by

P (1) =V () xi(t) (10.54)
Now, the energy supplied to the capacitor in dt second is given by
Aw= p, (t)xdt= v, (t) c%xdtzc v, (t)dv, (t) (10.55)
Total energy supplied to the capacitor in t seconds is expressed as
Ve (t)=v 2
wH=C | v.Odv,® Loyl O 5046 (10.56)
()0 2 2 C

(Note initial voltage across capacitor is zero and q(t) is the charge accumulated on each
plate atatime t ).

When the capacitor is fully charged, its terminal voltage is equal to the source voltageV; .
The amount of energy stored in capacitor in the form of electric field is given by
1

W==CV/S= 1 Q—Z(Joules) (10.57)
2 2 C
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where Q is the final charge accumulated on each plate of the capacitor at steady state (
i.e.,, t—o0) i.e., when the capacitor is fully charged.

Example: L.10.6 The switch *S * shown in fig.L.10.22 is kept open for a long time and
then it is closed at time “t=0". Find (i) v, (0") (i) v_(0") (iii) i, (07) (iv) i.(0%) (V)

LA (vi) find the time constants of the circuit before and after the switch is closed
t=0"
(iv) V()

S(switch)

: [ — T~ C=4F 642

Fig. 10.22

Solution: As we know the voltage across the capacitor v, (t)cannot change
instantaneously due to the principle of conservation of charge. Therefore, the voltage
across the capacitor just before the switch is closed v, (07)= voltage across the capacitor

just after the switch is closed v, (07) = 40V (note the terminal “a’ is positively charged.
It may be noted that the capacitor current before the switch S * is closed is i,(07)=0A.

On the other hand, at t=0, the current through 10Q resistor is zero but the current

through capacitor can be computed as
i.(07)= VC—éO)=4—£:6.66 A (note, voltage across the capacitor cannot change
instantaneously at instant of switching). The rate of change of capacitor voltage at time

‘t=0" isexpressed as

cO] (g o B0 _E©) 668

=1.665 volt/sec.
dt |,_o dt C

Time constant of the circuit before the switch was closed = 7= RC =10x4=40sec. Time

constant of the circuit after the switch is closed is 7= R, C:igxg x 4=15sec. (replace

the part of the circuit than contains only independent sources and resistive elements by an
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equivalent Thevenin’s voltage source. In this case, we need only to find the Thevenin
resistance R, ).

Note: When the switch is kept in closed position, initially the capacitor will be in
discharge state and subsequently its voltage will decrease with the increase in time.

Finally, at steady state the capacitor is charged with a voltage
40

10+6

steady value is 57=5x15=75 sec.).

V, (t=00)= x6 =15V (theoretically, time required to reach the capacitor voltage at

Example: L.10.7 The circuit shown in Fig.10.23 has been established for a long time.
The switch is closed at time t=0. Find the current (i)

i,(07), i,(0"), 1i;(07), and % (ii) at steady state the voltage across the capacitors,
t=0"

i1(00), % (00) and i3 (o).

~, J00pF
: 5062

Siswitch)

{10
T~ S00uF
J, 5002
L(t)
! ]
[
Fig. 10.23

Solution: (i) At t=0" no current flowing through the circuit, so the voltage at points ‘b’
and “d’ are both equal to 50volt. When the switch S’ closes the capacitor voltage
remains constant and does not change its voltage instantaneously. The current
i, (0") through a—b branch must then equal to zero, since voltage at terminal ‘b’ is

equal to v,(0")= 50 volt., current through b—c is also zero. One can immediately find
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out the current through c—e equal to i2(0+)=%=1 A. Appling KCL at point “c’,

i, (0")=1A which is the only current flow at t=0"around the loop ‘d —c—e—d . Note
the capacitor across ‘d —e’ branch acts as a voltage source, the change of capacitor

dVde| — 1 — 15 (0") =2 kvolt/sec.
dt | 500x10

(ii) at steady state the voltage across each capacitor is given

voltage

_ 90 _
—mx 50 =16.666 volt.
At steady state current delivered by the source to the different branches are given by

iy (00) :%:0.333/1; in(00) =0.3334 and iz(00) =0 A

Example: L.10.8 The circuit shown in fig. 10.24(a) is switched on at time t=0. How
long it takes for the capacitor to attain 70 % of its final voltage? Assume the capacitor is

initially not charged. Find also the time constant (z) of the circuit after the switch is
closed.

S(switch)

1 a
.

t=0 100LY
1A
(1119 —— 100y
‘g
C=D001F

. 2
b

Fig. 10.24(a)
The circuit containing only resistive elements and independent current source (i.e., hon-

transient part of the circuit) is converted to an equivalent voltage source which is shown
in fig.10.24(b).
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O a

s

100£

”"T 30082 10012

O b

Ry, = 7502
— AW o
|
V= S0V —o—
O b
Fig. 10.24(b)

Fig.10.24(c) shows the capacitor C is connected across the Thevenin’s voltage terminals
“a’and ‘b’ in series with Thevenin’s resistance Ry, .

Ry, = 750 F
—AAN -0
+ T —
(Y || T— vit) /T €= 00IF
b
Fig. 10.24(c)

The parameters of Thevenin’s voltage source are computed below:

V,=— 200 1,100=50v and R, =-00x300_ 50
200 +100+100 100 +300
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Using KVL around the closed path, one can find the current through the capacitor and
hence, the voltage across the capacitor.

50 =75xi(t) +V,(t) :0.75%+ v, () (10.58)

The solution of the differential equation is given by

1

v.(t)=Ae © +A (10.59)

Using the initial and boundary conditions of the circuit, we obtain the final expression of
voltage across the capacitor v, (t)as

v, (t)=50(1- e %) (10.60)

Let “t” is the time required to reach the capacitor voltage 70% of its final (i.e., steady
state) voltage.

50x0.7 =35= 50(1— e-m) = t= 0.91sec.

Example: L.10.9 The switch S of the circuit shown in fig.10.25(a) is closed at position

‘1’ at t=0.
a I
2 S({switch)
: Sk ] ehenanoReme A
t=10
10mA
4k l;: C=t0pF Y
4ki2 L(D)
s :

b 6k
Fig. 10.25(a)

Find voltage v, (t) and current i_(t) expressions for t>0. Assume that the capacitor is initially
fully uncharged (i.e., . v.(0)=0).
Q) find the mathematical expressions for v_(t) and i (t) if the switch *S’ is
thrown into position “2” at t =7 (sec.) of the charging phase.

(i) plot the waveforms obtained in parts (i) to (ii) on the same time axis for the
voltage v (t) and the current i_(t) using the identified polarity of voltage and

current directions.
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Solution: (i) The current source is converted to an equivalent voltage source and it is
redrawn in fig.10.25(b) when the switch *S * is in position ‘1.

4ki2

1
AN —ee—es—
4

a il I
4w ST .
: AT~ = 10pF
”]J V(L)
ie) J’ (1)

VWW—*

6lki}
Fig. 10.25(b)
KVL around the closed path:
40=10xi(t) + v_(t), where i(t)is in mA.
20-10x ¢ O,y ) (10.61)

The voltage expression across the capacitor using the initial and boundary conditions of
the circuit, one can write v, (t) as

_1 —%t
vc(t):40(1—e e }40[1—e 10:40°40+10 j40(1—e1°t) (10.62)

] (t):40—vc(t) _40e -t
10 10

Note that the time constant of the circuit in part (i) is z=RC =100 msec.

(if) The switch S is thrown into position ‘2 at t=r=0.1sec. and the corresponding

circuit diagram is shown in fig.10.25(c).

= 4xe ' (in mA) (10.63)
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~, C = 10pF

1]
Fig. 10.25(¢)

Note, at timet=r=0.1lsec., the capacitor is charged with a voltage =
V,(r=0.1)= 40(1—e ~10x04 ):40><0.632:25.28V and at the same time (t=r=0.1sec.)

the current in capacitor is 4xe °' = 4x0.368 =1.472 (in mA). Considering the
fig.10.25(c), one can write KVL around the closed path

v, () +C%x R, =0 (10.64)

where R,, =4+6=10kQ and the capacitor is now in discharging phase.

The solution of Eq.(10.64) can be found using the initial and final voltage of the capacitor
(initial voltage v, (t=7=0.1)=25.28V , v (t—7=0)=0V ) and itis given by

1
- 7)
v.(t) =v, (r=0.1)xe ™ =2528xe " (10.65)
Discharging current expression is given by (note, current direction is just opposite to the
assigned direction and it is taken into account with a —ve sign)

(t-

v, (t)  25.28xe P
10

i(t)= =-2528xe ) (in mA) (10.66)

eq

(Note, the above two expressions are valid only for t > 7)
The circuit responses for charging and discharging phases in (i) and (ii) are shown in
fig.10.25 (d).
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V ) — im volt

P im mA

(1)

30
I | | I |

i i j i |

0 100 200 300 400 s00

—> fime (in m sec.)

Fig. 10.25{d): Complete response of the circuit indicating charging and
discharging phases.

Remark-6 Note that the current through the capacitor (see fig. 10.25(d)) can change
instantaneously like the voltage across the inductor.

Appendix-A
L.10.A Solution of n™ order linear time invariant differential equation excited by forcing
function.

Let us consider a linear time invariant circuit having several energy source
elements is described by the following dynamic equation.

d"x d "x d "2x dx
T R

a, are constant coefficients associated in the differential

+a, x=f(t) (10.A1)

where a,, a,, a,, s a,,,
equation and they are dependent on circuit parameters (like,R, L, and C for electric
circuit) but independent of time, f(t) is the forcing or driving function and x(t) is the
solution of differential equation or response of the system. We shall discussion the
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solution of differential equation restricted to second order differential, say n=2 in
equation (10.A1).
d?x _ dx

a,——+a,—+a,x="1(t 10.A2

2 gz g T ax=1() ( )
The solution of this differential equation provides the response of circuit and it is given
by
X(t)=x, (t)+x, (t) (10.A3)
where x, (t) is the natural response of circuit, obtained by setting f(t)=0, and x (t) is
the forced response that satisfies the original differential equation (10.A2).

By setting f(t)=0 in equation (10.A2), as given in equation (10.A4), the force free
equation is obtained.

2
a, %+ al%-l- a,x=0 (Homogeneous equation) (10.A4)

The solution of such differential equation (or homogeneous equation) is known as natural
solution or complementary solution or transient solution and it is denoted by x, (t) . To get

the natural solution X, (t) of equation (10.A4) the following steps are considered.

Let us use the following operators

d  d? d(d] )
—:a’ —_—= — | =
dt dt> dt\dt

in equation (10.A4) and results an equation given by

(2,0 +a,a+ a,)x=0

Since x=0, the above equation can be written as

(a,® +a,a+3;) =0 (10.A5)

which is known as characteristic equation for a circuit whose force free equation is
Eq.(10.A4). The natural or transient solution of Eqg.(10.A4) is expressed by the
exponential terms as given below.

x (t)=Ae™ + A e (10.A6)

where ¢, and «, are the roots of characteristic equation (10.A5). The roots of second

order characteristic equation with real coefficients is either real or complex occur in
conjugate pairs. The constants A, and A,are evaluated from initial or boundary

conditions of circuit. The principles of continuity of inductance current and capacitance
voltage are used to establish the required boundary conditions.
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If x, (t) is the natural or transient solution of unforced (or homogeneous) equation
differential, it must satisfy its own differential equation

d ?x ax
a,—++a,—+ a, X, =0 10.A7
2 dt2 1 dt aO n ( )
Further, if x(t)=x,(t) +x, (t) is the complete solution of given differential Eq.(10.A2), it
must satisfy its own equation

d¥(%+% )  d(x+x)

8, AT & (%, +%)="F(1) (10.A8)

Using the equation (10.A7) in Eq.(10.A8), we get

a dzlJra di-f- a, X, = f(t) (10.A9)
2odt? Tt dt f

The above equation implies that x (t) is the forced solution or steady state solution of

second order differential equation (10.A2). Steady state solution of some common
forcing functions is listed in Table (assume ay > 0,41 >0 and ay>0).

Table: Steady state solution f(t) for any order differential equation excited by some

common forcing function.

Type of forcing function f (t) (input) Steady state solution X, (t) (output)
e f(t)=K (constant) e X (t)=A (constant)
o f(t)=Kt e X (t)=At+B
e f(t)=Kt? e X ()=At*+Bt+C
e f(t)=Ke® o X (t)=Ae™
o f(t)=sinbt e i (t)=Asinbt+Bcosbt
o f(t)=cosbt e i (t)=Asinbt+Bcosht
e f(t)=e*sinbt e i (t)=e*(Asinbt+Bcosbt)
e f(t)=e*cosbt e i;(t)=e™(Asinbt+Bcosht)

Coefficients involve in the steady state solution can be found out by using the boundary
conditions of the circuit.

Remark-7

(i) Eq. (10.A2) is the differential equation description of a linear circuit, superposition
may be used to find the complete solution of a forcing function which is sum of natural
and steady state responses. (ii) Eq.(10.A6) is the natural solution of force-free linear

differential equation. Note that the constants ¢, and «, are the roots of the characteristic

equation (10.A5) and they are entirely depending on the circuit parameters. The roots of
the characteristic equation may be classified as
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Case-1: Real or Complex but distinct

The natural solution of homogeneous equation (10.A4) is given as

x ()=Ae™ + A e

Case-2: Roots are repeated (i.e. o, =, =« or multiplicity of roots of order 2)
The natural solution of homogeneous equation (10.A4) is given as

X, (t)=8,e" + Bt
Using initial and final conditions of the circuit, g, and g, constants are computed.
More discussions on these issues can be seen in Lesson-11.

L.10.6 Test your understanding ( Marks: 70)

T.10.1 Inductor tends to block ----------- current but pass ---------- current.

T.10.2 The basic fundamental principle that explains the action of an inductor is known
aS ------------- law.

T.10.3 Exponential waveforms start ------ and finish --------------- :

T.10.4 A transient approximately always has a duration of -------- time constants.
T.10.5 After the first time constant, a transient goes through ---------- % of its steady
state value.

T.106 --—------ through inductor cannot change --------- but -------- across the inductor
can --------- instantaneously at the switching phase.

T.10.7 A simple series R—L circuit is excited with a constant voltage source, the
speed of response depends on ---------- and ------- of the circuit.

T.10.8 The energy stored in an inductor in the form of --------------- :

T.10.9 In a first order circuit if the resistor value is doubled, the time constant is halved
for an -------- circuit.

T.10.10 An inductor acts as ----------- for a ---------- current through it.

T.10.11 Once a capacitor has been charged up, it is able to act like a -------- .

T.10.12 If the spacing between the plates is doubled, the capacitance value is ---------- .
T.10.13 After a capacitor is fully charged in a dc circuit, it ---------- dc current.

T.10.14 The time rate of change of capacitor voltage is represented by the ------- tangent
line to the v, (t)-versus- t curve.

T.10.15 Immediately after a switch has been thrown, a capacitor’s ---------- must
maintain the same value that excited just before the switching instant.

T.10.16 At the instant of switching, current through the capacitor -------------
instantaneously.
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T.10.17 At steady state condition in a dc circuit, the capacitor acts as an ----- circuit.

T.10.18 A first order circuit with a single resistor, if the resistor is doubled in value, the
time constant is also ----- for an R—C circuit.

T.10.19 Time constant of a first order system is the measure of ----------- response of the
circuit.
T.10.20 The energy stored in a capacitor in the form of -------------- . [ 1x20]

T.10.21 For the circuit of fig.10.26, find (i) i,(07), i, (07) (i) i,(07), i (07) (iii)
L (t=00), i (t=00) (IV) v, (07), V,(t=00).

2A - 3
20} S(switch)
‘ =1

24}

10 b

Fig. 10.26
(Ans. (i) 0, 0.666 A (ii) 1.333 A, 0.666 A (jii) 2A, 0A (iv) -1.332V, 0V) [8]

T.10.22 For the circuit shown in Fig.10.12, the switch *S ’ has been opened for a long
time and then closes at t=0.

Find,

(1) v (07) (i) i, (07) (i) i,(07) (iv) Vg, (07) (V) i (t=o0) (Vi) v, (t=00) (vii)
i (t) for t>0

(Ans. [10]

T.10.23 In the circuit shown in fig.10.27, the switch was initially open and no current
was flowing in inductor (L ). The switch was closed at t =0 and than re opened at t =27

d; (©)

sec. At t=0,
dt

was 50 A/s.

Version 2 EE 11T, Kharagpur



S{switch)

){‘:1 T ‘ b

=0
MRS (P L L
1. — 12602 ' 2 1200

s L ‘lf ()

6Ll

Fig. 10.27

Find,
(i) The value of L
(i) Find the current i _(t)and voltage v, (t) expressions for t>0. Assume, no
current was flowing through the inductor at t =0 (i.e., . i, (0)=0).
(ilf)  Find the mathematical expressions for i _(t) and v,.(t)if the switch *S” is
reopened at t =27 (Sec.).

(iv)  Plot the waveforms obtained in parts (ii) to (iit) on the same time axis (time —
in ms.) for the current i, (t) and the voltage v, (t) considering the indicated

current directions and identified polarity of voltage across the b—c terminals.
(Ans. (i) 0.3H (i) i, (t)=1.25x(1—e *) amp., v, (t)=15xe **"

(iii)i_(t) =1.081xe =) v (t) =12.96 xe ) for t>27) [10]
T.10.24 At steady state condition, find the values of I, 1,, 1,,1,,1,,V, and V, for
the circuit shown in fig.10.28.

L, = limH [ L, = 10mH

[LIEE]

Fig. 10.28

(Ans. I,=1,=1,=1A, I, = 1,=0,V,=40V and V,=30V ) [6]
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T.10.25 Switch “S * shown in fig.10.29 is kept in position “1’for a long time.

%

Fig. 10.29

When the switch is thrown in position “ 2, find at steady state condition

(i) the voltage across the each capacitor (ii) the charge across the each capacitor (iii) the
energy stored by the each capacitor

(Ans. (i) (i) VE (ii) CVE (iii) C V?) 6]

T.10.26 For the circuit shown in fig.10.30, Switch *S * is kept in position ‘1’ for a long
time and then it is thrown in position 2’ at time t=0. Find (a) the current expression

i(t) for t>0 (b) calculate the time constants of the circuit before and after the switching

phases.
: :‘-i-{s.lwilcll} 3 i)
. —\VWW\
N 1042 ‘
1@ =0
502 1042 T~ InF
-

qAT 1

30y -

Fig. 10.30

(Ans.(a) i (t) =1.5 +0.5e " (b) 12 s (before the switch is opened), (b)10us (after
the switch is opened, i.e., when the switch is in position 2 ”)) [10]
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Lesson
11

Study of DC transients
in R-L-C Circuits
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Objectives

e Be able to write differential equation for a dc circuits containing two storage
elements in presence of a resistance.

e To develop a thorough understanding how to find the complete solution of second
order differential equation that arises from a simple R—L—-C circuit.

e To understand the meaning of the terms (i) overdamped (ii) criticallydamped, and
(ii1) underdamped in context with a second order dynamic system.

e Be able to understand some terminologies that are highly linked with the
performance of a second order system.

L.11.1 Introduction

In the preceding lesson, our discussion focused extensively on dc circuits having
resistances with either inductor (L) or capacitor (C) (i.e., single storage element) but not
both. Dynamic response of such first order system has been studied and discussed in
detail. The presence of resistance, inductance, and capacitance in the dc circuit introduces
at least a second order differential equation or by two simultaneous coupled linear first
order differential equations. We shall see in next section that the complexity of analysis
of second order circuits increases significantly when compared with that encountered
with first order circuits. Initial conditions for the circuit variables and their derivatives
play an important role and this is very crucial to analyze a second order dynamic system.

L.11.2 Response of a series R-L-C circuit due to a dc
voltage source

Consider a series R—L —C circuit as shown in fig.11.1, and it is excited with a dc
voltage source V, . Applying KVL around the closed path for t>0,

di(t)

L=y RIO+V.0 =V, (11.1)
R L
O AWM — R —— - - - 5
=

I -

e T~ C wit
) i)

P o

Fig. 11.1: A Simple R-L-C circuit excited with a dc voltage source

The current through the capacitor can be written as
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o adv(t)
|(t)—C—dt

Substituting the current “i(t) ’expression in eq.(11.1) and rearranging the terms,

d*v. ()
dt’
The above equation is a 2"-order linear differential equation and the parameters

associated with the differential equation are constant with time. The complete solution of
the above differential equation has two components; the transient response V,,(t) and the

dv, (1)

LC +RC

+V (1) =V, (11.2)

steady state responseV_; (t). Mathematically, one can write the complete solution as

VD)=V, O+, (1) = (Ae™ +A e )+ A (11.3)

Since the system is linear, the nature of steady state response is same as that of forcing
function (input voltage) and it is given by a constant value A. Now, the first part v, (t) of

the total response is completely dies out with time while R>0 and it is defined as a
transient or natural response of the system. The natural or transient response (see
Appendix in Lesson-10) of second order differential equation can be obtained from the
homogeneous equation (i.e., from force free system) that is expressed by

2 2
Lc ! %® rc MO v, =0 L0 R MO, Lyw=o
dt dt @ L dt  LC
2
L d (;/tcz(t)+b olv(;t(t)+C V.(t) = 0 (where a=1, bz% and CZ%) (11.4)

The characteristic equation of the above homogeneous differential equation (using the
2
operator « = % ,a’ =% and v, (t)#0) is given by

R0 Saa’+ba+c=0 (where a=1, b=R and C:L) (11.5)
L LC L LC

and solving the roots of this equation (11.5) one can find the constants ¢, and «, of the

exponential terms that associated with transient part of the complete solution (eq.11.3)
and they are given below.

R |(RY 1 b 1 [(bY
=5 a0 e 1T T = Talls -ac |;
a a 2

R |(RY 1 b 1|bY
=~ | = |F| =4/ = | —ac
2L 2L) LC 2a a\\2
where, b:E and ¢ :L.
L LC
The roots of the characteristic equation (11.5) are classified in three groups depending

upon the values of the parameters R, L, and C of the circuit.

(11.6)
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2
Case-A (overdamped response): When (2_F\I’_j —% >0, this implies that the roots are

distinct with negative real parts. Under this situation, the natural or transient part of the
complete solution is written as

v, () =Ae“ +A e (11.7)
and each term of the above expression decays exponentially and ultimately reduces to
zero as t—oo and it is termed as overdamped response of input free system. A system
that is overdamped responds slowly to any change in excitation. It may be noted that the
exponential term A e™ takes longer time to decay its value to zero than the term A, ™"

One can introduce a factor & that provides an information about the speed of system
response and it is defined by damping ratio

Actual damping b %
(6)= critical damping 2«/_ (11.8)
/ JLC
RY 1
Case-B ( critically damped response): When TS =0, this implies that the roots

of eq.(11.5) are same with negative real parts. Under this situation, the form of the
natural or transient part of the complete solution is written as
R

Ve (D=(At +A, Je"  (where a=—i) (11.9)
where the natural or transient response is a sum of two terms: a negative exponential and
a negative exponential multiplied by a linear term. The expression (11.9) that arises from
the natural solution of second order differential equation having the roots of characteristic
equation are same value can be verified following the procedure given below.

. . . R
The roots of this characteristic equation (11.5) are same o=, =a, = oL when

2L LC 2L LC
can be rewritten as

2 2
(i) L =0= (ij = 1 and the corresponding homogeneous equation (11.4)

dzvc(t) R dv, dve(t)

> — V() =
dt 2L dt L
or dv(t)+2 dv(t) aV.(t) = 0
dt’
d(dv. () M
r dt( ot +avc(t)j+ ( ot av (t)j 0
or ﬂ—i—a f=0 where f= LAY +a Vv, (1)
dt dt
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The solution of the above first order differential equation is well known and it is given
by

f =A| eat
. : ) dv,(t)

Using the value of f in the expression f:T +aV,(t) we can get,
ch(t) —at ¢ dv, (t) t d t
———t+av.)=A e = e —=+e" aVv.(1)=A, = —(e” Vv (I))=A

" [(D=A, " (O=A = (e v()=A

Integrating the above equation in both sides yields,

Vo, (D=(At +A, Je”

. R . . .
In fact, the term A, e*' (with a = —Z) decays exponentially with the time and tends to
zero as t—oo. On the other hand, the value of the term A te“ (with a= —i) in
2L
. . . . 2L .
equation (11.9) first increases from its zero value to a maximum value A, =—e' at a time

tz—lz—(—%jz% and then decays with time, finally reaches to zero. One can
a

easily verify above statements by adopting the concept of maximization problem of a
single valued function. The second order system results the speediest response possible
without any overshoot while the roots of characteristic equation (11.5) of system having
the same negative real parts. The response of such a second order system is defined as a
critically = damped  system’s response. In  this case damping ratio

Actual damping b % 1

(&)=—1 — = = = (11.10)
critical damping 2+/ac %
\JLC
2
Case-C (underdamped response): When(%) —% < 0 , this implies that the roots of
eq.(11.5) are complex conjugates and they are  expressed as

2 2
al—[%ﬂ %—&j ]—ﬁw; az—[ﬁ N %—&j J—ﬂj% The
form of the natural or transient part of the complete solution is written as
V(=A™ + A e = A7) 4 A /1Y)
=e/ [(A1 +A2)cos(7t)+ j(A1 —Az)sin(yt)] (11.11)
=e” [ B, cos(yt)+B,sin(yt) | where B=A+A, ; B,=j(A -A,)
For real system, the response V,,(t) must also be real. This is possible only if A and A,

conjugates. The equation (11.11) further can be simplified in the following form:

e’ Ksin(yt+6) (11.12)
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where f=real part of the root , y=complex part of the root,

K=4B’+B,” and f=tan’ (%) Truly speaking the value of K and & can be

2
calculated using the initial conditions of the circuit. The system response exhibits
oscillation around the steady state value when the roots of characteristic equation are
complex and results an under-damped system’s response. This oscillation will die down
with time if the roots are with negative real parts. In this case the damping ratio

Actual damping /L (11.13)
critical damping 2\/7 //— '

(5)=

Finally, the response of a second order system when excited with a dc voltage source is
presented in fig.L.11.2 for different cases, i.e., (i) under-damped (ii) over-damped (iii)
critically damped system response.

1.8

Voltage across the capacitor
1

Fig. 11.2: System response for series R-L-C circuit:
(a) underdamped
(b) critically damped
(c) overdamped system
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Example: L.11.1 The switchS1 was closed for a long time as shown in fig.11.3.
Simultaneously at t=0, the switch S1 is opened and S2 is closed Find

@00 B)VO) ©]O) @v.0) ©i0); ()P

Solution: When the switch S1 is kept in position ‘1’ for a sufficiently long time, the
circuit reaches to its steady state condition. At time t=0", the capacitor is completely
charged and it acts as a open circuit. On other hand,

51
R I
TS it
| Il ¥ 1
XOM 10082 s
'E'.'t. 1 S—— 2 [I}
N e Y
T C=1n F . 500
il_{t]

Fig. 11.3

the inductor acts as a short circuit under steady state condition, the current in inductor can
be found as
50

i, (07)=

- O)=100+50
Using the KCL, one can find the current through the resistor iy (07 )=6—-2=4A and
subsequently the voltage across the capacitor V,(07)=4x50 = 200volt.

x6=2A

Note at t=0" not only the current source is removed, but 100Q resistor is shorted or

removed as well. The continuity properties of inductor and capacitor do not permit the
current through an inductor or the voltage across the capacitor to change instantaneously.

Therefore, at t=0" the current in inductor, voltage across the capacitor, and the values of
other variables at t =0" can be computed as

i, (0")=i_(0)=2A; v,(0")=Vv,(0")=200volt.

Since the voltage across the capacitor at t =0" is 200volt , the same voltage will appear
across the inductor and the 50Q resistor. That is, v, (0")=V;(0")=200volt. and hence,

the current (iR(O+)) in 50Q resistor = %=4 A. Applying KCL at the bottom terminal
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of the capacitor we obtain i,(0")=—(4+2)=—6A and subsequently,

v, (0 ) _LO)_=6 =-600 volt./sec.
dt C 0.01
Example: L.11.2 The switch S ’ is closed sufficiently long time and then it is opened at

time ‘t=0" as shown in fig.11.4. Determine

() v, 0 (i = d'L“)I %0

when

@iii) i, (07), and (iv)

t=0"

R, =R, =3Q.

Fig. 11.4

Solution: At t=0" (just before opening the switch), the capacitor is fully charged and
current flowing through it totally blocked i.e., capacitor acts as an open circuit). The
voltage across the capacitor is V,(07)=6V =V,(0") =V,,(0") and terminal ‘b’ is higher
potential than terminal ‘d ’. On the other branch, the inductor acts as a short circuit (i.e.,
voltage across the inductor is zero) and the source voltage 6V will appear across the
resistance R, . Therefore, the current through inductor i, (07) = g =2A=i.(0"). Note at

t=0", v, (0") = 0 (since the voltage drop across the resistance R =3Q = v, =—6V)
and vV (0")=6V and this implies that v_,(0") =6V = voltage across the inductor ( note,
terminal ‘C’ is + ve terminal and inductor acts as a source of energy ).

Now, the voltage across the terminals ‘b * and ‘¢’ (V,(07)) = V4 (0") -V, (0")= 0V .
The following expressions are valid at t=0"

av, =i, (0")=2A= v, =1 volt/sec. (note, voltage across the capacitor will

t=0" t=0"

C
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R ¢ "/
decrease with time i.e., —

= —1volt/sec ). We have just calculated the voltage
t=0"

across the inductor at t=0" as

=6V = —dIL(t) = i= 12 A/sec.
0.5

di (t)
Ve (07)=L——=
(07 ot dt

dt

t=0"

dv,(07) _ dv,(07) _ i (07) _

Now, R =1-(12x3) = -35volt/sec.
dt dt dt

Example: L.11.3 Refer to the circuit in fig.11.5(a). Determine,

—p QA1)

Fig. 11.5(a)

di(0” +
(i) 1(0°),i, (0") and v(0") (i) % and %
(assumed V_(0)=0; i (0)=0)
Solution: When the switch was in ‘off” position i.e., t <0
1(0)=1,(0)=0, v(0)=0 and v.(0)=0

(iii)y  i(),i () andv(ex)

The switch “S1° was closed in position ‘1° at time t = 0 and the corresponding circuit is

shown in fig 11.5 (b).

(1) From continuity property of inductor and capacitor, we can write the following

expression for t = 0"
i,(0)=i(0)=0, v,(0')=v,(0)=0 = i(0+):éVc(0+):0
v(0")=1i, (0")x6=0volt.
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6aY

40T R

Fig. 11.5(h)
(i1) KCL at point ‘a’

8=i(t)+i.(t) +i_(t)
At t =0" , the above expression is written as
8=1(0")+i (0") +i (0") =i (0")=8A

We know the current through the capacitor i (t) can be expressed as

. dv_(t)
1 () =C——=
(1) "
i,(0) - c2e)
dt
v.(0)_ 8 x 1 2 volt./sec..
dt 4
Note the relations
dv, (0")
e = change in voltage drop in 6Q resistor = change in current through 6 Q2
di(0” di(0”
resistorx6 = 6XM = L:z :l amp./sec.
dt dt 6 3

Applying KVL around the closed path ‘b-c-d-b’, we get the following expression.
Ve () = V(D) +V(D)

At, t =0" the following expression
V,(0") = v, (0") +i_(0")x12
0=v, (0")+0x12= v (0)=0 = L M:O — di_ (0 )=0

dt dt
di, (0%) dv(0) _
dt

=0 and this implies 12w =12x0=0v/sec=
dt dt
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Now, v(t) = Ri (t) also att=0"
dv(0") _ o dig(0) _ , di,(0")
dt dt

(iii))  Att =« the circuit reached its steady state value, the capacitor will block the flow of
dc current and the inductor will act as a short circuit. The current through 6 Q and 12

=12 = 0 volt/sec.

Q resistors can be formed as

V, (o0)=32 volt.

Example: L.11.4 The switch S1 has been closed for a sufficiently long time and then it is
opened at t=0(see fig.11.6(a)). Find the expression for (a) v, (t), (b) i.(t), t>0 for

inductor values of (i)L=0.5H (ii) L=0.2H (iii) L=1.0H and plot v (t)-vs—t and
i(t)—vs—t for each case.

R=11} L

- t=0 ol 1
\,‘ I.I'i T f"'-“-“\. ‘rft}
50 Co2F L oe e o

Fig. 11.6{a)

Solution: At t=0" (before the switch is opened) the capacitor acts as an open circuit or
block the current through it but the inductor acts as short circuit. Using the properties of
inductor and capacitor, one can find the current in inductor at time t=0" as

. . 12 . o
i, (07)=i_(0") =ﬁ=2A (note inductor acts as a short circuit) and voltage across the
+

5Q resistor = 2x5=10volt. The capacitor is fully charged with the voltage across the
5Q resistor and the capacitor voltage at t =0" is given by

V,(0") =v,(07)=10volt. The circuit is opened at time t=0 and the corresponding circuit
diagram is shown in fig. 11.6(b).

Case-1: L=0.5H ,R=1Q and C =2F

Let us assume the current flowing through the circuit is i(t) and apply KVL equation
around the closed path is
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: di(t) dv_(t) d>v (1) : dv_(t)
V.=Rit)+L—=% +v_(t) =V.=RC——=2+LC e 4y (t te, 1(t)=C ————=
s=Ri() it (1) =V, it e ¢ (1) (note, I(t) o )
2
v, - Le® RAV® 1, o (11.14)
dt L dt LC
The solution of the above differential equation is given by
Ve (1) =V, (1) +V (1) (11.15)
RI = anu ".ﬁﬁl';f'ii' — Q) =i(t)
* | lll\.{l:l
V=12V — o C=2F

Fig. 11.6(b)

The solution of natural or transient responseV,(t) is obtained from the force free
equation or homogeneous equation which is
2
d ch(t)+5 dv,(t) N 1
dt L dt LC

Vv, (1)=0 (11.16)

The characteristic equation of the above homogeneous equation is written as

2+Rai Lo (11.17)
LY Lc

The roots of the characteristic equation are given as

2 2

v R RV U] g o[ RORY L]

2L 2L LC 2L 2L LC
and the roots are equal with negative real sign. The expression for natural response is
given by
Vo () =(A t+A, )& (where a=a,=a,=-1) (11.18)
The forced or the steady state response V, (t) is the form of applied input voltage and it
is constant * A’. Now the final expression for V_(t) is
V(D) =(At+A, Je" + A= (At+A e +A (11.19)
The initial and final conditions needed to evaluate the constants are based on
V.(0")=v,(07)=10volt; i (0")=i,_(0") =2 A (Continuity property).
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At t=0";
V.|, =Ae T +A=A+A = A +A=10 (11.20)

Forming % (from eq.(11.19)as

—dVC(t):a(AIHAZ)e“‘ +A e =—(At+A e+ Ae"

dt
X.© =A-A= A-A =] (11.21)
at |,
dv,(0%) . . o, dv_(0")
(note, €2 == =i, (07)=i, (07)=2 = =< ~==Ivolt/scc.)

It may be seen that the capacitor is fully charged with the applied voltage when t=o00 and
the capacitor blocks the current flowing through it. Using t=o0 in equation (11.19) we
get,

V. (0)=A=>A=12

Using the value of A in equation (11.20) and then solving (11.20) and (11.21) we
get, A, =—1; A,=-2.

The total solution is

V()=—(t+2)e" +12= 12— (t+2)e™;

: dv, (t o . (11.22)
|(t):CV(;—t():2><[(t+2)e —e | =2x(t+1)e

The circuit responses (critically damped) for L=0.5H are shown fig.11.6 (c) and
fig.11.6(d).

Case-2: L=02H,R=1Q and C =2F

It can be noted that the initial and final conditions of the circuit are all same as in case-1
but the transient or natural response will differ. In this case the roots of characteristic
equation are computed using equation (11.17), the values of roots are

a,=—0.563; a,=-4.436

The total response becomes

v.()=Ae" +Ae” +tA=Ae T+ A e 1A (11.23)
LA =a, A e +a,A e = —4.435A e —0.563 A, e (11.24)
dt
dv,(0")

Using the initial conditions( v,(0")=10, - 1volt/sec.) that obtained in case-1 are

used in equations (11.23)-(11.24) with A=12 ( final steady state condition) and

simultaneous solution gives
A, =0.032; A,=-2.032
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The total response is
V(1)=0.032e7*4 —2.032e™" +12
i(t)=C M=2[1.14e‘°'563‘ _0‘14e—4,436t:| (11.25)
dt
The system responses (overdamped) for L=0.2H are presented in fig.11.6(c) and
fig.11.6 (d).

Case-3: L=8.0H,R=1Q and C =2F
Again the initial and final conditions will remain same and the natural response of the

circuit will be decided by the roots of the characteristic equation and they are obtained
from (11.17) as

a,=f+ jy =—0.063+j0.243; a,=F— jy=-0.063—-j0.242

The expression for the total response is

V(1) =V, (1) +V, () =€’ Ksin(yt+0) +A (11.26)
(note, the natural response V,,(t)=e"" Ksin ( yt+ 9) is written from eq.(11.12) when

roots are complex conjugates and detail derivation is given there.)

—dvét(t)=Keﬂt [ﬁsin(yt+9)+ycos(7/t+¢9)] (11.27)

Again the initial conditions (v,(0")=10, % =1volt/sec.) that obtained in case-1 are

used in equations (11.26)-(11.27) with A=12 (final steady state condition) and
simultaneous solution gives

K=4.13; 0 =—28.98" (degree)
The total response is

V,(H)=e” Ksin(yt+0) +12 = """ 4.13sin(0.242t-28.99°) + 12

V(1) =12+4.13e % sin(0.242t - 28.990) (11.28)
i(t)= C%ﬂe‘o'm [0.999*cos(0.242t—28.990)— 0.26sin(0.242t—28.99°)]

The system responses (under-damped) for L=8.0H are presented in fig.11.6(c) and fig.
11.6(d).
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L
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—
L]
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1.5

Current in capacitor
=
i

2 4 f 8 10 12 14 16 15 20

T = SEC
Fig. 11.6(c)
| | | | L] | | | |
Case 3 n
Case 1
Case 2

T = S
Fig. 11.6(d)
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Remark: One can use t=0 and t=o0 in eq. 11.22 or eq. 11.25 or eq. 11.28 to verify
whether it satisfies the initial and final conditions ( 1i.e., initial capacitor voltage
v,(0")=10volt., and the steady state capacitor voltage V,(o0)=12Volt.) of the circuit.

Example: L.11.5 The switch © S1’ in the circuit of Fig. 11.7(a) was closed in position ‘1’
sufﬁciently long time and then kept in position ‘2°. Find (i)v,(t) (ii) i (t) fort>0if C

1S(a) 1r ® Lr ()—

10 1 st L=2H
W—s ( o——TT> S—
=0
‘I 1. 4
wy R=20) C o~ VD)

Fig. 11.7(a)

Solution: When the switch was in position ‘1°, the steady state current in inductor is
given by

i (0 )—3T02—10A v.(0)=1, (0)R =10%2 =20 vol.

Using the continuity property of inductor and capacitor we get

i,(0")=1i,(0)=10, v, (0")=v_(0)=20volt.

The switch °S1’ is kept in position ‘2’ and corresponding circuit diagram is shown in
Fig.11.7 (b)

ﬂ‘ i| () % i {'-}

Ilm\ ‘ T
R=21{}

Vell)

T4

Fig. 11.7{l)

Applying KCL at the top junction point we get,
ve(t) . )
(l:{ +ic(t)+i () =0

Version 2 EE IIT, Kharagpur



ve() L dv () i (=0
R dt

. 2. .
L di, (t) dei () | . di_(t)
—————=+CL—=—=+1,(1)=0 te: v.()=L——=
L 5= [noter v, () =L =]

2. .
O, 1O, 1,4 (11.29)
a2 RC dt LC

or

The roots of the characteristics equation of the above homogeneous equation can

obtained for C :é F

2 2
L (Lj —4/LC n (2) _A9
__RC V\(RrRC 2 \%) 2

1 1.5
2 2
1 : 9 > 4x9
L[ e 22
RC RC 2 2 2
, = = = 3.0
2 2

Case-1( £ =1.06, over damped system):C = éF , the values of roots of characteristic

equation are given as
a,=-15,a,=-3.0
The transient or neutral solution of the homogeneous equation is given by
i, ()=Ae" +A.e™" (11.30)

To determine A, and A,, the following initial conditions are used.

At t=0";
i,(0)=i (0)=A+A, (11.31)
10=A +A,
V(0= v, (0) = v, (0) =14
dt |_,
20=2x[ A x-1.5¢"" -3.0xA,e”" | (11.32)

=2[-1.5A,-3A,]=-3A,-6A,
Solving equations (11.31) and (11,32) we get, A, =—-16.66, A =26.666.

The natural response of the circuit is

iL — ?e—l.ﬁ _ﬂe—&m — 26.668_1.& _16.66e—3<0I
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di, _ 2 [26.66 x—1.5e""' ~16.66x—3.0 e’““}
dt

v (D) =V, (1) =[100e™" -80e™" |

dv.(t) _1

i () =c—C—==—(-300.0¢"" +120¢™"") = (13.33¢™" -33.33¢™*")
dt 9

Case-2 (5:0.707,under damped System): For C= iF , the roots of the characteristic
equation are

a,=—1.0+]1.0=4+]y

a,=—1.0-j1.0=4-]jy
The natural response becomes 1

i (t)=ke" sin(yt+0) (11.33)
Where K and 6 are the constants to be evaluated from initial condition.

At t=0", from the expression (11.33) we get,
i, (0")=ksin®

10 =ksiné (11.34)
L% = 2xk[3 e’'sin(y t+60)+ef'y cos(;/t+0)]‘ . (11.35)
t=0" =
Using equation (11.34) and the values of # and y in equation (11.35) we get,
20=2k(p4snf+y cos@)=kcos € (note: f=—1, =1 and ksind=10) (11.36)

From equation ( 11.34 ) and ( 11.36 ) we obtain the values of € and k as
tan @ =% = f=tan" G) ~26.56° and k=—2=22.36

sin &

.. The natural or transient solution is
i, (t)=22.36.¢ " sin(t+26.56°)

L%Zvc(t) = 2xkx[Bsin (yt+0)+y cos(yt+6)]e”
=44.72[ cos (t+26.56°) - sin (t+26.56°) |xe™
i(t) = cAe® 1,y 721{[cos (t+26.56°) - sin (t+26.56") | e
‘ d 4 dt ' '

=—22.36¢c0s(t+26.56)e™
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Case-3(& =1, critically damped system): For CZéF; the roots of characteristic

equation are o, =—2; a, =—2 respectively. The natural solution is given by

i ()=(At+A,)e"
where constants are computed using initial conditions.

(11.37)

At t=0" ; from equation ( 11.37) one can write
i, (0" =A, = A=10

L—dl(t) =2x[A2ae“t+aAlte‘“+Ale‘“] .
dt =gt t=0
_ at at
=2x| (A +Aa)e” +aA te Lﬁ
L 40 =v,(0)=20=2(A -2A,) = A =30
dt t=0"

The natural response is then

i, (1)=(10+30t)e >

di () ., d ]
L?:2xa[(10+30t)e ]

L% = V,(t) =2[10-60t]e
dV (t) 1 d -2t -2t -2t
t)= =—x2x—/ (10— 60t)e —20e " +30te
L0 =G g 2l 10- 0 |-~ |
Case-4 (£=2,0ver damped system ): For C =éF
Following the procedure as given in case-1 one can obtain the expressions for (i) current
in inductori, (t) (ii) voltage across the capacitorV, (t)

i (1) =115 "% —1.5¢ 4
dlj(t) =V (t) = [44.8 e 149t _ 948 e—lAOStj|

i(t)= I ® ixi[44.8 2
dt 32 dt

= 0.837¢ " -20.902e "+

L.11.3 Test your understanding (Marks: 80)
T.11.1 Transient response of a second-order ------------------ dc network is the sum of two
[1]

real exponentials.
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T.11.2 The complete response of a second order network excited from dc sources is the

sum of -------- response and ---------------- response. [2]
T.11.3 Circuits containing two different classes of energy storage elements can be
described by a order differential equations. [1]
T.11.4 For the circuit in fig.11.8, find the following [6]
t=10
-
R, = 40
—AWWW ' ¢ WWWW—
R, = 61}
5 } L=2H
{1 — voll)
. T T CmdF
(1)
Fig. 11.8
_ dv,(07) dv,_(0") di (07) di_ (0%)
a)v.(07) (b)v.(0") (¢) —=——= (d < e)—= fy—/——~=
(@) v, (07) (b) v.(07) (c) ot (d) ot (e) o (t) "

(Ans.(a) 6 volt. (b)6 volt. (c) 0V /sec. (d) 0V /sec. (e) Oamp/sec. (f) 3amp./sec.)

T.11.5 In the circuit of Fig. 11.9,

60 IH =P Q1)
— AWM r—5y - ———\-
b T i
P
48y 0 dy vilt)

Fig. 11.9
Find,
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dve(07) 4 V(00

(8) vg(07) and v, (07) (b) o ”

(¢) Vg(0) and v () [8]

(Assume the capacitor is initially uncharged and current through inductor is zero).
(Ans. (a) OV, 0V (b) OV, 2Volt./Sec. (c)32V, 0V )

T.11.6 For the circuit shown in fig.11.10, the expression for current through inductor

4
20} "
l L [ ¥y '.t}
(1) - C

)|

Fig. 11.10

is given by i_(t) =(10+30t)e™ for t>0

Find, (a) the values of L,C (b) initial condition v_(0") () the expression for V_(t) >0.
(Ans. (a) L=2H,C= é F (b) v,(01) =20V (c) v (t)=(20—120t)e *V.) [8]
T.11.7 The response of a series RLC circuit are given by

V,(t)=12 +0.032e 4 —2,032¢ %
i|_ (t) =2.28 670‘563t —0.28 e74.436t

where Vv (t) and i, (t) are capacitor voltage and inductor current respectively. Determine
(a) the supply voltage (b) the values R, L, C of the series circuit. [4+4]

(Ans. (3) 12V (b)) R=1Q,L=0.2H and C=2F)

T.11.8 For the circuit shown in Fig. 11.11, the switch S *was in position ‘1’ for a long
time and then at t =0 it is kept in position 2°.
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5 = Rwitch

il
o4 .hl
st
4002
I, = 10A l i ﬁ o
I = 20A I”i -,
Fig. 11.11

Find,
(@) i.(07); (b) v, (07); (c) Vg(0"); (d) i (); [8]
Ans.

(@) i (0)=10A ; (b) v,(0")=400V ;
(C) Vo(0%) =400V (d)i, () =—20A

T.11.9 For the circuit shown in Fig.11.12, the switch ‘S’ has been in position ‘1’ for a
long time and at t =0 it is instantaneously moved to position 2°.

1 == Switch

| 842
g' WWWy
t=0

16V

— c-ls i

\|

Fig. 11.12

Determine i(t) for t >0 and sketch its waveform. Remarks on the system’s
response. [8]

(Ans. i(t):Ge7t —%etjamps.)

T.11.10 The switch ‘S’ in the circuit of Fig.11.13 is opened at t =0 having been closed
for a long time.
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f=i
) 412
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Fig. 11.13

Determine (i) V,(t) for t>0 (ii) how long must the switch remain open for the voltage
V,(t) to be less than 10% ot its value at t =07? [10]

(Ans. (i) (i) v (t)=(16+240t)e™™ (ii) 0.705sec.)

T.11.11 For the circuit shown in Fig.11.14, find the capacitor voltage V,(t) and inductor
current i, (t) forall t (t<0 and t>0). [10]

t=0 20 20

————— =

— IF velt)

Fig. 11.14

Plot the wave forms Vv (t) and i (t) for t>0.
(Ans. v, =107 sin(0.5t); i (t) = 5(cos(0.5t)—sin(0.5t))e ")

T.11.12 For the parallel circuit RLC shown in Fig.11.15, Find the response
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of i, (t) and v_(t) respectively.

. —t— 1 '
l L=3H J— s —1—1]7 velt)
i (1)
Fig. 11.15

(Ans. iL(t)=[4—4e‘2‘(1+2t)] amps. ; v, (t)=48te* volt.)

[10]
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Lesson
12

Generation of
Sinusoidal Voltage
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Some Fundamental
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In this lesson, firstly, how a sinusoidal waveform (ac) is generated, is described, and then
the terms, such as average and effective (rms) values, related to periodic voltage or
current waveforms, are explained. Lastly, some examples to find average and root mean
square (rms) values of some periodic waveforms are presented.

Keywords: Sinusoidal waveforms, Generation, Average and RMS values of Waveforms.

After going through this lesson, the students will be able to answer the following
questions:

1. What is an ac voltage waveform?

2. How a sinusoidal voltage waveform is generated, with some detail?

3. For periodic voltage or current waveforms, to compute or obtain the average and rms
values, and also the time period.

4. To compare the different periodic waveforms, using above values.

Generation of Sinusoidal (AC) Voltage Waveform

Fig. 12.1 Schematic diagram for single phase ac generation

A multi-turn coil is placed inside a magnet with an air gap as shown in Fig. 12.1. The
flux lines are from North Pole to South Pole. The coil is rotated at an angular speed,
@ = 2 n(rad/s).

n= Zﬁ = speed of the coil (rev/sec, or rps)
T

N =60-n = speed of the coil (rev/min, or rpm)

| = length of the coil (m)

b = width (diameter) of the coil (m)

T = No. of turns in the coil
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B = flux density in the air gap (Wb/m?)
v =z bn = tangential velocity of the coil (m/sec)

Magnetic Field
oL

A

~
N

- mm——— -

~
~

Y
N
~
~

\

m———g = ————

\

R

B S el
e - e —————— - -

|

Fig. 12.2 (a) Coil position for Fig. 12.1, and (b) Details

At a certain instant t, the coil is an angle (rad), 6 = wt with the horizontal (Fig. 12.2).
The emf (V) induced on one side of the coil (conductor) isBlvsiné,

€ can also be termed as angular displacement.
The emf induced in the coil (single turn) is 2Blvsing = 2Bl zbnsin &

The total emf induced or generated in the multi-turn coil is

e(@)=T2Blzbnsin@d=2zBlbnTsind=E_sinéd

This emf as a function of time, can be expressed as, e(t) = E,, sinwt. The graph of
e(t) or e(#), which is a sinusoidal waveform, is shown in Fig. 12.4a

Area of the coil (m*)=a=1b

Flux cut by the coil (Wb)=¢=aB=1bB

Flux linkage (Wb) = w =T ¢ =T Blb

It may be noted these values of flux ¢ and flux linkage y , are maximum, with the
coil being at horizontal position, & = 0. These values change, as the coil moves from the
horizontal position (Fig. 12.2). So, also is the value of induced emf as stated earlier.

The maximum value of the induced emf is,
E,=2znBlbT=2zn ¢T=27Z'nl//=a)l//=l//(jj—f

Determination of frequency (f) in the ac generator
In the above case, the frequency (Hz) of the emf generated is
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f =w/(27) =n, no. of poles being 2, i.e. having only one pole pair.

In the ac generator, no. of poles = p, and the speed (rps) = n, then the frequency in Hz
or cycles/sec, is

f =no. of cycles/sec = no. of cycles per rev x no. of rev per sec = no. of pairs of

poles x no. of rev per sec = (p/2) n
PN _p o

or, f = ==
120 2 2rx

Example
For a 4-pole ac generator to obtain a voltage having a frequency of 50 Hz,

the speed is, n = % = 2x50 =25 rps = 25-60 =1,500 rpm

For a 2-pole (p = 2) machine, the speed should be 3,000 rpm.

Similarly, the speed of the machine having different no. of poles, required to generate
a frequency of 50 Hz can be computed.

Sinusoidal voltage waveform having frequency, f with time period (sec), T =1/ f

Periodic Voltage or Current Waveform

Average value

The current waveform shown in Fig. 12.3a, is periodic in nature, with time period, T.
It is positive for first half cycle, while it is negative for second half cycle.
The average value of the waveform, i(t) is defined as

T/2 T/2
|- Area gver half cycle _ 1 ji(t) dt :E Ji(t) dt
Time period of half cycle T/2 { T
Please note that, in this case, only half cycle, or half of the time period, is to be used
for computing the average value, as the average value of the waveform over full cycle is

zero (0).
If the half time period (T/2) is divided into 6 equal time intervals (AT ),
(i iy i+ -rig) AT (i +i, +ig+---ig)  Area over half cycle
& 6-AT 6 Time period of half cycle

Please note that no. of time intervals is n = 6.

Root Mean Square (RMS) value

For this current in half time period subdivided into 6 time intervals as given above, in
the resistance R, the average value of energy dissipated is given by

« {(if +i] +£ +---i§>} R

Version 2 EE 11T, Kharagpur



if1)

(a)
(1)
b 12
i T2 T
— 1 (5eC)

()

Fig. 12.3 Periodic current waveform
(a) Current (i), (b) Square of current (i¥)

The graph of the square of the current waveform, i*(t) is shown in Fig. 12.3b. Let |
be the value of the direct current that produces the same energy dissipated in the
resistance R, as produced by the periodic waveform with half time period subdivided into
ntime intervals,

IZR:F&+@+@+~49AT}R

n-AT

| _\/(il2 +i; +i; +--+if) AT _ |Areaof i® curve over half cycle
n-AT Time period of half cycle
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1 T/2 2T/2
- —jizdtz —jizdt
T/2 T

0
This value is termed as Root Mean Square (RMS) or effective one. Also to be noted
that the same rms value of the current is obtained using the full cycle, or the time period.

Average and RMS Values of Sinusoidal Voltage Waveform

(a)

EAWA

] 2 T In2 In
— ) = gt

(b}

Fig. 12.4 Sinusoidal voltage waveform
{a) Voltage (v), (b) Square of voltage (v’)

As shown earlier, normally the voltage generated, which is also transmitted and
then distributed to the consumer, is the sinusoidal waveform with a frequency of 50 Hz in
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this country. The waveform of the voltagev(t), and the square of waveform, v(t), are
shown in figures 12.4a and12.4b respectively.

Time period, T =1/ f =(27)/w ; inangle (0T =2x)
Half time period, T/2=1/2f)=xn/w;inangle (T /2=1x)
v(@) =V, sin@ for 7<0<0; v(t)=V,sin ot for (r/w)<t<0

=—j (9)d9——jv S|n6d9—v—cosé’| v =0.637V,
T
1
T 2 T
{ [v? de} =[£.[ansin20d0}
0 72-0

1 1
2 2 2 3
= V—””(e—isin 20)7 | = |, =V—’”=0-707Vm
2 2 0

h\ll—\
N |-

271 D
:[V j (1- cosze)de
T

O

2r 2
or,V, = J2v
If time t, is used as a variable, instead of angle@,
7/ /o
V,, :ijv(t) dt_—jv sin wt dt = =3vm=0.637vm
Tlw T @ 4

In the same way, the rms value, V can be determined.

If the average value of the above waveform is computed over total time period T, it
comes out as zero, as the area of first (positive) half cycle is the same as that of second
(negative) half cycle. However, the rms value remains same, if it is computed over total
time period.

The different factors are defined as:

RMSvalue  0.707V
Average value 0.637V,

Peak factor = Maximum value = Vi =1.414

Averagevalue 0.707V
Note: The rms value is always greater than the average value, except for a rectangular
waveform, in which case the heating effect remains constant, so that the average
and the rms values are same.

Form factor =

Example

The examples of the two waveforms given are periodic in nature.
1. Triangular current waveform (Fig. 12.5)

Time period =T

it) = |m% for T<t<0
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1 L

T —>
Fig. 12.5 Triangular current waveform

)

I T2 |
=—";T—=—m=o.5|m
o TE2 2

. 1 ; 1 . 1 1
2 2 2 2 43 2 3702 273

Izljizdt :lj-lnit—zdt :I_n;t_ - I_H;T_ _|In
Ty TS T T 3|, T° 3 3

0

1%, 1+t | 2
| =—litydt==(1_ —dt=—"—
av TJ() T!mT T2 2

1o =0.577351

V3
Two factors of the waveform are:
RMS value _ 0577351, 11547
Average value 051,

Maximumvalue I, 20

Averagevalue 051,
To note that the form factor is slightly higher than that for the sinusoidal waveform,
while the peak factor is much higher.

Form factor =

Peak factor =

+5 |-
V1 ] ] 1 ]
0 1 2 6 7 8
5 pF-

Fig. 12.6 Trapezoidal voltage waveform

2. Trapezoidal voltage waveform (Fig. 12.6)

Time period (T) =8 ms
Half time period (T/2) =8/2=4ms
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v(t)=mt=(5/)t=5t for 1<t<0; v(t)=5 for 3<t<1;
v(t)=5(4-t) for 4<t<3
Please note that time, t is in ms, and slope, m is in V/ms. Also to be noted that, as in

the case of sinusoidal waveform, only half time period is taken here for the computation
of the average and rms values.

T/2

V,, = 2] jv(t)dt— DStdt+J.5dt+J‘5(4 t)dt} [ v+ 2(4_t)2‘j

== E+5(3—1)+— =E:3.75V
412 2| 4

{% jvz dt}2 = H[Jl'(st)zdt +T(5)2 dt +j5 (4-t)° dtﬂ2

0

1(25 , 2 [1(25 25
_L( S \ + 251, +—(4 t) \ ﬂ L( 3 +25(3-1)+ ﬂ
- \/? =/16.67 = 4.0825 V

Two factors of the waveform are:

Form factor = RMS value = 4.0825 =1.0887

Average value  3.75

Peak factor = Maximum value = 5.0 =1.3333

Average value  3.75

To note that the both the above factors are slightly lower than those for the sinusoidal
waveform.

[

Similarly, the average and rms or effective values of periodic voltage or current
waveforms can be computed.

In this lesson, starting with the generation of single phase ac voltage, the terms, such
as average and rms values, related to periodic voltage and current waveforms are
explained with examples. In the next lesson, the background material required — the
representation of sinusoidal voltage/current as phasors, the rectangular and polar forms of
the phasors, as complex quantity, and the mathematical operations — addition/subtraction
and multiplication/division, using phasors as complex quantity, are discussed in detail
with numerical examples. In the following lessons, the study of circuits fed from single
phase ac supply, is presented.
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Problems

121

12.2

12.3

12.4

What is the speed in rpm of an ac generator with 4 poles, to produce a voltage
with a frequency of 50 Hz

(a) 3000 (b) 1500 (c) 1000 (d) 750

Determine the No. of poles required in an ac generator running at 1,000 rpm, to
produce a voltage with a frequency of 50 Hz.

(@) 2 (b) 4 (c)6 (d)8

Calculate the speed in rpm of an ac generator with 24 poles, to produce a voltage
with a frequency of 50 Hz.

() 300 (b) 250 (c) 200 (d) 150

Determine the average and root mean square (rms) values of the following
waveforms.

Y
A |_
0 T/2 T 31)2 2T 512 3T
—>t

()
+V
Vv
0 2T/3 T 5T/3 2T 8T/3 3T 11T/3 4T
—>
Vot
(b)
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— 0 (i)
(c)
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0 1 2 3 4 5 6
— [ (ser)
(d)
Fig. 12.7
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Lesson
13

Representation of

Sinusoidal Signal by a
Phasor and

Solution of Current in
R-L-C Series Circuits

Version 2 EE 11T, Kharagpur



In the last lesson, two points were described:

1. How a sinusoidal voltage waveform (ac) is generated?

2. How the average and rms values of the periodic voltage or current waveforms, are
computed?

Some examples are also described there. In this lesson, the representation of
sinusoidal (ac) voltage/current signals by a phasor is first explained. The polar/Cartesian
(rectangular) form of phasor, as complex quantity, is described. Lastly, the algebra,
involving the phasors (voltage/current), is presented. Different mathematical operations —
addition/subtraction and multiplication/division, on two or more phasors, are discussed.

Keywords: Phasor, Sinusoidal signals, phasor algebra

After going through this lesson, the students will be able to answer the following
questions;

1. What is meant by the term, ‘phasor’ in respect of a sinusoidal signal?

2. How to represent the sinusoidal voltage or current waveform by phasor?

3. How to write a phasor quantity (complex) in polar/Cartesian (rectangular) form?
4

How to perform the operations, like addition/subtraction and multiplication/division
on two or more phasors, to obtain a phasor?

This lesson forms the background of the following lessons in the complete module of
single ac circuits, starting with the next lesson on the solution of the current in the steady
state, in R-L-C series circuits.

Symbols
i ori(t) Instantaneous value of the current (sinusoidal form)
I Current (rms value)

Maximum value of the current

I Phasor representation of the current
o Phase angle, say of the current phasor, with respect to the reference phasor

Same symbols are used for voltage or any other phasor.

Representation of Sinusoidal Signal by a Phasor

A sinusoidal quantity, i.e. current, i(t) =1, sinet, is taken up as an example. In Fig.
13.1a, the length, OP, along the x-axis, represents the maximum value of the currentl_,

on a certain scale. It is being rotated in the anti-clockwise direction at an angular speed,
@, and takes up a position, OA after a time t (or angle, & = wt, with the x-axis). The
vertical projection of OA is plotted in the right hand side of the above figure with respect
to the angle @. It will generate a sine wave (Fig. 13.1b), as OA is at an angle, & with the
x-axis, as stated earlier. The vertical projection of OA along y-axis is OC = AB =
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1(8) =1,sin@, which is the instantaneous value of the current at any time t or angle 4.
The angle @ is in rad., i.e. & =wt. The angular speed, @ is in rad/s, i.e.w=27r f,

where f is the frequency in Hz or cycles/sec. Thus,
i=1,sin@=1_sinot=1_sin 2xft

So, OP represents the phasor with respect to the above current, i.
The line, OP can be taken as the rms value, | =1, /2, instead of maximum value,

Im . Then the vertical projection of OA, in magnitude equal to OP, does not represent
exactly the instantaneous value of |, but represents it with the scale factor of

1/4/2 =0.707. The reason for this choice of phasor as given above, will be given in
another lesson later in this module.

Cirele

\

2

0

(a) ih)
Fig. 13.1{a) Phasor representation of a sinusoidal current, and (b) Waveform
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Circle

(c)

(d)

Fig. 13.1 (c) Phasor representation of a phase shifted sinusoidal current, and (d) Waveform

Generalized case

The current can be of the form, i(t) =1, sin(ot—«a) as shown in Fig. 13.1d. The

phasor representation of this current is the line, OQ, at an angle,a (may be taken as
negative), with the line, OP along x-axis (Fig. 13.1c). One has to move in clockwise
direction to go to OQ from OP (reference line), though the phasor, OQ is assumed to
move in anti-clockwise direction as given earlier. After a time t, OD will be at an angle &
with OQ, which is at an angle (6 —a = wt—«), with the line, OP along x-axis. The
vertical projection of OD along y-axis gives the instantaneous value of the current,

i =2 1sin(wt—a)=1_sin(ot-a).

Phasor representation of Voltage and Current

The voltage and current waveforms are given as,

v=+/2Vsind,and i =\/§Isin(9+¢)

It can be seen from the waveforms (Fig. 13.2b) of the two sinusoidal quantities —
voltage and current, that the voltage, V lags the current I, which means that the positive
maximum value of the voltage is reached earlier by an angle, ¢, as compared to the
positive maximum value of the current. In phasor notation as described earlier, the
voltage and current are represented by OP and OQ (Fig. 13.2a) respectively, the length of
which are proportional to voltage, V and current, | in different scales as applicable to
each one. The voltage phasor, OP (V) lags the current phasor, OQ (I) by the angle¢, as
two phasors rotate in the anticlockwise direction as stated earlier, whereas the angle ¢ is
also measured in the anticlockwise direction. In other words, the current phasor (1) leads
the voltage phasor (V).
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(a) Ly

Fig. 13.2 (a) Phasor representation of a sinusoidal (i) voltage and (i) current, and (b) Waveforms

Mathematically, the two phasors can be represented in polar form, with the voltage

phasor (\7 ) taken as reference, such as V =V £0° , and =1 Zg.
In Cartesian or rectangular form, these are,

V=V £0°=V+j0,and I =12L$=1cosg+jlsin g,
where, the symbol, jis givenby j=+/-1.

Of the two terms in each phasor, the first one is termed as real or its component in x-axis,

while the second one is imaginary or its component in y-axis, as shown in Fig. 13.3a. The
angle, ¢ is in degree or rad.

Phasor Algebra

Before discussing the mathematical operations, like addition/subtraction and multi-
plication/division, involving phasors and also complex quantities, let us take a look at the
two forms — polar and rectangular, by which a phasor or complex quantity is represented.
It may be observed here that phasors are also taken as complex, as given above.

-E +
= A
=
B
=]
&
= a,
T A
0 a C +

= X (real)
Fig. 13.3 Representation of a phasor, both in rectangular and polar forms

Representation of a phasor and Transformation
A phasor or a complex quantity in rectangular form (Fig. 13.3) is,

A:ax+jay
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where a,and a, are real and imaginary parts, of the phasor respectively.
In polar form, it is expressed as

A=AZ6, = Acosd, + jAsiné,
where A and @, are magnitude and phase angle of the phasor.

From the two equations or expressions, the procedure or rule of transformation from
polar to rectangular form is

a, =Acosd, and a, = Asing,

From the above, the rule for transformation from rectangular to polar form is

A=.la;+a] and 6, :tanfl(ay/ax)

The examples using numerical values are given at the end of this lesson.

Addition/Subtraction of Phasors

Before describing the rules of addition/subtraction of phasors or complex quantities,
everyone should recall the rule of addition/subtraction of scalar quantities, which may be
positive or signed (decimal/fraction or fraction with integer). It may be stated that, for the
two operations, the quantities must be either phasors, or complex. The example of phasor
is voltage/current, and that of complex quantity is impedance/admittance, which will be
explained in the next lesson. But one phasor and another complex quantity should not be
used for addition/subtraction operation.

For the operations, the two phasors or complex quantities must be expressed in
rectangular form as

A=a, +ja,; B=b +jb,
If they are in polar form as

A=AZ0,; B=B6,

In this case, two phasors are to be transformed to rectangular form by the procedure
or rule given earlier.

The rule of addition/subtraction operation is that both the real and imaginary parts
have to be separately treated as

C=A+B=(a, b, )+ j(ay iby):cx+ ic,

where ¢, =(a, £b,) ; ¢, =(a, £b,)

Say, for addition, real parts must be added, so also for imaginary parts. Same rule
follows for subtraction. After the result is obtained in rectangular form, it can be
transformed to polar one. It may be observed that the six values of a's, b's and c's -
parts of the two phasors and the resultant one, are all signed scalar quantities, though in
the example, a's and b's are taken as positive, resulting in positive values of c's. Also
the phase angle #'s may lie in any of the four quadrants, though here the angles are in
the first quadrant only.

This rule for addition can be extended to three or more quantities, as will be
illustrated through example, which is given at the end of this lesson.
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Fig. 13.4 Addition and subtraction of two phasors, both represented in polar form

The addition/subtraction operations can also be performed using the quantities as
phasors in polar form (Fig. 13.4). The two phasors are A(OA) and I:%(OB). The find the

sum é(OC), a line AC is drawn equal and parallel to OB. The line BC is equal and

parallel to OA. Thus, C =OC = OA+ AC = OA+ OB = A+ B . Also,
OC = OB+ BC = OB+ OA

To obtain the difference f)(OD), a line AD is drawn equal and parallel to OB, but in
opposite direction to AC or OB. A line OE is also drawn equal to OB, but in opposite

direction to OB. Both AD and OE represent the phasor (- B ). The line, ED is equal to

OA. Thus, D =0D =0A+AD =0OA—OB=A-B. Also OD = OE + ED =-0B + OA.
The examples using numerical values are given at the end of this lesson.

Multiplication/Division of Phasors

Firstly, the procedure for multiplication is taken up. In this case no reference is being
made to the rule involving scalar quantities, as everyone is familiar with them. Assuming

that the two phasors are available in polar from as A:AAQa and é:Bwb.

Otherwise, they are to be transformed from rectangular to polar form. This is also valid
for the procedure of division. Please note that a phasor is to be multiplied by a complex
quantity only, to obtain the resultant phasor. A phasor is not normally multiplied by
another phasor, except in special case. Same is for division. A phasor is to be divided by
a complex quantity only, to obtain the resultant phasor. A phasor is not normally divided
by another phasor.

To find the magnitude of the product C , the two magnitudes of the phasors are to be
multiplied, whereas for phase angle, the phase angles are to added. Thus,
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C=C/0,=AB=AZ0, -BLO,=(A-B)£(0,+6,)
where C=A-B and 6, =6, + 6,

Please note that the same symbol, C is used for the product in this case.

To divide A.by B to obtain the result D ., the magnitude is obtained by division of
the magnitudes, and the phase is difference of the two phase angles. Thus,
D=Do, =222 =(5j4(9a -6,)
g BZ6 B
where D=A/B and 6, =6, -6,

If the phasors are expressed in rectangular form as

A=a, +ja, and B=b, + jb,

where A=1/iaf+aji ; 0, =tan‘1(ay/ax)

The values of B are not given as they can be obtained by substituting b's for a's.
To find the product,

C=C/6,=AB=(a +ja,)b,+ib)=(ab, —ab, )+ijlab +ab,)
Please note that j* = —1 .The magnitude and phase angle of the result (phasor) are,
c=lab,~aj,F +(ab, +a P} =l +a;) [ 16])= A-B ,anc

0 = tan-t ab, +ab,
a,b, —ab,

The phase angle,

gc =9a _Hgb :tan_l(ayJ+tan_l(E_yJ=tan_ll:l(ay/ax)+(by/bx) }

The above results are obtained by simplification.

To divide A by B to obtain D as

- a, +ja
Dzdﬁjdy:ész J_by
B x+J y

To simplifyf), i.e. to obtain real and imaginary parts, both numerator and
denominator, are to be multiplied by the complex conjugate of é, so as to convert the

denominator into real value only. The complex conjugate of B is
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B =b,+jb,=B/-6,

In the complex conjugate, the sign of the imaginary part is negative, and also the phase
angle is negative.

|5=dx+jdy :(ax+ jay)'(bx_jby):[axbx+ayby]+ j(aybx—axby]

(b, +ib, )-(b,—jb,) | bZ+b? b? +b?
The magnitude and phase angle of the result (phasor) are,

oo, rap,f (b, ~a, FE W

= =— ,and

(b2+b ) b2 +b2i
a,b, —ab
6, =tan* [MJ
a,b, +ab,
The phase angle,
(3, b, a,b, —a,b,
0,=6,-6, =tan"| L |-tan" =tan| L2
a, bX ab, +a,b,

The steps are shown here in brief, as detailed steps have been given earlier.
Example

t
(2, +4) A
N
- " }
x4 C 0

Fig. 13.5 Representation of phasor as an
example, both in rectangular
and polar forms

The phasor, A in the rectangular form (Fig. 13.5) is,
A= AZO,=Acos 0, + jAsin 0, =a, +ja,=-2+j4
where the real and imaginary partsare a, =-2; a, =4

To transform the phasor, A into the polar form, the magnitude and phase angle are

Version 2 EE 11T, Kharagpur



A=, fal+a? =(-2)? +4% = 4.472

a
9, =tan™ [_y] =tan™ (izj =116.565° = 2.034 rad

X

Please note that &, is in the second quadrant, as real part is negative and imaginary
part is positive.

Transforming the phasor, A into rectangular form, the real and imaginary parts are

a, = Acos@, =4.472-c0s116.565° = -2.0
a, = Asing, =4.472-sin116.565° = 4.0

Phasor Algebra

C(4,10)
B(6.6)

X' -

{-8.-1)

E(-6.-6)

_".ll
Fig.13.6 Addition and subtraction of two phasors represented in polar form, as an example
Another phasor, B in rectangular form is introduced in addition to the earlier one, A

B =6+ j6=8.485.,45°
Firstly, let us take the addition and subtraction of the above two phasors. The sum and

difference are given by the phasors, Cand D respectively (Fig. 13.6).
C=A+B=(=2+j4) +(6+j6)=(-2+6)+ j(4+6) =4+ j10=10.77 £68.2°
D=A-B=(2+j4)—(6+j6)=(-2-6)+ j(4—6)=-8— j2=8.246/—166.0°

It may be noted that for the addition and subtraction operations involving phasors,
they should be represented in rectangular form as given above. If any one of the phasors

Version 2 EE 11T, Kharagpur



is in polar form, it should be transformed into rectangular form, for calculating the results
as shown.

If the two phasors are both in polar form, the phasor diagram (the diagram must be
drawn to scale), or the geometrical method can be used as shown in Fig 13.6. The result
obtained using the diagram, as shown are the same as obtained earlier.

[C (OC) = 10.77, ZCOX =68.2°; and D ( OD) = 8.246, /DOX =166.0°]

Now, the multiplication and division operations are performed, using the above two
phasors represented in polar form. If any one of the phasors is in rectangular form, it may
be transformed into polar form. Also note that the same symbols for the phasors are used
here, as was used earlier. Later, the method of both multiplication and division using
rectangular form of the phasor representation will be explained.

The resultant phasoré , 1.e. the product of the two phasors is

C = A B =4.472 /116.565°x8.485 /45° = (4.472x 8.485) /(116.565° + 45°)

=37.945 £161.565° = -36 + j12
The product of the two phasors in rectangular form can be found as

C=(-2+)4)-(6+(6)=(-12—24)+ j(24-12) = —36 + j12
The result (D) obtained by the division of A by B is

o_A_ 4472116565 (4.472

B 8.485,45° | 8.485

=0.167+ j0.5

The above result can be calculated by the procedure described earlier, using the
rectangular form of the two phasors as

D_ A -2+j4 (2+]j4)-(6-])6) (-12+24)+ j(24+12)

g 6+i6 (6+6)-(6-j6) 6% +6°
12+ )36

j4(116.565° —45°) = 0.527 /71.565°

=0.167+ j0.5

The procedure for the elementary operations using two phasors only, in both forms of
representation is shown. It can be easily extended, for say, addition/multiplication, using
three or more phasors. The simplification procedure with the scalar quantities, using the
different elementary operations, which is well known, can be extended to the phasor
quantities. This will be used in the study of ac circuits to be discussed in the following
lessons.

The background required, i.e. phasor representation of sinusoidal quantities
(voltage/current), and algebra — mathematical operations, such as addition/subtraction
and multiplication/division of phasors or complex quantities, including transformation of
phasor from rectangular to polar form, and vice versa, has been discussed here. The study
of ac circuits, starting from series ones, will be described in the next few lessons.
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Problems

13.1 Use plasor technique to evaluate the expression and then find the numerical value at
t=10 ms.

i(t) = 150 cos(lOOt-45°)+5005in(100t)+%[cos(100t-300)]

13.2 Find the result in both rectangular and polar forms, for the following, using complex
quantities:

) 5-j12
15 /53.1°

b) (5-j12)+15.£-53.1°
2 /30°-4 /210°

©) 5 450°

1
d [5.004—"
) ( 3J§4-45°j

.2 £210°
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In the last lesson, two points were described:

1. How to represent a sinusoidal (ac) quantity, i.e. voltage/current by a phasor?

2. How to perform elementary mathematical operations, like addition/ subtraction and
multiplication/division, of two or more phasors, represented as complex quantity?

Some examples are also described there. In this lesson, the solution of the steady state
currents in simple circuits, consisting of resistance R, inductance L and/or capacitance C
connected in series, fed from single phase ac supply, is presented. Initially, only one of
the elements R / L / C, is connected, and the current, both in magnitude and phase, is
computed. Then, the computation of total reactance and impedance, and the current, in
the circuit consisting of two components, R & L / C only in series, is discussed. The
process of drawing complete phasor diagram with current(s) and voltage drops in the
different components is described. Lastly, the computation of total power and also power
consumed in the components, along with the concept of power factor, is explained.

Keywords: Series circuits, reactance, impedance, phase angle, power, power factor.

After going through this lesson, the students will be able to answer the following
questions;

1. How to compute the total reactance and impedance of the R-L-C series circuit, fed
from single phase ac supply of known frequency?

2. How to compute the current and also voltage drops in the components, both in
magnitude and phase, of the circuit?

How to draw the complete phasor diagram, showing the current and voltage drops?

How to compute the total power and also power consumed in the components, along
with power factor?

Solution of Steady State Current in Circuits Fed from Single-
phase AC Supply

Elementary Circuits
1. Purely resistive circuit (R only)
The instantaneous value of the current though the circuit (Fig. 14.1a) is given by,

vV .
I=—=-Tsinot=1_sin ot
R R

where,
Imand Vi, are the maximum values of current and voltage respectively.
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Fig. 14.1: Circuit with Resistance (R)
(a) Circuit diagram
(b) Waveforms: (i) Voltage (ii) Current
(c) Phasor diagram

The rms value of current is given by
IRVAVNFEY
V2 R R

In phasor notation,
V =V £0°=V 1+ j0)=V + jO

I=120°=1(1+j0)=1+j0

The impedance or resistance of the circuit is obtained as,
VoV £0°
| 1400

Please note that the voltage and the current are in phase (¢ =0°), which can be
observed from phasor diagram (Fig. 14.1b) with two (voltage and current) phasors, and
also from the two waveforms (Fig. 14.1c).

In ac circuit, the term, Impedance is defined as voltage/current, as is the resistance in
dc circuit, following Ohm’s law. The impedance, Z is a complex quantity. It consists of
real part as resistance R, and imaginary part as reactance X, which is zero, as there is no
inductance/capacitance. All the components are taken as constant, having linear V-I
characteristics. In the three cases being considered, including this one, the power

=Z/0°=R+j0
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consumed and also power factor in the circuits, are not taken up now, but will be
described later in this lesson.

2. Purely inductive circuit (L only)
For the circuit (Fig. 14.2a), the current i, is obtained by the procedure described here.

As v = L%:Vm sin wt =~/2V sin wt,

di = \/ELV sin (wt) dt
Integrating,
i = —@cos ot :@sin (wt—90°) =1, sin (ot—90°) = V2 Isin (ot —90°)
ol ol
Y
m :-“
# 1

(i)

o n2 &
\-‘5nﬂ@ L ™ - =

- _... Beat)
(a) -,
-V
(b)
> v
90
i

(c)

Fig. 14.2: Circuit with Inductance (L)
(a) Circuit diagram
(b) Wavelorms: (i) Voltage (ii) Current
(¢) Phasor diagram

It may be mentioned here that the current i, is the steady state solution, neglecting the
constant of integration. The rms value, I is

1= /90
ol

V=Vs0°=V+j0 ; 1=1£-90°=0-jl
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The impedance of the circuit is

Zz¢=VT= V2 V =joL=0+jX_ =X_490°=wL £90°
[ 1£-90° —jl
where, the inductive reactance is X, =oL =2z f L.
Note that the current lags the voltage by ¢ =+90°. This can be observed both

from phasor diagram (Fig. 14.2b), and waveforms (Fig. 14.2c). As the circuit has no
resistance, but only inductive reactance X, =w L (positive, as per convention), the

impedance Z is only in the y-axis (imaginary).

3. Purely capacitive circuit (C only)
The current i, in the circuit (Fig. 14.3a), is,

Substituting v =~/2V sinwt =V_sinwt , i is
i = c%(\/?v sin a)t): V2w CV coswt =2 wCV sin (ot +90°) =+/2 I sin (ot + 90°)

=1 sin(ot+90°)
The rms value, | is

| =wCV = =1 .£90°
1/(wC)
V=V/0°=V+j0 : 1=1-90°=0+]jl
The impedance of the circuit is
2,5V VOV 1 ) g jx =X, /-90°=—1 so0°
I 1 £290° jlI jwC oC oC
where, the capacitive reactance is X 1! :
wC 2xfC

Note that the current leads the voltage by ¢ =90° (this value is negative, i.e.
¢ =-90°), as per convention being followed here. This can be observed both from

phasor diagram (Fig. 14.3b), and waveforms (Fig. 14.3c). As the circuit has no resistance,
but only capacitive reactance, X, =1/(wC) (negative, as per convention), the impedance

Z is only in the y-axis (imaginary).
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Fig. 14.3: Circuit with Capacitance (C)
{(a) Circuit diagram
(b) Waveforms: (i) Voltage (ii) Current
(¢} Phasor diagram

Series Circuits
1. Inductive circuit (R and L in series)

The voltage balance equation for the R-L series circuit (Fig. 14.4a) is,

v=Ri+ Lﬂ
dt

where, v=+/2Vsinot =V_ sinwt =+/2Vsing, @ being wt.

The current, i (in steady state) can be found as

i =~/21sin(@t—¢)=1_sin(ot—¢)=~21sin (0 -¢)

The current, i(t) in steady state is sinusoidal in nature (neglecting transients of the
form shown in the earlier module on dc transients). This can also be observed, if one sees
the expression of the current, i =1 sin(wt) for purely resistive case (with R only), and
I =1, sin(ot—-90°) for purely inductive case (with L only).

Alternatively, if the expression for i is substituted in the voltage equation, the
equation as given here is obtained.

V2Vsinwt =R -2 1sin(wt—¢)+wL-v2 1 cos(wt—¢)

If, first, the trigonometric forms in the RHS side is expanded in terms of sin ot and
cos wt, and then equating the terms of sin wt and cos wt from two (LHS & RHS)

sides, the two equations as given here are obtained.
V =(R-cos¢+wL-sing)-1,and
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0=(-R-sing+wL-cos¢)

From these equations, the magnitude and phase angle of the current, | are derived.
From the second one, tan¢ = (w L/R)

So, phase angle, ¢ =tan"(wL/R)

Two relations, cos¢ =(R/Z), and sing=(wL/Z), are derived, with the term

(impedance), Z = R? + (w L)?

If these two expressions are substituted in the first one, it can be shown that the
magnitude of the currentis | =V /Z , with both V and Z in magnitude only.

The steps required to find the rms value of the current I, using complex form of
impedance, are given here.

A
(a)

()

LR

(c)
Fig. 14.4: Circuit with Resistance (R) and Inductance (L) in series.

(a) Circuit diagram
(b) Waveforms: (i) Voltage (ii) Current (iii) Power
(¢) Phasor diagram
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Fig. 14.5: The complex form of the impedance
(R-L series circuit)

The impedance (Fig. 14.5) of the inductive (R-L) circuit is,
Z/p=R+jX =R+ jolL
where,

Z:\/R2+Xf =\/R2 +(a)L)2 and ¢=tan_1[%j=tan‘l(%l‘j

iz—¢:VZOO: V+j0 _ V+j0
Z/Zp R+JX, R+jolL
vV \Y 3 \Y
Z JR?+x? JR¥+(oL)’

Note that the current lags the voltage by the angle ¢, value as given above. In this
case, the voltage phasor has been taken as reference phase, with the current phasor
lagging the voltage phasor by the angle, ¢ . But normally, in the case of the series circuit,
the current phasor is taken as reference phase, with the voltage phasor leading the current
phasor by ¢. This can be observed both from phasor diagram (Fig. 14.4b), and
waveforms (Fig. 14.4c). The inductive reactance X, is positive. In the phasor diagram,
as one move from voltage phasor to current phasor, one has to go in the clockwise
direction, which means that phase angle, ¢ is taken as positive, though both phasors are
assumed to move in anticlockwise direction as shown in the previous lesson.

The complete phasor diagram is shown in Fig. 14.4b, with the voltage drops across
the two components and input (supply) voltage (OA), and also current (OB). The
voltage phasor is taken as reference. It may be observed that
Voc EIR)+V, [= 1 (] X )]=Voa (=12),
using the Kirchoff’s second law relating to the voltage in a closed loop. The phasor
diagram can also be drawn with the current phasor as reference, as will be shown in the
next lesson.

Power consumed and Power factor

From the waveform of instantaneous power (W =v-i) also shown in Fig. 14.4c for
the above circuit, the average power is,
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W =£]iv-id6’=£]ix/§Vsin6’\/§Isin(9—¢)d6=1j'v I [cos ¢ —cos (20 —¢)] d&
7[0 7[0

%
1 - VI . b
:;{v | cos 6 == sin (26’—¢)|0}

=£{V | cos ¢ (z —0) —%[sin (277 — ¢) +sin ¢]} =V | cos¢

T

Note that power is only consumed in resistance, R only, but not in the inductance, L.
So, W = I°R.

average power V1cosg¢g cos ¢ = R_ R

apparent power Vi Z JR?+(wL)?

The power factor in this circuit is less than 1 (one), as 0° < ¢ <90°, ¢ being positive
as given above.

Power factor =

For the resistive (R) circuit, the power factor is 1 (one), as ¢ =0°, and the average
poweris VI .

For the circuits with only inductance, L or capacitance, C as described earlier, the
power factor is O (zero), as ¢ = +90°. For inductance, the phase angle, or the angle of the
impedance, ¢ = +90° (lagging), and for capacitance, ¢ = —90° (leading). It may be noted
that in both cases, the average power is zero (0), which means that no power is consumed
in the elements, L and C.

The complex power, Volt-Amperes (VA) and reactive power will be discussed after
the next section.

2. Capacitive circuit (R and C in series)

This part is discussed in brief. The voltage balance equation for the R-C series circuit
(Fig. 14.6a) is,

1. .
v:R|+EI|dt:\/§Vsma)t

The current is
i =2 1sin (ot +¢)

The reasons for the above choice of the current, i, and the steps needed for the
derivation of the above expression, have been described in detail, in the case of the earlier
example of inductive (R-L) circuit. The same set of steps has to be followed to derive the
current, i in this case.

Alternatively, the steps required to find the rms value of the current I, using complex
form of impedance, are given here.
The impedance of the capacitive (R-C) circuit is,
Z/-¢=R—-jX.=R- ji
wC
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2
Z=4R*+X% = R%(LJ and
oC
p=tan| - —S|=tan™ NS P
owCR owCR
| 24— VZ0°  V+j0  V+jo0
Z/-¢ R-jX. R-j/wC)
V Vv V

"7 RPex: JR? +(1/ »C)’

¢ 1|..’m H
4 ]n L {l}
T / (ii)
L
'l
K =1
L b —p {cat)
*) -V L
(b)
L(-JX.)

Fig. 14.6: Circuit with Resistance (R) and Capacitance (C) in series.
{a) Circuit diagram
(b)) Waveforms: (i) Voltage (ii) Current
{c) Phasor diagram
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Note that the current leads the voltage by the angle ¢, value as given above. In this

case, the voltage phasor has been taken as reference phase, with the current phasor
leading the voltage phasor by the angle, ¢ . But normally, in the case of the series circuit,

the current phasor is taken as reference phase, with the voltage phasor lagging the current
phasor by ¢. This can be observed both from phasor diagram (Fig. 14.6b), and

waveforms (Fig. 14.6c). The capacitive reactance X is negative. In the phasor diagram,

as one move from voltage phasor to current phasor, one has to go in the anticlockwise
direction, which means that phase angle, ¢ is taken as negative. This is in contrast to the

case as described earlier. The complete phasor diagram is shown in Fig. 14.6b, with the
voltage drops across the two components and input (supply) voltage, and also current.
The voltage phasor is taken as reference.

The power factor in this circuit is less than 1 (one), with ¢ being same as given

above. The expression for the average power is P =V | cos¢, which can be obtained by

the method shown above. The power is only consumed in the resistance, R, but not in the
capacitance, C. One example is included after the next section.

Complex Power, Volt-Amperes (VA) and Reactive Power

The complex power is the product of the voltage and complex conjugate of the
current, both in phasor form. For the inductive circuit, described earlier, the voltage
(V £0°) is taken as reference and the current (1 £—¢ =1cos¢— jlsin ¢) is lagging the

voltage by an angle, ¢ . The complex power is
S=V-1"=V £0°12¢g=N1)2L$=V1cos ¢+ jVIising=P+jQ
The Volt-Amperes (S), a scalar quantity, is the product of the magnitudes the voltage

and the current. So, S =V -1 ={P? +Q? . Itis expressed in VA.
The active power (W) is

P =Re (é) =Re (\7~ 1) =V I cos ¢, as derived earlier.

The reactive power (VAr) is given by Q =Im (S)=Im (V-17) =V Isin ¢.

As the phase angle, ¢ is taken as positive in inductive circuits, the reactive power is
positive. The real part, (1cos ¢) is in phase with the voltage V , whereas the imaginary
part, Isin ¢ is in quadrature (—90°) with the voltage V . But in capacitive circuits, the
current (1 Z¢ ) leads the voltage by an angle ¢ , which is taken as negative. So, it can be
stated that the reactive power is negative here, which can easily be derived

Example 14.1

A voltage of 120 V at 50 Hz is applied to a resistance, R in series with a capacitance,
C (Fig. 14.7a). The current drawn is 2 A, and the power loss in the resistance is 100 W.
Calculate the resistance and the capacitance.

Solution
V=120V | =2A P=100W f =50Hz
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R=P/12=100/22=25Q

Z=R?+X2=V/1=120/2=60 Q

X, =1/(27x £ C) =+/Z% —=R? =/(60) — (25)* =54.540)

C= ! = L =58.36-10"° =58.36 uF
2r f X, 27-50.0x54.54

The power factor is, cos ¢ = R/Z =25/60 = 0.417 (lead)
The phase angle is ¢ = cos™ (0.417) = 65.38°

109y

f"'"-E"\

LS
Il
]|

(b)

Fig. 14.7: (a) Circuit diagram
(b) Phasor diagram

The phasor diagram, with the current as reference, is shown in Fig. 14.7b. The examples,
with lossy inductance coil (r in series with L), will be described in the next lesson. The
series circuit with all elements, R. L & C, along with parallel circuits, will be taken up in

the next lesson.
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Problems

141

14.2

14.3

14.4

Calculate the power factor in the following cases for the circuit with the
elements, as given, fed from a single phase ac supply.

(i) With resistance, R only, but no L and C

(@) 1.0 (©=0°) (b) 0.0 lagging (®=+90°)
(c) 0.0 leading (©=-90°) (d) None of the above
(i) with only pure/lossless inductance, L, butno R and C

(@) 1.0 (®=0°) (b) 0.0 lagging (®=+90°)
(c) 0.0 leading (©=-90°) (d) None of the above
(iii) with only pure capacitance, C, butno R and L.

(@) 1.0 (®=0°) (b) 0.0 lagging (®=+90°)
(c) 0.0 leading (©=-90°) (d) None of the above

Calculate the current and power factor (lagging / leading) in the following cases
for the circuits having impedances as given, fed from an ac supply of 200 V. Also
draw the phasor diagram in all cases.

(i) Z = (15+j20) ©

(i Z=(14j149)Q

@)  Z=R+j(XL-Xc),whereR=10Q, X, =20 Q, and Xc =10 Q.

A 200 V, 50 Hz supply is connected to a resistance (R) of 20 Q in series with an
iron cored choke coil (r in series with L). The readings of the voltmeters across
the resistance and across the coil are 120 V and 150 V respectively. Find the loss
in the coil. Also find the total power factor. Draw the phasor diagram.

A circuit, with a resistance, R and a lossless inductance in series, is connected
across an ac supply (V) of known frequency (f). A capacitance, C is now

connected in series with R-L, with V and f being constant. Justify the following
statement with reasons.

The current in the circuit normally increases with the introduction of C.

Under what condition, the current may also decrease. Explain the condition with
reasons.
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In the last lesson, two points were described:

1.

How to solve for the impedance, and current in an ac circuit, consisting of single
element, R/L/C?

How to solve for the impedance, and current in an ac circuit, consisting of two
elements, R and L / C, in series, and then draw complete phasor diagram?

In this lesson, the solution of currents in simple circuits, consisting of resistance R,

inductance L and/or capacitance C connected in series, fed from single phase ac supply,
is presented. Then, the circuit with all above components in parallel is taken up. The
process of drawing complete phasor diagram with current(s) and voltage drops in the
different components is described. The computation of total power and also power
consumed in the different components, along with power factor, is explained. One
example of series circuit are presented in detail, while the example of parallel circuit will
be taken up in the next lesson.

Keywords: Series and parallel circuits, impedance, admittance, power, power factor.

After going through this lesson, the students will be able to answer the following

questions;

1.

How to compute the total reactance and impedance / admittance, of the series and
parallel circuits, fed from single phase ac supply?

How to compute the different currents and also voltage drops in the components, both
in magnitude and phase, of the circuit?

How to draw the complete phasor diagram, showing the currents and voltage drops?

How to compute the total power and also power consumed in the different
components, along with power factor?

Solution of Current in R-L-C Series Circuit

Series (R-L-C) circuit

o RD L. E ,,C

0 T

1

"\/'
+ -
\Y

Fig. 15.1 (a) Circuit diagram
The voltage balance equation for the circuit with R, L and C in series (Fig. 15.1a), is

. di 1. ]
Vv=Ri+L—+=|idt=+42Vsinwt
dt cj J2Vsine
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The current, i is of the form,

i =2 1sin(wt + ¢)
As described in the previous lesson (#14) on series (R-L) circuit, the current in steady
state is sinusoidal in nature. The procedure given here, in brief, is followed to determine

the form of current. If the expression for i = V2 Isin (wt—¢) is substituted in the voltage
equation, the equation shown here is obtained, with the sides (LHS & RHS) interchanged.
R-v21sin(wt—¢)+aL -2 1cos(wt—¢)—(1/wC)-2 1 cos(at —¢)
=2V sinwt

or R-v21sin(wt—¢)+[wL—0/®C)]-v21cos(wt—¢) =2V sinwt

The steps to be followed to find the magnitude and phase angle of the current | , are
same as described there (#14).

So, the phase angle is ¢ =tan " [wL - (1/®@C)]/R

and the magnitude of the currentis | =V /Z

where the impedance of the series circuit is Z = \/RZ +[oL-(@1/wC))

Alternatively, the steps to find the rms value of the current I, using complex form of
impedance, are given here.
The impedance of the circuit is

24i¢:R+j(XL—XC):R+j[wL—%)
w

where,
Z =[R2+ (X, - X¢)? =yR?+(@wL-(1/wC)) ,and

4 tanl(XL ~ X j _ tanl(a)L—(lla)C)J
R R

- V0 V+j0 V+ij0
| Z¥¢= = - = :

Z/+¢ R+j(X_ —X.) R+jl@L-(1/oC))
[V Vv ~ Y
R (x XY 1Y

R2+(0)L—J
wC

Two cases are: (a) Inductive | o L > L , and (b) Capacitive | o L < L :
oC oC

(@) Inductive

In this case, the circuit is inductive, as total reactance (a) L—(l/a)C)) is positive, under
the condition (wL > (1/@C)). The current lags the voltage by ¢ (taken as positive),

with the voltage phasor taken as reference. The power factor (lagging) is less than 1
(one), as 0° < ¢ <90°. The complete phasor diagram, with the voltage drops across the
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components and input voltage (OA), and also current (OB ), is shown in Fig. 15.1b. The
voltage phasor is taken as reference, in all cases. It may be observed that

Voc (=iR) +VCD =i(] XL)]+VDA [=-i(] Xc)] =VOA(= i1Z)

using the Kirchoff’s second law relating to the voltage in a closed loop. The phasor
diagram can also be drawn with the current phasor as reference, as will be shown in the
example given here. The expression for the average power is V 1 cos¢ = 1R . The power

is only consumed in the resistance, R, but not in inductance/capacitance (L/C), in all three
cases.

4 E

I (-1Xc)

Inductive (X > Xc)
Fig 15.1 (b) Phasor diagram

In this case, the circuit is inductive, as total reactance (@ L—(l/a)C)) is positive, under
the condition (wL > (1/@C)). The current lags the voltage by ¢ (positive). The power
factor (lagging) is less than 1 (one), as 0° < ¢ <90°. The complete phasor diagram, with

the voltage drops across the components and input voltage (OA), and also current (OB ),
is shown in Fig. 15.1b. The voltage phasor is taken as reference, in all cases. It may be
observed that

Voc (: [ R) +VCD [: |(J XL)]+VDA [: —i (J Xc)] :VOA(: i Z)

using the Kirchoff’s second law relating to the voltage in a closed loop. The phasor
diagram can also be drawn with the current phasor as reference, as will be shown in the
example given here. The expression for the average power is V 1 cos¢ = | R . The power

is only consumed in the resistance, R, but not in inductance/capacitance (L/C), in all three
cases.
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(b) Capacitive

1(+1X,)

I (-1Xc)

A
\Y

Capacitive (X < Xc¢)
Fig 15.1 (c) Phasor diagram

The circuit is now capacitive, as total reactance (o L —(1/ @ C)) is negative, under the
condition (a) L< (l/a)C)). The current leads the voltage by ¢, which is negative as per

convention described in the previous lesson. The voltage phasor is taken as reference
here. The complete phasor diagram, with the voltage drops across the components and
input voltage, and also current, is shown in Fig. 15.1c. The power factor (leading) is less
than 1 (one), as0° < ¢ <90°, ¢ being negative. The expression for the average power

remains same as above.

The third case is resistive, as total reactance (wL—-1/wC) is zero (0), under the
condition (wL =1/wC). The impedance isZ Z0° =R+ jO. The current is now at unity
power factor (¢ =0°), i.e. the current and the voltage are in phase. The complete phasor

diagram, with the voltage drops across the components and input (supply) voltage, and
also current, is shown in Fig. 15.1d. This condition can be termed as ‘resonance’ in the
series circuit, which is described in detail in lesson #17. The magnitude of the impedance
in the circuit is minimum under this condition, with the magnitude of the current being
maximum. One more point to be noted here is that the voltage drops in the inductance, L
and also in the capacitance, C, is much larger in magnitude than the supply voltage,
which is same as the voltage drop in the resistance, R. The phasor diagram has been
drawn approximately to scale.
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+ E
1(J.X,)
I('j Xc)
0] -|__> ryD,A
a1 Voo, Vos (I.R)

Resistive (XL = X¢)
Fig. 15.1 (d) Phasor diagram

It may be observed here that two cases of series (R-L & R-C) circuits, as discussed in
the previous lesson, are obtained in the following way. The first one (inductive) is that of
(@), with C very large, i.e.1/wC ~ 0, which means that C is not there. The second one

(capacitive) is that of (b), with L not being there (L or @ L =0).
Example 15.1

A resistance, R is connected in series with an iron-cored choke coil (r in series with
L). The circuit (Fig. 15.2a) draws a current of 5 A at 240 V, 50 Hz. The voltages across
the resistance and the coil are 120 V and 200 V respectively. Calculate,

(a) the resistance, reactance and impedance of the coil,

(b) the power absorbed by the coil, and

(c) the power factor (pf) of the input current.

A R
C
A
VW |

>

U_‘P

\/

B
Fig. 15.2 (a) Circuit diagram
Solution
| (OB) =5A V, (OA) =240V f =50Hz w=2xf
The voltage drop across the resistance V, (OC) =1-R =120V
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The resistance, R=V, /1 =120/5=24 Q
The voltage drop across the coil V, (CA)=1-Z, =200V

The impedance of the coil, Z, =+/r* + X? =V, /1 =200/5=40 Q
From the phasor diagram (Fig. 15.2b),

l D

|

NOHOF
VWA—000 .

1®

)

40V, 50 Hz

o
/
Fig. 15.2(b): Phasor Diagram

OA? +0OC? —CA?* _ (120)% + (240)* — (200)> _ 32,000
2-0A.0C 2x120x 240 57,600

cos ¢ = cos ZAOC =

=0.556
The power factor (pf) of the input current = cos ¢ = 0.556 (lag)

The phase angle of the total impedance, ¢ = cos™ (0.556) = 56.25°
Input voltage, Vi (OA) =1-Z =240V

The total impedance of the circuit, Z = /(R+r)* + X? =V, /1 =240/5=48 Q
ZZp=(R+r)+ X =48 £56.25° =(26.67 + j39.91) Q

The total resistance of the circuit, R+r =24 +r =26.67 Q

The resistance of the coil, r = 26.67 —24.0 =2.67 Q

The reactance of the coil, X, =oL=27fL=399 Q

X, 399

= =0.127H =127-1073 =127 mH
27 f  2xx50

The inductance of the coil, L =

The phase angle of the cail,

¢, =cos(r/Z,)=cos™(2.67/40.0) = cos™(0.067) = 86.17°
Z Zp =r+ X, =(2.67+ ] 39.9)=40 £86.17°7) Q

The power factor (pf) of the coil, cos ¢ =0.067 (lag)

The copper loss in the coil = 1°r =5° x2.67 =66.75 W

Example 15.2
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An inductive coil, having resistance of 8 QQ and inductance of 80 mH, is connected in
series with a capacitance of 100 xF across 150 V, 50 Hz supply (Fig. 15.3a). Calculate,

(a) the current, (b) the power factor, and (c) the voltages drops in the coil and capaci-
tance respectively.

Fig. 15.3 (a) Circuit diagram

Solution
f =50 Hz w=2rf=27rx50=314.16rad /s
L=80mH =80-10"° =0.08H X, =wlL =314.16x0.08=25.13 Q
C =100 xF =100-10°F Xe = 1 _ L —=31.83 Q
oC 314.16x100-10
R=8Q V, (OA) =150 V

The impedance of the coil, Z, Z¢, =R+ j X =(8.0+ ] 25.13) =26.375£72.34° Q)
The total impedance of the circuit,

Z/-¢=R+j(X —Xc,)=80+j(25.13-31.83)=(8.0—-j6.7)
=10.435/-39.95° Q

The current drawn from the supply,

|4¢:vzo [ 150

Z/-¢ |10435
The currentis, | =14.375 A
The power factor (pf) = cos ¢ = cos 39.95° = 0.767 (lead)

J £39.95° =14.375 £39.95° A= (11.02 + j9.26) A

D
1Z |(jX|_)
A = E l. (5Xc)
| / ' J C
B

Fig. 15.3 (b) Phasor diagram
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Please note that the current phasor is taken as reference in the phasor diagram (Fig.
15.3b) and also here. The voltage drop in the coil is,
V,£60,=1£0°-Z, £ =(14.375x26.375) £72.34° =379.14 £72.34° V

= (115.1+ j361.24)V

The voltage drop in the capacitance in,
V, 26, =1,0°2, £—¢, = (14.475x31.83) £ —90.0° = 457.58 £ —90.0° V

= —j457.58 V

Solution of Current in Parallel Circuit

Parallel circuit

The circuit with all three elements, R, L & C connected in parallel (Fig. 15.4a), is fed
to the ac supply. The current from the supply can be computed by various methods, of
which two are described here.

| —>
+ h¢ ih lk
v R L T ¢

Fig. 15.4 (a) Circuit diagram.
First method

The current in three branches are first computed and the total current drawn from the
supply is the phasor sum of all three branch currents, by using Kirchoff’s first law related
to the currents at the node. The voltage phasor (V) is taken as reference.

All currents, i.e. three branch currents and total current, in steady state, are sinusoidal
in nature, as the input (supply voltage is sinusoidal of the form,

V=42 Vsinwt

Three branch currents are obtained by the procedure given in brief.
V=R-iy ,oriy =v/R=+2 (V/R)sinwt=~2l,sinwt,
where, |I|=|(V/R)]

Similarly, v = Lﬂ
dt

So, i, is,
i, = (/L) [vdt=(/L) [v2 V(sinot) dt =2 [V /(& L)] coswt =—~/2 1, cosot
=21 sin(ot—-90°)
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where, |1 |=|(V/X_)| with X, =oL

V= (1/C)jic dt , from which i, is obtained as,

i =C%:C%(\/§Vsina)t):\/§ V- -»C) coswt:ﬁlc cos mt
=2 1. sin(ot+90°)

where, [I.|=|(V/X,)| with X; =(1/wC)

Total (supply) current, i is

i=i, +i, +i. =v2 1 sinwt—~/21, coswt +/2 I coswt

= 2IRsina)t—ﬁ(lL—lc)cosa)t:ﬁlsin(a)t$¢)

The two equations given here are obtained by expanding the trigonometric form
appearing in the last term on RHS, into components of coswt and sinwt, and then

equating the components of coswt and sinwt from the last term and last but one
(previous) .

lcosg=1; and Ising=(I_—1.)
From these equations, the magnitude and phase angle of the total (supply) current are,

; ; 1 (1 1Y
=007+, 1) :M'\/(Ej +[X—L—X—cj
1\ (1 ?
R O e
¢ =tan™ Jozle | o WXD =W X)) sl g [ L1
Iy (L/R) X, X,
:tanl[R-(i—a)Cﬂ
ol

where, the magnitude of the term (admittance of the circuit) is,

(8] 8] e

Please note that the admittance, which is reciprocal of impedance, is a complex
quantity. The angle of admittance or impedance, is same as the phase angle, ¢ of the

current | , with the input (supply) voltage taken as reference phasor, as given earlier.

Alternatively, the steps required to find the rms values of three branch currents

and the total (suuply) current, using complex form of impedance, are given here.
Three branch currents are
I, £0°=1, =!; I, £-90°=—jI = _V = _V =—j v

I X, JolL ol

\ \

. /+90°=jl.= = _
¢ Je ~jX. -j@wC)

JoCV
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Of the three branches, the first one consists of resistance only, the current, I is in
phase with the voltage (V). In the second branch, the current, 1, lags the voltage by 90°,

as there is inductance only, while in the third one having capacitance only, the current,
|- leads the voltage 90°. All these cases have been presented in the previous lesson.

The total current is

| £+ ¢= IR+J('C"L):V[%+J{@C_LH

ol

where,

L=12+(1g =1, ) _v\/lé%w(:—ﬁﬂ ,and
o)l 2]

The two cases are as described earlier in series circuit.

(a) Inductive

lr—> D _A
>

Inductive (I_ > I¢)
Fig. 15.4 (b) Phasor diagram

In this case, the circuit being inductive, the current lags the voltage by ¢ (positive),
as I >1. ,ie l/loL>wC, or wL<1/®wC .This condition is in contrast to that
derived in the case of series circuit earlier. The power factor is less than 1 (one). The
complete phasor diagram, with the three branch currents along with total current, and also
the voltage, is shown in Fig. 15.4b. The voltage phasor is taken as reference in all cases.
It may be observed there that
I.(OD)+ 1, (DC)+1.(CB)=1(0OB)
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The Kirchoff’s first law related to the currents at the node is applied, as stated above. The
expression for the average power is V lcos¢=12R=V?/R. The power is only
consumed in the resistance, R, but not in inductance/capacitance (L/C), in all three cases.

(b) Capacitive
The circuit is capacitive, as I > 1, ,i.e. wC>1/wL,0or oL >1/®C . The current

leads the voltage by ¢ (¢ being negative), with the power factor less than 1 (one). The
complete phasor diagram, with the three branch currents along with total current, and also

the voltage, is shown in Fig. 15.4c.
The third case is resistive, as || | =|l;|, i.e.l/oL=wC or @L=1/wC. This is the

same condition, as obtained in the case of series circuit. It may be noted that two currents,
I, and I., are equal in magnitude as shown, but opposite in sign (phase difference

being180°), and the sum of these currents (I, + 1) is zero (0). The total current is in
phase with the voltage (¢=0°), with |I|=|l;|, the power factor being unity. The

complete phasor diagram, with the three branch currents along with total current, and also
the voltage, is shown in Fig. 15.4d. This condition can be termed as ‘resonance’ in the
parallel circuit, which is described in detail in lesson #17. The magnitude of the
impedance in the circuit is maximum (i.e., the magnitude of the admittance is minimum)
under this condition, with the magnitude of the total (supply) current being minimum.

B

L/
\ 4

v \ 4 A 4

E

Capacitive (I_< I¢)
Fig. 15.4 (c) Phasor diagram

Version 2 EE 11T, Kharagpur



The circuit with two elements, say R & L, can be solved, or derived with C being large
(I.=00r1/wC=0).

I (VIGiX,))

YOI (VIGX )
E

Resistive (I_ = 1¢)
Fig. 15.4 (d) Phasor Diagram

Second method

Before going into the details of this method, the term, Admittance must be explained.
In the case of two resistance connected in series, the equivalent resistance is the sum of
two resistances, the resistance being scalar (positive). If two impedances are connected in
series, the equivalent impedance is the sum of two impedances, all impedances being
complex. Please note that the two terms, real and imaginary, of two impedances and also
the equivalent one, may be positive or negative. This was explained in lesson no. 12.

If two resistances are connected in parallel, the inverse of the equivalent resistance is
the sum of the inverse of the two resistances. If two impedances are connected in parallel,
the inverse of the equivalent impedance is the sum of the inverse of the two impedances.
The inverse or reciprocal of the impedance is termed ‘Admittance’, which is complex.
Mathematically, this is expressed as

Y :lzi+i:Y1 +Y,

z 7, Z,
As admittance (Y) is complex, its real and imaginary parts are called conductance (G)
and susceptance (B) respectively. So, Y =G + jB. If impedance, Z Z¢ =R+ j X with

X being positive, then the admittance is

1 1 R—jX R-jX
A R - 1%
Z/0° R+jX (R+jX)(R-jX) R2+X
R ) X ]
= = =G-jB
R% + X2 JR2+X2 J
where,
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R g X
R2+X?%' R? + X?

G:

Please note the way in which the result of the division of two complex quantities is
obtained. Both the numerator and the denominator are multiplied by the complex
conjugate of the denominator, so as to make the denominator a real quantity. This has
also been explained in lesson no. 12.

The magnitude and phase angle of Z and Y are

Z=+R*+X?; g=tan(X/R) ,and

Y=JeiiBl- 1 _; ¢:tanl(5]:tanl(£j
VRZ + X? G R

To obtain the current in the circuit (Fig. 15.4a), the steps are given here.
The admittances of the three branches are

N SE SRV S S T
Z, R Z, jX, ol
Y34900=i= ,1 = joC
Zs _JXC

The total admittance, obtained by the phasor sum of the three branch admittances, is
YZEp=Y,+Y,+Y, :£+j a)C—i =G+]B
R ol

where,

o [lo- e 2

G=1/R; B=wC-1/wlL
The total impedance of the circuit is
1 1 G . B
Z Z_ = = = —
0=y, G6+jB 62182 JGiiBe
The total current in the circuit is obtained as

V £0°
|l Lt¢= =VL0°-YZLxp=(NVY)LZE
¢ 7734 p=(VY)LEg
where the magnitude of currentis | =V .Y =V /Z

The current is the same as obtained earlier, with the value of Y substituted in the
above equation.

This is best illustrated with an example, which is described in the next lesson.

The solution of the current in the series-parallel circuits will also be discussed there,
along with some examples.
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Problems

15.1 Calculate the current and power factor (lagging / leading) for the following
circuits (Fig. 15.5a-d), fed from an ac supply of 200 V. Also draw the phasor

diagram in all cases.

- ] Xc
+ é + i
iX _ p—
200V ( ~ % AL = -
<> ROQL P=jsa 200V 25 0 =200
i =20Q -
(a) (b)
+ IXc C e ) 150 —-JX:C- j25Q
200V R $=j58 T =d20Q 200 V<“V> iXc Te
- 789 [0 -T -j00
(c)
(d)

Fig. 15.5

15.2 A voltage of 200 V is applied to a pure resistor (R), a pure capacitor, C and a
lossy inductor coil, all of them connected in parallel. The total current is 2.4 A,
while the component currents are 1.5, 2.0 and 1.2 A respectively. Find the total
power factor and also the power factor of the coil. Draw the phasor diagram.

15.3 A 200 V. 50Hz supply is connected to a lamp having a rating of 100 V, 200 W, in
series with a pure inductance, L, such that the total power consumed is the same,

i.e. 200W. Find the value of L.

A capacitance, C is now connected across the supply. Find value of C, to bring
the supply power factor to unity (1.0). Draw the phasor diagram in the second

case.

1.(a) Find the value of the load resistance (R_) to be connected in series with a real
voltage source (Vs + Rs in series), such that maximum power is transferred from

the above source to the load resistance.

(b) Find the voltage was 8Q resistance in the circuit shown in Fig. 1(b).

2.(a) Find the Theremin’s equivalent circuit (draw the ckt.) between the terminals A + B,

of the circuit shown in Fig. 2(a).
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(b) A circuit shown in Fig. 2(b) is supplied at 40V, 50Hz. The two voltages V; and V;
(magnitude only) is measured as 60V and 25V respectively. If the current, | is
measured as 1A, find the values of R, L and C. Also find the power factor of the
circuit (R-L-C). Draw the complete phasor diagram.

3.(a) Find the line current, power factor, and active (real) power drawn from 3-phase,
100V, 50Hz, balanced supply in the circuit shown in Fig. 3(a).

(b) In the circuit shown in Fig. 3(b), the switch, S is put in position 1 at t = 0. Find ie(t),
t>0, if vo(0) = 6V. After the circuit reaches steady state, the switch, S is brought to
position 2, at t = T. Find i¢(t), t > T1. Switch the above waveform.

4.(a) Find the average and rms values of the periodic waveform shown in Fig. 4(a).

(b) A coil of ImH lowing a series resistance of 1Q is connected in parallel with a
capacitor, C and the combination is fed from 100 mV (0.1V), 1 kHz supply (source)
having an internal resistance of 10Q. If the circuit draws power at unity power
factor (upf), determine the value of the capacitor, quality factor of the coil, and
power drawn by the circuit. Also draw the phasor diagram.
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Lesson
16

Solution of Current in
AC Parallel and Series-
parallel Circuits
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In the last lesson, the following points were described:

1. How to compute the total impedance/admittance in series/parallel circuits?

2. How to solve for the current(s) in series/parallel circuits, fed from single phase ac
supply, and then draw complete phasor diagram?

3. How to find the power consumed in the circuit and also the different components, and
the power factor (lag/lead)?

In this lesson, the computation of impedance/admittance in parallel and series-parallel
circuits, fed from single phase ac supply, is presented. Then, the currents, both in
magnitude and phase, are calculated. The process of drawing complete phasor diagram is
described. The computation of total power and also power consumed in the different
components, along with power factor, is explained. Some examples, of both parallel and
series-parallel circuits, are presented in detail.

Keywords: Parallel and series-parallel circuits, impedance, admittance, power, power
factor.

After going through this lesson, the students will be able to answer the following
questions;

1. How to compute the impedance/admittance, of the parallel and series-parallel circuits,
fed from single phase ac supply?

2. How to compute the different currents and also voltage drops in the components, both
in magnitude and phase, of the circuit?

3. How to draw the complete phasor diagram, showing the currents and voltage drops?
4. How to compute the total power and also power consumed in the different

components, along with power factor?

This lesson starts with two examples of parallel circuits fed from single phase ac
supply. The first example is presented in detail. The students are advised to study the two
cases of parallel circuits given in the previous lesson.

Example 16.1

The circuit, having two impedances of Z, =8+ j15)Q and Z, =(6—-j8) Q in
parallel, is connected to a single phase ac supply (Fig. 16.1a), and the current drawn is 10
A. Find each branch current, both in magnitude and phase, and also the supply voltage.
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Zi=(8+il5)Q

_>11
A B
—
I=10A
> Iz

Z,=(6-j8)Q
Fig. 16.1 (a) Circuit diagram
Solution

Z, ZLp =8+ ]15)=17£61.93° Q Z,/—¢,=(6—]8)=10£-53.13° Q
1 £0°(0C)=10£0°=(10+ jO) A
The admittances, using impedances in rectangular form, are,

Vo/og=ot o L 82 BB g j519).107 0"
Z. /¢ 8+j15 8 +15° 289
Y, 24, ! L _6+18 6+J8_ 600+ i80.0)-10° Q"

T Z,/-4, 6-i8 6°+8 100
Alternatively, using impedances in polar form, the admittances are,

VAP S 1 =0.05882 £ —61.93°
Z, 24, 17.0 £61.93°

=(27.68-j51.9)-10° Q"'
Y, Z¢, = 7 41 = ! 5
,Z—¢, 10.0 £-53.13

The total admittance is,
YZp=Y,+Y, =[(27.68- j51.9)+(60.0+ j80.0)]- 10 = (87.68 + j28.1)-10
=92.07-107 £17.77° Q™
The total impedance is,
Z/—¢= L _ }

YZ$ 92.07-107 £17.77°
The supply voltage is
VZ-¢pVg)=1£0°2Z2L-¢=(10x10.86)£L—-17.77°=108.6 L—-17.77° V
=(103.43— j33.15) V

=0.1£53.13° = (60.0+ j80.0)-10° Q"

=10.86 £-17.77° =(10.343 - j3.315) Q

The branch currents are,

|14—91(0D)=V4_¢=(108'6
z,2¢, 170

jé —(17.77°+61.93°) = 6.39£-79.7° A
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=(1.143- j6.286) A
|, 26, (OE)=1.£0°-1 /—6,(0C-0D =0C —CE)
= (10.0+ j0.0)—(1.143— j6.286) = (8.857 + j 6.286) A=10.86 £35.36° A

Alternatively, the current |, is,

V /- 108.
|, £6,(OE) = / :[ 08 6]4(—17.77%53.130):10.86435.36"A
Z,/-¢, \10.0

= (8.857 + j6.285) A

The phasor diagram with the total (input) current as reference is shown in Fig. 16.1b.

E

108.63 V
[[=64A

D
Fig. 16.1 (b) Phasor diagram

Alternative Method
2'/¢ =2, Lp+2, L~ =8+ j15)+(6— |8) = (14+ | 7) =15.65.£26.565° Q2

2,2, _Z2,2¢,-2,Z-¢, =(17'0X10'0j4(61.93"—53.130—26.565")
Z,+27, Z'L¢' 15.65
=10.86 £ —-17.77°=(10.343 - j3.315) Q

The supply voltage is
VZ-¢g V)=1-2=(10x10.86)£L-17.77°=108.6 L -17.77° V

=(103.43— j33.15) V

Z/-¢=

The branch currents are,
I, £-6,(0D)=1 : ZZZ = (IO'OXIO'OJ Z(-53.13°-26.565°)=6.392-79.7° A
1 2

15.65
= (1.142- j6.286) A
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|, £6,(OE)=1-1,(0C-0D=0C -CE)=(10.0+ j0.0)—(1.142— j6.286)
= (8.858+ j6.286) A=10.862 £35.36° A

Alternatively, the current |, is,
10.0x17.0
15.65

Z
1,26, (0CE)=1 L :( J Z£(61.93°-26.565°)=10.86 £35..36° A
Z+Z,

= (8.858+ j6.286) A

Example 16.2

The power consumed in the inductive load (Fig. 16.2a) is 2.5 kW at 0.71 lagging
power factor (pf). The input voltage is 230 V, 50 Hz. Find the value of the capacitor C,
such that the resultant power factor of the input current is 0.866 lagging.

- 1 - L
I

o] )
N T 0)
O « °
- D

|

230V
Fig. 16.2 (a) Circuit diagram
Solution
P=25KW =2.5-10° =2500 W V=230V f =50Hz

The power factor in the inductive branch is cos ¢, =0.71(lag)
The phase angle is @, = cos™ (0.71) = 44.77° = 45°
P=V-I, cosg =230-(I, cosg, )=2500
P 2500
" Vecosg, 230x0.71
I, cosg, =1531x0.71=10.87 A; | sin @ =1532xs1n45°=10.87 A
The current | is, || £—¢ =1531£-45°=(10.87-j10.87) A
The power consumed in the circuit remains same, as the capacitor does not consume
any power, but the reactive power in the circuit changes. The active component of the
total current remains same as computed earlier.
lcosg=1 cosg =10.87 A
The power factor of the current is cos ¢ = 0.866 (lag)
The phase angle is ¢ = cos™' (0.866) = 30°
The magnitude of the current is | =10.87/0.866 =12.55 A
The currentis | £ —¢ =12.55/-30°=(10.87 — j6.276) A

I =1531A

Version 2 EE IIT, Kharagpur



The current in the capacitor is
o £90°=12-¢—-1 2£—-¢ =(10.87-]j6.276)—(10.87 - j10.87)

=] 4.504 =4.504 £90° A
This current is the difference of two reactive currents,

—l.=Ising—1 sing =6.276-10.87 =-4.504 A
The reactance of the capacitor, Cis X, = _ = i = 230 =51.066 Q
2z fC 1. 4504
1 B 1

27 f X 27x50x51.066

The phasor diagram with the input voltage as reference is shown in Fig. 16.2b.

The capacitor, Cis C = =62.33-10"° =62.33 uF

Ic 45 A
230V
A
45° ¢
Ic
15.3 B

Fig. 16.2 (b) Phasor diagram

Example 16.3

An inductive load (R in series with L) is connected in parallel with a capacitance C of
12.5 uF (Fig. 16.3a). The input voltage to the circuit is 100 V at 31.8 Hz. The phase

angle between the two branch currents, (I, =1,) and (1, =1.) is 120°, and the current
in the first branch is |, =1 =0.5 A . Find the total current, and also the values of R & L.
—_> | A

| v’
100V / -
q [I|=0.5A

(C=12.5 uF

o=

B

Fig. 16.3 (a) Circuit diagram

Version 2 EE IIT, Kharagpur



Solution

f =31.8Hz w=27rf=27x31.8~200 rad/s V=100V
l,=05A C=125uF=125-10°F

Xe =1/(@C)=1/(200x12.5-10") = 400 Q

The current in the branch no. 2 is

I, £90° =V /(-] X.)=100£0°/400 £ —90° = (100/400) £90° = 0.25 £90°
=(0.0+j0.25) A

The current in the branchno. 1is |, £ —¢, =0.52—¢,

The phase angle between I, and 1, is 90°+¢, =120°

So, ¢, =120°-90° =30°

I, £-30°=0.5£-30°=(0.433—-j0.25) A

The impedance of the branch no. 1 is,

Z Zg =R+ X, )=V £0°/1, £-30°=(100/0.5) £30° = 200 £30°
=(173.2+ j100.0) Q

R=1732 Q X, =oL=100.0Q

So, L=X,/@=100/200=0.5H =500-10" =500 mH

The total current is,

I £0°=1,£-30°+1, £90°=(0.433 - j0.25)+ j0.25 =(0.433+ j0.0)
=0.43320° A

The total impedance is,

Z/£0°=(R"+j0)=V £0°/1 £0°=(100/0.433) £0°=231.0 £0°

=(231.0+j0.0) Q

The current, | is in phase with the input voltage, V .

The total admittance is Y £0°=Y, £L—-¢, +Y, £90°=(1/Z, £30°)+(1/Z, £—-90°)

The total impedance is Z £0°=(Z, £30°-Z, £—-90°)/(Z, £30°+ Z, £—-90°)

Any of the above values can be easily calculated, and then checked with those
obtained earlier. The phasor diagram is drawn in Fig. 16.3b.

Solution of Current in Series-parallel Circuit

Series-parallel circuit

The circuit, with a branch having impedance Z,, in series with two parallel branches

having impedances, Z, and Z, , shown in Fig. , , is connected to a single phase ac
supply.
The impedance of the branch, AB is Z,5 Z¢,s =2, £,
1 1
Y, L-py=——; Y. L~ =———
2 ¢2 22 4¢2 3 ¢3 Z3 Z¢3
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The admittance of the parallel branch, BC is
1 1
Yoo £— =Y, L—-¢,+Y, L— ¢, = +
BC ¢BC 2 ¢2 3 ¢3 Z2 4¢2 Z3 4¢3
The impedance of the parallel branch, BC is
1 ZZ Z¢2+Z3 4¢3 ZZ Z¢2 +Z3 Z¢3
Loc Ly = = =
Yoc £~ dec 2, 2¢, L5 Lo (Zzz3)é(¢2 +¢3)
The total impedance of the circuit is
Lpc £Pnc =Zpg £Pne +Loc LPsc =2 L+ Lge LPyc
The supply current is
V £0°
| Lo = —
Z AC Z ¢AC
The current in the impedance Z, is
Z2,/2¢
|, £¢, =1 L=, : :
(2,2¢,+2,2¢,)
Thus, the currents, along with the voltage drops, in all branches are calculated. The

phasor diagram cannot be drawn for this case now. This is best illustrated with the
following examples, where the complete phasor diagram will also be drawn in each case.

051
Fig. 16.3 (b) Phasor diagram

Example 16.4

Find the input voltage at 50 Hz to be applied to the circuit shown in Fig. 16.4a, such
that the current in the capacitor is 8 A?

—> 1,
Ri=5Q L;=255mH
—/\ \—000
I9 911 R3 =70 L3 =38.2 mH
Ae——p s VW\—000 —e B
—>|I,|=8A
At
2 318 uF

Fig. 16.4 (a) Circuit diagram
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Solution

f =50Hz w=27f=27x50=314.16 rad /s

L, =0.0255 H L, =0.0382 H C=318 uF =318-10° F

X, =wl, =31416x0.0255=8 Q X, =wl, =314.16x0.0382=12 Q

X, =1/(wC)=1/(314.16x318-10°) =10 Q |, 20°=8 £0°=(8+j0) A

Z,Z$ =R +jX, =(5+]8)=9.434,58 Q
Z,Z-¢,=R,—jX, =(8-j10)=12.806L—51.34° Q

Z, /¢, =R+ X, =(7T+ j12)=13.89£59°.74 Q

Ve Z—=¢,=1,20°-2, L—¢, =(8.0x12.806) £ —51.34° =102.45 £ —51.34° V

= (64— j80)V
V,. Z- .
|, £—6, =—£C 4, :(102 45) £ —(51.34° +58°) = 10.86 £ —109.34° A
Z, 24, 9.434

=(-3.6-]10.25) A

| £-6,=1£-6,+1,20°=—-(3.6+ j10.25)+(8.0+ J0.0) = (4.4 - j10.25)
=11.154£-66.77° A

Vg £=0g =12£-0,-Z, Lp, =(11.154%x13.89) £(—66.77° + 59.74°)
=154.93£-7.03° V =(153.764 - j18.96) V

Vg £—0,5 =Vpe £, +Vg £— 05 =(64.0— 80.0) +(153.764 — j18.96)
=(217.764 - j90.96) = 239.2 £ —24.44°V

The phasor diagram with the branch current, |, as reference, is shown in Fig. 16.4b.

Vo A\ 154.9V

VAD =102.45V
VAB =239.2

I, =10.86A 1L15A

Fig. 16.4 (b) Phasor diagram

Version 2 EE IIT, Kharagpur



Example 16.5

A resistor of 50 Q in parallel with an inductor of 30 mH, is connected in series with a
capacitor, C (Fig. 16.5a). A voltage of 220 V, 50 Hz is applied to the circuit. Find,

(a) the value of C to give unity power factor,

(b) the total current, and
(¢) the current in the inductor

R=50Q
VWA
D
A O—rt -—II—OB
C
00—
L=30mH
230V
I< 50 Hz >I
Fig. 16.5 (a) Circuit diagram
Solution
f =50 Hz w=2rnf=27x%x50=314.16 rad /s
R=50Q V=220V L=30mH =30-10"=0.03H

X, =owlL=31416x0.03=94.24 Q

The admittance, Y, is,

11 ] 1 .
Yoo = —F—— = — 1 =(20.0—j10.61)-107°
2 £~ o R jX, 50 j94.24 ( J )

=0.02264 £ —27.95° Q"'

The impedance, Z , is,

Lo LPpo =1/(Ypp £LPpp) =1/(0.02264 £ —27.95°) = 44.17 £27.95°

=(39.02+ j20.7) Q

The impedance of the branch (DB) is Z,; =—j X. =—][l/(@ C).

As the total current is at unity power factor (upf), the total impedance, Z,; is

resistive only.

2, Z0°=Rg+]J0=2,, LP,o +Zp5 £—90°=39.02+ j(20.7—-X_)
Equating the imaginary part, X, =1/(wC)=20.7 Q
The value of the capacitance C is,
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1 1
X, 314.16x20.7
S0, Z g £0° =R, + j0=(39.02+ j0.0) = 39.02 £0° Q

The total current is,
| £0°=V £0°/Z 5 £0°=(220.0/39.02) £0° =(5.64+ j0.0) =5.64 £0° A

The voltage, V,; is,
Vo Lopp =1 £0°-Z p LPpp =(5.64%x44.17) £27.95° =249.05 £27.95° V
=(220.0+ j116.73) V
The current in the inductor, |, is,
I, £6, =V p Lo/ X £90° =(249.05/94.24) £(27.95° -90°)
=2.64 £/ —-62.05° A=(1.24-2.335) A

=153.8-10"° =153.8 uF

The phasor diagram is shown in Fig. 16.5b.
Ir =4.98 249.0

28° ﬁ 116.7V
A (s
2 o Py

[L=2.64 A 116.7V 220V

(i) (ii)
Fig. 16.5 (b) Phasor diagram
Example 16.6

In the circuit (Fig. 16.6a) the wattmeter reads 960 W and the ammeter reads 6 A.
Calculate the values of Vg, V., I, 1,1 and X, .

Fig. 16.6 (a) Circuit diagram
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Solution

In this circuit, the power is consumed in two resistance, R, and R, only, but not

consumed in inductance L, and capacitance C. These two components affect only the
reactive power.

P =960 W I=6A R =10Q

R,=6Q X =8Q

Total poweris, P=1-R +1-R, =(6)*x10+6-1. =360+6-1} =960 W
or, 6-1. =960 —360 = 600 W

So, I, =4/600/6 =10 A
The impedance of the inductive branch is,
Z, =R, + X =(6+]8)=10£53.13°Q
The magnitude of the voltage in the inductive branch is,
Vg =Ve =1,-Z, =10x10=100V
Assuming V, =100£0° as reference, the current, | is,
L L—¢ =Vpg L0°/Z, Z¢ =(100/10) £—-53.13°=10£L-53.13° A=(6—j8) A
The current, 1, £90° = jl. =V, L0°/ X £-90°=(V /X_.)Z£90°
The total currentis | Lg=1 L—-¢ +1;290°=(6—-j8)+ jl. =6+ j(I; —8)
So, 1 =/(6)* +(1. —8)* =6 A
or, 36+ (I, —8)* =(6)> =36
So, I =8 A
The capacitive reactance is, X o =V /1. =100/8 =12.5 Q
The total current is | Z0°=(6+ j0)=6.20° A
or, it can be written as,
| £0°=1 ZL—-¢ +1.2£90°=(6-j8)+ j8=(6+]0)=6-L0°A
The voltage V ,; is.
Vo £0°=120°(R,+J0)=(I-R,) £0°=(6x10)£0°=60£0°=(60+ jO) V
The voltage, Vg =V, 1s.
Vs =V 5 £0°=V,; £0°+V; £0° = (60+100) £0°=160£0°=(160+ j0) V

The current, | is in phase with V¢, =V,; , and also V; .

The total impedance is,

Z,g £0°=27,, L0°+Z 5 £0°=V 5 £0°/1 £0°=(160/6) £0° = 26.67 £0°
=(26.67+]0.0) Q

The impedance, Z; is,

Zpg £0°=2,5 £0°—Z ,, £0° =V £0°/1 £0°=(100/6) £0° =16.67 £0°
=(16.67+j0.0) Q

Both the above impedances can be easily obtained using the circuit parameters by the
method given earlier, and then checked with the above values. The impedance, Z; can
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be obtained by the steps given in Example 16.3. The phasor diagram is shown in Fig.
16.6b.

8 A
60 V.
ASBXTe A 28 AB=160V (Vo)
I=6A D
8 A
53.13° A

Fig. 16.6 (b) Phasor diagram

Starting with the examples of parallel circuits, the solution of the current in the series-
parallel circuit, along with the examples, was taken up in this lesson. The problem of
resonance in series and parallel circuits will be discussed in the next lesson. This will
complete the module of single phase ac circuits
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Problems

16.1 Find the impedance, Z,, in the following circuits (Fig. 16.7a-b): (check with
admittance diagrams in complex plane)

2 1
1
P
jl ) jl
b e b e &
(@ (b)
Fig. 16.7

16.2 A resistor (R) of 50 Q in parallel with a capacitor (C) of 40 uF, is connected in
series with a pure inductor (L) of 30 mH to a 100 V, 50 Hz supply. Calculate the
total current and also the current in the capacitor. Draw the phasor diagram.

16.3 In a series-parallel circuit (Fig.16.8), the two parallel branches A and B, are in
series with the branch C. The impedances in Q are, Za = 5+j, Zg = 6-J8, and Z¢
= 10+j8. The voltage across the branch, C is (150+j0) V. Find the branch
currents, 15 and Ig, and the phase angle between them. Find also the input
voltage. Draw the phasor diagram.

16.4 A total current of 1A is drawn by the circuit (Fig.16.9) fed from an ac voltage, V
of 50 Hz. Find the input voltage. Draw the phasor diagram.

Za=(5+j6)Q
Zc=(10+i8) Q
p . —e R
Q
|<— —>I
Zs=(6-j8) Q 150 v
Fig. 16.8
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Ri=25Q

MWV
‘1’I= 1A
_"_
60 uF R,=30Q
L=50mH
Fig. 16.9
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Lesson
17

Resonance in Series
and Parallel Circuits
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In the last lesson, the following points were described:

1. How to compute the total impedance in parallel and series-parallel circuits?

2. How to solve for the current(s) in parallel and series-parallel circuits, fed from single
phase ac supply, and then draw complete phasor diagram?

3. How to find the power consumed in the circuits and also the different components,
and the power factor (lag/lead)?

In this lesson, the phenomenon of the resonance in series and parallel circuits, fed
from single phase variable frequency supply, is presented. Firstly, the conditions
necessary for resonance in the above circuits are derived. Then, the terms, such as
bandwidth and half power frequency, are described in detail. Some examples of the
resonance conditions in series and parallel circuits are presented in detail, along with the
respective phasor diagrams.

Keywords: Resonance, bandwidth, half power frequency, series and parallel circuits,

After going through this lesson, the students will be able to answer the following
questions;

1. How to derive the conditions for resonance in the series and parallel circuits, fed from
a single phase variable frequency supply?

2. How to compute the bandwidth and half power frequency, including power and
power factor under resonance condition, of the above circuits?

3. How to draw the complete phasor diagram under the resonance condition of the
above circuits, showing the currents and voltage drops in the different components?

Resonance in Series and Parallel Circuits

Series circuit

frequency

(®

B
Fig. 17.1 (a) Circuit diagram.

The circuit, with resistance R, inductance L, and a capacitor, C in series (Fig. 17.1a) is

connected to a single phase variable frequency ( f ) supply.
The total impedance of the circuit is
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. 1
Z/¢=R+jloL-——
p=rerif -]

where,

2
Z= [R2+(wL%J]; ¢=tan‘1M; w=2rxf

10} R

The current is

|4—¢:\;§; =(V/z)z-¢

\Y

where | = -
R+ (wL-(/oC) |

) o . ) 1
The current in the circuit is maximum, if w L = _C .
@

The frequency under the above condition is

f oD _ 1
° 2z 2zyLC

This condition under the magnitude of the current is maximum, or the magnitude of
the impedance is minimum, is called resonance. The frequency under this condition with

the constant values of inductance L, and capacitance C, is called resonant frequency. If
the capacitance is variable, and the frequency, f is kept constant, the value of the

capacitance needed to produce this condition is
1 1
'L 2z f)’L

The magnitude of the impedance under the above condition is |Z| =R, with the

reactance X =0, as the inductive reactance X, =@ L is equal to capacitive reactance
Xc. =1/@C . The phase angle is ¢ = 0°, and the power factor is unity (cos ¢ =1), which
means that the current is in phase with the input (supply) voltage.. So, the magnitude of
the current ( |(\/ /R) |) in the circuit is only limited by resistance, R. The phasor diagram
is shown in Fig. 17.1b.

The magnitude of the voltage drop in the inductance L/capacitance C (both are equal,
as the reactance are equal)is | -0, L=1-(1/®,C).

The magnification of the voltage drop as a ratio of the input (supply) voltage is

o, L 2zf L 1 |L

Q=g R R\C
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1(j.X,)
I('j Xc)
A H [ l
—_
I V5> Vs (LR)

Fig. 17.1 (b) Phasor Diagram

It is termed as Quality (Q) factor of the coil.

The impedance of the circuit with the constant values of inductance L, and capa-
citance C is minimum at resonant frequency ( f ), and increases as the frequency is
changed, i.e. increased or decreased, from the above frequency. The current is maximum
at f = f, and decreases as frequency is changed (f > f_,or f < f ), i.e. f = f . The

variation of current in the circuit having a known value of capacitance with a variable
frequency supply is shown in Fig. 17.2.

I;n=V/ R& -
:g - T small R
]
= o
O 5
=
=]
@)
L, _ 1V
V2 2R : |
fi fo f
51 fo B —
frequency (f) frequency
(@) (b)

Fig. 17.2 Variation of current under variable frequency supply

The maximum value of the current is (V /R). If the magnitude of the current is
reduced to (1/ V2 ) of its maximum value, the power consumed in R will be half of that
with the maximum current, as power is |°R. So, these points are termed as half power
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points. If the two frequencies are taken as f, and f,, where f =f,—Af/2 and
f, = f, + Af /2 , the band width being given by Af = f, — f, .
The magnitude of the impedance with the two frequencies is

2 12
Z =|R>+| 27(f, £+ Af /2)L - !
2z(f, £Af/2)C

As (27 f,L=1/27 f,C) and the ratio (Af /2 f;) is small, the magnitude of the

reactance of the circuit at these frequencies is X = X, (Af / f;). As the current is

(1/ V2 ) of its maximum value, the magnitude of the impedance is (\/5 ) of its minimum
value (R) at resonant frequency.

So, Z =+/2-R = [R? + (X, (Af / fo))zﬁ
From the above, it can be obtained that (Af / f,)X , =R
_Rf, Rf, R
' X, 2rxf,L 2xL
The band width is given by Af = f, — f, =R/(2z L)
It can be observed that, to improve the quality factor (Q) of a coil, it must be designed
to have its resistance, R as low as possible. This also results in reduction of band width

and losses (for same value of current). But if the resistance, R cannot be decreased, then
Q will decrease, and also both band width and losses will increase.

or Af =f, - f

Example 17.1

A constant voltage of frequency, 1 MHz is applied to a lossy inductor (r in series with
L), in series with a variable capacitor, C (Fig. 17.3). The current drawn is maximum,

when C = 400 pF; while current is reduced to (1/ V2 ) of the above value, when C = 450
pF. Find the values of r and L. Calculate also the quality factor of the coil, and the
bandwidth.

R L
VVWA—000
+
<O #
T c
f=1MHz
Fig. 17.3 Circuit diagram
Solution
f=1MHz=10°Hz o=2rxf C =400 pF =400-107° F
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l..=V/r as X =X, X, = ! = 61 — =398 Q
27zfC  27-10°%x400-10

X =Xc=272fL=398Q L= 398'06263.34/1H
27x-10

]
C, =450 pF X, == =353.7Q
: P 27 109%450-107"

ZZp=r+j(X —Xe)=r+]j(398.0-353.7)=(r+ j44.3) Q
e VOV Vv

N2 N2er 2 74y
From above, V2r= \r? +(44.3) or 2r> =r* +(44.3)’

or r =443 Q

The quality factor of the coil is Q = X = % =8.984

The band with is S

Af =f,—f = ' 44.3 44.3 =0.1113-10° = 0.1113 MHz

27l 27x6334-10° 398-10°
~1113-10° = 111.3 kHz

Parallel circuit

The circuit, with resistance R, inductance L, and a capacitor, C in parallel (Fig. 17.4a)
is connected to a single phase variable frequency ( f ) supply.

The total admittance of the circuit is

—> 1
0)
+ ‘LIL \LIC

e 3 g T,

frequency

(D B

Fig. 17.4 (a) Circuit diagram.

1 1
Y=+ j|lwc-—
¢ R+J(a) a)Lj

where,
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2
Y = Ler a)C—L ; ¢=tan”'| R a)C—L ; o=2rf
R ol ol

The impedanceis ZZ£—-¢=1/Y L¢

The current is
| £Lp=V £0°Y Lp=N -Y)Lp=NV L0°/Z2L—-¢p=N/2Z)L¢

2
where, | =V LZ+ a)C—L
R ol

The current in the circuit is minimum, if ®C = ——

ol
The frequency under the above condition is
. ®, 1
° 2z 2rLC
+
I=1; (V/ R)
0)
1)
I (V/(5X.))

v I (V/GX L))

Fig. 17.4 (b) Phasor Diagram

This condition under which the magnitude of the total (supply) current is minimum,
or the magnitude of the admittance is minimum (which means that the impedance is
maximum), is called resonance. It may be noted that, for parallel circuit, the current or
admittance is minimum (the impedance being maximum), while for series circuit, the
current is maximum (the impedance being minimum). The frequency under this condition
with the constant values of inductance L, and capacitance C, is called resonant frequency.
If the capacitance is variable, and the frequency, f is kept constant, the value of the
capacitance needed to produce this condition is

1 1

T o'l Q)L

The magnitude of the impedance under the above condition is (|Z| =R), while the

magnitude of the admittance is (|Y| =G =(1/R)). The reactive part of the admittance is
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B=0, as the susceptance (inductive)B, =(1/@wL) is equal to the susceptance
(capacitive) B, =wC. The phase angle is ¢ =0°, and the power factor is unity
(cos ¢ =1). The total (supply) current is phase with the input voltage. So, the magnitude
of the total current ( |(V /R) |) in the circuit is only limited by resistance R. The phasor
diagram is shown in Fig. 17.4b.

The magnitude of the current in the inductance, L / capacitance, C (both are equal, as
the reactance are equal), is V (1/@,L) =V -@,C . This may be termed as the circulating
current in the circuit with only inductance and capacitance, the magnitude of which is

C

1= lef=v, [

substituting the value of @, =27z f,. This circulating current is smaller in magnitude
than the input current or the current in the resistance as »,C = (1/o,L) > R.

The input current increases as the frequency is changed, i.e. increased or decreased
from the resonant frequency (f > f ,or f < f ),ie. f = f,.

In the two cases of series and parallel circuits described earlier, all components,
including the inductance, are assumed to be ideal, which means that the inductance is
lossless, having no resistance. But, in actual case, specially with an iron-cored choke coil,
normally a resistance r is assumed to be in series with the inductance L, to take care of
the winding resistance and also the iron loss in the core. In an air-cored coil, the winding
resistance may be small and no loss occurs in the air core.

An iron-cored choke coil is connected in parallel to capacitance, and the combination
is fed to an ac supply (Fig. 17.5a).

—_— |

+ R \1, —L‘l’IC
@ L Te

Fig. 17.5 (a) Circuit diagram.

The total admittance of the circuit is
r—jolL
r+jolL r’+o’l’
If the magnitude of the admittance is to be minimum, then
ol L
0C=————or C=—

r’+w?l? r’+o’l®

+ joC

The frequency is
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w 1 |[L ,

T
This is the resonant frequency. The total admittance is Y £0° = m
The total impedance is Z £0° = r2+—f)2|_2
The total (input) current is
1 20o= Y20 v s00.v 200 = (MJAO" =(V-Y)Z£0° =%
7 /0° Z r+o°L

This current is at unity power factor with ¢ = 0°. The total current can be written as
1 £0°=1+jO=1_Z—¢ +jl.=1_cos g +j(I sing —1I)

So, the conditionis |, =1 sing,

Vv ol

where | =L=V -0C ; || =—/—m———; sing, =—=

From the above, the condition, as given earlier, can be obtained.

The total currentis | =1, cos¢,

The value, as given here, can be easily obtained. The phasor diagram is shown in Fig.
17.5b. It may also be noted that the magnitude of the total current is minimum, while the
magnitude of the impedance is maximum.

I D A/
A —>
o,
Ic
I
B

Fig. 17.5 (b) Phasor Diagram

Example 17.2

A coil, having a resistance of 15 Q and an inductance of 0.75 H, is connected in
series with a capacitor (Fig. 17.6a. The circuit draws maximum current, when a voltage
of 200 V at 50 Hz is applied. A second capacitor is then connected in parallel to the
circuit (Fig. 17.6b). What should be its value, such that the combination acts like a non-
inductive resistance, with the same voltage (200 V) at 100 Hz? Calculate also the current
drawn by the two circuits.
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+

_l’_
V=200V -, V=200V T &

fi = 50Hz f, = 100Hz

Fig. 17.6 (a) Circuit diagram Fig. 17.6 (b) Circuit diagram

Solution
f, =50 Hz V=200V R=15Q L=0.75H
From the condition of resonance at 50 Hz in the series circuit,
X,=oL=27fL=X; = ! = !
oC, 2rfC,
1 1
So, C, = = =13.5-10° =13.5 uF

2z f, )L (27-50) x0.75
The maximum current drawn from the supply is, I, =V /R =200/15=13.33 A
f, =100 Hz w, =27 f,=27-100=6283 rad/s
X, =2zt L=27-100-0.75=471.24 Q

1 1

e = f.C = 2210013510

7 1,C, V4 .
Z,Z¢, =R+ j(X,, =X, )=15+ j(471.24-117.8) =15+ j353.44
=353.75/87.57° Q

1 1 ~ 1

Z, /¢ 15+ j353.44 353.75./87.57°
=(0.12- j2.824)-107° Q™
Y,=1/Z, = J(a)2 Cz)

=117.8.Q

Y, L ¢, = =2.827-107 £ -87.57°

As the combination is resistive in nature, the total admittance is
YZ0°=Y +jO0=Y,+Y, =(0.12- j2.824)-10" + jw, C,
From the above expression, @, C, = 628.3-C, =2.824-10
2.824-107
628.3
The total admittanceis Y =0.12-107 Q™'
The total impedance is Z =1/Y =1/(0.12-107 ) =8.33-10° Q = 8.33 kQ
The total current drawn from the supply is

or, C, = =4.5-10"° =4.5uF
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I =V.Y =V/Z=200x0.12-10" =0.024 A=24-10" =24 mA
The phasor diagram for the circuit (Fig. 17.6b) is shown in Fig. 17.6c.

I
b1 = 87.6° 2

I

Fig. 17.6 (c) Phasor diagram

The condition for resonance in both series and parallel circuits fed from single phase
ac supply is described. It is shown that the current drawn from the supply is at unity
power factor (upf) in both cases. The value of the capacitor needed for resonant condition
with a constant frequency supply, and the resonant frequency with constant value of
capacitance, have been derived. Also taken up is the case of a lossy inductance coil in
parallel with a capacitor under variable frequency supply, where the total current will be
at upf. The quality factor of the coil and the bandwidth of the series circuit with known
value of capacitance have been determined. This is the final lesson in this module of
single phase ac circuits. In the next module, the circuits fed from three phase ac supply
will be described.
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Problems

17.1

17.2

17.3

b)

A coil having a resistance of 20 Q and inductance of 20 mH, in series with a
capacitor is fed from a constant voltage variable frequency supply. The maximum
current is 10 A at 100 Hz. Find the two cut-off frequencies, when the current is
0.71 A.

With the ac voltage source in the circuit shown in Fig. 17.7 operating a frequency
of f, it was found that [ =1.0 £0° A. When the source frequency was doubled (2f),
the current became [ =0.707 £ —45° A. Find:

a) The frequency f, and

b) The inductance L, and also the reactances, X; and Xc at 2f

For the circuit shown in Fig. 17.8,

Find the resonant frequency fy, if R = 250 Q, and also calculate Qq (quality
factor), BW (band width) in Hz, and lower and upper cut-off frequencies (f; and
f;) of the circuit.

Suppose it was desired to increase the selectivity, so that BW was 65 Hz. What
value of R would accomplish this?

R=100Q L
100 £0°V —
C=0.01 uF
Fig. 17.7
Inductor
R coil
YW — ¥
' 150 O I L:= 12H
I I
I+ I '
I
Vo : : Rij=200 Q
— ] - ] I — S |
11
C=033 uF
Fig. 17.8
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17.4 (a) For the circuit shown in Fig. 17.9, show that the circulating current is given by
V.4/C/L, if R is small and V is the input voltage.

(b) Find the total current at
(1) resonant frequency, fy, and
(i1) at a frequency, f; = 0.9 f;.

17.5  The circuit components of a parallel circuit shown in Fig. 17.10 are R = 60 kQ, L
= 5mH, and C = 50 pF. Find
a) the resonant frequency, fo,
b) the quality factor, Qo, and
c) the bandwidth.

I
=1 S
- R . +
v T v C/\D % 1
, R L+
Fig. 17.9 l

Fig. 17.10
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Lesson
18

Three-phase Balanced
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In the module, containing six lessons (12-17), the study of circuits, consisting of the
linear elements — resistance, inductance and capacitance, fed from single-phase ac supply,
has been presented. In this module, which may also be termed as an extension of the
previous one, containing three lessons (18-20), the solution of currents in the balanced
circuits, fed from three-phase ac supply, along with the measurement of power, will be
described.

In this (first) lesson of this module, the generation of three-phase balanced voltages is
taken up first. Then, the two types of connections (star and delta), normally used for the
above supply, followed by line and phase quantities (voltages and currents) for the
connections, in both supply and load sides (both being balanced), are described.

Keywords: Three-phase balanced voltage, star- and delta-connections, balanced load.

After going through this lesson, the students will be able to answer the following
questions:

1. How to generate three-phase balanced voltages?

2. What are the two types of connections (star and delta) normally used for three-phase
balanced supply?

3. What are meant by the terms — line and phase quantities (voltages and currents), for
the two types of connections in both supply and load sides (both being balanced)?

Generation of Three-phase Balanced Voltages

In the first lesson (No. 12) of the previous module, the generation of single-phase
voltage, using a multi-turn coil placed inside a magnet, was described. It may be noted
that, the scheme shown was a schematic one, whereas in a machine, the windings are
distributed in number of slots. Same would be the case with a normal three-phase
generator. Three windings, with equal no. of turns in each one, are used, so as to obtain
equal voltage in magnitude in all three phases. Also to obtain a balanced three-phase
voltage, the windings are to be placed at an electrical angle of 120° with each other, such
that the voltages in each phase are also at an angle of 120° with each other, which will be
described in the next section. The schematic diagram with multi-turn coils, as was shown
earlier in Fig. 12.1 for a single-phase one, placed at angle of 120° with each other, in a
2-pole configuration, is shown in Fig. 18.1a. The waveforms in each of the three
windings (R, Y & B), are also shown in Fig. 18.1b. The windings are in the stator, with
the poles shown in the rotor, which is rotating at a synchronous speed of N, (r/min, or

rpm), to obtain a frequency of f = ((p- NS)/IZO) (Hz), pbeing no. of poles [ p=2]
(see lesson no. 12).

Version 2 EE IIT, Kharagpur



Fig. 18.1 (a) Schematic diagram of three windings of stator for the
generation of three phased balanced voltage (2-pole rotor).

Three-phase Voltages for Star Connection

Vi Vix Vi

240°3 300 3607

Fig. 18.1 (b)Three-phase balanced voltage waveforms with
the source star-connected (the phase sequence, R-Y-B)

The connection diagram of a star (Y)-connected three-phase system is shown in Fig.
18.2a, along with phasor representation of the voltages (Fig. 18.2b). These are in conti-
nuation of the figures 18.1a-b. Three windings for three phases are R (+) & R’(-),Y (+)
& Y’(-), and B (+) & Y’(-). Taking the winding of one phase, say phase R as an
example, then R with sign (+) is taken as start, and R’ with sign (—) is taken as finish.
Same is the case with two other phases. For making star (Y)-connection, R’, Y’ & B’ are
connected together, and the point is taken as neutral, N. Three phase voltages are:

€y = E,SIN G ; ey = E,sin (0 -120°);

€y = E, 5in (0 —240°) = E_ sin (6 +120°)
It may be noted that, if the voltage in phase R (€&, ) is taken as reference as stated earlier,
then the voltage in phase Y(e,, ) lags ez, by 120°, and the voltage in phase B( &g, ) lags
ey by 120°, or leads ey by 120°. The phasors are given as:
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Egy £0°=E(1.0+ j0.0): E,, Z—120°=E (-0.5— j0.866);
Egy £ +120°=E (—0.5+ j0.866).

Ern
J+_R
L+
) R
R
(a)
-VrN Vin Vry
ViR -Vyn
30°
120°
30°
120 /1 200 Vin
30°
Vyn
-Vin
Vys

(b)

Fig. 18.2 (a) Three-phase balanced voltages, with the source
star-connected (the phase sequence, R-Y-B)
(b) Phasor diagram of the line and phase voltages

The phase voltages are all equal in magnitude, but only differ in phase. This is also
shown in Fig. 18.2b. The relationship between Eand E_ isE=E_/ V2. The phase

sequence is R-Y-B. It can be observed from Fig. 18.1b that the voltage in phase Y attains
the maximum value, after € =@ -t =120° from the time or angle, after the voltage in
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phase R attains the maximum value, and then the voltage in phase B attains the maximum
value. The angle of lag or lead from the reference phase, R is stated earlier.

Reversal of phase sequence from R-Y-B to R-B-Y

If the phase sequence is reversed from R-Y-B to R-B-Y, the waveforms and the
corresponding phasor diagram are shown in figures 18.3 (a-b) respectively. It can be
observed from Fig. 18.3a that the voltage in phase B attains the maximum value, after
60 =120° from the time (or angle), after the voltage in phase R attains the maximum
value, and then the voltage in phase Y attains the maximum value. The angle of lag or
lead from the reference phase, R is stated earlier. The same sequence is observed in the
phasor diagram (Fig. 18.3b), when the phase sequence is reversed to R-B-Y.

v Van Vs Vin

v

1:

=Y

()
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AVys

Vyn
30°
120°
Vrn
30° 60°
120°
30° Ve
Vs
Vex Vry
(b)

Fig. 18.3 (a) Three-phase balanced voltage waveforms with the source star-connected (the
phase sequence, R-B-Y)
(b) Phasor diagram of the line and phase voltages

Relation between the Phase and Line Voltages for Star
Connection

Three line voltages (Fig. 18.4) are obtained by the following procedure. The line
voltage, E., is

Eqy =Epy —Ey =EZ0°—EZ£-120°=E[(1+ jO)—(-0.5— j0.866)]

= E(1.5+ j0.866) = +/3 E £30°
The magnitude of the line voltage, E, is /3 times the magnitude of the phase voltage
Erv,and Eg, leads Egy by 30°. Same is the case with other two line voltages as shown
in brief (the steps can easily be derived by the procedure given earlier).

Eys = Eyy — Egy = E£—120°— EZ+120° = +/3E £ —90°

Eay = Egy — Egy = E £ +120°— E£0° = +/3E £ +150°

So, the three line voltages are balanced, with their magnitudes being equal, and the phase
angle being displaced from each other in sequence by 120°. Also, the line voltage, say
E., , leads the corresponding phase voltage, E, by 30°
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Relation between the Phase and Line Voltages for Delta
Connection

The connection diagram of a delta ( A )-connected three-phase system is shown in Fig.
18.4a, along with phasor representation of the voltages (Fig. 18.4b). For making delta
(A)-connection, the start of one winding is connected to the finish of the next one in
sequence, for instance, starting from phase R, R’ is to connected to Y, and then Y’ to B,
and so on (Fig. 18.4a). The line and phase voltages are the same in this case, and are

given as

e R
.Y
e B
(a)
EBR
120°
120° >
1200 ERY
EYB
(b)

Fig. 18.4 (a) Three-phase balanced voltages, with the source delta-connected
(the phase sequence, R-Y-B)

(b) Phasor diagram of the line and phase voltages

Eo =EZ0°;  E, =E/-120°; Eg =EZ+120°
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If the phasor sum of the above three phase (or line) voltages are taken, the result is zero
(0). The phase or line voltages form a balanced one, with their magnitudes being equal,
and the phase being displaced from each other in sequence by 120°.

Currents for Circuit with Balanced Load (Star-connected)

—) IRN

%N

YYN ’

(b)
Fig. 18.5 (a) Circuit diagram for a three-phase balanced star-connected load
(b) Phasor diagram of the phase voltages, and the line & phase currents

A three-phase star (Y)-connected balanced load (Fig. 18.5a) is fed from a balanced
three-phase supply, which may be a three-wire one. A balanced load means that, the

Zp‘ :|ZRN'| :|ZYN'| :|ZBN'

angle is also same, as ¢, = gy, = Py = @y - In other words, if the impedance per phase

magnitude of the impedance per phase, is same, i.e., , and their

is given as,Z, /¢, =R, +jX,, then R =Ry, =Ry =Ry, and also
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X, =Xy = Xy = Xgy - The magnitude and phase angle of the impedance per phase
are: Z, =,/R;+X_ ,and ¢, =tan™' (X o/ Rp). For balanced load, the magnitudes of the

phase Voltages,’\/p‘ = [\/RN,| = [\/YN,| = [\/BN,| are same, as those of the source voltages per

phase IVRN | = [VYN| = [VBN

the point N’ , star point on the load side is same as the star point, N of the load side. The
phase currents (Fig. 18.5b) are obtained as,
Ven £0° Vg

, if it 1s connected in star, as given earlier. So, this means that,

l oy £, = = L—¢
™ P Zew L0y Zay °
V.. £—-120° V.
Ly £—(120°+¢,) = Y; ~ =M /-(120°+4,)
YN’ ¢p ZYN'

Vou £4120°_ Vou 005
ZBN'4¢p ZBN' P

In this case, the phase voltage, V,, is taken as reference. This shows that the phase

len 4(1200_¢p) =

currents are equal in magnitude, i.e., ( ), as the magnitudes of the

Ip‘ = |IRN'| =|IYN’| = |IBN'
voltage and load impedance, per phase, are same, with their phase angles displaced from
each other in sequence by 120°. The magnitude of the phase currents, is expressed as

=[ly|=|1g]), in

‘I p‘ = ‘(\/p /ZPX. These phase currents are also line currents (|IL| =|IR

this case.

Total Power Consumed in the Circuit (Star-connected)

In the lesson No. 14 of the previous module, the power consumed in a circuit fed
from a single-phase supply was presented. Using the same expression for the above star-
connected balanced circuit, fed from three-phase supply (Fig. 18.4a-b), the power
consumed per phase is given by

W, =V, -1, -cos ¢, =V, -1, -cos (V,, 1)

It has been shown earlier that the magnitude of the phase voltage is given by
NP‘ = [\/L|/ NE) , where the magnitude of the line voltage is [\/L| The magnitudes of the

phase and line current are same, i.e., |l p‘ = |I L| . Substituting the two expressions, the total

power consumed is obtained as

W =3-(v, /\3)-1, -cos g, =3V, -1, -cos ¢,
Please note that the phase angle, ¢, is the angle between the phase voltage V , and the
phase current, | ;.

Before taking up an example, the formulas for conversion from delta-connected
circuit to its star equivalent and vice versa (conversion from star to delta connection)

using impedances, and also ideal inductances/capacitances, are presented here, starting
with circuits with resistances, as derived in lesson #6 on dc circuits.
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Delta(A)-Star(Y) conversion and Star-Delta conversion

Before taking up the examples, the formula for Delta( A )-Star(Y ) conversion and
also Star-Delta conversion, using impedances as needed, instead of resistance as
elements, which is given in lesson #6 in the module on DC circuit, are presented. The
formulas for delta-star conversion, using resistances (Fig. 18.6), are,

a
Iy
¢
(a) (b)
Fig. 18.6: Resistances connected (a) in delta, and (b) in star configurations
— Rz R3 R = R3 Rl R = Rl Rz
® R +R,+R, ® R +R,+R, ° R +R,+R,

The formulas for delta-star conversion, using resistance, are,
R.R.,  R,R,+RR +RR,

R =R, +R, + ) R

R R R.R +R R . +R.R
R22R0+Ra+ c 'a _ ab+ bc+ c ' ‘a

Rb Rb

R.R R.R, +R R.+RR
R3:Ra+Rb+ ab: ab+ Ik;c+ c ‘a

C C
The derivation of these formulas is given in lesson #6. If three equal resistances

(R, =R, =R; =R) connected in delta, are converted into its equivalent star, the
resistances obtained are equal, its value being R, =R, =R, =(R/3)=R’, which is
derived using formulas given earlier. Similarly, if three equal resistances connected in
star, are converted into its equivalent delta, the resultant resistances, using formulas, are
equal (R, =R, =R, =3-R"=3-(R/3)=R).

The formula for the above conversions using impedances, instead of resistances, are
same, replacing resistances by impedances, as the formula for series and parallel
combination using impedances, instead of resistances, remain same as shown in the
previous module on ac single phase circuits.
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ib)
Fig. 18.7: Impedances connected (a) in delta, and (b) in star configurations

The formulas for delta-star conversion, using impedances (Fig. 18.7), are,
— ZZ Z3 Z — ZS Z1 Z — Zl ZZ
tZ,+2,+2Z, *Z,+2,+12, © Z,+Z,+Z,
The formulas for delta-star conversion, using impedance, are,
Z,Z, Z,Z,+Z,Z . +ZZ,

L, =L, +Z + a 2

L, L, +Z2, .. +7Z.7Z
ZZZZC+Za+ c—a _ ~a b+ b c+ c™a

Zb Zb

2,2, L2, ., +72, .. +7.7Z
Z3:Za+Zb+ a™b _ ~a b+;c+ c™a

C C
Please note that all the impedances used in the formula given here are complex
quantities, like Z, Z¢,, -+, Z, Z¢,,---, having both magnitude and angle as given. The
formulas can be derived by the same procedure as given in lesson #6.
An example is taken up, when three equal impedances connected in delta are to be
converted into its equivalent star. The impedances are equal, both in magnitude and

angle, such that |Zl| = |Zz| = |Z3| = |Z ,and ¢, =¢, =@, = ¢ . The impedances connected
in delta are of the form Z Z/¢ =R+ j X . Using the formula given here, the impedances
of the star equivalent are also equal, having the magnitude as

|Za| = |Zb| = |Zb| = (|Z|/3) = |Z'| and angleas ¢, =@, =@, =¢.

The angles of the equivalent impedance connected in star are equal to the angles of the

impedances connected in delta. The impedances connected in delta are also equal, both in
magnitude and angle, and are of the form Z' £¢ =(Z/3) L =(R/3)x j(X /3).

Similarly, if three equal impedances connected in star are converted into its equivalent
delta, the magnitude and angle of the impedances using the formulas given here, are

|Zl| = |Zz| = |Z3| =3-1Z') :|Z| and ¢, =¢, = ¢, = ¢ respectively. This shows that three
impedances are equal, both in magnitude and angle, with its value being
2/p=03-2")Y24¢=[3-(R/3)]xj[3-(X/3)]=RxjX

which can also be obtained simply from the result given earlier.
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(a) (b)
Fig. 18.8: Inductances (ideal) connected (a) in delta, and (b} in star configurations

Now, let us use the above formula for the circuits (Fig. 18.8), using inductances only.
The symbols used for the inductances are same (L, -+, L, ,---). The impedances of the

inductances connected in delta, are computed as Z, Z¢, =0.0+ joL, = X, £90°, the

angles in three cases are 90°. The magnitudes of the impedances are proportional to the
respective inductances as|Zl| = X, « L,. Converting the combination into its equivalent

star, the inductances using the formulas given here, are
__bL L T T S

L+l L, "L+l +L, ©L+L o+l
These relations can also be derived. Further, these are of the same form, as has been
earlier obtained for resistances. It may be observed here that the formulas for series and
parallel combination using inductances, instead of resistances, remain same, as shown in
the previous module on ac single phase circuits, and also can be derived from first
principles, such as relationship of induced emf in terms of inductance, as compared with
Ohm’s law for resistance. The inductances are all ideal, i.e. lossless, having no resistive
component. The formulas for star-delta conversion using inductances (conversion of star-
connected inductances into its equivalent delta) are,

L,L. LL, +L L +L.L,

L =L, +L + =

1 b c La La

L=l +L + Ll,  Lb,+L L +LL,
Lb Lb

L=L,+L,+ Lby _ Lok + le_Lc *LL,

C
These are of the same form as derived for circuits with resistances.

If three equal inductances (L, =L, =L, = L) connected in delta, are converted into

C

its equivalent star, the inductances obtained are equal, its value being
L, =L, =L, =(L/3)=L", which is derived using formulas given earlier. Similarly, if
three equal inductances connected in star, are converted into its equivalent delta, the

resultant inductances, using formulas, are equal (L, =L, =L, =3-L"=3-(L/3)=L).
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Fig. 18.9: Capacitances connected (a) in delta, and (b) in star configurations

The formulas for the circuits (Fig. 18.9) using capacitances are derived here. The
symbols used for the capacitances are same (C,, -, C,,---). The impedances of the

inductances connected in delta, are computed as Z, Z¢, =0.0— jX. = X, £-90°, the
angles in three cases are (—90°). The magnitudes of the impedances are inversely
proportional to the respective capacitances as, |Zl| =X =X, =1/owC) < (1/C)).

Converting the combination into its equivalent star, the resultant capacitances using the
formulas given here, are

e, - 1/C,)1/Cy)
* 1/C,+1/C, +1/C,
or C. :C1C2+C2C3+C3C1 =C2+C3+CZC3
C, C,
Similarly,
Cb:C3+C1+C3C1 :C1C2+C2C3+C3C1
CZ C2
CC=C1+C2+C1C2 :C1C2+C2C3+C3C1
C3 C3

The capacitances in this case are all ideal, without any loss, specially at power
frequency, which is true in nearly all cases, except otherwise stated. The formulas for
star-delta conversion using capacitances (conversion of star-connected capacitances into
its equivalent delta) are,

_(/CHA/CH)+(A/CHA/CH+(1/CHA/C,)

1/C, =
1/C,
or C1=—CbCC
C,+C,+C,
Similarly,
* C,+C,+C, *C,+C, +C,

If three equal capacitances (C, =C, = C, = C) connected in delta, are converted into
its equivalent star, the capacitances obtained are equal, its value being
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C,=C,=C,=(3-C)=C’, which is derived using formulas given earlier. Similarly, if
three equal capacitances connected in star, are converted into its equivalent delta, the
resultant capacitances, using formulas, are equal (C, =C, =C, =C'/3=(3-C)/3=C).

The formulas for conversion of three equal inductances/capacitances connected in
delta into its equivalent star and vice versa (star-delta conversion) can also be obtained
from the formulas using impedances as shown earlier, only by replacing inductance with
impedance, and for capacitance by replacing it reciprocal of impedance (in both cases
using magnitude of impedance only, as the angles are equal (90° for inductance and

—90° for capacitance). Another point to note is left for observation by the reader. Please
have a close look at the formulas needed for delta-star conversion and vice versa (star-
delta conversion) for capacitances, including those with equal values of capacitances, and
then compare them with the formulas needed for such conversion using
resistances/inductances (may be impedances also). The rules for conversion of
capacitances in series/parallel into its equivalent one can be compared to the rules for
conversion of resistances/inductances in series/parallel into its equivalent one.

The reader is referred to the comments given after the example 18.1.

Example 18.1

The star-connected load consists of a resistance of 15 €, in series with a coil having
resistance of 5 (2, and inductance of 0.2 H, per phase. It is connected in parallel with the
delta-connected load having capacitance of 90 uF per phase (Fig. 18.10a). Both the
loads being balanced, and fed from a three-phase, 400 V, 50 Hz, balanced supply, with
the phase sequence as R-Y-B. Find the line current, power factor, total power & reactive
VA, and also total volt-amperes (VA).

- |
R

—_ Iy
Y

—>IB
B

()
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B

(b)

Fig. 18.10 (a) Circuit diagram (Example 18.1)
(b) Equivalent balanced star-connected circuit

Solution
f =50 Hz w=2rf=2x7x50=314.16 rad /s
For the balanced star-connected load, R=15Q
For the inductance coil, r =5 Q X, =wlL=314.16x0.2=62.83 Q

with the above values taken per phase.

The impedance per phase is,

Z, =R+(r+ X )=15+(5+]62.83)=(20+ 62.83) =65.94 £72.34° Q)
For the balanced delta-connected load, C =90 uF

Converting the above load into its equivalent star, C, =C/3=90/3 =30 uF

Xey =1/0wC, =1/(314.16x30x107°) =106.1 Q
The impedance per phase is Z, = —j106.1 =106.1£—-90°

In the equivalent circuit for the load (Fig. 18.10b), the two impedances, Z, & Z, are

in parallel. So, the total admittance per phase is,

Yp:Yl+Y2’:L+L,: ! + !
Z, Z, 6594/+72.34° 106.1£-90°

=0.01517 £ —72.34°+0.009425 £ + 90° = [(4.6 — j14.46) + j9.425]x107

=(4.6-j5.03)x107° =0.006816 £ —47.56° Q"

The total impedance per phase is,

Z,=1/Y, =1/(0.006816 £ —47.56°) =146.71 £ +47.56°=(99.0+ j108.27) Q

The phasor diagram is shown in Fig. 18.10c.
Taking the phase voltage, V;, as reference,

Ven| =Ny| =V | /43 =400/43 =231.0 V
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VYN IRN

Fig. 18.10 (c) Phasor diagram

The phase voltages are,
Vey =231.0£0° 5 V,,, =231.0£-120°; Vg, =231.0L£+120°
So, the phase current, |, is,
~Vaw . 231.0 £L0°
™z, 14671 £+47.56°
The two other phase currents are,
Iy =1.5752£-167.56° ; ley =1.5752£+72.44°

As the total circuit (Fig. 18.5b) is taken as star-connected, the line and phase currents
I =]1,|=1.575 A
Also, the phase angle of the total impedance is positive.

So, the power factor is cos ¢, = cos 47.56° = 0.675 lag

The total volt-amperes is S =3-V, -1/ =3x231x1.575=1.0915 kVA

The total VA is also obtained as S =~/3-V, -1, =+/3x400x1.575=1.0915 kVA
The total poweris P=3-V -1 -cos ¢, =3x231x1.575x0.675=T737 W

The total reactive volt-amperes is,
Q=3-V,-I,-sin ¢, =3x231x1.575xsin 47.56° =805 VAR

=1.575 £ —47.56° = (1.0625— j1.162) A

are same, i.€.,

This example can be solved by converting the star-connected part into its equivalent
delta, as shown in Example 19.1 (next lesson). A simple example (20.1) of a balanced
star-connected load is also given in the last lesson (#20) of this module.

After starting with the generation of three-phase balanced voltage system, the phase
and line voltages, both being balanced, first for star-connection, and then for delta-
connection (both on source side), are discussed. The currents (both phase and line) for
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balanced star-connected load, along with total power consumed, are also described in this
lesson. An example is given in detail. In the next lesson, the currents (both phase and
line) for balanced delta-connected load will be presented.
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Problems

18.1 A balance load of (16+j12)Q per phase, connected in star, is fed from a three-
phase, 230V supply. Find the line current, power factor, total power, reactive VA
and total VA.

18.2  Find the three voltages Van, Vin, & Ve, in the circuit shown in Fig. 18.11. The
circuit components are: R =10 Q, jX; =j17.3 Q.
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In the previous (first) lesson of this module, the two types of connections (star and delta),
normally used for the three-phase balanced supply in source side, along with the line and
phase voltages, are described. Then, for balanced star-connected load, the phase and line
currents, along with the expression for total power, are obtained. In this lesson, the phase
and line currents for balanced delta-connected load, along with the expression for total
power, will be presented.

Keywords: line and phase currents, star- and delta-connections, balanced load.

After going through this lesson, the students will be able to answer the following
guestions:

1. How to calculate the currents (line and phase), for the delta-connected balanced load
fed from a three-phase balanced system?

2. Also how to find the total power fed to the above balanced load, for the two types of
load connections — star and delta?

Currents for Circuits with Balanced Load (Delta-connected)

—2> I,
L

!

Vi

R

> VRry

Vvs

(b)
Fig. 19.1 (a) Balanced delta-connected load fed from a three-phase balanced

supply
(b) Phasor diagram
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A three-phase delta (A )-connected balanced load (Fig. 19.1a) is fed from a balanced
three-phase supply. A balanced load means that, the magnitude of the impedance per

phase, is same, i.e., |Z,|=|Zg|=|Zys|=|Zs|, and their angle is also same, as
P, = Pry =y =Pgr- In other words, if the impedance per phase is given as,
Z,Z¢, =R, +]X,, then R, =Rgp =Ry =Ry, and also X =Xg, =X, = Xz
The magnitude and phase angle of the impedance per phase are: Z = \/W and
P, = tan’l(X o/ Rp).ln this case, the magnitudes of the phase voltages ’Vp‘ are same, as

those of the line voltages V| =g |=Mg|=Ng|. The phase currents (Fig. 19.1b) are
obtained as,

g Ve L Ve,
" P ZRY 4¢p ZRY P
V, £-120° V.

=8/ _(120°+4,)
ZYB 4¢p ZYB P

Ve £+120° _ Vi £(120°— 4,)

ZBR Z¢p ZBR P
In this case, the phase voltage, V., is taken as reference. This shows that the phase
currents are equal in magnitude, i.e., (‘Ip‘:|IRY|:|IYB|:|IBR|), as the magnitudes of the

voltage and load impedance, per phase, are same, with their phase angles displaced from
each other in sequence by 120°. The magnitude of the phase currents, is expressed as

l=[v,/2,).

The line currents (Fig. 19.1b) are given as

lx £=0p =gy —lgg =1, 2(-¢,) -1, £(120°~¢) =\/§Ip Z-[30°+¢,)

=1, £-(30°+4¢,)

Iy £-6, =l —lg =1,2-(120°+¢,) -1, 4(—¢p):\/§lp Z—-(150°+¢,)

=1, £-(150°+4,)

lg £=05 =lgg =g =1, 2(120°~¢) -1, £-(120°+¢,) :\/§Ip Z(90°-¢,)

=1,.Z£(90°~-¢,)
The line currents are balanced, as their magnitudes are same and+/3 times the
magnitudes of the phase currents (|I L| = \/§~‘I p‘), with the phase angles displaced from
each other in sequence by 120°. Also to note that the line current, say I, lags the
corresponding phase current, 1., by 30°.

If the phase current, I, is taken as reference, the phase currents are

ley £0°=1,(1.0+j0.0): lyg £-120°=1 (0.5~ j0.866);

lgr £+120°=1, (-0.5+ jO.866).

The line currents are obtained as

lyg £~ (120°+¢,) =~

l e £(120°— ¢p) =
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ly= Loy £0°— g, £ +120° = 1 {(L.O+ j0.0)— (—0.5+ j0.866)} = I , (1.5~ j 0.866)
—31,/-30°=1, /-30°

Iy =1,y £—120°— I, £0°=1 {(~0.5- j0.866) - (1.0+ j0.0)} =—I (L5+ j0.866)
—\31, /-150°=1, £ -150°

Iy = lgy £+120°— 1, £ —120° = 1 {(~0.5+ j 0.866)— (—0.5— j0.866)}
=1,(j1.732) =+/31, £+90° =1, £ +90°

Total Power Consumed in the Circuit (Delta-connected)

In the last lesson (No. 18), the equation for the power consumed in a star-connected
balanced circuit fed from a three-phase supply, was presented. The power consumed per
phase, for the delta-connected balanced circuit, is given by

W, =V, -1, -cos ¢, =V, -1, -cos V1)
It has been shown earlier that the magnitudes of the phase and line voltages are same, i.e.,
[\/p‘ = [\/L| The magnitude of the phase current is (1/\/5) times the magnitude of the line
current, i.e., ‘I p‘ = ([I L|/\/§). Substituting the two expressions, the total power consumed

is obtained as
W =3V, (1, /3)-cos g, =3V, -1, -cos ¢,

It may be observed that the phase angle, ¢, is the angle between the phase voltage
V., and the phase current, 1. Also that the expression for the total power in a three-
phase balanced circuit is the same, whatever be the type of connection — star or delta.

Example 19.1

The star-connected load having impedance of (12— j16) Q per phase is connected in
parallel with the delta-connected load having impedance of (27 + j18) Q per phase (Fig.

19.2a), with both the loads being balanced, and fed from a three-phase, 230 V, balanced
supply, with the phase sequence as R-Y-B. Find the line current, power factor, total
power & reactive VA, and also total volt-amperes (VA).

Re

—bIR

Z, = (27-j18) Q

Z, = (12-]16) Q
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- IR Zl = 321
Z
Y e
— IY P IRY
Zz Z2
\I IBR’
z, e z,
B g
(b)

TIBN(IB)

Vvs

(©)

Fig. 19.2 (a) Circuit diagram (Example 19.1)
(b) Equivalent circuit (delta-connected)
(c) Phasor diagram

Version 2 EE 1T, Kharagpur



Solution

For the balanced star-connected load, the impedance per phase is,

Z,=(12- j16) =20.0 £ -53.13° Q

The above load is converted into its equivalent delta. The impedance per phase is,
Z,=3-7Z,=3x(12-j16) = (36— j48) =60.0 £ -53.13° Q

For the balanced delta-connected load, the impedance per phase is,

Z,=(27+ j18) =32.45 £ +33.69° Q

In the equivalent circuit for the load (Fig. 19.2b), the two impedances, Z; & Z, are

in parallel. So, the total admittance per phase is,

, 1 1 1 1
Yo=Y +Y, =—+-—= +
Z Z, 60.0£-53.13° 32.45/+33.69°

=0.0167 £ +53.13°+0.03082 £ - 33.69°

=[(0.01+ j0.01333) + (0.02564 — j0.017094)] = (0.03564 — j 0.003761)

=0.03584 £ -6.024° Q!

The total impedance per phase is,

Z,=1/Y, =1/(0.03584 £/ —6.024°) = 27.902 £ +6.024° = (27.748 + j 2.928) Q

The phasor diagram is shown in Fig. 19.2c.

Taking the line voltage, V,, as reference, V., =230 £0° V

The other two line voltages are,

Vs =230 £-120°; Vg =230 +120°

For the equivalent delta-connected load, the line and phase voltages are same.

So, the phase current, I, is,
Vi 230.0 £0°

Y7z 27.902 £ +6.024°

The two F;Jther phase currents are,

l,g =8.243 £-126.024° ; l g =8.243 £ +113.976°

The magnitude of the line current is /3 times the magnitude of the phase current.
So, the line current is |1, | = v/3-[1,| =/3x8.243=14.277 A

The line current, 1, lags the corresponding phase current, 1., by 30°.

So, the line current, | is |, =14.277 £ —-36.024° A

The other two line currents are,
I, =14.277 £ -156.024° ; I, =14.277 £ +83.976°

Also, the phase angle of the total impedance is positive.
So, the power factor is cos ¢, = cos 6.024° = 0.9945 lag

The total volt-amperes is S =3-V, -1/ =3x230x8.243=5.688 kVA
The total VA is also obtained as S =+/3-V, -1, =~/3x230x14.277 = 5.688 kVA
The total poweris P =3-V -1 -cos ¢, =3x230x8.243x0.9945=5.657 kW

The total reactive volt-amperes is,
Q=3-V, -1, -sin ¢, =3x230x8.243xsin6.024° =597.5 VAR

=8.243 £ —6.024° = (8.198 - j 0.8651) A
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An alternative method, by converting the delta-connected part into its equivalent star
is given, as shown earlier in Ex. 18.1.
For the balanced star-connected load, the impedance per phase is,
Z,=(12-j16) =20.0 £ -53.13° Q
For the balanced delta-connected load, the impedance per phase is,
Z ,=(27+ j18) =32.45 £ +33.69° Q
Converting the above load into its equivalent star, the impedance per phase is,
Z,=2,13=(27+j18)/3=(9+ j6)=10.817 £ +33.69° Q
In the equivalent circuit for the load, the two impedances, Z, & Z, are in parallel.
So, the total admittance per phase is,
Yp:Y1+Y2'=i+i= ! + 1
Z, Z, 20.0£-53.13° 10.817«£+33.69°
=0.052+53.13°+0.09245 ~ — 33.69° =[(0.03 + j0.04) + (0.0769 — j0.05128)]

=(0.1069 - j0.01128) = 0.1075 £ -6.0235° Q"
The total impedance per phase is,
Z,=1/Y, =1/(0.10752 - 6.0235°) = 9.3023 £ +6.0235° = (9251 + j0.976) Q

The phasor diagram is shown in Fig. 18.5c. The magnitude of the phase voltage is,

Ven| =N,| = V.| /3 =230/3=1328 V

The line voltage, V., is taken as reference as given earlier. The corresponding phase

voltage, V, lags V,, by 30°. So, the phase voltage, Vg, is Vg, =132.8 £-30°

The phase current, I, is,
Ve 1328 £-30°

"N 7 03023 £ +6.0235°

p
As the total load is taken as star-connected, the line and phase currents are same, in
this case. The phase angle of the total impedance is positive, with is value as
¢ =6.0235° . The power factor is cos 6.0235° = 0.9945 lag

The total volt-amperes is S =3-V, -1, =3x132.8x14.276 =5.688 kVA
The remaining steps are not given, as they are same as shown earlier.

=14.276 £—-36.0235° A
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Example 19.2

A balanced delta-connected load with impedance per phase of (16 — j12) Q shown in
Fig. 19.34, is fed from a three-phase, 200 V balanced supply with phase sequence as A-
B-C. Find the voltages, V,, ,V,. & V., and show that they (voltages) are balanced.

ca’

(b

Fig. 19.3 (a) Circuit diagram (Example 19.2)
(b) Phasor diagram
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Solution
R,=16Q ; X,=120Q
Zuo=2,=R —jXg,=16-j12=20 £/ ~36.87° Q
For delta-connected load, |V, | = M‘ =200 V

Taking the line or phase voltage V,; as reference, the line or phase voltages are,
V,s =200 £0°; Vg, =200 £-120°; V., =200 £+120°

The phasor diagram is shown in Fig. 19.3b. The phase current, I ,; is,

| e =Vias /Z, =(200 £0°)/(20 £ —36.87°)=10.0 £ +36.87°=(8.0+ j6.0) A
The other two phase currents are,

l;c =10.0 £-83.13°=(1.196 - j9.928) A

I, =10.0 £+156.87° =(-9.196 + j3.928) A

The voltage, V,, is,

Vo =Vap + Ve, = (=] XCp)' e + Rp “lec

= (12x10) £(36.87° —90°) + (16 x10) £ —83.13° =120 £ — 53.13° + 160 £ — 83.13°
=(72.0- j96.0) + (19.14 — j158.85) = (91.14 — j 254.85) = 270.66 L —70.32° V
Alternatively,

V,, =(—J12)x(8.0+ j6.0) +16x (1.196 — j9.928) = (91.14 — j 254.85)

=270.66 £ —70.32° V

Similarly, the voltage, V,, is,

Vbc :VbC +VCC = (_J XCp)' IBC + Rp ’ ICA

=(12x10) £ —(83.13° +90°) + (16 x10) £156.87° =120 ~ —173.13° + 160 £156.87°
=—(119.14 + j14.35) + (—147.14 + j62.85) = (—266.28 + j48.5)

=270.66 £ +169.68 V

In the same way, the voltage, V., is obtained as V_, = 270.66 £ + 49.68° V

The steps are not shown here.

The three voltages, as computed, are equal in magnitude, and also at phase difference
of 120° with each other in sequence. So, the three voltages can be termed as balanced
ones.

A simple example (20.3) of a balanced delta-connected load is given in the following
lesson

The phase and line currents for a delta-connected balanced load, fed from a three-
phase supply, along with the total power consumed, are discussed in this lesson. Also
some worked out problems (examples) are presented. In the next lesson, the
measurement of power in three-phase circuits, both balanced and unbalanced, will be
described.
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Problems

191

19.2

A balanced load of (9-j6) Q per phase, connected in delta, is fed from a three
phase, 100V supply. Find the line current, power factor, total power, reactive VA
and total VA.

Three star-connected impedances, Z; = (8-jb) Q per phase, are connected in
parallel with three delta-connected impedances, Z, = (30+j15) Q per phase, across

a three-phase 230V supply. Find the line current, total power factor, total power,
reactive VA, and total VA.
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Lesson
20

Measurement of Power
in a Three-phase Circuit
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In the previous lesson, the phase and line currents for balanced delta-connected load fed
from a three-phase supply, along with the expression for total power, are presented. In
this lesson, the measurement of total power in a three-phase circuit, both balanced and
unbalanced, is discussed. The connection diagram for two-wattmeter method, along with
the relevant phasor diagram for balanced load, is described.

Keywords: power measurement, two-wattmeter method, balanced and unbalanced loads,
star- and delta-connections.

After going through this lesson, the students will be able to answer the following
questions:

1. How to connect the two-wattmeter to measure the total power in a three-phase circuit
— both balanced and unbalanced?

2. Also how to find the power factor for the case of the above balanced load, from the
reading of the two-wattmeter, for the two types of connections — star and delta?

Two-wattmeter Method of Power Measurement in a Three-
phase Circuit

Wi

|——— ="

> Irn'

Fig. 20.1 Connection diagram for two-wattmeter method of power measurement
in a three-phase balanced system with star-connected load

The connection diagram for the measurement of power in a three-phase circuit using
two wattmeters, is given in Fig. 20.1. This is irrespective of the circuit connection — star
or delta. The circuit may be taken as unbalanced one, balanced type being only a special
case. Please note the connection of the two wattmeters. The current coils of the
wattmeters, 1 & 2, are in series with the two phases, R & B, with the pressure or voltage
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coils being connected across R—Y and B-Y respectively. Y is the third phase, in
which no current coil is connected.

If star-connected circuit is taken as an example, the total instantaneous power
consumed in the circuit is,

W =gy -V + Iy -V + gy - Vaye

Each of the terms in the above expression is the instantaneous power consumed for
the phases. From the connection diagram, the current in, and the voltage across the
respective (current, and pressure or voltage) coils in the wattmeter, W, are iy, and

Viay =Vey — Vi - S0, the instantaneous power measured by the wattmeter, W, is,
W, =lgy *Vay = lpy- '(VRN' _VYN’)
Similarly, the instantaneous power measured by the wattmeter, W, is,
W, =lgy - Vgy = lgy- '(VBN' _VYN’)
The sum of the two readings as given above is,
W1 +W2 = g '(VRN' _VYN')+ len: '(VBN' _VYN'): Trne * Ven Tlene * Vanr = Y '('RN' + IBN')
Since, iy +iyy +igy =0 or, P (S

Substituting the above expression for iy, in the earlier one,

Wi +W, = lgy - Vew + gy Ve + i -V
If this expression is compared with the earlier expression for the total instantaneous
power consumed in the circuit, they are found to be the same. So, it can be concluded that
the sum of the two wattmeter readings is the total power consumed in the three-phase
circuit, assumed here as a star-connected one. This may also be easily proved for delta-

connected circuit. As no other condition is imposed, the circuit can be taken as an
unbalanced one, the balanced type being only a special case, as stated earlier.
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Phasor diagram for a three-phase balanced star-connected
circuit

VBY
A
®-30° Vry
v
BN ’ IBN

Vys

v
Fig. 20.2 Phasor diagram for two-wattmeter method of power measurement
in a three-phase system with balanced star-connected load

The phasor diagram using the two-wattmeter method, for a three-phase balanced star-
connected circuit is shown in Fig. 20.2. Please refer to the phasor diagrams shown in the
figures 18.4 &18.6b. As given in lesson No. 18, the phase currents lags the respective
phase voltages by ¢ =g, the angle of the load impedance per phase. The angle, ¢ is

taken as positive for inductive load. Also the neutral point on the load (N') is same as
the neutral point on the source (N ), if it is assumed to be connected in star. The voltage
at that point is zero (0).

The reading of the first wattmeter is,

W, =V - Loy €08 (Viy, Tan ) =Vay - lry -cos(30°+¢)):\/§-vp 1, -c0s(30°+ @)

The reading of the second wattmeter is,

W, =Vgy - lay €05 (Viy s Iy ) =Vay - Loy -cos(30°—(p):\/§-vp 1, -c0s(30° - )
The line voltage, V,, leads the respective phase voltage, V., by 30°, and the phase
voltage, V., leads the phase current, |, by ¢. So, the phase difference between Vy, &

lgy 1S (30° + ¢) Similarly, the phase difference between V;, & 1, in the second case,
can be found and also checked from the phasor diagram.
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The sum of the two wattmeter readings is,
W, +W, = x/g-Vp 1, -[cos(30° + @)+ cos(30° - p)] = \/g-Vp 1, -2-c0830°-cos¢
=3V, 1, -cos¢:\/§-VL -1 -cos¢g

So, (W, +W,) is equal to the total power consumed by the balanced load.

This method is also valid for balanced delta-connected load, and can be easily obtained.
The phasor diagram for this case is shown in the example No. 20.2.

Determination of power factor for the balanced load
The difference of the two wattmeter readings is,
W, -W, = \/E-Vp 1, [cos (30° — @) - cos (30° + )] = \/g-Vp 1, -2-sin30°-sin ¢
:\/E-Vp-lp -sin ¢
If the two sides is multiplied by NE) , we get
V3-(W, —=W,)=3-V, -1, -sin g =+/3-V_-I_-sin ¢

From the two expressions, we get,

W, -W -

#=L-tan¢ or, ¢=tan" |3 W, =Wy

W, +W, 43 W, +W,

The power factor, cos¢ of the balanced load can be obtained as given here, using two

wattmeter readings.

cosgo L _ 1 _ 1

o] e

W
where, y=—"
2
The two relations, cos¢ and sin ¢ can also be found as,

W +W, W, +W, and sin¢:W2 _
\/E'VL'IL 3Vl Vil \/§.Vp-|p

Comments on Two Wattmeter Readings

cos¢@ =

When the balanced load is only resistive (¢ = 0°), i.e. power factor (cos¢ =1.0), the
readings of the two wattmeters (W, =W, oc cos30° = 0.866(+Ve) ), are equal and positive.

Before taking the case of purely reactive (inductive/capacitive) load, let us take first
lagging power factor as (cos¢ = 0.5), i.e. ¢ =+60°. Under this condition,

W, =0.0, as W, o« cos (30°+60°) = cos 90°= 0.0, and
W, oc cos(30° - 60°) = cos30° = 0.866 (+Ve) is positive.
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load lag

Fig. 20.3 Variation of the readings of two wattmeters (W, & W, )
with power factor for a balanced load for the circuit of Fig. 20.1

It may be noted that the magnitudes of the phase or line voltage and also phase current
are assumed to be constant, which means that the magnitude of the load impedance
(inductive) is constant, but the angle, ¢ varies as stated.

As the lagging power factor decreases from 1.0 to 0.5, with ¢ increasing from 0° to
+60°, the reading of the first wattmeter, W, decreases from a certain positive value to
zero (0). But the reading of the second wattmeter, W, increases from a certain positive

value to positive maximum, as the lagging power factor is decreased from 1.0 to
0.866 (= cos30°), with ¢ increasing from 0° to +30°. As the lagging power factor

decreases from 0.866 to 0.5, with ¢ increasing from +30° to +60°, the reading of the
second wattmeter, W, decreases from positive maximum to a certain positive value. It
may be noted that, in all these cases, W, >W, , with both the readings being positive.

If the lagging power factor is 0.0 (¢ =+90°), the circuit being purely inductive, the
readings of the two wattmeters (W, = -W, oc cos(30°+90°) = cos120° =—-0.5) are equal
and opposite, i.e., W, is negative and W, is positive. The total power consumed is zero,

being the sum of the two wattmeter readings, as the circuit is purely inductive. This
means that, as the lagging power decreases from 0.5 to 0.0, with ¢ increasing from + 60°

to +90°, the reading of the first wattmeter, W, decreases from zero (0) to a certain
negative value, while the reading of the second wattmeter, W, decreases from a certain

positive value to lower positive one. It may be noted that [\N2| > [\N, , which means that

the total power consumed, i.e., (W, +W,) is positive, with only W, being negative. The

variation of two wattmeter readings as stated earlier, with change in power factor (or
phase angle) is now summarized in Table 20.1. The power factor [pf] (=cos¢) is taken

as lagging, the phase current lagging the phase voltage by the angle, ¢ (taken as positive

(+ve)), as shown for balanced star-connected load in Fig. 20.2. The circuit is shown in
Fig. 20.1. All these are also valid for balanced delta-connected load.
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Sl. Power factor [pf] Wattmeter Remarks
No. | (Phase angle) readings (W)
Wl WZ

1. pf = unity [1.0]| +ve +ve | W, =W,
(p=0°)

2. 0.5<pf<1.0 +ve +ve |W, >W,
(60°>¢>0°)

3. pf=0.5 +ve zero | Total power = W,
($=60°) (0.0)

4. 10.0<pf<0.5 +ve -ve | W,|>W,]| (Total
(90°>¢>60°) power = +ve)

5. | pf = zero [0.0] tve | -ve | W,|=W,| (Total
(¢=90°) power = zero (0.0))

Table 20.1 Variation of two wattmeter readings with change in power factor of
the load current

It may be noted that, if the power factor is leading (¢ = negative (-ve)), the circuit
being capacitive, the readings of the two wattmeters change with the readings
interchanging, i.e.,W, taking the value of W, , and vice versa. All the points as stated

earlier, remain valid, with the comments as given earlier. The first one (#1) in Table 20.1
is a special case, neither lagging, nor leading, with pf = 1.0. But in second one (#2), both
readings remain +ve, with W, <W, . Same is the case in fourth one (#4), where W, is —ve

and W, is +ve, with [\Nl| < [\N2| , total power being positive (+ve). For third case (#3), W,
=0.0 and W, is +ve, with total power =W, . For last (fifth) case (#5), W, is —ve and W, is
+ve, with [W,| =|W,

, total power being zero (0.0).

Power measurement using one wattmeter only for a balanced load

> Ipn'

B @

Fig. 20.4 Connection diagram for power measurement
using only one wattmeter in a three-phase system

with balanced star-connected load
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I Iry w

B

Fig. 20.5 Connection diagram for power measurement using only
one wattmeter in a three-phase system with balanced
delta-connected load

The circuit diagram for measuring power for a balanced three-phase load is shown in
Fig. 20.3. The only assumption made is that, either the neutral point on the load or source
side is available. The wattmeter measures the power consumed for one phase only, and
the reading is W =V -1 -cos ¢ . The total power is three times the above reading, as the

circuit is balanced. So, the load must be star-connected and of course balanced one, with
the load neutral point being available. The load may also be delta-connected balanced
one, if the neutral pinpoint on the source side is available. Otherwise for measuring total
power for delta-connected balanced load using one wattmeter only, the connection
diagram is given in Fig. 20.4. The wattmeter as stated earlier, measures power for one
phase only, with the total power consumed may be obtained by multiplying it by three.

Example 20.1

Calculate the readings of the two wattmeters (W, & W,) connected to measure the

total power for a balanced star-connected load shown in Fig. 20.6a, fed from a three-
phase, 400 V balanced supply with phase sequence as R-Y-B. The load impedance per
phase is (20 + j15) Q. Also find the line and phase currents, power factor, total power,

total reactive VA and total VA.
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Y
B
Vey
A
Ver Vex ®-30° Vry

Vys
(b)

Fig. 20.6 (a) Circuit diagram for a three-phase system with balanced star-
connected load (Example 20.1)
(b) Phasor diagram
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Solution
V.| =400 Vv Zoy=Z,=20+(15=252+36.87° Q
As the star-connected load is balanced, the magnitude of the phase voltage is,
M, =V /33 = 400/ =231
Taking the phase voltage, V;, as reference, the phase voltages are,
Vey =231 £0°; Vo =231 £-120°; Vgy =231 £+120°
The phasor diagram is shown in Fig. 20.6b. It has been shown that the line voltage,
V., leads the corresponding phase voltage, Vi, by 30°. So, the line voltages are,

Vg =400 £+30°; Vg =400 £-90°; Vgr =400 £+150°

For a star-connected load, the phase and the line currents are same.

The current in R-phase is,
len =g =Veu /2, =(231.0 £0°)/(25.0 £ +36.87°)=9.24 £ -36.87° A

=(7.39-j5.54) A
Two other phase and line currents are,
Iy =1, =924 £-156.87° A ; g =1;,=9.24 £+83.13° A

The power factor of the load is cos ¢ = cos 36.87° = 0.8 lagging, with ¢ = +36.87°,
as the load is inductive.

Total VA=3-V, -1, =3x231.0x9.24 = 6.403 kVA

This can be taken as v/3 -V, - I, =+/3x400x9.24 = 6.403 kVA

Total power=3-V -1 -cos ¢ =3x231.0x9.24x0.8 =5.123 kW

Total reactive VA=3-V -1 -sin ¢ =3x231.0x9.24 xsin 36.87° = 3.842 kVAR

The readings of the two wattmeters are,
W, =Vg, - I5 -cos (30°+ ¢) =400x9.24 x cos 66.87° =1.45 kW

The phase angle between Vi, and | is 66.87° , obtained using two phasors.
W, =Vg, - 15 -cos (30°—¢) =400x9.24 x cos 6.87° =3.67 kW
The phase angle between Vg, and 1, is 6.87°, obtained using two phasors, where

Vg, =400 £+90°.
The sum of two readings is (1.45+3.67) =5.12 kW, which is same as the total power
computed earlier

Example 20.2

Calculate the readings of the wattmeter (W) connected as shown in Fig. 20.7a. The
load is the same, as in Fig. 20.7a (Ex. 20.1), i.e., balanced star-connected one, with
impedance of (20 + j15) Q per phase, fed from a three-phase, 400 V, balanced supply,

with the phase sequence as R-Y-B.
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I I
R i i "0'6‘ T Balanced
| | star-
| connected
load as in
Fig. 20.6(a)
B

(@)
Vry

Irn

v Vys
(b)

Fig. 20.7 (a) Circuit diagram (Example 20.2)
(b) Phasor diagram

Solution

The steps are not repeated here, but taken from previous example (20.1).
The phasor diagram is shown in Fig. 20.7b.
The phase voltage, V;, is taken as reference as in Ex. 20.1.

The phase current, |, is I, =9.24 £-36.87° A
The phase angle, ¢ of the load impedance is ¢ = +36.87°
The line voltage, Vg, is Vg, =400£+30° V
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The line voltage, Vg is Vg =4002£-90° V

The reading of the wattmeter (W) is,

W =Vig - lgy -cos(Vyg, Iy ) ==V -1, -c0os(90° + ¢) = —\/§~Vp 1, -sing
=-400x9.24 xsin36.87° =-2.218 kW

The value is negative, as the load is inductive.

The reading (W) is 1//3 =0.577 times the total reactive power as,

3V, -1, sing =3V, -1_-sing ,

or /3 times the reactive power per phase.
Example 20.3

Calculate the readings of the two wattmeters (W, & W,) connected to measure the
total power for a balanced delta-connected load shown in Fig. 20.8a, fed from a three-
phase, 200 V balanced supply with phase sequence as R-Y-B. The load impedance per
phase is(14 — j14) Q2. Also find the line and phase currents, power factor, total power,
total reactive VA and total VA.

-> Iy

Xc=14Q/R=14Q
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Vir Vay

(b)

Fig. 20.8 (a) Circuit diagram for a three-phase system with balanced delta-
connected load (Example 20.3)
(b) Phasor diagram

Solution
Zey=Z,=14-]j14=19.8 £-45° Q
For delta-connected load, [\/L| = Np‘ =200 V

Taking the line or phase voltage V, as reference, the line or phase voltages are,

Vey =200 £0°; Vg =200 £-120°; Vg =200 £+120°

The phasor diagram is shown in Fig. 20.8b. The phase current, |, is,

Iy =Vey /Z, =(200.0 £0°)/(19.8£ - 45°)=10.1 £ +45°=(7.142+ [7.142) A

The other two phase currents are,

Iy =101 Z-75°A; 1, =10.1 £+165° A

The power factor of the load is cos ¢ = cos 45°=0.707 leading, with ¢ =—-45° | as
the load is capacitive.

As the phase currents are balanced, the magnitude of the line current is /3 times the
magnitude of the phase current, and the value is

He|=V3 |l |=43x10.1=17.5 A

It has been shown that the line current, |, lags the corresponding phase current, |,
by 30°.

So, the line currents are,

s =1g —lgr =10.1 £+45°-10.1 £+165°=17.5 £L+15° A

I, =l =l =175 Z=105° A ; Iy =1lg—ly, =17.5 £ +135° A
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The procedure is only presented, with the steps given in brief.

Total VA=3-V -1, =3x200.0x10.1=6.06 kVA

This can be taken as v/3 -V, -1, =/3x200x17.5 =6.06 kVA

Total power=3-V -1 -cos ¢=3x200.0x10.1x0.707 = 4.285 kW

Total reactive VA=3-V -1 -sin ¢ =3x200.0x10.1xsin 45.° = 4.285 kVAR

The readings of the two wattmeters are,

W, =Vg, - 15 -cos (30°+¢) =200x17.5x cos(—15°) =3.38 kW

The phase angle between Vi, and | is 15° , obtained using two phasors.

W, =V, - l5 -cos (30°—¢) =200x17.5xcos75°=0.906 kW

The phase angle between Vg, andl; is 75°, obtained using two phasors, where
Vg, =200 £+60°.

The sum of two readings is (3.38+0.906) = 4.286 kW, which is same as the total
power computed earlier

Alternatively, the phase current, |, can be taken as reference, with the corres-
ponding phase voltage, V., leading the current by the angle of the load impedance,
¢ =45°. So, the phase current and voltage are,

Iy =10.1 £0° A5 Vg =15, L0°-Z ) Z$ =(10.1x19.8) £45° =200 £45° V

Two other phase currents and voltages are,

lg =10.1 £-120° ; lgr =10.1 £+120°

Vg =200 £-75°; Vg, =200 £+165°

The line current, | is,

I =1z — g =10.1 L0°-10.1 £+120°=17.5 £+30° A

Two other line currents are,

I, =175 £-90° ; 1z =175 £+150°

The other steps are not shown here. The readers are requested to study the previous
lesson (No. 19) in this module.

The measurement of power using two wattmeters for load (unbalanced or balanced),

fed from a balanced three-phase supply, is discussed in this lesson. Also presented are the
readings of the two wattmeters for balanced load, along with the determination of the
load power factor from the two readings, and some comments on the way, the two
readings vary with change in power factor of the load, with the magnitude of the load
impedance remaining constant. Some examples are also described here. This is the last
lesson in this module (No.5). In the next module (No.6) consisting of two lessons (no. 21-
22) only, the discussion on magnetic circuits will be taken up.

20.1 Calculate the reading of the two wattmeter’s (W;, and W5) connected to measure

the power for a balanced three-phase load as given in the following. The supply
voltage is 200V and the phase.
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i. The connections of the wattmeter, W; — current coil is in phase R, and the voltage
coil is across R and Y

ii. The connections of the wattmeter, W, — current coil is in phase B, and the voltage
coil is across B and Y

Draw the phasor diagram

a. star- connected balanced load with (9-j5) Q per phase
b. delta-connected balanced load with (14+j14) Q per phase.
20.2  The two wattmeter reading for a balanced three-phase load, are 300W and 100W

respectively with the watt meter as given in Prob 20.1. Calculate the total power,
the line current, the power factor, and also the reactive VA.

20.3 A balanced delta-connected load with 50Q per phase (Fig. 20.9), is fed from a
three-phase 200V supply. Find the reading of the wattmeter.

R

Fig. 20.9
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21.1

Goals of the lesson

In this lesson, we shall acquaint the reader, primarily with the basic concepts of magnetic circuit
and methods of solving it. Biot-Savart law for calculating magnetic field due to a known current
distribution although fundamental and general in nature, requires an integration to be evaluated
which sometimes become an uphill task. Fortunately, due to the specific nature of the problem,
Ampere’s circuital law (much easier to apply) is adopted for calculating field in the core of a
magnetic circuit. You will also understand the importance of B-H curve of a magnetic material
and its use. The concept and analysis of linear and non linear magnetic circuit will be explained.
The lesson will conclude with some worked out examples.

Key Words: mmf, flux, flux density, mean length, permeability, reluctance.

After going through this section students will be able to answer the following questions.

1.

2
3.
4
5

10.

What is a magnetic circuit?

What are linear and non linear magnetic circuits?

What information about the core is necessary for solving linear magnetic circuit?

What information about the core is necessary for solving non linear magnetic circuit?
How to identify better magnetic material from the B-H characteristics of several
materials?

What should be done in order to reverse the direction of the field within the core?

What assumption is made to assume that the flux density remains constant throughout the
section of the core?

What is the expression for energy stored in the air gap of a magnetic circuit?

Enumerate applications of magnetic circuit.

Is the core of a magnetic material to be laminated when the exciting current is d.c?

They will also be able to do the following:

How to translate a given magnetic circuit into its electrical equivalent circuit.
How to draw B-H curve of a given material from the data supplied and how to use it for
solving problem.

How to solve various kinds of problems involving magnetic circuits.
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21.2 Introduction

Before really starting, let us look at some magnetic circuits shown in the following figures.

Tl\l\ b r\?

Figure 21.1: Figure 21.2: Figure 21.3:

All of them have a magnetic material of regular geometric shape called core. A coil
having a number of turns (= N) of conducting material (say copper) are wound over the core.
This coil is called the exciting coil. When no current flows through the coil, we don’t expect any
magnetic field or lines of forces to be present inside the core. However in presence of current in
the coil, magnetic flux ¢ will be produced within the core. The strength of the flux, it will be
shown, depends on the product of number of turns (N) of the coil and the current (i) it carries.
The quantity Ni called mmf (magnetomotive force) can be thought as the cause in order to
produce an effect in the form of flux ¢ within the core. Is it not somewhat similar to an electrical
circuit problem where a voltage (emf) is applied (cause) and a current is produced (effect) in the
circuit? Hence the term magnetic circuit is used in relation to producing flux in the core by
applying mmf (= Ni). We shall see more similarities between an electrical circuit and a magnetic
circuit in due course as we go along further. At this point you may just note that a magnetic
circuit may be as simple as shown in figure 21.1 with a single core and a single coil or as
complex as having different core materials, air gap and multiple exciting coils as in figure 21.2.
After going through this lesson you will be able to do the following.

to distinguish between a linear and non linear magnetic circuit.
to draw the equivalent electrical circuit for a given magnetic circuit problem.

. to calculate mean lengths of various flux paths.

1
2
3
4. to calculate the reluctances of the various flux paths for /inear magnetic circuit problem.
5. tounderstand the importance of B-H characteristics of different materials.

6

. how to deal with a non linear magnetic circuit problem using B-H characteristic of the

materials.
21.3 Different laws for calculating magnetic field
21.3.1 Biot-Savart law

We know that any current carrying conductor produces a magnetic field. A magnetic field R is

characterized either by / , the magnetic field intensity or by B , the magnetic flux density vector.
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These two vectors are connected by a rather simple relation:B=pu,u H; where

U, =47 x107 H/m is called the absolute permeability of free space and ., a dimensionless

quantity called the relative permeability of a medium (or a material). For example the value of
u, 1s 1 for free space or could be several thousands in case of ferromagnetic materials.

ﬁ
Biot-Savart law is of fundamental in nature and tells us how to calculate dB or dH ata

given point with position vector 7 , due to an elemental current id/ and is given by:

d_)B: /u01ur ldl ;( r
4 r
If the shape and dimensions of the conductor carrying current is known then field at given point
can be calculated by integrating the RHS of the above equation.

> i c?l X 7:

B=%%I 3
iy length 4

where, length indicates that the integration is to be carried out over the length of the conductor.

However, it is often not easy to evaluate the integral for calculating field at any point due to any

arbitrary shaped conductor. One gets a nice closed form solution for few cases such as:

1. Straight conductor carries current and to calculate field at a distance d from the
conductor.

2. Circular coil carries current and to calculate field at a point situated on the axis of the
coil.

21.3.2 Ampere’s circuital law

This law states that line integral of the vector H along any arbitrary closed path is equal to the
current enclosed by the path. Mathematically:

pa-d=1
For certain problems particularly in magnetic circuit problems Ampere’s circuital law is used to
calculate field instead of the more fundamental Biot Savart law for reasons going to be explained
below. Consider an infinite straight conductor carrying current i and we want to calculate field at
a point situated at a distance d from the conductor. Now take the closed path to be a circle of
radius d. At any point on the circle the magnitude of field strength will be constant and direction
of the field will be tangential. Thus LHS of the above equation simply becomes H x 27d. So
field strength is

H= LA/ m

2nd

It should be noted that in arriving at the final result no integration is required and it is obtained
rather quickly. However, one has to choose a suitable path looking at the distribution of the

current and arguing that the magnitude of the field remains constant through out the path before
applying this law with advantage.
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21.3.3 Application of Ampere’s circuital law in magnetic circuit

Ampere’s circuital law is quite handy in determining field strength within a core of a magnetic
material. Due to application of mmf, the tiny dipole magnets of the core are aligned one after the
other in a somewhat disciplined manner. The contour of the lines of force resembles the shape
the material. The situation is somewhat similar to flow of water through an arbitrary shaped pipe.
Flow path is constrained to be the shape of the bent pipe. For an example, look at the sectional
view (figure 21.4 & 21.5) of a toroidal magnetic circuit with N number of turns wound uniformly
as shown below. When the coil carries a current i, magnetic lines of forces will be created and
they will be confined within the core as the permeability of the core is many (order of thousands)
times more than air.

Take the chosen path to be a circle of radius 7. Note that the value of H will remain same
at any point on this path and directions will be always tangential to the path. Hence by applying

Ampere’s circuital law to the path we get the value of H to beév—l. If 7 is increased from a to be b
nr

the value of H decreases with 7. a and b are respectively the inner and outer radius of the toroidal
core.

Colil section Figure 21.5:
Figure 21.4:

Assumptions

1. Leakage flux & Fringing effect
Strictly speaking all the flux produced by the mmf will not be confined to the core. There
will be some flux lines which will complete their paths largely through the air as depicted
in figure 21.6. Since the reluctance (discussed in the following section) or air is much
higher compared to the reluctance offered by the core, the leakage flux produced is rather
small. In our discussion here, we shall neglect leakage flux and assume all the flux
produced will be confined to the core only.
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Figure 21.6:

In the magnetic circuit of figure 21.6 an air gap is present. For an exciting current, the
flux lines produced are shown. These flux lines cross the air gap from the top surface of
the core to the bottom surface of the core. So the upper surface behaves like a north pole
and the bottom surface like a south pole. Thus all the flux lines will not be vertical and
confined to the core face area alone. Some lines of force in fact will reach the bottom
surface via bulged out curved paths outside the face area of the core. These flux which
follow these curved paths are called fringing flux and the phenomenon is called fringing
effect. Obviously the effect of fringing will be smaller if the air gap is quite small. Effect
of fringing will be appreciable if the air gap length is more. In short the effect of fringing
is to make flux density in the air gap a bit less than in the core as in the air same amount
of flux is spread over an area which is greater than the core sectional area. Unless
otherwise specified, we shall neglect the fringing effect in our following discussion.
Effect of fringing sometimes taken into account by considering the effective area in air to
be about 10 to 12% higher than the core area.

In the practical magnetic circuit (as in figure 21.5), the thickness (over which the lines of
forces are spread = b-a) are much smaller compared to the overall dimensions (a or b) of
the core. Under this condition we shall not make great mistake if we calculate H at

r, =2 and take this to be H every where within the core. The length of the flux path

corresponding to the mean radius i.e., [/, =2ar, is called the mean length. This

assumption allows us to calculate the total flux ¢ produced within the core rather easily as
enumerated below:

Calculate the mean length /, of the flux path from the given geometry of the magnetic
circuit.

N.
Apply Ampere’s circuital law to calculate H = T

m

Note, this H may be assumed to be same every where in the core.
Calculate the magnitude of the flux density B from the relation B = y,u,H.

Total flux within the core is ¢ = BA, where 4 is the cross sectional area of the core.
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21.3.4 Reluctance & permeance

Let us now try to derive a relationship between flux produced ¢ and mmf Ni applied for linear
case.

¢ = BA
= u,u, HA - linear relationship between B and H.

= U,U, (%) A putting the expression for H.

Ni .
= —; 7 arranging the terms.
tott, A
1 !
Now defining Ni = mmf and R= VR the above equation can be written in the following
handy form
R 1 I Reluctance

luOlur A
This equation resembles the familiar current voltage relationship of an electric circuit
which is produced below for immediate comparison between the two:

v _V _ Voltage

] .
R 2 Resistance

The expression in the denominator is called resistance which impedes the flow of the current.

17 C - .
R= o A S known as reluctance of the magnetic circuit and permeance (similar to admittance
0r

in electric circuit) is defined as the reciprocal of reluctance i.e., p = R

21.4 B-H Characteristics

A magnetic material is identified and characterized by its B — H characteristic. In free space or in
air the relationship between the two is /linear and the constant of proportionality is the
permeability uo. If B is plotted against H, it will be straight a line. However, for most of the
materials the relationship is not linear and is as shown in figure 21.7. A brief outline for
experimental determination of B-H characteristic of a given material is given now. First of all a
sample magnetic circuit (with the given material) is fabricated with known dimensions and
number of turns. Make a circuit arrangement such as shown in Figure 21.8, to increase the
current from 0 to some safe maximum value. Apart from ammeter reading one should record the
amount of flux produced in the core by using a flux meter-let us not bother how this meter
works!
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Let,

Number of turns = N
Mean length of the flux path = [/ inm.
Cross sectional area = ¢ inm’
Reading of the ammeter = [ inA
Reading of the flux meter = @in Wb

¢

Now corresponding to this current, calculate 7 = ¥ and B = and tabulate them. Thus

we have several pair of H & B values for different values of currents. Now by choosing H to be
the x axis B to be the y axis and plotting the above values one gets a #ypical B-H curve as shown
in Figure 21.7 below.

B aLinear :Non linear zoneSaturation

in T| zone ». begins
I I Cross section
]
+
D.C
supply
5 > 2A

Figure 21.8: Experimental

Figure 21.7: A typical B-H curve determination of B-H curve

21.4.1 Different zones of B-H characteristic

The initial portion of the B-H curve is nearly a straight line and called linear zone. After this
zone the curve gradually starts deviating from a straight line and enters into the nonlinear zone.

The slope of the curve j—f] starts gradually decreasing after the linear zone. A time comes when

there is practically no increase in B in spite of the fact that A is further increased. The material is
then said to be saturated. The rise in the value of B in the linear zone is much more than in the
nonlinear or saturation zone for same AH. this can be ascertained from the B-H curve by noting
AB1 > AB; for same AH.

For this lesson, a brief qualitative explanation for the typical nature of the B-H curve is
given. In a ferromagnetic material, very large number of tiny magnets (magnetic dipoles) are
present at the atomic/molecular level. The material however does not show any net magnetic
property at macroscopic level due to random distribution of the dipoles and eventual cancellation

of their effects. In presence of an external field # , these dipoles start aligning themselves along
the direction of the applied field. Thus the more and more dipoles get aligned (resulting into
more B) as the H i.e., current in the exciting coil is increased. At the initial phase, increase in B

Version 2 EE IIT, Kharagpur

Fluxmeter



is practically proportional to H. However rate of this alignment gets reduced after a definite
value of H as number of randomly distributed dipoles decreases. This is reflected in the nonlinear
zone of the figure 21.7. Obviously if we further increase H, a time will come when almost all the
dipoles will get aligned. Under such circumstances we should not expect any rise in B even if H
is increased and the core is said to be saturated. At the saturation zone, the characteristic
becomes almost parallel to the H axis.

Different materials will have different B-H curves and if the characteristics are plotted on
same graph paper, one can readily decides which of them is better than the other. Referring to
Figure 21.9, one can easily conclude that material-3 is better over the other two as flux produced
in material-3 is the highest for same applied field H.

From the above discussion it can be said that there is no point in operating a magnetic
circuit deep into saturation zone as because large exciting current will put extra overhead on the
source supplying power to the coil. Also any desire to increase B by even a small amount in this
zone will call for large increase in the value of the current. In case of transformers and rotating
machines operating point is chosen close to the knee point of the B-H characteristic in order to
use the magnetic material to its true potential. To design a constant value of inductance, the
operating point should be chosen in the linear zone.

Approach to solve a magnetic circuit problem will be different for /inear and nonlinear
cases. In the following section let us discuss those approaches followed by equivalent electrical
circuit representation of the magnetic circuits. It is instructive to draw always the equivalent
representation of a magnetic circuit for the following reasons:

B A Material — 3
inT
Material — 2
By f---------
| Material — 1
B, [.___/___ .
By |-/ /-4
0 H H (A/m)
Figure 21.9:

1. It will help us to visualize the problem in terms of more familiar series and series-
parallel d.c circuits.

2. We can apply with ease KFL (Kirchoff’s flux law) at the junctions in the same
manner as we apply KCL in circuit analysis.

3. Similar to KVL equations, we can apply mmf balance equations in different closed
paths of the magnetic circuit.

4. Above all, with this circuit before hand, one can decide upon the strategy of solving
the problem.
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21.5 Analysis of Series magnetic circuit

Consider first a simple magnetic circuit, shown in Figure 21.10 with a single core material
having uniform cross sectional area A and mean length of flux path /. Reluctance offered to the
flow of flux is R. The corresponding electrical representation is rather simple. Due to the fact
that NI =g¢% = HI, the equivalent electrical circuit is also drawn beside the magnetic circuit.

Polarity of mmf is decided on the basis of the direction of the flux which is clockwise inside the
core in this case. Although in the actual magnetic circuit there is no physical connection of the
winding and the core, in the electrical circuit representation mmf and reluctance are shown to be
connected. One should not feel disturbed by this as because the relationship between mmf and
flux prompted us to draw an electrical equivalent to facilitate easier calculation and neat
visualization of the actual problem. b

»

N
| +

®
\2n

]| = O, s

Figure 21.10:

Let us now consider another magnetic circuit which is similar to the earlier one but has a
small air gap of length /, as shown in Figure 21.11 and note that it is a series circuit involving
two mediums, namely (i) iron and (ii) air. It is a series circuit because same flux (¢) has to flow
through the mediums. Hence total reluctance will be the sum of reluctances of iron and
air(R=R,+R,,).

For this circuit basic equations can be developed as follows:

Let,
Number of turns = N
Exciting currenti = /Jin A
Mean length of the flux path through iron = /[ inm
Length of the flux path through air = /,inm
Cross sectional area = A4 inm’

(21.2)
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Figure 21.11

If the cross sectional area A is constant throughout, flux density B :% will be also constant both

in iron and air path. Since value of permeabilities are different for iron and air, the corresponding
values of H too will be different.

B
Hol;

H required for iron, H, =

H required for air, H, = B
g lu()

** Ampere circuital law gives NI = H/[+H [,
B, B,
Moty ¢

9

—_4 l + 4
Hott, " My #

1
9 Kokt
NI =¢R, +¢R,

NI=¢(R,+R,)

Y
or.¢ = (%,+9,)

L1
AU

So as expected these two reluctances are connected in series. In fact, for series magnetic

circuit having different reluctance segments, total reluctance will be the sum of individual
reluctances.

21.6 Analysis of series-parallel magnetic circuit.

We now take up the following magnetic circuit (Figure 21.12) which appears to be not so
straight forward as the previous cases. As a first step to solve this circuit, we would like to draw
its equivalent electrical representation. Vertical links of the core are called /imbs and the
horizontal links are called yoke of the magnetic circuit. In the figure PU, QT and RS are the
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limbs whereas PQ, QR, UT and TS are the yokes. It is customary to fix up the corner points
P,Q,R etc from the given physical dimensions, joining of which will give you the mean length of
the flux paths.

ot

-

‘ ------- »¢— -------- 2 ________ (1)2+ ______ .‘R

-4\ ¢1T v

e s DAY =)~
i W ’

B O1) S

Figure 21.12:

If the coil carries a current / in the direction shown, flux @, produced in the first limb will
be in the upward direction. Same ¢ is constrained to move along the yoke PQ. At point Q, two
parallel paths are available to ¢ for its onwards journey namely (i) the central limb QT and (ii)
the yoke QR. In other words, ¢ will be divided into two components ¢ and ¢ as shown with the
obvious condition ¢ = ¢ + ¢. The relative values of these components will be decided by
respective reluctances of the paths. ¢ and ¢ once again recombine at point T and completes the
path. Now in the path TUPQ flux ¢ is same, it is made of same material and has same cross

A
however it encounters two materials, one is iron (QM and WT) and the other is a small air gap

sectional area A, then its reluctance Rry pg . In the central limb, flux is same (¢),

[
(MW). The reluctance of the air gap ‘R = £ . The two reluctances Rom and Rwr of the
toA

magnetic material may however be combined into a single reluctance as Ry = Rom + Rwr. The
portion of the magnetic circuit which carries flux ¢ can be represented by a single reluctance

lQRST

A
down the basic equations let us redraw the electrical equivalence of the above magnetic circuit
below (Figure 21.13):

Rorst @ . Instead of carrying on with long suffixes let us call Rorst to be R,. To write

¢ 412
+
H1 |1 Rl +
- H, |2 § Rz
+% &
Hy lg< R i
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21.6.1 Important equations

The various equations which will hold good are written below:

g = 4t
NI = Hi+ H\l + Hylyg=R¢+ (R1+Ry) ¢ balance in loopl
(Ri+tRYA = Rogh mmf balance in loop2

H\ly + Hyl, = H>l, mmf balance in loop2
NI = HI + H,l, mmf balance in the outer loop.

21.7 General discussion on solving problems

As pointed out earlier, the approach to solve a magnetic circuit problem is primarily guided by
the fact that whether the magnetic circuit is linear or non linear. If it is linear then the material is
fully characterized by its relative permeability u, and the reluctance which remains constant
(independent of the operating point) can be easily calculated and shown in the equivalent circuit.
In other words, for linear cases, the magnetic circuit problems are solved exactly in the same
manner for solving linear electrical circuits. Depending on situation, one can invoke any
convenient method of solving electrical circuit problem here as well.

Let us go through the following solved linear magnetic circuit numerical problem to
understand the steps involved.

However, in case of non linearity (which is more common in practice), one has no other
alternative but to refer to graphical solution involving B-H characteristic of the material or
materials. The reason being, the material can not be characterized by a unique u, for different

operating points as 98 is a function of the operating point. The values of B’s (B, B}, B») in the

dH
three limbs are expected to be different in the magnetic circuit of Figure 21.12. Instead of
looking for relative permeabilities, it will be much easier to read the corresponding H values (H,
H,, H,) from the B-H curve of the material and calculate the respective mmf drops as HI, H/, and
HI,. Generally the pair of B-H values are given in tabular form for some fixed number of points.
One has to plot these points on a simple graph paper and join them by a smooth curve to get the
characteristic and use it for problem solving.

In practical situations we would like to know how much mmf (NI) is needed in order to
establish a definite amount of flux at a particular portion of the magnetic circuit. In this lesson,
we have primarily discussed the methods to be adopted to solve such problems. However, the
reverse problem i.e., if the mmf (NI) is known how to calculate the flux produced at a particular
portion of the magnetic circuit is somewhat involved. Similar situation exists in non linear
electric circuit analysis as well with supply voltage known and the circuit elements are non linear
in nature. In such cases, one has to either adopt numerical techniques or solve the problem
graphically by drawing appropriate load lines. In this introductory lesson of magnetic circuit, we
shall confine ourselves in solving problem of the first kind.

Let us go through the following solved non linear magnetic circuit numerical problem to
understand the steps involved.
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21.7.1 Worked out example

e Example-1 In the magnetic circuit detailed in Figure 21.14 with all dimensions in mm,
calculate the required current to be passed in the coil having 200 turns in order to establish a flux
of 1.28 mWb in the air gap. Neglect fringing effect and leakage flux. The B-H curve of the
material is given in Figure 21.15. Permeability of air may be taken as, uo = 47 x 107 H/m

Solution:

Step 1 First draw the simplified diagram of the given magnetic circuit along with the equivalent
circuit as shown in figure 21.16.

Step 2 To calculate mean lengths of various parts, mark the center points of various limbs and
yokes with small bullets.

Step 3 Name the different portions which will carry same flux as 1, 2 and 3. For example, the
path CFED is in fact path 1 where flux ¢ will remain same. Similarly the path DC (path
2) will carry same flux ¢ and path CBAD (path 3) will carry same flux ¢;.

Step 4 Calculation of mmf required for the path 2:

Wl ]
—, 4:0 60
4 e
= ! v 01 500
= | ' < U
4] = 4
.\<_\ E
60 ;
Mg 60 ! 60 - v

—
200 \>|<\ 200

Figure 21.14: For Q B1.
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Figure 21.15: For Q B1.
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Figure 21.16: Circuit showing mean lengths.

P =t

Cross sectional area of central limb A4,

Flux density B, = B>

= 1.28x10°
= 16 x 10-4 m>

1.28x107
16x10*

= 08T

Version 2 EE IIT, Kharagpur



63.66 x 10* AT/m

mmf required for gap Hol, = 63.66 x 10* x 1 x 10* AT

63.66 AT

Now we must calculate the mmf required in the iron portion of the central limb as follows:

flux density, B,
corresponding H from graph, H,

Mean iron length, /,

mmf required for iron portion, H>/,

Total mmf required for iron & air gap,

0.8 T - fringing & leakage neglected

500 AT /m

(440 - 0.1) mm
0.44 m

220 AT

(220 + 63.66) AT

mmfcp = 283.66 AT.

Step 5 Due to parallel connection, mmf acting across path 1 is same as mmf acting across path 2.
Our intention here, will be to calculate ¢, in path 1.

mean length of the path, /;

Ipg+ lgr + Irc

2 x 170 + 440 mm

= 0.78m
283.66
VHe T 0T8T
= 363.67 AT /m
corresponding flux density from graph, By, ~ 039T
sflux, ¢ = B4y
= 0.39x24x 10" Wb
L4 = 094x10° Wb
Step 6 In this step we calculate the mmf necessary to drive ¢; in path 3 as follows.
fluxinpath3, s = ¢+ @
= 222x10° Wb
flux density, By = %
3
_222x10°
24x10*

Version 2 EE IIT, Kharagpur



21.8

N kWD =

By = 0925T
corresponding H from graph, H3; ~  562.5 AT /m

mean length of path3,/5 = 2 x 170+ 440 mm
= 0.78m
total mmf required for path3 = Hsls
= 562.5x0.78 AT
= 438.7 AT
. mmf to be supplied by the coil, NI =  283.66 +438.7 AT
or200/ = 72236 AT
.. 722.36
. exciting current needed, I/ = 300 A
= 361A

Answer the following:

Clearly state Ampere’s circuital law?

Write down the expression for reluctance. What is its unit?

What is mean length and its importance?

Give two magnetic materials with permeabilities p; and p, with p; > po.

Which of these two, you will choose to make a magnetic circuit and why?

Why not the operating point is selected in the saturation zone of the B-H characteristic?

2 mWhb is to be produced in the air gap of the magnetic circuit shown in figure 21.17.
How much ampere turns the coil must provide to achieve this?

Relative permeability . of the core material may be assumed to be constant and equal to
5000. All the dimensions shown are in cm and the sectional area is 25cm? through out.

15— 15
o o o T

0.1

Figure 21.17:
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21.9 Tick the correct choice

1. In the magnetic circuit shown in Figure 21.18, the second coil carries a current of 2 A. If
flux in the core is to be made zero, the current I in the first coil should be

(A)+4A B)-2A C)-4A D)+2A
2A
50
25 turns
turns

N

2. A magnetic circuit has a continuous core of a ferromagnetic material. Coil is supplied
from a battery and draws a certain amount of exciting current producing a certain amount
of flux in the core. If now an air gap is introduced in the core, the exciting current will:

2A
Figure 21.18:

(A) increase. (B) remain same.  (C) decrease (D) become 0.

3. For the magnetic circuit shown in figure 21.19 the reluctance of the central limb (PS) is
10 x 10° AT/Wb and the reluctance of the outer limbs (PTS and PQS) are same and equal
to 15 x 10° AT/Wb. To produce 0.5 mWb in PQS, the mmf to be produced by the coil is:

(A) 750 AT (B) 1750 AT (C) 250 AT (D) 1500 AT.
1"
(=
A7
Y|
\ S
Figure 21.19: Figure 21.20:

4. For the magnetic circuit shown in figure 21.20 the reluctance of the central limb (PS) is
10 x 105 AT/Wb and the reluctance of the outer limbs (PTS and PQS) are same and

equal to 15 x 105 AT/ Wb. To produce 0.5 mWb in PQS, the mmf to be produced by the
coil 1s:

(A)2625 AT  (B) 1125 AT (C) 750 AT (D) 1875 AT.
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5. A magnetic circuit draws a certain amount of alternating sinusoidal exciting current
producing a certain amount of alternating flux in the core. If an air gap is introduced in
the core path, the exciting current will:

(A) increase (B) remain same. (C) decrease. (D) vanish.
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Chapter 22

Eddy Current & Hysteresis Losses (Lesson 22)

22.1 Lesson goals

In this lesson we shall show that (i) a time varying field will cause eddy currents to be
induced in the core causing power loss and (ii) hysteresis effect of the material also
causes additional power loss called hysteresis loss. The effect of both the losses will
make the core hotter. We must see that these two losses, (together called core loss) are
kept to a minimum in order to increase efficiency of the apparatus such as transformers &
rotating machines, where the core of the magnetic circuit is subjected to time varying
field. If we want to minimize something we must know the origin and factors on which
that something depends. In the following sections we first discuss eddy current
phenomenon and then the phenomenon of Aysteresis.

Finally expressions for (i) inductance, (ii) stored energy density in a magnetic field and
(ii1) force between parallel faces across the air gap of a magnetic circuit are derived.

Key Words: Hysteresis loss; hysteresis loop; eddy current loss; Faraday’s laws;

After going through this section students will be able to answer the following questions.
After going through this lesson, students are expected to have clear ideas of the
following:

Reasons for core losses.

That core loss is sum of hysteresis and eddy current losses.

Factors on which hysteresis loss depends.

Factors on which eddy current loss depends.

Effects of these losses on the performance of magnetic circuit.

How to reduce these losses?

Energy storing capability in a magnetic circuit.

Force acting between the parallel faces of iron separated by air gap.

A S AR e

Iron cored inductance and the factors on which its value depends.

22.2 Introduction

While discussing magnetic circuit in the previous lesson (no. 21) we assumed the exciting
current to be constant d.c. We also came to know how to calculate flux (¢) or flux density
(B) in the core for a constant exciting current. When the exciting current is a function of
time, it is expected that flux (@) or flux density (B) will be functions of time too, since ¢
produced depends on i. In addition if the current is also alternating in nature then both the
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magnitude of the flux and its direction will change in time. The magnetic material is now
therefore subjected to a time varying field instead of steady constant field with d.c
excitation. Let:

The exciting current i(f) = [, sin ot
Assuming linearity, flux density B() =y u, H(f)
Ni
= Htoty —
[
= N1 sin ot
lLto lLtr _—
[
S B(f) = By sin ot

22.2.1 Voltage induced in a stationary coil placed in a time varying field

If normal to the area of a coil, a time varying field #(¢) exists as in figure 22.1, then an
emf is induced in the coil. This emf will appear across the free ends 1 & 2 of the coil.
Whenever we talk about some voltage or emf, two things are important, namely the
magnitude of the voltage and its polarity. Faraday’s law tells us about the both.
Mathematically it is written as e(¢) = -N%

o(t) e(t)z_d_‘i’
e e =-22
+U_ dt
. T / /: 1 O 2
1'\82 12
Figure 22.1:

Let us try to understand the implication of this equation a bit deeply. @(¢) is to be
taken normal to the surface of the coil. But a surface has two normals; one in the upward
direction and the other in downward direction for the coil shown in the figure. Which one
to take? The choice is entirely ours. In this case we have chosen the normal along the
upward direction. This direction is obtained if you start your journey from the terminal-2
and reach the terminal-1 in the anticlockwise direction along the contour of the coil. Once
the direction of the normal is chosen what we have to do is to express ¢(¢) along the same

direction. Then calculate N % and put a — ve sign before it. The result obtained will give

you ey, i.e., potential of terminal-1 wrt terminal-2. In other words, the whole coil can be
considered to be a source of emf wrt terminals 1 & 2 with polarity as indicated. If at any
d¢

time flux is increasing with time in the upward direction, <= is + ve and e will come out

to be — ve as well at that time. On the other hand, at any time flux is decreasing with time

4 is — ve and e, will come out to be + ve as well at that time.

in the upward direction, <~

Mathematically let:
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Flux density B(f) = B, sin ot
Area of the coil A

Flux crossing the area ¢(¢) B(t) A
Bux A sin ot
= Puax SIN OF
d¢
dt
-] x—= d¢

dt
= @ ocosowt

Induced voltage in the coile;; = -

=1 here

Soenn = Epucos ot

RMS value of e £ = [

J2
. E= 2z f¢ _puttingw =27 f

If the switch S is closed, this voltage will drive a circulating current i, in the coil
the direction of which will be such so as to oppose the cause for which it is due. Correct
instantaneous polarity of the induced voltage and the direction of the current in the coil
are shown in figure 22.2, for different time intervals with the switch S closed. In the

interval 0 <ot <Z,% is+ve
increasing increasing
- +
—e i
1 2 1 2 dir%ctir?n ofiis
. such that it
(i) O<wt<n/2 O<ot<n/2 o?poses increase
i decreasing
decreasing ¢
e(t)=-—=+ve
T -
: i
o—o 1’_5 direction of i is
1 2 r/2<ot<rn such that it
(i) n/2<ot<n o?poses decrease

Figure 22.2: Direction of induced current.
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22.2.2 Eddy current

Look at the Figure 22.3 where a rectangular core of magnetic material is shown along
with the exciting coil wrapped around it. Without any loss of generality, one may
consider this to be a part of a magnetic circuit. If the coil is excited from a sinusoidal
source, exciting current flowing will be sinusoidal too. Now put your attention to any of
the cross section of the core and imagine any arbitrary rectangular closed path abcd. An
emf will be induced in the path abcd following Faraday’s law. Here of course we don’t
require a switch S to close the path because the path is closed by itself by the conducting
magnetic material (say iron). Therefore a circulating current 7.4, will result. The direction
of 744, 1s shown at the instant when B(?) is increasing with time. It is important to note
here that to calculate induced voltage in the path, the value of flux to be taken is the flux
enclosed by the path i.e., ¢ =B, _x area of the loop abcd. The magnitude of the eddy

current will be limited by the path resistance, R,., neglecting reactance effect. Eddy
current will therefore cause power loss in R,.» and heating of the core. To calculate the
total eddy current loss in the material we have to add all the power losses of different
eddy paths covering the whole cross section.

22.2.3 Use of thin plates or laminations for core

We must see that the power loss due to eddy current is minimized so that heating of the
core is reduced and efficiency of the machine or the apparatus is increased. It is obvious
if the cross sectional area of the eddy path is reduced then eddy voltage induced too will
be reduced (Eeqqy o area), hence eddy loss will be less. This can be achieved by using
several thin electrically insulated plates (called laminations) stacked together to form the
core instead a solid block of iron. The idea is depicted in the Figure 22.4 where the plates
have been shown for clarity, rather separated from each other. While assembling the core
the laminations are kept closely pact. Conclusion is that solid block of iron should not be

Eddy current
path

Figure 22.3: Eddy current paths

used to construct the core when exciting current will be ac. However, if exciting current
is dc, the core need not be laminated.
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Insulated thin plates
(Lammatlons)

I Eddy current paths

—>| T | are restricted to
smaller areas.

Figure 22.4: Laminated core to reduce eddy loss.

22.2.4 Derivation of an expression for eddy current loss in a thin plate

From physical consideration we have seen that thin plates each of thickness T, are to be
used to reduce eddy loss. With this in mind we shall try to derive an approximate
expression for eddy loss in the following section for a thin plate and try to identify the
factors on which it will depend. Section of a thin plate T << L and / is shown in the plane
of the screen in Figure 22.5.

L dx

) g leddy

0 &8s

<—:r—>|

o8]

/’

Y

— |‘X" |‘/ -
dx dx
[—— 1 —

<4

Figure 22.5: Elemental eddy current  Figure 22.6: Section of the elemental
path. eddy current path.

Eddy current loss is essentially I°R loss occurring inside the core. The current is
caused by the induced voltage in any conceivable closed path due to the time varying
field as shown in the diagram 22.5.

Let us consider a thin magnetic plate of length L, height 4 and thickness 7 such
that 7 is very small compared to both L and 4. Also let us assume a sinusoidally time
varying field b = BnaxSinwt exists perpendicular to the rectangular area formed by 7 and £
as shown in figure 22.5.

Let us consider a small elemental rectangular closed path ABCDA of thickness dx
and at a distance x from the origin. The loop may be considered to be a single coil
through which time varying flux is crossing. So there will be induced voltage in it, in
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similar manner as voltage is induced in a coil of single turn shown in the previous
section. Now,

Area of the loop ABCD = 2hx
Flux crossing the loop = B, 2hx sin ot

RMS voltage induced in the loop, £ = 27 f B 2y

max

p (2h + 4x)
Ldx

Resistance of the path through which eddy current flows, Ryun =

To derive an expression for the eddy current loss in the plate, we shall first
calculator the power loss in the elemental strip and then integrate suitably to for total loss.
Power loss in the loop dP is given by:

I
R

path
E*L dx
p(2h+4x)

E’L dx .
= Y since T <<h
p

4’ B> f* hL jg

dP =

max

p
2 r2np2 2
_ n-meaxT (hLT)
6p
Volume of the thin plate = AL7

Total eddy current loss, P, = x* dx

Eddy loss per unit volume, boldmath Py = =°f°B,, T’

6p
or, Peddy = k, f’B ©*

max

Thus we find eddy current loss per unit volume of the material directly depends
upon the square of the frequency, flux density and thickness of the plate. Also it is
inversely proportional to the resistivity of the material. The core of the material is
constructed using thin plates called laminations. Each plate is given a varnish coating for
providing necessary insulation between the plates. Cold Rolled Grain Oriented, in short
CRGO sheets are used to make transformer core.
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22.3 Hysteresis Loss
22.3.1 Unidirectional time varying exciting current

Consider a magnetic circuit with constant (d.c) excitation current /y. Flux established will
have fixed value with a fixed direction. Suppose this final current /, has been attained
from zero current slowly by energizing the coil from a potential divider arrangement as
depicted in Figure 22.7. Let us also assume that initially the core was not magnetized.
The exciting current therefore becomes a function of time till it reached the desired
current / and we stopped further increasing it. The flux too naturally will be function of
time and cause induced voltage e, in the coil with a polarity to oppose the increase of
inflow of current as shown. The coil becomes a source of emf with terminal-1, +ve and
terminal-2, -ve. Recall that a source in which current enters through its +ve terminal
absorbs power or energy while it delivers power or energy when current comes out of the
+ve terminal. Therefore during the interval when i(¢) is increasing the coil absorbs
energy. Is it possible to know how much energy does the coil absorb when current is
increased from 0 to /,? This is possible if we have the B-H curve of the material with us.

Ba
p
Bo
dB
B
dH

O H Ho H

Figure 22.7: Figure 22.8:

22.3.2 Energy stored, energy returned & energy density

Let:
i current at time ¢
H = field intensity corresponding to i at time ¢
B

= flux density corresponding to i at time ¢
(22.1)

Let an infinitely small time df elapses so that new values become:

i+di = Currentattime ¢ + dt
H+dH = Field intensity corresponding to i + di at time ¢ + dt
B +dB = Flux density corresponding to i + di at time ¢ + dt
Voltage induced in the coil e}, = N %¢
t
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- B
dt

Power absorbed at ¢t = eqai
e}
dt
= Achi]—B noting, H =2t
t

/

Energy absorbed in time dt, dW = A4/ H fl—Bi x dt
t
= AIlHdB
total energy absorbed per unit _ J.B‘)HdB
volume, W 0

Graphically therefore, the closed area OKPB)BO is a measure of the energy stored by the
field in the core when current is increased from 0 to /. What happens if now current is
gradually reduced back to 0 from /,? The operating point on B-H curve does not trace
back the same path when current was increasing from 0 to /y. In fact, B-H curve (PHT)
remains above during decreasing current with respect the B-H curve (OGP) during
increasing current as shown in figure 22.9. This lack of retracing the same path of the
curve is called hysteresis. The portion OGP should be used for increasing current while
the portion (PHT) should be used for decreasing current. When the current is brought
back to zero external applied field H becomes zero and the material is left magnetized
with a residual field OT. Now the question is when the exciting current is decreasing,

does the coil absorb or return the energy back to supply. In this case < being —ve, the

induced voltage reverses its polarity although direction of i remains same. In other words,
current leaves from the +ve terminal of the induced voltage thereby returning power back
to the supply. Proceeding in the same fashion as adopted for increasing current, it can be
shown that the area PMTRP represents amount of energy returned per unit volume.
Obviously energy absorbed during rising current from 0 to I is more than the energy
returned during lowering of current from /) to 0. The balance of the energy then must
have been lost as heat in the core.

B A
inT
M- 2= —==P
1
1
T G I OT = Residual field
I
1
¢ H(A/m) or I(A)
Fiaure 22.9:
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22.4 Hysteresis loop with alternating exciting current

In the light of the above discussion, let us see how the operating point is traced out if the
exciting current is i = Iy, Sin ®z. The nature of the current variation in a complete cycle
can be enumerated as follows:

) T .. di .
In the interval 0 <wr<— : iis+ve and — is +ve.
2 dt
) T .. di .
In the interval 5 <wt<m :iis-+veand z 1S —ve.
t

. 3z .. di .
In the interval z < ot < 7 : iis—ve and j is —ve.
t

. 3 . di .
In the 1nterva17 <wt<2x : iis—ve and j is +ve.
t

Let the core had no residual field when the coil is excited by i = /4, sin ®f. In the
interval 0 <wt? <Z,B will rise along the path OGP. Operating point at P corresponds to

+lpax OF +Hya. For the interval £ <t <z operating moves along the path PRT. At

point T, current is zero. However, due to sinusoidal current, i starts increasing in the —ve
direction as shown in the Figure 22.10 and operating point moves along TSEQ. It may be
noted that a —ve H of value OS is necessary to bring the residual field to zero at S. OS is
called the coercivity of the material. At the end of the interval 7 <ot <3, current

reaches —/,,4, or field —H,,4x. In the next internal, 37” < wt <2r , current changes from —I;ax

to zero and operating point moves from M to N along the path MN. After this a new
cycle of current variation begins and the operating point now never enters into the path
OGP. The movement of the operating point can be described by two paths namely: (i)
QFMNKP for increasing current from —I,,, to +1,, and (ii) from +/,,, to —I,. along
PRTSEQ.

I = Imax Sinot

vot
Figure 22.10: B-H loop with sinusoidal current.
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22.4.1 Hysteresis loss & loop area

In other words the operating point trace the perimeter of the closed area
QFMNKPRTSEQ. This area is called the B-H loop of the material. We will now show
that the area enclosed by the loop is the hysteresis loss per unit volume per cycle
variation of the current. In the interval 0 < wt <%, iis +ve and <4 is also +ve, moving the
operating point from M to P along the path MNKP. Energy absorbed during this interval
is given by the shaded area MNKPLTM shown in Figure 22.11 (i).

In the interval £ <t <m,i is +ve but 4 is —ve, moving the operating point from P to T

along the path PRT. Energy returned during this interval is given by the shaded area
PLTRP shown in Figure 22.11 (ii). Thus during the +ve half cycle of current variation net
amount of energy absorbed is given by the shaded area MNKPRTM which is nothing but
half the area of the loop.

In the interval 7 <t <3, iis —ve and 4 is also —ve, moving the operating point from T
to Q along the path TSEQ. Energy absorbed during this interval is given by the shaded
area QIMTSEQ shown in Figure 22.11 (iii).

. B Ba
(i) L b (i) b
T R
AL w

VI

e d Z/ff “

(iv) | ﬁ M (vi)
2

Figure 22.11: B-H loop with sinusoidal current.

VI

O

In the interval 3 < wt <27, i is —ve but < is + ve, moving the operating point from Q to

M along the path QEM. Energy returned during this interval is given by the shaded area
QJMFQ shown in Figure 22.11 (iv).

Thus during the —ve half cycle of current variation net amount of energy absorbed is
given by the shaded area QFMTSEQ which is nothing but the other half the loop area.
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Therefore total area enclosed by the B-H loop is the measure of the hysteresis loss per
unit volume per unit cycle. To reduce hysteresis loss one has to use a core material for
which area enclosed will be as small as possible.

Steinmetz’s empirical formula for hysteresis loss

Based on results obtained by experiments with different ferromagnetic materials with
sinusoidal currents, Charles Steimetz proposed the empirical formula for calculating
hysteresis loss analytically.

n
max

Hysteresis loss per unit volume, P, =k, ' B
Where, the coefficient k;, depends on the material and n, known as Steinmetz
exponent, may vary from 1.5 to 2.5. For iron it may be taken as 1.6.

22.5 Seperation of core loss

The sum of hyteresis and eddy current losses is called core loss as both the losses occur
within the core (magnetic material). For a given magnetic circuit with a core of
ferromagnetic material, volume and thickness of the plates are constant and the total core
loss can be expressed as follows.

Core loss = Hysteresis loss + Eddy current loss
Pore :thBrrrll +Kef2 Brfl

C

ax ax

It is rather easier to measure the core loss with the help of a wattmeter (W) by
energizing the N turn coil from a sinusoidal voltage of known frequency as shown in
figure 22.12.

Sinusoidal

a.c supply,
variable @
voltage and

frequency

Figure 22.12: Core loss measurement.

Let A be the cross sectional area of the core and let winding resistance of the coil
be negligibly small (which is usually the case), then equating the applied rms voltage to
the induced rms voltage of the coil we get:
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V~ 27/ N

Or, V = \2zf B, AN
SO; Bmax = L
\/Eﬂ'f AN
V
Jo Bmax € —
A

The above result i.e., Bmax ¢ — 1s important because it tells us that to keep B,y constant

at rated value at lower frequency of operation, applied voltage should be proportionately
decreased. In fact, from the knowledge of N (number of turns of the coil) and A4 (cross
sectional area of the core), V' (supply voltage) and f (supply frequency) one can estimate
Vv

\/Eﬂ'f AN

the maximum value of the flux density from the relation By.x = . This point
has been further discussed in the future lesson on transformers.

Now coming back to the problem of separation of core loss into its components:
we note that there are three unknowns, namely Kj, K. and n (Steinmetz’s exponent) to be

determined in the equation P, =K, /B’ +K,f*B’. . LHS of this equation is nothing

but the wattmeter reading of the experimental set up shown in Figure 22.12. Therefore,
by noting down the wattmeter readings corresponding to three different applied voltages
and frequencies, we can have three independent algebraic equations to solve for Kj, K,
and n. However, to simplify the steps in solving of the equations two readings may be

4 ratio constant) and the third one at different flux

f

density. To understand this, solve the following problem and verify the answers given.

taken at same flux density (keeping

For a magnetic circuit, following results are obtained.

Frequency | Bmax Core loss
50 Hz 12T 115W
30 Hz 12T 60.36 W
30 Hz 14T 87.24 W

Estimate the constants, K;, K, and n and separate the core loss into hysteresis and eddy
losses at the above frequencies and flux densities.
The answer of the problem is:

Frequency | Bmax | Coreloss | Hystloss | Eddy loss
50 Hz 12T 115 W 9W 36 W
30 Hz 12T | 6036 W 474 W 12.96 W
30 Hz 14T | 8724 W 69.6 W 17.64 W
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22.6 Inductor

One can make an inductor L, by having several turns N, wound over a core as shown in
figure 22.13. In an ideal inductor, as we all know, no power loss takes place. Therefore,
we must use a very good magnetic material having negligible B-H loop area. Also we
must see that the operating point lies in the linear zone of the B-H characteristic in order
to get a constant value of the inductance. This means - may be assumed to be constant.
To make eddy current loss vanishingly small, let us assume the lamination thickness is
extremely small and the core material has a very high resistivity p. Under these
assumptions let us derive an expression for the inductance L, in order to have a feeling on
the factors it will depend upon. Let us recall that inductance of a coil is defined as the
flux linkage with the coil when 1 A flows through it.

Figure 22.13: An inductor.

Let ¢ be the flux produced when i A flows through the coil. Then by definition:

Total flux linkage = N¢g

~.inductance is L = N—¢ by definition.
i
B A
_ _ v ¢g=Bx4
i
Nupyp H A
- SBBSE B
NHA
= IuO lur
Ni
= U, —-—— putting H =421
N°A

Finally, L = yoy,T

The above equation relates inductance with the dimensions of the magnetic
circuit, number of turns and permeability of the core in the similar way as we relate
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resistance of a wire, with the dimensions of the wire and the resistivity (recall, R = pL).

It is important to note that L is directly proportional to the square of the number of turns,
directly proportional to the sectional area of the core, directly proportional to the
permeability of the core and inversely proportional to the mean length of the flux path. In
absence of any core loss and linearity of B-H characteristic, Energy stored during
increasing current from 0 to / is exactly equal to the energy returned during decreasing
current from / to 0. From our earlier studies we know for increasing current:

Voltage induced in the coil e

Energy absorbed in time df is dW

Energy absorbed to reach / or B

Energy stored per unit volume

NAd—B

dt
eidtNAd—B

dt

NAd—Bidt
dt

NiAdB
AlHdB

AleBHdB

B
Al|l L-dB

0 Moty
B2
2 IuO lur

Al

BZ
2pg 1,

By expressing B in terms of current, / in the above equation one can get a more
familiar expression for energy stored in an inductor as follows:

Energy absorbed to reach / or B

~.Energy stored in the inductor
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22.7 Force between two opposite faces of the core across an air gap

In a magnetic circuit involving air gap, magnetic force will exist between the parallel
faces across the air gap of length x. The situation is shown for a magnetic circuit in figure
22.14 (i). Direction of the lines of forces will be in the clockwise direction and the left
face will become a north pole and the right face will become a south pole. Naturally there
will be force of attraction F, between the faces. Except for the fact that this force will
develop stress in the core, no physical movement is possible as the structure is rigid.

Let the flux density in the airgapbe = B

BZ

energy stored per unit volume in the gap = e
Hy
gapvolume = Ax

2

Total energy stored = ——>Xgap volume
Hy
= %A X
(22.2)
Air gap Air gap

—x k= —x k=

(1 (ii)
e/ p-p-pp
N NN | N NN |
—| |edx .
S I IR
> x <
(iii)

Figure 22.14: Force between parallel faces.

Easiest way to derive expression for F}, is to apply law of conservation of energy
by using the concept of virtual work. To do this, let us imagine that right face belongs to
a freely moving structure with initial gap x as in figure 22.14 (ii). At this gap x, we have
find F,. Obviously if we want to displace the moving structure by an elemental distance
dx to the right, we have apply a force F, toward right. As dx is very small tending to O,
we can assume B to remain unchanged. The magnitude of this external force F, has to be
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same as the prevailing force of attraction F, between the faces. Where does the energy
expended by the external agency go? It will go to increase the energy stored in the gap as
its volume increase by 4 dx. Figure 22.14 (iii) shows an expanded view of the gap portion

for clarity. Let us put it in mathematical steps as follows:

energy stored per unit volume in the gap
initial gap volume

Total energy stored, W,

Wi

let the external force applied be
let the force of attraction be

as explained above, F,

work done by external agency
increase in the volume of the gap

increase in stored energy

but work done by external agency

F,dx

or, desired force of attraction F,

22.8 Tick the correct answer

B2
21,
Ax
2
——xgap volume
Hy
2
B 4
21,

F.dx=F,dx
A(x+dx)—Ax = A dx

BZ

—Adx

2u,

increase in stored energy
BZ

—Adx

2u,

7y A

1. If the number of turns of a coil wound over a core is halved, the inductance of the

coil will become:

(A) doubled. (B) halved.

(C) quadrapuled.

(D) % th

2. The expression for eddy current loss per unit volume in a thin ferromagnetic plate

of thickness 7 is:

(A) énzsz,iaxrz

©) énzszmaxrz

(D) énz f B 12

(B) %7[2sz2 2

max

max
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3.

5.

22.9

As suggested by Steinmetz, hyteresis loss in a ferromagnetic material is
proportional to:

(A) jﬂBmaX (B) f B;llax

(©) f?Bia (D) 1 Bra
where, n may very between 1.5 to 2.5 depending upon material.

The eddy current loss in a magnetic circuit is found to be 100 W when the
exciting coil is energized by 200 V, 50 Hz source. If the coil is supplied with 180
V, 54 Hz instead, the eddy current loss will become

(A) 90 W (B) 81 W (C) 108 W (D) 50 W

A magnetic circuit draws a certain amount of alternating sinusoidal exciting
current producing a certain amount of alternating flux in the core. If an air gap is
introduced in the core path, the exciting current will:

(A) increase. (B) remain same. (C) decrease. (D) vanish

Solve the following

The area of the hysteresis loop of a 1200 cm’ ferromagnetic material is 0.9 cm?
with Bpax = 1.5 T. The scale factors are 1cm = 10A/m along x-axis and 1 cm =
0.8T along y-axis. Find the power loss in watts due to hysteresis if this material is
subjected to an 50 Hz alternating flux density with a peak value 1.5 T.

Calculate the core loss per kg in a specimen of alloy steel for a maximum density
of 1.1 T and a frequency of 50 Hz, using 0.4 mm plates. Resistivity p is 24 u Q-
cm; density is 7.75 g/cm’; hysteresis loss 355 J/m’ per cycle.

(a) A linear magnetic circuit has a mean flux length of 100 cm and uniform cross
sectional area of 25 cm”. A coil of 100 turns is wound over it and carries a
current of 0.5 A. If relative permeability of the core is 1000, calculate the
inductance of the coil and energy stored in the coil.

(b) In the magnetic circuit of part (a), if an air gap of 2 mm length is introduced
calculate (i) the energy stored in the air gap (ii) energy stored in core and (iii)
force acting between the faces of the core across the gap for the same coil
current.

An iron ring with a mean diameter of 35 cm and a cross section of 17.5 cm” has
110 turns of wire of negligible resistance. (a) What voltage must be applied to the
coil at 50 Hz to obtain a maximum flux density of 1.2 T; the excitation required
corresponding to this density 450 AT/m? Find also the inductance. (b) What is the
effect of introducing a 2 mm air gap?
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5. A coil wound over a core, is designed for 200 V (rms), 50 Hz such that the
operating point is on the knee of the B-H characteristic of the core. At this rated
voltage and frequency the value of the exciting current is found to be 1 A. Give
your comments on the existing current if the coil is energized from:

(a) 100 V, 25 Hz supply.
(b) 200 V, 25 Hz supply.

Version 2 EE IIT, Kharagpur



Module
7

Transformer

Version 2 EE IIT, Kharagpur



Lesson
23

Ideal Transformer

Version 2 EE IIT, Kharagpur



Contents

23 Ideal Transformer (Lesson: 23) 4
23.1 Goals of the 1€8SOM .....onuinii i 4
23.2 INtrodUCHION .....oneie e 5

23.2.1 Principle of Operation .............oeoiuiiiiiiiiiii i 5
23.3 Ideal TranSformer. ... ..o.uiuie it 6
23.3.1 Core flux gets fixed by voltage and frequency........................... 6
23.3.2 Analysis of ideal transformer...................cooiiiiiiiii i 7
23.3.3 No load phasor diagram .............cceeviiiiiiiiiiiiiiiiii i, 8
23.4 Transformer under loaded condition ................oooiiiiiiiiiiiiiiiiiiii s 9
23.4.1 DOt CONVENTION ...ttt et et et et et et eaens 10
23.4.2 Equivalent circuit of an ideal transformer .............................. 11
23.5 Tick the COITECt ANSWET ... .uiueitiit it 12
23.6 Solve the folloWING ......ooviniiiit i 14

Version 2 EE IIT, Kharagpur



23.1 Goals of the lesson

In this lesson, we shall study two winding ideal transformer, its properties and working
principle under no load condition as well as under load condition. Induced voltages in
primary and secondary are obtained, clearly identifying the factors on which they depend
upon. The ratio between the primary and secondary voltages are shown to depend on
ratio of turns of the two windings. At the end, how to draw phasor diagram under no load
and load conditions, are explained. Importance of studying such a transformer will be
highlighted. At the end, several objective type and numerical problems have been given
for solving.

Key Words: Magnetising current, HV & LV windings, no load phasor diagram, reflected
current, equivalent circuit.

After going through this section students will be able to understand the following.

necessity of transformers in power system.

properties of an ideal transformer.

meaning of load and no load operation.

basic working principle of operation under no load condition.

no load operation and phasor diagram under no load.

the factors on which the primary and secondary induced voltages depend.
fundamental relations between primary and secondary voltages.

the factors on which peak flux in the core depend.

o 0 N kWD =

the factors which decides the magnitude of the magnetizing current.

—
)

. What does loading of a transformer means?

—
—

. What is reflected current and when does it flow in the primary?
. Why does VA (or kVA) remain same on both the sides?

—_—
W N

. What impedance does the supply see when a given impedance Z, is connected
across the secondary?

[S—
AN

. Equivalent circuit of ideal transformer referred to different sides.

23.2 Introduction

Transformers are one of the most important components of any power system. It basically
changes the level of voltages from one value to the other at constant frequency. Being a
static machine the efficiency of a transformer could be as high as 99%.

Big generating stations are located at hundreds or more km away from the load
center (where the power will be actually consumed). Long transmission lines carry the
power to the load centre from the generating stations. Generator is a rotating machines
and the level of voltage at which it generates power is limited to several kilo volts only —
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a typical value is 11 kV. To transmit large amount of power (several thousands of mega
watts) at this voltage level means large amount of current has to flow through the
transmission lines. The cross sectional area of the conductor of the lines accordingly
should be large. Hence cost involved in transmitting a given amount of power rises many
folds. Not only that, the transmission lines has their own resistances. This huge amount of
current will cause tremendous amount of power loss or I’r loss in the lines. This loss will
simply heat the lines and becomes a wasteful energy. In other words, efficiency of
transmission becomes poor and cost involved is high.

The above problems may addressed if we could transmit power at a very high
voltage say, at 200 kV or 400 kV or even higher at 800 kV. But as pointed out earlier, a
generator is incapable of generating voltage at these level due to its own practical
limitation. The solution to this problem is to use an appropriate step-up transformer at the
generating station to bring the transmission voltage level at the desired value as depicted
in figure 23.1 where for simplicity single phase system is shown to understand the basic
idea. Obviously when power reaches the load centre, one has to step down the voltage to
suitable and safe values by using transformers. Thus transformers are an integral part in
any modern power system. Transformers are located in places called substations. In cities
or towns you must have noticed transformers are installed on poles — these are called pole
mounted distribution transformers. These type of transformers change voltage level
typically from 3-phase, 6 kV to 3-phase 440 V line to line.

Long Transmission line

11 To
Gé’)kV% é 400 kv % é loads

Step up Step down
transformer transformer

Figure 23.1: A simple single phase power system.

In this and the following lessons we shall study the basic principle of operation
and performance evaluation based on equivalent circuit.

23.2.1 Principle of operation

A transformer in its simplest form will consist of a rectangular laminated magnetic

structure on which two coils of different number of turns are wound as shown in Figure
23.2.

The winding to which a.c voltage is impressed is called the primary of the
transformer and the winding across which the load is connected is called the secondary of

the transformer.

23.3 Ideal Transformer

To understand the working of a transformer it is always instructive, to begin with the
concept of an ideal transformer with the following properties.
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1. Primary and secondary windings has no resistance.

‘/l
I—Nb(t) Laminated Iron Core S
1 TTIIE ® 3
e > D_Primary winding ¢ ? -
? L )’ II =
Vi > I Ny N ( E; 5
PN ) Secondary winding
2 4
=

Figure 23.2: A typical transformer.

2. All the flux produced by the primary links the secondary winding i,e., there is no
leakage flux.

3. Permeability g, of the core is infinitely large. In other words, to establish flux in
the core vanishingly small (or zero) current is required.

4. Core loss comprising of eddy current and hysteresis losses are neglected.

23.3.1 Core flux gets fixed by voltage & frequency

The flux level B, in the core of a given magnetic circuit gets fixed by the magnitude of
the supply voltage and frequency. This important point has been discussed in the
previous lecture 20. It was shown that:

|4 1

B = = K
e \/EﬁfAN 4.444AN f

where, V' is the applied voltage at frequency f, N is the number of turns of the coil
and 4 is the cross sectional area of the core. For a given magnetic circuit 4 and N are

constants, so B, developed in core is decided by the ratio % . The peak value of the coil

current 7,4, drawn from the supply now gets decided by the B-H characteristics of the
core material.

B 4B-H Ch. of Material — 3

inT C(:lrr'e_\;vgh Material — 2

Bunax Material — 1

|
|
|
L1 I >
o Hiaxs Hiax2 Humax1 H (A/m)

Figure 23.3: Estimating current drawn for different core materials.
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To elaborate this, let us consider a magnetic circuit with N number of turns and
core section area 4 with mean length /. Let material-3 be used to construct the core
whose B-H characteristic shown in figure 23.3. Now the question is: if we apply a
voltage V" at frequency f, how much current will be drawn by the coil? We follow the
following steps to arrive at the answer.

N
444 4N [
of B4y 1s independent of the core material property.

1. First calculate maximum flux density using B_ Note that value

2. Corresponding to this B, obtain the value of H,,,; from the B-H characteristic
of the material-3 (figure 23.3).

H_ .l

max 3

3. Now calculate the required value of the current using the relation 7, ; = N

4. The rms value of the exciting current with material-3 as the core, will be

13 :1max3 /\/5

By following the above steps, one could also estimate the exciting currents (/; or /)
drawn by the coil if the core material were replaced by material-2 or by material-3 with
other things remaining same. Obviously current needed, to establish a flux of B, is
lowest for material-3. Finally note that if the core material is such that ¢ — oo, the B-H

characteristic of this ideal core material will be the B axis itself as shown by the thick line
in figure 23.3 which means that for such an ideal core material current needed is
practically zero to establish any B, in the core.

23.3.2 Analysis of ideal transformer

Let us assume a sinusoidally varying voltage is impressed across the primary with
secondary winding open circuited. Although the current drawn 7,, will be practically zero,
but its position will be 90° lagging with respect to the supply voltage. The flux produced
will obviously be in phase with /,. In other words the supply voltage will lead the flux
phasor by 90°. Since flux is common for both the primary and secondary coils, it is
customary to take flux phasor as the reference.

Let, )
then,v; = V Sin[a)ﬁrgj (23.1)

Omax Sin @t

max

The time varying flux ¢(¢) will link both the primary and secondary turns inducing
in voltages e; and e; respectively

d¢

Instantaneous induced voltage in primary =-N, = = wN,@, .sin (wt - %)
t
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=27rfN1¢mMsin(a)t-%j (23.2)
d¢

Instantaneous induced voltage in secondary =-N, = = oN,@,  sin (wt - gj

=2 f N2¢maxsin(a)t-%j (23.3)

Magnitudes of the rms induced voltages will therefore be

E =\2nfN ¢ =444 fNg (23.4)
E, =\2nfN,g =444 N,g (23.5)

The time phase relationship between the applied voltage v; and e; and e, will be same.
The 180° phase relationship obtained in the mathematical expressions of the two merely
indicates that the induced voltage opposes the applied voltage as per Lenz’s law. In other
words if e; were allowed to act alone it would have delivered power in a direction
opposite to that of v;. By applying Kirchoff’s law in the primary one can easily say that
V1 = E; as there is no other drop existing in this ideal transformer. Thus udder no load
condition,

Where, V), V, are the terminal voltages and E;, E, are the rms induced voltages. In

convention 1, phasors E and E are drawn 180° out of phase with respect to V' in order
to convey the respective power flow directions of these two are opposite. The second
convention results from the fact that the quantities v(¢), e;(¢) and e,(¢) vary in unison,
then why not show them as co-phasal and keep remember the power flow business in
one’s mind.

23.3.3 No load phasor diagram

A transformer is said to be under no load condition when no load is connected across the
secondary i.e., the switch S in figure 23.2 is kept opened and no current is carried by the
secondary windings. The phasor diagram under no load condition can be drawn starting

with & as the reference phasor as shown in figure 23.4.
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— (b) Convention 2.
Y E, (a) Convention 1.

v

=

1
Figure 23.4: No load Phasor Diagram following two conventions.

In convention 1, phsors El and Ez are drawn 180° out of phase with respect to

V, in order to convey that the respective power flow directions of these two are opposite.

The second convention results from the fact that the quantities v (¢), ei(¢) and ex(¢) vary in
unison then why not show them as co-phasal and keep remember the power flow business
in one’s mind. Also remember vanishingly small magnetizing current is drawn from the
supply creating the flux and in time phase with the flux.

23.4 Transformer under loaded condition

In this lesson we shall study the behavior of the transformer when loaded. A transformer
gets loaded when we try to draw power from the secondary. In practice loading can be
imposed on a transformer by connecting impedance across its secondary coil. It will be
explained how the primary reacts when the secondary is loaded. It will be shown that any
attempt to draw current/power from the secondary, is immediately responded by the
primary winding by drawing extra current/power from the source. We shall also see that
mmf balance will be maintained whenever both the windings carry currents. Together
with the mmf balance equation and voltage ratio equation, invariance of Volt-Ampere
(VA or KVA) irrespective of the sides will be established.

We have seen in the preceding section that the secondary winding becomes a seat
of emf and ready to deliver power to a load if connected across it when primary is
energized. Under no load condition power drawn is zero as current drawn is zero for ideal
transformer. However when loaded, the secondary will deliver power to the load and
same amount of power must be sucked in by the primary from the source in order to
maintain power balance. We expect the primary current to flow now. Here we shall
examine in somewhat detail the mechanism of drawing extra current by the primary when
the secondary is loaded. For a fruitful discussion on it let us quickly review the dot
convention in mutually coupled coils.
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23.4.1 Dot convention

The primary of the transformer shown in figure 23.2 is energized from a.c source and
potential of terminal 1 with respect to terminal 2 is vi» = VyuSinot. Naturally polarity of
1 is sometimes +ve and some other time it is —ve. The dot convention helps us to
determine the polarity of the induced voltage in the secondary coil marked with terminals
3 and 4. Suppose at some time ¢ we find that terminal 1 is +ve and it is increasing with
respect to terminal 2. At that time what should be the status of the induced voltage
polarity in the secondary — whether terminal 3 is +ve or —ve? If possible let us assume
terminal 3 is —ve and terminal 4 is positive. If that be current the secondary will try to
deliver current to a load such that current comes out from terminal 4 and enters terminal
3. Secondary winding therefore, produces flux in the core in the same direction as that of
the flux produced by the primary. So core flux gets strengthened in inducing more
voltage. This is contrary to the dictate of Lenz’s law which says that the polarity of the
induced voltage in a coil should be such that it will try to oppose the cause for which it is
due. Hence terminal 3 can not be —ve.

If terminal 3 is +ve then we find that secondary will drive current through the load
leaving from terminal 3 and entering through terminal 4. Therefore flux produced by the
secondary clearly opposes the primary flux fulfilling the condition set by Lenz’s law.
Thus when terminal 1 is +ve terminal 3 of the secondary too has to be positive. In
mutually coupled coils dots are put at the appropriate terminals of the primary and
secondary merely to indicative the status of polarities of the voltages. Dot terminals will
have at any point of time identical polarities. In the transformer of figure 23.2 it is
appropriate to put dot markings on terminal 1 of primary and terminal 3 of secondary. It
is to be noted that if the sense of the windings are known (as in figure 23.2), then one can
ascertain with confidence where to place the dot markings without doing any testing
whatsoever. In practice however, only a pair of primary terminals and a pair of secondary
terminals are available to the user and the sense of the winding can not be ascertained at
all. In such cases the dots can be found out by doing some simple tests such as polarity
test or d.c kick test.

If the transformer is loaded by closing the switch S, current will be delivered to
the load from terminal 3 and back to 4. Since the secondary winding carries current it
produces flux in the anti clock wise direction in the core and tries to reduce the original
flux. However, KVL in the primary demands that core flux should remain constant no
matter whether the transformer is loaded or not. Such a requirement can only be met if
the primary draws a definite amount of extra current in order to nullify the effect of the
mmf produced by the secondary. Let it be clearly understood that net mmf acting in the
core is given by: mmf due to vanishingly small magnetizing current + mmf due to
secondary current + mmf due to additional primary current. But the last two terms must
add to zero in order to keep the flux constant and net mmf eventually be once again be
due to vanishingly small magnetizing current. If /, is the magnitude of the secondary

current and 7, is the additional current drawn by the primary then following relation must
hold good:
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Nll'z = Nz[z

or/ , =

where, a = turns ratio (23.6)

To draw the phasor diagram under load condition, let us assume the power factor
angle of the load to be 6,, lagging. Therefore the load current phasor/, , can be drawn

lagging the secondary terminal voltage EZ by 6, as shown in the figure 23.5.

AV =

v
L a=all

(a) Convention 1. (b) Convention 2.

Figure 23.5: Phasor Diagram when transformer is loaded.

The reflected current magnitude can be calculated from the relation 7, =2 and is

shown directed 180° out of phase with respect to I_2 in convention 1 or in phase with I_2

as per the convention 2. At this stage let it be suggested to follow one convention only
and we select convention 2 for that purpose. Now,

Volt-Ampere delivered to the load = V1,
= Ez[z
a
= E\[,=V1[;=Volt-Ampere drawn from the supply.

Thus we note that for an ideal transformer the output VA is same as the input VA
and also the power is drawn at the same power factor as that of the load.

23.4.2 Equivalent circuit of an ideal transformer

The equivalent circuit of a transformer can be drawn (i) showing both the sides along
with parameters, (ii) referred to the primary side and (iii) referred to the secondary side.
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In which ever way the equivalent circuit is drawn, it must represent the operation of the
transformer correctly both under no load and load condition. Figure 23.6 shows the
equivalent circuits of the transformer.

Ideal Transformer S

o m mmm =

. .--q—"
. o
. ~
"y . - -
N
I ‘I ., ““‘ ",
L T
.
‘)1 I .‘ -, ‘. ““.-.
. .
tannsty DAL
.
" -
o‘ ., ““l .,
‘
-‘ DAL
.
.
l’ ‘en

— e = = -
The transformer Equivalent circuit showing both sides

S

‘ens
.

Equivalent circuit referred to primary Equivalent circuit referred to secondary

Figure 23.6: Equivalent circuits of an ideal transformer.

Think in terms of the supply. It supplies some current at some power factor when
a load is connected in the secondary. If instead of the transformer, an impedance of value
a’Z, is connected across the supply, supply will behave identically. This corresponds to
the equivalent circuit referred to the primary. Similarly from the load point of view,
forgetting about the transformer, we may be interested to know what voltage source
should be impressed across Z, such that same current is supplied to the load when the
transformer was present. This corresponds to the equivalent circuit referred to the
secondary of the transformer. When both the windings are shown in the equivalent
circuit, they are shown with chain lines instead of continuous line. Why? This is because,
when primary is energized and secondary is opened no current is drawn, however current
is drawn when a load is present on the secondary side. Although supply two terminals are
physically joined by the primary winding, the current drawn depends upon the load on
the secondary side.

23.5 Tick the correct answer

1. An ideal transformer has two secondary coils with number of turns 100 and 150
respectively. The primary coil has 125 turns and supplied from 400 V, 50 Hz,
single phase source. If the two secondary coils are connected in series, the
possible voltages across the series combination will be:
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(A) 833.5Vor1665V  (B) 833.5Vor320V
(C) 320 V or 800 V (D) 800V or 166.5 V

2. A single phase, ideal transformer of voltage rating 200 V / 400 V, 50 Hz produces
a flux density of 1.3 T when its LV side is energized from a 200 V, 50 Hz source.

If the LV side is energized from a 180 V, 40 Hz source, the flux density in the
core will become:

(A) 0.68T (B) 144T (C) 1.62T (D) 1.46T

In the coil arrangement shown in Figure 23.7, A dot (e) marking is shown in the

first coil. Where would be the corresponding dot (¢) markings be placed on coils 2
and 3?

(A)  Atterminal P of coil 2 and at terminal R of coil 3
(B)  Atterminal P of coil 2 and at terminal S of coil 3
(C)  Atterminal Q of coil 2 and at terminal R of coil 3
(D)  Atterminal Q of coil 2 and at terminal S of coil 3

— S QY P—5

Figure 23.7:

Coil-1

4. A single phase ideal transformer is having a voltage rating 200 V / 100 V, 50 Hz.
The HV and LV sides of the transformer are connected in two different ways with
the help of voltmeters as depicted in figure 23.8 (a) and (b). If the HV side is

energized with 200 V, 50 Hz source in both the cases, the readings of voltmeters
V1 and V2 respectively will be:

(A) 100 V and 300 V (B) 300 V and 100 V
(C) 100 Vor0V (D) 0V or 300V

° ®
200V
50Hz
/
Connection (a) Connection (b)
Figure 23.8:
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5.

23.6

Across the HV side of a single phase 200 V / 400 V, 50 Hz transformer, an
impedance of 32 + ;24Q is connected, with LV side supplied with rated voltage &
frequency. The supply current and the impedance seen by the supply are
respectively:

(A) 20 A & 128 +,96Q (B) 20 A & 8 +j6Q

(C) 5A & 8+,6Q (D) 20 A & 16 +,12Q

The rating of the primary winding a transformer, having 60 number of turns, is
250 V, 50 Hz. If the core cross section area is 144 cm” then the flux density in the
core is:

(A)1T B)1.6T (C)14T D)1.5T

Solve the following

. In Figure 23.9, the ideal transformer has turns ratio 2:1. Draw the equivalent

circuits referred to primary and referred to secondary. Calculate primary and
secondary currents and the input power factor and the load power factor.

40 -j2Q

+ €
200V, - :
50Hz % é ¢ZL— 2+ _]29
2:1

Figure 23.9: Basic scheme of protection.

In the Figure 23.10, a 4-winding transformer is shown along with number of turns
of the windings. The first winding is energized with 200 V, 50 Hz supply. Across
the 2™ winding a pure inductive reactance X; = 20 Q is connected. Across the 3
winding a pure resistance R = 15 Q and across the 4™ winding a capacitive
reactance of X¢ = 10 Q are connected. Calculate the input current and the power
factor at which it is drawn.

=
—F #§t-

1
= VYNV o
> b
200V f—,i N2 =50 f< X.j' _
> 7 A~ _.J
AAAA

|1{=E_£

el
w

Figure 23.10: Version 2 EE IIT, Kharagpur



3.

In the circuit shown in Figure 23.11, T1, T2 and T3 are ideal transformers.

a)

b)

Neglecting the impedance of the transmission lines, calculate the currents in

primary and secondary windings of all the transformers. Reduce the circuit
refer to the primary side of T1.

For this part, assume the transmission line impedance in the section AB to be
Zaip=1+ j3Q. In this case calculate, what should be Vs for maintaining 450

V across the load Z; =60+ j80LQ. Also calculate the net impedance seen by
V.

_ T1 ™ A B T3
Vs = g}
200V ®,
50Hz +
NS
2:3 1:3
Figure 23.11:
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24.1 Goals of the lesson

In practice no transformer is ideal. In this lesson we shall add realities into an ideal transformer
for correct representation of a practical transformer. In a practical transformer, core material will
have (i) finite value of z , (i1) winding resistances, (ii1) leakage fluxes and (iv) core loss. One of
the major goals of this lesson is to explain how the effects of these can be taken into account to
represent a practical transformer. It will be shown that a practical transformer can be considered
to be an ideal transformer plus some appropriate resistances and reactances connected to it to
take into account the effects of items (i) to (iv) listed above.

Next goal of course will be to obtain exact and approximate equivalent circuit along with
phasor diagram.

Key words : leakage reactances, magnetizing reactance, no load current.

After going through this section students will be able to answer the following questions.
e How does the effect of magnetizing current is taken into account?

e How does the effect of core loss is taken into account?

e How does the effect of leakage fluxes are taken into account?

e How does the effect of winding resistances are taken into account?

e Comment the variation of core loss from no load to full load condition.

e Draw the exact and approximate equivalent circuits referred to primary side.

e Draw the exact and approximate equivalent circuits referred to secondary side.

e Draw the complete phasor diagram of the transformer showing flux, primary &
secondary induced voltages, primary & secondary terminal voltages and primary &
secondary currents.

24.2 Practical transformer

A practical transformer will differ from an ideal transformer in many ways. For example the core
material will have finite permeability, there will be eddy current and hysteresis losses taking
place in the core, there will be leakage fluxes, and finite winding resistances. We shall gradually
bring the realities one by one and modify the ideal transformer to represent those factors.

Consider a transformer which requires a finite magnetizing current for establishing flux in
the core. In that case, the transformer will draw this current /,, even under no load condition. The
level of flux in the core is decided by the voltage, frequency and number of turns of the primary
and does not depend upon the nature of the core material used which is apparent from the
following equation:

4

¢max:‘/§7[ﬁv1
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Hence maximum value of flux density B, 1s known from B, = (Aﬂ, where A4; is the net cross
i

sectional area of the core. Now H,,,, 1s obtained from the B — H curve of the material. But we

know Hu = —22% 'where [ymax 18 the maximum value of the magnetizing current. So rms

i

. . I ..
value of the magnetizing current will be I, = 22 Thus we find that the amount of magnetizing

NG

current drawn will be different for different core material although applied voltage, frequency
and number of turns are same. Under no load condition the required amount of flux will be
produced by the mmf N,/,. In fact this amount of mmf must exist in the core of the transformer
all the time, independent of the degree of loading.

Whenever secondary delivers a current />, The primary has to reacts by drawing extra
current /’; (called reflected current) such that /’,N; = LN, and is to be satisfied at every instant.
Which means that if at any instant i, is leaving the dot terminal of secondary, i, will be drawn

from the dot terminal of the primary. It can be easily shown that under this condition, these two
mmfs (i.e, Mai> and i, N, ) will act in opposition as shown in figure 24.1. If these two mmfs also
happen to be numerically equal, there can not be any flux produced in the core, due to the effect
of actual secondary current /; and the corresponding reflected current 7,

~

[kl
N~

N»i;

hy

£

il

)@ o b
> < »
- »
vt > -
LN PR
> S e

Figure 24.1: MM( directions by |, and |,

The net mmf therefore, acting in the magnetic circuit is once again 7,,N, as mmfs [, N, and LN,

cancel each other. All these happens, because KVL is to be satisfied in the primary demanding
@max 0 TEMain same, no matter what is the status (i., open circuited or loaded) of the secondary.
To create ¢,,,, mmf necessary is Ni/,,. Thus, net mmf provided by the two coils together must
always be NI, — under no load as under load condition. Better core material is used to make 7,,
smaller in a well designed transformer.

Keeping the above facts in mind, we are now in a position to draw phasor diagram of the
transformer and also to suggest modification necessary to an ideal transformer to take
magnetizing current 1, into account. Consider first, the no load operation. We first draw the

#... phasor. Since the core is not ideal, a finite magnetizing current I, will be drawn from

supply and it will be in phase with the flux phasor as shown in figure 24.2(a). The induced
voltages in primary FE and secondary E, are drawn 90° ahead (as explained earlier following

convention 2). Since winding resistances and the leakage flux are still neglected, terminal
voltages V7, and V, will be same as E,and E, respectively.
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E_Z — ‘72 A
V-, 1
¢ ¢
(0) - > >
Im
(a) No load condition (b) Loaded condition

Figure 24.2: Phasor Diagram with magnetising current taken into account.

If you compare this no load phasor diagram with the no load phasor diagram of the ideal
transformer, the only difference is the absence of /,, in the ideal transformer. Noting that 7,

lags ¥, by 90° and the magnetizing current has to supplied for all loading conditions, common

sense prompts us to connect a reactance X,,, called the magnetizing reactance across the primary
of an ideal transformer as shown in figure 24.3(a). Thus the transformer having a finite
magnetizing current can be modeled or represented by an ideal transformer with a fixed
magnetizing reactance X, connected across the primary. With S opened in figure 24.3(a), the
current drawn from the supply is 7,= I, since there is no reflected current in the primary of the

ideal transformer. However, with S closed there will be I, , hence reflected current I, =1, /a

will appear in the primary of the ideal transformer. So current drawn from the supply will be
L=1I,+1I,.

I, =1 Ideal Transformer § 1 Ideal Transformer Sw I

TS -
= v, o
[=0%:"L=0
VAR T |
‘--.,: L LSS
SRS . ’ .
Cams®y ) taast I Camst

(a) with secondary opened (a) with load in secondary

Figure 24.3: Magnetising reactance to take I, into account.

This model figure 24.3 correctly represents the phasor diagram of figure 24.2. As can be
seen from the phasor diagram, the input power factor angle 6, will differ from the load power

factor 6, in fact power factor will be slightly poorer (since 6, > 6)).

Since we already know how to draw the equivalent circuit of an ideal transformer, so
same rules of transferring impedances, voltages and currents from one side to the other side can
be revoked here because a portion of the model has an ideal transformer. The equivalent circuits
of the transformer having finite magnetizing current referring to primary and secondary side are
shown respectively in figures 24.4(a) and (b).
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(a) Equivalent circuit (b) Equivalent circuit
referred to primary referred to secondary

Figure 24.4: Equivalent circuits with X,
24.2.1 Core loss

A transformer core is subjected to an alternating time varying field causing eddy current and
hysteresis losses to occur inside the core of the transformer. The sum of these two losses is
known as core loss of the transformer. A detail discussion on these two losses has been given in
Lesson 22.

Eddy current loss is essentially /> R loss occurring inside the core. The current is caused
by the induced voltage in any conceivable closed path due to time varying field. Obviously to
reduce eddy current loss in a material we have to use very thin plates instead of using solid block
of material which will ensure very less number of available eddy paths. Eddy current loss per
unit volume of the material directly depends upon the square of the frequency, flux density and
thickness of the plate. Also it is inversely proportional to the resistivity of the material. The core
of the material is constructed using thin plates called lamination. Each plate is given a varnish
coating for providing necessary insulation between the plates. Cold Rolled Grain Oriented, in
short CRGO sheets are used to make transformer core.

After experimenting with several magnetic materials, Steinmetz proposed the following
empirical formula for quick and reasonable estimation of the hysteresis loss of a given material.

Ijh = kh Brl;llaxf
The value of n will generally lie between 1.5 to 2.5. Also we know the area enclosed by the

hysteresis loop involving B-H characteristic of the core material is a measure of hysteresis loss
per cycle.

24.3 Taking core loss into account

The transformer core being subjected to an alternating field at supply frequency will have
hysteresis and eddy losses and should be appropriately taken into account in the equivalent
circuit. The effect of core loss is manifested by heating of the core and is a real power (or
energy) loss. Naturally in the model an external resistance should be shown to take the core loss
into account. We recall that in a well designed transformer, the flux density level B, practically
remains same from no load to full load condition. Hence magnitude of the core loss will be
practically independent of the degree of loading and this loss must be drawn from the supply. To
take this into account, a fixed resistance R.; is shown connected in parallel with the magnetizing
reactance as shown in the figure 24.5.
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Ideal Transformer

Il —_———-—- S I I I', I
f I(] I ..' "‘ I > —72 —;2
Icll I ‘I-...: : PLLENN
.'.-l“‘. P'l--‘. I Rc] R'CI
Vi Xl :, x' I Z, v m Vv, x| |2
RC] lI I ovmu, . L I 1 N —
m .'.--“: ACETE N Nﬂ a
1 & &
N (b) Equivalent circuit  (c) Equivalent circuit
(a) R, for taking core loss into account referred to primary referred to secondary

Figure 24.5: Equivalent circuit showing core loss and magnetizing current.

It is to be noted that R,; represents the core loss (i.e., sum of hysteresis and eddy losses)
and is in parallel with the magnetizing reactance X,,. Thus the no load current drawn from the

supply 1,, is not magnetizing current /,, alone, but the sum of /,; and /,, with TC, in phase with
supply voltage ¥, and I lagging by 90° from ;. The phasor diagrams for no load and load

operations are shown in figures 24.6 (a) and (b).
It may be noted, that no load current /, is about 2 to 5% of the rated current of a well

designed transformer. The reflected current I, is obviously now to be added vectorially with 7

to get the total primary current /,as shown in figure 24.6 (b).

— — |
E,=V,4 E,=V,! :
E,=V;% E]=V]A
0o Iy —
Icl (I)max (I)max
> > oE— >
I I
(a) phasor diagram: no load (b) phasor diagram: with load

power factor angle 0,

Figure 24.6: Phasor Diagram of a transformer having core loss and magnetising
current.

24.4 Taking winding resistances and leakage flux into account

The assumption that all the flux produced by the primary links the secondary is far from true. In
fact a small portion of the flux only links primary and completes its path mostly through air as
shown in the figure 24.7. The total flux produced by the primary is the sum of the mutual and the
leakage fluxes. While the mutual flux alone takes part in the energy transfer from the primary to
the secondary, the effect of the leakage flux causes additional voltage drop. This drop can be
represented by a small reactance drop called the leakage reactance drop. The effect of winding
resistances are taken into account by way of small lumped resistances as shown in the figure
24.8.
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M}ltual Flux Ideal Transformer
'

L X I' r, X
4 v =
B Leakage 1.
1‘ Flux E, 7,
Equivalent circuit showing both sides
Figure 24.7: Leakage flux and their Figure 24.8: Equivalent circuit of a
paths. practical transformer.

The exact equivalent circuit can now be drawn with respective to various sides taking all the
realities into account. Resistance and leakage reactance drops will be present on both the sides
and represented as shown in the figures 24.8 and 24.9. The drops in the leakage impedances will
make the terminal voltages different from the induced voltages.

Equivalent circuit referred to primary Equivalent circuit referred to secondary

Figure 24.9: Exact Equivalent circuit referred to primary and secondary sides.

It should be noted that the parallel impedance representing core loss and the magnetizing
current is much higher than the series leakage impedance of both the sides. Also the no load
current /y is only about 3 to 5% of the rated current. While the use of exact equivalent circuit will
give us exact modeling of the practical transformer, but it suffers from computational burden.
The basic voltage equations in the primary and in the secondary based on the exact equivalent
circuit looks like:

It is seen that if the parallel branch of R, and X, are brought forward just right across the
supply, computationally it becomes much more easier to predict the performance of the
transformer sacrificing of course a little bit of accuracy which hardly matters to an engineer. It is
this approximate equivalent circuit which is widely used to analyse a practical power/distribution
transformer and such an equivalent circuit is shown in the figure 24.11.
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Ideal Transformer
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Approximate Equivalent circuit showing both sides

I; r'; x%

A% VA
chl ?

Approximate Equivalent circuit referred to primary

r, It X X2

V'] Z2

LR'CI

Approximate Equivalent circuit referred to secondary

Figure 24.10: Phasor diagram of the  Figure 24.11: Approximate equivalent
transformer supplying lagging power  circuit.
factor load.

The exact phasor diagram of the transformer can now be drawn by drawing the flux
phasor first and then applying the KVL equations in the primary and in the secondary.

The phasor diagram of the transformer when it supplies a lagging power factor load is
shown in the figure 24.10. It is clearly seen that the difference in the terminal and the induced
voltage of both the sides are nothing but the leakage impedance drops of the respective sides.
Also note that in the approximate equivalent circuit, the leakage impedance of a particular side is
in series with the reflected leakage impedance of the other side. The sum of these leakage
impedances are called equivalent leakage impedance referred to a particular side.

Equivalent leakage impedance referred to primary 7, + jx, = (rl +a’r, ) +J (x1 + azxz)
Equivalent leakage impedance referred to secondary 7, + jxez=(r2 + lej +J (xz + x—lzj
a a

N, .
Where, a= —L the turns ratio.
2

24.5 A few words about equivalent circuit

Approximate equivalent circuit is widely used to predict the performance of a transformer such
as estimating regulation and efficiency. Instead of using the equivalent circuit showing both the
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sides, it is always advantageous to use the equivalent circuit referred to a particular side and
analyse it. Actual quantities of current and voltage of the other side then can be calculated by
multiplying or dividing as the case may be with appropriate factors involving turns ratio a.

Transfer of parameters (impedances) and quantities (voltages and currents) from one side

to the other should be done carefully. Suppose a transformer has turns ratio a, a = N\/N, = V1/V;
where, N, and N, are respectively the primary and secondary turns and V; and V, are respectively
the primary and secondary rated voltages. The rules for transferring parameters and quantities
are summarized below.

1.

Transferring impedances from secondary to the primary:
If actual impedance on the secondary side be Z,, referred to primary side it will become

Zz' zazzz.

Transferring impedances from primary to the secondary:
If actual impedance on the primary side be Z,, referred to secondary side it will become

Z/=27/a*.

Transferring voltage from secondary to the primary:
If actual voltage on the secondary side be V,, referred to primary side it will become

V)=aVv,.

Transferring voltage from primary to the secondary:
If actual voltage on the primary side be V;, referred to secondary side it will become

Vi=Vv/a.

Transferring current from secondary to the primary:
If actual current on the secondary side be /,, referred to primary side it will become

L=1/a.

Transferring current from primary to the secondary:
If actual current on the primary side be I, referred to secondary side it will become

I'=al,.

In spite of all these, gross mistakes in calculating the transferred values can be identified

by remembering the following facts.

1.

A current referred to LV side, will be higher compared to its value referred to HV side.

2. A voltage referred to LV side, will be lower compared to its value referred to HV side.

3.

24.6

An impedance referred to LV side, will be lower compared to its value referred to HV
side.

Tick the correct answer
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24.7

. If the applied voltage of a transformer is increased by 50%, while the frequency is

reduced to 50%, the core flux density will become
. 3 . 1
[A] 3 times [B] 2 times [C] 3 [D] same

For a 10 kVA, 220 V / 110 V, 50 Hz single phase transformer, a good guess value of no
load current from LV side is:

(A) about 1 A (B) about 8 A (C) about 10 A (D) about 4.5 A

For a 10 kVA, 220 V / 110 V, 50 Hz single phase transformer, a good guess value of no
load current from HV side is:

(A)about2.25 A (B) about4 A (C) about 0.5 A (D) about 5 A

The consistent values of equivalent leakage impedance of a transformer, referred to HV
and referred to LV side are respectively:

(A) 0.4 + j0.6Q and 0.016 +j0.024Q
(B) 0.2 +70.3Q and 0.008 + j0.03Q
(C) 0.016 + j0.024Q and 0.4 + 0.6
(D) 0.008 + j0.3Q and 0.016 +j0.024Q

A 200 V / 100 V, 50 Hz transformer has magnetizing reactance X, = 400Q and
resistance representing core loss R = 250Q both values referring to HV side. The value
of the no load current and no load power factor referred to HV side are respectively:

(A)2.41 A and 0,8 lag (B) 1.79 A and 0.45 lag
(C)3.26 A and 0.2 lag (D) 4.50 A and 0.01 lag

The no load current drawn by a single phase transformer is found to be iy = 2 cos wt A
when supplied from 440 cos wt Volts. The magnetizing reactance and the resistance

representing core loss are respectively:

(A)216.65Qand382Q  (B)223.57 Q and 1264 Q
(C) 112 Q and 647 Q (D) 417.3 Q and 76.4 Q

Solve the problems

A 5kVA, 200 V /100 V, 50Hz single phase transformer has the following parameters:

HV winding Resistance = 0.025 Q
HV winding leakage reactance = 0.25Q
LV winding Resistance = 0.005 Q
LV winding leakage reactance = 0.05 Q
Resistance representing core loss in HV side = 400 Q
Magnetizing reactance in HV side = 190 Q
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Draw the equivalent circuit referred to [i] LV side and [ii] HV side and insert all the
parameter values.

. A 10 kVA, 1000 V / 200 V, 50 Hz, single phase transformer has HV and LV side
winding resistances as 1.1 Q and 0.05 Q respectively. The leakage reactances of HV and
LV sides are respectively 5.2 Q and 0.15 Q respectively. Calculate [i] the voltage to be
applied to the HV side in order to circulate rated current with LV side shorted, [ii] Also
calculate the power factor under this condition.

. Draw the complete phasor diagrams of a single phase transformer when [i] the load in the
secondary is purely resistive and [ii] secondary load power factor is /eading.
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25.1 Goals of the lesson

In the previous lesson we have seen how to draw equivalent circuit showing magnetizing
reactance (X,,), resistance (R.), representing core loss, equivalent winding resistance (7,) and
equivalent leakage reactance (x.). The equivalent circuit will be of little help to us unless we
know the parameter values. In this lesson we first describe two basic simple laboratory tests
namely (i) open circuit test and (ii) short circuit test from which the values of the equivalent
circuit parameters can be computed. Once the equivalent circuit is completely known, we can
predict the performance of the transformer at various loadings. Efficiency and regulation are two
important quantities which are next defined and expressions for them derived and importance
highlighted. A number of objective type questions and problems are given at the end of the
lesson which when solved will make the understanding of the lesson clearer.
Key Words: O.C. test, S.C test, efficiency, regulation.

After going through this section students will be able to answer the following questions.

e Which parameters are obtained from O.C test?

e Which parameters are obtained from S.C test?

e What percentage of rated voltage is needed to be applied to carry out O.C test?

e What percentage of rated voltage is needed to be applied to carry out S.C test?

e From which side of a large transformer, would you like to carry out O.C test?

e From which side of a large transformer, would you like to carry out S.C test?

e How to calculate efficiency of the transformer at a given load and power factor?

e Under what condition does the transformer operate at maximum efficiency?

e What is regulation and its importance?

e How to estimate regulation at a given load and power factor?

e What is the difference between efficiency and all day efficiency?
25.2 Determination of equivalent circuit parameters
After developing the equivalent circuit representation, it is natural to ask, how to know
equivalent circuit the parameter values. Theoretically from the detailed design data it is possible
to estimate various parameters shown in the equivalent circuit. In practice, two basic tests
namely the open circuit test and the short circuit test are performed to determine the equivalent
circuit parameters.

25.2.1 Qualifying parameters with suffixes LV & HV

For a given transformer of rating say, 10 kVA, 200 V / 100 V, 50 Hz, one should not be under
the impression that 200 V (HV) side will always be the primary (as because this value appears
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first in order in the voltage specification) and 100 V (LV) side will always be secondary. Thus,
for a given transformer either of the HV and LV sides may be used as primary or secondary as
decided by the user to suit his/her goals in practice. Usually suffixes 1 and 2 are used for
expressing quantities in terms of primary and secondary respectively — there is nothing wrong in
it so long one keeps track clearly which side is being used as primary. However, there are
situation, such as carrying out O.C & S.C tests (discussed in the next section), where naming
parameters with suffixes HV and LV become imperative to avoid mix up or confusion. Thus, it
will be useful to qualify the parameter values using the suffixes HV and LV (such as 7, gy, 7. v
etc. instead of 7,1, ;). Therefore, it is recommended to use suffixes as LV, HV instead of 1 and
2 while describing quantities (like voltage Vyy, Viy and currents Iyp, I y) or parameters
(resistances ryy, ¥y and reactances xyy, x.y) in such cases.

25.2.2 Open Circuit Test

To carry out open circuit test it is the LV side of the transformer where rated voltage at rated
frequency is applied and HV side is left opened as shown in the circuit diagram 25.1. The
voltmeter, ammeter and the wattmeter readings are taken and suppose they are V), Iy and W)
respectively. During this test, rated flux is produced in the core and the current drawn is the no-
load current which is quite small about 2 to 5% of the rated current. Therefore low range
ammeter and wattmeter current coil should be selected. Strictly speaking the wattmeter will
record the core loss as well as the LV winding copper loss. But the winding copper loss is very
small compared to the core loss as the flux in the core is rated. In fact this approximation is built-
in in the approximate equivalent circuit of the transformer referred to primary side which is LV
side in this case.

g o
28 & =
=72 &

25 & =
e O
J 2

Open Circuit Test
Figure 25.1: Circuit diagram for O.C test

The approximate equivalent circuit and the corresponding phasor diagrams are shown in
figures 25.2 (a) and (b) under no load condition.

Vo“

A 4 I0
2

Vo g Rawv)

l w4

(a) Equivalent circuit under O.C test  (b) Corresponding phasor diagram

—
;

Open circuit

Figure 25.2: Equivalent circuit & phasor diagram duri{}%r(s)ib% Ee%tE IIT, Kharagpur
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Below we shall show how from the readings of the meters the parallel branch impedance
namely Ry, and X,y can be calculated.

W
Calculate no load power factor cos 6y = 0
Vol
Hence 6, is known, calculate sin 6,
Calculate magnetizing current /,, = 1 sin
Calculate core loss component of current I,; = [ cos 6y
.. V,
Magnetising branch reactance X,y = I_
) ) Vv,
Resistance representing core loss Reyryy = T
cl
We can also calculate X1y and Reyuy) as follows:
X
_ m(LV)
Xy = e
R
cl(LV
Reury = a(z )
N,, )
Where,a = —+= the turns ratio
HV

If we want to draw the equivalent circuit referred to LV side then R and X, r) are to
be used. On the other hand if we are interested for the equivalent circuit referred to HV side,
Reyrvyand X,y are to be used.

25.2.3 Short circuit test

Short circuit test is generally carried out by energizing the HV side with LV side shorted.
Voltage applied is such that the rafed current flows in the windings. The circuit diagram is
shown in the figure 25.3. Here also voltmeter, ammeter and the wattmeter readings are noted
corresponding to the rated current of the windings.

LV side

1-phase

Oa.
HYV side

Autotransformer

Short Circuit Test
Figure 25.3: Circuit diagram during S.C test

Suppose the readings are V., I, and W,. It should be noted that voltage required to be
applied for rated short circuit current is quite small (typically about 5%). Therefore flux level in
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the core of the transformer will be also very small. Hence core loss is negligibly small compared
to the winding copper losses as rated current now flows in the windings. Magnetizing current
too, will be pretty small. In other words, under the condition of the experiment, the parallel
branch impedance comprising of Ry and X, can be considered to be absent. The equivalent
circuit and the corresponding phasor diagram during circuit test are shown in figures 25.4 (a) and

(b).

r X
Isc I s e(HV) e(HV)

Y

<
wn
A
Parallel branch
[ neglected

Vsc

Osc Isc

>
Short circuit ;

(a) Equivalent circuit under S.C test (b) Corresponding phasor diagram

Figure 25.4: Equivalent circuit & phasor diagram during S.C test

Therefore from the test data series equivalent impedance namely r.#y) and x.#p) can
easily be computed as follows:

) ) ) /4
Equivalent resistance ref. to HV side ro@y)y = >
1
. . ) V
Equivalent impedance ref. to HV side zywyy = 1“’
Equivalent leakage reactance ref. to HV side x.1) = zf( ) - r(j )
We can also calculate 7.y and xy) as follows:
Fewry = azr e(HV)
Xe(LV) — azxe(HV)
N,, )
where,a = —%~ the turns ratio
HV

Once again, remember if you are drawing equivalent circuit referred to LV side, use
parameter values with suffixes LV, while for equivalent circuit referred to HV side parameter
values with suffixes HV must be used.

25.3 Efficiency of transformer

In a practical transformer we have seen mainly two types of major losses namely core and copper
losses occur. These losses are wasted as heat and temperature of the transformer rises. Therefore
output power of the transformer will be always less than the input power drawn by the primary
from the source and efficiency is defined as
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Output power in KW

- Output power in Kw + Losses
Output power in KW

- Output power in Kw + Core loss+Copper loss

(25.1)

We have seen that from no load to the full load condition the core loss, P.,. remains
practically constant since the level of flux remains practically same. On the other hand we know
that the winding currents depend upon the degree of loading and copper loss directly depends
upon the square of the current and not a constant from no load to full load condition. We shall
write a general expression for efficiency for the transformer operating at x per unit loading and
delivering power to a known power factor load. Let,

KVA rating of the transformer be = §

Per unit degree of loadingbe = x
Transformer is delivering = x SKVA
Power factor of the load be = cos 6

Output power in KW = xS cos 6
Let copper loss at full load (i.e., x=1) = P,
Therefore copper loss at x per unit loading = x* Pq,
Constant core loss =  Pye (25.2)
(25.3)

Therefore efficiency of the transformer for general loading will become:

_ xS cos 0
1 xScosO+P, +x'P,

If the power factor of the load (i.e., cos 6) is kept constant and degree of loading of the
transformer is varied we get the efficiency Vs degree of loading curve as shown in the figure
25.5. For a given load power factor, transformer can operate at maximum efficiency at some
unique value of loading i.e., x. To find out the condition for maximum efficiency, the above
equation for # can be differentiated with respect to x and the result is set to 0. Alternatively, the
right hand side of the above equation can be simplified to, by dividing the numerator and the
denominator by x. the expression for 7 then becomes:

_ Scos 0
1 S cos O+ = +x P,

For efficiency to be maximum, % (Denominator) is set to zero and we get,

or i(ScosGJr@erij =0
dx x
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P
or ——5=th, = 0

2 _
or x Pcu - Pcore

core

P

cu

The loading for maximum efficiency, x

Thus we see that for a given power factor, transformer will operate at maximum
efficiency when it is loaded to |, /PP— S KVA. For transformers intended to be used continuously

at its rated KVA, should be designed such that maximum efficiency occurs at x = 1. Power
transformers fall under this category. However for transformers whose load widely varies over
time, it is not desirable to have maximum efficiency at x = 1. Distribution transformers fall under
this category and the typical value of x for maximum efficiency for such transformers may
between 0.75 to 0.8. Figure 25.5 show a family of efficiency Vs. degree of loading curves with
power factor as parameter. It can be seen that for any given power factor, maximum efficiency

. P. . . . .
occurs at a loading of x =, /== . Efficiencies #max1, fmar2 and #mar3 are respectively the maximum

efficiencies corresponding to power factors of unity, 0.8 and 0.7 respectively. It can easily be
shown that for a given load (i.e., fixed x), if power factor is allowed to vary then maximum
efficiency occurs at unity power factor. Combining the above observations we can say that the

efficiency is obtained when the loading of the transformer is x = FET and load power factor is

unity. Transformer being a static device its efficiency is very high of the order of 98% to even
99%.

Efficiency

=3
3 3
2 D
S~
N e

ower factor = 0.8

B 7N
l Power factor = 0.7

=) Degree of loading x

— core
X= —_—

cu

Figure 25.5: Efficiency VS degree of loading curves.
25.3.1 All day efficiency

In the earlier section we have seen that the efficiency of the transformer is dependent upon the
degree of loading and the load power factor. The knowledge of this efficiency is useful provided
the load and its power factor remains constant throughout.

For example take the case of a distribution transformer. The transformers which are used
to supply LT consumers (residential, office complex etc.) are called distribution transformers.
For obvious reasons, the load on such transformers vary widely over a day or 24 hours. Some
times the transformer may be practically under no load condition (say at mid night) or may be
over loaded during peak evening hours. Therefore it is not fare to judge efficiency of the
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transformer calculated at a particular load with a fixed power factor. All day efficiency,
alternatively called energy efficiency is calculated for such transformers to judge how efficient
are they. To estimate the efficiency the whole day (24 hours) is broken up into several time
blocks over which the load remains constant. The idea is to calculate total amount of energy
output in KWH and total amount of energy input in KWH over a complete day and then take the
ratio of these two to get the energy efficiency or all day efficiency of the transformer. Energy or
All day efficiency of a transformer is defined as:

Energy output in KWH in 24 hours
Energy input in KWH in 24 hours
Energy output in KWH in 24 hours
Output in KWH in 24 hours + Energy loss in 24 hours
Output in KWH in 24 hours
Output in KWH in 24 hours + Loss in core in 24 hours + Loss in the

Nall day —

Winding in 24 hours
Energy output in KWH in 24 hours
Energy output in KWH in 24 hours +24 P__+ Energy loss (cu) in the

core

winding in 24 hours

With primary energized all the time, constant P,,,. loss will always be present no matter what is
the degree of loading. However copper loss will have different values for different time blocks as
it depends upon the degree of loadings. As pointed out earlier, if P, is the full load copper loss
corresponding to x = 1, copper loss at any arbitrary loading x will be x* P,,. It is better to make
the following table and then calculate 74 4ay-

Time blocks KVA Degree of P.F of load | KWH output | KWH cu
Loading loading x loss

T, hours S x1=S81/8 cos 6, S1 cos 61T xf P., T,
T> hours S, X2 =82/ cos 6, S, cos T, x22 P.. T
T, hours S, X, =Sn/S cos 0, S, cos 8,7, xf P., T,

Note that Z]: = 24

i=1
Energy output in 24 hours = Z S, cos 0. T,
i=1
Total energy loss = 24P+ Z x’P, T
i=1
Z; S, cos 0. T,

nallday

n n 2
Zizl Si cos 01' T: +Zi=l xi Bu

T+24P

core
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25.4 Regulation

The output voltage in a transformer will not be maintained constant from no load to the full load
condition, for a fixed input voltage in the primary. This is because there will be internal voltage
drop in the series leakage impedance of the transformer the magnitude of which will depend
upon the degree of loading as well as on the power factor of the load. The knowledge of
regulation gives us idea about change in the magnitude of the secondary voltage from no load to
full load condition at a given power factor. This can be determined experimentally by direct
loading of the transformer. To do this, primary is energized with rated voltage and the secondary
terminal voltage is recorded in absence of any load and also in presence of full load. Suppose the
readings of the voltmeters are respectively /5y and V5. Therefore change in the magnitudes of the
secondary voltage is V5o — V>. This change is expressed as a percentage of the no load secondary
voltage to express regulation. Lower value of regulation will ensure lesser fluctuation of the
voltage across the loads. If the transformer were ideal regulation would have been zero.

V.., -V.
Percentage Regulation,% R = Mx 100

20

For a well designed transformer at full load and 0.8 power factor load percentage
regulation may lie in the range of 2 to 5%. However, it is often not possible to fully load a large
transformer in the laboratory in order to know the value of regulation. Theoretically one can
estimate approximately, regulation from the equivalent circuit. For this purpose let us draw the
equivalent circuit of the transformer referred to the secondary side and neglect the effect of no
load current as shown in the figure 25.6. The corresponding phasor diagram referred to the
secondary side is shown in figure 25.7.

I, Ie2 Xe2
W
V2o vV, 7,
4 Ls
Approximate Equivalent Circuit referred to secondary I
Figure 25.6: Equivalent circuit ref. to Figure 25.7: Phasor diagram ref. to
secondary. secondary.

It may be noted that when the transformer is under no load condition (i.e., S is opened),
the terminal voltage V> is same as V>o. However, this two will be different when the switch is
closed due to drops in I, r, and I x.». For a loaded transformer the phasor diagram is drawn
taking terminal voltage 7, on reference. In the usual fashion /, is drawn lagging V>, by the power
factor angle of the load 6, and the drops in the equivalent resistance and leakage reactances are
added to get the phasor V9. Generally, the resistive drop /I re; is much smaller than the reactive
drop 1> x.,. It is because of this the angle between OC and OA (9) is quite small. Therefore as per
the definition we can say regulation is
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(V-¥2) _ OC-04
Vag oc

R:

An approximate expression for regulation can now be easily derived geometrically from
the phasor diagram shown in figure 25.7.
OC = OD since, o is small
Therefore, OC —OA = OD-O0A
= AD
= AE+ED

= ]2 Ve COS 92 + 12 Xe2 sin (92

. . 0C-04
So per unit regulation, R = ———
ocC
_ Lynycos0,+1,x,sin0,
Vo
I I
or,R = 2o 0, +-2 ez gin 0,
20 20

It is interesting to note that the above regulation formula was obtained in terms of
quantities of secondary side. It is also possible to express regulation in terms of primary
quantities as shown below:

I I, x, .
We know, R = 22 cos 0, + 22 5in 0,
20 20

Now multiplying the numerator and denominator of the RHS by a the turns ratio, and further
manipulating a bit with @ in numerator we get:

2 2
R = (I,/a)a" r,, cos 0, + (I,/a)a” x,, sin 0,

alvy, avy,

Now remembering, that (I,/a)=1}, a’r,, =r,, a’x,, =x,,and aV,, =V, =V,; we get
regulation formula in terms of primary quantity as:

Lr L x, .
R = —=cosf,+—=—“sinb),
20 20
Lr Lx, .
Or,R = —*<cosh, +—=—Lsinb,
1 1
Ilrel leel

Q

Neglecting no load current: R —=<cos 0, +

1 1

sin 0,
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Thus regulation can be calculated using either primary side quantities or secondary side
quantities, since:

L Ix, . T I x
R=—="“cos0,+2—25in6, =—cos 9, +
20 20 1 1

sin 0,

Now the quantity [f,:foz , represents what fraction of the secondary no load voltage is

dropped in the equivalent winding resistance of the transformer. Similarly the quantity

szez

represents what fraction of the secondary no load voltage is dropped in the equivalent

leakage reactance of the transformer. If /; is rated curerent, then these quantities are called the
per unit resistance and per unit leakage reactance of the transformer and denoted by &, and &,

respectively. The terms € = 2«2 and € = 2";’/ <2 are called the per unit resistance and per unit

leakage reactance respectively. Slmllarly, per unit leakage impedance e&;,can be defined.
It can be easily shown that the per unit values can also be calculated in terms of primary
quantities as well and the relations are summarised below.
1l r I .r

er — 2rthed e2 _ lraIt;d el
20 1
Ex — IZrated er — Ilrated'xel
Vo 4
ez — IZratedZeZ — Ilratedzel
VZO Vvl

— 2 2 _ 2 2
where, z,, =\/r +x2, and z,, =1} +x,

It may be noted that the per unit values of resistance and leakage reactance come out to
be same irrespective of the sides from which they are calculated. So regulation can now be
expressed in a simple form in terms of per unit resistance and leakage reactance as follows.

per unit regulation, R = €, cos0,+¢€_sin0,

and % regulation R = (€, cos 0,+ €, sin0,)x100
For leading power factor load, regulation may be negative indicating that secondary
terminal voltage is more than the no load voltage. A typical plot of regulation versus power

factor for rated current is shown in figure 25.8.

% Regulation

Leading power factor, 2 Lagging gower factor
0.2 04 0.6 /0.8 |1 0.8 0.6 0.4 0.2

HV LV LV HV HV LV LV HV

Figure 25.8: Regulation VS power Figure 25.9: LV and HV windings in both
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To keep the regulation to a prescribed limit of low value, good material (such as copper) should
be used to reduce resistance and the primary and secondary windings should be distributed in the
limbs in order to reduce leakage flux, hence leakage reactance. The hole LV winding is divided
into two equal parts and placed in the two limbs. Similar is the case with the HV windings as
shown in figure 25.9.

25.5

1.

Tick the correct answer

While carrying out OC test for a 10 kVA, 110/ 220 V, 50 Hz, single phase transformer
from LV side at rated voltage, the watt meter reading is found to be 100 W. If the same
test is carried out from the HV side at rated voltage, the watt meter reading will be

(A) 100 W (B) 50 W (C) 200 W (D) 25 W

A 20kVA, 220 V/ 110V, 50 Hz single phase transformer has full load copper loss =200
W and core loss = 112.5 W. At what kVA and load power factor the transformer should
be operated for maximum efficiency?

(A) 20 kVA & 0.8 power factor (B) 15 kVA & unity power factor
(C) 20 kVA & unity power factor (D) 15 kVA & 0.8 power factor.

A transformer has negligible resistance and has an equivalent per unit reactance 0.1. Its
voltage regulation on full load at 30° leading load power factor angle is:

(A) +5 % (B) -5 % (C)+10 % (D)-10 %

A transformer operates most efficiently at 2 th full load. The ratio of its iron loss and full
load copper loss is given by:

(A) 16:9 (B) 4:3 (C) 3:4 (D) 9:16

Two identical 100 kVA transformer have 150 W iron loss and 150 W of copper loss at
rated output. Transformer-1 supplies a constant load of 80 kW at 0.8 power factor lagging
throughout 24 hours; while transformer-2 supplies 80 kW at unity power factor for 12
hours and 120 kW at unity power factor for the remaining 12 hours of the day. The al//

day efficiency:
(A) of transformer-1 will be higher.  (B) of transformer-2 will be higher.
(B) will be same for both transformers. (D) none of the choices.

The current drawn on no load by a single phase transformer is iy = 3 sin (3147 - 60°) A,
when a voltage v; = 300 sin(314¢)V is applied across the primary. The values of
magnetizing current and the core loss component current are respectively:

(A)12A&1.8A (B)2.6A&15A (C)18A&12A (D)I5A&26A
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7.

25.6

A 4 kVA, 400 / 200 V single phase transformer has 2 % equivalent resistance. The
equivalent resistance referred to the HV side in ohms will be:

(A)0.2 (B) 0.8 (C) 1.0 (D) 0.25
The % resistance and the % leakage reactance of a 5 kVA, 220 V /440 V, 50 Hz, single
phase transformer are respectively 3 % and 4 %. The voltage to be applied to the HV
side, to carry out S.C test at rated current is:

(A)11V (B) 154V )22V (D) 30.8V

Solve the Problems

. A 30KVA, 6000/230V, 50Hz single phase transformer has HV and LV winding

resistances of 10.2Q and 0.0016Q2 respectively. The equivalent leakage reactance as
referred to HV side is 34Q. Find the voltage to be applied to the HV side in order to
circulate the full load current with LV side short circuited. Also estimate the full load %
regulation of the transformer at 0.8 lagging power factor.

A single phase transformer on open circuit condition gave the following test results:

Applied voltage | Frequency | Power drawn
192V 40 Hz 392 W
288V 60 Hz 732 W

Assuming Steinmetz exponent n = 1.6, find out the hysteresis and eddy current loss
separately if the transformer is supplied with 240 V, 50 Hz.

Following are the test results on a 4KVA, 200V/400V, 50Hz single phase transformer.
While no load test is carried out from the LV side, the short circuit test is carried out from
the HV side.

No load test: ‘ 200V 0.7A 60 W
Short Circuit Test: | 9V 6A 21.6 W

Draw the equivalent circuits (i) referred to LV side and then (ii) referred to HV side and

insert all the parameter values.

4,

The following data were obtained from testing a 48 kVA, 4800/240V, 50 Hz transformer.

O.C test (from LV side): | 240V 2A 120W
S.C test (from HV side): | 150V 10A 600 W

(i) Draw the equivalent circuit referred to the HV side and insert all the parameter
values.

(i1)) At what kVA the transformer should be operated for maximum efficiency? Also
calculate the value of maximum efficiency for 0.8 lagging factor load.
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26.1 Goals of the lesson

Three phase system has been adopted in modern power system to generate, transmit and
distribute power all over the world. In this lesson, we shall first discuss how three number of
single phase transformers can be connected for 3-phase system requiring change of voltage
level. Then we shall take up the construction of a 3-phase transformer as a single unit. Name
plate rating of a three phase transformer is explained. Some basic connections of a 3-phase
transformer along with the idea of vector grouping is introduced.

Key Words: bank of three phase transformer, vector group.

After going through this section students will be able to answer the following questions.

e Point out one important advantage of connecting a bank of 3-phase transformer.
e Point out one disadvantage of connecting a bank of 3-phase transformer.

e s it possible to transform a 3-phase voltage, to another level of 3-phase voltage by
using two identical single phase transformers? If yes, comment on the total kVA
rating obtainable.

e From the name plate rating of a 3-phase transformer, how can you get individual coil
rating of both HV and LV side?

e How to connect successfully 3 coils in delta in a transformer?

26.2 Three phase transformer

It is the three phase system which has been adopted world over to generate, transmit and
distribute electrical power. Therefore to change the level of voltages in the system three phase
transformers should be used.

Three number of identical single phase transformers can be suitably connected for use in a
three phase system and such a three phase transformer is called a bank of three phase
transformer. Alternatively, a three phase transformer can be constructed as a single unit.

26.3 Introducing basic ideas

In a single phase transformer, we have only two coils namely primary and secondary. Primary is
energized with single phase supply and load is connected across the secondary. However, in a 3-
phase transformer there will be 3 numbers of primary coils and 3 numbers of secondary coils. So
these 3 primary coils and the three secondary coils are to be properly connected so that the
voltage level of a balanced 3-phase supply may be changed to another 3-phase balanced system
of different voltage level.

Suppose you take three identical transformers each of rating 10 kVA, 200 V / 100 V, 50 Hz
and to distinguish them call them as A, B and C. For transformer-A, primary terminals are
marked as A;A; and the secondary terminals are marked as a;a,. The markings are done in such
a way that A; and a; represent the dot (¢) terminals. Similarly terminals for B and C transformers
are marked and shown in figure 26.1.

Version 2 EE 11T, Kharagpur



Transformer-A

primary
Al A2
{
Transformer-B
primary
B]_ BZ
{
Transformer-C
primary
C1 CZ
L

Transformer-A
secondary

°
Transformer-B
secondary

bz bl
—0000 y—
Transtormer-C
secondary

[ J

Figure 26.1: Terminal markings along with dots

It may be noted that individually each transformer will work following the rules of single
phase transformer i.e, induced voltage in a;a, will be in phase with applied voltage across A;A;
and the ratio of magnitude of voltages and currents will be as usual decided by a where a = N1/N,
= 2/1, the turns ratio. This will be true for transformer-B and transformer-C as well i.e., induced
voltage in b;b, will be in phase with applied voltage across B;1B, and induced voltage in c;c; will
be in phase with applied voltage across C;C..

Now let us join the terminals A,, B, and C, of the 3 primary coils of the transformers and
no inter connections are made between the secondary coils of the transformers. Now to the free
terminals A, By and C; a balanced 3-phase supply with phase sequence A-B-C is connected as

shown in figure 26.2. Primary is said to be connected in star.

=L TO00 —
&L D000 ——

Balanced 3-phase supply

>

A:B,C,

Cy B

a1

C " a
o / bz\Ab1

Figure 26.2: Star connected primary with secondary coils left alone.

If the line voltage of the supply is V| = 2004/3 V, the magnitude of the voltage impressed

across each of the primary coils will be /3 times less i.e., 200 V. However, the phasors \7A1A2 :
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Vg g, and V. will be have a mutual phase difference of 120° as shown in figure 26.2. Then from
the fundamental principle of single phase transformer we know, secondary coil voltage \7&11az will

be parallel to V,, ; V,, will be parallel to V,, and V,_ will be parallel to V.. . Thus the

secondary induced voltage phasors will have same magnitude i.e., 100 V but are displaced by

120° mutually. The secondary coil voltage phasors \7&11az : \7@2 and \7% are shown in figure 26.2.

Since the secondary coils are not interconnected, the secondary voltage phasors too have been
shown independent without any interconnections between them. In contrast, the terminals A;, B
and C, are physically joined forcing them to be equipotential which has been reflected in the
primary coil voltage phasors as well where phasor points A,, B, and C, are also shown joined.
Coming back to secondary, if a voltmeter is connected across any coil i.e., between a; and a, or
between b; and b, or between c; and c; it will read 100 V. However, voltmeter will not read
anything if connected between a; and b; or between b; and c; or between c; and a; as open
circuit exist in the paths due to no physical connections between the coils.

Imagine now the secondary coil terminals a,, b, and c, are joined together physically as
shown in figure 26.3. So the secondary coil phasors should not be shown isolated as a, b, and c;
become equipotential due to shorting of these terminals. Thus, the secondary coil voltage
phasors should not only be parallel to the respective primary coil voltages but also a, b, and c;

should be equipotential. Therefore, shift and place the phasors \Talaz, \7blbz and \7% in such a way

that they remain parallel to the respective primary coil voltages and the points a,, b, and c; are
superposed.

A Aq A, a a
L0002 oo
b

35000 —

[ J

szCl
[ J

Balanced 3-phase supply
Kj Lw
S s
[ J [ J
O e

A a
A.B,C, C2 s &
C1 2 b,
C1 Bl

Figure 26.3: Both primary & secondary are star connected.

Here obviously, if a voltmeter is connected between a; and b; or between b; and c; or
between c; and a; it will read corresponding phasor lengths ajb; or by ¢; or c;a; which are all

equal to 200v/3V. Thus, Vop + Vb, and V_, are of same magnitude and displaced mutually by

120° to form a balanced 3-phase voltage system. Primary 3-phase line to line voltage of 200~/3V

is therefore stepped down to 3-phase, 100~/3 V line to line voltage at the secondary. The junction
of A,, Bz and C; can be used as primary neutral and may be denoted by N. Similarly the junction
of ay, b, and ¢, may be denoted by n for secondary neutral.
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26.3.1 A wrong star-star connection

In continuation with the discussion of the last section, we show here a deliberate wrong
connection to highlight the importance of proper terminal markings of the coils with dots (¢). Let
us start from the figure 26.2 where the secondary coils are yet to be connected. To implement
star connection on the secondary side, let us assume that someone joins the terminals a,, b; and
C, together as shown in figure 26.4.

The question is: is it a valid star connection? If not why? To answer this we have to
interconnect the secondary voltage phasors in accordance with the physical connections of the
coils. In other words, shift and place the secondary voltage phasors so that a,, b; and c, overlap

each other to make them equipotential. The lengths of phasors V., , V,, and V. are no doubt,

same and equal to 100 V but they do not maintain 120° mutual phase displacement between them
as clear from figure 26.4. The magnitude of the line to line voltages too will not be equal. From
simple geometry, it can easily be shown that

’\731b2 * ’\70131
A A m\ A az ay
o [ ]
B /s Bl BZ b2
A 6 6 6 6 ® e
C ,C1 m\ C Cy
o Co [ ]

Vbzcl

Balanced 3-phase supply

O

0 az
60 Czbl
C1

Figure 26.4: Both primary & secondary are star connected.

Thus both the phase as well as line voltages are not balanced 3-phase voltage. Hence the
above connection is useless so far as transforming a balanced 3-phase voltage into another level
of balanced 3-phase voltage is concerned.

Appropriate polarity markings with letters along with dots (¢) are essential in order to make
various successful 3-phase transformer connections in practice or laboratory.

26.3.2 Bank of three phase transformer

In the background of the points discussed in previous section, we are now in a position to study
different connections of 3-phase transformer. Let the discussion be continued with the same
three single phase identical transformers, each of rating 10kVA, 200V / 100V, 50Hz,. These
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transformers now should be connected in such a way, that it will change the level of a balanced
three phase voltage to another balanced three phase voltage level. The three primary and the
three secondary windings can be connected in various standard ways such as star / star or star /
delta or delta / delta or in delta / star fashion. Apart from these, open delta connection is also
used in practice.

Star-star connection

We have discussed in length in the last section, the implementation of star-star connection of a 3-
phase transformer. The connection diagram along with the phasor diagram are shown in figure
26.5 and 26.6.

As discussed earlier, we need to apply to the primary terminals (A;B;C;) a line to line
voltage of 200+/3 V so that rated voltage (200 V) is impressed across each of the primary coils
of the individual transformer. This ensures 100 V to be induced across each of the secondary

coil and the line to line voltage in the secondary will be 100+/3 V. Thus a 3-phase line to line

voltage of 200/3 Vis stepped down to a 3-phase line to line voltage of 100~/3 V. Now we
have to calculate how much load current or kVA can be supplied by this bank of three phase
transformers without over loading any of the single phase transformers. From the individual
rating of each transformer, we know maximum allowable currents of HV and LV windings are
respectively Iy = 10000/200 = 50A and Iy = 10000/100 = 100A. Since secondary side is
connected in star, line current and the winding currents are same. Therefore total kVA that can

be supplied to a balanced 3-phase load is ~/3V,, I, :\@(\@100)100:30 kVA. While solving

problems, it is not necessary to show all the terminal markings in detail and a simple and popular
way of showing the same star-star connection is given in figure 26.7.

> A Al A ao ai

S 0—/—L D000 —+ 0000 R

) - 1

: B b b g : f

s /B1 B2 2 1y_|=

ke . 0000 0000 o 1 %

g /oo —d Limmis = ¢ b

° ° C, B:
Figure 26.5: Star/star Connection. Figure 26.6: Phasor diagram.
A IHV:50A a ||_V:100A

> @ > —— o
s s f I I .
» 20043V 1003V a3
5 200V 100 V @
g C 100A | S
g_ .l ‘ :.7)-
x B
o o
[<5] C
5 =
= m
m

50 A 100 A

we

Figure 26.7: Simplified way of showing star-star connection
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Star-delta connection

To connect windings in delta, one should be careful enough to avoid dead short circuit. Suppose
we want to carry out star / delta connection with the help of the above single phase transformers.
HV windings are connected by shorting A, B, and C, together as shown in the figure 26.8. As
we know, in delta connection, coils are basically connected in series and from the junction
points, connection is made to supply load. Suppose we connect quite arbitrarily (without paying
much attention to terminal markings and polarity), a; with b, and b; with c;. Should we now join
a, with ¢, by closing the switch S, to complete the delta connection? As a rule, we should not
join (i.e., put short circuit) between any two terminals if potential difference exists between the
two. It is equivalent to put a short circuit across a voltage source resulting into very large
circulating current. Therefore before closing S, we must calculate the voltage difference
between a, with c,. To do this, move the secondary voltage phasors such that a; and b,
superpose as well as b; with c; superpose — this is because a; and b, are physically joined to
make them equipotential; similarly b; and c; are physically joined so as to make them
equipotential. The phasor diagram is shown in figure 26.9. If a voltmeter is connected across S
(i.e., between a, and ¢,), it is going to read the length of the phasor \T%CZ . By referring to phasor

diagram of figure 26.9, it can be easily shown that the voltage across the switch S, under this
condition isV, . =100+ 2c0s60°100= 200V . So this connection is not proper and the switch S

should not be closed.
ai

>

Balanced 3-phase supplv
o I® >
[ ] [ ] [ ]

oy

Voltage across the switch

Figure 26.8: Incomplete Connection. Figure 26.9: Phasor diagram.

Another alternative way to attempt delta connection in the secondary could be: join a;
with b, and by with c,. Before joining a, with ¢; to complete delta connection, examine the open
circuit voltage \7% . Following the methods described before it can easily be shown that \7% =

0, which allows to join a, with c¢; without any circulating current. So this, indeed is a correct
delta connection and is shown in figure 26.10 where a; is joined with by, b; is joined with ¢, and
ci1 is joined with a,. The net voltage acting in the closed delta in this case is zero. Although
voltage exists in each winding, the resultant sum becomes zero as they are 120° mutually apart.
The output terminals are taken from the junctions as a, b and ¢ for supplying 3-phase load. The
corresponding phasor diagram is shown in figure 26.11.
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Figure 26.10: Star/delta Connection. Figure 26.11: Phasor diagram.

Here also we can calculate the maximum KVA this star / delta transformer can handle without
over loading any of the constituents transformers. In this case the secondary line to line voltage
is same as the winding voltage i.e., 100V, but the line current which can be supplied to the load

is100+/3 . Because it is at this line current, winding current becomes the rated 100A. Therefore
total load that can be supplied is+/3V, 1, =~/3 100(\/5 100)VA = 30kVA.. Here also total kVA

is 3 times the kVA of each transformer. The star-delta connection is usually drawn in a
simplified manner for problem solving and easy understanding as shown in figure 26.12.

A lav=50A a Iy =1003A [3
> e > > S
g 1 i 00 A go e
2 100 V| &
2 200~+/3 V 0y < g
£¢d 2 >
5 1 S b 5
S e o 100 Alciov 2
B Y
= I, =100/3A |2
m A

[ ¢ P>

B 50A

Figure 26.12: Simplified way of showing star-star connection

Another valid delta connection on the LV side is also possible by joining a; with by, b,
with c¢; and ¢, with ay. It is suggested that the reader tries other 3-phase connections and verify
that the total KVA is 3-times the individual KVA of each transformer. However, we shall discuss
about delta / delta and open delta connection.

Delta / delta and open delta connection

Here we mention about the delta/delta connection because, another important and useful
connection namely open delta connection can be understood well. Valid delta connection can be
implemented in the usual way as shown in the figure 26.13. The output line to line voltage will
be 100V for an input line voltage of 200V. From the secondary one can draw a line current of

100+/3 A which means a total of 30 KVA can be supplied without overloading any of the
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individual transformers. A simplified representation of the delta-delta connection is shown in
figure 26.15 along with the magnitude of the currents in the lines and in the coils of HV and LV
side.

Let us now imagine that the third transformer C be removed from the circuit as shown in
the second part of the figure 26.13. In effect now two transformers are present. If the HV sides is
energized with three phase 200V supply, in the secondary we get 3-phase balanced 100V supply
which is clear from the phasor diagram shown in figure 26.14. Although no transformer winding
exist now between A, & B; on the primary side and between a, & b; on the secondary side, the
voltage between A; & B; on the primary side and between a, & b; on the secondary side exist.
Their phasor representation are shown by the dotted line confirming balanced 3-phase supply.
But what happens to kVA handling capacity of the open delta connection? Is it 20 kVA, because
two transformers are involved? Let us see. The line current that we can allow to flow in the

secondary is 100A (and not 100~/3 as in delta / delta connection). Therefore total maximum
kVA handled is given by+/3v, I, = (\/§ 100 100) VA =17.32kVA, which is about 57.7% of the

delta connected system. This is one of the usefulness of using bank of 3-phase transformers and
connecting them in delta-delta. In case one of them develops a fault, it can be removed from the
circuit and power can be partially restored.

A
> ,Al A ap a; a A B,
o ai b2
2
2 B B: b1
C;- o— C, €2
o
g c A e
5 o—/ )€, Delta-delta
[3+]
m

Delta-delta Connection.

A Aq Ao a a; a B
e O—/ H Al 2
o
3
_g B / b2 .b]_ b
& B2
2 .
5 g_/ 5 Al Delta-delta
8 l ]

Open delta Connection.

Figure 26.13: Delta/delta and open delta connection. Figure 26.14: Phasor diagram
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Figure 26.15: Simplified way of showing delta-delta connection

26.3.3 3-phase transformer- a single unit

Instead of using three number of single phase transformers, a three phase transformer can be
constructed as a single unit. The advantage of a single unit of 3-phase transformer is that the cost
is much less compared to a bank of single phase transformers. In fact all large capacity
transformers are a single unit of three phase transformer.

Al ryed £
A2 gié' —>0n $g  Pce—
al B1 C1
a2 B2 C2
bl cl
b2 c2
Figure 26.16: A conceptual three Figure 26.17: A practical core type
phase transformer. three phase transformer.

To understand, how it is constructed let us refer to figure 26.16. Here three, single phase
transformers are so placed that they share a common central limb. The primary and the
secondary windings of each phase are placed on the three outer limbs and appropriately marked.
If the primary windings are connected to a balanced 3-phase supply (after connecting the
windings in say star), the fluxes ¢@a(t), ¢s(t) and @c(t) will be produced in the cores differing in
time phase mutually by 120°. The return path of these fluxes are through the central limb of the
core structure. In other words the central limb carries sum of these three fluxes. Since
instantaneous sum of the fluxes, @ga(t)+ @s(t)+ ¢c(t) = 0, no flux lines will exist in the central limb
at any time. As such the central common core material can be totally removed without affecting
the working of the transformer. Immediately we see that considerable saving of the core material
takes place if a 3-phase transformer is constructed as a single unit. The structure however
requires more floor area as the three outer limbs protrudes outwardly in three different directions.
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A further simplification of the structure can be obtained by bringing the limbs in the same plane
as shown in the figure 26.17. But what do we sacrifice when we go for this simplified structure?
In core structure of figure 26.16, we note that the reluctance seen by the three fluxes are same,
Hence magnetizing current will be equal in all the three phases. In the simplified core structure
of figure 26.17, reluctance encountered by the flux ¢ is different from the reluctance
encountered by fluxes ¢a and ¢c, Hence the magnetizing currents or the no load currents drawn
will remain slightly unbalanced. This degree of unbalanced for no load current has practically no
influence on the performance of the loaded transformer. Transformer having this type of core
structure is called the core type transformer.

26.4 Vector Group of 3-phase transformer

The secondary voltages of a 3-phase transformer may undergo a phase shift of either +30°
leading or -30° lagging or 0° i.e, no phase shift or 180° reversal with respective line or phase to
neutral voltages. On the name plate of a three phase transformer, the vector group is mentioned.
Typical representation of the vector group could be Yd1 or Dy11 etc. The first capital latter Y
indicates that the primary is connected in star and the second lower case latter d indicates delta
connection of the secondary side. The third numerical figure conveys the angle of phase shift
based on clock convention. The minute hand is used to represent the primary phase to neutral
voltage and always shown to occupy the position 12. The hour hand represents the secondary
phase to neutral voltage and may, depending upon phase shift, occupy position other than 12 as
shown in the figure 26.18.

Figure 26.18: Clock convention representing vector groups.

The angle between two consecutive numbers on the clock is 30°. The star-delta
connection and the phasor diagram shown in the figures 26.10 and 26.11 correspond to Yd;. It
can be easily seen that the secondary a phase voltage to neutral n (artificial in case of delta
connection) leads the A phase voltage to neutral N by 30°. However the star delta connection
shown in the figure 26.19 correspond to Yds;.
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26.5

>

Balanced 3-phase supply
tm
s
°
W

>

di

dy
b1

O

Figure 26.19: Connection and phasor diagram for Y di;.

Tick the correct answer

The secondary line to line voltage of a star-delta connected transformer is measured to be
400 V. If the turns ratio between the primary and secondary coils is 2 : 1, the applied line
to line voltage in the primary is:

(A)462V  (B)346V  (C)1386V (D) 800V

The secondary line to line voltage of a delta-delta connected transformer is measured to
be 400 V. If the turns ratio between the primary and secondary coils is 2 : 1, the applied
line to line voltage in the primary is:

(A)462V  (B)346V  (C)1386V (D)800V

The secondary line to line voltage of a delta-star connected transformer is measured to be
400 V. If the turns ratio between the primary and secondary coils is 2 : 1, the applied line
to line voltage in the primary is:

(A)800V  (B)500V  (C)1386V (D) 462V

The secondary line current of a star-delta connected transformer is measured to be 100 A.
If the turns ratio between the primary and secondary coils is 2 : 1, the line current in the
primary is:

(A) 50 A (B)289A (C)57.7A (D)60A
The secondary line current of a delta-star connected transformer is measured to be 100 A.
If the turns ratio between the primary and secondary coils is 2 : 1, the line current in the

primary is:

(A)86.6A (B)50A (C) 60 A (D)57.7 A

Version 2 EE 11T, Kharagpur



6.

26.6

The primary line current of an open delta connected transformer is measured to be 100 A.
If the turns ratio between the primary and secondary coils 2 : 1, the line current in the
primary is:

(A)1732A (B)200A (C)150A  (D)50 A

Two single-phase transformers, each of rating 15 kVA, 200 V / 400 V, 50 Hz are
connected in open delta fashion. The arrangement can supply safely, a balanced 3-phase
load of:

(A) 45KVA (B)25.9kVA (C)30kVA (D) 7.5kVA

In figure 26.20 showing an incomplete 3-phase transformer connection, the reading of the
voltmeter will be:

(A)OV (B)173.2V (C)346.4V (D)300V
> N1 =100
A

S2 L0000 -

o £ L4

8 o

25> * s

:é § C Ci G

A G LRSS
Figure 26.20:

Problems

Three number of single phase ideal transformers, each of rating. 10kVA, 200V / 100V,
50Hz is connected in star/delta fashion to supply a balanced three phase 20 kw, 0.8
power factor load at 100V(line to line). Draw a circuit diagram for this. Calculate (i) what
line to line voltage should be applied to the primary side? (ii) Calculate the line and phase
currents on the secondary and primary sides and indicate them on the diagram.

How two identical single phase transformers each of rating 5kVA, 200Vv/100V, 50Hz be
used to step down a balanced 3-phase, 200V supply to a balanced 3-phase, 100V supply?
Explain with circuit and phasor diagrams. Calculate also the maximum kVA that can be
supplied from this connection.

A balanced 3-phase load of 20kW, 0.8 power factor lagging is to be supplied at a line to
line voltage of 110V. However, a balanced 3-phase voltage of 381V (line to line) is
available. Using three numbers of identical single phase ideal transformers each of rating
10kVA, 220V/110V, 50Hz make an arrangement such that the above load can be
supplied. Draw the circuit diagram and show the magnitude of currents in the lines and in
the windings of the transformers on both LV and HV side.

Version 2 EE 11T, Kharagpur



4. Refer to the following figure 26.21 which shows the windings of a 3-phase transformer.
Primary turns per phase is 250. Each phase has got two identical secondary windings
each having 100 turns. The primary windings are connected in star by shorting A, B, and
C, and supplied from a balanced 3-phase 1000 V (line to line), 50 Hz source.

a) If the secondary coils are connected by joining a, with bs and b, with c; then
calculateV,, .
b) All the 6 coils are connected in series in the following way:

a joined with b, b; joined with ¢,
c1 joined with ¢4 C3 joined with by
bs joined with a3

Draw the phasor diagram and calculate the voltage V,

Aq Az a a a a
B: B2 b b, b b
.{m\. LTI0 e oL TV o

Cy C C C, C C

Figure 26.21: 3-phase transformer with two secondary coils per phase
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27.1 Goals of the lesson

In this lesson we shall learn about the working principle of another type of transformer called
autotransformer and its uses. The differences between a 2-winding and an autotransformer will
be brought out with their relative advantages and disadvantages. At the end of the lesson some
objective type questions and problems for solving are given.

Key Words: tapping’s, conducted VA, transformed VA.

After going through this section students will be able to understand the following.

Constructional differences between a 2-winding transformer and an autotransformer.
Economic advantages/disadvantages between the two types.

Relative advantages/disadvantages of the two, based on technical considerations.

b=

Points to be considered in order to decide whether to select a 2-winding transformer or an
autotransformer.

9]

The difference between an autotransformer and variac (or dimmerstat).
6. The use of a 2-winding transformer as an autotransformer.

7. The connection of three identical single phase transformers to be used in 3-phase system.

27.2 Introduction

So far we have considered a 2-winding transformer as a means for changing the level of a given
voltage to a desired voltage level. It may be recalled that a 2-winding transformer has two
separate magnetically coupled coils with no electrical connection between them. In this lesson
we shall show that change of level of voltage can also be done quite effectively by using a single
coil only. The idea is rather simple to understand. Suppose you have a single coil of 200 turns (=
Ngc) wound over a iron core as shown in figure 27.1. If we apply an a.c voltage of 400 V, 50 Hz
to the coil (between points B and C), voltage per turn will be 400/200 = 2 V. If we take out a
wire from one end of the coil say C and take out another wire tapped from any arbitrary point E,
we would expect some voltage available between points E and C. The magnitude of the voltage
will obviously be 2 x Ngc where Nec 1s the number of turns between points E and C. If tapping
has been taken in such a way that Ngc = 100, voltage between E and C would be 200 V. Thus we
have been able to change 400 V input voltage to a 200 V output voltage by using a single coil
only. Such transformers having a single coil with suitable tapings are called autotransformers.

It is possible to connect a conventional 2-winding transformer as an autotransformer or
one can develop an autotransformer as a single unit.

B
400V E
50 Hz

C C

Figure 27.1: Transformer with a s1ng{/ee%§)11(;h 2 EE IIT, Kharagpur



27.3 2-winding transformer as Autotransformer

Suppose we have a single phase 200V/100V, 50Hz, 10kVA two winding transformer with
polarity markings. Then the coils can be connected in various ways to have voltage ratios other
than 2 also, as shown in figure 27.2.

S50A 100A

Figure 27.2: A two winding transformer connected as an autotransformer
in various ways.

Let us explain the one of the connections in figure 27.2(a) in detail. Here the LV and the HV
sides are connected in additive series. For rated applied voltage (100V) across the LV winding,
200V must be induced across the HV winding. So across the whole combination we shall get a
voltage of 300V. Thus the input voltage is stepped up by a factor of 3 (300 V/100 V). Now how
much current can be supplied to a load at 300 V? From the given rating of the transformer we
know, lny rated = 50 A and lpy raed = 100 A. Therefore for safe operation of the transformer, these
rated currents should not be exceeded in HV and LV coils. Since the load is in series with the
HV coil, 50A current can be safely supplied. But a current of 50A in the HV demands that the
LV winding current must be 100A and in a direction as shown, in order to keep the flux in the
core constant. Therefore by applying KCL at the junction, the current drawn from the supply will
be 150A. Obviously the kVA handled by the transformer is 30 kVA and without overloading
either of the windings. It may look a bit surprising because as a two winding transformer its
rating is only 10 kVA. The explanation is not far to seek. Unlike a two winding transformer, the
coils here are connected electrically. So the kVA transferred from supply to the load side takes
place both inductively as well as conductively — 10kVA being transferred inductively and
remaining 20kVA transferred conductively. The other connections shown in (b), (¢) and (d) of
figure 27.2 can similarly explained and left to the reader to verify.

27.4 Autotransformer as a single unit

Look at the figure 27.3 where the constructional features of an auto transformer is shown. The
core is constructed by taking a rectangular long strip of magnetic material (say CRGO) and
rolled to give the radial thickness. Over the core, a continuous single coil is wound the free
terminals of which are marked as C and A. A carbon brush attached to a manually rotating
handle makes contact with different number of turns and brought out as a terminal, marked E.
The number of turns between E & C, denoted by Ngc can be varied from zero to a maximum of
total number of turns between A & C i.e, Nac. The output voltage can be varied smoothly from
zero to the value of the input voltage simply by rotating the handle in the clockwise direction.
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Variable output

:

<
«

C
Figure 27.3: Autotransformer or Figure 27.4: Schematic representation
Variac. of autotransformer.

This type of autotransformers are commercially known as varic or dimmerstat and is an
important piece of equipment in any laboratory.

Now we find that to change a given voltage V; to another level of voltage V, and to
transfer a given KVA from one side to the other, we have two choices namely by using a Two
Winding Transformer or by using an Autotransformer. There are some advantages and
disadvantages associated with either of them. To understand this aspect let us compare the two
types of transformers in equal terms. Let,

Input voltage = V,
Output voltage required across the load = V;
Rated current to be supplied to the load = I,

Current drawn from the supply at rated condition = |

KVA to be handled by both types of transformers = V,l; =V:l,

The above situation is pictorially shown in figures 27.5(a) and (b). Let for the two winding
transformer,
For the two winding transformer:
Primary number of turns = N;
Secondary number of turns = N,
For the autotransformer:
Number of turns between A & C = N;
Number of turns between E& C = N,

Therefore, number of turns between A & E = N;—N;
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I I,

(a) (b)
Figure 27.5: A two winding transformer and an autotransformer
of same rating.

Let us now right down the mmf balance equation of the transformers.

For the two winding transformer:

MMF balance equation is N;jI; = Nzl
For the autotransformer:
MMF balance equation is (N; — Np)l; = Na(l, — 1))
or, N\iI; = Nsl,

It may be noted that in case of an autotransformer, the portion EC is common between
the primary and the secondary. At loaded condition current flowing through Nec is (I — Iy).
Therefore, compared to a two winding transformer lesser cross sectional area of the conductor in
the portion EC can be chosen, thereby saving copper. We can in fact find out the ratio of amount
of copper required in two types of transformers noting that the volume of copper required will be
proportional to the product of current and the number of turns of a particular coil. This is
because, length of copper wire is proportional to the number of turns and crossectional area of
wire is proportional to the current value i.e.,

Volume of copper oc length of the wire X cross sectional area of copper wire

oc N x|
Hence,
Amount of copper required in an autotransformer _ (N, -N,) L +N, (1,-1)
Amount of copper required in a two winding transformer N, I, +N,I,
2N, 1, -2N,I
Noting that NIy =N, I, = —-L—=1
g 1l =Nz 1y NI
— N1 - Nz
N

1
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1 ) .
= 1-— where, ais the turns ratio.
a

Here we have assumed that N; is greater than N; i.e., @ is greater than 1. The savings will
of course be appreciable if the value of a is close to unity. For example if a = 1.2, copper
required for autotransformer will be only 17% compared to a two winding transformer, i.e,
saving will be about 83%. On the other hand, if a = 2, savings will be only 50%. Therefore, it is
always economical to employ autotransformer where the voltage ratio change is close to unity. In
fact autotransformers could be used with advantage, to connect two power systems of voltages
say 11 kV and 15 kV.

Three similar single units of autotransformers could connected as shown in the figure
27.6 to get variable balanced three phase output voltage from a fixed three phase voltage. Such
connections are often used in the laboratory to start 3-phase induction motor at reduced voltage.

Ay
¢ )
3_; <4 AEI
S < °
=
é output voltage
= Al
="
|
e
' [ E—

Figure 27.6: 3 — phase autotransformer connection

Apart from being economical, autotransformer has less leakage flux hence improved
regulation. Copper loss in the common portion of the winding will be less, so efficiency will be
slightly more. However its one major disadvantage is that it can not provide isolation between
HV and LV side. In fact, due to an open circuit in the common portion between E & C, the
voltage on the load side may soot up to dangerously high voltage causing damage to equipment.
This unexpected rise in the voltage on the LV side is potentially dangerous to the personnel
working on the LV side.

27.5 Tick the correct answers

1. Savings of copper, in an autotransformer will be significant over a two winding
transformer of same rating when the ratio of the voltages is

(A)~ 1 (B)>> 1 C)=1 (D) << 1

2. 110 V, 50 Hz single phase supply is needed from a 220 V, 50 Hz source. The ratio of
weights of copper needed for a two winding and an autotransformer employed for the
purpose is:
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(A)2 (B) 0.5 (C) 4 (D) 0.25

3. The two winding transformer and the autotransformer of the circuit shown in Figure 27.7
are ideal. The current in the section BC of the autotransformer is

(A) 28 A from B to C (B)12 A fromCtoB
(C)28AfromCtoB (D) 12 A from B to C

A

N1=200 Ngc=20
N2=100 Nps=30

>
10A B 3

200V
50 Hz

N1 : N2
Figure 27.7:

4. A 22 kVA, 110 V/ 220 V, 50 Hz transformer is connected in such away that it steps up
110 V supply to 330 V. The maximum kVA that can be handled by the transformer is

(A) 22 kVA (B) 33 kVA (C) 11 kVA (D) 5.5kVA

27.6 Problems

1. The following figure 27.8 shows an ideal autotransformer with number of turns of
various sections as Nag = 100, Ncg = 60 and Npg = 80. Calculate the current drawn from
the supply and the input power factor when the supply voltage is 400V, 50Hz.

60 Q

D C 200

400 V —————p
50 Hz

Figure 27.8:
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2. An ideal autotransformer steps down a 400 V, single phase voltage to 200 V, single phase
voltage. Across the secondary an impedance of (6 + j8)Q is connected. Calculate the
currents in all parts of the circuit.

3. Calculate the values of currents and show their directions in the various branches of a 3-
phase, star connected autotransformer of ratio of 400 / 500 V and loaded with 600 kW at
0.85 lagging. Autotransformer may be considered to be ideal. It may be noted that,
unless otherwise specified, voltage value of a 3-phase system corresponds to line to line
voltage.

4. A delta-star connected 3-phase transformer is supplied with a balanced 3-phase, 400 V
supply as shown in figure 27.9. A 3-phase auto transformer is fed from the output of the
3-phase transformer. Finally the at the secondary of the autotransformer a balanced 3-
phase load is connected. The per phase primary and secondary turns of both the
transformers are given in figure 27.9.

”§ X

2 k-
N @« =
z¢ <
), = g
- =
22 :

= n
S
5 3 3

= 1>}

S =

=

= =

& 2

-ph f
3-phase transformer 3-phase auto transformer

NXY= 200 & NZY =175
Figure 27.9:

Calculate line to line voltage at which the load receives power. If the load draws 10 A
current, calculate currents (a) in the section XZ & ZY of the autotransformer and (b) line
currents and coil currents of both the sides of the 3-phase, delta-star connected transformer.
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28.1 Introduction

In this lesson some typical problems on transformer are solved with emphasis on logical steps
involved. For a practical two winding transformer, the knowledge of approximate equivalent
circuit is of utmost importance in order to predict its performance. Equivalent circuit parameters
are either supplied directly or indirectly in terms of O.C and S.C test data. The first problem
enumerates in detail how to get the equivalent circuit parameters from test data. The importance
of the side (LV or HV) in which calculations are carried out is highlighted. The second problem,
in fact, is an extension of the first problem. Calculation of regulation, efficiency and maximum
efficiency are dealt with in these problems.

Next few problems highlight the basic calculation steps involved in ideal 3-phase
transformer and ideal auto transformer since the equivalent circuit of these transformers are
outside the scope of first year electrical technology course.

28.2 Problems on 2 winding single phase transformers

1. The O.C and S.C test data are given below for a single phase, 5 kVA, 200V/400V, 50Hz
transformer.

O.C test from LV side : | 200V 1.25A 150W
S.C test from HV side : ‘ 20VV 12.5A 175W

Draw the equivalent circuit of the transformer (i) referred to LV side and (ii) referred to HV side
inserting all the parameter values.

Solution

Let us represent LV side parameters with suffix 1 and HV side parameters with suffix 2.

Computation with O.C test data

Let us show the test data in the approximate equivalent circuit (Figure 28.1) of the transformer as
given below.

Due to the fact that the HV side is open circuited, there will be no current in the branch 7, + jx,, .

So entire power of 150W is practically dissipated in R.;. The no load current Iy; = 1.25 4 is
divided into: magnetizing component /,,; and core loss component /.;; as depicted in the phasor
diagram figure 28.1.

X uVl
125 A Fel !
— AN—0 °
200 Icl‘ ‘Iml Qpel}
V Rai ). - circuit |
90 ol
Icl]
! .
Iml

Figure 28.1: O.C equivalent circuit and phasor diagram.
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150
200x1.25

= 0.6
0, = cos'0.6
= 53.13°

Hence,sin6, = 0.8

No load (or O.C) power factor cos 6,

After knowing the value of cos 6, and sin 6, and referring to the no load phasor diagram, 7,,; and
1.1 can be easily calculated as follows.

Magnetizing component 7,,;, = Iy sin 6,
= 1.25x0.8
Ly = 14
core loss component, I.,;; = Iy cos 6,
= 1.25x0.6
Sl = 0.754

Thus the parallel branch parameters X,,; and R.;; can be calculated.

. 4
Magnetizing reactance X,,;; = 7 1
ml

200
1

o X = 2000
Vl
I

Resistance representing core loss R =
cll

200
0.75

-'-,Rcll = 266.67Q

It may be noted that from the O.C test data we can get the parallel branch impedances namely the
magnetizing reactance and the resistance representing the core loss referred to the side where
measurements have been taken.

Computation with S.C test data
Since the test has been carried out from the HV side with LV side shorted, we draw the
equivalent circuit referred to the HV side as shown in figure 28.2. Parameter values are denoted

by using suffix 2. Important point to note here is the absence of the parallel branch. The reason
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being, the voltage applied during S.C test is quite low causing a low flux level. Hence
magnetizing and core loss component of currents will be pretty small compared to the rated
current flowing throughr, + jx,,. In this case, power drawn from the supply gets practically

dissipated in winding resistances i.e., 7.

Fe2 X2 12.5A
—AN— e $Vsc

20V

>HSC/V fsc
: —

Figure 28.2: O.C equivalent circuit and phasor diagram.

Calculation of series parameters is rather simple and as follows.

Power drawn W,. = I’ 1,
_
O, 7e2 = 1_2
_ 175
12.5%
e = 1.12Q
- V.
Now S.C impedance z,. = [—‘C
= 20/12.5
Sz = 1.6Q= 1 +x .
Thusa Xe2 = Zszc - 7"622
= 41.6°-1.12°
SoXe = 1.14Q

Although calculation of parameters from the test results are over, it is very important to note that
parallel branch parameters have been obtained referred to LV side and series branch parameters
have been obtained referred to HV side. However to draw a meaningful equivalent circuit
referred to a particular side, all the parameters are to be represented/calculated referred to that
side.
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Equivalent circuit referred LV side

The parallel branch parameters R.;; = 266.67Q2 and X,,; = 200Q2 have already been calculated wrt
LV side. Naturally no further transformations are necessary. However, series parameters 7., and
X« have been calculated above from test data. So we need to calculate r,; and x,; in order to
correctly represent the equivalent circuit referred to primary side.

Turns ratio,a = 200/400=10.5

but we know, r,; = a1y
and x,; = a* X2
Thusre; = 0.57x1.12=0.28Q
andx.; = 0.5%x1.14=0.2850

So the equivalent circuit referred to LV side can now be drawn showing all the parameter values
as shown below in figure 28.3.

0.28Q2 0.285Q

o \A'AY 0\ "
r 3 a
G
e c ,
V1 \n S V2
o~ (=
\© [g\]
(g}
v v
[ o

Figure 28.3: Equivalent circuit referred to LV side.

Equivalent circuit referred HV side

Here we note that series parameters referred to HV side are already known to be 7., = 1.12€Q) and
Xe2 = 1.14Q). However, the parallel branch parameters are to be transformed as follows.

Turns ratio,a = 0.5
but we know, R.p = ch/a2
and X,p = Xou/d®
Thus, Ren 266.67/0.5* = 1066.68Q
and X,, = 200/0.5% = 800Q

We are now in a position to draw the equivalent circuit of the same transformer referred to the
HV side as shown in figure 28.4.

After getting the equivalent circuit, regulation, efficiency of the transformer can be predicted

under various loading conditions. Solution of the next problem shows how equivalent circuit can
be used to predict the performance,
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2. For the same transformer (single phase, 5 kVA, 200V/400V, 50 Hz) of problem 1, the
equivalent circuit of which is known, calculate the following:

i. the efficiency of the transformer at 75% loading with load power factor = 0.7

1.12 Q 1.14 O

l.k A v a
’ c} C}

V1 § g V,
—_ [>e]

v v

@ @

Figure 28.4: Equivalent circuit referred to HV side.

il. At what load or kVA the transformer is to be operated for maximum efficiency? Also
calculate the value of maximum efficiency.

iii. The regulation of the transformer at full load 0.8 power factor lag.

iv. What should be the applied voltage to the LV side when the transformer delivers rated
current at 0.7 power factor lagging, at a terminal voltage of 400 V?

Solution

1. From the test data of the previous problem, we have:
Full load kVA rating, S = 5kVA
Core loss at rated voltage & frequency, P.oe = 150W
Full load copper loss, P, = 175W
xS cosb

xScosf+P, +x*P,

core

We know, efficiency, n =

0.75
0.7

75% loading means, x

load power factor, cos 6
0.75%5000x0.7
0.75%5000% 0.7 +150+0.75> x175

2625/2873.44

- % efficiency, n = 91.35%
ii.  We know maximum efficiency occurs when szw = Pcore, Where P, is the full load copper
loss and P,,,. is the iron loss. Now P, = 175 W and P,y = 120 W.

n o=

Per unit value of loading for 7y isx = +/P,./P,

core
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= J120/175

Lx = 0.83
Thus the load for 7, = xS
= 0.83 x 5kVA

.. the required load for 7., = 4.15kVA

iii. To calculate the regulation of the transformer at load current 7, and load power factor cos 6,
we use the following formula in terms of HV side parameters.

I, r,cos0+1, x,sin6

V2

12.5%x1.12x0.7+12.5%x1.14x0.71
400

Per unit regulation, R =

Putting the values, R =
. % regulation, R = 4.9%

iv. It is interesting to note that the difference between the reflected primary supply voltage
magnitude ¥, and the secondary load terminal voltage magnitude ¥, is the numerator of the

regulation formula used above.

Vi-v, = ILr,cos0+I, x,sin6

or, V. = V,+IL,r,cos0+I, x,sin0
= 125x1.12x0.7+12.5x1.14 x0.71
= 400+ 19.92V

so, V| = 419.92V

Remember V, represents the applied voltage to LV calculated in terms of HV side. So the

magnitude of the actual voltage to be applied across the primary is:

V] = da Vl
= 0.5x419.92
~ Vo= 210V
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28.3 Problems on 3-phase ideal transformer

It may be recalled that one can make a 3-phase transformer by using a bank of three numbers of
identical single phase transformers or a single unit of a 3-phase transformers.

1. Three single phase ideal transformers, each of rating SkVA, 200V/400V, 50 Hz are
available.

a) The LV sides are connected in star and HV sides are connected in delta. What line to
line 3-phase voltage should be applied and what will be the corresponding HV side
line to line voltage will be? Also calculate and show the line and phase current
magnitudes in both LV & HV sides corresponding to rated condition.

b) The LV sides are connected in delta and HV sides are connected in delta. What line to
line 3-phase voltage should be applied and what will be the corresponding HV side
line to line voltage will be? Also calculate and show the line and phase current
magnitudes in both LV & HV sides corresponding to rated condition.

Solution

Here the idea is not to exceed the voltage and current rating of HV and LV coils of each single
phase transformer. Now for each transformer having rating 5 kVA, 200V/100V, 50 Hz we have:

Rated voltage of each HV coilis = 200V
Rated voltage of each LV coilis = 100V
Phase turns ratio is a,, = 200/100 =2
Rated current of each HV coil is = 5000/200 = 25A
Rated current of each LV coilis = 5000/100 = 50A
Solution of (a)

In this case HV sides are connected in star and LV sides are connected in delta as shown in
figure 28.5. Thus line to line voltage to be applied to HV side must not exceed 200~/3 =346.4V .

This will ensure that rated voltage is applied across each of the HV coil and rated voltage of 100
V is induced in each of the LV coil. Obviously the available line to line voltage on the LV side
will be 100 V since the coils on this side are connected in delta.

Figure 28.5: Connection of transformers for part (a).
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Now the question is how much line current should be allowed to be supplied by the LV side
when balanced 3-phase load is connected across it? The constrain is that we should not allow
overloading of any of the coils in terms of current as well. Since rated current of each LV side
coil is 50 A and the coils are connected in delta, so the corresponding allowed line current in the

LV side will be is 50/3 =86.64 (Note: line current = NE) phase current in delta connection).

But we know for any individual ideal transformer if LV coil carries a 50 A current, the
corresponding HV coil must carry a current of 50/a,;, = 25 A as shown in fig 28.5. Thus HV side
line current drawn from the supply must be also 25 A as these coils are connected in star (Note:
line current = phase current in star connection).

Now we are in a position to calculate the total kVA handled by the bank of 3-phase transformer.
Referring to the LV side the transformers supplies 86.6 A line current at a line to line voltage of

100 V. Therefore, total kVA supplied is equal to ~/3V,,1, =+/3x100%86.6 VA =15 kVA..
Similarly total kVA drawn from the supply is calculated as J3%346.4%25 mbox VA =15kVA.

Thus we see the total kVA becomes 3 times the individual kVA rating of the transformers. Since
the transformers are assumed to be ideal Total kVA input = Total kVA output.

Solution of (b)

In this case HV sides are connected in delta and LV sides are connected in star as shown in
figure 28.6. Thus line to line voltage to be applied to HV side must not exceed 200V. This will
ensure that rated voltage is applied across each of the HV coil and rated voltage of 100 V is

induced in each of the LV coils. The available line to line voltage on the LV side will be 100 NE)
= 173.2 V since coils on this side are connected in star.

Since LV coils are connected in star allowed line current to be delivered is 50 A. So total kVA
output is V3x173.2x50 VA=15kVA. In each HV coil current has to be 25 A and the
corresponding  supply line current is J3x25=4334. Total input kVA s

J3x200%43.3 VA =15kVA . Distribution of phase and line currents in LV and HV sides are
shown in figure 28.6.

2. Three identical single phase transformers each of rating 5 kVA, 200V/100V, 50Hz are
connected in delta-delta. Calculate what line to line voltage to be applied to the HV side?
Also find out corresponding LV side line to line voltage. Find out the kVA rating of the
bank such that none of the transformers get over loaded.
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Solution

50 A

50 A
Figure 28.6: Connection of transformers for part (b).
The connection diagram of the delta-delta arrangement is shown in figure 28.7
86.6 A
]

100 V

100 V

ol 100 V
50 A }

o

86.6 A

Figure 28.7: Connection of transformers for delta-delta.

As explained in the first two problems, line to line voltage to be applied to the HV side is 200 V
because of delta connection. Induced voltage in each coil has to be 100 V in the LV side. Since
the LV coils are also connected in delta the line to line voltage on the LV side is 100 V.

Since coil current has to be rated values, line currents on HV and LV sides are obtained as 43.3
A and 866 A. Total kVA that can be handled by the bank

is+/3x200x43.3 VA =+/3x100%86.6 VA = 15 kVA .

3. Two identical transformers each of rating 5 kVA, 200V/100V, 50 Hz transformers are
connected in open delta. Calculate the kVA rating of the open delta bank when HV side
is used as primary.

Solution: The relevant connection for open delta is shown in figure 28.8
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100V

50 A

Figure 28.8: Connection of transformers for open delta.

In open delta connection each coil is connected across the lines; therefore, the line to line voltage
to be applied to the HV side is 200 V. Induced voltage in the LV coils will be 100 V. Hence line
to line voltage in the LV side is 100 V.

A careful look at the circuit in fig 28.8 shows that both HV and LV coils are in series with the
lines. Thus if we want the transformers not to be over loaded, line currents on the LV side must
be 50 A which automatically fixes the HV side line current to be 25 A.

Let us use /3 V., 1, to calculate the kVA handled by the bank of two single phase transformers
1.€;
Total KVA =+/3 x100x 50 = /3 x200x 25 VA = 8.66 kVA

It is interesting to note that in other types of 3-phase connection of transformers such as star-star,
star-delta, delta-delta, total kVA handled without overloading any of the transformers is 3 times
the individual rating of the transformers. This we learned while solving previous problems where

we got the total kVA as 15 kVA (= 3x5 kVA). But in open delta connection where two single

phase identical transformers each of rating 5 kVA has been employed we note the total kVA
handled is not 10 kVA (=2x5)kVA but 8.66 kVA only. Thus total kKVA available as open delta

is only £8£x100 =86.6% of the installed capacity.

4. A 3-phase, 500 kVA, 6000V/400V, 50Hz, delta-star connected transformer is delivering
300 kW, at 0.8 pf lagging to a balanced 3-phase load connected to the LV side with HV
side supplied from 6000 V, 3- phase supply. Calculate the line and winding currents in
both the sides. Assume the transformer to be ideal.

Solution

First note that it is not a bank of single phase transformers. In fact it is a single unit of 3-phase
transformer with the name plate rating as 500 kVA, 6000 V/400 V, 50Hz, delta-star connected 3-
phase transformer. 500 kVA represents the tofal kVA and voltages specified are always line to
line. Similarly unless otherwise specified, kW rating of a 3-phase load is the total kW absorbed
by the load. The connection diagram is shown in figure 28.9.
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300 kW, 0.8 pf
(lagging) load

541.3A ]

5413 A

Figure 28.9: Connection diagram with 3-phase load.

Noting the relation kVA, S =P /cosfand I =S/ V3 Vi let us start out calculation.

Load kVA = 300/0.8 =375 kVA = input kVA

Line current drawn by the load, I,;, = 375000/ \/5 x 400

I, = 54134
Because of star connection, LV coil current = 541.3 4
since input kVA = 375kVA
HV side line current, [;; = 375000
J3 %6000
Ly = 36.14

Actual phase winding currents can also be calculated as:

LV side phase coil current =

or, Izph
Ith
HYV side phase coil current

LV side line current
by
541.3 A due to star connection.

LV side line current / \/5

or, iy = L3
sy = 36.1/4/3=20.8 4 due to delta
connection.

28.4 Problems on ideal auto transformers

Recall that an auto transformer essentially is essentially a single winding transformer with a
portion of the winding common to both supply and the load side. In contrast to a two winding
transformer it can not provide isolation between HV and LV side. Here VA is transferred from
one side to the other not only by magnetic coupling but also by electrical conduction.
Autotransformer becomes cheaper than a similarly rated two winding transformer when the
voltage transformation ratio is close to unity. A single phase two winding transformer can be
suitably connected to perform like an auto transformer.
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1. A 5kVA, 200 V/ 100 V, 50 Hz, single phase ideal two winding transformer is to used to
step up a voltage of 200 V to 300 V by connecting it like an auto transformer. Show the
connection diagram to achieve this. Calculate the maximum kVA that can be handled by
the autotransformer (without over loading any of the HV and LV coil). How much of this
kVA is transferred magnetically and how much is transferred by electrical conduction.

Solution

Two connect a two winding transformer as an auto transformer, it is essential to know the dot
markings on the two coils. The coils are to be now series connected appropriately so as to
identify clearly between which two terminals to give supply and between which two to connect
the load. Since the input voltage here is 200 V, supply must be connected across the HV
terminals. The induced voltage in the LV side in turn gets fixed to 100 V. But we require 300 V
as output, so LV coil is to be connected in additive series with the HV coil. This is what has been
shown in figure 28.10.

§0 A
. P
> l
[
(=]
—
75 A >
> P S Load
en
200V ¢ 1 25 A
supply l

Figure 28.10: Two winding transformer as an autotransformer.

Here the idea is not to exceed the voltage and current rating of HV and LV coils of the two
winding transformer. Now for the transformer having rating 5 kVA, 200 V/ 100 V, 50 Hz we
have:

Rated voltage of HV coilis = 200V
Rated voltage of LV coilis = 100V
Phase turns ratioisa = 200/100 =2
Rated current of each HV coilis = 5000/200 =25 A
Rated current of each LV coil is = 5000/100 =50 A
Since the load is in series with LV coil, so load current is same as the current flowing through the

LV coil. Thus a maximum of 50 A can be drawn by the load otherwise overloading of the coils
take place.

Output kVA 300 x 50 VA =15kVA
input kVA = Output kVA =15kVA

- transformer is ideal
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Current drawn form the supply = 15000/200 =75 A

Now the question is now much current is flowing in the HV coil and in which direction?
However, this is quite easy since supply and load currents are already known along with their
directions as shown in figure 28.10. Applying KCl at the junction P, we get:

Current through HV coil Iy =75-50=25 A

The direction of Iy is obviously from top to bottom. No matter whether a two winding
transformer is used as a two winding transformer or as an autotransformer, mmf must be
balanced in the coils. If current comes out through the dot terminal in the LV coil, current must
flow in through the dot of the HV coil.

It is important to note that as a two winding transformer, kVA handling capacity is 5 kVA, the
rating of the transformer. However, the same transformer when connected as auto transformer,
kVA handling capacity becomes 15 kVA without overloading any of the coils.

kVA transferred magnetically = kVA ofeither HV or LV coil
= 200x25VA=100x50VA=5kVA
.. kVA transferred magnetically = 5kVA

kVA transferred electrically = total kVA transferred — kVA
transferred magnetically

= 15-5=10kVA

2. An autotransformer has a coil with total number of turns Ncp = 200 between terminals C
and D. It has got one tapping at A such that Nyc = 100 and another tapping at B such that
N, BA — 50.
Calculate currents in various parts of the circuit and show their directions when 400 V
supply is connected across AC and two resistive loads of 60Q2 & 40Q) are connected
across BC and DC respectively.

Solution

Let us first draw the circuit diagram (shown in figure 28.11) as per data given in the problem.
First let us calculate the voltages applied across the loads remembering the fact that voltage per
turn in a transformer remains constant.

Supply voltage across AC, Vyc = 400V
Number of turns between A & C Nyc = 100
Voltage per turn = 400/100 =4V
Voltage across the 40Q2 load = Npc x Voltage per turn
= 200 x4 =800V
So, current through 40QQ = 800/40 = 20A
Voltage across the 60Q2 load = Npc x Voltage per turn
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= 150x4=600V
So, current through 60QQ = 600/60 = 10A

(28.1)
20 A
> Npc =200
Nac =100
< AC
(—]
— é’ S Nap=50
C} g T
= NB]) = 50
o

Figure 28.11: Circuit arrangement.
Total output kVA will be the simple addition of the kVAs supplied to the loads i,e.,
(600 x 10 + 800 x 20) VA =22000 VA =22 kVA

Assuming the autotransformer to be ideal, input kVA must also be 22 kVA. We are therefore in a
position to calculate the current drawn from the supply.

Current drawn from the supply = 22000/400 = 55 A

Now we know all the load currents and the current drawn from the supply. Current calculations
in different parts of the transformer winding becomes pretty simple-one has to apply KCL at the
tap points B and A.

Current in DB part of the winding Isp = 20 A
20+10=30A
Applying KCL at A, current in AC part [,c = 55-30=25A

Applying KCL at B, current in AB part /45

It is suggested to repeat the problem if 40Q2 resistor is replaced by an impedance (30 + j40) QQ
other things remaining unchanged.
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In the previous module, containing six lessons (23-28), mainly, the study of the single-
phase two-winding Transformers — a static machine, fed from ac supply, has been
presented. In this module, containing six lessons (29-34), mainly, the study of Induction
motors, fed from balanced three-phase supply, will be described.

In this (first) lesson of this module, the formation of rotating magnetic field in the air
gap of an induction motor, is described, when the three-phase balanced winding of the
stator is supplied with three-phase balanced voltage. The balanced winding is of the same
type, as given in lesson no. 18, for a three-phase ac generator.

Keywords: Induction motor, rotating magnetic field, three-phase balanced winding, and
balanced voltage.

After going through this lesson, the students will be able to answer the following
questions:

1. How a rotating magnetic field is formed in the air gap of a three-phase Induction
motor, when the balanced winding of the stator is fed from a balanced supply?

2. Why does the magnitude of the magnetic field remain constant, and also what is the
speed of rotation of the magnetic field, so formed? Also what is meant by the term
‘synchronous speed’?

Three-phase Induction Motor

A three-phase balanced winding in the stator of the Induction motor (IM) is shown in
Fig. 29.1 (schematic form). In a three-phase balanced winding, the number of turns in
three windings, is equal, with the angle between the adjacent phases, say R & Y, is 120°
(electrical). Same angle of 120° (elec.) is also between the phases, Y & B.

R R

3-phase
supply N

Y
B

Fig. 29.1: Schematic diagram of the stator windings in a
three-phase induction motor.

A three-phase balanced voltage, with the phase sequence as R-Y-B, is applied to the
above winding. In a balanced voltage, the magnitude of the voltage in each phase,
assumed to be in star in this case, is equal, with the phase angle of the voltage between
the adjacent phases, say R & Y, being120°.
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Rotating Magnetic Field

The three phases of the stator winding (balanced) carry balanced alternating
(sinusoidal) currents as shown in Fig. 29.2.

R Axis of phase B

-—-—>
Axis of phase R

l! Axis of phase Y

Fig. 29.2: The relative location of the magnetic axis of three phases.

ir =1, cos ot

Iy =1, cos (ot —-120°)

ig =1,c0s (wt+120°) =1, cos (ot —240°)

Please note that the phase sequence is R-Y-B. |, is the maximum value of the phase
currents, and, as the phase currents are balanced, the rms values are equal
([Tl =I1v[=[1e]):

Three pulsating mmf waves are now set up in the air-gap, which have a time phase
difference of 120° from each other. These mmf’s are oriented in space along the
magnetic axes of the phases, R, Y & B, as illustrated by the concentrated coils in Fig.
29.2. Please note that 2-pole stator is shown, with the angle between the adjacent phases,
R & Y as 120°, in both mechanical and electrical terms. Since the magnetic axes are
located 120° apart in space from each other, the three mmf’s are expresses
mathematically as

F, = F, cos ot cos &

F, =F, cos (ot —-120°) cos (¢ —120°)

Fs = F,, cos (ot +120°) cos (& +120°)
wherein it has been considered that the three mmf waves differ progressively in time
phase by 120°, i.e. 2z /3 rad (elect.), and are separated in space phase by 120°, i.e.
2713 rad (elect.). The resultant mmf wave, which is the sum of three pulsating mmf
waves, is
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F=F+F +F
Substituting the values,

F6,1)

=F, [cos wt cos & +cos (ot —120°) cos (€ —120°) + cos (ot +120°) cos (6 +120°)]
The first term of this expression is

cos mt cos @ = 0.5 [cos (0 — wt) + cos (6 + wt)]
The second term is

cos (wt—120°) cos (@ —120°) = 0.5 [cos (@ —wt) +cos (6 + ot — 240°)]
Similarly, the third term can be rewritten in the form shown.
The expression is

F(,t)=15F,cos(0-wt)

+0.5 F, [cos(8 + wt) +cos (0 + wt — 240°) + cos (6 + ot + 240°)]
Note that

cos (6 + wt —240°) = cos (@ + wt +120°), and

cos (@ +wt +240°) =cos (6 + wt —120°).
If these two terms are added, then

cos (0 + ot +120°) + cos (€ + ot —120°) = —cos (6 + wt)
So, in the earlier expression, the second part of RHS within the capital bracket is zero. In
other words, this part represents three unit phasors with a progressive phase difference of
120°, and therefore add up to zero. Hence, the resultant mmf is

F(6,t) =1.5F, cos (0 — wt)
So, the resultant mmf is distributed in both space and time. It can be termed as a rotating
magnetic field with sinusoidal space distribution, whose space phase angle changes
linearly with time as wt. It therefore rotates at a constant angular speed of @ rad

(elect.)/s. This angular speed is called synchronous angular speed ().

The peak value of the resultant mmf is F, =1.5F . The value of F depends on
No. of turns/phase, winding current, No. of poles, and winding factor. At wt=0, i.e.
when the current in R phase has maximum positive value, F (6,0) =1.5F,_ cos 4, i.e. the
mmf wave has its peak value (at & =0) lying on the axis of R phase, when it carries
maximum positive current. At ot =27/3 (120°), the phase Y (assumed lagging) has its

positive current maximum, so that the peak of the rotating magnetic field (mmf) lying on
the axis of Y phase. By the same argument, the peak of the mmf coincides with the axis
of phase B at wt =4 /3 (240°). It is, therefore, seen that the resultant mmf moves from
the axis of the leading phase to that of the lagging phase, i.e. from phase R towards phase
Y, and then phase B, when the phase sequence of the currents is R-Y-B (R leads Y, and
Y leads B). As described in brief later, the direction of rotation of the resultant mmf is
reversed by simply changing the phase sequence of currents.

From the above discussion, the following may be concluded: Whenever a balanced
three-phase winding with phases distributed in space so that the relative space angle
between them is 2 /3 rad (elect.) [120°], is fed with balanced three-phase currents with

relative phase difference of 27 /3 rad (elect.) [120°], the resultant mmf rotates in the air-
gap at an angular speed of w, =27z (f/p), where f is the frequency (Hz) of currents
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and p is No. of pairs of poles for which the winding is designed. The synchronous speed
in rpm (r/min) is N, =@, (60/27) =60 (f / p). The direction of rotation of the mmf is

from the leading phase axis to lagging phase axis. This is also valid for g-phase balanced
winding, one value of which may be q =2 (two). For a 2-phase balanced winding, the

time and phase angles are (z/2) rad or 90° (elect.).

Alternatively, this production of rotating magnetic field can be shown by the
procedure described. As stated earlier, the input voltage to three-phase balanced winding
of the stator is a balanced one with the phase sequence (R-Y-B). This is shown in the
sinusoidal voltage waveforms of the three phases, R, Y & B (Fig. 29.3).

: | |
I 0=1507
J:H:'C'
0=120° O=180°

Fig. 29.3: Three-phase voltage waveforms with phase sequence R-Y-B.

A two-pole, three-phase balanced winding in the stator of IM is shown in Fig. 29.4(i)-
(a-d), where the winding of each phase, say for example, (R—R") is assumed to be
concentrated in one slot each, both for forward and return conductors, with required no.
as needed. Same is the case for other two phases. Please note that the angle of 120° is
same in both mechanical (as shown) and also electrical terms, as no. of poles is two only.
The two (forward and return) parts of the winding in each phase, say R are referred as R
and R’ respectively. So, also for two other phases, Y & B as shown.

Let us first consider, what happens at the time instant t,, of the voltage waveforms as
given in Fig. 29.3. At this instant, the voltage in the R-phase is positive maximum
(6, =90°), while the two other voltages in the phases, Y & B are half of the maximum
value, and also negative. The three waveforms are represented by the following
equations:
ey =E,SING; e, =E,sin(0-120°); e, =E,sin(@+120°)
where,

6 = wt (rad)
f = Supply frequency (Hz or c/s)
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o =27z f = Angular frequency (rad/s)
E ., = Maximum value of the voltage, or induced emf in each phase

The currents in three windings are shown in Fig. 29.4(a)-(i). For (6, =90°), the current in
R-phase in positive maximum, while the currents in both Y and B phases are negative,
with magnitude as half of maximum value (0.5). The fluxes due to the currents in the
windings are shown in Fig. 29.4(a)-(ii). It may be noted that @, is taken as reference,
while @, leads ®, by 60° and @, lags ®, by 60°, as can be observed from the
direction of currents in all three phases as given earlier. If the fluxes are added to find the
resultant in phasor form, the magnitude is found as (1.5-®). It may be noted that this

magnitude is same as that found mathematically earlier. Its direction is also shown in
same figure. The resultant flux is given by,

D, L0°+ D, £60°+D, £—60°=(D+2-(0.5 D)-c0os60°) -1.,0° = (1.5 D) £0°

Now, let us shift to the instant, t, (6, =120°) as shown in Fig. 29.3. The voltages in

the two phases, R & B are (+/3/2 =0.866) times the maximum value, with R-phase as
positive and B-phase as negative. The voltage in phase Y is zero. This is shown in Fig.
29.4(b)-(i). The fluxes due to the currents in the windings are shown in Fig. 29.4(b)-(ii).
As given earlier, @ is taken as reference here, while @, lags @, by 60°. Please note
the direction of the currents in both R and B phases. If the fluxes are added to find the
resultant in phasor form, the magnitude is found as (1.5-®). The direction is shown in
the same figure. The resultant flux is given by,

d, L0°+ D, £L-60°= (D, £30°+D,; £-30°)-1.0L-30°

=(2-(0.866 - ®)-c0s30°)-1/ —-30° = (1.5-®) £ —30°.

It may be noted that the magnitude of the resultant flux remains constant, with its
direction shifting by 30°=120°-90° in the clockwise direction from the previous
instant.

Similarly, if we now shift to the instant, t, (&, =150°) as shown in Fig. 29.3. The
voltage in the B-phase is negative maximum, while the two other voltages in the phases,
R & Y, are half of the maximum value (0.5), and also positive. This is shown in Fig.
29.4(c)-(i). The fluxes due to the currents in the windings are shown in Fig. 29.4(c)-(ii).
The reference of flux direction (®,) is given earlier, and is not repeated here. If the
fluxes are added to find the resultant in phasor form, the magnitude is found as (1.5-®).
The direction is shown in the same figure. The resultant flux is given by,

DO, L0°+D, £-120°+ D, £L—-60° = (D, LO0°+ D, £60°+ D, L —60°)-1.0~L—-60°
=(®+2-(0.5-®)-cos60°) -1~/ -60°=(1.5-D)L—-60° .

It may be noted that the magnitude of the resultant flux remains constant, with the
direction shifting by another 30° in the clockwise direction from the previous instant.

If we now consider the instant, t, (6, =180°) as shown in Fig. 29.3. The voltages in

the two phases, Y & B are (\/§/2 = 0.866) times the maximum value, with Y-phase as
positive and B-phase as negative. The voltage in phase R is zero. This is shown in Fig.
29.4(d)-(i). The fluxes due to the currents in the windings are shown in Fig. 29.4(d)-(ii).
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If the fluxes are added to find the resultant in phasor form, the magnitude is found as
(1.5-@). The direction is shown in the same figure. The resultant flux is given by,

D, £L-120°+ D, £—-60°= (D, £L-30°+ D, £30°)-1£-90°
=(2-(0.866-®)-c0s30°)-1--90°= (1.5-®) £ —90°.

It may be noted that the magnitude of the resultant flux remains constant, with its
direction shifting by another 30° in the clockwise direction from the previous instant.

{h = ou° 0= 120"
Fig. 29.4(a)(i) Fig. 29.4(b)(i)
B(0.5®) (1.50)
o Y . s B{0.8660)
(1L5®) R(D) o0
t‘ﬂy B Il
Y(0.5D) R{0.866:)
Fig. 29.4(a)(ii) Fig. 29.4(b)(ii)
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Fig. 29.4: (i) The currents in the three-phase balanced windings and
(ii) The location (position) of the axis of resultant flux
(or mmf), with the change in time (i = @),

A study of the above shows that, as we move from t (&, =90°) to t, (8, =180°)

along the voltage waveforms (Fig. 29.3), the magnitude of the resultant flux remains
constant at the value (1.5-®) as shown in Fig. 29.4(ii)-(a-d). If another point, say t.

(6, = 210°) is taken, it can be easily shown that the magnitude of the resultant flux at

that instant remains same at (1.5- @), which value is obtained mathematically earlier. If
any other arbitrary point, t (8) on the waveform is taken, the magnitude of the resultant

flux at that instant remains same at (1.5-®). Also, it is seen that the axis of the resultant
flux moves through 90°, as the angle, & changes from 90° to 180°, i.e. by the same
angle of 90°. So, if we move through one cycle of the waveform, by 360° (electrical),
the axis of the resultant flux also moves through 360° (2-pole stator), i.e. one complete
revolution. The rotating magnetic field moves in the clockwise direction as shown, from
phase R to phase Y. Please note that, for 2-pole configuration as in this case, the
mechanical and electrical angles are same. So, the speed of the rotating magnetic field for
this case is 50 rev/sec (rps), or 3,000 rev/min (rpm), as the supply frequency is 50 Hz or
c/s, with its magnitude, i.e. resultant, remaining same.
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Four-Pole Stator

A 4-pole stator with balanced three-phase winding (Fig. 29.5) is taken as an example.
The winding of each phase (one part only), say for example, (R, —R]) is assumed to be
concentrated in one slot each, both for forward and return conductors, with required no.
as needed. Same is the case for other two phases. The connection of two parts of the
winding in R-phase, is also shown in the same figure. The windings for each of three
phases are in two parts, with the mechanical angle between the start of adjacent windings
being 60° only, whereas the electrical angle remaining same at 120°. As two pairs of
poles are there, electrically two cycles, i.e.720° are there for one complete revolution,
with each N-S pair for one cycle of 360°, but the mechanical angle is only 360°. If we
move through one cycle of the waveform, by 360° (electrical), the axis of the resultant
flux in this case moves through a mechanical angle of 180°, i.e. one pole pair (360°-
elec.), or half revolution only. As stated earlier, for the resultant flux axis to make one
complete revolution (360°- mech.), two cycles of the waveform (720°- elec.), are
required, as No. of poles (p) is four (4). So, for the supply frequency of f = 50 Hz (c/s),

the speed of the rotating magnetic field is given by,
ng=2-f)/p=1/(p/2)=50/(4/2) =25 rev/sec (rps), or N, =1,500 rev/min (rpm).

For winding in R-phase

Fig. 29.5: Three-phase balanced windings in a 4-pole stator.

The relation between the synchronous speed, i.e. the speed of the rotating magnetic field,
in rpm and the supply frequency in Hz, is given by

N, =(60x2-f)/p=(120-f)/p

To take another example of a 6-pole stator, in which, for 50 Hz supply, the synchronous
speed is 1,000 rpm, obtained by using the above formula.
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The Reversal of Direction of Rotating Magnetic Field

R

HF
Fig. 29.6: Three-phase windings for Induction motor.

The direction of the rotating magnetic field is reversed by changing the phase
sequence to R-B-Y, i.e. changing only the connection of any two of the three phases, and
keeping the third one same. The schematic of the balanced three-phase winding for a 2-
pole stator, with the winding of each phase assumed to be concentrated in one slot, is
redrawn in Fig. 29.6, which is same as shown in Fig. 29.4(i) (a-d). The space phase
between the adjacent windings of any two phases (say R & Y, or R & B) is 120°, i.e.
2713 rad (elect.), as a 2-pole stator is assumed. Also, it may be noted that, while the
connection to phase R remains same, but the phases, Y and B of the winding are now
connected to the phases, B and Y of the supply respectively. The waveforms for the
above phase sequence (R-B-Y) are shown in Fig. 29.7. Please note that, the voltage in
phase R leads the voltage in phase B, and the voltage in phase B leads the voltage in
phase Y. As compared to the three waveforms shown in Fig. 29.3, the two waveforms of
the phases Y & B change, while the reference phase R remains same, with the phase
sequence reversed as given earlier. The currents in three phases of the stator winding are

ir =1, cosmt

Iy =1, cos (wt+120°)

ig =1, c0s (wt-120°) = I, cos (wt + 240°)
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Fig. 29.7: Three phase voltage waveforms with phase sequence R-B-Y.

Without going into the details of the derivation, which has been presented in detail
earlier, the resultant mmf wave is obtained as
F@ t)=F,+F +F
=F, [cos ot cos @ +cos (ot +120°) cos (8 —120°) + cos (wt —120°) cos (6 +120°)]
As shown earlier, the first term of this expression is
cos mt cos @ =0.5[cos (0 + wt) +cos (€ — wt)]
The second term is
cos (ot +120°) cos (0 —120°) =0.5[cos (@ + wt) + cos (€ — wt — 240°)]
Similarly, the third term can be rewritten in the form shown.
The expression is
F(,t)=15F, cos(f+wt)
+0.5 F, [cos (6 — wt) +cos (0 — wt — 240°) + cos (6 — wt + 240°)]
As shown or derived earlier, the expression, after simplification, is
F,t)=15F, cos(f + wt)
Note that the second part of the expression within square bracket is zero.

It can be shown that the rotating magnetic field now moves in the reverse (i.e.,
anticlockwise) direction (Fig. 29.6), from phase R to phase B (lagging phase R by 120°),

which is the reverse of earlier (clockwise) direction as shown in Fig. 29.4(i), as the phase
sequence is reversed. This is also shown in the final expression of the resultant mmf
wave, as compared to the one derived earlier. Alternatively, the reversal of direction of
the rotating magnetic field can be derived by the procedure followed in the second
method as given earlier.

In this lesson — the first one of this module, it has been shown that, if balanced three-
phase voltage is supplied to balanced three-phase windings in the stator of an Induction
motor, the resultant flux remains constant in magnitude, but rotates at the synchronous
speed, which is related to the supply frequency and No. of poles, for which the winding
(stator) has been designed. This is termed as rotating magnetic field formed in the air gap
of the motor. The construction of three-phase induction motor (mainly two types of rotor
used) will be described, in brief, in the next lesson, followed by the principle of
operation.
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In the previous, i.e. first, lesson of this module, the formation of rotating magnetic
field in the air gap of an induction motor (IM), has been described, when the three-phase
balanced winding of the stator is supplied with three-phase balanced voltage. The
construction of the stator and two types of rotor — squirrel cage and wound (slip-ring)
one, used for three-phase Induction motor will be presented. Also described is the
principle of operation, i.e. how the torque is produced.

Keywords: Three-phase induction motor, cage and wound (slip-ring) rotor, synchronous
and rotor speed, slip, induced voltages in stator winding and rotor
bar/winding.

After going through this lesson, the students will be able to answer the following
questions:

1. How would you identify the two types (cage and wound, or slip-ring) of rotors in
three-phase induction motor?

2. What are the merits and demerits of the two types (cage and wound, or slip-ring) of
rotors in IM?

3. How is the torque produced in the rotor of the three-phase induction motor?

4. How does the rotor speed differ from synchronous speed? Also what is meant by the
term ‘slip’?

Construction of Three-phase Induction Motor

R

14

J-phase
supply

Y
B

Fig. 30.1: Schematic diagram of the stator windings in a
three-phase induction motor.

This is a rotating machine, unlike the transformer, described in the previous module,
which is a static machine. Both the machines operate on ac supply. This machine mainly
works as a motor, but it can also be run as a generator, which is not much used. Like all
rotating machines, it consists of two parts — stator and rotor. In the stator (Fig. 30.1), the
winding used is a balanced three-phase one, which means that the number of turns in
each phase, connected in star/delta, is equal. The windings of the three phases are placed
120° (electrical) apart, the mechanical angle between the adjacent phases being
[(2x120°)/ p ], where p is no. of poles. For a 4-pole (p = 4) stator, the mechanical angle

Version 2 EE IIT, Kharagpur



between the winding of the adjacent phases, is [(2x120°)/4]=120°/2 = 60°, as shown

in Fig. 29.4. The conductors, mostly multi-turn, are placed in the slots, which may be
closed, or semi-closed, to keep the leakage inductance low. The start and return parts of
the winding are placed nearly 180°, or (180° — f)apart. The angle of short chording ( 5 )
is nearly equal to 30°, or close to that value. The short chording results in reducing the
amount of copper used for the winding, as the length of the conductor needed for
overhang part is reduced. There are also other advantages. The section of the stampings
used for both stator and rotor, is shown in Fig. 30.2. The core is needed below the teeth to
reduce the reluctance of the magnetic path, which carries the flux in the motor (machine).
The stator is kept normally inside a support.

Slot for winding Teeth

Tt

Air oa

LRSS

‘-.Int for bars (rotor)

Fig. 30.2: Section for stamping of stator and rotor in IM (not to scale).

There are two types of rotor used in IM, viz. squirrel cage and wound (slip-ring) one.
The cage rotor (Fig. 30.3a) is mainly used, as it is cheap, rugged and needs little or no
maintainance. It consists of copper bars placed in the slots of the rotor, short circuited at
the two ends by end rings, brazed with the bars. This type of rotor is equivalent to a
wound (slip-ring) one, with the advantage that this may be used for the stator with
different no. of poles. The currents in the bars of a cage rotor, inserted inside the stator,
follow the pattern of currents in the stator winding, when the motor (IM) develops torque,
such that no. of poles in the rotor is same as that in the stator. If the stator winding of IM
is changed, with no. of poles for the new one being different from the earlier one, the
cage rotor used need not be changed, thus, can be same, as the current pattern in the rotor
bars changes. But the no. of poles in the rotor due to the above currents in the bars is
same as no. of poles in the new stator winding. The only problem here is that the
equivalent resistance of the rotor is constant. So, at the design stage, the value is so
chosen, so as to obtain a certain value of the starting torque, and also the slip at full load
torque is kept within limits as needed.

The other type of rotor, i.e., a wound rotor (slip ring) used has a balanced three-phase
winding (Fig. 30.3b), being same as the stator winding, but no. of turns used depends on
the voltage in the rotor. The three ends of the winding are brought at the three slip-rings,
at which points external resistance can be inserted to increase the starting torque
requirement. Other three ends are shorted inside. The motor with additional starting
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resistance is costlier, as this type of rotor is itself costlier than the cage rotor of same
power rating, and additional cost of the starting resistance is incurred to increase the
starting torque as required. But the slip at full load torque is lower than that of a cage
rotor with identical rating, when no additional resistance is used, with direct short-
circuiting at the three slip-ring terminals. In both types of rotor, below the teeth, in which
bars of a cage rotor, or the conductors of the rotor winding, are placed, lies the iron core,
which carries the flux as is the case of the core in the stator. The shaft of the rotor passes
below the rotor core. For large diameter of the rotor, a spider is used between the rotor
core and the shaft. For a wound (slip-ring) rotor, the rotor winding must be designed for
same no. of poles as used for the stator winding. If the no. of poles in the rotor winding is
different from no. of poles in the stator winding, no torque will be developed in the
motor. It may be noted that this was not the case with cage rotor, as explained earlier.

Copper or
Aluminium

hars

- E B O OEE OO OO e

Copper or
................ Aluminium

---------------- sing

Raotor core

Fig. 30.3{a): Squirrel cage rotor of induetion motor

Slip rings
{copper rings)

Raotor
windings _ A== ====|]====== 3

Fig. 30.3(b): Wound rotor (slip ring) of induction motor

The wound rotor (slip ring) shown in Fig. 30.3 (b) is shown as star-connected,
whereas the rotor windings can also be connected in delta, which can be converted into
its equivalent star configuration. This shows that the rotor need not always be connected
in star as shown. The No. of rotor turns changes, as the delta-connected rotor is converted
into star-connected equivalent. This point may be kept in mind, while deriving the
equivalent circuit as shown in the next lesson (#31), if the additional resistance (being in
star) is connected through the slip rings, in series with the rotor winding
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Principle of Operation

The balanced three-phase winding of the stator is supplied with a balanced three-
phase voltage. As shown in the previous lesson (#29), the current in the stator winding
produces a rotating magnetic field, the magnitude of which remains constant. The axis of
the magnetic field rotates at a synchronous speed (n, =(2-f)/p), a function of the

supply frequency (f), and number of poles (p) in the stator winding. The magnetic flux
lines in the air gap cut both stator and rotor (being stationary, as the motor speed is zero)
conductors at the same speed. The emfs in both stator and rotor conductors are induced at
the same frequency, i.e. line or supply frequency, with No. of poles for both stator and
rotor windings (assuming wound one) being same. The stator conductors are always
stationary, with the frequency in the stator winding being same as line frequency. As the
rotor winding is short-circuited at the slip-rings, current flows in the rotor windings. The
electromagnetic torque in the motor is in the same direction as that of the rotating
magnetic field, due to the interaction between the rotating flux produced in the air gap by
the current in the stator winding, and the current in the rotor winding. This is as per
Lenz’s law, as the developed torque is in such direction that it will oppose the cause,
which results in the current flowing in the rotor winding. This is irrespective of the rotor
type used — cage or wound one, with the cage rotor, with the bars short-circuited by two
end-rings, is considered equivalent to a wound one The current in the rotor bars interacts
with the air-gap flux to develop the torque, irrespective of the no. of poles for which the
winding in the stator is designed. Thus, the cage rotor may be termed as universal one.
The induced emf and the current in the rotor are due to the relative velocity between the
rotor conductors and the rotating flux in the air-gap, which is maximum, when the rotor is
stationary (N, =0.0). As the rotor starts rotating in the same direction, as that of the

rotating magnetic field due to production of the torque as stated earlier, the relative
velocity decreases, along with lower values of induced emf and current in the rotor. If the
rotor speed is equal that of the rotating magnetic field, which is termed as synchronous
speed, and also in the same direction, the relative velocity is zero, which causes both the
induced emf and current in the rotor to be reduced to zero. Under this condition, torque
will not be produced. So, for production of positive (motoring) torque, the rotor speed
must always be lower than the synchronous speed. The rotor speed is never equal to the
synchronous speed in an IM. The rotor speed is determined by the mechanical load on the
shaft and the total rotor losses, mainly comprising of copper loss.

The difference between the synchronous speed and rotor speed, expressed as a ratio
of the synchronous speed, is termed as ‘slip’ in an IM. So, slip (s) in pu is

g NN
n

n
=1-—= or, N, =(1-s)-n,
n

S S

where, n, and n, are synchronous and rotor speeds in rev/s.

In terms of N, =60xn, and N, =60xn_, both in rev/min (rpm), slip is
s=(N,—N,)/N;

If the slip is expressed in %, then s =[(N, —N,)/N,]x100

Normally, for torques varying from no-load (= zero) to full load value, the slip is pro-
portional to torque. The slip at full load is 4-5% (0.04-0.05).
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Fig. 30.4: Production of torgue

An alternative explanation for the production of torque in a three-phase induction
motor is given here, using two rules (right hand and left hand) of Fleming. The stator and
rotor, along with air-gap, is shown in Fig. 30.4a. Both stator and rotor is shown there as
surfaces, but without the slots as given in Fig, 30.2. Also shown is the path of the flux in
the air gap. This is for a section, which is under North pole, as the flux lines move from
stator to rotor. The rotor conductor shown in the figure is at rest, i.e., zero speed (stand-
still). The rotating magnetic field moves past the conductor at synchronous speed in the
clockwise direction. Thus, there is relative movement between the flux and the rotor
conductor. Now, if the magnetic field, which is rotating, is assumed to be at standstill as
shown in Fig. 30.4b, the conductor will move in the direction shown. So, an emf is
induced in the rotor conductor as per Faraday’s law, due to change in flux linkage. The
direction of the induced emf as shown in the figure can be determined using Fleming’s
right hand rule.
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As described earlier, the rotor bars in the cage rotor are short circuited via end rings.
Similarly, in the wound rotor, the rotor windings are normally short-circuited externally
via the slip rings. In both cases, as emf is induced in the rotor conductor (bar), current
flows there, as it is short circuited. The flux in the air gap, due to the current in the rotor
conductor is shown in Fig. 30.4c. The flux pattern in the air gap, due to the magnetic
fields produced by the stator windings and the current carrying rotor conductor, is shown
in Fig. 304d. The flux lines bend as shown there. The property of the flux lines is to
travel via shortest path as shown in Fig. 30.4a. If the flux lines try to move to form
straight line, then the rotor conductor has to move in the direction of the rotating
magnetic field, but not at the same speed, as explained earlier. The current carrying rotor
conductor and the direction of flux are shown in Fig. 30.4e. It is known that force is
produced on the conductor carrying current, when it is placed in a magnetic field. The
direction of the force on the rotor conductor is obtained by using Fleming’s left hand rule,
being same as that of the rotating magnetic field. Thus, the rotor experiences a motoring
torque in the same direction as that of the rotating magnetic field. This briefly describes
how torque is produced in a three-phase induction motor.

The frequency of the induced emf and current in the rotor

As given earlier, both the induced emf and the current in the rotor are due to the
relative velocity between the rotor conductors and the rotating flux in the air-gap, the
speed of which is the synchronous speed (N, = (120x f)/ p). The rotor speed is

N r— (1 - S) N s
The frequency of the induced emf and current in the rotor is

fr = p'(ns _nr):S'(p'ns):S' f
For normal values of slip, the above frequency is small. Taking an example, with full
load slip as 4% (0.04), and supply (line) frequency as 50 Hz, the frequency (Hz) of the
rotor induced emf and current, is f, =0.04x50.0 = 2.0, which is very small, whereas the
frequency (f) of the stator induced emf and current is 50 Hz, i.e. line frequency. At
standstill, i.e. rotor stationary (n, = 0.0), the rotor frequency is same as line frequency, as
shown earlier, with slip [s = 1.0 (100%)]. The reader is requested to read the next lesson

(#31), where some additional points are included in this matter. Also to note that the
problems are given there (#31).

In this lesson — the second one of this module, the construction of a three-phase
Induction Motor has been presented in brief. Two types of rotor — squirrel cage and
wound (slip-ring) ones, along with the stator part, are described. Then, the production of
torque in IM, when the balanced stator winding is fed from balanced three-phase voltage,
with the balanced rotor winding in a wound one being short-circuited, is taken up. In the
next lesson, the equivalent circuit per phase of IM will be derived first. Then, the
complete power flow diagram is presented.
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Instructional Objectives

e determine the induced emfs, and the currents, per phase in the stator and rotor
windings,

e find the relation between the rotor input, rotor copper loss and rotor output, in terms
of slip,

e calculate the various losses — iron, copper and mechanical, in an IM, and

e find where do the losses occur.

Introduction

In the previous, i.e. second, lesson of this module, the construction (the stator and two
types of rotor — squirrel cage and wound (slip-ring) one), of the three-phase induction
motor (IM), has been described. Then, the principle of operation, i.e. production of
torque, with the stator supplied from balanced three-phase supply and the rotor winding
terminals short-circuited, is discussed. In this lesson, the equivalent circuit per phase of
IM will be derived first, to be followed by the presentation of power flow diagram,
wherein the various losses, and also where do they occur, are described.

Keywords: The induced voltages (emfs) in stator winding and rotor bar/winding, the
equivalent circuit per phase of IM, the fictitious resistance in the circuit, input power to
stator and rotor, losses — iron loss, stator and rotor copper loss, mechanical losses, output
power.

The induced emf per phase, in the motor windings

The induced emf per phase in the stator winding is nearly equal to the input voltage
per phase, and is given by

V,~E =222k, -f-¢-Z, =444k, - f-¢-T,
where,

V, = Input voltage (V) per phase, to the stator winding

E, = Induced emf (V) per phase, in the stator winding

¢ = Flux (WD) per pole

f = Frequency (Hz or ¢/s) of the input voltage

Z, =2-T, = No. of stator conductors in series per phase

T, = No. of stator turns or coils in series per phase

Kus = Ky - K s = Stator winding factor

k4 = Distribution factor of stator winding

K ,s= Pitch factor of stator winding

The above formula, not derived here, is a standard one available in any textbook. It is
similar to the formula for the induced emf in a transformer, derived in the earlier module.
As the winding in this case is stationary, with the rotating magnetic field rotating at a
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speed of n,=f/(p/2)=(2-f)/p (also termed as the synchronous speed), the
frequency of the induced emf in the stator winding is same as that of input frequency
(f=(p/2)-n,), where,

n, = Speed of the rotating magnetic field (rev/sec)

p = No. of poles for which the stator winding of IM is designed

The induced emf per phase at standstill (@, =0.0, or s=1.0) in the rotor winding
(assuming a wound or slip-ring one), is given by

E, =222k, -f,-¢-Z, =444k, -f,-¢-T,
where,

E, = Induced emf (V) per phase, in the rotor winding at standstill (S =1.0)

f. =s-f =f =Frequency (Hz) in the rotor winding at standstill (s =1.0)

Z, =2-T. = No. of rotor conductors in series per phase

T, = No. of rotor turns or coils in series per phase

Kuw = Kg -k, = Rotor winding factor

k4 = Distribution factor of rotor winding

k, = Pitch factor of rotor winding

It may be noted for the wound rotor, the number of poles in the rotor winding must be
the same as those in the stator winding, which has been explained in the previous lesson
(#30). The squirrel cage rotor can be considered as equivalent to a wound one.

The frequency of the induced emf in the rotor winding with the rotor rotating at any
speed, is proportional to the relative speed between the speed of the rotating magnetic
field, and that of the rotor, and is given by

f,=(p/2)-(ng—n,)=(p/2)-s-n,=s-f
where,

n, = (1-5)-n, = Speed of the rotor (rev/sec)

s=(n,—-n,)/n,=1-(n,/ny) =slip in IM

The ratio of the induced emf’s per phase, in the stator and rotor windings, with the
rotor at standstill, is given by,

E./E, =T,/T, =2,/Z,
assuming that the winding factor in both windings are same. It may be noted that the
induced voltage per phase in the winding is proportional to the effective turns per phase,
of the winding (=K, - T ). The formula is similar to that obtained in a transformer, where

the induced voltage per turn (E, = E/T ) is the same in the two (primary/secondary)
windings.

The induced emf in the rotor winding with the motor running at any speed is
proportional to the rotor frequency ( f, =s- ), and is given by

s-E, =222k, -s-f-¢-Z,

The currents in the balanced three-phase windings of the stator produce a resultant
mmf, rotating at the synchronous speed (n,) relative to stator conductors, which is

stationary. Similarly, the currents in the balanced three-phase windings of the rotor (taken
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as a wound one) produce another resultant mmf, rotating at the speed of (n, —n, =s-n,)

relative to rotor conductors in the same direction as that of the rotor, which rotates at a
speed (n, =(1-s)-n,). Hence, the speed of the resultant rotor mmf relative to stator

conductors is (S-Ng +Nn, =n,). The axes of the resultant rotor mmf rotate at the same

speed as those of the resultant stator mmf, so that the mmfs are stationary relative to each
other.

The equivalent circuit per phase, of the rotor
The current per phase in the rotor winding (Fig. 31.1a) is given by

jx,

ri(1-5)
5

1 (b)
Fig. 31.1: Equivalent circuit of the rotor winding (IM)
— s-E,
S ) )’

where,
I, = Resistance () per phase, of the rotor winding

X, =2-7- f -1, = Leakage reactance (Q ) per phase, of the rotor winding at standstill

(s=1.00r o, =0.0)

The leakage reactance per phase of the rotor winding at any other speed n,, is
proportional to the rotor frequency ( f, =s- f), and is given by X,, =S-X,. The term in
the denominator of the expression is the magnitude of the rotor impedance per phase at

any other speed, which is (|225| = \/(I’z)2 +(s-X,)?), with its phase angle as
#,, =tan"'[(S-X,)/1,]. It may be noted that the subscript ‘2’ is used here, instead of ‘r’
earlier. Similarly, the subscript ‘1’ may be used, instead of ‘s’, i.e. stator.

In the expression for the rotor current per phase, if both numerator and denominator is
divided by the term s, |, is

I E,

2 = 2 2
V(L 19)" +(x,)
The circuit of the rotor (Fig. 31.1a) can now be drawn as shown in Fig. 31.1b, from the
equation given earlier. It may be noted here the input voltage per phase to the circuit is
constant, i.e. E, and the leakage reactance per phase is also constant, X, , both being same

as at standstill, with the rotor frequency being same as line or input frequency. Also the
phase angle of the impedance, whose magnitude is the term in the denominator, remains
same as @, = tan"' [X, /(r,/s)]=tan"'[(S-X,)/T,], as obtained earlier.
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The circuit of Fig. 31.1b can be redrawn as shown in Fig. 31.1c, with the resistance
(r,/s) now being shown as sum of two resistances, rotor resistance, I, and fictitious
resistance, ((r,/S)—r, =r,(1-s)/s). The first part of the circuit consists of the rotor
impedance at standstill, which is (z, Z¢, =T, + ] X, ), whose magnitude and phase angle

are |22| =4/(r,)* +(X,)” and ¢, =tan"' (X, /T,) respectively.

The relation between rotor input, rotor copper loss and rotor
output

From the equivalent circuit (Fig. 31.1¢) per phase of the rotor winding, the total input
(W) to the rotor is P, =3-E, -1, -cos ¢,, =3-(1,)* -(r,/s). Please note that the phase
angle, ¢, is the angle between the induced voltage and current (both in the rotor). The
total input to the rotor is the power transferred from the stator via air gap. The total
copper loss in the rotor winding is 3-(1,)” -r,. The total output of the rotor is the total
power loss in the fictitious resistance, I,(1—S)/s of the rotor circuit (Fig, 31.1c), and is

given by 3-(l,)*-r,-(1—-s)/s. The total rotor output is obtained also as the difference

of the total rotor input and the total rotor copper loss. Alternatively,
Total input to the rotor = Total rotor copper loss + Total rotor output
It may be shown that

Total rotor copper loss = s x Total rotor input,

or, Total rotor input = (1/5) x Total rotor copper loss

In terms of total rotor output, the relationships are as follows,
Total rotor copper loss = [s/(1—5)]x Total rotor output,

or, Total rotor output = {(1—3)/s] x Total rotor copper loss

The relation between total rotor output and total rotor input is

Total rotor output = (1) x Total rotor input

or, Total rotor input = [1/(1—s)] x Total rotor output

In the above discussion, total rotor output is the output in electrical terms, also termed as
gross one, which includes mechanical, or friction and windage losses.

The expression for gross power and torque developed, and the torque-speed or
torque-slip characteristics of Induction motor along with other relevant points, will be
presented in the next lesson.

Power flow diagram
In the induction motor, efficiency is
Output Output
Input  Output +losses
as Input = output + losses

Efficiency () =

The total losses are losses in both stator and rotor, and mechanical losses. The stator
losses are iron or core loss and copper loss, i.e. loss in the stator winding resistance. The
core loss is the sum of hysteresis and eddy current losses, with the frequency in the stator
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being line frequency of 50 Hz. Both the above losses are related to frequency. It may be
noted here that the flux in the air gap is rated, as the input or supply voltage fed to the
stator winding is rated with the frequency is also rated. The copper loss is proportional to
the square of the current in the stator winding. The loss in the rotor is only copper loss as
shown earlier, with the iron loss being low due to low frequency in the rotor core. For
example, the rotor frequency ( f, =S f) is only 2 Hz, if the slip is assumed as 4%, the

speed being 1,440 rpm for a 4-pole motor. The line (input) frequency is 50 Hz. The iron
loss is related to the frequency as stated earlier. The net output available at the shaft is the
gross output minus the mechanical losses.

Before coming to the power flow diagram in an Induction motor, total input power
fed to the motor via stator (winding) is P, =3V I cos¢, =3V I cos(V, 1)

where, V and | are the input voltage and current per phase, to the motor.

Total input power to the motor (stator) = Stator losses (iron & copper) + Total input
power to the rotor (or Power transferred via air gap)

Total input power to the rotor = Rotor copper loss + Total output power (gross)

Total output power (gross) = Mechanical losses + Total output power (net) [or Power
available at the shaft]

It may be noted that all the losses, excluding mechanical one, are total for all three
phases, and as given earlier, iron losses in the rotor are very low..

In this lesson — the third one of this module, the equivalent circuit per phase of an IM
has been derived, starting with the formula for the induced emfs per phase, in both stator
and rotor windings. The various losses and where do they occur, are described next,
followed by presentation of power flow diagram for IM. In the next lesson as given
earlier, the expression for gross power or torque developed, and the torque-speed or
torque-slip characteristics of an IM, along with other relevant points, will be presented in
detail.
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Lesson
32

Torque-Slip (speed)
Characteristics of
Induction Motor (IM)
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Instructional Objectives

e Derivation of the expression for the gross torque developed as a function of slip
(speed) of Induction motor

e Sketch the above characteristics of torque-slip (speed), explaining the various features

e Derive the expression of maximum torque and the slip (speed) at which it occurs

e Draw the above characteristics with the variation in input (stator) voltage and rotor
resistance

Introduction

In the previous, i.e. third, lesson of this module, starting with the formulas for the
induced emfs per phase in both stator and rotor windings, the equivalent circuit per phase
of the three-phase induction motor (IM), has been derived. The relation between the rotor
input, rotor copper loss and rotor output (gross) are derived next. Finally, the various
losses — copper losses (stator/rotor), iron loss (stator) and mechanical loss, including the
determination of efficiency, and also power flow diagram, are presented. In this lesson,
firstly, the torque-slip (speed) characteristics of IM, i.e., the expression of the gross
torque developed as a function of slip, will be derived. This is followed by the sketch of
the different characteristics, with the variations in input (stator) voltage and rotor
resistance, along with the features. Lastly, the expression of maximum torque developed
and the slip (speed) at which it occurs, are derived.

Keywords: The equivalent circuit per phase of IM, gross torque developed, torque-slip
(speed) characteristics, maximum torque, slip at maximum torque, variation
of the characteristics with changes in input (stator) voltage and rotor
resistance.

Gross Torque Developed

The current per phase in the rotor winding (the equivalent circuit of the rotor, per
phase is shown in Fig. 31.1) is (as given in earlier lesson (#31))
s-E E
I, = r = r
V(L) +G5%)" (,/8) +(x,)’
Please note that the symbols used are same as given in the earlier lesson.

In a similar way, the output power (gross) developed (W) is the loss in the fictitious
resistance in the equivalent circuit as shown earlier, which is

(s-E, ) [n-s)/s] _3-(E,) -1,-s(1-5)
[(r)? +(5-%,)?] l(r)? +(5-%,)?]

The motor speed inrpsis N, =(1-95)-n

P =31, [ra-s)/s]=>

The motor speed (angular) in rad/s is @, =(1-5)- @,
The gross torque developed in N -m is
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P_ 3E)Snsi-s) _ 3(E)-n-s
o, (1=9)0,[()* +(5 %) ] 22n|(6)* +(5-%,)°]
The synchronous speed (angular) is o, =27 -n,

0

The input power to the rotor (or the power transferred from the stator via air gap) is the
loss in the total resistance (r, /S ), which is

. , _3.(S.Er)2-(r2/5)_ 3'(Er)2'r2.s
R30S T o] T s 6]

The relationship between the input power and the gross torque developed is P, = o, - T,

So, the input power is also called as torque in synchronous watts, or the torque is
T, =P /o,

Torque-slip (speed) Characteristics

The torque-slip or torque-speed characteristic, as per the equation derived earlier, is
shown in Fig. 32.1. The slipis S =(w, —o,)/ o, =(n, —n.)/n, =1-(n,/n,). The range
of speed, n, is between 0.0 (standstill) and n,(synchronous speed). The range of slip is
between 0.0 (n, =ny)and 1.0 (n, =0.0).

=
=
Ll

T'-l' 1 1 1
005, *m0.25 0.5 0.75 1.0
= Slip (s)
D +— 0.0
speediom, )

Fig. 32.1: Terque-slip{speed) characteristics of Induction Motor

For low values of slip, r, >> (s-X,). So, torque is
_ 3'(Er)2 s _ 3'(Er)2 i
r2

0 2
@y '(rz) @

This shows that T, oc S, the characteristic being linear. The following points may be

noted. The output torque developed is zero (0.0), at S=0.0, or if the motor is rotated at
synchronous speed (N, =n,). This has been described in lesson No. 30, when the
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principle of operation was presented. Also, the slip at full load (output torque =(T,) ) is
normally 4-5% (s, =0.04-0.05), the full load speed of IM being 95-96% of
synchronous speed ((n,); =(1—-5S4)n, =(0.05-0.96)-n,).
For large values of slip, r, << (s-X,). So, torque is
3-(E,)-r,-s 3-(E)
0, (5%) o, (%)
This shows that, T, oc (1/5), the characteristic being hyperbolic. The starting torque

T, =

(s=1.0,0or n, =0.0) developed, along with starting current, is discussed later.

So, starting from low value of slip (s > 0.0), at which torque is proportional to slip,
whereas for large values of slip (S <1.0), torque is inverse proportional to slip, both
being derived earlier. In the characteristic shown, it may be observed that torque reaches
a maximum value, which can be obtained in the following way. The relation between
torque and slip is

K-r,-s

[(rz)2 +(S : Xz)ZJ
s [(r2)2+(S-X2)2]:i£r_2+s-(x2)2J

TO: K-r,-s K\{s r,

To determine the maximum value of torque (T, ) in terms of slip, the minimum value

0

where, K =3-(E, )’ / o,

b

of its inverse (1/T,) need be determined from the relation,

A1 6 e,
ds{T,) K| s*

2
from which s’ :((rz)zJ or, S=Tr,/X, .
(X;)

Please note that, for motoring condition as shown earlier, slip, s is positive (+ve), as
n, <n,.Atthisslip, S=s_, I, =S, - X,. This may be termed as slip at maximum torque.
The motor speed is [(N,),, =(1—S,,)Nn,]. This value of slip is small, for normal wound

rotor (or slip ring) IM, without any additional resistance inserted in the rotor circuit. This
value is higher in the case of squirrel cage IM.
Substituting the value of s, the maximum value of torque is

K _3-«(E)’ 1
m2.x, o, 2%,
which shows that it is independent of r,. The maximum torque is also termed as pull-out

S

torque. If the load torque on the motor exceeds this value, the motor will stall, i,e. will
come to standstill condition.
The values of maximum torque and the slip at that torque, can be obtained by using

d
—(T,)=0.0
g5 (o)

which is not shown here.
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It may be observed from the torque-slip characteristic (Fig. 32.1), or described earlier,
that the output torque developed increases, if the slip increases from 0.0 to S, or the

motor speed decreases from n, to (Nn,),. This ensures stable operation of IM in this
region (0.0<s<s_ ), for constant load torque. But the output torque developed
decreases, if the slip increases from S, to 1.0, or the motor speed decreases from (N, ), .to
zero (0.0). This results in unstable operation of IM in this region (S, <s$<1.0), for

constant load torque. However, for fan type loads with the torque as (T, o« (n,)?), stable
operation of IM is achieved in this region (s, <S <1.0).

Starting Current and Torque

The starting current (rotor) is
E

1) g = -
() V(0)? + (%)

as slip at starting (n, =0.0) is 1.0, which is the same at standstill (or stalling condition).
The magnitude of the induced voltage per phase in the stator winding is nearly same as
input voltage per phase fed to the stator, if the voltage drop in the stator impedance, being
small, is neglected, 1.e. V, = E;. As shown in the earlier lesson (#31), the ratio of the

induced emfs per phase in the stator and rotor winding can be taken as the ratio of the

effective turns in two windings, ie. E,/E =T, /T, , where T, =k,T, and

T, =k,, T,. The winding factor for the stator winding is K, =K -k ;. Same formula is

used for the above factor in the rotor winding, assuming it to be wound rotor one.

The starting current in the stator winding can be shown as (1), =(l,), (T, /T, ),
neglecting the no load current. This current is normally large, much greater than full load
current. This current is reduced by using starters in both types (cage and wound rotor) of
IM, which will be taken up in the next lesson.

The starting torque in N -m is

2 3'(E )2'r2
05t:3' Iz st '2/ s = rz 5
(Toda =30 0o = O ey

This expression is obtained substituting S =1.0 in the expression of T, derived earlier. If

the starter is used, the starting torque is also reduced, as is the case with starting current.

Torque-slip (speed) Characteristics,
with variation in input (stator) voltage and rotor circuit resistance
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0.0 5w 025 05  0.75 1.0
— Slip (s)

g +— 0.0
speediom, )

(a)
Fig. 32.2: Terque-speed characteristics for
{a) variation in input{stator)voltage.

The set of torque-slip characteristics with variation in input (stator) voltage is shown
in Fig. 32.2a. The point to note that the torque at a given slip decreases with the decrease

in input (stator) voltage, as T, oc V. The characteristics shown are for decreasing stator
voltages (V, >V, >V,). The speed decreases or the slip increases with constant load

torque, as the input (stator) voltage decreases. The region for stable operation with
constant lo