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Preface

This book is devoted to the applications of the probability theory to the theory
of nonlinear partial differential equations. More precisely, we investigate the class
U of all positive solutions of the equation Lu = ¢(u) in E where L is an elliptic
differential operator of the second order, E is a bounded smooth domain in R? and
1 is a continuously differentiable positive function.

The progress in solving this problem till the beginning of 2002 was described
in the monograph [D]. [We use an abbreviation [D] for [Dyn02].] Under mild
conditions on ¥, a trace on the boundary 0F was associated with every u € U. This
is a pair (T, v) where T is a subset of F and v is a o-finite measure on OE \ T. [A
point y belongs to I" if ¢’ (u) tends sufficiently fast to infinity as @ — y.] All possible
values of the trace were described and a 1-1 correspondence was established between
these values and a class of solutions called o-moderate. We say that u is o-moderate
if it is the limit of an increasing sequence of moderate solutions. [A moderate
solution is a solution u such that u < h where Lh = 0 in E.] In the Epilogue to [D],
a crucial outstanding question was formulated: Are all the solutions o-moderate?
In the case of the equation Au = u? in a domain of class C*, a positive answer to
this question was given in the thesis of Mselati [Mse02a] - a student of J.-F. Le Gall.
! However his principal tool - the Brownian snake - is not applicable to more general
equations. In a series of publications by Dynkin and Kuznetsov [Dyn04b], [Dyn04c],
[Dyn04d], [Dyn],[DK03], [DK], [Kuz], Mselati’s result was extended, by using a
superdiffusion instead of the snake, to the equation Au = u* with1 < a < 2.
This required an enhancement of the superdiffusion theory which can be of interest
for anybody who works on application of probabilistic methods to mathematical
analysis.

The goal of this book is to give a self-contained presentation of these new
developments. The book may be considered as a continuation of the monograph
[D]. In the first three chapters we give an overview of the theory presented in [D]
without duplicating the proofs which can be found in [D]. The book can be read
independently of [D]. [It might be even useful to read the first three chapters before
reading [D].]

In a series of papers (including [MV98a], [MV98b] and [MV]) M. Marcus and
L. Véron investigated positive solutions of the equation Au = u® by purely analytic
methods. Both, analytic and probabilistic approach have their advantages and an
interaction between analysts and probabilists was important for the progress of the
field. I take this opportunity to thank M. Marcus and L. Véron for keeping me
informed about their work.

IThe dissertation of Mselati was published in 2004 (see [Mse04]).
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vi PREFACE

I am indebted to S. E. Kuznetsov who provided me several preliminary drafts
of his paper [Kuz| used in Chapters 8 and 9. I am grateful to him and to J.-F. Le
Gall and B. Mselati for many helpful discussions. It is my pleasant duty to thank
J.-F. Le Gall for a permission to include into the book as the Appendix his note
which clarifies a statement used but not proved in Mselati’s thesis (we use it in
Chapter 8).

The Choquet capacities are one of the principal tools in the study of the equa-
tion Au = u®. This class contains the Poisson capacities used in the work of
Dynkin and Kuznetsov and in this book and the Bessel capacities used by Marcus
and Véron and by other analysts. I am very grateful to I. E. Verbitsky who agreed
to write the other Appendix where the relations between the Poisson and Bessel
capacities are established which allow to connect the work of both groups.

I am especially indebted to Yuan-chung Sheu for reading carefully the entire
manuscript and suggesting many corrections and improvements.

The research of the author reported in this book was supported in part by the
National Science Foundation Grant DMS-0204237.



CHAPTER 1

Introduction

1. Trace theory
1.1. We consider a differential equation
(1.1) Lu=v¢(u) inFE

where E is a domain in R?, L is a uniformly elliptic differential operator in E and
1 is a function from [0, c0) to [0, 00). Under various conditions on E, L and ¢ ! we
investigate the set U of all positive solutions of (1.1). Our base is the trace theory
presented in [D]. Here we give a brief description of this theory (which is applicable

to an arbitrary domain F and a wide class of functions ¢ described in Section 4.3).
2

1.2. Moderate and o-moderate solutions. Our starting point is the rep-
resentation of positive solutions of the linear equation

(1.2) Lh=0 inE

by Poisson integrals. If E is smooth 3 and if k(z,y) is the Poisson kernel * of L in
E, then the formula

(1.3) ho(z) = /6 k. g)v(dy)

establishes a 1-1 correspondence between the set M(OFE) of all finite measures v
on OF and the set H of all positive solutions of (1.2). (We call solutions of (1.2)
harmonic functions.)

A solution u is called moderate if it is dominated by a harmonic function.
There exists a 1-1 correspondence between the set U; of all moderate solutions and
a subset Hy of H: h € H; is the minimal harmonic function dominating u € U,
and v is the maximal solution dominated by h. We put v € N; if h, € H;. We
denote by u, the element of U; corresponding to h,.

An element u of U is called o-moderate solutions if there exist u,, € U; such
that wy, (z) T u(z) for all z. The labeling of moderate solutions by measures v € N
can be extended to o-moderate solutions by the convention: if v, € N1, v, T v and
if u,, 1w, then put v € Ny and u = u,,.

IWe discuss these condtions in Section 4.

2Lt is applicable also to functions ¥ (z,u) dependingon = € E.

3We use the name smooth for open sets of class C%* unless another class is indicated
explicitely.

4For an arbitrary domain, k(z,y) should be replaced by the Martin kernel and O F should be
replaced by a certain Borel subset E’ of the Martin boundary (see Chapter 7 in [D]).

1



2 1. INTRODUCTION

1.3. Lattice structure in . > We write u < v if u(z) < v(z) for all x € E.
This determines a partial order in . For every Uucu , there exists a unique
element u of U with the properties: (a) u > v for every v € U; (b) if 4 € U satisfies
(a), then u < @. We denote this element Sup U .

For every u,v € U, we put u @ v = Sup W where W is the set of all w € U
such that w < u + v. Note that u @ v is moderate if © and v are moderate and it
is o-moderate if so are u and v.

In general, Sup U does not coincide with the pointwise supremum (the latter
does not belong to ¢). However, both are equal if Sup{u,v} € U for all u,v € U.
Moreover, in this case there exist u, € U such that u,(z) 1 u(z) for all x € E.
Therefore, if U is closed under & and it consists of moderate solutions, then Sup U
is o-moderate. In particular, to every Borel subset T' of OF there corresponds a
o-moderate solution

(1.4) ur = Sup{u, : v € N1, v is concentrated on I'}.

We also associate with I' another solution wr. First, we define wg for closed
K by the formula

(1.5) wg =Sup{u el :u=0 ondE\K}.
For every Borel subset ' of 0F, we put
(1.6) wr = Sup{wg : closed K C T'}.

Proving that ur = wr was a key part of the program outlined in [D].

1.4. Singular points of a solution u. We consider classical solutions of
(1.1) which are twice continuously differentiable in E. However they can tend to
infinity as © — y € JE. We say that y is a singular point of u if it is a point of
rapid growth of ¢’(u). [A special role of ¢’ (u) is due to the fact that the tangent
space to U at point u is described by the equation Lv = ¢ (u)v.]

The rapid growth of a positive continuous function a(x) can be defined ana-
lytically or probabilistically. The analytic definition involves the Poisson kernel (or
Martin kernel) k,(x,y) of the operator Lu — au: y € OF is a point of rapid growth
for a if ko(z,y) = 0 for all z € E. A more transparent probabilistic definition is
given in Chapter 3.

We say that a Borel subset I' of OF is f-closed if T' contains all singular points
of the solution ur defined by (1.4).

1.5. Definition and properties of trace. The trace of u € U (which we
denote Tr(u)) is defined as a pair (I', v) where T is the set of all singular points of
u and v is a measure on OF \ I given by the formula
(L.7) v(B) = sup{u(B) : p € Ny, ju(T) = 0,1, < u}.

We have
u, = Sup{ moderate u, <wu with p(I") =0}
and therefore u, is o-moderate.

The trace of every solution u has the following properties:

1.5.A. T is a Borel f-closed set; v is a o-finite measure of class Ny such that
v(I") = 0 and all singular points of u, belong to T

5See Chapter 8, Section 5 in [D].



3. NOTATION 3

1.5.B. If Tr(u) = (T, v), then
(1.8) U > ur ® uy.
Moreover, ur @ u, is the maximal o-moderate solution dominated by wu.

1.5.C. If (T',v) satisfies the condition 1.5.A, then Tr(ur @ u,) = (I',v), the
symmetric difference between I' and I" is not charged by any measure u € Nj.
Moreover, ur & u, is the minimal solution with this property and the only one
which is o-moderate.

2. Organizing the book

Let u € U and let Tr(u) = (T',v). The proof that u is o-moderate consists of
three parts:

A u>ur@u,.

B. ur = wr.

C.u<wr®u,.

It follows from A-C that u = ur @ u, and therefore u is o-moderate because
ur and u, are o-moderate.

We already have obtained A as a part of the trace theory (see (1.8)) which
covers a general equation (1.1). Parts B and C will be covered for the equation
A = u® with 1 < o < 2. To this end we use, beside the trace theory, a number
of analytic and probabilistic tools. In Chapters 2 and 3 we survey a part of these
tools (mostly related to the theory of superdiffusion) already prepared in [D]. A
recent enhancement of the superdifusion theory —the N-measures — is presented in
Chapter 4. Another new tool — bounds for the Poisson capacities — is the subject
of Chapter 6. By using all these tools, we prove in Chapter 7 a basic inequality for
superdiffusions which makes it possible to prove (in Chapter 8) that ur = wr (Part
B) and therefore wr is o-moderate. The concluding part C is proved in Chapter
9 by using absolute continuity results on superdiffusions presented in Chapter 5.
In Chapter 8 we use an upper estimate of wx in terms of the Poisson capacity
established by S. E. Kuznetsov [Kuz]. In the Appendix contributed by J.-F. Le
Gall a property of the Brownian motion is proved which is also used in Chapter
8. Notes at the end of each chapter describe the relation of its contents to the
literature on the subject.

3. Notation

3.1. We use notation C*(D) for the set of k times continously differentiable
function on D and we write C(D) for C°(D). We put f € C*(D) if there exists a
constant A such that |f(x) — f(y)| < Az —y|* for all 7,y € D (Holder continuity).
Notation C**(D) is used for the class of k times differentiable functions with all
partials of order k belonging to C*(D).

We write f € B if f is a positive B-measurable function. Writing f € bB means
that, in addition, f is bounded.

For every subset D of R? we denote by B(D) the Borel o-algebra in D.

We write D € E if D is a compact subset of E. We say that a sequence D,
exhausts £ if D1 €@ Dy € --- € D,, € ... and FE is the union of D,,.

D; stands for the partial derivative 8%1- with respect to the coordinate x; of x

and Dij means Dlpj



4 1. INTRODUCTION

We denote by M(E) the set of all finite measures on E and by P(FE) the set
of all probability measures on E. We write (f, u) for the integral of f with respect
to u.

d,(B) = 1p(y) is the unit mass concentrated at y.

A kernel from a measurable space (F1, B1) to a measurable space (Fa, B2) is a
function K (x, B) such that K(x,-) is a finite measure on B; for every x € F; and
K (-, B) is an Bj-measurable function for every B € Bs.

If w is a function on an open set E and if y € OF, then writing u(y) = a means
u(r) »aasz —y,x € E.

We put

diam(B) = sup{|z — y| : z,y € B} (the diameter of B),
d(z,B) = in]g | —y| (the distance from x to B),
ye

plx) =d(z,0F) forxe E.

We denote by C' constants depending only on E, L and v (their values can vary
even within one line). We indicate explicitely the dependence on any additional
parameter. For instance, we write C,; for a constant depending on a parameter s
(besides a possible dependence on E, L, v).

4. Assumptions

4.1. Operator L. There are several levels of assumptions used in this book.
In the most general setting, we consider a second order differential operator

d d
(4.1) Lu(z) = Z aij(z)Diju(z) + Z bi(z)Dsu(x)

in a domain E in RY. Without loss of generality we can put a;; = a;;. We assume
that

4.1.A. [Uniform ellipticity] There exists a constant x > 0 such that
> aij(@)tit; > kY t7 forallz € B by, ... tg €R,

4.1.B. All coefficients a;;(z) and b;(z) are bounded and Hélder continuous.
In a part of the book we assume that L is of divergence form

d
(4.2) Lu(z) = Y %aij(x)a%ju(x).

i,=1
In Chapters 8 and 9 we restrict ourselves to the Laplacian A = Zf D2

4.2. Domain E. Mostly we assume that E is a bounded smooth domain. This
name is used for domains of class C>* which means that JE can be straightened
near every point € OF by a diffeomorphism ¢, of class C?*. To define straight-
ening, we consider a half-space £, = {x = (21,...,24) : 74 > 0} = R¥™1 x (0, 0).
Denote Ey its boundary {z = (z1,...,2q) : 4 = 0}. We assume that, for every
x € OF, there exists a ball B(z,e) = {y : |z — y| < €} and a diffeomorphism
¢, from B(z,e) onto a domain E € R? such that ¢,(B(zx,e) N E) C E; and
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¢o(B(x,e)NIOE) C Ey. (We say that ¢, straightens the boundary in B(z,¢).) The
Jacobian of ¢, does not vanish and we can assume that it is strictly positive.

Main results of Chapters 8 and 9 depend on an upper bound for wg estab-
lished in [Kuz] for domains of class C*. All results of Chapters 8 and 9 can be
automatically extended to domains of class C2** if the bound for wx will be proved
for such domains.

4.3. Function 1. In general we assume that 1 is a function on [0, c0) with
the properties:

43.A. ¢ € C2(R,).

4.3.B. ¥(0) =¢'(0) =0, ¢ (u) > 0 for u > 0.
[It follows from 4.3.B that ) is monotone and convex and 1’ is bounded on
each interval [0, ¢].]

4.3.C. There is a constant a such that
Y(2u) < ap(u)

for all u.

4.3.D. [Jds [[ () du]71/2 < oo for some N > 0.

Keller [Kel57] and Osserman [Oss57] proved independently that this condition im-
plies that functions u € U(E) are uniformly bounded on every set D € E. ©
In Chapters 7-9 we assume that

(4.3) PYu)=u, 1<a<2
(In Chapter 6 we do not need the restriction a < 2.)

5. Notes

The trace Tr(u) was introduced in [Kuz98] and [DK98b] under the name the
fine trace. We suggested to use the name "rough trace® for a version of the trace
considered before in the literature. (In the monograph [D] the rough trace is treated
in Chapter 10 and the fine trace is introduced and studied in Chapter 11.)

The most publications were devoted to the equation

(5.1) Au=u a>1.

In the subcritical case 1 < d < 3—H, the rough trace coincides with the fine trace

and it determines a solution of (5.1) uniquely. As it was shown by Le Gall, this is
not true in the supercritical case: d > 2t1.

In a pioneering paper [GV91] Gmira and Véron proved that, in the subcritical
case, the generalized Dirichlet problem

Au=u" InFE
)

(5:2) u=yu ondFE

has a unique solution for every finite measure p. (In our notation, this is u,.)

A program of investigating I/ by using a superdiffusion was initiated in [Dyn91a).
In [Dyn94] Dynkin conjectured that, for every 1 < a < 2 and every d, the problem
(5.2) has a solution if and only if x does not charge sets which are, a.s., not hit

6In a more general setting this is proved in [D], Section 5.3.
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by the range of the superdiffusion. ” [The conjecture was proved, first, in the case
a =2, by Le Gall and then, for all 1 < a < 2, by Dynkin and Kuznetsov .]

A classification of all positive solutions of Au = u? in the unit disk £ = {z €
R?: |z| < 1} was announced by Le Gall in [LG93]. [This is also a subcritical case.]
The result was proved and extended to a wide class of smooth planar domains in
[LGI7]. Instead of a superdiffusion Le Gall used his own invention — a path-valued
process called the Brownian snake. He established a 1-1 correspondence between
U and pairs (T',v) where T is a closed subset of OF and v is a Radon measure on
OE\T.

Dynkin and Kuznetsov [DK98a] extended Le Gall’s results to the equation
Lu =u®,1 < a < 2. They introduced a rough boundary trace for solutions of this
equation. They described all possible values of the trace and they represented the
maximal solution with a given trace in terms of a superdiffusion.

Marcus and Véron [MV98a]-[MV98b] investigated the rough traces of solutions
by purely analytic means. They extended the theory to the case o > 2 and they
proved that the rough trace determines a solution uniquely in the subcritical case.

The theory of fine trace developed in [DK98b] provided a classification of all
o-moderate soltions. Mselati’s dissertation [Mse02a] finalized the classification for
the equation Au = u? by demonstrating that, in this case, all solutions are o-
moderate. A substantial enhancement of the superdiffusion theory was necessary
to get similar results for a more general equation Au = u® with 1 < a < 2.

"The restriction a < 2 is needed because a related superdiffusion exists only in this range.



CHAPTER 2

Analytic approach

In this chapter we consider equation 1.(1.1) under minimal assumptions on L, v
and E: conditions 1.4.1.A—1.4.1.B for L, conditions 1.4.3.A-1.4.3.D for ¥ and and
assumption that E is bounded and belongs to class C?*.

For every open subset D of E we define an operator Vp that maps positive
Borel functions on 9D to positive solutions of the equation Lu = ¢(u) in D. If
D is smooth and f is continuous, then Vp(f) is a solution of the boundary value
problem

Lu=¢(u) in D,
u=f ondD.

In general, u = Vp(f) is a solution of the integral equation
u+ Gpy(u) = Kpf

where Gp and Kp are the Green and Poisson operators for L in D. Operators Vp
have the properties:

Vb(f) < Vb(f) if f<f,
Vp(fn) TVD(f) if fu 1 f,
Vp(fi + f2) < Vb(f1) + Vb(f2).

The Comparison principle plays for the equation 1.(1.1) a role similar to the
role of the Maximum principle for linear elliptic equations. There is also an analog
of the Mean value property: if u € U(FE), then Vp(u) = u for every D € E. The set
U(E) of all positive solutions is closed under Sup and under pointwise convergence.

We label moderate solutions by measures v on OF belonging to a class N
and we label o-moderate solutions by a wider class N&. A special role is played by
v € NF taking only values 0 and oc.

An algebraic approach to the equation 1.(1.1) is discussed in Section 3. In Sec-
tion 4 we introduce the Choquet capacities which play a crucial role in subsequent
chapters.

Most propositions stated in Chapters 2 and 3 are proved in [D]. In each case we
give an exact reference to the corresponding place in [D]. We provide a complete
proof for every statement not proved in [D].

1. Operators Gp and Kp

1.1. Green function and Green operator. Suppose that D is a bounded
smooth domain and that L satisfies conditions 1.4.1.A-1.4.1.B. Then there exists a

7



8 2. ANALYTIC APPROACH

unique continuous function gp from D x D to [0, oo] such that, for every f € C*(D),

(1.1) u(z) = /D gp(z,y)f(y)dy
is the unique solution of the problem

Lo Lu=—f in D,
(1.2) u=0 ondD.

The function gp is called the Green function. It has the following properties:

1.1.A. For every y € D, u(z) = gp(z,y) is a solution of the problem
Lu=0 in D\ {y},

(1.3) u=0 ondD.

1.1.B. For all z,y € D,
(1.4) 0<gp(z,y) < CT(x—y)

where C is a constant depending only on D and L and *

|z|?—d for d > 3,
(1.5) I(z)= ¢ (—log|z|) V1 for d = 2,
1 ford=1.
If L is of divergence form and d > 3, then
(1.6) gp(z.y) < Cp(a)|z —y|' 7%,
(1.7) gp(z,y) < Cp(@)p(y)la -yl
[See [GW82].]

The Green operator is defined by the formula (1.1).

1.2. Poisson kernel and Poisson operator. Suppose that D is a bounded
smooth domain and let v be the surface area on 0D. The Poisson kernel kp is a
continuous function from D x 9D to (0, c0) with the property: for every ¢ € C(D),

(18) ma) = [ kool
is a unique solution of the problem

Lu=0 in D,
(1.9) u=¢@ ondD.

We have the following bounds for the Poisson kernel: 2
(1.10) C™'p(a)lx —y|~ < kp(z,y) < Cp(x)|z —y|~*
where
(1.11) p(x) = dist(z, OD).

The Poisson operator Kp is defined by the formula (1.8).

IThere is a misprint in the expression for I'(z) in [D], page 88.
2See, e.g. [MVGT75], Lemma 6 and the Appendix B in [D].
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2. Operator Vp and equation Lu = ¢(u)

2.1. Operator Vp. By Theorem 4.3.1 in [D], if ¢ satisfies conditions 1.4.3.B
and 1.4.3.C, then, for every f € bB(FE) and for every open subset D of E, there
exists a unique solution of the equation

(2.1) u+ Gpy(u) = Kpf.
We denote it Vp(f). It follows from (2.1) that:
2.1.A. Vp(f) < Kp(f), in particular, Vp(c) < ¢ for every constant c.
We have:
2.1.B. [[D], 4.3.2.A] If f < f, then Vp(f) < Vp(f).
2.1.C. [[D], 4.3.2.C] If f, 1 f, then Vp(fn) T Vb (f).
Properties 2.1.B and 2.1.C allow to define Vp(f) for all f € B(D) by the

formula
(2:2) Vb(f) = SglpVD(fAn)-
The extended operators satisfy equation (2.1) and conditions 2.1.A-2.1.C. They
have the properties:
2.1.D. [[D], Theorem 8.2.1] For every f1, f2 € B(D),
(2.3) Vp(fi + f2) < Vb (f1) + Vb(f2)-
2.1.E. [[D], 8.2.1.J] For every D and every f € B(0D), the function v = Vp(f)

is a solution of the equation

(2.4) Lu=1¢(u) in D.

We denote by U(D) the set of all positive solutions of the equation (2.4).
2.2. Properties of U(D). We have:

2.2.A. [[D], 8.2.1.J and 8.2.1.H] If D is smooth and if f is continuous in a
neighborhood O of Z € 9D, then Vp f(x) — f(Z) at © — &,2 € D. If D is smooth
and bounded and if a function f: 9D — [0, 00) is continuous, then v = Vp(f) is a
unique solution of the problem

Lu=1(u) in D,

(25) u=f ondD.

2.2.B. (Comparison principle)[[D], 8.2.1.H.] Suppose D is bounded. Then u < v
assuming that u,v € C?(D),

(2.6) Lu —(u) > Lv —(v) in D
and, for every 7 € 9D,
(2.7) limsup[u(z) —v(z)] <0 asx — .

2.2.C. (Mean value property)[[D], 8.2.1.D] If u € U(D), then, for every U € D,
Vi (u) = win D (which is equivalent to the condition u + Gy (u) = Kyu).
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2.2.D. [[D], Theorem 5.3.2] If u,, € U(FE) converge pointwise to u, then u belongs
to U(E).

2.2.E. [[D], Theorem 5.3.1] For every pair D € F there exists a constant b such
that u(z) < b for allu € U(E) and all z € D. 3

The next two propositions are immediate implications of the Comparison prin-
ciple.

We say that u € C?(E) is a supersolution if Lu < ¢(u) in E and that it is
a subsolution if Lu > t(u) in E. Every h € H(FE) is a supersolution because
Lh =0 <(h). It follows from 2.2.B that:

2.2.F. If a subsolution u and a supersolution v satisfy (2.7), then u < v in E.
2.2.G. If Y(u) = u® with @ > 1, then, for every u € U(D) and for all z € D,
u(z) < Cd(z, dD) 2/ (=1,

Indeed, if d(x,0D) = p, then the ball B = {y : |y — z| < p} is contained
in D. Function v(y) = C(p*> — |y — x[*)~2/(®=1) is equal to oo on dB and, for
sufficiently large C, Lv(y) —v(y)® < 0 in B. * By 2.2.B, v < v in B. In particular,
u(z) < v(z) = Cp~2/(e=1),

2.3. On moderate solutions. Recall that an element u of U(E) is called
moderate if u < h for some h € H(E). The formula
(2.8) u+Ggy(u) =h

establishes a 1-1 correspondence between the set U (E) of moderate elements of
U(F) and a subset Hi(E) of H(E): h is the minimal harmonic function dominating
u, and u is the maximal solution dominated by h. Formula 1.(1.3) defines a 1-1
correspondence v < h,, between M(9E) and H(E). We put v € N if h, € Hy(E)
and we denote u, the moderate solution corresponding to v € NV¥. In this notation,

(2.9) uy + Ge(uy) = h,.
(The correspondence v < u, is 1-1 and monotonic.)
We need the following properties of N, H1(E) and U, (E).
2.3.A. [Corollary 3.1 in [D], Section 8.3.2] If h € H1(F) and if A’ < h belongs
to H(E), then b/ € Hy(E). Therefore N contains with v all measures v/ < v.

2.3.B. [[D],Theorem 8.3.3] H1(F) is a convex cone (that is it is closed under
addition and under multiplication by positive numbers).

2.3.C. If T is a closed subset of OF and if v € M(E) is concentrated on T', then
hy, =0 on dE\T.
Indeed, it follows from 1.(1.3) and (1.10) that

ho(x) < Cpla) / & — |~ w(dy).

2.3.D. If v € N and T is a closed subset of E, then u, =0 on O = OF \ T if
and only if v(0) = 0.

3As we already have mentioned, this is an implication of 1.4.3.D.
4800, e.g., [Dyn91a], page 102, or [D], page 71.
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Proor. If v(O) = 0, then h, = 0 on O by 2.3.C, and u,, = 0 on O because
u, < hy, by (2.8).

On the other hand, if u, = 0 on O, then v(K) = 0 for every closed subset K of
O. Indeed, if 7 is the restriction of v to K, then u, =0 on T because I' C 0E \ K
and n(OF \ K) = 0. We also have u,, <, =0 on O. Hence u,, =0 on OF. The
Comparison principle 2.2.B implies that u, = 0. Therefore n = 0. O

2.3.E. [[D], Proposition 12.2.1.A] ®> If h € H(E) and if Ggy(h)(z) < oo for
some x € E, then h € H;(E).

2.3.F. (Extended mean value property) If U C D and if v € N is concentrated
on T such that TN U = 0, then Vir(u,) = u,.
If w € Uy (D) vanishes on 9D \ T', then Viy(u) = u for every U C D such that
rnu=40.
The first part is Theorem 8.4.1 in [D]. The second part follows from the first one
because u € Uy (D) is equal to u, for some v € NP and, by 2.3.D, v(dD\ T') = 0.

2.3.G. Suppose that v € N{ is supported by a closed set K C OF and let
E.={rx € F:d(z,K) >¢c}. Then
u® =V (hy) lu, asel0.

PROOF. Put V€ = Vg_. By (2.9), hy, = u® + Gg=yp(u®) > u® for every €. Let
¢/ < e. By applying the second part of 2.3.F to U = E.,D = F.,u = u° and
I =0E. NE we get V(u') = u®. By 2.1.B,

ut = Ve(hy) > Ve(u') = us.
Hence u® tends to a limit uw as ¢ | 0. By 2.2.D, u € U(FE). For every ¢, u* < h,
and therefore u < h,. On the other hand, if v € U(F) and v < h,, then, by 2.3.F,

v="Ve(w) <Ve(h,) = u® and therefore v < u. Hence, u is a maximal element of
U(E) dominated by h, which means that u = u,,. O

2.4. On c-moderate solutions. Denote by Uy (E) the set of all o-moderate
solutions. (Recall that u is o-moderate if there exist moderate u,, such that u,, 1 u.)
Ifvy <--- <w, <...is an increasing sequence of measures, then v = lim v, is also
a measure. We put v € N if v, e NE. If v € N, then oo v = gm tv belongs to

o0

NE. Measures j1 = oo - v take only values 0 and oo and therefore cu = p for every
0<c¢<oo. [Weput 0-00=0.]

LEMMA 2.1. [[D], Lemma 8.5.1] There exists a monotone mapping v — u,
from NE onto Uy(E) such that

(2.10) Uy, Tuy, ifvy Tv
and, for v € NE, u, is the mazimal solution dominated by h,,

The following properties of NF are proved on pages 120-121 of [D]:

2.4.A. A measure v € N belongs to N if and only if v(E) < co. If v, € N1(E)
and v, T v € M(OE), then v € NF. ¢

5Proposition 12.2.1.A is stated for (u) = u® but the proof is applicable to a general .
6See [D]. 8.5.4.A.



12 2. ANALYTIC APPROACH

2.4.B. If v € NE and if p < v, then p € NF.

2.4.C. Suppose E is a bounded smooth domain and O is a relatively open subset
of OF. If v € N¥ and v(O) = 0, then u,, = 0 on O.

An important class of o-moderate solutions are ur defined by 1.(1.4).
2.4.D. [[D], 8.5.5.A] For every Borel I' C OF, there exists v € N{¥ concentrated
on I' such that ur = use.p-

2.5. On solution wr. We list some properties of these solutions (defined in
the Introduction by (1.5) and (1.6)).

2.5.A. [[D], Theorem 5.5.3] If K is a closed subset of OF, then wy defined by
1.(1.5) vanishes on OF \ K. [It is the maximal element of U(FE) with this property.]

25.B. If v e ./\/'dE is concentrated on a Borel set I', then u, < wr.

Proor. If v € N is supported by a compact set K, then u, =0 on OF \ K
by 2.4.C and u, < wk by 1.(1.5). If v € N, then there exist v, € N such that
v, | v. The measures v, are also concentrated on I' and therefore there exists a
sequence of compact sets K,,, C I' such that v,,, T v, where v,,, is the restriction
of v, to Kinpn. We have u,, < wg, , < wr. Hence, u, < wr. [l

3. Algebraic approach to the equation Lu = t(u)

In the Introduction we defined, for every subset U of U (E), an element Sup u
of U(E) and we introduced in U (F) a semi-group operation v @ v. In a similar way,
we define now Inf U as the maximal element u of U(F) such that u < v for all
v € U. We put, for u,v € U such that u > v,

uov=Inflweld:w>u—uv}

Both operations @& and & can be expressed through an operator 7.

Denote by C1(FE) the class of all positive functions f € C(E). Put u € D(n)
and m(u) = v if uw € C4(F) and Vp, (u) — v pointwise for every sequence D,
exhausting . By 2.1.E and 2.2.D, n(u) € U(F). It follows from 2.1.B that
m(ur) < w(ug) if up < wa.

Put

U (E)={ueCy(E):Vp(u)<u forall D€ E}
and
UT(E)={ue CL(E):Vp(u) >u forall D€ E}.
By 2.2.C,U(E) CU™ (E)NUT(E). Tt follows from the Comparison principle 2.2.B
that &/~ contains all supersolutions and /* contains all subsolutions. In particular,
H(E) cU (B).
For every sequence D,, exhausting F, we have: [see [D], 8.5.1.A-8.5.1.D]

3.A. Ifueld (E), then Vp, (u) | m(u) and
m(u) =sup{a e U(E) :u < u} < u.

3.B. If u e UT(E), then Vp, (u) T (u) and
m(u) = inf{a e U(E) : 0 > u} > u.

Clearly,
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3.C. If u,v € UT(E), then max{u,v} € UT(F). If u,v € U (E), then
min{u, v} € U™ (E).

It follows from 2.1.D (subadditivity of Vp) that:

3.D. If u,v € U (E), then u+v € U (E). If u,v € U(F) and u > v, then
u—veUT(E).
It is easy to see that:

3.E. If u,v € U(F), then u® v = w(u + v)
3F. If u>v e U(E), then u v = m(u —v).
Denote U*(E) the minimal convex cone that contains U~ (E) and U™ (E).

4. Choquet capacities

Suppose that E is a separable locally compact metrizable space. Denote by IC
the class of all compact sets and by O the class of all open sets in E. A [0, +00]-
valued function Cap on the collection of all subsets of F is called a capacity if:

4.A. Cap(A) < Cap(B) if A C B.
4.B. Cap(A,) T Cap(A) if A, T A.
4.C. Cap(K,) | Cap(K) if K,, | K and K,, € K.
A set B is called capacitable if These conditions imply
(4.1) Cap(B) =sup{Cap(K) : K C B,K € K} = inf{Cap(O) : O D B,0 € O}.

The following results are due to Choquet [Cho53].

I. Every Borel set B is capacitable. 7

II. Suppose that a function Cap : K — [0, +oc] satisfies 4.A—4.C and the
following condition:

4.D. For every K1, Ky € K,
Cap(K1 U K3) 4 Cap(K1 N K3) < Cap(K) + Cap(K2).

Then Cap can be extended to a capacity on E.

5. Notes

The class of moderate solutions was introduced and studied in [DK96a]. o-
moderate solutions, the lattice structure in the space of solutions and the operation
u @ v apeared, first, in [DK98b] in connection with the fine trace theory. The
operation u © v was defined and used by Mselati in [Mse02a).

"The relation (4.1) is true for a larger class of analytic sets but we do not use this fact.






CHAPTER 3

Probabilistic approach

Our base is the theory of diffusions and superdiffusions.

A diffusion describes a random motion of a particle. An example is the Brow-
nian motion in R?. This is a Markov process with continuous paths and with the
transition density

pt(xa y) = (27Tt)7d/2@*|f*y|2/2t
which is the fundamental solution of the heat equation

ou 1

A Brownian motion in a domain E can be obtained by killing the path at the first
exit time from E. By replacing A by an operator L of the form 1.(4.1), we define
a Markov process called L-diffusion. We also use an L-diffusion with killing rate ¢
corresponding to the equation

ou
E—Lu—éu

and an L-diffusion conditioned to exit from E at a point y € 0F. The latter can
be constructed by the so-called h-transform with h(x) = kg(z,y).

An (L, v)-superdiffusion is a model of random evolution of a cloud of particles.
Each particle performs an L-diffusion. It dies at random time leaving a random
offspring of the size regulated by the function . All children move independently
of each other (and of the family history) with the same transition and procreation
mechanism as the parent. Our subject is the family of the exit measures (Xp, P,)
from open sets D C E. An idea of this construction is explained on Figure 1
(borrowed from [D]).

y
Yq 2

D
Yy

FIGURE 1

15
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Here we have a scheme of a process started by two particles located at points
x1,x2 in D. The first particle produces at its death time two children that survive
until they reach 0D at points y1,y2. The second particle has three children. One
reaches the boundary at point ys3, the second one dies childless and the third one
has two children. Only one of them hits 9D at point y4. The initial and exit
measure are described by the formulae

ILL:ZKSI“ XD:Z5i'

To get an (L, v)-superdiffusion, we pass to the limit as the mass of each particle
and its expected life time tend to 0 and an initial number of particles tends to
infinity. We refer for detail to [D].

We consider superdiffusions as a special case of branching exit Markov systems.
Such a system is defined as a family of of exit measures (Xp, P,) subject to four
conditions, the central two are a Markov property and a continuous branching prop-
erty. To every right continuous strong Markov process £ in a metric space E there
correspond branching exit Markov systems called superprocesses. Superdiffusions
are superprocesses corresponding to diffusions. Superprocesses corresponding to
Brownian motions are called super-Brownian motions.

A substantial part of Chapter 3 is devoted to two concepts playing a key role
in applications of superdiffusions to partial differential equations: the range of a
superprocess and the stochastic boundary values for superdiffusions.

1. Diffusion

1.1. Definition and properties. To every operator L subject to the condi-
tions 1.4.1.A-1.4.1.B there corresponds a strong Markov process & = (&,1I1,;) in E
called an L-diffusion. The path & is defined on a random interval [0, 7). It is
continuous and its limit &, as t — 7g belongs to OF. For every open set D C E
we denote by 7p the first exit time of £ from D.

PROPOSITION 1.1 ([D], Lemma 6.2.1). The function Il,Tp is bounded for every
bounded domain D.

There exists a function pi(z,y) > 0,t > 0,2,y € E (called the transition
density) such that:

/ ps(x, 2)dz pi(z,y) = psye(x,y) forall s,t >0,z,y € E
E
and, for every f € B(E),

I f(&) = /E po(, ) f(y) dy.

An L-diffusion has the following properties:

1.1.A. [[D], Sections 6.2.4-6.2.5] If D C E, then, for every f € B(E),

(11)  Kpf() =T f(Ep)lrenes  Gpflz) =TI, / " (e ds.
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1.1.B. [[D], 6.3.2.A.] Suppose that a > 0 belongs to C*(E). If v > 0 is a soluton
of the equation

(1.2) Lv=av inE,
then

(13 o) =Tt e |~ [ ales|

1.1.C. [ [D], 6.2.5.D.] If D C E are two smooth open sets, then
(1.4)  kp(z,y) =ke(x,y) — Uplp<rpke(érp,y) forallz e D,ye OENOD.

1.2. Diffusion with killing rate ¢. An L-diffusion with killing rate ¢ corre-
sponds to a differential operator Lu — fu. Here ¢ is a positive Borel function. Its
the Green and the Poisson operators in a domain D are given by the formulae

(15) s =t e {‘/ot“@ s} fie,

K f(x) = I, exp {— /0 ") ds} F(Erp )Ly oo

THEOREM 1.1. Suppose £ is an L-diffusion, T = Tp is the first exit time from
a bounded smooth domain D, ¢ > 0 is bounded and belongs to CN(D). If ¢ > 0 is
a continuous function on 0D, then z = K%y is a unique solution of the integral
equation

(1.6) u+ Gp(lu) = Kpe.

If p is a bounded Borel function on D, then p = G%p is a unique solution of
the integral equation

(1.7) u+ Gp(lu) = Gpp.
The first part is proved in [D], Theorem 6.3.1. Let us prove the second one.
Put Y! = exp{— f; ¢(&)dr}. Since 6{;;5 = {(&)Y!, we have

)

t
(1.8) Yot =1 —/ é(ﬁs)Y;ds.
0
Note that

Golta)(w) =T, [ dst(e)e / "¢ pley)dr.

0
By the Markov property of &, the right side is equal to

i [ astte) [ vipe.
0 s
By Fubini’s theorem and (1.8), this integral is equal to
T t T
L [ dtolés) [ ueYids =L [ ot~ Y.
0 0 0

That implies (1.7). The uniqueness of a solution of (1.7) can be proved in the same
way as it was done in [D] for (1.6). [It follows also from [D], Lemma 8.2.2.]
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1.3. h-transform. Let £ be a diffusion in E. Denote by }ét the o-algebra
generated by the sets {&; € B,s < 7} with s < t,B € B(E). Denote F*¢ the
minimal o-algebra which contains all }ét. Let pi(z,y) be the transition density of

¢ and let h € H. To every x € E there corresponds a finite measure IT1” on F¢ such
that, for all 0 < t; < --- < t,, and every Borel sets By, ..., By,

(1.9) 1'{¢, € By,...,&, € B}

= / dzy .. / dzn Doy (T, 21)Pea—t, (21, 22) - o Pty —t, 1 (Zn—1, 2n)h(2n).
By

Note that II%(€2) = h(x) and therefore TI* = II"/h(x) is a probability measure.
(&, T1") is a strong Markov process with continuous paths and with the transition
density
1
(1.10) Pi(2.9) = prype(@ »)h(y)-
We use the following properties of h-transforms.
L3.A. IfY € F,, then
H21t<TEY = Hx1t<‘rEYh(§t)'
[This follows immediately from (1.9).]

1.3.B. [[D], Lemma 7.3.1.] For every stopping time 7 and every pre-7 positive
Y

3

HZY1T<TE = Hth(§T)17'<TE-

1.4. Conditional L-diffusion. We put II¥ = II" where h, is given by
1.(1.3). For every z € E,y € OF, we put II¥ = my = 1" and I1% = II" where
h(-) = kg(-,y). Let Z = &, 1rp<00- It follows from the definition of the Poisson
operator and (1.1) that, for every ¢ € B(OF),

(1.11) I,p(Z) = /aE ke(x, 2)p(2)v(dz).
Therefore
(1.12) Wke(n 2)0(2) = [ kel ksl )el=)(d)

is symmetric in z, y.
LEMMA 1.1. ' For every Y € F¢ and every f € B(OE),
(1.13) ILY f(Z) = . f(Z)TIZY.
PRrROOF. It is sufficient to prove (1.13) for Y = Y'1;,, where Y’ € fét. By
1.3.A, -
1LY = kg(z, 2) 'Y = kg(z,2) 'L, Ykg(&, 2).
Therefore the right part in (1.13) can be interpreted as

/g L (0 (2 )k (e, 2()7 / I, (dwo)Y () (6 (w), Z()).

Q

1Proporty (1.13) means that f[; can be interpreted as the conditional probability distribution
given that the diffusion started from x exits from E at point z.
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Fubini’s theorem and (1.12) (applied to ¢(2) = f(2)kgr(x,2)™!) yield that this
expression is equal to

/ I, (dw)Y (w) / L, (do') f(Z() i (6 (), Z( ), Z(w)) )
Q Q7
- / LY @) [ 1Gke(w). (2.
By (1.11), the right side is equal to
HIYH&f(Z) = HIY/IKTEH&f(Z).
Since Y’ € f;, the Markov property of £ implies that this is equal to the left side
in (1.13). O

Suppose that { = (&, 11;) is an L diffusion in £ and let L be the restriction of
L to an open subset D of E. An L-diffusion £ = (&,II;) can be obtained as the
part of £ in D defined by the formulae
&=¢& for0<t<mp,

II, =11, forx € D.

Notation IT¥ refers to the diffusion € started at 2 € D and conditioned to exit from
D at y € 0D. A relation between I1Y and I1Y is established by the following lemma.

LEMMA 1.2. Suppose that D C E are smooth open sets. For every x € D,y €
IODNOE, and Y € F¢,

(1.14) VY = ¥{rp =7, Y}.

PROOF. Tt is sufficient to prove (1.14) for Y = Y1,.,, where Y € }ét. By
1.3.A, 1.1.C, 1.3.B and Markov property of &, -

ﬁgY = HrYkD(gta y) = HxY[kE(fta y) — Il 1rp<rp kE(gTD ) y)]
=ILYkp(&,y) — WYl crpkp(&rp,y) = Y —I19Y1,, o)y

which implies (1.14). O
COROLLARY 1.1. If
t
(1.15) Fy =exp| —/ a(&s) ds]
0
where a is a positive continuous function on [0,00), then, for y € 0D N OE,
(1.16) [YF,, =T%{rp =75, Frp}.

Since F., € F¢, this follows from (1.14).

2. Superprocesses

2.1. Branching exit Markov systems. A random measure on a measurable
space (F, B) is a pair (X, P) where X (w, B) is a kernel from an auxiliary measurable
space (2, F) to (E,B) and P is a measure on F. We assume that F is a metric
space and B is the class of all Borel subsets of F.

Suppose that:

(i) O is the class of all open subsets of E;
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(ii) to every D € O and every u € M(E) there corresponds a random measure
(XD, Pﬂ) on (Ea B)
Denote by Z the class of functions

(2.1) Z=> (fi,Xp,)

where D; € Q and f; € Band put Y € Y if Y = e~ % where Z € Z. We say that X
is a branching exit Markov [BEM] system % if Xp € M(E) for all D € O and if:

2.1.A. For every Y € Y and every u € M(E),

(2.2) PY = ¢~ (W)
where

(2.3) u(y) = —log P,Y
and Py = P(;y.

2.1.B. For all p € M(E) and D € O,
PAXp(D) =0} = 1.
2.1.C. If p € M(E) and p(D) = 0, then
P{Xp =p}=1
2.1.D. [Markov property.] Suppose that Y > 0 is measurable with respect to the

o-algebra Fp generated by Xp/, D' C D and Z > 0 is measurable with respect
to the o-algebra F5p generated by Xpr», D” D D. Then

(2.4) P,(YZ)=P,(YPx,Z).
Condition 2.1.A (we call it the continuous branching property) implies that

Py =[[P..Y
forall Y € Y if pup,n=1,2,... and = > p, belong to M(E).

There is a degree of freedom in the choice of the auxiliary space (€2, F). We
say that a system (Xp,P,) is canonical if Q consists of all M-valued functions
won O, if Xp(w,B) = w(D,B) and if F is the o-algebra generated by the sets
{w:w(D,B) <c¢} withDeO,BeB,ceR.

We will use the following implications of conditions 2.1.A-2.1.D:

2.1.E. [[D], 3.4.2.D] If D’ C D" belong to O and if B € B is contained in the
complement of D", then Xp/(B) < Xp»(B) Py-a.s. forallz € E.

2.1.F. If 4 =0, then P,{Z =0} =1 for every Z € Z.
This follows from 2.1.A.

2.1.G. If D C D, then
(2.5) {Xp=0}Cc{Xp=0} P,as.
Indeed, by 2.1.D and 2.1.F,
PA{Xp=0,X5#0}=P,{Xp=0,Px,[Xp=0]}=0.

2This concept in a more general setting is introduced in [D], Chapter 3.
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2.2. Definition and existence of superprocesses. Suppose that £ = (&, 1)
is a time-homogeneous right continuous strong Markov process in a metric space
E. We say that a BEM system X = (Xp,P,),D € O,u € M(E) is a (&,1)-
superprocess if, for every f € bB(E) and every D € O,

(2.6) Vpf(x) = —log Pee~/Xp)
where P, = Ps, and Vp are operators introduced in Section 2.2. By 2.1.A,
(2.7) P~ Xp) — o= (VoD for all y € M(E).

The existence of a (&, ¥)-superprocesses is proved in [D],Theorem 4.2.1 for
(2.8) Y(z;u) = b(x)u? +/ (e7™ — 1+ tu)N(x; dt)
0

under broad conditions on a positive Borel function b(z) and a kernel N from E to
R, . It is sufficient to assume that:

o'} 1
(2.9) b(x),/ tN(z;dt) and / t?N(x;dt) are bounded.
1 0

An important special case is the function
(2.10) Yz, u) =L(z)u*, 1 <a <2
corresponding to b = 0 and
N(z,dt) = {(x)t~ "t
where
U(z) = e(g;)[/ooo(eA — 14+ M)A

Condition (2.9) holds if ¢(x) is bounded.

Under the condition (2.9), the derivatives ¢,(z,u) = argfﬁ"“) exist for u > 0
for all . Moreover,

1 (z,u) = 2bu + /00 t(1 — e ™)N(x,dt),
0
(2.11) vawu) =2+ [N, dr),
0
(D)"Y (z,u) = / t"e " N(x,dt) for2<r<n.
0

Put p € M.(F) if p € M(U) for some U € E. In this book we consider only
superprocesses corresponding to continuous processes £. This implies &,, € 0D
II;-a.s. for every « € D. It follows from 1.1.A and 2.(2.1)that

2.2.A. For every u € M.(D), Xp is supported by 0D P,-a.s.

The condition 1.4.3.B implies
2.2.B. [[D], Lemma 4.4.1]

(2.12) Pu(f, Xp) = (Kpf, 1)
for every open set D C E, every f € B(E) and every u € M(E).
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2.3. Random closed sets. Suppose (2, F) is a measurable space, E is a
locally compact metrizable space and w — F(w) is a map from 2 to the collection
of all closed subsets of E. Let P be a probability measure on (£, F). We say that
(F, P) is a random closed set (r.c.s.) if, for every open set U in E,

(2.13) {w:Fw)nU =0} € FF

where F¥ is the completion of F relative to P. Two r.c.s. (F,P) and (F, P) are
equivalent if P{F = F} = 1.

Suppose (Fy, P),a € A is a family of r.c.s. We say that a r.c.s. (F,P) is an
envelope of (F,, P) if:

(a) Fy C F P-as. for every a € A.

(b) If (a) holds for F, then F C F P-a.s.

An envelope exists for every countable family. For an uncountable family, it
exists under certain separability assumptions. Note that the envelope is determined
uniquely up to equivalence and that it does not change if every r.c.s. (Fg, P) is
replaced by an equivalent set.

Suppose that (M, P) is a random measure on E.The support S of M satisfies
condition

(2.14) SNU=0y={MU)=0}e F

for every open subset U of E and therefore S(w) is a r.c.s.

An important class of capacities related to random closed sets has been studied
in the original memoir of Choquet [Cho53]. Let (F, P) be a random closed set in
E. Put

(2.15) Ap={w: Fw)NB#0}.

The definition of a random closed set implies Ap belongs to the completion F¥ of
F for all B in K.
Note that

ApCAp if ACB,
Agjup=AsUAB, Aanp CAaNAg,

A, 1 Ap if B, 1 B,

AKn lAK if K, | K and K,, € K.

Therefore the function
(2.16) Cap(K) = P(Ak), Kek

satisfies conditions 2.4.A-2.4.D and it can be continued to a capacity on E. Clearly,
Ao € FF for all O € Q. It follows from 2.4.B that Cap(O) = P(Ao) for all open
O. Suppose that B is a Borel set. By 2.(4.1), there exist K, € K and O,, € O such
that K,, C B C O, and Cap(O,,) — Cap(K,,) < 1/n. Since Ag, C Ap C Ao, ) and
since P(Ao, ) — P(Ak,) = Cap(0,,) — Cap(K,) < 1/n, we conclude that Ap € FF
and

(2.17) Cap(B) = P(Ap).
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2.4. Range of a superprocess. We consider a (&, ¢)-superprocess X corre-
sponding to a continuous strong Markov process £. Let F be the o-algebra in Q2
generated by Xo(U) corresponding to all open sets O C E,U C R%. The support
So of X is a closed subset of E. To every open set O and every yu € M(E) there
corresponds a r.c.s. (Sp, P,) in E (defined up to equivalence). By [D], Theorem
4.5.1, for every E and every p, there exists an envelope (Rg, P,) of the family
(So, P.),0 C E. We call it the range of X in E.

The random set R can be constructed as follows. Consider a sequence of
open subsets O1,...,0,,... of E such that for every open set O C E there exists
a subsequence O,,, exhausting O. 3 Put

1
(2.18) M=>" — %o,

where a, = (1, X0, ) V1 and define R as the support of the measure M.
We state an important relation between exit measures and the range.

2.4.A. [ [D], Theorem 4.5.3 ] Suppose K is a compact subset of OF and let
D,={re FE:d(z,K)>1/n}. Then

(2.19) {Xp,(E)=0} 1{ReNK =0} P-as.

forall x € E.

3. Superdiffusions

3.1. Definition. If ¢ is an L-diffusion, then the (£, )-superprocess is called
an (L, v)-superdiffusion. If D is a bounded smooth domain and if f is continuous,
then, under broad assumptions on v, the integral equation 2.(2.1) is equivalent to
the differential equation Lu = t(u) with the boundary condition u = f.

3.2. Family (u, Xp), u € U*.

THEOREM 3.1. * Suppose D,, is a sequence exhausting E and let p € M.(E). If
u €U (E) (u € UT(E)) thenY, = e~ (“Xpn) js q submartingale (supermartingale)
relative to (Fcp,,, Pu). For every u € U*, there exists, P,-a.s., lim{u, Xp, ) = Z.

ProOOF. By the Markov property 2.1.D, for every A € Fcp,,,
PaYni1 = PlaPxp Y.

Therefore the first statement of the theorem follows from the definition of U~ (E)
and UT(FE). The second statement follows from the first one by a well-known
convergence theorem for bounded submartingales and supermartingales (see, e.g.,

[D], Appendix A, 4.3.A). O

3For instance, take a countable everywhere dense subset A of E. Consider all balls contained
in F centered at points of A with rational radii and enumerate all finite unions of these balls.
4Cf. Theorem 9.1.1 in [D].
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3.3. Stochastic boundary values. Suppose that v € B(F) and, for every
sequence D,, exhausting E,

(3.1) lim (u, Xp,) = Z, P,-as. forall p € M.(E).

Then we say that Z, is a stochastic boundary value of u and we write Z,, = SBV (u).

Clearly, Z is defined by (3.1) uniquely up to equivalence. [We say that Z; and
Zy are equivalent if Z; = Zy P,-as. for every p € M.(F).] 5 We call u the
log-potential of Z and we write v = LPT(Z) if

(3.2) u(z) = —log Pre 2

THEOREM 3.2 ([D], Theorem 9.1.1). The stochastic boundary value exists for
every u € U™ (E) and every w € UT(E). If Z, = SBV(u) exists, then u € D()
and , for every p € M.,

(3.3) PyeZu = ¢=(mwm),

In particular, if u € U(E), then

(3.4) u(z) = —log Pre %+ for every x € E.
PROOF. Let D,, exhaust E. By (2.7) and (3.1),

(3.5) e~ Von (W) — p e=(wXDn) _, p o=Zu,

Hence, lim Vp,, (u)(x) exists for every z € E, u € D(nw). By 2.2.2.E, for every D &
E, the family of functions Vp, (v), D,, D D are uniformly bounded and therefore
(Vp, (u), p) — (m(u), p). We get (3.3) by a passage to the limit in (3.5).

(3.4) follows because 7(u) = u for u € U(FE) by 2.2.2.C. O

Here are more properties of stochastic boundary values.
3.3.A. If SBV (u) exists, then it is equal to SBV (7w (u)).

PROOF. Let D, exhaust E and let p € M.(F). By (3.3) and the Markov
property,

em )Xo = Py, 7P = Pu{e 7 Fep,} — 7 P-as.

Hence, (m(u), Xp,,) — Z, P,-a.s. O

3.3.B. If SBV(u) = Z,, and SBV(v) = Z,, exist, then SBV(u + v) exists and
SBV(u + v) = SBV(u) + SBV(v) = SBV(u @ v).

The first equation follows immediately from the definition of SBV. It implies
that the second one follows by 3.3.A.

LEMMA 3.1. If, u > v € U(E), then

(3.6) (uSv) dv=u.

5Tt is possible that Z1 and Zs are equivalent but P,{Z1 # Zs} > 0 for some pu € M(E).
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PROOF. If u > v € U(E), then, by 2.2.3.D and 2.3.F, u—v eUT and uo v =
7m(u — v). Therefore, by 3.3.A and 3.3.B,
Zwow = Zy—n = Zy — Zy Pp-as. on {Z, < co}.
Hence,
(3.7) Zy=2Zy+ Zyoy Pras. on{Z, < oo}.

Since Z,, > Z, P,-a.s, this equation holds also on {Z, = co}. Since u © v and v
belong to U(E), u© v+ v € U™ (F) by 2.3.D and, by 3.3.A and 3.3.B,

Z(u@v)EBv = Z(u@v)Jrv = Z(u@v) + 2y = Zy.-
Because of (3.4), this implies (3.6). O

3.4. Linear boundary functionals. Denote by Fg_ the minimal o-algebra
which contains F-p for all D € E and by F5g_ the intersection of F5p over all
D € E. Note that, if D,, is a sequence exhausting E, then F-g_ is generated by
the union of F-p, and F-g_ is the intersection of F5p .

We define the germ o-algebra on the boundary Fj5 as the completion of the
o-algebra Fcp_ N Fop— with respect to the family of measures P, u € M (E).
We say that a positive function Z is a linear boundary functional © if

3.4.1. Z is Fy-measurable.

3.4.2. For all p € M.(E),

—~log Pe? = /[— log Pye~Z)p(dx).

343. P {Z <o} >0 forallz e FE.

We denote by 3 the set of all such functionals (two functionals that coincide
P,-a.s. for all 4 € M (F) are identified).

THEOREM 3.3. [[D], Theorem 9.1.2] The stochastic boundary value Z of any
u €U (E)UUT(E) belongs to 3. Let Z € 3. Then the log-potential u of Z belongs
to U(E) and Z is the stochastic boundary value of u.

According to Theorem 9.1.3 in [D],

3.4.A. If Zl, Zy € 3), then 77 + Z5 € 3) and
(3.8) LPT(Z, + Z») < LPT(Z,) + LPT(Z).

34B. If Z3,...,Z,,--- € 3 and if Z, — Z P,-as for all p € M.(E), then
Z € 3.

It follows from [D], 9.2.2.B that:

3.4.C. If Z € 3 and if h(z) = P, Z is finite at some point z € F, then h € H;(E)
and u(z) = —log Pe~Z is a moderate solution.

6The word “boundary” refers to condition 3.4.1 and the word “linear” refers to 3.4.2.
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3.5. On solutions wr. These solutions can be expressed in terms of the range
of the (L, v)-superdiffusion by the formula

(39) ’LUF(:E) = —log Px{RE NnI= @}
[See [D], Theorem 10.3.1.] By taking I' = OF, we get the maximal element of U(E)
(3.10) w(zr) = —log Py{REp C E}.

This solution can also be expressed through the range R in the entire space R?
(assuming that ¢ is defined in R%)

(3.11) w(z) = —log P,{R C E}.

Indeed, if x € E, then, P.-a.s. Xg is concentrated on Rg NOE. If R C E, then

P.{Xg =0} =1and, by 2.1.G, Xpo = 0 P,-a.s. for all O D E. Hence, the envelope

of So , O C R? coincide, P,-a.s. on R C E, with the envelope of Sp, O C E.
We need the following properties of wr:

3.5.A. wr is the log-potential of
0 ifRgNIT =0,
Zr = )
oo HRgNT#D

and
SBV(’LUF) = Zp.
[See Theorem 3.3 and [D], Remark 1.2, p. 133.]

3.5.B. [[D], 10.(3.1) and 10.(3.6)] For every Borel set I' C dF, wr(z) is equal
to the infimum of we () over all open subsets O D T of OF.

3.5.C. [[D], 10.1.3.A and 10.1.3.E] If I C AU B, then wr < wa + wp.

3.6. Stochastic boundary value of h, and wu,. Recall that to every v €
M (OF) there corresponds a harmonic function

ho(z) = /a ksl g)v(dy)

[cf. 1.(1.3)] and a solution u, [the maximal element of U/ (E) dominated by h,]. A
linear boundary functional

(3.12) Z, =SBV (h,)
has the following propertries:
3.6.A. [[D], 9.(2.1)] For all x € E,
P.Z, < h,(x).

3.6.B. [[D].9.2.2.B] If v € N¥, then, for all x € E, P,Z, = h,(x) and
Uy + GEw(uu) = hy.

3.6.C. For every v € N, SBV(h,) = SBV(u,).
Indeed, SBV(h,) =SBV (m(h,)) by 3.3.A and «w(h,) = u, by 2.3.A.
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A o-moderate solution u, is defined by Lemma 2.2.1 for every v € NF. We
put Z, = SBV (u,) which is consistent with (3.12) because N N M(OE) = NE by
2.2.4.A and SBV (u,) = SBV(h,) by 3.6.C.

It follows from (3.4) that

(3.13) u, (r) = —log Pee=?» for allv € NF.

Clearly, this implies

(3.14) Uoo- () = —log P{Z, = 0}.
LEMMA 3.2. For every \,v € NF,

(3.15) Uy B Uy = Upiy-

PROOF. By 2.2.3.D, u) + u, € U~ (E) and therefore, by 3.3.A, SBV(mw(ux +
u,)) = SBV(ux + uy,). Since mw(uy + u,) = ux ® u,, we get SBV(uy ® u,) =
SBV(ux + u,). By 3.6.C, the right side is equal to SBV (uy4,), and (3.15) follows
from (3.13). O

3.7. Relation between the range and Z7,,.

THEOREM 3.4. Suppose that v € NE is concentrated on a Borel set T C OF.
Then

(3.16) PAReNT =0,2Z, #0} =0.
PrROOF. Let D,, exhaust E. We claim that
(3.17) Z, =lim(u,, Xp,) P-as.
Indeed,
Pye(wXpy) — g—uv(2)

by 2.3.F. By passing to the limit, we get
Py % = ¢ (@

where
Z =lim{u,, Xp,).
This means u, = LPT Z. By Theorem 3.3.3, Z = SBV(u,) = Z,.
Since u, < h, =0 on JF \ T', we have

(XD, (E) =0} = {(uy, Xp,) = 0}
and, by 2.4.A,
PARENT =0,2, # 0} =lim P, {{u,, Xp,) = 0,2, #0)} =0.
O

3.8. Rp-polar sets and class J\/'lE We say that a subset I' of OF is Rg-polar
if B{RENT =0} =1forallz € E.

THEOREM 3.5. Class N associated with the equation
Au=u*1<a <2

in a bounded smooth domain E consists of all finite measures v on OFE charging no
RE-polar set.

This follows from proposition 10.1.4.C, Theorem 13.0.1 and Theorem 12.1.2 in
[D].
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4. Notes

In this chapter we summarize the theory of superdiffusion presented in [D].
Our first publication [Dyn91a] on this subject was inspired by a paper [Wat68] of
S. Watanabe where a superprocess corresponding to ¥ (x,u) = b(z)u? has been
constructed by a passage to the limit from a branching particle system. [Another
approach to supeprocesses via Ito’s stochastic calculus was initiated by Dawson
in [Daw75].] Till the beginning of the 1990s superprocesses were interpreted as
measure-valued Markov processes X;. However, for applications to partial differen-
tial equations it is not sufficient to deal with the mass distribution at fixed times t.
A model of superdiffusions as systems of exit measures from open sets was devel-
oped in [Dyn91a], [Dyn92] and [Dyn93]. For these systems a Markov property and
a continuous branching property were established and applied to boundary value
problems for semilinear equations. In [D] the entire theory of superdiffusion was
deduced from these properties.

A mass distribution at fixed time ¢ can be interpreted as the exit measure from
the time-space domain (—o0o,t) x R?. To cover these distributions, we consider
in Part I of [D] systems of exit measures from all time-space open sets and we
apply these systems to parabolic semilinear equations. In Part II, the results for
elliptic equations are deduced from their parabolic counterpart. In the present
book we consider only the elliptic case and therefore we can restrict ourselves by
exit measures from subsets of R?. Since the technique needed in parabolic case is
more complicated and since the most results are easier to formulate in the elliptic
case, there is a certain advantage in reading the first three chapters of the present
book before a systematic reading of [D].

More information about the literature on superprocesses and on related topics
can be found in Notes in [D].



CHAPTER 4

N-measures

N-measures appeared, first, as excursion measures of the Brownian snake — a
path-valued Markov process introduced by Le Gall and used by him and his school
for investigating the equation Au = wu?. In particular, they play a key role in
Mselati’s dissertation. In Le Gall’s theory, measures N, are defined on the space of
continuous paths. We define their analog in the framework of superprocesses (and
general branching exit Markov systems) on the same space {2 as measures P,,.

To illustrate the role of these measures, we consider probabilistic solutions of
the equation Lu = t(u) in a bounded smooth domain E subject to the boundary
condition v = f on OF where f is a continuous function. We compare these
solutions with a solution of the same boundary value problem for a linear equation
Lu = 0. For the linear equation, we have

u(z) =y f(&rp)

where (&;,11,) is an L-difusion. For the equation Lu = ¢ (u) an analogous formula
can be written in terms of (L, 1)-superdiffusion:

u(z) = —log Py /XE),
An expression in terms of N-measures has the form
u(x) = Ny (1 — e~ X)),

Because the absence of logarithm, this expression is closer than the previous one to
the formula in the linear case. The dependence on x is more transparent and this
opens new avenues for investigating the equation Lu = ¢ (u). To a great extent,
Mselati’s success in investigating the equation Au = u? was achieved by following
these avenues. Introducing N-measures into the superdiffusion theory is a necessary
step for extending his results to more general equations. In contrast to probability
measures P, measures N, are infinite (but they are o-finite).

In this chapter we use shorter notation M, U, ... instead of M(E),U(E),....
No confusion should arise because we deal here with a fixed set E. We construct
random measures N, with the same auxiliary space (€, F) as the measures P,. We
show that, for every u € U™, the value Z, can be chosen to satisfy 3.(3.1) not only
for P, but also for all N;,z € E. Similarly, the range Rg can be chosen to be an
envelope not only of (Sp, P,) but also of (So,N;). We also give an expression for
various elements of I/ in terms of measures N,.

1. Main result

1.1. We denote by O, the class of open subsets of F which contain z and
by Z, the class of functions 3.(2.1) with D; € Q,. Put Y € Y, if Y = e~Z with

29
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Z € Z,. In Theorem 1.1 and in section 2 we assume that (E, B) is a topological
Luzin space. *
The following result will be proved in Section 2.

THEOREM 1.1. Suppose that X = (Xp,P,) is a canonical BEM system in
(E,B). For every x € E, there exists a unique measure N, on the o-algebra F*
generated by Xo,O0 € Q4 such that:

1.1.A. For everyY € Y,,
(1.1) N.(1-Y)=—logPP.Y.

1.1.B.
N, (C)=0
if C € F* is contained in the intersection of the sets {Xo = 0} over all O € Q.

Here we prove an immediate implication of this theorem.

COROLLARY 1.1. For every Z € Z,,

(1.2) N,{Z # 0} = —log P,{Z = 0}.
If P,{Z =0} > 0, then
(1.3) N{Z # 0} < 0.

Equation (1.2) follows from (1.1) because AZ € Z, for every A > 0 and 1 —
e % 1 1749 as A — oo. Formula (1.3) follows from (1.2).
After we construct measures N, in Section 2, we discuss their applications.

2. Construction of measures N,

2.1. Infinitely divisible random measures. Suppose that (E, B) is a mea-
surable space and let X = (X (w), P) be a random measure with values in the space
M of all finite measures on E. X is called infinitely divisible if, for every k, there ex-
ist independent identically distributed random measures (X1, P®), ..., (X, P*)
such that the probability distribution of X7 + --- 4+ X} under P®) is the same as
the probability distribution of X under P. This is equivalent to the condition

(2.1) Pe= XD = [PRe= X0k for every f € bB.

Denote by Bay the o-algebra in M generated by the sets {v : v(B) < ¢} where
B € B,c € R. Tt is clear that (2.1) is satisfied if, for all f € bB,

(2.2) e = exp [~ {f,m) — R(L - =)

where m is a measure on F and R is a measure on (M,Bnr). If (E,B) is a
measurable Luzin space, 2 then to every infinitely divisible random measure X there
corresponds a pair (m, R) subject to the condition (2.2) and this pair determines
uniquely the probability distribution of X (see, e.g., [Kal77] or [Daw93]). The right
side in (2.2) does not depend on the value of R{0}. If we put R{0} = 0, then the
pair (m, R) is determined uniquely.

IThat is it is homeomorphic to a Borel subset E of a compact metric space.
2That is if there exists a 1-1 mapping from E onto a topological Luzin space E such that
B € B if and only if its image in E is a Borel subset of E.
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It follows from (2.2) that, for every constant A > 0,
M1, m) +R(1 — e M) = —log Pe M1X)

The right side tends to —log P{X = 0} as A — co. Therefore if P{X = 0} > 0,
then m = 0, R(M) < oo and (2.2) takes the form
(23) PeX) = expl-R(1 — )]
We call R the canonical measure for X.

2.2. Infinitely divisible random measures determined by a BEM sys-
tem. Random measures (Xp, P,) which form a BEM system are infinitely divisible:
the relation (2.1) holds with P*) = P, /.. Moreover, to every family of open sets

I ={D,...,D,} there corresponds an infinitely divisible measure (X;, P,) on the
union F; of n replicas of E. Indeed, put

X;={Xp,,-. . Xp, }, fi={f, .. fn},

(24) <fI;XI>:i<fi’XDi>

i=1
and use 3.2.1.A and 3.2.1.D to prove, by induction in n, that
Py 0100 = B, e 0
Therefore (X, P,) satisfies (2.1).
Note that, if D € O,, then, by 3.(2.7) and 2.2.2.E,

P.{Xp=0}= Alirgo Poe~MXD) — Jim ¢~V MN(@) 5

A—00

It follows from 3.2.1.G that, if I = {D,...,D,} C O, then P,{X; =0} > 0.

Denote by M the space of all finite measures on Ej. There is a natural 1-1
correspondence between v; € M and collections (v4, ..., v,) where v; € M. The
product of n replicas of By is a o-algebra in M;. We denote it Bag,. By applying
formula (2.3), we get

(2.5) Poe= 01X — exp[-RE(1 — e~ U1v0)] for I C O,
where RL is a measure on (M, Buq,) not charging 0.

2.3. We use notation OI for the the family {O,D,,...,D,} where I =
{D1,...,D,}. We have:

2.3.A. If OI C Q,, then for every fr,
(2.6) RO{wo #0,e Y1vl} = _log P,{Xo = 0,e” X0} 1 1og Pe™T1:X1),
PrOOF. Consider functions f* = {\, f1,..., fa} where A > 0. By (2.5),
ROT{_ = won) 4 =" won)y = ROI(] _ ¢=MLvo)={f1wr)y _ROI(| _ ¢~ (frv)

= —log PxefMl’XO)*(fIvXI) +log Px€*<f17XI>_
Note that

- 1{uo¢0}67<hyl> )

(f1,Xr)

_€*<JM7VOI> + e~ )

e~ ANXo)=(fr.X1) _, T{xo=0y€"

as A — oo which implies (2.6). O
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2.3.B. If z € O’ C O, then

(2.7) P.{Xo =0/Xor =0} =1
and
(2.8) Rgo/{l/o/ = O, Vo 75 0} =0.

PRrOOF. By the Markov property 3.2.1.D,
P{Xo =0} — P.{Xo = Xpo =0} = P.{Xo =0,X0o # 0}
= Py[Xo =0,Px_,{Xo #0}]=0

which implies (2.7).
By 2.3.A,

ROO {vo # 0,6 Mo} = —log Po{Xo = 0,e~ MXo)} 4 log Pye= M Xor),
By passing to the limit as A — oo, we get
RO (o = 0,10 # 0} = —log Po{X0or = 0, Xo = 0} + log P.{Xo = 0}
and therefore (2.8) follows from (2.7). O
2.3.C. If I c J Cc O, then
RO {vo #0,v; € BY = R9{vo #0,v; € B}
for every B € B, -

PROOF. Suppose that f; = 0. Since (fr, X1) = (fs, Xs), we conclude from
(2.6) that

(2.9) RO (1p # 0, 1wy = ROI (1, £ 0, e~ rwa)).
By the Multiplicative systems theorem (see, e. g., [D], the Appendix A), this implies
2.3.C. -

2.4. Proof of Theorem 1.1. 1°. Note that, by (2.6), R¢ (vo # 0) =
—log P,{X0o = 0} does not depend on I. It is finite because P,{Xo = 0} > 0.
Consider a set Qo = {Xo # 0} and denote by Fo the o-algebra in Qo generated by
Xp(w), D € Q. It follows from 2.3.C and Kolmogorov’s theorem about measures
on functional spaces that there exists a unique measure N9 on (0, Fo) such that
(2.10) NOe X0 = ROy £ 0, e~ rvi)}
for all I and all f7.

By the Multiplicative systems theorem,

(2.11) NOF(X;) = R {vo # 0, F(uy)}

for every positive measurable F'.
2°. Suppose that 2 € O’ C O. We claim that Qo C Qo N9-a.s. and that
N9 = N9’ on Q. The first part holds because, by (2.11) and 2.3.B,

N{Xo =0} = RO {vp # 0,v0 = 0} = 0.
The second part follows from the relation

(2.12) NO{Xo # 0, F(X1)} = NO'{Xo # 0, F(X1)}
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for all positive measurable F'. To prove this relation we observe that, by (2.11),
(2.13) NO'{Xo # 0, F(X1)} = RO {vor #0,v0 # 0, F(v1)}.
By (2.11) and 2.3.C
(2.14)  N9{Xo #0,F(X1)} = RV {vo #0, F(vr)} = RO {vo # 0, F(v1)}.
By 2.3.C and 2.3.B,

RO yo #£0,v0 =0} = RO {vp #0,v0 =0} = 0.

Therefore the right sides in (2.13) and (2.14) are equal.

3°. Note that, for every O1,02 € O, NJ* = N92 on Qp, N Qo, because, for
0’ = 0N 0y, N9 =N? on Qp, and N2> = N2 on Qp,. Let Q* be the union of
Qo over all O € O,. There exists a measure N, on * such that

(2.15) N, =N9 on Qp for every O € O,.

By setting N, (C) = 0 for every C C Q\Q* which belongs to F* we satisfy condition
1.1.B of our theorem.
4°. Tt remains to prove that N, satisfies condition 1.1.A. We need to check that

(2.16) N {1 — e X0} = _log Pe=f1X0)

for every I = {D,...,D,} such that D; € O, and for every f;. The intersection
O of D; belongs to O,. Since, for all i, {Xo =0} C {Xp, = 0} Ny-a.s., we have

(2.17) {Xo =0} c {1 X1} =1} N, —a.s.
and
N {1 — e ¥1¥0) = N {Xo # 0,1 — e 1%} = NO{1 — U X0)},

By (2.11), the right side is equal to RY {vo # 0,1 — e~ 1¥1)}. This is equal to
—log Pye=1:X1) by (2.6)and (2.17).
5°. If two measures N, and N, satisfy the condition 1.1.A, then

(2.18) N {X0#0,1-Y} =N, {Xo#0,1-Y}

forall O € O, and all Y € )),. (This can be proved by a passage to the limit similar
to one used in the proof of Corollary 1.1.) The family {1 —Y,Y € Y,} is closed
under multiplication. By the Multiplicative systems theorem, (2.18) implies that
N.{Xo # 0,0} = N.{Xo # 0,C} for every C' € F* contained in Q*. By (1.1.B),
N, (C) =N, (C) =0 for C € F* contained in Q\ Q*. Thus N, = N, on F*. [

3. Applications

3.1. Now we consider an (L, 1)-superdiffusion (Xp, P,) in a domain E C R%.
All these superdiffusions satisfy the condition

(3.1) 0< P{Xp=0}<1 forevery DC F and every x € D.
By 2.2.2.C, if u € U then Vp(u) = u for every D € E.
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3.2. Stochastic boundary value.

THEOREM 3.1. Let X = (Xp, P,) be an (L, )-superdiffusion. For every u €
U, there exists a function Z,(w) such that

(3.2) lm (u,Xp,)=2Z, Py-as. foralpec M(E) and Ng-a.s.forallz e E
for every sequence D,, exhausting E. 3

From now on we use the name a stochastic boundary value of v and the notation
SBV(u) for Z, which satisfies (3.2).
To prove Theorem 3.1 we use two lemmas.

LEMMA 3.1. For every Z, Ze Ze,

(3.3) N{Z=0,Z+#0}=—logP,{Z =0|Z =0}
Ifx € O' C O, then
(3.4) {Xo #0} C {Xo #0} N,-a.s.

PROOF. By (1.2),
N.{Z # 0} = —log P.{Z = 0}
and
NAZ+Z#0V=—logP{Z+Z =0} = —logP,{Z=0,Z =0}
Therefore
N A{Z=0,Z#0} =N, {Z+ Z #0} —N.{Z #0}
= —logP{Z =0,Z =0} +log P,{Z = 0}

which implies (3.3). Formula (3.4) follows from (3.3) and (2.7). O

Denote FZ p the o-algebra generated by Xp such that x € D' C D.

LEMMA 3.2. Put Yo = e (“X0) Ifu e U~ and x € O' C O, then, for every
VeFio,

(3.5) N {Xor #0,V(1 - Yo)} < No{Xor #0,V(1 - Yor)}.
PRrROOF. Note that

(3.6) Na{Xo #0,V(1 -Yo)} =N,V (1 - Yo).

Indeed,

Lix,203(1=Yo) =1-Yo
on {Xor # 0}. By (3.4), this equation holds Ny-a.s. on {Xo # 0}. It holds also on
{Xo = 0} because there both sides are equal to 0.
To prove our lemma, it is sufficient to show that (3.5) holds for V = e~ {/1:X0)
with I = {D1,..., Dy} where x € D; C O’. By (3.6) and (1.1),

Ne{Xo #0,V(Yo — Yor)}

=No{Xo #0,V(1 = Yo )} = No{Xor # 0,V (1 - Yo)}

=No{V(1 = Yo )} = No{V(1 = Yo)} = =Na(1 = VYo) + No (1 = VYor)
= —log P,VYo +log P,VYo.

(3.7)

3(u, Xp,, ) € F* for all sufficiently big n.



3. APPLICATIONS 35

If w el ,then P, Yo = e~ (Voluhnu) > e=(wn) and, by the Markov property
3.2.1.D,

P.VYo = Po(VPx,_,Yo) > P,V Yor.
Therefore the right side in (3.7) is bigger than or equal to 0 which implies (3.5). O

3.3. Proof of Theorem 3.1. As we know (see Theorem 3.3.2), the limit
3.(3.1) exists P,-a.s. and is independent of a sequence D,,. Let us prove that this
limit exists also N -a.s.

Put Q,, ={Xp,, #0}, Y, = e~ Xpw) If m is sufficiently large, then D,, €
0. For every such m and for all n > m, denote by F,* the o-algebra in Q,,
generated by Xy where © € U C D,,. It follows from (1.2) and (3.1) that

0 < N4(Q) < o0.

The formula N, (C)
m C — x
defines a probability measure on Q,,. By Lemma 3.2 applied to O' = D,, and
O = Dy,
NoA{Q,, V(1 =Y,1)} <N A{Q,,V(1-Y,)} forV e Fcp,
and therefore
QU{Vl-Y,41)} <QM{Vv(1-Y,)} forn>m andV € F.

Hence, 1 —Y,,,n > m is a supermartingale relative to F,* and @}'. We conclude
that, Q™-a.s., there exists lim(1 — Y;,) and therefore there exists also the limit

3.(3.1). 0
3.4.
THEOREM 3.2. If Z = Z° 4 Z,, where Z° € Z,,u € U™, then

(3.8) N, (1 —e %)= —logP.e ?.

First we prove a lemma. For every U € O, denote by Z; the class of functions
3.(2.1) with D; DU and put Y € Yy if Y = e=% with Z € Zy.

LEMMA 3.3. Suppose that U is a neighborhood of . IfY, € Yy converge
Pp-a.s. toY and if P,{Y >0} >0, then

(3.9) N,(1-Y)=—logP.Y.

PRrOOF. By the Markov property 3.2.1.D, P.{Xy = 0, Xp # 0} = 0 for every
D D U and therefore every Y € Yy is equal to 1 Py-a.s. on C = {Xy = 0}.

Denote by @ the restriction of N, to {Xy # 0}. By (2.6), (2.10) and (2.15), if
Y € Yy, then

(3.10) QY = —log P,{C, Y} + log P,Y = —log P.(C) + log P,Y.
Since Y,2,Y,2)Y,,Y,, belong to Vi, we have

QY —Y,)? = QY2 +QY? —2QY,,Y, =log P,Y? +log P,Y,> — 2log P,Y;, Y.

By the dominated convergence theorem, the right side tends to 0 as m,n — oco. A
subsequence Y, converges P,-a.s. and Q-a.s. to Y. Since @) is a finite measure
and 0 <Y, <1,

QY,, — QY.
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Formula (3.10) holds for Y;,. By passing to the limit, we conclude that it holds
for Y. Therefore N, {Y, Xy # 0} = —log P;(C) + log P,Y. By (1.2), this implies
(3.9). O

Proof of Theorem 3.2. If D,, exhaust E, then, P,-a.s., Y = e~ Z = limY,, where
Y, = e~ Z"—(wXp,) ¢ Y. For some U € O, all Y,, belong to Yy . It remains to
check that P,{Y > 0} > 0. Note that Z° < 0o P,-a.s. and

Pye(wXDn) — o= Von(W)(2) > o—u(2)
Therefore Pye=% >0 and P,{Z, < o} > 0. O
REMARK 3.1. It follows from Theorem 3.2 that, for every v € M(FE),
N, Z, =P, Z,.

Indeed, for every A > 0, u = Ah, € U~ and therefore, by (3.8), N, (1 — e *%v) =
—log Pye %, Since P,Z, < oo by 3.3.6.A, we can differentiate under the integral
signs.

3.5. Range.

THEOREM 3.3. For every x € E, a closed set Rg can be chosen to be, at the

same time, an envelope of the family (So, Pr),O C E and an envelope of the family
(So,N,),0 € Q,. For every Borel subset T of OF,

(3.11) Ne{ReNT # 0} = —log P,{Rg NT = 0}.
The following lemma is needed to prove Theorem 3.3.

LEMMA 3.4. Suppose that U is a relatively open subset of OFE, O is an open
subset of E, Oy exhaust O and

(3.12) Ay = {Xo (U) =0 for all k, Xo(U) # 0}.
Then P,(Ay) =0 for all p € M(E) and N (Ay) =0 for all z € O.

ProOF. By [D], Lemma 4.5.1, P,(Ay) =0 for p € M(E). If z € O, then z €
Oy, for some m. Since the sequence O,,, Op11, - .. exhaust O, we can assume that
z €0y Put Z=Xo(U), Z, = 3% X0, (U) and note that Ay = {Zo, = 0,Z # 0}
and Pp{Zo, =0} > P,{Xp, =0} > 0. By Lemma 3.1 applied to Z and Z,,,

N {Ap} <N {Z,=0,Z # 0} = —log P.{Z = 0|Z,, = 0}.

As n — o0, the right side tends to

—log{l — P,(Av)/P:[Z- = 0]} = 0.
Hence N, Ay = 0. (I

3.6. Proof of Theorem 3.3. 1°. We prove the first part of the theorem by
using the construction described in Section 3.2.4. It follows from Lemma 3.4 that
the support R of the measure M defined by 3.(2.18) is a minimal closed set
which contains, P,-a.s. for p € M(E) and Ny-a.s., the support of every measure
Xp,D € O,. The proof is identical to the proof of Theorem 5.1 in [D], p. 62 or
Theorem 5.1 in [Dyn98], p. 174.
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2°. First, we prove formula (3.11) for relatively open subsets of E. For every
such a subset U, we put

Zy=Xo,(U), Zn=>_ Z,
1

(3.13)
Ay ={Z1#0}, An={Z, 1=0,2Z,#0} forn>1.
Note that
{RENU =0} ={M(U) =0} ={Z, =0 forall n},
(3.14)

{RenU #0} = JAn

and Px{Zn =0} > 0 for all n. By Lemma 3.1 applied to Z = Z,, and Z = Zn_1,
we have

N, (A,) = —log Pu{Z, = 0|Z,_1 = 0}
and therefore, by (3.14),

(3.15) N {RpNU #0} = —log [ [ Pe{Zn = 0|Zn—1 = 0}
1
=—log P,{Z, =0 foralln}=—logP,{RgnNU =0}

Thus formula (3.11) holds for open sets.

Now suppose that K is a closed subset of OF and let U,, = {x € OF : d(z, K) <
1/n}. By applying (3.15) to U, and by passing to the limit, we prove that (3.11)
is satisfied for K.

To extend (3.11) to all Borel sets I' C OE, we consider Choquet capacities 4

Cap,(T') = P.{Re NT # 0}
and
Capy(T') = N {RgNT # 0}.

[Note that Cap,(I') < Capy(0F) = —log P,{Rg NIE = B} < co.] There exists
a sequence of compact sets K, such that Cap,(K,) — Cap,(I") and Cap,(K,) —
Cap,(I"). We have

Cap, (K,) = —log[l — Cap, (K,)].
By passing to the limit we prove that (3.11) holds for T O
REMARK. A new probabilistic formula
(3.16) wr(z) = No{Rg NT # 0}.

for functions defined by 1.(1.5)-1.(1.6) follows from (3.11) and 3.(3.9).

43ee Section 2.4.
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3.7. Probabilistic expression of a solution through its trace.
THEOREM 3.4. If Z = SBV (u) for u € U™, then, for every Borel set T' C OF,
(3.17) —log P.{ReNT =0,e 2} =N {RpgNT # 0} + N {RpgNT = 0,1 —e %},

Formula (3.17) with Z = Z,,v € ./\/8E provides a probabilistic expression for the
solution wr @ u,. In particular,

(3.18) —log Pre % =N, {1 —e %} = u,(x)
and
(3.19) —log P,{RrNT =0} = N,{RpNT # 0} = wr(z).

3.8. In preparation for proving Theorem 3.4 we establish the following result.
LEMMA 3.5. If Z =SBV (u),u € U™, then for every Z', 7" € Z,,
(3.20) N {Z' =0,1—e %} = —logP,{e?|Z' =0}

and
(3.21)
N A{Z' =0,2"#0,e7 %} = —log P.{e ?|Z' =0} +log P.{e ?|Z' = Z" = 0}.

ProoF. By Theorem 3.2, for every A > 0,
—log Ppe %' "Z =N, (1 — e %),
By taking A — oo, we get
—log P.{Z' = 0,e %} =N, (1 — 1z1—ge~%).
By (1.2), this implies (3.20). Note that
{Z'=0,2"#0}={Z' =0} \{Z' + 2" =0}.

Therefore
NAZ =0,2"#0,1—e?}=N,{Z =0,1-¢ %} -N,{Z +2"=0,1-¢%}
and we get (3.21) by applying (3.20). O

3.9. Proof of Theorem 3.4. We use notation (3.13). Put
I, = —log P,{e"%4|Z, = 0}.
By (3.14),
(322) I = lim I, = —log P {e ?|RgnU =0}
= —logP.{RENU =0,e %} +log P.{Rp NU = (}.
By (3.22) and (3.11),

(3.23) —log P{RENU =0,e %} = I, + N.{RpNU # 0}.

By (3.14),

(3.24) NARENU #0,1—e 7} =3 No{An, 1—e 7}
1

It follows from (3.20) and (3.21) that
N {A;,1 —e?} = ~logPee™? — I
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and
N A{A,,1—e?} =1, 11, forn>1.
Therefore

(3.25) NARpNU #0,1—e 7} =) NofA,,1—e 7} =—log Pre™” — I
1

and, by (3.8),
(3.26) I =—logPe™? —N,{RpNU#0,1—e?}
=N,(1—e?) =N AR NU #0,1 —e ?} =N, {RpNU =0,1 —e %}

It follows from (3.23) and (3.26) that (3.17) is true for open sets I'. An extension
to all Borel sets can be done in the same way as in the proof of Theorem 3.3.
To prove the second part of the theorem, it is sufficient to show that

(3.27) wr @u, = —log P,{Rg NT = 0,e %}
Let u = wr ®u,. By 3.3.3.B, SBV(u) = Zr +Z, where Zr = SBV(wr). By 3.(3.4),
u(r) = —log Pre=%r=%vand (3.27) follows from 3.(3.5.A). O

3.10. It follows from (3.17) and (3.11) that
(3.28) NARENT = 0,1 —e %} = —log P.{e ? | ReNT = (}.
By 3.(3.9), P,{RpNT =} = e *r® > 0]

By applying (3.28) to AZ and by passing to the limit as A — 400, we get
(3.29) NARENT =0,Z #0} = —logP,{Z =0|RgNT = 0}.
If v € NE is concentrated on T, then {Rp NT = 0} C {Z, = 0} P,-as. and
therefore

(3.30) NoARENT =0,7, #0} =0.
It follows from (3.29) and (3.11) that
(3.31)

—log P,{RENT =0,Z =0} = N,{RpgNT # 0} + N {RpgNT =0, Z # 0}.
We conclude from this relation and 3.(3.14) that
(3.32) Yooy = —log Po{Z, = 0} = N, {Z, # 0}.

4. Notes

The results presented in this chapter can be found in [DK].

A systematic presentation of Le Gall’s theory of the Brownian snake and its
applications to a semilinear equation Au = u? is contained in his book [LG99]. It
starts with a direct construction of the snake. A related (L, )-superdiffusion with
quadratic branching 1(u) = u? is defined by using the local times of the snake. A
striking example of the power of this approach is Wiener’s test for the Brownian
snake (first, published in [DLG97]) that yields a complete characterization of the
domains in which there exists a solution of the problem

Au=u? in E,

u=o00 ondFE.
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Only partial results in this direction were obtained before by analysts. °

A more general path-valued process — the Lévy snake was studied in a se-
ries of papers of Le Gall and Le Jan. Their applications to constructing (&, v)-
superprocesses for a rather wide class of ¥ are discussed in Chapter 4 of the mono-
graph [DLGO02].

We refer to the bibliography on the Brownian snake and the Lévy snake in
[LG99] and [DLGO02].

SLater Labutin [Lab03] proved a similar result for all equations Au = u® with o > 1 by
analytical methods.



CHAPTER 5

Moments and absolute continuity properties of
superdiffusions

In this chapter we consider (L, 1)-superdiffusions in an arbitrary domain F,
with ¢ defined by 3.(2.8) subject to the condition 3.(2.9).

The central result (which will be used in Chapter 9) is that, if A belongs to
the germ o-algebra Fy (defined in Section 3.4 of Chapter 3), then either P,(A4) =0
for all p € M.(E) or P,(A) > 0 for all 4 € M.(E). The proof is based on the
computation of the integrals

0.1) /e*<f“vXD> (f1,XD) - (fus X)

with respect to measures N, and P, and on a Poisson representation of infinitely
divisible measures.

As an intermediate step we consider the surface area v on the boundary of a
smooth domain D and we prove that the measures

(0.2) n’h(B) :NI/BXD(dyl)...XD(dyn), zeD

and

03) Po(B) =P | Xpldn)... Xo(dm), ne M(D)

vanish on the same class of sets B as the product measure v*(dyi,...,dy,) =

Y(dy1) - . .y (dyn)-

1. Recursive moment formulae
Let D € F and let fo, f1,--- € B(D). Put

(1.1) ¢ =9'[Vp(fo)].

We express the integrals (0.1) through the operators G% f(x) and K f(z)
defined by 3.(1.5) and a sequence

a1(@) = 1, gaa) = 26+ / 2@ N (z, di),
(1.2) 0

gr(x) = / tTe @ N (z, dt) for r > 2
0

which we call a g-sequence. By 3.(2.11), the function ¢ (z,u) is infinitely differen-
tiable with respect to u and

(1.3) qr(z) = (=1)"¢p(x, £(x)) forr > 2.
The functions g, are strictly positive and bounded.

41
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1.1. Results. We consider nonempty finite subsets C' = {i1, ..., 4, } of the set
{1,2,...} and we put |C| = n. We denote by B, (C) the set of all partitions of
C into r disjoint nonempty subsets Cy,...,C,. We do not distinguish partitions
obtained from each other by permutations of C1,...,C, and by permutations of
elements inside each C;. For instance, for C' = {1, 2, 3}, the set P2 (C) consists of
three elements {1,2} U {3}, {1,3}U {2} and {2,3} U {1}. We denote by P(C) the
union of B, (C) over r =1,2,...,|C]|.

For any functions o; € B(D), we put

(1.4) {e1} =1,
(1.5) {01, . 0r} =G5 (grpr - ) forr>1
We prove:

THEOREM 1.1. Suppose that fo, f1, f2, -+ € B(D) and let 0 < 8 < fo(z) < v
for all x € D where 3 and «y are constants. Put p; = K&f;. The functions

(1.6) z0(x) = Npe Vo X0 T (i, Xp), z€D
icC
can be evaluated by the recursive formulae
2o =i for C ={i},
(17) zZo = Z Z {ch,...,ZCT} fOT |C|>1

2<r<|C B (0)
THEOREM 1.2. In notation of Theorem 1.1,
(1.8) Pue= Vo Xo) TT(fi, Xp) = e VPUM N " (o0 1) - (20, 1)
icC B(C)
for every p € M.(D).

Theorems 1.1 and 1.2 imply the following expressions:

(1.9) Po(f, Xp) = No(f, Xp) = Kp f (),

(1.10) Pu(f,Xp)* = No(f, Xp)*+[No(f, Xp)]* = Gpla2(Kp f)*)(2) + [Kp f(2)]*.

1.2. Preparations. Let D; = %. Suppose that F*(z) is a function of x € D

and A = {A1, Ag,...} € [0,1]* which depends only on a finite number of A;. Put
F € C* if F and all its partials with respect to A are bounded. Write Do F' for
Dy, ..D;, Fif C={iy <---<i.}. ! Let
v = fo+ > Nifi,
ieC
YA =Yo+ > AY;
ieC
where Y; = (f;, Xp).

Iput DoF = F for C = 0.
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LEMMA 1.1. Suppose that for all x, fo(x) > 8 > 0 and fi(x) <~ fori e C.
Then the functions

(1.11) upy(x) = No(1 — 7€) = Vp (1) (@)
belong to C* and
(1.12) ze = (=) (Deug ) a=o-

PRrOOF. 1°. Put I = (1, Xp). First, we prove a bound ?

(1.13) N, I <1.
Note that by 4.(1.1), 3.(2.6) and 3.(2.1),
(1.14) N, (1 —e M) = —log Pre ™™ = Vp(\)(z) < Kp(\)(z) = \.

Since (1 — e *)/X — Tas A | 0, (1.13) follows from (1.14) by Fatou’s lemma.
2°. For every 3 > 0 and every n > 1, the function ¢, (t) = e~ #*t"~! is bounded
on R, . Note that Y; < I fori € C and e Yo < e~ BT Therefore

Di, ... D (1—e )| =Y;, ... Vi e ¥ < "I, (I) < const. I.
It follows from (1.11) and (1.13) that, for all 4,...,4, € C,
Dy, ... Diud =N,D;, ... Dy, (1 — e ¥O).
Hence ud € C* and it satisfies (1.12). O

1.3. Proof of Theorem 1.1. 1°. It is sufficient to prove (1.6) for bounded
f1, f2, ... (This restriction can be removed by a monotone passage to the limit.)
Operators Kp,Gp, K% and G% map bounded functions to bounded functions.
Indeed, if 0 < f < ~, then Kfé,f < Kpf <~ and G%f < Gpf <~ll,7p and, for a
bounded set D, II,7p is bounded by Proposition 3.1.1.

2°. Let F' € C*. We write F' ~ 0 if Do F|x—¢ = 0 for all sets C' (including the
empty set). Clearly, F' ~ 0 if, for some n > 1,

(1.15) FA =330} + A
1

where [A| = Y7 Ai, @} are polynomials in A with coefficients that are bounded
Borel functions in z and * is a bounded function tending to 0 at each z as |A\| — 0.
It follows from Taylor’s formula that, if F' ~ 0, then F' can be represented in the
form (1.15) with every n > 1. We write Fy} ~ Fy if F; — F5 ~ 0. Note that, if
F ~ 0, then FFE ~ 0 for every F € C* and therefore FyFy ~ F\Fy if F} ~ F} and
Fy ~ Fy. Operators Kp,Gp, K4 and GY, preserve the relation ~.

Put u* = ué It follows from Lemma 1.1 that

(1.16) ut ~u® + ) (1) A p2p
B
where B runs over all nonempty subsets of C.

2After we prove Theorem 1.1, a stronger version of (1.13) NI = 1 will follow from (1.9).
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3°. By 3(2.8), 3(2.11) and Taylor’s formula, for every n,
(L17) () = $(u®) + 1 () — )

where
1

Ri(z) = — /O Oot"(e’)‘g — e ") N(z, dt)

n!
with 6 between u° and u*. By (1.16),

T

(1.18) (W —u®"~ > [ Np, 28,
_T'Z |B| T)\B Z ZBy -+ -ZB,.-

PB-(B)

Since u¥ = Vp(fo) and, by (1.1), 11(u®) = ¢, we conclude from (1.17), (1.18) and
(1.3) that

Y(u? +€Z)\ 0y (D) gz + > (-1)Plpp

|B|>2 BCC

where pp =0 for |B] =1 and

pB:ZqT Z 2B, -..2p, for|B|>2.

r>2 §,(B)
Hence,
(1.19)
Gpl(u)] ~ +€ZA a0 (D s 4 3 (21,

|B|>2 BCC

By 2.(2.1) and (1.11), u* + Gp¥(u*) = Kpy*. By using (1.16) and (1.19) and
by comparing the coeflicients at Ap, we get

(120) Zi + GD(ézl) = KDfi forie C
and
(1.21) ZB—l-GD(éZB):GDpB for |B| > 2.

By Theorem 3.1.1,
2= Kpf(z)

is a unique solution of the integral equation

z+Gp(lz) =Kpf
and

¢ =Ghp

is a unique solution of the equation

¢+ Gp(ly) = Gpp.
Therefore the equations (1.20) and (1.21) imply (1.7). O
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1.4. Proof of Theorem 1.2. We have
(1.22) Pue ¥ = P [[e Y ~ Pie ™ [ - AY))
ieC ieC
B 1 Y (C1) P By
BCC

where Yp = Hl e Yi and the sum is taken over nonempty B.
By 4.(1.1) and 3.(2.6), Vb (yd)(z) = Ny(1 — e~ ¥¢) and therefore, by 3.(2.7),
(123 P = e (Vplsd)n) = expl- [ N1 e (o),
D

y (1.6), Noe Y0Yp = zp and, since N, (1 — e~Y0) = Vp(fy), we have

Ny(1—eY8) =N,[1—e Y0 [[e ) ~Nofi = JJ(1 - Aiva)]

ieC ieC
~Vp(fo) = > (1) p2p.
BCC
Hence,
(120 [ M= tde) ~ Vo(fo)ih = 3 (1) A ().
D BCC
This implies
(1.25)
exp{= [ N(1=®)utd)} = expl=Vp(fo).s)) T expl(=1)/"As(z5. o)
BCC
~ exp[—(Vo(fo, )] T] 11+ (=1)'"\5 (25, w)]
BCC
~exp[—(Vp (fo). )L+ D> (=DPINg Y (25, 1) - (25, 1)].
BcC B(B)
According to (1.23), the left sides in (1.22) and (1.25) coincide. By comparing the
coefficients at Ap in the right sides, we get (1.8). O

2. Diagram description of moments

We deduce from Theorems 1.1 and 1.2 a description of moments in terms of
labelled directed graphs.

2.1. Put fo = 1 and ¢ = ¢/[Vp(1)] in formulae (1.6) and (1.7). Suppose
that C = {41,...,4,}. The function zc(x) defined by (1.6) depends on fo =
{firs---, fi.} which we indicate by writing z(fc) instead of z¢. In this notation

(1.7) takes the form
(2.1) z(fi) = @i,
(2.2) Wfe)= > Y Azlfe)...-,2(fe,)} for |C| > 1.

2<r<|C] B (C)
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We consider monomials like {{@3p2}p1{@aps}}. There exist one monomial {¢1p2}
of degree 2 and four distinguishable monomials of degree 3:

(2:3) {10203}, {{prpatest, {{papstor}, {{wser o}
It follows from (2.1) and (2.2) that, for C = {i1,...,in}, 2(fc) is equal to the sum
of all monomials of degree n of ¢;,,..., i, .

Formulae (1.6) and (1.8) imply
(2.4) Npe XY (1 XpY . (fn, Xp) = 2(f1, ..., fo)(z) forallz e D

and

(2.5) Pue™ N X0N(f1, Xp) o (fu, Xp) = e VPO N T (o (fe ), 1) - (2 (fe, ) )
B(C)

where C' = {1,...,n}.

2.2. A diagram D € D, is a rooted tree with the leaves marked by 1,2, ..., n.
To every monomial of degree n there corresponds D € D,,. Here are the diagrams
corresponding to the monomials (2.3):

VN NN

FIGURE 1

Every diagram consists of a set V of vertices (or sites) and a set A of arrows.
We write a : v — v if v is the beginning and ' is the end of an arrow a. We
denote by a4 (v) the number of arrows which end at v and by a_(v) the number
of arrows which begin at v. Note that ai(v) = 0,a_(v) = 1 for the root and
at(v) =1,a_(v) = 0 for leaves.

We label each site v of D € D,, by a variable y,. We take y, = x for the root
v and y, = z for the leaf i. We also label every arrow a : v — v’ by a kernel
7a(Yv, Ay ). Here 7, is one of two kernels corresponding to the operators G‘b and
K, by the formulae

G4 f(z) = /D g (. dy) f(y)
and

K4 () = /a e dn)1(0).

More precisely, if @ = v — v/, then 7, = g% (yu, dy,r) if v,0’ are not leaves and
ro = k% (yy,dz;) if v’ is a leaf i. We associate with D € D,, a function

(26) ZD(fla SR fn) = / H Ta(yva dyW) H Qaf(v)(yv) Hkﬁ)(yvudzl)fl(’zl)

acA veV 1
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where v; is the beginning of the arrow with the end at a leaf 7. 3
ExAMPLES. For the first diagram on Figure 1,

ZP(f1, fa f3) = /gtb(%dy)%(y)k%(y, dz1) f1(21)kD (y, dz2) f2(22) kD (y, dzs) f3(23).

For the second diagram,

D (fo for f) = / o (@, dy ) ) (91, ) fs ()
95 (1, dy2) a2 (y2) k' (ya. dz1) f1(21) kD (ya, d22) fo(22).

We note that

(2.7) 2frrfa) = D 221y fu).

DeDy,

3. Absolute continuity results

3.1. In this section we prove:

THEOREM 3.1. Let D be a bounded domain of class C*>* and let v be the surface
area on OD. For every Borel subset B of (0D)™,

(3.1) Nme*ﬂvxw/ Xp(dyr) ... Xp(dy,)
B

= /Bpm(yl, oo Yn)y(dyr) - oy(dyn)

with a strictly positive p® .
For every pn € M.(D),

(3.2) P#e*<1vXD>/ Xp(dyy) ... Xp(dy,)
B

= e (Vo /B P yn)(dyn) - A (dyn)
with a strictly positive p*.

Theorem 3.1 implies that the class of null sets for each of measures (0.2) and
(0.3) (we call them the moment measures) coincides with the class of null sets for
the measure 4™. In other words, all these measures are equivalent.

THEOREM 3.2. Suppose A € F5p. Then either P, (A) =0 for all p € M.(D)
or P,(A) >0 for all p € M.(D).

If A € Fp, then either P,(A) = 0 for all p € M(E) or P,(A) > 0 for all
weE M(E).

3We put go = 1 to serve leaves v for which a_ (v) =0.
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3.2. Proof of Theorem 3.1. It is sufficient to prove that formulae (3.1) and
(3.2) hold for B = By X --- x B,, where By, ..., B, are Borel subsets of 9D. If we
demonstrate that

(33)  2P(fi.. fa) = /pD(yl, o Yn) 1Y) - fuyn)y(dyn) - v (dyn)

with p? > 0 for f; = 1p,,..., fo = 1, then (3.1) and (3.2) will follow from (2.4),

(2.5) and (2.7). For a domain D of class C?*, k& (z,dy) = k% (x,y)y(dy) where

k% (z,y) is the Poisson kernel for Lu — fu. Since k% (z,y) > 0, formula (2.6) implies

(3.3). O
To prove Theorem 3.2 we need some preparations.

3.3. Poisson random measure.

THEOREM 3.3. Suppose that R is a finite measure on a measurable space (S, B).
Then there exists a random measure (Y, Q) on S with the properties:

(a) Y(B1),...,Y(By) are independent for disjoint By, ..., By;

(b) Y(B) is a Poisson random variable with the mean R(B), i.e.,

Q{Y(B) =n}= %R(B)%*WB) forn=0,1,2,....

For every function F' € B,

(3.4) Qe YY) — exp|— /S (1 —e TEYR(dz)).

PRrROOF. Consider independent identically distributed random elements 71, ..., Z,, ...

of S with the probability distribution R(B) = R(B)/R(S). Let N be the Pois-
son random variable with mean value R(S) independent of Zi,...,Z,,.... Put
Y(B)=1p(Z1)+---+1(ZN). Note that Y = dz, +- - -+ dz, where J, is the unit
measure concentrated at z. Therefore (F,Y) = Zf[ F(Z;) and (3.4) follows from

the relation
o0

_ 1 m o i
Qe (FY) _ %R(S) e R(S)HQe F(Z:)
1

m=0

By taking F' = A1p we get
Qe M) = exp[—(1 — ¢ )R(B)]

which implies the property (b). If By, ..., B, are disjoint, then, by applying (3.4)
to I =51 X\ilg,, we get

Qefz)\IY(BI) — 672(178*)‘1')7?,(31-) — HQef)\IY(BI)
which implies (a). O
We conclude from (3.4) that (Y, Q) is an infinitely divisible random measure.

It is called the Poisson random measure with intensity R. This is an integer-valued
measure concentrated on a finite random set.



3. ABSOLUTE CONTINUITY RESULTS 49

3.4. Poisson representation of infinitely divisible measures.

THEOREM 3.4. Let (X, P) be an infinitely divisible measure on a measurable
Luzin space E with the canonical measure R. Consider the Poisson random measure
(Y,Q) on S = M(E) with intensity R and put X(B) = S v(B)Y (dv). The
random measure (X, Q) has the same probability distribution as (X, P) and, for
every F' € By, we have

(3.5) PF(X)=Q(FY)= i %e*RM /R(dyl) CR(Avn)F (v + -+ vy).
— nl

PROOF. Note that (f, X) = (F,Y) where F(v) = (f,v). By (3.4), we get

Q%) — Qe (FY) — exp [‘ / (1—e ) R(dv)| .
M

This implies the first part of the theorem. The second part follows from the ex-
pression Y(B) =1p(Z1) + -+ 1p(Zy) for Y introduced in the proof of Theorem
3.3. O

3.5. Proof of Theorem 3.2. 1°. By applying Theorem 3.4 to the random
measure (P,, Xp) and a function e~ ") F(v) we get

(3.6) Pue ¥PIF(Xp)
ZO !

where
(3.7) Zp(p) = e RelMDI - and RY (dv) = e= VIR, (dv).
2°. Let F be a positive measurable function on M(9D) and let

ff(xe,. .o mn) = /F(V1 + o v)Ry, (dvr) . R (dvy).

We prove that, if D € D and pu € M.(D), then F(Xp) = 0 P,-a.s. if and only if

(3.8) /f"(xl, oo xn)Yp(drr) . .yp(de,) =0 for all n.
Indeed, by the Markov property of X,

(3.9) P,e" X0 F(Xp) = P,Px e~ M P F(Xp).

By (3.6) and (3.9),

(3.10)

=1
Py W XPIR(Xp) =) ~PuZp(Xp) /XD(dxl) X () ().
n=0

Since Zp(Xp) > 0, the condition F(Xp) = 0 P,-a.s. is equivalent to the condition:
for every n,

(3.11) /XD(dxl)...XD(dxn)f"(xl,...,:cn) =0 Pyas.

It follows from Theorem 3.1, that the condition (3.11) is equivalent to the condition
(3.8).
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3°. Suppose p1 and gz belong to M, (D). There exists D € D which contains
supports of 1 and pe. By 2°, F(Xp) = 0 Py,-a.s. if and only if F(Xp) = 0
P,,-a.s. If A € F5p, then by the Markov property of X,

P#i (A> = P#iF(XD)

where F'(v) = P,(A). This implies the first statement of Theorem 3.2.

If ju1, o € Mo(E), then py, o € M(D) for a domain of class C%* such that
D eFE. If A€ Fy, then A € F5p and the second part of Theorem 3.2 follows from
the first one. O

4. Notes

4.1. The results of the first two sections are applicable to all (£, v)-superprocesses
described in Section 3.2.2, and the proofs do not need any modification. The abso-
lute continuity results can be extended to (£, 1)-superprocesses under an additional
assumption that the Martin boundary theory is applicable to ¢&. 4 The boundary
OF and the Poisson kernel are to be replaced by the Martin boundary and the
Martin kernel. The role of the surface area is played by the measure corresponding
to the harmonic function h = 1.

4.2. A diagram description of moments of higher order was given, first, in
[Dyn88]. There only 1 (u) = u? was considered. In [Dyn91b] the moments of order
n were evaluated under the assumption that ¢ of the form 3.(2.8) has a bounded
continuous derivative ZZf. [See also [Dyn04a].] Brief description of these results
is given on pages 201-203 of [D]. ® The main recent progress is the elimination of
the assumption about differentiability of 1) which allows to cover the case ¥(u) =

w1 <o <2

4.3. The first absolute continuity results for superprocesses were obtained
in [EP91]. Let (X3, P,) be a (&, t)-superprocess with ¢(u) = u?/2. To every
u € M(E) there correspond measures p}’ on E and measures Q) on M(FE) defined
by the formulae

Pi(B) = / j(da)TL & € BY,
QU(C) = Pu{X, € C}.

Let h > 0. Evans and Perkins proved that Q)" is absolutely continuous with respect
to Q7 for all t > 0 if and only if p* is absolutely continuous with respect to p;’},
for all t > 0.

Independently, Mselati established an absolute continuity property for the ex-
cursion measures N, of the Brownian snake: if C' belongs to the o-algebra gener-
ated by the stochastic values of all subsolutions and supersolutions of the equation
Au = u?, then, for every z1,22 € E, N, (C) = 0 if N,,(C) = 0. (See Proposition
2.3.5 in [Mse02a] or Proposition 2.18 in [Mse04].)

4The key condition — the existence of a Green’s function — is satisfied for L-diffusions in a
wide class of the so-called Greenian domains. The Martin boundary theory for such domains can
be found in Chapter 7 of [D].

5F igure 1.2 is borrowed from page 202 in [D]. We also corrected a few misprints in formulae
which could confuse a reader.[For instance the value of ¢, on pages 201-203 must be multiplied

by (=1)™.]
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A proof of Theorem 3.2 is given in [Dyn04c|. The case of infinitely differentiable
1 was considered earlier in [Dyn04a], Theorem 6.2.






CHAPTER 6

Poisson capacities

A key part of the proof that all solutions of the equation Au = u® are o-
moderate is establishing bounds for wr and ur in terms of a capacity of I'. In the
case a = 2, Mselati found such bounds by using CaLpa introduced by Le Gall. This
kind of capacity is not applicable for o # 2. We replace it by a family of Poisson
capacities. In this chapter we establish relations between these capacities which
will be used in Chapters 8 and 9.

The Poisson capacities are a special case of (k, m)-capacities described in Sec-
tion 1.

1. Capacities associated with a pair (k,m)

1.1. Three definitions of (k,m)-capacities. Fix a« > 1. Suppose that
k(x,y) is a positive lower semicontinuous function on the product E x E of two
separable locally compact metric spaces and m is a Radon measure on E. A (k, m)-
capacity is a Choquet capacity on E. We give three equivalent definitions of this

capacity.

Put
(1.1) (Kv)(z) = /Ek(x, yv(dy), EW)= ‘/E(Kl/)adm for v € M(E)
and
(1.2) K(f)(y) :/ m(dx) f(z)k(z,y) for f € B(E).

E

Define Cap(I) for subsets T' of E by one of the following three formulae:
(1.3) Cap(T) =sup{E(v) ' : v e P()},
(1.4) Cap(T') = [sup{v(I') : v € M(T),E(v) < 1},
(1.5) Cap(T) = [inf{/E f¥dm: feBE),Kf>1 onT}*!

where o' = a/(a —1). We refer to [AH96], Chapter 2 for the proof that the Cap(T")
defined by (1.4) or by (1.5) satisfies the conditions 2.4.A, 2.4.B and 2.4.C and
therefore all Borel subsets are capacitable. ' [The equivalence of (1.4) and (1.5) is
proved also in [D], Theorem 13.5.1.]

n [AH96] a wider class of kernels is considered. The result is stated for the case E = R¢
but no specific property of R? is used in the proofs.

53
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To prove the equivalence of (1.3) and (1.4), we note that v € M(T") is equal to
tp where t = v(T') and p = v/t € P(T') and
sup {v(D):EW) <1} = sup sup{t:t*E(p) <1} = sup E(u)~ e
veEM(T) ueP(T) >0 ueP(T)
2. Poisson capacities

In this chapter we deal with a special type of (k, m)-capacities associated with
the Poisson kernel k¥ = kg for an operator L. The function kg(x,y) is continuous
on E x E where E is a C%*-domain in R? and E = E. We use notation Cap for
the Poisson capacity corresponding to

(2.1) m(dz) = p(z)dr with p(z) = d(z,0F)
and we denote by Cap, the Poisson capacity corresponding to
(2.2) m(dy) = ge(z, y)dy

where gp is the Green function in E for L. [In the case of Cap,, £(v) has to be
replaced by

Ea(v) = /EQE(x,y)hu(y)ady: [Ge(Kv)%](z)
in formulae (1.3)—(1.4).]

2.1. Results. An upper bound of Cap(T) is given by:
THEOREM 2.1. For allT € B(OE),

(2.3) Cap(T) < Cdiam(I")"*
where
(2.4) y=da—d—a—-1 and~yy=~vyVO0.

The second theorem establishes a lower bound for Cap,, in terms of Cap.
The values o < (d + 1)/(d — 1) are called subcritical and the values o >
(d+1)/(d—1) are called supercritical.

THEOREM 2.2. Suppose that L is an operator of divergence form 1.(4.2) and
d> 3. Put

(2.5) o, T) = plx)d(z,T) ",
If a is subcritical, then there exists a constant C' > 0 such that
(2.6) Cap,(T") > Cyp(x, ')~ Cap(T).

for all T and x.
If o is supercritical, then, for every k > 0 there exists a constant C,, > 0 such
that

(2.7) Cap,(T) > Crupl, T) ! Cap(T)
for all T and x subject to the condition

(2.8) d(z,T) > rkdiam(T).
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3. Upper bound for Cap(T)

To prove Theorem 2.1 we use the straightening of the boundary described in
Section 4.2 of the Introduction. As the first step, we consider a capacity on the
boundary Ey = {x = (x1,...,24) : zq = 0} of a half-space F; = {z = (z1,...,24) :
xq >0} =R x (0, 00).

3.1. Capacity (/35&). Put

T(.I) = d(ZE, EO) = Zd,
(31) ]E:{x:(.fl,...,.fd):0<$d<1},
I;(.I,y) = T($)|$ - y|7da'r € an € EO

and consider a measure

(3.2) m(dx) = r(x)dx

on E. Denote by (/35&) the (I;, m)-capacity on Eq.

Note that R R
E(z/t,y/t) =t k(z,y) forall t > 0.

To every v € P(Ep) there corresponds a measure vy € P(Ep) defined by the formula
v (B) = v(tB). We have

fWvildy) = [ fy/t)v(dy)
E() EO
for every function f € B(Eo). Put h, = Kv. Note that

63)  hule/) = [ Ee/tpnn) = [ ket = 0t w)
0 0
Change of variables z = tZ and (3.3) yield
E(v) = VE (v, tE)
where
E(v) = / he dm, E(v,B) = / he din
E B

for B € B(E) and +y defined by (2.4).

If t > 1, then tE D E and we have

(3.4) E(v) > t7E(v).
LEMMA 3.1. If diam(T") <1, then
(3.5) Cap(I) < Cy(diam(I))".

The constant Cy depends only on the dimension d. (It is equal to Cap(U) where
U={zxe€Ey:|z| <1}.

PROOF. Since (/35&) is translation invariant, we can assume that 0 € I'. Let
t = diam(T")~!. Since tI' C U, we have
(3.6) Cap(tT") < Cap(U).
Since v — 14 is a 1-1 mapping from P(tT") onto P(T"), we get

Cap(T)= sup E(m) '= sup E(w) "
v €P(T) veP(tl')
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Therefore, by (3.4) and (1.3),
Cap(I") < t~7Cap(i)
and (3.6) implies (3.5). O
3.2. Three lemmas.

LEMMA 3.2. Suppose that Ey, E2, E3 are bounded domains, Ey and Ez are
smooth and FEo C E3. Then there exists a smooth domain D such that

(37) EiNnEyCDCENE;.

PrRoOOF. The domain Dy = E1 N E5 is smooth outside L = dF; N dFE,. We
get D by a finite number of small deformations of Dy near L. Let ¢ € L and let
U be the e-neighborhood of ¢q. Consider coordinates (y1, 42, ...,yq) in U and put
y=(y1,..-,Yi-1),7 = yq. If € is sufficiently small, then the coordinate system can
be chosen in which the intersections of E; with U are described by the conditions r <
fi(y) where f1, fa, f3 are smooth functions. There exists an infinitely differentiable
function a(r) such that » A0 < a(r) < r Ae and a(r) = 0 for r > £/2. Put
g = f2+ a(fi — f2) and replace the part of Dy in U by {(y,7) : r < g(y)} without
changing the part outside U. Since g > f1 A f2, we get a domain D; which contains
Dy. Since g < fi A(f2+¢€), D1 is contained in Ej if € is sufficiently small. Finally,
the portion of dD; in U is smooth. After a finite number of deformations of this
kind we get a smooth domain which satisfies the condition (3.7). O

LEMMA 3.3. Suppose ECE, 0T COENEy and put A=E\E, By, ={z €
E:|z| <A} If d(T', A) > 2\, then By C E and r(z) = p(z) for x € By.

PRrROOF. If x € By, then r(z) < |z| < A\. If z € By and y € A, then |z —y| >
ly| — |z| > A because |y| > d(y,T") > d(A,T') > 2A. Hence d(x, A) > A which implies
that By C E.

For xz € E, p(x) = d(z, E°),r(x) = d(z, E) and therefore p(x) < r(x). Put
A1 =0ENA Ay =0E N Ey. For every z € E, d(z, A1) = d(z, A),d(z, A3) > r(x)
and p(z) = d(z, A1) Ad(x, A3) > d(z, A) Ar(z). If © € By, then r(z) < A < d(zx, A)
and therefore p(x) > r(z). Hence p(z) = r(z). O

LEMMA 3.4. There exists a constant C\ > 0 such that
(3.8) E(v, By) > CHE(V)
for all v € P(T') and for allT 3 0 such that diam(I") < A/2.

PROOF. If x € F\, =E\ By and y € T, then |y| < diam(T") < A\/2 < |z|/2 and
therefore |z —y| > |z| — |y| > |z|/2. This implies

o () < r(2)2%2]
and
(3.9) E(v,Fy) < 2do‘/ () x|~ = C} < oco.
Fy
On the other hand, if v € By,y € T, then |z —y| < |z| + [y| < 3\/2. Therefore
h,(x) > (3)\/2)"%r(z) and

(3.10) E(v,By) > (3)\/2)7@‘/3 r(z)*ttde = C{ > 0.
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It follows from (3.9) and (3.10) that
CLE(v, By) 2 CLCY > CYE(v, Fy) = CJ[E(v) — E(v, By))
and (3.8) holds with C\ = C{/(C4 + CY). g
3.3. Straightening of the boundary.

PROPOSITION 3.1. Suppose that E is a bounded smooth domain. Then there
exist strictly positive constants €,a,b (depending only on E) such that, for every
x € OE:

(a) The boundary can be straightened in B(z,€).

(b) The corresponding diffeomorphism 1, satisfies the conditions

(3.11)  a”Myr — ol < [Yalyr) — Yu(ye)l < alyr —yo|  for all y1, 4o € Bz, e);
(3.12) a~!diam(A) < diam(¢,(A)) < adiam(A) for all A C B(z,¢);

(3.13)
aild(Al, AQ) S d(wm(Al), 1/)m(A2)) S a d(Al, AQ) fOT all Al, AQ C B(.I, E).

(3.14) bl < J.(y) <b forally € B(x,e)

where J,(y) is the Jacobian of ¥, at y.
Diffeomorphisms 1, can be chosen to satisfy additional conditions

(3.15) V() =0 and ¥, (B(z,e)) CE.

PrOOF. The boundary OF can be covered by a finite number of balls B; =
B(zi,¢;) in which straightening diffeomorphisms are defined. The function ¢(z) =
max; d(z, BY) is continuous and strictly positive on OE. Therefore ¢ = % min, g(z) >
0. For every = € OF there exists B; which contains the closure of B(z, ). We put

Va(y) = Ve, (y) fory € B(x,e).
This is a diffeomorphism straightening OF in B(z,€).
For every x, B(z, ) is contained in one of closed balls B; = {y : d(y, Bf) > €}.
Since 9., belongs to the class C%*(B;), there exist constants a; > 0 such that

a; yr — yal < Ve, (1) — Y, (y2)] < aslyr —ya| for all y1,y2 € B;.
The condition (3.11) holds for @ = maxa;. The conditions (3.12) and (3.13) fol-
low from (3.11). The Jacobian J,, does not vanish at any point y € B; and we
can assume that it is strictly positive. The condition (3.14) holds because J,, is
continuous on the closure of B(z,¢).
By replacing ¥, (y) with ¢[t)4(y) — ¢z ()] with a suitable constant ¢, we get
diffeomorphisms subject to (3.15) in addition to (3.11)-(3.14). O

3.4. Proof of Theorem 2.1. 1°. If v < 0, then (2.3) holds because Cap(T") <
Cap(OF) = C. To prove (2.3) for v > 0, it is sufficient to prove that, for some
B > 0, there is a constant C7 such that

Cap(T") < Cydiam(I")” if diam(T") < .
Indeed,

Cap(T") < Cydiam(T")” if diam(T) > S
with Cy = Cap(0FE)577.
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2°. Let €, a be the constants defined in Proposition 3.1 and let 8 = ¢/(2+8a?) A
1. Suppose that diam(I') < § and let € I'. Consider a straightening 1, of OF
in B(z,e) which satisfies conditions (3.15). Put B = B(x,e), B = B(x,¢/2). By
Lemma 3.2, there exists a smooth domain D such that BNE c D € BN E. Note
that BNOE C 9D NOE C BNAE. If Ay = D N BN E, then d(z, A;) > /2
and d(T', A1) > ¢/2 — diam(I') > ¢/2 — 3. Denote by D’,I", A} the images of
D,T, Ay under ¢, and let A’ = E\ D’. By (3.12), diam(I") < A = af and
d(I";A") > Xa = (¢/2 — )/a. Our choice of 3 implies that A\ < Az/4. Put
A = A1+ A2/4. Note that Ay > 2X\ and Ay < A/2. Since d(IV, A") = d(T, A}),
Lemmas 3.3 and 3.4 are applicable to D', T”, A’ and A (which depends only on E).

3°. By 2.(1.10) and (3.13), for every y € D,z € T,

(3.16) ke(y,2) = Cd(y, 0B)|y — =~
> Cd(y,0D)|y — 2|~ = Cd(y',0D")ly' — /|~
where v = 15 (y), 2 = ¥, (2). If v/ is the image of v € P(T") under v, then

[ e [ 1)
for every positive measurable function f. In partlcular
(317) J = vtz = [ 1 =21,

By (3.16) and (3.17),

/ ke(y, 2)v(dz) > Cd(y, aD') / ' — 2|~/ (d).
T T

If ' € By, then, by Lemma 3.3, d(y',0D’) = r(y') and we have

(3.18)  hu(y) = / kp(y, 2)v(dz) 2 C | r(y)ly — 2|7/ (d') = Chu [ (y)].
r r
If y € D, then, by (3.13), d(y,0F) > d(y,0D) > Cd(y',0D’) and therefore
(1.1), (2.1) and (3.18) imply

Note that
)y = / Flbe ()] Ta () dy
D’ D
and, if f > 0, then, by (3.14),
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By Lemma 3.3, D’ D B) and d(y',0D’) = r(y') on By. Hence

EW)>C | v h(y)*dy = CEW, By).

B
By Lemma 3.4, this implies £(v) > C&(1/) and, by (1.3), Cap(I') < CCap(I"). The
bound Cap(I") < C'diam(T")" follows from Lemma 3.1, (3.12) and 1°. O

4. Lower bound for Cap,
4.1. Put
§(z) =d(z,T), Ei1={x€ E:0(z)<3p(x)/2}, E;=FE\Ey

4.1) &:(v,B) = /Bg(x,y)hu(y)ady for BC E

and let
42) Uy={yeE:|z—yl <i(x)/2}, Ve={yeE:|z—y|l>dx)/2}.

First, we deduce Theorem 2.2 from the following three lemmas. Then we prove
these lemmas.

LEMMA 4.1. For allT, allv € P(T) and all x € E,

(4.3) E:(, V) < Cop(z,T)E(V).
LEMMA 4.2. For ollT, allv € P(T) and all x € F,
(4.4) E:(,Up) < Co(x,T)E(v).
LEMMA 4.3. For allT, allv € P(T') and all x € Es,
(4.5) Ex(,Uy) < Coo(x,T)0(x) 7+ E(v)
where

0(x) = d(z,T")/ diam(T).
4.2. Proof of Theorem 2.2. By Lemmas 4.2 and 4.3, for every x €
Ex(v, Uz) < Cop(a, T)EW)(1V () 7)
and therefore, under the condition (2.8),
E:(,Uy) < Co(z,T)EW)(LV k™).
This bound and Lemma 4.1 imply that
Ex(w)=E W Uy) + Ex(v, Vi) < Cop(x, TYEW)[2V (1 + k77H)]
and, by (1.3),
(4.6) Cap,(T') = Cp(z,T) ™" Cap(T)
]

where C, = C71[2V (1 + k77+)]7L. If « is subcritical, then v < 0, C,; does not
depend on x and (4.6) implies (2.6). If « is supercritical, then v > 0 and (2.7)
holds under the condition (2.8). O

4.3. Proof of Lemma 4.1. By 2.(1.7),

£.(1,V2) < Cpla) / (9| — 4]~y ()" dy.

Ve

Since |z — y| > §(x)/2 for y € Vj, this implies (4.3). O
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4.4. Proof of Lemma 4.2. The function h, is harmonic in the ball {y :
|z —y|/p(z) < rfor 0 <r < 1. By the Harnack’s inequality,

1—r 147
———h,(z) < h,(y) < ———h,
T o) < hlo) < Trh (o)
(see, e.g. [GT98], p.29, Problem 2.6). If x € Eq,y € U, then |z —y| < §(z)/2 <
3p(z)/4 and (4.7) holds with r = 3/4. Therefore, for all x € E1,y € Uy, Chh,(z) <
hy(y) < CYhy(x) where C!; and C!/ depend only on d. This implies bounds

(4.7)

(4.8) E.(r.Uy) < Cllhy () / gz, y)dy
U,
and
(4.9) EW) = /U P )y > Clu () /U ooy

By 2.(1.6),

5(x)/2
@10) [ ety < Colw) [ o=yl ay = Colw) [ ar < Cow)pta)

P Uz

Fory e U,z € Ey,

p(y) > p(x) — |z —y| > p(x) —6(x)/2 > p(z)/4

and therefore

1
(4.11) [ oty = 3@ [y = Captaria)’
Uz Uz
Since §p < 3ppd?/2, bound (4.4) follows from (4.8)—(4.11). O

4.5. Proof of Lemma 4.3. By Theorem 2.1,
E(w)~! < Cap(I') < Cdiam(I")+.
Hence,
(4.12) diam(T) ™" < CE(v).

If © € Ey and y € Uy, then 6(y) > d(x) — |z —y| > §(z)/2 and p(y)
plx) + |z —y| < 26(x)/3+0(x)/2 = 75(x)/6. For all z € T,y € Uy, |y — 2|
|z — x| — |y — x| > d(x)/2 and, by 2.(1.10),

IV IA

N

ke(y,2) < Cp(y)ly — 2/~ < Co(x)' 7.
Therefore h, (y) < Cé(z)! =% and, by 2.(1.6),

(4.13) E:(v,U) < Cpla)d(z) =D / |z — y|*~ddy < Cop(x, T)5(z) 7.

x

If v < 0, then §(z)~" < diam(E)~" = C. If ¥ > 0, then v = 7. Hence, the bound
(4.5) follows from (4.12) and (4.13). O
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5. Notes

The capacity Cap defined by the formulae (1.3)-(1.5) with m defined by (2.1)

is related to a Poisson capacity CP,, used in [D] by the equation

Cap(T') = CP, ().
[The capacity CP,, is a particular case of the Martin capacity also considered in
[D]. The Martin kernel is a continuous function on E x E where E is a domain on
R? (not necessarily smooth) and E is the Martin boundary of E for an L-diffusion.]

Let Cap’ and Cap,, be the Poisson capacities corresponding to an operator L. It
follows from 2.(1.10) that, for every L, and Lo, the ratio Cap™* / Cap? is bounded
and therefore we can restrict ourselves by the Poisson capacities corresponding to
the Laplacian A.

The capacity CP, was introduced in [DK96b] as a tool for a study of removable
boundary singularities for solutions of the equation Lu = u®. It was proved that,
if £ is a bounded smooth domain, then a closed subset I' of JF is a removable
singularity if and only if CP, (") = 0. First, this was conjectured in [Dyn94]. In
the case o« = 2, the conjecture was proved by Le Gall [LG95] who used the capacity
Capa. Le Gall’s capacity Cabpa has the same class of null sets as CP,,.

An analog of formula (2.7) with Cap replaced by Cap? follows from formula
(3.34) in [Mse04] in the case L = A,a=2,d > 4 and xk = 4.

The results presented in Chapter 6 were published, first, in [DKO03].






CHAPTER 7
Basic inequality

In this chapter we consider two smooth domains D C FE, the set
(0.1) D*={x € D:d(xz,E\ D) >0}

and measures v concentrated on 0D N OFE. Our goal is to give a lower bound of
N.{Rg C D*,Z, # 0} in terms of N.{Rg C D*,Z,} and &,(v). This bound will
play an important role in proving the equation ur = wr in Chapter 8.

Preparations for proving the basic inequality include: (a) establishing relations
between Rp and Rp and between stochastic boundary values in E and D; (b)
expressing certain integrals with respect to the measures P, and N, through the
conditional diffusion II%.

1. Main result

THEOREM 1.1. Suppose that D is a smooth open subset of a smooth domain E.
If v is a finite measure concentrated on 0D NOE and if £,(v) < oo, then

(1.1)  N{Rp C D*,Z, # 0} > C(a)[No{Rp C D*, Z,}]*/ =D, (v) "/ (@=D)
where C(a) = (o — 1) T(a—1). !
REMARK. By 3.3.4.C, the condition &, (v) < co implies that v belongs to N
and to NP
2. Two propositions
2.1.

PROPOSITION 2.1. Suppose x € D, A is a Borel subset of 0D and A={RpnN
A =0}. We have P, A >0 and for all Z',Z" € Z,,

(2.1) Nofd, (e % —eZ")%
= —2log Po{e ?'=7" | A} +1og Po{e 2% | A} + log P,{e"??" | A}.
IfZ' = 7" Py-a.s. on A and if P,{A,Z' < 00} >0, then Z' = Z" N,-a.s. on A.
PRrOOF. First, P,.A > 0 because, by 3.(3.9), P, A = e~*2(*) Next,

(7 —e?2=201-e?"7)~(1-e?Z) - (1-e?).
Therefore (2.1) follows from 4.(3.28). The second part of the proposition is an
obvious implication of (2.1). O

Here I is Euler’s Gamma-function.

63
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2.2. Note that
(2.2) D* ={rx e D:d(z,A) >0}
where A =0DNE.

PROPOSITION 2.2. Let D C E be two open sets. Then, for every x € D, Xp
and Xg coincide Py-a.s. and Ny-a.s. on the set A={Rp C D*}.

PRrROOF. By the Markov property 3.2.1.D, for every Borel set B,
(2.3) P {A, e XeBY = P {A, Px, e XEB)},

Suppose z € D. Then Xp(D) =0 Py-a.s. by 3.2.2.A, and Xp(O0DNE) =0 P,-a.s.
on A because Xp is concentrated on Rp. Hence, Py-a.s., Xp(F) =0 on A and,
by 3.2.1.C,

(2.4) Px, e XB(B) = ¢~ Xn(B),
By (2.3) and (2.4)
(2.5) Po{A, e XeB)Y = p {4 e Xr(B)),

Put C; = ODNIE,Cy = OF \ Cy. By 3.2.2.A, P.{Xp(Co) = 0} = 1 and (2.5)
implies that Xg(Cy) = 0 P;-a.s. on A. On the other hand, if B C Cy, then
P{Xp(B) < Xg(B)} =1 by 3.2.1.E and therefore Xp(B) = Xg(B) Ps-a.s. on
A. We conclude that Xp = Xg P.-a.s. on A.

Now we apply Proposition 2.1 to Z' = Xp(B),Z" = Xg(B) and A=0DNE.
Note that, by 3.2.2.B, P,Z' = Kp(z,B) < oo. Therefore P,{A,Z'} < oo and
P.{A,Z"' < o} > 0. By Proposition 2.1, Z' = Z" Ng-a.s. on A. O

3. Relations between superdiffusions and conditional diffusions in two
open sets

~3.1. Now we consider two bounded smooth open sets D C E. We denote by
Z, the stochastic boundary value of h,(x) = [, kp(x,y)v(dy) in D; ITY refers to
the diffusion in D conditioned to exit at y € dD.

THEOREM 3.1. Put A= {Rp C D*}. For everyx € D,

(3.1) Re=Rp P-as and Ng-a.s. onA
and
(3.2) Z, =12, Pg-a.s. and Ng-a.s. on A

for all v € NE concentrated on D N OE.

PROOF. 1°. First, we prove (3.1). Clearly, Rp C Rg P.-a.s. and N -a.s. for
all z € D. We get (3.1) if we show that, if O is an open subset of E, then, for every
x €D, Xo = Xonp Pr-a.s. on A and, for every x € ON D, Xpo = Xonp Ni-a.s.
on A. For x € OND this follows from Proposition 2.2 applied to OND C O because
{RD C D*} C {ROQD C (Oﬂ D)*} For x € D \ 0, Px{XO = Xpno = 595} =1
by 3.2.1.C.

2°. Put

(3.3) D, ={xeD:d(z,E\D)>1/m}.
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To prove (3.2), it is sufficient to prove that it holds on A,, = {Rp C D}, } for all
sufficiently large m. First we prove that, for all x € D,

(3.4) Z, =2, Pgas. onAp.

We get (3.4) by proving that both Z, and Z, coincide Py-a.s. on A, with the
stochastic boundary value Z* of h, in D.
Let

E,={x€FE:dx,0FE)>1/n}, D,={x€D:d(z,dD)>1/n}.
If n > m, then
An CA, C{Rp C D} C{Rp, CD;}.

We apply Proposition 2.2 to D,, C E,, and we get that, P,-a.s. on {Rp, C D:} D
A, Xp, = Xg, for all n > m which implies Z* = Z,,.
3°. Now we prove that

(3.5) 7* =127, Pyas. on Ay.

Consider h® = h,, — h,, and Z° = Z* — Z,,. By 3.1.1.C, if y € D N JE, then
(3.6) kg(z,y) = kp(@,y) + We{mp < 7E,kE(Srp, 9)}-

Therefore

(3.7) 1O(2) = TL{&, € OD N E, hy(Ery)}-

This is a harmonic function in D. By 2.2.3.C, it vanishes on I';, = 0D N D}, =
OEND;,.

We claim that, for every € > 0 and every m, h® < € on Iyn = 0E, N D}, for
all sufficiently large n. [If this is not true, then there exists a sequence n; — oo
such that z,, € ['y,.n, and h%(z,,) > e. If z is limit point of z,,, then z € T, and
hO(z) > €]

All measures Xp, are concentrated, P,-a.s., on Rp. Therefore A,, implies
that they are concentrated, Py-a.s., on D},. Since I'y, ,, C D;,, we conclude that,

m?

for all sufficiently large n, (h°, Xp ) < e(1,Xp,) Ps-a.s. on A,,. This implies

(3.5).
4°. If v € M(OF) and Z, = SBV(h,), then, by 3.3.6.A and Remark 4.3.1,
(3.8) N, Z, = P, Z, < h,(z) < oco.

Note that P, A > 0. It follows from (3.8) that Z, < oo Py-a.s. and therefore
P.{A,Z, < o} > 0. By Proposition 2.1, (3.2) follows from (3.4) .
O
4. Equations connecting P, and N, with II}

4.1.

THEOREM 4.1. Let Z, = SBV(h,), Z, = SBV (u) wherev € NE and u € U(E).
Then

(4.1) P Z,e % = ¢ @Y e ()
and

(4.2) N, Z,e % = 1%e ®®)
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where

(4.3) O(u) = /OTE O [u(&e)]dt

PRrOOF. Formula (4.1) follows from [D], Theorem 9.3.1. To prove (4.2), we
observe that, for every A > 0, hy, +u € U™ by 2.3.D, and therefore

(4.4) N, (1 — e Av=2u) = _log P,e” Mv—2u

by Theorem 4.3.2. By taking the derivatives with respect to A at A = 0, ? we get
N,Z,e %" = P,Z,e %" | Pye ?x.

By 3.(3.4), Pre=%» = ¢~ *(*) and therefore (4.2) follows from (4.1). O

THEOREM 4.2. Suppose that D C E are bounded smooth open sets and A =
ODNE. Letv be a finite measure on 0D NOE, x € E and &,(v) < co. Put

wa(r) = N {Rp NA # 0},

ve(z) = wp(x) + Noe{RpNA=0,1—e 5%}
forx € D and let wp(z) = vs(x) =0 for x € E\ D. For every x € E, we have
(4.6) N, {Rp C D*, Z,} = II4{A, e ("N},

(4.5)

(4.7) N.{Rg C D*,Z, #0} = / 17 { A, e—@(vs)}ds
0

where ® is defined by (4.3) and
(4.8) A={mrg=mp}={& €D foralt<rg}.

ProoOF. 1°. If x € E \ D, then, N -a.s., Rg is not a subset D*. Indeed, Rg
contains supports of X for all neighborhoods O of x and therefore x € Rgp P,-a.s.
Hence, N;,{Rg C D*} = 0. On the other hand, II¥(A) = 0. Therefore (4.6) and
(4.7) hold independently of values of wp and vs.

2°. Now we assume that z € D. Put A= {Rp C D*}. We claim that

A={Rgp C D"} Ngas.

Indeed, {Rg C D*} C A because Rp C Rg. By Theorem 3.1, Ny-a.s., A C
{Rp = Rg} and therefore A C {Rp C D*}.

By Theorem 3.1, Rp = Rg and 7, = 7, Ng-a.s. on A. Therefore
49) N.{Rg C D*, Z,} = N.{A, Z,} = N.{A, Z,},
' N {Rp C D*, Zye "%} = No{A, Zye "%} = N, {A, Zye %}

By Theorem 4.3.4, vy = wp @ ug,. Let Zp, Z° and ZSU be the stochastic boundary
values in D of wy,vs and ug,. By 3.3.5.A, Zp = 0014 and therefore

(4.10) e~ 4 =1y .
By 3.3.3.B, Z* = Zx + Zs,. Hence,
(4.11) e 2 =1 e

2The differentiation under the integral signs is justified by 4.(3.8). [In the setting of a
Brownian snake formula (4.2) can be found in [Mse04] (see Proposition 2.31).]
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By (4.9), (4.10) and (4.11),

(4.12) N.{A, Z,} = N.{14Z,} = N, {Z,e %}
and
(4.13) No{A, Z,e 52} = No{1aZye 2} = Ny{Z,e 2}

By applying formula (4.2) to Z, and the restriction of wy to D, we conclude from
(4.12) that

(4.14) N.{A, Z,} = exp | — /OTD ¥ [wa(s))ds]
and, by 3.(1.16),
(4.15) N.{A, Z,} = IL{A, e~ 2(wa)y,

Analogously, by applying (4.2) to Z, and the restriction of v, to D, we get from
(4.13) and 3.(1.16) that

(4.16) No{A, Z,e 5%} = TIV{A, e~ P},
Formula (4.6) follows from (4.15) and formula (4.7) follows from (4.16) because
(4.17) No{A, Z, # 0} = lim N.{A, 1 - et}
and
(4.18) 1—e 4 = /t Z,e 5% ds.
0

5. Proof of Theorem 1.1
We use the following two elementary inequalities:

5A. Foralla,b>0and 0 < 8 < 1,
(5.1) (a+b)° <a® + 5.

PROOF. It is sufficient to prove (5.1) for a = 1. Put f(t) = (1 +¢)° — 5. Note
that f(0) =1 and f'(t) <0 for ¢t > 0. Hence f(t) <1 for ¢ > 0. O

5.B. For every finite measure M, every positive measurable function Y and
every 3 >0,
MY =Py > M) P (My)=P.

Indeed f(y) = y~# is a convex function on Ry, and we get 5.B by applying
Jensen’s inequality to the probability measure M/M (1).

PROOF OF THEOREM 1.1. 1°. If z € E'\ D, then, N -a.s., Rg is not a subset
D* (see proof of Theorem 4.2). Hence, both parts of (1.1) vanish.

2°. Suppose = € D. Since v € N, it follows from Theorem 4.3.4 that N, (1 —
e %) = ug,(z). Thus (4.5) implies vs < wp + us,. Therefore, by 5.A, v2~1 <
wi ! + w1 and, since g, < hgy = shy, ®(vs) < @(wp) + s*710(h,).

Put A= {Rg C D*}. It follows from (4.7) that

(5.2) N.{A, Z, # 0} > II%{A, / e 2(wa)=s T e (h) o1
0
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Note that [, e=25"ds = Ca'/? where C = 1 e='"dt. Therefore (5.2) implies
(5.3)  No{A, Z, #0}>CH4{A, e *@N@(h,) "= = cM(Y—P)

where f = 1/(a—1),Y = ®(h,) and M is the measure with the density 1 ¢~ ®(®)
with respect to IT¥. We get from (5.3) and 5.B, that

N.{A, Z, #0} > CM1)* P (MY)=F
= C[II%{ A, e*@(wA)}]a/(Otfl)[H;{A, efé(wA)q)(hU)}],l/(a,l)'

By (4.6), TTX{A,e~®@a)} = N {Rp C D*, Z,} and, since ITX{A, e~ *@2)®(h,)} <
II¥®(h,), we have

(5.4) N.{A, Z, # 0} > C[N{Rg C D*, Z,}]*/ D[4 ®(h,)] "1/ (@~D),
3°. By 3.1.3.A, for every f € B(E) and every h € H(E),
" ” td:mnh , td:OOHI , f(&)R(&) Yt
/ f(Edt / Mt < 7, f(E0)}dE / {t < 7, F(€)R(EN b

By taking f = ah®~! and h = h, we get

(5.5) 2P (hy,) = a&y(v).
Formula (1.1) follows from (5.4) and (5.5). O
6. Notes

The role of the basic inequality (1.1) in the investigation of the equation Lu =
u® is similar to the role of the formula (3.31) in Mselati’s paper [Mse04]. In our
notation, his formula can be written as

(6.1) N ARpNA=0,Z, #0} > [No{ReNA =0, Z,}]2[N,(22)]
which follows at once from the Cauchy-Schwarz inequality. A natural idea to write
an analog of (6.1) by using the Hélder inequality does not work because N, (Z5) =

0.
Theorem 1.1 was proved, first in [Dyn].

[e3



CHAPTER 8

Solutions wr are oc-moderate

In this chapter we consider the equation
Au=u% 1<a<?2

in a bounded domain E of class C* in R? with d > 4. We prove a series of theorems
leading to the equation wr = ur for every Borel subset I of dD. (Recall that ur
and wr are defined in Chapter 1 by (1.4), (1.5) and (1.6).)

1. Plan of the chapter
For every closed subset K of OF we put
E.K)={ze€ F:d(z,K) > rdiam(K)},
(1.1) pla, K) =p(a)d(z, K)~°,
By (z,K) ={z: |z — z| < nd(z,K)}
where p(x) = d(x,0F). We prove:

THEOREM 1.1. For every k > 0 there exists a constant C,, such that, for every
closed K C OF and every x € E,(K),

(1.2) wk (z) < Cylp(z, K)* Cap, (K)]Y/ (@1,

THEOREM 1.2. There exist constants Cy, > 0 and n,, such that, for every closed
subset K of OF and for all x € E(K), v € P(K), subject to the condition E,(v) <
o0, we have

(1.3) NAARE C By, (2, K), Z,} > Crp(z, K).

THEOREM 1.3. There exist constants C,, > 0 and n(k) with the property: for
every closed K C OF and for every x € E(K),

(14)  Ne{Rp C Ban(w(#, K), 2y # 0} > Cilip(, K)* Cap, (K)]/ (@~
for some v € P(K) such that £;(v) < oo.

THEOREM 1.4. There exist constants Cy, and n(k) such that, for every closed
K C OF and everyx € E,,(K), there is a v € P(K) with the properties: £,(v) < 00
and

(1.5) wi(x) < CyN{REg C BQH(K)(Q:, K), Z, # 0}.

THEOREM 1.5. There exists a constant C with the following property: for every
closed K C OF and every x € E there is a measure v € M(K) such that £,(v) < oo
and

(1.6) wi(x) < CN{Z, #0}.
THEOREM 1.6. For every closed K C OF, wgk is o-moderate and wg = ug.

69
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THEOREM 1.7. For every Borel subset I' of OF, wr = ur.
Theorem 1.1 follows immediately from Theorem 6.2.2 and Kuznetsov’s bound
(1.7) wi () < Cp(w, K) Cap(K) /(@Y

proved in [Kuz].

In Section 2 we establish some properties of conditional Brownian motion which
we use in Section 3 to prove Theorem 1.2. By using Theorem 1.2 and the basic
inequality (Theorem 7.1.1), we prove Theorem 1.3. Theorem 1.4 follows at once
from Theorems 1.1 and 1.3. In Section 5 we deduce Theorem 1.5 from Theorem
1.4. In Section 6 we get Theorem 1.6 from Theorem 1.5 and we deduce Theorem
1.7 from Theorem 1.6.

2. Three lemmas on the conditional Brownian motion
LEMMA 2.1. Ifd > 2, then
(2.1) Vg < Clz —y|* foralaz e E,yc dF.
PRrROOF. We have
Y{t <5} = /Eﬁt(x,z)dz

where p;(z, z) is the transition density of the conditional diffusion (&;,11¥). There-

fore
ﬁgTE :ﬁg/ 1t<‘rEdt:/ dt/ ﬁt(xaz)d’z:/ dZ/ ﬁt(x’z>dt
0 0 E E 0

Since fu(x, 2) = pu(w, 2)ks (2, y) ki (, ), we have
(2.2) M = kp(z, )" / dzg5(x, 2)he(zy).
E

We use estimates 2.(1.6) for gg and 2.(1.10) for kg. Since p(z) < |z — y| for
z € B,y € K, it follows from (2.2) that

(2.3) M7y < Clo—y|*T
where
I= / |z — 2|7z —y|7° d=
lz—y|<R

with R = diam(E),a = b =d—1. Sinced—a—b =2—-d < 0 for d > 2,
I < Clz—y[*>~ % [See, e.g., [Lan72], formula 1.1.3.] Therefore (2.1) follows from
(2.3). O
The following lemma is proved in the Appendix A.
LEMMA 2.2. For everyxz € E,

(2.4) I {sup & — o] > r} < Cp(a) /1.

t<tp
We need also the following lemma.

LEMMA 2.3. Let r = nd where 6 = d(z, K) and let 7" = inf{t : |& — x| > r}.
There exist constants C,, and s, such that

(2.5) TY{7" < 75} < Cu(n—s.)"¢ foralzec EJK),yc K andalln> s..
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PROOF. It follows from (2.4) that

(2.6) IL{r" <t} < Cp(x)/r.

Put 1, = &. By 3.1.3.B applied to h(z) = kg(z,y) and 7 = 77,
(2.7) Y{r" < 75} = kp(z,y) "ML {r" < 75, ks, y)}.
By 2.(1.10),

(2.8) ki (e, y) < Cp(ne)ne —y| ™7

Ifye K,z € E,(K), then

(2.9) |z —y| <d(z, K)+ diam(K) < s.0

where s, =1+ 1/k. Therefore

(2.10) e =yl = e — 2| = |z —yl =7 —Jx —y[ =7 — 550
We also have

(2.11) p(nr) < d(ny, K) < |np — x| +d(z, K) =r + 4.
If n > s, then, by (2.8), (2.10) and (2.11),

(2.12) ke(nr,y) < C(r+08)(r — 5,.8) ™7

By 2.(1.10) and (2.9),

(2.13) ke(z,y) = C'p(x)(s.8) 7.

Formula (2.5) follows from (2.7), (2.12), (2.13) and (2.6). O

3. Proof of Theorem 1.2

1°. Put B, = By (z, K), Uy, = B,y NE. By Lemma 6.3.2, there exists a smooth
domain D such that Us,, C D C Us,,. By Theorem 7.4.2,

(3.1) N {Rp C D*,Z,} = I"

where

(3:2) I = T {A(D), e~ * ()}

with

(3.3) AD) ={mp =718}, walz) =N {RpnNA#0D}
Note that

(3.9 1= [ kea) vy

where

IY = TY{ A(D), e~ ®*(wa)},
Clearly, A(Up,) C A(D) and therefore
Iy > Y A(U), eV},
Since et > e 11«1 for t > 0, we get
(3.5) IV > e MY AUn), ®(wp) < 1} = e H(1 = JY — LY)
where

(3.6) JY = MY{A(Up), ®(wp) > 1}, LY = Y [A(Un)].
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2°. The next step is to obtain upper bounds for J¥ and LY.

We claim that
(3.7) wa(2) < Cad(z,0Bay) "2V for z € Upp,.
Indeed, the function

uw(z) =N {RNBj,, #0} = —log P.{R C Ban}
belongs to U(Bay,) and, by 2.2.2.G,
u(z) < Cd(z, 8Bgm)*2/(o‘*1) for z € Bay,.

This implies (3.7) because Rp C R and A C BS,, and, consequently, wp < u.
Note that

(3.8) JY <T{A(Up), ®(wa)}.

If 2 € U, then d(z, BS,,) > md(x, K) and, by (3.7), wa(2) < C[md(x, K)]~2/(@=1),
This implies

(3.9) ®(wy) < Clmd(z, K)] ™ *15.

By Lemma 2.1 and (2.9),

(3.10) Y7s < Cloz —y]?> < C(1+1/k)%d(z, K)?* forye K,z € E.(K).
It follows from (3.8), (3.9) and (3.10) that

(3.11) JY <Cem™2 forye K,z € E.(K)

with C,, = C(1+ 1/k)2.
3°. We have A(U,,)° = {1y, < 78} = {77 < 75} where r = md and 7" =
inf{t : |& — x| > r}. By (3.6) and Lemma 2.3,

(312) LY =T1Y{r. < 75} < Cx(m —s,)~% forally € K,z € E.(K),m > s,.
4°. By (3.5), (3.11) and (3.12),
(3.13) Iy >Cyy forallye K,z € E (K),m > s,

where
Com =€ 1= Cum™2 — Cu(m — 5,) 9.
5°. Note that By, D Bz, D D D D* and, by (3.1),

(3.14) N {Rg C Bim, Z,} > IV.
By 2.(1.10) and (2.9),
(3.15) kp(z,y) > C s %(x,K) forallz € E.(K),ye€ K.

By (3.14), (3.4), (3.13)and (3.15),
NARE C Bym, Z} > C,C%mga(x, K) forallz € E (K),m > s,

where C},,, = C7's;%Cy . Note that Cl, — Cl/e as m — oo with C, =
C~1s_ . Therefore there exists m,, such that

1
NARE C Bam,, Zv}+ > §C;<p(3:, K) forall z € E(K).

This implies (1.3) with n,, = 4m,,. O
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4. Proof of Theorem 1.3

The relation (1.4) is trivial in the case Cap,(K) = 0. Suppose Cap,(K) > 0.
It follows from 6.(1.3) that, for some v € P(K),

(4.1) E(v)™t > Cap,(K)/2.

For this v, £, (v) <2 Cap,(K)™! < oo.

We use notation B,,, U,, introduced in the proof of Theorem 1.2. Suppose that
(1.3) holds for n, and Cy and consider a smooth open set D such that Us,, C D C
Uip,.. By the basic inequality 7.(1.1),

(4.2) N {RgC D*,Z, #0} > C(a)N.{Rg C D*, z,}*/(@= g, (v)~/(a=1)

if v is concentrated on OENJD and if £,(v) < co. Therefore, by (4.1), there exists
v supported by K such that £,(v) < oo and

(4.3) Ny {Rg C D*,Z, # 0} > C(a)N{Rg C D*, Z,}*/(@=1) Cap,_ (K)"/(@~1,

We have D* C By, (cf. part 5° in the proof of Theorem 1.2). Note that B,, NE C
D* and therefore, if R C B, , then Rg C D*. Thus (4.3) implies
(4.4)

NoARE C Bin,. Zy #0} > C(0)No{Rp C Bn,, Z,}*/*71) Cap, (K)"/ (7).

The bound (1.4) with n(k) = 4n, follows from (4.4) and (1.3). O

5. Proof of Theorem 1.5
Put
Vin = Bom(z, K),
Ki=KnVi={2€K:|r— 2z <2d(x,K)},
Kn=KNVp\Vm1)={z€ K:2"Yd(z,K) < |z — 2| < 2™d(z,K)}
for m > 1.

Note that
diam(K,,) < diam(V;,) = 2" d(x, K)

and )

d(x, Kp) > d(z,0Vy_1) = 2" Hd(x, K) > 1 diam(K,,)
and therefore © € E,(K,,) with k = 1/4. By Theorem 1.4 applied to K,,, there is
Um € P(K,,) with the properties: &;(vy,) < 0o and
(51) ’LUKm(x) < Can{RE - B2n(l€)(xa Km)a Zl/m 3& O}
We have d(z, Kp,) < d(x,0Vy,) = 2™d(z, K) and therefore, if 2P > 2n(x), then for

every positive integer m,
Bonr) (@, Kim) C Boptm (2, K) = Vpym.
By (5.1),
(5.2) wrc,, (2) < CeNg (Qm)
where

(5-3) Qm = {RE C Votm, Zv,, # 0}-
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We claim that
(5.4) Ne(Qm N Q) =0 form' >m+p+1.
First, we note that K, N V4, = 0. Next, we observe that
QmNQum C{Re CVosm, 2y, #0} C{REN Ky =0,2, , #0}.

Since vy, is concentrated on K, (5.4) follows from 4.(3.30).
If K, =0, then vy, = 0 satisfies (5.2). There exist only a finite number of m
for which K, is not empty. Therefore

o0
I/Zg Vm
1

is a finite measure concentrated on K and &;(v) < > Ex(vm) < 0.
By 4.(3.19),

1

wi(z) =N {Rg NK # 0}

and therefore
wK(x) < ZNx{RE NK,, # @} = Zme(x)'
1 1
By (5.2), this implies

(5.5) wi () < C Y Nu(Qum).

m=1

Every integer v > 1 has a unique representation m = n(p + 1) + j where j =
1,...,p+ 1 and therefore

p+1

(5.6) wic(@) < Cx Y Y Na(Qupr)s):

j=1n=0

It follows from (5.4) that No{Qyp+1)+; N Qn/(p+1)+j+ = 0 for n’ > n. Therefore,
for every j,

B.7) > Na{Quepr1)+i} = Na { U Qn(p+1>+j}

n=0 n=0

<N, {i Lo, # 0}} <N,{Z, £0)
n=0

because
ZZ”n(p+l)+j = Z Zvp = 2y
n=0 m=1
The bound (1.6) (with C = (p + 1)C,;) follows from (5.6) and (5.7). O

IMeasures vm and v depend on K and x.
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6. Proof of Theorems 1.6 and 1.7

6.1. Proof of Theorem 1.6. By Theorem 1.5, for every x € E, there exists
v =v,; € M(K) such that &, (v;) < co and

(6.1) wi () < CNg{Z,, # 0}.

Consider a countable set A everywhere dense in £ and put

=D v
zEA
By 2.2.3.E, the condition &,(v,) < oo implies that v, € N. By the definition of
NE, this class contains p and 7 = 0o - p. Since n does not charge OE \ K, u,, =0
on 0F \ K by 2.2.4.C and

(6.2) up < Wi
by 1.(1.5). By (6.1) and 4.(3.32),
(6.3) wi(x) < CNyH{Z,, # 0} <CN{Z, # 0} = Cu,(z) forz € A.

Since wx and u,, are continuous, (6.3) holds for all x € E and therefore Z,, <
CZ,,. Since Cn = n for all C > 0, we have CZ,) = Z¢y = Z,. Hence Zy,, < Zy.
By 3.(3.4), this implies wx < u, and, by (6.2), wx = u,. We conclude that wg is
o-moderate.

By 1.(1.4)-(1.5), uy < ux < wg. Hence ux = wg. O

6.2. Proof of Theorem 1.7. If K is a compact subset of a Borel set I, then,
by Theorem 1.6,
WK = U < Ur.
By 1.(1.6), this implies wr < ur.
On the other hand, if v is concentrated on I', then, by 2.2.5.B, u, < wr and,
by 1.(1.4), ur < wr.

7. Notes

The general plan of this chapter is close to the plan of Chapter 3 of Mselati’s
thesis. To implement this plan in the case of equation Au = u® with o # 2 we need
the enhancements of the superdiffusion theory in Chapters 4, 5, 6 and 7. Some of
Mselati’s arguments are used with very little modification. In particular, our proof
of Theorem 1.2 is close to his proof of Lemma 3.2.2 and the proof of Theorem 1.5
is based on the construction presented on pages 94-95 in [Mse02a] and pages 81-82
in [Mse04].

Kuznetsov’s upper bound for wg is a generalization of the bound obtained by
Mselati for a = 2 in Chapter 3 of [Mse02a].

We left aside the case d = 3. 2 It can be covered on the price of a complication
of the formulae. Mselati has done this for & = 2 and his arguments can be adjusted
to a < 2.

In [MV] Marcus and Véron proved that wx = uk in the case of a domain F
of class C? and the equation Au = u® for all @ > 1 (not only for 1 < a < 2). 3
To this end they establish upper and lower capacitary bounds for wg but they use

2Tt is well-known that for d < 3 all solutions are o-moderate and therefore we do not need
to consider these dimensions.
3The result was announced in [MV03].
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not the Poisson capacity but the Bessel capacity Cz/q,o on OF [which also belongs
to the class of capacities defined in Section 1 of Chapter 6.] The relations between
this capacity and the Poisson capacity proved in the Appendix B imply that the
capacitary bounds in [MV] are equivalent to the bounds used in the present book.

The paper [MV] contains also results on asymptotic behavior of wg at points
of K.



CHAPTER 9

All solutions are o-moderate

To complete the program described in the Introduction (see Section 1.2) it
remains to prove that, if Tr(u) = (T, v), then u < wr @ u,. To get this result, it is
sufficient to prove:

A. Our statement is true for a domain FE if, for every y € JF, there exists a
domain D C E for which it is true such that 0D N JFE contains a neighborhood of
y in OF.

B. The statement is true for star domains.

[A domain F is called a star domain relative to a point c if, for every = € E,
the line segment [c, 2] connecting ¢ and z is contained in E.]

1. Plan
Our goal is to prove:

THEOREM 1.1. If u is a positive solution of the equation

(1.1) Au=u* inFE
where 1 < a < 2 and E is a bounded domain of class C* and if Tr(u) = (T, v), then
(1-2) u < wr D uy.
Recall that, by 1.1.5.B,
(1.3) ur ®u, <u
and, by Theorem 8.1.7,
(1.4) wr = ur.
Thus it follows from Theorem 1.1 that
(1.5) u =ur ®uy, =wr Guy

and u is o-moderate because so are ur and u,,.
Denote by € the class of domains for which Theorem 1.1 is true and by €; the
class of domains with the property:

1A, If Tr(u) = (A,v),ACT C OF and v(OFE \T) =0, then u < wr.

PROPOSITION 1.1.
¢, C ¢

PROOF. Suppose that F € €; and Tr(u) = (I',v). By the definition of the
trace, u, < u (see 1.(1.7)). We will prove (1.2) by applying 1.A to v = u S u,.

Let Tr(v) = (A, u). Clearly, A C T'. If we show that u(0E \ T') = 0, then
1.A will imply that v < wr and therefore v ® v, < wr ® u,. By Lemma 3.3.1,
VDU, = Uu.

7
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It remains to prove that u(0E \T') = 0. By the definition of the trace,
(1.6) w(OE\T) =sup{\(OE\T): X € NE XT) = 0,uy < v}.

Since v(T') = 0 and v € NE, the conditions A € N, A\(T') = 0 imply (A\+v)(T") = 0,
A+ v e Ni. By Lemma 3.3.2, uyy, = uy @ uy, and, uxy, < v ® u, = u because
ux <wv. By 1.(1.7), A\+ v <wv. Hence A =0 and p(0E \T') = 0 by (1.6). O

1.1. In Section 2 we prove the following Localization theorem:

THEOREM 1.2. E belongs to €y if , for every y € OF, there exists a domain
D € &, such that D C E and 0D NOE contains a neighborhood of y in OF.

Theorem 1.1 follows from Proposition 1.1, Theorem 1.2 and the following the-
orem which will be proved in Section 3:

THEOREM 1.3. The class &, contains all star domains.

2. Proof of Localization theorem

2.1. Preparations. Suppose that D is a smooth subdomain of a bounded
smooth domain E. Put L = {z € 0D : d(x, E\ D) > 0}.
We need the following lemmas.

LEMMA 2.1. If a measure v € NP is concentrated on L, then v € NE.

PRrOOF. For every © € D, P.{Rr D Rp} = 1 and therefore K C L is Rp-
polar if it is Rp-polar. If n € NP, then n(K) = 0 for all Rp-polar K. Hence
n(K) = 0 for all Rg-polar K C L. Since 7 is concentrated on L, it vanishes on all
Rpg-polar K and it belongs to N by Theorem 3.3.5. O

It follows from Lemma 2.1 that a moderate solution u, in £ and a moderate
solution @, in D correspond to every n € N{ concentrated on L.

LEMMA 2.2. Suppose that a measure n € NP is concentrated on a closed subset
K of L. Let u, be the mazimal element of U(E) dominated by

(2.1) () = /K ke (a, y)n(dy)

and let @, be the mazimal element of U(D) dominated by

(22) (o) = [ kp(a.n(dy).
Then, for everyy € L,
(2.3) lim [u, (x) — @y, ()] = 0.

r—Y

Proor. It follows from 3.1.1.C that
(2.4) ha(x) = oy (@) + o Loy <rphy (6
This implies h, > iLn and
(2.5) ho(z) — hy(z) =0 asz —y.
The equation (2.3) will be proved if we show that

(2.6) 0 <y, — iy < hy—h, inD.
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Note that
(2.7) uy +Gguy =hy in B,
(2.8) iy + Gpil =hy inD
and
(2.9) u, +Gpuy =h" inD
where A’ is the minimal harmonic majorant of u, in D. Hence
(2.10) Uy — iy = hy — by — Gpul + Gpal in D.

By (2.7), Ggu;y < hy and therefore, by 3.1.1.A and the strong Markov property
of &,

TE

(2.11) (Gg —Gp)up(z) = HI/ Uy (&) ds

TD

= H$17D<TEGEU’$;(§TD) < Hx]‘TD<TEh’77(§TD) in D.
It follows from (2.4) and (2.11) that

(2.12) hy(z) — hy(z) > (Gg — Gp)ul(z) in D.

On the other hand, by (2.7) and (2.9),

(2.13) (Gg —Gp)uy = hy—h" inD.

By (2.12) and (2.13), h, < I’ in D. This implies @, < u, in D and Gpuy <

Gpuy < Gpug. Formula (2.6) follows from (2.10). O
LEMMA 2.3. Suppose that v’ is the restriction of u € U(E) to D and let

(2.14) Tr(u) = (A, v), Tr(u')=(N,V)

We have

(2.15) AN =ANL.

IfT DA and v(OE\T) =0, then v/(LNT°) = 0.

Proor. 1°. If y € 9D N E, then, I¥-a.s., u'(§) is bounded on [0, 7p)and
therefore ®(u') < co. Hence, A’ C L.
By Corollary 3.1.1 to Lemma 3.1.2,

(2.16) M4{P(u') < oo} = IY{P(u') < 00, 7p = 75} = I {®(u) < 00, 7p = 75}

for all z € D,y € L. Therefore ANL C A'. If y € A’, then TIZ{®(u') < 0o} = 0
and, since y € L, I¥{rp # 7} = 0 for all x € D. By (2.16), I¥{®(u) < 0o} = 0.
Therefore A’ C AN L which implies (2.15).

2°. Denote by K the class of compact subsets of L such that the restriction of
V' to K belongs to V. To prove the second statement of the lemma, it is sufficient
to prove that the condition

(2.17) K € K, n <v'and n is concentrated on K

implies that n(L NT¢) = 0. Indeed, by 1.1.5.A, v/ is a o-finite measure of class
NOD. There exist Borel sets B,,, T 9D such that v'(B,,) < co. Put L,, = B,, N L.
We have v'(L,, \ Kmn) < 1/n for some compact subsets K,,, of L,,. Denote by
Nmn the restriction of v/ to Ky, By 2.2.4.B, nm, € NP and, since 1,,,(0D) <



80 9. ALL SOLUTIONS ARE o-MODERATE

00, Nmn € NP by 2.2.4.A. Hence K,,, € K. The pair (K, Mmn) satisfies the
condition (2.17). It remains to note that, if 7y, (L NT¢) = 0 for all m,n, then

V(LNTe) =0.
3°. First, we prove that (2.17) implies
(2.18) neNE, n(A)=0, u,<u.

Suppose that (2.17) holds. The definition of K implies that n € N{. By
Lemma 2.1, n € N¥. By (2.15), A € A’ U(OE \ L). Hence n(A) = 0 because

n(A") < V/(A) = 0 and n is concentrated on K C L. It remains to check that
U, < u. We have 4, < 4,y < @ar ® G, and therefore, by 1.1.5.B, @, < u’. Since
Uy(x) < hy(z), we have

lim u,(z) =0 <wu(z) fory e dE\ K.

r—Y
By Lemma 2.2,

lim sup[uy(z) — u(x)] = limsuplu, (z) —u'(z)] <0 fory e L

By the Comparison principle 2.2.2.B, this implies u,, < u in F.
4°. By 1.(1.7), it follows from (2.18) that n < v and therefore n(L NT°) <
v(LNTe) <v(@FE\T)=0. O

2.2. Proof of Theorem 1.2. We need to prove that, if Tr(u) = (A, v) and if
v(I'“) =0 where A C T C OF, then u < wp.
The main step is to show that

(2.19) lim sup[u(x) — 2wr(x)] <0 for all y € OF.

r—Y

Fix y and consider a domain D € € such that D C F and dD N JF contains a
neighborhood of y in OFE. We use the notation introduced in Lemma 2.3. Clearly,
y € L. By the definition of €, 2.3.A and 2.2.5.B,

(220) u < WA B Uy = 7T(’LZ)A/ + ﬂl,/) < WA + Uy < 2Wp0.

Note that ' = ANL c TNLC (I'NL)U A where A is the closure of 9D N E. By
3.3.5.C, this implies

wpr < WraL +Wa
and, by (2.20),
(2.21) u < 2Wrng + 2Wa4.
Since Rp C R, 4.(3.19) implies that, for every Borel subset B of L,
(2.22) W =N {RpNB#0} <N {RgNB#0} =wp onD.
Thus Wrnr < wrar < wp and (2.21) implies v’ < 2wp + 2w4. Hence,

lim sup [u(z) — 2wr(z)] = limsup [v/(z) — 2wr(x)] < limsup wa(z).
r—y,c€EE r—y,x€D r—y,x€D
By 2.2.5.A, this implies (2.19). It follows from the Comparison principle, that
u < 2wrp in E. Therefore Z, < 2Zp where Zr = SBV(wr). By 3.3.5.A, 2Zr = Zp
and, by 3.(3.4), u =LPT(Z,) <LPT(Zr) = wr. O
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3. Star domains

3.1. In this section we prove Theorem 1.3. Without any loss of generality we
can assume that F is a star domain relative to ¢ = 0.
We use the self-similarity of the equation

(3.1) Au=u* in E.
Let 0<r <1.Put B, =rE, f=2/(ac — 1) and
(3.2) fr(x) =rPf(rz) forxz e E,fc B(E).

Ifu € U(E), then u, also belongs to U(E). Moreover, for r < 1, u, is continuous
on F and u, — w uniformly on each D € FE as r T 1. If f is continuous, then, for
every constant k > 0,

(3.3) Ve(kf)(x) = rPVg, (kf)(rz) forallz € E.

This is trivial for » = 1. For r < 1 this follows from 2.2.2.A because both parts of
(3.3) are solutions of the equation (3.1) with the same boundary condition u = k f,
on OF.

3.2. Preparations.

LEMMA 3.1. Every sequence uy, € U(E) contains a subsequence wy, which con-
verges uniformly on each set D € E to an element of U(E).

PRrROOF. We use a gradient estimate for a solution of the Poisson equation
Au = fin D (see [GT98], Theorem 3.9)

(3-4) sup(p|Vul) < C(D)(sup |u| +sup(p?| f]))-
D D D
Suppose D € E. By 2.2.2.E, there exists a constant b such that all v € U(FE) do
not exceed b in D. By (3.4),
sup(p|Vul|) < C(D)(b + diam(D)?*b*) = C'(D).
D

If D € D, then there exists a constant a > 0 such that |z —y| > aforallz € D,y €
0D. Therefore, for all z € D, p(z) = d(x,0D) > a and |Vul|(z) < C'(D)/a. The

statement of the lemma follows from Arzela’s theorem (see, e.g., [Rud87], Theorem
11.28). O

LEMMA 3.2. Put

(3.5) Y, = exp(—Zy,).

For every v > 1,

(3.6) PlY, —Yi|" -0 asr1l.
PROOF. 1°. First we prove that

(3.7) lim Py (Y, — ¥{)* = 0

for every positive integer k. If (3.7) does not hold, then

(3.8) lim Py (V) —Y{)? >0

for some sequence 7, T 1.
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Note that
(3.9) Py(YF —Y)? = F. + 1 - 2G,
where F,. = PyY?* G, = Py(Y,Y1)F. By 3.(2.6) and (3.3),
(3.10) F, = Py exp[—2k{u,, Xg)] = exp|~Vi(2ku,)(0)] = exp[~r°V, (2ku)(0)]
= {exp[~Va, (2ku)(0)]}"" = {Po exp(~2k{u, X))}

Since (u, Xg, ) — Zy Po-a.s., we have

(3.11) F, — F).
By (3.10) and (3.11),
(3.12) Pye~ 2w X))
Put
(3.13) vp(x) = —log Pp(Y, Y1)* = —log P, exp|—k(Z., + Z.)].
By 3.3.4.A, k(Z,, + Z,) € 3 and
(3.14) v < k(up +u) in E.

By Theorem 3.3.3, v, € U(F). By Lemma 3.1, we can choose a subsequence of the
sequence vy, that converges uniformly on each D € E to an element v of U(E).
By changing the notation we can assume that this subsequence coincides with the
sequence vy, . By 3.(3.4), Pre=%> = ¢~*(®) and therefore

(3.15) G, = e (0 70 = ppe=%v,

By passing to the limit in (3.14), we get that v < 2ku. Therefore Z, < 2kZ, and
(3.16) Pye=%v > Pye 2F%u = lim Poe*2k<“vXErn>.

It follows from (3.15), (3.16) and (3.12), that lim G,, > F;. Because of (3.9) and
(3.11), this contradicts (3.8).

2°. If v < m, then (Py|Z|")Y/7 < (Pp|Z|™)*/™. Therefore it is sufficient to
prove (3.6) for even integers ¥ = m > 1. Since 0 < Y; < 1, the Schwarz inequality
and (3.7) imply

Po|YFYm =k —vim| < (Roy 2O Ry (VE — Y)Y 0 as L

Therefore

Po|Y, = V1™ = Py(Y, — V7)™ Z() 1) R Po(Y, )Ry

k=0
—>Z(Tg> m kPYl =0.

k=0
O

LEMMA 3.3. For every v € N, for every 1 <~y < a and for all x € E,
(3.17) P.Z) <1+ cihy(z)? + c2Gp(hd)(z)
where ¢; = 1ev/(2 —7) and ¢z = ey/(a — 7).
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PROOF. For every probability measure P and for every positive Z
(3.18)
o0

Z )
PZY = P/ NN = / P{Z > Xy tdr <1 +/ P{Z > \}yN .
0 0 1
Function
EN=er=14X A>0

is positive, monotone increasing and £(1) = 1/e. For each A > 0, by Chebyshev’s
inequality,

(3.19) P{Z > X} =P{Z/ N> 1} = P{E(Z/)) > 1/e} < eq(1/]N)
where g(\) = PE(AZ). By (3.18) and (3.19),

1
(3.20) PZY < 1+e/ AN TLg(N)dA.
0
We apply (3.20) to P = P, and to Z = Z,,. By 3.(3.13) and 3.3.6.B,
(3.21) q(\) = Pee ™ — 1+ \P.Z,

= eiu*”(x) -1+ )\hl,(x) = 5(’(1,)\1,) + Ay — uny.

Since £(A\) < 222, we have

1
2

(3.22) E(ury)(x) < lu>\l,(33)2 <

5 Nh, (x)%

By 3.3.6.B,
(3.23) Ay —uxny = Ge(us,) < A*Gg(hd).
Formula (3.17) follows from (3.20), (3.21) (3.22) and (3.23). O

LEMMA 3.4. Let B, be a sequence of Borel subsets of OE. If wg, (0) >~ >0
then there exist vy, € P(By) NNE such that hy, (0) and Ge(he )(0) are bounded.
For every 1 <~ < a, PyZ)  are bounded and, consequently, Z,, are uniformly Py-
integrable. The sequence Z,, contains a subsequence convergent weakly in L' (Pp).
Its limit Z has the properties: PoZ > 0 and uz(z) = —log Pre™% is a moderate
solution of the equation Au = u® in E. There ezists a sequence Zy, which converges
to Z Py-a.s. for all x € E. Moreover each Zy, is a convez combination of a finite
numbers of Z,,, .

PRrROOF. It follows from the bound 8.(1.7) that
(3.24) wp(z) < C(z) Cap, (B)Y/ (@Y

where C'(z) does not depend on B. If wg, (0) > =, then for all n, Capy(B,) > 6 =
[v/C(0)]*~t. By 2.(4.1), there exists a compact K,, C B,, such that Cap,(K,) >
d/2, and, by 6.(1.3), Gg(hy )(0) < 3/§ for some v, € P(K,). It follows from
2.2.3.E that v,, € NE.

We claim that there exists a constant ¢ such that

(3.25) h(0) < c[Gg(h®)(0)]*/

for every positive harmonic function h. Indeed, if the distance of 0 from JF is equal
to 2¢, then, by the mean value property of harmonic functions,

(3.26) ho) = et / h(y) dy < (crez) " /B 950, »)h(y) dy

€ €
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where B. = {z : |z| < €}, ¢; is the volume of B, and ¢z = ming(0,y) over B.. By
Holder’s inequality,

(3.27) /B 90, )h(y) dy < | /B 90, 9)h(y)® dy]/e| /B 9(0, ) dy]V

where o/ = a/(a — 1). Formula (3.25) follows from (3.26) and (3.27).
By (3.25),

hy, (0) < e[GE(h, )(0)]1/* < c(3/6)/*

and (3.17) implies that, for every 1 < v < «a, the sequence PyZ) is bounded. This
is sufficient for the uniform integrability of Z,, (see, e. g., [Mey66], p.19).

By the Dunford-Pettis criterion (see, e. g., [Mey66], p. 20), Z,, contains
a subsequence that converges weakly in L'(P)). By changing notation, we can
assume that this subsequence coincide with Z,,, . The limit Z satisfies the condition
PyZ > 0 because PyZ,, — PyZ and, by 3.3.6.B,

PoZ,. :/ k2(0, y)vn(dy) > inf ku(0,y) > 0.
Yo oF

There exists a sequence Z,, which converges to Z in L' (Py) norm such that each Z,,
is a convex combination of a finite number of Z, . (See, e. g., [Rud73], Theorem
3.13.) A subsequence Zi of Zm converges to Z Py-a.s. By Theorem 5.3.2, this
implies that Zk converges to Z Pp-a.s. for all z € E. By 3.3.4.B and 3.3.4.C, uy
is a moderate solution. O

3.3. Star domains belong to the class €. By Proposition 1.1, to prove
Theorem 1.1 it is sufficient to demonstrate that every star domain F satisfies the
condition 1.A.

We introduce a function

A TE
(3.28) Qo) = Mexp(~ [ e de),
0
Consider, for every € > 0 and every 0 < r < 1, a partition of 0F into two sets

(3.29) Are={y€dF:Q.(y) <e} and B..={y€0F:Q.(y) >¢}

and denote by I, . and J, . the indicator functions of A, . and B, .. Let us inves-
tigate the behavior, as r T 1, of functions

(3.30) fre =Ve(u:l..) and g = Ve(u,J;.).

We assume, as in 1.A; that

(3.31) Tr(u) = (A,v),ACT C OFE and v is concentrated on I’
and we prove:

LEMMA 3.5. Put

Se (:E) = hstlup Gr,e (:E) :
ks

For every € > 0,
(3.32) se < wr.
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LEMMA 3.6. Fiz a relatively open subset O of OF which contains I' and put
Cre=A4,.N(OFE\0O), qle)= limTilnfwcr,E(O).

We have

(3.33) limg(e) = 0.
el0
The property 1.A easily follows from these two lemmas. Indeed, f.. and g,
belong to U(E) by 2.2.1.E. By 3.3.5.C, wa,, < wo+wg,, because A,.. C OUC,..
It follows from Lemma 3.6 that
liminfliminfw,, , < wo(x).

e—0 rT1

Since this is true for all O D T,

(3.34) liminfliminfwy, . < wr(z)
e—0 rTl ’
by 3.3.5.B.
Since u € U(FE) and E, € E, we have Vg_(u) = v in E, and, by (3.2) and (3.3),
(3.35) Ve(u,) =u, in E,.
By (3.35) and 2.2.1.D,
(3.36) ur = Ve(ur) < fre +gre in Ey.

Since (urla, ., Xg) =0on {Xg(A,.) =0}, we have f,. < —log P.{Xg(A,.) =0}
and, since Xg is supported, P,-a.s., by Rg, we get

(3.37) fre < —logPL{RENAr. =0} =wa, ..
We conclude from (3.36), (3.32), (3.34) and (3.37) that
(3.38) u(z) < lim iélfhrIlTilanAr,s + wr(z) < 2wr(z).

E— T

By 3.3.5.A, Zr = SBV(wr) takes only values 0 and oo, and we have Z,, < 2Zp = Zr.
which implies that u < wr.
It remains to prove Lemma 3.5 and Lemma 3.6.

3.4. Proof of Lemma 3.5. Consider harmonic functions h, . = Kg(u,J;¢).
By Jensen’s inequality, Pye~{FXp) > =P (F:XE) for every F > 0. By applying this
to F' = u,J, ., we get

(3.39) Gre < .

First, we prove that
(3.40) hre(0) < u(0)/e
By applying 3.1.1.B to v = u, and a(u) = u*~! we get
(3.41) ur(y) = yur (&)Y
where

By (3.41) and Lemma 3.1.1,
ur(0) = Mou, ()5 2Y = Kp(urQ,)(0).
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Since eJy . < Qr, we have
ehr(0) = Kp(eurJre)(0) < Kg(u,Qr)(0) = u,q(0)

and (3.40) follows because u,.(0) = r?u(0) < u(0).
To prove that (3.32) holds at = € E, we choose a sequence r,, T 1 such that

(3.42) Grpe() = sc().

The bound (3.40) and well known properties of harmonic functions (see, e. g., [D],
6.1.5.B and 6.1.5.C) imply that a subsequence of h, . tends to an element h. of
‘H(E). By Lemma 3.1, this subsequence can be chosen in such a way that g, . —
ge € U(E). The bounds ¢, < h,. imply that g. < h.. Hence g. is a moderate
solution and it is equal to u,, for some p € N¥. By the definition of the fine trace,
v(B) > p/(B) for all i/ € N such that /(A) = 0 and u,s < u. The restriction
w of pto O = OF \ T satisfies these conditions. Indeed, ' € N by 2.2.3.A;
' (A) = 0 because A C I'; finally, u,y < u, = g < u because g, < Vg(u,) = u,
by 2.2.1.B and (3.35). We conclude that p/(0O) < v(O) and p/ = 0 since v(O) = 0.
Hence p is supported by I' and, by 2.2.5.B, g.(z) = uu(z) < wr(z). By (3.42),
Se(z) = go(x) which implies (3.32). O

3.5. Proof of Lemma 3.6. 1°. Clearly, g(¢) < ¢(&) for ¢ < & We need
to show that ¢(0+) = 0. Suppose that this is not true and put v = ¢(0+)/2.
Consider a sequence &, | 0. Since ¢q(e,) > 27, there exists r, > 1 — 1/n such that
we,, ., (0) > v. We apply Lemma 3.4 to the sets B, = C,, .,. A sequence Z,,
defined in this lemma contains a weakly convergent subsequence. We redefine r,
and ¢, to make this subsequence identical with the sequence Z,, .

2°. The next step is to prove that, if Z, — Z weakly in L'(P,), then the
condition (3.31) implies

(3.43) P,Ze Zu =

for all x € E. By Theorem 5.3.2, since Z and Z, are F-p_-measurable, it is
sufficient to prove (3.43) for z = 0.
We apply Theorem 7.4.1 to v, and u, = u,,. By 7.(4.1),

PyZ,, e Zun = e*“"(O)Hg"e*{)(“")

3.44 N
(344 < et = [ kg0, ) itge v, )
OF

where @ is defined by 7.(4.3). Since ¢/(u) = au®~! > u*~!, we have

e < Qr, ()
where @, is defined by (3.28). Since v,, € P(B,,) and since @, < &, on B,, the
right side in (3.44) does not exceed

En/ kg(0,y)vn(dy) = enhy, (0).
OF
By Lemma 3.4, the sequence h,,, (0) is bounded and therefore
(3.45) PyZ,, e %= —0 asn— oo.
Let 1 < v < a. By Hélder’s inequality,
|PoZy, (€7 %em — e~ %) < (PoZ), )/ [Poe™%un — e Zu U
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where v/ = v/(v — 1) > 1. By Lemma 3.4, the first factor is bounded. By Lemma
3.2, the second factor tends to 0. Hence

(3.46) PyZ,, e % — PyZ, e % — 0.
Since Z,,, — Z weakly in L*(Pp),
(3.47) PyZ,, e %" — PyZe e,

(3.43) follows from (3.45), (3.46) and (3.47).
3°. We deduce from (3.43) that

(3.48) PA{Z=0t=1

which contradicts the relation P,Z > 0 which is the part of Lemma 3.4. The
contradiction proves that Lemma 3.6 is true.

Let A, T, v be defined by (3.31) and let O be the set introduced in Lemma 3.6.
We have

(3.49) AcCTco.

By Lemma 3.4, uz(r) = —log P,e~? is a moderate solution and therefore uz = Uy
for some pu € Nf. The statement (3.48) will be proved if we show that y = 0.

It follows from (3.43) that Z = 0 P,-a.s. on {Z, < oo}. Therefore P,{Z, <
Zy} =1 and

(3.50) Uy < u.

Note that v, is supported by B, C K = dE \ O. By 2.2.5.B, u,, = 0 on O and,
by 1.(1.5), uy, < wg. Therefore

Zun = SBV(’UJUTL) S SBV(’LUK) = ZK.

By Lemma 3.4, there exists a sequence of Zk such that Zk — Z P-a.s. for all
z € FE and each Zk is a convex combination of a finite number of Z,, . Therefore,
Py-as., Z, =7 < Zg and u, < wg. By 2.2.5.A, wg =0 on O. Hence u, =0 on
O and, by 2.2.3.D, u(O) = 0. By (3.49)

(3.51) pu(A) = 0.

By the definition of the trace (see 1.(1.7)), (3.51) and (3.50) imply that p <
By the condition (3.31), v(OE \T) = 0. Thus u(0E\T) = 0 and u(0F)
#(0) + p(OF\T) = 0.

OIA =

4. Notes

The material presented in this chapter was published first in [Dyn04d]. The
contents is close to the contents of Chapter 4 in [Mse04]. The most essential change
needed to cover the case o # 2 can be seen in our Lemmas 3.2, 3.3 and 3.4.






APPENDIX A

An elementary property of the Brownian motion

J.-F. Le Gall

We consider the Brownian motion (&, II,) in R? and we give an upper bound
for the maximal deviation of the path from the starting point x before the exit from
a bounded domain E of class C?.

LEMMA 0.1. For every x € E,
(0.1) I, {sup |& — x| >r} < Cp/r
t<tp

where p = d(x,0F).

PROOF. 1°. Clearly, (0.1) holds (with C' = 8) for r < 8p and for r > diam(F).
Therefore we can assume that 8p < r < diam(F). Without any loss of generality
we can assume that diam(E) = 2.

2°. There exists a constant a > 0 such that every point z € F can be touched
from outside by a ball B of radius a. We consider a z such that |z — z| = p and we
place the origin at the center of B. Note that |z| = a + p. Put

O'a:inf{tl |§t| SCL}, TT:inf{t; |§t_x| ZT}
We have
{sup |& —z| >r} C{r" <mg} C{r" <o,} I-as.
t<tp
and therefore we get (0.1) if we prove that
(0.2) I {r" < o4} < Cp/r.

3°. Let § > 0 be such that 166(2 + a)? < 1 (note that § depends only on a).
Let I' be the cone

P={yeRt sz y> (-},
where x - y stands for the usual scalar product. Introduce the stopping time
U=inf{t>0:|&|>a+ g},
V=inf{t>0:&¢T}.
We first claim that
(0.3) {t" < 0.} C{UAV <04}
To prove (0.3), it is enough to verify that
' (B(0,a+ g)\B(O, a)) C Bz, )

89
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(B(y,r) = By(y) is the open ball with radius r centered at y). However, if y belongs
to the set T'N (B(0,a + £)\B(0,a)), then

v —yl? = 22+ [yl? =22y < o] + [y — 201 = 6r*)laly]
2
= (19l — la)? + 20r%alyl < 7 +260*(a +1)? < r?

from our choice of 6. This gives our claim (0.3).

The lemma will then follow from (0.3) if we can get suitable bounds on both
II,{U < 04} and II,{V < 0,}. First, from the formula for the scale function of the
radial part of Brownian motion in R,

a27d _ (a+p)27d
Hm{U<Ua}:a2fd_(a+%)2*d_ T,

with a constant C’ depending only on a.

To bound II,{V < o,}, consider the spherical domain Q = I' NS¢ (where
S? is as usual the unit sphere in RY). Denote by A the first eigenvalue of the
operator — %Asph in Q with Dirichlet boundary conditions (here Ay, is the spherical
Laplacian), and let ¢ be the corresponding eigenfunction, which is strictly positive
on (). Note that
(0.4) A

< C
<5
with a constant ¢ depending only on the dimension d, and that ¢ attains its maxi-
mum at z/|z| (by symmetry reasons).

Let v = £ — 1. From the expression of the Laplacian in polar coordinates, it is

2
immediately seen that the function

[TV (L)
[l
is harmonic in I'. Since u vanishes on JI', the optional stopping theorem for the
martingale u(&;) (at the stopping time o, A V') implies
—v—\v T —v—v
|| () = u(e) = Mofu(éo,) Lo, <vy} < TMe{oa < V}a T2 sup ¢ (2).

|z 2€Q

u(y) = ly

Recalling that ¢ attains its maximum at x/|z|, we obtain
a v+Vr242)
a+ p)

3

{0, <V} > (

and thus

a ) ERVIZESIN

a—+p
From this inequality and the bound (0.4), we easily derive the existence of a constant
C" depending only on a such that

M{V < 0.} < c”(g).

MV <o} <1-(

This completes the proof of the lemma. (I
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Relations between Poisson and Bessel capacities

I. E. Verbitsky

We show that the Poisson capacities Cap(T") introduced in Chapter 6 are equiv-
alent to [Cap; ,(I)]P~*, where I = 2, p = o/ and Cap,,, are the Bessel capacities
(used in [MV03], [MV]). It is easy to show that, if 1 < d < 2%, then, for every
nonempty set I' on the boundary of a bounded smooth domain, both Cap(T") and
Cap, ,(I') are bounded from above and from below by strictly positive constants.
Therefore it suffices to consider only the supercritical case d > Z‘—Jj}

By using the straightening of the boundary described in the Introduction, one
can reduce the case of the Poisson capacity Cap on the boundary E of a bounded
C?*-domain E in R? to the capacity (/35&) on the boundary Fy = {x = (21,...,24) :
xq = 0} of the half-space Ey = R x (0,00) (see Sec. 6.3). We will use the
notation 6.(3.1)-6.(3.2):

E={z=(z1,...,2q4): 0 <xgq <1},
r(z) = d(z, Eo) = 4,
k(z,y) = r(x)le —y|~", = €E, ye Ey,
m(dx) = r(z)dz, x€E.

For v € M(Ey), we set

(0.5) (f@)(x):/E k(z,y)v(dy), E(V):/E(f@)adm.

The capacity Cap on Ey associated with (k,7m) is given by any one of the equivalent
definitions 6.(1.3), 6.(1.4), 6.(1.5). According to the second definition (which will
be the most useful for us),

(0.6) Cap(T) = [sup {v() : v € M(T), E(v)<1}"

The Bessel capacity on Ey can be defined in terms of the Bessel kernel !

1 o a xlz12 ¢ dt
G _ t— 2 e ¢t ir— Ey.
@ = G | ¢ porek

For every [ > 0,p> 1 and I' C Ej,

(0.7) Cap, ,(I') = inf { : [f(@)]Pdx: feB(Ey), Gif>1 onl}

ISee, for instance, [AH96] or [Maz85].
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where
Gil(w) = Gux f(@) = [ Gilw =) F®) .
We need the asymptotics ([AH96], Sectic())n 1.2.5) 2
(0.8) Gi(x) =< x|, as|z|—0, 0<l<d-1,
(0.9) Gi(z) < log é, as |z =0, l=d-1,
(0.10) Gi(z) <1, as|z|—0, I>d-1,
(0.11) Gi(z) = |z|=D/ 27l as 2] — 00, 1> 0.

THEOREM 0.1. Suppose that o > 1 and d > z—f} Then there exist strictly
positive constants C1 and Co such that, for allT' C Ey,

(0.12) Cy[Capz ,(1)]*~" < Cap(I') < Cy [Capz , (1)]* 7.

To prove Theorem 0.1, we need a dual definition of the Bessel capacity Cap, ,,.
For v € M(Ey), the (I, p)-energy & ,(v) is defined by

(0.13) Eip(v) = / (Gw)? da.
Ey
Then Cap, ,(I') can be defined equivalently ([AH96], Sec. 2.2; [Maz85]) by
(0.14) Caplyp(F) =[sup{rT): ve M), &) <1}P.
For I > 0, p > 1, define the (I, p)-Poisson energy of v € M(FEy) by

(0.15) Ep(v) = /E [Kv(x))” r(z) " da.

LEMMA 0.2. Let p > 1 and 0 <l < d— 1. Then there exist strictly positive
constants C1 and Co which depend only on 1, p, and d such that, for allv € M(Ey),
(0.16) C1&1p(v) < Ep(v) < C2 &1, (V).

PRrROOF. We first prove the upper estimate in (0.16).

PROPOSITION 0.1. Let o > 1. Suppose ¢ : (0,00) — (0,00) is a measurable
function such that

(0.17) b(y) < c /Oy¢<s>d—j, y>0.
Then,
(0.18) /0 o)L < e ( /0 ’ as(s)%)a, y>0.

PROOF. We estimate:

v e 1T s e s
/0¢><>[fos¢(t>%] SRR RO
dt

Since s < y in the preceding inequality, one can put foy ¢(t) L in place of fos o(t) &
on the left-hand side, which gives (0.18).

2We write F(z) < G(z) as z — a if ggz; — cas ¢ — a where c is a strictly positive constant.
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Let = (¢/,y) where ' = (z1,...,24-1), and y = x4 = r(z). We now set
#(y) = y Kv(a',y). Tt follows from (0.5) and the expression for k(z,y) that, if
§ < s <y, then

o(y) < co(s)
where ¢ depends only on d. Hence, ¢ satisfies (0.17). Applying Proposition 0.1
with a = p’, we have

’

1 1 p
~ ’ ’ d ! fayd d
/ [Ku(a,y))” g < '~ (/ Kv(z',y) ¢ —y> :
0 Yy 0 Yy

Integrating both sides of the preceding inequality over Ej, we obtain

Ep(v) = / [Ro(@) r(z)? " de

’ 1 ~ dy P
<cP 71/ (/ Kv(z',y) yl —) dz’.
Ep 0 Y
By Fubini’s theorem,

TR YL gy g———

For |/ — t| > 1, we will use the estimate

1 l
(0.19) / 4 _dy < ,C .
o [w—nrrE " =]

For |2/ — t| < 1,

1 Y

/0 S o
in the case 0 < [ < d — 1; the left-hand side of the preceding inequality is bounded
by C 1ogﬁ ifl=d—1, and by C'if [ > d — 1, where C depends only on [ and
d. Using asymptotics (0.8)—(0.10), we rewrite the preceding estimates in the form

1 l
(0.20) /y—ddySCGlﬂx’—tD, |z’ —t| < 1.
o [(@—1) 2

Thus, by (0.19) and (0.20),

’

Ep(v)<C . </|x/t|<1 Gi(Jz" —t|) I/(dt)) dx

’

p
+C / Ij(dt)d dz’.
Bo \J|w—t|>1 |7/ — 1]

The first term on the right is obviously bounded by & ,(v). To estimate the second
term, we notice that

) dr v(B(z', 1))
21 — < _—
(0.21) /|x/ t|>1 |$ - t|d =¢ / s d-1

T r>1 T

We will need the Hardy-Littlewod maximal function on Ey = R4~1:

1
M(f)(x) = sup —— / F(0)]dt, @€ B,
r>0 T B(z,r)



94 A. RELATIONS BETWEEN POISSON AND BESSEL CAPACITIES

which is a bounded operator on LP(Ep) for 1 < p < oc. 3
Hence,
1

1M (Gl () < C NG|t (1) = C ELp ()7
where C' depends only on p. It is easy to see that
v(B(@',r))

pd—1_ 7

M(Gw)(z") > C sup

r>1

'€ Ey.

Thus, by the preceding estimates and (0.21), it follows

’

p
v(dt) , /
dz' < M Ly <
/Eo </|m/t|>1 EZ —t|d> v < CIMG) L g,y < Cp(v),

where C' depends only on [, p, and d. This completes the proof of the upper estimate
in (0.16).
To prove the lower estimate, notice that, for every 0 < r < 1,

p
[ ([ v 1
0 ’ Yy Jr [t (J27 =12 +92)% Yy

1
> C(B(, ) / gy W o p
r Y

2

provided 0 < I < d — 1. This implies

<
~—
=
]

1
= / ’ d ’
/ [Kv(z',y)]” y'* Zy > C M) (2P, 2 ek,
0

where
M(v)(2') = sup r'="1u(B(',r)), '€ Ep.
0<r<1
Consequently,
(0.22) Ep(v) = ClIM ()|

LY (Eo)"
By a theorem of Muckenhoupt and Wheeden [MW74] (or, more precisely, its inho-
mogeneous version [AH96], Theorem 3.6.2),

(0.23) 1MW), > CllGiw)]]

p p’ _
Lp/(E()) = Lp/(E()) = Cglyp(l/).
Thus,

Ep(v) 2 ClIMW)IIL, 1 2 C E1p(v),

which gives the lower estimate in (0.16). The proof of Lemma 0.2 is complete. [

We now complete the proof of Theorem 0.1. The condition d > 2L implies

a—1
that 0 <1 < % <d—1forl:% and p = o’/. By Lemma 0.2,
Cr&z (V) <EW) < €z o (v)

where £(v) is defined by (0.5), and C; and Cy are strictly positive constants which
depend only on o and d. By combining the preceding inequality with definitions
(0.6), (0.14), we complete the proof. O

3See, e. g., [AH96], Theorem 1.1.1.
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Notes

Lemma 0.2 holds for all [ > 0. The restriction 0 < [ < d — 1 was used only
in the proof of the lower estimate (0.16). The case | > d — 1 can be treated in
a slightly different way using, for instance, estimates of the energy in terms of
nonlinear potentials from [COIEV04].

Lemma 0.2 may be also deduced from the following two facts. First, if ||v|| 51,7
denotes the norm of a distribution v € S(FEp) in the (inhomogeneous) Besov space
B~ = [BbP]* on Ey (I >0, p > 1), then

18 1 = Eiplo) = [ IR ) )

where K x v is a harmonic extension of v to E,. Such characterizations of BYP

spaces have been known to experts for a long time, but complete proofs in the case

of negative [ are not so easy to find in the literature. We refer to [BHQT79] where

analogous results were obtained for homogeneous Besov spaces B'P (leR,p>0).

In the proof above, we used instead direct estimates of ap(y) for nonnegative v.
Secondly, for nonnegative v,

’
=l

’
[l Wi

pB—l,p/ = El7p(l/>,

where W=1P" = [WP]* is the dual Sobolev space on Ey. This fact, first observed
by D. Adams, is a consequence of Wolff’s inequality which appeared in [HW83].
(See [AH96], Sections 4.5 and 4.9 for a thorough discussion of these estimates, their
history and applications).

Thus, an alternative proof of Lemma 0.2 can be based on Wolff’s inequality,
which in its turn may be deduced from the Muckhenhoupt—-Wheeden fractional
maximal theorem used above. We note that the original proof of Wolff’s inequal-
ity given in [HW83] has been generalized to arbitrary radially decreasing kernels
[COIEV04], and has applications to semilinear elliptic equations [KV99].
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This book is devoted to the applications of probability theory to the theory of nonlinear
partial differential equations. More precisely, it is shown that all positive solutions for a

class of nonlinear elliptic equations in a domain are described in terms of their traces on

the boundary of the domain. The main probabilistic tool is the theory of superdiffusions, |
which descrnibes a random evolution of a cloud of particles. A substantial enhancement of
this theory i1s presented that can be of interest for everybody who works on applications
of probabilistic methods to mathematical analysis.
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