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Preface

This book is devoted to the applications of the probability theory to the theory
of nonlinear partial differential equations. More precisely, we investigate the class
U of all positive solutions of the equation Lu = ψ(u) in E where L is an elliptic
differential operator of the second order, E is a bounded smooth domain in Rd and
ψ is a continuously differentiable positive function.

The progress in solving this problem till the beginning of 2002 was described
in the monograph [D]. [We use an abbreviation [D] for [Dyn02].] Under mild
conditions on ψ, a trace on the boundary ∂E was associated with every u ∈ U . This
is a pair (Γ, ν) where Γ is a subset of ∂E and ν is a σ-finite measure on ∂E \ Γ. [A
point y belongs to Γ if ψ′(u) tends sufficiently fast to infinity as x→ y.] All possible
values of the trace were described and a 1-1 correspondence was established between
these values and a class of solutions called σ-moderate. We say that u is σ-moderate
if it is the limit of an increasing sequence of moderate solutions. [A moderate
solution is a solution u such that u ≤ h where Lh = 0 in E.] In the Epilogue to [D],
a crucial outstanding question was formulated: Are all the solutions σ-moderate?
In the case of the equation ∆u = u2 in a domain of class C4, a positive answer to
this question was given in the thesis of Mselati [Mse02a] - a student of J.-F. Le Gall.
1 However his principal tool - the Brownian snake - is not applicable to more general
equations. In a series of publications by Dynkin and Kuznetsov [Dyn04b], [Dyn04c],
[Dyn04d], [Dyn],[DK03], [DK], [Kuz], Mselati’s result was extended, by using a
superdiffusion instead of the snake, to the equation ∆u = uα with 1 < α ≤ 2.
This required an enhancement of the superdiffusion theory which can be of interest
for anybody who works on application of probabilistic methods to mathematical
analysis.

The goal of this book is to give a self-contained presentation of these new
developments. The book may be considered as a continuation of the monograph
[D]. In the first three chapters we give an overview of the theory presented in [D]
without duplicating the proofs which can be found in [D]. The book can be read
independently of [D]. [It might be even useful to read the first three chapters before
reading [D].]

In a series of papers (including [MV98a], [MV98b] and [MV]) M. Marcus and
L. Véron investigated positive solutions of the equation ∆u = uα by purely analytic
methods. Both, analytic and probabilistic approach have their advantages and an
interaction between analysts and probabilists was important for the progress of the
field. I take this opportunity to thank M. Marcus and L. Véron for keeping me
informed about their work.

1The dissertation of Mselati was published in 2004 (see [Mse04]).
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I am indebted to S. E. Kuznetsov who provided me several preliminary drafts
of his paper [Kuz] used in Chapters 8 and 9. I am grateful to him and to J.-F. Le
Gall and B. Mselati for many helpful discussions. It is my pleasant duty to thank
J.-F. Le Gall for a permission to include into the book as the Appendix his note
which clarifies a statement used but not proved in Mselati’s thesis (we use it in
Chapter 8).

The Choquet capacities are one of the principal tools in the study of the equa-
tion ∆u = uα. This class contains the Poisson capacities used in the work of
Dynkin and Kuznetsov and in this book and the Bessel capacities used by Marcus
and Véron and by other analysts. I am very grateful to I. E. Verbitsky who agreed
to write the other Appendix where the relations between the Poisson and Bessel
capacities are established which allow to connect the work of both groups.

I am especially indebted to Yuan-chung Sheu for reading carefully the entire
manuscript and suggesting many corrections and improvements.

The research of the author reported in this book was supported in part by the
National Science Foundation Grant DMS-0204237.



CHAPTER 1

Introduction

1. Trace theory

1.1. We consider a differential equation

(1.1) Lu = ψ(u) in E

where E is a domain in Rd, L is a uniformly elliptic differential operator in E and
ψ is a function from [0,∞) to [0,∞). Under various conditions on E,L and ψ 1 we
investigate the set U of all positive solutions of (1.1). Our base is the trace theory
presented in [D]. Here we give a brief description of this theory (which is applicable
to an arbitrary domain E and a wide class of functions ψ described in Section 4.3).
2

1.2. Moderate and σ-moderate solutions. Our starting point is the rep-
resentation of positive solutions of the linear equation

(1.2) Lh = 0 in E

by Poisson integrals. If E is smooth 3 and if k(x, y) is the Poisson kernel 4 of L in
E, then the formula

(1.3) hν(x) =
∫

∂E

k(x, y)ν(dy)

establishes a 1-1 correspondence between the set M(∂E) of all finite measures ν
on ∂E and the set H of all positive solutions of (1.2). (We call solutions of (1.2)
harmonic functions.)

A solution u is called moderate if it is dominated by a harmonic function.
There exists a 1-1 correspondence between the set U1 of all moderate solutions and
a subset H1 of H: h ∈ H1 is the minimal harmonic function dominating u ∈ U1,
and u is the maximal solution dominated by h. We put ν ∈ N1 if hν ∈ H1. We
denote by uν the element of U1 corresponding to hν.

An element u of U is called σ-moderate solutions if there exist un ∈ U1 such
that un(x) ↑ u(x) for all x. The labeling of moderate solutions by measures ν ∈ N1

can be extended to σ-moderate solutions by the convention: if νn ∈ N1, νn ↑ ν and
if uνn ↑ u, then put ν ∈ N0 and u = uν.

1We discuss these condtions in Section 4.
2It is applicable also to functions ψ(x, u) depending on x ∈ E.
3We use the name smooth for open sets of class C2,λ unless another class is indicated

explicitely.
4For an arbitrary domain, k(x, y) should be replaced by the Martin kernel and ∂E should be

replaced by a certain Borel subset E′ of the Martin boundary (see Chapter 7 in [D]).

1



2 1. INTRODUCTION

1.3. Lattice structure in U . 5 We write u ≤ v if u(x) ≤ v(x) for all x ∈ E.
This determines a partial order in U . For every Ũ ⊂ U , there exists a unique
element u of U with the properties: (a) u ≥ v for every v ∈ Ũ ; (b) if ũ ∈ U satisfies
(a), then u ≤ ũ. We denote this element Sup Ũ .

For every u, v ∈ U , we put u ⊕ v = SupW where W is the set of all w ∈ U
such that w ≤ u + v. Note that u ⊕ v is moderate if u and v are moderate and it
is σ-moderate if so are u and v.

In general, Sup Ũ does not coincide with the pointwise supremum (the latter
does not belong to U). However, both are equal if Sup{u, v} ∈ Ũ for all u, v ∈ Ũ .
Moreover, in this case there exist un ∈ Ũ such that un(x) ↑ u(x) for all x ∈ E.
Therefore, if Ũ is closed under ⊕ and it consists of moderate solutions, then Sup Ũ
is σ-moderate. In particular, to every Borel subset Γ of ∂E there corresponds a
σ-moderate solution

(1.4) uΓ = Sup{uν : ν ∈ N1, ν is concentrated on Γ}.
We also associate with Γ another solution wΓ. First, we define wK for closed

K by the formula

(1.5) wK = Sup{u ∈ U : u = 0 on ∂E \K}.
For every Borel subset Γ of ∂E, we put

(1.6) wΓ = Sup{wK : closed K ⊂ Γ}.
Proving that uΓ = wΓ was a key part of the program outlined in [D].

1.4. Singular points of a solution u. We consider classical solutions of
(1.1) which are twice continuously differentiable in E. However they can tend to
infinity as x → y ∈ ∂E. We say that y is a singular point of u if it is a point of
rapid growth of ψ′(u). [A special role of ψ′(u) is due to the fact that the tangent
space to U at point u is described by the equation Lv = ψ′(u)v.]

The rapid growth of a positive continuous function a(x) can be defined ana-
lytically or probabilistically. The analytic definition involves the Poisson kernel (or
Martin kernel) ka(x, y) of the operator Lu− au: y ∈ ∂E is a point of rapid growth
for a if ka(x, y) = 0 for all x ∈ E. A more transparent probabilistic definition is
given in Chapter 3.

We say that a Borel subset Γ of ∂E is f-closed if Γ contains all singular points
of the solution uΓ defined by (1.4).

1.5. Definition and properties of trace. The trace of u ∈ U (which we
denote Tr(u)) is defined as a pair (Γ, ν) where Γ is the set of all singular points of
u and ν is a measure on ∂E \ Γ given by the formula

(1.7) ν(B) = sup{µ(B) : µ ∈ N1, µ(Γ) = 0, uµ ≤ u}.
We have

uν = Sup{ moderate uµ ≤ u with µ(Γ) = 0}
and therefore uν is σ-moderate.

The trace of every solution u has the following properties:
1.5.A. Γ is a Borel f-closed set; ν is a σ-finite measure of class N0 such that

ν(Γ) = 0 and all singular points of uν belong to Γ.

5See Chapter 8, Section 5 in [D].
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1.5.B. If Tr(u) = (Γ, ν), then

(1.8) u ≥ uΓ ⊕ uν .

Moreover, uΓ ⊕ uν is the maximal σ-moderate solution dominated by u.

1.5.C. If (Γ, ν) satisfies the condition 1.5.A, then Tr(uΓ ⊕ uν) = (Γ′, ν), the
symmetric difference between Γ and Γ′ is not charged by any measure µ ∈ N1.
Moreover, uΓ ⊕ uν is the minimal solution with this property and the only one
which is σ-moderate.

2. Organizing the book

Let u ∈ U and let Tr(u) = (Γ, ν). The proof that u is σ-moderate consists of
three parts:

A. u ≥ uΓ ⊕ uν .
B. uΓ = wΓ.
C. u ≤ wΓ ⊕ uν.
It follows from A–C that u = uΓ ⊕ uν and therefore u is σ-moderate because

uΓ and uν are σ-moderate.
We already have obtained A as a part of the trace theory (see (1.8)) which

covers a general equation (1.1). Parts B and C will be covered for the equation
∆ = uα with 1 < α ≤ 2. To this end we use, beside the trace theory, a number
of analytic and probabilistic tools. In Chapters 2 and 3 we survey a part of these
tools (mostly related to the theory of superdiffusion) already prepared in [D]. A
recent enhancement of the superdifusion theory –the N-measures – is presented in
Chapter 4. Another new tool – bounds for the Poisson capacities – is the subject
of Chapter 6. By using all these tools, we prove in Chapter 7 a basic inequality for
superdiffusions which makes it possible to prove (in Chapter 8) that uΓ = wΓ (Part
B) and therefore wΓ is σ-moderate. The concluding part C is proved in Chapter
9 by using absolute continuity results on superdiffusions presented in Chapter 5.
In Chapter 8 we use an upper estimate of wK in terms of the Poisson capacity
established by S. E. Kuznetsov [Kuz]. In the Appendix contributed by J.-F. Le
Gall a property of the Brownian motion is proved which is also used in Chapter
8. Notes at the end of each chapter describe the relation of its contents to the
literature on the subject.

3. Notation

3.1. We use notation Ck(D) for the set of k times continously differentiable
function on D and we write C(D) for C0(D). We put f ∈ Cλ(D) if there exists a
constant Λ such that |f(x)− f(y)| ≤ Λ|x− y|λ for all x, y ∈ D (Hölder continuity).
Notation Ck,λ(D) is used for the class of k times differentiable functions with all
partials of order k belonging to Cλ(D).

We write f ∈ B if f is a positive B-measurable function. Writing f ∈ bB means
that, in addition, f is bounded.

For every subset D of Rd we denote by B(D) the Borel σ-algebra in D.
We write D b E if D̄ is a compact subset of E. We say that a sequence Dn

exhausts E if D1 b D2 b · · · b Dn b . . . and E is the union of Dn.
Di stands for the partial derivative ∂

∂xi
with respect to the coordinate xi of x

and Dij means DiDj.
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We denote by M(E) the set of all finite measures on E and by P(E) the set
of all probability measures on E. We write 〈f, µ〉 for the integral of f with respect
to µ.

δy(B) = 1B(y) is the unit mass concentrated at y.
A kernel from a measurable space (E1,B1) to a measurable space (E2,B2) is a

function K(x,B) such that K(x, ·) is a finite measure on B2 for every x ∈ E1 and
K(·, B) is an B1-measurable function for every B ∈ B2.

If u is a function on an open set E and if y ∈ ∂E, then writing u(y) = a means
u(x) → a as x→ y, x ∈ E.

We put

diam(B) = sup{|x− y| : x, y ∈ B} (the diameter of B),

d(x,B) = inf
y∈B

|x− y| (the distance from x to B),

ρ(x) = d(x, ∂E) for x ∈ E.

We denote by C constants depending only on E,L and ψ (their values can vary
even within one line). We indicate explicitely the dependence on any additional
parameter. For instance, we write Cκ for a constant depending on a parameter κ
(besides a possible dependence on E,L, ψ).

4. Assumptions

4.1. Operator L. There are several levels of assumptions used in this book.
In the most general setting, we consider a second order differential operator

(4.1) Lu(x) =
d∑

i,j=1

aij(x)Diju(x) +
d∑

i=1

bi(x)Diu(x)

in a domain E in Rd. Without loss of generality we can put aij = aji. We assume
that

4.1.A. [Uniform ellipticity] There exists a constant κ > 0 such that
∑

aij(x)titj ≥ κ
∑

t2i for all x ∈ E, t1, . . . , td ∈ R.

4.1.B. All coefficients aij(x) and bi(x) are bounded and Hölder continuous.
In a part of the book we assume that L is of divergence form

(4.2) Lu(x) =
d∑

i,j=1

∂

∂xi
aij(x)

∂

∂xj
u(x).

In Chapters 8 and 9 we restrict ourselves to the Laplacian ∆ =
∑d

1 D2
i .

4.2. Domain E. Mostly we assume that E is a bounded smooth domain. This
name is used for domains of class C2,λ which means that ∂E can be straightened
near every point x ∈ ∂E by a diffeomorphism φx of class C2,λ. To define straight-
ening, we consider a half-space E+ = {x = (x1, . . . , xd) : xd > 0} = Rd−1 × (0,∞).
Denote E0 its boundary {x = (x1, . . . , xd) : xd = 0}. We assume that, for every
x ∈ ∂E, there exists a ball B(x, ε) = {y : |x − y| < ε} and a diffeomorphism
φx from B(x, ε) onto a domain Ẽ ⊂ Rd such that φx(B(x, ε) ∩ E) ⊂ E+ and
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φx(B(x, ε)∩∂E) ⊂ E0. (We say that φx straightens the boundary in B(x, ε).) The
Jacobian of φx does not vanish and we can assume that it is strictly positive.

Main results of Chapters 8 and 9 depend on an upper bound for wK estab-
lished in [Kuz] for domains of class C4. All results of Chapters 8 and 9 can be
automatically extended to domains of class C2,λ if the bound for wK will be proved
for such domains.

4.3. Function ψ. In general we assume that ψ is a function on [0,∞) with
the properties:

4.3.A. ψ ∈ C2(R+).

4.3.B. ψ(0) = ψ′(0) = 0, ψ′′(u) > 0 for u > 0.
[It follows from 4.3.B that ψ is monotone and convex and ψ′ is bounded on

each interval [0, t].]

4.3.C. There is a constant a such that

ψ(2u) ≤ aψ(u)

for all u.

4.3.D.
∫∞
N
ds
[∫ s

0
ψ(u) du

]−1/2
< ∞ for some N > 0.

Keller [Kel57] and Osserman [Oss57] proved independently that this condition im-
plies that functions u ∈ U(E) are uniformly bounded on every set D b E. 6

In Chapters 7-9 we assume that

(4.3) ψ(u) = uα, 1 < α ≤ 2.

(In Chapter 6 we do not need the restriction α ≤ 2.)

5. Notes

The trace Tr(u) was introduced in [Kuz98] and [DK98b] under the name the
fine trace. We suggested to use the name ”rough trace“ for a version of the trace
considered before in the literature. (In the monograph [D] the rough trace is treated
in Chapter 10 and the fine trace is introduced and studied in Chapter 11.)

The most publications were devoted to the equation

(5.1) ∆u = uα, α > 1.

In the subcritical case 1 < d < α+1
α−1 , the rough trace coincides with the fine trace

and it determines a solution of (5.1) uniquely. As it was shown by Le Gall, this is
not true in the supercritical case: d ≥ α+1

α−1 .
In a pioneering paper [GV91] Gmira and Véron proved that, in the subcritical

case, the generalized Dirichlet problem
∆u = uα in E,
u = µ on ∂E

(5.2)

has a unique solution for every finite measure µ. (In our notation, this is uµ.)
A program of investigating U by using a superdiffusion was initiated in [Dyn91a].

In [Dyn94] Dynkin conjectured that, for every 1 < α ≤ 2 and every d, the problem
(5.2) has a solution if and only if µ does not charge sets which are, a.s., not hit

6In a more general setting this is proved in [D], Section 5.3.
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by the range of the superdiffusion. 7 [The conjecture was proved, first, in the case
α = 2, by Le Gall and then, for all 1 < α ≤ 2, by Dynkin and Kuznetsov .]

A classification of all positive solutions of ∆u = u2 in the unit disk E = {x ∈
R2 : |x| < 1} was announced by Le Gall in [LG93]. [This is also a subcritical case.]
The result was proved and extended to a wide class of smooth planar domains in
[LG97]. Instead of a superdiffusion Le Gall used his own invention – a path-valued
process called the Brownian snake. He established a 1-1 correspondence between
U and pairs (Γ, ν) where Γ is a closed subset of ∂E and ν is a Radon measure on
∂E \ Γ.

Dynkin and Kuznetsov [DK98a] extended Le Gall’s results to the equation
Lu = uα, 1 < α ≤ 2. They introduced a rough boundary trace for solutions of this
equation. They described all possible values of the trace and they represented the
maximal solution with a given trace in terms of a superdiffusion.

Marcus and Véron [MV98a]–[MV98b] investigated the rough traces of solutions
by purely analytic means. They extended the theory to the case α > 2 and they
proved that the rough trace determines a solution uniquely in the subcritical case.

The theory of fine trace developed in [DK98b] provided a classification of all
σ-moderate soltions. Mselati’s dissertation [Mse02a] finalized the classification for
the equation ∆u = u2 by demonstrating that, in this case, all solutions are σ-
moderate. A substantial enhancement of the superdiffusion theory was necessary
to get similar results for a more general equation ∆u = uα with 1 < α ≤ 2.

7The restriction α ≤ 2 is needed because a related superdiffusion exists only in this range.



CHAPTER 2

Analytic approach

In this chapter we consider equation 1.(1.1) under minimal assumptions on L,ψ
and E: conditions 1.4.1.A– 1.4.1.B for L, conditions 1.4.3.A–1.4.3.D for ψ and and
assumption that E is bounded and belongs to class C2,λ.

For every open subset D of E we define an operator VD that maps positive
Borel functions on ∂D to positive solutions of the equation Lu = ψ(u) in D. If
D is smooth and f is continuous, then VD(f) is a solution of the boundary value
problem

Lu = ψ(u) in D,
u = f on ∂D.

In general, u = VD(f) is a solution of the integral equation

u+ GDψ(u) = KDf

where GD and KD are the Green and Poisson operators for L in D. Operators VD
have the properties:

VD(f) ≤ VD(f̃ ) if f ≤ f̃ ,

VD(fn) ↑ VD(f) if fn ↑ f,
VD(f1 + f2) ≤ VD(f1) + VD(f2).

The Comparison principle plays for the equation 1.(1.1) a role similar to the
role of the Maximum principle for linear elliptic equations. There is also an analog
of the Mean value property: if u ∈ U(E), then VD(u) = u for every D b E. The set
U(E) of all positive solutions is closed under Sup and under pointwise convergence.

We label moderate solutions by measures ν on ∂E belonging to a class NE
1

and we label σ-moderate solutions by a wider class NE
0 . A special role is played by

ν ∈ NE
0 taking only values 0 and ∞.

An algebraic approach to the equation 1.(1.1) is discussed in Section 3. In Sec-
tion 4 we introduce the Choquet capacities which play a crucial role in subsequent
chapters.

Most propositions stated in Chapters 2 and 3 are proved in [D]. In each case we
give an exact reference to the corresponding place in [D]. We provide a complete
proof for every statement not proved in [D].

1. Operators GD and KD

1.1. Green function and Green operator. Suppose that D is a bounded
smooth domain and that L satisfies conditions 1.4.1.A–1.4.1.B. Then there exists a

7



8 2. ANALYTIC APPROACH

unique continuous function gD from D̄×D̄ to [0,∞] such that, for every f ∈ Cλ(D),

(1.1) u(x) =
∫

D

gD(x, y)f(y)dy

is the unique solution of the problem
Lu = −f in D,
u = 0 on ∂D.

(1.2)

The function gD is called the Green function. It has the following properties:

1.1.A. For every y ∈ D, u(x) = gD(x, y) is a solution of the problem

Lu = 0 in D \ {y},
u = 0 on ∂D.

(1.3)

1.1.B. For all x, y ∈ D,

(1.4) 0 < gD(x, y) ≤ CΓ(x− y)

where C is a constant depending only on D and L and 1

(1.5) Γ(x) =





|x|2−d for d ≥ 3,
(− log |x|)∨ 1 for d = 2,
1 for d = 1.

If L is of divergence form and d ≥ 3, then

(1.6) gD(x, y) ≤ Cρ(x)|x− y|1−d,

(1.7) gD(x, y) ≤ Cρ(x)ρ(y)|x − y|−d.

[See [GW82].]
The Green operator is defined by the formula (1.1).

1.2. Poisson kernel and Poisson operator. Suppose that D is a bounded
smooth domain and let γ be the surface area on ∂D. The Poisson kernel kD is a
continuous function from D×∂D to (0,∞) with the property: for every ϕ ∈ C(D),

(1.8) h(x) =
∫

∂D

kD(x, y)ϕ(y)γ(dy)

is a unique solution of the problem
Lu = 0 in D,
u = ϕ on ∂D.

(1.9)

We have the following bounds for the Poisson kernel: 2

(1.10) C−1ρ(x)|x− y|−d ≤ kD(x, y) ≤ Cρ(x)|x− y|−d

where

(1.11) ρ(x) = dist(x, ∂D).

The Poisson operator KD is defined by the formula (1.8).

1There is a misprint in the expression for Γ(x) in [D], page 88.
2See, e.g. [MVG75], Lemma 6 and the Appendix B in [D].
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2. Operator VD and equation Lu = ψ(u)

2.1. Operator VD. By Theorem 4.3.1 in [D], if ψ satisfies conditions 1.4.3.B
and 1.4.3.C, then, for every f ∈ bB(Ē) and for every open subset D of E, there
exists a unique solution of the equation

(2.1) u+GDψ(u) = KDf.

We denote it VD(f). It follows from (2.1) that:

2.1.A. VD(f) ≤ KD(f), in particular, VD(c) ≤ c for every constant c.

We have:

2.1.B. [[D], 4.3.2.A] If f ≤ f̃ , then VD(f) ≤ VD(f̃ ).

2.1.C. [[D], 4.3.2.C] If fn ↑ f , then VD(fn) ↑ VD(f).

Properties 2.1.B and 2.1.C allow to define VD(f) for all f ∈ B(D̄) by the
formula

(2.2) VD(f) = sup
n
VD(f ∧ n).

The extended operators satisfy equation (2.1) and conditions 2.1.A-2.1.C. They
have the properties:

2.1.D. [[D], Theorem 8.2.1] For every f1, f2 ∈ B(D),

(2.3) VD(f1 + f2) ≤ VD(f1) + VD(f2).

2.1.E. [[D], 8.2.1.J] For every D and every f ∈ B(∂D), the function u = VD(f)
is a solution of the equation

(2.4) Lu = ψ(u) in D.

We denote by U(D) the set of all positive solutions of the equation (2.4).

2.2. Properties of U(D). We have:

2.2.A. [[D], 8.2.1.J and 8.2.1.H] If D is smooth and if f is continuous in a
neighborhood O of x̃ ∈ ∂D, then VDf(x) → f(x̃) at x → x̃, x ∈ D. If D is smooth
and bounded and if a function f : ∂D → [0,∞) is continuous, then u = VD(f) is a
unique solution of the problem

Lu = ψ(u) in D,
u =f on ∂D.

(2.5)

2.2.B. (Comparison principle)[[D], 8.2.1.H.] Suppose D is bounded. Then u ≤ v
assuming that u, v ∈ C2(D),

(2.6) Lu − ψ(u) ≥ Lv − ψ(v) in D

and, for every x̃ ∈ ∂D,

(2.7) lim sup[u(x)− v(x)] ≤ 0 as x→ x̃.

2.2.C. (Mean value property)[[D], 8.2.1.D] If u ∈ U(D), then, for every U b D,
VU (u) = u in D (which is equivalent to the condition u+GUψ(u) = KUu).
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2.2.D. [[D], Theorem 5.3.2] If un ∈ U(E) converge pointwise to u, then u belongs
to U(E).

2.2.E. [[D], Theorem 5.3.1] For every pair D b E there exists a constant b such
that u(x) ≤ b for all u ∈ U(E) and all x ∈ D. 3

The next two propositions are immediate implications of the Comparison prin-
ciple.

We say that u ∈ C2(E) is a supersolution if Lu ≤ ψ(u) in E and that it is
a subsolution if Lu ≥ ψ(u) in E. Every h ∈ H(E) is a supersolution because
Lh = 0 ≤ ψ(h). It follows from 2.2.B that:

2.2.F. If a subsolution u and a supersolution v satisfy (2.7), then u ≤ v in E.

2.2.G. If ψ(u) = uα with α > 1, then, for every u ∈ U(D) and for all x ∈ D,

u(x) ≤ Cd(x, ∂D)−2/(α−1).

Indeed, if d(x, ∂D) = ρ, then the ball B = {y : |y − x| < ρ} is contained
in D. Function v(y) = C(ρ2 − |y − x|2)−2/(α−1) is equal to ∞ on ∂B and, for
sufficiently large C, Lv(y) − v(y)α ≤ 0 in B. 4 By 2.2.B, u ≤ v in B. In particular,
u(x) ≤ v(x) = Cρ−2/(α−1).

2.3. On moderate solutions. Recall that an element u of U(E) is called
moderate if u ≤ h for some h ∈ H(E). The formula

(2.8) u+ GEψ(u) = h

establishes a 1-1 correspondence between the set U1(E) of moderate elements of
U(E) and a subset H1(E) of H(E): h is the minimal harmonic function dominating
u, and u is the maximal solution dominated by h. Formula 1.(1.3) defines a 1-1
correspondence ν ↔ hν between M(∂E) and H(E). We put ν ∈ NE

1 if hν ∈ H1(E)
and we denote uν the moderate solution corresponding to ν ∈ NE

1 . In this notation,

(2.9) uν + GEψ(uν) = hν .

(The correspondence ν ↔ uν is 1-1 and monotonic.)
We need the following properties of NE

1 , H1(E) and U1(E).

2.3.A. [Corollary 3.1 in [D], Section 8.3.2] If h ∈ H1(E) and if h′ ≤ h belongs
to H(E), then h′ ∈ H1(E). Therefore NE

1 contains with ν all measures ν′ ≤ ν.

2.3.B. [[D],Theorem 8.3.3] H1(E) is a convex cone (that is it is closed under
addition and under multiplication by positive numbers).

2.3.C. If Γ is a closed subset of ∂E and if ν ∈ M(E) is concentrated on Γ, then
hν = 0 on ∂E \ Γ.

Indeed, it follows from 1.(1.3) and (1.10) that

hν(x) ≤ Cρ(x)
∫

Γ

|x− y|−dν(dy).

2.3.D. If ν ∈ NE
1 and Γ is a closed subset of ∂E, then uν = 0 on O = ∂E \ Γ if

and only if ν(O) = 0.

3As we already have mentioned, this is an implication of 1.4.3.D.
4See, e.g., [Dyn91a], page 102, or [D], page 71.
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Proof. If ν(O) = 0, then hν = 0 on O by 2.3.C, and uν = 0 on O because
uν ≤ hν by (2.8).

On the other hand, if uν = 0 on O, then ν(K) = 0 for every closed subset K of
O. Indeed, if η is the restriction of ν to K, then uη = 0 on Γ because Γ ⊂ ∂E \K
and η(∂E \K) = 0. We also have uη ≤ uν = 0 on O. Hence uη = 0 on ∂E. The
Comparison principle 2.2.B implies that uη = 0. Therefore η = 0. �

2.3.E. [[D], Proposition 12.2.1.A] 5 If h ∈ H(E) and if GEψ(h)(x) < ∞ for
some x ∈ E, then h ∈ H1(E).

2.3.F. (Extended mean value property) If U ⊂ D and if ν ∈ ND
1 is concentrated

on Γ such that Γ̄ ∩ Ū = ∅, then VU (uν) = uν.
If u ∈ U1(D) vanishes on ∂D \ Γ, then VU (u) = u for every U ⊂ D such that

Γ̄ ∩ Ū = ∅.
The first part is Theorem 8.4.1 in [D]. The second part follows from the first one

because u ∈ U1(D) is equal to uν for some ν ∈ ND
1 and, by 2.3.D, ν(∂D \ Γ̄) = 0.

2.3.G. Suppose that ν ∈ NE
1 is supported by a closed set K ⊂ ∂E and let

Eε = {x ∈ E : d(x,K) > ε}. Then

uε = VEε(hν) ↓ uν as ε ↓ 0.

Proof. Put V ε = VEε . By (2.9), hν = uε + GEεψ(uε) ≥ uε for every ε. Let
ε′ < ε. By applying the second part of 2.3.F to U = Eε, D = Eε′ , u = uε

′
and

Γ = ∂Eε′ ∩E we get V ε(uε
′
) = uε

′
. By 2.1.B,

uε = V ε(hν) ≥ V ε(uε
′
) = uε

′
.

Hence uε tends to a limit u as ε ↓ 0. By 2.2.D, u ∈ U(E). For every ε, uε ≤ hν
and therefore u ≤ hν . On the other hand, if v ∈ U(E) and v ≤ hν , then, by 2.3.F,
v = V ε(v) ≤ V ε(hν) = uε and therefore v ≤ u. Hence, u is a maximal element of
U(E) dominated by hν which means that u = uν . �

2.4. On σ-moderate solutions. Denote by U0(E) the set of all σ-moderate
solutions. (Recall that u is σ-moderate if there exist moderate un such that un ↑ u.)
If ν1 ≤ · · · ≤ νn ≤ . . . is an increasing sequence of measures, then ν = limνn is also
a measure. We put ν ∈ NE

0 if νn ∈ NE
1 . If ν ∈ NE

1 , then ∞· ν = lim
t↑∞

tν belongs to

NE
0 . Measures µ = ∞· ν take only values 0 and ∞ and therefore cµ = µ for every

0 < c ≤ ∞. [We put 0 · ∞ = 0.]

Lemma 2.1. [[D], Lemma 8.5.1] There exists a monotone mapping ν → uν
from NE

0 onto U0(E) such that

(2.10) uνn ↑ uν if νn ↑ ν
and, for ν ∈ NE

1 , uν is the maximal solution dominated by hν

The following properties of NE
0 are proved on pages 120-121 of [D]:

2.4.A. A measure ν ∈ NE
0 belongs to NE

1 if and only if ν(E) < ∞. If νn ∈ N1(E)
and νn ↑ ν ∈ M(∂E), then ν ∈ NE

1 . 6

5Proposition 12.2.1.A is stated for ψ(u) = uα but the proof is applicable to a general ψ.
6See [D]. 8.5.4.A.
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2.4.B. If ν ∈ NE
0 and if µ ≤ ν, then µ ∈ NE

0 .

2.4.C. Suppose E is a bounded smooth domain and O is a relatively open subset
of ∂E. If ν ∈ NE

0 and ν(O) = 0, then uν = 0 on O.

An important class of σ-moderate solutions are uΓ defined by 1.(1.4).
2.4.D. [[D], 8.5.5.A] For every Borel Γ ⊂ ∂E, there exists ν ∈ NE

1 concentrated
on Γ such that uΓ = u∞·ν.

2.5. On solution wΓ. We list some properties of these solutions (defined in
the Introduction by (1.5) and (1.6)).

2.5.A. [[D], Theorem 5.5.3] If K is a closed subset of ∂E, then wK defined by
1.(1.5) vanishes on ∂E \K. [It is the maximal element of U(E) with this property.]

2.5.B. If ν ∈ NE
0 is concentrated on a Borel set Γ, then uν ≤ wΓ.

Proof. If ν ∈ NE
1 is supported by a compact set K, then uν = 0 on ∂E \K

by 2.4.C and uν ≤ wK by 1.(1.5). If ν ∈ NE
0 , then there exist νn ∈ NE

1 such that
νn ↑ ν. The measures νn are also concentrated on Γ and therefore there exists a
sequence of compact sets Kmn ⊂ Γ such that νmn ↑ νn where νmn is the restriction
of νn to Kmn. We have uνmn ≤ wKmn ≤ wΓ. Hence, uν ≤ wΓ. �

3. Algebraic approach to the equation Lu = ψ(u)

In the Introduction we defined, for every subset Ũ of U(E), an element Sup Ũ
of U(E) and we introduced in U(E) a semi-group operation u⊕v. In a similar way,
we define now Inf Ũ as the maximal element u of U(E) such that u ≤ v for all
v ∈ Ũ . We put, for u, v ∈ U such that u ≥ v,

u	 v = Inf{w ∈ U : w ≥ u− v}.
Both operations ⊕ and 	 can be expressed through an operator π.

Denote by C+(E) the class of all positive functions f ∈ C(E). Put u ∈ D(π)
and π(u) = v if u ∈ C+(E) and VDn (u) → v pointwise for every sequence Dn
exhausting E. By 2.1.E and 2.2.D, π(u) ∈ U(E). It follows from 2.1.B that
π(u1) ≤ π(u2) if u1 ≤ u2.

Put
U−(E) = {u ∈ C+(E) : VD(u) ≤ u for all D b E}

and
U+(E) = {u ∈ C+(E) : VD(u) ≥ u for all D b E}.

By 2.2.C, U(E) ⊂ U−(E)∩U+(E). It follows from the Comparison principle 2.2.B
that U− contains all supersolutions and U+ contains all subsolutions. In particular,
H(E) ⊂ U−(E).

For every sequence Dn exhausting E, we have: [see [D], 8.5.1.A–8.5.1.D]

3.A. If u ∈ U−(E), then VDn (u) ↓ π(u) and

π(u) = sup{ũ ∈ U(E) : ũ ≤ u} ≤ u.

3.B. If u ∈ U+(E), then VDn (u) ↑ π(u) and

π(u) = inf{ũ ∈ U(E) : ũ ≥ u} ≥ u.

Clearly,
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3.C. If u, v ∈ U+(E), then max{u, v} ∈ U+(E). If u, v ∈ U−(E), then
min{u, v} ∈ U−(E).

It follows from 2.1.D (subadditivity of VD) that:
3.D. If u, v ∈ U−(E), then u + v ∈ U−(E). If u, v ∈ U(E) and u ≥ v, then

u− v ∈ U+(E).
It is easy to see that:

3.E. If u, v ∈ U(E), then u⊕ v = π(u+ v)

3.F. If u ≥ v ∈ U(E), then u	 v = π(u− v).
Denote U∗(E) the minimal convex cone that contains U−(E) and U+(E).

4. Choquet capacities

Suppose that E is a separable locally compact metrizable space. Denote by K
the class of all compact sets and by O the class of all open sets in E. A [0,+∞]-
valued function Cap on the collection of all subsets of E is called a capacity if:

4.A. Cap(A) ≤ Cap(B) if A ⊂ B.

4.B. Cap(An) ↑ Cap(A) if An ↑ A.

4.C. Cap(Kn) ↓ Cap(K) if Kn ↓ K and Kn ∈ K.

A set B is called capacitable if These conditions imply

(4.1) Cap(B) = sup{Cap(K) : K ⊂ B,K ∈ K} = inf{Cap(O) : O ⊃ B,O ∈ O}.
The following results are due to Choquet [Cho53].

I. Every Borel set B is capacitable. 7

II. Suppose that a function Cap : K → [0,+∞] satisfies 4.A–4.C and the
following condition:

4.D. For every K1,K2 ∈ K,

Cap(K1 ∪K2) + Cap(K1 ∩K2) ≤ Cap(K1) + Cap(K2).

Then Cap can be extended to a capacity on E.

5. Notes

The class of moderate solutions was introduced and studied in [DK96a]. σ-
moderate solutions, the lattice structure in the space of solutions and the operation
u ⊕ v apeared, first, in [DK98b] in connection with the fine trace theory. The
operation u	 v was defined and used by Mselati in [Mse02a].

7The relation (4.1) is true for a larger class of analytic sets but we do not use this fact.





CHAPTER 3

Probabilistic approach

Our base is the theory of diffusions and superdiffusions.
A diffusion describes a random motion of a particle. An example is the Brow-

nian motion in Rd. This is a Markov process with continuous paths and with the
transition density

pt(x, y) = (2πt)−d/2e−|x−y|2/2t

which is the fundamental solution of the heat equation

∂u

∂t
=

1
2
∆u.

A Brownian motion in a domain E can be obtained by killing the path at the first
exit time from E. By replacing 1

2∆ by an operator L of the form 1.(4.1), we define
a Markov process called L-diffusion. We also use an L-diffusion with killing rate `
corresponding to the equation

∂u

∂t
= Lu− `u

and an L-diffusion conditioned to exit from E at a point y ∈ ∂E. The latter can
be constructed by the so-called h-transform with h(x) = kE(x, y).

An (L,ψ)-superdiffusion is a model of random evolution of a cloud of particles.
Each particle performs an L-diffusion. It dies at random time leaving a random
offspring of the size regulated by the function ψ. All children move independently
of each other (and of the family history) with the same transition and procreation
mechanism as the parent. Our subject is the family of the exit measures (XD , Pµ)
from open sets D ⊂ E. An idea of this construction is explained on Figure 1
(borrowed from [D]).

y4

y1

x2

y3

x1

y2

Figure 1
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Here we have a scheme of a process started by two particles located at points
x1, x2 in D. The first particle produces at its death time two children that survive
until they reach ∂D at points y1, y2. The second particle has three children. One
reaches the boundary at point y3, the second one dies childless and the third one
has two children. Only one of them hits ∂D at point y4. The initial and exit
measure are described by the formulae

µ =
∑

δxi , XD =
∑

δyi .

To get an (L,ψ)-superdiffusion, we pass to the limit as the mass of each particle
and its expected life time tend to 0 and an initial number of particles tends to
infinity. We refer for detail to [D].

We consider superdiffusions as a special case of branching exit Markov systems.
Such a system is defined as a family of of exit measures (XD , Pµ) subject to four
conditions, the central two are a Markov property and a continuous branching prop-
erty. To every right continuous strong Markov process ξ in a metric space E there
correspond branching exit Markov systems called superprocesses. Superdiffusions
are superprocesses corresponding to diffusions. Superprocesses corresponding to
Brownian motions are called super-Brownian motions.

A substantial part of Chapter 3 is devoted to two concepts playing a key role
in applications of superdiffusions to partial differential equations: the range of a
superprocess and the stochastic boundary values for superdiffusions.

1. Diffusion

1.1. Definition and properties. To every operator L subject to the condi-
tions 1.4.1.A–1.4.1.B there corresponds a strong Markov process ξ = (ξt,Πx) in E
called an L-diffusion. The path ξt is defined on a random interval [0, τE). It is
continuous and its limit ξτE as t → τE belongs to ∂E. For every open set D ⊂ E
we denote by τD the first exit time of ξ from D.

Proposition 1.1 ([D], Lemma 6.2.1). The function ΠxτD is bounded for every
bounded domain D.

There exists a function pt(x, y) > 0, t > 0, x, y ∈ E (called the transition
density) such that:

∫

E

ps(x, z)dz pt(z, y) = ps+t(x, y) for all s, t > 0, x, y ∈ E

and, for every f ∈ B(E),

Πxf(ξt) =
∫

E

pt(x, y)f(y) dy.

An L-diffusion has the following properties:

1.1.A. [[D], Sections 6.2.4-6.2.5] If D ⊂ E, then, for every f ∈ B(Ē),

(1.1) KDf(x) = Πxf(ξτD )1τD<∞, GDf(x) = Πx

∫ τD

0

f(ξs) ds.



1. DIFFUSION 17

1.1.B. [[D], 6.3.2.A.] Suppose that a ≥ 0 belongs to Cλ(Ē). If v ≥ 0 is a soluton
of the equation

(1.2) Lv = av in E,

then

(1.3) v(x) = Πxv(ξτE ) exp
[
−
∫ τE

0

a(ξs)ds
]
.

1.1.C. [ [D], 6.2.5.D.] If D ⊂ E are two smooth open sets, then

(1.4) kD(x, y) = kE(x, y) − Πx1τD<τEkE(ξτD , y) for all x ∈ D, y ∈ ∂E ∩ ∂D.

1.2. Diffusion with killing rate `. An L-diffusion with killing rate ` corre-
sponds to a differential operator Lu − `u. Here ` is a positive Borel function. Its
the Green and the Poisson operators in a domain D are given by the formulae

G`Df(x) = Πx

∫ τD

0

exp
{
−
∫ t

0

`(ξs) ds
}
f(ξt)dt,

K`
Df(x) = Πx exp

{
−
∫ τD

0

`(ξs) ds
}
f(ξτD )1τD<∞.

(1.5)

Theorem 1.1. Suppose ξ is an L-diffusion, τ = τD is the first exit time from
a bounded smooth domain D, ` ≥ 0 is bounded and belongs to Cλ(D). If ϕ ≥ 0 is
a continuous function on ∂D, then z = K`

Dϕ is a unique solution of the integral
equation

(1.6) u+ GD(`u) = KDϕ.

If ρ is a bounded Borel function on D, then ϕ = G`Dρ is a unique solution of
the integral equation

(1.7) u+ GD(`u) = GDρ.

The first part is proved in [D], Theorem 6.3.1. Let us prove the second one.
Put Y ts = exp{−

∫ t
s
`(ξr)dr}. Since ∂Y t

s

∂s = `(ξs)Y ts , we have

(1.8) Y t0 = 1 −
∫ t

0

`(ξs)Y ts ds.

Note that

GD(`ϕ)(x) = Πx

∫ τ

0

ds`(ξs)Πξs

∫ τ

0

Y r0 ρ(ξr)dr.

By the Markov property of ξ, the right side is equal to

Πx

∫ τ

0

ds`(ξs)
∫ τ

s

Y ts ρ(ξt)dt.

By Fubini’s theorem and (1.8), this integral is equal to

Πx

∫ τ

0

dtρ(ξt)
∫ t

0

`(ξs)Y ts ds = Πx

∫ τ

0

dtρ(ξt)(1 − Y t0 ).

That implies (1.7). The uniqueness of a solution of (1.7) can be proved in the same
way as it was done in [D] for (1.6). [It follows also from [D], Lemma 8.2.2.]
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1.3. h-transform. Let ξ be a diffusion in E. Denote by Fξ
≤t the σ-algebra

generated by the sets {ξs ∈ B, s < τE} with s ≤ t, B ∈ B(E). Denote Fξ the
minimal σ-algebra which contains all Fξ

≤t. Let pt(x, y) be the transition density of
ξ and let h ∈ H. To every x ∈ E there corresponds a finite measure Πh

x on Fξ such
that, for all 0 < t1 < · · ·< tn and every Borel sets B1, . . . , Bn,

(1.9) Πh
x{ξt1 ∈ B1, . . . , ξtn ∈ Bn}

=
∫

B1

dz1 . . .

∫

Bn

dzn pt1(x, z1)pt2−t1(z1, z2) . . . ptn−tn−1 (zn−1, zn)h(zn).

Note that Πh
x(Ω) = h(x) and therefore Π̂h

x = Πh
x/h(x) is a probability measure.

(ξt, Π̂h
x) is a strong Markov process with continuous paths and with the transition

density

(1.10) pht (x, y) =
1

h(x)
pt(x, y)h(y).

We use the following properties of h-transforms.

1.3.A. If Y ∈ Fξ
≤t, then

Πh
x1t<τEY = Πx1t<τEY h(ξt).

[This follows immediately from (1.9).]

1.3.B. [[D], Lemma 7.3.1.] For every stopping time τ and every pre-τ positive
Y ,

Πh
xY 1τ<τE = ΠxY h(ξτ )1τ<τE .

1.4. Conditional L-diffusion. We put Πν
x = Πhν

x where hν is given by
1.(1.3). For every x ∈ E, y ∈ ∂E, we put Πy

x = Πδy
x = Πh

x and Π̂y
x = Π̂h

x where
h(·) = kE(·, y). Let Z = ξτE 1τE<∞. It follows from the definition of the Poisson
operator and (1.1) that, for every ϕ ∈ B(∂E),

(1.11) Πxϕ(Z) =
∫

∂E

kE(x, z)ϕ(z)γ(dz).

Therefore

(1.12) ΠxkE(y, Z)ϕ(Z) =
∫

∂E

kE(x, z)kE(y, z)ϕ(z)γ(dz)

is symmetric in x, y.

Lemma 1.1. 1 For every Y ∈ Fξ and every f ∈ B(∂E),

(1.13) ΠxY f(Z) = Πxf(Z)Π̂Z
x Y.

Proof. It is sufficient to prove (1.13) for Y = Y ′1t<τE where Y ′ ∈ Fξ
≤t. By

1.3.A,
Π̂z
xY = kE(x, z)−1Πz

xY = kE(x, z)−1ΠxY kE(ξt, z).
Therefore the right part in (1.13) can be interpreted as∫

Ω′
Πx(dω′)f(Z(ω′))kE(x, Z(ω′))−1

∫

Ω

Πx(dω)Y (ω)kE(ξt(ω), Z(ω′)).

1Property (1.13) means that Π̂z
x can be interpretedas the conditional probability distribution

given that the diffusion started from x exits from E at point z.
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Fubini’s theorem and (1.12) (applied to ϕ(z) = f(z)kE(x, z)−1) yield that this
expression is equal to
∫

Ω

Πx(dω)Y (ω)
∫

Ω′
Πx(dω′)f(Z(ω′))kE(ξt(ω), Z(ω′))kE(x, Z(ω′))−1

=
∫

Ω

Πx(dω)Y (ω)
∫

∂E

f(z)kE (ξt(ω), z)γ(dz).

By (1.11), the right side is equal to

ΠxYΠξtf(Z) = ΠxY
′1t<τEΠξtf(Z).

Since Y ′ ∈ Fξ
≤t, the Markov property of ξ implies that this is equal to the left side

in (1.13). �

Suppose that ξ = (ξt,Πx) is an L diffusion in E and let L̃ be the restriction of
L to an open subset D of E. An L̃-diffusion ξ̃ = (ξ̃t, Π̃x) can be obtained as the
part of ξ in D defined by the formulae

ξ̃t = ξt for 0 ≤ t < τD,

Π̃x = Πx for x ∈ D.

Notation Π̃y
x refers to the diffusion ξ̃ started at x ∈ D and conditioned to exit from

D at y ∈ ∂D. A relation between Π̃y
x and Πy

x is established by the following lemma.

Lemma 1.2. Suppose that D ⊂ E are smooth open sets. For every x ∈ D, y ∈
∂D ∩ ∂E, and Y ∈ F ξ̃ ,

(1.14) Π̃y
xY = Πy

x{τD = τE , Y }.

Proof. It is sufficient to prove (1.14) for Y = Ỹ 1t<τD where Ỹ ∈ F ξ̃
≤t. By

1.3.A, 1.1.C, 1.3.B and Markov property of ξ,

Π̃y
xY = ΠxY kD(ξ̃t, y) = ΠxY [kE(ξt, y) − Πξt1τD<τEkE(ξτD , y)]

= ΠxY kE(ξt, y) − ΠxY 1τD<τEkE(ξτD , y) = Πy
xY − Πy

xY 1τD<τE

which implies (1.14). �

Corollary 1.1. If

(1.15) Ft = exp
[
−
∫ t

0

a(ξs) ds
]

where a is a positive continuous function on [0,∞), then, for y ∈ ∂D ∩ ∂E,

(1.16) Π̃y
xFτD = Πy

x{τD = τE , FτE}.

Since FτD ∈ F ξ̃, this follows from (1.14).

2. Superprocesses

2.1. Branching exit Markov systems. A random measure on a measurable
space (E,B) is a pair (X,P ) where X(ω,B) is a kernel from an auxiliary measurable
space (Ω,F) to (E,B) and P is a measure on F . We assume that E is a metric
space and B is the class of all Borel subsets of E.

Suppose that:
(i) O is the class of all open subsets of E;
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(ii) to every D ∈ O and every µ ∈ M(E) there corresponds a random measure
(XD, Pµ) on (E,B).

Denote by Z the class of functions

(2.1) Z =
n∑

1

〈fi, XDi〉

where Di ∈ O and fi ∈ B and put Y ∈ Y if Y = e−Z where Z ∈ Z. We say that X
is a branching exit Markov [BEM] system 2 if XD ∈ M(E) for all D ∈ O and if:

2.1.A. For every Y ∈ Y and every µ ∈ M(E),

(2.2) PµY = e−〈u,µ〉

where

(2.3) u(y) = − logPyY

and Py = Pδy .

2.1.B. For all µ ∈ M(E) and D ∈ O,

Pµ{XD(D) = 0} = 1.

2.1.C. If µ ∈ M(E) and µ(D) = 0, then

Pµ{XD = µ} = 1.

2.1.D. [Markov property.] Suppose that Y ≥ 0 is measurable with respect to the
σ-algebra F⊂D generated by XD′ , D′ ⊂ D and Z ≥ 0 is measurable with respect
to the σ-algebra F⊃D generated by XD′′ , D′′ ⊃ D. Then

(2.4) Pµ(Y Z) = Pµ(Y PXDZ).

Condition 2.1.A (we call it the continuous branching property) implies that

PµY =
∏

PµnY

for all Y ∈ Y if µn, n = 1, 2, . . . and µ =
∑
µn belong to M(E).

There is a degree of freedom in the choice of the auxiliary space (Ω,F). We
say that a system (XD , Pµ) is canonical if Ω consists of all M-valued functions
ω on O, if XD(ω,B) = ω(D,B) and if F is the σ-algebra generated by the sets
{ω : ω(D,B) < c} with D ∈ O, B ∈ B, c ∈ R.

We will use the following implications of conditions 2.1.A–2.1.D:

2.1.E. [[D], 3.4.2.D] If D′ ⊂ D′′ belong to O and if B ∈ B is contained in the
complement of D′′, then XD′(B) ≤ XD′′ (B) Px-a.s. for all x ∈ E.

2.1.F. If µ = 0, then Pµ{Z = 0} = 1 for every Z ∈ Z.
This follows from 2.1.A.

2.1.G. If D ⊂ D̃, then

(2.5) {XD = 0} ⊂ {XD̃ = 0} Pµ-a.s.

Indeed, by 2.1.D and 2.1.F,

Pµ{XD = 0, XD̃ 6= 0} = Pµ{XD = 0, PXD [XD̃ = 0]} = 0.

2This concept in a more general setting is introduced in [D], Chapter 3.
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2.2. Definition and existence of superprocesses. Suppose that ξ = (ξt,Πx)
is a time-homogeneous right continuous strong Markov process in a metric space
E. We say that a BEM system X = (XD, Pµ), D ∈ O, µ ∈ M(E) is a (ξ, ψ)-
superprocess if, for every f ∈ bB(E) and every D ∈ O,

(2.6) VDf(x) = − logPxe−〈f,XD 〉

where Px = Pδx and VD are operators introduced in Section 2.2. By 2.1.A,

(2.7) Pµe
−〈f,XD 〉 = e−〈VD (f),µ〉 for all µ ∈ M(E).

The existence of a (ξ, ψ)-superprocesses is proved in [D],Theorem 4.2.1 for

(2.8) ψ(x;u) = b(x)u2 +
∫ ∞

0

(e−tu − 1 + tu)N (x; dt)

under broad conditions on a positive Borel function b(x) and a kernel N from E to
R+. It is sufficient to assume that:

(2.9) b(x),
∫ ∞

1

tN (x; dt) and
∫ 1

0

t2N (x; dt) are bounded.

An important special case is the function

(2.10) ψ(x, u) = `(x)uα, 1 < α ≤ 2

corresponding to b = 0 and

N (x, dt) = ˜̀(x)t−1−αdt

where
˜̀(x) = `(x)[

∫ ∞

0

(e−λ − 1 + λ)λ−1−αdλ]−1.

Condition (2.9) holds if `(x) is bounded.
Under the condition (2.9), the derivatives ψr(x, u) = ∂rψ(x,u)

∂ur exist for u > 0
for all r. Moreover,

ψ1(x, u) = 2bu+
∫ ∞

0

t(1 − e−tu)N (x, dt),

ψ2(x, u) = 2b+
∫ ∞

0

t2e−tuN (x, dt),

(−1)rψr(x, u) =
∫ ∞

0

tre−tuN (x, dt) for 2 < r ≤ n.

(2.11)

Put µ ∈ Mc(E) if µ ∈ M(U ) for some U b E. In this book we consider only
superprocesses corresponding to continuous processes ξ. This implies ξτD ∈ ∂D
Πx-a.s. for every x ∈ D. It follows from 1.1.A and 2.(2.1)that

2.2.A. For every µ ∈ Mc(D), XD is supported by ∂D Pµ-a.s.

The condition 1.4.3.B implies
2.2.B. [[D], Lemma 4.4.1]

(2.12) Pµ〈f,XD〉 = 〈KDf, µ〉

for every open set D ⊂ E, every f ∈ B(E) and every µ ∈ M(E).
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2.3. Random closed sets. Suppose (Ω,F) is a measurable space, E is a
locally compact metrizable space and ω → F (ω) is a map from Ω to the collection
of all closed subsets of E. Let P be a probability measure on (Ω,F). We say that
(F, P ) is a random closed set (r.c.s.) if, for every open set U in E,

(2.13) {ω : F (ω) ∩ U = ∅} ∈ FP

where FP is the completion of F relative to P . Two r.c.s. (F, P ) and (F̃ , P ) are
equivalent if P{F = F̃} = 1.

Suppose (Fa, P ), a ∈ A is a family of r.c.s. We say that a r.c.s. (F, P ) is an
envelope of (Fa, P ) if:

(a) Fa ⊂ F P -a.s. for every a ∈ A.

(b) If (a) holds for F̃ , then F ⊂ F̃ P -a.s.
An envelope exists for every countable family. For an uncountable family, it

exists under certain separability assumptions. Note that the envelope is determined
uniquely up to equivalence and that it does not change if every r.c.s. (Fa, P ) is
replaced by an equivalent set.

Suppose that (M,P ) is a random measure on E.The support S of M satisfies
condition

(2.14) {S ∩ U = ∅} = {M (U ) = 0} ∈ F

for every open subset U of E and therefore S(ω) is a r.c.s.
An important class of capacities related to random closed sets has been studied

in the original memoir of Choquet [Cho53]. Let (F, P ) be a random closed set in
E. Put

(2.15) ΛB = {ω : F (ω) ∩B 6= ∅}.

The definition of a random closed set implies ΛB belongs to the completion FP of
F for all B in K.

Note that

ΛA ⊂ ΛB if A ⊂ B,

ΛA∪B = ΛA ∪ ΛB, ΛA∩B ⊂ ΛA ∩ ΛB ,
ΛBn ↑ ΛB if Bn ↑ B,
ΛKn ↓ ΛK if Kn ↓ K and Kn ∈ K.

Therefore the function

(2.16) Cap(K) = P (ΛK), K ∈ K

satisfies conditions 2.4.A–2.4.D and it can be continued to a capacity on E. Clearly,
ΛO ∈ FP for all O ∈ O. It follows from 2.4.B that Cap(O) = P (ΛO) for all open
O. Suppose that B is a Borel set. By 2.(4.1), there exist Kn ∈ K and On ∈ O such
that Kn ⊂ B ⊂ On and Cap(On) − Cap(Kn) < 1/n. Since ΛKn ⊂ ΛB ⊂ ΛOn ) and
since P (ΛOn)−P (ΛKn) = Cap(On)−Cap(Kn) < 1/n, we conclude that ΛB ∈ FP

and

(2.17) Cap(B) = P (ΛB).



3. SUPERDIFFUSIONS 23

2.4. Range of a superprocess. We consider a (ξ, ψ)-superprocess X corre-
sponding to a continuous strong Markov process ξ. Let F be the σ-algebra in Ω
generated by XO(U ) corresponding to all open sets O ⊂ E,U ⊂ Rd. The support
SO of XO is a closed subset of Ē. To every open set O and every µ ∈ M(E) there
corresponds a r.c.s. (SO , Pµ) in Ē (defined up to equivalence). By [D], Theorem
4.5.1, for every E and every µ, there exists an envelope (RE , Pµ) of the family
(SO, Pµ), O ⊂ E. We call it the range of X in E.

The random set RE can be constructed as follows. Consider a sequence of
open subsets O1, . . . , On, . . . of E such that for every open set O ⊂ E there exists
a subsequence Onk exhausting O. 3 Put

(2.18) M =
∑ 1

an2n
XOn

where an = 〈1, XOn〉 ∨ 1 and define RE as the support of the measure M .
We state an important relation between exit measures and the range.

2.4.A. [ [D], Theorem 4.5.3 ] Suppose K is a compact subset of ∂E and let
Dn = {x ∈ E : d(x,K) > 1/n}. Then

(2.19) {XDn(E) = 0} ↑ {RE ∩K = ∅} Px-a.s.

for all x ∈ E.

3. Superdiffusions

3.1. Definition. If ξ is an L-diffusion, then the (ξ, ψ)-superprocess is called
an (L,ψ)-superdiffusion. If D is a bounded smooth domain and if f is continuous,
then, under broad assumptions on ψ, the integral equation 2.(2.1) is equivalent to
the differential equation Lu = ψ(u) with the boundary condition u = f .

3.2. Family 〈u,XD〉, u ∈ U∗.

Theorem 3.1. 4 Suppose Dn is a sequence exhausting E and let µ ∈ Mc(E). If
u ∈ U−(E) (u ∈ U+(E)) then Yn = e−〈u,XDn 〉 is a submartingale (supermartingale)
relative to (F⊂Dn , Pµ). For every u ∈ U∗, there exists, Pµ-a.s., lim〈u,XDn 〉 = Z.

Proof. By the Markov property 2.1.D, for every A ∈ F⊂Dn ,

Pµ1AYn+1 = Pµ1APXDn
Yn+1.

Therefore the first statement of the theorem follows from the definition of U−(E)
and U+(E). The second statement follows from the first one by a well-known
convergence theorem for bounded submartingales and supermartingales (see, e.g.,
[D], Appendix A, 4.3.A). �

3For instance, take a countable everywhere dense subset Λ of E. Consider all balls contained

in E centered at points of Λ with rational radii and enumerate all finite unions of these balls.
4Cf. Theorem 9.1.1 in [D].
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3.3. Stochastic boundary values. Suppose that u ∈ B(E) and, for every
sequence Dn exhausting E,

(3.1) lim 〈u,XDn〉 = Zu Pµ-a.s. for all µ ∈ Mc(E).

Then we say that Zu is a stochastic boundary value of u and we write Zu = SBV(u).
Clearly, Z is defined by (3.1) uniquely up to equivalence. [We say that Z1 and

Z2 are equivalent if Z1 = Z2 Pµ-a.s. for every µ ∈ Mc(E).] 5 We call u the
log-potential of Z and we write u = LPT(Z) if

(3.2) u(x) = − logPxe−Z

Theorem 3.2 ([D], Theorem 9.1.1). The stochastic boundary value exists for
every u ∈ U−(E) and every u ∈ U+(E). If Zu = SBV(u) exists, then u ∈ D(π)
and , for every µ ∈ Mc,

(3.3) Pµe
−Zu = e−〈π(u),µ〉.

In particular, if u ∈ U(E), then

(3.4) u(x) = − logPxe−Zu for every x ∈ E.

Proof. Let Dn exhaust E. By (2.7) and (3.1),

(3.5) e−〈VDn (u),µ〉 = Pµe
−〈u,XDn 〉 → Pµe

−Zu .

Hence, limVDn (u)(x) exists for every x ∈ E, u ∈ D(π). By 2.2.2.E, for every D b
E, the family of functions VDn (u), Dn ⊃ D are uniformly bounded and therefore
〈VDn (u), µ〉 → 〈π(u), µ〉. We get (3.3) by a passage to the limit in (3.5).

(3.4) follows because π(u) = u for u ∈ U(E) by 2.2.2.C. �

Here are more properties of stochastic boundary values.

3.3.A. If SBV(u) exists, then it is equal to SBV(π(u)).

Proof. Let Dn exhaust E and let µ ∈ Mc(E). By (3.3) and the Markov
property,

e−〈π(u),XDn 〉 = PXDn
e−Zu = Pµ{e−Zu |F⊂Dn} → e−Zu Pµ−a.s.

Hence, 〈π(u), XDn〉 → Zu Pµ-a.s. �

3.3.B. If SBV(u) = Zu and SBV(v) = Zv exist, then SBV(u+ v) exists and

SBV(u+ v) = SBV(u) + SBV(v) = SBV(u⊕ v).

The first equation follows immediately from the definition of SBV. It implies
that the second one follows by 3.3.A.

Lemma 3.1. If, u ≥ v ∈ U(E), then

(3.6) (u	 v) ⊕ v = u.

5It is possible that Z1 and Z2 are equivalent but Pµ{Z1 6= Z2} > 0 for some µ ∈ M(E).
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Proof. If u ≥ v ∈ U(E), then, by 2.2.3.D and 2.3.F, u− v ∈ U+ and u	 v =
π(u− v). Therefore, by 3.3.A and 3.3.B,

Zu	v = Zu−v = Zu − Zv Px-a.s. on {Zv < ∞}.

Hence,

(3.7) Zu = Zv + Zu	v Px-a.s. on {Zv < ∞}.

Since Zu ≥ Zv Px-a.s, this equation holds also on {Zν = ∞}. Since u 	 v and v
belong to U(E), u	 v + v ∈ U−(E) by 2.3.D and, by 3.3.A and 3.3.B,

Z(u	v)⊕v = Z(u	v)+v = Z(u	v) + Zv = Zu.

Because of (3.4), this implies (3.6). �

3.4. Linear boundary functionals. Denote by F⊂E− the minimal σ-algebra
which contains F⊂D for all D b E and by F⊃E− the intersection of F⊃D over all
D b E. Note that, if Dn is a sequence exhausting E, then F⊂E− is generated by
the union of F⊂Dn and F⊃E− is the intersection of F⊃Dn .

We define the germ σ-algebra on the boundary F∂ as the completion of the
σ-algebra F⊂E− ∩ F⊃E− with respect to the family of measures Pµ, µ ∈ Mc(E).
We say that a positive function Z is a linear boundary functional 6 if

3.4.1. Z is F∂-measurable.

3.4.2. For all µ ∈ Mc(E),

− logPµe−Z =
∫

[− logPxe−Z ]µ(dx).

3.4.3. Px{Z <∞} > 0 for all x ∈ E.

We denote by Z the set of all such functionals (two functionals that coincide
Pµ-a.s. for all µ ∈ Mc(E) are identified).

Theorem 3.3. [[D], Theorem 9.1.2] The stochastic boundary value Z of any
u ∈ U−(E)∪U+(E) belongs to Z. Let Z ∈ Z. Then the log-potential u of Z belongs
to U(E) and Z is the stochastic boundary value of u.

According to Theorem 9.1.3 in [D],

3.4.A. If Z1, Z2 ∈ Z, then Z1 + Z2 ∈ Z and

(3.8) LPT(Z1 + Z2) ≤ LPT(Z1) + LPT(Z2).

3.4.B. If Z1, . . . , Zn, · · · ∈ Z and if Zn → Z Pµ-a.s for all µ ∈ Mc(E), then
Z ∈ Z.

It follows from [D], 9.2.2.B that:
3.4.C. If Z ∈ Z and if h(x) = PxZ is finite at some point x ∈ E, then h ∈ H1(E)

and u(x) = − logPxe−Z is a moderate solution.

6The word “boundary” refers to condition 3.4.1 and the word “linear” refers to 3.4.2.
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3.5. On solutions wΓ. These solutions can be expressed in terms of the range
of the (L,ψ)-superdiffusion by the formula

(3.9) wΓ(x) = − logPx{RE ∩ Γ = ∅}.

[See [D], Theorem 10.3.1.] By taking Γ = ∂E, we get the maximal element of U(E)

(3.10) w(x) = − logPx{RE ⊂ E}.

This solution can also be expressed through the range R in the entire space Rd
(assuming that ξ is defined in Rd)

(3.11) w(x) = − logPx{R ⊂ E}.

Indeed, if x ∈ E, then, Px-a.s. XE is concentrated on RE ∩ ∂E. If RE ⊂ E, then
Px{XE = 0} = 1 and, by 2.1.G,XO = 0 Px-a.s. for all O ⊃ E. Hence, the envelope
of SO , O ⊂ Rd coincide, Px-a.s. on RE ⊂ E, with the envelope of SO, O ⊂ E.

We need the following properties of wΓ:

3.5.A. wΓ is the log-potential of

ZΓ =

{
0 if RE ∩ Γ = ∅,
∞ if RE ∩ Γ 6= ∅

and
SBV(wΓ) = ZΓ.

[See Theorem 3.3 and [D], Remark 1.2, p. 133.]

3.5.B. [[D], 10.(3.1) and 10.(3.6)] For every Borel set Γ ⊂ ∂E, wΓ(x) is equal
to the infimum of wO(x) over all open subsets O ⊃ Γ of ∂E.

3.5.C. [[D], 10.1.3.A and 10.1.3.E] If Γ ⊂ A ∪B, then wΓ ≤ wA +wB.

3.6. Stochastic boundary value of hν and uν. Recall that to every ν ∈
M(∂E) there corresponds a harmonic function

hν(x) =
∫

∂E

kE(x, y)ν(dy)

[cf. 1.(1.3)] and a solution uν [the maximal element of U(E) dominated by hν]. A
linear boundary functional

(3.12) Zν = SBV(hν)

has the following propertries:

3.6.A. [[D], 9.(2.1)] For all x ∈ E,

PxZν ≤ hν(x).

3.6.B. [[D].9.2.2.B] If ν ∈ NE
1 , then, for all x ∈ E, PxZν = hν(x) and

uν + GEψ(uν) = hν .

3.6.C. For every ν ∈ NE
1 , SBV(hν) = SBV(uν).

Indeed, SBV(hν) = SBV(π(hν)) by 3.3.A and π(hν) = uν by 2.3.A.
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A σ-moderate solution uν is defined by Lemma 2.2.1 for every ν ∈ NE
0 . We

put Zν = SBV(uν) which is consistent with (3.12) because NE
0 ∩M(∂E) = NE

1 by
2.2.4.A and SBV(uν) = SBV(hν) by 3.6.C.

It follows from (3.4) that

(3.13) uν(x) = − logPxe−Zν for all ν ∈ NE
0 .

Clearly, this implies

(3.14) u∞·ν(x) = − logPx{Zν = 0}.

Lemma 3.2. For every λ, ν ∈ NE
1 ,

(3.15) uλ ⊕ uν = uλ+ν .

Proof. By 2.2.3.D, uλ + uν ∈ U−(E) and therefore, by 3.3.A, SBV(π(uλ +
uν)) = SBV(uλ + uν). Since π(uλ + uν) = uλ ⊕ uν , we get SBV(uλ ⊕ uν) =
SBV(uλ + uν). By 3.6.C, the right side is equal to SBV(uλ+ν), and (3.15) follows
from (3.13). �

3.7. Relation between the range and Zν .

Theorem 3.4. Suppose that ν ∈ NE
1 is concentrated on a Borel set Γ ⊂ ∂E.

Then

(3.16) Px{RE ∩ Γ = ∅, Zν 6= 0} = 0.

Proof. Let Dn exhaust E. We claim that

(3.17) Zν = lim〈uν, XDn 〉 Px-a.s.

Indeed,
Pxe

−〈uν,XDn 〉 = e−uν(x)

by 2.3.F. By passing to the limit, we get

Pxe
−Z = e−uν (x)

where
Z = lim〈uν, XDn 〉.

This means uν = LPTZ. By Theorem 3.3.3, Z = SBV(uν) = Zν .
Since uν ≤ hν = 0 on ∂E \ Γ, we have

〈XDn (E) = 0} = {〈uν , XDn〉 = 0}
and, by 2.4.A,

Px{RE ∩ Γ = ∅, Zν 6= 0} = limPx{〈uν, XDn〉 = 0, Zν 6= 0〉} = 0.

�

3.8. RE-polar sets and class NE
1 . We say that a subset Γ of ∂E is RE-polar

if Px{RE ∩ Γ = ∅} = 1 for all x ∈ E.

Theorem 3.5. Class NE
1 associated with the equation

∆u = uα, 1 < α ≤ 2

in a bounded smooth domain E consists of all finite measures ν on ∂E charging no
RE-polar set.

This follows from proposition 10.1.4.C, Theorem 13.0.1 and Theorem 12.1.2 in
[D].
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4. Notes

In this chapter we summarize the theory of superdiffusion presented in [D].
Our first publication [Dyn91a] on this subject was inspired by a paper [Wat68] of
S. Watanabe where a superprocess corresponding to ψ(x, u) = b(x)u2 has been
constructed by a passage to the limit from a branching particle system. [Another
approach to supeprocesses via Ito’s stochastic calculus was initiated by Dawson
in [Daw75].] Till the beginning of the 1990s superprocesses were interpreted as
measure-valued Markov processes Xt. However, for applications to partial differen-
tial equations it is not sufficient to deal with the mass distribution at fixed times t.
A model of superdiffusions as systems of exit measures from open sets was devel-
oped in [Dyn91a], [Dyn92] and [Dyn93]. For these systems a Markov property and
a continuous branching property were established and applied to boundary value
problems for semilinear equations. In [D] the entire theory of superdiffusion was
deduced from these properties.

A mass distribution at fixed time t can be interpreted as the exit measure from
the time-space domain (−∞, t) × Rd. To cover these distributions, we consider
in Part I of [D] systems of exit measures from all time-space open sets and we
apply these systems to parabolic semilinear equations. In Part II, the results for
elliptic equations are deduced from their parabolic counterpart. In the present
book we consider only the elliptic case and therefore we can restrict ourselves by
exit measures from subsets of Rd. Since the technique needed in parabolic case is
more complicated and since the most results are easier to formulate in the elliptic
case, there is a certain advantage in reading the first three chapters of the present
book before a systematic reading of [D].

More information about the literature on superprocesses and on related topics
can be found in Notes in [D].



CHAPTER 4

N-measures

N-measures appeared, first, as excursion measures of the Brownian snake – a
path-valued Markov process introduced by Le Gall and used by him and his school
for investigating the equation ∆u = u2. In particular, they play a key role in
Mselati’s dissertation. In Le Gall’s theory, measures Nx are defined on the space of
continuous paths. We define their analog in the framework of superprocesses (and
general branching exit Markov systems) on the same space Ω as measures Pµ.

To illustrate the role of these measures, we consider probabilistic solutions of
the equation Lu = ψ(u) in a bounded smooth domain E subject to the boundary
condition u = f on ∂E where f is a continuous function. We compare these
solutions with a solution of the same boundary value problem for a linear equation
Lu = 0. For the linear equation, we have

u(x) = Πxf(ξτE )

where (ξt,Πx) is an L-difusion. For the equation Lu = ψ(u) an analogous formula
can be written in terms of (L,ψ)-superdiffusion:

u(x) = − logPxe−〈f,XE 〉.

An expression in terms of N-measures has the form

u(x) = Nx(1 − e−〈f,XE 〉).

Because the absence of logarithm, this expression is closer than the previous one to
the formula in the linear case. The dependence on x is more transparent and this
opens new avenues for investigating the equation Lu = ψ(u). To a great extent,
Mselati’s success in investigating the equation ∆u = u2 was achieved by following
these avenues. Introducing N-measures into the superdiffusion theory is a necessary
step for extending his results to more general equations. In contrast to probability
measures Px, measures Nx are infinite (but they are σ-finite).

In this chapter we use shorter notation M,U , . . . instead of M(E),U(E), . . . .
No confusion should arise because we deal here with a fixed set E. We construct
random measures Nx with the same auxiliary space (Ω,F) as the measures Pµ. We
show that, for every u ∈ U−, the value Zu can be chosen to satisfy 3.(3.1) not only
for Pµ but also for all Nx, x ∈ E. Similarly, the range RE can be chosen to be an
envelope not only of (SO , Pµ) but also of (SO,Nx). We also give an expression for
various elements of U in terms of measures Nx.

1. Main result

1.1. We denote by Ox the class of open subsets of E which contain x and
by Zx the class of functions 3.(2.1) with Di ∈ Ox. Put Y ∈ Yx if Y = e−Z with

29
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Z ∈ Zx. In Theorem 1.1 and in section 2 we assume that (E,B) is a topological
Luzin space. 1

The following result will be proved in Section 2.

Theorem 1.1. Suppose that X = (XD , Pµ) is a canonical BEM system in
(E,B). For every x ∈ E, there exists a unique measure Nx on the σ-algebra Fx

generated by XO , O ∈ Ox such that:

1.1.A. For every Y ∈ Yx,
(1.1) Nx(1 − Y ) = − logPxY.

1.1.B.
Nx(C) = 0

if C ∈ Fx is contained in the intersection of the sets {XO = 0} over all O ∈ Ox.

Here we prove an immediate implication of this theorem.

Corollary 1.1. For every Z ∈ Zx,
(1.2) Nx{Z 6= 0} = − logPx{Z = 0}.
If Px{Z = 0} > 0, then

(1.3) Nx{Z 6= 0} < ∞.

Equation (1.2) follows from (1.1) because λZ ∈ Zx for every λ > 0 and 1 −
e−λZ ↑ 1Z 6=0 as λ→ ∞. Formula (1.3) follows from (1.2).

After we construct measures Nx in Section 2, we discuss their applications.

2. Construction of measures Nx
2.1. Infinitely divisible random measures. Suppose that (E,B) is a mea-

surable space and let X = (X(ω), P ) be a random measure with values in the space
M of all finite measures on E. X is called infinitely divisible if, for every k, there ex-
ist independent identically distributed random measures (X1, P

(k)), . . . , (Xk, P (k))
such that the probability distribution of X1 + · · · +Xk under P (k) is the same as
the probability distribution of X under P . This is equivalent to the condition

(2.1) Pe−〈f,X〉 = [P (k)e−〈f,X〉 ]k for every f ∈ bB.
Denote by BM the σ-algebra in M generated by the sets {ν : ν(B) < c} where

B ∈ B, c ∈ R. It is clear that (2.1) is satisfied if, for all f ∈ bB,

(2.2) Pe−〈f,X〉 = exp
[
−〈f,m〉 − R(1 − e−〈f,ν〉)

]

where m is a measure on E and R is a measure on (M,BM). If (E,B) is a
measurable Luzin space, 2 then to every infinitely divisible random measure X there
corresponds a pair (m,R) subject to the condition (2.2) and this pair determines
uniquely the probability distribution of X (see, e.g., [Kal77] or [Daw93]). The right
side in (2.2) does not depend on the value of R{0}. If we put R{0} = 0, then the
pair (m,R) is determined uniquely.

1That is it is homeomorphic to a Borel subset Ẽ of a compact metric space.
2That is if there exists a 1-1 mapping from E onto a topological Luzin space Ẽ such that

B ∈ B if and only if its image in Ẽ is a Borel subset of Ẽ.
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It follows from (2.2) that, for every constant λ > 0,

λ〈1,m〉 + R(1 − e−λ〈1,ν〉) = − logPe−λ〈1,X〉.

The right side tends to − logP{X = 0} as λ → ∞. Therefore if P{X = 0} > 0,
then m = 0, R(M) < ∞ and (2.2) takes the form

(2.3) Pe−〈f,X〉 = exp[−R(1 − e−〈f,ν〉)].

We call R the canonical measure for X.

2.2. Infinitely divisible random measures determined by a BEM sys-
tem. Random measures (XD, Pµ) which form a BEM system are infinitely divisible:
the relation (2.1) holds with P (k) = Pµ/k. Moreover, to every family of open sets
I = {D1, . . . , Dn} there corresponds an infinitely divisible measure (XI , Pµ) on the
union EI of n replicas of E. Indeed, put

XI = {XD1 , . . . , XDn}, fI = {f1, . . . , fn},

〈fI , XI〉 =
n∑

i=1

〈fi, XDi〉
(2.4)

and use 3.2.1.A and 3.2.1.D to prove, by induction in n, that

Pµe
−〈fI ,XI 〉 = [Pµ/ke−〈fI ,XI 〉]k.

Therefore (XI , Pµ) satisfies (2.1).
Note that, if D ∈ Ox, then, by 3.(2.7) and 2.2.2.E,

Px{XD = 0} = lim
λ→∞

Pxe
−〈λ,XD〉 = lim

λ→∞
e−VD(λ)(x) > 0.

It follows from 3.2.1.G that, if I = {D1, . . . , Dn} ⊂ Ox, then Px{XI = 0} > 0.
Denote by MI the space of all finite measures on EI. There is a natural 1-1

correspondence between νI ∈ MI and collections (ν1, . . . , νn) where νi ∈ M. The
product of n replicas of BM is a σ-algebra in MI . We denote it BMI . By applying
formula (2.3), we get

(2.5) Pxe
−〈fI ,XI 〉 = exp[−RI

x(1 − e−〈fI ,νI 〉)] for I ⊂ Ox

where RI
x is a measure on (MI ,BMI ) not charging 0.

2.3. We use notation OI for the the family {O,D1, . . . , Dn} where I =
{D1, . . . , Dn}. We have:

2.3.A. If OI ⊂ Ox, then for every fI ,

(2.6) ROI
x {νO 6= 0, e−〈fI ,νI〉} = − logPx{XO = 0, e−〈fI ,XI 〉} + logPxe−〈fI ,XI 〉.

Proof. Consider functions fλ = {λ, f1, . . . , fn} where λ ≥ 0. By (2.5),

ROI
x {−e−〈fλ ,νOI〉 + e−〈f0,νOI〉} = ROI

x (1− e−λ〈1,νO〉−〈fI ,νI〉)−ROI
x (1− e−〈fI ,νI 〉)

= − logPxe−λ〈1,XO〉−〈fI ,XI 〉 + logPxe−〈fI ,XI 〉.

Note that

−e−〈fλ ,νOI〉 + e−〈fI ,νI 〉 → 1{νO 6=0}e
−〈fI ,νI〉,

e−〈λ,XO〉−〈fI ,XI 〉 → 1{XO=0}e
−〈fI ,XI 〉

as λ → ∞ which implies (2.6). �
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2.3.B. If x ∈ O′ ⊂ O, then

(2.7) Px{XO = 0|XO′ = 0} = 1

and

(2.8) ROO′

x {νO′ = 0, νO 6= 0} = 0.

Proof. By the Markov property 3.2.1.D,

Px{XO′ = 0} − Px{XO′ = XO = 0} = Px{XO′ = 0, XO 6= 0}
= Px[XO′ = 0, PXO′{XO 6= 0}] = 0

which implies (2.7).
By 2.3.A,

ROO′

x {νO 6= 0, e−〈λ,νO′〉} = − logPx{XO = 0, e−〈λ,XO′〉} + logPxe−〈λ,XO′ 〉.

By passing to the limit as λ → ∞, we get

ROO′

x {νO′ = 0, νO 6= 0} = − logPx{XO′ = 0, XO = 0} + logPx{XO′ = 0}
and therefore (2.8) follows from (2.7). �

2.3.C. If I ⊂ J ⊂ Ox, then

ROI
x {νO 6= 0, νI ∈ B} = ROJ

x {νO 6= 0, νI ∈ B}
for every B ∈ BMI .

Proof. Suppose that fJ\I = 0. Since 〈fI , XI〉 = 〈fJ , XJ 〉, we conclude from
(2.6) that

(2.9) ROI
x {νO 6= 0, e−〈fI ,νI〉} = ROJ

x {νO 6= 0, e−〈fJ ,νJ 〉}.
By the Multiplicative systems theorem (see, e. g., [D], the Appendix A), this implies
2.3.C. �

2.4. Proof of Theorem 1.1. 1◦. Note that, by (2.6), ROI
x (νO 6= 0) =

− logPx{XO = 0} does not depend on I. It is finite because Px{XO = 0} > 0.
Consider a set ΩO = {XO 6= 0} and denote by FO the σ-algebra in ΩO generated by
XD(ω), D ∈ Ox. It follows from 2.3.C and Kolmogorov’s theorem about measures
on functional spaces that there exists a unique measure NOx on (ΩO,FO) such that

(2.10) NOx e−〈fI ,XI 〉 = ROI
x {νO 6= 0, e−〈fI ,νI 〉}

for all I and all fI .
By the Multiplicative systems theorem,

(2.11) NOx F (XI) = ROI
x {νO 6= 0, F (νI)}

for every positive measurable F .
2◦. Suppose that x ∈ O′ ⊂ O. We claim that ΩO ⊂ ΩO′ NOx -a.s. and that

NOx = NO′

x on ΩO. The first part holds because, by (2.11) and 2.3.B,

NOx {XO′ = 0} = ROO′

x {νO 6= 0, νO′ = 0} = 0.

The second part follows from the relation

(2.12) NOx {XO 6= 0, F (XI)} = NO
′

x {XO 6= 0, F (XI)}
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for all positive measurable F . To prove this relation we observe that, by (2.11),

(2.13) NO
′

x {XO 6= 0, F (XI)} = RO′OI
x {νO′ 6= 0, νO 6= 0, F (νI)}.

By (2.11) and 2.3.C

(2.14) NOx {XO 6= 0, F (XI)} = ROI
x {νO 6= 0, F (νI)} = ROO′I

x {νO 6= 0, F (νI)}.

By 2.3.C and 2.3.B,

ROO′I
x {νO 6= 0, νO′ = 0} = ROO′

x {νO 6= 0, νO′ = 0} = 0.

Therefore the right sides in (2.13) and (2.14) are equal.
3◦. Note that, for every O1, O2 ∈ Ox, NO1

x = NO2
x on ΩO1 ∩ ΩO2 because, for

O′ = O1 ∩O2, NO1
x = NO

′

x on ΩO1 and NO2
x = NO

′

x on ΩO2 . Let Ω∗ be the union of
ΩO over all O ∈ Ox. There exists a measure Nx on Ω∗ such that

(2.15) Nx = NOx on ΩO for every O ∈ Ox.

By setting Nx(C) = 0 for every C ⊂ Ω\Ω∗ which belongs to Fx we satisfy condition
1.1.B of our theorem.

4◦. It remains to prove that Nx satisfies condition 1.1.A. We need to check that

(2.16) Nx{1 − e−〈fI ,XI〉} = − logPxe−〈fI ,XI 〉

for every I = {D1, . . . , Dn} such that Di ∈ Ox and for every fI . The intersection
O of Di belongs to Ox. Since, for all i, {XO = 0} ⊂ {XDi = 0} Nx-a.s., we have

(2.17) {XO = 0} ⊂ {e−〈fI ,XI 〉 = 1} Nx − a.s.

and

Nx{1 − e−〈fI ,XI 〉} = Nx{XO 6= 0, 1− e−〈fI ,XI 〉} = NOx {1 − e−〈fI ,XI 〉}.

By (2.11), the right side is equal to ROI
x {νO 6= 0, 1 − e−〈fI ,νI〉}. This is equal to

− logPxe−〈fI ,XI〉 by (2.6)and (2.17).
5◦. If two measures Nx and Ñx satisfy the condition 1.1.A, then

(2.18) Nx{XO 6= 0, 1− Y } = Ñx{XO 6= 0, 1− Y }

for all O ∈ Ox and all Y ∈ Yx. (This can be proved by a passage to the limit similar
to one used in the proof of Corollary 1.1.) The family {1 − Y, Y ∈ Yx} is closed
under multiplication. By the Multiplicative systems theorem, (2.18) implies that
Nx{XO 6= 0, C} = Ñx{XO 6= 0, C} for every C ∈ Fx contained in Ω∗. By (1.1.B),
Nx(C) = Ñx(C) = 0 for C ∈ Fx contained in Ω \ Ω∗. Thus Nx = Ñx on Fx. �

3. Applications

3.1. Now we consider an (L,ψ)-superdiffusion (XD , Pµ) in a domain E ⊂ Rd.
All these superdiffusions satisfy the condition

(3.1) 0 < Px{XD = 0} < 1 for every D ⊂ E and every x ∈ D.

By 2.2.2.C, if u ∈ U then VD(u) = u for every D b E.
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3.2. Stochastic boundary value.

Theorem 3.1. Let X = (XD, Pµ) be an (L,ψ)-superdiffusion. For every u ∈
U−, there exists a function Zu(ω) such that

(3.2) lim 〈u,XDn 〉 = Zu Pµ-a.s. for all µ ∈ M(E) and Nx-a.s.for all x ∈ E

for every sequence Dn exhausting E. 3

From now on we use the name a stochastic boundary value of u and the notation
SBV(u) for Zu which satisfies (3.2).

To prove Theorem 3.1 we use two lemmas.

Lemma 3.1. For every Z, Z̃ ∈ Zx,
(3.3) Nx{Z̃ = 0, Z 6= 0} = − logPx{Z = 0|Z̃ = 0}
If x ∈ O′ ⊂ O, then

(3.4) {XO 6= 0} ⊂ {XO′ 6= 0} Nx-a.s.

Proof. By (1.2),

Nx{Z̃ 6= 0} = − logPx{Z̃ = 0}
and

Nx{Z̃ + Z 6= 0} = − logPx{Z̃ + Z = 0} = − logPx{Z̃ = 0, Z = 0}.
Therefore

Nx{Z̃ = 0, Z 6= 0} = Nx{Z̃ + Z 6= 0} − Nx{Z̃ 6= 0}

= − logPx{Z̃ = 0, Z = 0} + logPx{Z̃ = 0}
which implies (3.3). Formula (3.4) follows from (3.3) and (2.7). �

Denote Fx
⊂D the σ-algebra generated by XD′ such that x ∈ D′ ⊂ D.

Lemma 3.2. Put YO = e−〈u,XO〉. If u ∈ U− and x ∈ O′ ⊂ O, then, for every
V ∈ Fx

⊂O′ ,

(3.5) Nx{XO′ 6= 0, V (1 − YO)} ≤ Nx{XO′ 6= 0, V (1 − YO′ )}.

Proof. Note that

(3.6) Nx{XO′ 6= 0, V (1 − YO)} = NxV (1 − YO).

Indeed,
1{XO′ 6=0}(1 − YO) = 1 − YO

on {XO′ 6= 0}. By (3.4), this equation holds Nx-a.s. on {XO 6= 0}. It holds also on
{XO = 0} because there both sides are equal to 0.

To prove our lemma, it is sufficient to show that (3.5) holds for V = e−〈fI ,XI 〉

with I = {D1, . . . , Dn} where x ∈ Di ⊂ O′. By (3.6) and (1.1),

Nx{XO′ 6= 0, V (YO − YO′)}
= Nx{XO′ 6= 0, V (1 − YO′ )} − Nx{XO′ 6= 0, V (1 − YO)}
= Nx{V (1 − YO′)} − Nx{V (1 − YO)} = −Nx(1 − V YO) + Nx(1 − V YO′)
= − logPxV YO′ + logPxV YO.

(3.7)

3〈u,XDn〉 ∈ Fx for all sufficiently big n.
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If u ∈ U− , then PµYO = e−〈VO(u),µ〉 ≥ e−〈u,µ〉 and, by the Markov property
3.2.1.D,

PxV YO = Px(V PXO′YO) ≥ PxV YO′ .

Therefore the right side in (3.7) is bigger than or equal to 0 which implies (3.5). �

3.3. Proof of Theorem 3.1. As we know (see Theorem 3.3.2), the limit
3.(3.1) exists Pµ-a.s. and is independent of a sequence Dn. Let us prove that this
limit exists also Nx-a.s.

Put Ωm = {XDm 6= 0}, Yn = e−〈u,XDn 〉. If m is sufficiently large, then Dm ∈
Ox. For every such m and for all n ≥ m, denote by Fm

n the σ-algebra in Ωm
generated by XU where x ∈ U ⊂ Dn. It follows from (1.2) and (3.1) that

0 < Nx(Ωm) < ∞.

The formula

Qmx (C) =
Nx(C)

Nx(Ωm)
defines a probability measure on Ωm. By Lemma 3.2 applied to O′ = Dn and
O = Dn+1,

Nx{Ωn, V (1 − Yn+1)} ≤ Nx{Ωn, V (1 − Yn)} for V ∈ F⊂Dn

and therefore

Qmx {V (1 − Yn+1)} ≤ Qmx {V (1 − Yn)} for n ≥ m and V ∈ Fm
n .

Hence, 1 − Yn, n ≥ m is a supermartingale relative to Fm
n and Qmx . We conclude

that, Qmx -a.s., there exists lim(1 − Yn) and therefore there exists also the limit
3.(3.1). �

3.4.

Theorem 3.2. If Z = Z0 + Zu where Z0 ∈ Zx, u ∈ U−, then

(3.8) Nx(1 − e−Z) = − logPxe−Z .

First we prove a lemma. For every U ∈ Ox, denote by ZU the class of functions
3.(2.1) with Di ⊃ U and put Y ∈ YU if Y = e−Z with Z ∈ ZU .

Lemma 3.3. Suppose that U is a neighborhood of x. If Yn ∈ YU converge
Px-a.s. to Y and if Px{Y > 0} > 0, then

(3.9) Nx(1 − Y ) = − logPxY.

Proof. By the Markov property 3.2.1.D, Px{XU = 0, XD 6= 0} = 0 for every
D ⊃ U and therefore every Y ∈ YU is equal to 1 Px-a.s. on C = {XU = 0}.

Denote by Q the restriction of Nx to {XU 6= 0}. By (2.6), (2.10) and (2.15), if
Y ∈ YU , then

(3.10) QY = − logPx{C, Y } + logPxY = − logPx(C) + logPxY.

Since Y 2
m, Y

2
n , YmYn belong to YU , we have

Q(Ym − Yn)2 = QY 2
m + QY 2

n − 2QYmYn = logPxY 2
m + logPxY 2

n − 2 logPxYmYn.

By the dominated convergence theorem, the right side tends to 0 as m,n→ ∞. A
subsequence Ynk converges Px-a.s. and Q-a.s. to Y . Since Q is a finite measure
and 0 ≤ Yn ≤ 1,

QYnk → QY.
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Formula (3.10) holds for Yn. By passing to the limit, we conclude that it holds
for Y . Therefore Nx{Y,XU 6= 0} = − logPx(C) + logPxY . By (1.2), this implies
(3.9). �

Proof of Theorem 3.2. If Dn exhaust E, then, Px-a.s., Y = e−Z = limYn where
Yn = e−Z

0−〈u,XDn 〉 ∈ Yx. For some U ∈ Ox, all Yn belong to YU . It remains to
check that Px{Y > 0} > 0. Note that Z0 < ∞ Px-a.s. and

Pxe
−〈u,XDn 〉 = e−VDn (u)(x) ≥ e−u(x).

Therefore Pxe−Zu > 0 and Px{Zu <∞} > 0. �

Remark 3.1. It follows from Theorem 3.2 that, for every ν ∈ M(E),

NxZν = PxZν .

Indeed, for every λ > 0, u = λhν ∈ U− and therefore, by (3.8), Nx(1 − e−λZν ) =
− logPxe−λZν . Since PxZν < ∞ by 3.3.6.A, we can differentiate under the integral
signs.

3.5. Range.

Theorem 3.3. For every x ∈ E, a closed set RE can be chosen to be, at the
same time, an envelope of the family (SO, Px), O ⊂ E and an envelope of the family
(SO,Nx), O ∈ Ox. For every Borel subset Γ of ∂E,

(3.11) Nx{RE ∩ Γ 6= ∅} = − logPx{RE ∩ Γ = ∅}.

The following lemma is needed to prove Theorem 3.3.

Lemma 3.4. Suppose that U is a relatively open subset of ∂E, O is an open
subset of E, Ok exhaust O and

(3.12) AU = {XOk (U ) = 0 for all k,XO(U ) 6= 0}.

Then Pµ(AU ) = 0 for all µ ∈ M(E) and Nx(AU ) = 0 for all x ∈ O.

Proof. By [D], Lemma 4.5.1, Pµ(AU ) = 0 for µ ∈ M(E). If x ∈ O, then x ∈
Om for some m. Since the sequence Om, Om+1, . . . exhaust O, we can assume that
x ∈ O1. Put Z = XO(U ), Z̃n =

∑n
1 XOk (U ) and note that AU = {Z̃∞ = 0, Z 6= 0}

and Px{Z̃∞ = 0} ≥ Px{XO1 = 0} > 0. By Lemma 3.1 applied to Z and Z̃n,

Nx{AU} ≤ Nx{Z̃n = 0, Z 6= 0} = − logPx{Z = 0|Z̃n = 0}.

As n → ∞, the right side tends to

− log{1 − Px(AU )/Px[Z̃∞ = 0]} = 0.

Hence NxAU = 0. �

3.6. Proof of Theorem 3.3. 1◦. We prove the first part of the theorem by
using the construction described in Section 3.2.4. It follows from Lemma 3.4 that
the support RE of the measure M defined by 3.(2.18) is a minimal closed set
which contains, Pµ-a.s. for µ ∈ M(E) and Nx-a.s., the support of every measure
XD, D ∈ Ox. The proof is identical to the proof of Theorem 5.1 in [D], p. 62 or
Theorem 5.1 in [Dyn98], p. 174.
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2◦. First, we prove formula (3.11) for relatively open subsets of ∂E. For every
such a subset U , we put

Zk = XOk (U ), Z̃n =
n∑

1

Zk,

A1 = {Z1 6= 0}, An = {Z̃n−1 = 0, Zn 6= 0} for n > 1.

(3.13)

Note that

{RE ∩ U = ∅} = {M (U ) = 0} = {Zn = 0 for all n},

{RE ∩ U 6= ∅} =
⋃
An

(3.14)

and Px{Z̃n = 0} > 0 for all n. By Lemma 3.1 applied to Z = Zn and Z̃ = Z̃n−1,
we have

Nx(An) = − logPx{Zn = 0|Z̃n−1 = 0}

and therefore, by (3.14),

(3.15) Nx{RE ∩ U 6= ∅} = − log
∞∏

1

Px{Zn = 0|Z̃n−1 = 0}

= − logPx{Zn = 0 for all n} = − logPx{RE ∩U = ∅}.

Thus formula (3.11) holds for open sets.
Now suppose that K is a closed subset of ∂E and let Un = {x ∈ ∂E : d(x,K) <

1/n}. By applying (3.15) to Un and by passing to the limit, we prove that (3.11)
is satisfied for K.

To extend (3.11) to all Borel sets Γ ⊂ ∂E, we consider Choquet capacities 4

Cap1(Γ) = Px{RE ∩ Γ 6= ∅}

and

Cap2(Γ) = Nx{RE ∩ Γ 6= ∅}.

[Note that Cap2(Γ) ≤ Cap2(∂E) = − logPx{RE ∩ ∂E = ∅} < ∞.] There exists
a sequence of compact sets Kn such that Cap1(Kn) → Cap1(Γ) and Cap2(Kn) →
Cap2(Γ). We have

Cap2(Kn) = − log[1 − Cap1(Kn)].

By passing to the limit we prove that (3.11) holds for Γ. �

Remark. A new probabilistic formula

(3.16) wΓ(x) = Nx{RE ∩ Γ 6= ∅}.

for functions defined by 1.(1.5)–1.(1.6) follows from (3.11) and 3.(3.9).

4See Section 2.4.
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3.7. Probabilistic expression of a solution through its trace.

Theorem 3.4. If Z = SBV (u) for u ∈ U−, then, for every Borel set Γ ⊂ ∂E,

(3.17) − logPx{RE ∩Γ = ∅, e−Z} = Nx{RE ∩Γ 6= ∅}+Nx{RE ∩Γ = ∅, 1− e−Z}.
Formula (3.17) with Z = Zν , ν ∈ NE

0 provides a probabilistic expression for the
solution wΓ ⊕ uν. In particular,

(3.18) − logPxe−Zν = Nx{1 − e−Zν} = uν(x)

and

(3.19) − logPx{RE ∩ Γ = ∅} = Nx{RE ∩ Γ 6= ∅} = wΓ(x).

3.8. In preparation for proving Theorem 3.4 we establish the following result.

Lemma 3.5. If Z = SBV(u), u ∈ U−, then for every Z′, Z′′ ∈ Zx,

(3.20) Nx{Z′ = 0, 1− e−Z} = − logPx{e−Z |Z′ = 0}
and
(3.21)

Nx{Z′ = 0, Z′′ 6= 0, e−Z} = − logPx{e−Z|Z′ = 0} + logPx{e−Z|Z′ = Z′′ = 0}.

Proof. By Theorem 3.2, for every λ > 0,

− logPxe−λZ
′−Z = Nx(1 − e−λZ

′−Z).

By taking λ → ∞, we get

− logPx{Z′ = 0, e−Z} = Nx(1 − 1Z′=0e
−Z).

By (1.2), this implies (3.20). Note that

{Z′ = 0, Z′′ 6= 0} = {Z′ = 0} \ {Z′ + Z′′ = 0}.
Therefore

Nx{Z′ = 0, Z′′ 6= 0, 1− e−Z} = Nx{Z′ = 0, 1 − e−Z} − Nx{Z′ + Z′′ = 0, 1− e−Z}
and we get (3.21) by applying (3.20). �

3.9. Proof of Theorem 3.4. We use notation (3.13). Put

In = − logPx{e−Z |Z̃n = 0}.
By (3.14),

(3.22) I∞ = lim
n→∞

In = − logPx{e−Z |RE ∩ U = ∅}

= − logPx{RE ∩ U = ∅, e−Z} + logPx{RE ∩U = ∅}.

By (3.22) and (3.11),

(3.23) − logPx{RE ∩ U = ∅, e−Z} = I∞ + Nx{RE ∩ U 6= ∅}.
By (3.14),

(3.24) Nx{RE ∩ U 6= ∅, 1− e−Z} =
∞∑

1

Nx{An, 1− e−Z}.

It follows from (3.20) and (3.21) that

Nx{A1, 1 − e−Z} = − logPxe−Z − I1
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and
Nx{An, 1 − e−Z} = In−1 − In for n > 1.

Therefore

(3.25) Nx{RE ∩ U 6= ∅, 1 − e−Z} =
∞∑

1

Nx{An, 1 − e−Z} = − logPxe−Z − I∞

and, by (3.8),

(3.26) I∞ = − logPxe−Z − Nx{RE ∩ U 6= ∅, 1 − e−Z}

= Nx(1 − e−Z) − Nx{RE ∩U 6= ∅, 1− e−Z} = Nx{RE ∩U = ∅, 1− e−Z}.

It follows from (3.23) and (3.26) that (3.17) is true for open sets Γ. An extension
to all Borel sets can be done in the same way as in the proof of Theorem 3.3.

To prove the second part of the theorem, it is sufficient to show that

(3.27) wΓ ⊕ uν = − logPx{RE ∩ Γ = ∅, e−Zν}.
Let u = wΓ⊕uν. By 3.3.3.B, SBV(u) = ZΓ+Zν where ZΓ = SBV(wΓ). By 3.(3.4),
u(x) = − logPxe−ZΓ−Zν , and (3.27) follows from 3.(3.5.A). �

3.10. It follows from (3.17) and (3.11) that

(3.28) Nx{RE ∩ Γ = ∅, 1− e−Z} = − logPx{e−Z | RE ∩ Γ = ∅}.

[By 3.(3.9), Px{RE ∩ Γ = ∅} = e−wΓ(x) > 0.]
By applying (3.28) to λZ and by passing to the limit as λ → +∞, we get

(3.29) Nx{RE ∩ Γ = ∅, Z 6= 0} = − logPx{Z = 0 | RE ∩ Γ = ∅}.

If ν ∈ NE
1 is concentrated on Γ, then {RE ∩ Γ = ∅} ⊂ {Zν = 0} Px-a.s. and

therefore

(3.30) Nx{RE ∩ Γ = ∅, Zν 6= 0} = 0.

It follows from (3.29) and (3.11) that

(3.31)
− logPx{RE ∩ Γ = ∅, Z = 0} = Nx{RE ∩ Γ 6= ∅} + Nx{RE ∩ Γ = ∅, Z 6= 0}.

We conclude from this relation and 3.(3.14) that

(3.32) u∞·ν = − logPx{Zν = 0} = Nx{Zν 6= 0}.

4. Notes

The results presented in this chapter can be found in [DK].
A systematic presentation of Le Gall’s theory of the Brownian snake and its

applications to a semilinear equation ∆u = u2 is contained in his book [LG99]. It
starts with a direct construction of the snake. A related (L,ψ)-superdiffusion with
quadratic branching ψ(u) = u2 is defined by using the local times of the snake. A
striking example of the power of this approach is Wiener’s test for the Brownian
snake (first, published in [DLG97]) that yields a complete characterization of the
domains in which there exists a solution of the problem

∆u = u2 in E,
u = ∞ on ∂E.
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Only partial results in this direction were obtained before by analysts. 5

A more general path-valued process – the Lévy snake was studied in a se-
ries of papers of Le Gall and Le Jan. Their applications to constructing (ξ, ψ)-
superprocesses for a rather wide class of ψ are discussed in Chapter 4 of the mono-
graph [DLG02].

We refer to the bibliography on the Brownian snake and the Lévy snake in
[LG99] and [DLG02].

5Later Labutin [Lab03] proved a similar result for all equations ∆u = uα with α > 1 by

analytical methods.



CHAPTER 5

Moments and absolute continuity properties of

superdiffusions

In this chapter we consider (L,ψ)-superdiffusions in an arbitrary domain E,
with ψ defined by 3.(2.8) subject to the condition 3.(2.9).

The central result (which will be used in Chapter 9) is that, if A belongs to
the germ σ-algebra F∂ (defined in Section 3.4 of Chapter 3), then either Pµ(A) = 0
for all µ ∈ Mc(E) or Pµ(A) > 0 for all µ ∈ Mc(E). The proof is based on the
computation of the integrals

(0.1)
∫
e−〈f0,XD〉〈f1, XD〉 . . . 〈fn, XD〉

with respect to measures Nx and Pµ and on a Poisson representation of infinitely
divisible measures.

As an intermediate step we consider the surface area γ on the boundary of a
smooth domain D and we prove that the measures

(0.2) nxD(B) = Nx
∫

B

XD(dy1) . . .XD(dyn), x ∈ D

and

(0.3) pµD(B) = Pµ

∫

B

XD(dy1) . . .XD(dyn), µ ∈ Mc(D)

vanish on the same class of sets B as the product measure γn(dy1, . . . , dyn) =
γ(dy1) . . . γ(dyn).

1. Recursive moment formulae

Let D b E and let f0, f1, · · · ∈ B(D̄). Put

(1.1) ` = ψ′[VD(f0)].

We express the integrals (0.1) through the operators G`Df(x) and K`
Df(x)

defined by 3.(1.5) and a sequence

q1(x) = 1, q2(x) = 2b+
∫ ∞

0

t2e−t`(x)N (x, dt),

qr(x) =
∫ ∞

0

tre−t`(x)N (x, dt) for r > 2
(1.2)

which we call a q-sequence. By 3.(2.11), the function ψ(x, u) is infinitely differen-
tiable with respect to u and

(1.3) qr(x) = (−1)rψr(x, `(x)) for r ≥ 2.

The functions qr are strictly positive and bounded.

41
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1.1. Results. We consider nonempty finite subsets C = {i1, . . . , in} of the set
{1, 2, . . .} and we put |C| = n. We denote by Pr(C) the set of all partitions of
C into r disjoint nonempty subsets C1, . . . , Cr. We do not distinguish partitions
obtained from each other by permutations of C1, . . . , Cr and by permutations of
elements inside each Ci. For instance, for C = {1, 2, 3}, the set P2(C) consists of
three elements {1, 2} ∪ {3}, {1, 3}∪ {2} and {2, 3} ∪ {1}. We denote by P(C) the
union of Pr(C) over r = 1, 2, . . . , |C|.

For any functions ϕi ∈ B(D̄), we put

{ϕ1} = ϕ1,(1.4)

{ϕ1, . . . , ϕr} = G`D(qrϕ1 . . . ϕr) for r > 1(1.5)

We prove:

Theorem 1.1. Suppose that f0, f1, f2, · · · ∈ B(D̄) and let 0 < β ≤ f0(x) ≤ γ
for all x ∈ D̄ where β and γ are constants. Put ϕi = K`

Dfi. The functions

(1.6) zC(x) = Nxe−〈f0 ,XD〉
∏

i∈C
〈fi, XD〉, x ∈ D

can be evaluated by the recursive formulae

zC = ϕi for C = {i},

zC =
∑

2≤r≤|C|

∑

Pr(C)

{zC1 , . . . , zCr} for |C| > 1.(1.7)

Theorem 1.2. In notation of Theorem 1.1,

(1.8) Pµe
−〈f0,XD〉

∏

i∈C

〈fi, XD〉 = e−〈VD(f0),µ〉
∑

P(C)

〈zC1 , µ〉 . . . 〈zCr , µ〉

for every µ ∈ Mc(D).

Theorems 1.1 and 1.2 imply the following expressions:

(1.9) Px〈f,XD〉 = Nx〈f,XD〉 = KDf(x),

(1.10) Px〈f,XD〉2 = Nx〈f,XD〉2+[Nx〈f,XD〉]2 = GD[q2(KDf)2](x)+[KDf(x)]2.

1.2. Preparations. Let Di = ∂
∂λi

. Suppose that F λ(x) is a function of x ∈ D̄

and λ = {λ1, λ2, . . .} ∈ [0, 1]∞ which depends only on a finite number of λi. Put
F ∈ C∞ if F and all its partials with respect to λ are bounded. Write DCF for
Di1 . . .DirF if C = {i1 < · · · < ir}. 1 Let

yλC = f0 +
∑

i∈C

λifi,

Y λC = Y0 +
∑

i∈C

λiYi

where Yi = 〈fi, XD〉.

1Put DCF = F for C = ∅.
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Lemma 1.1. Suppose that for all x, f0(x) ≥ β > 0 and fi(x) < γ for i ∈ C.
Then the functions

(1.11) uλC(x) = Nx(1 − e−Y
λ

C ) = VD(yλC )(x)

belong to C∞ and

(1.12) zC = (−1)|C|+1(DCuλC)|λ=0.

Proof. 1◦. Put I = 〈1, XD〉. First, we prove a bound 2

(1.13) NxI ≤ 1.

Note that by 4.(1.1), 3.(2.6) and 3.(2.1),

(1.14) Nx(1 − e−λI) = − logPxe−λI = VD(λ)(x) ≤ KD(λ)(x) = λ.

Since (1 − e−λI)/λ→ I as λ ↓ 0, (1.13) follows from (1.14) by Fatou’s lemma.
2◦. For every β > 0 and every n ≥ 1, the function ϕn(t) = e−βttn−1 is bounded

on R+. Note that Yi ≤ γI for i ∈ C and e−Y
λ

C ≤ e−βI . Therefore

|Di1 . . .Din (1 − e−Y
λ

C )| = Yi1 . . .Yine
−Y λ

C ≤ γnIϕn(I) ≤ const. I.

It follows from (1.11) and (1.13) that, for all i1, . . . , in ∈ C,

Di1 . . .DinuλC = NxDi1 . . .Din(1 − e−Y
λ

C ).

Hence uλC ∈ C∞ and it satisfies (1.12). �

1.3. Proof of Theorem 1.1. 1◦. It is sufficient to prove (1.6) for bounded
f1, f2, . . . . (This restriction can be removed by a monotone passage to the limit.)
Operators KD, GD,K

`
D and G`D map bounded functions to bounded functions.

Indeed, if 0 ≤ f ≤ γ, then K`
Df ≤ KDf ≤ γ and G`Df ≤ GDf ≤ γΠxτD and, for a

bounded set D, ΠxτD is bounded by Proposition 3.1.1.
2◦. Let F ∈ C∞. We write F ∼ 0 if DCF |λ=0 = 0 for all sets C (including the

empty set). Clearly, F ∼ 0 if, for some n ≥ 1,

(1.15) F λ =
n∑

1

λ2
iQ

λ
i + |λ|nελ

where |λ| =
∑n

1 λi, Q
λ
i are polynomials in λ with coefficients that are bounded

Borel functions in x and ελ is a bounded function tending to 0 at each x as |λ| → 0.
It follows from Taylor’s formula that, if F ∼ 0, then F can be represented in the
form (1.15) with every n ≥ 1. We write F1 ∼ F2 if F1 − F2 ∼ 0. Note that, if
F ∼ 0, then FF̃ ∼ 0 for every F̃ ∈ C∞ and therefore F1F2 ∼ F̃1F̃2 if F1 ∼ F̃1 and
F2 ∼ F̃2. Operators KD, GD,K

`
D and G`D preserve the relation ∼.

Put uλ = uλC. It follows from Lemma 1.1 that

(1.16) uλ ∼ u0 +
∑

B

(−1)|B|−1λBzB

where B runs over all nonempty subsets of C.

2After we prove Theorem 1.1, a stronger version of (1.13) NxI = 1 will follow from (1.9).
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3◦. By 3(2.8), 3(2.11) and Taylor’s formula, for every n,

(1.17) ψ(uλ) = ψ(u0) + ψ1(u0)(uλ − u0)

+
n∑

r=2

1
r!
ψr(u0)(uλ − u0)r + Rλ(uλ − u0)n

where

Rλ(x) =
1
n!

∫ ∞

0

tn(e−λθ − e−λu
0
)N (x, dt)

with θ between u0 and uλ. By (1.16),

(1.18) (uλ − u0)r ∼
∑

B1,...,Br

r∏

1

(−1)|Bi |−1λBizBi

= r!
∑

B

(−1)|B|−rλB
∑

Pr(B)

zB1 . . . zBr .

Since u0 = VD(f0) and, by (1.1), ψ1(u0) = `, we conclude from (1.17), (1.18) and
(1.3) that

ψ(uλ) ∼ ψ(u0) + `

n∑

1

λizi + `
∑

|B|≥2

(−1)|B|−1λBzB +
∑

B⊂C
(−1)|B|ρB

where ρB = 0 for |B| = 1 and

ρB =
∑

r≥2

qr
∑

Pr(B)

zB1 . . . zBr for |B| ≥ 2.

Hence,
(1.19)

GD[ψ(uλ)] ∼ GD[ψ(u0) + `

n∑

1

λizi + `
∑

|B|≥2

(−1)|B|−1λBzB +
∑

B⊂C
(−1)|B|ρB ].

By 2.(2.1) and (1.11), uλ+GDψ(uλ) = KDy
λ. By using (1.16) and (1.19) and

by comparing the coefficients at λB , we get

(1.20) zi +GD(`zi) = KDfi for i ∈ C

and

(1.21) zB +GD(`zB ) = GDρB for |B| ≥ 2.

By Theorem 3.1.1,
z = K`

Df(x)
is a unique solution of the integral equation

z +GD(`z) = KDf

and
ϕ = G`Dρ

is a unique solution of the equation

ϕ+ GD(`ϕ) = GDρ.

Therefore the equations (1.20) and (1.21) imply (1.7). �
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1.4. Proof of Theorem 1.2. We have

(1.22) Pµe
−Y λ

C = Pµe
−Y0

∏

i∈C
e−λiYi ∼ Pµe

−Y0
∏

i∈C
(1 − λiYi)

∼ Pµe
−Y0 +

∑

B⊂C
(−1)|B|λBPµe

−Y0YB

where YB =
∏
i∈B Yi and the sum is taken over nonempty B.

By 4.(1.1) and 3.(2.6), VD(yλC)(x) = Nx(1 − e−Y
λ

C ) and therefore, by 3.(2.7),

(1.23) Pµe
−Y λ

C = exp−〈VD(yλC), µ〉 = exp[−
∫

D

Nx(1 − e−Y
λ

C )µ(dx)].

By (1.6), Nxe−Y0YB = zB and, since Nx(1 − e−Y0) = VD(f0), we have

Nx(1 − e−Y
λ

C ) = Nx[1− e−Y0
∏

i∈C

e−λiYi] ∼ Nx[1 − e−Y0
∏

i∈C

(1 − λiYi)]

∼ VD(f0) −
∑

B⊂C

(−1)|B|λBzB .

Hence,

(1.24)
∫

D

Nx(1 − e−Y
λ

C ))µ(dx) ∼ 〈VD(f0), µ〉 −
∑

B⊂C

(−1)|B|λB〈zB , µ〉.

This implies

(1.25)

exp{−
∫

D

Nx(1 − e−Y
λ

C )µ(dx)} = exp[−〈VD(f0), µ)〉]
∏

B⊂C

exp[(−1)|B|λB〈zB , µ〉]

∼ exp[−〈VD(f0, µ)〉]
∏

B⊂C

[1 + (−1)|B|λB〈zB , µ〉]

∼ exp[−〈VD(f0), µ)〉][1 +
∑

B⊂C
(−1)|B|λB

∑

P(B)

〈zB1 , µ〉 . . . 〈zBr , µ〉].

According to (1.23), the left sides in (1.22) and (1.25) coincide. By comparing the
coefficients at λB in the right sides, we get (1.8). �

2. Diagram description of moments

We deduce from Theorems 1.1 and 1.2 a description of moments in terms of
labelled directed graphs.

2.1. Put f0 = 1 and ` = ψ′[VD(1)] in formulae (1.6) and (1.7). Suppose
that C = {i1, . . . , ir}. The function zC(x) defined by (1.6) depends on fC =
{fi1 , . . . , fir} which we indicate by writing z(fC ) instead of zC . In this notation
(1.7) takes the form

z(fi) = ϕi,(2.1)

z(fC) =
∑

2≤r≤|C|

∑

Pr(C)

{z(fC1), . . . , z(fCr )} for |C| > 1.(2.2)
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We consider monomials like {{ϕ3ϕ2}ϕ1{ϕ4ϕ5}}. There exist one monomial {ϕ1ϕ2}
of degree 2 and four distinguishable monomials of degree 3:

(2.3) {ϕ1ϕ2ϕ3}, {{ϕ1ϕ2}ϕ3}, {{ϕ2ϕ3}ϕ1}, {{ϕ3ϕ1}ϕ2}.

It follows from (2.1) and (2.2) that, for C = {i1, . . . , in}, z(fC ) is equal to the sum
of all monomials of degree n of ϕi1 , . . . , ϕin .

Formulae (1.6) and (1.8) imply

(2.4) Nxe−〈1,XD〉〈f1, XD〉 . . . 〈fn, XD〉 = z(f1, . . . , fn)(x) for all x ∈ D

and

(2.5) Pµe
−〈1,XD〉〈f1, XD〉 . . . 〈fn, XD〉 = e−〈VD(1),µ〉

∑

P(C)

〈z(fC1 ), µ〉 . . . 〈z(fCr ), µ〉

where C = {1, . . . , n}.

2.2. A diagramD ∈ Dn is a rooted tree with the leaves marked by 1, 2, . . ., n.
To every monomial of degree n there corresponds D ∈ Dn. Here are the diagrams
corresponding to the monomials (2.3):

2

3

21 3 1 2 3

1

1

2

3

Figure 1

Every diagram consists of a set V of vertices (or sites) and a set A of arrows.
We write a : v → v′ if v is the beginning and v′ is the end of an arrow a. We
denote by a+(v) the number of arrows which end at v and by a−(v) the number
of arrows which begin at v. Note that a+(v) = 0, a−(v) = 1 for the root and
a+(v) = 1, a−(v) = 0 for leaves.

We label each site v of D ∈ Dn by a variable yv. We take yv = x for the root
v and yv = zi for the leaf i. We also label every arrow a : v → v′ by a kernel
ra(yv, dyv′). Here ra is one of two kernels corresponding to the operators G`D and
K`
D by the formulae

G`Df(x) =
∫

D

g`D(x, dy)f(y)

and

K`
Df(x) =

∫

∂D

k`D(x, dy)f(y).

More precisely, if a = v → v′, then ra = g`D(yv, dyv′) if v, v′ are not leaves and
ra = k`D(yv, dzi) if v′ is a leaf i. We associate with D ∈ Dn a function

(2.6) zD(f1, . . . , fn) =
∫ ∏

a∈A

ra(yv, dyv′)
∏

v∈V

qa−(v)(yv)
n∏

1

k`D(yvi , dzi)fi(zi)
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where vi is the beginning of the arrow with the end at a leaf i. 3

Examples. For the first diagram on Figure 1,

zD(f1, f2, f3) =
∫
g`D(x, dy)q3(y)k`D(y, dz1)f1(z1)k`D(y, dz2)f2(z2)k`D(y, dz3)f3(z3).

For the second diagram,

zD(f1, f2, f3) =
∫
g`D(x, dy1)q2(y1)k`D(y1, dz3)f3(z3)

g`D(y1, dy2)q2(y2)k`D(y2, dz1)f1(z1)k`D(y2, dz2)f2(z2).

We note that

(2.7) z(f1, . . . , fn) =
∑

D∈Dn

zD(f1, . . . , fn).

3. Absolute continuity results

3.1. In this section we prove:

Theorem 3.1. Let D be a bounded domain of class C2,λ and let γ be the surface
area on ∂D. For every Borel subset B of (∂D)n,

(3.1) Nxe−〈1,XD〉
∫

B

XD(dy1) . . .XD(dyn)

=
∫

B

ρx(y1, . . . , yn)γ(dy1) . . . γ(dyn)

with a strictly positive ρx .
For every µ ∈ Mc(D),

(3.2) Pµe
−〈1,XD〉

∫

B

XD(dy1) . . .XD(dyn)

= e−〈VD(1),µ〉
∫

B

ρµ(y1, . . . , yn)γ(dy1) . . . γ(dyn)

with a strictly positive ρµ.

Theorem 3.1 implies that the class of null sets for each of measures (0.2) and
(0.3) (we call them the moment measures) coincides with the class of null sets for
the measure γn. In other words, all these measures are equivalent.

Theorem 3.2. Suppose A ∈ F⊃D. Then either Pµ(A) = 0 for all µ ∈ Mc(D)
or Pµ(A) > 0 for all µ ∈ Mc(D).

If A ∈ F∂ , then either Pµ(A) = 0 for all µ ∈ Mc(E) or Pµ(A) > 0 for all
µ ∈ Mc(E).

3We put q0 = 1 to serve leaves v for which a−(v) = 0.
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3.2. Proof of Theorem 3.1. It is sufficient to prove that formulae (3.1) and
(3.2) hold for B = B1 × · · · × Bn where B1, . . . , Bn are Borel subsets of ∂D. If we
demonstrate that

(3.3) zD(f1, . . . , fn) =
∫
ρD(y1, . . . , yn)f1(y1) . . . fn(yn)γ(dy1) . . . γ(dyn)

with ρD > 0 for f1 = 1B1 , . . . , fn = 1Bn , then (3.1) and (3.2) will follow from (2.4),
(2.5) and (2.7). For a domain D of class C2,λ, k`D(x, dy) = k`D(x, y)γ(dy) where
k`D(x, y) is the Poisson kernel for Lu−`u. Since k`D(x, y) > 0, formula (2.6) implies
(3.3). �

To prove Theorem 3.2 we need some preparations.

3.3. Poisson random measure.

Theorem 3.3. Suppose that R is a finite measure on a measurable space (S,B).
Then there exists a random measure (Y,Q) on S with the properties:

(a) Y (B1), . . . , Y (Bn) are independent for disjoint B1, . . . , Bn;
(b) Y (B) is a Poisson random variable with the mean R(B), i.e.,

Q{Y (B) = n} =
1
n!
R(B)ne−R(B) for n = 0, 1, 2, . . . .

For every function F ∈ B ,

(3.4) Qe−〈F,Y 〉 = exp[−
∫

S

(1 − e−F (z))R(dz)].

Proof. Consider independent identically distributed random elements Z1, . . . , Zn, . . .
of S with the probability distribution R̄(B) = R(B)/R(S). Let N be the Pois-
son random variable with mean value R(S) independent of Z1, . . . , Zn, . . . . Put
Y (B) = 1B(Z1)+ · · ·+1B(ZN ). Note that Y = δZ1 + · · ·+ δZN where δz is the unit
measure concentrated at z. Therefore 〈F, Y 〉 =

∑N
1 F (Zi) and (3.4) follows from

the relation

Qe−〈F,Y 〉 =
∞∑

m=0

1
m!

R(S)me−R(S)
m∏

1

Qe−F (Zi).

By taking F = λ1B we get

Qe−λY (B) = exp[−(1 − e−λ)R(B)]

which implies the property (b). If B1, . . . , Bn are disjoint, then, by applying (3.4)
to F =

∑n
1 λi1Bi , we get

Qe−
∑
λiY (Bi) = e−

∑
(1−e−λi )R(Bi) =

∏
Qe−λiY (Bi)

which implies (a). �

We conclude from (3.4) that (Y,Q) is an infinitely divisible random measure.
It is called the Poisson random measure with intensity R. This is an integer-valued
measure concentrated on a finite random set.



3. ABSOLUTE CONTINUITY RESULTS 49

3.4. Poisson representation of infinitely divisible measures.

Theorem 3.4. Let (X,P ) be an infinitely divisible measure on a measurable
Luzin space E with the canonical measure R. Consider the Poisson random measure
(Y,Q) on S = M(E) with intensity R and put X̃(B) =

∫
M ν(B)Y (dν). The

random measure (X̃,Q) has the same probability distribution as (X,P ) and, for
every F ∈ BM, we have

(3.5) PF (X) = Q〈F, Y 〉 =
∞∑

0

1
n!
e−R(M)

∫
R(dν1) . . .R(dνn)F (ν1 + · · ·+ νn).

Proof. Note that 〈f, X̃〉 = 〈F, Y 〉 where F (ν) = 〈f, ν〉. By (3.4), we get

Qe−〈f,X̃〉 = Qe−〈F,Y 〉 = exp
[
−
∫

M
(1 − e−〈f,ν〉)R(dν)

]
.

This implies the first part of the theorem. The second part follows from the ex-
pression Y (B) = 1B(Z1) + · · ·+ 1B(ZN ) for Y introduced in the proof of Theorem
3.3. �

3.5. Proof of Theorem 3.2. 1◦. By applying Theorem 3.4 to the random
measure (Pµ, XD) and a function e−〈1,ν〉F (ν) we get

(3.6) Pµe
−〈1,XD〉F (XD)

=
∞∑

0

1
n!
ZD(µ)

∫
R∗
µ(dν1) . . .R∗

µ(dνn)F (ν1 + · · ·+ νn)

where

(3.7) ZD(µ) = e−Rµ[M(D)], and R∗
µ(dν) = e−〈1,ν〉Rµ(dν).

2◦. Let F be a positive measurable function on M(∂D) and let

fn(x1, . . . , xn) =
∫
F (ν1 + · · ·+ νn)R∗

x1
(dν1) . . .R∗

xn
(dνn).

We prove that, if D̃ b D and µ ∈ Mc(D̃), then F (XD) = 0 Pµ-a.s. if and only if

(3.8)
∫
fn(x1, . . . , xn)γD̃(dx1) . . . γD̃(dxn) = 0 for all n.

Indeed, by the Markov property of X,

(3.9) Pµe
−〈1,XD〉F (XD) = PµPXD̃

e−〈1,XD〉F (XD).

By (3.6) and (3.9),
(3.10)

Pµe
−〈1,XD〉F (XD) =

∞∑

n=0

1
n!
PµZD(XD̃)

∫
XD̃(dx1) . . .XD̃(dxn)fn(x1, . . . , xn).

Since ZD(XD̃) > 0, the condition F (XD) = 0 Pµ-a.s. is equivalent to the condition:
for every n,

(3.11)
∫
XD̃(dx1) . . .XD̃(dxn)fn(x1, . . . , xn) = 0 Pµ-a.s.

It follows from Theorem 3.1, that the condition (3.11) is equivalent to the condition
(3.8).
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3◦. Suppose µ1 and µ2 belong to Mc(D). There exists D̃ b D which contains
supports of µ1 and µ2. By 2◦, F (XD) = 0 Pµ1-a.s. if and only if F (XD) = 0
Pµ2-a.s. If A ∈ F⊃D, then by the Markov property of X,

Pµi(A) = PµiF (XD)

where F (ν) = Pν(A). This implies the first statement of Theorem 3.2.
If µ1, µ2 ∈ Mc(E), then µ1, µ2 ∈ Mc(D) for a domain of class C2,λ such that

D b E. If A ∈ F∂, then A ∈ F⊃D and the second part of Theorem 3.2 follows from
the first one. �

4. Notes

4.1. The results of the first two sections are applicable to all (ξ, ψ)-superprocesses
described in Section 3.2.2, and the proofs do not need any modification. The abso-
lute continuity results can be extended to (ξ, ψ)-superprocesses under an additional
assumption that the Martin boundary theory is applicable to ξ. 4 The boundary
∂E and the Poisson kernel are to be replaced by the Martin boundary and the
Martin kernel. The role of the surface area is played by the measure corresponding
to the harmonic function h = 1.

4.2. A diagram description of moments of higher order was given, first, in
[Dyn88]. There only ψ(u) = u2 was considered. In [Dyn91b] the moments of order
n were evaluated under the assumption that ψ of the form 3.(2.8) has a bounded
continuous derivative dnψ

dun . [See also [Dyn04a].] Brief description of these results
is given on pages 201–203 of [D]. 5 The main recent progress is the elimination of
the assumption about differentiability of ψ which allows to cover the case ψ(u) =
uα, 1 < α < 2.

4.3. The first absolute continuity results for superprocesses were obtained
in [EP91]. Let (Xt, Pµ) be a (ξ, ψ)-superprocess with ψ(u) = u2/2. To every
µ ∈ M(E) there correspond measures pµt on E and measures Qµt on M(E) defined
by the formulae

pµt (B) =
∫
µ(dx)Πx{ξt ∈ B},

Qµt (C) = Pµ{Xt ∈ C}.

Let h > 0. Evans and Perkins proved that Qµ1
t is absolutely continuous with respect

to Qµ2
t+h for all t > 0 if and only if pµ1

t is absolutely continuous with respect to pµ2
t+h

for all t > 0.
Independently, Mselati established an absolute continuity property for the ex-

cursion measures Nx of the Brownian snake: if C belongs to the σ-algebra gener-
ated by the stochastic values of all subsolutions and supersolutions of the equation
∆u = u2, then, for every x1, x2 ∈ E, Nx1(C) = 0 if Nx2(C) = 0. (See Proposition
2.3.5 in [Mse02a] or Proposition 2.18 in [Mse04].)

4The key condition – the existence of a Green’s function – is satisfied for L-diffusions in a
wide class of the so-called Greenian domains. The Martin boundary theory for such domains can

be found in Chapter 7 of [D].
5Figure 1.2 is borrowed from page 202 in [D]. We also corrected a few misprints in formulae

which could confuse a reader.[For instance the value of qm on pages 201–203 must be multiplied

by (−1)m.]
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A proof of Theorem 3.2 is given in [Dyn04c]. The case of infinitely differentiable
ψ was considered earlier in [Dyn04a], Theorem 6.2.





CHAPTER 6

Poisson capacities

A key part of the proof that all solutions of the equation ∆u = uα are σ-
moderate is establishing bounds for wΓ and uΓ in terms of a capacity of Γ. In the
case α = 2, Mselati found such bounds by using Cap∂ introduced by Le Gall. This
kind of capacity is not applicable for α 6= 2. We replace it by a family of Poisson
capacities. In this chapter we establish relations between these capacities which
will be used in Chapters 8 and 9.

The Poisson capacities are a special case of (k,m)-capacities described in Sec-
tion 1.

1. Capacities associated with a pair (k,m)

1.1. Three definitions of (k,m)-capacities. Fix α > 1. Suppose that
k(x, y) is a positive lower semicontinuous function on the product E × Ẽ of two
separable locally compact metric spaces and m is a Radon measure on E. A (k,m)-
capacity is a Choquet capacity on Ẽ. We give three equivalent definitions of this
capacity.

Put

(1.1) (Kν)(x) =
∫

Ẽ

k(x, y)ν(dy), E(ν) =
∫

E

(Kν)αdm for ν ∈ M(Ẽ)

and

(1.2) K̂(f)(y) =
∫

E

m(dx)f(x)k(x, y) for f ∈ B(E).

Define Cap(Γ) for subsets Γ of Ẽ by one of the following three formulae:

(1.3) Cap(Γ) = sup{E(ν)−1 : ν ∈ P(Γ)},

(1.4) Cap(Γ) = [sup{ν(Γ) : ν ∈ M(Γ), E(ν) ≤ 1}]α,

(1.5) Cap(Γ) = [inf{
∫

E

fα
′
dm : f ∈ B(E), K̂f ≥ 1 on Γ}]α−1

where α′ = α/(α−1). We refer to [AH96], Chapter 2 for the proof that the Cap(Γ)
defined by (1.4) or by (1.5) satisfies the conditions 2.4.A, 2.4.B and 2.4.C and
therefore all Borel subsets are capacitable. 1 [The equivalence of (1.4) and (1.5) is
proved also in [D], Theorem 13.5.1.]

1In [AH96] a wider class of kernels is considered. The result is stated for the case E = Rd

but no specific property of Rd is used in the proofs.
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To prove the equivalence of (1.3) and (1.4), we note that ν ∈ M(Γ) is equal to
tµ where t = ν(Γ) and µ = ν/t ∈ P(Γ) and

sup
ν∈M(Γ)

{ν(Γ) : E(ν) ≤ 1} = sup
µ∈P(Γ)

sup
t≥0

{t : tαE(µ) ≤ 1} = sup
µ∈P(Γ)

E(µ)−1/α.

2. Poisson capacities

In this chapter we deal with a special type of (k,m)-capacities associated with
the Poisson kernel k = kE for an operator L. The function kE(x, y) is continuous
on E × Ẽ where E is a C2,λ-domain in Rd and Ẽ = ∂E. We use notation Cap for
the Poisson capacity corresponding to

(2.1) m(dx) = ρ(x)dx with ρ(x) = d(x, ∂E)

and we denote by Capx the Poisson capacity corresponding to

(2.2) m(dy) = gE(x, y)dy

where gE is the Green function in E for L. [In the case of Capx, E(ν) has to be
replaced by

Ex(ν) =
∫

E

gE(x, y)hν(y)αdy = [GE(Kν)α](x)

in formulae (1.3)–(1.4).]

2.1. Results. An upper bound of Cap(Γ) is given by:

Theorem 2.1. For all Γ ∈ B(∂E),

(2.3) Cap(Γ) ≤ C diam(Γ)γ+

where

(2.4) γ = dα− d− α− 1 and γ+ = γ ∨ 0.

The second theorem establishes a lower bound for Capx in terms of Cap.
The values α < (d + 1)/(d − 1) are called subcritical and the values α ≥

(d+ 1)/(d− 1) are called supercritical.

Theorem 2.2. Suppose that L is an operator of divergence form 1.(4.2) and
d ≥ 3. Put

(2.5) ϕ(x,Γ) = ρ(x)d(x,Γ)−d.

If α is subcritical, then there exists a constant C > 0 such that

(2.6) Capx(Γ) ≥ Cϕ(x,Γ)−1 Cap(Γ).

for all Γ and x.
If α is supercritical, then, for every κ > 0 there exists a constant Cκ > 0 such

that

(2.7) Capx(Γ) ≥ Cκϕ(x,Γ)−1 Cap(Γ)

for all Γ and x subject to the condition

(2.8) d(x,Γ) ≥ κ diam(Γ).
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3. Upper bound for Cap(Γ)

To prove Theorem 2.1 we use the straightening of the boundary described in
Section 4.2 of the Introduction. As the first step, we consider a capacity on the
boundary E0 = {x = (x1, . . . , xd) : xd = 0} of a half-space E+ = {x = (x1, . . . , xd) :
xd > 0} = Rd−1 × (0,∞).

3.1. Capacity C̃ap. Put
r(x) = d(x,E0) = xd,

E = {x = (x1, . . . , xd) : 0 < xd < 1},

k̃(x, y) = r(x)|x− y|−d, x ∈ E, y ∈ E0

(3.1)

and consider a measure

(3.2) m̃(dx) = r(x)dx

on E. Denote by C̃ap the (k̃, m̃)-capacity on E0.
Note that

k̃(x/t, y/t) = td−1k̃(x, y) for all t > 0.
To every ν ∈ P(E0) there corresponds a measure νt ∈ P(E0) defined by the formula
νt(B) = ν(tB). We have

∫

E0

f(y)νt(dy) =
∫

E0

f(y/t)ν(dy)

for every function f ∈ B(E0). Put h̃ν = K̃ν. Note that

(3.3) h̃νt(x/t) =
∫

E0

k̃(x/t, y)νt(dy) =
∫

E0

k̃(x/t, y/t)ν(dy) = td−1h̃ν(x).

Change of variables x = tx̃ and (3.3) yield

Ẽ(νt) = tγ Ẽ(ν, tE)

where
Ẽ(ν) =

∫

E
h̃αν dm̃, Ẽ(ν,B) =

∫

B

h̃αν dm̃

for B ∈ B(E+) and γ defined by (2.4).
If t ≥ 1, then tE ⊃ E and we have

(3.4) Ẽ(νt) ≥ tγ Ẽ(ν).

Lemma 3.1. If diam(Γ) ≤ 1, then

(3.5) C̃ap(Γ) ≤ Cd(diam(Γ))γ .

The constant Cd depends only on the dimension d. (It is equal to C̃ap(U ) where
U = {x ∈ E0 : |x| ≤ 1}.

Proof. Since C̃ap is translation invariant, we can assume that 0 ∈ Γ. Let
t = diam(Γ)−1. Since tΓ ⊂ U , we have

(3.6) C̃ap(tΓ) ≤ C̃ap(U ).

Since ν → νt is a 1-1 mapping from P(tΓ) onto P(Γ), we get

C̃ap(Γ) = sup
νt∈P(Γ)

Ẽ(νt)−1 = sup
ν∈P(tΓ)

Ẽ(νt)−1.
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Therefore, by (3.4) and (1.3),

C̃ap(Γ) ≤ t−γC̃ap(tΓ)

and (3.6) implies (3.5). �

3.2. Three lemmas.

Lemma 3.2. Suppose that E1, E2, E3 are bounded domains, E1 and E2 are
smooth and Ē2 ⊂ E3. Then there exists a smooth domain D such that

(3.7) E1 ∩E2 ⊂ D ⊂ E1 ∩E3.

Proof. The domain D0 = E1 ∩ E2 is smooth outside L = ∂E1 ∩ ∂E2. We
get D by a finite number of small deformations of D0 near L. Let q ∈ L and let
U be the ε-neighborhood of q. Consider coordinates (y1, y2, . . . , yd) in U and put
y = (y1, . . . , yd−1), r = yd. If ε is sufficiently small, then the coordinate system can
be chosen in which the intersections ofEi with U are described by the conditions r <
fi(y) where f1, f2, f3 are smooth functions. There exists an infinitely differentiable
function a(r) such that r ∧ 0 ≤ a(r) ≤ r ∧ ε and a(r) = 0 for r > ε/2. Put
g = f2 + a(f1 − f2) and replace the part of D0 in U by {(y, r) : r < g(y)} without
changing the part outside U . Since g ≥ f1 ∧f2, we get a domain D1 which contains
D0. Since g ≤ f1 ∧ (f2 + ε), D1 is contained in E3 if ε is sufficiently small. Finally,
the portion of ∂D1 in U is smooth. After a finite number of deformations of this
kind we get a smooth domain which satisfies the condition (3.7). �

Lemma 3.3. Suppose E ⊂ E, 0 ∈ Γ ⊂ ∂E ∩E0 and put A = E \E, Bλ = {x ∈
E : |x| < λ}. If d(Γ, A) > 2λ, then Bλ ⊂ E and r(x) = ρ(x) for x ∈ Bλ.

Proof. If x ∈ Bλ, then r(x) ≤ |x| < λ. If x ∈ Bλ and y ∈ A, then |x− y| ≥
|y|−|x| > λ because |y| ≥ d(y,Γ) ≥ d(A,Γ) > 2λ. Hence d(x,A) ≥ λ which implies
that Bλ ⊂ E.

For x ∈ E, ρ(x) = d(x,Ec), r(x) = d(x,Ec+) and therefore ρ(x) ≤ r(x). Put
A1 = ∂E ∩A,A2 = ∂E ∩E0. For every x ∈ E, d(x,A1) = d(x,A), d(x,A2) ≥ r(x)
and ρ(x) = d(x,A1)∧d(x,A2) ≥ d(x,A)∧ r(x). If x ∈ Bλ, then r(x) < λ ≤ d(x,A)
and therefore ρ(x) ≥ r(x). Hence ρ(x) = r(x). �

Lemma 3.4. There exists a constant Cλ > 0 such that

(3.8) Ẽ(ν,Bλ) ≥ CλẼ(ν)

for all ν ∈ P(Γ) and for all Γ 3 0 such that diam(Γ) < λ/2.

Proof. If x ∈ Fλ = E \Bλ and y ∈ Γ, then |y| ≤ diam(Γ) < λ/2 ≤ |x|/2 and
therefore |x− y| > |x| − |y| ≥ |x|/2. This implies

h̃ν(x) ≤ r(x)2d|x|−d

and

(3.9) Ẽ(ν, Fλ) ≤ 2dα
∫

Fλ

r(x)α+1|x|−dαdx = C′
λ < ∞.

On the other hand, if x ∈ Bλ, y ∈ Γ, then |x − y| ≤ |x| + |y| ≤ 3λ/2. Therefore
h̃ν(x) ≥ (3λ/2)−dr(x) and

(3.10) Ẽ(ν,Bλ) ≥ (3λ/2)−dα
∫

Bλ

r(x)α+1dx = C′′
λ > 0.
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It follows from (3.9) and (3.10) that

C′
λẼ(ν,Bλ) ≥ C′

λC
′′
λ ≥ C′′

λ Ẽ(ν, Fλ) = C′′
λ [Ẽ(ν)− Ẽ(ν,Bλ)]

and (3.8) holds with Cλ = C′′
λ/(C

′
λ + C′′

λ). �

3.3. Straightening of the boundary.

Proposition 3.1. Suppose that E is a bounded smooth domain. Then there
exist strictly positive constants ε, a, b (depending only on E) such that, for every
x ∈ ∂E:

(a) The boundary can be straightened in B(x, ε).
(b) The corresponding diffeomorphism ψx satisfies the conditions

(3.11) a−1|y1 − y2| ≤ |ψx(y1) − ψx(y2)| ≤ a|y1 − y2| for all y1, y2 ∈ B(x, ε);

(3.12) a−1 diam(A) ≤ diam(ψx(A)) ≤ a diam(A) for all A ⊂ B(x, ε);

(3.13)
a−1d(A1, A2) ≤ d(ψx(A1), ψx(A2)) ≤ a d(A1, A2) for all A1, A2 ⊂ B(x, ε).

(3.14) b−1 ≤ Jx(y) ≤ b for all y ∈ B(x, ε)

where Jx(y) is the Jacobian of ψx at y.
Diffeomorphisms ψx can be chosen to satisfy additional conditions

(3.15) ψx(x) = 0 and ψx(B(x, ε)) ⊂ E.

Proof. The boundary ∂E can be covered by a finite number of balls Bi =
B(xi, εi) in which straightening diffeomorphisms are defined. The function q(x) =
maxi d(x,Bci ) is continuous and strictly positive on ∂E. Therefore ε = 1

2 minx q(x) >
0. For every x ∈ ∂E there exists Bi which contains the closure of B(x, ε). We put

ψx(y) = ψxi(y) for y ∈ B(x, ε).

This is a diffeomorphism straightening ∂E in B(x, ε).
For every x, B(x, ε) is contained in one of closed balls B̃i = {y : d(y,Bci ) ≥ ε}.

Since ψxi belongs to the class C2,λ(Bi), there exist constants ai > 0 such that

a−1
i |y1 − y2| ≤ |ψxi(y1) − ψxi(y2)| ≤ ai|y1 − y2| for all y1, y2 ∈ B̃i.

The condition (3.11) holds for a = maxai. The conditions (3.12) and (3.13) fol-
low from (3.11). The Jacobian Jxi does not vanish at any point y ∈ Bi and we
can assume that it is strictly positive. The condition (3.14) holds because Jxi is
continuous on the closure of B(x, ε).

By replacing ψx(y) with c[ψx(y) − ψx(x)] with a suitable constant c, we get
diffeomorphisms subject to (3.15) in addition to (3.11)-(3.14). �

3.4. Proof of Theorem 2.1. 1◦. If γ < 0, then (2.3) holds because Cap(Γ) ≤
Cap(∂E) = C. To prove (2.3) for γ ≥ 0, it is sufficient to prove that, for some
β > 0, there is a constant C1 such that

Cap(Γ) ≤ C1 diam(Γ)γ if diam(Γ) ≤ β.

Indeed,
Cap(Γ) ≤ C2 diam(Γ)γ if diam(Γ) ≥ β

with C2 = Cap(∂E)β−γ .
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2◦. Let ε, a be the constants defined in Proposition 3.1 and let β = ε/(2+8a2)∧
1. Suppose that diam(Γ) ≤ β and let x ∈ Γ. Consider a straightening ψx of ∂E
in B(x, ε) which satisfies conditions (3.15). Put B = B(x, ε), B̃ = B(x, ε/2). By
Lemma 3.2, there exists a smooth domain D such that B̃ ∩E ⊂ D ⊂ B ∩E. Note
that B̃ ∩ ∂E ⊂ ∂D ∩ ∂E ⊂ B ∩ ∂E. If A1 = ∂D ∩ B ∩ E, then d(x,A1) ≥ ε/2
and d(Γ, A1) ≥ ε/2 − diam(Γ) ≥ ε/2 − β. Denote by D′,Γ′, A′

1 the images of
D,Γ, A1 under ψx and let A′ = E \ D′. By (3.12), diam(Γ′) ≤ λ1 = aβ and
d(Γ′, A′) ≥ λ2 = (ε/2 − β)/a. Our choice of β implies that λ1 < λ2/4. Put
λ = λ1 + λ2/4. Note that λ2 > 2λ and λ1 < λ/2. Since d(Γ′, A′) = d(Γ, A′

1),
Lemmas 3.3 and 3.4 are applicable to D′,Γ′, A′ and λ (which depends only on E).

3◦. By 2.(1.10) and (3.13), for every y ∈ D, z ∈ Γ,

(3.16) kE(y, z) ≥ Cd(y, ∂E)|y − z|−d

≥ Cd(y, ∂D)|y − z|−d ≥ Cd(y′, ∂D′)|y′ − z′|−d

where y′ = ψx(y), z′ = ψx(z). If ν′ is the image of ν ∈ P(Γ) under ψx, then
∫

Γ

f [ψx(z)]ν(dz) =
∫

Γ′
f(z′)ν′(dz′)

for every positive measurable function f . In particular,

(3.17)
∫

Γ

|y′ − ψx(z)|−dν(dz) =
∫

Γ′
|y′ − z′|−dν′(dz′).

By (3.16) and (3.17),
∫

Γ

kE(y, z)ν(dz) ≥ Cd(y′, ∂D′)
∫

Γ′
|y′ − z′|−dν′(dz′).

If y′ ∈ Bλ, then, by Lemma 3.3, d(y′, ∂D′) = r(y′) and we have

(3.18) hν(y) =
∫

Γ

kE(y, z)ν(dz) ≥ C

∫

Γ′
r(y′)|y′ − z′|−dν′(dz′) = Ch̃ν′[ψx(y)].

If y ∈ D, then, by (3.13), d(y, ∂E) ≥ d(y, ∂D) ≥ Cd(y′, ∂D′) and therefore
(1.1), (2.1) and (3.18) imply

(3.19) E(ν) =
∫

E

d(y, ∂E)hν(y)αdy ≥
∫

D

d(y, ∂D)hν(y)αdy

≥ C

∫

D

d(ψx(y), ∂D′)h̃ν′ [ψx(y)]αdy.

Note that ∫

D′
f(y′)dy′ =

∫

D

f [ψx(y)]Jx(y)dy

and, if f ≥ 0, then, by (3.14),
∫

D′
f(y′)dy′ ≤ b

∫

D

f [ψx(y)]dy.

By taking f(y′) = d(y′, ∂D′)h̃ν′(y′)α, we get from (3.19)

E(ν) ≥ C

∫

D′
d(y′, ∂D′)h̃ν′(y′)αdy′.
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By Lemma 3.3, D′ ⊃ Bλ and d(y′, ∂D′) = r(y′) on Bλ. Hence

E(ν) ≥ C

∫

Bλ

r(y′)h̃ν′(y′)αdy′ = CẼ(ν′, Bλ).

By Lemma 3.4, this implies E(ν) ≥ CẼ(ν′) and, by (1.3), Cap(Γ) ≤ CĈap(Γ′). The
bound Cap(Γ) ≤ C diam(Γ)γ follows from Lemma 3.1, (3.12) and 1◦. �

4. Lower bound for Capx

4.1. Put
δ(x) = d(x,Γ), E1 = {x ∈ E : δ(x) < 3ρ(x)/2}, E2 = E \E1;

Ex(ν,B) =
∫

B

g(x, y)hν (y)αdy for B ⊂ E
(4.1)

and let

(4.2) Ux = {y ∈ E : |x− y| < δ(x)/2}, Vx = {y ∈ E : |x− y| ≥ δ(x)/2}.
First, we deduce Theorem 2.2 from the following three lemmas. Then we prove

these lemmas.

Lemma 4.1. For all Γ, all ν ∈ P(Γ) and all x ∈ E,

(4.3) Ex(ν, Vx) ≤ Cϕ(x,Γ)E(ν).

Lemma 4.2. For all Γ, all ν ∈ P(Γ) and all x ∈ E1,

(4.4) Ex(ν, Ux) ≤ Cϕ(x,Γ)E(ν).

Lemma 4.3. For all Γ, all ν ∈ P(Γ) and all x ∈ E2,

(4.5) Ex(ν, Ux) ≤ Cϕ(x,Γ)θ(x)−γ+E(ν)

where
θ(x) = d(x,Γ)/ diam(Γ).

4.2. Proof of Theorem 2.2. By Lemmas 4.2 and 4.3, for every x ∈ E

Ex(ν, Ux) ≤ Cϕ(x,Γ)E(ν)(1∨ θ(x)−γ+ )

and therefore, under the condition (2.8),

Ex(ν, Ux) ≤ Cϕ(x,Γ)E(ν)(1∨ κ−γ+ ).

This bound and Lemma 4.1 imply that

Ex(ν) = Ex(ν, Ux) + Ex(ν, Vx) ≤ Cϕ(x,Γ)E(ν)[2∨ (1 + κ−γ+ )]

and, by (1.3),

(4.6) Capx(Γ) ≥ Cκϕ(x,Γ)−1 Cap(Γ)

where Cκ = C−1[2 ∨ (1 + κ−γ+ )]−1. If α is subcritical, then γ < 0, Cκ does not
depend on κ and (4.6) implies (2.6). If α is supercritical, then γ ≥ 0 and (2.7)
holds under the condition (2.8). �

4.3. Proof of Lemma 4.1. By 2.(1.7),

Ex(ν, Vx) ≤ Cρ(x)
∫

Vx

ρ(y)|x − y|−dhν(y)αdy.

Since |x− y| ≥ δ(x)/2 for y ∈ Vx, this implies (4.3). �
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4.4. Proof of Lemma 4.2. The function hν is harmonic in the ball {y :
|x− y|/ρ(x) ≤ r for 0 < r < 1. By the Harnack’s inequality,

(4.7)
1 − r

(1 + r)d−1
hν(x) ≤ hν(y) ≤

1 + r

(1 − r)d−1
hν(x)

(see, e.g. [GT98], p.29, Problem 2.6). If x ∈ E1, y ∈ Ux, then |x − y| < δ(x)/2 <
3ρ(x)/4 and (4.7) holds with r = 3/4. Therefore, for all x ∈ E1, y ∈ Ux, C′

dhν(x) ≤
hν(y) ≤ C′′

dhν(x) where C′
d and C′′

d depend only on d. This implies bounds

(4.8) Ex(ν, Ux) ≤ C′′
dhν(x)

α

∫

Ux

gE(x, y)dy

and

(4.9) E(ν) ≥
∫

Ux

ρ(y)hν (y)αdy ≥ C′
dhν(x)

α

∫

Ux

ρ(y)dy.

By 2.(1.6),

(4.10)
∫

Ux

gE(x, y)dy ≤ Cρ(x)
∫

Ux

|x− y|1−ddy = Cρ(x)
∫ δ(x)/2

0

dt ≤ Cδ(x)ρ(x).

For y ∈ Ux, x ∈ E1,

ρ(y) ≥ ρ(x) − |x− y| ≥ ρ(x) − δ(x)/2 ≥ ρ(x)/4

and therefore

(4.11)
∫

Ux

ρ(y)dy ≥ 1
4
ρ(x)

∫

Ux

dy = Cdρ(x)δ(x)d.

Since δρ ≤ 3ϕρδd/2, bound (4.4) follows from (4.8)–(4.11). �

4.5. Proof of Lemma 4.3. By Theorem 2.1,

E(ν)−1 ≤ Cap(Γ) ≤ C diam(Γ)γ+ .

Hence,

(4.12) diam(Γ)−γ+ ≤ CE(ν).

If x ∈ E2 and y ∈ Ux, then δ(y) ≥ δ(x) − |x − y| > δ(x)/2 and ρ(y) ≤
ρ(x) + |x − y| ≤ 2δ(x)/3 + δ(x)/2 = 7δ(x)/6. For all z ∈ Γ, y ∈ Ux, |y − z| ≥
|z − x| − |y − x| ≥ δ(x)/2 and, by 2.(1.10),

kE(y, z) ≤ Cρ(y)|y − z|−d ≤ Cδ(x)1−d.

Therefore hν(y) ≤ Cδ(x)1−d and, by 2.(1.6),

(4.13) Ex(ν, Ux) ≤ Cρ(x)δ(x)(1−d)α
∫

Ux

|x− y|1−ddy ≤ Cϕ(x,Γ)δ(x)−γ.

If γ < 0, then δ(x)−γ ≤ diam(E)−γ = C. If γ ≥ 0, then γ = γ+. Hence, the bound
(4.5) follows from (4.12) and (4.13). �
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5. Notes

The capacity Cap defined by the formulae (1.3)–(1.5) with m defined by (2.1)
is related to a Poisson capacity CPα used in [D] by the equation

Cap(Γ) = CPα(Γ)α.

[The capacity CPα is a particular case of the Martin capacity also considered in
[D]. The Martin kernel is a continuous function on E × Ẽ where E is a domain on
Rd (not necessarily smooth) and Ẽ is the Martin boundary of E for an L-diffusion.]

Let CapL and Capx be the Poisson capacities corresponding to an operator L. It
follows from 2.(1.10) that, for every L1 and L2, the ratio CapL1 /CapL2 is bounded
and therefore we can restrict ourselves by the Poisson capacities corresponding to
the Laplacian ∆.

The capacity CPα was introduced in [DK96b] as a tool for a study of removable
boundary singularities for solutions of the equation Lu = uα. It was proved that,
if E is a bounded smooth domain, then a closed subset Γ of ∂E is a removable
singularity if and only if CPα(Γ) = 0. First, this was conjectured in [Dyn94]. In
the case α = 2, the conjecture was proved by Le Gall [LG95] who used the capacity
Cap∂. Le Gall’s capacity Cap∂ has the same class of null sets as CPα.

An analog of formula (2.7) with Cap replaced by Cap∂ follows from formula
(3.34) in [Mse04] in the case L = ∆, α = 2, d ≥ 4 and κ = 4.

The results presented in Chapter 6 were published, first, in [DK03].





CHAPTER 7

Basic inequality

In this chapter we consider two smooth domains D ⊂ E, the set

(0.1) D∗ = {x ∈ D̄ : d(x,E \D) > 0}

and measures ν concentrated on ∂D ∩ ∂E. Our goal is to give a lower bound of
Nx{RE ⊂ D∗, Zν 6= 0} in terms of Nx{RE ⊂ D∗, Zν} and Ex(ν). This bound will
play an important role in proving the equation uΓ = wΓ in Chapter 8.

Preparations for proving the basic inequality include: (a) establishing relations
between RE and RD and between stochastic boundary values in E and D; (b)
expressing certain integrals with respect to the measures Px and Nx through the
conditional diffusion Πν

x.

1. Main result

Theorem 1.1. Suppose that D is a smooth open subset of a smooth domain E.
If ν is a finite measure concentrated on ∂D ∩ ∂E and if Ex(ν) < ∞, then

(1.1) Nx{RE ⊂ D∗, Zν 6= 0} ≥ C(α)[Nx{RE ⊂ D∗, Zν}]α/(α−1)Ex(ν)−1/(α−1)

where C(α) = (α− 1)−1Γ(α− 1). 1

Remark. By 3.3.4.C, the condition Ex(ν) < ∞ implies that ν belongs to NE
1

and to ND
1 .

2. Two propositions

2.1.

Proposition 2.1. Suppose x ∈ D, Λ is a Borel subset of ∂D and A = {RD ∩
Λ = ∅}. We have PxA > 0 and for all Z′, Z′′ ∈ Zx,

(2.1) Nx{A, (e−Z
′
− e−Z

′′
)2}

= −2 logPx{e−Z
′−Z′′

| A} + logPx{e−2Z′
| A} + logPx{e−2Z′′

| A}.

If Z′ = Z′′ Px-a.s. on A and if Px{A, Z′ < ∞} > 0, then Z′ = Z′′ Nx-a.s. on A.

Proof. First, PxA > 0 because, by 3.(3.9), PxA = e−wΛ(x). Next,

(e−Z
′
− e−Z

′′
)2 = 2(1 − e−Z

′−Z′′
) − (1 − e−2Z′

) − (1 − e−2Z′′
).

Therefore (2.1) follows from 4.(3.28). The second part of the proposition is an
obvious implication of (2.1). �

1Here Γ is Euler’s Gamma-function.

63
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2.2. Note that

(2.2) D∗ = {x ∈ D̄ : d(x,Λ) > 0}

where Λ = ∂D ∩E.

Proposition 2.2. Let D ⊂ E be two open sets. Then, for every x ∈ D, XD
and XE coincide Px-a.s. and Nx-a.s. on the set A = {RD ⊂ D∗}.

Proof. By the Markov property 3.2.1.D, for every Borel set B,

(2.3) Px{A, e−XE(B)} = Px{A, PXDe
−XE(B)}.

Suppose x ∈ D. Then XD(D) = 0 Px-a.s. by 3.2.2.A, and XD(∂D∩E) = 0 Px-a.s.
on A because XD is concentrated on RD. Hence, Px-a.s., XD(E) = 0 on A and,
by 3.2.1.C,

(2.4) PXDe
−XE(B) = e−XD(B).

By (2.3) and (2.4)

(2.5) Px{A, e−XE(B)} = Px{A, e−XD(B)}.

Put C1 = ∂D ∩ ∂E,C0 = ∂E \ C1. By 3.2.2.A, Px{XD(C0) = 0} = 1 and (2.5)
implies that XE (C0) = 0 Px-a.s. on A. On the other hand, if B ⊂ C1, then
Px{XD(B) ≤ XE(B)} = 1 by 3.2.1.E and therefore XD(B) = XE(B) Px-a.s. on
A. We conclude that XD = XE Px-a.s. on A.

Now we apply Proposition 2.1 to Z′ = XD(B), Z′′ = XE(B) and Λ = ∂D ∩E.
Note that, by 3.2.2.B, PxZ′ = KD(x,B) < ∞. Therefore Px{A, Z′} < ∞ and
Px{A, Z′ < ∞} > 0. By Proposition 2.1, Z′ = Z′′ Nx-a.s. on A. �

3. Relations between superdiffusions and conditional diffusions in two
open sets

3.1. Now we consider two bounded smooth open sets D ⊂ E. We denote by
Z̃ν the stochastic boundary value of h̃ν(x) =

∫
∂D

kD(x, y)ν(dy) in D; Π̃y
x refers to

the diffusion in D conditioned to exit at y ∈ ∂D.

Theorem 3.1. Put A = {RD ⊂ D∗}. For every x ∈ D,

(3.1) RE = RD Px-a.s. and Nx-a.s. onA

and

(3.2) Zν = Z̃ν Px-a.s. and Nx-a.s. on A

for all ν ∈ NE
1 concentrated on ∂D ∩ ∂E.

Proof. 1◦. First, we prove (3.1). Clearly, RD ⊂ RE Px-a.s. and Nx-a.s. for
all x ∈ D. We get (3.1) if we show that, if O is an open subset of E, then, for every
x ∈ D, XO = XO∩D Px-a.s. on A and, for every x ∈ O ∩D, XO = XO∩D Nx-a.s.
on A. For x ∈ O∩D this follows from Proposition 2.2 applied to O∩D ⊂ O because
{RD ⊂ D∗} ⊂ {RO∩D ⊂ (O ∩D)∗}. For x ∈ D \ O, Px{XO = XD∩O = δx} = 1
by 3.2.1.C.

2◦. Put

(3.3) D∗
m = {x ∈ D̄ : d(x,E \D) > 1/m}.
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To prove (3.2), it is sufficient to prove that it holds on Am = {RD ⊂ D∗
m} for all

sufficiently large m. First we prove that, for all x ∈ D,

(3.4) Zν = Z̃ν Px-a.s. on Am.

We get (3.4) by proving that both Zν and Z̃ν coincide Px-a.s. on Am with the
stochastic boundary value Z∗ of hν in D.

Let

En = {x ∈ E : d(x, ∂E) > 1/n}, Dn = {x ∈ D : d(x, ∂D) > 1/n}.

If n > m, then
Am ⊂ An ⊂ {RD ⊂ D∗

n} ⊂ {RDn ⊂ D∗
n}.

We apply Proposition 2.2 to Dn ⊂ En and we get that, Px-a.s. on {RDn ⊂ D∗
n} ⊃

Am, XDn = XEn for all n > m which implies Z∗ = Zν .
3◦. Now we prove that

(3.5) Z∗ = Z̃ν Px-a.s. on Am.

Consider h0 = hν − h̃ν and Z0 = Z∗
ν − Z̃ν . By 3.1.1.C, if y ∈ ∂D ∩ ∂E, then

(3.6) kE(x, y) = kD(x, y) + Πx{τD < τE , kE(ξτD , y)}.

Therefore

(3.7) h0(x) = Πx{ξτD ∈ ∂D ∩E, hν(ξτD )}.

This is a harmonic function in D. By 2.2.3.C, it vanishes on Γm = ∂D ∩D∗
m =

∂E ∩D∗
m.

We claim that, for every ε > 0 and every m, h0 < ε on Γm,n = ∂En ∩D∗
m for

all sufficiently large n. [If this is not true, then there exists a sequence ni → ∞
such that zni ∈ Γm,ni and h0(zni) ≥ ε. If z is limit point of zni , then z ∈ Γm and
h0(z) ≥ ε.]

All measures XDn are concentrated, Px-a.s., on RD. Therefore Am implies
that they are concentrated, Px-a.s., on D∗

m. Since Γm,n ⊂ D∗
m, we conclude that,

for all sufficiently large n, 〈h0, XDn〉 < ε〈1, XDn 〉 Px-a.s. on Am. This implies
(3.5).

4◦. If ν ∈ M(∂E) and Zν = SBV(hν), then, by 3.3.6.A and Remark 4.3.1,

(3.8) NxZν = PxZν ≤ hν(x) < ∞.

Note that PxA > 0. It follows from (3.8) that Zν < ∞ Px-a.s. and therefore
Px{A, Zν < ∞} > 0. By Proposition 2.1, (3.2) follows from (3.4) .

�

4. Equations connecting Px and Nx with Πν
x

4.1.

Theorem 4.1. Let Zν = SBV(hν), Zu = SBV(u) where ν ∈ NE
1 and u ∈ U(E).

Then

(4.1) PxZνe
−Zu = e−u(x)Πν

xe
−Φ(u)

and

(4.2) NxZνe−Zu = Πν
xe

−Φ(u)
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where

(4.3) Φ(u) =
∫ τE

0

ψ′[u(ξt)]dt

Proof. Formula (4.1) follows from [D], Theorem 9.3.1. To prove (4.2), we
observe that, for every λ > 0, hλν + u ∈ U− by 2.3.D, and therefore

(4.4) Nx(1 − e−λZν−Zu) = − logPxe−λZν−Zu

by Theorem 4.3.2. By taking the derivatives with respect to λ at λ = 0, 2 we get

NxZνe−Zu = PxZνe
−Zu/Pxe

−Zu .

By 3.(3.4), Pxe−Zu = e−u(x) and therefore (4.2) follows from (4.1). �

Theorem 4.2. Suppose that D ⊂ E are bounded smooth open sets and Λ =
∂D ∩E. Let ν be a finite measure on ∂D ∩ ∂E, x ∈ E and Ex(ν) < ∞. Put

wΛ(x) = Nx{RD ∩ Λ 6= ∅},

vs(x) = wΛ(x) + Nx{RD ∩ Λ = ∅, 1 − e−sZν}
(4.5)

for x ∈ D and let wΛ(x) = vs(x) = 0 for x ∈ E \D. For every x ∈ E, we have

(4.6) Nx{RE ⊂ D∗, Zν} = Πν
x{A, e−Φ(wΛ)},

(4.7) Nx{RE ⊂ D∗, Zν 6= 0} =
∫ ∞

0

Πν
x{A, e−Φ(vs)}ds

where Φ is defined by (4.3) and

(4.8) A = {τE = τD} = {ξt ∈ D for all t < τE}.

Proof. 1◦. If x ∈ E \D, then, Nx-a.s., RE is not a subset D∗. Indeed, RE

contains supports of XO for all neighborhoods O of x and therefore x ∈ RE Px-a.s.
Hence, Nx{RE ⊂ D∗} = 0. On the other hand, Πν

x(A) = 0. Therefore (4.6) and
(4.7) hold independently of values of wΛ and vs.

2◦. Now we assume that x ∈ D. Put A = {RD ⊂ D∗}. We claim that

A = {RE ⊂ D∗} Nx-a.s.

Indeed, {RE ⊂ D∗} ⊂ A because RD ⊂ RE . By Theorem 3.1, Nx-a.s., A ⊂
{RD = RE} and therefore A ⊂ {RE ⊂ D∗}.

By Theorem 3.1, RD = RE and Zν = Z̃ν Nx-a.s. on A. Therefore

Nx{RE ⊂ D∗, Zν} = Nx{A, Zν} = Nx{A, Z̃ν},

Nx{RE ⊂ D∗, Zνe
−sZν} = Nx{A, Zνe−sZν} = Nx{A, Z̃νe−sZ̃ν}.

(4.9)

By Theorem 4.3.4, vs = wΛ ⊕usν. Let ZΛ, Zs and Z̃sν be the stochastic boundary
values in D of wΛ, vs and usν. By 3.3.5.A, ZΛ = ∞· 1Ac and therefore

(4.10) e−ZΛ = 1A.

By 3.3.3.B, Zs = ZΛ + Z̃sν. Hence,

(4.11) e−Z
s

= 1Ae−sZ̃ν .

2The differentiation under the integral signs is justified by 4.(3.8). [In the setting of a

Brownian snake formula (4.2) can be found in [Mse04] (see Proposition 2.31).]
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By (4.9), (4.10) and (4.11),

(4.12) Nx{A, Zν} = Nx{1AZ̃ν} = Nx{Z̃νe−ZΛ}
and

(4.13) Nx{A, Zνe−sZν} = Nx{1AZ̃νe−sZ̃ν} = Nx{Z̃νe−Z
s

}.

By applying formula (4.2) to Z̃ν and the restriction of wΛ to D, we conclude from
(4.12) that

(4.14) Nx{A, Zν} = Π̃ν
x exp

[
−
∫ τD

0

ψ′[wΛ(ξs)]ds
]

and, by 3.(1.16),

(4.15) Nx{A, Zν} = Πν
x{A, e−Φ(wΛ)}.

Analogously, by applying (4.2) to Z̃ν and the restriction of vs to D, we get from
(4.13) and 3.(1.16) that

(4.16) Nx{A, Zνe−sZν} = Πν
x{A, e−Φ(vs)}.

Formula (4.6) follows from (4.15) and formula (4.7) follows from (4.16) because

(4.17) Nx{A, Zν 6= 0} = lim
t→∞

Nx{A, 1− e−tZν}

and

(4.18) 1 − e−tZν =
∫ t

0

Zνe
−sZνds.

�

5. Proof of Theorem 1.1

We use the following two elementary inequalities:

5.A. For all a, b ≥ 0 and 0 < β < 1,

(5.1) (a + b)β ≤ aβ + bβ.

Proof. It is sufficient to prove (5.1) for a = 1. Put f(t) = (1 + t)β − tβ. Note
that f(0) = 1 and f ′(t) ≤ 0 for t > 0. Hence f(t) ≤ 1 for t ≥ 0. �

5.B. For every finite measure M , every positive measurable function Y and
every β > 0,

M (Y −β) ≥ M (1)1+β(MY )−β .

Indeed f(y) = y−β is a convex function on R+, and we get 5.B by applying
Jensen’s inequality to the probability measure M/M (1).

Proof of Theorem 1.1. 1◦. If x ∈ E \D, then, Nx-a.s., RE is not a subset
D∗ (see proof of Theorem 4.2). Hence, both parts of (1.1) vanish.

2◦. Suppose x ∈ D. Since ν ∈ NE
1 , it follows from Theorem 4.3.4 that Nx(1 −

e−sZν ) = usν(x). Thus (4.5) implies vs ≤ wΛ + usν. Therefore, by 5.A, vα−1
s ≤

wα−1
Λ + uα−1

sν and, since usν ≤ hsν = shν , Φ(vs) ≤ Φ(wΛ) + sα−1Φ(hν).
Put A = {RE ⊂ D∗}. It follows from (4.7) that

(5.2) Nx{A, Zν 6= 0} ≥ Πν
x{A,

∫ ∞

0

e−Φ(wΛ)−sα−1Φ(hν )ds}.
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Note that
∫∞
0 e−as

β

ds = Ca−1/β where C =
∫∞
0 e−t

β

dt. Therefore (5.2) implies

(5.3) Nx{A, Zν 6= 0} ≥ CΠν
x{A, e−Φ(wΛ)Φ(hν)−1/(α−1)} = CM (Y −β)

where β = 1/(α−1), Y = Φ(hν) and M is the measure with the density 1Ae−Φ(wΛ)

with respect to Πν
x. We get from (5.3) and 5.B, that

Nx{A, Zν 6= 0} ≥ CM (1)1+β(MY )−β

= C[Πν
x{A, e−Φ(wΛ)}]α/(α−1)[Πν

x{A, e−Φ(wΛ)Φ(hν)}]−1/(α−1).

By (4.6), Πν
x{A, e−Φ(wΛ)} = Nx{RE ⊂ D∗, Zν} and, since Πν

x{A, e−Φ(wΛ)Φ(hν)} ≤
Πν
xΦ(hν), we have

(5.4) Nx{A, Zν 6= 0} ≥ C[Nx{RE ⊂ D∗, Zν}]α/(α−1)[Πν
xΦ(hν)]−1/(α−1).

3◦. By 3.1.3.A, for every f ∈ B(E) and every h ∈ H(E),

Πh
x

∫ τE

0

f(ξt)dt =
∫ ∞

0

Πh
x{t < τE , f(ξt)}dt =

∫ ∞

0

Πx{t < τE , f(ξt)h(ξt)}dt.

By taking f = αhα−1
ν and h = hν we get

(5.5) Πν
xΦ(hν) = αEx(ν).

Formula (1.1) follows from (5.4) and (5.5). �

6. Notes

The role of the basic inequality (1.1) in the investigation of the equation Lu =
uα is similar to the role of the formula (3.31) in Mselati’s paper [Mse04]. In our
notation, his formula can be written as

(6.1) Nx{RE ∩ Λ = ∅, Zν 6= 0} ≥ [Nx{RE ∩ Λ = ∅, Zν}]2[Nx(Z2
ν )]

−1

which follows at once from the Cauchy-Schwarz inequality. A natural idea to write
an analog of (6.1) by using the Hölder inequality does not work because Nx(Zαν ) =
∞.

Theorem 1.1 was proved, first in [Dyn].



CHAPTER 8

Solutions wΓ are σ-moderate

In this chapter we consider the equation

∆u = uα, 1 < α ≤ 2

in a bounded domain E of class C4 in Rd with d ≥ 4. We prove a series of theorems
leading to the equation wΓ = uΓ for every Borel subset Γ of ∂D. (Recall that uΓ

and wΓ are defined in Chapter 1 by (1.4), (1.5) and (1.6).)

1. Plan of the chapter

For every closed subset K of ∂E we put
Eκ(K) ={x ∈ E : d(x,K) ≥ κ diam(K)},

ϕ(x,K) =ρ(x)d(x,K)−d,

Bn(x,K) ={z : |x− z| < nd(x,K)}
(1.1)

where ρ(x) = d(x, ∂E). We prove:

Theorem 1.1. For every κ > 0 there exists a constant Cκ such that, for every
closed K ⊂ ∂E and every x ∈ Eκ(K),

(1.2) wK(x) ≤ Cκ[ϕ(x,K)αCapx(K)]1/(α−1).

Theorem 1.2. There exist constants Cκ > 0 and nκ such that, for every closed
subset K of ∂E and for all x ∈ Eκ(K), ν ∈ P(K), subject to the condition Ex(ν) <
∞, we have

(1.3) Nx{RE ⊂ Bnκ(x,K), Zν} ≥ Cκϕ(x,K).

Theorem 1.3. There exist constants Cκ > 0 and n(κ) with the property: for
every closed K ⊂ ∂E and for every x ∈ Eκ(K),

(1.4) Nx{RE ⊂ B2n(κ)(x,K), Zν 6= 0} ≥ Cκ[ϕ(x,K)αCapx(K)]1/(α−1)

for some ν ∈ P(K) such that Ex(ν) < ∞.

Theorem 1.4. There exist constants Cκ and n(κ) such that, for every closed
K ⊂ ∂E and every x ∈ Eκ(K), there is a ν ∈ P(K) with the properties: Ex(ν) < ∞
and

(1.5) wK(x) ≤ CκNx{RE ⊂ B2n(κ)(x,K), Zν 6= 0}.

Theorem 1.5. There exists a constant C with the following property: for every
closed K ⊂ ∂E and every x ∈ E there is a measure ν ∈ M(K) such that Ex(ν) < ∞
and

(1.6) wK(x) ≤ CNx{Zν 6= 0}.

Theorem 1.6. For every closed K ⊂ ∂E, wK is σ-moderate and wK = uK .

69
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Theorem 1.7. For every Borel subset Γ of ∂E, wΓ = uΓ.

Theorem 1.1 follows immediately from Theorem 6.2.2 and Kuznetsov’s bound

(1.7) wK(x) ≤ Cϕ(x,K) Cap(K)1/(α−1)

proved in [Kuz].
In Section 2 we establish some properties of conditional Brownian motion which

we use in Section 3 to prove Theorem 1.2. By using Theorem 1.2 and the basic
inequality (Theorem 7.1.1), we prove Theorem 1.3. Theorem 1.4 follows at once
from Theorems 1.1 and 1.3. In Section 5 we deduce Theorem 1.5 from Theorem
1.4. In Section 6 we get Theorem 1.6 from Theorem 1.5 and we deduce Theorem
1.7 from Theorem 1.6.

2. Three lemmas on the conditional Brownian motion

Lemma 2.1. If d > 2, then

(2.1) Π̂y
xτE ≤ C|x− y|2 for all x ∈ E, y ∈ ∂E.

Proof. We have
Π̂y
x{t < τE} =

∫

E

p̂t(x, z)dz

where p̂t(x, z) is the transition density of the conditional diffusion (ξt, Π̂y
x). There-

fore

Π̂y
xτE = Π̂y

x

∫ ∞

0

1t<τEdt =
∫ ∞

0

dt

∫

E

p̂t(x, z)dz =
∫

E

dz

∫ ∞

0

p̂t(x, z)dt.

Since p̂t(x, z) = pt(x, z)kE(z, y)/kE(x, y), we have

(2.2) Π̂y
xτE = kE(x, y)−1

∫

E

dzgE(x, z)kE(z, y).

We use estimates 2.(1.6) for gE and 2.(1.10) for kE . Since ρ(z) ≤ |z − y| for
z ∈ E, y ∈ K, it follows from (2.2) that

(2.3) Π̂y
xτE ≤ C|x− y|dI

where
I =

∫

|z−y|≤R

|x− z|−a|z − y|−b dz

with R = diam(E), a = b = d − 1. Since d − a − b = 2 − d < 0 for d > 2,
I ≤ C|x − y|2−d. [See, e.g., [Lan72], formula 1.1.3.] Therefore (2.1) follows from
(2.3). �

The following lemma is proved in the Appendix A.

Lemma 2.2. For every x ∈ E,

(2.4) Πx{ sup
t≤τE

|ξt − x| ≥ r} ≤ Cρ(x)/r.

We need also the following lemma.

Lemma 2.3. Let r = nδ where δ = d(x,K) and let τ r = inf{t : |ξt − x| ≥ r}.
There exist constants Cκ and sκ such that

(2.5) Π̂y
x{τ r < τE} ≤ Cκ(n− sκ)−d for all x ∈ Eκ(K), y ∈ K and all n > sκ.

.
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Proof. It follows from (2.4) that

(2.6) Πx{τ r < τE} ≤ Cρ(x)/r.

Put ηr = ξτr . By 3.1.3.B applied to h(x) = kE(x, y) and τ = τ r,

(2.7) Π̂y
x{τ r < τE} = kE(x, y)−1Πx{τ r < τE , kE(ηr, y)}.

By 2.(1.10),

(2.8) kE(ηr, y) ≤ Cρ(ηr)|ηr − y|−d.
If y ∈ K,x ∈ Eκ(K), then

(2.9) |x− y| ≤ d(x,K) + diam(K) ≤ sκδ

where sκ = 1 + 1/κ. Therefore

(2.10) |ηr − y| ≥ |ηr − x| − |x− y| = r − |x− y| ≥ r − sκδ.

We also have

(2.11) ρ(ηr) ≤ d(ηr,K) ≤ |ηr − x| + d(x,K) = r + δ.

If n > sκ, then, by (2.8), (2.10) and (2.11),

(2.12) kE(ηr, y) ≤ C(r + δ)(r − sκδ)−d.

By 2.(1.10) and (2.9),

(2.13) kE(x, y) ≥ C′ρ(x)(sκδ)−d.

Formula (2.5) follows from (2.7), (2.12), (2.13) and (2.6). �

3. Proof of Theorem 1.2

1◦. Put Bm = Bm(x,K), Um = Bm∩E. By Lemma 6.3.2, there exists a smooth
domain D such that U2m ⊂ D ⊂ U3m. By Theorem 7.4.2,

(3.1) Nx{RE ⊂ D∗, Zν} = Iνx

where

(3.2) Iνx = Πν
x{A(D), e−Φ(wΛ)}

with

(3.3) A(D) = {τD = τE}, wΛ(x) = Nx{RD ∩ Λ 6= ∅}.
Note that

(3.4) Iνx =
∫

K

kE(x, y)Iyxν(dy)

where
Iyx = Π̂y

x{A(D), e−Φ(wΛ)}.
Clearly, A(Um) ⊂ A(D) and therefore

Iyx ≥ Π̂y
x{A(Um), e−Φ(wΛ)}.

Since e−t ≥ e−11t≤1 for t ≥ 0, we get

(3.5) Iyx ≥ e−1Π̂y
x{A(Um),Φ(wΛ) ≤ 1} = e−1(1 − Jyx − Lyx)

where

(3.6) Jyx = Π̂y
x{A(Um),Φ(wΛ) > 1}, Lyx = Π̂y

x[A(Um)c].
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2◦. The next step is to obtain upper bounds for Jyx and Lyx.
We claim that

(3.7) wΛ(z) ≤ Cdd(z, ∂B2m)−2/(α−1) for z ∈ U2m.

Indeed, the function

u(z) = Nz{R ∩Bc2m 6= ∅} = − logPz{R ⊂ B2m}

belongs to U(B2m) and, by 2.2.2.G,

u(z) ≤ Cd(z, ∂B2m)−2/(α−1) for z ∈ B2m.

This implies (3.7) because RD ⊂ R and Λ ⊂ Bc2m and, consequently, wΛ ≤ u.
Note that

(3.8) Jyx ≤ Π̂y
x{A(Um),Φ(wΛ)}.

If z ∈ Um, then d(z, Bc2m) ≥ md(x,K) and, by (3.7), wΛ(z) ≤ C[md(x,K)]−2/(α−1).
This implies

(3.9) Φ(wΛ) ≤ C[md(x,K)]−2τE .

By Lemma 2.1 and (2.9),

(3.10) Π̂y
xτE ≤ C|x− y|2 ≤ C(1 + 1/κ)2d(x,K)2 for y ∈ K,x ∈ Eκ(K).

It follows from (3.8), (3.9) and (3.10) that

(3.11) Jyx ≤ Cκm
−2 for y ∈ K,x ∈ Eκ(K)

with Cκ = C(1 + 1/κ)2.
3◦. We have A(Um)c = {τUm < τE} = {τ r < τE} where r = mδ and τ r =

inf{t : |ξt − x| ≥ r}. By (3.6) and Lemma 2.3,

(3.12) Lyx = Π̂y
x{τr < τE} ≤ Cκ(m − sκ)−d for all y ∈ K,x ∈ Eκ(K),m > sκ.

4◦. By (3.5), (3.11) and (3.12),

(3.13) Iyx ≥ Cκ,m for all y ∈ K,x ∈ Eκ(K),m > sκ

where
Cκ,m = e−1[1− Cκm

−2 − Cκ(m − sκ)−d].

5◦. Note that B4m ⊃ B̄3m ⊃ D̄ ⊃ D∗ and, by (3.1),

(3.14) Nx{RE ⊂ B4m, Zν} ≥ Iνx .

By 2.(1.10) and (2.9),

(3.15) kE(x, y) ≥ C−1s−dκ ϕ(x,K) for all x ∈ Eκ(K), y ∈ K.

By (3.14), (3.4), (3.13)and (3.15),

Nx{RE ⊂ B4m, Zν} ≥ C′
κ,mϕ(x,K) for all x ∈ Eκ(K),m > sκ

where C′
κ,m = C−1s−dκ Cκ,m. Note that C′

κ,m → C′
κ/e as m → ∞ with C′

κ =
C−1s−dκ . Therefore there exists mκ such that

Nx{RE ⊂ B4mk , Zν} ≥ 1
3
C′
κϕ(x,K) for all x ∈ Eκ(K).

This implies (1.3) with nκ = 4mκ. �
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4. Proof of Theorem 1.3

The relation (1.4) is trivial in the case Capx(K) = 0. Suppose Capx(K) > 0.
It follows from 6.(1.3) that, for some ν ∈ P(K),

(4.1) Ex(ν)−1 ≥ Capx(K)/2.

For this ν, Ex(ν) ≤ 2 Capx(K)−1 < ∞.
We use notation Bm, Um introduced in the proof of Theorem 1.2. Suppose that

(1.3) holds for nκ and Cκ and consider a smooth open set D such that U2nκ ⊂ D ⊂
U4nκ . By the basic inequality 7.(1.1),

(4.2) Nx{RE ⊂ D∗, Zν 6= 0} ≥ C(α)Nx{RE ⊂ D∗, Zν}α/(α−1)Ex(ν)−1/(α−1)

if ν is concentrated on ∂E ∩∂D and if Ex(ν) < ∞. Therefore, by (4.1), there exists
ν supported by K such that Ex(ν) < ∞ and

(4.3) Nx{RE ⊂ D∗, Zν 6= 0} ≥ C(α)Nx{RE ⊂ D∗, Zν}α/(α−1) Capx(K)1/(α−1).

We have D∗ ⊂ B4nκ (cf. part 5◦ in the proof of Theorem 1.2). Note that Bnκ ∩Ē ⊂
D∗ and therefore, if RE ⊂ Bnκ , then RE ⊂ D∗. Thus (4.3) implies
(4.4)

Nx{RE ⊂ B4nκ , Zν 6= 0} ≥ C(α)Nx{RE ⊂ Bnκ , Zν}α/(α−1) Capx(K)1/(α−1).

The bound (1.4) with n(κ) = 4nκ follows from (4.4) and (1.3). �

5. Proof of Theorem 1.5

Put

Vm = B2m(x,K),

K1 = K ∩ V̄1 = {z ∈ K : |x− z| ≤ 2d(x,K)},
Km = K ∩ (V̄m \ Vm−1) = {z ∈ K : 2m−1d(x,K) ≤ |x− z| ≤ 2md(x,K)}

for m > 1.

Note that
diam(Km) ≤ diam(Vm) = 2m+1d(x,K)

and

d(x,Km) ≥ d(x, ∂Vm−1) = 2m−1d(x,K) ≥ 1
4

diam(Km)

and therefore x ∈ Eκ(Km) with κ = 1/4. By Theorem 1.4 applied to Km, there is
νm ∈ P(Km) with the properties: Ex(νm) < ∞ and

(5.1) wKm(x) ≤ CκNx{RE ⊂ B2n(κ)(x,Km), Zνm 6= 0}.

We have d(x,Km) ≤ d(x, ∂Vm) = 2md(x,K) and therefore, if 2p ≥ 2n(κ), then for
every positive integer m,

B2n(κ)(x,Km) ⊂ B2p+m (x,K) = Vp+m.

By (5.1),

(5.2) wKm (x) ≤ CκNx(Qm)

where

(5.3) Qm = {RE ⊂ Vp+m, Zνm 6= 0}.
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We claim that

(5.4) Nx(Qm ∩Qm′ ) = 0 for m′ ≥ m + p+ 1.

First, we note that Km′ ∩ Vm+p = ∅. Next, we observe that

Qm ∩Qm′ ⊂ {RE ⊂ Vp+m , Zνm′ 6= 0} ⊂ {RE ∩Km′ = ∅, Zνm′ 6= 0}.

Since νm′ is concentrated on Km′ , (5.4) follows from 4.(3.30).
If Km = ∅, then νm = 0 satisfies (5.2). There exist only a finite number of m

for which Km is not empty. Therefore

ν =
∞∑

1

νm

is a finite measure concentrated on K and Ex(ν) ≤
∑

Ex(νm) < ∞. 1

By 4.(3.19),

wK(x) = Nx{RE ∩K 6= ∅}

and therefore

wK(x) ≤
∞∑

1

Nx{RE ∩Km 6= ∅} =
∞∑

1

wKm(x).

By (5.2), this implies

(5.5) wK(x) ≤ Cκ

∞∑

m=1

Nx(Qm).

Every integer m ≥ 1 has a unique representation m = n(p + 1) + j where j =
1, . . . , p+ 1 and therefore

(5.6) wK(x) ≤ Cκ

p+1∑

j=1

∞∑

n=0

Nx(Qn(p+1)+j).

It follows from (5.4) that Nx{Qn(p+1)+j ∩ Qn′(p+1)+j} = 0 for n′ > n. Therefore,
for every j,

(5.7)
∞∑

n=0

Nx{Qn(p+1)+j} = Nx

{ ∞⋃

n=0

Qn(p+1)+j

}

≤ Nx

{ ∞∑

n=0

Zνn(p+1)+j
6= 0}

}
≤ Nx{Zν 6= 0}

because
∞∑

n=0

Zνn(p+1)+j
≤

∞∑

m=1

Zνm = Zν .

The bound (1.6) (with C = (p+ 1)Cκ) follows from (5.6) and (5.7). �

1Measures νm and ν depend on K and x.
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6. Proof of Theorems 1.6 and 1.7

6.1. Proof of Theorem 1.6. By Theorem 1.5, for every x ∈ E, there exists
ν = νx ∈ M(K) such that Ex(νx) < ∞ and

(6.1) wK(x) ≤ CNx{Zνx 6= 0}.
Consider a countable set Λ everywhere dense in E and put

µ =
∑

x∈Λ

νx.

By 2.2.3.E, the condition Ex(νx) < ∞ implies that νx ∈ NE
1 . By the definition of

NE
0 , this class contains µ and η = ∞ · µ. Since η does not charge ∂E \K, uη = 0

on ∂E \K by 2.2.4.C and

(6.2) uη ≤ wK

by 1.(1.5). By (6.1) and 4.(3.32),

(6.3) wK(x) ≤ CNx{Zνx 6= 0} ≤ CNx{Zη 6= 0} = Cuη(x) for x ∈ Λ.

Since wK and uη are continuous, (6.3) holds for all x ∈ E and therefore ZwK ≤
CZuη . Since Cη = η for all C > 0, we have CZη = ZCη = Zη. Hence ZwK ≤ Zη .
By 3.(3.4), this implies wK ≤ uη and, by (6.2), wK = uη. We conclude that wK is
σ-moderate.

By 1.(1.4)-(1.5), uη ≤ uK ≤ wK . Hence uK = wK . �

6.2. Proof of Theorem 1.7. If K is a compact subset of a Borel set Γ, then,
by Theorem 1.6,

wK = uK ≤ uΓ.

By 1.(1.6), this implies wΓ ≤ uΓ.
On the other hand, if ν is concentrated on Γ, then, by 2.2.5.B, uν ≤ wΓ and,

by 1.(1.4), uΓ ≤ wΓ.

7. Notes

The general plan of this chapter is close to the plan of Chapter 3 of Mselati’s
thesis. To implement this plan in the case of equation ∆u = uα with α 6= 2 we need
the enhancements of the superdiffusion theory in Chapters 4, 5, 6 and 7. Some of
Mselati’s arguments are used with very little modification. In particular, our proof
of Theorem 1.2 is close to his proof of Lemma 3.2.2 and the proof of Theorem 1.5
is based on the construction presented on pages 94-95 in [Mse02a] and pages 81-82
in [Mse04].

Kuznetsov’s upper bound for wK is a generalization of the bound obtained by
Mselati for α = 2 in Chapter 3 of [Mse02a].

We left aside the case d = 3. 2 It can be covered on the price of a complication
of the formulae. Mselati has done this for α = 2 and his arguments can be adjusted
to α < 2.

In [MV] Marcus and Véron proved that wK = uK in the case of a domain E
of class C2 and the equation ∆u = uα for all α > 1 (not only for 1 < α ≤ 2). 3

To this end they establish upper and lower capacitary bounds for wK but they use

2It is well-known that for d < 3 all solutions are σ-moderate and therefore we do not need

to consider these dimensions.
3The result was announced in [MV03].
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not the Poisson capacity but the Bessel capacity C2/α,α′ on ∂E [which also belongs
to the class of capacities defined in Section 1 of Chapter 6.] The relations between
this capacity and the Poisson capacity proved in the Appendix B imply that the
capacitary bounds in [MV] are equivalent to the bounds used in the present book.

The paper [MV] contains also results on asymptotic behavior of wK at points
of K.



CHAPTER 9

All solutions are σ-moderate

To complete the program described in the Introduction (see Section 1.2) it
remains to prove that, if Tr(u) = (Γ, ν), then u ≤ wΓ ⊕ uν . To get this result, it is
sufficient to prove:

A. Our statement is true for a domain E if, for every y ∈ ∂E, there exists a
domain D ⊂ E for which it is true such that ∂D ∩ ∂E contains a neighborhood of
y in ∂E.

B. The statement is true for star domains.
[A domain E is called a star domain relative to a point c if, for every x ∈ E,

the line segment [c, x] connecting c and x is contained in E.]

1. Plan

Our goal is to prove:

Theorem 1.1. If u is a positive solution of the equation

(1.1) ∆u = uα in E

where 1 < α ≤ 2 and E is a bounded domain of class C4 and if Tr(u) = (Γ, ν), then

(1.2) u ≤ wΓ ⊕ uν .

Recall that, by 1.1.5.B,

(1.3) uΓ ⊕ uν ≤ u

and, by Theorem 8.1.7,

(1.4) wΓ = uΓ.

Thus it follows from Theorem 1.1 that

(1.5) u = uΓ ⊕ uν = wΓ ⊕ uν

and u is σ-moderate because so are uΓ and uν .
Denote by E the class of domains for which Theorem 1.1 is true and by E1 the

class of domains with the property:

1.A. If Tr(u) = (Λ, ν),Λ ⊂ Γ ⊂ ∂E and ν(∂E \ Γ) = 0, then u ≤ wΓ.

Proposition 1.1.
E1 ⊂ E.

Proof. Suppose that E ∈ E1 and Tr(u) = (Γ, ν). By the definition of the
trace, uν ≤ u (see 1.(1.7)). We will prove (1.2) by applying 1.A to v = u	 uν .

Let Tr(v) = (Λ, µ). Clearly, Λ ⊂ Γ. If we show that µ(∂E \ Γ) = 0, then
1.A will imply that v ≤ wΓ and therefore v ⊕ uν ≤ wΓ ⊕ uν. By Lemma 3.3.1,
v ⊕ uν = u.

77
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It remains to prove that µ(∂E \ Γ) = 0. By the definition of the trace,

(1.6) µ(∂E \ Γ) = sup{λ(∂E \ Γ) : λ ∈ NE
1 , λ(Γ) = 0, uλ ≤ v}.

Since ν(Γ) = 0 and ν ∈ NE
1 , the conditions λ ∈ NE

1 , λ(Γ) = 0 imply (λ+ν)(Γ) = 0,
λ + ν ∈ N1. By Lemma 3.3.2, uλ+ν = uλ ⊕ uν and, uλ+ν ≤ v ⊕ uν = u because
uλ ≤ v. By 1.(1.7), λ + ν ≤ ν. Hence λ = 0 and µ(∂E \ Γ) = 0 by (1.6). �

1.1. In Section 2 we prove the following Localization theorem:

Theorem 1.2. E belongs to E1 if , for every y ∈ ∂E, there exists a domain
D ∈ E1 such that D ⊂ E and ∂D ∩ ∂E contains a neighborhood of y in ∂E.

Theorem 1.1 follows from Proposition 1.1, Theorem 1.2 and the following the-
orem which will be proved in Section 3:

Theorem 1.3. The class E1 contains all star domains.

2. Proof of Localization theorem

2.1. Preparations. Suppose that D is a smooth subdomain of a bounded
smooth domain E. Put L = {x ∈ ∂D : d(x,E \D) > 0}.

We need the following lemmas.

Lemma 2.1. If a measure ν ∈ ND
1 is concentrated on L, then ν ∈ NE

1 .

Proof. For every x ∈ D, Px{RE ⊃ RD} = 1 and therefore K ⊂ L is RD-
polar if it is RE-polar. If η ∈ ND

1 , then η(K) = 0 for all RD-polar K. Hence
η(K) = 0 for all RE-polar K ⊂ L. Since η is concentrated on L, it vanishes on all
RE-polar K and it belongs to NE

1 by Theorem 3.3.5. �

It follows from Lemma 2.1 that a moderate solution uη in E and a moderate
solution ũη in D correspond to every η ∈ ND

1 concentrated on L.

Lemma 2.2. Suppose that a measure η ∈ ND
1 is concentrated on a closed subset

K of L. Let uη be the maximal element of U(E) dominated by

(2.1) hν(x) =
∫

K

kE(x, y)η(dy)

and let ũη be the maximal element of U(D) dominated by

(2.2) h̃η(x) =
∫

K

kD(x, y)η(dy).

Then, for every y ∈ L,

(2.3) lim
x→y

[uη(x) − ũη(x)] = 0.

Proof. It follows from 3.1.1.C that

(2.4) hη(x) = h̃η(x) + Πx1τD<τEhη(ξτD ).

This implies hη ≥ h̃η and

(2.5) hη(x) − h̃η(x) → 0 as x→ y.

The equation (2.3) will be proved if we show that

(2.6) 0 ≤ uη − ũη ≤ hη − h̃η in D.
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Note that

(2.7) uη +GEu
α
η = hη in E,

(2.8) ũη + GDũ
α
η = h̃η in D

and

(2.9) uη +GDu
α
η = h′ in D

where h′ is the minimal harmonic majorant of uη in D. Hence

(2.10) uη − ũη = hη − h̃η − GEu
α
η + GDũ

α
η in D.

By (2.7), GEuαη ≤ hη and therefore, by 3.1.1.A and the strong Markov property
of ξ,

(2.11) (GE − GD)uαη (x) = Πx

∫ τE

τD

uη(ξs)α ds

= Πx1τD<τEGEu
α
η (ξτD ) ≤ Πx1τD<τEhη(ξτD ) in D.

It follows from (2.4) and (2.11) that

(2.12) hη(x) − h̃η(x) ≥ (GE −GD)uαη (x) in D.

On the other hand, by (2.7) and (2.9),

(2.13) (GE −GD)uαη = hη − h′ in D.

By (2.12) and (2.13), h̃η ≤ h′ in D. This implies ũη ≤ uη in D and GDũ
α
η ≤

GDu
α
η ≤ GEu

α
η . Formula (2.6) follows from (2.10). �

Lemma 2.3. Suppose that u′ is the restriction of u ∈ U(E) to D and let

(2.14) Tr(u) = (Λ, ν), Tr(u′) = (Λ′, ν′)

We have

(2.15) Λ′ = Λ ∩ L̄.
If Γ ⊃ Λ and ν(∂E \ Γ) = 0, then ν′(L ∩ Γc) = 0.

Proof. 1◦. If y ∈ ∂D ∩ E, then, Πy
x-a.s., u′(ξt) is bounded on [0, τD)and

therefore Φ(u′) < ∞. Hence, Λ′ ⊂ L̄.
By Corollary 3.1.1 to Lemma 3.1.2,

(2.16) Π̃y
x{Φ(u′) < ∞} = Πy

x{Φ(u′) <∞, τD = τE} = Πy
x{Φ(u) <∞, τD = τE}

for all x ∈ D, y ∈ L̄. Therefore Λ ∩ L̄ ⊂ Λ′. If y ∈ Λ′, then Π̃y
x{Φ(u′) < ∞} = 0

and, since y ∈ L̄, Πy
x{τD 6= τE} = 0 for all x ∈ D. By (2.16), Πy

x{Φ(u) < ∞} = 0.
Therefore Λ′ ⊂ Λ ∩ L̄ which implies (2.15).

2◦. Denote by K the class of compact subsets of L such that the restriction of
ν′ to K belongs to ND

1 . To prove the second statement of the lemma, it is sufficient
to prove that the condition

(2.17) K ∈ K, η ≤ ν′ and η is concentrated on K

implies that η(L ∩ Γc) = 0. Indeed, by 1.1.5.A, ν′ is a σ-finite measure of class
ND

0 . There exist Borel sets Bm ↑ ∂D such that ν′(Bm) < ∞. Put Lm = Bm ∩ L.
We have ν′(Lm \ Kmn) < 1/n for some compact subsets Kmn of Lm. Denote by
ηmn the restriction of ν′ to Kmn. By 2.2.4.B, ηmn ∈ ND

0 and, since ηmn(∂D) <
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∞, ηmn ∈ ND
1 by 2.2.4.A. Hence Kmn ∈ K. The pair (Kmn, ηmn) satisfies the

condition (2.17). It remains to note that, if ηm,n(L ∩ Γc) = 0 for all m,n, then
ν′(L ∩ Γc) = 0.

3◦. First, we prove that (2.17) implies

(2.18) η ∈ NE
1 , η(Λ) = 0, uη ≤ u.

Suppose that (2.17) holds. The definition of K implies that η ∈ ND
1 . By

Lemma 2.1, η ∈ NE
1 . By (2.15), Λ ⊂ Λ′ ∪ (∂E \ L̄). Hence η(Λ) = 0 because

η(Λ′) ≤ ν′(Λ′) = 0 and η is concentrated on K ⊂ L̄. It remains to check that
uν ≤ u. We have ũη ≤ ũν′ ≤ ũΛ′ ⊕ ũν′ and therefore, by 1.1.5.B, ũη ≤ u′. Since
uη(x) ≤ hη(x), we have

lim
x→y

uη(x) = 0 ≤ u(x) for y ∈ ∂E \K.

By Lemma 2.2,

lim sup
x→y

[uη(x) − u(x)] = lim sup
x→y

[u′η(x) − u′(x)] ≤ 0 for y ∈ L

By the Comparison principle 2.2.2.B, this implies uη ≤ u in E.
4◦. By 1.(1.7), it follows from (2.18) that η ≤ ν and therefore η(L ∩ Γc) ≤

ν(L ∩ Γc) ≤ ν(∂E \ Γ) = 0. �

2.2. Proof of Theorem 1.2. We need to prove that, if Tr(u) = (Λ, ν) and if
ν(Γc) = 0 where Λ ⊂ Γ ⊂ ∂E, then u ≤ wΓ.

The main step is to show that

(2.19) lim sup
x→y

[u(x) − 2wΓ(x)] ≤ 0 for all y ∈ ∂E.

Fix y and consider a domain D ∈ E such that D ⊂ E and ∂D ∩ ∂E contains a
neighborhood of y in ∂E. We use the notation introduced in Lemma 2.3. Clearly,
y ∈ L. By the definition of E, 2.3.A and 2.2.5.B,

(2.20) u′ ≤ w̃Λ′ ⊕ ũν′ = π(w̃Λ′ + ũν′) ≤ w̃Λ′ + ũν′ ≤ 2w̃Λ′ .

Note that Λ′ = Λ∩ L̄ ⊂ Γ∩ L̄ ⊂ (Γ ∩L)∪A where A is the closure of ∂D ∩E. By
3.3.5.C, this implies

w̃Λ′ ≤ w̃Γ∩L + w̃A

and, by (2.20),

(2.21) u′ ≤ 2w̃Γ∩L + 2w̃A.

Since RD ⊂ RE , 4.(3.19) implies that, for every Borel subset B of L̄,

(2.22) w̃B = Nx{RD ∩B 6= ∅} ≤ Nx{RE ∩B 6= ∅} = wB on D.

Thus w̃Γ∩L ≤ wΓ∩L ≤ wΓ and (2.21) implies u′ ≤ 2wΓ + 2w̃A. Hence,

lim sup
x→y,x∈E

[u(x) − 2wΓ(x)] = lim sup
x→y,x∈D

[u′(x) − 2wΓ(x)] ≤ lim sup
x→y,x∈D

w̃A(x).

By 2.2.5.A, this implies (2.19). It follows from the Comparison principle, that
u ≤ 2wΓ in E. Therefore Zu ≤ 2ZΓ where ZΓ = SBV(wΓ). By 3.3.5.A, 2ZΓ = ZΓ

and, by 3.(3.4), u = LPT(Zu) ≤ LPT(ZΓ) = wΓ. �
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3. Star domains

3.1. In this section we prove Theorem 1.3. Without any loss of generality we
can assume that E is a star domain relative to c = 0.

We use the self-similarity of the equation

(3.1) ∆u = uα in E.

Let 0 < r ≤ 1. Put Er = rE, β = 2/(α− 1) and

(3.2) fr(x) = rβf(rx) for x ∈ E, f ∈ B(E).

If u ∈ U(E), then ur also belongs to U(E). Moreover, for r < 1, ur is continuous
on Ē and ur → u uniformly on each D b E as r ↑ 1. If f is continuous, then, for
every constant k > 0,

(3.3) VE(kfr)(x) = rβVEr (kf)(rx) for all x ∈ E.

This is trivial for r = 1. For r < 1 this follows from 2.2.2.A because both parts of
(3.3) are solutions of the equation (3.1) with the same boundary condition u = kfr
on ∂E.

3.2. Preparations.

Lemma 3.1. Every sequence un ∈ U(E) contains a subsequence uni which con-
verges uniformly on each set D b E to an element of U(E).

Proof. We use a gradient estimate for a solution of the Poisson equation
∆u = f in D (see [GT98], Theorem 3.9)

(3.4) sup
D

(ρ|∇u|) ≤ C(D)(sup
D

|u|+ sup
D

(ρ2|f |)).

Suppose D b E. By 2.2.2.E, there exists a constant b such that all u ∈ U(E) do
not exceed b in D. By (3.4),

sup
D

(ρ|∇u|) ≤ C(D)(b + diam(D)2bα) = C′(D).

If D̃ b D, then there exists a constant a > 0 such that |x−y| ≥ a for all x ∈ D̃, y ∈
∂D. Therefore, for all x ∈ D̃, ρ(x) = d(x, ∂D) ≥ a and |∇u|(x) ≤ C′(D)/a. The
statement of the lemma follows from Arzela’s theorem (see, e.g., [Rud87], Theorem
11.28). �

Lemma 3.2. Put

(3.5) Yr = exp(−Zur ).

For every γ ≥ 1,

(3.6) P0|Yr − Y1|γ → 0 as r ↑ 1.

Proof. 1◦. First we prove that

(3.7) lim
r↑1

P0(Y kr − Y k1 )2 = 0

for every positive integer k. If (3.7) does not hold, then

(3.8) limP0(Y krn
− Y k1 )2 > 0

for some sequence rn ↑ 1.
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Note that

(3.9) P0(Y kr − Y k1 )2 = Fr + F1 − 2Gr

where Fr = P0Y
2k
r , Gr = P0(YrY1)k. By 3.(2.6) and (3.3),

(3.10) Fr = P0 exp[−2k〈ur, XE〉] = exp[−VE(2kur)(0)] = exp[−rβVEr (2ku)(0)]

= {exp[−VEr (2ku)(0)]}r
β

= {P0 exp(−2k〈u,XEr 〉)}r
β

.

Since 〈u,XErn
〉 → Zu P0-a.s., we have

(3.11) Frn → F1.

By (3.10) and (3.11),

(3.12) P0e
−2k〈u,XErn

〉 → F1.

Put

(3.13) vr(x) = − logPx(YrY1)k = − logPx exp[−k(Zur + Zu)].

By 3.3.4.A, k(Zur + Zu) ∈ Z and

(3.14) vr ≤ k(ur + u) in E.

By Theorem 3.3.3, vr ∈ U(E). By Lemma 3.1, we can choose a subsequence of the
sequence vrn that converges uniformly on each D b E to an element v of U(E).
By changing the notation we can assume that this subsequence coincides with the
sequence vrn . By 3.(3.4), Pxe−Zv = e−v(x) and therefore

(3.15) Grn = e−vrn (0) → e−v(0) = P0e
−Zv .

By passing to the limit in (3.14), we get that v ≤ 2ku. Therefore Zv ≤ 2kZu and

(3.16) P0e
−Zv ≥ P0e

−2kZu = limP0e
−2k〈u,XErn

〉.

It follows from (3.15), (3.16) and (3.12), that limGrn ≥ F1. Because of (3.9) and
(3.11), this contradicts (3.8).

2◦. If γ < m, then (P0|Z|γ)1/γ ≤ (P0|Z|m)1/m. Therefore it is sufficient to
prove (3.6) for even integers γ = m > 1. Since 0 ≤ Y1 ≤ 1, the Schwarz inequality
and (3.7) imply

P0|Y kr Y m−k
1 − Y m1 | ≤ (P0Y

2(m−k)
1 )1/2[P0(Y kr − Y k1 )2]1/2 → 0 as r ↑ 1.

Therefore

P0|Yr − Y1|m = P0(Yr − Y1)m =
m∑

k=0

(
m

k

)
(−1)m−kP0(Yr)kY m−k

1

→
m∑

k=0

(
m

k

)
(−1)m−kP0Y

m
1 = 0.

�

Lemma 3.3. For every ν ∈ NE
1 , for every 1 < γ < α and for all x ∈ E,

(3.17) PxZ
γ
ν ≤ 1 + c1hν(x)2 + c2GE(hαν )(x)

where c1 = 1
2
eγ/(2 − γ) and c2 = eγ/(α − γ).
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Proof. For every probability measure P and for every positive Z
(3.18)

PZγ = P

∫ Z

0

γλγ−1dλ =
∫ ∞

0

P{Z > λ}γλγ−1dλ ≤ 1 +
∫ ∞

1

P{Z > λ}γλγ−1dλ.

Function
E(λ) = e−λ − 1 + λ, λ > 0

is positive, monotone increasing and E(1) = 1/e. For each λ > 0, by Chebyshev’s
inequality,

(3.19) P{Z > λ} = P{Z/λ > 1} = P{E(Z/λ) > 1/e} ≤ eq(1/λ)

where q(λ) = PE(λZ). By (3.18) and (3.19),

(3.20) PZγ ≤ 1 + e

∫ 1

0

γλ−γ−1q(λ)dλ.

We apply (3.20) to P = Px and to Z = Zν . By 3.(3.13) and 3.3.6.B,

(3.21) q(λ) = Pxe
−λZν − 1 + λPxZν

= e−uλν (x) − 1 + λhν(x) = E(uλν) + λhν − uλν.

Since E(λ) ≤ 1
2λ

2, we have

(3.22) E(uλν)(x) ≤
1
2
uλν(x)2 ≤ 1

2
λ2hν(x)2.

By 3.3.6.B,

(3.23) λhν − uλν = GE(uαλν) ≤ λαGE(hαν ).

Formula (3.17) follows from (3.20), (3.21) (3.22) and (3.23). �

Lemma 3.4. Let Bn be a sequence of Borel subsets of ∂E. If wBn(0) ≥ γ > 0
then there exist νn ∈ P(Bn) ∩ NE

1 such that hνn(0) and GE(hανn
)(0) are bounded.

For every 1 < γ < α, P0Z
γ
νn

are bounded and, consequently, Zνn are uniformly P0-
integrable. The sequence Zνn contains a subsequence convergent weakly in L1(P0).
Its limit Z has the properties: P0Z > 0 and uZ(x) = − logPxe−Z is a moderate
solution of the equation ∆u = uα in E. There exists a sequence Ẑk which converges
to Z Px-a.s. for all x ∈ E. Moreover each Ẑk is a convex combination of a finite
numbers of Zνn .

Proof. It follows from the bound 8.(1.7) that

(3.24) wB(x) ≤ C(x) Capx(B)1/(α−1)

where C(x) does not depend on B. If wBn(0) ≥ γ, then for all n, Cap0(Bn) > δ =
[γ/C(0)]α−1. By 2.(4.1), there exists a compact Kn ⊂ Bn such that Capx(Kn) >
δ/2, and, by 6.(1.3), GE(hανn

)(0) < 3/δ for some νn ∈ P(Kn). It follows from
2.2.3.E that νn ∈ NE

1 .
We claim that there exists a constant c such that

(3.25) h(0) ≤ c[GE(hα)(0)]1/α

for every positive harmonic function h. Indeed, if the distance of 0 from ∂E is equal
to 2ε, then, by the mean value property of harmonic functions,

(3.26) h(0) = c−1
1

∫

Bε

h(y) dy ≤ (c1c2)−1

∫

Bε

gE(0, y)h(y) dy
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where Bε = {x : |x| < ε}, c1 is the volume of Bε and c2 = min g(0, y) over Bε. By
Hölder’s inequality,

(3.27)
∫

Bε

gE(0, y)h(y) dy ≤ [
∫

Bε

gE(0, y)h(y)α dy]1/α[
∫

Bε

gE(0, y) dy]1/α
′

where α′ = α/(α− 1). Formula (3.25) follows from (3.26) and (3.27).
By (3.25),

hνn(0) ≤ c[GE(hανn
)(0)]1/α ≤ c(3/δ)1/α

and (3.17) implies that, for every 1 < γ < α, the sequence P0Z
γ
νn

is bounded. This
is sufficient for the uniform integrability of Zνn (see, e. g., [Mey66], p.19).

By the Dunford-Pettis criterion (see, e. g., [Mey66], p. 20), Zνn contains
a subsequence that converges weakly in L1(P0). By changing notation, we can
assume that this subsequence coincide with Zνn . The limit Z satisfies the condition
P0Z > 0 because P0Zνn → P0Z and, by 3.3.6.B,

P0Zνn =
∫

∂E

kE(0, y)νn(dy) ≥ inf
∂E

kE(0, y) > 0.

There exists a sequence Z̃m which converges to Z in L1(P0) norm such that each Z̃m
is a convex combination of a finite number of Zνn . (See, e. g., [Rud73], Theorem
3.13.) A subsequence Ẑk of Z̃m converges to Z P0-a.s. By Theorem 5.3.2, this
implies that Ẑk converges to Z Px-a.s. for all x ∈ E. By 3.3.4.B and 3.3.4.C, uZ
is a moderate solution. �

3.3. Star domains belong to the class E. By Proposition 1.1, to prove
Theorem 1.1 it is sufficient to demonstrate that every star domain E satisfies the
condition 1.A.

We introduce a function

(3.28) Qr(y) = Π̂y
0 exp{−

∫ τE

0

ur(ξt)α−1 dt}.

Consider, for every ε > 0 and every 0 < r < 1, a partition of ∂E into two sets

(3.29) Ar,ε = {y ∈ ∂E : Qr(y) ≤ ε} and Br,ε = {y ∈ ∂E : Qr(y) > ε}

and denote by Ir,ε and Jr,ε the indicator functions of Ar,ε and Br,ε. Let us inves-
tigate the behavior, as r ↑ 1, of functions

(3.30) fr,ε = VE(urIr,ε) and gr,ε = VE(urJr,ε).

We assume, as in 1.A, that

(3.31) Tr(u) = (Λ, ν),Λ ⊂ Γ ⊂ ∂E and ν is concentrated on Γ

and we prove:

Lemma 3.5. Put
sε(x) = lim sup

r↑1
gr,ε(x).

For every ε > 0,

(3.32) sε ≤ wΓ.
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Lemma 3.6. Fix a relatively open subset O of ∂E which contains Γ and put

Cr,ε = Ar,ε ∩ (∂E \O), q(ε) = lim inf
r↑1

wCr,ε(0).

We have

(3.33) lim
ε↓0

q(ε) = 0.

The property 1.A easily follows from these two lemmas. Indeed, fr,ε and gr,ε
belong to U(E) by 2.2.1.E. By 3.3.5.C,wAr,ε ≤ wO+wCr,ε because Ar,ε ⊂ O∪Cr,ε.
It follows from Lemma 3.6 that

lim inf
ε→0

lim inf
r↑1

wAr,ε ≤ wO(x).

Since this is true for all O ⊃ Γ,

(3.34) lim inf
ε→0

lim inf
r↑1

wAr,ε ≤ wΓ(x)

by 3.3.5.B.
Since u ∈ U(E) and Er b E, we have VEr (u) = u in Er and, by (3.2) and (3.3),

(3.35) VE(ur) = ur in Er.

By (3.35) and 2.2.1.D,

(3.36) ur = VE(ur) ≤ fr,ε + gr,ε in Er.

Since 〈ur1Ar,ε, XE〉 = 0 on {XE (Ar,ε) = 0}, we have fr,ε ≤ − logPx{XE(Ar,ε) = 0}
and, since XE is supported, Px-a.s., by RE , we get

(3.37) fr,ε ≤ − logPx{RE ∩Ar,ε = ∅} = wAr,ε.

We conclude from (3.36), (3.32), (3.34) and (3.37) that

(3.38) u(x) ≤ lim inf
ε→0

lim inf
r↑1

wAr,ε + wΓ(x) ≤ 2wΓ(x).

By 3.3.5.A,ZΓ = SBV(wΓ) takes only values 0 and ∞, and we have Zu ≤ 2ZΓ = ZΓ.
which implies that u ≤ wΓ.

It remains to prove Lemma 3.5 and Lemma 3.6.

3.4. Proof of Lemma 3.5. Consider harmonic functions hr,ε = KE(urJr,ε).
By Jensen’s inequality, Pxe−〈F,XE 〉 ≥ e−Px〈F,XE〉 for every F ≥ 0. By applying this
to F = urJr,ε, we get

(3.39) gr,ε ≤ hr,ε.

First, we prove that

(3.40) hr,ε(0) ≤ u(0)/ε.

By applying 3.1.1.B to v = ur and a(u) = uα−1 we get

(3.41) ur(y) = Πyur(ξτE )Y

where

Y = exp
[
−
∫ τE

0

ur(ξs)α−1ds

]
.

By (3.41) and Lemma 3.1.1,

ur(0) = Π0ur(ξτE )Π̂
ξτE

0 Y = KE(urQr)(0).
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Since εJr,ε ≤ Qr, we have

εhr,ε(0) = KE (εurJr,ε)(0) ≤ KE(urQr)(0) = ur(0)

and (3.40) follows because ur(0) = rβu(0) ≤ u(0).
To prove that (3.32) holds at x ∈ E, we choose a sequence rn ↑ 1 such that

(3.42) grn,ε(x) → sε(x).

The bound (3.40) and well known properties of harmonic functions (see, e. g., [D],
6.1.5.B and 6.1.5.C) imply that a subsequence of hrn ,ε tends to an element hε of
H(E). By Lemma 3.1, this subsequence can be chosen in such a way that grn,ε →
gε ∈ U(E). The bounds gr,ε ≤ hr,ε imply that gε ≤ hε. Hence gε is a moderate
solution and it is equal to uµ for some µ ∈ NE

1 . By the definition of the fine trace,
ν(B) ≥ µ′(B) for all µ′ ∈ NE

1 such that µ′(Λ) = 0 and uµ′ ≤ u. The restriction
µ′ of µ to O = ∂E \ Γ satisfies these conditions. Indeed, µ′ ∈ NE

1 by 2.2.3.A;
µ′(Λ) = 0 because Λ ⊂ Γ; finally, uµ′ ≤ uµ = gε ≤ u because gr,ε ≤ VE(ur) = ur
by 2.2.1.B and (3.35). We conclude that µ′(O) ≤ ν(O) and µ′ = 0 since ν(O) = 0.
Hence µ is supported by Γ and, by 2.2.5.B, gε(x) = uµ(x) ≤ wΓ(x). By (3.42),
sε(x) = gε(x) which implies (3.32). �

3.5. Proof of Lemma 3.6. 1◦. Clearly, q(ε) ≤ q(ε̃) for ε < ε̃. We need
to show that q(0+) = 0. Suppose that this is not true and put γ = q(0+)/2.
Consider a sequence εn ↓ 0. Since q(εn) ≥ 2γ, there exists rn > 1 − 1/n such that
wCrn,εn

(0) ≥ γ. We apply Lemma 3.4 to the sets Bn = Crn ,εn . A sequence Zνn

defined in this lemma contains a weakly convergent subsequence. We redefine rn
and εn to make this subsequence identical with the sequence Zνn .

2◦. The next step is to prove that, if Zνn → Z weakly in L1(P0), then the
condition (3.31) implies

(3.43) PxZe
−Zu = 0

for all x ∈ E. By Theorem 5.3.2, since Z and Zu are F⊂E−-measurable, it is
sufficient to prove (3.43) for x = 0.

We apply Theorem 7.4.1 to νn and un = urn . By 7.(4.1),

P0Zνne
−Zun = e−un(0)Πνn

0 e−Φ(un)

≤ Πνn

0 e−Φ(un) =
∫

∂E

kE(0, y)Π̂y
0e

−Φ(un)νn(dy)
(3.44)

where Φ is defined by 7.(4.3). Since ψ′(u) = αuα−1 ≥ uα−1, we have

Π̂y
0e

−Φ(un) ≤ Qrn (y)

where Qr is defined by (3.28). Since νn ∈ P(Bn) and since Qrn ≤ εn on Bn, the
right side in (3.44) does not exceed

εn

∫

∂E

kE(0, y)νn(dy) = εnhνn(0).

By Lemma 3.4, the sequence hνn(0) is bounded and therefore

(3.45) P0Zνne
−Zun → 0 as n→ ∞.

Let 1 < γ < α. By Hölder’s inequality,

|P0Zνn(e−Zun − e−Zu)| ≤ (P0Z
γ
νn

)1/γ [P0|e−Zun − e−Zu|γ
′
]1/γ

′
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where γ′ = γ/(γ − 1) > 1. By Lemma 3.4, the first factor is bounded. By Lemma
3.2, the second factor tends to 0. Hence

(3.46) P0Zνne
−Zun − P0Zνne

−Zu → 0.

Since Zνn → Z weakly in L1(P0),

(3.47) P0Zνne
−Zu → P0Ze

−Zu .

(3.43) follows from (3.45), (3.46) and (3.47).
3◦. We deduce from (3.43) that

(3.48) Px{Z = 0} = 1

which contradicts the relation PxZ > 0 which is the part of Lemma 3.4. The
contradiction proves that Lemma 3.6 is true.

Let Λ,Γ, ν be defined by (3.31) and let O be the set introduced in Lemma 3.6.
We have

(3.49) Λ ⊂ Γ ⊂ O.

By Lemma 3.4, uZ(x) = − logPxe−Z is a moderate solution and therefore uZ = uµ
for some µ ∈ NE

1 . The statement (3.48) will be proved if we show that µ = 0.
It follows from (3.43) that Z = 0 Px-a.s. on {Zu < ∞}. Therefore Px{Zµ ≤

Zu} = 1 and

(3.50) uµ ≤ u.

Note that νn is supported by Bn ⊂ K = ∂E \ O. By 2.2.5.B, uνn = 0 on O and,
by 1.(1.5), uνn ≤ wK . Therefore

Zνn = SBV(uνn) ≤ SBV(wK) = ZK .

By Lemma 3.4, there exists a sequence of Ẑk such that Ẑk → Z Px-a.s. for all
x ∈ E and each Ẑk is a convex combination of a finite number of Zνn . Therefore,
Px-a.s., Zµ = Z ≤ ZK and uµ ≤ wK . By 2.2.5.A, wK = 0 on O. Hence uµ = 0 on
O and, by 2.2.3.D, µ(O) = 0. By (3.49)

(3.51) µ(Λ) = 0.

By the definition of the trace (see 1.(1.7)), (3.51) and (3.50) imply that µ ≤ ν.
By the condition (3.31), ν(∂E \ Γ) = 0. Thus µ(∂E \ Γ) = 0 and µ(∂E) ≤
µ(O) + µ(∂E \ Γ) = 0. �

4. Notes

The material presented in this chapter was published first in [Dyn04d]. The
contents is close to the contents of Chapter 4 in [Mse04]. The most essential change
needed to cover the case α 6= 2 can be seen in our Lemmas 3.2, 3.3 and 3.4.





APPENDIX A

An elementary property of the Brownian motion

J.-F. Le Gall

We consider the Brownian motion (ξt,Πx) in Rd and we give an upper bound
for the maximal deviation of the path from the starting point x before the exit from
a bounded domain E of class C2.

Lemma 0.1. For every x ∈ E,

(0.1) Πx{ sup
t≤τE

|ξt − x| ≥ r} ≤ Cρ/r

where ρ = d(x, ∂E).

Proof. 1◦. Clearly, (0.1) holds (with C = 8) for r ≤ 8ρ and for r ≥ diam(E).
Therefore we can assume that 8ρ < r < diam(E). Without any loss of generality
we can assume that diam(E) = 2.

2◦. There exists a constant a > 0 such that every point z ∈ ∂E can be touched
from outside by a ball B of radius a. We consider a z such that |x− z| = ρ and we
place the origin at the center of B. Note that |x| = a+ ρ. Put

σa = inf{t : |ξt| ≤ a}, τ r = inf{t : |ξt − x| ≥ r}.

We have
{ sup
t≤τE

|ξt − x| ≥ r} ⊂ {τ r ≤ τE} ⊂ {τ r ≤ σa} Πx-a.s.

and therefore we get (0.1) if we prove that

(0.2) Πx{τ r < σa} ≤ Cρ/r.

3◦. Let δ > 0 be such that 16δ(2 + a)2 < 1 (note that δ depends only on a).
Let Γ be the cone

Γ = {y ∈ Rd : x · y ≥ (1 − δr2)|x||y|},
where x · y stands for the usual scalar product. Introduce the stopping time

U = inf{t ≥ 0 : |ξt| > a+
r

2
},

V = inf{t ≥ 0 : ξt /∈ Γ}.

We first claim that

(0.3) {τ r < σa} ⊂ {U ∧ V < σa}.

To prove (0.3), it is enough to verify that

Γ ∩
(
B(0, a+

r

2
)\B(0, a)

)
⊂ B(x, r)
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(B(y, r) = Br(y) is the open ball with radius r centered at y). However, if y belongs
to the set Γ ∩

(
B(0, a+ r

2)\B(0, a)
)
, then

|x− y|2 = |x|2 + |y|2 − 2x · y ≤ |x|2 + |y|2 − 2(1 − δr2)|x||y|

= (|y| − |x|)2 + 2δr2|x||y| ≤ r2

4
+ 2δr2(a + r)2 ≤ r2

from our choice of δ. This gives our claim (0.3).
The lemma will then follow from (0.3) if we can get suitable bounds on both

Πx{U < σa} and Πx{V < σa}. First, from the formula for the scale function of the
radial part of Brownian motion in Rd,

Πx{U < σa} =
a2−d − (a+ ρ)2−d

a2−d − (a + r
2 )2−d

≤ C′ ρ

r
,

with a constant C′ depending only on a.
To bound Πx{V < σa}, consider the spherical domain Ω = Γ ∩ Sd (where

Sd is as usual the unit sphere in Rd). Denote by λ the first eigenvalue of the
operator −1

2
∆sph in Ω with Dirichlet boundary conditions (here ∆sph is the spherical

Laplacian), and let φ be the corresponding eigenfunction, which is strictly positive
on Ω. Note that

(0.4) λ ≤ c

δr2

with a constant c depending only on the dimension d, and that φ attains its maxi-
mum at x/|x| (by symmetry reasons).

Let ν = d
2
− 1. From the expression of the Laplacian in polar coordinates, it is

immediately seen that the function

u(y) = |y|−ν−
√
ν2+2λ φ(

y

|y|)

is harmonic in Γ. Since u vanishes on ∂Γ, the optional stopping theorem for the
martingale u(ξt) (at the stopping time σa ∧ V ) implies

|x|−ν−
√
ν2+λ φ(

x

|x|) = u(x) = Πx{u(ξσa) 1{σa<V }} ≤ Πx{σa < V } a−ν−
√
ν2+2λ sup

z∈Ω
φ(z).

Recalling that φ attains its maximum at x/|x|, we obtain

Πx{σa < V } ≥
( a

a+ ρ

)ν+√
ν2+2λ

,

and thus

Πx{V < σa} ≤ 1 −
( a

a+ ρ

)ν+√
ν2+2λ

.

From this inequality and the bound (0.4), we easily derive the existence of a constant
C′′ depending only on a such that

Πx{V < σa} ≤ C′′(
ρ

r
).

This completes the proof of the lemma. �



APPENDIX A

Relations between Poisson and Bessel capacities

I. E. Verbitsky

We show that the Poisson capacities Cap(Γ) introduced in Chapter 6 are equiv-
alent to [Capl,p(Γ)]p−1, where l = 2

α , p = α′ and Capl,p are the Bessel capacities
(used in [MV03], [MV]). It is easy to show that, if 1 < d < α+1

α−1 , then, for every
nonempty set Γ on the boundary of a bounded smooth domain, both Cap(Γ) and
Capl,p(Γ) are bounded from above and from below by strictly positive constants.
Therefore it suffices to consider only the supercritical case d ≥ α+1

α−1 .
By using the straightening of the boundary described in the Introduction, one

can reduce the case of the Poisson capacity Cap on the boundary Ẽ of a bounded
C2,λ-domainE in Rd to the capacity C̃ap on the boundary E0 = {x = (x1, . . . , xd) :
xd = 0} of the half-space E+ = Rd−1 × (0,∞) (see Sec. 6.3). We will use the
notation 6.(3.1)-6.(3.2):

E = {x = (x1, . . . , xd) : 0 < xd < 1},
r(x) = d(x,E0) = xd,

k̃(x, y) = r(x)|x− y|−d, x ∈ E, y ∈ E0,

m̃(dx) = r(x)dx, x ∈ E.

For ν ∈ M(E0), we set

(0.5) (K̃ν)(x) =
∫

E0

k̃(x, y)ν(dy), Ẽ(ν) =
∫

E
(K̃ν)α dm̃.

The capacity C̃ap on E0 associated with (k̃, m̃) is given by any one of the equivalent
definitions 6.(1.3), 6.(1.4), 6.(1.5). According to the second definition (which will
be the most useful for us),

(0.6) C̃ap(Γ) = [sup {ν(Γ) : ν ∈ M(Γ), Ẽ(ν) ≤ 1}]α.

The Bessel capacity on E0 can be defined in terms of the Bessel kernel 1

Gl(x) =
1

(4π)l/2Γ(l/2)

∫ ∞

0

t
l−d+1

2 e−
π|x|2

t − t
4π
dt

t
, x ∈ E0.

For every l > 0, p > 1 and Γ ⊂ E0,

(0.7) Capl,p(Γ) = inf {
∫

E0

[f(x)]p dx : f ∈ B(E0), Glf ≥ 1 on Γ}

1See, for instance, [AH96] or [Maz85].
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where
Glf(x) = Gl ? f(x) =

∫

E0

Gl(x− t) f(t) dt.

We need the asymptotics ([AH96], Section 1.2.5) 2

Gl(x) � |x|l−d+1, as |x| → 0, 0 < l < d− 1,(0.8)

Gl(x) � log
1
|x| , as |x| → 0, l = d− 1,(0.9)

Gl(x) � 1, as |x| → 0, l > d− 1,(0.10)

Gl(x) � |x|(l−d)/2e−|x|, as |x| → ∞, l > 0.(0.11)

Theorem 0.1. Suppose that α > 1 and d ≥ α+1
α−1 . Then there exist strictly

positive constants C1 and C2 such that, for all Γ ⊂ E0,

(0.12) C1 [Cap 2
α ,α

′(Γ)]α−1 ≤ C̃ap(Γ) ≤ C2 [Cap 2
α ,α

′(Γ)]α−1.

To prove Theorem 0.1, we need a dual definition of the Bessel capacity Capl,p.
For ν ∈ M(E0), the (l, p)-energy El,p(ν) is defined by

(0.13) El,p(ν) =
∫

E0

(Glν)p
′
dx.

Then Capl,p(Γ) can be defined equivalently ([AH96], Sec. 2.2; [Maz85]) by

(0.14) Capl,p(Γ) = [sup {ν(Γ) : ν ∈ M(Γ), El,p(ν) ≤ 1}]p.
For l > 0, p > 1, define the (l, p)-Poisson energy of ν ∈ M(E0) by

(0.15) Ẽl,p(ν) =
∫

E
[K̃ν(x)]p

′
r(x)lp

′−1 dx.

Lemma 0.2. Let p > 1 and 0 < l < d − 1. Then there exist strictly positive
constants C1 and C2 which depend only on l, p, and d such that, for all ν ∈ M(E0),

(0.16) C1 El,p(ν) ≤ Ẽl,p(ν) ≤ C2 El,p(ν).

Proof. We first prove the upper estimate in (0.16).

Proposition 0.1. Let α ≥ 1. Suppose φ : (0,∞) → (0,∞) is a measurable
function such that

(0.17) φ(y) ≤ c

∫ y

0

φ(s)
ds

s
, y > 0.

Then,

(0.18)
∫ y

0

[φ(s)]α
ds

s
≤ cα−1

(∫ y

0

φ(s)
ds

s

)α
, y > 0.

Proof. We estimate:
∫ y

0

φ(s)

[
φ(s)∫ s

0
φ(t)dtt

]α−1
ds

s
≤ cα−1

∫ y

0

φ(s)
ds

s
.

Since s < y in the preceding inequality, one can put
∫ y
0
φ(t) dt

t
in place of

∫ s
0
φ(t) dt

t
on the left-hand side, which gives (0.18). �

2We write F (x) � G(x) as x → a if
F (x)
G(x)

→ c as x → a where c is a strictly positive constant.
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Let x = (x′, y) where x′ = (x1, . . . , xd−1), and y = xd = r(x). We now set
φ(y) = yl K̃ν(x′, y). It follows from (0.5) and the expression for k̃(x, y) that, if
y
2 ≤ s ≤ y, then

φ(y) ≤ c φ(s)
where c depends only on d. Hence, φ satisfies (0.17). Applying Proposition 0.1
with α = p′, we have

∫ 1

0

[K̃ν(x′, y)]p
′
ylp

′ dy

y
≤ cp

′−1

(∫ 1

0

K̃ν(x′, y) yl
dy

y

)p′
.

Integrating both sides of the preceding inequality over E0, we obtain

Ẽl,p(ν) =
∫

E
[K̃ν(x)]p

′
r(x)lp

′−1dx

≤ cp
′−1

∫

E0

(∫ 1

0

K̃ν(x′, y) yl
dy

y

)p′
dx′.

By Fubini’s theorem,
∫ 1

0

K̃ν(x′, y) yl
dy

y
=
∫

E0

∫ 1

0

yl

[(x′ − t)2 + y2]
d
2
dy ν(dt).

For |x′ − t| ≥ 1, we will use the estimate

(0.19)
∫ 1

0

yl

[(x′ − t)2 + y2] d
2
dy ≤ C

|x′ − t|d .

For |x′ − t| < 1, ∫ 1

0

yl

[(x′ − t)2 + y2]
d
2
dy ≤ C

|x′ − t|d−l−1
,

in the case 0 < l < d− 1; the left-hand side of the preceding inequality is bounded
by C log 2

|x′−t| if l = d − 1, and by C if l > d− 1, where C depends only on l and
d. Using asymptotics (0.8)–(0.10), we rewrite the preceding estimates in the form

(0.20)
∫ 1

0

yl

[(x′ − t)2 + y2]
d
2
dy ≤ C Gl(|x′ − t|), |x′ − t| < 1.

Thus, by (0.19) and (0.20),

Ẽl,p(ν) ≤ C

∫

E0

(∫

|x′−t|<1

Gl(|x′ − t|) ν(dt)

)p′
dx′

+C

∫

E0

(∫

|x′−t|≥1

ν(dt)
|x′ − t|d

)p′
dx′.

The first term on the right is obviously bounded by El,p(ν). To estimate the second
term, we notice that

(0.21)
∫

|x′−t|≥1

ν(dt)
|x′ − t|d

≤ C

∫ ∞

1

ν(B(x′, r))
rd

dr

r
≤ C sup

r≥1

ν(B(x′, r))
rd−1

.

We will need the Hardy-Littlewod maximal function on E0 = Rd−1:

M (f)(x) = sup
r>0

1
rd−1

∫

B(x,r)

|f(t)| dt, x ∈ E0,
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which is a bounded operator on Lp(E0) for 1 < p < ∞. 3

Hence,
||M (Glν)||Lp′(E0) ≤ C ||Glν||Lp′(E0) = C El,p(ν)

1
p′ ,

where C depends only on p. It is easy to see that

M (Glν)(x′) ≥ C sup
r≥1

ν(B(x′, r))
rd−1

, x′ ∈ E0.

Thus, by the preceding estimates and (0.21), it follows

∫

E0

(∫

|x′−t|≥1

ν(dt)
|x′ − t|d

)p′
dx′ ≤ C ||M (Glν)||p

′

Lp′
(E0)

≤ C El,p(ν),

where C depends only on l, p, and d. This completes the proof of the upper estimate
in (0.16).

To prove the lower estimate, notice that, for every 0 < r < 1,
∫ 1

0

[K̃ν(x′, y)]p
′
ylp

′ dy

y
≥
∫ 1

r
2

[∫

|x′−t|<r

yl+1 ν(dt)
(|x′ − t|2 + y2) d

2

]p′
dy

y

≥ C [ν(B(x′, r))]p
′
∫ 1

r
2

y(l+1−d)p′ dy

y
≥ C [rl+1−d ν(B(x′, r))]p

′
,

provided 0 < l < d− 1. This implies
∫ 1

0

[K̃ν(x′, y)]p
′
ylp

′ dy

y
≥ CMl(ν)(x′)p

′
, x′ ∈ E0,

where
Ml(ν)(x′) = sup

0<r<1
rl−d+1 ν(B(x′, r)), x′ ∈ E0.

Consequently,

(0.22) Ẽl,p(ν) ≥ C ||Ml(ν)||p
′

Lp′
(E0)

.

By a theorem of Muckenhoupt and Wheeden [MW74] (or, more precisely, its inho-
mogeneous version [AH96], Theorem 3.6.2),

(0.23) ||Ml(ν)||p
′

Lp′(E0)
≥ C ||Gl(ν)||p

′

Lp′(E0)
= C El,p(ν).

Thus,
Ẽl,p(ν) ≥ C||Ml(ν)||p

′

Lp′(E0)
≥ C El,p(ν),

which gives the lower estimate in (0.16). The proof of Lemma 0.2 is complete. �

We now complete the proof of Theorem 0.1. The condition d ≥ α+1
α−1 implies

that 0 < l ≤ d−1
p

< d− 1 for l = 2
α

and p = α′. By Lemma 0.2,

C1 E 2
α ,α

′(ν) ≤ Ẽ(ν) ≤ C2 E 2
α ,α

′(ν)

where Ẽ(ν) is defined by (0.5), and C1 and C2 are strictly positive constants which
depend only on α and d. By combining the preceding inequality with definitions
(0.6), (0.14), we complete the proof. �

3See, e. g., [AH96], Theorem 1.1.1.
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Notes

Lemma 0.2 holds for all l > 0. The restriction 0 < l < d − 1 was used only
in the proof of the lower estimate (0.16). The case l ≥ d − 1 can be treated in
a slightly different way using, for instance, estimates of the energy in terms of
nonlinear potentials from [COIEV04].

Lemma 0.2 may be also deduced from the following two facts. First, if ||ν||B−l,p′

denotes the norm of a distribution ν ∈ S(E0) in the (inhomogeneous) Besov space
B−l,p′ = [Bl,p]∗ on E0 (l > 0, p > 1), then

||ν||p
′

B−l,p′ � Ẽl,p(ν) =
∫

E
|K̃ ? ν(x)|p

′
r(x)lp

′−1 dx,

where K̃ ? ν is a harmonic extension of ν to E+. Such characterizations of Bl,p

spaces have been known to experts for a long time, but complete proofs in the case
of negative l are not so easy to find in the literature. We refer to [BHQ79] where
analogous results were obtained for homogeneous Besov spaces Ḃl,p (l ∈ R, p > 0).
In the proof above, we used instead direct estimates of Ẽl,p(ν) for nonnegative ν.

Secondly, for nonnegative ν,

||ν||p
′

B−l,p′ � ||ν||p
′

W−l,p′ � El,p(ν),

where W−l,p′ = [W l,p]∗ is the dual Sobolev space on E0. This fact, first observed
by D. Adams, is a consequence of Wolff’s inequality which appeared in [HW83].
(See [AH96], Sections 4.5 and 4.9 for a thorough discussion of these estimates, their
history and applications).

Thus, an alternative proof of Lemma 0.2 can be based on Wolff’s inequality,
which in its turn may be deduced from the Muckhenhoupt–Wheeden fractional
maximal theorem used above. We note that the original proof of Wolff’s inequal-
ity given in [HW83] has been generalized to arbitrary radially decreasing kernels
[COIEV04], and has applications to semilinear elliptic equations [KV99].
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