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Preface

Interactions between the theory of partial differential equations of elliptic and
parabolic types and the theory of stochastic processes are beneficial for, both, prob-
ability theory and analysis. At the beginning, mostly analytic results were used by
probabilists. More recently, the analysts (and physicists) took inspiration from the
probabilistic approach. Of course, the development of analysis, in general, and of
theory of partial differential equations, in particular, was motivated to a great ex-
tent by the problems in physics. A difference between physics and probability is
that the latter provides not only an intuition but also rigorous mathematical tools
for proving theorems.

The subject of this book is connections between linear and semilinear differ-
ential equations and the corresponding Markov processes called diffusions and su-
perdiffusions. A diffusion is a model of a random motion of a single particle. It is
characterized by a second order elliptic differential operator L. A special case is the
Brownian motion corresponding to the Laplacian ∆. A superdiffusion describes a
random evolution of a cloud of particles. It is closely related to equations involving
an operator Lu − ψ(u). Here ψ belongs to a class of functions which contains, in
particular ψ(u) = uα with α > 1. Fundamental contributions to the analytic theory
of equations

(0.1) Lu = ψ(u)

and

(0.2) u̇+ Lu = ψ(u)

were made by Keller, Osserman, Brezis and Strauss, Loewner and Nirenberg, Brezis
and Véron, Baras and Pierre, Marcus and Véron.

A relation between the equation (0.1) and superdiffusions was established, first,
by S. Watanabe. Dawson and Perkins obtained deep results on the path behavior
of the super-Brownian motion. For applying a superdiffusion to partial differential
equations it is insufficient to consider the mass distribution of a random cloud at
fixed times t. A model of a superdiffusion as a system of exit measures from time-
space open sets was developed in [Dyn91c], [Dyn92], [Dyn93]. In particular,
a branching property and a Markov property of such system were established and
used to investigate boundary value problems for semilinear equations. In the present
book we deduce the entire theory of superdiffusion from these properties.

We use a combination of probabilistic and analytic tools to investigate positive
solutions of equations (0.1) and (0.2). In particular, we study removable singulari-
ties of such solutions and a characterization of a solution by its trace on the bound-
ary. These problems were investigated recently by a number of authors. Marcus
and Véron used purely analytic methods. Le Gall, Dynkin and Kuznetsov combined
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8 PREFACE

probabilistic and analytic approach. Le Gall invented a new powerful probabilistic
tool — a path-valued Markov process called the Brownian snake. In his pioneer-
ing work he used this tool to describe all solutions of the equation ∆u = u2 in a
bounded smooth planar domain.

Most of the book is devoted to a systematic presentation (in a more general
setting, with simplified proofs) of the results obtained since 1988 in a series of papers
of Dynkin and Dynkin and Kuznetsov. Many results obtained originally by using
superdiffusions are extended in the book to more general equations by applying a
combination of diffusions with purely analytic methods. Almost all chapters involve
a mixture of probability and analysis. Exceptions are Chapters 7 and 9 where the
probability prevails and Chapter 13 where it is absent. Independently of the rest of
the book, Chapter 7 can serve as an introduction to the Martin boundary theory for
diffusions based on Hunt’s ideas. A contribution to the theory of Markov processes
is also a new form of the strong Markov property in a time inhomogeneous setting.

The theory of parabolic partial differential equations has a lot of similarities
with the theory of elliptic equations. Many results on elliptic equations can be easily
deduced from the results on parabolic equations. On the other hand, the analytic
technique needed in the parabolic setting is more complicated and the most results
are easier to describe in the elliptic case.

We consider a parabolic setting in Part 1 of the book. This is necessary for
constructing our principal probabilistic model — branching exit Markov systems.
Superprocesses (including superdiffusions) are treated as a special case of such sys-
tems. We discuss connections between linear parabolic differential equations and
diffusions and between semilinear parabolic equations and superdiffusions. (Diffu-
sions and superdiffusions in Part 1 are time inhomogeneous processes.)

In Part 2 we deal with elliptic differential equations and with time-homogeneous
diffusions and superdiffusions. We apply, when it is possible, the results of Part
1. The most of Part 2 is devoted to the characterization of positive solutions of
equation (0.1) by their traces on the boundary and to the study of the boundary
singularities of such solutions (both, from analytic and probabilistic points of view).
Parabolic counterparts of these results are less complete. Some references to them
can be found in bibliographical notes in which we describe the relation of the
material presented in each chapter to the literature on the subject.

Chapter 1 is an informal introduction where we present some of the basic ideas
and tools used in the rest of the book. We consider an elliptic setting and, to
simplify the presentation, we restrict ourselves to a particular case of the Laplacian
∆ (for L) and to the Brownian and super-Brownian motions instead of general
diffusions and superdiffusions.

In the concluding chapter, we give a brief description of some results not in-
cluded into the book. In particular, we describe briefly Le Gall’s approach to
superprocesses via random snakes (path-valued Markov processes). For a system-
atic presentation of this approach we refer to [Le 99a]. We do not touch some
other important recent directions in the theory of measure-valued processes: the
Fleming-Viot model, interactive measure-valued models... We refer on these sub-
jects to Lecture Notes of Dawson [Daw93] and Perkins [Per01]. A wide range of
topics is covered (mostly, in an expository form) in “An introduction to Superpro-
cesses” by Etheridge [Eth00].
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CHAPTER 1

Introduction

1. Brownian and super-Brownian motions and differential equations

1.1. Brownian motion and Laplace equation. Let D be a bounded do-
main in Rd with smooth boundary ∂D and let f be a continuous function on ∂D.
Then there exists a unique function u of class C2 such that

∆u = 0 in D,

u = f on ∂D.
(1.1)

It is called the solution of the Dirichlet problem for the Laplace equation in
D with the boundary value f . A probabilistic approach to this problem can be
traced to the classical work [CFL28] of Courant, Friedrichs and Lewy published in
1928. The authors replaced the Laplacian ∆ by its lattice approximation and they
represented the solution of the corresponding boundary value problem in terms of
the random walk on the lattice. Suppose that a particle starts from a site x in D
and moves in one step from a site x to any of 2d nearest neighbor sites with equal
probabilities. Let τ be its first exit time from D and ξτ be its location at time τ .
Then the solution of the Dirichlet problem on the lattice is given by the formula

(1.2) u(x) = Πxf(ξτ ) =
∫
f(ξτ(ω)(ω))Πx(dω),

where Πx is the probability distribution in the path space Ω corresponding to the
initial point x. The solution of the problem (1.1) can be obtained by the passage
to the limit as the lattice mesh and the duration of each step tend to 0 in a certain
relation.

In fact, this passage to the limit yields a measure Πx on the space of continuous
paths. The stochastic process ξ = (ξt,Πx) is called the Brownian motion and
formula (1.2) gives an explicit solution of the problem (1.1) in terms of the Brownian
motion ξ. This result is due to Kakutani [Kak44a], [Kak44b].

1.2. Semilinear equations. Partial differential equations involving a nonlin-
ear operator ∆u− ψ(u) appeared in meteorology (Emden, 1897), theory of atomic
spectra (Thomas-Fermi, 1920s) and astrophysics (Chandrasekhar, 1937). 1

Since the 1960s, geometers have been interested in these equations in connection
with the Yamabe problem: which two functions represent scalar curvature of two
Riemannian metrics related by a conformal mapping.

The equation

(1.3) ∆u = ψ(u)

1See the bibliography in [Vér96].
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12 1. INTRODUCTION

was investigated under various conditions on the function ψ. All these conditions
hold for the family

(1.4) ψ(u) = uα, α > 1.

For a wide class of ψ, the problem

∆u = ψ(u) in D,

u = f on ∂D,
(1.5)

has a unique solution under the same conditions onD and f as the classical problem
(1.1). However, analysts discovered a number of new phenomena related to this
equation. In 1957 Keller [Kel57a] and Osserman [Oss57] found that all positive
solutions of (1.3) are uniformly locally bounded. The most work was devoted to
the case of ψ given by (1.4). In 1974, Loewner and Nirenberg [LN74] proved that,
in an arbitrary domainD, there exists the maximal solution. This solution tends to
∞ at ∂D if D is bounded and ∂D is smooth. 2 In 1980 Brezis and Véron [BV80]
showed that the maximal solution in the punctured space Rd\{0} is trivial if

d ≥ κα =
2α
α− 1

and it is equal to
q | x |−2/(α−1)

with
q = [2(α− 1)−1(κα − d)]1/(α−1)

if d < κα.

1.3. Super-Brownian approach to semilinear equations. A probabilistic
formula (1.2) for solving the problem (1.1) involves the value of f at a random point
ξτ on the boundary. The problem (1.5) can be approached by introducing, instead,
a random measure XD on ∂D and by taking the integral 〈f,XD〉 of f with respect
to XD. The probability law Pµ of XD depends on an initial measure µ and the role
similar to that of (1.2) is played by the formula

(1.6) u(x) = − logPxe−〈f,XD 〉.

Here Px stands for Pµ corresponding to the initial state µ = δx (unit mass con-
centrated at x). We call (XD , Pµ) the exit measure from D. Heuristically, we can
think of a random cloud for which XD is the mass distribution on an absorbing
barrier placed on ∂D.

We consider families of exit measures which we call branching exit Markov
(shortly, BEM) systems because their principal characteristics are a branching prop-
erty and a Markov property. The BEM system used in formula (1.6) is called the
super-Brownian motion. In the next section we explain how it can be obtained by
a passage to the limit from discrete BEM systems. Before that, we give, as the first
application of (1.6), an expression for a solution exploding on the boundary. Note
that, ifXD 6= 0, then e−c〈1,XD〉 → 0 as c → +∞ and, ifXD = 0, then e−c〈1,XD〉 = 1
for all c. Therefore a solution tending to ∞ at ∂D can be expressed by the formula

(1.7) u(x) = − log Px{XD = 0}.

2They considered, in connection with a geometric problem, a special case α = d+2
d−2

.



1. BROWNIAN AND SUPER-BROWNIAN MOTIONS AND DIFFERENTIAL EQUATIONS 13

The fact that u is finite is equivalent to the property Px{XD = 0} > 0, i.e., the
cloud is extinct in D with positive probability.

1.4. Super-Brownian motion. We start from a system of Brownian parti-
cles which die at random times leaving a random number of offspring N with the
generating function EzN = ϕ(z).

The following picture 3 explains the construction of the exit measure (XD, Pµ).
We have here a particle system started by two particles located at points x1, x2 of
D. At the death time, the first particle creates two children who survives until they
reach ∂D at points y1, y2. Of three children of the second particle, one hits ∂D at
point y3, one dies childless and one has two children. Only one child reaches the
boundary (at point y4).

y4

y1

x2

y3

x1

y2

Figure 1

The initial and exit measures are given by the formulae

µ =
∑

δxi XD =
∑

δyi

where δc is the unit mass concentrated at c.
This way we arrive at a family X of integer-valued random measures (XD , Pµ)

where D is an arbitrary bounded open set and µ is an arbitrary integer-valued
measure. Since particles do not interact, we have

(1.8) Pµe
−〈f,XD 〉 = e−〈u,µ〉

where

(1.9) u(x) = − logPxe−〈f,XD 〉.

We call this relation the branching property. We also have the following Markov
property: for every C ∈ F⊃D and for every µ,

(1.10) Pµ{C | F⊂D} = PXD (C) Pµ-a.s.

Here F⊂D and F⊃D are the σ-algebras generated byXD′ , D′ ⊂ D and byXD′′ , D′′ ⊃
D.

If the mass of each particle is equal to β, then the initial measure and the exit
measures take values 0, β, 2β, . . . . We pass to the limit as β and the expected life
time of particles tend to 0 and the initial number of particles tends to infinity. In

3Of course, this is only a scheme. Path of the Brownian motion are very irregular which is

not reflected in our picture.



14 1. INTRODUCTION

the limit, we get an initial measure on D and an exit measure on ∂D which are
not discrete. We denote them again µ and XD . The branching property and the
Markov property are preserved under this passage to the limit and we get a BEM
system (XD, Pµ) where D is an arbitrary bounded open set and µ is an arbitrary
finite measure.

A function ψ obtained by a passage to the limit from ϕ belongs to a class Ψ0

which contains ψ(u) = uα with 1 < α ≤ 2 but not with α > 2. The probability
distribution of the random measure (XD , Pµ) is described by (1.8)–(1.9) and u is a
solution of the integral equation

(1.11) u(x) + Πx

∫ τ

0

ψ[u(ξs)]ds = Πxf(ξτ ).

If ∂D is smooth and f is continuous, then (1.11) implies (1.5). Hence, (1.6) is a
solution of the problem (1.5).

Formulae (1.8) and (1.11) determine the probability distribution of XD for a
fixed D. Joint probability distributions ofXD1 , · · · , XDn can be defined recursively
for every n by using the branching and Markov properties.

The following equations, similar to (1.8) and (1.11), describe the mass distri-
bution Xt at time t:

Pµ exp〈−f,Xt〉 = exp〈−ut, µ〉,(1.12)

ut(x) + Πx

∫ t

0

ψ[ut−s(ξs)]ds = Πxf(ξt).(1.13)

We cover both sets of equations, (1.8), (1.11) and (1.12), (1.13), by considering
exit measures (XQ, Pµ) for open subsets Q of the time-space S = R × Rd and
measures µ on S. They satisfy the equations

Pµ exp〈−f,XQ〉 = exp〈−u,µ〉,(1.14)

u(r, x) + Πr,x

∫ τ

r

ψ[u(s, ξs)]ds = Πr,xf(τ, ξτ )(1.15)

where τ = inf{t : (t, ξt) /∈ Q} is the first exit time from Q. Note that Xt = XS<t

where S<t = (−∞, t) × Rd. If Q = (−∞, t) × D where D is a bounded smooth
domain 4 and if f is bounded and continuous, then u is a solution of a parabolic
equation

(1.16) u̇+
1
2
∆u = ψ(u) in Q

such that u = f on ∂Q.
The maximal solution of the equation (1.3) can be described through the range

of X. This is the minimal closed set R which contains the support suppXt for
all t. (It contains, a.s., suppXD for each D.) 5 For every open set D, a maximal
solution in D is given by

(1.17) u(x) = − log Px{R ⊂ D}.

4The name “smooth” is used for domains of class C2,λ (see section 6.1.3).
5Writing “a.s.” means Pµ-a.s. for all µ [or Πµ-a.s. for all µ in the case of a Brownian motion].
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2. Exceptional sets in analysis and probability

2.1. Capacities. The most important class of exceptional sets in analysis are
sets of Lebesgue measure 0. The next important class are sets of capacity 0. A
capacity is a function C(B) ≥ 0 defined on all Borel sets. 6 It is not necessarily
additive but it is monotone increasing and continuous with respect to the monotone
increasing limits. For every B, C(B) is equal to the supremum of C(K) over all
compact sets K ⊂ B and it is equal to the infimum of C(O) over all open sets
O ⊃ B. [A more systematic presentation of Choquet’s capacities is given in section
10.3.2]

To every random closed set (F (ω), P ) there corresponds a capacity

(2.1) C(B) = P{F ∩B 6= ∅}.
Another remarkable class of capacities correspond to pairs (k, ‖·‖) where k(x, y)

is a function on the product space E× Ẽ and ‖ · ‖ is a norm in a space of functions
on E. The most important are the uniform norm

(2.2) ‖f‖ = sup
x

|f(x)|

and the Lα(m)-norms

(2.3) ‖f‖α =
[∫

|f(x)|α m(dx)
]1/α

where 1 ≤ α < ∞ and m is a measure on E. We assume that E and Ẽ are nice
metric spaces and that k(x, y) is positive valued, lower semicontinuous in x and
measurable in y. To every measure ν on Ẽ there corresponds a function

(2.4) Kν(x) =
∫

Ẽ

k(x, y) ν(dy)

on E. The capacity corresponding to (k, ‖ · ‖) is defined on subsets B of Ẽ by the
formula

(2.5) C(B) = sup{ν(B) : ν is concentrated on B and ‖Kν‖ ≤ 1}.
Our primary interest is not in capacities themselves but rather in the classes

of sets on which they vanish, and we say that two capacities are of the same type
if these classes coincide.

2.2. Exceptional sets for the Brownian motion. The Brownian motion
ξ in a domain D killed at the first exit time τ from D has a transition density
pt(x, y). If D is bounded, then

(2.6) g(x, y) =
∫ ∞

0

pt(x, y)dt

is finite for x 6= y. We call g(x, y) Green’s function. The Green’s capacity corre-
sponds to the kernel g(x, y) and the uniform norm (2.2). 7 It is of the same type
as the capacity corresponding to

(2.7) g1(x, y) =
∫ ∞

0

e−tpt(x, y) dt

6And even on a larger class of analytic sets
7If d > 1, then g(x,x) = ∞. Therefore Green’s capacity of a single point is equal to 0.
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(and to the uniform norm). In the case d ≥ 3, it is also of the same type as the
capacity corresponding to the kernel |x− y|2−d.

For a bounded set D, τ < ∞ a.s. The range R of ξ is a continuous image of a
compact set [0, τ ] and therefore, for every x ∈ D, (R,Πx) is a random closed set.
Consider the corresponding capacity

(2.8) Cx(B) = Πx{R ∩B 6= ∅}.
A set B is called polar for ξ if Cx(B) = 0 for all x ∈ D \B. This is equivalent to
the condition

(2.9) Πx{ξt ∈ B for some t} = 0 for all x ∈ D \B
[in other words, a.s., ξ does not hit B ]. It is well-known (see, e.g., [Doo84]) that a
set B is polar if and only if its Green’s capacity is equal to 0. This gives an analytic
characterization of the class of polar sets.

2.3. Exceptional sets for the super-Brownian motion. We say that a
set B is polar for X if it is not hit by the range of X, that is if

(2.10) Px{R ∩B 6= ∅} = 0 for all x /∈ B.

In other words, B is polar, if, for all x /∈ B, Capx(B) = 0 where Capx is the
capacity associated with a random closed set (R, Px). It was proved in [Dyn91c]
that all capacities Capx are of the same type as the capacity determined by the
kernel (2.7) and the norm (2.3) (assuming that ψ is given by (1.4)).

It is clear from (1.17) that a closed set B is polar for X if and only if equation
(1.3) has only a trivial solution u = 0 in Rd \B. By the analytic result described
in section 1.2, a single point is polar if and only if d ≥ κα.

2.4. Exceptional boundary sets. Suppose that D is a bounded smooth
domain. Denote by γ(dy) the normalized surface area on ∂D. 8 If τ is the first exit
time of the Brownian motion ξ from D, then, for every Borel (or analytic) subset
Γ of ∂D,

(2.11) Πx{ξτ ∈ Γ} =
∫

Γ

k(x, y)γ(dy), x ∈ D

where k(x, y) is a strictly positive continuous function on D×∂D called the Poisson
kernel. Note that Πx{ξτ ∈ Γ} = 0 if and only if γ(Γ) = 0. In other words, the
capacity corresponding to a random closed set ({ξτ},Πx) is of the same type as the
measure γ.

A class of exceptional boundary sets related to the super-Brownian motion X
is more interesting. It can be defined probabilistically in terms of the range RD of
X in D — the minimal closed subset supporting XD′ for all D′ ⊂ D. Or it can be
introduced analytically via the capacity CPα corresponding to the Poisson kernel
k and the Lα(m)-norm

(2.12) ‖f‖α =
[∫

D

|f(x)|αm(dx)
]1/α

.

Here m(dx) = dist(x, ∂D)dx. It is proved in Chapter 13 that

(2.13) Px{RD ∩ Γ 6= ∅} = 0 for all x ∈ D,

8This is a measure on ∂D determined by the Riemannian metric induced on ∂D by the

Euclidean metric in Rd. An explicit expression for γ is given in section 6.1.8.
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if and only if CPα(Γ) = 0. We call sets Γ with these properties polar boundary
sets. The class of such sets can be also characterized by the condition: ν(Γ) = 0
for all ν ∈ N1. Here N1 is a certain set of finite measures on ∂D introduced in
Chapter 8.

We also establish a close relation between polar boundary sets of the super-
Brownian motion and removable boundary singularities for positive solutions of the
equation

(2.14) ∆u = uα.

Namely, we prove that a closed subset Γ of ∂D is polar if and only if it is a removable
boundary singularity for (2.14) which means: every positive solution in D equal to
0 on ∂D \ Γ is identically equal to 0.

3. Positive solutions and their boundary traces

3.1. One of our principal objectives is to describe the class U(D) of all positive
solutions of the equation

(3.1) ∆u = ψ(u)

in an arbitrary domain D. One of the first results in this direction was obtained by
Brezis and Véron who proved that, in the case of ψ given by (1.4) and D = Rd\{0},
U(D) contains only a trivial solution u = 0 if d ≥ κα (see section 1.2). If 3 ≤ d < κα,
then U(D) consists of the maximal solution described in section 1.2 and the one-
parameter family vc, 0 ≤ c < ∞ such that

(3.2) vc(x)|x|d−2 → c as x→ 0.

All positive solutions of the linear equation ∆u = 0 in an arbitrary domain
D (that is all positive harmonic functions) were described by Martin. We present
a probabilistic version of the Martin boundary theory in Chapter 7. We start the
investigation of the class U(D) in Chapter 8 by introducing a subclass U1(D) of
moderate solutions which are closely related to harmonic functions. Moderate solu-
tions are used as a tool to define, for an arbitrary solution its trace on the boundary.
There are two versions of this definition: the rough trace determines a solution only
in the case of α < (d+ 1)/(d− 1). The fine trace is a more complete characteristic.
It determines uniquely every σ-moderate solution, that is a solution which is the
limit of an increasing sequence of moderate solutions. It remains an open problem
if there exist solutions which are not σ-moderate.

3.2. Positive harmonic functions in a bounded smooth domain. We
denote by H(D) the class of all positive harmonic functions in a domain D. If D is
bounded and smooth, then every h ∈ H(D) has a unique representation

(3.3) h(x) =
∫

∂D

k(x, y)ν(dy)

where k is the Poisson kernel and ν is a finite measure on ∂D. We call ν the bound-
ary trace of h and we write ν = trh. Formula (3.3) establishes a 1-1 correspondence
between H(D) and the set M(∂D) of all finite measures on ∂D.

The constant 1 belongs to H(D) and its trace is the normalized surface area
γ (cf. section 2.4). The trace of an arbitrary bounded h ∈ H(D) is a measure
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absolutely continuous with respect to γ, and the formula

(3.4) h(x) =
∫

∂D

k(x, y)f(y)γ(dy)

defines a 1-1 correspondence between bounded h ∈ H(D) and classes of γ-equivalent
bounded positive Borel functions on ∂D.

It follows from (2.11) that (3.4) is equivalent to (1.2). If f is continuous, then
(3.4) is a solution of the Dirichlet problem (1.1). For an arbitrary bounded Borel
function f , (3.4) can be considered as a generalized solution of the problem (1.1)
because, a.s., h(ξt) → f(ξτ ) as t ↑ τ . An analytic counterpart to this statement is
Fatou’s boundary limit theorem: for γ-almost all c ∈ ∂D, h(x) → f(c) as x → c ∈
∂D non tangentially.

It is natural to interpret the measure ν in (3.3) as a weak boundary value of
h. In other words, h given by (3.3) can be considered as a solution of a generalized
Dirichlet problem

∆h = 0 in D,
h = ν on ∂D.

(3.5)

3.3. Positive harmonic functions in an arbitrary domain. Martin
boundary. Let D be an arbitrary domain and let g(x, y) be given by (2.6). If
D is bounded, then g(x, y) < ∞ for x 6= y. The same is true for a wide class of
unbounded domains. If this is the case, we choose a point c ∈ D and put

k(x, y) =
g(x, y)
g(c, y)

.

It is possible to imbed D into a compact metric space D̂ = D ∪ Γ and to extend
k(x, y) to y ∈ Γ in such a way that yn → y ∈ Γ if and only if k(x, yn) → k(x, y) for
all x ∈ D. Set Γ is called the Martin boundary of D. There exists a Borel subset
Γ′ of Γ such that every h ∈ H(D) has a unique representation

(3.6) h(x) =
∫

Γ′
k(x, y) ν(dy)

where ν ∈ M(Γ′). We write ν = trh and we denote by γ the trace of h = 1.
There exists, a.s., a limit of ξt in D̂ as t ↑ τ . It belongs to Γ′. We denote it ξτ−.

The trace of a bounded harmonic function has a form fdγ and, a.s., h(ξt) → f(ξτ−)
as t ↑ τ .

3.4. Moderate solutions. We say that a solution u of (3.1) is moderate and
we write u ∈ U1(D) if there exists h ∈ H(D) such that u ≤ h. In Chapter 8 we
prove that formula

(3.7) u(x) +
∫

D

g(x, y)ψ(y) dy = h(x)

establishes a 1-1 correspondence between U1(D) and a subclass H1(D) of H(D).
Moreover, h is the minimal harmonic function dominating u and u is the maximal
element of U(D) dominated by h. The class H1(D) can be characterized by the
condition: h ∈ H1(D) if and only if the trace of h does not charge exceptional
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boundary set (described in section 2.4). If u corresponds to h and if trh = ν, then
u can be considered as a solution of a generalized Dirichlet problem

∆u = ψ(u) in D,
u = ν on ∂D

(3.8)

(cf. (3.5)). It is natural to call ν the boundary trace of a moderate solution u.

3.5. Rough trace. For every u ∈ U(D) and for every closed subset B of ∂D
we define the sweeping QB(u) of u to B. In the case of a smooth domain, QB(u)
is the maximal solution dominated by u and equal to 0 on ∂D \B. [The definition
is more complicated in the case of an arbitrary domain.]

The rough trace of u is a pair (Γ, ν) where Γ is a closed subset of ∂D and ν is
a Radon measure on O = ∂D \ Γ. Namely, Γ is the minimal closed set such that
QB(u) is moderate for all B disjoint from Γ. The measure ν is determined by the
condition: the restriction of ν to every B ⊂ O is equal to the trace of the moderate
solution QB(u).

The main results about the rough trace presented in Chapter 10 are:

A. Characterization of all pairs (Γ, ν) which are traces. [The principal condition
is that ν(B) = 0 for all exceptional boundary sets.]

B. Existence of the maximal solution with a given trace and an explicit prob-
abilistic formula for this solution.

Le Gall’s example (presented in section 3.5 of Chapter 10) shows that, in gen-
eral, infinitely many solutions can have the same rough trace.

3.6. Fine trace. Again this is a pair (Γ, ν) where Γ is a subset of ∂D and
ν is a measure on O = ∂D \ Γ. However Γ is not necessarily closed and ν is not
necessarily Radon measure.

Roughly speaking, the set Γ consists of points of the boundary near which u
rapidly tends to infinity. A precise definition can be formulated, both, in analytic
and probabilistic terms. Here we sketch a probabilistic approach based on the
concept of a Brownian motion in D conditioned to exit from D at a given point y
of the boundary. This stochastic process is described by a measure Πy

x on the space
of continuous paths which start at point x ∈ D and which are at y at the fist exit
time τ from D. Let f be a positive Borel function in D. We say that y is a point
of rapid growth of f if, for every x,

∫ τ

0

f(ξs) ds = ∞ Πy
x-a.s.

We say that y is a singular point of a solution u if it is a point of rapid growth of
function ψ′(u). We define Γ as the set of all singular points of u. To define the
measure ν, we consider all moderate solutions v ≤ u with the trace not charging Γ.
ν is the minimal measure such that, for every such v, tr v ≤ ν. We prove that:

A. A pair (Γ, ν) is a trace if and only if ν does not charge exceptional boundary
sets and if Γ contains all singular points of the following two solutions:

u∗ = sup {moderate v with the trace dominated by ν},

uΓ = sup {moderate v with the trace concentrated on Γ}
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B. Among the solutions with a given trace, there exists a minimal solution and
this solution is σ-moderate. 9

C. A σ-moderate solution is determined uniquely by its trace.

The solutions in Le Gall’s example are uniquely characterized by their fine
traces.

9See the definition in section 3.1.
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CHAPTER 2

Linear parabolic equations and diffusions

We introduce diffusions by using analytic results on fundamental solutions of
parabolic differential equations. A probabilistic approach to boundary value prob-
lems is based on the Perron method in PDEs. A central role is played by Poisson’s
and Green’s operators which we define in terms of diffusions. Fundamental concepts
of regular boundary points and of regular domains are also defined in probabilistic
terms.

1. Fundamental solution of a parabolic equation

1.1. Operator L. We work with functions u(r, x), r ∈ R, x ∈ E = Rd on
(d + 1)-dimensional Euclidean space S = R × E. The first coordinate of a point
z ∈ S is interpreted as a time parameter. We write u̇ for ∂u

∂r and Diu for ∂u
∂xi

where
x1, . . . , xd are coordinates of x. Put Dij = DiDj.

Operator L is defined by the formula

(1.1) Lu(r, x) =
d∑

i,j=1

aij(r, x)Diju(r, x) +
d∑

i=1

bi(r, x)Diu(r, x)

where aij = aji. We assume that:

1.1.A. There exists a constant κ > 0 such that
∑

aij(r, x)titj ≥ κ
∑

t2i for all (r, x) ∈ S, t1, . . . , td ∈ R.

[ κ is called the ellipticity coefficient of L .]

1.1.B. aij and bi are bounded continuous and satisfy a Hölder’s type condition:
there exist constants 0 < λ < 1 and Λ > 0 such that

|aij(r, x) − aij(s, y)| ≤ Λ(|x− y|λ + |r − s|λ/2),(1.2)

|bi(r, x)− bi(r, y)| ≤ Λ|x− y|λ(1.3)

for all r, s ∈ R, x, y ∈ E.

For every interval I, we denote by SI or S(I) the slab I ×E. We write S<t for
SI with I = (−∞, t) and we write Q<t for the intersection of Q with S<t. . Writing
U b Q means that Q and U are open subsets of S, U is bounded and its closure
Ū is contained in Q. We use the name a sequence exhausting Q for a sequence of
open sets Qn ↑ Q such that Qn b Qn+1 for all n.

23
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1.2. Equation u̇+ Lu = 0. We investigate equation 1

(1.4) u̇+ Lu = 0 in Q.

Speaking about solutions of (1.4), we assume that the partial derivatives u̇, Diu, i =
1, . . . , d and Diju, i, j = 1, . . . , d are continuous. We denote C2(Q) the class of
functions with this property.

Another class of functions plays a special role – continuous functions on Q that
are locally Hölder continuous in x uniformly in r. More precisely, we put u ∈ Cλ(Q)
if u(r, x) is continuous on Q and if, for every compact Γ ⊂ Q, there exists a constant
ΛΓ such that

|u(r, x)− u(r, y)| ≤ ΛΓ|x− y|λ for all (r, x), (r, y) ∈ Γ.

[λ (called Hölder’s exponent) satisfies the condition 0 < λ < 1.]

1.3. Fundamental solution. The following results are proved in the theory
of partial differential equations (see Chapter 1 in [Fri64] and section 4 in [IKO62]).

Theorem 1.1. There exists a unique continuous function p(r, x; t, y) on the set
{r < t, x, y ∈ E} with the properties:

1.3.A. For every (t, y), the function u(r, x) = p(r, x; t, y) is a solution of

(1.5) u̇+ Lu = 0 in S<t.

1.3.B. For every t1 < t2 and every δ > 0, the function p(r, x; t, y) is bounded on
the set {t1 < r < t < t2, t− r + |y − x| ≥ δ}.

1.3.C. If ϕ is continuous at a and bounded, then
∫

E

p(r, x; t, y)ϕ(y) dy → ϕ(a) as r ↑ t, x→ a.

Function p is strictly positive and
∫

E

p(r, x; t, y) dy = 1 for all r < t and all x;(1.6)
∫

E

p(r, x; s, y)p(s, y; t, z) dy = p(r, x; t, z) for all r < s < t and all x, z.(1.7)

Function p(r, x; t, y) is called a fundamental solution of equation (1.5).
We say that a function f is exp-bounded on B if supB |f(r, x)|e−β|x|2 < ∞ for

every β > 0. (Clearly, all bounded functions are exp-bounded.)
We use the following properties of a fundamental solution.

1.3.1. If κ is the ellipticity coefficient of L, then, for every β < κ,
(1.8)

p(r, x; t, y) ≤ C(t− r)−d/2 exp
[
−β|y − x|2

2(t− r)

]
for all t1 < r < t < t2, x, y ∈ E

where the constant C depends on t1, t2 and β.

1This equation can be reduced by the time reversal r → −r to the equation u̇ = Lu which
is usually considered in the literature on partial differential equations. The form (1.4) is more

appropriate from a probabilistic point of view.
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1.3.2. If ϕ is an exp-bounded function on St = {t} ×E, then

(1.9) u(r, x) =
∫

E

p(r, x; t, y)ϕ(y) dy

is exp-bounded on S[t′, t) for every finite interval [t′, t) and it satisfies equation
u̇ + Lu = 0 in S<t. If, in addition, ϕ is continuous, then, for every t′ < t, u is a
unique exp-bounded solution of the problem

u̇+ Lu = 0 in S(t′, t),
u = ϕ on St.

(1.10)

[Writing u = ϕ at z̃ ∈ ∂Q means u(z) → ϕ(z̃) as z ∈ Q tends to z̃.]

1.3.3. If ρ is a bounded Borel function on S(t′, t) and if

(1.11) v(r, x) =
∫ t

r

ds

∫

E

p(r, x; s, y)ρ(s, y) dy,

then Div are continuous on S(t′, t) [and therefore v ∈ Cλ[S(t′, t)]]. If, in addition,
ρ ∈ Cλ[S(t′, t)], then v is a unique bounded solution of the problem

v̇ + Lv = −ρ in S(t′, t),
v = 0 on St.

(1.12)

2. Diffusions

2.1. Continuous strong Markov processes. Here we describe a class of
Markov processes which contains all diffusions in a d-dimensional Euclidean space
E. 2 Imagine a particle moving at random in E. Suppose that the motion starts
at time r at a point x and denote ξt the state at time t ≥ r. The probability
that ξt belongs to a set B depends on r and x and we assume that it is equal to∫
B
p(r, x; t, y) dy. Moreover, we assume that, for every n = 1, 2, . . . and for all

r < t1 < · · · < tn and all Borel sets B1, . . . , Bn,

(2.1) Probability of the event{ξt1 ∈ B1, . . . , ξtn ∈ Bn}

=
∫

B1

dy1 . . .

∫

Bn

dyn p(r, x; t1, y1)p(t1, y1; t2, y2) . . . p(tn−1, yn−1; tn, yn).

If the conditions (1.6)-(1.7) are satisfied, then the results of computation with
different n do no contradict each other and, by a Kolmogorov’s theorem 3 there
exists a probability measure Πr,x on the space of all paths in E starting at time
r which satisfies (2.1). We say that p(r, x; t, y) is the transition density of the
stochastic process (ξt,Πr,x). Sometimes the measures Πr,x can be defined on the
space of all continuous paths. For instance, this is possible for

(2.2) p(r, x; t, y) = [2π(t− r)]−d/2 exp
[
−|x− y|2

2(t− r)

]
.

The corresponding continuous process is called the Brownian motion . Diffusions
also have continuous paths. (Their transition densities will be defined in section
2.2.)

2Basic facts on Markov processes are presented more systematically in the Appendix A.
3See [Kol33], Section III.4. Two proofs of Kolmogorov’s theorem are presented in [Bil95].
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We denote by Ωr the space of all continuous paths ω(t), t ∈ [r,∞) in E. To
deal with a single space Ω, we introduce an extra point [ and we put ω(t) = [ for
ω ∈ Ωr and t < r. We consider ξt as a function on Ω, namely, ξt(ω) = ω(t). The
birth time α is a function on Ω equal to r on Ωr. Measure Πr,x is concentrated
on the set {α = r, ξα = x}. For every interval I, the σ-algebra F(I) generated
by ξs, s ∈ I can be viewed as the class of all events determined by the behavior of
the path during I. Note that {α ≤ t} = {ξt ∈ E} belongs to F(I) for all I which
contain t. We use an abbreviation F≥t = F [t,∞).

Every process (ξt,Πr,x) satisfies the following condition (which is called the
Markov property): events observable before and after time t are conditionally inde-
pendent given ξt. More precisely, if r < t, A ∈ F [r, t] and B ∈ F≥t, then

(2.3) Πr,x(AB) =
∫

A

Πt,ξt(B)Πr,x(dω).

To simplify notation we write z for (r, x) and ηt for (t, ξt). Formula (2.3) implies
that for all X ∈ F [r, t] and every Y ∈ F≥t, 4

(2.4) Πz(XY ) = Πz(XΠηtY ).

Diffusions satisfy a stronger condition called the strong Markov property . Roughly
speaking, it means that (2.4) can be extended to all stopping times τ . The defi-
nition of stopping times and their properties are discussed in the Appendix A. An
important class of stopping times are the first exit times. The first exit time from
an open set Q is defined by the formula

(2.5) τ (Q) = inf{t ≥ α : ηt /∈ Q}.
[We put τ (Q) = ∞ if ηt ∈ Q for all t ≥ α.]We say that X is a pre-τ random

variable if X1τ≤t ∈ F≤t for all t.
In the Appendix A we give a general formulation of the strong Markov property,

we prove it for a wide class of Markov processes which includes all diffusions and
we deduce from it propositions 2.1.A–2.1.C — the only implications which we need
in this book.

2.1.A. Let ρ be a positive Borel function on S. For every stopping time τ and
every pre-τ X ≥ 0,

(2.6) ΠzX

∫ ∞

τ

ρ(ηs) ds = ΠzXGρ(ητ )

where

(2.7) Gρ(z) = Πz

∫ ∞

α

ρ(ηs) ds.

2.1.B. Let τ ′ be the first exit time from an open set Q′. Then for every stopping
time τ ≤ τ ′, for every pre-τ X ≥ 0 and for every Borel function f ≥ 0,

(2.8) ΠzX1Q′ (ητ )1τ ′<∞f(ητ ′ ) = ΠzX1τ<∞1Q′(ητ )KQ′f(ητ )

where

(2.9) KQ′f(z) = Πz1τ ′<∞f(ητ ′ ).

4Writing X ∈ F means that X ≥ 0 and X is measurable with respect to a σ-algebra F. It
can be proved (by using Theorem 1.1 in the Appendix A) that every X ∈ F≤t coincide Πr,x -a.e.

with a F[r, t]-measurable function. Therefore (2.4) holds for all X ∈ F≤t.
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[The value of η∞ is not defined. Instead of introducing in (2.8) and (2.9) factors
1τ ′<∞ and 1τ<∞, we can agree to put f(η∞) = 0.]

2.1.C. Suppose that V is an open subset of S×S and τ is a stopping time. Put

(2.10) σt = inf{u ≥ α : u > t, (ηt, ηu) /∈ V }.
If στ < ∞ Πz-a.s. for all z, then, for every pre-τ function X ≥ 0 and every Borel
function f ≥ 0,

(2.11) ΠzXf(ηστ ) = ΠzXF (ητ )

where

(2.12) F (t, y) = Πt,yf(ησt ).

2.2. L-diffusion. An L-diffusion is a continuous strong Markov process with
transition density p(r, x; t, y) which is a fundamental solution of (1.5). The existence
of such a process is proved in Chapter 5 of [Dyn65].

Note that

(2.13) Πr,xϕ(ξt) =
∫

E

p(r, x; t, y)ϕ(y) dy.

It follows from Fubini’s theorem that

(2.14) Πr,x

∫ t

r

ρ(s, ξs) ds =
∫ t

r

ds

∫

E

p(r, x; s, y)ρ(s, y) dy.

Therefore, under the conditions on ϕ and ρ formulated in 1.3.2–1.3.3,

(2.15) u(r, x) = Πr,xϕ(ξt)

is a solution of the problem (1.10) and

(2.16) v(r, x) = Πr,x

∫ t

r

ρ(s, ξs) ds

is a solution of the problem (1.12).

2.3. Martingales associated with L-diffusions. Martingales are one of
new tools contributed to analysis by probability theory. 5 The following theorem
establishes a link between martingales and parabolic differential equations.

Theorem 2.1. Suppose f ∈ C2(S(t1, t2)) is exp-bounded on S(t1, t2) and that
ρ = ḟ + Lf is bounded and belongs to Cλ(S(t1, t2)). Then, for every r ∈ (t1, t2)
and every x ∈ E,

(2.17) Yt = f(ηt) −
∫ t

r

ρ(ηs) ds, t ∈ (r, t2)

is a martingale with respect to F [r, t] and Πr,x.

Proof. First, we prove that, for all r < t and all x,

(2.18) w(r, x) = Πr,x[f(ηt) − f(ηr) −
∫ t

r

ρ(ηs) ds]

is equal to 0. Indeed, w = u−f−v where u is defined by (2.15) with ϕ(x) = f(t, x)
and v is defined by (2.16). It follows from 1.3.2–1.3.3, that w is an exp-bounded

5See the Appendix A for basic facts on martingales.
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solution of problem (1.10) with ϕ = 0. Such a solution is unique and therefore
w = 0.

For every t, Yt is measurable relative to F [r, t] and Πr,x|Yt| < ∞. We need to
prove that, for all r ≤ t′ < t and for every bounded F [r, t′]-measurable X,

(2.19) Πr,xX(Yt − Yt′) = 0.

Note that

Yt − Yt′ = f(ηt) − f(ηt′) −
∫ t

t′
ρ(ηs) ds

is F≥t′-measurable. By the Markov property (2.4),

Πr,xX(Yt − Yt′) = Πr,xXΠt′,ξt′ (Yt − Yt′)

and (2.19) holds because, by (2.18), Πt′,y(Yt − Yt′) = 0 for all y. �

Corollary. Suppose that U b Q and let τ be the first exit time from U . If
f ∈ C2(Q) and if ρ = ḟ + Lf ∈ Cλ(Q), then

(2.20) Πr,xf(ητ ) = f(r, x) + Πr,x

∫ τ

r

(ḟ + Lf)(ηs) ds.

Proof. Since U is bounded, it is contained in SI for some finite interval I.
There exists a bounded function of class C2(SI) which coincides with f on Ū and
therefore we can assume that f is defined on SI and that it satisfies the conditions
of Theorem 2.1. The martingale Yt given by (2.17) is continuous and τ is bounded
Πr,x-a.s. By Theorem 4.1 in the Appendix A, Πr,xYτ = Πr,xYr which implies
(2.20). �

3. Poisson operators and parabolic functions

3.1. Poisson operators. The Poisson operator corresponding to an open set
Q is defined by the formula

(3.1) KQf(z) = Πz1τ<∞f(ητ )

where τ is the first exit time from Q (cf. formula (2.9)). Note that KQf = f on
Qc. It follows from 2.2.1.B that, for every U b Q and every f ≥ 0,

(3.2) KUKQf = KQf.

3.2. Parabolic functions. We say that a continuous function u in Q is par-
abolic if, for every open set U b Q,

(3.3) KUu = u in U.

The following lemma is an immediate implication of Corollary to Theorem 2.1.

Lemma 3.1. Every solution u of the equation

(3.4) u̇+ Lu = 0 in Q

is a parabolic function in Q.

We say that a Borel subset T of ∂Q is total if, for all z ∈ Q,

Πz{τ < ∞, ητ ∈ T } = 1.

In particular, ∂Q is total if and only if Πz{τ = ∞} = 0 for all z ∈ Q. [This
condition holds, for instance, if Q ⊂ S<t with a finite t.] If ∂Q is not total, then
there exist no total subsets of ∂Q.
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Lemma 3.2. Suppose T is a total subset of ∂Q. If u is bounded and continuous
on Q ∪ T and if it is parabolic in Q, then

(3.5) KQu = u in Q.

Proof. Consider a sequence Qn exhausting Q. The sequence τn = τ (Qn) is
monotone increasing. Denote its limit by σ. For almost all ω, σ ≤ τ < ∞ and
ησ ∈ T . Therefore σ = τ (Q). We get (3.5) by passing to the limit in the equation
u(z) = Πzu(ητn). �

Lemma 3.3. Suppose that parabolic functions un converge to u at every point
of Q. If un are locally uniformly bounded, then u is also parabolic.

Proof. If U b Q, then un are uniformly bounded on Ū . By passing to the
limit in the equation KUun = un, we get KUu = u. �

3.3. Poisson operator corresponding to a cell. Subsets of S of the form
C = (a0, b0) × (a1, b1) × · · · × (ad, bd) are called (open) cells. Points of ∂C with
the first coordinate equal to a0 form the bottom B of C. Clearly, T = ∂C \B is a
total subset. We denote it ∂rC. A basic result proved in every book on parabolic
equations 6 implies that, if f is a bounded continuous function on ∂rC, then there
exists a continuous function u on C ∪ ∂rC such that

u̇+ Lu = 0 in C,
u =f on ∂rC.

(3.6)

It follows from Lemmas 3.1 and 3.2 that u = KCf . Note that KC is continuous
with respect to the bounded convergence. It follows from the multiplicative systems
theorem (Theorem 1.1 in the Appendix A) that these two properties characterize
KC . This provides a purely analytic definition of KC .

A particular class of cells is defined by the formula

C(z, β) = {z′ : d̃(z, z′) < β}
where

d̃(z, z′) = maxi |xi − x′i| for z = (x0, . . . , xd), z′ = (x′0, . . . , x
′
d).

3.4. Superparabolic and subparabolic functions. A lower semicontinu-
ous function u is called superparabolic if, for every open set U b Q,

(3.7) KUu ≤ u in U.

A function u is called subparabolic if −u is superparabolic.

Lemma 3.4. Suppose that u is a bounded below lower semicontinuous function
in Q and that (3.7) holds for every cell C b Q. Then u is superparabolic and,
moreover, (3.7) holds for all U ⊂ Q.

Proof. For U = S, the relation (3.7) is satisfied because its left side is 0. If
U 6= S, then

d(z) = inf
z′∈∂U

d̃(z, z′) < ∞

for all z. Put
V = {(z, z̃) : d̃(z, z̃) <

1
2
d(z)}

6See, e.g., Chapter 3, section 4 in [Fri64] or Chapter V, section 2 in [Lie96].
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and consider the function σt defined by the formula (2.10). The stopping times

τ0 = α, τn+1 = στn for n ≥ 0

are finite and τ0 ≤ τ1 ≤ · · · ≤ τn ≤ . . . . It follows from 2.1.C that Πzu(ητn+1 ) =
ΠzF (ητn) where F (z) = Πzu(ητ1). If (3.7) is satisfied for cells, then F (z) ≤ u(z).
Hence, Πzu(ητn+1 ) ≤ Πzu(ητn ) and, by induction, Πzu(ητn) ≤ Πzu(ητ0) = u(z).
We have d̄(ητn+1 , ητn) = d(ητn)/2. If τ is the limit of τn, then, on the set {τ <∞},
ητn → ητ and therefore 0 = d̃(ητ , ητ ) = d(ητ )/2. We conclude that {τ < ∞} ⊂
{ητ ∈ ∂U} ⊂ {τ = τ (U )}. By the definition of the lower semicontinuity, on the set
{τ < ∞}, u(ητ ) ≤ lim inf u(ητn). Therefore, by Fatou’s lemma,

Πz1τ<∞u(ητ ) ≤ Πz1τ<∞ lim inf u(ητn) ≤ lim inf Πz1τ<∞u(ητn) ≤ u(z).

�

Lemma 3.5. Suppose that w is superparabolic in Q and bounded below. Let T
be a total subset of ∂Q. If, for every z̃ ∈ T ,
(3.8) lim infw(z) ≥ 0 as z → z̃,

then w ≥ 0 in Q.

Proof. Let τ = τ (Q). It follows from Lemma 3.4 that Πz1τ<∞w(ητ ) ≤ w(z).
Condition (3.8) implies that w(ητ ) ≥ 0 Πz-a.s. on {τ < ∞}. Hence w(z) ≥ 0. �

3.5. The Perron solution. The following analytic results are proved, for
instance, in [Lie96], Chapter III, section 4. 7 Let f be a bounded Borel function
on ∂Q. A bounded below superparabolic function w is in the upper Perron class
U+ for f , if

(3.9) lim inf
z→z̃

w(z) ≥ f(z̃) for all z̃ ∈ ∂Q.

Analogously, a bounded above subparabolic function v is in the lower Perron
class U− for f , if

lim sup
z→z̃

w(z) ≤ f(z̃) for all z̃ ∈ ∂Q.

It follows from Lemma 3.5 that v ≤ w for every v ∈ U− and every w ∈ U+.
Since f is bounded, all sufficiently big constants are in U+ and all sufficiently small
constants are in U−. Therefore functions of class U− are uniformly bounded from
above and functions of class U+ are uniformly bounded from below.

It is proved that the infimum u of all functions w ∈ U+ coincides with the
supremum of all functions v ∈ U−. Moreover, u is a solution of the equation (3.4).
It is called the Perron solution corresponding to f .

Theorem 3.1. If Q is a bounded open set and f is a bounded Borel function
on ∂Q, then u = KQf is the Perron solution corresponding to f .

Proof. Let w ∈ U+ and let τ be the first exit time from Q. Consider a
sequence Qn exhausting Q and the corresponding first exit times τn. We have
w(z) ≥ Πzw(ητn) and, by condition (3.9) and Fatou’s lemma,

w(z) ≥ lim inf Πzw(ητn ) ≥ Πz lim infw(ητn ) ≥ Πzf(ητ ).

Similarly, if v ∈ U−, then v(z) ≤ Πzf(ητ ). �

7See also [Doo84], 1.XVIII.1. There only the case L = ∆ is considered but the arguments

can be modified to cover a general L.
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Corollary. A function u is parabolic in Q if and only if it is a solution of
(3.4).

3.6. Smooth superparabolic functions. The improved Maximum prin-
ciple. We wish to prove:

3.6.A. If u ∈ C2(Q) and if

(3.10) u̇+ Lu ≤ 0 in Q,

then U is superparabolic in Q.
This follows immediately from (2.20) if u̇ + Lu ∈ Cλ(Q). To eliminate this

restriction, we use:

3.6.B. Suppose that C is a cell and u ∈ C2(C) satisfies the conditions

u̇+ Lu ≥ 0 in C,

lim supu(z) ≤ 0 as z → z̃ for all z̃ ∈ ∂rC.

Then u ≤ 0 in C.
[This proposition is proved in any book on parabolic PDEs (for instance, in

Chapter 2 of [Fri64] or in Chapter II of [Lie96]).]

To prove 3.6.A we consider an arbitrary cell C b Q. As we know, v = KCu is a
solution of the problem (3.6) with f equal to the restriction of u to ∂rC. Therefore
w = v − u satisfies conditions ẇ+ Lw ≥ 0 in C and w(z) → 0 as z → z̃ ∈ ∂rC. By
3.6.B, w ≤ 0 in C. Hence, KCu ≤ u. By Lemma 3.4, u is superparabolic.

3.6.C. [The improved maximum principle.] Let T be a total subset of ∂Q. If
v ∈ C2(Q) is bounded above and satisfies the condition

(3.11) v̇ + Lv ≥ 0 in Q

and if, for every z̃ ∈ T ,

(3.12) lim sup v(z) ≤ 0 as z → z̃,

then v ≤ 0 in Q.

Indeed, by 3.6.A, u = −v is superparabolic and, by Lemma 3.5, u ≥ 0.

3.7. Superparabolic functions and supermartingales.

Proposition 3.1. Suppose u is a positive lower semicontinuous superparabolic
function in Q and τ = τ (Q). Then, for every r, x,

Xt = 1t<τu(ηt)

is a supermartingale on [r,∞) relative to F [r, t] and Πr,x.

Proof. Note that σ = τ ∧ t is the first exit time from Q ∩ S<t. Since σ < ∞,
by Lemma 3.4, for every s < t,

Πs,xu(ησ) ≤ u(s, x).

Since {σ < τ} = {σ = t}, we have

Πs,xXt = Πs,x1σ=tu(ηt) = Πs,x1σ=tu(ησ) ≤ u(s, x).
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Let τr be the first after r exit time from Q. If r < s, then {τr > s} ∈ F [r, s].
Clearly, τr = τ Πr,x-a.s. If A ∈ F [r, s], then {A, s < τr} ∈ F [r, s] and, by the
Markov property (2.4),

∫

A,s<τr

Xt dΠr,x =
∫

A,s<τr

ΠηsXt dΠr,x ≤
∫

A,s<τr

u(ηs) dΠr,x.

For s < t, Xt1s<τr = Xt Πr,x-a.s. and therefore
∫
AXt dΠr,x ≤

∫
AXs dΠr,x. Since

Xt is F [r, t]-measurable and Πr,x-integrable, it is a supermartingale. �

4. Regular part of the boundary

4.1. Regular points. A point z̃ = (r̃, x̃) of ∂Q is called regular if, for every
t > r̃,

(4.1) Πz̃{ηs ∈ Q for all s ∈ (r̃, t)} = 0.

.

Theorem 4.1. Let τ be the first exit time from Q. If a point z̃ = (r̃, x̃) ∈ ∂Q
is regular then, for every t > r̃,

(4.2) Πz{τ > t} → 0 as z ∈ Q tends to z̃.

Proof. 1◦. Fix t and put, for every r ≤ s < t, A(s, t) = {ηu ∈ Q for u ∈
(s, t)} and qrs(x) = Πr,xA(s, t). Note that qrr(x) = Πr,x{τ > t} for (r, x) ∈ Q.
Therefore the conditions (4.1) and (4.2) are equivalent to the conditions qr̃r̃(x̃) = 0
and qrr(x) → 0 as (r, x) → (r̃, x̃).

2◦. By the Markov property of ξ, for all r ≤ s < t,

qrs(x) = Πr,xΠs,ξsA(s, t) =
∫

E

p(r, x; s, y)qss(y) dy.

3◦. It follows from 2◦ and 1.3.2 that qrs(x) is continuous in (r, x) for r < s.
Therefore, for every ε > 0, there exists a neighborhood U of (r̃, x̃) such that

|qrs(x) − qr̃s(x̃)| < ε for all (r, x) ∈ U.

4◦. Clearly, qrs(x) ↓ qrr (x) as s ↓ r.
5◦. Suppose r̃ < t. If (r̃, x̃) is regular, then, by 1◦, qr̃r̃(x̃) = 0 and, by 4◦, for

every ε > 0, there exists s ∈ (r̃, t) such that qr̃s(x̃) < ε. By 3◦, if (r, x) ∈ U , then

qrr(x) ≤ qrs(x) ≤ qr̃s(x̃) + |qrs(x) − qr̃s(x̃)| < 2ε.

By 1◦, this implies (4.2). �

Remark. The converse to Theorem 4.1 is also true: (4.2) implies (4.1). We
do not use this fact. In an elliptic setting, it is proved in Chapter 13 of [Dyn65].

The role of condition (4.2) is highlighted by the following theorem:

Theorem 4.2. If (4.2) holds at z̃ ∈ ∂Q and if a bounded function f on ∂Q is
continuous at z̃, then

(4.3) KQf(z) → f(z̃) as z → z̃.
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Informally, we have the following implications:

(4.4) {z = (r, x) ∈ Q is close to z̃ = (r̃, x̃)} =⇒ {τ is close to r}
=⇒ {ητ is close to z and therefore close to z̃}
=⇒ {f(ητ ) is close to f(z̃)} =⇒ {Πzf(ητ ) is close to f(z̃)}.

A rigorous proof is based on the following lemma.

Lemma 4.1. Fix t ∈ R and put

(4.5) Dr = sup
r<s<t

|ηs − ηr|.

For every ε > 0, there exits δ > 0 such that

(4.6) Πr,x{Dr > ε} < ε

for all x and all r ∈ (t− δ, t).

Proof. If ξs = (ξ1s , . . . , ξds ), then

Dr ≤ t− r +
d∑

1

Di
r

where
Di
r = sup

r<s<t
|ξis − ξir|.

To prove the lemma it is sufficient to show that, for every ε > 0, there exists δ > 0
such that

(4.7) Πr,x{Di
r > ε} < ε

for all x and all r ∈ (t− δ, t). Each function fi(r, x) = xi is exp-bounded on S and
ρi = ḟi + Lfi = bi (a coefficient in (1.1)). The conditions of Theorem 2.1 hold for
fi on every interval (t1, t2). Therefore, for every r ∈ (t1, t2),

Y is = ξis −
∫ s

r

ρi(ηu) du, s ∈ (r, t2)

is a martingale relative to F [r, s],Πr,x. Choose (t1, t2) which contains [r, t]. By
Kolmogorov’s inequality (see section 4.4 in the Appendix A)

(4.8) Πr,x{ sup
r<s<t

|Y is − Y ir | > δ} ≤ δ−2Πr,x|Y it − Y ir |2.

If |ρi| ≤ c, then

(4.9) Di
r ≤ sup

r<s<t
|Y is − Y ir | + c(t − r).

On the other hand, since (A+ B)2 ≤ 2A2 + 2B2 for all A,B, we have

(4.10) Πr,x|Y it − Y ir |2 ≤ 2Πr,x|ξit − ξir |2 + 2c2(t − r)2.

The bound (1.8) implies that
(4.11)

Πr,x(ξit − ξir)
2 =

∫

E

p(r, x; t, y)(yi − xi)2 dy ≤
∫

E

p(r, x; t, y)|y − x|2 dy ≤ C(t− r)

where C is a constant [depending on t1, t2]. The bound (4.7) follows from (4.8)–
(4.11). �
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Proof of Theorem 4.2. Let z = (r, x), z̃ = (r̃, x̃). For every t > r̃,

Πr,x{|ητ − z| > ε} ≤ Πr,x{τ ≥ t} + Πr,x{Dr > ε}.

By Lemma 4.1, for every ε > 0, there exists δ > 0 such that

Πr,x{Dr ≥ ε} < ε

for all x and all r ∈ (t − δ, t). Choose t ∈ (r̃, r̃ + δ/2). Then every r ∈ (r̃ − δ/2, r̃)
belongs to (t− δ, t).

By Theorem 4.1,
Πr,x{τ ≥ t} < ε

in a neighborhood U of z̃. Suppose that r ∈ (t− δ, t) and z ∈ U . Then

Πr,x{|ητ − z| > ε} ≤ 2ε.

Let V be the intersection of U with the ε-neighborhood of z̃. If z ∈ V , then

Πr,x{|ητ − z̃| > 2ε} ≤ Πr,x{|ητ − z| > ε} ≤ 2ε.

Suppose that N is an upper bound for |f | and let |f(z)−f(z̃)| < ε for z ∈ V . Then

Πr,x|f(ητ ) − f(z̃)| ≤ 2NΠr,x{|ητ − z̃| > δ} + ε ≤ (2N + 1)ε in V

which implies (4.3). �

Theorem 4.3. Suppose Q is bounded and all points of a total subset T of ∂Q
are regular. If a function f is bounded and continuous on T , then u = KQf is a
unique bounded solution of the problem

u̇+ Lu = 0 in Q,

u = f on T .(4.12)

Proof. Put f = 0 on ∂Q\T . By Theorems 3.1 and 4.2, u = KQf is a solution
of the problem (4.12). Clearly, u is bounded. For an arbitrary bounded solution v
of (4.12), by Lemmas 3.1 and 3.2, v = KQv = KQf = u. �

We say that a function u is a barrier at z̃ if there exists a neighborhood U of
z̃ such that u ∈ C2(U ) ∩C(Ū) and

(4.13) u̇+ Lu ≤ 0 in Q ∩ U, u(z̃) = 0, u > 0 on Ū ∩ Q̄ except z̃.

Lemma 4.2. The condition (4.2) holds if there exists a barrier u at z̃. 8

Proof. Put V = Q ∩ U . For every t > r̃, the infimum β of u on the set
∂V ∩ S≥t is strictly positive. Let τ = τ (V ). By Chebyshev’s inequality and (3.1),

(4.14) Πz{τ > t} ≤ Πz{u(ητ ) ≥ β} ≤ Πzu(ητ )/β = KV u(z)/β.

By 3.6.A, u is superparabolic in V . Denote by f the restriction of u to ∂V . Clearly,
u belongs to the upper Perron class for f . By Theorem 3.1,KV f is the correspond-
ing Perron solution. Hence, KV u = KV f ≤ u, and (4.14) implies (4.2). �

By constructing a suitable barrier, we prove that (4.2) holds if z̃ can be touched
from outside by a ball. More precisely, we have the following test.

8The existence of a barrier is also a necessary condition for the regularity of z̃. (See, e.g.,

[Lie96], Lemma 3.23 or [Dyn65], Theorem 13.6.)



4. REGULAR PART OF THE BOUNDARY 35

Theorem 4.4. The property (4.2) holds at z̃ = (r̃, x̃) ∈ ∂Q if there exists
z′ = (r′, x′) with x′ 6= x̃ such that |z − z′| > |z̃ − z′| for all z ∈ Q̄ sufficiently close
to z̃ and different from z̃. In other words, z̃ is the only common point of three sets:
Q̄, a closed ball centered at z′ and a neighborhood of z̃.

Proof. We claim that, if ε = |z̃ − z′| and if p is sufficiently large, then

u(z) = ε−2p − |z − z′|−2p,

is a barrier at z̃. Clearly, u(z̃) = 0. There exists a neighborhood U of z̃ such that,
for all z ∈ Ū ∩ Q̄, |z − z′| > ε and therefore u(z) > 0. We have

u̇+ Lu = A[−(p+ 1)B + C]

where

A = 2p|z − z′|−2(p+2), B =
∑

aij(xi − x′i)(xj − x′j),

C = |z − z′|2
∑

[aii + bi(xi − x′i)].

Note that B ≥ κ|x− x′|2 where κ is the ellipticity coefficient of L. Since aij and bi
are bounded, we see that, for sufficiently large p, u̇+ Lu ≤ 0 in a neighborhood of
z̃ assuming that x̃ 6= x′. �

4.2. Regular open sets. We denote by ∂regQ the set of all regular points
of ∂Q and by ∂rQ the set of all interior (relative to ∂Q) points of ∂regQ. We say
that Q is regular if ∂regQ contains a total subset of ∂Q. A smaller class of strongly
regular open sets is defined by the condition: ∂rQ is total in ∂Q.

For a cell C, ∂rC coincides with the set introduced in section 3.3. This set is
relatively open in ∂C and therefore cells are strongly regular open sets.

Note that the following conditions are equivalent: (a) B is a relatively open
subset of A; (b) B = A ∩O where O is an open subset of S; (c) A = B ∪ F where
F is a closed subset of S. Therefore, if Bi is a relatively open subset of Ai, i = 1, 2,
then B1∩B2 is relatively open in A1∩A2 and B1∪B2 is relatively open in A1∪A2.

Lemma 4.3. If U is strongly regular, then Q = U ∩ Q1 is strongly regular for
every open set Q1 such that Ū ∩ ∂Q1 ⊂ ∂rQ1.

Proof. The boundary ∂Q is the union of three sets A1 = ∂U ∩Q1, A2 = U ∩
∂Q1 and A3 = ∂U ∩∂Q1. Sets B1 = ∂rU∩Q1, B2 = U∩∂rQ1 and B3 = ∂rU∩∂rQ1

are relatively open in, respectively, A1, A2, A3 and therefore T = B1 ∪ B2 ∪ B3 is
relatively open in ∂Q. Every point of T is regular in ∂Q. It remains to show that T
is total in ∂Q. Let τ be the first exit time from Q and let z ∈ Q. Since ∂rU is total
in ∂U and ∂rU ∩ (A1 ∪A3) ⊂ B1 ∪B3, we have {ητ ∈ A1 ∪A3} ⊂ {ητ ∈ B1 ∪B3}
Πz-a.s. On the other hand, A2 ⊂ ∂rQ1 and therefore A2 = B2 and {ητ ∈ A2} =
{ητ ∈ B2}. �

Now we introduce an important class of simple open sets. We start from closed
cells [a0, b0] × [a1, b1] × · · · × [ad, bd]. We call finite unions of closed cells simple
compact sets. We define a simple open set as the collection of all interior points of a
simple compact set . The boundary ∂C of a cell C = [a0, b0]× [a1, b1]×· · ·× [ad, bd]
consists of 2(d + 1) d-dimensional faces. We distinguish two horizontal faces: the
top {b0}× [a0, b0]× [a1, b1]× · · ·× [ad, bd] and the bottom {a0}× [a0, b0]× [a1, b1]×
· · · × [ad, bd]. We call the rest side faces.
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Theorem 4.5. Every simple open set is strongly regular. For an arbitrary open
set Q, there exists a sequence of simple open sets exhausting Q.

In the proof we use the following observations.

4.2.A. Let H be a (d − 1)-dimensional affine subspace of Rd [that is the set of
x = (x1, . . . , xd) such that a1x1 + · · · + adxd = c for some constants a1, . . . , ad
not all equal to 0]. Then for all r < t, x ∈ Rd, Πr,x{ξt ∈ H} = 0. If H is a
(d− 2)-dimensional affine subspace, then Πr,x{ξt ∈ H for some t > r} = 0.

The first part holds because the probability distribution of ξt is absolutely
continuous with respect to the Lebesgue measure. We leave the second part as an
exercise for a reader.

4.2.B. If F is a (d− 1)-dimensional face of a cell C, then

Πr,x{(t, ξt) ∈ F for some t > r} = 0 for all (r, x) ∈ S.

This follows easily from 4.2.A.

Proof of Theorem 4.5. Every compact simple set A can be represented as the
union of closed cells C1, . . . , Cn such that the intersection of every two distinct cells
Ci, Cj is either empty or it is a common face of both cells. Let Q be the set of all
interior points of A. Note that ∂Q = ∪N1 Fk where F1, . . . , FN are d-dimensional
cells which enter the boundary of exactly one of Ci. Clearly, the set F 0

k of all points
of Fk that do not belong to any (d − 1)-dimensional face of any Ci is open in ∂Q.
By 4.2.B, to prove that Q is strongly regular, it is sufficient to show that, for every
k, either Πz{ητ ∈ F 0

k} = 0 for all z ∈ Q or F 0
k ⊂ ∂regQ. Clearly, the first case takes

place if Fk is the bottom of Ci. If Fk is the top of Ci, then, obviously, F 0
k ⊂ ∂regQ.

If Fk is a side face, then F 0
k ⊂ ∂regQ by Theorem 4.4.

It remains to construct sets Qn. It is easy to reduce the general case to the case
of a bounded Q. Suppose that Q is bounded. Put εn = (d+ 1)1/22−n. Consider a
partition of S = Rd+1 into cells with vertices in the lattice 2−nZd+1 and take the
union An of all cells whose εn-neighborhood are contained in Q. The set Qn of all
interior points of An is a simple open set. Clearly, the sequence Qn exhaust Q. �

For every two sets A,B, we denote by d(A,B) the infimum of d(a, b) = |a− b|
over all a ∈ A, b ∈ B.

Suppose that Q is an open set and Γ is a closed subset of ∂Q. We say that a
sequence of open sets Qn ↑ Q is a (Q,Γ)-sequence if Qn are bounded and strongly
regular and if

(4.15) Q̄n ↑ Q̄ \ Γ; d(Qn, Q \Qn+1) > 0.

Lemma 4.4. A (Q,Γ)-sequence exists if Γ contains all irregular points of ∂Q.

Proof. By Theorem 4.5, there exists a sequence of strongly regular open sets
Un exhausting S \ Γ. If Γ contains all irregular points of ∂Q, then, by Lemma 4.3,
sets Qn = Un ∩Q are strongly regular.

Note that Q̄n ⊂ Q̄ and Q̄n ∩ Γ ⊂ Ūn ∩ Γ ⊂ Un+1 ∩ Γ = ∅. Hence Q̄n ⊂ Q̄ \ Γ.
If K is a compact set disjoint from Γ, then K ⊂ Un for some n. Let x ∈ Q̄ \ Γ.

For sufficiently small δ > 0, K = {y : |y−x| ≤ δ} is disjoint from Γ. If xm → x and
xm ∈ Q, then, for sufficiently large m, xm ∈ Un ∩ Q = Qn. Hence x ∈ Q̄n. This
proves the first part of (4.15). The second part holds because Qn ⊂ Ūn, Q\Qn+1 ⊂
U cn+1 and d(Ūn, U cn+1) > 0. �
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5. Green’s operators and equation u̇+ Lu = −ρ

5.1. Parts of a diffusion. A part ξ̃ of a diffusion ξ in an arbitrary open set
Q ⊂ S is obtained by killing ξ at the first exit time τ from Q. More precisely, we
consider

ξ̃t = ξt for t ∈ [α, τ ),
= † for t ≥ τ

where † – “the cemetery” – is an extra point (not in E). The state space at time
t is the t-section Qt = {x : (t, x) ∈ Q} of Q. We will show that ξ̃ = (ξ̃t,Πr,x) is a
Markov process with the transition density

(5.1) pQ(r, x; t, y) = p(r, x; t, y)− Πr,xp(τ, ξτ ; t, y) for x ∈ Qr, y ∈ Qt.

[We set p(r, x; t, y) = 0 for r ≥ t.]

Theorem 5.1. For every Borel function f ≥ 0 on Q,

(5.2) Πr,x1t<τf(t, ξt) =
∫

Qt

pQ(r, x; t, y)f(t, y) dy for all x ∈ Qr.

Moreover, for every n = 1, 2, . . . and for all r < t1 < · · · < tn, x ∈ Qr and Borel
sets B1, . . . , Bn,

(5.3) Πr,x{τ > tn, ξt1 ∈ B1, . . . , ξtn ∈ Bn}

=
∫

B1

dy1 . . .

∫

Bn

dynpQ(r, x; t1, y1)pQ(t1, y1; t2, y2) . . . pQ(tn−1, yn−1; tn, yn).

We have:

pQ(r, x; t, y) ≥ 0 for all r < t, x ∈ Qr, y ∈ Qt;(5.4)
∫

Qt

pQ(r, x; t, y) dy ≤ 1 for all r < t and all x ∈ Qr;(5.5)

(5.6)
∫

Qs

pQ(r, x; s, y)pQ(s, y; t, z) dy = pQ(r, x; t, z)

for all r < s < t and all x ∈ Qr, z ∈ Qt.

Proof. If we set f = 0 outside Q, then

(5.7) Πr,x1τ=tf(t, ξt) = 0

because f(τ, ξτ ) = 0. Therefore

(5.8) Πr,x1t<τf(t, ξt) = u(r, x)− v(r, x)

where
u(r, x) = Πr,xf(t, ξt),

v(r, x) = Πr,x1τ<tf(t, ξt).
By (1.9) and (2.15),

(5.9) u(s, x) =
∫

E

p(s, x; t, y)f(t, y)dy.

By 2.1.B (applied to τ ′ = t),

(5.10) v(r, x) = Πr,x1τ<tf(t, ξt) = Πr,x1τ<tF (τ, ξτ )
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where

F (s, w) = Πs,wf(t, ξt) =
∫

E

p(s, w; t, y)f(t, y) dy.

Formula (5.2) follows from (5.8), (5.9), (5.10) and (5.1).
We establish (5.3) by induction by applying (5.2) and the Markov property

(2.4).
To prove (5.4), (5.5) and (5.6), we establish that pQ(r, x; t, y) is continuous in

y ∈ Qt for every r < t and every x ∈ Qr . This follows from a similar property of
p(r, x; t, y) because (τ, ξτ ) ∈ ∂Q Πr,x-a.s. and, by 1.3.B, p(τ, ξτ ; t, y) is uniformly
bounded in a neighborhood of each y ∈ Qt.

Formula (5.2) implies (5.4) and (5.5). To prove (5.6), we note that, for r < s <
t,

Πr,x{τ > t, ξs ∈ Qs, ξt ∈ B} = Πr,x{τ > t, ξt ∈ B}
By (5.3), this implies that the functions of z in both parts of (5.6) have the same
integrals over B. Therefore (5.6) holds for almost all z. It holds for all z because
both parts are continuous in z. �

Formula (5.3) is an analog of formula (2.1) for a process with a random death
time τ .

5.2. Green’s functions. We prove that function pQ defined by (5.1) has
properties similar to 1.3.A–1.3.C. We call it Green’s function for operator u̇+ Lu
in Q.

5.2.A. If Q<t = S<t∩Q is bounded, then for every (t, y) ∈ Q, function u(r, x) =
pQ(r, x; t, y) is a solution of (3.4) in Q<t.

Indeed, for every (t, y) ∈ Q, u = ũ−KQũ where ũ(r, x) = p(r, x; t, y). By 1.3.A,
ũ satisfies (3.4) in S<t. By 1.3.B, ũ is bounded on ∂Q and, by Theorem 3.1 KQũ
satisfies (3.4) in Q<t.

5.2.B. For every t1 < t2 and every δ > 0, function pQ(r, x; t, y) is bounded on
the intersection of Q with the set {t1 < r < t < t2, t− r + |y − x| ≥ δ}.

This follows from 1.3.B because pQ ≤ p.

5.2.C. If ϕ is bounded and continuous at a ∈ Qt, then
∫

Qt

pQ(r, x; t, y)ϕ(y) dy → ϕ(a) as (r, x) → (t, a), (r, x) ∈ Q<t.

Proof. By (5.1) and (5.10),

0 ≤
∫

Qt

(p− pQ)(r, x; t, y)ϕ(y) dy = Πr,x

∫

Qt

p(τ, ξτ ; t, y)ϕ(y) dy = Πr,x1τ<tϕ(ξt),

and 5.2.C follows from 1.3.C if we prove that

(5.11) u(r, x) = Πr,x{τ < t} → 0 as (r, x) → (t, a), (r, x) ∈ Q<t.

Note that u = KQ<t1S<t . If a ∈ Qt, then (t, a) is a regular point of ∂Q<t. Since
1S<t is continuous and equal to 0 at (t, a), formula (5.11) follows from Theorem
4.2. �
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There exists a simple relation between pQ and pQ′ for Q′ ⊂ Q:

(5.12) pQ′ (r, x; t, y) = pQ(r, x; t, y)− Πr,xpQ(τ ′, ξτ ′ ; t, y)

where τ ′ = τ (Q′). Indeed, put f(r, x) = p(r, x; t, y) and denote by fQ, fQ′ the
functions obtained in a similar way from pQ, pQ′ . By (5.1), fQ = f −KQf and, by
(3.2), KQ′fQ = KQ′f −KQf . Hence, fQ − fQ′ = −KQf +KQ′f = KQ′fQ.

5.3. Green’s operators. Green’s operator in an arbitrary open set Q is de-
fined by the formula

(5.13) GQρ(r, x) = Πr,x

∫ τ

r

ρ(s, ξs) ds

(cf. (2.7)). By (5.2),

(5.14) GQρ(r, x) =
∫ ∞

r

ds

∫

Qs

pQ(r, x; s, y)ρ(s, y)dy.

If Q′ ⊂ Q, then, by (5.14) and (5.12),

(5.15) GQ = GQ′ +KQ′GQ.

5.3.A. Suppose that Q ⊂ SI = I × E, I is a finite interval and ρ is bounded.
Then function w = GQρ belongs to Cλ(Q). If ρ ∈ Cλ(Q), then w ∈ C2(Q) and it
is a solution of the equation

(5.16) ẇ + Lw = −ρ in Q.

If ρ is bounded and if z̃ is a regular point of ∂Q, then

(5.17) w(z) → 0 as z → z̃.

Proof. Note that w = v − KQv where v is given by (1.11). Since KQv is
parabolic in Q, the first part of 5.3.A follows from 1.3.3.

If z = (r, x) and if N is an upper bound of |ρ|, then, for every ε > 0, |w(z)| ≤
N [(t− r)Πz{τ > r + ε} + ε] and therefore (5.17) follows from Theorem 4.1. �

5.3.B. Let τ be the first exit time from an arbitrary open set Q. If ρ ≥ 0 and
w = GQρ is finite at a point z ∈ Q, then

(5.18) lim
t↑τ

w(ηt) = 0 Πz-a.s.

Proof. Let z = (r, x). We can assume that ρ ≥ 0. We prove that Mt =
1t<τw(ηt), t ∈ [r,∞) is a supermartingale relative to F [r, t],Πr,x. To this end, we
consider a bounded positive F [r, t]-measurable function X and we note that, by the
Markov property (2.4),

Πr,xX1t<τ
∫ τ

t

ρ(s, ξs) ds = Πr,xX1t<τΠt,ξt

∫ τ

t

ρ(s, ξs) ds = Πr,xX1t<τw(t, ξt).

Hence Πr,xXMt ≤ Πr,xXMs for r ≤ s ≤ t. Since Mt is F [r, t]-measurable and
Πr,x-integrable, our claim is proved.

Since Mt is right continuous, a limit Mτ− as t ↑ τ exists Πr,x-a.s. (see 4.3.C in
the Appendix A). Suppose Qn exhaust Q and let τn be the first exit time from Qn.
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By (5.15), w = GQnρ + KQnw. Since GQnρ ↑ GQρ, we conclude that KQnw ↓ 0
and

Πr,xMτ− = Πr,x limw(τn, ξτn) ≤ limΠr,xw(τn, ξτn) = limKQnw = 0.

�

5.3.C. If Q, ρ and f are bounded and if f is continuous on ∂regQ, then

(5.19) v = GQρ+KQf

is a solution of the problem
v̇ + Lv = −ρ in Q,

v = f on ∂regQ.
(5.20)

This follows from 5.3.A and Theorems 3.1 and 4.2.

5.3.D. Let ρ be bounded. A function w is a solution of equation (5.16) if and
only if w is locally bounded and, for every U b Q,

(5.21) w = GUρ+KUw.

Proof. Suppose that w satisfies (5.16). By Theorem 4.5, for an arbitrary
U there exists a sequence of regular open sets Un ↑ U . Since w is bounded and
continuous on Ū , we have KUnw → KUw. Also GUnρ → GUρ. Therefore it is
sufficient to prove (5.21) for a regular U .

By 5.3.A and Theorem 4.3, u = GUρ +KUw −w is a solution of the problem
u̇+ Lu = 0 in U,

u = 0 on ∂regU.
(5.22)

By 3.6.C, u = 0.
If w satisfies (5.21) and is bounded on Ū , then the equation (5.16) holds on U

by 5.3.A and Theorem 3.1. �

5.3.E. Suppose that solutions wn of (5.16) converge to w at every point of Q.
If wn are locally uniformly bounded, then w also satisfies (5.16).

This follows from 5.3.D (cf. the proof of Lemma 3.3).

6. Notes

Our treatment of diffusions is in spirit of the book [Dyn65]. However, in this
book only time-homogeneous case was considered. Inhomogeneous diffusions were
covered in [Dyn93]. In particular, one can found there a probabilistic formula for
the Perron solutions, the improved maximum principle and an approximation of
arbitrary domains by simple domains. A concept of strongly regular domains was
introduced in [Dyn98a]. This class of domains plays a special role in the theory
of semilinear partial differential equations (see, Chapter 5).

A fundamental monograph of Doob [Doo84] contains the most complete pre-
sentation of the connections between the Brownian motion and classical potential
theory related to the Laplace equation. Bibliographical notes in [Doo84] should be
consulted for the early history of this subject. A special role in the book is played
by martingale theory. Much of this theory was created by Doob.

Martingale are the principal tool used by Stroock and Varadhan to develop a
new approach to diffusions. A construction of diffusions by solving a martingale
problem is presented in their monograph [SV79].
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A direct construction of the paths of diffusions by solving stochastic differential
equations is due to Itô [Itô51]. A modern presentation of Itô’s calculus and its
applications is given in the books of Ikeda and Watanabe [IW81] and Rogers and
Williams [RW87].





CHAPTER 3

Branching exit Markov systems

In this chapter we introduce a general model — BEM systems — which is
the basis for the theory of superprocesses and, in particular, superdiffusions to
be developed in the next chapters. A BEM system describes a mass distribution
of a random cloud started from a distribution µ and frozen at the exit from Q.
Mathematically, this is a familyX of random measures (XQ, Pµ) in a space S. The
parameter Q takes values in a class of subsets of S, µ is a measure on S, XQ is a
function of ω ∈ Ω and Pµ is a probability measure on Ω. A Markov property is
defined with the role of “past” and “future” played by Q′ ⊂ Q and Q′′ ⊃ Q. [This
definition can be applied to a parameter Q taking values in any partially ordered
set.] We consider systems which combine the Markov property with a branching
property which means, heuristically, an absence of interaction between any parts
of the random cloud described by X.

We start from historical roots of the concept of branching. Then we introduce
branching particle systems (they were described on a heuristic level in Chapter 1)
and we use them to motivate a general definition of BEM systems. The transition
operators VQ play a role similar to the role of the transition functions in the theory
of Markov processes. We investigate properties of these operators and we show how
a BEM system can be constructed starting from a family of operators VQ. At the
end of the chapter some basic properties of BEM systems are proved.

1. Introduction

1.1. Simple models of branching. The first probabilistic model of branch-
ing appeared in 1874 in the problem of the family name extinction posed by Francis
Galton and solved by H. W. Watson [WG74]. Galton’s motivation was to evaluate
a conjecture that the extinction of prominent families is more likely than the ex-
tinction of ordinary ones. He suggested to start from probabilities pn for a man to
have n sons evaluated by the demographical data for the general population. The
problem consisted in computation of the probability of extinction after k genera-
tions. Watson’s solution contained an error but he introduced a tool of fundamental
importance for the theory of branching. The principal observation was: if

ϕ(z) =
∞∑

0

pnz
k

is the generating function for the number of sons, then the generating function
ϕk for the number of descendants in the k-th generation can be evaluated by the
recursive formula

(1.1) ϕk+1 = ϕ(ϕk).

43
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The Galton-Watson model and its modifications found many applications in biology,
physics, chemistry... 1

A model of branching with a continuous time parameter was suggested in 1947
in [KD47] (an output of a Kolmogorov’s seminar held at Moscow University in
1946-47). Consider a particle system and assume that a single particle produces,
during time interval (r, t), k = 0, 1, 2, . . . particles with probability pk(r, t). Gener-
ating functions

ϕ(r, t; z) =
∞∑

0

pk(r, t)zk

satisfy the condition

(1.2) ϕ(r, t; z) = ϕ(r, s;ϕ(s, t; z)) for r < s < t.

Suppose that
pk(r − h, r) = ak(r)h+ o(h) for k 6= 1,

p1(r − h, r) = 1 + a1(r)h + o(h)

as h ↓ 0 and let

(1.3) Φ(r; z) =
∞∑

0

ak(r)zk.

We arrive at a differential equation

(1.4)
∂ϕ(r, t; z)

∂r
+ Φ(r, ϕ(r, t; z)) = 0 for r < t

with a boundary condition

(1.5) Φ(r, t; z) → z as r ↑ t.
Equation (1.4) and a linear equation u̇ + Lu = 0 considered in Chapter 2 are

particular cases of a semilinear parabolic equation

(1.6) u̇+ Lu = ψ(u).

A probabilistic approach to (1.6) is based on a model which involves both L-diffusion
and branching.

1.2. Exit systems associated with branching particle systems. Con-
sider a system of particles moving in E according to the following rules:

(1) The motion of each particle is described by a right continuous strong Markov
process ξ.

(2) A particle dies during time interval (t, t + h) with probability kh + o(h),
independently on its age.

(3) If a particle dies at time t at point x, then it produces n new particles with
probability pn(t, x).

(4) The only interaction between the particles is that the birth time and place
of offspring coincide with the death time and place of their parent.

[Assumption (2) implies that the life time of every particle has an exponential
probability distribution with the mean value 1/k.]

We denote by Pr,x the probability law corresponding to a process started at
time r by a single particle located at point x. Suppose that particles stop to move

1More on an early history of the branching processes can be found in [Har63].
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and to procreate outside an open subset Q of S. In other words, we observe each
particle at the first, in the family history, 2 exit time from Q. The exit measure
from Q is defined by the formula

XQ = δ(t1,y1) + · · ·+ δ(tn,yn)

where (t1, y1), . . . , (tn, yn) are the states of frozen particles and δ(t,y) means the unit
measure concentrated at (t, y). We also consider a process started by a finite or
infinite sequence of particles that “immigrate” at times ri at points xi. There is no
interaction between their descendants and therefore the corresponding probability
law is the convolution of Pri,xi . We denote it Pµ where

µ =
∑

δ(ri ,xi)

is a measure on S describing the immigration. We arrive at a family X of random
measures (XQ, Pµ), Q ∈ O, µ ∈ M where O is a class of open subsets of S and M
is the class of all integer-valued measures on S. Family X is a special case of a
branching exit Markov system. A general definition of such systems is given in the
next section.

1.3. Branching exit Markov systems. A random measure on a measurable
space (S,BS) is a pair (X,P ) where X(ω,B) is a kernel 3 from an auxiliary mea-
surable space (Ω,F) to (S,BS ) and P is a probability measure on F . We assume
that S is a Borel subset of a compact metric space and BS is the class of all Borel
subsets of S.

Suppose that:
(i) O is a subset of σ-algebra BS ;
(ii) M is a class of measures on (S,BS ) which contains all measures δy , y ∈ S.
(iii) to every Q ∈ O and every µ ∈ M, there corresponds a random measure

(XQ, Pµ) on (S,BS).
Condition (ii) is satisfied, for instance, for the class M(S) of all finite measures

and for the class N(S) of all integer-valued measures.
We use notation 〈f, µ〉 for the integral of f with respect to a measure µ. Denote

by Z the class of functions

(1.7) Z = exp{−
n∑

1

〈fi, XQi〉}

where Qi ∈ O and fi are positive measurable functions on S. We say that X =
(XQ, Pµ), Q ∈ O, µ ∈ M is a branching system if

1.3.A. For every Z ∈ Z and every µ ∈ M,

(1.8) PµZ = e−〈u,µ〉

where

(1.9) u(y) = − logPyZ

and Py = Pδy .

2By the family history we mean the path of a particle and all its ancestors. If the family

history starts at (r, x), then the probability law of this path is Πr,x .
3A kernel from a measurable space (E1,B1) to a measurable space (E2,B2) is a function

K(x,B) such that K(x, ·) is a measure on B2 for every x ∈ E1 and K(·, B) is an B1-measurable

function for every B ∈ B2 .
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Condition 1.3.A (we call it the continuous branching property) implies that

PµZ =
∏

PµnZ

for all Z ∈ Z if µn, n = 1, 2, . . . and µ =
∑
µn belong to M.

A family X is called an exit system if:

1.3.B. For all µ ∈ M and Q ∈ O,

Pµ{XQ(Q) = 0} = 1.

1.3.C. If µ ∈ M and µ(Q) = 0, then

Pµ{XQ = µ} = 1.

Finally, we say that X is a branching exit Markov [BEM] system, if XQ ∈ M
for all Q ∈ O and if, in addition to 1.3.A–1.3.C, we have:

1.3.D. [Markov property.] Suppose that Y ≥ 0 is measurable with respect to the
σ-algebra F⊂Q generated by XQ′ , Q′ ⊂ Q and Z ≥ 0 is measurable with respect to
the σ-algebra F⊃Q generated by XQ′′ , Q′′ ⊃ Q.

Then

(1.10) Pµ(Y Z) = Pµ(Y PXQZ).

It follows from the principles (1)-(4) stated at the beginning of section 1.2 that
conditions 1.3.A–1.3.D hold for the systems of random measures associated with
branching particle systems. For them S = R × E, M = N(S) and O is a class of
open subsets of S.

1.4. Transition operators. Let X = (XQ, Pµ), Q ∈ O, µ ∈ M be a family
of random measures. Denote by B the set of all bounded positive BS-measurable
functions. Operators VQ, Q ∈ O acting on B are called the transition operators of
X if, for every µ ∈ M and every Q ∈ O,

(1.11) Pµe
−〈f,XQ 〉 = e−〈VQ(f),µ〉.

If X is a branching system, then (1.11) follows from the formula

(1.12) VQ(f)(y) = − logPye−〈f,XQ 〉 for f ∈ B.

In this chapter we establish sufficient conditions for operators VQ to be transi-
tion operators of a branching exit Markov system. In the next chapter we study a
special class of BEM systems which we call superprocesses.

A link between operators VQ and a BEM system X is provided by a family of
transition operators of higher order VQ1,...,Qn . We call it a V-family.

2. Transition operators and V-families

2.1. Transition operators of higher order. Suppose that

(2.1) Pµ exp[−〈f1, XQ1〉 − · · · − 〈fn, XQn 〉],
= exp[−〈VQ1,...,Qn(f1, . . . , fn), µ〉]
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for all µ ∈ M, f1, . . . , fn ∈ B and Q1, . . . , Qn ∈ O. Then we say that operators
VQ1,...,Qn are the transition operators of order n for X. Condition (2.1) is equivalent
to the assumption that X is a branching system and that

(2.2) VQ1,...,Qn(f1, . . . , fn)(y) = − logPy exp[−〈f1, XQ1〉 − · · · − 〈fn, XQn〉],
f1, . . . , fn ∈ B, y ∈ S.

[For n = 1, formulae (2.1)–(2.2) coincide with (1.11)–(1.12).]
We use the following abbreviations. For every finite subset I = {Q1, . . . , Qn}

of O, we put

XI = {XQ1 , . . . , XQn},fI = {f1, . . . , fn},

〈fI , XI〉 =
n∑

i=1

〈fi, XQi〉.
(2.3)

In this notation, formulae (2.2) and (2.1) can be written as

(2.4) VI(fI )(y) = − logPye−〈fI ,XI〉

and

(2.5) Pµe
−〈fI ,XI 〉 = e−〈VI (fI ),µ〉.

If X satisfies condition 1.3.C, then:

2.1.A. For every Qi ∈ I, VI(fI ) = fi+VIi (fIi) on Qci where Ii is the set obtained
from I by dropping Qi.

Indeed,
〈fI , XI〉 = 〈fi, XQi 〉 + 〈fIi , XIi〉

and 〈fi, XQi〉 = fi(y) Py-a.s. if y ∈ Qci .
For a branching exit system X, the Markov property 1.3.D is equivalent to:

2.1.B. If Q ⊂ Qi for all Qi ∈ I, then

(2.6) VQVI = VI .

Formula (2.6) can be rewritten in the form

(2.7) VI(fI) = VQ[1QcVI (fI)] for all fI .

Proof. It follows from (2.5) that

e−〈VQVI(fI ),µ〉 = Pµe
−〈VI (fI ),XQ〉 = PµPXQe

−〈fI ,XI 〉.

If Q ⊂ Qi for all Qi ∈ I, then 〈fI , XI〉 ∈ F⊃Q and 1.3.D implies that the right side
is equal to

Pµe
−〈fI ,XI 〉 = e−〈VI (fI ),µ〉.

Hence (2.6) follows from 1.3.D. By 1.3.B, for every F , the value of VQ(F ) does not
depend on the values of F on Q. Therefore (2.7) and (2.6) are equivalent.

To deduce 1.3.D from 2.1.B, it is sufficient to prove (1.10) for

Y = e−〈fI ,XI 〉, Z = e−〈fĨ ,XĨ 〉

where I = {Q1, . . . , Qn}, Ĩ = {Q̃1, . . . , Q̃m} with Qi ⊂ Q ⊂ Q̃j. Note that Y Z ∈ Z.
By 1.3.A, the same is true for Y PXQZ. Therefore (1.10) will follow from 1.3.A if
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we check that it holds for all µ = δy. We use the induction in n. The condition
(2.6) implies

(2.8) PµZ = PµPXQZ.

Hence, (1.10) holds for n = 0. Suppose it holds for n−1. If y ∈ Qci , then, by 1.3.C,
Py{Y = e−fi(y)Yi} = 1 where Yi = e−〈fIi

,XIi
〉, and we have

PyY Z = e−fi(y)PyYiZ = e−fi(y)Py(YiPXQZ) = Py(Y PXQZ)

by the induction hypothesis. Hence (1.10) holds for δy with y not in the intersection
QI of Qi ∈ I. For an arbitrary y, by (2.8), PyY Z = PyPXQI

Y Z. By 1.3.B, XQI is
concentrated, Py-a.s. on QcI and therefore

PXQI
Y Z = PXQI

(Y PXQZ).

We conclude that

PyY Z = PyPXQI
(Y PXQZ) = Py(Y PXQZ).

�

Transition operators of order n for a BEM system can be expressed through
transition operators of order n− 1 by the formulae

(2.9) VI(fI ) = fi + VIi(fIi ) on Qci for every Qi ∈ I,

(2.10) VI (fI) = VQI [1Qc
I
VI(fI )] where QI is the intersection of all Qi ∈ I.

Formula (2.9) (equivalent to 2.1.A) defines the values of VI(fI ) on QcI . Formula
(2.10) follows from (2.7). It provides an expression for all values of VI(fI ) through
its values on QcI .

Conditions (2.9)–(2.10) can be rewritten in the form

(2.11) VI = VQI ṼI

where

(2.12) ṼI(fI ) =

{
fi + VIi (fIi) on Qci ,
0 on QI .

2.2. Properties of VQ. We need the following simple lemma.

Lemma 2.1. Let Y be a positive random variable and let 0 ≤ c ≤ ∞. If
Pe−λY ≤ e−λc for all λ > 0, then P{Y ≥ c} = 1. If, in addition Pe−Y = e−c,
then P{Y = c} = 1.

Proof. If c = ∞, then, P -a.s., e−λY = 0 and therefore Y = ∞. If c < ∞,
then Pe−λ(Y−c) ≤ 1 and, by Fatou’s lemma, P{ lim

λ→∞
e−λ(Y−c)} ≤ 1. Hence, P{Y ≥

c} = 1. The second part of the lemma follows from the first one. �

Theorem 2.1. Transition operators of an arbitrary system of finite random
measures X satisfy the condition:

2.2.A. For all Q ∈ O,

(2.13) VQ(fn) → 0 as fn ↓ 0.

A branching system X is a branching exit system if and only if:
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2.2.B.
VQ(f) = VQ(f̃ ) if f = f̃ on Qc.

2.2.C. For every Q ∈ O and every f ∈ B,

VQ(f) = f on Qc.

Proof. 1◦. Property 2.2.A is obvious. It is clear that 1.3.B implies 2.2.B and
1.3.C implies 2.2.C.

2◦. If 2.2.B holds, then VQ(1Q) = VQ(0) = 0 and therefore Pye−XQ(Q) = 1
which implies 1.3.B.

3◦. It follows from 2.2.C and (1.11) that, if µ(Q) = 0, then, for all f ∈ B and
all λ > 0,

Pµe
−λ〈f,XQ 〉 = e−λ〈f,µ〉

and, by Lemma 2.1,

(2.14) 〈f,XQ〉 = 〈f, µ〉 Pµ-a.s.

Since there exists a countable family of f ∈ B which separate measures, 1.3.C
follows from (2.14).

�

2.3. V-families. We call a collection of operators VI a V-family if it satisfies
conditions (2.9)–(2.10) [equivalent to (2.11)–(2.12)] and 2.2.A. We say that a V-
family and a system of random measures correspond to each other if they are
connected by formula (2.1).

Theorem 2.2. Suppose that operators VQ, Q ∈ O satisfy conditions 2.2.A–
2.2.C and the condition

2.3.A. For all Q ⊂ Q̃ ∈ O,
VQVQ̃ = VQ̃.

Then there exists a V-family {VI} such that VI = VQ for I = {Q}.

Proof. Denote by |I| the cardinality of I. For |I| = 1, operators VI are
defined. Suppose that VI , subject to conditions (2.9)–(2.10), are already defined
for |I| < n. For |I| = n, we define VI by (2.9)–(2.10). This is not contradictory
because

fi + VIi(fIi) = fj + VIj (fIj ) = fi + fj + VIij (fIij ) on Qci ∩Qcj .
By 2.2.B it is legitimate to define VI (fI) on QI by (2.10). �

3. From a V-family to a BEM system

3.1. P-matrices and N-matrices. First, we prepare some algebraic and an-
alytic tools.

Suppose that a symmetric n×n matrix (aij) satisfies the condition: for all real
numbers t1, . . . , tn,

n∑

i,j=1

aijtitj ≥ 0.

In algebra, such matrices are called positive semidefinite. Some authors (e.g.,
[BJR84]) use the name positive definite. We resolve this controversy by using
a short name a P-matrix.
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We need another class of matrices which are called negative definite in [BJR84].
[This is inconsistent with the common usage in algebra where negative definite
means (−1)× positive definite.] We prefer again a short name. We call an n × n
symmetric matrix an N-matrix if

n∑

i,j=1

aijtitj ≤ 0

for every n ≥ 2 and all t1, . . . , tn ∈ R such that
∑
ti = 0.

The following property of these classes is obvious:

3.1.A. The classes P and N are closed under entry wise convergence. Moreover,
they are convex cones in the following sense: if (B,B, η) is a measure space, if aij(b)
is a P-matrix (N-matrix) for all b ∈ B and if aij(b) are η-integrable, then

aij =
∫
aij(b)η(db)

is also a P-matrix (respectively, an N-matrix).
Here are some algebraic properties of both classes.
(i) A matrix (aij) is a P-matrix if and only if it has a representation

aij =
m∑

k=1

qikqjk

where m ≤ n.
This follows from the fact that a quadratic form is positive semidefinite if and

only if it can be transformed by a linear transformation to the sum of m ≤ n
squares.

(ii) If (aij) and (bij) are P-matrices, then so is the matrix cij = aijbij.
Indeed, by using (i), we get

∑

ij

cijtitj =
∑

k

∑

ij

bij(qikti)(qjktj) ≥ 0.

(iii) If (aij) is a P-matrix, then cij = eaij is also a P-matrix.
This follows from (ii) and 3.1.A.
(iv) Suppose that a (n+ 1)× (n+ 1) matrix (aij)n0 and an n× n-matrix (bij)n1

are connected by the formula

(3.1) bij = −aij + ai0 + a0j − a00, i, j = 1, . . . , n.

Then, for all t0, . . . , tn such that t0 + · · ·+ tn = 0,
n∑

i,j=0

aijtitj = −
n∑

i,j=1

bijtitj .

Therefore (aij) is an N-matrix if and only if (bij) is a P-matrix.
Now we can prove the following proposition:

3.1.B. A matrix (aij) belongs to class N if and only if cij(λ) = e−λaij is a
P-matrix for all λ > 0.
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Proof. 1◦. First, we prove that if (aij) is an N-matrix, then (cij(λ)) is a P-
matrix. Clearly, it is sufficient to check this for λ = 1. Define (bij) by formula (3.1)
and note that

cij = ebije−ai0e−aj0ea00 .

The first factor defines a P-matrix by (iii), and e−ai0e−aj0 is a P-matrix by (i). The
product is a P-matrix by (ii).

2◦. Now suppose that cij(λ) = e−λaij is a P-matrix for all λ > 0. Clearly,
[1 − cij(λ)]/λ is an N-matrix. By passing to the limit as λ → 0, we get that (aij)
is in class N. �

3.2. P-functions and N-functions. Suppose that G is a subset of a linear
space closed under the addition and the multiplication by constants a ≥ 0. (We
deal with G = B and, more generally, G = Bn.) We say that a real-valued function
on G is a P-function if, for every n ≥ 1 and for all f1, . . . , fn ∈ G

(3.2) aij = u(fi + fj)

is a P-matrix. We call u an N-function if the matrix (3.2) is an N-matrix for every
n ≥ 2 and all f1, . . . , fn ∈ G.

3.2.A. If u is a P-function, then, for all f ,

(3.3) u(f) ≥ 0 and u(f)2 ≤ u(2f)u(0).

If, in addition, u is bounded, then, for all f ,

(3.4) u(f) ≤ u(0).

Proof. The first inequality in (3.3) holds because a 1×1-matrix u(f/2+f/2)
is a P-matrix. The second inequality is true because the determinant of a 2 × 2
P-matrix (

u(2f) u(f)
u(f) u(0)

)

is positive. By (3.3), u(f) = 0 if u(0) = 0. If u(0) > 0, then v(f) = u(f)/u(0)
satisfies the condition v(f)2 ≤ v(2f) which implies that, for every n,

v(f)2
n

≤ v(2nf).

If v is bounded, then the sequence v(f)2
n

is bounded and therefore v(f) ≤ 1. �

3.3. Laplace functionals of random measures. Let (X,P ) be a random
measure on (S,BS). The corresponding Laplace functional is defined on f ∈ B by
the formula

(3.5) L(f) = Pe−〈f,X〉 =
∫

Ω

e−〈f,X(ω)〉P (dω).

Theorem 3.1. A function u on B is the Laplace functional of a random measure
if and only if it is a bounded P-function such that

(3.6) u(fn) → 1 as fn ↓ 0.

It is clear that a Laplace functional has all the properties described in the
theorem. To prove the converse statement, we use the Krein-Milman theorem on
extreme points of convex sets in topological linear spaces H (see, e.g., [BJR84],
Section 2.5). Recall that a set K in H is called convex if it contains, with every
u, v ∈ K, a point pu+ qv where p, q > 0, p+ q = 1. A point ρ ∈ K is called extreme
if a relation ρ = pu+ qv with u, v ∈ K, p, q > 0, p+ q = 1 implies that u = v = ρ.
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The Krein-Milman theorem holds for all locally convex Hausdorff topological
linear spaces but we need only a special case formulated in the next proposition:

Proposition 3.1. Let G be an arbitrary set and let H = H(G) be the space of
all bounded functions on G endowed with the topology of pointwise convergence.

Suppose that K is a compact convex subset of H and that the set Ke of all
extreme points of K is closed. Then every u ∈ K can be represented by the formula

(3.7) u(f) =
∫

Ke

ρ(f)γ(dρ)

where γ is a probability measure on Ke.

We apply Proposition 3.1 to H(B) and to the class K of all bounded P-functions
u on B subject to the condition u(0) = 1 (we get this condition from (3.6) by taking
fn = 0). By 3.2.A, K is contained in the space of all functions from B to [0, 1]
which is compact with respect to the topology of pointwise convergence (see, e.g.,
[Kel57b], Chapter 5, Theorem 13 or [Kur66], section 41, Theorem 4). Being its
closed subset, K is also compact.

The first step in the proof of Theorem 3.1 is the following: 4

Proposition 3.2. A function ρ on B belongs to Ke if and only if:

ρ(f + g) = ρ(f)ρ(g) for all f, g,(3.8)

0 ≤ ρ(f) ≤ 1 for all f and ρ(0) = 1.(3.9)

Proof. Suppose that ρ in Ke. Fix g ∈ B and consider a family of functions

ρλ(f) = ρ(f) + λρ(f + g)

where λ ∈ R. Note

(3.10)
∑

ρλ(fi + fj)titj = ρ̂(0) + λρ̂(g)

where
ρ̂(g) =

∑
titjρ(fi + fj + g).

For all sα and gα,
∑

α,β

sαsβ ρ̂(gα + gβ) =
∑

α,i;β,j

tiαtjβρ(fiα + fjβ)

with tiα = tisα, fiα = fi + gα. Hence, ρ̂ is a P-function. By (3.4), ρ̂(g) ≤ ρ̂(0) and
therefore (3.10) implies that, for |λ| ≤ 1, ρλ is a P-function . Since ρ ∈ K, it satisfies
(3.9). To prove (3.8), we note that q = [1 − ρ(g)]/2 ≥ 0 and p = [1 + ρ(g)]/2 ≥ q.
If q > 0, then ρ = pu + qv where u = ρ1/(2p), v = ρ−1/(2q). Since ρ is extreme,
ρ = u. Hence, ρ(f) = [ρ(f)+ρ(f +g)]/[1+ρ(g)] which implies (3.8). If q = 0, then
ρ−1(0) = 0. Therefore, for all f ρ−1(f) = 0 by (3.4), and ρ(f + g) = ρ(f) which
also implies (3.8) because ρ(g) = 1.

Now suppose that ρ satisfies conditions (3.8)–(3.9). By using (3.8), we check
that ρ is a P-function. Suppose that ρ = pu+qv where u, v ∈ K, p, q > 0, p+q = 1.
By (3.3), u(f)2 ≤ u(2f), v(f)2 ≤ v(2f) and therefore

(3.11) pu(f)2 + qv(f)2 ≤ pu(2f) + qv(2f) = ρ(2f) = ρ(f)2 = [pu(f) + qv(f)]2.

Since φ(t) = t2 is a strictly convex function, (3.11) implies u(f) = v(f) = ρ(f).
Hence ρ ∈ Ke. �

4In [BJR84], functions ρ with the properties (3.8)–(3.9) are called bounded semicharacters.
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Proof of Theorem 3.1. Suppose that ρ satisfies conditions (3.8)–(3.9) and,
in addition,

(3.12) ρ(fn) → 1 as fn ↓ 0.

For every f and every n, ρ(f) = ρ(f/n)n, and (3.12) implies

(3.13) ρ(f) > 0.

It follows from (3.8), (3.12) and (3.13) that

(3.14) νρ(B) = − logρ(1B),B ∈ BS
is a finite measure on S and moreover 〈f, νρ〉 is measurable in ρ for every f ∈ B.
Denote by K ′

e the set of ρ ∈ Ke which satisfy (3.12). If

(3.15) γ(Ke \K ′
e) = 0,

then, by (3.7) and (3.14),

u(f) =
∫

K′
e

e−〈f,νρ〉γ(dρ)

and therefore u(f) is the Laplace functional of the random measure (νρ, γ).
In fact, the assumption (3.6) does not imply (3.15). It implies a weaker condi-

tion:

(3.16) If fn ↓ 0, then ρ(fn) → 1 for γ-almost all ρ.

Indeed, by (3.8), ρ(fn) is an increasing sequence and, if ρ(fn) ↑ β(ρ), then, by (3.7)
∫
β(ρ)γ(dρ) = lim

∫
ρ(fn)γ(dρ) = limu(fn) = 1.

By (3.9), β(ρ) ≤ 1. Hence, β(ρ) = 1 for γ-almost all ρ.
Fortunately, by a result on the regularization of pseudo-kernels ([Get75], Propo-

sition 4.1), the property (3.16) is sufficient to define νρ ∈ M(S) such that, for every
f , 〈f, νρ〉 is measurable in ρ and

〈f, νρ〉 = − log ρ(f) for γ-almost all ρ.

We have
u(f) =

∫

Ke

ρ(f)γ(dρ) =
∫

Ke

e−〈f,νρ〉γ(dρ)

and therefore, u is the Laplace functional of the random measure (νρ, γ). �
The probability distribution of a random measure (X,P ) is a probability mea-

sure P on the space M(S) of finite measures on S. The domain of P is the σ-algebra
generated by functions FB(µ) = µ(B), B ∈ BS . The Laplace functional of (X,P )
can be expressed through P by the formula

L(f) =
∫

M(S)

e−〈f,ν〉 P(dν).

The Laplace functional of a probability measure P on M(S)n is defined by the
formula

(3.17) LP (f1, . . . , fn) =
∫
e−〈f1,ν1〉−···−〈fn,νn〉P(dν1, . . . , dνn).

By identifying M(S)n with the space of finite measures on the union of n copies
of S, we get a multivariant version of Theorem 3.1:
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Theorem 3.2. A functional u(f1, . . . , fn) on Bn is the Laplace functional of
a probability measure on M(S)n if and only if it is a bounded P-function with the
property

(3.18) u(f i1, . . . , f
i
n) → 1 as f i1 ↓ 0, . . . , f in ↓ 0.

3.4. Constructing a BEM system. We say that a function u from G to B
is an N-function if, for every x, u(f)(x) is a real-valued N-function. By 3.1.A, this
implies 〈u(f), µ〉 is in the class N for all µ ∈ M(S). The class of P-functions from
G to B is defined in a similar way.

Theorem 3.3. A V-family V = {VI} corresponds to a BEM system if and only
if:

(a) VQ satisfy conditions 2.2.A–2.2.C and 2.3.A;
(b) for every I, VI(f

j
I ) → 0 as fjI ↓ 0;

(c) for every I, VI is an N-function.

Proof. If V corresponds to a BEM system, then (a) follows from Theorem 2.1
and 2.1.B, and (b)–(c) follow from (3.18) and 3.1.B.

Suppose that V satisfies (a)–(c). If |I| = n, then, by 3.1.A, for every µ ∈ M(S),
〈VI(fI ), µ〉 is an N-function and, by 3.1.B, Lµ,I(fI ) = e−〈VI (fI ),µ〉 is an P-function.
By Theorem 3.2, Lµ,I is the Laplace functional of a probability measure on M(S)n.
These measures satisfy consistency conditions and, by Kolmogorov’s theorem, they
are probability distributions ofXI relative to Pµ for a system X of random measures
(XQ, Pµ). By Theorem 2.1 and 2.1.B, X is a BEM system. �

Theorem 3.4. Suppose that operators VQ acting in B satisfy conditions 2.2.A–
2.2.C and 2.3.A. They are the transition operators of a BEM system if, in addition:

3.4.A. For every n and every N-function U from Bn to B, VQU is also an N-
function.

Proof. By Theorem 2.2, VQ are a part of a V-family {VI}. We need only
to check that this family satisfies conditions (b)–(c) of Theorem 3.3. We use the
induction in n = |I|. For n = 1, (b) follows from 2.2.A and we get (c) by taking an
identity map from B to B for U in 3.4.A. Let ṼI be given by (2.12). Clearly, if VIi

satisfy (b)–(c), then so does ṼI . By (2.10) and 3.4.A, the same is true for VI . By
induction, (b)–(c) hold for all I. �

3.5. Passage to the limit. Transition operators not satisfying 3.4.A can be
obtained by a passage to the limit. We denote by Bc the set of all BS-measurable
functions f such that 0 ≤ f ≤ c and we put ‖f‖ = supS |f(y)| for every function f
on S. Writing V k u→ V means that V k converges to V uniformly on each set Bc.

Theorem 3.5. Suppose that Xk is a sequence of BEM systems and that V kQ
are the transition operators of Xk. If V kQ

u→ VQ for every Q ∈ O and if VQ satisfies
the Lipschitz condition on every Bc, then VQ are the transition operators of a BEM
system.

The proof is based on Theorem 3.3 and two lemmas.
Put ‖f‖ = max{‖f1‖, . . . , ‖fn‖} for f = (f1, . . . , fn) ∈ Bn. Writing f ∈ Bnc

means that 0 ≤ fi ≤ c for i = 1, . . . , n.
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Lemma 3.1. Suppose that V k are operators from B to B, V k u→ V and V
satisfies the Lipschitz condition on each Bc. Suppose that Ṽ k are operators from
Bn to B, Ṽ k u→ Ṽ and Ṽ satisfies the Lipschitz condition on each Bnc . Then
V kṼ k

u→ V Ṽ and V Ṽ satisfies the Lipschitz condition on each Bnc .

Proof. We have
‖V k(f) − V (f)‖ ≤ εk(c) for f ∈ Bc,

‖Ṽ k(f̃ ) − Ṽ (f̃ )‖ ≤ ε̃k(c) for f̃ ∈ Bnc
(3.19)

with εk(c) + ε̃k(c) → 0 as k → ∞. There exist constants a(c) and ã(c) such that

‖V (f) − V (g)‖ ≤ a(c)‖f − g‖ for all f, g ∈ Bc,

‖Ṽ (f̃ ) − Ṽ (g̃)‖ ≤ ã(c)‖f̃ − g̃‖ for all f̃ , g̃ ∈ Bnc .
(3.20)

By taking g = g̃ = 0, we get

(3.21) ‖V (f)‖ ≤ ca(c) for f ∈ Bc; ‖Ṽ (f̃ )‖ ≤ cã(c) for f̃ ∈ Bnc .
Note that

‖V k[Ṽ k(f̃ )] − V [Ṽ (f̃ )]‖ ≤ q(k) + h(k)
where

q(k) = ‖V k[Ṽ k(f̃)] − V [Ṽ k(f̃ )]‖
and

h(k) = ‖V [Ṽ k(f̃ )] − V [Ṽ (f̃ )]‖.
For all sufficiently large k and for all f̃ ∈ Bnc , ‖Ṽ k(f̃ ) − Ṽ (f̃ )‖ ≤ 1 and, by (3.21),
‖Ṽ k(f̃ )‖ ≤ c̃1 = cã(c) + 1. By (3.19), q(k) ≤ εk(c̃1). By (3.20) and (3.19),

h(k) ≤ a(c̃1)‖Ṽ k(f̃) − Ṽ (f̃ )‖ ≤ a(c̃1)ε̃k(c).

Therefore V kṼ k u→ V Ṽ . We have

‖V [Ṽ (f̃ )] − V [Ṽ (g̃)]‖ ≤ a(c̃1)‖Ṽ (f̃ ) − Ṽ (g̃)‖ ≤ a(c̃1)ã(c)‖f̃ − g̃‖.
�

Lemma 3.2. Suppose Vk is a sequence of V-families and let V kQ satisfy the
conditions of Theorem 3.5. Then

(i) a limit VI (f) of V kI (f) exists for every I = (Q1, . . . , Qn) ⊂ O and every
f = (f1, . . . , fn) ∈ Bn;

(ii) the convergence is uniform on every set Bnc ;
(iii) VI(f) satisfies the Lipschitz condition on every Bnc ;

Proof. By (2.11)–(2.12)

(3.22) V kI = V kQI
Ṽ kI

where

(3.23) Ṽ kI =

{
fi + Ṽ kIi

(fIi) on Qci ,
0 on QI

and therefore, for all k,m,

(3.24) |Ṽ kI (fI ) − Ṽ mI (fI)| =

{
|Ṽ kIi

(fIi) − Ṽ mIi
(fIi)| on Qci ,

0 on QI.
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If conditions (i)–(iii) hold for Ṽ kIi
, then, by (3.24), they hold for Ṽ kI and, by Lemma

3.1, they hold for VI . �

Proof of Theorem 3.5. It is sufficient to prove that operators VI defined in
Lemma 3.2 satisfy the conditions (a)–(c) of Theorem 3.3. The property (ii) implies
that (b) and (c) for VI follow from analogous properties for V kI . The same is true for
2.2.A, 2.2.B and 2.2.C. The condition 2.3.A follows from (ii) and Lemma 3.1. �

3.6. Extension of class M. Suppose that X = (XQ, Pµ), Q ∈ O, µ ∈ M is a
branching exit system. We get a new branching exit system by extending class M
to the class σ(M) of all measures µ =

∑∞
1 µn where µn ∈ M and by defining Pµ as

the convolution of measures Pµn . For every Z ∈ Z,

(3.25) PµZ =
∏

PµnZ.

By using this formula, it is easy to check that 1.3.A holds for the extended system.
Condition 1.3.B holds because, if Y = XQ(Q) and µ ∈ σ(M), then, for every λ > 0,

Pµe
−λY =

∏
Pµne

−λY

and by tending λ to +∞, we get Pµ{Y = 0} =
∏
Pµn{Y = 0} = 1.

By 1.3.C, Pze−λ〈f,XQ 〉 = e−λf(z) for z /∈ Q. If µ(Q) = 0, then, by 1.3.A,

Pµe
−λ〈f,XQ 〉 = e−λ〈f,µ〉

and property 1.3.C follows from Lemma 2.1 [which is true also for infinite measures].

4. Some properties of BEM systems

4.1. CB-property. We say that a CB-property holds for a positive measur-
able function Z and a measure µ ∈ M if

(4.1) logPµZ =
∫

logPyZ µ(dy).

Note that this condition is equivalent to

(4.2) PµZ = e−〈u,µ〉

where

(4.3) u(y) = − logPyZ.

By 1.3.A, this is true for all Z ∈ Z and all µ ∈ M. Suppose that Zn ↓ Z and
0 ≤ Zn ≤ 1. Then PµZn ↓ PµZ and 0 ≤ − logPyZn ↑ − logPyZ. By the monotone
convergence theorem, the condition (4.1) holds for Z, µ if it holds for Zn, µ.

Denote by Y the class of functions

Y =
∞∑

1

〈fi, XQi〉

where Q1, . . . , Qn, · · · ∈ O and f1, . . . , fn, . . . are positive BS-measurable functions.

Proposition 4.1. If Y ∈ Y, then the CB-property holds for {Y = 0} and all
µ ∈ M.

Indeed, if Ym =
∑m

1 〈fi, XQi〉, then Zmn = e−nYm belongs to Z for all n and
Zmn ↓ 1Ym=0 as n → ∞. Hence the CB-property holds for {Ym = 0} and µ. It
remains to note that {Ym = 0} ↓ {Y = 0} as m → ∞.
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Proposition 4.2. If Y1, Y2 ∈ Y and if µ(Qc) = 0 then the relation

(4.4) {Y1 = 0} ⊂ {Y2 = 0}

holds Pµ-a.s. if it holds Py-a.s. for all y ∈ Q.

Proof. The relation (4.4) is equivalent to {Y1 = 0} = {Y1 + Y2 = 0} which
holds Pµ-a.s. if and only if Pµ{Y1 = 0} = Pµ{Y1 + Y2 = 0}. �

4.2. Writing “a.s.” means “almost sure with respect to all Pµ, µ ∈ M”.

Theorem 4.1. Suppose that X = (XQ, Pµ), Q ∈ O, µ ∈ M is a BEM system
and let Q1 ⊂ Q2 be elements of O. Then:

4.2.A.

{XQ1 = 0} ⊂ {XQ2 = 0} a.s..

4.2.B. For every µ ∈ M and every bounded measurable function f on M × M,

Pµf(XQ1 , XQ2) = PµF (XQ1 )

where

F (ν) = Pνf(ν,XQ2 ).

4.2.C. If 0 ≤ ϕ1 ≤ ϕ2 and ϕ2 = 0 on Q2, then

〈ϕ1, XQ1〉 ≤ 〈ϕ2, XQ2〉 a.s.

4.2.D. If Γ ⊂ Qc2, then XQ1 (Γ) ≤ XQ2 (Γ) a.s.

Proof. By 1.3.D,

Pµ{XQ1 = 0, XQ2 6= 0} = Pµ1XQ1=0PXQ1
{XQ2 6= 0} = 0

which implies 4.2.A.
Bounded functions f for which 4.2.B is true form a linear space closed under

the bounded convergence. By the Markov property 1.3.D, this space contains all
functions f1(ν1)f2(ν2). By the multiplicative systems theorem (see Theorem 1.1 in
the Appendix A), it contains all bounded measurable functions.

To prove 4.2.C, we consider

F (ν) = Pν{〈ϕ1, ν〉 ≤ 〈ϕ2, XQ2 〉}.

By 4.2.B,

(4.5) Pµ{〈ϕ1, XQ1〉 ≤ 〈ϕ2, XQ2 〉} = Pµ F (XQ1).

Let ν′ be the restriction of ν to Qc2. For all λ > 0, by 1.3.A and 1.3.C,

Pνe
−λ〈ϕ2,XQ2 〉 ≤ Pν′e−λ〈ϕ2,XQ2 〉 = e−λ〈ϕ2,ν

′〉 = e−λ〈ϕ2,ν〉 ≤ e−λ〈ϕ1,ν〉.

By Lemma 2.1, this implies F (ν) = 1 and 4.2.C follows from (4.5).
To get 4.2.D, it is sufficient to apply 4.2.C to ϕ1 = ϕ2 = 1Γ. �
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5. Notes

5.1. Branching particle systems corresponding to a diffusion ξ were stud-
ied, first, in [Sko64]. Special classes of such systems were investigated earlier
in [Sev58]. A general theory of branching particle systems was developed in
[INW68]–[INW69].

In earlier papers, a superdiffusion was interpreted as a Markov process Xt in
the space of measures. A reacher model based on the concept of exit measures has
been introduced in [Dyn91c] in the time homogeneous case and in [Dyn92] in
the time inhomogeneous setting. In [Dyn93], an integral equation describing the
joint probability distribution of XQ1 , . . . , XQn was introduced and solved, and the
Markov and the branching properties were proved.

An alternative approach based on the concept of a historical process was de-
veloped by Dawson and Perkins in [DP91]. 5 A historical process is a family X̂ of
random measures (X̂t, Pµ) on the space Ŝ of paths in S. Exit measures for X can
be expressed in terms of X̂ (see [Dyn91b]).

5.2. In the presentation of the properties of N-functions and their relations
to P-functions, we follow the book [BJR84]. Theorem 3.1 is due to Fitzsimmons
(see the Appendix in [Fit88]).

5More on this approach can be found in section 14.11.



CHAPTER 4

Superprocesses

We define a superprocess as a BEM system with the transition operator sat-
isfying a certain integral equation. We construct superprocesses by two different
methods. The first one uses a passage to the limit from branching particle systems.
The second method is based on Theorem 3.3.4.

1. Definition and the first results

1.1. Definition of a superprocess. We denote by R+ the half-line [0,∞).
We say that a BEM system

X = (XQ, Pµ), Q ∈ O, µ ∈ M(S)

is a (ξ, ψ)-superprocess if O is a class of open subsets of S = R×E, if ξ = (ξt,Πr,x) is
a right continuous strong Markov process, ψ(z, t) is a positive function on S × R+

and if the transition operators VQ of X satisfy the condition: for every f ∈ B,
u = VQ(f) is a solution of the equation

(1.1) u+GQψ(u) = KQf.

Here KQ is the Poisson operator defined by 2.(3.1), GQ is Green’s operator defined
by 2.(5.13) and ψ(u) means ψ(r, x;u(r, x)).

1.2. Gronwall’s lemma and its application. Does equation (1.1) deter-
mine uniquely VQ? The answer is positive for a wide class of sets Q and functions
ψ.

Put Q ∈ O0 if Q is an open subset of S and if Q ⊂ ∆ × E for some finite
interval ∆.This is equivalent to the condition:

1.2.A. There exists a constant N such that τ (Q) − r ≤ N for all paths of ξ
starting from (r, x) ∈ Q.

We use the following modification of Gronwall’s inequality:

Lemma 1.1. Let τ be the first exit time from Q ∈ O0. If a positive bounded
function h(r, x) satisfies the condition:

(1.2) h(r, x) ≤ a+ qΠr,x

∫ τ

r

h(s, ξs) ds in Q

for some constants a and q, then

(1.3) h(r, x) ≤ aΠr,xe
q(τ−r) in Q.

Proof. Suppose that h ≤ A. We prove, by induction, that

(1.4) h(r, x) ≤ Πr,xYn(r)

59
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where

Yn(r) = a

n−1∑

k=0

qk
(τ − r)k

k!
+Aqn

(τ − r)n

n!
.

Clearly, (1.4) holds for n = 1. If it is true for n, then, by (1.2),

(1.5) h(r, x) ≤ a+ qΠr,x

∫ τ

r

Πs,ξsYn(s) ds in Q.

By the Markov property 2.(2.3),

Πr,x1τ>sΠs,ξsYn(s) = Πr,x1τ>sYn(s) for all (r, x) ∈ Q

because {τ > s} ⊂ {τ = τs} where τs is the first after s exit time from Q and τs is
F≥s-measurable. Hence, the right side in (1.5) is equal to

a + qΠr,x

∫ τ

r

Yn(s) ds = Πr,xYn+1(r)

and (1.4) holds for n+ 1. Bound (1.3) follows from (1.4) and 1.2.A. �

Theorem 1.1. Suppose that Q ∈ O0 and ψ(z, t) is locally Lipschitz continuous
in t uniformly in z, i.e., for every c > 0, there exists a constant q(c) such that

(1.6) |ψ(z;u1) − ψ(z;u2)| ≤ q(c)|u1 − u2| for all z ∈ S, u1, u2 ∈ [0, c].

Then equation (1.1) has at most one solution. Moreover, if u satisfies (1.1) and if
ũ+GQψ(ũ) = KQf̃ , then

(1.7) ‖u− ũ‖ ≤ eq(c)N‖f − f̃‖ for all f, f̃ ∈ Bc
where N is the constant in 1.2.A.

Suppose ψ(z, 0) is bounded and uβ + GQψ(uβ) = KQfβ . If f ∈ Bc and ‖fβ −
f‖ → 0 as β ↓ 0, then there exists a solution u of (1.1) such that

(1.8) ‖uβ − u‖ ≤ eq(2c)N‖fβ − f‖ for all sufficiently small β.

Proof. By (1.1), ‖u‖ ≤ ‖f‖, ‖ũ‖ ≤ ‖f̃‖ and

u− ũ = KQ(f − f̃ ) + GQ[ψ(ũ) − ψ(u)].

Put h = |u− ũ|. By (1.6), |ψ(ũ) − ψ(u)| ≤ q(c)h and therefore

h ≤ ‖f − f̃‖ + q(c)GQh

and (1.7) follows from Gronwall’s inequality (1.2).
If f ∈ Bc, then for all sufficiently small β, fβ ∈ B2c and, by (1.7), for sufficiently

small β and β̃,
‖uβ − uβ̃‖ ≤ eq(2c)N‖fβ − fβ̃‖

which implies the existence of the limit u = limuβ and the bound (1.8). By (1.6),
ψ(uβ) ≤ ψ(0) + 2cq(2c) and, by the dominated convergence theorem, u satisfies
(1.1). �

Remark. Similar arguments based on Gronwall’s lemma show that, if

|ψ(z, t) − ψ̃(z, t)| ≤ ε(c) for all z ∈ S, t ∈ [0, c]

and if ũ+GQψ̃(ũ) = KQf , then

‖u− ũ‖ ≤ Neq(c)N ε(c).
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1.3. BEM systems corresponding to branching particle systems. We
return to the branching particle system and the corresponding BEM system X =
(XQ, Pµ) described in section 3.1.2. Recall that such a system is determined by a
right continuous strong Markov process ξ = (ξt,Πr,x), a set of probabilities pn(t, x)
describing a branching and a parameter k defining the life time probability distri-
bution. If X is an associated BEM system, then

VQ(f) = − logw

where

(1.9) w(r, x) = Pr,xe
−〈f,XQ 〉.

We introduce an offspring generating function

ϕ(t, x; z) =
∞∑

0

pn(t, x)zn, 0 ≤ z ≤ 1.

The four principles stated at the beginning of section 3.1.2 imply

(1.10) w(r, x) = Πr,x

[
e−k(τ−r)e−f(τ,ξτ ) + k

∫ τ

r

e−k(s−r) ds ϕ(s, ξs;w(s, ξs))
]

where τ is the first exit time of (t, ξt) from Q. The first term in the brackets
corresponds to the case when the particle started the process is still alive at time
τ , and the second term corresponds to the case when it dies at time s ∈ (r, τ ). [If
N is a random measure equal to nδ(s,y) with probability pn(s, y), then

PNe
−〈f,XQ 〉 =

∞∑

0

pn(s, y)w(s, y)n = ϕ(s, y;w(s, y)).]

1.4. An integral identity. We simplify equation (1.10) by using the follow-
ing lemma which has also other important applications.

Lemma 1.2. If

(1.11) w(r, x) = Πr,x

[
e−k(τ−r)u(τ, ξτ ) +

∫ τ

r

e−k(s−r)v(s, ξs) ds
]
,

then

(1.12) w(r, x) + Πr,x

∫ τ

r

kw(s, ξs) ds = Πr,x

[
u(τ, ξτ ) +

∫ τ

r

v(s, ξs) ds
]
.

Proof. Note that
H(r, t) = e−k(t−r)

satisfies the relation

(1.13) k

∫ t

r

H(s, t) ds = 1 −H(r, t)

and that

(1.14) w(r, x) = Πr,x(Yr + Zr)

where
Ys = H(s, τ )u(τ, ξτ ),

Zs =
∫ τ

s

H(s, t)v(t, ξt) dt.
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By (1.14) and Fubini’s theorem,

Πr,x

∫ τ

r

kw(s, ξs) ds =
∫ ∞

r

kΠr,x1s<τΠs,ξs(Ys + Zs) ds.

By the Markov property 2.(2.4),

Πr,x1s<τΠs,ξs(Ys + Zs) = Πr,x1s<τ (Ys + Zs)

and therefore

(1.15) w(r, x) + Πr,x

∫ τ

r

kw(s, ξs) ds = Πr,x(I1 + I2)

where

I1 = H(r, τ )u(τ, ξτ ) + k

∫ τ

r

Ys ds and I2 =
∫ τ

r

[H(r, s)v(s, ξs) + kZs] ds.

By (1.13) and Fubini’s theorem

I1 = u(τ, ξτ ), I2 =
∫ τ

r

v(t, ξt) dt,

and (1.12) follows from (1.15). �

1.5. Heuristic passage to the limit. By applying Lemma 1.2 to u(s, x) =
e−f(s,x) and v(s, x) = kϕ(s, x;w(s, x)), we get the following result:

Theorem 1.2. Let VQ be the transition operators of X. Then for every f ∈ B,
function v = VQ(f) satisfies the equation

(1.16) e−v(r,x) = Πr,x

[
k

∫ τ

r

Φ(s, ξs; e−v(s,ξs)) ds+ e−f(τ,ξτ )

]

where
Φ(t, x; z) = ϕ(t, x; z) − z.

Assuming that all particles have mass β, we get a transformed system of random
measures Xβ = (Xβ

Q, P
β
µ ), µ ∈ Mβ where

Mβ = βM, Xβ
Q = βXQ, P

β
µ = Pµ

β
.

The transition operators of Xβ are related to the transition operators of X by the
formula V βQ (f) = VQ(βf)/β and therefore (1.16) implies the following equation for
vβ = V βQ (f)

(1.17) e−βvβ (r,x) = Πr,x

[∫ τ

r

kΦ(s, ξs; e−βvβ(s,ξs)) ds + e−βf(τ,ξτ )

]
.

Note that (1.17) is equivalent to the equation

(1.18) uβ(r, x) + Πr,x

∫ τ

r

ψβ(s, ξs;uβ(s, ξs)) ds = Πr,xfβ(τ, ξτ )

where

(1.19) uβ = [1 − e−βvβ ]/β, fβ = [1 − e−βf ]/β

and

(1.20) ψβ(r, x;u) = [ϕβ(r, x; 1− βu) − 1 + βu]kβ/β for βu ≤ 1.
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[We assume that parameters ϕ and k depend on β. Since βuβ = 1− e−βvβ ≤ 1, the
value ϕβ(r, x; 1− βuβ) is defined.] Equation (1.18) can be rewritten in the form

(1.21) uβ + GQψβ(uβ) = KQfβ .

Suppose that β → 0. Then fβ → f . If ψβ → ψ, then we expect that uβ tends
to a limit u which is a solution of the equation (1.1).

2. Superprocesses as limits of branching particle systems

2.1. We use the bounds

0 ≤ 1 − e−λ ≤ 1 ∧ λ,

0 ≤ e−λ − 1 + λ ≤ λ ∧ λ2
(2.1)

for all λ ≥ 0. Put

(2.2) e(λ) = e−λ − 1 + λ.

Since, for u > 0, 0 < e′(u) = 1 − e−u < 1∧ u, we have

(2.3) |e(λu2) − e(λu1)| ≤ (1 ∨ c)(λ ∧ λ2)|u2 − u1| for all u1, u2 ∈ [0, c].

2.2. A class of superprocesses.

Theorem 2.1. A (ξ, ψ)-superprocess exists for every function

(2.4) ψ(r, x;u) = b(r, x)u2 +
∫ ∞

0

(e−λu − 1 + λu)n(r, x; dλ)

where a positive Borel function b(r, x) and a kernel n from (S,BS ) to R+ satisfy
the condition

(2.5) b(r, x) and
∫ ∞

0

λ ∧ λ2n(r, x; dλ) are bounded.

Remark. The family (2.4) contains the functions

(2.6) ψ(u) = const. uα, 1 < α < 2

that correspond to b = 0 and n(dλ) = const. λ−(1+α) dλ.
Theorem 2.1 can be proved for a wider class of ψ (see [Dyn93]). We restrict

ourselves by the most important functions.

Proof. 1◦. We choose parameters ϕβ, kβ of a branching particle system to
make ψβ given by (1.20) independent of β. To this end we put

kβ =
γ

β
,

ϕβ(z;u) =u+
β2

γ
ψ

(
z;

1 − u

β

)
for 0 ≤ u ≤ 1

(2.7)

where γ is a strictly positive constant. We need to show that ϕβ is a generating
function. To simplify formulae, we drop arguments z. Clearly, ϕβ(1) = 1. We have

ϕβ(u) =
∞∑

0

pβku
k
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where

pβ0 =
β2

γ
ψ(

1
β

),

pβ1 =
1
γ

[γ − 2b− β

∫ ∞

0

λ(1 − e−λ/β)n(dλ)],

pβ2 =
b

γ
+

1
γ

∫ ∞

0

e−λ/βλ2n(dλ),

pβk =
β2

k!γ

∫ ∞

0

e−λ/β
(
λ

β

)k

n(dλ) for k > 2.

pβ0 and pβk are positive for all β > 0 and k ≥ 2. Function pβ1 is positive for 0 < β ≤ 1
if γ is an upper bound of

2b+
∫ ∞

0

λ ∧ λ2n(dλ).

2◦. We claim that there exists a solution u of (1.1) and a function a(c) such
that

(2.8) ‖u− vβ‖ ≤ βa(c) for all f ∈ Bc and all sufficiently small β.

If A is an upper bound for the functions (2.5), then, by (2.3), ψ satisfies the
condition (1.6) with q(c) = 3A(1 ∨ c).

Suppose f ∈ Bc. Then, by (1.19) and (2.1), f − fβ = e(βf)/β ≤ βf2 ≤ βc2

and, by Theorem 1.1, there exists a solution u of (1.1) such that, for sufficiently
small β,

(2.9) ‖uβ − u‖ ≤ eq(2c)Nβc2.

By (1.19), vβ = −β−1 log(1 − βuβ) and

vβ − uβ = Fβ(uβ)

where Fβ(t) = −β−1 log(1 − βt) − t. Note that Fβ(0) = 0 and, for 0 < βt < 1/2,

0 < F ′
β(t) = βt(1 − βt)−1 < 2βt

which implies 0 < Fβ(t) < βt2. We have 0 ≤ fβ ≤ f and uβ ≤ KQf . Therefore
uβ ∈ Bc and

(2.10) |vβ − uβ| ≤ βc2 for 0 < β < 1/(2c).

It follows from (2.9) and (2.10) that (2.8) holds with a(c) = c2(eq(2c)N + 1).
3◦. We conclude from 2◦ that the limit VQ of operators V βQ satisfies the Lipschitz

condition on each set Bc and that V βQ
u→ VQ. By Theorem 3.3.5, there exists a BEM

system X with transition operators VQ. Since u = VQ(f) satisfies (1.1), this is a
(ξ, ψ)-superprocess. �

3. Direct construction of superprocesses

3.1. Analytic definition of operators VQ.

Theorem 3.1. Suppose that Q ∈ O0 and that ψ satisfies the conditions:

3.1.A. ψ(z, 0) = 0 for all z.
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3.1.B. ψ is monotone increasing in t, i.e., ψ(z, t1) ≤ ψ(z, t2) for all z ∈ S and
all t1 < t2 ∈ R+.

3.1.C. ψ is locally Lipschitz continuous in t uniformly in z (i.e., it satisfies
(1.6)).

Then the equation (1.1) has a unique solution for every f ∈ B. We denote it VQ(f).

Proof. 1 By Theorem 1.1, equation (1.1) can have no more than one solution.
Suppose that f ∈ Bc. Fix a constant k ≥ q(c) where q(c) is defined in (1.6)

and put, for every u ≥ 0,

(3.1) T (u) = Πr,x

[
e−k(τ−r)f(τ, ξτ ) +

∫ τ

r

e−k(s−r)Φ(s, ξs;u(s, ξs)) ds
]

where Φ(u) = ku− ψ(u). [We do not indicate explicitly the dependence on T of k
and f .] The key step is to prove that the sequence

u0 = 0,

un = T (un−1) for n = 1, 2, . . .
(3.2)

is monotone increasing and bounded. Clearly, its limit u is a bounded solution of
the equation

(3.3) u(r, x) = Πr,x

[
e−k(τ−r)f(τ, ξτ ) +

∫ τ

r

e−k(s−r)Φ(s, ξs;u(s, ξs)) ds
]
.

By Lemma 1.2, (3.3) implies

u(r, x) + kΠr,x

∫ τ

r

u(s, ξs) ds = Πr,x

[
f(τ, ξτ ) +

∫ τ

r

Φ(s, ξs;u(s, ξs)) ds
]

which is equivalent to (1.1).
We prove that:

(a) T (v1) ≤ T (v2) if 0 ≤ v1 ≤ v2 ≤ c in Q;

(b) T (c) ≤ c.
To get (a), we note that, for 0 ≤ t1 ≤ t2 ≤ c,

Φ(t2) − Φ(t1) = k(t2 − t1) − [ψ(t2) − ψ(t1)] ≥ (t2 − t1)(k − q(c)) ≥ 0.

Since ψ ≥ 0, Φ(u) ≤ ku and therefore

T (c) ≤ Πr,x[ce−k(τ−r) + ck

∫ τ

r

e−k(s−r) ds].

Since e−k(τ−r) + k
∫ τ
r
e−k(s−r)ds = 1, this implies (b).

By 3.1.A u1 = T (0) ≥ 0. By (a) and (b), u1 = T (0) ≤ T (c) ≤ c. We use (a)
and (b) to prove, by induction in n, that 0 = u0 ≤ · · · ≤ un ≤ c. �

1We use the so called monotone iteration scheme (cf., e.g., [Sat73]).
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3.2. Properties of VQ. We claim that:

3.2.A. If f ≤ f̃ , then VQ(f) ≤ VQ(f̃).

3.2.B. If Q ⊂ Q̃ and if f = 0 on Q̃, then VQ(f) ≤ VQ̃(f).

3.2.C. If fn ↑ f , then VQ(fn) ↑ VQ(f).

To prove 3.2.A and 3.2.B, we indicate explicitely the dependence of operator
(3.1) from k,Q and f and we note that, if 0 ≤ f ≤ f̃ ≤ c and if k > q(c), then
T (k,Q, f ;u) ≤ T (k,Q, f̃;u) for every function 0 ≤ u ≤ c. This implies 3.2.A.
If Q ⊂ Q̃, then the first exit time τ̃ from Q̃ is bigger than or equal to τ . If
ητ = (τ, ξτ ) ∈ Q̃, then f(ητ ) = 0, and if ητ /∈ Q̃, then τ̃ = τ . In both cases,
e−k(τ−r)f(ητ ) = e−k(τ̃−r)f(ητ̃ ). If k > q(c) and 0 ≤ u ≤ c, then T (k, Q̃, f ;u) ≥
T (k,Q, f ;u) which implies 3.2.B.

Suppose that fn ↑ f and let un = VQ(fn). By 3.2.A, un ↑ u. By passing to the
limit in the equation un + GQψ(un) = KQfn, we get u + GQψ(u) = KQf . Hence
u = VQ(f) which proves 3.2.C.

3.3. An alternative construction of superprocesses. We deduce a slightly
weaker version of Theorem 2.1 by a method suggested by Fitzsimmons (see [Fit88]).

Theorem 3.2. A (ξ, ψ)-superprocess exists for function ψ given by (2.4) if b
and n satisfy condition (2.5) and an additional assumption

(3.4) sup
z

∫ β

0

λ2n(z; dλ) → 0 as β ↓ 0.

Remark. Condition (2.5) implies pointwise but not the uniform convergence
of

∫ β
0
λ2n(z; dλ) to 0 as β ↓ 0.

We need the following lemma:

Lemma 3.1. Suppose that u is a solution of equation (1.1) and f ∈ B. If
Q′ b Q, then

(3.5) u+GQ′ψ(u) = KQ′u.

Proof. By 2.(3.2) and 2.(5.15), KQ′KQ = KQ and GQ = GQ′ +KQ′GQ. The
equation (1.1) implies that GQψ(u) ∈ B. Hence, KQ′GQψ(u) ∈ B. Therefore

u+ GQ′ψ(u) = u+GQψ(u) −KQ′GQψ(u) = KQ′ (KQf − GQψ(u)) = KQ′u.

�

Proof of Theorem 3.2. 1◦. Operators VQ defined in Theorem 3.1 satisfy
conditions of Theorem 3.2.1. Indeed, by (1.1), VQ(f) ≤ KQf which implies 3.2.2.A.
Properties 3.2.2.B and 3.2.2.C also follow easily from (1.1). Let us prove 3.2.3.A.
Suppose Q ⊂ Q̃ ∈ O0. By Lemma 3.1, v = VQ̃(f) satisfies the equation v +
GQψ(v) = KQv. On the other hand, u = VQ(v) is a solution of the equation
u+GQψ(u) = KQv. The equality u = v follows from Theorem 1.1.

We claim that operators VQ satisfy condition 3.3.4.A if:

3.3.A. There exists k > 0 such that ku(f) − ψ(·;u(f)) is an N-function from B
to B for every real-valued N-function u(f) on B.
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Indeed, let T be the operator defined by (3.1). It follows from 3.3.A that, for
all sufficiently large k, Φ(u(f)) belongs to the class N if u(f) is an N-function and,
by 3.3.1.A, operator T preserves the class N. Therefore VQ(f) which is the limit of
Tn(f) has the same property.

By Theorem 3.3.4, VQ are the transition operators of a BEM system X and,
since VQ(f) is a solution of (1.1), X is a (ξ, ψ)-superprocess.

2◦. Condition 3.3.A holds for ψ given by (2.4) under an extra assumption

(3.6) b = 0,m(z) =
∫ ∞

0

λn(z, dλ) is bounded.

Indeed,

ku− ψ(u) =
∫ ∞

0

(1 − e−λu)n(dλ) + (k −m)u.

If u ∈ N , then 1 − e−λu belongs to N by 3.3.1.B, and ku− ψ(u) is an N-function
if k > m(z) for all z.

3◦. To eliminate the side condition 3.3.A, we approximate ψ given by (2.4) by
functions

ψβ(u) =
∫ ∞

0

(e−λu − 1 + λu) nβ(dλ)

where 0 < β < 1 and

nβ(dλ) = 1λ>βn(dλ) + 2bβ−2δβ .

Note that ψβ satisfies (2.5). It satisfies (3.6) because
∫ ∞

0

λnβ(dλ) ≤ β−1

∫ ∞

0

λ ∧ λ2n(dλ) + 2b/β.

Let V βQ be the transition operators of the (ξ, ψβ)-superprocess. We demonstrated
in the proof of Theorem 2.1 that VQ satisfies the Lipschitz condition on each set Bc.
By Theorem 3.3.5, to prove the existence of a (ξ, ψ)-superprocess, it is sufficient to
show that V βQ

u→ VQ. We have

ψ(u) − ψβ(u) = Rβ(u)

where

Rβ(u) =
∫ β

0

(e−λu − 1 − λu)n(dλ) + 2bβ−2[1 − βu + (βu)2/2 − e−βu].

We use the bound (2.1) and its implication

(3.7) 0 ≤ 1 − βu+ (βu)2/2 − e−βu ≤ (βu)3 for all β > 0, u > 0

and we get

|Rβ(u)| ≤ u2

∫ β

0

λ ∧ λ2n(dλ) + 2bβu3.

By conditions (2.5) and (3.4), ψβ converges to ψ uniformly on each set S × [0, c].
It follows from Remark to Theorem 1.1 that operators V βQ

u→ VQ. �



68 4. SUPERPROCESSES

4. Supplement to the definition of a superprocess

4.1. Extension of parameter sets. We constructed a superprocess as a
BEM system with parameter sets M0 = M(S) and O0. Now we extend O0 to
the class O1 of all open subsets of S and we extend M0 to the class M1 = σ(M0).
Measure Pµ is defined for µ ∈ M1 by formula 3.(3.25). For every Q and k = 1, 2, . . . ,
we denote by Qk the intersection of Q with (−k, k) × E. By 3.4.2.D,

(4.1) XQk+1 (Γ) ≥ XQk(Γ) a.s. for every Γ ⊂ Qc.

Therefore there exists a measure X̂Q such that

X̂Q(Γ) = limXQk (Γ) for Γ ⊂ Qc,

X̂Q(Γ) = 0 for Γ ⊂ Q

[Every XQ is defined only up to equivalence. We choose versions of XQk for all
positive integers k in such a way that (4.1) holds for all ω and all k.] Clearly, X̂Q
is a measure of class M1 and

X̂Q = XQ Pµ-a.s. for all Q ∈ O0, µ ∈ M1.

If V̂Q is the transition operator of X̂ = (X̂Q, Pµ), Q ∈ O1, µ ∈ M1, then

V̂Qk = VQk for all k,

V̂Qk(f) ↑ V̂Q(f) for every f ∈ B.
(4.2)

By a monotone passage to the limit, we establish that 3.1.3.A holds for X̂ and
that 3.2.2.B, 3.2.2.C and 3.2.3.A hold for V̂Q. Hence, X̂ is a branching system and,
by Theorem 3.2.1, X̂ is a BEM system.

If ψ(r, x;u) is continuous in u and satisfies condition 3.1.B, then, for every
Q ∈ O1, u = V̂Q(f) is a solution of (1.1). Indeed, by 3.2.2.B, u = V̂Q(f ′) where
f ′ = 1Qcf . Since Qk ∈ O0, function uk = VQk(f ′) satisfies the equation

uk(r, x) + Πr,x

∫ τk

r

ψ(s, ξs;uk(s, ξs)) ds = Πr,xf
′(τk, ξτk)

where τk is the first exit time from Qk. For sufficiently large k, it is equal to τ ∧ k
where τ is the first exit time from Q. If τ > k, then (τk, ξτk) ∈ Q. Therefore

uk(r, x) + Πr,x

∫ τk

r

ψ(s, ξs;uk(s, ξs)) ds = Πr,x1τ≤kf(τ, ξτ ) for r < k.

By passing to the limit as k → ∞, we get that u is a solution of (1.1).

4.2. Branching measure-valued Markov processes. To every superpro-
cess X = (XQ, Pµ), Q ∈ O1, µ ∈ M(S) there corresponds a measure-valued Markov
process X̃ = (X̃t, P̃r,ν). Here X̃t is the restriction of XS<t to St = {t} × E and
P̃r,ν = Pδr×ν . Let F̃∆ stand for the σ-algebra generated by X̃t, t ∈ ∆. Clearly,
F [r, t] ⊂ F⊂S<t and F≥t ⊂ F⊃S<t and the Markov property of X̃ follows from
3.1.3.D. If ϕ ∈ B(E) and if f(s, x) = ϕ(x) for all s, then, for all r < t,

P̃r,νe
−〈f,X̃t〉 = e−〈u,ν〉
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where ut = VS<t(f) satisfies the equation

(4.3) ut(r, x) + Πr,x

∫ t

r

ψ(s, ξs;ut(s, ξs)) ds = Πr,xϕ(ξt) for r ≤ t.

4.3. More properties of XQ. Put Y = 〈f,XQ〉. By the definition of a
superprocess,

(4.4) Pµe
−λY = e−〈uλ ,µ〉

where

(4.5) uλ + GQψ(uλ) = λKQf.

We have:

4.3.1. Measure XQ is finite, Pµ-a.s., for every open set Q and every µ ∈ M(S).

Proof. Let Y = 〈1, XQ〉. By (4.4) and (4.5), Pµe−λY ≥ e−λ〈1,µ〉 because
uλ ≤ λKQ1 ≤ λ. By taking λ → 0, we get Pµ{Y <∞} = 1. �

4.3.2. For every total subset T of ∂Q and every µ concentrated on Q,

Pµ{XQ(T c) = 0} = 1.

Indeed, if f = 0 on T , then KQf = 0 in Q and, by (4.4) and (4.5), Pµe−〈f,XQ 〉 =
1.

We say that a function ψ belongs to class CR 2 if

(4.6) Pµ〈f,XQ〉 = 〈KQf, µ〉
for every open set Q, every positive Borel function f and every measure µ ∈ M(S).

Lemma 4.1. Suppose that ψ satisfies condition 3.1.B and the condition:
4.3.A. Function ψ(z, u)/u is bounded on every set Q× [0, κ] and it tends to 0 as

u→ 0.
Then ψ ∈ CR.

Proof. It is sufficient to prove (4.6) for bounded f vanishing outside a set S∆

with finite ∆. The general case can be obtained then by a monotone passage to
the limit.

By (4.5), uλ/λ ≤ KQf ≤ ‖f‖ and, by 3.1.B and 4.3.A,

λ−1GQψ(uλ) ≤ GQ[λ−1ψ(λ‖f‖)] → 0 as λ → 0

and therefore (4.5) implies

(4.7) 〈uλ, µ〉/λ→ 〈KQf, µ〉 as λ → 0.

On the other hand, by (4.4),

Pµ

(
1 − e−λY

λ

)
=

〈
1 − e−〈uλ,µ〉

λ

〉
.

By (4.7), the right side tends to 〈KQf, µ〉. Since the left side tends to PµY , we get
(4.6). 3 �

2This is an abbreviation for “critical” — the name used often in the literature.
3It follows from Fatou’s lemma that PµY ≤ ‖f‖〈1,µ〉 < ∞ and, by (2.1), we can apply the

dominated convergence theorem.
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In the rest of this chapter we assume that ψ belongs to the class CR.

5. Graph of X

5.1. Random closed sets. Suppose (Ω,F) is a measurable space, Q is a
locally compact metrizable space and ω → F (ω) is a map from Ω to the collection
of all closed subsets of Q. Let P be a probability measure on (Ω,F). We say that
(F, P ) is a random closed set (r.c.s.) if, for every open set U in Q,

(5.1) {ω : F (ω) ∩ U = ∅} ∈ FP

where FP is the completion of F relative to P . Two r.c.s. (F, P ) and (F̃ , P ) are
equivalent if P{F = F̃} = 1. Suppose (Fa, P ), a ∈ A is a family of r.c.s. We say
that a r.c.s. (F, P ) is an envelope of (Fa, P ) if:

(a) Fa ⊂ F P -a.s. for every a ∈ A.
(b) If (a) holds for F̃ , then F ⊂ F̃ P -a.s.
An envelope exists for every countable family. For an uncountable family, it

exists under certain separability assumptions.
Note that the envelope is determined uniquely up to equivalence and that it

does not change if every r.c.s. (Fa, P ) is replaced by an equivalent set.
Suppose that (M,P ) is a random measure on Q.The support S of M satisfies

condition

(5.2) {S ∩ U = ∅} = {M (U ) = 0} ∈ F
for every open set U and therefore S(ω) is a r.c.s.

5.2. Definition and construction of graph. In section 5 we consider a
(ξ, ψ)-superprocess X corresponding to a continuous strong Markov process ξ. Let
F be the σ-algebra in Ω generated by XO(U ) corresponding to all open sets O,U .
The support SO of XO is a closed subset of S. To every open set O and every
µ ∈ M(S) there corresponds a r.c.s. (SO , Pµ) in S (defined up to equivalence). We
shall prove that, for every Q and every µ, there exists an envelope of the family
(SO, Pµ), O ⊂ Q. We call it the graph GQ of X in Q and we denote it (GQ, Pµ).
We write G for GS .

Theorem 5.1. Consider a countable family of open subsets {O1, . . . , On, . . .}
of Q such that for every open set O ⊂ Q there exists a subsequence Onk exhausting
O. 4 Put an = 〈1, XOn〉 ∨ 1 and denote by S the support of the measure

(5.3) Y =
∑ 1

an2n
XOn .

The r.c.s. (S, Pµ) is the graph of X in Q.

A key step in the proof of Theorem 5.1 is the following:

Lemma 5.1. Suppose that Ok exhaust O. Then, for all µ ∈ M(S) and all open
sets U ,

(5.4) Pµ{XOk (U ) = 0 for all k, XO(U ) 6= 0} = 0.

We deduce this result from a relation between exit measures for X and exit
points for ξ:

4For instance, take a countable everywhere dense subset Λ of Q. Consider all balls contained

in Q centered at points of Λ with rational radii and enumerate all finite unions of these balls.
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Lemma 5.2. Let O1 ⊂ O2 ⊂ · · · ⊂ Ok b O and let τi be the first exit time from
Oi and τ be the first exit time from O. Fix an open set U and put

Ak = {XO1 (U ) = . . .XOk (U ) = 0},
Bk = {ητ1 , . . . , ητk /∈ U}.

For every positive Borel function f and every z ∈ O,

(5.5)
∫

Ak

〈f,XO〉 dPz ≤
∫

Bk

1τ<∞f(ητ ) dΠz.

Proof. Formula (5.5) holds for z /∈ Ok because in this case 1Ak = 1Uc(z)
Pz-a.s. and 1Bk = 1Uc(z) Πz-a.s. (For z /∈ U , we refer to (4.6).)

For k > 1, Ak = Ak−1 ∩ {XQk (U ) = 0} and Bk = Bk−1 ∩ {ητk /∈ U}. [For
k = 1, these relations hold if we put A0 = Ω, B0 = Ω̃.] 5

For k = 0, (5.5) follows from (4.6). If k ≥ 1, then, by the Markov property
3.1.3.D,

(5.6)
∫

Ak

〈f,XO〉dPz =
∫

Ak−1

1XOk
(U)=0〈f,XO〉dPz

=
∫

Ak−1

1XOk
(U)=0PXOk

〈f,XO〉dPz.

It follows from (4.6) that PXOk
〈f,XO〉 = 〈g,XOk 〉 where g(z) = Pz〈f,XO〉 =

KOf(z). For every ν, 1ν(U)=0〈g, ν〉 ≤ 〈g 1Uc , ν〉 and, by (5.6),

(5.7)
∫

Ak

〈f,XO〉 dPz ≤
∫

Ak−1

〈1Uc g,XOk〉 dPz.

Suppose that (5.5) holds for k − 1. Then the right side in (5.7) is dominated by

(5.8)
∫

Bk−1

1τk<∞(1Uc g)(ητk)dΠz = ΠzX[1OKO(f)](ητk )

where
X = 1Bk−11Uc(ητk)1τk<∞ = 1Bk1τk<∞

is a pre-τ function. By 2.2.1.B (applied to the pair τk ≤ τ and to Q′ = O), the
right side in (5.8) is equal to

ΠzX1O(ητk)1τ<∞f(ητ ) = Πz1Bk1O(ητk)1τ<∞f(ητ ),

and (5.7) implies (5.5). �

Proof of Lemma 5.1. Put

Y1 =
∞∑

1

XOk(U ), Y2 = Y1 +XO(U ).

We need to prove that {Y1 = 0} ⊂ {Y2 = 0} Pµ-a.s. for all µ. By Proposition 3.4.1,
it is sufficient to prove this relation for Pz, z ∈ S. If z /∈ O, then Pz{Y1 = Y2 =
0} = 1 for z /∈ U and Pz{Y1 = Y2 = ∞} = 1 for z ∈ U . If z ∈ O, then we apply
Lemma 5.2 and we pass to the limit in (5.5). Note that Ak ↓ A∞ = {XOk (U ) =
0 for all k}; and Bk ↓ B∞ = {ητk /∈ U for all k}. Choose a continuous bounded
function f such that f > 0 on U and f = 0 on U c. Note that τk ↑ τ . If τ < ∞, then

5Parameter ω in XO(ω) and in ξt(ω) takes values in two unrelated spaces which we denote

Ω and Ω̃.
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ητk → ητ and f(ητk ) → f(ητ ). Hence, {B∞, τ < ∞} ⊂ {f(ητ ) = 0}. We deduce
from (5.5) that

(5.9) Pz1A∞〈f,XO〉 ≤ Πz1B∞ ,τ<∞f(ητ ) = 0

which implies (5.4). �
Proof of Theorem 5.1. We fix a measure µ ∈ M(S) and we use a short

writing a.s. for Pµ-a.s. Let us prove that, for each O ⊂ Q, S ⊃ SO a.s. Note that,
if F1, F2 are closed sets, then F1 ⊃ F2 if and only if, for every open U ,

{F1 ∩ U = ∅} ⊂ {F2 ∩ U = ∅}.
Therefore we need only to prove that, for every open U ,

(5.10) {S ∩ U = ∅} ⊂ {SO ∩ U = ∅} a.s.

Since S and the measure (5.3) are related by (5.2), it is sufficient to demonstrate
that

(5.11) {Y (U ) = 0} ⊂ {XO(U ) = 0} a.s. for all O ⊂ Q.

Clearly,

(5.12) {Y (U ) = 0} ⊂ {XOn (U ) = 0 for all n}.
Consider a subsequence Onk of On exhausting O. By Lemma 5.1,

(5.13) {XOnk
(U ) = 0 for all k} ⊂ {XO(U ) = 0} a.s..

Formula (5.11) follows from (5.12) and (5.13).
Suppose that F is a r.c.s. such that SO ⊂ F a.s. for all O ⊂ Q. Then

XO(F c) = 0 and therefore Y (F c) = 0 a.s. which implies that S ⊂ F a.s. �

5.3. Graphs and null sets of exit measures. We write µ ∈ M(B) if
µ(Bc) = 0 (i.e., if µ is concentrated on B). We denote by Mc(Q) the class of
measures µ such that the support of µ is compact and is contained in Q.

First we prove the following result.

Theorem 5.2. Let B be a closed subset of S and let On be bounded open sets
such that Ōn−1 ⊂ On and On ↑ Bc. Then

(5.14) {XOn = 0} ↑ {G is compact and G ∩B = ∅} a.s.

[If measure µ is not specified, then “a.s.” means “Pµ-a.s. for all µ”.]
The sequence {XOn = 0} is, a.s., monotone increasing by 3.4.2.A. To prove

(5.14), it is sufficient to establish that

{G ⊂ Ōn−1} ⊂ {XOn = 0} ⊂ {G ⊂ Ōn} a.s.

This is an implication of the following two propositions:

5.3.A. If Ō1 ⊂ O2 ⊂ Q, then

(5.15) {GQ ⊂ Ō1} ⊂ {XO2 = 0} a.s.

Proof. By the definition of the graph, XO2 is concentrated, a.s., on GQ. By
3.1.3.B, it is concentrated on Oc2. Since Ō1 ∩Oc2 = ∅, we get (5.15). �

5.3.B. For every Q,

(5.16) {XQ = 0} ⊂ {G ⊂ Q̄} a.s.
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Proof. Let U be an arbitrary open subset of S. By 3.4.2.D applied to Q1 =
U,Q2 = Q ∪ U,Γ = Qc2, we have XU (Qc2) ≤ XQ∪U (Qc2) a.s. By 3.4.2.A,

{XQ = 0} ⊂ {XQ∪U = 0} a.s.

Hence
{XQ = 0} ⊂ {XU (Qc2) = 0}.

Since XU is concentrated on U c, the condition {XQ = 0} implies that XU is
concentrated, a.s., on Q2 ∩ U c ⊂ Q and therefore SU ⊂ Q̄. �

Corollary 5.1. If Qn are bounded open sets such that Q̄n ⊂ Qn+1 and Qn ↑
S, then

(5.17) {XQn = 0} ↑ {G is compact} a.s.

Theorem 5.3. Let Γ be a closed subset of ∂Q which contains all irregular points
and let

(5.18) ΩΓ = {GQ is compact and GQ ∩ Γ = ∅}.

If Qn is a (Q,Γ)-sequence [see 2. Lemma 4.4], then the sequence

An = {XQn(Q) = 0}

satisfies the conditions: for every µ ∈ M(Qk),

Ak ⊂ Ak+1 ⊂ · · · ⊂ An ⊂ . . . Pµ-a.s.,(5.19)
⋃

n≥k

An = ΩΓ Pµ-a.s.(5.20)

The proof is based on the following three propositions:

5.3.C. If µ ∈ M(Q), then, Pµ-a.s., XQ ∈ M(∂Q).

Proof. For every Γ, we have Pµe−XQ(Γ) = e−〈u,µ〉 where u = VQ(1Γ) satisfies
equation (1.1). Clearly, u ≤ KQ(1Γ). If Γ = Q̄c, then KQ(1Γ) = 0 on Q. Hence,
u = 0 on Q andXQ(Γ) = 0 Pµ-a.s. because Pµe−XQ(Γ) = 1. By 3.1.3.B,XQ(Q) = 0
a.s. which implies 5.3.C. �

5.3.D. If Q1 ⊂ Q2 and if µ ∈ M(Q1), then

(5.21) {XQ1 (Q2) = 0} ⊂ {XQ2 (Q̄
c
1) = 0} Pµ-a.s.

Proof. We note that A = {XQ1 (Q2) = 0} ∈ F⊂Q1 and C = {XQ2 (Q̄c1) >
0} ∈ F⊃Q1 . Therefore, by the Markov property 3.1.3.D,

(5.22) PµAC = Pµ{1APXQ1
(C)}.

If ν(Q2) = 0, then XQ2 = XQ1 = ν Pν-a.s. and Pν(C) = 1ν(Q̄c
1)>0. If, in addition,

ν(Q̄c1) = 0, then Pν(C) = 0. By 5.3.C, XQ1 is concentrated, Pµ-a.s., on Q̄1 and
therefore (5.22) implies (5.21). �

5.3.E. If Q1 ⊂ Q2 and if µ ∈ M(Q1), then

(5.23) {XQ1 (Q2) = 0} ⊂ {GQ2 ⊂ Q̄1} Pµ-a.s.
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Proof. It is sufficient to show that the relation

(5.24) {XQ1 (Q2) = 0} ⊂ {XU (Q̄c1) = 0}
holds Pµ-a.s. for every U ⊂ Q2. By Proposition 3.4.2, we need only to establish
that (5.24) holds Pz-a.s. for all z ∈ Q1. It holds for z /∈ U because, for such z,
XU (Q̄c1) = δz(Q̄c1) = 0 Pz-a.s. by 3.1.3.C. If z ∈ U1 = U ∩Q1, then, by 5.3.D,

{XU1(U ) = 0} ⊂ {XU ∈ M(Ū1)} ⊂ {XU ∈ M(Q̄1)}Pz − a.s.

It remains to show that, Pz-a.s.,

(5.25) {XQ1 (Q2) = 0} ⊂ {XU1(U ) = 0}.
Put Γ = U ∩ Qc1. By 3.1.3.B, XU1(U ) = XU1(Γ) a.s. By 3.4.2.D, XU1(Γ) ≤
XQ1 (Γ) a.s. because U1 ⊂ Q1 and Γ ⊂ Qc1. Since Γ ⊂ U ⊂ Q2, we have

XU1 (Γ) ≤ XQ1 (Γ) ≤ XQ1(Q2) a.s.

which implies (5.25). �

Proof of Theorem 5.3. 1◦. We claim that, if µ ∈ M(Q), then

Bn = {GQ ⊂ Q̄n} ↑ ΩΓ Pµ-a.s.

To prove this, we establish that every compact set K ⊂ Q̄ disjoint from Γ is
contained in Q̄n for all sufficiently large n. Indeed, if this is false, then, for every
n, there exists xn ∈ K such that xn ∈ Q̄ \Qn. If xni → x, then x ∈ K ∩ (Q̄ \ Qn)
for all n and therefore x ∈ ∂Q \Γ. Since ∂Qn∩Q ↑ ∂Q \Γ, x belongs to ∂Qm ∩ ∂Q
for some m. But then the relation xni → x is in contradiction with the definition
of (Q,Γ)-sequence (see 2.(4.15)).

2◦. We fix a measure µ concentrated on Qk and we drop indications that each
of subsequent statements holds Pµ-a.s. Let n ≥ k. Then

(5.26) An ⊂ {XQ(Q̄cn) = 0} ⊂ An+1.

The first part follows from 5.3.D. The second part holds because, by 5.3.C, XQn+1

is concentrated on ∂Qn+1; therefore An+1 = {XQn+1 (Q∩ ∂Qn+1) = 0}. It remains
to note that Q̄cn ⊃ ∂Qn+1 ∩Q.

3◦. By 5.3.E, An ⊂ Bn. By the definition of the graph, Bn ⊂ {XQn+1 (Q̄cn) = 0}
and, by (5.26), Bn ⊂ An+1. Formulae (5.19) and (5.20) follow from 1◦. �

Corollary 5.2. The CB property holds for ΩΓ and Pµ if Γ is a closed subset
of ∂Q which contains all irregular points and if µ ∈ Mc(Q).

This follows from Theorem 5.3 and Proposition 3.4.1.

6. Notes

6.1. Early history. Various generalizations of Galton-Watson process are
presented in books of Harris [Har63], Sevast’yanov [Sev71], Athreya and Ney
[AN72] and Jagers [Jag75]. Feller [Fel51] considered a passage to the limit in the
Galton-Watson model and he obtained this way a Markov process on R+ which, in
our terminology, is a (ξ, ψ)-superprocess with a single point space E, ξt = ξ0 and
ψ(u) = u2. Superprocesses with the same space E but more general ψ were stud-
ied by Lamperti [Lam67]. Jĭrina [Jĭr58] investigated superprocesses with finite
space E. [He called them continuous state branching processes.] The foundations
of a general theory of superprocesses were laid by S. Watanabe in [Wat68]. Like
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all his predecessors, he worked with time homogeneous ξ and time independent
ψ and he investigated the corresponding time homogeneous branching measure-
valued process (Xt, Pµ). He paid a special attention to the quadratic branching
ψ(x, u) = b(x)u2. He proved, that in this case Xt is continuous and that it can
be obtained by a passage to the limit from branching particle systems. Dawson
[Daw75] initiated another approach to superprocesses via the Itô stochastic calcu-
lus. A series of papers by Dawson and his collaborators was devoted to investigation
of the super-Brownian motion with the quadratic branching mechanism. This pro-
cess is often called the Dawson-Watanabe superprocess. [The name “superprocess”
appeared, first in [Dyn88].] Dawson’s Saint-Flour lecture notes [Daw93] contain
a survey of the literature on measure-valued processes until 1992.

6.2. General measure-valued branching Markov processes. The branch-
ing property for a measure-valued Markov process X = (Xt, Pr,ν) can be stated as
follows. For every ν and every f ,

(6.1) logPr,νe−〈f,Xt 〉 =
∫

E

logP(r,x)e
−〈f,Xt〉 ν(dx).

The problem of description of all measure-valued Markov processes with this prop-
erty has attracted a number of investigators. A survey of the results in this direction
is given in section 14.1.

6.3. Regularity properties, range and graph. Regularity properties of
paths of superprocesses were investigated by Fitzsimmons [Fit88] in time homo-
geneous setting. His results were extended to a nonhomogeneous case in [Kuz94]
(see also [Dyn89a]). A set-valued process suppXt was investigated in great de-
tail in the case of the Dawson-Watanabe superprocess [DH79], [Per88], [Per89],
[Per90], [DIP89]. (We describe main results of this work in section 14.3.)

In [Dyn92] the graph of Xt was defined as the minimal closed set which con-
tains supports of Xt for all t. The definition and construction of the graph of X in
this chapter follows [Dyn98a].

A closely related concept of the range of X (see the definition in Chapter 10)
was investigated in [DIP89] (see also [Isc88], [She97], [Dyn91c]).

6.4. Limit theorems. Convergence of rescaled branching particle system to
superprocesses in various settings was studied by a number of authors (see, in par-
ticular, [Daw75], [EK86], Chapter 9, [Dyn91a], [Dyn91b]). Recently it was dis-
covered that the Dawson-Watanabe process is the limit of other well known particle
systems (contact processes, voter models, coalescing random walks...) [CDP99],
[DP99], [CDP00], [BCG01].





CHAPTER 5

Semilinear parabolic equations and superdiffusions

1. Introduction

In this chapter we investigate semilinear differential equations

(1.1) u̇+ Lu = ψ(u) in Q

and their connections with superprocesses. 1

We say that a (ξ, ψ)-superprocess is an (L,ψ)-superdiffusion, if ξ is an L-
diffusion. If ψ has the form described in Theorem 4.2.1, then for every L-diffusion ξ,
there exists an (L,ψ)-superdiffusion and we can use it for investigating the equation
(1.1). (In particular, this is possible for functions k(z)uα with 1 < α ≤ 2). For
a wider class of ψ, we use analytic tools and diffusions. A link between (1.1),
diffusions and superdiffusions is provided by the integral equation

(1.2) u+ GQψ(u) = KQf

(cf. 4.(1.1)).
We start from the study of relations between (1.1) and (1.2). Then we estab-

lish that, under mild conditions on ψ, all solutions of (1.1) are locally uniformly
bounded. At the end of the chapter we investigate boundary value problems for
(1.1) (with functions on the boundary taking values in [0,+∞]). We construct the
minimal solution with prescribed boundary value on a portion of the boundary and
the maximal solution vanishing on a given part of the boundary. Both solutions
have simple expressions in terms of an (L,ψ)-superdiffusion (in the case when such
a superdiffusion exists).

At various stages of our investigation, we impose some of the following assump-
tions on ψ: 2

1.A. ψ(z, 0) = 0 for all z.

1.B. All the first partials of ψ are continuous.

1.C. ψ is monotone increasing in t.

1.D. ψ is locally Lipschitz continuous in t uniformly in z.

2. Connections between differential and integral equations

2.1. From integral equation (1.2) to differential equation (1.1). We use
the following results on operators KQ and GQ proved in Chapter 2 [see Theorem
2.3.1, Theorem 2.4.2 and propositions 2.5.3.A, 2.5.3.C].

Suppose that Q is a bounded open set and f ∈ B. Then:

1We consider positive solutions u of (1.1) which belong to class C2(Q) defined in section

2.1.2.
2Cf. conditions 3.1.A, 3.1.B, 3.1.C in Chapter 4

77



78 5. SEMILINEAR PARABOLIC EQUATIONS AND SUPERDIFFUSIONS

2.1.A. Function u = KQf belongs to class C2(Q) and

u̇+ Lu = 0 in Q.

If z̃ is a regular point of ∂Q and if f is continuous at z̃, then

u(z) → f(z̃) as z → z̃.

2.1.B. Function w = GQf belongs to Cλ(Q). If f ∈ Cλ(Q), then w ∈ C2(Q)
and it is a solution of the equation

ẇ + Lw = −f in Q.

If z̃ is a regular point of ∂Q, then

w(z) → 0 as z → z̃.

Theorem 2.1. Suppose that f ∈ B. Under the condition 1.B, every solution u
of (1.2) satisfies (1.1).

If z̃ ∈ ∂regQ and f is continuous at z̃, then

(2.1) u(z) → f(z̃) as z → z̃, z ∈ Q.

Proof. By Lemma 4.3.1, equation (1.2) implies a similar equation in every
subdomain of Q. Therefore we can assume that Q is bounded.

Function h = KQf is bounded. Since u ≤ h, u is also bounded. Function
ψ is bounded on each set Q × [0, c]. Hence, ρ = ψ(u) is bounded. By 2.1.A and
2.1.B, h and F = GQρ belong to Cλ(Q). Therefore u = h − F ∈ Cλ(Q). By 1.B,
ρ ∈ Cλ(Q). By 2.1.A and 2.1.B, this implies h, F ∈ C2(Q) and therefore u also
belongs to C2(Q). By using 2.1.A and 2.1.B once more,we prove that u is a solution
of (1.1).

The second part of the theorem also follows from 2.1.A and 2.1.B. �

The following result is an immediate implication of Theorem 2.1 and the defi-
nition of a superdiffusion.

Theorem 2.2. If (XQ, Pµ) is an (L,ψ)-superdiffusion and if ψ satisfies condi-
tion 1.B, then, for every f ∈ B, function

(2.2) u(z) = − logPze−〈f,XQ 〉

is a solution of equation (1.1).

2.2. From differential equation (1.1) to integral equation (1.2). Recall
the Improved maximum principle 2.3.6.C:

2.2.1. Suppose that T is a total subset of ∂Q. If v ∈ C2(Q) is bounded above
and if it satisfies conditions

v̇ + Lv ≥ 0 in Q,

lim sup v(z) ≤ 0 as z → z̃ for all z̃ ∈ T ,
then v ≤ 0 in Q.

By using this principle, we get:
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2.2.A. Suppose Q is bounded, T ⊂ ∂regQ is total in ∂Q and u is a bounded
solution of (1.1) in Q. If u is continuous on Q ∪ T , then

(2.3) u+GQψ(u) = KQu.

Proof. By 2.1.A and 2.1.B, F1 = u+GQψ(u) and F2 = KQu satisfy equation
Ḟ + LF = 0 in Q and F1 = F2 = u on T . It follows from 2.2.1 that F1 = F2 in
Q. �

2.2.B. If u is a solution of (1.1) in Q, then VU (u) = u for every U b Q.

Proof. We need to check that

(2.4) u+ GUψ(u) = KUu.

If U is regular, this follows from 2.2.A . In general, we consider a sequence of
regular open sets Un exhausting U (which exists by Theorem 2.4.5) and we pass to
the limit in the equation u+GUnψ(u) = KUnu. �

2.2.C. If u is a bounded solution of (1.1) in Q and if u = f on a total subset T
of ∂Q, then u satisfies equation (1.2).

Proof. We consider a sequence of open sets Qn exhausting Q. By (2.4),
u + GQnψ(u) = KQnu. If τn and τ are the first exit times from Qn and Q, then
τn ↑ τ Πz-a.s. for all z ∈ Q. Hence, KQnu → KQf and GQnu → GQu which
implies (1.2). �

2.3. Comparison principle. The following theorem provides for semilinear
equations a tool similar to 2.2.1.

Theorem 2.3. Suppose that T is a total subset of ∂Q and ψ satisfies 1.C.
Then u ≤ v in Q assuming that:

(a) u, v ∈ C2(Q);
(b) u− v is bounded above and

(2.5) u̇+ Lu − ψ(u) ≥ v̇ + Lv − ψ(v) in Q;

(c) for every z̃ ∈ T ,

(2.6) lim sup[u(z)− v(z)] ≤ 0 as z → z̃.

Proof. Let w = u−v. If the theorem is false, then Q̃ = {z : z ∈ Q,w(z) > 0}
is not empty. By (2.5), ẇ(z) + Lw(z) ≥ ψ(z, u(z)) − ψ(z, v(z)) ≥ 0 in Q̃. Note
that T̃ = ∂Q̃ ∩ (Q ∪ T ) is a total subset of ∂Q̃. If z̃ ∈ ∂Q̃ ∩ Q, then w(z̃) = 0. If
z̃ ∈ ∂Q̃ ∩ T , then

lim supw(z) ≤ 0 as z → z̃, z ∈ Q

by (2.6). We arrive at a contradiction with 2.2.1. �

Suppose u ∈ C2(Q). We say that u is a supersolution of (1.1) if

(2.7) u̇+ Lu ≤ ψ(u) in Q

and that it is a subsolution of (1.1) if

(2.8) u̇+ Lu ≥ ψ(u) in Q.

The Comparison principle implies
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2.3.A. If u is a subsolution and v is a supersolution in a domain Q and if u− v
is bounded above, then (2.6) implies that u ≤ v in Q.

3. Absolute barriers

3.1. Classes BR and BR1. A real-valued function u0(x) is called an absolute
barrier for the equation (1.1) in Q if it is an upper bound for every bounded positive
subsolution of (1.1). Note that, if u0

i is an absolute barrier in Qi for i = 1, . . . , n,
then maxu0

i is an absolute barrier in the union of Qi. If Qn ↑ Q and if u0
n is an

absolute barrier in Qn, then

u0 =

{
u0

1 on Q1,

u0
n on Qn \Qn−1 for n > 1

is a barrier in Q.
Put ψ ∈ BR if (1.1) has an absolute barrier in every open set Q. Clearly,

class BR contains with every function ψ all functions bigger than ψ. To prove that
ψ ∈ BR, it is sufficient to construct an absolute barrier in each cylinder

(3.1) Q = (t1, t2) ×D where D = {x : |x− x0| < R}.

Moreover, it is sufficient to do this for sufficiently small d(Q) = t2 − t1 +R. Recall
that

(3.2) T = [(t1, t2) × ∂D] ∪ [{t2} × D̄]

is a total subset of ∂Q (see section 2.4.2). Denote by Qψ the class of all cylinders
(3.1) with the property: there exists a supersolution u0 in Q such that

(3.3) u0(z) → ∞ as z → z̃, z ∈ Q

for all z̃ ∈ T . Put ψ ∈ BR1 if Qψ is a base of topology in S (i.e., if, for every z
and every neighborhood U of z there exists Q ∈ Qψ such that z ∈ Q ⊂ U ). By
Theorem 2.3, a supersolution u0 with property (3.3) is an absolute barrier in Q and
therefore BR1 ⊂ BR. Later we will see that BR1 = BR.

Theorem 3.1. A function ψ : R+ → R+ belongs to class BR1 if:

3.1.A. ψ is convex and ψ(0+) = 0, ψ(u) > 0 for u > 0.

3.1.B.
∫ ∞
N
ds

[∫ s
0
ψ(u) du

]−1/2
< ∞ for some N > 0.

Remark 3.1. If a function ψ(u) satisfies conditions 3.1.A and 3.1.B, then
ψ(u)/u → ∞ as u → ∞. Condition 3.1.A implies that assumption 3.1.B holds for
all N > 0 if it holds for some N > 0.

Remark 3.2. Function ψ(u) = kuα satisfies conditions 3.1.A–3.1.B if α > 1
and k > 0 is a constant. If k(z) is a continuous and strictly positive function, then
ψ(z, u) = k(z)uα belongs to class BR because it is bigger than a function of this
class on every cylinder (3.1).

Proof of Theorem 3.1 is based on an inequality ψ(u + v) ≥ ψ(u) + ψ(v) which
follows from the condition 3.1.A. Namely, we use that

u0(r, x) = u(r) + v(x)
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is a supersolution with the property (3.3) if

u̇ ≤ ψ(u) for t1 ≤ r < t2,

u = ∞ for r = t2
(3.4)

and
Lv ≤ ψ(v) in D,
v = ∞ on ∂D.

(3.5)

In an important particular case ψ(u) = uα, α > 1, problems (3.4) and (3.5) can
be solved easily by taking

(3.6) u(r) = [(α− 1)(t2 − r)]−1/(α−1)

and

(3.7) v(x) = λ(R2 − |x− x0|2)−2/(α−1)

with sufficiently big λ. 3 For a general ψ, we solve problems (3.4) and (3.5) by
investigating certain ordinary differential equations. This will be done by proving
a series of lemmas in the next section.

3.2. We assume that ψ satisfies conditions 3.1.A–3.1.B.

Lemma 3.1. Problem (3.4) has a solution for sufficiently small t2 − t1.

Proof. By 3.1.A, ψ(s) and ψ(s)/s are monotone increasing functions and
therefore, for s > 1,

∫ s

0

ψ(u) du ≤ sψ(s) ≤ ψ(s)2/ψ(1).

Hence,
√
ψ(1)

∫ ∞

N

ψ(u)−1du ≤
∫ ∞

N

ds[
∫ s

0

ψ(u) du]−1/2 <∞

for N > 1. The function

F (w) =

∞∫

w

[ψ(s)]−1 ds, w ∈ [N,∞)

is continuous, monotone decreasing and satisfies conditions F (∞) = 0 and F ′(w) =
−1/ψ(w). The inverse function w(r) is a solution of equation ẇ = −ψ(w) on the
interval (0, F (N )) and w(0+) = ∞. If t2 − t1 < F (N ), then u(r) = w(t2 − r)
satisfies equation u̇(r) = ψ[w(t2 − r)] on (t1, t2) and u(t2) = ∞. �

Lemma 3.2. Suppose that 0 < R < 1 and that φ is a function of class 4 C2[0, R).
Let

(3.8) u0(x) = φ(ρ)

where ρ = |x− x0|2. Then u0 belongs to C2(D). If

(3.9) φ′(t) and φ′′(t) ≥ 0 for all t,

3One can take λ = cR2/(α−1)(1∨R)1/(α−1) where c is a constant depending only on upper

bounds of the coefficients of L in D. [See [Dyn91c], pp. 101-102].
4We denote, as usual, by C2 the class of twice continuously differentiable functions.
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then

(3.10) Lu0(x) ≤ αφ′′(ρ(x)) + βφ′(ρ(x)) in D

where positive constants α, β depend only on the coefficients aij, bi of L in D.

Proof. Put zi = xi − x0
i . We have

∂u0

∂xi
= 2φ′(ρ)zi,

∂2u0

∂xi∂xj
= 4φ′′(ρ)zizj for i 6= j,

∂2u0

(∂xi)2
= 4φ′′(ρ)z2

i + 2φ′(ρ).

Note that
Lu0 = A1φ

′′(ρ) +A2φ
′(ρ)

where

A1 = 4
∑

aijzizj,

A2 = 2
∑

aii + 2
∑

bizi.

If α1(x) is the maximal eigenvalue of the matrix 4aij(x), then

4
∑

aij(x)zizj ≤ α1(x)|z|2.

Therefore A1 ≤ α where α is an upper bound for α1(x) in D. If β1 is an upper
bound for (

∑
bi(x)2)1/2 in D, then A2 ≤ β = 2β1 + αd . This implies (3.10). �

Lemma 3.3. For every ε > 0, there exists a constant 0 < R < ε and a solution
of equation

(3.11) f ′′(t) = ψ(f(t)) for 0 < t < R

with the properties

(3.12) f, f ′, f ′′ ≥ 0 and f ′(0) = 0,

(3.13) f(R−) = ∞,

(3.14) 0 < f ′(t) ≤ tψ(f(t)) for 0 < t < R.

Proof. We consider all values of R for which there exists a solution f of (3.11)
subject to the conditions f(0) = c, f ′(0) = 0 and we denote by Rc the supremum of
such R. A basic theorem on ordinary differential equations implies that Rc > 0 for
every c > 0. We are going to prove that Rc → 0 as c → ∞ and that f(Rc−) = ∞.

We have

(3.15) f ′(t) =
∫ t

0

ψ(f(r)) dr in (0, Rc)

and

(3.16) f(t) = c+
∫ t

0

ds

∫ s

0

ψ(f(r)) dr on (0, Rc).

It is clear from (3.15) and (3.16) that f satisfies conditions (3.12) and (3.14) on
(0, Rc).
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Put

(3.17) q(s0, s) =
∫ s

s0

ψ(r) dr.

Note that
1
2
f ′(r)2 =

∫ r

0

f ′′(t)f ′(t) dt =
∫ r

0

ψ(f(t))f ′(t) dt = q(c, f(r)) for 0 < r < Rc.

Hence,
(3.18)

Rc =
∫ Rc

0

df(r)/f ′(r) =
1√
2

∫ Rc

0

q−1/2(c, f(r)) df(r) =
1√
2

∫ f(Rc)

c

q−1/2(c, s) ds.

Since ψ(r) ≤ ψ(r + c) for c ≥ 0, we have q(0, c) ≤ q(c, 2c) and therefore

q(0, s) = q(0, c) + q(c, s) ≤ 2q(c, s) for s > 2c.

Hence, q(c, s)−1/2 ≤
√

2q(0, s)−1/2 and

(3.19) Rc ≤ I(c) + J(c)

where

I(c) =
1√
2

∫ 2c

c

q(c, s)−1/2 ds, J(c) =
∫ ∞

2c

q(0, s)−1/2 ds.

For s ∈ (c, 2c), q(c, s) ≥ ψ(c)(s − c) and therefore

I(c) ≤ 1√
2

∫ 2c

c

[ψ(c)(s − c)]−1/2 ds =

√
2c
ψ(c)

→ 0 as c→ ∞.

By 3.1.B, J(c) also tends to 0 as c→ ∞. By (3.19), Rc → 0.
If f(t−) < ∞, then, by (3.14), f ′(t−) < ∞ and a solution of (3.11) can be

continued to an interval (0, t1) with t1 > t. Hence, t < Rc. We conclude that
f(Rc−) = ∞. �

Lemma 3.4. For every ε ∈ (0, 1), there exists 0 < R < ε such that the problem
(3.5) has a solution in D = {|x− x0| < R}.

Proof. It is sufficient to construct, for some R < ε, a function φ of class
C2[0, R) with the property (3.9) such that φ(R−) = ∞ and

(3.20) αφ′′ + βφ′ ≤ ψ(φ) on (0, R).

Indeed, by Lemma 3.2, (3.20) implies that u0 given by (3.8) is a solution of the
problem (3.5).

We apply Lemma 3.3 to function ψ/α with ε replaced by λε and we get a
constant R′ ∈ (0, λε) and a function f on an interval (0, R′) subject to the condition
(3.12) and the conditions
(3.21)
f(R′−) = ∞, f ′′(t) = ψ(f(t))/α and 0 < f ′(t) ≤ tψ(f(t))/α for 0 < t < R′.

We define φ by the formula φ(ρ) = f(λρ) for 0 < ρ < R where R = R′/λ < ε. Note
that left side in (3.20) is equal to

αλ2f ′′(λρ) + λβf ′(λρ)

which, by (3.21), does not exceed λ2ψ[φ(ρ)][1 + βεα−1] for 0 < ρ < R. Condition
(3.20) holds if λ is sufficiently small. �
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3.3. Passage to the limit.

Theorem 3.2. Suppose that ψ ∈ BR satisfies conditions 1.B and 1.C and that
un → u at every point of Q. If un are solutions of (1.1), then so is u.

Proof. Every z ∈ Q is covered by U b Q. By 2.2.B, equation (2.4) holds for
un. Since ψ ∈ BR, un are uniformly bounded in Ū . By the dominated convergence
theorem, (2.4) holds also for u. By Theorem 2.1, u is a solution of (1.1) in U . �

Theorem 3.3. Let ψ ∈ BR1 satisfy 1.B and 1.C and suppose that solutions
un of (1.1) converge to u at every point of Q. Let O ⊂ ∂regQ be relatively open in
∂Q and let f be a continuous function on O. If un satisfy the boundary condition

(3.22) un = f on O,

then the same condition holds for u.

The proof is based on the following lemma.

Lemma 3.5. Suppose that ψ satisfies the conditions of Theorem 3.3 and that O
is a relatively open subset of ∂Q. Denote U(O, κ) the class of all positive solutions
of (1.1) such that, for all z′ ∈ O,

(3.23) lim supu(z) ≤ κ as z → z′.

Then, for every z̃ ∈ O, there exist N < ∞ and an open cylinder V containing z̃
such that

(3.24) u(z) ≤ N for all u ∈ U(O, κ) and all z ∈ Q ∩ V̄ .

Proof. Since ψ ∈ BR1, there exists a cylinder U ∈ Qψ which contains z̃. We
can choose this cylinder in such a way that A = Ū ∩∂Q ⊂ O and that the boundary
of Q0 = Q ∩ U is the union of A and B = ∂U ∩Q. Let u0 be a supersolution in U
exploding on the set T defined by (3.2). We can assume that u0 ≥ κ (otherwise we
replace it by u0 + κ). The set T 0 = (T ∩ Q) ∪ A is total in ∂Q0. If u ∈ U(O, κ),
then

lim sup(u(z) − u0(z)) ≤ 0 as z → z′ ∈ T 0.

By the comparison principle, u ≤ u0 in Q0. Let V be a cylinder such that z̃ ∈ V
and V̄ ⊂ U . The condition (3.24) holds for V and the maximum N of u0 on V̄ . �

Proof of Theorem 3.3. We can assume that Ō ⊂ ∂regQ and f ≤ κ on O
for some κ. Let z̃ ∈ O and let V be the cylinder constructed in Lemma 3.5. If the
diameter of V is sufficiently small, then A1 = V̄ ∩ ∂Q ⊂ O and Q1 = V ∩ Q is
strongly regular by Lemma 2.4.3. Put f̄n = f on A1 and f̄n = un on ∂rQ1 \ A1.
By 2.2.C,

un + GQ1ψ(un) = KQ1 f̄n.

By (3.24), un ≤ N in Q1. Since un → u in Q1,

u+ GQ1ψ(u) = KQ1 f̄

by the dominated convergence theorem. By Theorem 2.1, this implies u(z̃) =
f(z̃). �
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4. Operators VQ

4.1. In this section we assume that ψ satisfies conditions 1.A, 1.C and 1.D.
The transition operators of a superprocess (XQ, Pµ) were defined originally by

the formula

(4.1) VQ(f)(z) = − logPze−〈f,XQ 〉

for Q ∈ O0 and f ∈ B. Function u = VQ(f) satisfies the equation

(4.2) u+GQψ(u) = KQf.

In section 4.4.1 both formulae were extended to all open sets Q. By a monotone
passage to the limit they can be extended to all measurable functions f with values
in [0,∞].

On the other hand, in Theorem 4.3.1, we introduced VQ(f) for Q ∈ O0, f ∈
B starting from the equation (4.2) without assuming the existence of a (ξ, ψ)-
superprocess. Properties 4.3.2.A–4.3.2.C allow us to define VQ(f) for all open sets
Q and all positive functions f by the formula

(4.3) VQ(f) = sup
k,`

VQk (f ∧ ` 1Qc )

where Qk is the intersection of Q and Sk = (−k, k) × E. If there exists a (ξ, ψ)-
superprocess, then (4.3) is equivalent to the probabilistic formula (4.2).

Note that VQ(f) = f on Qc and that VQ(f) = VQ(f̃ ) if f = f̃ on Qc. Moreover,
VQ(f) = VQ(f̃ ) on Q̄ if f = f̃ on ∂Q.

We have:

4.1.A. If f ≤ f̃ on Qc, then VQ(f) ≤ VQ(f̃ ). Moreover, VQ(f) ≤ VQ(f̃ ) on Q̄ if
f ≤ f̃ on ∂Q.

4.1.B. If Q ⊂ Q̃ and if f = 0 on Q̃, then VQ(f) ≤ VQ̃(f).
These properties follow immediately from 4.3.2.A–3.2.B.

4.1.C. If fn ↑ f , then VQ(fn) ↑ VQ(f).

Proof. By 4.3.2.C, for every k,

VQk(fn ∧ ` 1Qc ) ↑ VQk (f ∧ ` 1Qc)

as n→ ∞. By (4.3),

sup
n
VQ(fn) = sup

n
sup
k,`

VQk (fn ∧ ` 1Qc )

= sup
k,`

sup
n
VQk(fn ∧ ` 1Qc ) = sup

k,`
VQk(f ∧ ` 1Qc) = VQ(f).

�

4.1.D. For arbitrary Q and f , u = VQ(f) satisfies the integral equation (4.2). 5

Proof. Because of 4.1.C, it is sufficient to prove this for bounded f . Functions
un = VQn(f1Qc ) satisfy equation

(4.4) un +GQnψ(un) = KQn (f1Qc ).

5Both sides in 4.2 can be infinite in which case the equation is rather useless.
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Note that the first exit time from Qn is equal to τ ∧n where τ is the first exit time
from Q. If τ > n, then ητ∧n ∈ Q.Therefore

KQn (f1Qc )(z) = Πz{f(ητ ), τ ≤ n} → KQ(f)(z).

We get (4.2) by passing to the limit in (4.4). �

4.1.E. For arbitrary open sets Q′ b Q,

(4.5) VQ′VQ = VQ.

Proof. If f ∈ B, then (4.5) follows from Lemma 4.3.1. For an arbitrary f
and fn = f ∧ n, we have VQ′VQ(fn) = VQ(fn). By 4.1.C, this implies VQ′VQ(f) =
VQ(f). �

4.2. We use notation Qk = Q ∩ Sk introduced in the previous section.

Proposition 4.1. If fm ↑ f , then

(4.6) VQk(fm1Qc) ↑ VQ(f) as k ↑ ∞,m ↑ ∞.

Proof. It follows from 4.1.A and 4.1.B that

uk`m = VQk(fm ∧ `1Qc )

increases in k, ` and m. Denote its supremum by u. By (4.3),

sup
k,`

uk`m = VQ(fm)

and, by 4.1.C,
u = sup

m
VQ(fm) = VQ(f).

On the other hand, by 4.1.C,

sup
`
uk`m = VQk(fm 1Qc ).

Therefore
VQ(f) = u = sup

k,m
VQk (fm1Qc ).

�

Proposition 4.2. If fn ↑ f , then

(4.7) VQm (fn) ↑ VQ(f) as m ↑ ∞, n ↑ ∞.

Proof. By 4.1.A and 4.1.B, umn = VQm (fn) is increasing in m and n.
Note that Qn ∩ Sk = Qn∧k and, by (4.3),

umn = sup
k,`

VQm∧k [fn ∧ ` 1(Qm∧k)c ].

Therefore

sup
m,n

VQm (fn) = sup
j,`,n

VQj [fn ∧ `1(Qj )c ] = sup
n
VQ(fn) = VQ(f).

�
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Lemma 4.1. Suppose that ψ ∈ BR, Q is an open set and O is a regular 6

relatively open subset of ∂Q. Let f be a function with values in [0,∞] equal to 0 on
S \O. Suppose that Qn ∈ O0, Qn ↑ Q, On is a relatively open subset of ∂Q ∩ ∂Qn
and On ↑ O. Let fn be a bounded function vanishing on S \ On. If fn ↑ f on O,
then VQn (fn) → VQ(f).

Proof. 1◦. Suppose that Q ∈ O0 and f ∈ B. Then u = VQ(f) is a unique
solution of the equation

(4.8) u+ GQψ(u) = KQ(f)

and un = VQn (fn) is a solution of

(4.9) un +GQnψ(un) = KQn (fn).

It follows from 4.1.A and 4.1.B that un is an increasing sequence. We claim that
u = limun satisfies (4.8). By the monotone convergence theorem, GQnψ(un) →
GQψ(u). To get (4.8) from (4.9), it is sufficient to show that KQn (fn) → KQ(f)
which will be established if we prove that

(4.10) fn(ητn ) ↑ f(ητ )
where τ and τn are the first exit times from Q and Qn. Put A = {ητ ∈ O}, An =
{ητn ∈ On}. Since On is regular, we have

An ⊂ {τn = τ} ∩ {ητ ∈ On}.
Therefore A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · · ⊂ A. Denote by η(I) the image of an
interval I under the mapping t → ηt. Note that A = {η[α, τ ] ⊂ Q ∪ O} and
An = {η[α, τn] ⊂ Q ∪On}. If η[α, τ ] ⊂ Q ∪O, then, for some n, η[α, τ ] ⊂ Q ∪On
and therefore η[α, τn] ⊂ Q∪On. Hence An ↑ A, and (4.10) holds because fn(ητn) =
fn(ητn)1An = fn(ητ )1An and f(ητ )1A = f(ητ ).

2◦. Now we consider the case when f ∈ B and Q is an arbitrary open set.
Denote by Qk, Qkn, O

k and Okn the intersections of Q,Qn, O and On with Sk . Put

fkn = fn1Ok
n
, fk = f1Ok , V kn = VQk

n
, ukn = V kn (fkn ).

If n′ ≥ n, then On′ ⊃ On and fn′ = fn on On. It follows from 4.1.A and 4.1.B that
ukn is increasing in n and k. By Proposition 4.1,

sup
n
V kn (fkn ) = VQk (fk).

By Proposition 4.2,
sup
k
VQk (fk) = VQ(f)

and
sup
k
V kn (fkn ) = VQn (fn).

Hence, VQ(f) = sup
n
VQn (fn).

3◦. If f is unbounded, then, by 2◦,

VQ(f ∧ `) = sup
n
VQn (fn ∧ `)

for every `. By 4.1.C,

VQ(f) = sup
`
VQ(f ∧ `) = sup

`,n
VQn (fn ∧ `) = sup

n
VQn (fn).

6This means: all points of O belong to ∂regQ.
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�

5. Boundary value problems

5.1. In the rest of this chapter we assume that ξ is an L-diffusion and that
ψ satisfies conditions 1.A–1.D. [These conditions hold if ψ does not depend on z,
and satisfies 3.1.A and 1.B.]

For a bounded strongly regular domain Q and for a continuous function f ,
u = VQ(f) can be defined as a unique bounded solution of the boundary value
problem

u̇+ Lu = ψ(u) in Q,
u = f on ∂rQ.

(5.1)

Indeed, u = VQ(f) is bounded because u ≤ KQf and f is bounded. By Theorem
2.1, u satisfies (5.1) and, by the comparison principle (Theorem 2.3), the problem
(5.1) has no more than one bounded solution.

A more general boundary value problem is treated in the following theorem.

Theorem 5.1. Suppose that ψ ∈ BR, Q is an open set and O is a regular
relatively open subset of ∂Q.

If a function f : ∂Q → [0,∞] is continuous on O and equal to 0 on Γ = ∂Q\O,
then u = VQ(f) is the minimal solution of the boundary value problem

u̇+ Lu = ψ(u) in Q,

u = f on O.
(5.2)

Proof. By Lemma 2.4.4, there exists a (Q,Γ)-sequence Qn. Denote by On
the set of all z ∈ O such that d(z,Q \Qn) > 0. Clearly, On ↑ O. Functions

fn(z) =

{
f(z) ∧ [d(z,Q \Qn)n] for z ∈ On,

0 for z /∈ On

satisfy conditions
(i) fn ≥ 0 and fn = 0 on Ocn;
(ii) fn are continuous on ∂Qn;
(iii) fn ↑ f ;
(iv) for an arbitrary k, On ∩ {f < k} ⊂ {f = fn} for all sufficiently large n.
By (i)–(ii), the function un = VQn (fn) is a solution of the problem

u̇n + Lun = ψ(un) in Qn,
un = fn on ∂rQn.

(5.3)

It follows from 4.1.A and 4.1.B (or from 4.3.2.A and 3.2.B) that un ≤ un+1 in Q.
By Theorem 3.2, u = limun satisfies the equation u̇ + Lu = ψ(u) in Q. By (iv),
fn = f for all sufficiently large n on the set On ∩ {f < k}. Since On ⊂ ∂rQn,
un = f on On ∩ {f < k} by (5.3). By Theorem 3.3, u = f on O ∩ {f < ∞}. If
z ∈ Ok ∩ {f = ∞}, then, for every n ≥ k, z belongs to On and, by (5.3),

un(z) = fn(z) = d(z,Q \Qn)n.

Since u ≥ un, u(z) = ∞ = f(z).
We proved that u is a solution of (5.1). If v is an arbitrary solution of this

problem, then v ≥ un on Qn by the comparison principle. Hence, v ≥ u on Q.
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It remains to prove that u = VQ(f). Since un = VQn (fn) by 2.2.C, this is an
implication of Lemma 4.1. �

Corollary 5.1. Suppose Q ⊂ Q̃ and O = ∂Q ∩ Q̃ is regular for Q. Then
VQ(1Q̃ũ) ≤ ũ for every ũ ∈ U(Q̃).

Indeed, ũ ∈ U(Q̃) satisfies (5.2) with f = 1Q̃ũ. By Theorem 5.1, u = VQ(f) is
a minimal solution of (5.2). Hence, u ≤ ũ.

Corollary 5.2. A function ψ belongs to the class BR if and only if it belongs
to BR1.

We already know (see section 3.1) that BR1 ⊂ BR. Now let ψ ∈ BR. If Q is a
cylinder (3.1) and if O = T is given by (3.2), then, by Theorem 5.1, the condition
(3.3) holds for u0 = VQ(f) where f = ∞ on O, f = 0 on ∂Q \O. Hence, ψ ∈ BR1.

5.2. Minimal absolute barrier. Here is another implication of Theorem 5.1.

Theorem 5.2. Let ψ ∈ BR. If Q is strongly regular, then u = VQ(∞ · 1∂rQ) 7

is equal to the supremum of all bounded subsolutions of the equation (1.1). [Hence,
it is the smallest absolute barrier in Q.]

Proof. Let ũ be the supremum of bounded subsolutions in Q. Functions
un = VQ(n1∂rQ) are bounded and, by Theorem 5.1, they satisfy the equation (1.1).
Therefore un ≤ ũ. By 4.1.C, un ↑ u. Hence, u ≤ ũ. On the other hand, if v is any
bounded subsolution, then v ≤ u by Theorem 2.3. Thus ũ ≤ u. �

Remark 5.1. Suppose that O is a regular relatively open subset of ∂Q. If X
is an (L,ψ)-superdiffusion, then

(5.4) VQ(∞ · 1O)(z) = − logPz{XQ(O) = 0}.
If Q is strongly regular, then a minimal absolute barrier for (1.1) is given by the
formula

(5.5) u0(z) = − logPz{XQ = 0}.

Indeed, by (4.1), VQ(n1O)(z) = − logPze−nXQ(O). By passing to the limit as
n→ ∞, we get (5.4). Theorem 5.2, (5.4) and 4.4.3.2 imply (5.5).

5.3. Maximal solutions.

Theorem 5.3. Suppose that ψ ∈ BR and Q is an arbitrary open set. If a closed
subset Γ of ∂Q contains all irregular points, then there exists a maximal solution
wΓ
Q of the problem

u̇+ Lu = ψ(u) in Q;

u = 0 on ∂Q \ Γ.
(5.6)

If X is an (L,ψ)-superdiffusion, then

(5.7) wΓ
Q(z) = − logPz(ΩΓ)

where

(5.8) ΩΓ = {GQ is compact and GQ ∩ Γ = ∅}.

7A notation ∞ · ϕ is used for the function equal to infinity on the set {ϕ > 0} and equal to

0 on the set {ϕ = 0}.
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The maximal solution wQ of equation (1.1) is given by the formula

(5.9) wQ(z) = − logPz{GQ is compact and GQ ⊂ Q}.

Proof. 1◦. Consider a (Q,Γ)- sequence Qn and put

On = ∂rQn ∩Q, fn = ∞· 1On , vn = VQn (fn).

By Theorem 5.1,
v̇n + Lvn = ψ(vn) in Qn;

vn = ∞ on On.
(5.10)

By 4.1.D,
vn +GQnψ(vn) = KQnfn

and therefore vn ≤ KQnfn = 0 on Bn = ∂Qn \On. We claim that

(5.11) vn+1 ≤ vn on Qn.

To prove this, we use the Comparison principle (Theorem 2.3). Since ∂rQn is total
in ∂Qn, we need only to check that vn+1 ≤ vn on ∂rQn and that vn+1 is bounded on
Qn. The first statement is true because vn = ∞ on On and vn+1 = 0 on Bn. The
second one holds because vn+1 is continuous on Q̄n. By Theorem 3.2 and Theorem
3.3, wΓ

Q = lim vn is a solution of the problem (5.6). If u is an arbitrary solution,
then u is bounded on Qn and u = 0 on Bn, vn = ∞ on On. By the Comparison
principle, u ≤ vn in Qn. Therefore u ≤ wΓ

Q in Q.
2◦. If X is an (L,ψ)-superdiffusion, then, by (5.4), vn = − logPz{XQn (On) =

0}. By 4.4.3.2, XQn does not charge, a.s., the set of all irregular points of ∂Qn.
Since all points in ∂Qn ∩Q not in On are irregular, XQn (On) = XQn (Q) a.s. and
vn(z) = − logPz{XQn (Q) = 0}. By Theorem 4.5.3,

(5.12) Pz{XQn (Q) = 0} ↑ Pz(ΩΓ)

and therefore vn → − logPz(ΩΓ).
We get (5.9) by applying (5.7) to Γ = ∂Q. �

Remark 5.2. The construction in the proof shows that

(5.13) wΓ
Q = limVQn (fn)

where Qn is a (Q,Γ)-sequence and

(5.14) fn =

{
∞ on On = ∂rQn ∩Q,
0 on ∂Qn \On.

Theorem 5.4. Suppose ψ ∈ BR, Q̃ ⊂ Q are open sets and Γ is a closed subset
of ∂Q ∩ ∂Q̃. If Γ contains all irregular points of ∂Q̃, then wΓ

Q̃
≤ wΓ

Q.

Proof. If there exists an (L,ψ)-superdiffusion, this follows immediately from
(5.7)-(5.8) because GQ̃ ⊂ GQ a.s.

In the general case, we apply Remark 5.2. Note that, if Qn is a (Q,Γ)-sequence,
then Q̃n = Qn∩ Q̃ is a (Q̃,Γ)-sequence. Let f̃n be given by (5.14) with Qn and On
replaced by Q̃n and Õn = Q̃ ∩ ∂Q̃n. Then ṼQn (f̃n) is the minimal solution of the
problem

u̇+ Lu = ψ(u) in Q̃n,

u = ∞ on Õn.
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Since the restriction of VQnfn, also satisfies these conditions, we have ṼQn (f̃n) ≤
VQnfn which implies our theorem. �

6. Notes

Relations between semilinear parabolic equations and superdiffusions were stud-
ied in [Dyn92] and [Dyn93] for the case ψ(u) = uα, 1 < α ≤ 2.

Conditions for the existence of absolute barriers for the equation ∆u = ψ(u)
were obtained independently by Keller [Kel57a] and Osserman [Oss57]. A more
general equation Lu = ψ(u) was considered in the Appendix in [DK98a]. Theorem
3.1 provides an adaptation of the previous results to a parabolic setting.

The minimal solution of the problem (5.2) and the maximal solution of the
problem (5.6) were investigated in [DK99] under the assumption of the existence
of an (L,ψ)-superdiffusion. 8 The minimal solution in an elliptic setting was
studied earlier in [Dyn97b]. In section 5 of Chapter 5 we cover a much wider class
of functions ψ by combining probabilistic and analytic arguments.

8In [DK99] a more general operator L with a zero order term was considered.
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CHAPTER 6

Linear elliptic equations and diffusions

In section 1 we formulate some fundamental results on elliptic differential equa-
tions of the second order. We also give exact references to books where the proofs
of these results can be found. Most references are to monographs [GT98] and
[Mir70]. We were not able to find a proof of an important bound for the Poisson
kernel in any book and we give such a proof (based on a paper [Maz75]) in the
Appendix B.

In section 2 we introduce time homogeneous diffusions and we consider their
Poisson and Green’s operators. (We use mostly a shorter name “homogeneous”
instead of “time homogeneous”.)

At the end of the chapter we establish a probabilistic formula for a solution of
the Dirichlet problem for the equation Lu(x) = a(x)u(x).

1. Basic facts on second order elliptic equations

1.1. Hölder classes. Let D be a domain in Rd. A function f is called Hölder
continuous in D̄ with Hölder’s exponent λ if there exists a constant Λ such that

|f(x) − f(y)| ≤ Λ|x− y|λ for all x, y ∈ D̄.

It is assumed that 0 < λ ≤ 1,Λ > 0. Λ is called Hölder’s coefficient Hölder
coefficient of f . The class of all Hölder continuous functions in D̄ with Hölder’s
exponent λ is denoted by Cλ(D̄). We put f ∈ Cλ(D) if f ∈ Cλ(Ū ) for all domains
U b D. 1 A function f belongs to C1,λ(D) if all Dif are in Cλ(D) and f belongs
to C2,λ(D) if all Dijf ∈ Cλ(D) for all i, j. . Notation C1,λ(D̄), C2,λ(D̄) have a
similar meaning. Note that C2,λ(D) is a subclass of the class C2(D) of all twice
continuously differentiable functions.

Let E and Ẽ be open subsets of Rd and let x̃ = T (x) be a mapping from E

onto Ẽ. Suppose that the coordinates (x̃1, . . . , x̃d) of x̃ are functions of class C2,λ

of the coordinates (x1, . . . , xd) of x and (x1, . . . , xd) are functions of class C2,λ of
(x̃1, . . . , x̃d). Then we call T a diffeomorphism of class C2,λ.

Formula u(x) = ũ(x̃) where x̃ = T (x) (and x = T−1(x̃)) establishes a 1-1
correspondence between functions on E and functions on Ẽ and u ∈ C2,λ(E) if and
only if ũ ∈ C2,λ(Ẽ).

1.2. Operator L. We consider a second order differential operator

(1.1) Lu(x) =
d∑

i,j=1

aij(x)Diju(x) +
d∑

i=1

bi(x)Diu(x)

1Some times functions f ∈ Cλ(D) are called locally Hölder continuous and functions f ∈
Cλ(D̄) are called uniformly Hölder continuous in D.

95
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in a domain D in Rd. Without loss of generality we can put aij = aji. We assume
that

1.2.A. 2 There exists a constant κ > 0 such that∑
aij(x)titj ≥ κ

∑
t2i for all x ∈ D, t1, . . . , td ∈ R.

1.2.B. All coefficients aij(x) and bi(x) are Hölder continuous in D̄ with exponent
λ and Hölder’s coefficient Λ.

From time to time we use the adjoint operator

(1.2) L∗u =
d∑

i,j=1

Dij(aiju) +
d∑

i=1

Di(biu) =
d∑

i,j=1

a∗ijDiju+
d∑

i=1

b∗iDiu+ c∗u

where

a∗ij = aij, b∗i = bi + 2
∑

j

Djaij,

c∗ =
∑

i

Dibi +
∑

ij

Dijaij.

Operator L∗ is well defined if, in addition to 1.2.A–1.2.B, we impose the condition:

1.2.C. aij ∈ C2,λ(D̄), bi ∈ C1,λ(D̄).

Moreover L∗ has the form (1.1) with an additional term c∗u where c∗ ∈ Cλ(D̄).
Suppose that T is a diffeomorphism from an open set E ⊂ Rd onto an open set

Ẽ ⊂ Rd. To every differential operator L in E of the form (1.1) there corresponds
an operator L̃ in Ẽ of a similar form defined by the formula

(1.3) ṽ = L̃ũ

where ũ(x̃) = u(x) and ṽ(x̃) = v(x) = Lu(x). The coefficients of L̃ and the
coefficients of L are connected by the formulae

(1.4) ãij(x̃) =
∑

k,`

cikc
j
`ak`(x), b̃i(x̃) =

∑

k,`

cik`ak` +
∑

k

cikbk(x)

where cik = ∂x̃i

∂xk
and cik` = ∂2x̃i

∂xk∂x`
.

1.3. Straightening of the boundary. We say that D is a smooth domain
(or a domain of class C2,λ) if, for every y ∈ ∂D, there exists a ball Uy centered at y
and a diffeomorphism ψy of class C2,λ from Uy onto D̃ ⊂ Rd such that ψ(Uy∩D) ⊂
Rd+ = {x ∈ Rd : xd > 0} and ψ(Uy ∩ ∂D) ⊂ ∂Rd+ = {x ∈ Rd : xd = 0}. We say that
ψy straightens the boundary near y.

Diffeomorphisms ψy can be chosen in such a way that: 3

(a) all operators Ly obtained from L by ψy satisfy conditions 1.2.A–1.2.B with
constants κ̃, λ̃, Λ̃ which depend only on κ, λ and Λ (but not on y);

(b) ψy(y) = 0 and Ly = ∆ at point y (that is, for the transformed operator,
ãij = δij).

If diffeomorphisms ψy with the properties described above exist only for y in a
subset O of ∂D, then we say that O is a smooth portion of ∂D.

2The property 1.2.A is called uniform ellipticity and κ is called the ellipticity coefficient of

L .
3See [GT98], section 6.2 and the proof of Lemma 6.1.
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1.4. Maximum principle. We use the following versions of the maximum
principle: 4

1.4.A. Suppose that D is a bounded domain and a(x) ≥ 0 for all x ∈ D. If
u ∈ C2(D) satisfies conditions

(1.5) Lu− au ≥ 0 in D,

and, for all x̃ ∈ ∂D,

(1.6) lim supu(x) ≤ 0 as x → x̃,

then u ≤ 0 in D.

1.4.B. Suppose that D is an arbitrary domain, u ∈ C2(D) and Lu ≤ 0. If u
attains its minimum at a point x0 ∈ D, then it is equal to a constant.

1.5. L-harmonic functions. A function h ∈ C2(D) is called L-harmonic if
it satisfies the equation Lh = 0 in D. Classical harmonic functions are ∆-harmonic
where ∆ is the Laplace operator. We use the shorter name “harmonic functions”
if there is no need to refer explicitly to L.

The set H(D) of all positive harmonic functions in a domainD has the following
properties.

1.5.A. (Harnack’s inequality) For U b D there exists a constant A such that
h(x1) ≤ Ah(x2) for all x1, x2 ∈ U and all h ∈ H(D).

1.5.B. If hn ∈ H(D) and if the values hn(c) at some point c ∈ D are bounded,
then there exists a subsequence hnk which converges uniformly in every U b D.

For the Laplacian L = ∆ these results can be found in the most textbooks
on partial differential equations (e.g., [Pet54]). The general case is covered, for
instance, in [Mir70] and [Fel30].

It follows from 1.5.A, 1.5.B and Lemma 2.3.3 that:

1.5.C. If hn ∈ H(D) converge pointwise to h and if h(c) < ∞ for some c, then
h ∈ H(D) and the convergence is uniform on every U b D.

Remark. Under condition 1.2.C, 1.5.C holds also for positive solutions of
L∗u = 0 (see [GT98], section 6.1).

The maximum principle 1.4.B implies:

1.5.D. Every h ∈ H(D) either is strictly positive or it vanishes identically.

1.6. Poisson’s equation. Poisson’s equation

(1.7) Lu = −f in D

can be investigated by the Perron method. Here is the way this method is presented
in [GT98]. 5

A continuous function u in D is called a supersolution of (1.7) if, for every open
ball U b D and every v such Lv = −f in U the inequality u ≥ v on ∂U implies that
u ≥ v in U . A function u is called a subsolution if −u is a supersolution. Suppose

4Proofs can be found, for instance, in [GT98] (sections 3.1 and 3.2), [Mir70] (Chapter 1,

section 3) or [BJS64] (Part II, Chapter 2).
5The case L = ∆ and f = 0 is treated in many books including [Pet54] and [Doo84].

Gilbarg and Trudinger cover also the general case. Theorem 1.1 below is stated as Theorem 6.11

in [GT98].
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that ϕ is a function on ∂D. We call u ∈ C(D̄) a superfunction (subfunction) relative
to ϕ if it is a supersolution (subsolution) and u ≥ ϕ (u ≤ ϕ) on ∂D.

Theorem 1.1. Suppose that D is a bounded domain, L satisfies conditions
1.2.A–1.2.B, f ∈ Cλ(D) and ϕ is a bounded Borel function on ∂D. Then there
exists a unique solution u of Poisson’s equation (1.7) such that u1 ≤ u ≤ u2 for
every subfunction u1 and every superfunction u2 (relative to ϕ). Moreover, u ∈
C2,λ(D).

We call u the Perron solution of (1.7) corresponding to ϕ.

Theorem 1.2. If D is a bounded smooth domain and if ϕ is continuous then
the Perron solution u is a unique solution of the Dirichlet problem

Lu = −f in D,
u = ϕ on ∂D.

(1.8)

This follows, for instance, from Theorem 6.13 in [GT98].

1.7. Green’s function. The problem (1.8) can be reduced to two particular
cases. In the case when ϕ = 0 the solution can be expressed in terms of the Green’s
function g(x, y) of L in D. This is a function from D ×D to (0,∞]. The following
results, due to Girod, are presented in Miranda’s monograph [Mir70]6 (see section
21 and, in particular, Theorem 21.VI).

Theorem 1.3. Suppose that D is a bounded smooth domain, L satisfies con-
ditions 1.2.A–1.2.C and f ∈ Cλ(D). Then the solution of the problem (1.8) with
ϕ = 0 is given by the formula

(1.9) u(x) =
∫

D

g(x, y)f(y)dy.

The Green’s function g(x, y) is strictly positive and it has the following properties:

1.7.A. For every y ∈ D, u(x) = g(x, y) is a solution of the problem

Lu = 0 in D \ {y},
u = 0 on ∂D.

(1.10)

If d ≥ 2, then g(y, y) = ∞. For every x ∈ D, v(y) = g(x, y) is a solution of the
problem

L∗v = 0 in D \ {x},
v = 0 on ∂D.

(1.11)

1.7.B. 7 For all x, y ∈ D,

(1.12) g(x, y) ≤ CΓ(x− y)

where C is a constant depending only on D and L and

(1.13) Γ(x) =





|x|2−d for d ≥ 3,
−(log |x|)∨ 1 for d = 2,
1 for d = 1.

6The case L = ∆ is considered also in [GT98], Chapter 4 and in [Doo84], Part 1, Chapter
VII .

7Corollary to Theorem 3 in [Kry67] implies that 1.7.B holds under very mild conditions on

the coefficients of L.
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1.8. Poisson kernel. The problem (1.8) in the case of f = 0 can be solved
in terms of the Poisson kernel k(x, y) [which is a function from D × ∂D to (0,∞)]
and the normalized surface area γ [which is a probability measure on ∂D].

Let Γ be a subset of Rd. We call it a smooth surface if, for every y0 ∈ Γ, there
exists ε > 0 such that the intersection of Γ with the ε-neighborhood Uε of y0 can
be described by parametric equations yi = ϕi(t1, . . . , td−1) where t = (t1, . . . , dt−1)
is in an open subset of Rd−1 and ϕi are C2,λ-functions such that the (d − 1) × d

matrix bik = ∂ϕi

∂tk
has the rank d− 1. The boundary ∂D of a smooth domain D is a

smooth surface.
The measure γ0 is defined on the Γ ∩ Uε by the formula

(1.14) γ0(B) =
∫

ϕ−1(B)

√
D(t)dt1 . . .dtd−1

where D(t) is the determinant of the matrix

dij =
d−1∑

k=1

bikb
j
k.

Note that D(t) is continuously differentiable and 0 < D(t) < ∞. The measure γ0

does not depend on a parameterization of Γ. It is called the surface area. The
corresponding normalized surface area γ is equal to γ0 divided by γ0(∂D).

The Poisson kernel k(x, y) can be expressed through Green’s function g(x, y)
by the formula

(1.15) k(x, y) =
d∑

1

qi(y)Dyig(x, y)

where ny = (q1(y), . . . , qd(y)) is the conormal to ∂D at y. 8 In other words, k(x, y)
is the derivative of g(x, y) considered as a function of y in the direction of inward
conormal ny to ∂D at point y.

Theorem 1.4. Poisson kernel k(x, y) is continuous in y and it has the following
properties:

1.8.A. If D and L are as in Theorem 1.3 and ϕ ∈ C(∂D), then the solution of
the problem (1.8) with f = 0 is given by the formula

h(x) =
∫

∂D

k(x, y)ϕ(y) γ(dy)

where γ is the normalized surface area on ∂D. For every y ∈ ∂D, h(x) = k(x, y)
is a solution of the problem

Lh = 0 in D,

h = 0 on ∂D \ {y}.(1.16)

1.8.B. For all x ∈ D, y ∈ ∂D,

(1.17) k(x, y) ≤ Cd(x, ∂D)|x− y|−d.
These properties are also proved in [Mir70]. An exception is the property

1.8.B. We prove it in the Appendix B.

8It is defined as directed inwards vector ny with |ny | = 1 that is orthogonal to ∂D in the

Riemannian metric
∑
ai,j(x)dxidxj associated with L. [(aij) is the inverse to the matrix (aij).]
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2. Time homogeneous diffusions

2.1. Homogeneous L-diffusions. An L-diffusion corresponding to an op-
erator 2.(1.1) was introduced in section 2.2.2. For an operator (1.1) with time
independent coefficients, this is a homogeneous Markov process (see the definition
in section 3.5 of the Appendix A). If ϕ is continuous and bounded, then

(2.1) u(t, x) = Πxϕ(ξt) =
∫

E

pt(x, y)ϕ(y) dy

satisfies conditions

(2.2) u̇ = Lu for t > 0, x ∈ E

and

(2.3) u(t, x) → ϕ(x) as t ↓ 0

[(2.1) is a particular case of 2.(2.13) and (2.2)–(2.3) follow from 2.(1.10)].

2.2. First exit times from a bounded domain.

Lemma 2.1. Let τ be the first exit time from a bounded open set D. There exist
constants γ < 1 and C such that, for all s ≥ 0 and all x,

(2.4) Πx{1τ>sτ} ≤ Cγs.

Therefore Πxτ ≤ C.

Proof. Function F (x) = p1(x,Dc) is continuous in x and strictly positive.
Therefore there exists β > 0 such that F (x) ≥ β for all x ∈ D. This implies
Πx{τ > 1} ≤ γ = 1 − β. By (3.12) in the Appendix A, {τ > s}θs{τ > 1} = {τ >
s+ 1} and therefore, by the Markov property (the Appendix A.(3.10)),

Πx{τ > s + 1} = Πx1τ>sΠξs{τ > 1} ≤ γΠx{τ > s}.

Thus Πx{τ > n} ≤ γn and

Πx1τ>sτ =
∫ ∞

s

Πx{τ > t} dt ≤
∑

n>s−1

γn

which implies (2.4). �

2.3. Regular open sets. A point a of ∂D is called regular if, for every ε > 0,
Πa{ξs ∈ D for all 0 < s < ε} = 0. We say that an open set D is regular if all points
of ∂D are regular. This is a stronger definition than one used in the parabolic
setting (see section 2.4.2). It is justified because, in the elliptic setting, every open
set can be approximated by regular domains in the present stronger sense. 9

Theorem 2.4.4 implies that a ∈ ∂D is regular if there exists a closed ball A
such that a is the only common point of A, D̄ and a neighborhood of a. It follows
from this criterion that all smooth domains are regular.

9Note that, if D is regular in an elliptic setting, then every cylinder (t1, t2)×D is regular in

the sense of section 2.4.2.
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2.4. Poisson operator. The Poisson operator corresponding to D is defined
by the formula

(2.5) KDf(x) = Πx1τ<∞f(ξτ )

where τ = τ (D) is the first exit time from D.
The following results are elliptic versions of the results proved in section 3 of

chapter 2:

2.4.A. A continuous function h is L-harmonic in D if and only if KUh = h for
all U b D.

2.4.B. If D and ϕ are bounded, then h = KDϕ is the Perron solution of the
equation Lh = 0 corresponding to ϕ.

These propositions can be proved by the same arguments as their parabolic
counterparts or they can be deduced from the results of Part 1. Indeed, if KQ are
operators defined by 2.(3.1), then, for a time independent function ϕ, KQϕ = KDϕ
with Q = R ×D. To get 2.4.A, we use the following lemma:

Lemma 2.2. Let Qk = (−k, k) × D. If Πxτ (D) < ∞ and if f is bounded and
time independent, then

(2.6) KQkf(r, x) → KDf(x) for all r.

Proof. If x /∈ D, then both parts of (2.6) are equal to f(x). If x ∈ D and
r ∈ (−k, k), then (r, x) ∈ Qk and, Πr,x-a.s., the first exit time τk from Qk is equal
to τ ∧ k where τ = τ (D). Hence, Πr,x-a.s., f(ξτk ) → f(ξτ ) and (2.6) follows from
the dominated convergence theorem. �

We leave it to the reader to get, in a similar way, 2.4.B.
It follows from (3.11) in the Appendix A that, for all U b D,

(2.7) KUKD = KD .

(Cf. 2.(3.2).)
For bounded smooth D and continuous ϕ,

(2.8) KDϕ(x) =
∫

∂D

k(x, y)ϕ(y)γ(dy)

where k(x, y) is the Poisson kernel described in section 1.8. Indeed, by 2.4.B and
Theorems 1.1–1.3, both sides represent the Perron solution of Lu = 0 in D corre-
sponding to ϕ. Formula (2.8) can be extended to all positive Borel ϕ.

Theorem 2.4.2 implies:

2.4.C. If a is a regular point of ∂D and if ϕ is a bounded function on ∂D which
is continuous at a, then

(2.9) KDϕ(x) → ϕ(a) as x→ a.

2.5. Green’s operators. Green’s operator for (ξt,Πx) in D is defined by the
formula

(2.10) GDf(x) = Πx

∫ τ

0

f(ξs) ds

where τ = τ (D).
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If GQ are operators defined by the formula 2.(5.13), then, for a time indepen-
dent function f , GQf = GDf for Q = R ×D. Indeed, by (3.12) in the Appendix
A,

{r < τ} ⊂ {θr [1s<τf(ξs)] = 1s<τ−rf(ξs+r )}

and therefore

(2.11) θr

∫ τ

0

f(ξs) ds =
∫ τ

r

f(ξs) ds

on the set {r < τ}. For every (r, x) ∈ Q, Πr,x{r < τ} = 1. The equation
GDf = GQf follows from (3.9) in the Appendix A and (2.11).

The relation 2.(5.15) implies that, if D̃ ⊂ D, then

(2.12) GD = GD̃ +KD̃GD.

Lemma 2.3. Let τ = τ (D) and let Qk = (−k, k) × D. If GD|f | < ∞ for all
x ∈ D, then

(2.13) GQkf(r, x) → GDf(x) for all (r, x).

The convergence is uniform if f and D are bounded.

Proof. Let (r, x) ∈ Qk. If τ is the first exit time from D, then, Πr,x-a.s., τ ∧k
is the first exit time from Qk and therefore GQkf(r, x) = Πr,xY where

Y =
∫ τ∧k

r

f(ξs) ds.

It follows from (2.11) that

Y = θr

∫ τ∧(k−r)

0

f(ξs) ds Πr,x-a.s.

and, by (3.9) in the Appendix A,

GQkf(r, x) = Πx

∫ τ∧(k−r)

0

f(ξs) ds.

Therefore

(2.14) GDf(x) − GQkf(r, x) = Πx

∫ τ

τ∧(k−r)
f(ξs) ds.

The integrand tends to 0 as k → ∞ and it is dominated in the absolute value by∫ τ
0
|f(ξs)| ds. By the dominated convergence theorem, the integral tends to 0.
If f and D are bounded, then the convergence is uniform by (2.14). �

We have:

2.5.A. If f and D are bounded and if c is a regular point of ∂D, then

(2.15) GDf(x) → 0 as x→ a.

This follows from 2.(5.17) and Lemma 2.3.
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2.5.B. If D is a bounded regular domain and if f is bounded, then u = GDf ∈
Cλ(D). If f ∈ Cλ(D), then u ∈ C2(D), Lu = −f in D and u = 0 on ∂D.

Indeed, let Qk be the domains defined in Lemma 2.3. If f is bounded, then,
by 2.5.3.A, uk = GQkf belong to Cλ(Qk). By Lemma 2.3, uk converge uniformly
to u which implies the first part of 2.5.B. If f ∈ Cλ(D), then, by 2.5.3.A, uk is a
solution of the equation u̇k + Luk = −f in Qk. Therefore the second part of 2.5.B
follows from Lemma 2.3, 2.5.3.E and 2.5.A.

2.5.C. For every bounded smooth D and every bounded or positive Borel func-
tion f ,

(2.16) GDf(x) =
∫

D

g(x, y)f(y) dy

where g(x, y) is the Green’s function in D described in Theorem 1.3.
For f ∈ Cλ(D), this follows from 2.5.B and Theorem 1.3. It can be extended

to all bounded Borel functions f by the multiplicative systems theorem (Theorem
1.1 in the Appendix A) and to all positive Borel f by a monotone passage to the
limit.

2.5.D. Let g, g̃, k, k̃ be the Green’s and Poisson’s kernels for two bounded smooth
domains D̃ ⊂ D. Then

(2.17) g(x, y) = g̃(x, y) +
∫

C

k̃(x, z)γ(dz)g(z, y) for all x, y ∈ D̃

and

(2.18) k(x, y) = k̃(x, y) +
∫

C

k̃(x, z)γ(dz)k(z, y) for all x ∈ D̃, y ∈ A

where A = ∂D ∩ ∂D̃, C = D ∩ ∂D̃ and γ is the normalized surface area on ∂D̃.

Let us prove (2.18) [(2.17) can be proved in a similar way]. Denote by τ and
τ̃ the first exit times from D and D̃. Consider a continuous function f ≥ 0 on ∂D
vanishing off A. Note that θτ̃ f(ξτ ) = f(ξτ ) on {τ̃ < τ} and therefore, by (3.11) in
the Appendix A, for every x ∈ D̃,

(2.19) Πxf(ξτ ) = Πx1τ̃=τ f(ξτ ) + Πx1τ̃<τΠξτ̃ f(ξτ ).

Since {τ̃ = τ} = {ξτ̃ ∈ A}, the first term is equal to
∫
A
k̃(x, y)γ(dy)f(y). If

τ̃ < τ , then ξτ̃ ∈ C and therefore the second term is equal
∫

C

k̃(x, z)γ(dz)Πzf(ξτ ) =
∫

C

k̃(x, z)γ(dz)
∫

A

k(z, y)γ(dy)f(y).

The left side in (2.19) is equal to
∫
A k(x, y)γ(dy)f(y). Therefore, for every x ∈ D̃,

the equation (2.18) holds γ-a.e. on A. It holds everywhere because both sides are
continuous in y.

2.6. The Dirichlet problem for Poisson’s equation. We have:

2.6.A. If D is bounded and regular, f ∈ Cλ(D), ϕ ∈ C(∂D), then u = GDf +
KDϕ is a unique solution of the problem

Lu = −f in D,
u = ϕ on ∂D.

(2.20)
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Indeed, Lu = −f by 2.4.B and 2.5.B. By 2.4.C and 2.5.A, u = ϕ on ∂D. The
uniqueness follows from the maximum principle 1.4.A.

2.6.B. Suppose that D is a bounded regular domain and f ∈ Cλ(D). If u is
continuous in D̄ and Lu = −f in D, then u = GDf +KDu.

This follows from 2.6.A because v = GDf +KDu is a solution of the problem
(2.20) with ϕ = u.

Remark. For smooth domains 2.6.A and 2.6.B follow from Theorem 1.3. The
equation Lw = −f holds for w = GDf even if f is not bounded but GD|f | is finite.

2.7. Green’s function for an arbitrary domain. For an arbitrary domain
D, we consider a sequence of bounded smooth domainsDn exhausting D. It follows
from 2.5.D that gDn ≤ gDn+1 . Therefore there exists a limit

gD(x, y) = limgDn (x, y).

Clearly, this limit does not depend on the choice of Dn and we have:

2.7.A. If D̃ ⊂ D, then gD̃ ≤ gD in D̃.

2.7.B. If Dn ↑ D, then gDn ↑ gD.

It follows from 1.7.A and 1.5.C that, if gD(x, y) < ∞ for some x, y, then
u(x) = gD(x, y) is L-harmonic in D \ {y} and v(y) = gD(x, y) is L∗-harmonic in
D \ {x}. We say that the domain D is a Greenian if, for every D̃ b D, the bound
(1.12) holds for x ∈ D, y ∈ D̃. By 1.7.B all bounded domains are Greenian.

The part of ξ in Q = R×D is a homogeneous Markov process on a random time
interval [0, τ ) with a stationary transition function pt(x, y) = pQ(0, x; t, y) where
pQ is defined by 2.(5.1). Note that, by (2.10) and 2.(5.2),

GDf(x) =
∫

D

dyf(y)
∫ ∞

0

ds ps(x, y).

By comparing this expression with (2.16), we conclude that, for a bounded smooth
domain D,

(2.21) g(x, y) =
∫ ∞

0

ps(x, y) ds.

This formula can be extended to all domains D.

3. Probabilistic solution of equation Lu = au

3.1.

Theorem 3.1. Suppose ξ is an L-diffusion, τ is the first exit time from a
bounded regular domain D, a ≥ 0 is bounded and belongs to Cλ(D). If ϕ ≥ 0 is a
continuous function on ∂D, then

(3.1) u(x) = Πx exp
[
−

∫ τ

0

a(ξs) ds
]
ϕ(ξτ )

is a unique solution of the problem
Lu = au in D,

u = ϕ on ∂D.
(3.2)



3. PROBABILISTIC SOLUTION OF EQUATION Lu = au 105

It is also a unique solution of the integral equation

(3.3) u+GD(au) = KDϕ.

Proof. 1◦. If

Yt = exp
[
−

∫ τ

t

a(ξs) ds
]
,

then
Y ′
t = a(ξt)Yt for t ∈ (0, τ )

and therefore ∫ τ

0

a(ξs)Ys ds = 1 − Y0.

We have θtY0 = Yt, θtϕ(ξτ ) = ϕ(ξτ ) for t ∈ (0, τ ) and, by the Markov property,

GD(au)(x) = Πx

∫ τ

0

a(ξt)ΠξtY0ϕ(ξτ ) dt

= Πx

∫ τ

0

a(ξt)Ytϕ(ξτ ) dt = Πx(1 − Y0)ϕ(ξτ ) = KDϕ(x) − u(x).

This implies (3.3).
2◦. Every solution of (3.3) satisfies (3.2). Indeed, since ϕ is bounded, KDϕ and

u are bounded and therefore au is also bounded. By 2.5.B, v = GD(au) ∈ Cλ(D).
By 2.4.B, w = KDϕ ∈ C2(D) and therefore u = w− v ∈ Cλ(D). We conclude that
u = GDf +KDϕ where f = −au and our statement follows from 2.6.A.

3◦. The maximum principle 1.4.A implies that the problem (3.2) has no more
than one solution. �

3.2. Suppose that a ≥ 0 belongs to Cλ(E). Theorem 3.1 implies the following
properties of the equation

(3.4) Lu = au in E.

3.2.A. A positive function u is a solution of (3.4) if and only if

(3.5) u+ GD(au) = KDu for all D b E.

The class coincides with the class of continuous u subject to the condition

(3.6) u(x) = Πx exp[−
∫ τ

0

a(ξs)ds]u(ξτ ) for all D b E

where τ = τ (D).
To get 3.2.A it is sufficient to apply Theorem 3.1 to ϕ = u on ∂D.
It follows from 3.2.A that:

3.2.B. If solutions un of (3.4) are locally uniformly bounded and if they converge
pointwise to u, then u is a solution of (3.4).

We also have:

3.2.C. If u ≥ 0 satisfies (3.4), then either u is strictly positive or it is identically
equal to 0.

Indeed, suppose u(c) = 0 at c ∈ E and let c ∈ D b E. It follows from (3.6)
that u(ξτ ) = 0 Πc-a.s. Hence, KDu(c) = 0. By 1.5.D, KDu = 0 in D, and, by
(3.5), u = 0 in D.
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4. Notes

4.1. Formula (3.1) can be considered as a version of the Feynman-Kac for-
mula. The original version of this formula was proved for L = ∆. A probabilistic
approach to boundary value problems for general elliptic operators L was developed
in [Dyn65]. All propositions in sections 2 and 3 of Chapter 6 can be deduced from
the results presented in [Dyn65].

4.2. A concept of a Greenian domain was introduced by Doob (see [Doo84])
in the case L = ∆. The entire space Rd is Greenian if d > 2. For d = 2, D
is Greenian if and only if gD(x, y) < ∞ for all x 6= y ∈ D. In terms of the
corresponding Brownian motion, D is Greenian if and only if Πxτ (D) < ∞ for all
x ∈ D.

For a general elliptic operator L, all bounded domains are Greenian. The class
of unbounded Greenian domains depends on L. It is proved in [LSW63] that the
bound (1.12) for D = Rd holds if L is of divergence form

Lu =
∑

i,j

Di(aijDju)

(with the coefficients aij subject to very broad conditions). Hence, for such op-
erators all domains D ⊂ Rd are Greenian for d > 2. This is true also for the
Laplace-Beltrami operator on a Riemannian manifold.

4.3. A lower bound

(4.1) k(x, y) ≥ Cd(x, ∂D)|x− y|−d

with C > 0 similar to the upper bound (1.17) is also true. For operators L of
divergence form this follows , e.g, from Lemma 6 in [Maz75].



CHAPTER 7

Positive harmonic functions

We fix a Greenian domain E in Rd, d ≥ 2 and we use shorter notation
K,G,H, . . . for KE , GE,H(E), . . . . Denote by ζ the first exit time from E.

In this chapter we investigate the set H of all positive harmonic functions in
E. If E is smooth, then every h ∈ H has a representation

h(x) =
∫

∂E

k(x, y)ν(dy)

where k(x, y) is the Poisson kernel and ν ∈ M(∂E). Moreover, this formula es-
tablishes a 1-1 correspondence between M(∂E) and H. A similar correspondence
exists in the general case, but instead of ∂E we need to consider a certain subset of
the Martin boundary ∂̂E and the Poisson kernel must be replaced by the Martin
kernel.

1. Martin boundary

1.1. The Martin kernel. According to Theorem 6.1.3, g(x, y) > 0 for all
x, y; since E is a Greenian domain, g(x, y) < ∞ for x 6= y and, since d ≥ 2,
g(x, x) = ∞. Fix a point c ∈ E. The Martin kernel k is defined by the formula

(1.1) ky(x) = k(x, y) =

{
g(x,y)
g(c,y) for y 6= c,

0 for y = c.

Denote by C0 the class of all positive continuous functions on E which vanish
outside U for some U b E. Put

ky(φ) =
∫

E

φ(x) dx k(x, y).

Lemma 1.1. For every φ ∈ C0, function ky(φ) is continuous and bounded.

Proof. Put

F (x) =
∫ ∞

0

e−tpt(c, x) dt.

Note that ∫

E

pt(c, x)g(x, y) dx =
∫ ∞

t

ps(c, y) ds ≤ g(c, y).

Therefore ∫

E

F (x)g(x, y) dx ≤
∫ ∞

0

dt e−tg(c, y) = g(c, y)

and
∫
F (x)ky(x) dx ≤ 1. Since F is continuous and strictly positive, the ratio φ/F

is bounded on every U b E. It vanishes outside some U b E. If φ/F ≤ Nφ, then

ky(φ) ≤ Nφ

∫

E

F (x)ky(x) dx ≤ Nφ.

107
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It follows from 6.1.7.A and (1.1) that ky is a harmonic function in E\{y}. Note
that ky(c) = 1. Denote by H1 the class of all h ∈ H such that h(c) = 1. Suppose
that a sequence yn ∈ E contains only a finite number of points in every U b E.
If kyn → h, then, by 6.1.5.C, h ∈ H1. Let H̃ stand for the subset of H1 obtained
by this procedure. We will show that every element of H1 can be obtained as a
barycentre of a probability measure on H̃.

1.2. The Martin boundary. A metrizable compact topological space Ê is
called a compactification of E if it contains an everywhere dense open subset home-
omorphic to E. It is called the Martin compactification if k(x, y) can be extended
to a continuous function on E×(Ê\{c}) such that ky1 6= ky2 for every y1 6= y2 ∈ Ê.
We use the name the Martin kernel and the notation k also for the extended func-
tion. The complement ∂̂E of E in Ê is called the Martin boundary. For every
y ∈ ∂̂E, k(·, y) belongs to H1. By 6.1.4.B, k(x, y) > 0 for all x ∈ E, y ∈ ∂̂E.

To construct a Martin compactification, we consider a countable everywhere
dense subset W ofC0 (in the sense of the uniform convergence), we choose constants
cφ > 0 such that ∑

φ∈W

cφNφ < ∞

and we put

d̂(y1, y2) =
∑

φ∈W

|ky1(φ) − ky2(φ)|cφ for y1, y2 ∈ E.

If d̂(y1, y2) = 0, then ky1(φ) = ky2(φ) for all φ ∈ W and therefore ky1 = ky2 . Since
kx(y) = ∞ if and only if x = y, this implies y1 = y2. Clearly, d̂ is a metric in E.
We define Ê as the completion of E with respect to this metric.

Lemma 1.2. If yn ∈ E, y ∈ Ê \ E and if d̂(yn, y) → 0, then kyn converges to
an element of H1

Proof. Since d̂(ym, yn) → 0 as m,n → ∞, we have |kym(φ) − kyn(φ)| → 0
for all φ ∈ W and therefore there exist limits limkyn(φ) = `(φ) < ∞. By Fatou’s
lemma, lim inf kyn(x) < ∞ for some x and, by 6.1.5.B, kyn contains a subsequence
kzi which converges uniformly in every U b E. The limit h belongs to H1. To
prove the lemma, it is sufficient to show that every subsequence of kyn contains
a subsequence tending to h. 1 We already know that kyn contains a convergent
subsequence kzi . We need only to check that h̃ = limkzi = h. This follows from
the equations

∫
h̃φ =

∫
hφ = `(φ) for all φ ∈W . �

Note that limkyn does not depend on the choice of yn ∈ E tending to y ∈ ∂̂E.
We denote it ky.

For every distinct points y, y′ ∈ Ê, ky 6= ky′. We already have seen this if
y, y′ ∈ E. If y ∈ E, y′ /∈ E, then ky(y) = ∞ and ky′(y) < ∞. Finally, if y, y′ /∈ E

and if d̂(yn, y) → 0, then d̂(yn, y′) ≥ d̂(y, y′)/2 for all sufficiently large n which
is impossible if ky = ky′. It remains to prove that Ê is compact and that the

1If kyn (x) does not converge to h(x), then there exists ε > 0 and a subsequence nk such that

|kynk
(x)− h(x)| > ε and no subsequence of kynk

(x) converges to h(x).
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metrics d̂(x, y) and |x− y| define the same topology on E. This follows from three
propositions:

1.2.A. Every sequence yn ∈ E contains a subsequence ynk such that d̂(ynk , y) →
0 for some y ∈ Ê.

1.2.B. If yn ∈ E and yn → y ∈ E \ {c}, then kyn(x) → ky(x) for all x 6= y and
d̂(yn, y) → 0.

1.2.C. If yn ∈ E, y ∈ E \ {c} and if d̂(yn, y) → 0, then |yn − y| → 0.
To prove 1.2.A, we note that, for every φ ∈W , the sequence kyn(φ) is bounded

by Lemma 1.1 and therefore there exists a subsequence yni such that kyni
(φ) con-

verges for all φ ∈W . This implies the convergence of yni in Ê.
1.2.B follows from the continuity of g(x, y) in y for every x 6= y.
Let us prove 1.2.C. It follows from 1.2.A that the sequence yn is contained in

some U b E. It follows from 1.2.B that, if |ynk − z| → 0 for a subsequence ynk ,
then z = y. Hence, |yn − y| → 0.

We conclude that Ê is the Martin compactification of E. For every subset B
of Ê we denote by Bcl the closure of B in Ê.

Remark 1.1. If E is a smooth Greenian domain, then the Martin boundary
∂̂E can be identified with ∂E. The Martin kernel kM and the Poisson kernel kP
defined by 6.(1.15) are connected by the formula

(1.2) kM (x, y) = kP (x, y)/kP (c, y).

Both statements follow from the fact: if yn ∈ E, z ∈ ∂E and if |yn − z| → 0, then

(1.3) g(x, yn)/g(c, yn) → kP (x, z)/kP (c, z).

By the straightening of the boundary near z (see 6.1.3), we reduce the general case
to the case when there exists a ball U centered at z such that E∩U ⊂ Rd+, ∂E∩U ⊂
∂Rd+. Since g(x, y) = 0 for y ∈ ∂E, we have g(x, y) = (yd−zd)Dydg(x, z)+o(|y−z|).
This implies (1.3).

To get an integral representation of any h ∈ H1, we use an L-diffusion in E
and its transformation related to h.

2. The existence of an exit point ξζ− on the Martin boundary

2.1. L-diffusion in E. A time homogeneous L-diffusion was introduced in
section 2 of Chapter 6. In section 2.5.1 we defined a part of an L-diffusion in an
open subset Q of S. If Q = R+ × E, then this is a time-homogeneous Markov
process in E over a random time interval [0, ζ) where ζ is the first exit time of
ηt from Q which coincides with the first exit time of ξt from E. We put ξt = †
(“cemetery”) for t ≥ ζ. If pt(x, y) is the transition density of ξ, then, for all
x ∈ E, 0 < t1 < · · · < tn, B1, . . . , Bn ∈ BE ,

(2.1) Πx{ξt1 ∈ B1, . . . , ξtn ∈ Bn}

=
∫

B1

dy1 . . .

∫

Bn

dyn pt1(x, y1)pt2−t1(y1, y2) . . . ptn−tn−1 (yn−1, yn)

(cf. 2.(5.3)). 2

2Condition tn < ζ can be dropped because it follows from {ξtn ∈ Bn}.
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2.2. Our next goal is to prove the following result.

Theorem 2.1. A limit

(2.2) ξζ− = lim
t↑ζ

ξt

in the topology of Ê exists, Πc-a.s., and it belongs to ∂̂E. For every positive Borel
f and every x ∈ E,

(2.3) Πxf(ξζ−) = Πck(x, ξζ−)f(ξζ−).

2.3. We say that σ is an L-time if σ ≤ ζ and θtσ = (σ − t)+ for all t > 0.
3 This condition is satisfied for ζ. It holds also for the last exit time σ from any
U ⊂ E defined by the formula

σ = sup{s : ξs ∈ U}.

If σ is an L-time, then, for every s > 0,(σ − s)+ is also an L-time. We denote by
Pσ the class of all positive F-measurable functions Y such that, for every t > 0,

(2.4) {t < σ} ⊂ {θtY = Y }.

Heuristically, Pσ is the set of functions determined by ξt, t ≥ σ. Note that ξσ ∈ Pσ
and that P(σ−s)+ ⊃ Pσ for all s ≥ 0.

The first step in proving Theorem 2.1 is the following result:

Theorem 2.2. If σ is an L-time and if a bounded Y belongs to Pσ , then, for
every φ ∈ C0,

(2.5) Πc1σ>tkξσ−t(φ)Y =
∫

E

Πx{1σ>tY }φ(x) dx.

Proof. 1◦. We claim that, for every Y ∈ Pσ and for all ρ ≥ 0, f ≥ 0,

(2.6) Πx

∫ ∞

0

1t<σρ(t)f(ξσ−t)Y dt =
∫

E

g(x, y)f(y)ΠyZ dy

where Z = 1σ>0ρ(σ)Y .
Change of variables s = σ − t shows that the left side in (2.6) is equal to

(2.7) Πx

∫ ∞

0

1s<σρ(σ − s)f(ξs)Y ds.

For all s > 0, by (2.4),

θs[f(ξ0)Z] = 1s<σρ(σ − s)f(ξs)Y.

Therefore, by the Markov property of ξ (see (3.10) in the Appendix A),

Πx1s<σρ(σ − s)f(ξs)Y = ΠxΠξs [f(ξ0)Z] =
∫

E

ps(x, y)F (y) dy

where F (y) = Πy[f(ξ0)Z] = f(y)ΠyZ. By 6.(2.21), this implies that the integral
(2.7) is equal to the right side in (2.6).

2◦. By applying formula (2.6) to x = c, we get

Πc

∫ ∞

0

1t<σρ(t)f(ξσ−t)Y dt =
∫

E

g(c, y)f(y)ΠyZ dy.

3a+ is an abbreviation for a ∨ 0.
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If f(y) = ky(x), then g(c, y)f(y) = g(x, y) and therefore

Πc

∫ ∞

0

1t<σρ(t)kξσ−t (x)Y dt =
∫

E

g(x, y)ΠyZ dy.

Formula (2.6) with f = 1 yields
∫

E

g(x, y)ΠyZ dy = Πx

∫ ∞

0

1t<σρ(t)Y dt.

By Fubini’s theorem, this implies
∫ ∞

0

ρ(t) dtΠc1t<σkξσ−t(φ)Y =
∫ ∞

0

ρ(t) dt
∫

E

dx φ(x)Πx1t<σY.

Since this is true for all ρ ∈ C0, (2.5) holds for almost all t ≥ 0. To complete the
proof, it is sufficient to show that both parts of (2.5) are right continuous in t.

3◦. Since φ ∈ C0, it vanishes outside some U b E. Since E is a Greenian
domain, k(x, y) ≤ CΓ(x− y) for all x ∈ E, y ∈ U . Therefore ky(φ) is continuous in
y on E \ {c} and kξt(φ) is continuous in t. Right continuity of the left side in (2.5)
follows from Lemma 1.1 and the dominated convergence theorem. The other side
is right continuous because {σ > tn} ↑ {σ > t} as tn ↓ t. �

2.4. Our next step is:

Theorem 2.3. Suppose σ is the last exit time from U b E and let φ ∈ C0. If

Zt = 1t<σkξσ−t(φ),

then (Zt,Πc) is a right continuous supermartingale on the interval [0,∞) relative
to a suitable filtration At.

Proof. We put A ∈ As if 1A ∈ P(σ−s)+. Clearly, As is a filtration and
Zt ∈ At. Right continuity of Zt follows from continuity of kξt . If 0 ≤ s ≤ t and if
A ∈ As, then 1A ∈ Pσ and, by (2.5),

(2.8)
∫

A

Zt dΠc = Πc1σ>tkξσ−t(φ)1A =
∫

E

Πx{A, σ > t}φ(x) dx.

The right side is monotone decreasing in t and therefore∫

A

Zt dΠc ≤
∫

A

Zs dΠc.

Hence, (Zt,Πc) is a supermartingale relative to At. �

2.5. Proof of Theorem 2.1.
1◦. By Theorem 2.3, to every U b E there corresponds a positive right contin-

uous supermartingale. Denote it by Z(U ). By Theorem 4.2 in the Appendix A, for
every 0 ≤ a < b,

(2.9) ΠcD(U ) ≤ b/b− a)

where D(U ) = D(Z(U ),R+, [a, b]) is the number of downcrossings of [a, b] by Z(U ).
We claim that D(U ) ≥ U(U ) where U(U ) is the number of upcrossings of [a, b]

by the process
Yt(U ) = 1t<σkξt(φ).

Indeed, Zt(U ) = 1t<σYσ−t for t ≥ 0. Suppose that U(U ) ≥ n. Then there exist

0 ≤ s1 < s2 < · · · < s2n−1 < s2n ≤ σ
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such that

Ys1(U ) ≤ a, Ys2(U ) ≥ b, . . .Ys2n−1(U ) ≤ a, Ys2n(U ) ≥ b.

Let
t1 = σ − s2n, t2 = σ − s2n−1, . . . t2n−1 = σ − s2, t2n = σ − s1.

Then
0 ≤ t1 < t2 < · · · < t2n−1 < t2n ≤ σ

and
Zt1(U ) ≥ b, Zt2(U ) ≤ a, . . .Zt2n−1 (U ) ≥ b, Zt2n(U ) ≤ a.

Hence, D(U ) ≥ n.
We conclude from (2.9) that ΠcU(U ) ≤ b/(b − a) for every U b E. Therefore

ΠcU ≤ b/(b − a) where U the number of upcrossings of [a, b] by 1t<ζkξt(φ). This
implies the existence, Πc-a.s., of the limit of kξt(φ) as t ↑ ζ. Hence, d̂(ξs, ξt) → 0
as s, t ↑ ζ and therefore there exists the limit (2.2).

2◦. To prove formula (2.3) we consider a sequence Dn exhausting E and we
apply (2.5) to the last exit time σn from Dn, to Y = f(ξζ−) and to t = 0. We get

Πc1σn>0kξσn
(φ)Y =

∫

E

Πx(1σn>0Y )φ(x) dx.

Passing to the limit yields

Πckξζ−(φ)Y =
∫

E

ΠxY φ(x) dx.

Since this is true for all φ ∈ C0, formula (2.3) holds for almost all x. Since both
parts are harmonic functions in E, it holds for all x. �

3. h-transform

3.1.

Lemma 3.1. For every stopping time τ and for every pre-τ positive Y ,

(3.1) Πh
xY 1τ<ζ = ΠxY h(ξτ ).

Proof. It is sufficient to prove (3.1) for bounded Y . Every harmonic function
is superparabolic, and, by Proposition 2.3.1, Xt = 1t<ζh(ξt) is a supermartingale
relative to F [0, t] and Πx. Consider simple stopping times τn approximating τ (see
section 2 in the Appendix A). By 4.3.B in the Appendix A, Xτn are uniformly
integrable with respect to Πx. Therefore, if (3.1) holds for τn, it holds also for τ .

We start from the case τ = t and Y = 1B1(ξt1) . . .1Bn(ξtn) where B1, . . . , Bn ∈
BE , 0 ≤ t1 ≤ · · · ≤ tn ≤ t. In this case (3.1) follows from (??). By the multiplicative
systems theorem (Theorem 1.1, Appendix A), it holds for all Y ∈ F [0, t].

If τ is simple with values 0 ≤ t1 < · · · < tk < . . . , then we have

Y 1τ<ζ =
∑

k

Yk1tk<ζ

where Yk = Y 1τ=tk ∈ F≤tk . Note that

Πh
xYk1ζ>tk = ΠxYkh(ξtk)

which implies (3.1). �

Remark. By applying Lemma 3.1, we can deduce that ξt is Πh
x-a.s. continuous

on [0, ζ) from the fact that it is continuous Πx-a.s.
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4. Integral representation of positive harmonic functions

4.1. The Green’s function corresponding to ph is given by the formula

(4.1) gh(x, y) =
∫ ∞

0

pht (x, y) dt =
1

h(x)
g(x, y)h(y)

and the Martin kernel has an expression

(4.2) kh(x, y) =
gh(x, y)
gh(c, y)

=
h(c)
h(x)

k(x, y).

Since khy (φ) = h(c)ky(φ/h) and since φ/h ∈ C0 if φ ∈ C0, the Martin compact-
ification Ê constructed starting from p is also a Martin compactification for all
h-transforms ph. Moreover, the arguments in the proof of Theorem 2.1 can be ap-
plied to measures Π̃h

x = Πh
x/h(x) and they yield the existence Π̃h

x-a.s. of the limit
ξζ− in the topology of Ê and the formula

Π̃h
xf(ξζ−) = Π̃h

c k
h(x, ξζ−)f(ξζ−).

For h ∈ H1, this is equivalent to the formula

(4.3) Πh
xf(ξζ−) = Πh

ck(x, ξζ−)f(ξζ−).

Put

(4.4) νh(B) = Πh
c {ξζ− ∈ B}.

We have:

(4.5) Πh
c f(ξζ−) =

∫

∂̂E

f dνh.

By (4.3)and (4.5),

(4.6) Πh
xf(ξζ−) = Πh

c k(x, ξζ−)f(ξζ−) =
∫

∂̂E

k(x, y)f(y) νh(dy).

By taking f = 1, we get

(4.7) h(x) =
∫

∂̂E

k(x, y) νh(dy).

This is the Martin integral representation of positive harmonic functions. The next
step is to investigate properties of measures νh.

4.2. Put
Πy
x = Πh

x, νy = νh

for h = ky. Since ky(c) = 1, νy is a probability measure.
Denote by E′ the set of all y ∈ ∂̂E such that νy = δy . For every x ∈ E,

(4.8) E′ = {y : νy(y) = 1} = {y : Πy
x{ξζ− = y} = k(x, y)}.

[If y ∈ E′, then probability measure Πy
x

k(x,y)
can be interpreted as the conditional

probability distribution of the path given that ξζ− = y.]

Theorem 4.1. For every h ∈ H, the measure νh is concentrated on E′.
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Proof. Consider a sequence Dn exhausting E and let τn be the first exit time
from Dn. Choose two positive continuous functions φ and f on Ê. It follows from
(3.1) and the strong Markov property of ξ (see (3.11) in the Appendix A) that

Πh
cφ(ξτm )f(ξτn ) = Πcφ(ξτm )Πh

ξτm
f(ξτn ).

By passing to the limit as n → ∞, we obtain

(4.9) Πh
cφ(ξτm )f(ξζ−) = Πcφ(ξτm )Πh

ξτm
f(ξζ−).

By (4.6), the right side is equal to

Πcφ(ξτm )
∫
k(ξτm , y)f(y)νh(dy) =

∫
νh(dy)f(y)Πcφ(ξτm)k(ξτm , y).

By (3.1),
Πcφ(ξτm )k(ξτm , y) = Πy

cφ(ξτm ).

Therefore by (4.9), (4.6) and Fubini’s theorem,

Πh
cφ(ξτm )f(ξζ−) = Πcφ(ξτm )

∫
k(ξτm , y)f(y)νh (dy)

=
∫
νh(dy)f(y)Πck(ξτm , y)φ(ξτm ) =

∫
νh(dy)f(y)Πy

c φ(ξτm ).

By passing to the limit as m → ∞, we get

Πh
c (φf)(ξζ−) =

∫
νh(dy)f(y)Πy

c φ(ξζ−).

By (4.5), this implies
∫

(φf)(y) νh(dy) =
∫ ∫

νh(dy)f(y)φ(z)νy (dz).

Therefore, for every φ,

φ(y) =
∫
φ(z)νy(dz) νh-a.s..

We conclude that νy = δy for νh-almost all y which means that νh is concentrated
on E′. �

4.3. It follows from (4.7) and Theorem 4.1 that every h ∈ H has a represen-
tation

(4.10) h(x) =
∫

E′
k(x, y)ν(dy)

where ν = νh is a probability measure.

Theorem 4.2. A measure ν is determined uniquely by (4.10).

Proof. If f ∈ C(Ê), then, by (4.5) and (3.1),

(4.11)
∫
f dνh = Πh

c f(ξζ−) = limΠh
c f(ξτn ) = limΠc(fh)(ξτn ).

By (4.10) and (3.1),

Πc(fh)(ξτn ) =
∫

E′
Πcf(ξτn )k(ξτn , y)ν(dy) =

∫

E′
ν(dy)Πy

cf(ξτn ).
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Hence, (4.11) and (4.5) imply
∫

E′
f(y)νh(dy) = lim

∫

E′
ν(dy)Πy

cf(ξτn )

=
∫

E′
ν(dy)Πy

cf(ξζ−) =
∫

E′
ν(dy)

∫

E′
f(z)νy(dz).

Since νy = δy for y ∈ E′, we conclude that νh = ν. �

4.4. We say that h ∈ H1 is an extreme element if the decomposition

h =
∫
h̃γ(dh̃)

where γ is a probability measure on H1 implies that γ is concentrated at a single
point h.

Theorem 4.3. The set of extreme elements of H1 coincides with the set ky, y ∈
E′.

Proof. If h is an extreme element of H1, then the representation (4.10) implies
that ν is concentrated at a single point. Hence, h = ky for some y ∈ E′.

On the other hand, suppose that
∫

H1
hγ(dh) = ky.

Formula (??) implies Πy
c =

∫
Πh
c γ(dh) and, by (4.4),

(4.12) νy =
∫

H1
νhγ(dh).

If y ∈ E′, then, by (4.8), νy(y) = 1. On the other hand, for all h ∈ H1, νh
is a probability measure and therefore νh(y) ≤ 1. Formula (4.12) implies that
νh(y) = 1 for γ-almost all h. Hence, νh = δy for γ-almost all h and, by (4.10),
h =

∫
kydνh = ky for γ-almost all h. �

Theorems 4.1–4.3 imply the following result:

Theorem 4.4. Let ∂̂E be the Martin boundary and k(x, y) be the Martin kernel
for a domain E. Denote by E′ the set of y ∈ ∂̂E for which ky = k(·, y) is an extreme
element of H1. Formula (4.10) defines a 1-1 mapping K from the set of all finite
measures on E′ onto H.

If h and ν are connected by formula (4.10), then we write h = hν , ν = trh and
we call ν the boundary trace of h . Note that, if trh = ν, then, by (4.6),

(4.13) Πh
x{ξζ− ∈ B} =

∫

B

k(x, y)ν(dy)

for every Borel subset of ∂̂E.

Remark 4.1. As we know (see Remark 1.1), ∂̂E = ∂E for a smooth Greenian
domain E. We claim that in this case E′ also coincides with ∂E. It is sufficient to
prove that, if h(x) = k(x, y), y ∈ ∂E, then Πh

c {ξζ− 6= y} = 0. To this end we show
that, for every neighborhood U of y, Πh

cϕ(ξζ−) = 0 for every bounded continuous
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function ϕ vanishing in U . Let τn be the first exit time from Dn = {x ∈ E :
d(x, ∂E) > 1/n}. By Lemma 3.1, Πh

cϕ(ξτn ) = Πc(ϕh)(ξτn ) and therefore

(4.14) Πh
cϕ(ξζ−) = limΠc(ϕh)(ξτn ).

If ξζ− ∈ U , then (ϕh)(ξτn ) = 0 for all sufficiently large n. If ξζ− /∈ U , then, by
6.(1.16), limh(ξτn ) = h(ξζ−) = 0. By 6.1.8.B, ϕh is bounded. By the dominated
convergence theorem, the right side in (4.14) is equal to zero.

5. Extreme elements and the tail σ-algebra

5.1. We prove that h ∈ H1 is extreme if and only if Π̃h
x(A) = 0 or 1 for all A

in a certain σ-algebra T .
We define this σ-algebra for an arbitrary homogeneous continuous strong Markov

process (ξt,Πx) in a domain E ⊂ Rd. Denote by E the family of the first exit times
τ from all domains D b E. Denote by F0 the minimal σ-algebra in Ω which con-
tains pre-τ sets for all τ ∈ E . Put A ∈ T if A ∈ F0 and if θτA = A for all τ ∈ E .
We call T the tail σ-algebra.

We say that a probability measure µ on a σ-algebra B is trivial if, for every
B ∈ B, µ(A) = 0 or 1. If B is the Borel σ-algebra in a compact or σ-compact space,
then µ is trivial if and only if it is concentrated at a single point. 4

If a measure Π̃h
x is trivial on the tail σ-algebra T , then the measure νh is trivial

on the Borel σ-algebra in E′. Therefore it is concentrated at a point z ∈ E′ and
h = kz is an extreme element of H1. After some preparations we prove the converse
result.

Theorem 5.1. If h ∈ H1 is extreme, then all measures Πh
x are trivial on T .

5.2. Let h ∈ H1. We say that a function ϕ is h-harmonic if

Π̃h
xϕ(ξτD ) = ϕ(x)

for all D b E and all x ∈ E. This is equivalent to the condition ϕh ∈ H. By
Theorem 4.1,

(5.1) (ϕh)(x) =
∫

E′
k(x, y)νϕh(dy).

We have:

5.2.A. If h is an extreme element of H1 and if an h-harmonic function ϕ is
bounded, then ϕ(x) = ϕ(c) for all x.

Indeed, the condition ϕh ≤ Nh implies νϕh ≤ Nνh and, by the Radon-Nikodym
theorem,

(5.2) νϕh(dy) = ρ(y)νh(dy).

Since νh is extreme, it is concentrated at z ∈ E′. Hence h = kz and, by (5.1) and
(5.2),

ϕ(x)kz(x) = kz(x)ρ(z)

which implies 5.2.A.

4This is true for every topological space such that every cover by open sets contains a count-

able subcover.
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5.2.B. [Strong Markov property of (ξt, Π̃h
x).] If τ < ζ and if X is a bounded

pre-τ function, then, for every bounded Y ∈ F ,

Π̃h
x(XθτY ) = Π̃h

x(XΠ̃h
ξτ
Y ).

Proof. We can assume that Y ∈ F≤t. Then θτY ∈ F≤τ+t and, by Lemma
3.1,

Πh
xXθτY = ΠxXY h(ξτ+t) = ΠxXΠξτY h(ξτ ) = ΠxXΠh

ξτ
Y.

The right side is equal to Π̃h
x(XΠ̃h

ξτ
Y ) because ΠxZ = Πh

xZ/h(ξτ ) for every pre-τ
Z. �

5.2.C. If A ∈ T , then ϕ(x) = Π̃h
x(A) is h-harmonic. If τn = τDn where Dn

exhaust E, then

(5.3) 1A = limϕ(ξτn ) Π̃h
x-a.s.

for all x ∈ E.

Proof. The first part follows from 5.2.B.
If X is a bounded pre-τn function, then, by 5.2.B,

(5.4) Π̃h
xXY = Π̃h

xXθτnY = Π̃h
xXϕ(ξτn ).

Therefore ϕ(ξτn ) is a martingale relative to F≤τn and Π̃h
x. By 4.3.A in the Appendix

A, there exists, Π̃h
x-a.s., the limit Ỹ of ϕ(ξτn ). It follows from (5.4) that Π̃h

xXY =
Π̃h
xXỸ for all X ∈ F≤τn . By the multiplicative systems theorem, this is true for

all bounded X ∈ F0 and therefore Y = Ỹ Π̃h
x-a.s. �

5.3. Proof of Theorem 5.1. By 5.2.C,ϕ(x) = Π̃h
x(A) is h-harmonic. Clearly,

ϕ ≤ 1. If h is extreme, then, by 5.2.A, ϕ(x) = ϕ(c). We conclude from 5.2.C that
1A = ϕ(c) Π̃h

x-a.s. Hence ϕ(c) = 0 or 1 which implies Theorem 5.1.

6. Notes

6.1. In 1941 Martin [Mar41], a young mathematician at the University of
Illinois proposed a method of characterizing all positive solutions of the Laplace
equation in an arbitrary domain of Rd. He died shortly after his paper appeared
and the importance of his results was not immediately appreciated. It seems that
Brelot was the first who attracted attention to Martin’s paper. A probabilistic
interpretation of Martin’s ideas was suggested by Doob [Doo59] who applied them
to harmonic functions associated with discrete Markov chains. A new approach
to Martin’s theory is due to Hunt. In [Hun68] he has shown that the Doob’s
results can be deduced from the study of the limit behavior of paths of the chain
as t → ∞. An improved and simplified presentation of Hunt’s theory is given in
[Dyn69a]. In [Dyn69b] and [Dyn70] the Martin theory was extended to processes
with continuous time parameter and general state space under minimal conditions
on the process. [Some results in this direction were obtained earlier by Kunita and
Watanabe [KW65].] The results in section 5 are due to Doob (see section 2.X.11
in [Doo84]).

The papers [Dyn69b] and [Dyn70] are the basis of Chapter 7. However, by
imposing stronger conditions on the Green’s function, we are able to simplify greatly
the presentation.
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6.2. In this book, we concentrate on diffusions in Rd, but the boundary theory
developed in Chapter 7 depends only on the existence of Green’s function for ξ and
on certain properties of this function. The most important is the bound 6.(1.12).
Instead of this bound, it is sufficient to require that∫

Uε(y)

g(x, y)m(dx) → 0,

∫

Uε(x)

g(x, y)m(dy) → 0

uniformly on every compact subset of E as ε → 0. Here Uε(z) is the ε-neighborhood
of z, and m is a measure in the definition of the transition density of ξ.



CHAPTER 8

Moderate solutions of Lu = ψ(u)

1. Introduction

Our objective is to investigate the set U(E) of all positive solutions of the
equation

(1.1) Lu = ψ(u) in E.

We assume that ψ and the coefficients of L do not depend on time and that ψ
satisfies conditions:

1.A. For every x, ψ(x, ·) is convex and ψ(x, 0) = 0, ψ(x, u) > 0 for u > 0.

1.B. ψ(x, u) is continuously differentiable.

1.C. ψ is locally Lipschitz continuous in u uniformly in x: for every t ∈ R+,
there exists a constant ct such that

|ψ(x, u1) − ψ(x, u2)| ≤ ct|u1 − u2| for all x ∈ E, u1, u2 ∈ [0, t].

[Note that 1.A implies that ψ(x, u1) ≤ ψ(x, u2) for all 0 ≤ u1 < u2.] Additional
conditions will be mentioned each time explicitely.

In section 2 we establish some properties of operators VD. Starting from section
3, we fix a Greenian domain E and we consider an L-diffusion ξ in E [see section
7.2.1]. It is terminated [sent to a “cemetery” †] at the first exit time ζ from E. If
we agree to put f(†) = 0 for all functions f defined on E, then the formula 6.(2.5)
takes the form

(1.2) KDf(x) = Πxf(ξτ )1τ<ζ

In Chapter 8, we investigate solutions of (1.1) dominated by harmonic func-
tions.

2. From parabolic to elliptic setting

2.1. Operators VD. The values of VQ(f) for all open subsets Q of R×Rd and
all Borel functions f : R × Rd → [0,∞] were defined in section 4 of Chapter 5. If
Q = R×D, then VQ preserves the set of time-independent functions and we denote
by VD its restriction to this set. Operators KR×D and GR×D induce the Poisson
and Green’s operators KD and GD defined by the formulae 6.(2.5) and 6.(2.16).
Proposition 5.4.1.D implies:

2.1.A. For every D and every Borel f ≥ 0, u = VD(f) satisfies the integral
equation

(2.1) u+GDψ(u) = KDf.

119
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It follows, respectively, from Theorem 5.2.1, 5.4.1.A, 5.2.2.B, 5.4.1.E and
Corollary 5.5.1 that:

2.1.B. If f is bounded, then (2.1) implies that Lu = ψ(u) in D. If x̃ ∈ ∂D is
regular and if f is continuous at x̃, then VD(f)(x) → f(x̃) as x→ x̃.

2.1.C. If f1 ≤ f2, then VD(f1) ≤ VD(f2).

2.1.D. (Mean value property) If u ∈ U(D), then, for every U b D, VU (u) = u
and therefore u+GUψ(u) = KUu.

2.1.E. If D′ b D, then VD′VD = VD.

2.1.F. Suppose D′ ⊂ D and ∂D′ ∩D is regular for D′.Then VD′(1Du) ≤ u for
every u ∈ U(D).

We also have:

2.1.G. If D1 ⊂ D2 ⊂ D and ∂D2 ∩ D is regular for D2, then VD2 (1Du) ≤
VD1(1Du) for every u ∈ U(D).

Indeed, by 2.1.E, 2.1.F and 2.1.C,

(2.2) VD2 (1Du) = VD1VD2(1Du) ≤ VD1(1Du).

Theorem 5.2.3 implies the following version of the comparison principle:
2.1.H. Suppose D is bounded. Then u ≤ v assuming that u, v ∈ C2(D),

(2.3) Lu − ψ(u) ≥ Lv − ψ(v) in D

and, for every x̃ ∈ ∂D,

(2.4) lim sup[u(x)− v(x)] ≤ 0 as x→ x̃.

This principle is used in the proof of the next proposition:

2.1.I. Suppose ψ ∈ BR is monotone increasing in u. If f : ∂D → [0,∞]
is continuous on a regular relatively open subset O of ∂D and if it vanishes on
∂D \O, then u = VD(f) is the minimal solution of the boundary value problem

Lu = ψ(u) in D,
u = f on O.

(2.5)

Proof. Let Qk = (−k, k) × D and let fk(r, x) = f(x) for (r, x) ∈ Ok =
(−k, k) × O and fk(r, x) = 0 on ∂Qk \ Ok. By Theorem 5.5.1, uk = VQk (fk) is a
minimal solution of the problem

u̇k + Luk = ψ(uk) in Qk,
u = f on Ok.

Since u = VD(f) = limuk, (2.5) holds by Theorems 5.3.2 and 5.3.3. If v is an
arbitrary solution of the problem (2.5), then v ≥ uk in Qk by the comparison
principle. Hence v ≥ u in D. �

A stronger version of 2.1.B follows from Theorems 5.3.2 and 5.3.3:

2.1.J. Suppose that ψ ∈ BR. For every D and every Borel f ≥ 0, the function
u = VD(f) is a solution of the equation Lu = ψ(u) in D. If x̃ ∈ ∂D is regular and
if f is continuous in a neighborhood of x̃, then u(x) → f(x̃) as x→ x̃.

To prove this statement, we apply 2.1.B to fn = f ∧ n and then pass to the
limit.
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2.2. Subadditivity of VD.

Theorem 2.1. If ψ satisfies condition 1.A, then

(2.6) VD(f1 + f2) ≤ VD(f1) + VD(f2)

for all f1, f2 ≥ 0.

We prove the theorem by using two lemmas that are also of independent inter-
est.

Consider operators

(2.7) GaDf(x) = Πx

∫ τ

0

H(s)f(ξs)ds

where

(2.8) H(t) = exp[−
∫ t

0

a(ξs) ds]

and a is a positive Borel function on D. [This is Green’s operator of the L-diffusion
in D with the killing rate a(x).] Note that G0

D = GD.

Lemma 2.1. If GD|f | < ∞, then

(2.9) GaD[f + aGDf ] = GDf.

Proof. It is sufficient to prove (2.9) for f ≥ 0. Put GD = G,GaD = G̃ and let
F = Gf . We have

G̃(aF )(x) = Πx

∫ τ

0

ds H(s)a(ξs)Πξs

∫ τ

0

f(ξt)dt

=
∫ ∞

0

ds Πx1s<τ H(s)a(ξs)Πξs

∫ τ

0

f(ξt)dt.
(2.10)

By the strong Markov property of ξ ((3.11) in the Appendix A) and Fubini’s theo-
rem, the right side is equal to

∫ ∞

0

ds Πx1s<τ H(s)a(ξs)
∫ τ

s

f(ξt)dt

= Πx

∞∫

0

∫ ∞

0

ds dt 10<s<t<τH(s)a(ξs)f(ξt) = Πx

∫ τ

0

f(ξt)dt
∫ t

0

H(s)a(ξs)ds.

(2.11)

Therefore the left side in (2.9) is equal to

(2.12) Πx

∫ τ

0

f(ξt)Y (t) dt

where Y (t) = H(t) +
∫ t
0 H(s)a(ξs) ds. Note that Y ′(t) = 0 and Y (0) = 1. Hence,

Y (t) = 1 and (2.12) is equal to Gf . �

Lemma 2.2. If u, v, ρ ≥ 0 and if

(2.13) u+GDψ(u) + GDρ = v +GDψ(v) < ∞,

then v = u+ GaDρ and therefore v ≥ u.
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Proof. Put w = v − u, f = ψ(v) − ψ(u). There exists a function a ≥ 0 such
that f = aw. We have GD|f | ≤ GDψ(u) + GDψ(v). By (2.13), GDψ(u) < ∞ and
GDψ(v) <∞. Hence, GD|f | < ∞. By Lemma 2.1, f satisfies (2.9). By (2.13),

(2.14) w +GDf = GDρ

which implies f + aGDf = aGDρ and

GaD(f + aGDf) = GaD(aGDρ).

By (2.9), the left side is equal to GDf and the right side is equal to GDρ − GaDρ.
Hence, GDf = GDρ − GaDρ and, by (2.14), w = GDρ − GDf = GaDρ. �

Proof of Theorem 2.1. By 5.4.1.C, it is sufficient to prove (2.6) for
bounded f1, f2. Let ui = VD(fi), i = 1, 2, u = VD(f1 + f2) and v = u1 + u2. By
(2.1),

(2.15) ui +GDψ(ui) = KDfi, u+GDψ(u) = KDf1 +KDf2.

Condition 1.A implies that ψ(u1 + u2) − ψ(u1) is an increasing function of u1 and
therefore ρ = ψ(v) − ψ(u1) − ψ(u2) ≥ 0. Note that

v + GDψ(v) = u1 + u2 +GDψ(u1) +GDψ(u2) + GDρ

= KD(f1 + f2) + GDρ = u+ GDψ(u) + GDρ.

It follows from (2.15) that ui, ψ(ui) and GDψ(ui) are bounded. Therefore v ≥ u
by Lemma 2.2 which implies (2.6). �

Corollary 2.1. For every D1, D2,

(2.16) VD1∩D2 (f) ≤ VD1 (f) + VD2(f) in D1 ∩D2.

Proof. Put D = D1 ∩ D2. Note that ∂D = B1 ∪ B2 where B1 ⊂ ∂D1,
B2 ⊂ ∂D2 and B1 ∩ B2 = ∅. Put fi = 1Bif . We have 1∂Df = f1 + f2 . By
Theorem 2.1,

VD(1∂Df) ≤ VD(f1) + VD(f2)
which implies (2.16) because VD(1∂Df) = VD(f) and VD(fi) ≤ VDi (fi) ≤ VDi(f)
in D by 5.4.1.A–5.4.1.B. �

Corollary 2.2. For every c ≥ 0, VD(cu) ≤ 2(c ∨ 1)VD(u).

This follows from 2.1.C for c < 1. If c > 1 and if c ≤ 2k < 2c, then, by 2.1.C
and (2.6), VD(cu) ≤ VD(2ku) ≤ 2kVD(u) ≤ 2cVD(u).

2.3. Homogeneous superdiffusions. Suppose that ξ = (ξt,Πx) is a ho-
mogeneous right continuous strong Markov process in a topological space E and
let ψ(x, u) be a positive function on E × R+. We say that a BEM system X =
(XD, Pµ), D ∈ O, µ ∈ M is a homogeneous (ξ, ψ)-superprocess if O is the class of
all open subsets of E, M = M(E) is the class of all finite measures on E and if, for
every f ∈ B(E) and all D ∈ O, µ ∈ M,

(2.17) Pµe
−〈f,XD 〉 = e−〈VD(f),µ〉

where u = VD(f) is a solution of the equation (2.1).
To construct such a process, we start from the superprocess X̂ described in

section 4.4.1. We imbed E into R × E by identifying x ∈ E with (0, x) ∈ R × E.
We define XD as the projection of X̂R×D on E and we put Pµ = P̂δ0×µ for every
finite measure µ on E (δ0 is the unit mass on R concentrated at 0).
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We deal with homogeneous (L,ψ)-superdiffusions, that is with homogeneous
(ξ, ψ)-superprocesses corresponding to homogeneous L-diffusions ξ. By Theorem
4.2.1, an (L,ψ)-superdiffusion exists for

(2.18) ψ(x, u) = b(x)u2 +
∫ ∞

0

(e−λu − 1 + λu)n(x, dλ)

if

(2.19) b(x) and
∫ ∞

0

λ ∧ λ2n(x, dλ) are bounded.

The conditions 1.A–1.C hold for functions of the form (2.18) under mild restrictions
on b and n.

3. Moderate solutions

3.1. Operators i and j. Fix an arbitrary domain E in Rd and denote by H
the set of all positive L-harmonic functions in E and by U the set of all positive
solutions of (1.1). We say that u ∈ U is a moderate solution and we write u ∈ U1 if
u ≤ h for some h ∈ H. We establish a 1-1 correspondence between U1 and a subclass
H1 of class H. Our arguments are applicable to all continuously differentiable
functions ψ(x, u) that are monotone increasing in u.

Fix a sequence Dn exhausting E and put Kn = KDn , Gn = GDn , Vn =
VDn ,K = KE , G = GE .

Theorem 3.1. For every u ∈ U , a limit

(3.1) j(u) = limKnu

exists and

(3.2) j(u) = u+Gψ(u).

For every h ∈ H, there exists a limit

(3.3) i(h) = limVnh.

j is a 1-1 mapping from U1 onto a subset H1 of H and i is the inverse mapping
from H1 onto U1. Moreover, h = j(u) is the minimal harmonic function dominating
u and u is the maximal solution of (1.1) dominated by h.

The relation

(3.4) u+ Gψ(u) = h

holds for h ∈ H and u ≥ 0 if and only if h ∈ H1 and u = i(h).

Proof. 1◦. If u ∈ U , then, by the mean value property 2.1.D,

u+Gnψ(u) = hn

where hn = Knu.
Since the sequence Gnu is increasing, the sequence hn is also increasing and

therefore the limit (3.1) exists and it satisfies (3.2). By 6.1.5.C, it belongs to H
unless it is identically equal to infinity.

2◦. If u ∈ U1, then h = j(u) belongs to H and it is the minimal harmonic
function dominating u. Indeed, if u ∈ U1, then u ≤ h̃ ∈ H and therefore Knu ≤
Knh̃ = h̃ for all n. Hence, h ≤ h̃.
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3◦. Suppose that h ∈ H and let un = Vn(h). Since Knh = h, we have

un + Gnψ(un) = h

and therefore un ≤ h for all n. By the mean value property 2.1.D and the mono-
tonicity 2.1.C of Vn ,

un+1 = Vn(un+1) ≤ Vn(h) = un.

This implies the existence of the limit (3.3). Since un ∈ U(Dn), u = i(h) ∈ U(E)
by Theorem 5.3.2. We get (3.4) by a monotone passage to the limit.

If ũ ∈ U(E) is dominated by h, then ũ = Vn(ũ) ≤ Vn(h) and therefore ũ ≤ i(h).
4◦. Let us prove that i[j(u)] = u for all u ∈ U1. Indeed, let h = j(u) and

i(h) = u′. Functions un = Vn(h) satisfy the equation un + Gnψ(un) = h. By
Fatou’s lemma and (3.2), u′ + Gψ(u′) ≤ h = u + Gψ(u). By (3.2) u ≤ h. Hence,
Vn(h) ≥ Vn(u) = u and u′ ≥ u. We conclude that 0 ≤ u′−u ≤ Gψ(u)−Gψ(u′) ≤ 0
and therefore u′ = u.

5◦. If h ∈ H1, then h = j(u) for some u ∈ U1, and, by 4◦, j[i(h)] = j[i(j(u))] =
j(u) = h.

6◦. Let h ∈ H and u ≥ 0 satisfy (3.4). Then Gψ(u) = h − u. By 6.2.12, for
every U b E, G = GU + KUG. Therefore GUψ(u) + KU (h − u) = h − u and
u + GUψ(u) = KUu. Since u ≤ h is bounded in U , Lu = ψ(u) in U by 2.1.B.
Therefore u ∈ U . Clearly, u ∈ U1.

By (3.2), h = j(u). Hence, h ∈ H1 and u = i(h). �

The equation (3.4) implies that, if gE(x, y) = ∞ for all x, y ∈ E, then the only
moderate solution is 0.

3.2. Characterization of class H1. Let µ ∈ M(E). A sequence of functions
fn is called uniformly µ-integrable if, for every ε > 0 there exists N such that

(3.5) I(n,N ) =
∫

|fn |>N
|fn| dµ < ε for all n.

If this condition is satisfied and if fn → f µ-a.e., then
∫
fn dµ →

∫
f dµ. Indeed,

gn = |fn−f | are uniformly integrable and gn → 0 µ-a.s. We have gn ≤ g′N,n+g′′N,n
where g′N,n = 1gn≤Ngn and g′′N,n = 1gn>Ngn. For every ε, there exists N such
that

∫
g′′N,n dµ < ε and, for every N ,

∫
g′N,n dµ → 0 as n → ∞ by the dominated

convergence theorem.
We prove the converse statement for positive functions fn.

Lemma 3.1. Suppose that fn ≥ 0 and fn → f µ-a.e. If

(3.6)
∫
fn dµ→

∫
f dµ < ∞,

then fn are uniformly µ-integrable.

Proof. Note that

I(n,N ) =
∫

fn>N

(fn − f) dµ+
∫

fn>N

f dµ ≤ α(n) + β(n,N )
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where

(3.7) α(n) =
∫

E

|fn − f | dµ =
∫

f>fn

(f − fn) dµ+
∫

fn>f

(fn − f) dµ

=
∫

E

(fn − f) dµ+ 2
∫

f>fn

(f − fn) dµ

and
β(n,N ) =

∫

fn>N

f dµ.

If fn > N , then either f > N − 1 or fn − f > 1. Therefore

(3.8) β(n,N ) ≤
∫

f>N−1

f dµ+ γ(n)

where
γ(n) =

∫

fn−f>1

f dµ.

By the dominated convergence theorem and by (3.7), limγ(n) = limα(n) = 0 and
therefore, for every ε > 0 there exists n0 such that α(n) + γ(n) < ε/2 for all
n > n0. By (3.8), there exists N0 such that, for all N > N0, n > n0, β(n,N ) < ε/2
and, consequently, I(n,N ) < ε. Since all fn are integrable, there is N1 such that
I(n,N ) < ε for all N > N1, n ≤ n0. Hence (3.5) holds for N > N0 ∨N1. �

Theorem 3.2. A function h ∈ H belongs to H1 if and only if, for every x,
functions

(3.9) F xn (y) = gn(x, y)ψ[Vn(h)](y)

are uniformly integrable (with respect to the Lebesgue measure).
If E is connected, then h ∈ H belongs to H1 if the family F cn is uniformly

integrable for some c.

Proof. Since Knh = h, function un = Vn(h) satisfies the equation

(3.10) un + Gnψ(un) = h.

Note that
Gnψ(un)(x) =

∫
F xn (y) dy.

If u = i(h), then, by (3.3), un → u and therefore

F xn (y) → F x(y) = g(x, y)ψ[u(y)].

Equation (3.10) implies that the functions F xn are integrable.
If F xn are uniformly integrable, then

Gnψ(un) → Gψ(u),

and the equation (3.10) implies (3.4). By Theorem 3.1, h ∈ H1.
If h ∈ H1 and if u = i(h), then h = j(u), and (3.4) follows from (3.2). Hence,

un + Gnψ(un) = u + Gψ(u) and Gnψ(un) → Gψ(u) because un → u. Functions
(3.9) are uniformly integrable by Lemma 3.1.

If E is connected, then, for every u ∈ U , h = u+Gψ(u) either belongs to H or it
is infinite in all E. This follows from 6.1.5.C because, by (3.1)–(3.2), h = limKnu.
If the family (3.9) is uniformly integrable for some c ∈ E, then h(c) < ∞ and
therefore h ∈ H1. �



126 8. MODERATE SOLUTIONS OF Lu = ψ(u)

.

Corollary 3.1. If h ∈ H1, h̃ ∈ H and if h̃ ≤ h, then h̃ ∈ H1.

Indeed, by 2.1.C, Vn(h̃) ≤ Vn(h) and therefore ψ[Vn(h̃)] ≤ ψ[Vn(h)].
More can be said on the set H1 under an additional assumption:

3.2.A. There is a constant a such that

ψ(x, 2u) ≤ aψ(x, u)

for all u and x.

Theorem 3.3. If ψ satisfies conditions 1.A and 3.2.A, then H1 is a convex
cone.

Proof. It follows from 1.A and (2.6) that

ψ[Vn(h1 + h2)] ≤ ψ[Vn(h1) + Vn(h2)] ≤
1
2
ψ[2Vn(h1)] +

1
2
ψ[2Vn(h2)].

If ψ satisfies 3.2.A, then the right side does not exceed a
2{ψ[Vn(h1)] + ψ[Vn(h2)]}.

If the conditions of Theorem 3.2 hold for h1 and h2, then they hold for h1 + h2.
We claim that, for every c ≥ 0, ch satisfies the conditions of Theorem 3.2 if

this is true for h. Clearly, that this is correct for 0 < c < 1. If 1 ≤ c < 2k, then, by
Corollary 2.2, Vn(ch) ≤ 2cVn(h) and, by 3.2.A,

ψ[Vn(ch)] ≤ ψ[2cVn(h)] ≤ ψ[2k+1Vn(h)] ≤ ak+1ψ[Vn(h)].

�

3.3. Trace of moderate solutions. By Theorem 7.4.4, every h ∈ H has a
unique representation h = Kν where ν is a finite measure on E′. Put ν ∈ N1 if
h ∈ H1. Corollary 3.1 implies that N1 contains, with every measure ν, all measures
ν̃ ≤ ν. We have a 1-1 mapping ν → uν = i(Kν) from N1 onto U1. If u = uν , then
we say that ν is the boundary trace of u and we write ν = tr u.

4. Sweeping of solutions

4.1. Operators QB . Suppose E is a domain in Rd and B is a compact subset
of ∂E. We claim that, for every ε > 0, the set

D(B, ε) = {x ∈ E : d(x,B) > ε}

satisfies the condition: all points a ∈ O = ∂D(B, ε) ∩E are regular. To prove this,
we use the criterion of regularity stated in section 6.2.3. Note d(a,B) = ε and
there exists a point b ∈ B such that d(a,B) = d(a, b). Define A as the closed ball
centered at c = (a + b)/2 of radius ε/2. If x ∈ A ∩ D̄, then d(x, b) ≥ d(x,B) ≥ ε
and d(x, c) ≤ ε/2. Since d(b, c) = ε/2, we have d(x, c) + d(c, b) ≤ d(x, b). Hence,
x, c, b lie on a straight line, and x = a.

We say that a sequence of open sets Dn is a [E,B]-sequence if

Dn ↑ E, D̄n ↑ Ē \B, d(Dn, E \Dn+1) > 0 and ∂Dn ∩E is regular for Dn

To every sequence εn ↓ 0 there corresponds an [E,B]-sequence Dn = D(B, εn).
We deal with positive functions on E and we agree to continue them by 0 to Ec.

Suppose that Dn is a [E,B]-sequence and u ∈ U . It follows from 2.1.G that VDn (u)
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is a monotone decreasing sequence. The sweeping QB(u) of u to B is defined by
the formula

(4.1) QB(u) = limVDn (u).

It is easy to see that the limit does not depend on the choice of a [E,B]-sequence.
Theorem 5.3.2 implies that it belongs to U . Operators QB have the following
properties:

4.1.A. QB(u1) ≤ QB(u2) for u1 ≤ u2.

4.1.B. QB(u) ≤ u.

4.1.C. If B1 ⊂ B2, then QB1(u) ≤ QB2 (u).

4.1.D. For every B1, B2, QB1∪B2(u) ≤ QB1(u) + QB2(u).

4.1.E. Q∂E(u) = u.

4.1.F. If u ≤ u1 + u2, then QB(u) ≤ QB(u1) + QB(u2).

Properties 4.1.A and 4.1.B follow, respectively, from 2.1.C and 2.1.F. If B1 ⊂
B2, then D(B2, ε) ⊂ D(B1, ε) and therefore 2.1.G implies 4.1.C. 4.1.D is an impli-
cation of (2.16) and the relation D(B1 ∪B2, ε) = D(B1, ε) ∩D(B2, ε). 4.1.E holds
because, by 2.1.D, VD(∂E,ε)(u) = u for all ε. Finally, 4.1.F follows from (2.6) and
2.1.C.

4.2. Extended mean value property. According to the mean value prop-
erty 2.1.D, if Lu = ψ(u) in E, then, for every D b E, VD(u) = u which is equivalent
to the relation

(4.2) u+ GDψ(u) = KDu.

In general, this is not true for D ⊂ E. However we will prove (4.2) under some
additional assumptions on u and D.

Theorem 4.1. (Extended mean value property.) Let u be a moderate solution
with trace ν. The relation (4.2) holds if D̄ ∩B = ∅ and if ν is concentrated on B.

Proof. Consider a sequence D̃n exhausting E and put Dn = D̃n ∩D. Since
Dn b E, we have

(4.3) u+GDnψ(u) = KDnu.

Let τn and τ be the first exit times from Dn and from D. Clearly, τn ↑ τ and
therefore GDnψ(u) ↑ GDψ(u). We get (4.2) from (4.3) if we prove that

(4.4) KDnu→ KDu.

Since τn ≤ τ , we have
KDnu(x) = In + Jn

where
In = Πx{u(ξτn)1τn=τ} = Πx{u(ξτ )1τn=τ }

and
Jn = Πx{u(ξτn )1τn<τ} = Πx{(u1D)(ξτn )}.

Note that {τn = τ} ↑ {τ < ζ} and therefore In → KDu. It remains to show that
Jn → 0. By the condition of the theorem, u is dominated by a harmonic function

h(x) =
∫

B

k(x, y)ν(dy)
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and, by Lemma 7.3.1,

Jn ≤ Πx{(h1D)(ξτn )} = Πh
x{ξτn ∈ D}.

Note that
{ξτn ∈ D} ↓ {τ = ζ, ξζ− ∈ C}

where C = ∂E ∩ D̄. Therefore

limΠh
x{ξτn ∈ D} ≤ Πh

x{ξζ− ∈ C}.

By 7.(4.6),

Πh
x{ξζ− ∈ C} =

∫

C

k(x, y)ν(dy).

Since ν(C) = 0, the integral is equal to 0. �

Corollary 4.1. If trace ν of u is concentrated on B, then QB(u) = u.

4.3. Trace of QB(u).

Theorem 4.2. If u is a moderate solution with the trace ν, then v = QB(u) is
a moderate solution with the trace equal to the restriction νB of ν to B.

Proof. Put h(x) =
∫
E′ k(x, y)ν(dy) and hB(x) =

∫
B k(x, y)ν(dy). Let Dn be

a [E,B]-sequence and let τn be the first exit time from Dn. We claim that

(4.5) Πxh(ξτn ) → hB(x). as n → ∞.

Indeed, {τn < ζ} ↓ {ξζ− ∈ B} and therefore

(4.6) Πh
x{τn < ζ} ↓ Πh

x{ξζ− ∈ B}.

By 7.(4.13), the right side is equal to hB(x). By Lemma 7.3.1, Πh
x{τn < ζ} =

Πxh(ξτn ). Therefore (4.6) implies (4.5).
Note that

Vn(u) ≤ Knu = Πxu(ξτn ) ≤ Πxh(ξτn )

and, by (4.1) and (4.5), v = QB(u) ≤ hB which implies that tr v ≤ νB.
Since hB ≤ h, vB = i(hB) ≤ i(h) = u and therefore tr vB is concentrated on

B. By the Corollary 4.1, vB = QB(vB) ≤ QB(u) = v and νB = tr vB ≤ tr v. �

5. Lattice structure of U

5.1. Operator π. Denote by C+(E) the class of all positive functions f ∈
C(E). Put u ∈ D(π) and π(u) = v if u ∈ C+(E) and VDn (u) → v pointwise for
every sequence Dn exhausting E. By 2.1.B and Theorem 5.3.2, π(u) ∈ U . It follows
from 2.1.C that π(u1) ≤ π(u2) if u1 ≤ u2.

Put
U− = {u ∈ C+(E) : VD(u) ≤ u for all D b E}

and
U+ = {u ∈ C+(E) : VD(u) ≥ u for all D b E}.

By 2.1.D, U ⊂ U− ∩ U+. If h ∈ H, then, by (2.1), VD(h) ≤ KDh = h for every
D b E. Hence, H ⊂ U−.

For every sequence Dn exhausting E, we have:
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5.1.A. If u ∈ U−, then VDn (u) ↓ π(u) and

π(u) = sup{ũ ∈ U : ũ ≤ u} ≤ u.

Indeed, by 2.1.E, VDn+1u = VDnVDn+1u ≤ VDnu. If ũ ≤ u, then, by 2.1.D,
ũ = π(ũ) ≤ π(u).

Analogously,
5.1.B. If ψ ∈ BR and if u ∈ U+, then VDn (u) ↑ π(u) and

π(u) = inf{ũ ∈ U : ũ ≥ u} ≥ u.

Clearly,
5.1.C. If u, v ∈ U+, then max{u, v} ∈ U+. If u, v ∈ U−, then min{u, v} ∈ U−.

It follows from subadditivity of VD (Theorem 2.1) that:
5.1.D. If u, v ∈ U−, then u+ v ∈ U−.

5.2. Lattices of functions and measures. Let (L,≺) be a partially ordered
set. Writing v = SupC means that u ≺ v for all u ∈ C and that v ≺ ṽ if u ≺ ṽ for
all u ∈ C. The Inf C is defined in a similar way. A partially ordered set is called a
lattice if Sup{u, v} and Inf{u, v} exist for every pair u, v ∈ L. These two elements
are denoted u ∨ v and u ∧ v.

A lattice L is called complete if SupC and inf C exist for every C ⊂ L.
Examples
1. The set [0,∞] with the order ≤ is a complete lattice. The set [0,∞) is an

incomplete lattice.
2. The set C+(E) of all continuous functions from a topological space E to

[0,∞] with the order ≤ is a complete lattice. The same is true for the set of all
positive Borel functions.

3. The set M(E) of all finite measures on a measurable space (E,B) is a lattice.
Measure µ ∨ ν can be calculated by the formula max{a, b}dγ where γ = µ+ ν and
a = dµ/dγ, b = dν/dγ. A similar expression holds for µ ∧ ν. Clearly, the lattice
M(E) is incomplete.

5.3. Lattice U . In the rest of this chapter we assume that ψ ∈ BR. The set
U with the partial order ≤ is a lattice with u ∨ v = π[max{u, v}] and u ∧ v =
π[min{u, v}] (if u, v ∈ U , then max{u, v} and min{u, v} belong to D(π) by 5.1.C).
In addition, we introduce in U an operation u⊕ v = π(u+ v).

Theorem 5.1. The lattice U is complete. Moreover:

5.3.A. For every C ⊂ U , there exists a sequence un ∈ C such that SupC =
Supun.

5.3.B. If C is closed under ∨ and if v = SupC, then there exists a sequence
un ∈ C such that un(x) ↑ v(x) for all x ∈ E. We have v(x) = supC u(x) for all
x ∈ E.

Proof. By Theorem 5.3.2, every monotone increasing sequence un ∈ U con-
verges pointwise to an element u of U . Clearly, u = Supun. If vn is an arbitrary
sequence in U , then un = v1 ∨· · ·∨vn is monotone increasing and Sup vn = Supun.
Therefore SupC0 exists for every countable set C0.
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Let C ⊂ U . For every x ∈ E, `(x) = supC u(x) < ∞. Select a sequence
xk everywhere dense in E. For every k there exists a sequence unk ∈ C such that
unk(xk) → `(xk). Consider a countable set C0 = {unk : n = 1, 2, . . . , , k = 1, 2, . . .}
and put v = SupC0. We claim that v = SupC. Indeed, if u ∈ C, then v(xk) ≥
`(xk) ≥ u(xk) for all k and, since u and v are continuous, v ≥ u. If ũ ∈ U is an
upper bound of C, then ũ ≥ unk for all n, k which implies ũ ≥ v. The existence of
Inf C can be established in a similar way.

Our arguments prove also 5.3.A. The first part of 5.3.B follows immediately
from 5.3.A. It remains to prove the second part. If C is closed under ∨, then
there exist un ∈ C such that v(x) = limun(x) for all x. By the definition of `,
un(x) ≤ `(x) for all n and x. Hence, v(x) ≤ `(x). On the other hand, we have
already proved that `(x) ≤ v(x). Thus v = ` which implies 5.3.B. �

For any µ, ν ∈ N1, the relation uµ ≤ uν is equivalent to the relation µ ≤ ν.
Therefore

(5.1) uµ∨ν = uµ ∨ uν, uµ∧ν = uµ ∧ uν , uµ+ν = uµ ⊕ uν

and

(5.2) if νn ↑ ν ∈ N1, then uνn ↑ uν .

5.4. Class N0 and σ-moderate solutions. If ν1 ≤ · · · ≤ νn ≤ . . . is an
increasing sequence of measures, then ν = limνn is also a measure. We put ν ∈ N0

if νn ∈ N1. Note that

5.4.A. A measure ν ∈ N0 belongs to N1 if and only if ν(E) < ∞.

Since all measures of class N1 are finite, we need only to demonstrate that, if
νn ∈ N1, νn ↑ ν and ν(E) < ∞, then ν ∈ N1. By the Radon-Nikodym theorem,
νn(dy) = ρn(y)ν(dy). Since νn ↑ ν, ρn ↑ 1 ν-a.e. and

hn(x) = Kνn(x) =
∫
k(x, y)ρn(y)ν(dy) ↑ h(x) = Kν(x).

By Theorem 3.1, hn = un + Gψ(un) where un = i(hn) which implies that h =
u+Gψ(u) where u = limun.

5.4.B. If ν ∈ N0 and if µ ≤ ν, then µ ∈ N0.

Indeed, suppose νn ∈ N1 and νn ↑ ν. Then µn = νn∧µ ∈ N1 by Corollary 3.1,
and µn ↑ µ.

We say that u ∈ U is σ-moderate and we write u ∈ U0 if there exist moderate
solutions un such that un ↑ u.

Lemma 5.1. There exists a monotone mapping ν → uν from N0 onto U0 such
that uν = i(Kν) for ν ∈ N1 and

(5.3) uνn ↑ uν if νn ↑ ν.

Proof. Suppose νn ↑ ν, ν′n ↑ ν and uνn ↑ u, uν′
n
↑ u′ for νn, ν′n ∈ N1 and

put νmn = νm ∧ ν′n. Note that νmn ↑ νm as n → ∞ and, by (5.2), uνmn ↑ uνm .
Therefore

u = lim
m→∞

uνm = lim
m→∞

lim
n→∞

uνmn = sup
m

sup
n
uνmn
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Analogously, u′ = sup
n

sup
m
uνmn . Thus u = u′. We proved that uν = limuνn does

not depend on the choice of νn ↑ ν. Clearly, uν defined by this formula satisfies
(5.3). �

Note that the map ν → uν from N0 onto U0 is not 1-1: it can happen that
uν = uν′ for ν 6= ν′.

Lemma 5.2. Suppose E is a bounded smooth domain and O is a relatively open
subset of ∂E. If ν ∈ N0 and ν(O) = 0, then uν = 0 on O.

Proof. There exist νn ∈ N1 such that un = uνn ↑ uν . The moderate solution
un is dominated by a harmonic function

hn(x) =
∫

∂E\O
k(x, y)νn(dy).

It follows from 6.1.8.B and the dominated convergence theorem that hn(x) → 0 as
x→ x̃ ∈ O. This implies un(x) → 0, and uν(x) → 0 by Theorem 5.3.3. �

5.5. Solutions uB. Let ν be a measure on E′ and let B be a Borel subset of
E′. We put ν ∈ N (B) if ν is concentrated on B, i.e., if ν(E′ \ B) = 0. We put
N1(B) = N1 ∩ N (B),N0(B) = N0 ∩ N (B). An important role is played by the
solutions

(5.4) uB = Sup{uν : ν ∈ N1(B)}.
We claim that:

(5.5) uB1∪B2 ≤ uB1 + uB2 .

Indeed, if ν ∈ N (B1 ∪B2), then ν = ν1 + ν2 with ν1 ∈ N (B1) and ν2 ∈ N (B2). If
ν ∈ N1, then ν1 and ν2 belong to N1 by Corollary 3.1. Since uν1 , uν2 ∈ U−, uν1+uν2
in U− by 5.1.D. By (5.1) and 5.1.A, uν = uν1 ⊕ uν2 = π[uν1 + uν2 ] ≤ uν1 + uν2
which implies (5.5).

We have:

5.5.A. uB ≥ uν for all ν ∈ N0(B) and uB = uν for some ν ∈ N0(B).
[Hence, all uB are σ-moderate.]

The first part follows from the definition of Sup. The second part is true
because, by 5.3.B, there exist νn ∈ N1(B) such that uνn ↑ uB . If νn ↑ ν, then by
(5.2), uνn ↑ uν . Hence, uB = uν .

Remark. We say that ν is a (0,∞)-measure if ν(B) = 0 or ∞ for all B. To
every measure ν there corresponds a (0,∞)-measure ∞ · ν = lim

k→∞
kν. It belongs

to N0(B) if ν ∈ N0(B). Therefore measure ν in 5.5.A can be chosen to be a
(0,∞)-measure.

6. Notes

6.1. Most results presented in this chapter can be found in [DK96b], [DK98c],
[DK98b] and [DK98a]. The concept of moderate solutions was introduced in
[DK96b]. Theorem 3.1 was proved there in the case ψ(u) = uα, 1 < α ≤ 2. Sweep-
ing operators QB (also for ψ(u) = uα) appeared in [DK98c], [DK98b] 1 as a

1In [DK98b], operatorsQB are introduced for closed subsets B of the Martin boundary ∂̂E

of a Riemannian manifold E.
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tool in the theory of the rough boundary trace of a solution (presented in Chapter
10). Lattice properties of U were used in [Kuz98c] and [DK98a] to define and
investigate the fine trace (see Chapter 11).

6.2. A number of authors studied solutions of ∆u = ψ(u) tending to infinity
as distance to the boundary tends to 0. 2 By 2.1.I, VD(∞) is the minimal among
these solutions. Very simple arguments show that the equation ∆u = uα can not
have more than one solution in a star domain D. A domain D is called a star
domain if there is a point x0 ∈ D such that, for every y ∈ ∂D, it contains the open
line segment connecting y and x0. Suppose that u and v are two large solutions.
Without any loss of generality, we can assume that x0 = 0. Put vλ(x) = λ

2
α−1 v(λx)

with λ ≤ 1. Note that λD ⊂ D, ∆vλ = vαλ in D and vλ < ∞ on ∂D. By the
comparison principle, vλ ≤ u. Hence, v ≤ u. Analogously u ≤ v and therefore
u = v.

The uniqueness of a large solution was proved under various conditions on ψ
and D in [LN74], [BM92]. More general equation Lu = ψ(u) was considered
in [BM95]. For the equation ∆u = uα and very broad class of domains D the
uniqueness was proved in [MV97].

A Wiener-type criterion for the existence of u ≥ 0 such that ∆u = u2 inD and u
blows up at a given point of ∂D was given by Dhersin and Le Gall in [DL97]. Their
criterion implies a complete characterization of the class of domains in which large
solutions exist. Obtained by probabilistic methods, this result was much stronger
than the conditions known to analysts at that time. Very recently Labutin [Lab01]
proved, by analytic methods, a similar result for all equations ∆u = uα with α > 1.
Parabolic versions of the results of [DL97] were obtained in [DD99].

2The name “large solutions” or ”solutions with blow-up on the boundary” are used in the

literature.



CHAPTER 9

Stochastic boundary values of solutions

In this chapter we characterize an arbitrary positive solution of Lu = ψ(u) in
an arbitrary domain E in terms of (L,ψ)-superdiffusion X. We define a σ-algebra
F∂ = F∂(E) describing the class of events observable at the exit of X from E and
we introduce a class Z of F∂-measurable functions which we call boundary linear
functionals of X. We establish a 1-1 correspondence between U(E) and Z. If Z
corresponds to u, then we say that Z is the stochastic boundary value of u and that
u is the log-potential of Z. We investigate subclasses Z1 and Z0 of Z corresponding
to the class U1 of moderate solutions and to the class U0 of σ-moderate solutions.
In particular, we get a relation between the stochastic boundary values of u and
its minimal harmonic majorant h = j(u). At the end of the chapter we establish
a connection between superdiffusions and conditional diffusions. This connection
was the original motivation of the theory of the fine trace presented in Chapter 11.

1. Stochastic boundary values and potentials

1.1. Definition. We fix a domain E in Rd and we put µ ∈ Mc if µ belongs
to M(E) and is concentrated on a compact subset of E. Writing “a.s.” means
“Pµ-a.s. for all µ ∈ Mc”.

Let (XD , Pµ) be an (L,ψ)-superdiffusion. We assume that ψ belongs to BR and
satisfies conditions 8.1.A–1.C. Suppose that u is a Borel function with values in
R+. We say that Z ≥ 0 is a stochastic boundary value of u and we write Z = SBV(u)
if, for every sequence Dn exhausting E,

(1.1) lim 〈u,XDn 〉 = Z a.s.

Clearly, Z is defined by (1.1) uniquely up to equivalence. [We say that Z1 and Z2

are equivalent if Z1 = Z2 a.s.] 1 We call u the log-potential of Z and we write
u = LPT(Z) if

(1.2) u(x) = − logPxe−Z

1.2. Existence of SBV(u).

Theorem 1.1. For every u ∈ U−, there exists a stochastic boundary value Z.
The log-potential of Z is equal to π(u). More generally,

(1.3) Pµe
−Z = e−〈π(u),µ〉

for all µ ∈ Mc. 2

1It is possible that Z1 and Z2 are equivalent but Pµ{Z1 6= Z2} > 0 for some µ ∈ M(E).
2Convexity of ψ is not used in the proofs of Theorems 1.1 and 1.2.

133
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Proof. Put Yn = e−〈u,XDn 〉. By the Markov property 3.1.3.D, for every
A ∈ F⊂Dn , ∫

A

Yn+1 dPµ =
∫

A

PXDn
Yn+1 dPµ.

By 8.(2.17),

PXDn
Yn+1 = e−〈VDn+1 (u),XDn 〉

and, since VDn+1 (u) ≤ u, by the definition of U−, we have
∫

A

Yn+1 dPµ ≥
∫

A

Yn dPµ.

Hence (Yn,F⊂Dn , Pµ) is a bounded submartingale. By 4.3.A in the Appendix A,
this implies the existence, Pµ-a.s., of lim〈u,XDn〉.

Functions VDn (u) ∈ U(Dn) are uniformly bounded on every D b E and there-
fore 〈VDn (u), µ〉 → 〈π(u), µ〉 for µ ∈ Mc(E). Hence, PµYn = e−〈VDn (u),µ〉 →
e−〈π(u),µ〉 and, since Yn → e−Z , Pµ-a.s., (1.3) holds by the dominated convergence
theorem. �

Remark 1.1. The same arguments are applicable to the case of u ∈ U+. Recall
that π(u) = u for u ∈ U .

Remark 1.2. By Jensen’s inequality, Pµe−Z ≥ e−PµZ and therefore (1.3) im-
plies that, for all µ ∈ Mc,

〈π(u), µ〉 ≤ PµZ.

1.3. Linear boundary functionals. Denote by F⊂E− the minimal σ-algebra
which contains F⊂D for all D b E and by F⊃E− the intersection of F⊃D over all
D b E. Note that, if Dn is a sequence exhausting E, then F⊂E− is generated by
the union of F⊂Dn and F⊃E− is the intersection of F⊃Dn .

We define F∂ as the completion of the σ-algebra F⊂E− ∩ F⊃E− with respect
to the family of measures Pµ, µ ∈ Mc.

We say that a positive function Z is a linear boundary functional 3 if

1.3.A. Z is F∂-measurable.

1.3.B. For all µ ∈ Mc,

− logPµe−Z =
∫

[− logPxe−Z ]µ(dx).

1.3.C. Px{Z <∞} > 0 for all x ∈ E.

We denote by Z the set of all such functionals (two functionals that coincide
a.s. are identified).

Theorem 1.2. The stochastic boundary value Z of any u ∈ U− belongs to Z.
Let Z ∈ Z. Then the log-potential u of Z belongs to U and Z is the stochastic
boundary value of u.

3The word “boundary” refers to condition 1.3.A and the word “linear” refers to 1.3.B. In
the terminology introduced in section 3.4.1, 1.3.B means that the CB-property holds for e−Z and

µ ∈ Mc.
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Proof. If u ∈ U− and if Z = SBV(u), then condition 1.3.A follows from (1.1),
1.3.B follows from (1.3). Since u(x) < ∞ for all x ∈ E, (1.2) implies 1.3.C.

Now suppose that Z ∈ Z and u = LPT(Z). By 1.3.C, u < ∞. Suppose Dn
exhausts E. By 1.3.A and the Markov property,

Pµ{e−Z
∣∣F⊂Dn} = PXDn

e−Z .

If µ ∈ Mc then, Pµ-a.s., XDn belongs to Mc (it is concentrated on the union of
compact sets D̄n and the support of µ) and therefore, by 1.3.B and (1.2),

PXDn
e−Z = e−〈u,XDn 〉.

Therefore
e−Z = Pµ{e−Z

∣∣F⊂E−} = lime−〈u,XDn 〉

which implies (1.1).
It follows from (1.1) and (1.2) that u = LPT(Z) = limun where

un(x) = − logPxe−〈u,XDn 〉.

By 8.2.1.J, Lun = ψ(un) in Dn. Theorem 5.3.2 implies that u ∈ U . �

1.4. Properties of Z, LPT and SBV.

Theorem 1.3. If Z1, Z2 ∈ Z, then Z1+Z2 ∈ Z and LPT(Z1+Z2) ≤ LPT(Z1)+
LPT(Z2). If Z ∈ Z, then cZ ∈ Z for all c ≥ 0.

If Zn ∈ Z, Zn → Z a.s., then Z ∈ Z.

Proof. 1◦. If Z1, Z2 ∈ Z, then Z = Z1 + Z2 satisfies the condition 1.3.A. To
check the condition 1.3.B, we note that, by Theorem 1.2,

Z1 = lim〈u1, XDn〉, Z2 = lim〈u2, XDn〉 a.s.

where u1 = LPT(Z1), u2 = LPT(Z2), and therefore

Z = lim〈u,XDn〉 a.s.

with u = u1 + u2. For every µ ∈ Mc,

(1.4) − logPµe−〈u,XDn 〉 = −
∫

logPxe−〈u,XDn 〉µ(dx) =
∫
VDn (u)(x)µ(dx).

Since Pµe−〈u,XDn 〉 → Pµe
−Z and Pxe−〈u,XDn 〉 → Pxe

−Z , we get 1.3.B by a passage
to the limit in (1.4). To justify an application of the dominated convergence theorem
to the integral in the right side of (1.4), we use a bound

(1.5) VDn (u) ≤ VDn (u1) + VDn(u2) = u1 + u2

which follows from Theorem 8.2.1.
Since LPT(Z1 + Z2) = limVDn(u1 + u2), subadditivity of LPT follows from

(1.5).
The condition 1.3.C is equivalent to the condition LPT(Z) < ∞. The subad-

ditivity of LPT implies that (1.3.C) holds for Z if it holds for Z1 and Z2.
2◦. If Z ∈ Z, then cZ satisfies 1.3.A and 1.3.C. To check 1.3.B, we use the same

arguments as in 1◦, but instead of (1.5) we apply a bound for VD(cu) established
in Corollary 2.2 in Chapter 8.

3◦. If Zn → Z a.s., then un = LPT(Zn) → u = LPT(Z). Since ψ ∈ BR,
solutions un are uniformly bounded on every Dn and, if 1.3.B holds for Zn, then it
holds for Z. �



136 9. STOCHASTIC BOUNDARY VALUES OF SOLUTIONS

Both mappings (1.1) and (1.2) are monotonic and therefore Z is a lattice iso-
morphic to U . We have:

1.4.A. For every u1, u2 ∈ U ,

(1.6) SBV(u1 ⊕ u2) = SBV(u1) + SBV(u2).

.

Indeed, by 8.5.1.D, u1 + u2 ∈ U−. If Zi = SBV(ui), then

Z1 + Z2 = SBV(u1 + u2)

and, by Theorem 1.1, π(u1 + u2) = LPT(Z1 + Z2) which implies (1.6).

1.4.B. Let un ∈ U and Zn = SBV(un). If un ↑ u, then Zn ↑ Z = SBV(u).

Indeed, u = Supun in the lattice U . Therefore Z = SupZn in Z, and Zn ↑ Z
because Zn is monotone increasing.

1.5. Example. If Z ∈ Z, then, by Theorem 1.3,

Z0 = lim
λ→0

λZ,

Z∞ = lim
λ→∞

λZ
(1.7)

also belong to Z. The corresponding solutions are

u0(x) = − logPx{Z < ∞},
u∞(x) = − logPx{Z = 0}.

(1.8)

2. Classes Z1 and Z0

2.1. Stochastic boundary value of a positive harmonic function. We
introduce a subclass of class Z which is in 1-1 correspondence with the sets H1 and
N1. Then we extend the correspondence to larger classes Z0,H0 and N0.

In the rest of this chapter, we assume (in addition to the conditions stated at
the beginning of the chapter) that ψ is in class CR (i.e., it satisfies the condition
4.(4.6)).

If h ∈ H, then h ∈ U− and, by Theorem 1.1, there exists a stochastic boundary
value Z = lim〈h,XDn 〉. By Theorem 1.2, it belongs to Z. By 4.(4.6) and 6.2.4.A

Pµ〈h,XDn〉 = 〈KDn (h), µ〉 = 〈h, µ〉.

It follows from (1.1) and Fatou’s lemma that

(2.1) PµZ ≤ 〈h, µ〉

for all µ ∈ Mc. If 〈h,XDn〉 are uniformly Pµ-integrable, then

(2.2) PµZ = 〈h, µ〉.

Lemma 8.3.1 implies that the equality (2.2) holds only if 〈h,XDn 〉 are uniformly
Pµ-integrable.
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2.2. Connections between Z1 and H1. We say that h is the potential of Z
and we write h = PT(Z) if

(2.3) h(x) = PxZ.

Put Z ∈ Z1 if Z ∈ Z and PxZ <∞ for some x ∈ E.

2.2.A. For every h ∈ H, Z = SBV(h) belongs to Z1.
Indeed, by (2.1), PxZ ≤ h(x).

2.2.B. Let Z ∈ Z1, h = PT(Z), u = LPT(Z). Then u ∈ U1 and h = j(u) ∈ H1.

Proof. By Theorem 1.2, u ∈ U and Z = SBV(u) = lim〈u,XDn〉 a.s. By
Fatou’s lemma,

(2.4) h(x) = PxZ ≤ lim inf hn(x)

where hn(x) = Px〈u,XDn〉. By 4.(4.6), hn = KDnu. By Remark 1.2, 〈u, µ〉 =
〈π(u), µ〉 ≤ PµZ for every µ ∈ Mc. The Markov property implies hn(x) =
Px〈u,XDn 〉 ≤ PxPXDn

Z = PxZ = h(x). Hence,

(2.5) lim suphn(x) ≤ h(x).

It follows from (2.4) and (2.5) that hn → h. By 6.1.5.C, h ∈ H. According to
8.(3.1), h = j(u). Since u ≤ h, u belongs to U1 and therefore h ∈ H1. �

2.2.C. If Z ∈ Z1 and if h = PT(Z), then the equality (2.2) holds for every
µ ∈ Mc.

Proof. Put Zλ = (1 − e−λZ)/λ and note that Zλ → Z as λ → 0 and 0 ≤
Zλ ≤ Z. By (2.1), PµZ ≤ 〈h, µ〉 < ∞ and, by the dominated convergence theorem,

(2.6) PµZλ → PµZ as λ→ 0.

Consider a function

Ψµ(λ) = − 1
λ

logPµe−λZ = − 1
λ

log(1 − λPµZλ).

Since log(1 + t) = t + o(t) as t → 0, it follows from (2.6) that Ψµ(λ) → PµZ as
λ → 0.

By Theorem 1.3, λZ ∈ Z for all λ ≥ 0, and, by 1.3.B,

Ψµ(λ) =
∫

Ψx(λ)µ(dx).

By Jensen’s inequality, Pxe−λZ ≥ e−λPxZ and therefore Ψx(λ) ≤ PxZ. By the
dominated convergence theorem,

lim
λ→0

Ψµ(λ) =
∫

lim
λ→0

Ψx(λ)µ(dx) = 〈h, µ〉.

�

2.2.D. If h ∈ H1 and Z = SBV(h), then h = PT(Z).
Indeed, Z ∈ Z1 by 2.2.A and therefore, by 2.2.C, 〈h,XDn 〉 are uniformly inte-

grable. Hence,
PxZ = limPx〈h,XDn 〉 = h(x).
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2.2.E. If Z ∈ Z1 and h = PT(Z), then Z = SBV(h).

Indeed, by the Markov property and 2.2.C,

Pµ{Z|F⊂Dn} = PXDn
Z = 〈h,XDn〉

and therefore
lim〈h,XDn 〉 = Pµ{Z|F⊂E−} = Z.

2.2.F. If Z ∈ Z1 and h = PT(Z), then 〈h,XDn〉 are uniformly Pµ-integrable for
every µ ∈ Mc.

This follows from Lemma 8.3.1 because 〈h,XDn〉 → Z by 2.2.E and

Pµ〈h,XDn〉 = PµPXDn
Z = PµZ

by 2.2.C and the Markov property.

2.2.G. Each of the following conditions is necessary and sufficient for a positive
harmonic function h to belong to H1:

(a) 〈h,XDn 〉 are uniformly Pc-integrable for some c ∈ E.

(b) 〈h,XDn〉 are uniformly Pµ-integrable for all µ ∈ Mc.

Proof. If h ∈ H, then, by Theorem 1.2, Z = SBV(h) ∈ Z. Put h̃ = PT(Z).
By (2.1), h̃ ≤ h and therefore Z ∈ Z1. By 2.2.B, h̃ ∈ H1. The function h1 = h − h̃
belongs to H. If (a) holds, then, by (2.2), h1(c) = 0. By 6.1.5.D h1(x) = 0 for all
x ∈ E, and h = h̃ ∈ H1.

On the other hand, if h ∈ H1, then, by 2.2.D, h = PT(Z) where Z = SBV(h).
By 2.2.A, Z ∈ Z1. The property (b) follows from 2.2.F. �

2.3. It follows from 2.2.B, 2.2.D and 2.2.E that PT is a 1-1 mapping from
Z1 onto H1 and SBV is the inverse mapping from H1 onto Z1. Both mapping
are monotonic and they preserve the addition and the multiplication by positive
numbers. One of implications is that H1 is a convex cone. 4

2.4. Let ν → uν be the mapping from N0 onto U0 described in Lemma 8.5.1.
Formula Zν = SBV(uν) defines a monotone mapping from N0 onto Z0 such that
Zνn ↑ Zν if νn ↑ ν. If ν ∈ N1, then Zν is the element of Z1 with potential Kν.
Note that, for all ν1, ν2, ν ∈ N1 and all λ ≥ 0,

(2.7) Zν1+ν2 = Zν1 + Zν2 , Zλν = λZν .

Formulae (2.7) remain valid for ν1, ν2, ν ∈ N0.

3. A relation between superdiffusions and conditional diffusions

3.1. In Theorem 3.1 we establish a relation between an (L,ψ)-superdiffusion
and the h-transform (ξt,Πh

x) of an L-diffusion introduced in section 3.1 of Chapter
7. First, we prove a lemma that will be also used in Chapter 11.

4This was proved under assumption 8.3.2.A in Theorem 8.3.3. Instead of this assumption

we use the existence of an (L,ψ)-superdiffusion.
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Lemma 3.1. Let

(3.1) u+GD(au) = h ∈ H(D).

Then

(3.2) u(x) = Πh
x exp[−

∫ τ

0

a(ξs) ds]

where τ is the first exit time from D.

Proof. Note that
H(t) = e−

∫
t
0 a(ξ)(t) dt

satisfies the equation

(3.3)
∫ τ

0

a(ξt)H(t) dt = 1 −H(τ ).

By Fubini’s theorem and Lemma 7.3.1,

Πx

∫ τ

0

H(t)(ah)(ξt) dt = Πh
x

∫ τ

0

H(t)a(ξt) dt.

By Lemma 8.2.1, (3.1) implies that the left side is equal to GD(au) = h − u. By
(3.3), the right side is equal to h(x) − Πh

xH(τ ). �

Theorem 3.1. For every Z ∈ Z and every ν ∈ N0,

(3.4) PxZνe
−Z = e−u(x)

∫

E′
Πy
xe

−Φ(u)ν(dy)

where u = LPT(Z),

(3.5) Φ(u) =
∫ ζ

0

ψ′[u(ξt)] dt

and Πy
x = Πh

x with h = ky.

Proof. If formula (3.4) holds for νn, then it holds for ν =
∑
νn. Therefore

it is sufficient to prove the theorem for ν ∈ N1. Let h = Kν. It follows from
the definition of the measures Πh

x in section 7.3.1 that Πh
x =

∫
E′ Πy

xdν. Therefore
formula (3.4) is equivalent to

(3.6) v(x) = Πh
xe

−Φ(u)

where

(3.7) v(x) = eu(x)PxZνe
−Z .

Note that PT(Zν) = h. [This follows from 2.2.B because h = j(uν) where uν =
LPT(Zν).] By 2.2.E, Zν = SBV(h). By Theorem 1.2, Z = SBV(u). Hence

(3.8) Z = limZn a.s., Zν = limYn a.s.

where
Zn = 〈u,XDn〉, Yn = 〈h,XDn 〉.

By 8.2.1.D, VDn(u) = u and therefore

− logPxe−Zn = u(x).

By 4.(4.6),
PxYn = KDnh(x) = h(x).
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Consider functions

usn(x) = − logPxe−Zn−sYn , vn(x) =
d

ds
usn(x)

∣∣
s=0

.

We have u0
n = u and

(3.9) PxYne
−Zn = − d

ds
(e−u

s
n(x))

∣∣
s=0

= vn(x)e−u(x).

By (3.8),
PxYne

−Zn → PxZνe
−Z

because Yn are uniformly Px-integrable by 2.2.G. By (3.9) and (3.7), this implies

(3.10) vn → v.

We have
usn + GDnψ(usn) = KDn(u + sh) = KDnu+ sh.

By taking the derivatives with respect to s at s = 0, we get

(3.11) vn +GDn [ψ′(u)vn] = h.

By Lemma 3.1, (3.11) implies

(3.12) vn(x) = Πh
x exp

[
−

∫ τn

0

ψ′[u(ξt)]dt
]

where τn is the first exit time from Dn. Formula (3.6) follows from (3.10) and
(3.12). �

4. Notes

An idea to represent solutions of semilinear differential equations in terms of
superdiffusions was inspired by a well known connection between solutions of the
Laplace equation and the Brownian motion: if h is bounded and ∆h = 0 in D, then

h(x) = Πx lim
t↑τ

h(ξt)

where τ is the first exit time from D. [This follows immediately from the fact
that h(ξt) is a bounded martingale.] A representation of solutions of the equation
u̇+ Lu = ψ(u) through a (L,ψ)-superdiffusion appeared, first, in [Dyn93].5 Most
results presented in Chapter 9 can be found (in the case ψ(u) = uα) in [Dyn98b].

The connection between superdiffusions and conditional diffusions stated in
Theorem 3.1 was established in [Dyn97a].

5Linear boundary functional are defined in [Dyn93] (and [Dyn98b]) as F⊃E−-measurable

functions but, in the proofs, measurability with respect to a σ-algebra which we call F∂ is used.



CHAPTER 10

Rough trace

Now we suppose that the Martin boundary of E coincides with ∂E. [This is
true for all bounded smooth domains.] We define a boundary trace of an arbitrary
solution by using two tools introduced in Chapter 8: (a) traces of moderate solu-
tions; (b) sweeping of solutions. With the regard of the function ψ, we assume that
it belongs to class BR and satisfies the conditions 8.1.A–1.C and 8.3.2.A.

1. Definition and preliminary discussion

1.1. Definition of rough trace. Let E be a bounded smooth domain in
Rd. We say that a compact set B ⊂ ∂E is moderate for u if the solution QB(u)
is moderate. Let νB stand for the trace of QB(u). By 8.4.1.D, the union of two
moderate sets is moderate. Suppose that B is moderate and let B̃ ⊂ B. By 8.4.1.C,
B̃ is moderate, and by Theorem 8.4.2, νB̃ is the restriction of νB to B̃.

A relatively open subset A of ∂E is called moderate if all compact subsets of
A are moderate. The union O of all moderate open sets is moderate. Clearly, there
exists a unique measure ν on O such that its restriction to an arbitrary compact
subset B coincides with νB. The measure ν has the property: for every compact
B ⊂ O the restriction of ν to B belongs to the class N1. We denote by N1(O−)
the class of measures with this property. We call O the moderate boundary portion
and we call Γ = ∂E \ O the special set for the solution u. We call the pair (Γ, ν)
the rough boundary trace of u and we denote it by tr(u).

1.2. Extremal characterization of sweeping. Let B be a compact subset
of ∂E and let

D(B, ε) = {x ∈ E : d(x,B) > ε}
(cf. section 8.4.1). To any sequence εn ↓ 0, there corresponds an [E,B]-sequence

Dn = {x ∈ E : d(x,B) > εn}

and we have

(1.1) QB(u) = limVDn (u)

(cf. 8.(4.1))

Theorem 1.1. For every u ∈ U , function v = QB(u) is the maximal element
of U subject to conditions:

(1.2) v ≤ u; v = 0 on ∂E \B.

Proof. Recall that we put u = 0 on Ec and therefore VDn (u) = VDn (fn)
where fn = u on On = ∂Dn ∩ E and fn = 0 on the rest of ∂Dn. Put An = {x ∈

141
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∂E : d(x,B) > εn}. By 8.2.1.J, vn = VDn (fn) is a solution of the problem

Lvn = ψ(vn) in Dn,
vn =u on On,
vn = 0 on An.

It follows from Theorems 5.3.2 and 5.3.3 that v = limvn belongs to U and it satisfies
(1.2).

Suppose (1.2) holds for ũ. Then ũ ≤ u = vn on On and ũ = 0 ≤ vn on
∂Dn \ On ⊂ ∂E \ On. By the comparison principle 8.2.1.H, ũ ≤ vn in Dn and
therefore ũ ≤ v. �

1.3. The maximal solution wB and the range R.

Theorem 1.2. Suppose that B is a compact subset of ∂E and that all points
of ∂E \B are regular. Then there exists a maximal solution wB of the problem

Lu = ψ(u) in E;

u = 0 on ∂E \B.
(1.3)

It can be obtained by the formula

(1.4) wB = limVDn(fn)

where Dn is an [E,B]-sequence and

(1.5) fn =

{
∞ on ∂Dn ∩E,
0 on ∂Dn ∩ ∂E.

Proof. By Theorem 5.5.3, there exists a maximal solution wΓ
Q of problem

5.(5.6) for Q = R × E and Γ = R × B. If u(r, x) is a solution of 5.(5.6), then
ut(r, x) = u(t + r, x) is also a solution of this problem. Therefore the maximal
solution wΓ

Q does not depend on r. It is easy to see that wB = wΓ
Q is the maximal

solution of (1.3).
The second part of the theorem follows from Remark 5.5.2 (which is true even

if Qn are unbounded). �

The range R = RE of a (L,ψ)-superdiffusion in E is defined as the envelope
of random closed sets (SD, Pµ), D ⊂ E [ SD is the support of XD]. If the graph
G = GQ in Q = R ×E is compact, then R is its projection from Q̄ = R × Ē to Ē.

Theorem 1.3. Suppose that E is bounded and regular. If X is an (L,ψ)-
superdiffusion, then the maximal solution of the problem (1.3) is given by the for-
mula

(1.6) wB(x) = − logPx{R ∩B = ∅}.
The range R is compact Px-a.s. and the maximal solution w of equation Lu =

ψ(u) in E is given by the formula

(1.7) w(x) = − logPx{R ∩ ∂E = ∅}.

Proof. First, we apply Theorem 5.5.3 to Q = R×E and Γ = ∅ (since E is reg-
ular, all points of ∂Q are regular). We get that w(r, x) = − logPr,x{G is compact}
is the maximal solution of the equation u̇+Lu = ψ(u) in Q such that u = 0 on ∂Q.
Since w does not depend on time, it satisfies the equation Lu = ψ(u) in E with
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the boundary condition u = 0 on ∂E. By the comparison principle 8.2.1.H, w = 0.
Hence, Pr,x{GQ is compact} = 1.

Now we take Γ = R × B and we identify x ∈ E with (0, x) ∈ Q. By 5.(5.7),
wΓ
Q(x) = − logPx{G ∩ Γ = ∅} and, since, Px-a.s., R is the projection of G on Ē,

wB = wΓ
Q is given by (1.6). We get (1.7) by taking B = ∂E. �

Remark 1.1. The CB property holds for {R ∩B = ∅} and Pµ assuming that
B ⊂ ∂E is compact and µ ∈ Mc(E).

Indeed, if µ̄ is the image of µ ∈ Mc(E) under the mapping x → (0, x) from E
to Q = R ×E, then µ̄ belongs to Mc(Q) and, by Corollary 4.5.2,

logPµ̄{G ∩ Γ = ∅} =
∫

Q

µ̄(dz) logPz{G ∩ Γ = ∅}.

The left side is equal to logPµ{R ∩B = ∅} and the right side is equal to
∫

E

µ(dx) logPx{R ∩B = ∅}.

Remark 1.2. Note that wB is the log-potential of

(1.8) ZB =

{
0 if R ∩B = ∅,
∞ if R ∩B 6= ∅.

We claim that ZB ∈ Z. Indeed, by (1.6),

Px{ZB < ∞} = Px{R ∩B = ∅} = exp[−wB(x)] > 0

because wB(x) < ∞. Property 9.1.3.B follows from Remark 1.1. Property 9.1.3.A
can be deduced from the relation {R ∩B = ∅} = {GQ ∩ Γ = ∅} for Γ = R×B and
Q = R × E and Theorem 4.5.3. By Theorem 9.1.2, ZB = SBV(wB).

We have:

1.3.A. wB1 ≤ wB2 if B1 ⊂ B2.

1.3.B. QB(u) ≤ wB for all u ∈ U .

1.3.C. QB(wΓ) = 0 if B ∩ Γ = ∅.

1.3.D. QB(wB) = wB.

1.3.E. wB1∪B2 ≤ wB1 + wB2 .

1.3.F. If Bn ↓ B, then wBn ↓ wB.

1.3.A and 1.3.B follow from the maximal property of wB (recall that QB(u) = 0
on ∂E \B). To prove 1.3.C, we note that, by 8.4.1.B, QB(wΓ) ≤ wΓ. Since wΓ = 0
on ∂E \ Γ and QB(wΓ) = 0 on ∂E \ B, QB(wΓ) vanishes on ∂E and, by the
comparison principle, it vanishes on E.

Note that v = wB satisfies conditions v ≤ wB, v = 0 on ∂E \B and QB(wB) is
a maximal solution with these properties. Hence, wB ≤ QB(wB). Therefore 1.3.D
follows from 1.3.B.

To prove 1.3.E, we put B = B1 ∪B2 and we note that, by 1.3.D, 8.4.1.D and
1.3.B,

wB = QB(wB) ≤ QB1 (wB) + QB2(wB) ≤ wB1 + wB2 .
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Let us prove 1.3.F. Function wn = wBn is a maximal element of U vanishing on
On = ∂E \ Bn. By 1.3.A wn ↓ v ≥ wB. By Theorems 5.3.2–3.3, v is a solution
equal to 0 on O = ∂E \B. Hence, v ≤ wB .

1.4. Removable and polar boundary sets. We say that a compact set
B ⊂ ∂E is removable if 0 is the only solution of the problem (1.3). [In the literature,
such sets are called removable boundary singularities for solutions of the equation
Lu = ψ(u).] Clearly, B is removable if and only if wB = 0. A set A is called polar
if all its compact subsets are removable. If X is a (L,ψ)-superdiffusion, then, by
Theorem 1.3, a compact set B is removable if and only if Px{R ∩ B 6= ∅} = 0 for
every x ∈ E. It follows from 1.3.A and 1.3.E that:

1.4.A. All compact subsets of a removable set are removable and all subsets of
a polar set are polar.

1.4.B. The class of all removable sets is closed under the finite unions.

We say that a Borel boundary subset B is weakly polar or w-polar if ν(B) = 0
for all ν ∈ N1. This name is justified by the following proposition:

1.4.C. All polar Borel sets are w-polar.

Proof. The class N1 contains, with every ν, its restriction to any B (see
Corollary 8.3.1). Therefore it is sufficient to show that, if ν ∈ N1 is concentrated
on a removable compact set B, then ν = 0. The property 6.1.8.B of the Poisson
kernel k(x, y) implies that h = Kν = 0 on ∂E \ B. The solution i(h) satisfies the
same condition because i(h) ≤ h. Therefore i(h) ≤ wB. If wB = 0, then i(h) = 0.
Thus h = 0 and ν = 0. �

We also have:

1.4.D. If wB is moderate, then B is removable. If B ⊂ Γ and if QB(wΓ) is
moderate, then B is removable.

Proof. The second part follows from the first one because, by 1.3.A,wB ≤ wΓ

and, by 1.3.D and the monotonicity of QB, wB = QB(wB) ≤ QB(wΓ).
Suppose that wB is moderate. By Theorem 8.3.1, wB = i(h) for some h ∈ H1.

By Theorem 8.3.3, 2h ∈ H1. By 8.(3.3) and Theorem 8.2.1,

i(2h) = limVn(2h) ≤ 2 limVn(h) = 2i(h) = 2wB .

Hence, i(2h) = 0 on ∂E \B which implies that i(2h) ≤ wB . By the monotonicity
of j, 2h ≤ j(wB) = h. Therefore h = 0 and wB = i(h) = 0. �

1.4.E. Suppose Γ is removable and let Bn = {x ∈ ∂E : d(x,Γ) ≥ εn}. If εn ↓ 0,
then QBn (u) ↑ u for every u ∈ U .

Proof. Put Γn = {y ∈ ∂E : d(y,Γ) ≤ 2εn}. Note that Γn ∪ Bn = ∂E and
Γn ↓ Γ. By 8.4.1.E and 8.4.1.D, u = Q∂E(u) ≤ QΓn(u) + QBn (u). By 1.3.B and
1.3.F, QΓn(u) ≤ wΓn ↓ wΓ = 0 and therefore 1.4.E follows from 8.4.1.B. �
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2. Characterization of traces

2.1. Properties of the trace. We say that x is an explosion point of a mea-
sure ν and we write x ∈ Ex(ν) if ν(U ) = ∞ for every neighborhood U of x. If
B ∩Ex(ν) = ∅ and if B is compact, then ν(B) <∞. Note that O ∩Ex(ν) = ∅ for
every measure ν ∈ N1(O−).

We say that (Γ, ν) is a normal pair if:
(a) Γ is a compact subset of ∂E;
(b) ν ∈ N1(O−) where O = ∂E \ Γ;
(c) the conditions:

(2.1) Λ ⊂ Γ is polar and contains no explosion points of ν, Γ \Λ is compact−
imply that Λ = ∅.

We will prove that these conditions hold for the trace of an arbitrary solution
u. First, we prove a few auxiliary propositions.

2.1.A. If u ∈ U vanishes on a compact set B ∈ ∂E, then QB(u) = 0.
Indeed, by Theorem 1.1, v = QB(u) = 0 on ∂E \ B and v ≤ u. Hence, v = 0

on ∂E, and v = 0 by the comparison principle 8.2.1.H.

2.1.B. Suppose that tr(u) = (Γ, ν). If u = 0 on an open subset O1, then
O1 ∩ Γ = ∅ and ν(O1) = 0.

Indeed, for every compact subset B of O1, QB(u) = 0 by 2.1.A and therefore
ν(B) = 0.

2.1.C. Let tr(u) = (Γ, ν). If Γ is removable and ν is finite, then u is moderate.
To prove this, we apply 1.4.E. Let νn be the restriction of ν to Bn. We have

un = QBn (u) ≤ Kνn because un is a moderate solution with the trace νn. By
1.4.E, un ↑ u. Since Kνn ↑ Kν, we get that u ≤ h.

Theorem 2.1. The trace of an arbitrary solution u is a normal pair.

Proof. 1◦. Properties (a) and (b) follow immediately from the definition of
the trace. Let us prove (c). Suppose that Λ satisfies the conditions (2.1) and let
Γ0 = Γ \ Λ. Theorem will be proved if we show that v = QB1 (u) is moderate for
every compact subset B1 of O0 = ∂E \ Γ0. Indeed, this implies O0 ⊂ ∂E \ Γ.
Therefore Γ0 ⊃ Γ and Λ = ∅.

2◦. Let (Γ1, ν1) be the trace of v. By 2.1.C, it is sufficient to prove that Γ1 is
polar and ν1 is finite.

Put O = ∂E \ Γ and O1 = ∂E \ Γ1. By 8.4.1.B, v ≤ u and 8.4.1.A implies

(2.2) O ⊂ O1, Γ1 ⊂ Γ, ν1 ≤ ν on O.

By (1.2), v = 0 on ∂E \B1 and, by 2.1.B, ∂E \B1 ⊂ ∂E \Γ1. Hence, Γ1 ⊂ B1. By
(2.2), Γ1 ⊂ B1 ∩ Γ.

Note that B1 ⊂ O ∪ Λ. Therefore Γ1 ⊂ Λ is polar.
3◦. Measure ν1 is concentrated on B1. Indeed, if B ∩ B1 = ∅, then, by 1.3.A

and 1.3.B,
QB(v) = QB [QB1(u)] ≤ QB(wB1) = 0.

We have
ν1(O1) = ν1(B1 ∩O1) ≤ ν1(B1 ∩ Γ) + ν1(B1 ∩O).

Since B1 ∩ Γ is polar and ν1 ∈ N1(O1−), the first term is 0 by 1.4.C. Since O and
Λ contain no explosion points of ν, ν(B1) < ∞. Therefore ν1(O1) < ∞. �
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2.2. Maximal solution with a given trace. Note that N1(O−) ⊂ N0 and
therefore, by section 8.5.4, to every ν ∈ N1(O−) there corresponds a σ-moderate
solution uν . We construct a maximal solution with a given trace by using the
operation ⊕. We start with the following observations:

2.2.A. Let Γ1,Γ2 and Γ be special sets for u1, u2 and u = u1 ⊕ u2 and let
O1, O2, O be the corresponding moderate boundary portions. Then Γ = Γ1 ∪ Γ2

and O = O1 ∩O2.
Indeed, u1 ∨ u2 ≤ u ≤ u1 + u2. Therefore, by 8.4.1.A and 8.4.1.F,

(2.3) QB(u1) ∨QB(u2) ≤ QB(u) ≤ QB(u1) + QB(u2).

Hence, B is moderate for u if and only if it is moderate for u1 and for u2.

2.2.B. If u = u1 ⊕ u2 and QB(u2) = 0, then QB(u) = QB(u1).
This follows from (2.3).

2.2.C. For every ν ∈ N0 and every compact B ⊂ O, QB(uν) = uνB where νB is
the restriction of ν to B.

Indeed, B is contained in an open subset O1 of ∂E such that Ō1 ⊂ O. Let ν1

and ν2 be the restrictions of ν to O1 and to O\O1. By Lemma 8.5.2, uν2 = 0 on O1.
By 2.1.A, QB(uν2) = 0. By 2.2.B, QB(uν) = QB(uν1). Note that the restriction
of ν1 to B coincides with νB. Since uν1 is moderate, QB(uν1) = uνB by Theorem
8.4.2,

Theorem 2.2. If (Γ, ν) is a normal pair, then u = wΓ ⊕ uν is a solution with
the trace (Γ, ν). Moreover, every solution v with the trace (Γ, ν) is dominated by u.

Proof. 1◦. If B ⊂ O = ∂E \Γ, then, by 1.3.C, QB(wΓ) = 0 and, by 2.2.B and
2.2.C, QB(u) = QB(uν) = uνB .

2◦. Denote the trace of u by (Γ0, ν0). It follows from 1◦ that O ⊂ O0 =
∂E \ Γ0 and ν = ν0 on O0. Since ν is concentrated on O, we have ν ≤ ν0 and
therefore Ex(ν) ⊂ Ex(ν0) ⊂ Γ0 ⊂ Γ. Every compact B ⊂ Λ = Γ \ Γ0 is moderate
for u (because B ⊂ O0) and it is removable by 1.4.D. Thus, Λ is polar. Since
Λ∩Ex(ν) = ∅ and Γ\Λ = Γ0 is compact, Λ = ∅ by the definition of a normal pair.
Hence (Γ, ν) = (Γ0, ν0).

3◦. Suppose that tr v = (Γ, ν). Consider compact sets

Bn = {x ∈ ∂E : d(x,Γ) ≥ 1/n}, Γn = {x ∈ ∂E : d(x,Γ) ≤ 1/n}.
Since Bn ∪ Γn = ∂E

(2.4) v = Q∂E(v) ≤ QBn(v) + QΓn(v)

by 8.4.1.E and 8.4.1.D. Note that QBn(v) = uνn ≤ uν where νn is the restriction of
ν to Bn. By 1.3.B QΓn(v) ≤ wΓn and, by 1.3.F wΓn ↓ wΓ. Therefore (2.4) implies
that v ≤ uν + wΓ and v ≤ u because u is the maximal element of U dominated by
wΓ + uν. �

Remark 2.1. By 9.1.4.A, SBV(wΓ ⊕ uν) = ZΓ + Zν where ZΓ is defined by
(1.8) and Zν = SBV(uν). Hence, wΓ ⊕ uν = LPT(ZΓ + Zν) which means

(2.5) (wΓ ⊕ uν)(x) = − log
∫

R∩Γ=∅

e−Zν dPx.
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2.3. Relation to a boundary value problem.

Theorem 2.3. Suppose that

Lu = ψ(u) in E,

u = f on O
(2.6)

where O is an open subset of ∂E and f is a continuous function on O. Then
tr(u) = (Γ, ν) satisfies the conditions: Γ ∩O = ∅ and

(2.7) ν(B) =
∫

B

f(y)γ(dy) for all B ⊂ O

where γ is the surface area on ∂E. The maximal solution of problem (2.6) is given
by the formula wΓ ⊕ uν where Γ = ∂E \O and ν is defined by (2.7).

Proof. If B is a compact subset of O, then u is bounded in a neighborhood
of B. By Theorem 1.1, v = QB(u) vanishes on ∂E \ B and v ≤ u. Therefore v is
bounded and B is moderate. Since O is a moderate open set, Γ ∩O = ∅. Let Dn
be an [E,B]-sequence. By the extended mean value property (Theorem 8.4.1)

(2.8) v +GDnψ(v) = KDnv.

If τn is the first exit time from Dn, then {τn < ζ} ↓ {ξζ− ∈ B} and therefore

KDnv(x) = Πxv(ξτn )1τn<ζ ↓ Πx(f1B)(ξζ−).

By 6.(2.8), the right side is equal to
∫
B k(x, y)f(y)γ(dy). It follows from (2.8)

that v + Gψ(v) = h which implies (2.7). Now suppose that Γ = ∂E \ O. If
u′ is an arbitrary solution of (2.6) and if (Γ′, ν′) is its trace, then Γ′ ⊂ Γ and
ν′ = ν + ν1 where ν is given by (2.7) and ν1 is the restriction of ν′ to Γ \ Γ′.
By 8.(5.1), uν′ = uν ⊕ uν1 . By Lemma 8.5.2, uν1 = 0 on O. By Theorem 2.2,
u′ ≤ wΓ′ ⊕ uν′ = ũ ⊕ uν where ũ = wΓ′ ⊕ uν1 = 0 on O. Hence ũ ≤ wΓ and
u′ ≤ wΓ ⊕ uν. �

3. Solutions wB with Borel B

3.1. Assuming the existence of an (L,ψ)-superdiffusion, we construct such
solutions by using, as a tool, capacities related to the range. We calculate tr(wB)
and tr(wB ⊕ uν) for all ν ∈ N0.

3.2. Choquet capacities. Suppose that E is a separable locally compact
metrizable space. Denote by K the class of all compact sets and by O the class of
all open sets in E. A [0,+∞]-valued function Cap on the collection of all subsets
of E is called a capacity if:

3.2.A. Cap(A) ≤ Cap(B) if A ⊂ B.

3.2.B. Cap(An) ↑ Cap(A) if An ↑ A.

3.2.C. Cap(Kn) ↓ Cap(K) if Kn ↓ K and Kn ∈ K.

These conditions imply

(3.1) Cap(B) = sup{Cap(K) : K ⊂ B,K ∈ K} = inf{Cap(O) : O ⊃ B,O ∈ O}
for every Borel set B. 1

1The relation (3.1) is true for a larger class of analytic sets but we do not use this fact.
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The following result is due to Choquet [Cho54]. Suppose that a function
Cap : K → [0,+∞] satisfies 3.2.A–3.2.C and the following condition:

3.2.D. For every K1,K2 ∈ K,

Cap(K1 ∪K2) + Cap(K1 ∩K2) ≤ Cap(K1) + Cap(K2).

Then Cap can be extended to a capacity on E.
An important class of capacities related to random closed sets has been studied

in the original memoir of Choquet [Cho54]. Let (F, P ) be a random closed set in
E. Put

(3.2) ΛB = {ω : F (ω) ∩B 6= ∅}.
The definition of a random closed set (see, section 4.5.1) implies ΛB belongs to the
completion FP of F for all B in O and K.

Note that
ΛA ⊂ ΛB if A ⊂ B,

ΛA∪B = ΛA ∪ ΛB, ΛA∩B ⊂ ΛA ∩ ΛB ,
ΛBn ↑ ΛB if Bn ↑ B,
ΛKn ↓ ΛK if Kn ↓ K and Kn ∈ K.

Therefore the function

(3.3) Cap(K) = P (ΛK), K ∈ K
satisfies conditions 3.2.A–3.2.D and it can be continued to a capacity on E. It
follows from 3.2.B that Cap(O) = P (ΛO) for all open O. Suppose that B is a
Borel set. By (3.1), there exist Kn ∈ K and On ∈ O such that Kn ⊂ B ⊂ On
and Cap(On) − Cap(Kn) < 1/n. Since P (ΛKn) ≤ P (ΛB) ≤ P (ΛOn) and since
P (ΛOn) − P (ΛKn) < 1/n, we conclude that ΛB ∈ FP and

(3.4) Cap(B) = P (ΛB).

3.3. Solutions wB. Suppose X = (XD, Pµ) is an (L,ψ)-superdiffusion and R
is its range in a bounded smooth domain E. Denote by Cµ the capacity on ∂E
corresponding to a random set (R, Pµ) and put Cµ = Cx if µ = δx. Formula (3.4)
implies

Cµ(B) = Pµ{R ∩B 6= ∅}.
By Remark 1.2,

(3.5) {R ∩B 6= ∅} ∈ F∂
for every compact set B ⊂ ∂E. Since F∂ is complete with respect to all measures
µ ∈ Mc, (3.5) holds for all Borel B. Note that the function wB defined by (1.6),
can be expressed as follows:

(3.6) wB(x) = − log[1− Cx(B)].

We use this expression to define wB for all Borel B. By (3.1), wB(x) = sup{wK(x) :
K ⊂ B,K ∈ K}. Therefore a Borel set B is polar if and only if wB(x) = 0 for all
x ∈ E (which is equivalent to the condition Cx(B) = 0 for all x ∈ E).

Theorem 3.1. For every Borel subset B of ∂E, wB belongs to U and

(3.7) 〈wB , µ〉 = − log[1− Cµ(B)] = − logPµ{R ∩B = ∅}
for all µ ∈ Mc.
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Proof. 1◦. First, we prove that, for every µ ∈ Mc, there exists an increasing
sequence of compact subsets Kn of B such that Cµ(Kn) ↑ Cµ(B) and wKn(x) ↑
wB(x) µ-a.e. To this end we consider, besides Cµ, another capacity Cµ associated
with a random closed set (R, P µ) where

P µ =
∫
Px µ(dx).

There exists an increasing sequence Kn ∈ K such that Cµ(Kn) ↑ Cµ(B) and
Cµ(Kn) ↑ Cµ(B). 2 Put

ϕn(x) = Px{R ∩Kn 6= ∅}, ϕ(x) = Px{R ∩B 6= ∅}

and note that ϕn ↑ ϕ̃ ≤ ϕ. Since

〈ϕn, µ〉 = Cµ(Kn) ↑ Cµ(B) = 〈ϕ, µ〉,

we have ϕ̃ = ϕ µ-a.e. Therefore ϕn ↑ ϕ µ-a.e. and wKn ↑ wB µ-a.e.
2◦. By Remark 1.1,

− logPµ{R ∩Kn = ∅} =
∫
µ(dx)[− logPx{R ∩Kn = ∅}]

and therefore
− log[1− Cµ(Kn)] = 〈wKn , µ〉.

By passing to the limit, we get (3.7).
3◦. Note that wB = LPT(ZB) where ZB is defined by (1.8). By Theorem 9.1.2,

to prove that wB ∈ U , it is sufficient to show that ZB ∈ Z. By (3.5), ZB satisfies
the condition 9.1.3.A. Formula (3.7) implies 9.1.3.B. By (1.7),

Px{ZB < ∞} = Px{R ∩B = ∅} ≥ Px{R ∩ ∂E = ∅} = e−w(x) > 0

and therefore ZB satisfies 9.1.3.C. �

3.4. Trace of wB.

Lemma 3.1. Let B be a Borel subset of ∂E. The trace of wB is equal to (Γ, 0)
where Γ is the smallest compact set such that B ∩ (∂E \ Γ) is polar.

Proof. Suppose trwB = (Γ, ν) and put A = B ∩ O where O = ∂E \ Γ. Let
K be a compact subset of A. It follows from (3.6) that wK ≤ wB . By 1.3.D and
8.4.1.A, wK = QK(wK) ≤ QK(wB). Since K ⊂ O, QK(wB) is moderate. Hence
wK is also moderate and K is removable by 1.4.D. We conclude that A is polar.

Now suppose that Γ′ is an arbitrary compact set such that A′ = B∩O′ is polar
(here O′ = ∂E \ Γ′). Since B ⊂ Γ′ ∪A′, we have, by 3.2.D, that Cx(B) ≤ Cx(Γ′) +
Cx(A′) = Cx(Γ′). By (3.6), this implies wB ≤ wΓ′ and therefore QK(wB) ≤
QK(wΓ′). We use this inequality to establish: (a) Γ′ ⊃ Γ; (b) ν = 0.

Indeed, if K ⊂ O′, then QK(wΓ′) = 0 by 1.3.C. Hence, QK(wB) = 0. We
conclude that O′ is a moderate open set. Therefore O′ ⊂ O. This implies (a). By
taking Γ′ = Γ, we get that QK(wB) ≤ QK(wΓ). Hence, for K ⊂ O, QK(wB) = 0
which implies (b). �

2We can define Kn as the union of K′
n and K′′

n such that Cµ(K′
n) ↑ Cµ(B) and Cµ(K′′

n) ↑
Cµ(B).
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3.5. Le Gall’s example. The following theorem, due to Le Gall, shows that,
in general, the rough trace does not determine a solution.

Theorem 3.2. Suppose that there exists an (L,ψ)-superdiffusion, ψ ∈ CR and:

3.5.A. All single-point subsets of ∂E are polar.

Then there exist infinite many solutions with the trace (∂E, 0).

[We will see in Chapter 13 that, in the case ψ(u) = uα, α > 1 and a bounded
smooth domain E, the condition 3.5.A is satisfied if and only if α ≥ d+1

d−1 (the
so-called supercritical case).]

The proof of Theorem 3.2 uses the following lemmas.

Lemma 3.2. Let ψ ∈ CR. If u, v ∈ U and u ≥ v, then either u(x) = v(x) for
all x ∈ E or u(x) > v(x) for all x ∈ E.

Proof. It is sufficient to prove that if D is a smooth domain such that D b E
and if u and v coincide at a point c ∈ D, then u = v in D. By the mean value
property 8.2.1.D,

Pce
−〈u,XD〉 = e−u(c), Pce

−〈v,XD〉 = e−v(c)

and therefore 〈u,XD〉 = 〈v,XD〉 Pc-a.s. By 4.(4.6),

KDu(c) = Pc〈u,XD〉 = Pc〈v,XD〉 = KDv(c).

We conclude from this equation and formula 6.(2.8) that k(c, y)u(y) = k(c, y)v(y)
for γ-almost all y ∈ ∂D. Since k(c, y) > 0 and u, v are continuous on D̄, u = v on
∂D. By the comparison principle, u = v in D. �

Lemma 3.3. If O is a nonempty relatively open subset of ∂E, then O is not
polar. If ψ ∈ CR, then wO(x) > 0 for all x ∈ E.

Proof. Let O1 be a nonempty open subset of O such that Ō1 ⊂ O. By 8.2.1.I,
there exists a non-zero solution u vanishing on ∂E \ Ō1. Since wŌ1

is the maximal
solution equal to 0 on ∂D \ Ō1, we have wŌ1

≥ u and wŌ1
(x) > 0 at some x ∈ E.

Hence, Cx(O) ≥ Cx(Ō1) > 0 and O is not polar. The second part of the lemma
follows from Lemma 3.2. �

Lemma 3.4. Under the condition 3.5.A, tr(wΛ) = (∂E, 0) for each open every-
where dense subset Λ of ∂E.

Proof. By Lemma 3.1, tr(wΛ) = (Γ, 0) for some Γ. Let us prove that Γ = ∂E.
Suppose B is a compact subset of A = O ∩Λ where O = ∂E \Γ. Solution QB(wΛ)
is moderate because B ⊂ O. Since B ⊂ Λ, we have QB(wΛ) ≥ QB(wB) = wB , and
wB is moderate. By 1.4.D, B is removable. Hence, A is polar. Since A is open, it
is empty by Lemma 3.3. Hence Λ ⊂ Γ. Since Λ is everywhere dense, Γ = ∂E. �

Proof of Theorem 3.2. Let B be a countable everywhere dense subset of
∂E. Fix x ∈ E. Condition 3.5.A implies that Cx(B) = 0 and therefore there exists
a decreasing sequence of open subsets On of ∂E such that On ⊃ B and Cx(On) → 0.
By Lemma 3.3, wOn (x) > 0. Since wOn(x) → 0, the sequence wOn contains infinite
many different functions. By Lemma 3.4, each of them has the trace (∂E, 0). �



4. NOTES 151

3.6. (B, ν)-solutions.

Lemma 3.5. Let ν ∈ N0. The trace of uν is equal to (Γ, µ) where Γ = Ex(ν)
and µ coincides with the restriction of ν to ∂E \ Γ.

Proof. Let B be a compact subset of ∂E. By 2.2.C, QB(uν) = uνB where νB
is the restriction of ν to B. Therefore B is moderate for uν if and only if uνB is
moderate, that is if and only if ν(B) < ∞. Note that ∂E \ Ex(ν) is the maximal
open set such that ν(B) < ∞ for all its compact subsets. Clearly, µ = ν on this
set. �

Now we calculate the rough trace of wB ⊕ uν for an arbitrary Borel B and
arbitrary ν ∈ N0. [We call wB ⊕ uν the (B, ν)-solution.]

Theorem 3.3. The trace (Γ, µ) of a (B, ν)-solution u = wB ⊕ uν can be de-
scribed as follows: Γ is the smallest compact set such that Γ ⊃ Ex(ν) and B ∩O is
polar (here O = ∂E \ Γ), and µ is the restriction of ν to O.

Proof. By Lemma 3.1, tr(wB) = (Γ1, 0) where Γ1 is the smallest compact set
such that B ∩ O1 is polar (here O1 = ∂E \ Γ1). By Lemma 3.5, tr(uν) = (Γ2, µ)
where Γ2 = Ex(ν) and µ is the restriction of ν to O2 = ∂E \ Γ2. By 2.2.A,
Γ = Γ1 ∪ Γ2 and O = O1 ∩O2. Hence, Γ ⊃ Ex(ν) and B ∩O is polar.

Let us prove the minimal property of Γ. If Γ′ is compact and B ∩ O′ (where
O′ = ∂E \ Γ′) is polar, then, by Lemma 3.1, Γ′ ⊃ Γ1. If, in addition Γ′ ⊃ Ex(ν),
then Γ′ ⊃ Γ1 ∪ Γ2 = Γ.

Suppose K is a compact subset of O. Then K ⊂ O1. Since tr(wB) = (Γ1, 0),
QK(wB) = 0. By 2.2.B, this implies QK(u) = QK(uν). By Theorem 8.4.2,
QK(uν) = uνK where νK is the restriction of ν to K. Therefore µ = ν on O. �

4. Notes

4.1. A program to describe the set U of all positive solutions of a semilinear
equation

(4.1) Lu = ψ(u),

(initiated by Dynkin in the earlier 1990s) was a subject of a discussion with H.
Brezis during his visit to Cornell University. Brezis suggested that boundary values
of u ∈ U may be described as measures on the boundary.

A pioneering result in this direction was announced by Le Gall in [Le 93b].
He established a 1-1 correspondence between all solutions of equation ∆u = u2 in
the unit disk D ⊂ R2 and all pairs (Γ, ν) where Γ is a compact subset of ∂D and ν
is a Radon measure on O = ∂D \ Γ. Roughly speaking Γ was defined as the set of
points y ∈ ∂D near which u behaved like the inverse of the squared distance to the
boundary. More precisely, y ∈ Γ if

lim sup
x→y,x∈D

d(x, ∂D)2u(x) > 0.

The measure ν was defined as a vague limit of measures 1O(y)u(r, y)γ(dy) as r ↑ 1
(γ is the Lebesgue measure on ∂D). Le Gall expressed the solution corresponding to
(Γ, ν) in terms of the Brownian snake — a path-valued Markov process introduced in
his earlier publications (closely related to the super-Brownian motion). In [Le 97],
the results announced in [Le 93b] were proved and extended to all smooth domains
in R2.
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4.2. The presentation in Chapter 10 is based on [DK98c] and [DK00]. In
[DK98c], the traces of solutions of equation Lu = uα with 1 < α ≤ 2 in an arbitrary
bounded smooth domain in Rd were investigated . In [DK00], more general results
covering a large class of functions ψ (not just ψ(u) = uα) were obtained.

In [DK98b] the results of [DK98c] were extended to a wide class of nonsmooth
domains E and even to a certain class of Riemannian manifolds. The main diffi-
culty is that the extremal characterization of the sweeping [ Theorem 1.1] is not
available. Among tools used to overcome this difficulty was a stochastic version of
the comparison principle.

4.3. The equation ∆u = uα in the d-dimensional unit ball B with arbitrary
α > 1 and d was investigated by purely analytic methods by Marcus and Véron.
The results were announced in [MV95] and proved in [MV98a] and [MV98b].
[The name “trace” for a pair (Γ, ν) was suggested, first, in [MV95].] The case of
a subcritical value α < (d + 1)/(d − 1) was studied in [MV98a] and the case of
α ≥ (d+ 1)/(d− 1) was treated in [MV98b]. A principal difference between these
cases is that there exist no polar sets except the empty set in the first case and
such sets exist in the second case (see section 13.3.) Marcus and Véron defined
the special set Γ [which they call the singular boundary] by the condition: y ∈ ∂B
belongs to Γ if, for every neighborhood U of y in ∂B,∫

U

u(ry)γ(dy) → ∞ as r ↑ 1.

Their definition of the measure ν is similar to that of Le Gall. They also observed
that a pair (Γ, ν) can be replaced by one outer regular measure 3 µ on ∂B: Γ
consists of all explosion points of µ and ν is the restriction of µ to ∂B \ Γ.

In [MV98a] Marcus and Véron proved that tr(u) determines u uniquely for
subcritical values of α. Le Gall’s example (see Theorem 3.2) shows that this is not
true for supercritical values. [A parabolic version of this example was published in
[Le 96].]

3Outer regularity means that, for every Borel A, µ(A) is equal to the infimum of µ(U) over

all open sets U ⊃ A.
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Fine trace

As in the case of the rough trace, the fine trace of u ∈ U is a pair (Γ, ν) where
Γ is a subset of the boundary and ν is a measure on the portion of the boundary
complementary to Γ. However, Γ may not be closed (it is closed in a fine topology)
and ν does not need to be a Radon measure (but it is σ-finite). In contrast to the
case of the rough trace, there is no special advantage in restricting the theory to
smooth domains, and we return to the general setting of Chapters 7–9 when E

is an arbitrary Greenian domain in Rd, k(x, y) is a Martin kernel and ˆ∂E is the
Martin boundary corresponding to L.

The first step in the definition of the rough trace was constructing a measure
ν on the moderate boundary portion O. The first (and main) part in the theory
of the fine trace is the study of the set Γ of all singular points of u. We denote it
SG(u). Roughly speaking, y ∈ SG(u) if ψ′(u) tends to infinity sufficiently fast as
x→ y, x ∈ E. The function ψ′(u) plays a key role in the description of the tangent
cone to U at point u. It is also a principle ingredient in the probabilistic formula
9.(3.4). An important step is an investigation of a curve ut = u⊕utν in U . If there
exists a (L,ψ)-superdiffusion, then we deduce from 9.(3.4) an integral equation for
ut (see, Theorem 11.3.1). For a general ψ, we prove a weaker statement about ut,
but it is sufficient for establishing fundamental properties of SG(u). Relying on
these properties, we introduce a fine topology on the Martin boundary. The fine
trace is defined by the formula 11.(7.1). The main results on the fine trace are
stated in Theorems 11.7.1 and 11.7.2. At the end of the chapter we demonstrate
that for the solutions in Le Gall’s example (having identical rough traces) the fine
traces are distinct.

In this chapter we assume that ψ satisfies conditions 8.1.A–1.C and 8.3.2.A
and, moreover, that:

0.A. Function ∂ψ(x,u)
∂u

is continuously differentiable.

1. Singularity set SG(u)

1.1. Points of rapid growth. We consider the tangent cone to U at point u
which we define as the set of tangent vectors v to all smooth curves ut in U with
the properties:

(a) u0 = u and ut ∈ U for 0 ≤ t < ε;
(b) ut(x) is monotone increasing in t.
Condition (a) implies that Lut = ψ(ut) for 0 ≤ t < ε and therefore v(x) =

∂ut(x)/∂t
∣∣
t=0

satisfies a linear equation

(1.1) Lv = av

153
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where
a = ψ′(u).

[We use abbreviation ψ′(u) for ∂ψ(x,u)
∂u .] Since ψ is monotone increasing in u,

a(x) ≥ 0.
Condition (b) implies that v(x) ≥ 0. In the case a = 0, we established, in

Chapter 7, an integral representation of all positive solutions of (1.1) through the
Martin kernel k(x, y)

(1.2) h(x) =
∫

E′
k(x, y)ν(dy)

where ν is a finite measure on a Borel subset E′ of ∂̂E. A similar representation
is possible for any a ≥ 0. However the corresponding kernel ka(x, y) can vanish
identically in x for some points y ∈ E′. This happens if a blows up sufficiently fast.
We say that y ∈ E′ is a point of rapid growth for a if ka(x, y) = 0 for all x ∈ E. We
say that y ∈ E′ is a singular point of u ∈ U and we write y ∈ SG(u) if y is a point
of rapid growth of ψ′(u), i.e., if ju(x, y) = kψ′(u)(x, y) = 0 for all x ∈ E. The rest
of boundary points are called regular points of u. We denote the set of all regular
points by RG(u).

We give an analytic and a probabilistic construction of the kernel ka. Based
on the latter, we introduce an equivalent definition of singular points y in terms of
the behavior of ψ′(u) along Πy

x-almost all paths.

1.2. Analytic construction of kernel ka. Suppose a ≥ 0 is a continuously
differentiable function on E, h ∈ H(E) and D b E is regular. By Theorem 6.3.1,
the boundary value problem

Lu− au = 0 in D,
u = h on ∂D

(1.3)

is equivalent to the integral equation

(1.4) u+GD(au) = h

and each of the problems (1.3) and (1.4) has a unique positive solution. We denote
it Ka

Dh. We have:

1.2.A. Ka
Dh ≤ h and K0

Dh = h.

1.2.B. If D ⊂ D̃ b E, then Ka
Dh ≥ Ka

D̃
h.

Indeed, let u = Ka
Dh and ũ = Ka

D̃
h. We have h = ũ+GD̃(aũ) ≥ ũ. Therefore

w = ũ−u ≤ 0 on ∂D because u = h on ∂D. Since Lw−aw = 0 in D, the maximum
principle 6.1.4.A implies that w ≤ 0 in D.

Put ky(x) = k(x, y) and denote by kDa (x, y) the value of Ka
Dky at point x. Note

that, for h given by (1.2),

(1.5) Ka
Dh(x) =

∫

E′
kDa (x, y)ν(dy).

Consider a sequence of regular domains Dn exhausting E. By 1.2.B, the sequence
kDn
a is monotone decreasing, and we denote its limit by ka(x, y). [The limit does
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not depend on the choice of Dn.] If h is defined by (1.2), then, by the dominated
convergence theorem,

(1.6)
∫

E′
ka(x, y)ν(dy) = limKa

Dn
h(x).

By 6.3.2.B, this is a solution of equation 6.(3.4) and, by 6.3.2.C, it is either strictly
positive or equal to 0 for all x. In particular, this is true for functions ka(·, y) and
therefore ka(x, y) > 0 for all x ∈ E if y is not a point of rapid growth of a.

1.3. Probabilistic definition of kernel ka. A probabilistic formula for a
solution of equation (1.4) is given by Lemma 9.3.1. By applying this formula to a
sequence of regular domains Dn exhausting E, we get

(1.7) kDn
a (x, y) = Πy

x exp[−
∫ τn

0

a(ξs)ds]

where τn is the first exit time from Dn. By passing to the limit as n→ ∞, we get
an expression

(1.8) ka(x, y) = Πy
xe

−Φa

where

(1.9) Φa =
∫ ζ

0

a(ξs) ds.

If a1 ≤ a2, then Φa1 ≤ Φa2 and ka1 ≥ ka2 . Note that y is a point of rapid growth
for a if and only if

(1.10) Φa = ∞ Πy
x − a.s.

for all x ∈ E.
The set A = {Φa = ∞} belongs to the tail σ-algebra T and, by Theorem 7.5.1,

if condition (1.10) is not satisfied, then for all x ∈ E, Πy
x(A) = 0 and therefore

Φa < ∞ Πy
x-a.s. One of implications is that a point y ∈ E′ is a point of rapid

growth for a1 + a2 if and only if it is a point of rapid growth either for a1 or for a2.

2. Convexity properties of VD

2.1. Condition 8.1.A implies that, for all 0 < u1 < u2, ψ(u1) < ψ(u2) and
the ratio

(2.1)
ψ(u2) − ψ(u1)

u2 − u1

is monotone increasing in u1 and in u2. Note that every function, for which the
ratio (2.1) is monotone increasing in u2 (or in u1), is convex.

2.2.

Theorem 2.1. Suppose that D is a bounded regular domain and ψ satisfies
8.1.A. Let u ≥ 0, ϕ ≥ ϕ̃ ≥ 0 be continuous functions on ∂D. Then

(2.2) VD(u+ ϕ) − VD(u+ ϕ̃) ≤ VD(ϕ) − VD(ϕ̃).

Function F (t) = VD(u + tϕ), t ≥ 0 is concave.

Proof is based on the following lemma.
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Lemma 2.1. Let D and ψ be as in Theorem 2.1 and suppose that continuous
functions f1, f2, f̃1, f̃2 on ∂D and a constant λ ≥ 0 satisfy conditions

(2.3) 0 ≤ f1 ≤ f̃1 ≤ f̃2, 0 ≤ f1 ≤ f2 ≤ f̃2

and

(2.4) f̃2 − f̃1 ≤ λ(f2 − f1).

Then

(2.5) VD(f̃2) − VD(f̃1) ≤ λ[VD(f2) − VD(f1)].

Proof. Put ui = VD(fi) and ũi = VD(f̃i). By 8.2.1.C, v = u2 − u1 ≥ 0 and
ṽ = ũ2 − ũ1 ≥ 0. We have Lu1 −ψ(u1) = L(u2)−ψ(u2) = 0 and therefore Lv = av
where

a =
ψ(u2) − ψ(u1)

u2 − u1
for u1 6= u2,

and a = 0 for u1 = u2. By 6.3.2.C, v = 0 in D or v is strictly positive. The same
is true for ṽ. Formula (2.5) holds if ṽ = 0. If v = 0, then f1 = u1 + GDψ(u1) =
u2 + GDψ(u2) = f2. By (2.4), f̃1 = f̃2, and we again have (2.5). Therefore we can
assume that v and ṽ are strictly positive.

Put
a = [ψ(u2) − ψ(u1)]/v, ã = [ψ(ũ2) − ψ(ũ1)]/ṽ.

By (2.3), u1 ≤ ũ1 ≤ ũ2 and u1 ≤ u2 ≤ ũ2. Since the ratio (2.1) is monotone
increasing in u1 and in u2, we have ã ≥ a. Put w = ṽ − λv. Note that

Lw = Lṽ − λLv = ãṽ − λav = aw + (ã− a)ṽ in D.

Hence, Lw − aw ≥ 0 in D. On ∂D, ui = fi, ũi = f̃i and, by (2.4), w ≤ 0. By the
maximum principle 6.1.4.A, w ≤ 0 in D which implies (2.5). �

2.3. Proof of Theorem 2.1. To prove (2.2), it is sufficient to apply Lemma
2.1 to f1 = ϕ̃, f2 = ϕ, f̃1 = u+ ϕ̃, f̃2 = u+ ϕ, λ = 1.

By taking

f1 = f̃1 = f + sϕ, f2 = f + tϕ, f̃2 = f + t̃ϕ, λ = (t̃ − s)/(t − s)

in (2.5), we see that [F (t)−F (s)]/(t− s) is monotone decreasing in t and therefore
F is concave. �

Remark. By applying Theorem 2.1 to ϕ̃ = 0, we get another proof of subad-
ditivity of VD but only for bounded regular domains – a restriction not imposed in
Theorem 8.2.1.

3. Functions Ju

3.1. To every u ∈ U and every ν ∈ N1 there corresponds a positive function
on E given by the formula

(3.1) Ju(ν)(x) =
∫

E′
ju(x, y)ν(dy)

where ju(x, y) = ka(x, y) with a = ψ′(u). Note that Ju(ν) = 0 if and only if ν is
concentrated on SG(u).

By using the probabilistic expression (1.8) for ka, we get

(3.2) Ju(ν)(x) =
∫

E′
Πy
xe

−Φ(u)ν(dy).
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3.2. A 1-1 mapping ν → uν from N1 onto the class U1 of all moderate solu-
tions was defined in section 8.3.3. (Formula ν = tru describes the inverse mapping
from U1 to N1.) By Theorem 8.3.3, under condition 8.3.2.A, tν ∈ N1 for all t > 0
if ν ∈ N1.

Theorem 3.1. Let ut = u ⊕ utν where u ∈ U , ν ∈ N1. If there exists an
(L,ψ)-superdiffusion, then

(3.3) ut = u+
∫ t

0

Jus(ν)ds.

Proof. If Zt = SBV(ut), then, by Theorem 9.1.1, ut = LPT(Zt) which means

(3.4) e−ut(x) = Pxe
−Zt.

Put Z = SBV(u), Zν = SBV(uν), Ztν = SBV(utν). By 9.1.4.A and 9.(2.7), Zt =
Z + Ztν = Z + tZν . Therefore (3.4) implies

(3.5) e−utdut/dt = PxZνe
−Zt .

By applying Theorem 9.3.1 to Zt, we get

(3.6) PxZνe
−Zt = e−ut(x)Jut(ν)(x).

By (3.5) and (3.6),
dut/dt = eutPxZνe

−Zt = Jut(ν)
which implies (3.3). �

3.3. Formula (3.3) plays a central role in the theory of the fine trace. Without
assuming the existence of an (L,ψ)-superdiffusion, we prove a weaker form of The-
orem 3.1 by using the convexity properties of operators VD established in section
2.

Theorem 3.2. For all u ∈ U , ν ∈ N1 and t ≥ 0,

(3.7) u⊕ utν ≤ u+ tJu(ν)

and

(3.8) utν =
∫ t

0

Jusν (ν) ds.

We use the following lemmas:

Lemma 3.1. For every λ > 0, there exists a constant C(λ) such that

(3.9) ψ′(λu) ≤ C(λ)ψ′(u) for all u ≥ 0.

Proof. Let 2n > λ+ 1. By 8.1.A, ψ′ is positive and monotone increasing and
therefore

uψ′(λu) ≤
(λ+1)u∫

λu

ψ′(t)dt ≤
2nu∫

0

ψ′(t)dt = ψ(2nu).

By 8.3.2.A and 8.1.A,

ψ(2nu) ≤ anψ(u) = an
∫ u

0

ψ′(t)dt ≤ anuψ′(u).

Therefore (3.9) holds with C(λ) = an. �



158 11. FINE TRACE

Lemma 3.2. If f is a continuous function on an interval [a, b] and its right
derivative f+(t) ≤ Λ for all a ≤ t < b, then

f(b) − f(a) ≤ Λ(b− a).

Proof. Consider a continuous function Fε(t) = f(t) − f(a) − (Λ + ε)(t − a).
We have F+

ε (a) < 0 because f+(a) ≤ Λ. Hence Fε(t) < 0 in a neighborhood of a.
If Fε(b) > 0, then there exists a point c ∈ (a, b) such that Fε(c) = 0 and Fε(t) > 0
for t ∈ (c, b]. This implies f(t)− f(c) > (Λ + ε)(t− c) and therefore F+

ε (c) ≥ Λ + ε.
This contradicts our assumption. Hence Fε(b) ≤ 0 for all ε > 0. �

Proof of Theorem 3.2. By Lemma 3.2, to prove (3.7), it is sufficient to
show that ut = u ⊕ utν is continuous in t and that its right derivative wt satisfies
the condition

(3.10) wt ≤ Ju(ν).

Let Dn be a sequence of regular sets exhausting E. Put Vn = VDn ,Kn =
KDn , Gn = GDn and let h = Kν, unt = Vn(u+ th).

1◦. Note that utν ≤ K(tν) = th. By 8.5.1.D, u + th ∈ U−, and, by 8.5.1.A,
unt ≥ u⊕ (th) ≥ ut.

It follows from the monotonicity of Vn (8.2.1.C), Theorem 2.1 and the mean
value property (8.2.1.D) that

0 ≤ unt − Vn(u+ uth) ≤ Vn(th) − Vn(utν) = Vn(th) − utν.

As n → ∞, Vn(u+ utν) → ut and Vn(th) → i(th) = utν and therefore

(3.11) lim
n→∞

unt = ut.

Note that Vn(th) ≤ th because th ∈ U− (see 8.5.1.A). Therefore by (2.2),

(3.12) 0 ≤ unt − u = Vn(u+ th) − Vn(u) ≤ Vn(th) ≤ th.

By passing to the limit, we get

(3.13) 0 ≤ ut − u ≤ th.

2◦. We claim that vnt = (unt − u)/t satisfies the equation

(3.14) vnt + Gn(ant v
n
t ) = h

where

(3.15) ant =

{
[ψ(unt ) − ψ(u)]/(unt − u) if unt 6= u,

ψ′(u) if unt = u.

Indeed,

(3.16) unt + Gnψ(unt ) = Kn(u+ th) = Knu+ th

and, by the mean value property 8.2.1.D,

(3.17) u+Gnψ(u) = Knu.

Formulae (3.14)–(3.15) follow from (3.16) and (3.17).
3◦. By Theorem 2.1, functions unt are concave and, by (3.11) ut is also concave.

By (3.12) and (3.13), unt and ut are continuous at 0. Hence, they are continuous
and have right derivatives for all t ≥ 0. We denote them wnt and wt. Since wt is
decreasing and since unt ≥ ut, u

n
0 = u0, we have

(3.18) wt ≤ w0 ≤ wn0 .
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Note that vnt ↑ wn0 as t ↓ 0 and, by (3.14), vnt ≤ h. We see from (3.15) and (3.12)
that ant ↓ a = ψ′(u) as t ↓ 0. It follows from 8.1.A that ant ≤ an1 ≤ ψ′(un1 ) for all
t ∈ [0, 1]. Since un1 and h are bounded in Dn,

Gn(ant v
n
t ) → Gn(awn0 ) as t→ 0

by the dominated convergence theorem, and (3.14) yields

(3.19) wn0 +Gn(awn0 ) = h.

Therefore wn0 = Ka
Dn
h and, by (3.18), wt ≤ Ka

Dn
h. By (1.6) and (3.1), Ka

Dn
h →

Ju(ν) as n→ ∞ which implies (3.10) and (3.7).
4◦. To prove (3.8), it is sufficient to show that the right derivative ws of function

us = usν satisfies the equation

(3.20) ws +G(asws) = h

where as = ψ′(us) and h = Kν. Indeed, (3.20) implies that (1.4) (with a replaced
by as) holds for every D b E and therefore ws = Kas

Dn
h. By (1.6), ws = Jus(ν)

and we get (3.8) by integrating ws over [0, t].
Since uth = i(th),

(3.21) ut + Gψ(ut) = th

by 8.(3.4), and therefore, for every 0 ≤ s < t,

(3.22) vst +G(astvst) = h

where vst = (ut − us)/(t − s) and

ast =

{
[ψ(ut) − ψ(us)]/(ut − us) if ut 6= us,

ψ′(us) if ut = us.

We have

vst → ws, ast → as as t ↓ s.

Equation (3.20) follows from (3.22) if we prove that

(3.23) G(astvst) → G(asws) as t ↓ s.

By (3.22) and Fatou’s lemma,

(3.24) G(asws) ≤ h < ∞.

Clearly,

(3.25) vst ≤ ws, ast ≤ ψ′(us+1) for s < t < s + 1.

Since ut is concave and ψ′ is monotone increasing, we get us+1 ≤ λsus with
λs = (s + 1)/s and ψ′(us+1) ≤ ψ′(λsus). It follows from (3.25) and (3.9) that

(3.26) vstast ≤ wsψ
′(us+1) ≤ wsψ

′(λsus) ≤ C(λs)wsas for s < t < s+ 1.

Relation (3.23) holds by (3.26), (3.24) and the dominated convergence theorem. �
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4. Properties of SG(u)

4.1. It is clear from the probabilistic description of ka that

SG(u) = {y ∈ E′ :
∫ ζ

0

ψ′[u(ξs)] ds = ∞ Πy
x−a.s. for all x ∈ E};

RG(u) = {y ∈ E′ :
∫ ζ

0

ψ′[u(ξs)] ds < ∞ Πy
x−a.s. for all x ∈ E}.

(4.1)

It follows immediately from the definitions of Ju and SG(u) that:

4.1.A. If u1 ≤ u2, then Ju1 ≥ Ju2 and SG(u1) ⊂ SG(u2), RG(u1) ⊃ RG(u2).
We also have:

4.1.B. If u ≤ u1 + u2, then SG(u) ⊂ SG(u1) ∪ SG(u2).

Indeed, we can assume that u1 ≥ u2. It follows from 8.1.A and (3.9) that

ψ′(u1 + u2) ≤ ψ′(2u1) ≤ cψ′(u1) ≤ c[ψ′(u1) + ψ′(u2)]

where c = C(2). Therefore every y ∈ SG(u) is a point of rapid growth of ψ′(u1) +
ψ′(u2). Hence, it is a point of rapid growth of ψ′(u1) or ψ′(u2).

4.2. We put SG(ν) = SG(uν), SG(B) = SG(uB). The notation RG(ν),RG(B)
has a similar meaning.

We have:

4.2.A. If ν ∈ N1 is concentrated on SG(u), then uν ≤ u.
Indeed, uν = π(uν) ≤ π(u+uν) = u⊕uν because uν ≤ u+uν . Since Ju(ν) = 0,

(3.7) implies u⊕ uν ≤ u.

4.2.B. Every ν ∈ N1 is concentrated on SG(∞ · ν).

Proof. Put ut = utν. We need to prove that ν is concentrated on SG(u)
where u = u∞. For every t ∈ R+, ut ≤ u∞ and Jut ≥ Ju by 4.1.A. It follows from
(3.8) that tJu(ν) ≤ ut ≤ u. By passing to the limit as t → ∞, we conclude that
Ju(ν) = 0. �

4.2.C. If u ∈ U1, then SG(u) is w-polar.

Proof. Let ν̃ be the restriction of ν ∈ N1 to Γ = SG(u). For every t ∈ R+,
measure tν̃ ∈ N1(Γ), and utν̃ ≤ u by 4.2.A. If u ∈ U1, then u = uµ for some
µ ∈ N1. The inequality utν̃ ≤ uµ implies tν̃ ≤ µ. Hence, ν̃ = 0 and ν(Γ) = 0. �

4.2.D. Set Λ = B ∩ RG(B) is w-polar for every B.

Proof. Let ν̃ be the restriction of ν ∈ N1 to B. The measure ν′ = ∞ · ν̃
belongs to N0(B), and the definition of uB (see 8.(5.4)) implies that uν′ ≤ uB. By
4.1.A, RG(uν′) ⊃ RG(B) and therefore ν(Λ) = ν̃(Λ) ≤ ν̃[RG(B)] ≤ ν̃[RG(uν′)].
By 4.2.B, ν̃[RG(uν′)] = 0. Hence, ν(Λ) = 0. �

We write B1 ∼ B2 if the symmetric difference B1∆B2 is w-polar. If this is the
case, then ν ∈ N1 is concentrated on B1 if and only if it is concentrated on B2 and
therefore uB1 = uB2 .

4.2.E. If Γ = SG(u), then uΓ ≤ u, SG(Γ) ⊂ Γ and Λ = Γ \ SG(Γ) is w-polar.
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Proof. If ν ∈ N1 is concentrated on Γ, then uν ≤ u by 4.2.A. Therefore
uΓ ≤ u. This implies SG(Γ) = SG(uΓ) ⊂ SG(u) = Γ. Set Λ = Γ∩RG(Γ) is w-polar
by 4.2.D. �

4.2.F. If Γ = SG(B), then uΓ = uB and SG(Γ) = Γ.
Indeed, uΓ ≤ uB by 4.2.E. Note that B = (B ∩ Γ)∪Λ′ where Λ′ = B ∩RG(B)

is w-polar by 4.2.D. Hence, uB = uB∩Γ ≤ uΓ.

4.2.G. For every u1, u2 ∈ U ,

(4.2) SG(u1 ⊕ u2) = SG(u1) ∪ SG(u2).

For every Borel B1, B2,

(4.3) SG(B1 ∪B2) = SG(B1) ∪ SG(B2).

Proof. Since u1 ∨ u2 ≤ u1 ⊕ u2 ≤ u1 + u2, we get from 4.1.A and 4.1.B that
SG(u1) ∪ SG(u2) ⊂ SG(u1 ⊕ u2) ⊂ SG(u1) ∪ SG(u2) which implies (4.2).

By 8.(5.5), uB1∪B2 ≤ uB1+uB2 and, by the definition of ⊕, uB1∪B2 ≤ uB1⊕uB2 .
Hence, by (4.2), SG(B1 ∪B2) ⊂ SG(B1)∪SG(B2). This implies (4.3) since SG(B1)
and SG(B2) are contained in SG(B1 ∪B2). �

5. Fine topology in E′

5.1. Put B ∈ F0 if B is a Borel subset of E′ and if SG(uB) ⊂ B. Let B ∈ F if
B is the intersection of a collection of sets of class F0. It follows from (4.3) that the
class F0 is closed under finite unions . Therefore F has the same property. Clearly,
F is also closed under intersections. Thus (see, e.g., [Kur66], I.5.II) F is the class
of all closed sets for a topology in E′. We call it the fine topology or f-topology.
Elements of F will be called f-closed sets. For every B ⊂ E′, we denote by Bf the
f-closure of B that is the intersection of all f-closed sets C ⊃ B.

Here are some properties of the f-topology.

5.1.A. The set SG(u) belongs to F0 for every u ∈ U .
Indeed, SG(u) is a Borel set because it consists of y ∈ E′ such that ju(x0, y) = 0

for a fixed x0 ∈ E. By 4.2.E, SG[SG(u)] ⊂ SG(u).

5.1.B. The f-closure Bf of a Borel set B is equal to B ∪ Γ where Γ = SG(B).
Moreover, Bf ∼ Γ.

Proof. If B ⊂ C ∈ F0, then Γ = SG(B) ⊂ SG(C) ⊂ C and B ∪ Γ ⊂ C.
Hence, B ∪ Γ ⊂ Bf . On the other hand, B ∪ Γ = Γ ∪ Λ where Λ = B ∩ RG(B) is
w-polar by 4.2.D. Hence, B ∪ Γ ∼ Γ, uB∪Γ = uΓ and SG(B ∪ Γ) = SG(Γ) ⊂ Γ by
4.2.F. We conclude that B ∪ Γ ∈ F0 and therefore Bf ⊂ B ∪ Γ. �

We define the f-support Supp ν of ν as the intersection of all sets B ∈ F0 such
that ν(E′ \B) = 0. It is not clear if the Supp ν is a Borel set. However, for ν ∈ N0,
this follows from the next proposition.

5.1.C. For every ν ∈ N0, Supp ν = SG(∞ · ν) ∈ F0 and ν is concentrated on
Supp ν.
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Proof. Note that ν′ = ∞ · ν ∈ N0, that Supp ν = Supp ν′. By 5.1.A, Γ =
SG(ν′) ∈ F0. If B ∈ F0 and if ν(E′ \ B) = 0, then uν′ ≤ uB by 8.(5.4) and Γ =
SG(ν′) ⊂ SG(B) ⊂ B by 4.1.A. Hence Γ ⊂ Supp ν. On the other hand, if νn ↑ ν
and νn ∈ N1, then, by 4.2.B, νn are concentrated on SG(∞ · νn) ⊂ SG(ν′) = Γ.
Hence ν is concentrated on Γ and Supp ν ⊂ Γ. �

5.1.D. For every ν ∈ N0, SG(ν) ⊂ Supp ν
Indeed, by 4.1.A, SG(ν) ⊂ SG(∞ · ν) and, by 5.1.C, SG(∞ · ν) = Supp ν.

5.1.E. Let ν ∈ N0 and Γ = SG(ν). If Supp ν ⊂ Γ, then uν = uΓ.

Proof. If µ ∈ N1 is concentrated on Γ, then uµ ≤ uν by 4.2.A. Hence,
uΓ ≤ uν. On the other hand, ν is concentrated on Supp ν by 5.1.C. Hence, ν is
concentrated on Γ and uν ≤ uΓ by the definition of uΓ. �

5.1.F. If ν ∈ N0 is a (0,∞)-measure, then SG(ν) = Supp ν. If, in addition,
uν = uΓ, then Supp ν = SG(Γ).

Since ∞·ν = ν, the first part follows from 5.1.C. The second part follows from
the first one because SG(ν) = SG(Γ) if uν = uΓ.

5.1.G. If B1, B2 ∈ F0 and if uB1 = uB2 , then B1 ∼ B2.

Proof. Clearly, SG(B1) = SG(B2). By 5.1.B, Bi ∼ SG(Bi). Hence B1 ∼
B2. �

6. Auxiliary propositions

6.1. More about operations ⊕ and ∨.
6.1.A. For every u > ũ, v > ṽ in U ,

(6.1) u⊕ v − ũ⊕ ṽ ≤ u− ũ+ v − ṽ.

Proof. Let Dn be a sequence exhausting E. By Theorem 2.1 and the mean
value property, 8.2.1.D,

VD(u+ v) − VD(u+ ṽ) ≤ VD(v) − VD(ṽ) = v − ṽ for all D b E.

By 8.5.1.D and 8.5.1.A, this implies u⊕v−u⊕ṽ ≤ v−ṽ.Analogously, u⊕ṽ−ũ⊕ṽ ≤
u− ũ. �

6.1.B. If un, vn, u, v ∈ U and if un ↑ u, vn ↑ v, then un ⊕ vn ↑ u⊕ v.
This follows from 6.1.A.

6.1.C. If µ, ν ∈ N0, then uµ+ν = uµ ⊕ uν and uµ∨ν = uµ ∨ uν.
To prove 6.1.C, we consider µn, νn ∈ N1 such that µn ↑ µ, νn ↑ ν. By Lemma

8.5.1, uµn ↑ uµ, uνn ↑ uν, and 6.1.C follows from 8.(5.1) and 6.1.B.

6.1.D. For every Borel Γ and every ν ∈ N0,

uΓ ⊕ uν = uΓ ∨ uν.

Indeed, by Remark after 8.5.5.A, uΓ = uµ for a (0,∞)-measure µ. For such a
measure, µ+ ν = µ ∨ ν and uµ ⊕ uν = uµ+ν = uµ∨ν = uµ ∨ uν by 6.1.C.
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6.2. On Σ-finite and σ-finite measures. We say that a measure ν on a
measurable space (S,BS ) is Σ-finite if it can be represented as the sum of a series
of finite measures. All measures in N0 are Σ-finite.

6.2.A. For every Σ-finite measure ν, there exists a finite measure m and a posi-
tive function ρ such that dν = ρdm.

Proof. Suppose that ν = ν1 + · · ·+νk + . . . where νk are finite measures. All
measures νk are absolutely continuous relative to

m =
∑

k

akνk

where ak = 2−kνk(S)−1. By the Radon-Nikodym theorem, dνk = ρkdm and there-
fore dν = ρdm where ρ =

∑
k ρk. �

6.2.B. For every Σ-finite measure ν there exists a partition of S into two disjoint
sets S∞ and S∗ such that the restriction ν∞ of ν to S∞ is a (0,∞)-measure and the
restriction ν∗ of ν to S∗ is σ-finite. Measures ν∞ and ν∗ are determined uniquely.

Proof. If ρ and m are as in 6.2.A, then the sets S∞ = {ρ = ∞} and S∗ =
{ρ <∞} satisfy 6.2.B.

Suppose that ν = ν1+ν2 where ν1 is a (0,∞)-measure and ν2 is σ-finite. Denote
by ν∞i and ν∗i the restriction of νi to S∞ and to S∗. The measures ν∗1 and ν∞2 are
σ-finite (0,∞)-measures and therefore they are equal to 0. We have

(6.2) ν∗ = ν∗1 + ν∗2 = ν∗2 , ν∞ = ν∞1 + ν∞2 = ν∞1 ;

ν1 = ν∞1 + ν∗1 = ν∞1 , ν2 = ν∞2 + ν∗2 = ν∗2

and therefore ν1 = ν∞, ν2 = ν∗. �

6.2.C. If ν1 ≤ ν2 are Σ-finite, then there exists a measure γ such that ν2 = ν1+γ.

Proof. By 6.2.A, there exists a finite measure m such that dνi = ρidm. Since
ν1 ≤ ν2, we have ρ1 ≤ ρ2 m-a.e. Put ρ = ρ2−ρ1 on the set ρ1 < ∞ and ρ = 0 on its
complement. Clearly, ρ+ρ1 = ρ2 m-a.e. and ν2 = ν1 +γ with γ(B) =

∫
B
ρdm. �

7. Fine trace

7.1. Main results. With every u ∈ U we associate
Γ = SG(u),

ν(B) = sup{µ(B) : µ ∈ N1, µ(Γ) = 0, uµ ≤ u}.
(7.1)

We call the pair (Γ, ν) the fine trace of u and we denote it by Tr(u). We prove:

Theorem 7.1. The fine trace of every solution u has the following properties:
7.1.A. Γ is a Borel f-closed set.
7.1.B. ν is a σ-finite measure of class N0 such that ν(Γ) = 0 and SG(uν) ⊂ Γ.

If Tr(u) = (Γ, ν), then uΓ,ν = uΓ⊕uν is the maximal σ-moderate solution dominated
by u.

We say that pairs (Γ, ν) and (Γ′, ν′) are equivalent and we write (Γ, ν) ∼ (Γ′, ν′)
if ν = ν′ and the symmetric difference between Γ and Γ′ is w-polar. Clearly,
uΓ,ν = uΓ′,ν′ if (Γ, ν) ∼ (Γ′, ν′).
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Theorem 7.2. Let (Γ, ν) satisfy conditions 7.1.A-7.1.B. Then the fine trace of
uΓ,ν = uΓ ⊕ uν is equivalent to (Γ, ν). Moreover, uΓ,ν is the minimal solution with
this property and the only one which is σ-moderate.

7.2. Proof of Theorem 7.1. 1◦. Let Tr(u) = (Γ, ν). Property 7.1.A follows
from 5.1.A.

Denote by L the set of all µ ∈ N1 such that uµ ≤ u and µ(Γ) = 0 and apply
Theorem 8.5.1 to C = {uµ, µ ∈ L}. Let v = SupC. By 8.5.3.B, there is a
sequence un ∈ C such that, for all x, un(x) ↑ v(x) and v(x) = sup{uµ(x), µ ∈ L}.
The sequence νn = tr(un) is increasing and therefore νn ↑ ν′ ∈ N0. By 8.(5.3),
un = uνn ↑ uν′ and therefore uν′ = v ≤ u. The condition νn(Γ) = 0 implies that
ν′(Γ) = 0.

2◦. We claim that, for every B, ν′(B) is equal to

ν(B) = sup{µ(B) : µ ∈ L}

and therefore ν is a measure of class N0. The inequality ν′(B) ≤ ν(B) follows from
the relation νn(B) ≤ ν(B). It remains to prove that

(7.2) ν(B) ≤ ν′(B).

Let µ ∈ L. Consider κ = µ ∨ ν′. We have uµ ≤ uν′ and therefore uν′ = uν′ ∨
uµ = uκ by 6.1.C. Suppose ν′ 6= κ. By 6.2.C, there exists a measure γ such
that ν′ + γ = κ. By 8.5.4.B, γ ∈ N0. By 6.1.C, uν′ = uκ = uν′ ⊕ uγ and
therefore uν′ = uν′ ⊕ unγ ≥ unγ for every n. Hence u∞·γ ≤ uν′ ≤ u. By 4.1.A,
SG(∞ · γ) ⊂ SG(u) = Γ. By 5.1.C, γ is concentrated on Supp γ = SG(∞ · γ) ⊂ Γ.
Relations µ(Γ) = ν′(Γ) = 0 imply that κ(Γ) = 0 and therefore γ(Γ) = 0. We
conclude that γ = 0 and ν′ = κ = µ ∨ ν′. Hence, ν′ ≥ µ which implies (7.2).

3◦. Let ν = ν∗ + ν∞ be the decomposition described in 6.2.B. By 5.1.C, ν∞ is
concentrated on SG(ν∞). Since uν∞ ≤ uν ≤ u, SG(ν∞) ⊂ Γ by 4.1.A, and ν∞ is
concentrated on Γ. Since ν(Γ) = 0, we conclude that ν∞ = 0 and ν = ν∗ is σ-finite.
This completes the proof of the first part of Theorem 7.1.

4◦. By 4.2.E, u ≥ uΓ and therefore u ≥ uΓ ∨ uν, which coincides with uΓ ⊕ uν
by 6.1.D.

5◦. Solution uν is σ-moderate because ν ∈ N0. Solution uΓ is also σ-moderate
by 8.(5.4) and 8.5.3.B. It follows from 6.1.B that uΓ,ν ∈ U0.

Let us prove that, if ũ ∈ U0 and if Tr(ũ) = (Γ, ν), then ũ ≤ uΓ,ν. We know
that ũ = uµ for some µ ∈ N0. Consider the restrictions µ1 and µ2 of µ to Γ
and Γc. Note that uµ1 ≤ uΓ by the definition of uΓ. Let λi ↑ µ2, λi ∈ N1. By
Lemma 8.5.1, uλi ↑ uµ2 . Since λi ∈ L, we have uλi ≤ uν and uµ2 ≤ uν . Therefore
ũ = uµ1 ⊕ uµ2 ≤ uΓ ⊕ uν. �

7.3. Proof of Theorem 7.2. 1◦. Let Tr(uΓ,ν) = (Γ′, ν′). By 4.2.G, Γ′ =
SG(uΓ ⊕ uν) = SG(uΓ) ∪ SG(uν) and, by 7.1.A-7.1.B, Γ′ ⊂ Γ. Note that Γ \ Γ′ ⊂
Γ\SG(uΓ) = Γ∩RG(Γ) which is w-polar by 4.2.D. Therefore Γ′ ∼ Γ. Since ν ∈ N0

does not charge w-polar sets, ν(Γ′) = ν(Γ) = 0 by 7.1.B.
2◦. Since ν ∈ N0, there exist νn ∈ N1 such that νn ↑ ν. We have uνn ≤ uν ≤

uΓ,ν and, by (7.1), νn ≤ ν′. Hence, ν ≤ ν′. By 6.2.C, ν′ = ν + γ. By Theorem 7.1,
uΓ,ν ≥ uΓ′,ν′ (because Tr(uΓ,ν) = (Γ′, ν′) ). Hence,

uΓ,ν ≥ uν′ ⊕ uΓ′ = uν′ ⊕ uΓ = uν ⊕ uγ ⊕ uΓ = uΓ,ν ⊕ uγ .
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We get, by induction, that uΓ,ν ≥ uΓ,nγ for all n. Hence, uΓ,ν ≥ uΓ,∞·γ ≥ u∞·γ . By
4.1.A, SG(∞·γ) ⊂ SG(uΓ,ν) = Γ′. By 5.1.F, a (0,∞)- measure ∞·γ is concentrated
on SG(∞ · γ). Therefore it is concentrated on Γ′ and, since γ ≤ ∞ · γ, γ does not
charge the complement of Γ′. But γ(Γ′) ≤ ν′(Γ′) = 0. Hence γ = 0, ν′ = ν and
(Γ, ν) ∼ (Γ′, ν′).

3◦. Let ũ be a solution with the fine trace (Γ′, ν′) ∼ (Γ, ν). By Theorem 7.1,
ũ ≥ uΓ′,ν′ = uΓ,ν which implies the minimal property of uΓ,ν. If, in addition, ũ is
σ-moderate, then, by Theorem 7.1, ũ ≤ uΓ′,ν′ = uΓ,ν and therefore ũ = uΓ,ν. �

8. On solutions wO

8.1. Solutions wO corresponding to open subsets O of ∂E were used in section
10.3.5 to define infinite many solutions with the same rough trace. Now we show
that these solutions have distinct fine traces. It follows from Theorem 7.2 that this
goal will be achieved if we prove that all solutions wO are σ-moderate. We use as
a tool a uniqueness theorem.

8.2. Uniqueness of solutions blowing up at the boundary. It is known
that a solution of the problem

Lu = ψ(u) in E,
u = ∞ on ∂E

(8.1)

is unique for wide classes of domainsE and functions ψ (see [BM92], [MV97]). We
present here a very short proof for bounded star-shaped domains E, the Laplacian
L = ∆ and ψ(u) = uα. [The case of a ball and α = 2 was considered in [Isc88].]
Without loss of generality, we can assume that E is star-shaped relative to 0 that
is, for every λ > 1, Eλ = 1

λE ⊂ E. Note that, if

∆u = uα in E,
u = ∞ on ∂E,

(8.2)

then uλ(x) = λ2/(α−1)u(λx) satisfies (8.2) in Eλ. Suppose that ũ is another solution
of (8.2). Both uλ and u satisfy the equation ∆u = uα in Eλ and ũ < uλ = ∞ on
∂Eλ. By the Comparison principle 8.2.1.H, ũ ≤ uλ in Eλ. By taking λ ↓ 1, we get
that ũ ≤ u in E. Analogously, u ≤ ũ.

8.3. Proof that wO are σ-moderate. Recall that solutions uB defined by
the formula 8.(5.4) are σ-moderate. Hence, it is sufficient to prove:

Theorem 8.1. Suppose that the problem (8.1) has a unique solution. Then

wO = uO

for every open subset O of ∂E.

Proof. 1◦. First, we prove that uO ≤ wO.
By the definition of uO (see 8.(5.4)), it is sufficient to show that, for every

ν ∈ N1(O) and every D b E, uν ≤ wO in D. We use the following fact established
in the first part of the proof of Theorem 10.3.1: for every Borel set B ⊂ ∂E and
every measure µ ∈ Mc(E), there exists a sequence of compact sets Kn ⊂ B such
that wKn ↑ wB µ-a.e. We apply this fact to B = O and the Lebesgue measure on
D. By Theorem 5.3.2, v = limwKn ∈ U . Since v = wO µ-a.e. and both functions
are continuous, they coincide on D.
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Let ν ∈ N1(O) and let νn be the restriction of ν to Kn. By Lemma 8.5.2,
uνn = 0 on ∂E \ Kn and, since wKn is the maximal solution with this property,
uνn ≤ wKn . By Lemma 8.5.1, uνn ↑ uν. Since wKn ↑ wO in D, we get that uν ≤ wO
in D.

2◦. To prove that uO ≥ wO, it is sufficient to demonstrate that uO ≥ wB for
every closed B ⊂ O.

Consider measure ν = ∞· γ where γ is the surface area on ∂E. It follows from
Theorem 5.5.1 that uν = ∞ on ∂E. Since uν and w∂E ≥ uν satisfy (8.1), they
coincide. The relation uν = w∂E ≥ wB and properties 8.4.1.A and 10.1.3.D of QB
imply

(8.3) QB(uν) ≥ QB(wB) = wB .

Note that uν = uν1 ⊕uν2 where ν1 and ν2 are the restrictions of ν to O and ∂E \O.
By 10.2.1.A, QB(uν2) = 0 and, by 10.2.2.B , QB(uν) = QB(uν1). By 8.4.1.B,
uν1 ≥ QB(uν1) = QB(uν), and, by (8.3), uν1 ≥ wB. By 8.5.5.A, uO ≥ uν1 and
therefore uO ≥ wB . �

9. Notes

In spring of 1996, in response to a question of Dynkin, Le Gall communicated
by e-mail an example of nonuniqueness of solutions with a given (rough) trace.
Soon after that Kuznetsov conjectured that this difficulty could be overcame by
using a finer topology on the boundary. Such a topology was suggested by Dynkin
in [Dyn97a]. Its definition included two ingredients:

(a) a set SG(u) of boundary singularities of u described in terms of conditional
Brownian motions as in section 1.3;

(b) solutions wB(x) corresponding to Borel subsets B of the boundary and
defined in terms of hitting probabilities of B by the range of the superdiffusion (see
section 10.3.3).

However, when we tried to use this topology, we were not able to make a
fundamental step — to prove that SG(wB) is closed. We fixed this problem by
replacing wB by uB as defined in section 8.5.5. (We still do not know if uB = wB
for all B or not.) This was our motivation for introducing a class of σ-moderate
solutions which are determined uniquely by their fine traces. We characterized all
pairs (Γ, ν) which are fine traces and we described for each pair (Γ, ν) the minimal
solution with the fine trace (Γ, ν) (it is σ-moderate). These results for equation
Lu = uα with 1 < α ≤ 2 in a smooth domain E were obtained by Kuznetsov and
published in [Kuz98c]. In [DK98a] we extended them to the general equation
Lu = ψ(u) in an arbitrary domain.

The presentation of the fine trace in Chapter 11 is based on [DK98a]. In
addition, a section is included on traces of solutions wO.



CHAPTER 12

Martin capacity and classes N1 and N0

In this chapter we restrict ourselves to the case of ψ(u) = uα with α > 1.
The Martin capacity CMα is one of the Choquet capacities discussed in section
10.3.2. We prove that a measure ν which charges no null sets of CMα belongs to
the class N1 if it is finite and it belongs to N0 if it is Σ-finite. We also prove that
CMα(B) = 0 for all w-polar sets B. Clearly, if ν ∈ N0, then ν(B) = 0 for all w-
polar B. If the class of null sets of CMα and the class of w-polar sets coincide, then
we get two versions of necessary and sufficient conditions characterizing classes N1

and N0. In the next chapter we show that this is true for bounded smooth domains
E and 1 < α ≤ 2.

1. Martin capacity

1.1. The Martin capacity is defined on compact subsets B of the Martin
boundary ∂̂E by the formula

(1.1) CMα(B) = sup{ν(B) : ν ∈ M(B),
∫

E

g(c, x)dx
[∫

B

k(x, y)ν(dy)
]α

≤ 1}

where k is the Martin kernel, g is Green’s function, α > 1 and c is the reference
point used in the definition 7.(1.1) of the kernel k.

The capacity (1.1) is a special case of a capacity corresponding to a function
k(x, y) from E × Ẽ to [0,+∞] where E and Ẽ are two separable locally compact
metrizable spaces and k(x, y) is lower semicontinuous in x and Borelian in y. For
every α > 1 and every Radon measure m on E, there exists a Choquet capacity
given on compact subsets of Ẽ by the formula

(1.2) Cap(B) = sup{ν(B) : ν ∈ M(B),
∫

E

m(dx)[
∫

B

k(x, y)ν(dy)]α ≤ 1}.

The existence is proved, for instance, in [Mey70] and in [AH96], Chapter 2. For
every two Borel sets A,B,

(1.3) Cap(A ∪B) ≤ Cap(A) + Cap(B).

[This follows from Proposition 2.3.6 and Theorem 2.5.1 in [AH96].]
Formula (1.1) is a particular case of (1.2) when E is a Greenian domain in Rd,

Ẽ = ∂̂E and

(1.4) m(dx) = g(c, x) dx.

Both (1.2) and (1.1) hold for all Borel sets.

167
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1.2. We consider the linear space Lα = Lα(E,m) where m is defined by (1.4).
It consists of functions f such that

(1.5) ‖f‖αα =
∫

E

|f(x)|α dm = G(|f |α)(c) < ∞.

(Functions which coincide m-a.e. are identified.) Formula (1.1) can be written in
a form

(1.6) CMα(B) = sup{ν(B) : ν ∈ M(B), ‖Kν‖α ≤ 1}
where

Kν(x) =
∫

B

k(x, y)ν(dy).

Since k(x, y) > 0 for all x ∈ E, y ∈ ∂̂E, 1 CMα(B) = 0 if and only if ‖Kν‖α = ∞
for all nontrivial ν ∈ M(B). 2 In particular, a single-point set y0 is a null set of
CMα if and only if

(1.7)
∫

E

g(c, x)k(x, y0)α dx = ∞.

1.3.

Theorem 1.1. Let E be a Greenian domain in Rd. CMα(B) = 0 for all w-polar
sets B.

Proof. Without any loss of generality we can assume that B is compact. We
prove that, if CMα(B) > 0, then there exists a measure ν ∈ N1 such that ν(B) > 0.

If CMα(B) > 0, then there exists a nontrivial measure ν ∈ M(B) such that
G(hα)(c) < ∞ where h = Kν. Clearly, ν(B) > 0. Theorem 8.3.2 implies that
ν ∈ N1. Indeed, if Kn, Gn and Vn are operators corresponding to a sequence
Dn exhausting E, then Knh = h (by 6.(2.7)) and un = Vn(h) ≤ h (because
un+Gn(uαn) = Knh = h). Functions F cn(y) given by 8.(3.9) are uniformly integrable
because they are dominated by an integrable function g(c, y)h(y)α . Therefore h ∈
H1 and ν ∈ N1. �

1.4. The main result of this chapter is the following theorem.

Theorem 1.2. A measure ν not charging null-sets of capacity CMα belongs to
N1 if it is finite and it belongs to N0 if it is Σ-finite.

The results stated at the beginning of this chapter follow from Theorems 1.1
and 1.2.

To prove Theorem 1.2, we need some preparations.

2. Auxiliary propositions

2.1. Classes Hα and Nα. Put Hα = H ∩ Lα and denote by Nα the set of
all finite measures ν on ∂̂E such that Kν ∈ Hα. We have:

2.1.A. Hα ⊂ H1.
This follows from Theorem 8.3.2. Indeed, since Vn(h) ≤ h, the functions F cn(y)

defined by 8.(3.9) are dominated by an integrable function ϕ(y) = g(c, y)h(y)α .

1This follows from 6.1.5.D because ky(x) = k(x, y) is a harmonic function in E and ky(c) = 1.
2We say that ν is nontrivial if ν(A) 6= 0 for some A.
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2.1.B. CMα(B) = 0 if and only if ν(B) = 0 for all ν ∈ Nα.

Proof. If ν ∈ Nα, then its restriction νB to B also belongs to Nα. If
CMα(B) = 0, then νB = 0 because ‖Kν‖α < ∞.

If CMα(B) > 0, then there exists ν, concentrated on B such that 0 < ‖Kν‖α <
∞. Clearly, ν ∈ Nα and ν(B) > 0. �

Writing “q.e.” (quasi-everywhere) means “everywhere except a set of capacity
0”.

2.1.C. Let ϕ be a Borel function on ∂̂E. The condition 〈ϕ, ν〉 = 0 for all ν ∈ Nα

is equivalent to the condition ϕ = 0 q.e.

Indeed, 〈ϕ, ν〉 = 0 for all ν ∈ Nα if and only if
∫
B
ϕdν = 0 for all B and all

ν ∈ Nα which is equivalent to the condition ν{ϕ 6= 0} = 0 for all ν ∈ Nα.

2.2. Operator K̂ and space K. For every positive Borel function f on E,
we set

(2.1) K̂f(y) =
∫

E

m(dx)f(x)k(x, y), y ∈ E′

where m is defined by (1.4).
Put (f, f̃ ) =

∫
ff̃ dm. If f ∈ Lα

′

+
3 where α′ = α/(α − 1), then, for every

ν ∈ Nα, 〈K̂f, ν〉 = (f,Kν) < ∞ and therefore ν{K̂f = ∞} = 0. By 2.1.C,
K̂f < ∞ q.e.

For an arbitrary f ∈ Lα
′
, f+ = f ∨ 0, f− = (−f) ∨ 0 belong to Lα

′

+ . Therefore,
q.e., K̂(f+) and K̂(f−) are finite and the formula

(2.2) K̂f = K̂(f+) − K̂(f−)

determines K̂f q.e. Note that

(2.3) 〈K̂f, ν〉 = (f,Kν) for all f ∈ Lα
′
, ν ∈ Nα.

Put f ∈ L if f ∈ Lα
′

and K̂f = 0 q.e. It follows from (2.3) and 2.1.C that
L = {f ∈ Lα

′
: (f, g) = 0 for all g ∈ Hα}. Therefore L is a closed subspace of Lα

′

and, since Hα is a closed subspace of Lα, we have

(2.4) Hα = {f ∈ Lα : (f, g) = 0 for all g ∈ L}.

The quotient space Lα
′
/L is a locally convex linear topological space. We

denote by K its image under the mapping K̂ (two functions are identified if they
coincide q.e.). We have an 1-1 linear map K̂ from Lα

′
/L onto K. We introduce in

K a topology which makes K̂ a homeomorphism. 4 Denote by K+ the image of
Lα

′

+ . A linear functional ` on K is called positive if `(ϕ) ≥ 0 for all ϕ ∈ K.

Lemma 2.1. Every positive continuous linear functional ` on K has the form

(2.5) `(ϕ) = 〈ϕ, ν〉

where ν ∈ Nα.

3Writing f ∈ Lα
′

+ means that f ∈ Lα
′

and f ≥ 0 m-a.e.
4This topology is defined by the family of subsets of the form K̂(U) where U is an open

subset of Lα
′
/L.
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Proof. Formula
˜̀(f) = `(K̂f), f ∈ Lα

′

defines a positive continuous linear functional on Lα
′
. Such a functional has the

form ˜̀(f) = (h, f) where h ∈ Lα+. If f ∈ L, then (h, f) = `(K̂f) = 0 and, by (2.4),
h ∈ Hα. Hence, h = Kν with ν in Nα. If ϕ = K̂f with f ∈ Lα

′
, then

`(ϕ) = ˜̀(f) = (f,Kν) = 〈K̂f, ν〉 = 〈ϕ, ν〉
by (2.3). �

Lemma 2.2. If fn → f in Lα
′
, then K̂fnk → K̂f q.e. for some n1 < · · · <

nk < . . . .

Proof. 1◦. Suppose f ∈ Lα
′

and K̂f ≥ 1 on B. By (2.3) and Hölder’s
inequality,

ν(B) ≤ 〈K̂f, ν〉 = (f,Kν) ≤ ‖f‖α′‖Kν‖α
for every ν ∈ Nα. If ν ∈ M(∂̂E) is not in Nα, then this bound for ν(B) is trivial.
Therefore, by (1.6),

CMα(B) = sup{ν(B) : ν(E′ \B) = 0, ‖Kν‖α ≤ 1}
≤ ‖f‖α′ sup{‖Kν‖α : ‖Kν‖α ≤ 1} ≤ ‖f‖α′ .

(2.6)

2◦. Choose n1 < · · · < nk . . . such that ‖fnk −f‖α′ ≤ 4−k. Let ϕk = 2k|fnk −f |
and Bk = {K̂(ϕk) ≥ 1}. By (2.6), CMα(Bk) ≤ ‖ϕk‖α′ ≤ 2−k. Put Bk = Bk ∪
Bk+1 ∪ . . . and let A = B1 ∩ B2 . . . . It follows from (1.3) and 10.3.2.B that
CMα(Bk) ≤ 2−(k−1) and therefore CMα(A) = 0. If x /∈ A, then K̂(|fni −f |) ≤ 2−i

for all sufficiently large i and therefore K̂fni − K̂f → 0. �

3. Proof of the main theorem

3.1. Theorem 1.2 will follow if we prove

Theorem 3.1. Suppose that ν is a finite measure with the property: ν(B) = 0
if CMα(B) = 0. Then there exist measures νn ∈ Nα such that νn ↑ ν.

Indeed, by 2.1.A, Nα ⊂ N1. Hence νn ∈ N1 and ν ∈ N1 by 8.5.4.A. If a Σ-
finite measure ν does not charge null sets of CMα, then there exist finite measures
νn with the same property such that νn ↑ ν. By Theorem 3.1, νn ∈ N1. Hence
ν ∈ N0.

3.2. Choose a strictly positive function f0 ∈ Lα
′

such that (f0,Kν) < ∞.
Put ϕ0 = K̂f0 and consider a functional

(3.1) p(ϕ) =
∫

E′
ϕ+dν, ϕ ∈ K

where ϕ+ = ϕ∨ 0. First, we prove Theorem 3.1 by using the following Lemma 3.1.
Then we prove Lemma 3.1.

Lemma 3.1. For every ε > 0, there exists a continuous linear functional `ε on
K such that

(3.2) `ε(ϕ) ≤ p(ϕ) for all ϕ ∈ K,
and

(3.3) `ε(ϕ0) > p(ϕ0) − ε.
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3.3. Proof of Theorem 3.1. It follows from (3.2) and (3.1) that `ε(ϕ) ≥ 0 if
ϕ ∈ K is positive. Indeed, (−ϕ)+ = 0 and therefore `ε(−ϕ) ≤ p(0) = 0. By Lemma
2.1, there is a ηε ∈ Nα such that

(3.4) `ε(ϕ) = 〈ϕ, ηε〉 for all ϕ ∈ K.
We claim that

(3.5) ηε ≤ ν, 〈ϕ0, ν − ηε〉 < ε.

Indeed, by (2.3), for every f ∈ Lα
′

+ ,

(f,Kν) = 〈K̂f, ν〉 = p(K̂f),

(f,Kηε) = 〈K̂f, ηε〉 = `ε(K̂f)

and therefore, by (3.2), (f,Kν) ≥ (f,Kηε). Function h = Kν −Kηε is harmonic.
It is positive because (f, h) ≥ 0 for all positive f ∈ Lα

′
. Hence, h = Kγε for some

finite measure γε, and ν − ηε = γε. This implies the first part of (3.5). The second
part follows from (3.3) because 〈ϕ0, ν − ηε〉 = p(ϕ0) − `ε(ϕ0) by (3.1) and (3.4).

There exists a constant C such that (a + b)α ≤ C(aα + bα) for all a, b ≥ 0.
Therefore Hα and Nα are closed under addition and

νn = η1 + η 1
2

+ · · ·+ η 1
n
∈ Nα.

Since
νn = η1 ∨ η 1

2
∨ · · · ∨ η 1

n
≤ νn,

it also belongs to Nα. By (3.5),

η 1
n
≤ νn ≤ ν

and
〈ϕ0, ν − νn〉 ≤ 〈ϕ0, ν − η 1

n
〉 ≤ 1/n.

Clearly, ν1 ≤ ν2 ≤ · · · ≤ νn · · · and therefore νn ↑ ν. �

3.4. Proof of Lemma 3.1. 1◦. We use the following version of the Hahn-
Banach theorem (see, e.g.,[DS58],V.2.12): If B is a closed convex set in a locally
convex linear topological space and if x /∈ B, then there exists a continuous linear
functional ` such that

(3.6) sup
y∈B

`(y) < `(x)

(that is, x can be separated from B by a a hyperplane ` = const.). Suppose that
B has the property:

(3.7) If y ∈ B, then λy ∈ B for all λ > 0.

Then (3.6) implies

(3.8) sup
y∈B

`(y) = 0 < `(x)

[because a = 0 if supλ>0 λa = a <∞].
2◦. This result is applicable to a subset

B = {(ϕ, t) : p(ϕ) ≤ t}
of the space K×R. Indeed, since p is subadditive and p(λϕ) = λp(ϕ) for all λ > 0,
the set B is convex and it satisfies (3.7). It remains to prove that B is closed.
Suppose that (ϕn, tn) ∈ B tends to (ϕ, t) in K×R. Then ϕn → ϕ in K and tn → t.
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By the definition of K there exist fn, f ∈ Lα
′

such that ϕn = K̂fn, ϕ = K̂f and
fn → f in Lα

′
. By Lemma 2.2, a subsequence ϕnk → ϕ q.e. Since ν does not charge

null sets of CMα, ϕnk → ϕ ν-a.e. By Fatou’s lemma, p(ϕ) ≤ lim inf p(ϕnk) ≤ t.
Hence, (ϕ, t) ∈ B.

3◦. All continuous linear functionals in K × R have the form

(3.9) `(ϕ, t) = σ(ϕ) + bt

where σ is a continuous linear functional on K and b ∈ R. Since x = (ϕ0, p(ϕ0)−ε) /∈
B, conditions (3.8) hold for a functional (3.9) which means

(3.10) σ(ϕ) + bt ≤ 0 if p(ϕ) ≤ t,

(3.11) σ(ϕ0) + b[p(ϕ0) − ε] > 0.

Since p(0) = 0 ≤ 1, condition (3.10) implies that b ≤ 0. An assumption that
b = 0 leads to a contradiction: σ(ϕ0) ≤ 0 by (3.10) and σ(ϕ0) > 0 by (3.11).
Hence, b < 0. Continuous linear functional `(ϕ) = −σ(ϕ)/b satisfies conditions
(3.2)–(3.3). �

4. Notes

4.1. The main Theorem 1.2 was proved in [DK96b]. The proof is close to the
proof of Theorem 4.1 in [BP84b] which the authors attribute to Grune-Rehomme
[GR77].

By proposition 10.1.4.C and Theorem 1.1, the class of w-polar sets contains the
class of polar sets and is contained in the class of null sets of CMα. Characterization
of classes N1 and N0 in terms of this intermediate class is a novelty introduced in
the present book.

4.2. Boundary value problems with measures. A number of authors con-
sidered boundary value problems of the type

Lu = ψ(u) in E,
u = ν on ∂E

(4.1)

where E is a smooth domain in Rd and ν is a finite measure on the boundary. The
results of Chapter 12 can be interpreted in terms of an analogous problem in a
general setting. Let E be an arbitrary Greenian domain in Rd and let ν be a finite
measure on the Martin boundary ∂̂E. By a solution of the boundary value problem

Lu = ψ(u) in E,

u = ν on ∂̂E
(4.2)

we mean a solution of the integral equation

(4.3) u(x) +
∫

E

g(x, y)ψ[u(y)] dy =
∫

∂̂E

k(x, y)ν(dy).

where g(x, y) is Green’s function and k(x, y) is the Martin kernel for L in E (cf.
8.(3.4)). By Theorem 8.3.1, the problem (4.2) has a solution if and only if ν ∈ N1

and, by the results of Chapter 12, the condition “ν(B) = 0 for all w-polar sets B”
is necessary and the condition “ν(B) = 0 for all null sets B of CMα” is sufficient
for the existence of such a solution.



CHAPTER 13

Null sets and polar sets

In Chapter 12 we established the following inclusions between three classes of
exceptional boundary sets

{polar sets} ⊂ {w − polar sets} ⊂ {null sets of CMα}.
Now we consider the equation

Lu = uα, 1 < α ≤ 2

in a bounded smooth domain E and we assume that L satisfies the condition 6.1.2.C
besides 6.1.2.A–6.1.2.B. We prove that, under these conditions, all three classes
coincide.

In our case, the Martin boundary can be identified with ∂E (see Remark 7.1.1).
Formula

m(dx) = d(x, ∂E)dx.
defines a measure on E which we call the canonical measure. We consider capacities
Cap defined by the formula 12.(1.2) with the canonical measure m. We show in
section 1 that the class of boundary sets B such that Cap(B) = 0 is the same for
a wide variety of kernels k(x, y). One can take the Martin kernel or the Poisson
kernel of L. Moreover, in the definition of the Poisson kernel k(x, y) = Dnyg(x, y)
(see section 6.1.8), the conormals ny can be replaced by an arbitrary nontangen-
tial vector field on the boundary directed inwards; and g(x, y) can be replaced by
g(x, y)q(y) where q is a strictly positive differentiable function.

The main result of Chapter 13 is the following theorem:

Theorem 0.1. All null sets are polar.

One of our tools is the straightening of the boundary. To use this tool, we
need to investigate the action of diffeomorphisms on the null sets. This is done
in section 2. In section 3 we study the cases when there exist no nonempty null
sets. In section 4 we demonstrate that Theorem 0.1 can be deduced from its special
case Theorem 4.1 and we establish a test of the removability. This test and a dual
definition of capacities introduced in section 5 are applied in sections 7 to prove
Theorem 0.1. The restriction α ≤ 2 is not used before section 6. 1

1. Null sets

1.1. Poisson kernel. It follows from Theorems 6.1.4 and 6.1.2 that the Pois-
son kernel k(x, y) is uniquely determined by the condition: for every ϕ ∈ C(∂E),

(1.1) h(x) =
∫

∂E

k(x, y)ϕ(y) γ(dy)

1It is used in the proof of Theorem 6.1. Probably, Theorem 0.1 is true also for α > 2.

173
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is a unique solution of the problem
Lh = 0 in E,
h = ϕ on ∂E.

(1.2)

[Here γ is the normalized surface area on ∂E.]
Recall that every positive harmonic function h in E has a unique representation

(1.3) h(x) =
∫

∂E

k(x, y) ν(dy)

where ν is a finite measure.
We say that two kernels k(x, y) and k̃(x, y) are equivalent if k̃(x, y) = k(x, y)ρ(y)

where ρ(y) > 0. The role of this concept is illuminated by the following lemma:

Lemma 1.1. Suppose that k̃(·, y) is harmonic in E for every y ∈ ∂E. Every
positive harmonic function h has a representation

(1.4) h(x) =
∫

∂E

k̃(x, y)ν(dy)

if and only if k̃ is equivalent to k.

Proof. The representation (1.4) easily follows from (1.3) if k̃(x, y) = k(x, y)ρ(y).
If (1.4) holds for all positive harmonic functions, then, for every y ∈ ∂E, there exists
a measure ν̃y such that

k(x, y) =
∫

∂E

k̃(x, z)νy(dz).

Since k(·, y) is an extremal harmonic function, we have νy = ρ(y)δy and k(x, y) =
k̃(x, y)ρ(y). Since k(x, y) > 0, ρ is strictly positive. �

It follows from 7.(1.2) that the Martin kernel is equivalent to the Poisson kernel.
If ñy is an arbitrary vector field on ∂E directed inward and if g̃(x, y) = g(x, y)q(y)
with q > 0, then the derivative k̃(x, y) of g̃(x, y) in the direction of ñy is equivalent
to k(x, y).

1.2. Classes N(m, k). We say that B is an (m, k)-null set and we write B ∈
N(m, k) if Cap(B) = 0 where Cap is defined by the formula 12.(1.2). According to
section 12.1.2, B ∈ N(m, k) if and only if

(1.5)
∫

E

m(dx)
[∫

∂E

k(x, y)ν(dy)
]α

= ∞

for every non-trivial ν ∈ M(B).
We have:

1.2.A. If k and k̃ are equivalent, then N(m, k) = N(m, k̃).

Proof. Let Cap and C̃ap be the capacities associated with (k,m) and (k̃,m)
and let k̃(x, y) = k(x, y)ρ(y) with ρ > 0. We need to prove that, if Cap(B) = 0,
then C̃ap(B) = 0. Since Bn = B ∩ {ρ ≥ 1/n} ↑ B, it is sufficient to show that
C̃ap(Bn) = 0 if Cap(Bn) = 0. Note that K̃ν = Kν̃ where ν̃(dy) = ρ(y)ν(dy). We
have

∫
E

(K̃νn)α dm ≥ n−α ∫
E

(Kνn)α dm. Hence, the condition (1.5) holds for k̃ if
it holds for k. �
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Let m1 and m2 be measures on E. We say that m1 is dominated by m2 and we
write m1 ≺ m2 if m1 ≤ Cm2 on the complement of Eε = {x ∈ E : d(x, ∂E) > ε}
for some ε > 0 and some C. We have:

1.2.B. If k is given by (1.6) and if m1 ≺ m2, then N(m1, k) ⊂ N(m2, k).

Indeed, for every ν ∈ M(B), Kν =
∫
B
k(x, y)ν(dy) is bounded on Eε. Therefore,

the condition (1.5) holds for (m2, k) if it holds for (m1, k).

Remark 1.1. Clearly, N(m, k1) ⊂ N(m, k2) if k1/k2 is bounded. In particular,
the bound 6.1.8.B implies that N(m, kL) ⊂ N(m, k) for the Poisson kernel kL of L
and

(1.6) k(x, y) =
d(x, ∂E)
|x− y|d .

Moreover, the bound 6.(4.1) implies that N(m, kL) = N(m, k) (and therefore N(m, kL)
does not depend on L).

1.3. Null sets on ∂E. Let L be an elliptic operator in E. We reserve the
name null sets for the elements of N(m, k) where m is the canonical measure on E
and k is the Poisson kernel of L or any equivalent kernel. 2 Note that the class of
null sets contains N(m0, k) where

(1.7) m0(dx) = g(c, x)dx.

This is an immediate implication of 1.2.B and the following lemma:

Lemma 1.2. If ε > 0 is sufficiently small, then

(1.8) g(c, x) ≤ Cd(x, ∂E) for all x ∈ Eε = {x ∈ E : d(x, ∂E) < ε}.

Proof. If x ∈ E2ε and if ε < d(c, ∂E)/3, then d(c, ∂E) ≤ d(c, x) + d(x, ∂E) ≤
d(c, x) + 2d(c, ∂E)/3. Hence, d(c, x) ≥ d(c, ∂E)/3. Note that ∂E is a relatively
open subset of ∂E2ε. By 6.1.7.A, v(x) = g(c, x) is harmonic in E2ε, continuous on
Ē2ε and v = 0 on ∂E. By Theorem 2.3 in the Appendix B, v ∈ C2,λ(E2ε ∪ ∂E).
Hence, all partial derivatives Div are bounded in Ēε which implies (1.8). �

2. Action of diffeomorphisms on null sets

2.1. Change of surface area. Suppose that a smooth surface Γ is given by
a parameterization y = ϕ(t), t ∈ U where U is an open subset of Rd−1 and ϕ ∈
C2,λ(U ). Formula 6.(1.14) implies that, if γ is the surface area (or the normalized
surface area) on Γ, then, for an arbitrary Borel function F ≥ 0 on Γ,

(2.1)
∫

Γ

F (y)γ(dy) =
∫

U

F [ϕ(t)]ρ(t)dt

where ρ is a strictly positive continuous function.
Suppose that Γ is contained in a domain V and let T be a diffeomorphism of

class C2,λ from V onto Ṽ . If y = ϕ(t) is a parameterization of Γ, then ϕ̃(t) = T [ϕ(t)]
is a parameterization of a smooth surface Γ̃ lying in Ṽ . We claim that, for every
Borel function F on Γ̃,

(2.2)
∫

Γ̃

F (ỹ)γ̃(dỹ) =
∫

Γ

F [T (y)]β[T (y)] γ(dy)

2According to Remark 1.1, the class of null sets does not depend on L.
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where β(y) is a strictly positive continuous function. Indeed, by formula (2.1)
applied to Γ̃, ∫

Γ̃

F (ỹ)γ̃(dỹ) =
∫

U

F [ϕ̃(t)]ρ̃(t) dt

where ρ̃ is a strictly positive continuous function. Put

β(y) = ρ̃[ϕ̃−1(y)]/ρ[ϕ̃−1(y)].

Note that ρ̃(t) = ρ(t)β[ϕ̃(t)] and therefore
∫

U

F [ϕ̃(t)]ρ̃(t) dt =
∫

U

F1[T (ϕ(t))]ρ(t) dt

where F1(y) = F (y)β(y). Therefore (2.2) follows from (2.1).

2.2. Transformation of the Poisson kernel.

Lemma 2.1. Suppose T is a diffeomorphism from V to Ṽ and let E be a smooth
domain such that E b V . Consider operators L in E and L̃ in Ẽ related by the
formula 6.(1.4) and the corresponding Poisson kernels k(x, y) and k̃(x̃, ỹ). We have

(2.3) k(x, y) = k̃(T (x), T (y))β(y)

where β is a continuous strictly positive function.

Proof. Recall that, for every ϕ1 ∈ C(∂Ẽ),

(2.4) h1(x̃) =
∫

∂Ẽ

k̃(x̃, y)ϕ1(y) γ̃(dy)

is a unique solution of the problem

L̃h1 = 0 in Ẽ,

h1 = ϕ1 on ∂Ẽ
(2.5)

[Here γ̃ is the normalized surface area on ∂Ẽ.] If ϕ(y) = ϕ1[T (y)], then h2(x) =
h1[T (x)] is a solution of the problem (1.2). Function h defined by (1.1) also satisfies
(1.2) and therefore h = h2 which means that

(2.6)
∫

∂E

k(x, y)ϕ(y)γ(dy) =
∫

∂Ẽ

k̃(T (x), ỹ)ϕ1(ỹ)γ̃(dỹ).

Now we apply (2.2) to Γ = ∂E and F (ỹ) = k̃(T (x), ỹ)ϕ1(ỹ) and we get
∫

∂Ẽ

k̃(T (x), ỹ)ϕ1(ỹ)γ̃(dỹ) =
∫

∂E

k̃(T (x), T (y))ϕ(y)β(y)γ(dy),

and (2.6) implies (2.3). �

2.3. Change of variables. Suppose T is a measurable mapping from E to
Ẽ. The image of ν ∈ M(E) under T is a measure νT defined by the formula
νT (B) = ν[T−1(B)]. For every Borel function F ≥ 0 on Ẽ,

(2.7)
∫

Ẽ

F (ỹ)νT (dỹ) =
∫

E

F [T (y)]ν(dy).

Moreover, if E is open and if T is a diffeomorphism of class C2,λ from E onto Ẽ,
then

(2.8)
∫

Ẽ

F (x̃)νT (dx̃) =
∫

E

F [T (x)]|JT(x)| dx
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where JT (x) is the Jacobian of T [that is the determinant of the matrix cik = ∂x̃i

∂xk
].

2.4. Transformation of the canonical measure.

Lemma 2.2. Let E, T, Ẽ be the same as in Lemma 2.1. If m and m̃ are the
canonical measures on E and Ẽ, then

(2.9) C−1mT ≤ m̃ ≤ CmT

where C > 0 is a constant.

Proof. By (2.7) and (2.8)

(2.10)
∫

Ẽ

F (x̃)mT (dx̃) =
∫

E

F [T (x)]m(dx) =
∫

E

F [T (x)]d(x, ∂E) dx

and

(2.11)
∫

Ẽ

F (x̃)m̃(dx̃) =
∫

Ẽ

F (x̃)d(x̃, ∂Ẽ) dx̃ =
∫

E

F [T (x)]d(T (x), ∂Ẽ)|JT (x)| dx.

Since Ē is compact, there exists a constant C1 > 0 such that C−1
1 ≤ |JT (x)| ≤ C1

for all x ∈ Ē andC−1
1 d(x, y) ≤ d(T (x), T (y)) ≤ C1d(x, y) for all x, y ∈ Ē. Therefore

formula (2.9) follows from (2.10) and (2.11). �

2.5. Invariance of null sets.

Lemma 2.3. Let E, T, Ẽ be the same as in Lemmas 2.1 and 2.2. If B is a null
set in ∂E, then T (B) is a null set in ∂Ẽ.

Proof. By (2.7) applied to F (ỹ) = k̃(T (x), ỹ) and (2.3),
∫

∂Ẽ

k̃(Tx, ỹ)νT (dỹ) =
∫

∂E

k̃(T (x), T (y))ν(dy) =
∫

∂E

β(y)−1k(x, y)ν(dy).

Therefore, by (2.9) and (2.7),
∫

Ẽ

m̃(dx̃)
[∫

∂Ẽ

k̃(x̃, ỹ)νT (dỹ)
]α

≥ C

∫

Ẽ

mT (dx̃)
[∫

∂Ẽ

k̃(x̃, ỹ)νT (dỹ)
]α

= C

∫

E

m(dx)
[∫

∂E

β(y)−1k(x, y)ν(dy)
]α
.

Since β−1 is bounded, this implies
∫

Ẽ

m̃(dx̃)
[∫

∂Ẽ

k̃(x̃, ỹ)νT (dỹ)
]α

≥ C

∫

E

m(dx)
[∫

∂E

k(x, y)ν(dy)
]α
.

Since ν → νT is a 1-1 mapping from M(B) onto M(T (B)), we conclude that T (B)
is a null set if so is B. �

3. Supercritical and subcritical values of α

3.1. Let ψ(u) = uα, α > 1. We say that a value of α is supercritical in
dimension d if, for every bounded smooth domain E ⊂ Rd, all single-point subsets
of ∂E are null sets of CMα. We say that α is subcritical if CMα(B) > 0 for all
singletons B. [Clearly, this implies that CMα(B) > 0 for every nonempty set B].
We establish that

α(d) =
d+ 1
d− 1

is the supremum of all subcritical α and the infimum of all supercritical α.
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3.2. We fix a point c of E and we put

Q(x, y0) = g(c, x)k(x, y0)α; I(y0) =
∫

E

Q(x, y0) dx.

Note that α is supercritical if and only if

(3.1) I(y0) = ∞ for all y0 ∈ ∂E.

(cf. 12.(1.7)) and α is subcritical if and only if

(3.2) I(y0) < ∞ for all y0 ∈ ∂E.

We denote by C a strictly positive constant. Its value can change from line to
line.

3.3.

Theorem 3.1. All α < α(d) are subcritical.

Proof. Put

A = {x ∈ E : |x− y0| < ε}, B = {x ∈ E : |x− y0| ≥ ε}.
If x ∈ A, then, by (1.8), g(c, x) ≤ Cd(x, ∂E) and, by 6.1.8.B,

k(x, y0) ≤ Cd(x, ∂E)|x− y0|−d.
Hence

Q(x, y0) ≤ Cd(x, ∂E)1+α|x− y0|−dα ≤ C|x− y0|1+α−dα

and
∫
A
Q dx ≤ C

∫ ε
0
rα+d−dα dr. If α < α(d), then α+d−dα > −1 and

∫
A
Q dx <

∞.
Since k(x, y0) is bounded on B,

∫

B

Q dx ≤ C

∫

E

g(c, x) dx <∞.

Hence the condition (3.2) is satisfied. �

3.4.

Theorem 3.2. All α ≥ α(d) are supercritical.

Proof. 1◦. Put

Eε = {x ∈ E : |x− y0| < ε}, Oε = {y ∈ ∂E : |y − y0| < ε}.
By using the straightening the boundary near y0 (see section 6.1.3), we reduce the
general case to the case when, for sufficiently small ε, Eε ⊂ Rd+ = {x : xd > 0} and
O2ε ⊂ ∂Rd+ = {x : xd = 0}. We can assume that c /∈ Eε. Consider an open subset
U = Uε = {(y, t) : y ∈ ∂E, |y − y0| < ε, 0 < t < 2ε} of the set ∂E × R+. Denote
by V = Vε its image under the mapping T (y, t) = y + tny where ny is the directed
inwards unit conormal to ∂E at y ∈ ∂E. If ε is sufficiently small, then V ⊂ E and
T is a diffeomorphism from U onto V . We have,

I(y0) ≥
∫

V

Q(x) dx =
∫

U

J(y, t)Q[T (y, t)] dt dy

where Q(x) = Q(x, y0) and J is the Jacobian of T . Since J ≥ C > 0 in U , we get

(3.3) I(y0) ≥ C

∫

U

Q[T (y, t)] dt dy.
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2◦. We claim that, if ε is sufficiently small, then, for every (y, t) ∈ U ,

g(c, T (y, t)) ≥ Ct;(3.4)

d(T (y, t), ∂E) ≥ Ct;(3.5)

k(T (y, t), y0) ≥ Ct(|y − y0| + t)−d.(3.6)

First, we prove (3.4). By 6.1.7.A, the function h(x) = g(c, x) is L∗-harmonic
in V , continuous on V̄ and equal to 0 on the portion Oε of ∂V . By Theorem 2.3 in
the Appendix B, h ∈ C2,λ(V ∪Oε). Put v(y, t) = h[T (y, t)] and let v̇(t, y) = ∂v(y,t)

∂t .
Note that v̇(y, 0) = k(c, y) is a strictly positive continuous function on Ōε. Hence,
v̇(y, 0) ≥ C > 0 on Oε. Since v̇ is Hölder continuous, it is bounded from below on
U by a strictly positive constant C. This implies (3.4).

For y ∈ Ōε, the coordinates (z1, . . . , zd) of ny are continuous functions of y
and zd > 0. Therefore zd ≥ C > 0 for all y ∈ Ōε. If ε is sufficiently small, then
d(T (y, t), ∂E) = tzd ≥ Ct which implies (3.5).

Since |ny| = 1, we have |T (y, t)− y0| ≤ |y− y0|+ t and the bound (3.6) follows
from 6.(4.1) and (3.5).

3◦. By (3.3), (3.4) and (3.6),

I(y0) ≥ C

∫

Oε

dy

∫ 2ε

0

dt tα+1(|y − y0| + t)−dα.

Since 2ε/|y − y0| ≥ 2 for y ∈ Oε, the change of variables t = s|y − y0| yields that
∫ 2ε

0

tα+1(|y − y0| + t)−dα dt ≥ C|y − y0|α+2−dα

where

C =
∫ 2

0

sα+1(1 + s)−dα ds > 0.

Hence

I(y0) ≥ C

∫

Oε

|y − y0|α+2−dα dy = C

∫ ε

0

rα+d−dα dr = ∞

for α ≥ α(d) which implies (3.1). �

4. Null sets and polar sets

4.1. Theorem 12.1.1 and the proposition 10.1.4.C imply that all polar sets
are null sets and therefore, to prove Theorem 0.1, we need only to prove that every
null set is polar. It is sufficient to prove that every compact null set is removable.

First, we consider a special case which can be treated by a direct computation.
Put

E ={x = (x1, . . . , xd) : 0 < xd < 1} = Rd−1 × (0, 1),

∂′E ={x : xd = 0} = Rd−1 × 0.

Theorem 4.1. Let 1 < α ≤ 2. Suppose that:
(a) E is a bounded smooth domain such that Ē ⊂ E ∪ ∂′E;
(b) B is a compact subset of ∂′E such that d(B,E \E) > 0;
(c) k(x, y) = xd

|x−y|d ;
(d) m(dx) = xd dx.
If B is a (m, k)-null set, then B is removable.
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[The function k(x, y) coincides, up to a constant factor, with the Poisson kernel
for the Laplacian ∆ in the half-space {xd > 0} .]

Theorem 0.1 follows from Theorem 4.1 and the arguments presented in the next
few sections.

4.2. LC-property of null sets. We prove that a change of ∂E away from
A ⊂ ∂E preserves the family of null sets B that are contained in A. In the next
section, we prove an analogous property (we call it LC-property) 3 for removable
sets.

Proposition 4.1. Let Ẽ ⊂ E be bounded smooth domains and let B be a
compact subset of ∂E ∩ ∂Ẽ at a strictly positive distance from E \ Ẽ. Then B is a
null set of ∂E if and only if it is a null set of ∂Ẽ.

Proof. 1◦. Let C = E ∩ ∂Ẽ and A = {x ∈ Ẽ : d(x,B) < d(x,C)}. All points
of E sufficiently close to B belong to A and, if x ∈ A, then d(x, ∂E) = d(x, ∂Ẽ).
Hence, canonical measures m and m̃ on E and on Ẽ coincide on A.

2◦. IfK and K̃ are the Poisson operators in E and Ẽ, then, for every ν ∈ M(B),
K̃ν ≤ Kν and, since Kν is bounded on E \A,

∫

Ẽ

(K̃ν)α dm̃ ≤
∫

A

(Kν)α dm+ C1 ≤
∫

E

(Kν)α dm +C1.

It follows from (1.5) that, if B is a null set of ∂Ẽ, then it is a null set of ∂E.
3◦. By 6.(2.18),

(4.1) Kν = K̃ν +
∫

C

k̃(x, z)f(z)γ(dz)

where f(x) =
∫
B
k(x, y)ν(dy). By 6.1.8.B, f is bounded on C and therefore Kν ≤

K̃ν + C2. Hence,
∫

E

(Kν)α dm ≤
∫

A

(Kν)α dm +C3 ≤
∫

Ẽ

(K̃ν +C2)α dm̃+ C3.

By Minkowski’s inequality, this implies
[∫

E

(Kν)α dm
]1/α

≤
[∫

Ẽ

(K̃ν)α dm̃
]1/α

+C4

Therefore B is a null set of ∂Ẽ if it is a null set of ∂E. �

4.3. LC-property of removable sets.

Lemma 4.1. Let f ≥ 0 be a continuous function on ∂E. If B ⊂ ∂E is remov-
able, then the boundary value problem

Lu = uα in E,

u = f on ∂E \B,(4.2)

cannot have more than one solution

3LC stands for “local character”.
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Proof. If v is the maximal solution of (4.2) (see Theorem 10.2.3) and if u is
any solution, then g = v − u ≥ 0 and g = 0 on ∂E \B. Consider a [E,B]-sequence
Dn and denote by wn a solution of the boundary value problem

Lwn = wαn in Dn,
wn = g on ∂Dn.

(4.3)

Since α > 1, we have gα ≤ vα − uα and therefore Lg = vα − uα ≥ gα in E. By
the comparison principle 8.2.1.H, wn ≥ g. Since wn+1 ≥ g = wn on ∂Dn, the
comparison principle implies wn+1 ≥ wn in Dn. Put w = limwn. Clearly, w ≥ g
and, by Theorems 5.3.2–3.3,

Lw = wα in E,

w = g = 0 on ∂E \B.(4.4)

By the definition of a removable set, w = 0. Therefore g = 0 and v = u. �

Proposition 4.2. Let E, Ẽ and B be as in Proposition 4.1. Then B is a
removable subset of ∂Ẽ if and only if it is a removable subset of ∂E.

Proof. Consider the maximal solution wB of the problem 10.(1.3) and the
maximal solution w̃B of an analogous problem with E replaced by Ẽ. We need to
prove that wB = 0 if and only if w̃B = 0.

By Theorem 5.5.4, w̃B = 0 if wB = 0. Now suppose that w̃B = 0. Consider
a continuous function f on ∂Ẽ which vanishes on ∂Ẽ ∩ ∂E and is equal to wB on
∂Ẽ ∩E. Functions wB and VẼ(f) are solutions of the problem

Lu = uα in Ẽ,

u = f on ∂Ẽ \B.
(4.5)

By Lemma 4.1 they coincide. Function VẼ (f) is bounded in Ẽ. Hence, wB is
bounded in Ẽ. Since it vanishes on ∂E \ B, it is bounded in ∂E and, by the
comparison principle, it is moderate. By 10.1.4.D, wB = 0. �

Remark. Proofs in section 4.3 are applicable not only to ψ(u) = uα but also
to all functions ψ considered in Chapters 8 and 10.

4.4. Reduction to the special case. We use a straightening of the boundary
described in section 6.1.3. Clearly, every compact subset of a null set is a null set
and, by 12.(1.3), the union of two null sets is a null set. Similar properties of
removable sets follow from 10.1.3.A and 10.1.3.E. Therefore Theorem 0.1 holds for
B1 ∪ · · · ∪Bn if it holds for each of these sets.

Suppose that B is a null set on ∂E. Without any loss of generality we can
assume that there exists a diffeomorphism T of class C2,λ from a ball U ⊃ B onto
a domain U ′ ⊂ Rd such that T (U ∩E) ⊂ E and T (U ∩ ∂E) ⊂ ∂′E.

Let W be a smooth subdomain of V = U ∩E such that B ⊂ ∂W and B is at a
positive distance from V \W . The images B′, V ′ and W ′ of B, V,W have analogous
properties. By Proposition 4.1, B is a null set on ∂V and, by Lemma 2.3, B′ is a
null subset of ∂V ′ and therefore it is also a null subset of ∂E. By Remark 1.1, B′ is
an (m, k)-null set for m and k defined in Theorem 4.1. If Theorem 4.1 is true, then
B′ is a removable set on ∂E. By Proposition 4.2, B′ is a removable subset of ∂V ′.
It follows easily from the definition of removable sets that this class is invariant
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under diffeomorphisms and therefore B is a removable subset of ∂V . By applying
once more Proposition 4.2, we conclude that B is a removable subset of ∂E.

4.5. Test of removability. To prove Theorem 4.1 we use the following test.

Proposition 4.3. Suppose E,B,m, k satisfy conditions (a)—(d) of Theorem
4.1. A set B ⊂ ∂E is removable if there exists an open subset U of E such that
d(B,E \ U ) > 0 and

(4.6)
∫

U

u(x)αm(dx) < ∞

for every solution u of the problem
Lu = uα in E,
u = 0 on ∂′E \B.

(4.7)

Proof. By 10.1.4.D, it is sufficient to demonstrate that the maximal solu-
tion wB of the problem (4.2) with f = 0 is moderate. By Theorem 5.5.4, wB is
dominated by the maximal solution u of the problem (4.7) and therefore, by (4.6),

(4.8)
∫

U

wαBdm < ∞.

Choose ε > 0 such that Uε = {x ∈ E : d(x,B) < ε} ⊂ U and the bound (1.8) holds
in Uε. Then g(c, x) is bounded in Uε and, by (4.8),

∫

Uε

g(c, x)wB(x)α dx < ∞.

Since wB is finite and continuous in Ē \ Uε, it is bounded in E \ Uε. Hence,

G(wαB)(c) ≤
∫

Uε

g(c, x)wB(x)α dx+ const.
∫

E\Uε

g(c, x) dx <∞

and the function h = wB+G(wαB) is finite at point c. By Theorem 8.3.1, h = j(wB)
is the limit of harmonic functions. Since h(c) < ∞, h is harmonic by 6.1.5.C. Hence,
wB ≤ h is moderate. �

To prove Theorem 4.1, it is sufficient to construct, for every (m, k)-null set B
subject to the condition (b), a set U with properties described in Proposition 4.3.
In sections 5 and 6, we prepare necessary tools: dual definitions of capacities and
truncating sequences.

5. Dual definitions of capacities

5.1. A capacity corresponding to (m, k) was defined by the formula 12.(1.2)
which is equivalent to the formula

(5.1) Cap(B) = sup
ν∈M(B)

{ν(B) : ‖Kν‖α ≤ 1}

where

‖f‖α =
(∫

E

|f |α dm
)1/α

(cf. 12.(1.6)). Put

(5.2) Cap′(B) = inf
f∈L+

{‖f‖α′ : K̂f ≥ 1 on B}
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where α′ = α/(α−1), L+ is the set of all positive Borel functions f on E such that
‖f‖α′ <∞, and

(5.3) K̂f(y) =
∫

E

f(x)m(dx)k(x, y).

Our goal is to prove

Theorem 5.1. Cap(B) = Cap′(B).

The proof is based on von Neumann’s minimax theorem which claims that,
under certain conditions on E ,Φ and M, 4

(5.4) inf
µ∈M

sup
ϕ∈Φ

E(ϕ, µ) = sup
ϕ∈Φ

inf
µ∈M

E(ϕ, µ).

We apply (5.4) to

(5.5) E(ϕ, µ) =
∫

E

m(dx)ϕ(x)
∫

B

k(x, y)µ(dy), ϕ ∈ Φ, µ ∈ M

where Φ is the set of all ϕ ∈ L+ with ‖ϕ‖α′ ≤ 1 and M is the set of all probability
measures on B. Put

I(B) = inf
µ∈M

sup
ϕ∈Φ

E(ϕ, µ),

J(B) = sup
ϕ∈Φ

inf
µ∈M

E(ϕ, µ).
(5.6)

5.2. First, we prove that

(5.7) Cap(B) = 1/I(B).

Put (ϕ1, ϕ2) =
∫
E
ϕ1ϕ2 dm. For every ψ ≥ 0,

sup
ϕ∈Φ

(ϕ, ψ) = ‖ψ‖α.

Indeed (ϕ0, ψ) = ‖ψ‖α for ϕ0 = [ψ/‖ψ‖α]α−1 which belongs to Φ and, by Hölder’s
inequality, (ϕ, ψ) ≤ ‖ϕ‖α′‖ψ‖α = ‖ψ‖α for every ϕ ∈ Φ.

Since E(ϕ, µ) = (ϕ,Kµ), we have sup
ϕ∈Φ

E(ϕ, µ) = ‖Kµ‖α and

I(B) = inf
µ∈M

‖Kµ‖α.

Every ν ∈ M(B) is equal to λµ where λ ≥ 0 and µ ∈ M. Note that sup
λ≥0

{λ :

λ‖Kµ‖α ≤ 1} = 1/‖Kµ‖α and therefore

Cap(B) = sup
µ∈M

sup
λ≥0

{λ : λ‖Kµ‖α ≤ 1} = 1/I(B).

4At the end of the section we check that these conditions are satisfied in our case.
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5.3. Next, we prove that

(5.8) Cap′(B) = 1/J(B).

We have E(ϕ, µ) = 〈K̂ϕ, µ〉. Note that

inf
µ∈M

〈K̂ϕ, µ〉 = inf
x∈B

K̂ϕ(x).

Therefore
J(B) = sup

ϕ∈Φ
inf
x∈B

K̂ϕ(x)

and
1/J(B) = inf

ϕ∈Φ
sup
x∈B

1/K̂ϕ(x).

Every f ∈ L+ can be represented as λϕ where λ ≥ 0 and ϕ ∈ Φ. We have

Cap′(B) = inf
ϕ∈Φ

inf
λ≥0

{λ : λK̂ϕ ≥ 1 on B} = inf
ϕ∈Φ

sup
x∈B

1/K̂ϕ(x) = 1/J(B).

Theorem 5.1 follows from (5.4), (5.7) and (5.8).

5.4. The following conditions are sufficient for the formula (5.4) to be true:
M and Φ are convex sets, M is compact, E(ϕ, µ) is an affine function in µ and in
ϕ and it is lower semicontinuous in µ. 5 Recall that a subset A of a linear space is
called convex if pa1 + qa2 ∈ A for a1, a2 ∈ A, p, q ≥ 0 and p + q = 1. A function
f : A → [0,∞) is called affine if f [pa1 + qa2] = pf(a1) + qf(a2) for a1, a2, p, q as
above. Clearly, the function (5.5) is affine. The set M of probability measures on a
compact set B is compact relative to the weak convergence of measures. It remains
to verify that E(ϕ, µ) is lower semicontinuous in µ. It follows from Fatou’s lemma
that, for every ϕ ∈ Φ, K̂ϕ is a lower semicontinuous function on B. There exists
a sequence of continuous functions ϕn such that ϕn(x) ↑ K̂ϕ(x) for all x ∈ B (see,
e.g., [Rud87], Chapter 2, Exercise 22). Functions Fn(µ) = 〈ϕn, µ〉 are continuous.
Since Fn(µ) ↑ E(ϕ, µ), E(ϕ, µ) is lower semicontinuous in µ.

6. Truncating sequences

6.1. Suppose α,E,B,m, k satisfy conditions of Theorem 4.1 and let B be a
(m, k)-null set. Our goal is to construct a sequence of functions ϕn, equal to 1 in a
neighborhood of B, which tends to 0 in a special manner determined by the value
of α. 6

Denote by ‖f‖α the norm of f in the space Lα(E,m) where m is the measure
described in Theorem 4.1. For every f ∈ C2(E), we put

(6.1) ‖f‖2,α = ‖f‖α +
d∑

i=1

‖Dif‖α +
d∑

i,j=1

‖Dijf‖α.

[This is the norm of f in a weighted Sobolev space.]

5Proof of the minimax theorem under weaker conditions can be found in [AH96], section
2.4.

6Namely, ϕn has to satisfy the conditions 6.7.A-6.7.G with α replaced by α′. The restriction

α ≤ 2 (equivalent to α′ ≥ 2) is needed to check 6.7.D which is deduced from the part 6.2.D of
Theorem 6.1. The property 6.2.D is established in the step 8◦of the proof. This is the only place

where the restriction on α is used directly.
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6.2. Operator J . It is convenient to consider elements of E as pairs (x, r)
where x ∈ Rd−1 and 0 < r < 1. The kernel k introduced in Theorem 4.1 can be
represented by the formula

k((x, r), y) = qr(x − y)

where

(6.2) qr(x) =
r

(‖x‖2 + r2)d/2
.

We use notation f(x, r) and fr(x) for functions on E.
A special role belongs to an operator acting on functions in E by the formula

(6.3) (J f)t(y) =
∫ 1

0

r drA(
√
r/t)

∫

Rd−1
fr(x)qr(y − x) dx

where A is an increasing function of class C2(R+) such that A(s) = 0 for s ≤ 1 and
A(s) = 1 for s ≥

√
2.

Theorem 6.1. If ϕ = J (f) and if f ≥ 0 belongs to Lα, then ϕ ∈ C2(E) and

6.2.A. ‖ϕ‖2,α ≤ C‖f‖α.

6.2.B. ‖ 1
xd
Ddϕ‖α ≤ C‖f‖α.

6.2.C. Ddϕ ≤ 0.

6.2.D. If α ≥ 2 and if ‖f‖α <∞, then
∫

Rd−1
|Ddϕ(y, xd)|α dy → 0 as xd ↓ 0

and, for almost all y ∈ Rd−1,

Ddϕ(y, xd) → 0 as xd ↓ 0.

To prove Theorem 6.1, we need some preparations.

6.3. Note that

(6.4) ‖f‖αα =
∫ 1

0

`α(fr )r dr

where

(6.5) `α(fr ) =
∫

Rd−1
|fr(x)|α dx.

Suppose that for some j,

(6.6) fr(x) = rj−df1(x/r) for all x ∈ Rd−1, r ∈ R+.

By a change of variables in the integral (6.5), we get

(6.7) r1−j`1(fr) = `1(f1).

The condition (6.6) holds, with j = 1, 0 and −1, for functions qr ,Diqr and Dijqr .
Therefore

6.3.A. `1(qr), r`1(Diqr), r2`1(Dijqr), i, j = 1, . . . , d− 1 do not depend on r.
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6.4. The convolution ψr = fr ∗ gr of fr and gr is defined by the formula

(6.8) ψr(y) =
∫

Rd−1
fr(x)gr(y − x) dx.

Lemma 6.1. If ψr = fr ∗ gr and if `1(gr) does not depend on r, then

(6.9) ‖ψ‖α ≤ `1(g1)‖f‖α.

Proof. Note that

|ψr(y)| ≤
∫
ϕr(x, y) dx

where ϕr(x, y) = |fr(y − x)gr(x)|. Therefore

(6.10) `α(ψr)1/α ≤
[∫

[
∫
ϕr(x, y) dx]α dy

]1/α

.

To get a bound for the right side, we use Minkowski’s inequality

(6.11)
[∫

[
∫
ϕ(x, y) dx]α dy

]1/α

≤
∫

[
∫
ϕ(x, y)α dy]1/α dx

for every α > 1 and every ϕ ≥ 0. (See, e.g, [HLP34], section 202 or [Rud87],
Chapter 8, Exercise 16.) It follows from (6.10) and (6.11) that

`α(ψr)1/α ≤
∫ [∫

ϕr(x, y)α dy
]1/α

dx =
∫
`α(fr )1/α|gr(x)| dx = `α(fr)1/α`1(gr).

Therefore (6.9) follows from (6.4). �

We denote by C a constant which depends only on α. Its value may change
from line to line.

Lemma 6.2. Suppose β + γ + 1 ≥ 0, β + 2 > 0 and

(6.12) |F t|α ≤ Ctβ
∫ 1

t

rγ |gr|α dr.

Then

(6.13) ‖F‖αα ≤ C‖g‖αα.

Proof. By (6.12),

`α(F t) ≤ Ctβ
∫ 1

t

rγ`α(gr) dr

and, by (6.4),

(6.14) ‖F‖αα ≤ C

∫ 1

0

t1+β dt

∫ 1

t

rγ`α(gr) dr = C

∫ 1

0

dr rγ`α(gr)
∫ r

0

t1+β dt

=
C

2 + β

∫ 1

0

r2+β+γ`α(gr) dr.

Since β + γ + 1 ≥ 0, this implies (6.13). �
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6.5. Proof of Theorem 6.1.

Proof. 1◦. Put

ϕi = Diϕ, i = 1, . . . , d− 1, ϕij = Dijϕ, i, j = 1, . . . , d− 1

and

ψt = f t ∗ qt, ψti = tDiψt = f t ∗ (tDiqt), ψtij = t2Dijψt = f t ∗ (t2Dijqt).

By 6.3.A and Lemma 6.1,

(6.15) ‖ψ‖α, ‖ψi‖α, ‖ψij‖α ≤ C‖f‖α.

2◦. If ϕ = J f and ψr = fr ∗ qr, then, by (6.3),

(6.16) ϕt =
∫ 1

t

r drA(
√
r/t)ψr .

Since A is bounded,

(6.17) |ϕt| ≤ C

∫ 1

t

r dr|ψr|.

By Hölder’s inequality,
∣∣∣∣
∫ 1

t

r drψr
∣∣∣∣ ≤

(∫ 1

t

r dr

)1/α′ (∫ 1

t

|ψr |αr dr
)1/α

≤
(∫ 1

t

|ψr|αr dr
)1/α

and therefore

|ϕt|α ≤ C

∫ 1

t

r dr|ψr|α.

Hence, (6.12) holds for β = 0, γ = 1 and g = ψ, and, by Lemma 6.2 and (6.15),

(6.18) ‖ϕ‖α ≤ C‖f‖α.

3◦. Note that

ϕti =
∫ 1

t

drA(
√
r/t)ψri

and

|ϕti| ≤ C

∫ 1

t

dr|ψri |.

By Hölder’s inequality,

|ϕti|α ≤ C

∫ 1

t

dr|ψri |α.

Hence, (6.12) holds for β = γ = 0 and g = ψi. By Lemma 6.2 and (6.15),

(6.19) ‖ϕi‖α ≤ C‖f‖α.

4◦. For every ε > 0,

|ϕtij| ≤ C

∫ 1

t

r−1−ε dr|rεψrij |.

By Hölder’s inequality,

|ϕtij|α ≤ C

∫ 1

t

dr r−1−ε|rεψrij |α
(∫ 1

t

r−1−ε dr

)α−1

.
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The second factor is not larger than (εtε)1−α. By taking ε = 1/(α− 1), we get

|ϕtij|α ≤ Ct−1

∫ 1

t

dr|ψrij|α.

The condition (6.12) holds for β = −1, γ = 0 and g = ψij. By Lemma 6.2 and
(6.15),

(6.20) ‖ϕij‖α ≤ C‖f‖α.

5◦. Put F t = 1
t
∂ϕt

∂t . Since A(1) = 0 and A′(s) = 0 for s ≥
√

2, we have

(6.21)
∂ϕt

∂t
= −1

2

∫ 1

t

A′(
√
r/t)r3/2t−3/2ψr dr

= −1
2

∫ 1∧(2t)

t

A′(
√
r/t)r3/2t−3/2ψr dr.

Since 1 ≤ r/t ≤ 2 for t ≤ r ≤ 2t, we have t−3/2r3/2 ≤ 2t−1/2r1/2 and

|F t| ≤ C

∫ 1∧(2t)

t

t−3/2r1/2|ψr | dr.

By Hölder’s inequality,

(6.22) |F t|α ≤ C

∫ 1∧(2t)

t

t−3/2r1/2|ψr|α dr

[because
∫ 1∧(2t)

t
t−3/2r1/2 dr ≤ 2]. The condition (6.12) holds for β = −3/2, γ =

1/2 and g = ψ. By Lemma 6.2 and (6.15),

(6.23)
∥∥∥∥

1
t

∂ϕt

∂t

∥∥∥∥
α

≤ C‖f‖α.

6◦. By (6.21),
∂ϕt

∂t
= −

∫ 1

t

B(
√
r/t)ψr dr

where B(s) = 1
2s

3A′(s). Put Φt = ∂2ϕt

(∂t)2 . Since B(1) = 0 and B′(s) = 0 for s ≥
√

2,

Φt =
1
2

∫ 1

t

B′(
√
r/t)r1/2t−3/2ψr dr =

1
2
t−3/2

∫ 1∧(2t)

t

B′(
√
r/t)r1/2ψr dr.

Hence

|Φt| ≤ Ct−3/2

∫ 1∧(2t)

t

r1/2|ψr| dr.

By applying Hölder’s inequality, we get that Φt satisfies the condition (6.12) with
β = −3/2, γ = 1/2 and g = ψ. By Lemma 6.2 and (6.15),

(6.24)
∥∥∥∥
∂2ϕt

(∂t)2

∥∥∥∥
α

≤ C‖f‖α.

7◦.
Since Diψr = ψri /r, (6.21) implies

Di
∂ϕt

∂t
= −

1
2

∫ 1∧(2t)

t

A′(
√
r/t)r1/2t−3/2ψri dr.
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Therefore the condition (6.12) with β = −3/2, γ = 1/2, holds for Di ∂ϕ
t

∂t
and ψi.

By Lemma 6.2 and (6.15),

(6.25)
∥∥∥∥Di

∂ϕt

∂t

∥∥∥∥
α

≤ C‖f‖α.

8◦. In notation of Theorem 6.1,

ϕt(y) = ϕ(y, xd)

where

t = xd,
∂ϕ

∂t
= Ddϕ,Di

∂ϕ

∂t
= DiDdϕ,

∂2ϕ

(∂t)2
= Dddϕ.

By changing notation, we get the bound 6.2.B from (6.23). Since 0 < xd < 1,
we have ‖Ddϕ‖α ≤ ‖ 1

xd
Ddϕ‖ and therefore the bound 6.2.A follows from (6.18),

(6.19), (6.20), (6.23), (6.24) and (6.25). Condition 6.2.C follows from (6.21) because
A′ ≥ 0.

By (6.22),

(6.26)
∣∣∣∣
∂ϕt

∂t

∣∣∣∣
α

= |tF t|α ≤ Ctα−2

∫ 1∧(2t)

t

r|ψr|α dr

[because r1/2 ≥ t1/2 for r ≥ t]. It follows from (6.26) that

`α(
∂ϕt

∂t
) ≤ Ctα−2

∫ 1∧(2t)

t

r`α(ψr) dr

and therefore, if α ≥ 2, then
∫

Rd−1 (∂ϕ
t

∂t )αdx→ 0 as t ↓ 0. If
∫ 1

0

r|ψr(y)|α dr < ∞,

then the right side in (6.26) tends to 0 as t ↓ 0 and therefore ∂ϕt

∂t → 0. This is true
for almost all y ∈ Rd−1 because, by (6.4), (6.5) and (6.15),

∫ 1

0

r dr

∫

Rd−1
|ψr(y)|α dy = ‖ψ‖αα ≤ C‖f‖αα < ∞.

�

6.6. Bounds for the norm of |∇f |2. In addition to Theorem 6.1, we need
an estimate for the norm of

(6.27) |∇f |2 =
d∑

1

(Dif)2.

Lemma 6.3. 7 If α > 1, u ∈ C2(R), u ≥ 0 and u = 0 outside a finite interval,
then

(6.28)
∫ |u′|2α

uα
dt ≤ Cα

∫
|u′′|αdt

where the integration is taken over the support of u.

7See [Maz85], Lemma 8.2.1.
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Proof. Fix ε > 0 and note that
|u′|2α

(u+ ε)α
= AB′

ε

where

(6.29) A = |u′|2(α−1)u′, Bε =
1

1 − α
(u+ ε)1−α.

Integration by parts yields

(6.30)
∫ |u′|2α

(u+ ε)α
dt = −

∫
A′Bεdt =

2α− 1
α− 1

∫
FGε dt

where F = u′′ and Gε = |u′|2(α−1)(u+ ε)1−α. [To evaluate A′, we use a formula

(|f |αf)′ = (α+ 1)|f |αf ′

which is true for every differentiable function f and every α ≥ 0.] By Hölder’s
inequality,
(6.31)

(
∫
FGε dt)α ≤

∫
|F |αdt

[∫
|Gε|α

′
]α/α′

=
∫

|u′′|α dt
[∫ |u′|2α

(u+ ε)α
dt

]α−1

.

By using the monotone convergence theorem, we pass to the limit in (6.30) and
(6.31) as ε → 0, and we get (6.28) with Cα = [2α−1

α−1
]α. �

Lemma 6.4. Let u ∈ C2(0,∞) and let u ≥ 0, u′ ≤ 0, lim
t→0

u′(t) = 0 and u(s) = 0
for all sufficiently large t. Then, for every α > 1,

(6.32)
∫ ∞

0

|u′|2α

uα
t dt ≤ Cα

∫ ∞

0

|u′′|αt dt.

Remark. Existence of u′(0) is not required.

Proof. Choose ε > 0. Integrating by parts yields
∫ ∞

s

|u′|2α

(u+ ε)α
t dt = − 1

α− 1

∫ ∞

s

|u′|2(α−1)u′t d[(u+ ε)1−α]

=
|u′(s)|2(α−1)

(α− 1)(u(s) + ε)α−1
u′(s)s +

2α− 1
α− 1

∫ ∞

s

|u′|2(α−1)

(u+ ε)α−1
u′′t dt

+
1

α− 1

∫ ∞

s

|u′|2(α−1)

(u+ ε)α−1
u′ dt

≤ |u′(s)|2(α−1)

(α− 1)(u(s) + ε)α−1
u′(s)s +

2α− 1
α− 1

∫ ∞

s

|u′|2(α−1)

(u+ ε)α−1
u′′t dt.

By the Hölder’s inequality,
∫ ∞

s

|u′|2(α−1)

(u+ ε)α−1
u′′t dt ≤

( ∫ ∞

s

|u′|2α

(u+ ε)α
t dt

)(α−1)/α( ∫ ∞

s

|u′′|αt dt
)1/α

.

It remains to pass to the limit, first, as s → 0, and then as ε → 0. �

Denote by ∇2f the matrix of the second partial derivatives Dijf and put

(6.33) ‖∇2f‖α =
∑

i,j

‖Dijf‖α.
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Theorem 6.2. Suppose f ∈ C2(E) is positive, vanishes outside a compact set
and satisfies conditions Ddf ≤ 0 and Ddf → 0 as xd ↓ 0 for almost all x1, . . . , xd−1.
Then

(6.34) ‖|∇f |2/f‖α ≤ C‖∇2f‖α.

Proof. It is sufficient to prove that

(6.35) ‖(Dif)2/f‖α ≤ C‖Diif‖α
for every i = 1, . . . , d. This follows from (6.28) for i < d, and from (6.32) for
i = d. �

6.7. α-sequences. We say that a sequence of functions ϕn ∈ C2(E) is an
α-sequence if:

6.7.A. ‖ϕn‖2,α → 0;

6.7.B. ‖ 1
xd
Ddϕn‖α → 0;

6.7.C. Ddϕn ≤ 0.

6.7.D. For every n,∫

Rd−1
|Ddϕn(y, xd)|α dy → 0 as xd ↓ 0

and, for almost all y ∈ Rd−1,

Ddϕn(y, xd) → 0 as xd ↓ 0.

6.7.E. ‖|∇ϕn|2‖α → 0.

6.7.F. 0 ≤ ϕn ≤ 1.

6.7.G. There exists a bounded subdomain V of E such that ϕn = 0 outside V .

Lemma 6.5. Suppose that fn ≥ 0 and ‖fn‖α → 0. If α ≥ 2, then it is possible
to choose functions g on E and h on R+ in such a way that

(6.36) ϕn = h[gJ (fn)]

is an α-sequence.

Proof. 1◦. Put

un = J (fn), vn = gun, ϕn = h(vn).

By Theorem 6.1 un satisfies conditions 6.7.A–6.7.D.
2◦. Suppose that g is positive, twice continuously differentiable and has a com-

pact support. Then g and its first and second partial derivatives are bounded and
therefore

|Divn| ≤ C(|un| + |Diun|),
|Dijvn| ≤ C(|un| + |Diun| + |Djun| + |Dijun|).

(6.37)

Hence, ‖vn‖2,α ≤ C‖un‖2,α and vn satisfies 6.7.A.
3◦. Now we take g(x, r) = a(r)b(x). We assume that b ∈ C2(Rd−1) is positive

and has a compact support and that a ∈ C2(R+), a ≥ 0, a′ ≤ 0, a = 1 near 0 and
a = 0 for sufficiently large r.

By 2◦, vn satisfies 6.7.A. Clearly, it satisfies 6.7.C. We have

Ddvn = b(aDdun + a′un).
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For sufficiently small r, a′ = 0 and therefore vn satisfies 6.7.D. Since a′/r is
bounded, it satisfies 6.7.B.

4◦. We choose h ∈ C2(R+) such that h′ ≥ 0, h = 0 on [0, 1/4] and h = 1 on
[3/4,∞). Note that 0 ≤ h ≤ 1 and that h′, h′′ are bounded.

For all i, j = 1, . . . , d,

Diϕn = h′(vn)Divn,
Dijϕn = h′′DivnDjvn + h′(vn)Dijvn.

Clearly, ϕn satisfies 6.7.A–6.7.D, and 6.7.F–6.7.G.
Note that

(Diϕn)2 ≤ N (Divn)2/vn
where N is the supremum of sh′(s)2. Hence

‖|∇ϕn|2‖α ≤ N‖|∇vn|2/(vn)‖α.

By Theorem 6.2, the right side is not bigger than N‖∇2vn‖α. Since vn satisfies
6.7.A, ϕn satisfies 6.7.E. �

6.8. Truncating sequences. For every closed subset B of E ∪ ∂′E, we put
∂′B = ∂B∩∂′E and ∂′′B = ∂B\∂′B. We call U an E-neighborhood of B if U is open
subset of E and B̄ ⊂ U ∪∂′U . An expression “near B” means in an E-neighborhood
of B.

We say that ϕn is a truncating sequence for B ⊂ ∂′E if it is an α′-sequence and
if, for every n, ϕn(x) = 1 near B.

Theorem 6.3. Suppose α,E,B,m, k satisfy conditions of Theorem 4.1 and let
B be a (m, k)-null set. Then there exists a truncating sequence for B.

Proof. By the definition of a (m, k)-null set, Theorem 5.1 and formula (5.2),
there exists a sequence fn such that ‖fn‖α′ → 0 and K̂fn ≥ 1 on B. Clearly, we
can assume that fn ≥ 0. We claim that the α′-sequence ϕn constructed in Lemma
6.5 is a truncating sequence for B if function b(x) chosen in the proof of Lemma
6.5 (in part 3◦), is equal to 1 in a neighborhood of B.

Put un = J (fn) on E and un = K̂fn on {xd = 0}. It follows from (6.16), (6.3)
and Fatou’s lemma that un are lower semicontinuous and therefore Vn = {un > 3/4}
are open. Note that B ⊂ {K̂fn ≥ 1} ⊂ Vn. Since g = ab = 1 in a neighborhood
Ũ of B in Ê and h = 1 on [3/4,∞), we conclude that ϕn = h(gun) = 1 on
Un = Vn ∩ Ũ . �

7. Proof of the principal results

7.1. A priori estimates for solutions of equation Lu = uα.

Theorem 7.1. Let B be a compact subset of ∂′E and let Lu = uα in E and
u = 0 on ∂′E\B. For each E-neighborhood V of B, there exist constants δ > 0 and
C such that
(7.1)

u(x, r) ≤ Cr, |∇u(x, r)| ≤ C, |∇2u(x, r)| ≤ C

r
for all (x, r) ∈ E \ V, r < δ.

Without any loss of generality we can assume that the coefficients of L are
bounded in Rd. The proof is based on two lemmas.
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Lemma 7.1. Let 0 < γ1 < γ2 < γ3. Put ρ = |z − z0| and consider sets

(7.2) R = {z : γ1 ≤ ρ < γ3}, R′ = {z : γ1 ≤ ρ < γ2}.

There exists a function v ∈ C2(R) such that

Lv ≤ vα in R,(7.3)

v = 0 on {ρ = γ1},(7.4)

v = ∞ on {ρ = γ3},(7.5)

v(z) ≤ C(ρ− γ1) on R′(7.6)

where C is a constant independent of z0.

Proof. 1◦. Let t1 < t2 < t3 and let c be an arbitrary constant. We consider a
positive solution f of the problem

f ′′(t) + cf ′(t) = f(t)α for t1 < t < t3,

f(t1) = 0, f(t3) = ∞.
(7.7)

Note that (7.7) is a particular case of 8.(2.5) corresponding to D = (t1, t3), Lu =
u′′ + cu′, ψ(u) = uα and O = ∂D. By 8.2.1.I, we get a solution by the formula
f = VD(ϕ) where ϕ(t1) = 0, ϕ(t3) = ∞. 8

Note that

(7.8) f(t) ≤ N (t− t1) on (t1, t2)

where N is the supremum of f ′(t) on [t1, t2]. Since f(t1) = 0 and f(t) ≥ 0 for all t,
we have f ′(t1) ≥ 0. Function F (t) = ectf ′ satisfies the conditions F ′(t) = ectfα ≥ 0
and F (t1) ≥ 0 and therefore F and f ′ are positive for all t ∈ [t1, t3].

2◦. If ti = γ2
i and λ > 0, c are constants, then the function

(7.9) v(z) = λf(ρ2)

satisfies conditions (7.4) and (7.5). The bound (7.6) with C = 2λNγ2, follows
from (7.8). It remains to choose λ and c to satisfy (7.3). Note that Lv(z) =
λ[Af ′′(ρ2) + Bf ′(ρ2)] where

A = 4
∑

aij(zi − z0
i )(zj − z0

j ), B = 2
∑

[aii + bi(zi − z0
i )].

In the annulus R,
A ≤ q, B/A ≤ c

where constants q and c depend only γ1, γ3 and on the bounds of the coefficients of
L. Since f, f ′ ≥ 0, we have

(7.10) Lv − vα = λA

(
f ′′ +

B

A
f ′ − λα−1

A
fα

)
≤ λA

(
f ′′ + cf ′ − λα−1

q
fα

)

in R. If f is chosen to satisfy (7.7) with the value of c which appears in (7.10)
and if λ = q1/(α−1), then the right side in (7.10) is equal to λA(1− λα−1/q)fα = 0
which implies (7.3). �

8A solution f can be also constructed directly by starting from the solutions fk of equation
f ′′ + cf ′ = fα subject to the boundary conditions fk(t1) = 0, fk(t3) = k and by passing to the

limit as k → ∞.



194 13. NULL SETS AND POLAR SETS

Lemma 7.2. Suppose that u > 0 and Lu = uα in a bounded domain D. Put
dx = d(x, ∂D). If M (u) = supD u ≤ 1, then, for all i = 1, . . . , d,

(7.11) dx|Diu(x)| ≤ CM (u)

and, for all i, j = 1, . . . , d,

(7.12) d2
x|Diju(x)| ≤ CM (u)

where C depends only on the diameter of D and constants κ, λ,Λ in conditions
6.1.2.A-1.2.B.

Proof. We apply Theorem 2.1 (the Appendix B) to u and f = uα. Note that
M (f) = M (u)α and, since M (u) ≤ 1 and α > 1,

(7.13) M (u) +M (f) ≤ CM (u).

Therefore the bound (2.3) (the Appendix B) implies (7.11).
For all positive a, b, |aα − bα| ≤ |a− b|α(a ∨ b)α−1. Therefore |f(x) − f(y)| ≤

α|u(x)− u(y)| for all x, y ∈ D, and

S(f) ≤ αS(u) ≤ CM (u).

The bound (2.2) (the Appendix B) implies (7.12). �

Proof of Theorem 7.1
1◦. Every E-neighborhood of B contains a set O× (0, β) where O is a neighbor-

hood of B in ∂′E and β > 0. Therefore it is sufficient to consider V = O × (0, β).
If z = (x0, r) ∈ E \ V and if r < β, then x0 /∈ O. We apply Lemma 7.1 to
z0 = (x0,−1), γ1 = 1, γ2 = 1 + δ, γ3 = 1 + 2δ. Denote by R(x0) and R′(x0) the sets
described by (7.2). By (7.6),

(7.14) v(z) ≤ C(|z − z0| − 1) on R′(x0).

We claim that u ≤ v in U = R(x0) ∩ E. Indeed, ∂U = A ∪ A∗ where A =
∂′E ∩ R̄(x0),A∗ = ∂R(x0) ∩ E. If δ is sufficiently small, then A ∩ B = ∅ for all
x0 ∈ ∂′E \ O. Therefore u = 0 ≤ v on A. Also u < v = ∞ on A∗. Since
Lv − vα ≤ 0 = Lu − uα in U , the comparison principle 8.2.1.H implies that u ≤ v
in U . In particular, u(x0, r) ≤ v(x0, r) for r < δ. If z = (x0, r), then |z−z0| = 1+r
and, by (7.14), u(x0, r) ≤ Cr. The first bound in Theorem 7.1 is proved.

2◦. The second and the third bounds can be deduced from the first one and
Lemma 7.2. Consider a relatively open subset O′ of ∂′E such that B ⊂ O′ ⊂ O
and d(O′, ∂′E \O) = γ > 0. We proved in 1◦ that there exist constants δ > 0 and
C such that

u(x, r) ≤ Cr for all x ∈ ∂′E \O′, 0 < r < δ.

Let x0 ∈ ∂′E \O. If |x− x0| < γ, then x ∈ ∂′E \O′ and therefore

(7.15) u(x, r) < Cr for 0 < r < δ.

Suppose that 0 < r0 < γ∧(δ/4) and that 2r0 < ε < 4r0. Let D = {(x, r) : |x−x0| <
γ, 0 < r < ε}. For z0 = (x0, r0), d(z0, ∂D) = r0. By (7.15), M (u) < Cε and, by
(7.11), r0|Diu(z0)| ≤ CM (u) ≤ C2ε ≤ 4C2r0 and, by (7.12), (r0)2|Diju(z0)| ≤
CM (u) ≤ 4C2r0. Hence

|Diu(x0, r0)| ≤ 4C2, |Diju(x0, r0)| ≤ 4C2/r0

for all x0 ∈ ∂′E \O, 0 < r0 < γ ∧ (δ/4). �
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7.2.

Lemma 7.3. There exists a diffeomorphism y = ψ(x) of class C2,λ from Rd
onto Rd such that:

(a) yd = xd;
(b) ψ(x) = x on {xd = 0}.
(c) The coefficients ãid, i < d of the operator L transformed by ψ vanish on

{xd = 0}.

Proof. 1◦. Note that

ãid =
d∑

k=1,`=1

cikcd`ak`

where cik = ∂yi

∂xk
. Condition (a) implies that cd` = 0 for ` < d and cdd = 1. By (b),

cik = δik on {xd = 0} for i < d and k < d. Therefore

ãid = aid + cidadd

on {xd = 0} for i < d. The condition (c) holds if

(7.16)
∂yi
∂xd

= − aid
add

for i < d.

2◦. To define ψ, we consider a vector field f(y) on Rd with components

fi(y) = − aid(y)
add(y)

for i < d,

fd(y) = 1.

Note that add is bigger than or equal to the ellipticity coefficient of L and therefore
f is bounded. It is continuously differentiable and therefore, for every x ∈ Rd, the
equation

(7.17)
dy

dt
= f(y)

has a unique solution Tt(x) which is equal to x at t = 0 and this solution is defined
for all t ∈ R. Moreover, for every t, Tt is a diffeomorphism of class C2,λ from Rd
onto Rd. The mapping

ψ(x1, . . . , xd) = Txd(x1, . . . , xd−1, 0)

also belongs to class C2,λ and it satisfies conditions (a) and (b). The formula

φ(x1, . . . , xd) = (y1, . . . , yd)

where (y1, . . . , yd−1, 0) = T−xd (x1, . . . , xd) and yd = xd defines a C2 mapping in-
verse to ψ. Hence, ψ is a diffeomorphism from Rd onto Rd. Clearly, ψ satisfies
(7.16) and therefore it satisfies (c). �

7.3. Proof of Theorem 4.1. 1◦. Our main tool is the truncating sequence
ϕn defined in Theorem 6.3. It satisfies conditions 6.7.A–6.7.G with α replaced by
α′ and ϕn = 1 near B. By Proposition 4.3, our theorem will be proved if we define
a positive function p ∈ C(E) such that p ≥ const. > 0 in a E-neighborhood of B
and

(7.18)
∫

E
uαp dm < ∞
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for every solution u of the problem (4.7).
By Lemma 7.3, we may assume that L satisfies condition aid = 0 on ∂′E for

i < d. Put β = 2α′ and let

(7.19) Aϕ(x, r) = 2
d∑

1

aidDiϕ.

Since add > 0, a first order differential equation

(7.20) βAv + (2
d∑

1

Djajd − bd)v = 0

has a unique solution v in an E-neighborhood W of B such that v = 1/2 on ∂′W .
9 Consider a function p on E such that 0 ≤ p ≤ 1 and p = vβ on W and p = 0 off
a bounded set.

2◦. Put hn = (1 − ϕn)β , g = pxd, wn = ghn. We claim that

(7.21)
∫

E
wnLu dx =

∫

E
uL∗wn dx.

Consider a bounded E-neighborhood U ⊂ W of B on which ϕn = 1 and 1
4 < v < 3

4 .
There exists a bounded smooth E-neighborhood V of B which contains U ∪ ∂′′U
such that p = 0 on E \ V . Put Vε = V ∩ {xd > ε}. It is sufficient to prove that

(7.22) Iε =
∫

Vε

wnLu dx−
∫

Vε

uL∗wn dx→ 0 as ε → 0.

We apply Green’s formula (1.2) (the Appendix B) to Vε and to the functions u and
wn.

Function wn and all its partial derivatives vanish on U ∪ ∂′′V and therefore

Iε =
∫

Aε

[
∂u

∂λ
wn −

∂wn
∂ν

u

]
ρ dγ

where Aε is the intersection of V \ U with {xd = ε}. Choose the field ν such that
∂
∂ν = Dd on Aε. For sufficiently small ε, by Theorem 7.1, u ≤ Cε, |∇u| ≤ C on Aε
and therefore

|Iε| ≤ C

∫

Aε

(wn + ε|Ddwn|) dγ.

Since g and Ddg are bounded and since wn ≤ ε on Aε, we have

|Ddwn| ≤ |Ddg|hn + g|Ddhn| ≤ C(1 + |Ddhn|).

By Hölder’s inequality,
∫

Aε

|Ddhn| dγ ≤ C

(∫

Aε

|Ddhn|α
′
dγ

)1/α′

.

The condition 6.7.D implies that Iε → 0 as ε → 0.
3◦. By 6.7.A, ‖ϕn‖α′ → 0 and therefore there exists a subsequence ϕnk which

tends to 0 a.e. Since hnk → 1 a.e., we get (7.18) by Fatou’s lemma if we prove that

(7.23) sup Jn <∞

9See, e.g., the Appendix in [Pet47].
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where
Jn =

∫

E
uαphndm.

Since uα = Lu, (7.21) implies

(7.24) Jn =
∫

E
uL∗(hng) dx.

4◦. Put γ = p1/β, γn = γ(1 − ϕn) = (hnp)1/β. Direct computation yields

(7.25) L∗(hng) = L∗(xdγβn ) = xdγ
β−2
n (γnMγn + Nγn) + γβ−1

n Pγn

where

Mf =
∑

ij

[βaijDijf + 2βDiaijDjf + fDijaij] −
∑

i

[βbiDif + fDibi],

Nf =
∑

β(β − 1)aijDifDjf,

Pf = βAf + (
∑

2Djajd − bd)f

with A given by (7.19).
Note that (β − 2)/β = 1/α and therefore

(7.26) Jn =
∫

E
uαhnp dm = ‖u(hnp)1/α‖αα = ‖uγβ−2

n ‖αα.

Since 0 ≤ γ, γn ≤ 1 and γn = 0 on E \V , we get from (7.25) that Jn ≤ J ′
n+ J ′′

n

where

J ′
n =

∫

V

uγβ−2
n (|Mγn| + |Nγn|) dm,

J ′′
n =

∫

V

uγβ−2
n |Pγn| dx.

(7.27)

By Hölder’s inequality and (7.26),

(7.28) J ′
n ≤ J1/α

n (‖Mγn‖α′ + ‖Nγn‖α′).

We have
Pγn = Fn +Gn

where

Fn = (1 − ϕn)
[
βAγ + γ

(∑
2Djajd − bd

)]
, Gn = −βγAϕn .

Functions Fn are uniformly bounded on V and, by (7.20), Fn = 0 on U (because
γ = v on U ). Since u is bounded on V \ U , we have

(7.29)
∫

V

uγβ−2
n |Fn| dx =

∫

V \U
uγβ−2

n |Fn| dx ≤ C.

On the other hand, by Hölder’s inequality and (7.26)

(7.30)
∫

V

uγβ−2
n |Gn| dx ≤ β

∫

V

uγβ−2
n |Aϕn/xd| dm ≤ βJ1/α

n ‖Aϕn/xd‖α′ .

For i < d, aid = 0 on {xd = 0} and therefore |aid| ≤ Cxd on V . Hence |Aϕn/xd| ≤
C(1 + |Ddϕn/xd|) and, by 6.7.B, ‖Aϕn/xd‖α′ ≤ C. We conclude from (7.29) and
(7.30) that

(7.31) J ′′
n ≤ C(1 + J1/α

n ).
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If we prove that

(7.32) ‖Mγn‖α′ ≤ C, ‖Nγn‖α′ ≤ C,

then, by (7.28) and (7.31),
Jn ≤ C(1 + J1/α

n ).

After multiplying by J−1/α
n , we obtain J (α−1)/α

n ≤ C(J−1/α
n + 1). If Jn > 1, then

J
(α−1)/α
n ≤ 2C and Jn ≤ (2C)α/(α−1). Hence Jn ≤ 1 ∨ (2C)α/(α−1), and (7.23) is

proved.
5◦. It remains to establish the bounds (7.32). Note that

Diγn = (1 − ϕn)Diγ − γDiϕn,
Dijγn = (1 − ϕn)Dijγ − DiγDjϕn − DiϕnDjγ − γDijϕn

(7.33)

and therefore

(7.34) Mγn = M̃ϕn + (1 − ϕn)Mγ

where M̃ is a linear second order differential operator with bounded coefficients.
We have ‖M̃ϕn‖α′ ≤ C‖ϕn‖2,α′. By 6.7.A, ‖ϕn‖2,α′ → 0. Therefore

(7.35) ‖Mγn‖α′ ≤ ‖M̃ϕn‖α′ + ‖(1 − ϕn)Mγ‖α′ ≤ ‖M̃ϕn‖α′ + ‖Mγ‖α′ ≤ C.

To establish a bound for ‖Nγn‖α′ , we note that

(Nγn)2 ≤ C

d∑

1

(Diγn)2

and

(Diγn)2 = (1 − ϕn)2(Diγ)2 − 2γ(1 − ϕn)DiγDiϕn + γ2(Diϕn)2

≤ C(1 + |Diϕn| + (Diϕn)2).

Hence,

(7.36) ‖Nγn‖α′ ≤ C(1 + ‖ϕn‖2,α′ + ‖|∇ϕn|2‖α′).

It follows from 6.7.A and 6.7.E that ‖Nγn‖α′ ≤ C. �

8. Notes

8.1. Removable boundary singularities. Investigation of such singulari-
ties was started by Gmira and Véron [GV91] who proved that a single point is a
removable boundary singularity for the equation ∆u = uα if d ≥ (α + 1)/(α − 1).
[They considered also more general equation ∆u = ψ(u).]

It was conjectured in [Dyn94] that a compact set B ⊂ ∂E is removable if and
only if the Poisson capacity CPα(B) = 0. The conjecture agreed with the work of
Gmira and Véron and it was supported by some results obtained about that time
by Le Gall [Le 94] and Sheu [She94b]. In [Le 95], Le Gall proved the conjecture
in the case L = ∆, α = 2 by using the Brownian snake. We borrowed his ideas in
[DK96c] to extend the result to an arbitrary L and ψ(u) = uα with 1 < α ≤ 2. If
α > 2, then there is no (L,α)-superdiffusion. This case was investigated by Marcus
and Véron in [MV98b] by purely analytic means which do not work for α ≤ 2. 10

10A gap in [MV98b] discovered by Kuznetsov was bridged by the authors using arguments
contained in the paper. Details were presented in [Vér01] – a paper based on Véron’s survey

lecture at the USA-Chile Workshop on Nonlinear Analysis.
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In [MV01] Marcus and Véron covered, by a different method, the full range α > 1
(in the case L = ∆).

In Chapter 13, the case 1 < α ≤ 2 is treated by using a tool (truncating
sequences) developed by Kuznetsov in [Kuz98b].

In [DK96c], [MV98b] and [MV01], not the Poisson capacities CPα but the
Bessel capacities Cap∂2/α,α′ are used. 11

The Bessel capacities belong to the class of capacities defined by formula
12.(1.2). The definition involves the modified Bessel functions Kν(r) of the third
kind (called also Macdonald functions). However, the asymptotic expression for
Kν as r ↓ 0 (in the case ν > 0) implies that the class of compact null sets does not
change if Kν is replaced by r−ν . If E is a bounded smooth domain in Rd and if
B is a compact subset of ∂E, then, for d > β + 1, the condition Cap∂β,p(B) = 0 is
equivalent to the condition

(8.1)
∫

∂E

γ(dx)
[∫

∂E

|x− y|β−d+1ν(dy)
]p′

= ∞

for every nontrivial ν ∈ M(B). [Here γ is the surface area on ∂E.] In particular,
for d ≥ 3, Cap∂2/α,α′(B) = 0 if and only if

(8.2)
∫

∂E

γ(dx)
[∫

∂E

|x− y|2/α−d+1ν(dy)
]α

= ∞

for every ν ∈ M(B), ν 6= 0. [If d < 3, then Cap∂2/α,α′(B) > 0 for all nonempty B.]

8.2. Removable interior singularities. They were studied much earlier
than the boundary singularities. Suppose that E is a bounded regular domain
in Rd. We say that a compact subset B of E is a removable (interior) singularity if
0 is the only solution of the equation

(8.3) Lu = uα

inE\B vanishing on ∂E. Brezis-Véron [BV80] proved that a singleton is removable
if and only if d ≥ 2α/(α− 1). Baras and Pierre [BP84b] established that the class
of removable compact sets B coincides with the class of null sets of the Bessel
capacity Cap2,α′ . Such sets can be characterized by the condition:

(8.4)
∫

E

dx

[∫

E

Γ(x− y)ν(dy)
]α

= ∞

for every nontrivial ν ∈ M(B) (Γ is defined by 6.(1.13)).
Dynkin [Dyn91c] used the result of Baras and Pierre to prove that (in the

case α ≤ 2) B is removable if and only if it is polar (that is, a.s., not hit by the
range of an (L,α)-superdiffusion). A simplified presentation of these results can
be found in [DK96c] (see also [Kuz00a]). In [Kuz00b] Kuznetsov extended the
results on interior singularities to a more general equation Lu = ψ(u) by using the
Orlicz capacity associated with ψ.

Suppose that R is the range of (L,α)-superdiffusion in E. By applying Theo-
rems 10.1.2 and 10.1.3 to Ẽ = E \B and B̃ = ∂E, we conclude that

wB(x) = − logPx{R ∩B = ∅}

11The comparison of these papers with Theorem 0.1 of Chapter 13 shows that the null sets

for both capacities are identical. A direct proof of this fact for 1 < α ≤ 2 was given in [DK96c].
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is the maximal solution of the problem
Lu = uα in E \B,
u = 0 on ∂E.

Clearly, B is removable if and only if wB = 0 which is equivalent to the condition

Px{R ∩B = ∅} = 1 for all x ∈ E \B.
The first results on polar sets for superdiffusions were obtained by Dawson,

Iscoe and Perkins [DIP89] and by Perkins [Per90]. They investigated the case L =
∆, α = 2 (the Dawson-Watanabe super-Brownian motion) by direct probabilistic
method without using any results of analysts. A sufficient condition for polarity
in terms of the Hausdorff dimension was established in [DIP89]. It was proved in
[Per90] that all polar sets have capacity 0.

8.3. Critical Hausdorff dimension. To every β > 0 there corresponds the
Hausdorff measure of B ⊂ Rd defined by the formula

Hβ(B) = lim
ε→0

Hε
β(B),

where
Hε
β(B) = inf

∑
rβi

with infimum taken over all countable coverings of B by open balls B(xi, ri) of
center xi and radius ri ≤ ε.

The Hausdorff dimensionH-dim B is the supremum of β such that Hβ(B) > 0.
We say that dc is the critical dimension for polarity if every set B with H-

dim B < dc is polar and every set B with H-dim B > dc is not polar.
The relations between the Hausdorff dimension and the Bessel capacity estab-

lished in [Mey70] (Theorem 20) and in [AM73] (Theorems 4.2 and 4.3) allow
to get the values of the critical Hausdorff dimension from the results described in
sections 5.1 and 5.2. Put

κα =
2α
α− 1

.

For an interior singularity, the critical dimension is equal to d − κα and, for a
boundary singularity, it is equal to d + 1 − κα. In the case α = 2, the first value
(equal to d− 4) follows from the results in [DIP89] and [Per90]. In [Dyn91c], it
was proved for α ≤ 2. It was also established that, if d = κα, then B can be polar
or not polar depending on its Carleson logarithmic dimension. Note that, if B is
a singleton, then H-dimB = 0 and therefore these results are consistent with the
results of the previous section.

The critical dimension in the case of a boundary singularity was conjectured
in [Dyn94]. The conjecture was proved in [DK98a]. The case of L = ∆, α = 2
was treated earlier in [Le 94] and partial results for general α were obtained in
[She94b].

8.4. Parabolic setting. In [Dyn92] (see also [Dyn93]) Dynkin investigated
G-polar subsets of R × Rd, that is subsets not hit by the graph G of the (L,α)-
superdiffusion. Suppose that Γ is a closed set which does not contain the set
(−∞, t) × Rd. Then the following conditions on Γ are equivalent:

1. Pr,x{G ∩ Γ = ∅} = 1 for all (r, x) /∈ Γ.
2. The equation u̇+ Lu = uα has no solutions in Γc except 0.
3. Capα(Γ) = 0.



8. NOTES 201

Here Capα is a capacity defined by 12.(1.2) with E and Ē replaced by R×Rd,
the Lebesgue measurem and k(r, x; t, y) = e−(t−r)/2(2π(t−r))−d/2e−|x−y|2/2(t−r)(the
transition density of the Brownian motion with killing rate 1/2). The proof of the
implication (3) =⇒ (2) was based on analytic results in [BP84a].

Sheu [She93] obtained conditions of G-polarity in terms of restricted Hausdorff
dimension R-H-dim B. The definition of R-H-dim B is similar to the definition
of H-dim B but the balls of radius r are replaced by the sets of the form [a1, a1 +
r2] ×

∏d+1
2 [ai, ai + r]. In particular, he proved that a subset B of Rd+1 is G-polar

if R-H-dim B < d− 2/(α− 1) and it is not G-polar if R-H-dim B > d− 2/(α− 1).
Boundary singularities in a parabolic setting were studied by Kuznetsov [Kuz97],

[Kuz98a], [Kuz98b]. Suppose that E is a bounded smooth domain in Rd and G is
the graph of an (L,α)-superdiffusion in the cylinder Q = R+ ×E. Let Γ be a com-
pact subset of the lateral boundary R+ × ∂E of Q. Then the following conditions
on Q are equivalent:

(i) Pr,x{G ∩ Γ = ∅} = 1 for all (r, x) ∈ Q.
(ii) The problem

u̇+ Lu = uα in Q,

u = 0 on ∂Q \ Γ,
u → 0 as t→ ∞.

has no solutions except 0.
(iii) The parabolic Poisson capacity of Γ is equal to 0.
[The parabolic Poisson capacity is defined by 12.(1.2) with E replaced by Q,

Ẽ equal to the lateral boundary of Q, dm = ρdt dx where ρ(x) = d(x, ∂E) and
k(r, x; t, y) is proportional to the derivative of the transition density p(r, x; t, y) with
respect to y in the direction of inward normal.] In [Kuz98b] Kuznetsov proved
that the null sets of the parabolic Poisson capacity coincide with the null sets of
the Besov capacity Cap1/α,2/α,α′ in notation of [BIN79].

Sheu [She00] investigated relations between the Poisson capacity and the re-
stricted Hausdorff measure. As an application, he proved that the critical restricted
Hausdorf dimension for G-polarity on the lateral boundary is d− (3 − α)/(α− 1).





CHAPTER 14

Survey of related results

In this chapter we give an exposition of various results closely related to the
subject of the book but not covered in its main part.

1. Branching measure-valued processes

1.1. Definition and construction of BMV processes. A branching measure-
valued (BMV) process is a Markov process (Xt, Pr,ν) in the space M(E) of finite
measures on a measurable space (E,B) subject to the condition: for every positive
B-measurable function f and for all r < t ∈ R and ν ∈ M(E),

(1.1) logPr,νe−〈f,Xt〉 =
∫

E

ν(dx) logPr,xe−〈f,Xt〉.

(Here Pr,x = Pr,δx .) Such a process was constructed in section 4.4.2 from a BEM
system. 1 Its transition function is determined by the equation

(1.2) Pr,νe
−〈f,Xt〉 = e−〈ut,ν〉

where ut(r, x) is a solution of the integral equation

(1.3) ut(r, x) + Πr,x

∫ t

r

ψ(s, ξs;u(s, ξs))ds = Πr,xf(t, ξt) for r < t.

A wider class of BMV processes was constructed in [Dyn91a] by replacing the
equation (1.3) by the equation

(1.4) ut(r, x) + Πr,x

∫ t

r

ψ(s, ξs;u(s, ξs))K(ds) = Πr,xf(t, ξt) for r < t

where K is a continuous additive functional of ξ. 2 An example of such a functional
is given by the formula

(1.5) K(B) =
∫

B

ρ(s, ξs) ds for Borel sets B ⊂ R.

In general, an additive functional K of ξ is a random measure on R such that, for
every r < t and every µ,K[(r, t)] is measurable relative to the Pr,µ-completion of the
σ-algebra F(r, t) generated by ξs, r < s < t. An additive functionalK is continuous
if K({s}) = 0 for every singleton {s}. It was proved in [Dyn91a] that (under some
boundness restrictions on K) the equation (1.4) has a unique solution and the
formula (1.2) determines a transition function of a BMV process X. The process

1In section 4.4.2 we considered a time-dependent base space (Et,Bt). Now, to simplify the
presentation, we assume that all (Et,Bt) are identical.

2Partial results in the same direction were obtained much earlier by Silverstein [Sil68],

[Sil69].
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X is time-homogeneous if ξ is time-homogeneous and K is a time-homogeneous
additive functional. 3

Suppose that ξ is a diffusion in a domain E ⊂ Rd. Then to every finite measure
η vanishing on polar sets 4 of ξ, there corresponds a time-homogeneous continuous
additive functional Kη such that, for every positive Borel function f(s, y)

(1.6) Πr,x

∫

R
f(s, ξs)Kη(ds) =

∫

R
ds

∫

E

η(dy)p(r, x; s, y)f(s, y)

where p is the transition density of ξ. 5 Single point sets are not polar for one-
dimensional diffusions. Therefore for such diffusions there exist continuous additive
functionals Kδx corresponding to the Dirac’s measures. (They are called the local
times.) A study of superprocesses determined by Kδx was started by Dawson and
Fleischman [DF94] who suggested for one of them the name “a super-Brownian
motion with a single point catalyst”. There was a number of subsequent pub-
lications devoted to this kind of superprocesses, among them [Dyn95], [Del96],
[FG95].

1.2. Nonlocal branching. More BMV processes can be obtained by replac-
ing a real-valued function ψ by an operator Ψ in the space of positive measurable
functions on R ×E. The equation (1.4) takes the form

(1.7) ut(r, x) + Πr,x

∫ t

r

Ψ(ut)(s, ξs)K(ds) = Πr,xf(t, ξt) for r < t.

The corresponding BMV process can be constructed by a passage to the limit
from branching particle systems. However, in contrast to the systems considered
in section 3.1.2, we do not assume that the birthplace of each particle coincides
with the deathplace of the parent (it can be random). On the other hand, we still
assume that every particle is born at the deathtime of its parent. As a result, in
our model, the values of Ψ(u) at time s depend only on the values of u at the same
time, that is, Ψ(u)(s, x) = Ψs(us)(x) where us(x) = u(s, x) and Ψs is an operator
in the space of functions on E.

In [Dyn93] a class of Ψ was investigated for which the equation (1.7) has a
unique solution and this solution determines a BMV process.

1.3. Structure of general BMV processes. In [Wat69] Watanabe de-
scribed all time-homogeneous BMV processes in a two-point base space E under
an additional assumption: for every strictly positive f , the function Pxe

−〈f,Xt〉 is
differentiable in t at t = 0. Most of his arguments are applicable to any finite space
E. Another proof of a similar result is sketched in [RS70].

The structure of BMV processes in a rather general base space E was investi-
gated in [DKS94]. 6 The first step is to define a process ξ starting from a BMV
process X. The function

(1.8) p(r, x; t, B) = Pr,xXt(B)

3The functional (1.5) is time-homogeneous if ρ(s, x) does not depend on s.
4B is a polar set of ξ if no path of ξ hits B with a positive probability.
5This follows, for instance, from a general theory of additive functionalsdeveloped in [Dyn75]

and [Dyn77].
6The results of [DKS94] are presentedwith complete proofs and all prerequisites in [Dyn94].
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always satisfies the condition 3.1.A in the Appendix A. We assume that it satisfies
also the condition 3.1.B. Then p is the transition function of a Markov process ξ
in E. We impose regularity assumptions on ξ and X which are commonly used in
the theory of Markov processes. 7 In addition, we introduce a restriction slightly
stronger than the finiteness of the second moments of the total mass 〈1, Xt〉. Under
these assumptions we prove that X satisfies the conditions (1.2) and (1.7) and we
describe the general form of the operator Ψ. Similar results under weaker restriction
on X were proved in [Led00].

2. Additive functionals

2.1. Generalized Poisson equation. Suppose that E is a bounded smooth
domain in Rd. The classical boundary value problem

−Lv + vα = f in E,
v =ϕ on ∂E

(2.1)

(with Hölder continuous f and continuous ϕ) is equivalent to an integral equation

(2.2) v(x) +
∫

E

g(x, y)v(y)αdy = h(x)

where

(2.3) h(x) =
∫

E

g(x, y)f(y)dy +
∫

∂E

k(x, y)ϕ(y)γ(dy),

g(x, y) is the Green’s function, k(x, y) is the Poisson kernel of L in E and γ(dy) is
the normalized surface area on ∂E. We interpret v as a (generalized) solution of
the problem

−Lv + vα = η in E,
v =ν on ∂E

(2.4)

involving two measures η and ν if the equation (2.2) holds with

(2.5) h(x) =
∫

E

g(x, y)η(dy) +
∫

∂E

k(x, y)ν(dy).

It was proved in [DK96a] that the equation (2.2) (with 1 < α ≤ 2) has a solution if
and only if η does not charge removable sets in E and ν does not charge removable
sets in ∂E. Moreover, the solution of (2.2) is defined uniquely on the set {h <∞}.
[These conditions are still necessary for an arbitrary domainE. Sufficient conditions
can be obtained by replacing removable sets by null sets of the Greenian capacity
in E and the Martin capacity in ∂E.]

If η = 0, then h given by (2.5) is either harmonic or infinite. In the first case,
a solution u of the integral equation (2.2) is moderate and, according to Chapter
9, it has a unique representation of the form

(2.6) u(x) = − logPxe−Zν

where Zν is a linear boundary functional of an (L,α)-superdiffusion X correspond-
ing to ν. In the second case, the problems (2.2) and (2.1) have not much sense.

In the case ν = 0, the integral equation (2.2) takes the form

(2.7) u+G(uα) = Gη

7Namely, we assume that ξ and X are Hunt processes – a subclass of the class of right
processes described in the Appendix A.



206 14. SURVEY OF RELATED RESULTS

where

(2.8) Gη(x) =
∫

E

g(x, y)η(dy).

If η(dx) = f(x)dx with f ∈ C2,λ(E), then a solution of (2.7) can be expressed by
the formula

(2.9) u(x) = − logPx exp
[
−

∫ ∞

0

〈f,Xs〉 ds
]
.

In the general case, we have a similar expression

(2.10) u(x) = − logPx exp[−Aη(0,∞)]

where Aη is a linear additive functional of X (a concept which we introduce in the
next section).

2.2. Linear additive functionals of superdiffusions. Let f be a positive
Borel function on E. The formula

(2.11) A(B) =
∫

B

〈f,Xs〉 ds

defines a random measure on (0,∞) with the following properties:

2.2.A. For every open interval I, A(I) is measurable with respect to the σ-
algebra F(I) generated by Xs, s ∈ I.

2.2.B. For every µ ∈ M(E) and every I,

(2.12) PµA(I) =
∫

E

PxA(I)µ(dx).

Every random measure A with properties 2.2.A–2.2.B is called a linear additive
functional (LAF) of X.

Formula (2.11) describes a LAF Aη corresponding to η(dx) = f(x)dx. A LAF
corresponding to an arbitrary measure η not charging removable sets is given by
the formula

(2.13) Aη(0, t] = lim
λ→∞

∫ t

0

〈fλ, Xs〉 ds in Pµ-probability

for µ in a sufficiently rich subset M∗ of M(E). Functions fλ can be defined, starting
from the transition density pt(x, y) of L-diffusion in E, by the formula

(2.14) fλ(x) = λ

∫

E

gλ(x, y)η(dy)

where

(2.15) gλ(x, y) =
∫ ∞

0

e−λsps(x, y) ds.

[Note that the measures fλ(x)dx converge weakly to η.]
More precisely, Aη defined by formula (2.13) satisfies a weaker versions of 2.2.A–

2.2.B. [In 2.2.A, the σ-algebras F(I) need to be replaced by their completion with
respect to the family Pµ, µ ∈ M∗, and (2.12) is satisfied only for µ ∈ M∗.]

Formula (2.6) can also be interpreted in terms of linear additive functionals:
it is possible to associate with every measure ν on ∂E charging no removable sets
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a LAF Aν such that Zν = A(0,∞). Moreover, a solution of the general problem
(2.4) can be expressed by the formula

(2.16) u(x) = − logPx exp[−(Aη +Aν)(0,∞)].

All these results were proved in [DK97b] in a more general time-inhomogeneous
setting. The foundation for [DK97b] has been laid by a theory of natural linear
additive functionals developed in [DK97a]. In particular, it was proved in [DK97a]
that all such functionals have only fixed discontinuities 8 and all time-homogeneous
functionals of time-homogeneous superprocesses are continuous.

3. Path properties of the Dawson-Watanabe superprocess

3.1. The Dawson-Watanabe superprocess (or, in other words, the super-
Brownian motion with quadratic branching ψ(u) = u2) has been investigated in
great detail. For this process 〈f,Xt〉 is continuous a.s. for any bounded Borel func-
tion f ([Rei86]). [For a general (L,α)-superdiffusion, 〈f,Xt〉 is right continuous a.s
for bounded continuous f.] The proof in [Rei86] is based on non-standard analysis.
A standard proof for a broader class of processes is given in [Per91].

3.2. The support process. A set-valued process Kt = supp Xt is studied
in [DIP89] and [Per90]. It is proved that Kt is right continuous with left limits
(in the topology induced by the Hausdorff metric in the space of compact sets) and
that, for almost all ω,

(i) Kt ⊂ Kt− for all t > 0;
(ii) Kt−\Kt is empty or a singleton for all t > 0;
(iii) Kt = Kt− for each fixed t > 0.
It is easy to deduct from these results that the graph G of X is the union of

all sets {t} ×Kt−, t > 0 and {0} ×K0.

3.3. Relations betweenXt and the Hausdorff measures. These relations
were investigated in [DH79], [Per88], [Per89], [Per90], [DIP89] and [DP91].

If d = 1, then Xt(dx) = ρ(t, x)dx with a continuous ρ [Rei86]. This result was
established independently in [KS88]. (An earlier result in the same direction was
obtained in [RC86].)

According to [DH79], for any d, the measure Xt is concentrated, a.s., on a
random Borel set of Hausdorff dimension not larger than 2. Perkins [Per89] has
proved that, for d > 2, Xt(dx) = ρt(x)η(dx) where η is the Hausdorff measure
corresponding to the function ϕ(r) = r2 log log 1

r
. Moreover, a.s., 0 < cd ≤ ρt ≤

Cd < ∞ on Kt for all t > 0. These results have been refined in [DP91]. It was
shown that, for every fixed t, ρt = const a.s and therefore Kt is a set-valued Markov
process.

The case d = 2 left open in [Per89] and [DP91] was settled by Le Gall and
Perkins in [LP95].

3.4. The fact that the range R of the Dawson-Watanabe superprocess is,
a.s., compact was established, first, in [Isc88]. For the same process, necessary
conditions for polarity were established in [Per90] independently of any results
obtained by analysts. However, sufficient conditions (even for α = 2) are not yet

8That is the set of discontinuities of the function A(0, t] is independent of ω.
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proved this way. Sharp results on the Hausdorff measure of suppR were obtained
in [DIP89] for d ≥ 5. The case d = 4 is covered in [Le 99b].

3.5. In [Per90] and [DP91] besides the super-Brownian motion also the
(ξ, ψ)-superprocesses were investigated corresponding to symmetric stable processes
ξ and ψ(u) = u2. In this situation, the topological support Kt is, a.s., either the
empty set or the entire state space and it must be replaced by a random Borel set
Λt supporting Xt.

4. A more general operator L

4.1. In this book we considered (L,ψ)-superdiffusions with L given by 2.(1.1).
Most of the results can be extended to more general operators

(4.1) Lu = L0u+ cu

where L0 has the form 2.(1.1) and c(r, x) is bounded, continuous in (r, x) and
Lipschitz continuous in x uniformly in r. 9 Let ξ = (ξt,Πz) be an L0-diffusion and
let

(4.2) Hr
t =

∫ t

r

c(s, ξs) ds.

An (L,ψ)-superprocess X = (XQ, Pµ) is a BEM system subject to the condition
4.(1.1) with operators GQ and KQ defined by the formulae

(4.3) GQf(r, x) = Πr,x

∫ τ

r

Hr
sf(s, ξs) ds,

and

(4.4) KQf(r, x) = Πr,xH
r
τ f(τ, ξτ )

(τ is the first exit time from Q). The existence of such a system can be proved, for
the same class of function ψ, by the arguments used in Chapter 4 in the case c = 0.
Most results of Chapters 4 and 5 are established for a general c in [Dyn98a] and
[DK99]. In particular, it is proved that, if O is a regular relatively open subset of
∂Q, then the minimal solution of the problem

u̇+ Lu =ψ(u) in Q,
u =∞ on O

(4.5)

is given by the formula

(4.6) u(z) = − logPz{XQ(O) = 0}.

4.2. Main results of [DK99] concern the extinction time σQ of X in Q. Sup-
pose that ψ given by the formula 4.(2.4) belongs to BR. If c ≥ 0 , then σQ < ∞
a.s. for all nonempty Q. This is not true for a general c.

To define σQ, we consider the restrictions L̃ and ψ̃ of L and ψ to Q. Let
(X̃t, P̃r,x) be the branching measure-valued process associated with (L̃, ψ̃)-superdiffusion
X̃ (see section 4.4.2). The extinction time σQ is defined by the formula

(4.7) σQ = sup{t : X̃t 6= 0}.

9Like bi(r, x) in the condition 2.(1.3).
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It is proved in [DK99] that the event {σQ < ∞} coincides, a.s., with the event
{GQ is compact }. 10 If coefficients of L do not depend on time, then the maximal
solution of the equation Lu = ψ(u) in a regular domain D ⊂ Rd vanishing on ∂D
is given by the formula

(4.8) w(x) = − log{R ⊂ D,σD < ∞}

where R is the range of X̃. For a bounded smooth domain D and for an operator
L of the divergence form, it is proved that {σD <∞} = {XD(O) < ∞} a.s. for all
nonempty relatively open subsets O of ∂D.

5. Equation Lu = −ψ(u)

5.1. This equation was investigated by many authors. In [Dyn00b] an at-
tempt was made to establish a link between a set V(E) of all its positive solutions in
an open set E and an analogous set U(E) for equation Lu = ψ(u). Recall that The-
orem 8.3.1 establishes a 1-1 correspondence between U1(E) ⊂ U(E) and a subclass
H1(E) of the class H(E) of all positive L-harmonic functions in E. In [Dyn00b],
a 1-1 map from V1(E) ⊂ V(E) onto a set H1(E) ⊂ H(E) is introduced. Functions
u ∈ V1(E) and h ∈ H1(E) correspond to each other if u is the minimal solution of
the integral equation

(5.1) u = GEψ(u) + h.

This is equivalent to the condition: h is the maximal L-harmonic function domi-
nated by u. The class H1(E) is contained in H1(E), and therefore we have a 1-1
correspondence between V1(E) and a subclass of U1(E).

It is well known that the boundary value problem

Lu = −ψ(u) in E,
u = f on ∂E

(5.2)

can have more than one solution [even in the case of bounded E and f ]. However,
it cannot have more than one solution of class V1(E).

5.2. A connection between the equation Lu = −u2 and superdiffusions was
established in [Dyn00a]. Suppose that E is bounded regular and f ≥ 0 is contin-
uous. Then if

(5.3) u(x) = logPxe〈f,XE 〉

is locally bounded, then u belongs to V1(E) and it is a solution of the problem
(5.2).

The class U1(E) (moderate solutions) plays an important role in the study of
the class U(E) of all positive solutions. The role of V1(E) in the study of V(E) is
much more limited.

10In the case L = ∆ and Q = R× Rd, this follows also from earlier results of Sheu [She94a],

[She97].
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6. Equilibrium measures for superdiffusions

6.1. A measure m is called an invariant measure for a stationary Markov
transition function pt(x, dy) or, shortly, p-invariant if∫

m(dx)pt(x,B) = m(B) for all t, B.

If, in addition, it is a probability, then it is called a p-equilibrium (or a steady state
for p). If p is the transition function of the Brownian motion in Rd (see 2.(2.2)),
then all the p-invariant measures are described by the formula m(dx) = const. dx
and there exist no p-equilibria.

In general, the p-equilibria form a convex cone generated by its extreme ele-
ments.

6.2. Let X be a time-homogeneous (L,ψ)-superdiffusion. Denote by p the
transition function of an L-diffusion ξ and by P the transition function of X. If
ψ ∈ BR and if the state space of X is the set of finite measures, then the unit
measure at point 0 is the only P-equilibrium. To get a meaningful theory, we need
to modify our setting and to construct X as a process in an appropriate space of
infinite measures. We fix a measurable function ρ > 0 and we introduce a space
Mρ = {ν : 〈ρ, ν〉 <∞}. This space is invariant with respect to the operators

Ptf(x) =
∫
pt(x, dy)f(y)

if the function Ptρ/ρ is bounded for each t > 0. Put

Wf(x) =
∫ ∞

0

ψ(Vtf)dt

where
Vtf(x) = − log Pδx exp〈−f,Xt〉.

We say that a p-invariant measure m is dissipative if

lim
λ↓0

1
λ
〈W (λf),m〉 = 0

for some f > 0.
The case of ψ = bu2 was treated in [Dyn89b]. 11 By Theorem 1.7 in [Dyn89b],

to every p-invariant measure m there corresponds a unique P-equilibrium measure
Mm such that ∫

Mρ

Mm(dν)e−〈f,ν〉 = e−〈f−Wf,m〉 , f ∈ L1
+(m).

The map m → Mm establishes a 1-1 correspondence between the set of all dissi-
pative p-invariant measures m and the set of all nontrivial extreme P-equilibrium
measures M such that

(6.1)
∫

Mρ

M (dν)〈ρ, ν〉 < ∞.

The inverse mapping is given by the formula∫

Mρ

M (dν)ν = m.

11Only minor modifications are needed to cover other functions ψ of the form 8.(2.18).
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[Mm is concentrated at 0 if 〈Wf,m〉 = 〈f,m〉 < ∞ for some f > 0.]

6.3. A measure m is dissipative if ψ(u) = uα and

(6.2)
∫ ∞

0

〈(Ptf)α,m〉dt < ∞

for some f > 0.[This follows from an inequality Vtf ≤ Ptf .]
The condition (6.2) is satisfied for all p-invariant measures m(dx) = const. dx

of the Brownian motion if d > 2/(α− 1). Indeed, pt(x, dy) = qt(x− y)dy where

qt(x) = (2πt)−d/2e−|x|2/2t

and, if f = q1, then Ptf = qt+1 and 〈(Ptf)α,m〉 = const.(t + 1)−d(α−1)/2.
We conclude that there exists a one parameter family of equilibria for the super-

Brownian motion if d > 2/(α−1). In the case α = 2, this result was obtained much
earlier by Dawson [Daw77]. Bramson, Cox and Greven [BCG93] have shown that
there exist no nontrivial P-equilibria if α = 2 and d ≤ 2.

6.4. A closely related subject is the asymptotic behavior of branching par-
ticle systems and superprocesses as t → ∞. Many authors contributed to this
subject (see, e.g., [Daw77], [Dyn89b], [Kal77b], [LMW89], [DP91] and refer-
ences there).

7. Moments of higher order

7.1. Suppose that X is a (ξ, ψ)-superprocess. If ψ satisfies the conditions
4.3.1.A and 4.4.3.A, then, by Lemma 4.4.1 and 4.(4.6), for all r < t,

(7.1) Pr,µ〈f,Xt〉 = 〈T rt f, µ〉

where T rt f(r, x) = Πr,xf(ξt) =
∫
E
p(r, x; t, dt)f(y).

Denote by ψm(r, x;u) the mth derivative of ψ(r, x;u) with respect to u eval-
uated at u = 0 and put qm(r, x) = (−1)mψm(r, x;u). It is not too hard to prove
that, if r < min{t1, t2}, then

(7.2) Pr,µ〈f1, Xt1〉〈f2, Xt2〉

=
∫ ∞

r

ds

∫

E

µ(dx)p(r, x; s, dy)q2(s, y)T st1f1(y)T
s
t2f2(y) + 〈T rt1f1, µ〉〈T

r
t2f2, µ〉.

To evaluate higher moments, we introduce notation

(7.3) {ϕ1 . . .ϕm}(r, x) = Πr,x

∫ ∞

r

ds qm(s, ξs)ϕ1(s, ξs) . . .ϕm(s, ξs) for m > 1

or, in terms of the transition function,

(7.4) {ϕ1 . . .ϕm}(r, x) =
∫ ∞

r

ds

∫

E

p(r, x; s, dy)qm(s, y)ϕ1(s, y) . . . ϕm(s, y).

In addition, we put {ϕ1} = ϕ1. We consider monomials like {{ϕ3ϕ2}ϕ1{ϕ4ϕ5}}.
Permutations of terms inside any group {. . .} does not change the result and we do
not distinguish monomials obtained from each other by such permutations. There
exist one monomial {ϕ1ϕ2} of degree 2 and four distinguishable monomials of degree
3:

(7.5) {ϕ1ϕ2ϕ3}, {{ϕ1ϕ2}ϕ3}, {{ϕ2ϕ3}ϕ1}, {{ϕ3ϕ1}ϕ2}.
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Denote byW (t1, f1; . . . ; tm, fm) the sum of all monomials of degree m of ϕ1, . . . , ϕm
where ϕi(r, x) = T rtifi(r, x). [For instance,

W (t1, f1; t2, f2; t3, f3) = {ϕ1ϕ2ϕ3} + {{ϕ1ϕ2}ϕ3} + {{ϕ2ϕ3}ϕ1} + {{ϕ3ϕ1}ϕ2}].
We also consider functions corresponding to subsets Λ = {i1, . . . , i`} of {1, . . . ,m}.
We denote them by W (tΛ; fΛ). [Abbreviations tΛ and fΛ are used for (ti1 , . . . , ti`)
and (fi1 , . . . , fi`).]

Suppose that the m-th derivative of ψ(r, x;u) with respect to u is continuous
and bounded. Then, for every r < min{t1, . . . , tn} and for an arbitrary measure µ
on E,

(7.6) Pr,µ〈f1, Xt1〉 . . . 〈fm, Xtm〉 =
∑

Λ1,...,Λk

∫ k∏

i=1

W (tΛi , fΛi)(r, xi)µ(dxi)

where the sum is taken over all partitions of the set {1, . . . ,m} into disjoint nonempty
subsets Λ1, . . . ,Λk, k = 1, . . . ,m. Formulae (7.1) and (7.2) are particular cases of
this expression.

7.2. If ψ is given by formula 4.(2.4), then

q2(r, x) = 2b(r, x) +
∫ ∞

0

λ2n(r, x; dλ)

and

qm(r, x) =
∫ ∞

0

λmn(r, x; dλ) for m > 2.

In particular, if n = 0, then qm = 0 for all m > 2 and therefore only a binary
operation {ϕ1ϕ2} appears in formula (7.6). This case was investigated in [Dyn88].
[We used there notation ϕ1 ∗ ϕ2 for {ϕ1ϕ2}.] In [Dyn91a] a formula similar to
(7.6) was established for a wider class of superprocesses governed by the integral
equation (1.4). For such superprocesses, K(ds) has to be substituted for ds in (7.3).

7.3. To every monomial there corresponds a rooted tree with the leaves la-
beled by 1, 2, . . . ,m. Here are trees corresponding to the monomials (7.5):

2

3

21 3 1 2 3

1

1

2

3

Figure 1

A diagram is the union of disjoint rooted trees. It consists of a set V of vertices
(or sites) and a set A of arrows. We write a : v → v′ if v is the beginning and v′ is
the end of an arrow a. We denote by a+(v) the number of arrows which end at v and
by a−(v) the number of arrows which begin at v. Note that a+(v) = 0, a−(v) = 1
for roots and a+(v) = 1, a−(v) = 0 for leaves. We denote the corresponding subsets
of V by V− and V+. For the rest of vertices, a+(v) = 1, a−(v) > 1. We denote the
set of these vertices by V0.
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Let Dm be the set of all diagrams with leaves marked by 1, 2, . . .,m. We label
each site of D ∈ Dm by two variables – one real-valued and the other with values
in E. Namely, tizi is the label of the leave marked by i, rxv is the label of a root
v and svyv is the label of v ∈ V0.

For an arrow a : v → v′, we put pa = p(s, w; s′, dw′) where sw is the label of
v and s′w′ is the label of v′. 12 In this notation, the right side in (7.6) is equal to
the sum of cD over all D ∈ Dm where

(7.7) cD =
∫ ∏

v∈V−

µ(dxv)
∏

a∈A
pa

∏

v∈V0

qa−(v)(sv , yv) dsv
m∏

i=1

fi(zi).

Example. The diagram D corresponding to {ϕ1ϕ2} + ϕ3 can be labeled as
follows (in contrast to the marking of the leaves, the enumeration of V− and V0 is
of no importance),

t3z

rx

3

z zt t

rx

2

ys 1 1

21 1

21

Figure 2

and we have

cD =
∫
µ(dx1)µ(dx2)p(r, x1; s1, dy1)q2(s1, y1)ds1p(s1, y1; t1, dz1)p(s1, y1; t2, dz2)

× p(r, x2; t3, dz3)f1(z1)f2(z2)f3(z3).

8. Martingale approach to superdiffusions

We already have mentioned (see Notes to Chapter 2) a method of Stroock and
Varadhan for constructing diffusions by solving a martingale problem. It is based on
a relation between martingales and partial differential equations stated in Theorem
2.2.1. A version of this theorem for a time-homogeneous case can be formulated as
follows. If (ξt,Πx) is an L-diffusion in Rd, then, for every f ∈ C2

0(Rd)

Yt = f(ξt) −
∫ t

0

Lf(ξs) ds, t ≥ 0

is a continuous martingale with respect to F [0, t] and Πx. The Stroock-Varadhan
martingale problem is: for a given operator L, define measures Πx on the space of
continuous paths such that Yt is a martingale for a wide enough class D of functions
f .

12Recall that we set p(s, x; t, B) = 0 for s > t.
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To apply this approach to superdiffusions, it is necessary to introduce an ap-
propriate class D of functions on the space M of finite measures and to define on
this class an operator L related to L. For ψ given by the formula 4.(2.4) with time
independent b and n, the operator L can be defined by the formula

Lf(µ) = F ′(〈ϕ, µ〉)〈Lϕ, µ〉 + F ′′(〈ϕ, µ〉)〈bϕ2, µ〉

+
∫
µ(dx)

∫ ∞

0

n(x, dλ){F [〈ϕ, µ〉+ λϕ(x)] − F (〈ϕ, µ〉) − F ′(〈ϕ, µ〉)λϕ(x)}

on functions f(µ) = F (〈ϕ, µ〉) where F ∈ C∞ and ϕ ∈ C2
0 . For a solution of this

martingale problem we refer to [KRC91], [Fit88], [Fit92], [Daw93] and [Eth00].

9. Excessive functions for superdiffusions and the corresponding
h-transforms

With every stationary transition function pt(x,B) a class Exc(p) of p-excessive
functions is associated. It consists of positive Borel functions h such that

Pth(x) ≤ h(x) for all t, x

and
Pth(x) → h(x) for all x as t ↓ 0

where
Pth(x) =

∫

E

pt(x, dy)h(y).

If p is the transition function of a diffusion, then Exc(p) contains all positive L-
harmonic functions studied in Chapter 7. The h-transform introduced in section
7.4.1 can be applied to any p-excessive function. The corresponding measure Π̃h

x can
be obtained from the measure Πx by the conditioning on a specific limit behavior
of the path as t → ∞ or to the death time of the process.

Let P be the transition function of a superdiffusion X. An example of a P-
excessive function is the total mass h(µ) = 〈1, µ〉. The corresponding h-transform
is a superdiffusion conditioned on non-extinction investigated in [RR89], [EP90],
[Eva93] and [Eth93] .

In the case of ψ(u) = u2, a reach class of P-excessive functions was constructed
in [Dyn99]. Let pt(x,B) be the transition function of an L- diffusion ξ. Put

Pnt f(x1, . . . , xn) =
∫

En

pt(x1, dy1) . . . pt(xn, dyn)f(y1, . . . , yn).

Suppose that
Pnt f ≤ f, lim

t↓0
Pnt f = f and lim

t→∞
Pnt f = 0.

By Theorem 3.1 in [Dyn99], to every f with these properties there corresponds a
P-excessive function
(9.1)

h(µ) =
∫

En

f(x1, . . . , xn)µ(dx1) . . .µ(dxn)+
n−1∑

i=1

∫

Ei

ϕni (x1, . . . , xi)µ(dx1) . . . µ(dxi)

[functions ϕni are determined by f and the transition function p].
It is interesting to compare the corresponding h-transforms with the processes

constructed in [SaV99] and [SaV00] by conditioning on the hitting a finite number
of specified boundary points by the exit measure from a domain E.
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10. Infinite divisibility and the Poisson representation

10.1. Infinitely divisible random measures. Suppose that (S,BS) is a
measurable space and let X = (X(ω), P ) be a random measure with values in the
space M = M(S) of all finite measures on S. 13 X is called infinitely divisible
if, for every n, there exist independent identically distributed random measures
(X1, P ), . . . , (Xn, P ) such that X1 + · · ·+Xn has the same probability distribution
as X.

10.2. Laplace functionals of infinitely divisible measures. The proba-
bility distribution of (X,P ) is a measure on M(S). It is determined uniquely by
the Laplace functional

(10.1) LX (f) = Pe−〈f,X〉, f ∈ B

[Cf. 3.(3.5).] X is infinitely divisible if and only if, for every n, there exists a random
measure (Y, P ) such that LX = LnY . It is clear that this condition is satisfied if

(10.2) LX (f) = exp
[
−〈f,m〉 −

∫

M
(1 − e−〈f,ν〉)R(dν)

]

where m is a measure on S and R is a measure on M. If (S,BS ) is a Luzin space,
14 then the Laplace functional of an arbitrary infinitely divisible random measure
X has the form (10.2) (see, e.g., [Kal77a] or [Daw93]). We can assume that
R{0} = 0.

It follows from (10.1) and (10.2) that, for every constant λ > 0,

λ〈1,m〉 +
∫

M
(1 − e−λ〈1,ν〉)R(dν) ≤ − logPe−λ〈1,X〉.

The right side tends to − logP{X = 0} as λ → ∞. Therefore if P{X = 0} > 0,
then m = 0, R(M) < ∞ and (10.2) takes the form

(10.3) LX (f) = exp[−
∫

M
(1 − e−〈f,ν〉)R(dν)].15

10.3. Poisson random measure. An example of an infinitely divisible ran-
dom measure is provided by the Poisson random measure. Suppose that J is a
probability measure on a measurable space (S,BS). Then there exists a random
measure (X,P ) on S with the properties:

10.3.A. X(B1), . . . , X(Bn) are independent for disjoint B1, . . . , Bn.

10.3.B. X(B) is a Poisson random variable with the mean J(B), i.e.,

P{X(B) = n} =
1
n!
J(B)ne−J(B) for n = 0, 1, 2, . . ..

13More general classes M are also considered. For instance, the class M = {ν : 〈ρ, ν〉 < ∞}
for a fixed function ρ > 0 is considered in [Dyn89b].

14That is if there exists a 1-1 mapping from S onto a Borel subset S̃ of a compact metric

space such that sets of BS corresponds to Borel subsets of S̃.
15A finite measure R not charging 0 is determined uniquely by (10.3).
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We call X the Poisson random measure with intensity J . 16 This is an integer-
valued measure concentrated on a finite set. Its values can be interpreted as con-
figurations in S.

The Laplace functional of the Poisson random measure is given by the formula

(10.4) LX (f) = exp[〈e−f − 1, J〉].

Clearly, X is infinitely divisible.
If (X,P ) is a random measure on S with the Laplace functional (10.3) and if

(Y,Q) is the Poisson random measure on M(S) with intensity R, then, by (10.4),
LX (f) = LY (F ) where F (ν) = 〈f, ν〉. Therefore (X,P ) has the same probability
distribution as (X̃,Q) where X̃(B) =

∫
M ν(B)Y (dν).

10.4. Poisson representation of superprocesses. If X = (XQ, Pµ) is a
(ξ, ψ)-superprocess [or, more generally, a BEM system], then, by 3.(1.11), the
Laplace functional LµQ of the random measure (XQ, Pµ) is given by the formula

(10.5) LµQ(f) = Pµe
−〈f,XQ 〉 = e−〈VQ(f),µ〉.

Hence (XQ, Pµ) is infinitely divisible. If ψ ∈ BR, then, by 5.(5.5), u0(z) =
− logPz{XQ = 0} is the minimal barrier. Hence, Pz{XQ = 0} = e−u

0(z) > 0
and, by (10.3),

(10.6) LzQ(f) = exp
[
−

∫

M
(1 − e−〈f,ν〉)Rz

Q(dν)
]

for a finite measure Rz
Q which does not charge 0. It follows from the continuous

branching property 3.1.3.A that

(10.7) LµQ(f) = exp
[
−

∫

M
(1 − e−〈f,ν〉)Rµ

Q(dν)
]

where

Rµ
Q =

∫

M
µ(dz)Rz

Q.

Let (Y, P̃ ) be the Poisson random measure on M with intensity Rµ
Q and let

X̃µ
Q(B) =

∫
M Y (dν)ν(B). The random measure (XQ, Pµ) has the same probability

distribution as the random measure (X̃µ
Q, P̃ ).

Note that, by (10.5) and (10.6),

(10.8) VQ(f)(z) = − logLzQz(f) =
∫

M
(1 − e−〈f,ν〉)Rz

Q(dν).

The Poisson representation (10.7) and a closely related the Poisson cluster
representation are among the principal tools used by Dawson and Perkins in [DP91]
to study the structure of random measures (Xt, Pr,x) for (ξ, ψ)-superprocesses and
the corresponding historical superprocesses (described in section 11).

An intuitive meaning of the normalized measure

JzQ(dν) = Rz
Q(dν)/Rz

Q(M)

16If J is a finite measure, then J(B) in 10.3.B is to be replaced by J(B)/J(S).
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is illuminated by the formula 17

(10.9)
∫

M
e−〈f,ν〉JzQ(dν) = lim

ε→0
Pεδz

{
e−〈f,XQ 〉∣∣XQ 6= 0

}
.

To prove this formula, we note that, by (10.5) and (10.8), for every ε > 0,

Pεδz{XQ = 0} = lim
λ→∞

Pεδze
−λ〈1,XQ〉

= lim
λ→∞

exp
[
−ε

∫

M
(1 − e−λ〈1,ν〉)Rz

Q(dν)
]

= e−εR
z
Q(M).

Therefore

Pεδz

{
e−〈f,XQ 〉∣∣XQ 6= 0

}
=
Pεδz [XQ 6= 0, e−〈f,XQ〉]

Pεδz [XQ 6= 0]
=
Pεδze

−〈f,XQ 〉 − Pεδz [XQ = 0, e−〈f,XQ〉]

1 − Pεδz [XQ = 0]
.

The right side tends to

1 − VQ(f)(z)
Rz
Q(M)

=
∫

M
e−〈f,ν〉JzQ(dν)

as ε → 0.

11. Historical superprocesses and snakes

11.1. We start from a branching particle system introduced in section 3.1.2.
An evolution of such a system can be described by the mass distributionXt at every
time t. However, the BMV process (Xt, Pµ) reflects only a small part of information
about the system. A part sufficient for applications to partial differential equations
is provided by a BEM system (XQ, Pµ) constructed in section 3.1.3. A complete
picture of the evolution is given by a random tree composed from the paths of all
particles. Two ways to encode this picture are provided by historical BMV process
X̂ and by random snakes Z.

11.2. Historical superprocesses. The first step in building X̂ is an intro-
duction of a historical process ξ̂ corresponding to ξ. A state ξ̂t of ξ̂ at time t is the
path ξ≤t = {ξs : s ∈ [0, t]} of ξ over the time interval [0, t]. The historical process is
a Markov process with a state space Wt depending on t. Put |w| = t, ∂w = wt for
w ∈ Wt. For every w ∈ Wr, the probability distribution of ξ≤t, t ≥ r with respect
to Πr,w is the same as the probability distribution of a random path which coincides
with w up to time r and coincides, after that time, with the path ξ≥r = {ξs : s ≥ r}
of ξ started at time r from wr.

Let Mt be the space of all finite measures on Wt. The historical BMV super-
process is a Markov process (Xt, Pr,µ) in the space Mt such that, for every r, µ,
and every positive measurable function f on Wt,

Pr,µe
−〈f,Xt 〉 = e−〈vr,µ〉

where

vr(w) + Πr,w

∫ t

r

ψ(vs)(ξ≤s)ds = Πr,wf(ξ≤t) for all r ≤ t, w ∈ Wr.

17See (3.7) in [DP91].
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The concept of historical superprocesses is in the center of a monograph [DP91]
by Dawson and Perkins. We refer also to their expositions [Daw93] and [Per01].
A slightly different approach to this subject is contained in [Dyn91b].

11.3. Snakes. Like a historical process, a snake Z is a path-valued process
with a time dependent state space. However |Zt| = ζt is random. The de-
pendence of Z on ξ is easy to describe if the time parameter t takes values in
βZ+ = {0, β, 2β, . . .}. Then Zt+1 is the restriction of Zt to [0, ζt+1] if ζt+1 ≤ ζt and
it is an extension of Zt if ζt+1 > ζt, namely, it is defined on the interval [ζt, ζt+1] as
the path of ξ started at time ζt from the end point ∂Zt of Zt.

The snake corresponding to a branching particle system is described as follows.
We write b ≺ b′ if b is the parent of b′. The historical path of b is the combination
wb = w(b0)w(b1) · · ·w(bn) of paths of b = bn and all its ancestors b0 ≺ b1 ≺ · · · ≺ bn.

Denote by Px the probability law of a branching particle system started at time
0 by a progenitor b0 located at x. Its total posterity is finite a.s. Order, some way,
the offspring of each particle. Enumerate the particles starting from b0 as follows:
bn+1 is the first child of bn which is not among b1, . . . , bn−1 or, if there is no such
children, then bn+1 is the parent of bn. The process is terminated at the first return
to b0.

In general, the corresponding snake is not a Markov process. It is Markovian if
every particle lives for a constant time β and it produces at the death time offspring
of size n with probability

pn =
1

2n+1
, n = 0, 1, 2, . . . .

The corresponding process ζt is a simple random walk on βZ+ killed at the first
hitting of the origin. Instead of terminating the process at the first return to its
initial state, we can continue it indefinitely by replacing ζt by the reflecting random
walk in βZ+.

The Brownian snake can be obtained, heuristically, by passing to the limit as
β → 0. Le Gall defined it as a continuous path-valued strong Markov process
(Zt,Px) with the transition mechanism characterized by several properties includ-
ing:

(a) |Zt| = ζt is the reflecting Brownian motion in R+;
(b) Zs1(t) = Zs2(t) if t ≤ ζs for all s ∈ [s1, s2]. 18

Le Gall [Le 91], [Le 93a] proved the existence of the Brownian snake Z and
expressed, in terms of Z, the exit measures of the Dawson-Watanabe superprocess
(that is (ξ, ψ)-superprocess corresponding to the Brownian motion ξ and ψ(u) =
u2). In [Le 95], [Le 97] he applied this construction to the investigation of positive
solutions and removable boundary singularities of equation ∆u = u2. A systematic
presentation of his method is given in [Le 99a].

A correspondence between additive functionals of historical superprocesses and
additive functionals of snakes was established in [DK95].

18Clearly, the transition rules described above in the case of a discrete time parameter t

imply (b).



APPENDIX A

Basic facts on Markov processes and martingales

In this appendix we collect basic definitions and results on Markov processes
and martingales used in the book. We present the results not in the most general
form but just in the setting we need them. As a rule we give no proofs but refer
to books where the proofs can be found. An exception is the concept of a strong
Markov process in the time-inhomogeneous setting. We introduce it in a form
more general and more convenient for applications than anything available in the
literature and we prove in detail all related statements.

We start from a theorem on classes of measurable functions which is applied
many times in the book.

1. Multiplicative systems theorem

1.1. A family Q of real-valued functions on Ω is called multiplicative if it is
closed under multiplication. We say that a sequence of functions Xn(ω) converges
boundedly to X(ω), if it converges at every ω and if functions Xn(ω) are uniformly
bounded.

Theorem 1.1. Let a linear space H of bounded functions contain 1 and be
closed under bounded convergence. If H contains a multiplicative family Q, then it
contains all bounded functions measurable with respect to the σ-algebra generated
by Q.

We call Theorem 1.1 the multiplicative systems theorem. We deduce it from
the so-called π-λ-lemma.

1.2. A class P of subsets of Ω is called a π-system if P contains A ∩ B for
every A,B ∈ P. A class L is called λ-system if it contains Ω and is closed under
the formation of complements and of finite or countable disjoint unions.

Lemma 1.1. If a λ-system L contains a π-system P, then L contains the σ-
algebra generated by P.

We refer for the proof to [Dyn60] (Lemma 1.1) or to [Bil95] (Theorem 3.2).

1.3. Proof of the multiplicative systems theorem. Put A ∈ L if 1A ∈ H
and denote by P the family of sets

(1.1) {ω : X1(ω) ∈ I1, . . . , Xm(ω) ∈ Im}
where m = 1, 2, . . ., X1, . . . , Xm ∈ Q and I1, . . . , Im are open intervals. Clearly L
is a λ-system and P is a π-system.

Let us prove that P ⊂ L. It is easy to construct, for every k a sequence of
continuous functions fkn which converges boundedly to 1Ik . Suppose |Xk(ω)| ≤ c
for k = 1, . . . ,m and for all ω ∈ Ω. By the Weierstrass theorem, there exists a

219
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polynomial gkn such that |gkn(t) − fkn(t)| ≤ 1
n for all |t| ≤ c. Functions Yn(ω) =

g1
n[X1(ω)] . . . gmn [Xm(ω)] belong to H and converge boundedly, as n → ∞, to the

indicator of the set (1.1). We conclude that the set (1.1) belongs to L.
By the π-λ-lemma, L contains the σ-algebra generated by P which is the same

as the σ-algebra generated by Q. If X is an arbitrary bounded function measurable
with respect to this σ-algebra, then the functions

Xn =
∑

k

k

n
1 k

n<X≤ k+1
n

belong to H and they converge boundedly to X. Thus X ∈ H. 1 �

2. Stopping times

This is a concept playing a central role, both, in theory of Markov processes
and in theory of martingales.

2.1. Suppose that T is a subset of R and (Ω,A, P ) is a probability space. A
family of sub-σ-algebras At, t ∈ T of A is called a filtration of (Ω,A, P ) if As ⊂ At

for s ≤ t. We say that a function τ from Ω to T ∪ {+∞} is a stopping time if
{τ ≤ t} ∈ At for every t ∈ T. Subsets C ∈ A with the property C∩{τ ≤ t} ∈ At for
all t ∈ T form a σ-algebra which we denote Aτ . Functions measurable with respect
to Aτ are called pre-τ functions. Note that f(τ ) is a pre-τ function for every Borel
function f . If τ and τ ′ are stopping times and if τ ≤ τ ′, then Aτ ⊂ Aτ ′ .

If T is finite, then τ is a stopping time if and only if {τ = t} ∈ At for all t ∈ T.
We say that a stopping time is simple if it takes a finite number of finite values

and, possibly, the value +∞. If finite values of τ are equal to t1, . . . , tm, then τ is
a stopping time if and only if Ci = {τ = ti} ∈ Ati for every i and X is a pre-τ
function if and only if X1Ci is Ati-measurable for every i.

2.2. The most important are the cases T = R and T = R+. For every finite
subset Λ = {t1 < · · · < tm} of T, we put

(2.1) ϕΛ(t) =





t1 for t ≤ t1,

ti for ti−1 < t ≤ ti,

∞ for t > tm.

If τ is a stopping time, then, for every Λ, τΛ = ϕΛ(τ ) is also a stopping time. If Λn
is an increasing sequence of finite sets with the union everywhere dense in T, then
τΛn ↓ τ. We call τn = τΛn simple stopping times approximating τ .

3. Markov processes

3.1. Markov transition functions and Markov processes. A Markov
transition function in a measurable space (E,B) is a function p(r, x; t, B), r < t ∈
R, x ∈ E,B ∈ B which is B-measurable in x and which is a measure in B subject
to the conditions:

3.1.A.
∫
E
p(r, x; t, dy)p(t, y;u,B) = p(r, x;u,B) for all r < t < u, x ∈ E and all

B ∈ B.

1Cf. [Dyn60] (Lemma 1.2) and [Mey66] (Chapter 1, Theorem 20). Theorem 1.1 and Lemma

1.1 are proved also in [EK86] (the Appendix, section 4).
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3.1.B. p(r, x; t, E) ≤ 1 for all r, x, t.

[These conditions are satisfied for p(r, x; t, B) =
∫
B
p(r, x; t, y) dy where p(r, x; t, y)

has the properties 2.(1.6)–(1.7). They also hold for the function pQ introduced in
2.5.1.]

To every Markov transition function, there corresponds a stochastic process
ξ = (ξt,Πr,x) such that

(3.1) Πr,x{ξt1 ∈ B1, . . . , ξtn ∈ Bn}

=
∫

B1

. . .

∫

Bn

p(r, x; t1, dy1)p(t1, y1; t2, dy2) . . . p(tn−1, yn−1; tn, dyn).

It satisfies the condition 2.(2.4) (the Markov property).

3.2. Right processes. We say that ξ = (ξt,Πr,x) is a right process if its
transition function has the following property: for every r < u, x and every bounded
measurable function f ,

Πt,ξtf(ξu) =
∫

E

p(t, ξt;u, dy)f(y)

is, Πr,x-a.s., right continuous in t on the interval [r, u). It follows from 2.1.3.2 that
all diffusions are right processes.

3.2.A. If ξ is a right process and if a function h ≥ 0 satisfies the condition
∫

E

p(t1, x; t2, dy)h(t2, y) = h(t1, x) for all x ∈ E, t1 < t2 ∈ [r, u),

then h(t, ξt) is, Πr,x-a.s. right continuous in t on the interval [r, u). In particular,
this is true for h(t, y) = Πt,yY where Y ∈ F≥u.

This follows from Theorem 5.1 in [Dyn73]. 2

3.3. Strong Markov property. We introduce a class R of functions Y on
R × Ω (we call them reconstructable functions) in three steps. First, we consider
the set R0 of all right continuous in t functions Yt(ω) such that Yt ∈ F≥t for all t.
Then we put Y ∈ R1 if Y is measurable relative to the σ-algebra in R×Ω generated
by R0. Finally, we put Y ∈ R if there exists Ỹ ∈ R1 such that Πr,x{Y 6= Ỹ } = 0
for all r, x.

We start with the following lemma.

Lemma 3.1. Suppose that ξ = (ξt,Πr,x) is a right Markov process and let
Yt ≥ 0 be a reconstructable function. If τ is a stopping time 3 and if X ≥ 0 is a
pre-τ function, then, for every u,

(3.2) Πr,x(X1τ<uYu) = Πr,x[X1τ<uF u(τ, ξτ )]

where

(3.3) F u(t, y) = Πt,yYu.

2It is used in [Dyn73] that the Markov property 2.(2.4) of ξ holds not only for X ∈ F[r, t]
but also for all X ∈ F[r, t+) which is the intersection of F[r, v] over v > t. This is true for all

right processes. [See, e. g., [Sha88], Theorem 7.4.viii.]
3We consider stopping times relative to the filtration F≤t.
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Proof. First, we assume that τ is simple. By the Markov property of ξ,

Πr,x(X1τ=tYu) = Πr,x[X1τ=tF u(t, ξt)] = Πr,x[X1τ=tF u(τ, ξτ )]

for every t ≤ u. This implies (3.2). To extend this relation to an arbitrary stopping
time τ we note that, by 3.2.A, F u(t, ξt) is, Πr,x-a.s., right continuous in t. We
apply (3.2) to simple stopping times τn approximating τ and we pass to the limit.
[First, we assume thatX and Y are bounded and we use the dominated convergence
theorem. This restriction can be eliminated by a monotone passage to the limit.] �

A Markov process ξ = (ξt,Πr,x) is called strong Markov if it satisfies the fol-
lowing condition (called the strong Markov property): for every stopping time τ ,
every pre-τ function X ≥ 0 and every reconstructable function Yt ≥ 0,

(3.4) Πr,x(X1τ<∞Yτ ) = Πr,x[X1τ<∞F (τ, ξτ )]

where

(3.5) F (t, y) = Πt,yYt.

Functions Yτ in (3.4) can be interpreted as post-τ random variables.

Theorem 3.1. All right processes have the strong Markov property.

Proof. It is sufficient to prove (3.4) for bounded X and Yt. Moreover, by
the multiplicative systems theorem (Theorem 1.1), it is sufficient to consider right
continuous Yt.

Let τn be simple stopping times approximating τ . Note that τn are Fτ -
measurable. Therefore Xn = X1τn=t ∈ Fτ and, by Lemma 3.1, for every ε > 0,

Πr,x(Xn1τ<t+εYt+ε) = Πr,x[Xn1τ<t+εF t+ε(τ, ξτ )].

Since {τn = t} ⊂ {τ < t+ ε}, this implies

Πr,x(X1τn=tYτn+ε) = Πr,x[X1τn=tF
τn+ε(τ, ξτ )].

By taking the sum over all t ∈ Λn, we get

(3.6) Πr,x(X1τn<∞Yτn+ε) = Πr,x[X1τn<∞F
τn+ε(τ, ξτ )].

Clearly, F u(t, y) is right continuous in u. Therefore F τn+ε(τ, ξτ ) → F (τ, ξτ ) as
ε ↓ 0 and n → ∞. By passing to the limit in (3.6), we get (3.4). �

3.4. Implications of the strong Markov property. Now we prove propo-
sitions 2.2.1.A–2.2.1.C.

Proposition 2.2.1.A follows immediately from the strong Markov property. In-
deed, the function

Yt = 1α≤t
∫ ∞

t

ρ(ηs) ds

is right continuous and Yt ∈ F≥t for all t. Hence it is reconstructable and 2.(2.6)
follows from (3.4).

We need the following

Lemma 3.2. Suppose that ξ is right continuous. If ψ ∈ F≥t and ψ ≥ t, then
ηψ ∈ F≥t.
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Proof. Put ψΛ = ϕΛ(ψ) for every finite set Λ = {t1 < · · · < tm} ⊂ [t,∞).
We have

ηψΛ =
m∑

2

1tk−1<ψ≤tkηtk ∈ F≥t.

If Λn is an increasing sequence of finite sets with the union everywhere dense in
[t,∞), then ψΛn ↓ ψ and ηψΛn

→ ηψ. �

Theorem 3.2. Propositions 2.2.1.B and 2.2.1.C hold for every continuous
right process.

Proof. 1◦. The first after t exit time from Γ

(3.7) σt(Γ) = inf{u ≥ α : u > t, ηu /∈ Γ}

is right continuous if Γ is closed. 4 Indeed, if σt(Γ) > t, then σs(Γ) = σt(Γ) for all
s ∈ (t, σt(Γ)). If σt(Γ) = t, then, for every t′ > t there exists t′′ ∈ (t, t′) such that
ηt′′ /∈ Γ and therefore σs(Γ) < t′ for s ∈ (t, t′′).

2◦. We claim that σt(Γ) ∈ F≥t. Indeed, σt(Γ) ≥ t and, for every t′ > t,
{σt(Γ) < t′} is the union of {ηr /∈ Γ} over all rational r ∈ (t, t′).

Let Yt(Γ) = f(ησt(Γ)) if σt(Γ) <∞ and Yt(Γ) = 0 otherwise. If f is continuous,
then Yt(Γ) is right continuous by 1◦. By Lemma 3.2, Yt(Γ) ∈ F≥t. Hence, Yt(Γ) is
reconstructable.

3◦. If closed sets Γn ↑ Q′, then σt(Γn) ↑ σt(Q′) and Yt(Γn) → Yt(Q′). Therefore
σt(Q′) and Yt(Q′) are reconstructable. It follows from the multiplicative systems
theorem (Theorem 1.1) that Yt = Yt(Q′) is reconstructable for all Borel f .

4◦. To prove 2.2.1.B, we note that στ (Q′) = τ ′ on the set A = {τ <∞, ητ ∈ Q′}.
We have Yτ = 1τ ′<∞f(ητ ′ ) on A. Hence, for all ω,

1Q′(ητ )1τ ′<∞f(ητ ′ ) = 1Q′(ητ )1τ<∞Yτ

(if ω /∈ A, then both sides vanish). By 3◦, Yt is reconstructable. Since X ′ =
X1τ<∞1Q′(ητ ) is a pre-τ random variable, (3.4) implies

(3.8) Πr,xX
′1τ ′<∞f(ητ ′ ) = Πr,xX

′1τ<∞Yτ = Πr,xX
′1τ<∞F (τ, ξτ )

where

F (t, y) = Πt,yYt.

Note that, if z = (t, y) ∈ Q′, then Πt,y-a.s., α = t and σt(Q′) = τ ′. Hence,
F = KQ′f on Q′ and 2.(2.8) follows from (3.8).

5◦. To prove 2.2.1.C, we consider σt given by formula 2.(2.10) and Yt = f(ησt ).
The same arguments as in 1◦-3◦ show that these functions are reconstructable. The
left side in 2.(2.11) is equal to ΠzXYτ . Since τ ≤ στ < ∞ Πz-a.s. for all z, 2.(2.11)
follows from (3.4). �

Remark. The continuity of ξt was used in 3◦ to get convergence of Yt(Γn)
to Yt(Q′). Such a convergence takes a place for all Hunt’s processes. Therefore
Theorem 3.2 is valid for a wider class of Hunt’s processes.

4We put σt = ∞ if ηu ∈ Γ for all u ≥ α.
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3.5. Time homogeneous Markov processes. We introduce, for every t ≥ 0
a transformation θt : ω → ω̃ in the path space defined by the formula ω̃(s) = ω(t+s).
A Markov process ξ = (ξt,Πr,x) is called time homogeneous if, for all r, s, t, x, ω, C,

ξt(θsω) = ξt+s(ω)

Πr,x(θsC) = Πr+s,x(C).
(3.9)

These relations allow to consider only processes with the birth time α = 0 and to
deal with (ξt,Πx) where Πx = Π0,x and ξt is defined for t ≥ 0.

We put (θtY )(ω) = Y (θtω). The Markov and strong Markov properties can be
formulated as follows. If Y ∈ F = F≥0, then

(3.10) Πx(XθtY ) = Πx(XΠξtY ) for X ∈ F≤t = F [0, t]

and

(3.11) Πx(X1τ<∞θτY ) = Πx(X1τ<∞ΠξτY ) for X ∈ F≤τ .

By using (3.9), formula (3.10) can be easily obtained from 2.(2.4) and formula
(3.11) can be deduced from (3.4)–(3.5).

The transition function of a homogeneous Markov process satisfies a condition:
p(r, x; t, B) = p(r + s, x; t + s,B) for all r, s, t, B. If the process has a transition
density, then this density can be chosen in such a way that p(r, x; t, y) = p(r +
s, x; t + s, y) for all r, s, t, x, y. [The Brownian density 2.(2.2) has this property.]
We write pt(x,B) for p(0, x; t, B) and pt(x, y) for p(0, x; t, y).

The first exit time of ξt from D

τ = inf{t : ξt /∈ D}

coincides with the first exit time of ηt = (t, ξt) from Q = R × D. Note that, for
every r ≥ 0,

(3.12) {τ > r} ⊂ {θrτ = τ − r, θrξτ = ξτ}.

4. Martingales

4.1. Definition. Let At, t ∈ T be a filtration of a probability space (Ω,A, P ).
A family of real-valued functions Xt(ω) is called a martingale (relative to A and
P ) if:

(a) Xt is At-measurable and P -integrable;
(b) for every s < t ∈ T and for every A ∈ As,

(4.1)
∫

A

Xs dP =
∫

A

Xt dP.

Supermartingales (submartingales) are defined in a similar way but the equality
sign in (4.1) needs to be replaced by ≥ (≤). Since X is a submartingale if and
only −X is a supermartingale, it is sufficient to investigate only supermartingales.
A special role is played by positive supermartingales. For them a value +∞ is
permitted and the condition of P -integrability of Xt is dropped.
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4.2. Optional stopping.

Theorem 4.1. Let σ and τ be two stopping times such that σ ≤ τ . If Xt is a
right continuous martingale and if σ and τ are bounded, then

(4.2)
∫

A

Xσ dP =
∫

A

Xτ dP

for every A ∈ Aσ.
If Xt is a positive right continuous supermartingale, then

(4.3)
∫

A

Xσ dP ≥
∫

A

Xτ dP

for every A ∈ Aσ (even if σ and τ are unbounded and even if they take value +∞).

Proof can be found, e.g., in [RY91] (Theorems 3.1 and 3.3 in Chapter II) (see
also [DM87] (Chapter V, sections 11 and 15)).

Assuming that Xt is right continuous, we get the following implications of
Theorem 4.1:

4.2.A. Suppose that Xt is a martingale and τ1 ≤ τ2 ≤ . . . τn ≤ . . . are bounded
stopping times. Then Xτn is a martingale with respect to the filtration Aτn .

4.2.B. Suppose that Xt is a positive supermartingale and τ1 ≤ τ2 ≤ . . . τn ≤ . . .
are arbitrary stopping times. Then Xτn is a supermartingale with respect to the
filtration Aτn .

This is proved, for instance, in [Mey70] V.T21.

4.2.C. Suppose that Xt is a positive supermartingale and τ1 ≥ τ2 ≥ . . . τn ≥ . . .
are arbitrary stopping times. Then X̂−n = Xτn is a supermartingale with respect
to the filtration Â−n = Aτn .

4.3. Downcrossings inequality and its applications. Let f be a function
from T ⊂ R to R and let 0 ≤ a < b. Put n ∈ N if there exist 0 ≤ t1 < t2 < · · · <
t2n−1 < t2n ∈ T such that

ft1 ≥ b, ft2 ≤ a, . . . , ft2n−1 ≥ b, ft2n ≤ a.

The supremum D(f,T, [a, b]) of N is called the number of downcrossings of [a, b] by
f . The principal interest of this number is the following: if D(f,T, [a, b]) < ∞ for
all rational a < b, then there exist limits

f(t+) = lim
s∈T,s↓t

f(s), f(t−) = lim
s∈T,s↑t

f(s)

at all t (possibly, equal to +∞ or −∞).
Here is one of versions of Doob’s downcrossings inequality. It can be eas-

ily deduced from other versions proved, for instance, in [RY91], section II.2,
[Doo84],Chapter VII, Theorem 3.3, [DM87], VI.1.1.

Theorem 4.2. If Xt, t ∈ T is a right continuous supermartingale, then

(b− a)PD(X,T, [a, b]) ≤ |b|+ sup
t∈T

P [(−Xt) ∨ 0]

This inequality implies:

4.3.A. A supermartingale X1, X2, . . . , Xn, . . . bounded from below converges
a.s. as n → ∞. The limit is, a.s., finite if P |Xn| < ∞ for some n.
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4.3.B. If . . . , Xn, . . . , X2, X1 is a positive supermartingale and if supPXn < ∞,
then Xn converges a.s. and Xn are uniformly integrable.

4.3.C. If Xt, t ∈ R+ is a positive right continuous supermartingale, then, P -a.s.,
there exist all the limits Xt− = lim

s↑t
Xs for t ∈ R and for t = +∞.

4.4. Kolmogorov’s inequality. We use the following form of this inequality:
If Xt is a right continuous martingale on an interval I and if r < t ∈ I, then, for
every δ > 0,

P{ sup
r<s<t

|Xs −Xr | > δ} ≤ δ−2P |Xt −Xr |2.

This can be easily derived from maximal inequalities presented, for instance, in
[Mey70] (VI.T1), [RY91] (II,(1.6)), [DM87] (V.20).



APPENDIX B

Facts on elliptic differential equations

1. Introduction

1.1. We consider a bounded smooth domainD in Rd (d ≥ 2) and an operator
L subject to the conditions 6.1.2.A–6.1.2.C. We start with a Green’s identity for
L. We present the Brandt interior estimates of the difference-quotients and the
derivatives for the solutions of the Poisson equation Lu = f . We also state a
special case of the Schauder boundary estimate which we need to prove the bound

(1.1) kD(x, y) ≤ Cd(x, ∂D)|x− y|−d

for the Poisson kernel in D stated as 1.8.B in Theorem 6.1.4. 1

1.2. Green’s formula. We refer to [Mir70], Chapter I, section 6 for the
following result. If V is a smooth domain and if u, v ∈ C2(V ), then

(1.2)
∫

V

(uLv − vL∗u)dx =
∫

∂V

(
∂u

∂λ
v − ∂v

∂ν
u)ρ dγ.

Here γ is the surface area on ∂V , ρ is a bounded positive function depending on L,
∂
∂λ

and ∂
∂ν

are the derivatives in the direction of the vector fields λ and ν on ∂V .
One of the fields (say, ν) can be any piecewise smooth field with no vectors tangent
to ∂V . The second field is determined by the first one.

2. The Brandt and Schauder estimates

2.1. The Brandt interior estimates. Suppose that u ∈ C2(D) and Lu = f .
Brandt [Bra69] developed a method which allows to get estimates of the difference-
quotients

Φ(u)(x; y) =
|u(x+ y) − u(x− y)|

2|y|
and

Ψ(u)(x; y1, y2) =
u(x+ y1 + y2) − u(x+ y1 − y2) − u(x− y1 + y2) + u(x− y1 − y2)

4|y1||y2|
in terms of

dx = d(x, ∂D), M (u) = sup
D

|u(x)|, q(f) = sup
D

|f(x)|

and
S(f) = sup

D̂

{d2
xΦ(f)(x, y)}

where D̂ = {(x, y) : x, x+ y, x− y ∈ D}.

1Everywhere C means a constant depending only on D and L. Moreover, it depends only

on the diameter of D and on constants κ, λ and Λ in the conditions 6.1.2.A–6.1.2.B. (The bound
(2.2) depends also on Hölder’s exponent λ and Hölder’s coefficient Λ of f .)
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His method is based on applying the maximum principle to elliptic operators
in higher dimensions which he derives from L. One of these operators acts on
functions of (x, y) and another on functions of (x, y1, y2). 2

We need the following two results which follow from Theorems 6.6 and 7.2 in
[Bra69].

Theorem 2.1. For every (x, y) ∈ D̂,

(2.1) dxΦ(u)(x, y) ≤ C[M (u) +M (f)].

If f ∈ Cλ, then, for every x ∈ D, |y1|, |y2| < dx/2,

(2.2) d2
xΨ(u)(x; y1, y2) ≤ C[M (u) +M (f) + S(f)].

It follows from (2.1) that, for all i = 1, . . . , d,

(2.3) dx|Diu(x)| ≤ C[M (u) +M (f)].

2.2. A Schauder boundary estimate. We need a very special case of the
Schauder boundary estimate.

Theorem 2.2. Let O be a flat 3 relatively open smooth portion of ∂D. Suppose
u is L-harmonic in D, continuous on D̄ and equal to 0 on O. If x ∈ D and
d(x, ∂D \O) ≥ r, then, for all i = 1, . . . , d,

(2.4) |Diu(x)| ≤ Cr−1M (u).

This is an implication of Lemma 6.4 in [GT98] and the following result which
is a particular case of Lemma 6.18 in [GT98].

Theorem 2.3. 4 If O is a smooth portion of ∂D, if an L-harmonic function h
is continuous on D̄ and equal to 0 on O, then h ∈ C2,λ(D ∪O).

3. Upper bound for the Poisson kernel

3.1. To establish the bound (1.1), we consider a diffeomorphism ψy straight-
ening the boundary near y (see section 6.1.3). There exists a diffeomorphism T
from Rd to Rd+ which coincides with ψy for all x ∈ D sufficiently close to y. Note
that

C−1
1 |x− y| ≤ |T (x) − T (y)| ≤ C1|x− y| for all x, y ∈ D̄

with a constant C1 > 0. It follows from Lemma 13.2.1 that the Poisson kernel k̃
for L̃ in D̃ = T (D) satisfies the condition

k(x, y) ≤ C2k̃(T (x), T (y)) for all x, y ∈ D

for some C2. If we prove that

k̃(x̃, ỹ) ≤ C0
d(x̃, ∂D̃)
|x̃− ỹ|d ,

then the bound (1.1) will hold with C = C0C
d+1
1 C2.

Therefore without any loss of generality we can assume that D ⊂ Rd+ and y = 0
is a (relatively) interior point of ∂D ∩ ∂Rd+. Note that kD(x, 0) ≤ k(x, 0) where
k is the Poisson kernel in Rd+. [This follows from the maximum principle or from

2A simplified construction for the case L = ∆ is presented in [GT98] (section 3.4).
3For instance, if O ⊂ {xd = 0}.
4Both Theorems 2.3 and 2.2 hold for every L subject to the conditions 6.1.2.A–1.2.B.
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the probabilistic interpretation of Poisson kernel.] Therefore it is sufficient to prove
that, for every R, there exists a constant C such that

(3.1) k(x, 0) ≤ Cxd|x|−d

in the ball {|x| ≤ R}.

3.2. For every domain D ⊂ Rd+ we denote by ∂′D the set of all y ∈ ∂D at
positive distances from Rd+ \ D and by ∂′′D the complement of ∂′D in ∂D. Put
Vk = {x ∈ Rd+ : |x| < kr} and Vk,` = {x ∈ Rd+ : kr < |x| < `r}.

We get the bound (3.1) in four steps. It is sufficient to show that there exists
a constant C such that, for every 0 < r < R/4, (3.1) holds on V4,5. Indeed, if
|x| < R, then x ∈ V4,5 for r ∈ (|x|/5, |x|/4).

Step 1.
For all x ∈ V3,6, y ∈ V1 and all i,

(3.2) Dyig(x, y) ≤ Cr1−d.

Indeed, if x ∈ V3,6, then, by 6.1.7.A, function u(y) = g(x, y) is L∗-harmonic in
V2, continuous in V̄2 and it vanishes on ∂′V2. If y ∈ V1, then d(y, ∂′′V2) > r and,
by (2.4),

(3.3) |Dyig(x, y)| ≤ Cr−1 sup
z∈V2

g(x, z).

We use the bound 6.1.7.B. 5 If x ∈ V3,6, z ∈ V2, then |x− z| > r and therefore
g(x, z) ≤ Cr2−d. Therefore (3.2) follows from (3.3).

Step 2.
Put h(x) = k(x, 0) and prove that, for all x ∈ V3,6,

(3.4) h(x) ≤ Cr1−d.

By 6.(1.15),
h(x) = lim

y→0

∑

i

qi(y)Dyig(x, y)

where qi(y) are bounded functions. Therefore (3.4) follows from (3.2).
Step 3.
For all x ∈ V4,5 and all i,

(3.5) Dih(x) ≤ Cr−d.

Indeed, the function h(x) is L-harmonic in V3,6, continuous on ∂V3,6 and it
vanishes on ∂′V3,6. If x ∈ V4,5, then d(x, ∂′′V3) > r. By Theorem 2.2,

Dxih(x) ≤ Cr−1 sup
x∈V3,6

h(x)

and (3.5) follows from (3.4).
Step 4.
For all x ∈ V4,5,

(3.6) h(x) ≤ Cxd|x|−d.

To prove this, consider a smooth curve Γ connecting x with a point x0 ∈ ∂′V4,5.
Denote by x(s) the point of Γ at the distance s from x0 measured along the curve.

5We assume that d ≥ 3. The case d = 2 can be considered in a similar way.
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In particular, x0 = x(0) and x = x(t) where t is the length of Γ. If Γ ⊂ V4,5, then,
by (3.5), ∣∣∣∣

dh(x(s))
ds

∣∣∣∣ ≤ Cr−d

and, since h(x0) = 0, we have

(3.7) |h(x)| ≤ Ctr−d.

Curve Γ can be chosen in such a way that t < Cxd
6 Therefore (3.7) implies (3.6).

6For instance, consider a semicircle defined as the intersection of the sphere {y : |y| = |x|}
with the two-dimensional plane {y1 = x1, . . . , yd−2 = xd−2}) and take for Γ a shorter of two arcs

into which it is split by the point x.



Epilogue

We conclude the book with a few challenging open problems and possible di-
rections of research.

1. σ-moderate solutions

The description of all positive solutions of the equation Lu = ψ(u) in a domain
E is one of central problems investigated in this book. For the class of σ-moderate
solutions this problem is solved in Chapter 11. By Theorem 11.7.2, such a solution
is determined by its fine trace (Γ, ν). By Theorem 11.7.1, all pairs (Γ, ν) have
properties 7.1.A–7.1.B and, by Theorem 11.7.2, every pair with these properties is
equivalent to the fine trace of a σ-moderate solution. These results are proved for
a broad class of functions ψ and for an arbitrary Greenian domain E. [They can
be extended to the case of differential manifolds E.]

A fundamental question remains open:

Is every solution σ-moderate?

Depending on the answer to this question, the theory of the fine trace provides
either a complete solution of our problem or only a step in this direction.

The primary suspect for being non σ-moderate are maximal solutions wB intro-
duced in Chapter 10. Proving that they are σ-moderate would be a strong evidence
in favor of the conjecture that all solutions are σ-moderate.

In section 8 of Chapter 11 we proved that wO is σ-moderate if O is relatively
open in ∂E. Similar arguments show that wB are σ-moderate for all Borel B if
they are σ-moderate for closed B.

2. Exceptional boundary sets

Three classes of such sets were studied in this book:
(a) Polar sets introduced in section 1.4 of Chapter 10 (in probabilistic terms,

these are sets which are not hit, a.s., by the range of a superdiffusion);
(b) w-polar sets that charge no measure of class N1;
(c) null sets described in Chapter 13.
Class (a) is the most interesting from a probabilistic point of view, and class

(c) is the easiest to deal with by analytic means. In Chapter 12 we proved that,
under broad conditions,

{polar sets} ⊂ {w − polar sets} ⊂ {null sets of CMα}.
In Chapter 13 we established that all three classes coincide if ψ(u) = uα, 1 < α ≤ 2
and if a domain E is smooth. The following problems remain open:

Does there exist any domain E in which not all w-polar sets are
polar?
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Does there exist any Greenian domain E in which not all null sets
are w-polar?

3. Exit boundary for a superdiffusion

3.1. In Chapter 7 we established a 1-1 correspondence between positive L-
harmonic functions h subject to the condition h(c) = 1 and probability measures
on the set of extreme elements which we identified with a subset of the Martin
boundary.

An exciting problem is to develop a similar theory for superdiffusions. Among
other applications this can provide a new approch to the description of all positive
solutions of the equation Lu = ψ(u) in an arbitrary domain E. It is natural to
start with the case of quadratic branching ψ(u) = u2.

We consider functions H on the space of measures Mc = Mc(E) on E with
values in R+. We say that H is X-harmonic and we write H ∈ H(X) if, for every
D b E and every µ ∈ Mc,

PµH(XD) = H(µ).

Let c ∈ E. Denote by H(X, c) the set of functions H ∈ H(X) such that H(δc) = 1.
The set Γ of all extreme elements of H(X, c) is called the exit boundary for X.

It is possible to prove that every H ∈ H(X) has a unique representation

H(µ) =
∫

Γ

Kγ(µ)M (dγ)

where Kγ is an extreme element of H(X, c) corresponding to γ ∈ Γ and M is a finite
measure on Γ. [The proof is based on the following result which can be obtained
by arguments similar to those in the proof of Theorem 1.1 in [EP91]:

For an arbitrary domain E, the class of null sets of the measure

PE(µ,C) = Pµ{XE ∈ C}

is the same for all µ ∈ Mc.]
A key problem remains open:

To find all extreme X-harmonic functions.

A number of interesting classes of X-harmonic functions are known. Most of
these functions are not extreme. However no function is proved to be extreme. For
instance, to every positive L-harmonic function h there corresponds anX-harmonic
function H(µ) = 〈h, µ〉. Clearly, H can be extreme only if h is extreme. 7 But are
they extreme? If E = Rd, then the function h = 1 is extreme for the Brownian
motion. The corresponding X-harmonic function is the total mass h(µ) = 〈1, µ〉.
Is it extreme?

3.2. Let U be the set of all positive solutions of the equation Lu = ψ(u) in E.
It is easy to prove that

Hu(µ) = 1 − e−〈u,µ〉

is X-harmonic for every u ∈ U . Therefore

Hu(µ) =
∫

Γ

Kγ(µ)Mu(dγ)

7That is if h = ky , y ∈ E′ (see Theorem 7.4.4).
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where Mu is a finite measure on Γ determined uniquely by u. Put M = Mw where
w is the maximal element of U . For all u ∈ U , Mu ≤ M , and the Radon-Nikodym
theorem implies that Mu(dγ) = Au(γ)M (dγ) where 0 ≤ Au ≤ 1 M -a.e. We arrive
at a conclusion: For every u ∈ U ,

Hu(µ) =
∫

Γ

Au(γ)Kγ (µ)M (dγ).

Function Au is determined uniquely, up to M -equivalence, by u and 0 ≤ Au ≤ 1
M -a.e.

It is interesting to establish connections between Au and the boundary trace
of u (rough and fine).

3.3. We say that H ∈ H(X) is extreme if the conditions H̃ ≤ H, H̃ ∈ H(X)
imply that H̃ = const.H. If H(δc) > 0, then H is extreme if and only if H/H(δc)
is an extreme element of H(X, c)

Note that Hũ ≤ Hu if and only if ũ ≤ u. On the other hand, if u and au
belong to U , then ψ(au) = aψ(u) and therefore a = 1. Hence Hu is not extreme
if there exists ũ ∈ U , different from 0 and u, such that ũ ≤ u. This implies: if
Hu is extreme, then u cannot be moderate or σ-moderate. Moreover, it cannot
dominate any non-zero σ-moderate solution. If the fine trace of u is (Γ, ν), then, by
Theorem 11.7.2, u dominates a σ-moderate solution uΓ,ν. Hence, if u is extreme,
then uΓ,ν = 0 which implies that Γ is w-polar and ν = 0. It is unknown if there
exist any non-zero solution with this property.

3.4 An H-transform (XD, PHµ ) can be defined for every X-harmonic function
H and it can be interpreted as a conditioned superdiffusion. In the case of H(µ) =
〈1, µ〉, this is the superdiffusion conditioned on non-extinction. Evans [Eva93]
constructed such a superdiffusion in the terms of an “immortal” Brownian particle
throwing off pieces of measures that evolve according to the super-Brownian motion.
A similar representation of H-transforms for some other functions H was obtained
in [Ove93], [Ove94],[SaV99] and [SaV00].

3.5. An H-transform can be also defined for a wider than H(X) class of X-
excessive functions H. These are functions from Mc to [0,∞] such that

PµH(XD) ≤ H(µ) for all D b E, µ ∈ Mc

and H(µ0) < ∞ for some µ0. Examples of X-excessive functions are given by the
formula Hν(µ) = G(µ, ν) where G is Green’s function of X (it can be defined for
every superdiffusion). If Hν is not extreme, then ν is a branching point of the
superdiffusion. No such points exist for diffusions. Have superdiffusions the same
kind of regularity?

A class of X-excessive functions can be defined in terms of the support process
Kt = suppXt and the extinction time σ = sup{t : Xt 6= 0}. We have σ < ∞
Pµ-a.s. for every µ and the properties of Kt described in section 14.3.2 imply that,
if σ > 0, then Kσ− is, a.s., a single point. For every open set U , ϕU (µ) = Pµ{σ >
0,Kσ− ∈ U} is a X-excessive function and so is the function

HU (µ) =
ϕU (µ)
ϕU (µ0)

.

Let y ∈ E and let Un = {x : |x− y| < 1/n}. We ask:

Is Hy(µ) = limhUn(µ)/Un extreme?
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Note that Hy-transform can be interpreted as the superprocess conditioned to
be extinct at point y. If hy is not extreme, then stronger conditions on the character
of extinction are possible. [We mean conditions preserving time-homogeneity of the
process. This excludes conditions on the extinction time σ.]
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Inst. Fourier Grenoble 34 (1984), 185–206.

[Bra69] A. Brandt, Interior estimates for second-order elliptic differential (or finite-difference)
equations via maximum principle, Israel J. Math 7 (1969), 95–121.
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Ann. Inst. H. Poincaré 25 (1989), 205–224.
[Per90] E. Perkins, Polar sets and multiple points for super-brownian motion, Ann. Probab. 18

(1990), 453–491.

[Per91] E. Perkins, On the continuity of measure-valued processes, Seminar on Stochastic Pro-
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moderate solutions, 123

multiplicative systems theorem, 219

N-function, 51
N-matrix, 50

near B, 192
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normal pair, 145

null sets, 175

Operator π, 128

P-function, 51
P-matrix, 50

parabolic functions, 28

part of a diffusion, 37
Perron solution, 30, 98

point of rapid growth, 154

Poisson operator, 28, 101
polar sets, 144

pre-τ functions, 220

(Q,Γ)-sequence, 36
quasi-everywhere (q.e.), 169

random closed set (r.c.s.), 70

random measure, 45

range of superdiffusion, 142
reconstructable functions, 221

regular open set, 35, 100

regular points, 32, 100
removable sets, 144

right process, 221

simple open set, 35

smooth domain, 96
smooth portion of ∂D, 96

special set, 141

stochastic boundary value (SBV), 133
stopping time, 220

straightening of the boundary, 96

strong Markov property, 26
strongly regular open sets, 35

subadditivity of VD, 121
subcritical and supercritical values of α, 178

subparabolic, 29

subsolution, 79
superparabolic, 29

supersolution, 79

surface area, 99
sweeping, 126

tail σ-algebra

total boundary set, 28

trace
fine, 153, 163

of a moderate solution, 126

of harmonic function, 116
rough, 141

of wB , 149

transition operators, 46
transition operators of order n, 47

truncating sequence, 192

V-family, 49

w-polar, 144

α-sequence, 191

σ-moderate solutions, 130
(ξ,ψ)-superprocess, 59

homogeneous, 122
(0,∞)-measure, 131



Notation Index

BR,BR1, 80
B, 46

Bc, 54

C0, 107

C+, 128
C2 , 81

Cλ(D),Cλ(D̄), C2,λ(D), 95
C(Q),Cλ(Q), 24

CR, 69
CMα, 167

CPα , 16

Di,Dij , 23

Ê, 108

E′, 114
E, 180

F⊂D,F⊃D, 13
F⊂E−, 134

F⊂Q,F⊃Q, 46

GQ, 70

H, 107

H1, 108
Hα, 169

H1, 123
H̃, 108

i and j, 123
ju, 154

Ju, 156

Kν, 15

K̂, 169

L+, 183

M(B), 72

M(E), 122
M(S), 45

Mc(Q), 72

M, 45

N (B),N1(B),N0(B), 131

Nα, 169
N0, 130

N1, 126
N1(O−), 141

N(m,k), 174

O, 45
O0, 59

Pσ, 110

Q<t, 23

QB , 126

Qψ , 80

RG(u), 154

R+, 59
R, 142

SG(u), 154
SI , 23

S<t, 23
SO , 70

Suppν, 161

tr, 18, 126
Tr, 163

uB , 131
uν , 130

u̇, 23
U(E), 119

U0, 130

U1, 123

VD, 119

VI , 47
VQ, 46, 85

wB , 142, 148
wO , 150, 165

wΛ, 150

Y, 56

Z, 45

Z, 134
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Z1,Z0, 136

σ(M), 56
τ(Q), 26

b, 23
⊕, 129

∂′, ∂′′, 192




