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Preface

Interactions between the theory of partial differential equations of elliptic and
parabolic types and the theory of stochastic processes are beneficial for, both, prob-
ability theory and analysis. At the beginning, mostly analytic results were used by
probabilists. More recently, the analysts (and physicists) took inspiration from the
probabilistic approach. Of course, the development of analysis, in general, and of
theory of partial differential equations, in particular, was motivated to a great ex-
tent by the problems in physics. A difference between physics and probability is
that the latter provides not only an intuition but also rigorous mathematical tools
for proving theorems.

The subject of this book is connections between linear and semilinear differ-
ential equations and the corresponding Markov processes called diffusions and su-
perdiffusions. A diffusion is a model of a random motion of a single particle. It is
characterized by a second order elliptic differential operator L. A special case is the
Brownian motion corresponding to the Laplacian A. A superdiffusion describes a
random evolution of a cloud of particles. It is closely related to equations involving
an operator Lu — 1(u). Here ¢ belongs to a class of functions which contains, in
particular ¢)(u) = u® with o > 1. Fundamental contributions to the analytic theory
of equations

(0.1) Lu = ¢(u)
and
(0.2) U+ Lu = ¥(u)

were made by Keller, Osserman, Brezis and Strauss, Loewner and Nirenberg, Brezis
and Véron, Baras and Pierre, Marcus and Véron.

A relation between the equation (0.1) and superdiffusions was established, first,
by S. Watanabe. Dawson and Perkins obtained deep results on the path behavior
of the super-Brownian motion. For applying a superdiffusion to partial differential
equations it is insufficient to consider the mass distribution of a random cloud at
fixed times t. A model of a superdiffusion as a system of exit measures from time-
space open sets was developed in [Dyn91c], [Dyn92], [Dyn93|. In particular,
a branching property and a Markov property of such system were established and
used to investigate boundary value problems for semilinear equations. In the present
book we deduce the entire theory of superdiffusion from these properties.

We use a combination of probabilistic and analytic tools to investigate positive
solutions of equations (0.1) and (0.2). In particular, we study removable singulari-
ties of such solutions and a characterization of a solution by its trace on the bound-
ary. These problems were investigated recently by a number of authors. Marcus
and Véron used purely analytic methods. Le Gall, Dynkin and Kuznetsov combined

7



8 PREFACE

probabilistic and analytic approach. Le Gall invented a new powerful probabilistic
tool — a path-valued Markov process called the Brownian snake. In his pioneer-
ing work he used this tool to describe all solutions of the equation Au = u? in a
bounded smooth planar domain.

Most of the book is devoted to a systematic presentation (in a more general
setting, with simplified proofs) of the results obtained since 1988 in a series of papers
of Dynkin and Dynkin and Kuznetsov. Many results obtained originally by using
superdiffusions are extended in the book to more general equations by applying a
combination of diffusions with purely analytic methods. Almost all chapters involve
a mixture of probability and analysis. Exceptions are Chapters 7 and 9 where the
probability prevails and Chapter 13 where it is absent. Independently of the rest of
the book, Chapter 7 can serve as an introduction to the Martin boundary theory for
diffusions based on Hunt’s ideas. A contribution to the theory of Markov processes
is also a new form of the strong Markov property in a time inhomogeneous setting.

The theory of parabolic partial differential equations has a lot of similarities
with the theory of elliptic equations. Many results on elliptic equations can be easily
deduced from the results on parabolic equations. On the other hand, the analytic
technique needed in the parabolic setting is more complicated and the most results
are easier to describe in the elliptic case.

We consider a parabolic setting in Part 1 of the book. This is necessary for
constructing our principal probabilistic model — branching exit Markov systems.
Superprocesses (including superdiffusions) are treated as a special case of such sys-
tems. We discuss connections between linear parabolic differential equations and
diffusions and between semilinear parabolic equations and superdiffusions. (Diffu-
sions and superdiffusions in Part 1 are time inhomogeneous processes.)

In Part 2 we deal with elliptic differential equations and with time-homogeneous
diffusions and superdiffusions. We apply, when it is possible, the results of Part
1. The most of Part 2 is devoted to the characterization of positive solutions of
equation (0.1) by their traces on the boundary and to the study of the boundary
singularities of such solutions (both, from analytic and probabilistic points of view).
Parabolic counterparts of these results are less complete. Some references to them
can be found in bibliographical notes in which we describe the relation of the
material presented in each chapter to the literature on the subject.

Chapter 1 is an informal introduction where we present some of the basic ideas
and tools used in the rest of the book. We consider an elliptic setting and, to
simplify the presentation, we restrict ourselves to a particular case of the Laplacian
A (for L) and to the Brownian and super-Brownian motions instead of general
diffusions and superdiffusions.

In the concluding chapter, we give a brief description of some results not in-
cluded into the book. In particular, we describe briefly Le Gall’s approach to
superprocesses via random snakes (path-valued Markov processes). For a system-
atic presentation of this approach we refer to [Le 99a]. We do not touch some
other important recent directions in the theory of measure-valued processes: the
Fleming-Viot model, interactive measure-valued models... We refer on these sub-
jects to Lecture Notes of Dawson [Daw93] and Perkins [Per01]. A wide range of
topics is covered (mostly, in an expository form) in “An introduction to Superpro-
cesses” by Etheridge [Eth00].
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CHAPTER 1

Introduction

1. Brownian and super-Brownian motions and differential equations

1.1. Brownian motion and Laplace equation. Let D be a bounded do-
main in R with smooth boundary dD and let f be a continuous function on dD.
Then there exists a unique function u of class C? such that

Au=0 in D,
(1.1) u=f on 0D.

It is called the solution of the Dirichlet problem for the Laplace equation in
D with the boundary value f. A probabilistic approach to this problem can be
traced to the classical work [CFL28] of Courant, Friedrichs and Lewy published in
1928. The authors replaced the Laplacian A by its lattice approximation and they
represented the solution of the corresponding boundary value problem in terms of
the random walk on the lattice. Suppose that a particle starts from a site x in D
and moves in one step from a site x to any of 2d nearest neighbor sites with equal
probabilities. Let 7 be its first exit time from D and &, be its location at time 7.
Then the solution of the Dirichlet problem on the lattice is given by the formula

(1.2) u(r) =L f(&,) = / F(Er o (@)L (d),

where II, is the probability distribution in the path space ) corresponding to the
initial point x. The solution of the problem (1.1) can be obtained by the passage
to the limit as the lattice mesh and the duration of each step tend to 0 in a certain
relation.

In fact, this passage to the limit yields a measure II, on the space of continuous
paths. The stochastic process £ = (&,II,) is called the Brownian motion and
formula (1.2) gives an explicit solution of the problem (1.1) in terms of the Brownian
motion £. This result is due to Kakutani [Kak44a], [Kak44b].

1.2. Semilinear equations. Partial differential equations involving a nonlin-
ear operator Au — 1(u) appeared in meteorology (Emden, 1897), theory of atomic
spectra (Thomas-Fermi, 1920s) and astrophysics (Chandrasekhar, 1937). !

Since the 1960s, geometers have been interested in these equations in connection
with the Yamabe problem: which two functions represent scalar curvature of two
Riemannian metrics related by a conformal mapping.

The equation

(1.3) Au = (u)

ISee the bibliography in [Vér96.

11



12 1. INTRODUCTION

was investigated under various conditions on the function 1. All these conditions
hold for the family

(1.4) P(u) =u a> 1.
For a wide class of 1, the problem
Au=1(u) in D,

(1.5) u= f on 0D,

has a unique solution under the same conditions on D and f as the classical problem
(1.1). However, analysts discovered a number of new phenomena related to this
equation. In 1957 Keller [Kel57a] and Osserman [Oss57] found that all positive
solutions of (1.3) are uniformly locally bounded. The most work was devoted to
the case of 9 given by (1.4). In 1974, Loewner and Nirenberg [LIN'74] proved that,
in an arbitrary domain D, there exists the maximal solution. This solution tends to
oo at dD if D is bounded and 9D is smooth. ? In 1980 Brezis and Véron [BV80]
showed that the maximal solution in the punctured space R%\{0} is trivial if

d> kg = 2a
a—1
and it is equal to
q|a |2
with
g =[2(a—=1)" (ko —d)"/ 7V
if d < Kkq-

1.3. Super-Brownian approach to semilinear equations. A probabilistic
formula (1.2) for solving the problem (1.1) involves the value of f at a random point
&; on the boundary. The problem (1.5) can be approached by introducing, instead,
a random measure Xp on 9D and by taking the integral (f, Xp) of f with respect
to Xp. The probability law P,, of Xp depends on an initial measure ; and the role
similar to that of (1.2) is played by the formula

(1.6) u(x) = —log Pye~ (X0,

Here P, stands for P, corresponding to the initial state ¢ = ¢, (unit mass con-
centrated at ). We call (Xp, P,) the exit measure from D. Heuristically, we can
think of a random cloud for which Xp is the mass distribution on an absorbing
barrier placed on dD.

We consider families of exit measures which we call branching exit Markov
(shortly, BEM) systems because their principal characteristics are a branching prop-
erty and a Markov property. The BEM system used in formula (1.6) is called the
super-Brownian motion. In the next section we explain how it can be obtained by
a passage to the limit from discrete BEM systems. Before that, we give, as the first
application of (1.6), an expression for a solution exploding on the boundary. Note
that, if Xp # 0, then e=¢1XP) — 0 as ¢ — 400 and, if Xp = 0, then e~ LXp) =1
for all ¢. Therefore a solution tending to co at 9D can be expressed by the formula

(1.7) u(z) = —log Po{Xp = 0}.

2Thoy considered, in connection with a geometric problem, a special case @ = %.



1. BROWNIAN AND SUPER-BROWNIAN MOTIONS AND DIFFERENTIAL EQUATIONS 13

The fact that w is finite is equivalent to the property P.{Xp = 0} > 0, i.e., the
cloud is extinct in D with positive probability.

1.4. Super-Brownian motion. We start from a system of Brownian parti-
cles which die at random times leaving a random number of offspring N with the
generating function EzV = ¢(z).

The following picture * explains the construction of the exit measure (Xp, P,).
We have here a particle system started by two particles located at points x1, zo of
D. At the death time, the first particle creates two children who survives until they
reach 0D at points ¥, y2. Of three children of the second particle, one hits 9D at
point y3, one dies childless and one has two children. Only one child reaches the
boundary (at point y4).

y
Yq 2

D
Yy

FIGURE 1

The initial and exit measures are given by the formulae

p=> 0, Xp=> 4y,

where ¢, is the unit mass concentrated at c.

This way we arrive at a family X of integer-valued random measures (Xp, P,)
where D is an arbitrary bounded open set and p is an arbitrary integer-valued
measure. Since particles do not interact, we have

(1.8) P Xp) = g {uam)
where
(1.9) u(z) = —log Pye=/Xp),

We call this relation the branching property. We also have the following Markov
property: for every C' € F5p and for every p,

(1.10) PAC|Fcp} = Px,(C) Pas.
Here Fp and F5p are the o-algebras generated by Xp., D’ C D and by Xp», D" D
D.

If the mass of each particle is equal to 3, then the initial measure and the exit
measures take values 0, 3,203, .... We pass to the limit as 3 and the expected life
time of particles tend to 0 and the initial number of particles tends to infinity. In

30f course, this is only a scheme. Path of the Brownian motion are very irregular which is
not reflected in our picture.



14 1. INTRODUCTION

the limit, we get an initial measure on D and an exit measure on 0D which are
not discrete. We denote them again p and Xp. The branching property and the
Markov property are preserved under this passage to the limit and we get a BEM
system (Xp, P,) where D is an arbitrary bounded open set and p is an arbitrary
finite measure.

A function 1) obtained by a passage to the limit from ¢ belongs to a class ¥y
which contains ¥ (u) = u® with 1 < o < 2 but not with o > 2. The probability
distribution of the random measure (Xp, P,) is described by (1.8)—(1.9) and v is a
solution of the integral equation

(1.11) u(z) +1I, / " fu(€))ds = L A(,).

If D is smooth and f is continuous, then (1.11) implies (1.5). Hence, (1.6) is a
solution of the problem (1.5).

Formulae (1.8) and (1.11) determine the probability distribution of Xp for a
fixed D. Joint probability distributions of Xp,, -, Xp, can be defined recursively
for every n by using the branching and Markov properties.

The following equations, similar to (1.8) and (1.11), describe the mass distri-
bution X; at time ¢:

(1.12) P, exp(—f, Xi) = exp(—uy, 1),
(1.13) w(z) + 10, / Blur—())ds = TL f(&,).
0

We cover both sets of equations, (1.8), (1.11) and (1.12), (1.13), by considering
exit measures (Xq, P,) for open subsets @ of the time-space S = R x R? and
measures p on S. They satisfy the equations

(1.14) Puexp(—f, Xq) = exp(—u,pu),
(1.15) u(r,z) + 1, 4 / Ylu(s, &s)]ds =, o f(7,&7)

where 7 = inf{t : (¢,&) ¢ Q} is the first exit time from Q. Note that X; = Xg_,
where So; = (—00,t) x R% If Q = (—00,t) x D where D is a bounded smooth
domain * and if f is bounded and continuous, then u is a solution of a parabolic
equation

(1.16) 11—|—%Au:1/)(u) in Q

such that v = f on 0Q.

The maximal solution of the equation (1.3) can be described through the range
of X. This is the minimal closed set R which contains the support supp X; for
all t. (It contains, a.s., supp Xp for each D.) ® For every open set D, a maximal
solution in D is given by

(1.17) u(z) = —log P,{R C D}.

4The name “smooth” is used for domains of class C2* (see section 6.1.3).
5Writing “a.s.” means Py-a.s. for all p [or IT,-a.s. for all p in the case of a Brownian motion].



2. EXCEPTIONAL SETS IN ANALYSIS AND PROBABILITY 15

2. Exceptional sets in analysis and probability

2.1. Capacities. The most important class of exceptional sets in analysis are
sets of Lebesgue measure 0. The next important class are sets of capacity 0. A
capacity is a function C'(B) > 0 defined on all Borel sets. ¢ It is not necessarily
additive but it is monotone increasing and continuous with respect to the monotone
increasing limits. For every B, C(B) is equal to the supremum of C(K) over all
compact sets K C B and it is equal to the infimum of C(O) over all open sets
O D B. [A more systematic presentation of Choquet’s capacities is given in section
10.3.2]

To every random closed set (F'(w), P) there corresponds a capacity

(2.1) C(B) = P{FnN B #0}.

Another remarkable class of capacities correspond to pairs (k, ||-||) where k(z, y)
is a function on the product space F x E and | -|| is a norm in a space of functions
on F. The most important are the uniform norm
(2.2) [f[I = sup [ £ ()]

and the L*(m)-norms

(23) |ﬂa—[/u@WWMMﬂua

where 1 < a < 0o and m is a measure on F£. We assume that E and E are nice
metric spaces and that k(x,y) is positive valued, lower semicontinuous in = and
measurable in y. To every measure v on E there corresponds a function

(24) Ko(w) = [ k) vidy

on E. The capacity corresponding to (k, || - ||) is defined on subsets B of E by the
formula

(2.5) C(B) =sup{v(B) : v is concentrated on B and ||[Kv| < 1}.

Our primary interest is not in capacities themselves but rather in the classes
of sets on which they vanish, and we say that two capacities are of the same type
if these classes coincide.

2.2. Exceptional sets for the Brownian motion. The Brownian motion
¢ in a domain D killed at the first exit time 7 from D has a transition density
pe(x,y). If D is bounded, then

(2.6) me—Amm@wﬁ

is finite for x # y. We call g(x,y) Green’s function. The Green’s capacity corre-
sponds to the kernel g(z,y) and the uniform norm (2.2). 7 It is of the same type
as the capacity corresponding to

27) m@m—Ame%@wﬁ

6And even on a larger class of analytic sets
It d> 1, then g(z,z) = co. Therefore Green’s capacity of a single point is equal to 0.
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(and to the uniform norm). In the case d > 3, it is also of the same type as the
capacity corresponding to the kernel |z — y|?~<.

For a bounded set D, 7 < oo a.s. The range R of ¢ is a continuous image of a
compact set [0, 7] and therefore, for every x € D, (R,Il,) is a random closed set.
Consider the corresponding capacity

(2.8) C,(B) = IL{R N B # 0}.

A set B is called polar for £ if C,(B) = 0 for all z € D\ B. This is equivalent to
the condition

(2.9) I,{{& € B forsome t} =0 forallz e D\ B

[in other words, a.s., £ does not hit B ]. It is well-known (see, e.g., [Doo84]) that a
set B is polar if and only if its Green’s capacity is equal to 0. This gives an analytic
characterization of the class of polar sets.

2.3. Exceptional sets for the super-Brownian motion. We say that a
set B is polar for X if it is not hit by the range of X, that is if

(2.10) PARNB#0} =0 forall z ¢ B.

In other words, B is polar, if, for all ¢ B, Cap”(B) = 0 where Cap”® is the
capacity associated with a random closed set (R, P;). It was proved in [Dyn91c]
that all capacities Cap” are of the same type as the capacity determined by the
kernel (2.7) and the norm (2.3) (assuming that ¢ is given by (1.4)).

It is clear from (1.17) that a closed set B is polar for X if and only if equation
(1.3) has only a trivial solution u = 0 in R¢ \ B. By the analytic result described
in section 1.2, a single point is polar if and only if d > k,,.

2.4. Exceptional boundary sets. Suppose that D is a bounded smooth
domain. Denote by v(dy) the normalized surface area on dD. ® If 7 is the first exit
time of the Brownian motion £ from D, then, for every Borel (or analytic) subset
T of 0D,

(2.11) WA T} = [ a(dy), aeD

where k(z,y) is a strictly positive continuous function on D x D called the Poisson
kernel. Note that II,{&; € T'} = 0 if and only if v(I") = 0. In other words, the
capacity corresponding to a random closed set ({&;},I1,) is of the same type as the
measure 7.

A class of exceptional boundary sets related to the super-Brownian motion X
is more interesting. It can be defined probabilistically in terms of the range Rp of
X in D — the minimal closed subset supporting Xp for all D’ C D. Or it can be
introduced analytically via the capacity C'P, corresponding to the Poisson kernel
k and the L*(m)-norm

(212) 151 = [ [ et .

Here m(dz) = dist(x, 9D)dz. It is proved in Chapter 13 that
(2.13) PARpNIT #0}=0 forall z € D,

8This is a measure on &D determined by the Riemannian metric induced on 0D by the
Euclidean metric in R?. An explicit expression for « is given in section 6.1.8.
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if and only if CP,(T') = 0. We call sets I' with these properties polar boundary
sets. The class of such sets can be also characterized by the condition: v(I') = 0
for all v € Ni. Here N is a certain set of finite measures on 0D introduced in
Chapter 8.

We also establish a close relation between polar boundary sets of the super-
Brownian motion and removable boundary singularities for positive solutions of the
equation

(2.14) Au = u®.

Namely, we prove that a closed subset I" of D is polar if and only if it is a removable
boundary singularity for (2.14) which means: every positive solution in D equal to
0 on 0D \ T is identically equal to 0.

3. Positive solutions and their boundary traces

3.1. One of our principal objectives is to describe the class U(D) of all positive
solutions of the equation

(3.1) Au = p(u)

in an arbitrary domain D. One of the first results in this direction was obtained by
Brezis and Véron who proved that, in the case of 1 given by (1.4) and D = R4\ {0},
U(D) contains only a trivial solution u = 0if d > Kk, (see section 1.2). If 3 < d < Kq,
then U(D) consists of the maximal solution described in section 1.2 and the one-
parameter family v.,0 < ¢ < oo such that

(3.2) ve(x)]|2]7? = cas = — 0.

All positive solutions of the linear equation Au = 0 in an arbitrary domain
D (that is all positive harmonic functions) were described by Martin. We present
a probabilistic version of the Martin boundary theory in Chapter 7. We start the
investigation of the class U (D) in Chapter 8 by introducing a subclass U; (D) of
moderate solutions which are closely related to harmonic functions. Moderate solu-
tions are used as a tool to define, for an arbitrary solution its trace on the boundary.
There are two versions of this definition: the rough trace determines a solution only
in the case of & < (d+1)/(d —1). The fine trace is a more complete characteristic.
It determines uniquely every o-moderate solution, that is a solution which is the
limit of an increasing sequence of moderate solutions. It remains an open problem
if there exist solutions which are not o-moderate.

3.2. Positive harmonic functions in a bounded smooth domain. We
denote by H(D) the class of all positive harmonic functions in a domain D. If D is
bounded and smooth, then every h € H(D) has a unique representation

(3.3) hx) = /8  Kag)dn)

where k is the Poisson kernel and v is a finite measure on 0D. We call v the bound-
ary trace of h and we write v = tr h. Formula (3.3) establishes a 1-1 correspondence
between H(D) and the set M(9D) of all finite measures on 9D.

The constant 1 belongs to H(D) and its trace is the normalized surface area
v (cf. section 2.4). The trace of an arbitrary bounded h € H(D) is a measure
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absolutely continuous with respect to 7, and the formula

(3.4) hx) = /6 k)l

defines a 1-1 correspondence between bounded h € H(D) and classes of y-equivalent
bounded positive Borel functions on 9D.

It follows from (2.11) that (3.4) is equivalent to (1.2). If f is continuous, then
(3.4) is a solution of the Dirichlet problem (1.1). For an arbitrary bounded Borel
function f, (3.4) can be considered as a generalized solution of the problem (1.1)
because, a.s., h(&) — f(&;) as ¢t 1 7. An analytic counterpart to this statement is
Fatou’s boundary limit theorem: for v-almost all ¢ € 9D, h(z) — f(c) asz — c €
0D non tangentially.

It is natural to interpret the measure v in (3.3) as a weak boundary value of
h. In other words, h given by (3.3) can be considered as a solution of a generalized

Dirichlet problem
. Ah=0 in D,
(3.5) h=v ondD.

3.3. Positive harmonic functions in an arbitrary domain. Martin
boundary. Let D be an arbitrary domain and let g(x,y) be given by (2.6). If
D is bounded, then g(x,y) < oo for  # y. The same is true for a wide class of
unbounded domains. If this is the case, we choose a point ¢ € D and put

~g(z,y)
be,y) = g(c,y)’

It is possible to imbed D into a compact metric space D = DUT and to extend
k(z,y) toy € T in such a way that y, — y € I if and only if k(z, y,) — k(x,y) for
all z € D. Set I' is called the Martin boundary of D. There exists a Borel subset
I of T such that every h € H(D) has a unique representation

(36) ) = [ k) vldy)

where v € M(I”). We write v = tr h and we denote by v the trace of h = 1.

There exists, a.s., a limit of & in D as t 1 7. It belongs to I'V. We denote it &,_.
The trace of a bounded harmonic function has a form fdvy and, a.s., h(&) — f(&-)
ast 1.

3.4. Moderate solutions. We say that a solution u of (3.1) is moderate and
we write u € Uy (D) if there exists h € H(D) such that v < h. In Chapter 8 we
prove that formula

(3.7) ul() + /D oz, )0 () dy = h(z)

establishes a 1-1 correspondence between U; (D) and a subclass Hy (D) of H(D).
Moreover, h is the minimal harmonic function dominating u and u is the maximal
element of U(D) dominated by h. The class Hi(D) can be characterized by the
condition: h € H;i(D) if and only if the trace of h does not charge exceptional
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boundary set (described in section 2.4). If u corresponds to h and if tr h = v, then
u can be considered as a solution of a generalized Dirichlet problem

Au=1(u) in D,

(3.8) w=v ondD

(cf. (3.5)). It is natural to call v the boundary trace of a moderate solution wu.

3.5. Rough trace. For every u € U(D) and for every closed subset B of 0D
we define the sweeping Qp(u) of u to B. In the case of a smooth domain, Qp(u)
is the maximal solution dominated by u and equal to 0 on 9D \ B. [The definition
is more complicated in the case of an arbitrary domain.]

The rough trace of u is a pair (I', v) where I' is a closed subset of D and v is
a Radon measure on O = 9D \ I'. Namely, I" is the minimal closed set such that
Qp(u) is moderate for all B disjoint from I'. The measure v is determined by the
condition: the restriction of v to every B C O is equal to the trace of the moderate
solution @Qp(u).

The main results about the rough trace presented in Chapter 10 are:

A. Characterization of all pairs (I', ) which are traces. [The principal condition
is that v(B) = 0 for all exceptional boundary sets.]

B. Existence of the maximal solution with a given trace and an explicit prob-
abilistic formula for this solution.

Le Gall’s example (presented in section 3.5 of Chapter 10) shows that, in gen-
eral, infinitely many solutions can have the same rough trace.

3.6. Fine trace. Again this is a pair (I',v) where T is a subset of 0D and
v is a measure on O = 9D \ I'. However I" is not necessarily closed and v is not
necessarily Radon measure.

Roughly speaking, the set I' consists of points of the boundary near which «
rapidly tends to infinity. A precise definition can be formulated, both, in analytic
and probabilistic terms. Here we sketch a probabilistic approach based on the
concept, of a Brownian motion in D conditioned to exit from D at a given point y
of the boundary. This stochastic process is described by a measure II¥ on the space
of continuous paths which start at point * € D and which are at y at the fist exit
time 7 from D. Let f be a positive Borel function in D. We say that y is a point
of rapid growth of f if, for every =z,

/T f(&s) ds =00 II¥-aus.
0

We say that y is a singular point of a solution w if it is a point of rapid growth of
function ¢’ (u). We define T' as the set of all singular points of u. To define the
measure v, we consider all moderate solutions v < u with the trace not charging I'.
v is the minimal measure such that, for every such v, trv < v. We prove that:

A. A pair (T, v) is a trace if and only if v does not charge exceptional boundary
sets and if I" contains all singular points of the following two solutions:

u* = sup {moderate v with the trace dominated by v},

ur = sup {moderate v with the trace concentrated on I'}
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B. Among the solutions with a given trace, there exists a minimal solution and
this solution is o-moderate. °

C. A o-moderate solution is determined uniquely by its trace.

The solutions in Le Gall’s example are uniquely characterized by their fine
traces.

9Gee the definition in section 3.1.
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CHAPTER 2

Linear parabolic equations and diffusions

We introduce diffusions by using analytic results on fundamental solutions of
parabolic differential equations. A probabilistic approach to boundary value prob-
lems is based on the Perron method in PDEs. A central role is played by Poisson’s
and Green’s operators which we define in terms of diffusions. Fundamental concepts
of regular boundary points and of regular domains are also defined in probabilistic
terms.

1. Fundamental solution of a parabolic equation

1.1. Operator L. We work with functions u(r,z),r € R,z € E = R% on

(d 4+ 1)-dimensional Euclidean space S = R x E. The first coordinate of a point

z € S is interpreted as a time parameter. We write u for 2_7; and D;u for % where

Z1,...,%q are coordinates of . Put D;; = D;D;.
Operator L is defined by the formula

d d

(1.1) Lu(r,z) = Z a;;(r, )Diju(r, x) + Z bi(r, z)Du(r, x)

i,j=1 i=1

where a;; = a;;. We assume that:

1.1.A. There exists a constant x > 0 such that
Zaij(r, x)tt; > /@Zt? for all (r,z) € S,t1,...,ta € R.
[ % is called the ellipticity coefficient of L .]

1.1.B. a;; and b; are bounded continuous and satisfy a Holder’s type condition:
there exist constants 0 < A < 1 and A > 0 such that
(1.2) Jaij(r, @) — aij(s,y)| < Ae —y* + |r = s|M?),
(1.3) [bi(r, ) = bi(r, )| < Az —y|?

forall r,seR,z,y € E.

For every interval I, we denote by Sy or S(I) the slab I x E. We write S<; for
Sp with I = (—o00,t) and we write @ <, for the intersection of @ with Sc;. . Writing
U € @ means that @ and U are open subsets of S, U is bounded and its closure
U is contained in Q. We use the name a sequence ezhausting @ for a sequence of
open sets @, T @ such that @, € Q41 for all n.

23
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1.2. Equation @ + Lu = 0. We investigate equation !
(1.4) U+ Lu=0 in Q.

Speaking about solutions of (1.4), we assume that the partial derivatives @, D;u, i =
1,...,d and D;ju,i,j = 1,...,d are continuous. We denote C?(Q) the class of
functions with this property.

Another class of functions plays a special role — continuous functions on @ that
are locally Holder continuous in 2 uniformly in . More precisely, we put u € C*(Q)
if u(r, z) is continuous on @ and if, for every compact I' C @, there exists a constant
Ar such that

u(r, ) = u(r,y)| < Arlr —y|* for all (r,), (r,y) € T
[A (called Holder’s exponent) satisfies the condition 0 < A < 1.]

1.3. Fundamental solution. The following results are proved in the theory
of partial differential equations (see Chapter 1 in [Fri64] and section 4 in [IKO62]).

THEOREM 1.1. There exists a unique continuous function p(r,x;t,y) on the set
{r <t,z,y € E} with the properties:

1.3.A. For every (t,y), the function u(r,x) = p(r,x;t,y) is a solution of
(1.5) U+ Lu=0 1inSe.

1.3.B. For every t1 < ty and every 6 > 0, the function p(r, x;t,y) is bounded on
the set {t1 <r <t <ty t—r+|y—x|>d}.

1.3.C. If ¢ is continuous at a and bounded, then
/ p(r,z;t,y)e(y) dy — p(a) asr 1tz —a.
E
Function p is strictly positive and

(1.6) / p(ryz;t,y) dy=1 forallr <t and all x;
E

(1.7) / p(r,x; s, y9)p(s,y; t, 2) dy = p(r,x;t,2) forallr < s <t and allz,z.
E

Function p(r, z;t,y) is called a fundamental solution of equation (1.5).

We say that a function f is ezp-bounded on B if supg | f(r, z)|e 121" < oo for
every 3 > 0. (Clearly, all bounded functions are exp-bounded.)

We use the following properties of a fundamental solution.

1.3.1. If & is the ellipticity coefficient of L, then, for every § < k,

(1.8)
—d/2 —Bly —z|?
p(r,x;t,y) < Ct—r) "2 exp ﬁ forallt; <r<t<ty,z,y€eF
—r

where the constant C' depends on t1,ts and .

IThis equation can be reduced by the time reversal » — —r to the equation @ = Lu which
is usually considered in the literature on partial differential equations. The form (1.4) is more
appropriate from a probabilistic point of view.
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1.3.2. If ¢ is an exp-bounded function on S; = {t} x E, then

(1.9) u(r, ) = /E p(r, 23, y)p(y) dy

is exp-bounded on S[t',t) for every finite interval [t',¢) and it satisfies equation
u+ Lu = 0 in S.;. If, in addition, ¢ is continuous, then, for every ¢’ < ¢, u is a
unique exp-bounded solution of the problem

i+ Lu=0 inS(t,t),

1.1
(1.10) u=¢ onS.

[Writing u = ¢ at Z € 9Q means u(z) — ¢(2) as z € @ tends to Z.]
1.3.3. If p is a bounded Borel function on S(¢',t) and if

(111) olr,x) = / s /E p(r,%; 5,9)p(s,9) dy,

then D;v are continuous on S(#,t) [and therefore v € C*[S(¢,t)]]. If, in addition,

p € CMN[S(,1)], then v is a unique bounded solution of the problem
v+ Lv=—p in S(¥,t),

(1.12) p S0

v=0 onS;.

2. Diffusions

2.1. Continuous strong Markov processes. Here we describe a class of
Markov processes which contains all diffusions in a d-dimensional Euclidean space
E. ? Imagine a particle moving at random in E. Suppose that the motion starts
at time r at a point z and denote & the state at time ¢ > r. The probability
that & belongs to a set B depends on r and  and we assume that it is equal to
Jgp(r,z;t,y) dy. Moreover, we assume that, for every n = 1,2,... and for all
r<t; <---<t, and all Borel sets By, ..., By,

(2.1) Probability of the event{&;, € Bi,...,&, € By}

:/ dyl---/ dyn p(ryxsty, y)p(t, v te, y2) - P(tn—1, Yn—15 tn, Yn)-
By

n

If the conditions (1.6)-(1.7) are satisfied, then the results of computation with
different n do no contradict each other and, by a Kolmogorov’s theorem * there
exists a probability measure II, ; on the space of all paths in F starting at time
r which satisfies (2.1). We say that p(r,z;t,y) is the transition density of the
stochastic process (&;,II, ;). Sometimes the measures II,., can be defined on the
space of all continuous paths. For instance, this is possible for

z—yf?
2(t—7) ]
The corresponding continuous process is called the Brownian motion . Diffusions

also have continuous paths. (Their transition densities will be defined in section
2.2.)

(2.2) p(r,z;t,y) = [27(t — T)]id/2 exp [

2Basic facts on Markov processes are presented more systematically in the Appendix A.
3See [Kol33], Section II1.4. Two proofs of Kolmogorov’s theorem are presented in [Bil95].
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We denote by €, the space of all continuous paths w(t),t € [r,00) in E. To
deal with a single space (2, we introduce an extra point b and we put w(t) = b for
w € Q and t < r. We consider & as a function on £, namely, & (w) = w(t). The
birth time « is a function on 2 equal to r on ,. Measure II, , is concentrated
on the set {a = r,&, = x}. For every interval I, the o-algebra F(I) generated
by &s,s € I can be viewed as the class of all events determined by the behavior of
the path during I. Note that {a < t} = {& € E} belongs to F(I) for all I which
contain t. We use an abbreviation F>; = F|t, 00).

Every process (&,I1, ;) satisfies the following condition (which is called the
Markov property): events observable before and after time ¢ are conditionally inde-
pendent given &. More precisely, if r < ¢, A € Flr,t] and B € F>,, then

(2.3) HT@(AB):/Athgt(B)an(dw).

To simplify notation we write z for (r, z) and »; for (¢,&;). Formula (2.3) implies
that for all X € F[r,t] and every Y € Fsy, 4

(2.4) I (XY) = IL(XIL, ).

Diffusions satisfy a stronger condition called the strong Markov property. Roughly
speaking, it means that (2.4) can be extended to all stopping times 7. The defi-
nition of stopping times and their properties are discussed in the Appendix A. An
important class of stopping times are the first exit times. The first exit time from
an open set @ is defined by the formula

(2.5) 7(Q) =inf{t > a1y ¢ Q}.
[We put 7(Q) = oo if n, € @ for all t > «.]We say that X is a pre-7 random
variable if X1,<, € F<; for all ¢.

In the Appendix A we give a general formulation of the strong Markov property,
we prove it for a wide class of Markov processes which includes all diffusions and
we deduce from it propositions 2.1.A-2.1.C — the only implications which we need
in this book.

2.1.A. Let p be a positive Borel function on S. For every stopping time 7 and
every pre-7 X > 0,

(2.6) I, X / h p(ns) ds =T.XGp(n-)

where
o0

(2.7) Gp(z) =TI / pl,) ds,

[e3

2.1.B. Let 7’ be the first exit time from an open set Q’. Then for every stopping
time 7 < 7/, for every pre-r X > 0 and for every Borel function f > 0,

(2.8) I, X1¢ ) lrcoo f(rr) = HZX17'<001Q/(777')KQ/]C(777')
where

(2'9) KQ/f(Z) = Hzl‘r/<oof(777'/)'

4Writing X € F means that X > 0 and X is measurable with respect to a o-algebra F. It
can be proved (by using Theorem 1.1 in the Appendix A) that every X € F<, coincide IL, z-a.e.
with a F[r, t]-measurable function. Therefore (2.4) holds for all X € F<;.
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[The value of 7 is not defined. Instead of introducing in (2.8) and (2.9) factors
lr<oo and 1;<o0, we can agree to put f(7s) = 0.]

2.1.C. Suppose that V is an open subset of S x S and 7 is a stopping time. Put
(2.10) op=inf{u>a:u>t (n,n,) ¢ V}.

If 0, < oo II;-a.s. for all z, then, for every pre-7 function X > 0 and every Borel
function f > 0,

(2.11) ILXf(n,,) =1LXF(n,)
where
(2.12) F(t,y) =y f(no,)-

2.2. L-diffusion. An L-diffusion is a continuous strong Markov process with
transition density p(r, z; ¢, y) which is a fundamental solution of (1.5). The existence
of such a process is proved in Chapter 5 of [Dyn65].

Note that

(2.13) Ihw@ﬂzéf@mtwﬂwdy

It follows from Fubini’s theorem that

(2.14) I /:p(s,{s) ds = /Tt ds/Ep(r,:c;s,y)p(s,y) dy.

Therefore, under the conditions on ¢ and p formulated in 1.3.2-1.3.3,

(2.15) u(r, z) = I,z (&)
is a solution of the problem (1.10) and
t
(2.16) v(r,x) = ng/ p(s, &) ds

is a solution of the problem (1.12).

2.3. Martingales associated with L-diffusions. Martingales are one of
new tools contributed to analysis by probability theory. 5 The following theorem
establishes a link between martingales and parabolic differential equations.

THEOREM 2.1. Suppose f € C%(S(t1,t2)) is exp-bounded on S(t1,t2) and that
p = f+ Lf is bounded and belongs to C*(S(t1,t2)). Then, for every r € (t1,t2)
and every x € E,

¢
(217) Y=t = [ on)ds, ot (i
is a martingale with respect to F[r,t] and 11, ;.

PRrROOF. First, we prove that, for all » < ¢ and all z,

(2.18) w@@:HmUW%ﬁ@H—/p@J%]

is equal to 0. Indeed, w = u— f —v where u is defined by (2.15) with p(z) = f(t, x)
and v is defined by (2.16). It follows from 1.3.2-1.3.3, that w is an exp-bounded

5See the Appendix A for basic facts on martingales.
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solution of problem (1.10) with ¢ = 0. Such a solution is unique and therefore
w = 0.

For every t, Y; is measurable relative to F[r,t] and II, |¥;| < co. We need to
prove that, for all r < < ¢ and for every bounded F[r, t']-measurable X,

(2.19) IL, X(Y; — Yp) =0.

Note that ;

Yo~ Yo = f) — fln) - / p(1,) ds

t/
is F>p-measurable. By the Markov property (2.4),

HT,IX(}/t - }/t/) == Hr,xXHt/,gt/ (}/t - }/t/)
and (2.19) holds because, by (2.18), I/ ,(Y; — Yy) = 0 for all y. O

COROLLARY. Suppose that U € Q) and let T be the first exit time from U. If
f€C3Q) and if p= f + Lf € CNQ), then

(2.20) M 1) = )+ T [ "(F+ L)) ds.

PROOF. Since U is bounded, it is contained in S; for some finite interval I.
There exists a bounded function of class C2(Sy) which coincides with f on U and
therefore we can assume that f is defined on S; and that it satisfies the conditions
of Theorem 2.1. The martingale Y; given by (2.17) is continuous and 7 is bounded
II, ;-a.s. By Theorem 4.1 in the Appendix A, IL,,Y; = II,.,Y, which implies
(2.20). O

3. Poisson operators and parabolic functions

3.1. Poisson operators. The Poisson operator corresponding to an open set
Q is defined by the formula

(3.1) KQf(Z) =1L1, <00 f(nr)
where 7 is the first exit time from @ (cf. formula (2.9)). Note that Kgf = f on
Q°. It follows from 2.2.1.B that, for every U € @ and every f > 0,

(3.2) KyKof =Kqf.
3.2. Parabolic functions. We say that a continuous function u in @ is par-
abolic if, for every open set U € Q,
(3.3) Kyu=u inU.
The following lemma is an immediate implication of Corollary to Theorem 2.1.
LEMMA 3.1. Ewvery solution u of the equation
(3.4) U+ Lu=0 1inQ
is a parabolic function in Q.
We say that a Borel subset 7 of 0Q is total if, for all z € Q,
IM.{r <oo,n, €T} =1.

In particular, 9Q is total if and only if II,{r = oo} = 0 for all z € Q. [This
condition holds, for instance, if Q C S<; with a finite ¢.] If Q) is not total, then
there exist no total subsets of 9Q.
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LEMMA 3.2. Suppose T is a total subset of 0Q. If u is bounded and continuous
on QUT and if it is parabolic in Q, then

(3.5) Kou=u 1in Q.

ProOOF. Consider a sequence @, exhausting Q. The sequence 7, = 7(Q,,) is
monotone increasing. Denote its limit by ¢. For almost all w, 0 < 7 < oo and
N € T. Therefore o = 7(Q). We get (3.5) by passing to the limit in the equation
u(z) = u(ny,). O

LEMMA 3.3. Suppose that parabolic functions u, converge to u at every point
of Q. If uy, are locally uniformly bounded, then u is also parabolic.

Proor. If U € Q, then u, are uniformly bounded on U. By passing to the
limit in the equation Kyu, = u,, we get Kyu = u. O

3.3. Poisson operator corresponding to a cell. Subsets of S of the form
C = (ag,bo) % (a1,b1) x -+ x (aq,bq) are called (open) cells. Points of 9C with
the first coordinate equal to ag form the bottom B of C. Clearly, T = 9C' \ B is a
total subset. We denote it 9,.C. A basic result proved in every book on parabolic
equations % implies that, if f is a bounded continuous function on 9,C, then there
exists a continuous function v on C'U 9,.C' such that
w4+ Lu=0 inC,

u=f on0.C.

It follows from Lemmas 3.1 and 3.2 that w = K¢ f. Note that K¢ is continuous
with respect to the bounded convergence. It follows from the multiplicative systems
theorem (Theorem 1.1 in the Appendix A) that these two properties characterize
K. This provides a purely analytic definition of K.

A particular class of cells is defined by the formula

C(z,8) =1{7": J(z, 2" < 8}

(3.6)

where

d(z,2') = max; |v; — ] !

= (20, ..., 7).

3.4. Superparabolic and subparabolic functions. A lower semicontinu-
ous function w is called superparabolic if, for every open set U € @,

(3.7) Kyu<wu inU.

i for z = (zg,...,x4), 2

A function u is called subparabolic if —u is superparabolic.

LEMMA 3.4. Suppose that u is a bounded below lower semicontinuous function
in Q and that (3.7) holds for every cell C € Q. Then u is superparabolic and,
moreover, (3.7) holds for all U C Q.

PROOF. For U = S, the relation (3.7) is satisfied because its left side is 0. If
U # S, then

d(z) = inf d(z 2
(2) inf (2,2") < o0

for all z. Put )
vz«@a;ﬂ@a<5a@}

6See, e.g., Chapter 3, section 4 in [Fri64] or Chapter V, section 2 in [Lie96].
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and consider the function o; defined by the formula (2.10). The stopping times
To = Q,Tpy1 =05, forn >0

are finite and 70 < 7 < --- <71, < ... It follows from 2.1.C that I u(n,,,,) =
II,F(n;,) where F(z) = IT,u(n., ). If (3.7) is satisfied for cells, then F(z) < u(z).
Hence, ILu(n, ,) < H.u(n.,) and, by induction, IL.u(n,,) < I u(n.,) = u(z).
We have d(1y, ., ,7r,) = d(1,)/2. If 7 is the limit of 7,,, then, on the set {7 < oo},
N, — 10y and therefore 0 = d(n,,7,) = d(1,;)/2. We conclude that {r < oo} C
{n: € OU} C {r =7(U)}. By the definition of the lower semicontinuity, on the set

{1 < o0}, u(n;) < liminfu(n,,). Therefore, by Fatou’s lemma,
M1 rcoou(n:) < lrcoo liminfu(n,, ) < UminfIL 1, coou(ns,) < u(z).
(I

LEMMA 3.5. Suppose that w is superparabolic in Q and bounded below. Let T
be a total subset of 0Q. If, for every 2 € T,

(3.8) liminfw(z) >0 asz— Z,
then w >0 in Q.

PROOF. Let 7 = 7(Q). It follows from Lemma 3.4 that II,1,coow(n,) < w(z).
Condition (3.8) implies that w(n,) > 0 II,-a.s. on {7 < co}. Hence w(z) >0. O

3.5. The Perron solution. The following analytic results are proved, for
instance, in [Lie96], Chapter III, section 4. 7 Let f be a bounded Borel function
on 0Q. A bounded below superparabolic function w is in the upper Perron class
U, for f, if
(3.9) liminfw(z) > f(2) forall Z € 0Q.

Analogously, a bounded above subparabolic function v is in the lower Perron
class U_ for f, if

limsupw(z) < f(2) forall Z € 0Q.
It follows from Lemma 3.5 that v < w for every v € U_ and every w € U,.
Since f is bounded, all sufficiently big constants are in U, and all sufficiently small
constants are in U_. Therefore functions of class U_ are uniformly bounded from
above and functions of class Uy are uniformly bounded from below.

It is proved that the infimum u of all functions w € Uy coincides with the
supremum of all functions v € U_. Moreover, u is a solution of the equation (3.4).
It is called the Perron solution corresponding to f.

THEOREM 3.1. If Q is a bounded open set and f is a bounded Borel function
on 0Q, then w = K¢ f is the Perron solution corresponding to f.

PRrROOF. Let w € Uy and let 7 be the first exit time from (. Consider a
sequence @, exhausting ) and the corresponding first exit times 7,,. We have
w(z) > ,w(n,,) and, by condition (3.9) and Fatou’s lemma,

w(z) > liminf I w(n,, ) > I, iminf w(n,, ) > I, f(n,).
Similarly, if v € U_, then v(z) <TII, f(n,). O

7See also [Doo84], 1.XVIIL.1. There only the case L = A is considered but the arguments
can be modified to cover a general L.
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COROLLARY. A function u is parabolic in Q if and only if it is a solution of
(3.4).

3.6. Smooth superparabolic functions. The improved Maximum prin-
ciple. We wish to prove:

3.6.A. If u € C*(Q) and if
(3.10) t+Lu <0 in @,

then U is superparabolic in Q.

This follows immediately from (2.20) if @ + Lu € C*(Q). To eliminate this
restriction, we use:

3.6.B. Suppose that C' is a cell and u € C?(C) satisfies the conditions
w4+ Lu >0 inC,
limsupu(z) <0 asz— 2z forall Ze€0,.C.

Then v < 0in C.

[This proposition is proved in any book on parabolic PDEs (for instance, in
Chapter 2 of [Fri64] or in Chapter II of [Lie96]).]

To prove 3.6.A we consider an arbitrary cell C € Q. As we know, v = Kcu is a
solution of the problem (3.6) with f equal to the restriction of u to 9,C. Therefore
w = v — u satisfies conditions &+ Lw > 0 in C and w(z) — 0 as z — 2 € 0,C. By
3.6.B, w <0in C. Hence, Kcu < u. By Lemma 3.4, u is superparabolic.

3.6.C. [The improved maximum principle.] Let 7 be a total subset of 0Q. If
v € C%(Q) is bounded above and satisfies the condition

(3.11) O+ Lv>0 in @
and if, for every Z € 7,

(3.12) limsupwv(z) <0 asz— Z,
then v <0 in Q.

Indeed, by 3.6.A, u = —v is superparabolic and, by Lemma 3.5, u > 0.

3.7. Superparabolic functions and supermartingales.

PROPOSITION 3.1. Suppose u is a positive lower semicontinuous superparabolic
function in Q and T = 7(Q). Then, for everyr, x,

Xo = Licru(m)
is a supermartingale on [r,00) relative to Fr,t] and I, ;.

PRrROOF. Note that 0 = 7 At is the first exit time from @ N S<;. Since o < oo,
by Lemma 3.4, for every s < t,

M, u(s) < u(s, 7).
Since {0 < 7} = {0 = t}, we have
Hs,xXt - Hs,xlo:tu(nt) - Hs,xlo:tu(no) S U(S, CC)
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Let 7, be the first after r exit time from Q. If r < s, then {7, > s} € F[r, 3.
Clearly, 7 = 7 I, g-a.s. If A € F[r,s|, then {A,s < 7.} € F[r,s] and, by the
Markov property (2.4),

/ X dll, , = / I, X, dlIl, , < / u(ns) dll, 5.

A,s<Tp A,s<Tp A,s<Tp
For s < t, X;l,<;, = X; II, g-a.s. and therefore [, X; dII,, < [, X dIl, . Since
X, is F[r, t]-measurable and II, ,-integrable, it is a supermartingale. O

4. Regular part of the boundary

4.1. Regular points. A point Z = (7, %) of 9Q is called regular if, for every
t>r,

(4.1) M:{n; € Q forall se (r,t)} =0.

THEOREM 4.1. Let 7 be the first exit time from Q. If a point Z = (7, &) € 0Q
is reqular then, for everyt > T,

(4.2) IM{r>t} -0 asze€Q tendsto?Z.

PRrOOF. 1°. Fix ¢ and put, for every r < s < t, A(s,t) = {n, € Q foru
(s,t)} and ¢5(z) = II, ,A(s,t). Note that ¢/ (x) = I, {7 > t} for (r,z) € Q.
Therefore the conditions (4.1) and (4.2) are equivalent to the conditions ¢%(%) = 0
and ¢l (z) — 0 as (r,z) — (7, Z).

2°. By the Markov property of £, for all r < s < ¢,

@) =Tl AGs.0) = [ plrsss. (o) do
E
3°. It follows from 2° and 1.3.2 that ¢%(z) is continuous in (r,z) for r < s.
Therefore, for every € > 0, there exists a neighborhood U of (7, %) such that
l¢"(x) — ¢%(%)| <& forall (r,z) € U.

4°. Clearly, ¢%(x) | ¢ (z) as s | r.
5°. Suppose 7 < t. If (7, %) is regular, then, by 1°, ¢Z(Z) = 0 and, by 4°, for
every ¢ > 0, there exists s € (7,t) such that ¢7 (%) < e. By 3°, if (r,z) € U, then

gr(x) < ¢i(x) < ¢L() + |gi() — gi(@)] < 2e.
By 1°, this implies (4.2). O

REMARK. The converse to Theorem 4.1 is also true: (4.2) implies (4.1). We
do not use this fact. In an elliptic setting, it is proved in Chapter 13 of [Dyn65].
The role of condition (4.2) is highlighted by the following theorem:

THEOREM 4.2. If (4.2) holds at Z € 0Q and if a bounded function f on 0Q is

continuous at z, then

(4.3) Kof(z) = f(2) asz— Z.
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Informally, we have the following implications:

(44) {z=(r,z)e @ iscloseto z= (F,z)} = {7 is close to r}
= {n, isclose to z and therefore close to z}
= {f(n;) isclose to f(2)} = {II.f(n,) is close to f(2)}.

A rigorous proof is based on the following lemma.
LEMMA 4.1. Fiz t € R and put

(4.5) D, = sup |ns —nyl.
r<s<t

For every € > 0, there exits 6 > 0 such that
(4.6) I, ,{D, >c} < ¢
for all x and all r € (t — 0,1).

PROOF. If & = (€£1,...,¢&9), then

d
D,<t-r+>» Di
1

where
Dy = sup [§— &l
r<s<t
To prove the lemma it is sufficient to show that, for every € > 0, there exists 6 > 0
such that

(4.7) I, .{D.>¢c} <e

for all z and all r € (¢t — 4, ¢). Each function f;(r,x) = x; is exp-bounded on S and
pi = fi + Lfi = b; (a coefficient in (1.1)). The conditions of Theorem 2.1 hold for
fi on every interval (¢1,t2). Therefore, for every r € (t1, t2),

yi=gi- / pil) du, s € (r,t2)

is a martingale relative to F[r, s|,II, .. Choose (t1,t2) which contains [r,t]. By
Kolmogorov’s inequality (see section 4.4 in the Appendix A)

(4.8) I, . { sup |Ysl - le| > 6} < 572Hmc|yti - le|2
r<s<t
If |pi| < ¢, then
(4.9) Dy < sup [Y] =Y+t —7).
r<s<t
On the other hand, since (A + B)? < 242 4 2B? for all A, B, we have

(4.10) I, .| Yy = Y |? <200, |¢ — &% + 23 (t —r)*.
The bound (1.8) implies that
(4.11)

I, (6 — €)= /E p(r, 5t y) (s — 22)? dy < /E p(ry:t,y)ly — of? dy < C(¢ — )

where C' is a constant [depending on t1,t3]. The bound (4.7) follows from (4.8)-
(4.11). O
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PROOF OF THEOREM 4.2. Let z = (r,z),Z = (7, Z). For every t > 7,
I {|nr — 2| > e} <, {r >t} + I, ,{D; > €}.
By Lemma 4.1, for every € > 0, there exists § > 0 such that
I, .{D, > e} <e
for all z and all € (¢t — 4,t). Choose t € (7,7 + §/2). Then every r € (F —§/2,7)
belongs to (t — 6, t).
By Theorem 4.1,
I {T >t} <e
in a neighborhood U of Z. Suppose that r € (¢t — 4,¢) and z € U. Then
IL . {|n: — 2| > e} < 2e.
Let V' be the intersection of U with the e-neighborhood of Z. If z € V, then
I, o {|n- — 2| > 2¢} < a{ln, — 2| > e} < 2.
Suppose that N is an upper bound for | f| and let | f(2) — f(2)| < € for z € V. Then
M| f(nr) — F(5)] < 2NTL{ln, — 3 > 8} + e < @N +1)e iV
which implies (4.3). O
THEOREM 4.3. Suppose Q is bounded and all points of a total subset T of 0Q

are regular. If a function f is bounded and continuous on T, then u = Kqf is a
unique bounded solution of the problem

u+Lu=0 1inQ,

(4.12) u=f onT.

PRrROOF. Put f =0o0n 0Q\7. By Theorems 3.1 and 4.2, u = K¢ f is a solution
of the problem (4.12). Clearly, u is bounded. For an arbitrary bounded solution v
of (4.12), by Lemmas 3.1 and 3.2, v = Kqv = Ko f = . O

We say that a function u is a barrier at z if there exists a neighborhood U of
% such that u € C3(U) N C(U) and

(4.13) G+ Lu<0 inQNU,u(2) =0, u>0 onUNQ except Z.
LEMMA 4.2. The condition (4.2) holds if there exists a barrier u at . 8

PrROOF. Put V. = QN U. For every t > 7, the infimum 3 of u on the set
OV NS>y is strictly positive. Let 7 = 7(V'). By Chebyshev’s inequality and (3.1),

(4.14) ILA7 >t} < ILA{u(n;) =2 B} < Meu(ng)/B = Kvu(z)/8.

By 3.6.A, u is superparabolic in V. Denote by f the restriction of u to V. Clearly,
u belongs to the upper Perron class for f. By Theorem 3.1, Ky f is the correspond-
ing Perron solution. Hence, Kyu = Ky f < u, and (4.14) implies (4.2). O

By constructing a suitable barrier, we prove that (4.2) holds if Z can be touched
from outside by a ball. More precisely, we have the following test.

8The existence of a barrier is also a necessary condition for the regularity of Z. (See, e.g.,
[Lie96], Lemma 3.23 or [Dyn65], Theorem 13.6.)
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THEOREM 4.4. The property (4.2) holds at z = (7,%) € 0Q if there exists
2 = (r', ') with ¥’ # & such that |z — 2’| > |2 — 2'| for all z € Q sufficiently close
to zZ and different from Z. In other words, Z is the only common point of three sets:
Q, a closed ball centered at 2 and a neighborhood of %.

PrOOF. We claim that, if e = |2 — 2’| and if p is sufficiently large, then
u(z) = e — |z = 2|7,

is a barrier at Z. Clearly, u(Z) = 0. There exists a neighborhood U of Z such that,
forall 2 € UNQ, |z — 2/| > ¢ and therefore u(z) > 0. We have

i+ Lu=Al~(p+1)B + O]

where

A=2p|z—2|720F2) B = ai;(z; — ) (x; — 27),
J /] J

Note that B > k|z — 2’|> where £ is the ellipticity coefficient of L. Since a;; and b;
are bounded, we see that, for sufficiently large p, @+ Lu < 0 in a neighborhood of
Z assuming that & # . O

4.2. Regular open sets. We denote by 0,.4@ the set of all regular points
of 9Q and by 0,Q the set of all interior (relative to 9Q) points of 0r.,Q. We say
that @ is regular if 0,4 contains a total subset of Q). A smaller class of strongly
regular open sets is defined by the condition: 0,@Q is total in 0Q.

For a cell C, 9,.C coincides with the set introduced in section 3.3. This set is
relatively open in JC' and therefore cells are strongly regular open sets.

Note that the following conditions are equivalent: (a) B is a relatively open
subset of A; (b) B = AN O where O is an open subset of S; (¢) A= BUF where
Fis a closed subset of S. Therefore, if B; is a relatively open subset of A;, i = 1,2,
then B; N By is relatively open in A; N Ay and By U By is relatively open in A; U As.

LEMMA 4.3. If U is strongly regular, then Q@ = U N Q1 is strongly regular for
every open set Q1 such that U N0Q1 C 0,Q1.

PRrROOF. The boundary dQ is the union of three sets A1 = U NQ1, Ao =UN
8@1 and Ag = 8UQ8Q1 Sets Bl = 8TUQQ1, B2 = UﬂarQl and Bg = 8TUQ8TQ1
are relatively open in, respectively, Aj, Ay, As and therefore 7 = By U By U Bg is
relatively open in 0Q). Every point of 7 is regular in Q. It remains to show that 7°
is total in Q). Let 7 be the first exit time from @ and let z € Q. Since 0,.U is total
in U and 9,U N (Al U Ag) C B;1 U Bs, we have {777- €A U Ag} C {777- € B U Bg}
II.-a.s. On the other hand, Ay C 9,Q1 and therefore Ay = By and {n, € A} =

{n- € Ba}. [l
Now we introduce an important class of simple open sets. We start from closed
cells [ag, bo] x [a1,b1] X « -+ X [aq4,bq]. We call finite unions of closed cells simple

compact sets. We define a simple open set as the collection of all interior points of a

simple compact set . The boundary 9C of a cell C' = [ag, bo] X [a1,b1] X - - - X [ag, bd]

consists of 2(d + 1) d-dimensional faces. We distinguish two horizontal faces: the

tOp {bo} X [CL(), bo] X [CLl, bl] X X [ad, bd] and the bottom {CL()} X [CL(), bo] X [CLl, bl] X
- X [ag, bg]. We call the rest side faces.
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THEOREM 4.5. Every simple open set is strongly reqular. For an arbitrary open
set @, there exists a sequence of simple open sets exhausting Q.

In the proof we use the following observations.

4.2.A. Let H be a (d — 1)-dimensional affine subspace of R? [that is the set of
x = (x1,...,24) such that a1z1 + -+ + aqzq = ¢ for some constants ay,...,aq
not all equal to 0]. Then for all 7 < t,z € RY I, ,{&, € HY = 0. If H is a
(d — 2)-dimensional affine subspace, then II, ,{& € H for some t > r} = 0.
The first part holds because the probability distribution of & is absolutely
continuous with respect to the Lebesgue measure. We leave the second part as an
exercise for a reader.

42B. If F is a (d — 1)-dimensional face of a cell C, then
I, . {(t,&) € FF forsomet >r} =0 forall(r,z)es.
This follows easily from 4.2.A.

Proof of Theorem 4.5. Every compact simple set A can be represented as the
union of closed cells C1, ..., C, such that the intersection of every two distinct cells
C;, C; is either empty or it is a common face of both cells. Let @ be the set of all
interior points of A. Note that 0Q = UY Fy, where Fi, ..., Fy are d-dimensional
cells which enter the boundary of exactly one of C;. Clearly, the set F of all points
of F that do not belong to any (d — 1)-dimensional face of any C; is open in 9Q).
By 4.2.B, to prove that @ is strongly regular, it is sufficient to show that, for every
k, either I, {n, € FY} = 0forall z € Q or F{ C 0,.,Q. Clearly, the first case takes
place if F}, is the bottom of C;. If F}, is the top of C;, then, obviously, F} C Oreg@.
If Fy, is a side face, then F} C 0,¢4@ by Theorem 4.4.

It remains to construct sets @Q,,. It is easy to reduce the general case to the case
of a bounded Q. Suppose that @Q is bounded. Put €,, = (d + 1)'/22=". Consider a
partition of S = R4t into cells with vertices in the lattice 27"Z*! and take the
union A,, of all cells whose &,-neighborhood are contained in Q). The set @,, of all
interior points of A™ is a simple open set. Clearly, the sequence @,, exhaust Q. [

For every two sets A, B, we denote by d(4, B) the infimum of d(a,b) = |a — b|
over alla € A)b € B.

Suppose that @ is an open set and I" is a closed subset of 0Q. We say that a
sequence of open sets @, 1 @ is a (Q,T')-sequence if @,, are bounded and strongly
regular and if

(4.15) Qn T Q\F; d(Qn;Q\QnJrl) > 0.
LEMMA 4.4. A (Q,T)-sequence exists if T' contains all irregular points of 9Q).

PrOOF. By Theorem 4.5, there exists a sequence of strongly regular open sets
U, exhausting S\ T. If T" contains all irregular points of 9Q), then, by Lemma 4.3,
sets Qn = U, N Q are strongly regular.

Note that @, C Q and @, NT C U, N\T C U,;1 NT = (. Hence Q, C Q\T.

If K is a compact set disjoint from T, then K C U, for some n. Let 2 € Q \T.
For sufficiently small § > 0, K = {y : |y —z| < ¢} is disjoint from I". If ,,, — x and
T € Q, then, for sufficiently large m, z,, € U, N Q = Q,,. Hence z € Q,,. This
proves the first part of (4.15). The second part holds because Q,, C Uy, @\ Q11 C
US ., and d(Uy,, U, 4) > 0. O
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5. Green’s operators and equation v+ Lu = —p

5.1. Parts of a diffusion. A part §~ of a diffusion ¢ in an arbitrary open set
@ C S is obtained by killing ¢ at the first exit time 7 from (. More precisely, we
consider

& =& forteln,T),
=1 fort>r1
where 1 — “the cemetery” — is an extra point (not in E). The state space at time
t is the t-section Q; = {x : (t,z) € Q} of Q. We will show that £ = (&,11,,) is a
Markov process with the transition density
(51) pQ(T,CC;t,y):p(T,CC;t, )_HT@p(Tag‘r;tay) forerTayth'
[We set p(r, z;t,y) = 0 for r > t.]

THEOREM b.1. For every Borel function f >0 on @,

62 Talicaf(t.6) = [ polrait)ft) dy foralls € Q.

Q+
Moreover, for everyn = 1,2,... and for allT <t; < --- < t,, x € Q, and Borel
sets By, ..., By,

(53) HT,I{T > tn,&h (S Bl, .. .,ftn (S Bn}

:/ dyl---/ dynpq(r, x5 t1, y1)pQ(t1, Y15 t2, ¥2) - . DQ(tn—1, Yn—15tn, Yn)-
By

n

We have:
(5.4) po(r,z;t,y) >0 forallr <t,x€ Qr,y € Q;

(5.5) / po(r,z;t,y) dy <1 forallr <t andallz € Qy;

t

(5.6) /pQ(T,:c;s,y)pQ(S,y;t,Z) dy = pq(r,z;t, z)

s

forallr <s<t andallx € Qr,z € Qy.
PRrOOF. If we set f = 0 outside @, then

(5.7) Wy plr=e f(2, &) =0
because f(7,&,) = 0. Therefore

(5.8) Iy lier f(t, &) = ulr,x) — o(r, )
where

’LL(T, CC) = anf(t, é.t)a
U(Ta 33) = Hr,x1~r<tf(ta ft)
By (1.9) and (2.15),
(5.9) u(six) = [ plo.ast.)f(e.)dy
E
By 2.1.B (applied to 7" = t),
(5-10) U(T, 33) = Hr,x1~r<tf(ta ft) = Hr,xl‘r<tF(Ta 67-)
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where
F@m:nwﬂmazém&wmmmwdy

Formula (5.2) follows from (5.8), (5.9), (5.10) and (5.1).

We establish (5.3) by induction by applying (5.2) and the Markov property
(2.4).

To prove (5.4), (5.5) and (5.6), we establish that pg(r, z;t,y) is continuous in
y € Qq for every r < t and every x € ). This follows from a similar property of
p(r, z; t,y) because (1,&;) € 0Q I, z-a.s. and, by 1.3.B, p(7,&-;¢,y) is uniformly
bounded in a neighborhood of each y € Q.

Formula (5.2) implies (5.4) and (5.5). To prove (5.6), we note that, for r < s <
t

3

HT,I{T > tafs € QS;gt € B} = HT,I{T > tagt € B}

By (5.3), this implies that the functions of z in both parts of (5.6) have the same
integrals over B. Therefore (5.6) holds for almost all z. It holds for all z because
both parts are continuous in z. (I

Formula (5.3) is an analog of formula (2.1) for a process with a random death
time 7.

5.2. Green’s functions. We prove that function pg defined by (5.1) has
properties similar to 1.3.A-1.3.C. We call it Green’s function for operator @ + Lu

in Q.
5.2.A. If Qcy = S<:NQ is bounded, then for every (¢,y) € Q, function u(r, z) =
po(r, z;t,y) is a solution of (3.4) in Q.

Indeed, for every (t,y) € Q, u = ©— Ko where 4(r, x) = p(r, z;t,y). By 1.3.A,
@ satisfies (3.4) in S<;. By 1.3.B, @ is bounded on 0@ and, by Theorem 3.1 Kot
satisfies (3.4) in Q<.

5.2.B. For every t1 < to and every ¢ > 0, function pgo(r, z;¢,y) is bounded on
the intersection of @) with the set {t1 <r <t <to,t —r+|y— x| >d}.

This follows from 1.3.B because pg < p.
5.2.C. If ¢ is bounded and continuous at a € Q¢, then

/pammmwmweww as (r,z) = (t, ), (r,2) € Qur.

PROOF. By (5.1) and (5.10),

0< / (p—po)(r,z; t,y)p(y) dy = Hm/ (1, &t y)e(y) dy = T 21 <10(&r),

t

and 5.2.C follows from 1.3.C if we prove that
(511) U’(Ta CC) = HT@{T < t} —0 as (Ta CC) - (ta CL), (Ta CC) € Q<t-

Note that u = Kqg_,1s_,. If a € Q, then (¢,a) is a regular point of 9Q«¢. Since
ls_, is continuous and equal to 0 at (¢,a), formula (5.11) follows from Theorem
4.2. O
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There exists a simple relation between pg and pgr for Q' C Q:

(512) pQ/ (Ta ':Ca ta y) = pQ(Ta ':Ca ta y) - HT@pQ(T/a §T/ a ta y)

where 7/ = 7(Q’'). Indeed, put f(r,z) = p(r,z;t,y) and denote by fq, for the
functions obtained in a similar way from pg,pg.. By (5.1), fo = f — Kqf and, by

(32), KQ/fQ = KQ/f - KQf. Hence, fQ - fQ/ = —KQf + KQ/f = KQ/fQ.

5.3. Green’s operators. Green’s operator in an arbitrary open set @ is de-
fined by the formula

(5.13) Gaplra) =Tl [ pls ) ds

(cf. (2.7)). By (5.2),

(5.14) Gop(r,z) / ds / po(r, z; 5,9)p(s, y)dy.
If Q' C Q, then, by (5.14) and (5.12),

(5.15) Go = Go + Ko Gq.

5.3.A. Suppose that Q C S; = I x E, 1 is a finite interval and p is bounded.
Then function w = Ggp belongs to C*(Q). If p € CA(Q), then w € C?(Q) and it
is a solution of the equation

(5.16) w—+ Lw=—p in Q.
If p is bounded and if Z is a regular point of 9Q, then
(5.17) w(z) =0 asz— Z.

PRrROOF. Note that w = v — Kgv where v is given by (1.11). Since Kqu is
parabolic in @, the first part of 5.3.A follows from 1.3.3.

If z = (r,z) and if N is an upper bound of |p|, then, for every € > 0, |w(z)| <
N[(t = r)II.{T > r + €} + €] and therefore (5.17) follows from Theorem 4.1. O

5.3.B. Let 7 be the first exit time from an arbitrary open set Q. If p > 0 and
w = Ggp is finite at a point z € @, then

(5.18) 1time(77t) =0 Il,-as.

PROOF. Let z = (r,z). We can assume that p > 0. We prove that M; =
licrw(ne),t € [r,00) is a supermartingale relative to F|r,t],II, . To this end, we
consider a bounded positive F[r, t]-measurable function X and we note that, by the
Markov property (2.4),

-

HchlKT/ p(s, &) ds = Hr,xX1t<‘rHt,§t/ p(s,&s) ds =11,z X1 crw(t, &).
¢ ¢

Hence I, ; XM, < II, , XM, for r < s < t. Since M, is F|r,t]-measurable and
II, ,-integrable, our claim is proved.

Since M, is right continuous, a limit M,_ as ¢t T 7 exists II, -a.s. (see 4.3.C in
the Appendix A). Suppose @,, exhaust @ and let 7,, be the first exit time from @,,.
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By (5.15), w = Gg,p + Kg,w. Since Gg, p T Ggp, we conclude that Kg, w | 0
and

I, . M, =11, limw(7,, &) < UmIl, w(7,, &) =1lim Kg,w = 0.

5.3.C. If @, p and f are bounded and if f is continuous on Oy¢4@, then
(5.19) v==Gop+ Kqf
is a solution of the problem
v+ Lv=—p in Q,
v=[f on OregQ.
This follows from 5.3.A and Theorems 3.1 and 4.2.

5.3.D. Let p be bounded. A function w is a solution of equation (5.16) if and
only if w is locally bounded and, for every U € @,

(5.21) w = Gup+ Kyw.

(5.20)

PROOF. Suppose that w satisfies (5.16). By Theorem 4.5, for an arbitrary
U there exists a sequence of regular open sets U, T U. Since w is bounded and
continuous on U, we have Ky, w — Kyw. Also Gy, p — Gup. Therefore it is
sufficient to prove (5.21) for a regular U.

By 5.3.A and Theorem 4.3, u = Gyp + Kyw — w is a solution of the problem

uw+Lu=0 inU,

(5.22) u=0 on OpyU.
By 3.6.C, u = 0. -

If w satisfies (5.21) and is bounded on U, then the equation (5.16) holds on U
by 5.3.A and Theorem 3.1. O

5.3.E. Suppose that solutions w, of (5.16) converge to w at every point of Q.
If w, are locally uniformly bounded, then w also satisfies (5.16).

This follows from 5.3.D (cf. the proof of Lemma 3.3).

6. Notes

Our treatment of diffusions is in spirit of the book [Dyn65]. However, in this
book only time-homogeneous case was considered. Inhomogeneous diffusions were
covered in [Dyn93]. In particular, one can found there a probabilistic formula for
the Perron solutions, the improved maximum principle and an approximation of
arbitrary domains by simple domains. A concept of strongly regular domains was
introduced in [Dyn98a]. This class of domains plays a special role in the theory
of semilinear partial differential equations (see, Chapter 5).

A fundamental monograph of Doob [Doo84] contains the most complete pre-
sentation of the connections between the Brownian motion and classical potential
theory related to the Laplace equation. Bibliographical notes in [Doo84]| should be
consulted for the early history of this subject. A special role in the book is played
by martingale theory. Much of this theory was created by Doob.

Martingale are the principal tool used by Stroock and Varadhan to develop a
new approach to diffusions. A construction of diffusions by solving a martingale
problem is presented in their monograph [SV79].
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A direct construction of the paths of diffusions by solving stochastic differential
equations is due to Ité [It651]. A modern presentation of Itd’s calculus and its
applications is given in the books of Tkeda and Watanabe [IW81] and Rogers and
Williams [RW87].






CHAPTER 3

Branching exit Markov systems

In this chapter we introduce a general model — BEM systems — which is
the basis for the theory of superprocesses and, in particular, superdiffusions to
be developed in the next chapters. A BEM system describes a mass distribution
of a random cloud started from a distribution p and frozen at the exit from Q.
Mathematically, this is a family X of random measures (Xq, P,,) in a space S. The
parameter () takes values in a class of subsets of S, i is a measure on S, Xq is a
function of w € Q and P, is a probability measure on §2. A Markov property is
defined with the role of “past” and “future” played by Q' C Q and Q" D Q. [This
definition can be applied to a parameter ) taking values in any partially ordered
set.] We consider systems which combine the Markov property with a branching
property which means, heuristically, an absence of interaction between any parts
of the random cloud described by X.

We start from historical roots of the concept of branching. Then we introduce
branching particle systems (they were described on a heuristic level in Chapter 1)
and we use them to motivate a general definition of BEM systems. The transition
operators Vg play a role similar to the role of the transition functions in the theory
of Markov processes. We investigate properties of these operators and we show how
a BEM system can be constructed starting from a family of operators Vg. At the
end of the chapter some basic properties of BEM systems are proved.

1. Introduction

1.1. Simple models of branching. The first probabilistic model of branch-
ing appeared in 1874 in the problem of the family name extinction posed by Francis
Galton and solved by H. W. Watson [WGT74]. Galton’s motivation was to evaluate
a conjecture that the extinction of prominent families is more likely than the ex-
tinction of ordinary ones. He suggested to start from probabilities p,, for a man to
have n sons evaluated by the demographical data for the general population. The
problem consisted in computation of the probability of extinction after k genera-
tions. Watson’s solution contained an error but he introduced a tool of fundamental
importance for the theory of branching. The principal observation was: if

o) = past
0

is the generating function for the number of sons, then the generating function
@r for the number of descendants in the k-th generation can be evaluated by the
recursive formula

(1.1) Prt+1 = p(pr)-

43
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The Galton-Watson model and its modifications found many applications in biology,
physics, chemistry... *

A model of branching with a continuous time parameter was suggested in 1947
in [KD47] (an output of a Kolmogorov’s seminar held at Moscow University in
1946-47). Consider a particle system and assume that a single particle produces,
during time interval (r,¢), k = 0,1, 2, ... particles with probability px(r,t). Gener-
ating functions

o(r, t;z) = Zpk(r, t)zF
0

satisfy the condition
(1.2) o(r, t;2) = p(r, s;0(s,t;2)) forr < s <t.
Suppose that
pr(r — h,r) = ar(r)h +o(h) for k # 1,
p1(r—h,r) =1+ ai(r)h + o(h)
as h | 0 and let

(1.3) D(r;2) = Zak(r)zk.
0

We arrive at a differential equation

t.

(1.4) W +O(r,o(r,t;2)) =0 forr <t
r

with a boundary condition

(1.5) O(r,t;2) =z asrlt.

Equation (1.4) and a linear equation @ + Lu = 0 considered in Chapter 2 are
particular cases of a semilinear parabolic equation

(1.6) i+ Lu = ().

A probabilistic approach to (1.6) is based on a model which involves both L-diffusion
and branching.

1.2. Exit systems associated with branching particle systems. Con-
sider a system of particles moving in E according to the following rules:

(1) The motion of each particle is described by a right continuous strong Markov
process &.

(2) A particle dies during time interval (¢,¢ + h) with probability kh + o(h),
independently on its age.

(3) If a particle dies at time ¢ at point z, then it produces n new particles with
probability p, (¢, x).

(4) The only interaction between the particles is that the birth time and place
of offspring coincide with the death time and place of their parent.

[Assumption (2) implies that the life time of every particle has an exponential
probability distribution with the mean value 1/k.]

We denote by P, the probability law corresponding to a process started at
time 7 by a single particle located at point x. Suppose that particles stop to move

IMore on an early history of the branching processes can be found in [Har63].



1. INTRODUCTION 45

and to procreate outside an open subset @) of S. In other words, we observe each
particle at the first, in the family history, 2 exit time from (. The exit measure
from @ is defined by the formula

XQ = 5(t17y1) +oet 5(tnvyn)

where (t1,91), ..., (tn, Yn) are the states of frozen particles and d; ) means the unit
measure concentrated at (¢,y). We also consider a process started by a finite or
infinite sequence of particles that “immigrate” at times r; at points x;. There is no
interaction between their descendants and therefore the corresponding probability
law is the convolution of P, ;,. We denote it P, where

H= Z 5(7“1'7961')

is a measure on S describing the immigration. We arrive at a family X of random
measures (X, Py),Q € O, u € M where O is a class of open subsets of S and M
is the class of all integer-valued measures on S. Family X is a special case of a
branching exit Markov system. A general definition of such systems is given in the
next section.

1.3. Branching exit Markov systems. A random measure on a measurable
space (S, Bg) is a pair (X, P) where X (w, B) is a kernel ® from an auxiliary mea-
surable space (2, F) to (S, Bg) and P is a probability measure on F. We assume
that S is a Borel subset of a compact metric space and Bg is the class of all Borel
subsets of S.

Suppose that:

(i) O is a subset of o-algebra Bg;

(ii) M is a class of measures on (S, Bg) which contains all measures d,,y € S.

(iii) to every @ € O and every u € M, there corresponds a random measure
(Xq, Py) on (S, Bs).

Condition (ii) is satisfied, for instance, for the class M(S) of all finite measures
and for the class N(S) of all integer-valued measures.

We use notation (f, u) for the integral of f with respect to a measure u. Denote
by Z the class of functions

(1.7) Z:eXp{_Z<fiaXQi>}

where @; € O and f; are positive measurable functions on S. We say that X =
(Xq,Pu),Q €O, € Mis a branching system if

1.3.A. For every Z € Z and every p € M,

(1.8) P,Z = e (wm
where
(1.9) u(y) = —log P,Z

and Py = P(;y.

2By the family history we mean the path of a particle and all its ancestors. If the family
history starts at (r,z), then the probability law of this path is II, .

3A kernel from a measurable space (E1,B1) to a measurable space (Ez,B2) is a function
K(z,B) such that K(z,-) is a measure on By for every z € E; and K (-, B) is an Bj-measurable
function for every B € By.
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Condition 1.3.A (we call it the continuous branching property) implies that

P.Z=][P.2

forall Z € Z if pp,m=1,2,... and p = py belong to M.
A family X is called an exit system if:

1.3.B. For all 4 € M and @ € O,
P{Xq(@Q)=0}=1.
1.3.C. If p € M and p(Q) =0, then

P{Xq=p}=1

Finally, we say that X is a branching exit Markov [BEM] system, if Xg € M
for all @ € O and if, in addition to 1.3.A-1.3.C, we have:

1.3.D. [Markov property.] Suppose that Y > 0 is measurable with respect to the
o-algebra Fq generated by X/, Q" C @ and Z > 0 is measurable with respect to
the o-algebra F~¢ generated by Xgv, Q" D Q.

Then

(1.10) P.(YZ) = P,(YPx,Z).

It follows from the principles (1)-(4) stated at the beginning of section 1.2 that
conditions 1.3.A-1.3.D hold for the systems of random measures associated with
branching particle systems. For them S = R x E, M = N(S) and O is a class of
open subsets of S.

1.4. Transition operators. Let X = (X, P,),Q € O,u € M be a family
of random measures. Denote by B the set of all bounded positive Bg-measurable
functions. Operators Vg, @ € O acting on B are called the transition operators of
X if, for every p € M and every @ € O,

(1.11) p#(;(leQ) e\ CIND
If X is a branching system, then (1.11) follows from the formula
(1.12) Vo(f)(y) = —log PjeXe) for f e B.

In this chapter we establish sufficient conditions for operators Vg to be transi-
tion operators of a branching exit Markov system. In the next chapter we study a
special class of BEM systems which we call superprocesses.

A link between operators Vg and a BEM system X is provided by a family of
transition operators of higher order Vg, . o.. We call it a V-family.

.....

2. Transition operators and V-families

2.1. Transition operators of higher order. Suppose that

(21) P#eXp[_<f1aXQ1> - <fn’XQn>])
=exp[— (V... (f1,- -5 fn), )]
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forall p e M, f1,...,fn € B and @Q1,...,Q, € 0. Then we say that operators
,,,,, Q.. are the transition operators of order n for X. Condition (2.1) is equivalent
to the assumption that X is a branching system and that

»»»»» Qn(fla ) fn)(y) = _1OgPyeXp[_<flaXQ1> - <fnaXQn>]a
fl;---;fn eB,ye S.
[For n = 1, formulae (2.1)—(2.2) coincide with (1.11)—(1.12).]

We use the following abbreviations. For every finite subset I = {Q1,...,Qn}
of O, we put

(22) VQl

XI = {XQla"'aXQn}afI = {fla"'afn}’

(fr, X1) =Y (fis Xau)-

=1

(2.3)

In this notation, formulae (2.2) and (2.1) can be written as

(2.4) Vi(fr)(y) = —log Pye {/rX0)
and
(2.5) Pue%f“xf> = e~ Vilfn).1)

If X satisfies condition 1.3.C, then:

2.1.A. Forevery Q; € I, Vi(fr) = fi+V1,(f1,) on Q5 where I; is the set obtained
from I by dropping Q);.
Indeed,
<fIaXI> = <flaXQ1> + <fli5XIi>
and (fi, Xq,) = fi(y) Py-a.s. ify € Q.
For a branching exit system X, the Markov property 1.3.D is equivalent to:

2.1.B. If @ C Q; for all Q; € I, then

(2.6) VoV = V.
Formula (2.6) can be rewritten in the form
(2.7) Vifr) = Vallg-Vi(fn)] for all fi.

PROOF. It follows from (2.5) that
e~ Ve Vi(fr).m) — P#€*<VI(J"I)7XQ> = P, Px, e~ 1. X1)
If Q C Q; for all Q; € I, then (fr, X1) € F5¢ and 1.3.D implies that the right side

is equal to
p‘ue%beI) — o~ Vi(fr)sm)

Hence (2.6) follows from 1.3.D. By 1.3.B, for every F', the value of Vi (F') does not
depend on the values of F' on Q. Therefore (2.7) and (2.6) are equivalent.
To deduce 1.3.D from 2.1.B, it is sufficient to prove (1.10) for

Y = e*(fIyXﬁ, 7 — o~ 1 X5p)

where I = {Q1,...,Qn}, I = {Q1,...,Qm} with Q; C Q C Q;. Note that YZ € Z.
By 1.3.A, the same is true for Y Px,Z. Therefore (1.10) will follow from 1.3.A if
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we check that it holds for all 4 = §,. We use the induction in n. The condition
(2.6) implies

(2.8) P.Z = P,Px,Z.

Hence, (1.10) holds for n = 0. Suppose it holds for n— 1. If y € Q¢, then, by 1.3.C,
PAY = e fi®Y;} =1 where V; = e~ /1:X1:) | and we have

PYZ=elWPY,Z = WP, (YiPx,Z) = P,(Y Px,Z)

by the induction hypothesis. Hence (1.10) holds for d, with y not in the intersection
Qr of Q; € I. For an arbitrary y, by (2.8), P,YZ = P,Px, YZ. By 1.3.B, Xq, is
concentrated, Py-a.s. on Q¢ and therefore

PXQI YZ = PXQI (YPXQ Z).
We conclude that
PYZ = PyPXQI (YPXQ Z) = Py(YPXQ Z).
O

Transition operators of order n for a BEM system can be expressed through
transition operators of order n — 1 by the formulae

(2.9) Vi(f1) = fi + Vi,(f1r,) on Qi for every Q; €1,

(2.10)  Vi(fr) = V,[1¢Vi(fr)] where Qr is the intersection of all Q; € I.

Formula (2.9) (equivalent to 2.1.A) defines the values of Vi(fr) on Q$. Formula
(2.10) follows from (2.7). It provides an expression for all values of V7(fr) through
its values on Q.

Conditions (2.9)—(2.10) can be rewritten in the form

(2.11) Vi =Vo, Vi
where

(2.12) Vi) = {fﬁVzi(fzi) on Qf,

0 on Q.

2.2. Properties of V. We need the following simple lemma.

LEMMA 2.1. Let Y be a positive random wvariable and let 0 < ¢ < oo. If
Pe Y < e ¢ for all A > 0, then P{Y > ¢} = 1. If, in addition Pe™Y = e™¢,
then P{Y = ¢} = 1.

PROOF. If ¢ = oo, then, P-a.s., e™*Y = 0 and therefore Y = oco. If ¢ < oo,
then Pe=*(Y=¢) < 1 and, by Fatou’s lemma, P{)\lim e MY =9} < 1. Hence, P{Y >

¢} = 1. The second part of the lemma follows from the first one. g

THEOREM 2.1. Transition operators of an arbitrary system of finite random
measures X satisfy the condition:

2.2.A. Forall Q € O,
(2.13) Vo(fn) =0 as fnlO.

A branching system X is a branching exit system if and only if:
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2.2.B.

Vo(f)=Vo(f) iff=F onQ-.
2.2.C. For every Q € O and every f € B,
Vo(f)=f onQ°.
PROOF. 1°. Property 2.2.A is obvious. It is clear that 1.3.B implies 2.2.B and
1.3.C implies 2.2.C.
2°. If 2.2.B holds, then Vg(1g) = Vo(0) = 0 and therefore P,e™*2(@ =1
which implies 1.3.B.

3°. It follows from 2.2.C and (1.11) that, if 4(Q) = 0, then, for all f € B and

all A > 0,
P MhXQ) — g= M

and, by Lemma 2.1,
(214) <fa XQ> = <fa /L> P#—a.S.

Since there exists a countable family of f € B which separate measures, 1.3.C
follows from (2.14).
O

2.3. V-families. We call a collection of operators Vi a V-family if it satisfies
conditions (2.9)—(2.10) [equivalent to (2.11)-(2.12)] and 2.2.A. We say that a V-
family and a system of random measures correspond to each other if they are
connected by formula (2.1).

THEOREM 2.2. Suppose that operators Vo, Q € O satisfy conditions 2.2.A-
2.2.C and the condition

2.3.A. ForallQcC Q€ O,
VoV = Vg
Then there exists a V-family {Vr} such that Vi = Vg for I = {Q}.

PROOF. Denote by |I| the cardinality of I. For |I| = 1, operators Vi are
defined. Suppose that Vi, subject to conditions (2.9)-(2.10), are already defined
for |I| < n. For |I| = n, we define V; by (2.9)—(2.10). This is not contradictory
because

fi + Vll(fll) = fj +V1j (flj) = fl +fj + Vlij(flij) on Qf N Q;
By 2.2.B it is legitimate to define Vi (fr) on Qr by (2.10). O

3. From a V-family to a BEM system

3.1. P-matrices and N-matrices. First, we prepare some algebraic and an-
alytic tools.
Suppose that a symmetric n x n matrix (a;;) satisfies the condition: for all real

numbers t1, ..., t,,
n
Z aijtitj Z 0.
i,j=1
In algebra, such matrices are called positive semidefinite. Some authors (e.g.,
[BJR&4]) use the name positive definite. We resolve this controversy by using
a short name a P-matriz.
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We need another class of matrices which are called negative definite in [BJR84].
[This is inconsistent with the common usage in algebra where negative definite
means (—1)x positive definite.] We prefer again a short name. We call an n x n
symmetric matrix an N-matriz if

n
Z aijtitj S 0

1,j=1

for every n > 2 and all ¢y, ..., ¢, € R such that Y ¢, = 0.
The following property of these classes is obvious:

3.1.A. The classes P and N are closed under entry wise convergence. Moreover,
they are convex cones in the following sense: if (B, B, n) is a measure space, if a;;(b)
is a P-matrix (N-matrix) for all b € B and if a;;(b) are n-integrable, then

iy = [ aOn(a)

is also a P-matrix (respectively, an N-matrix).
Here are some algebraic properties of both classes.

(1) A matrix (a;;) is a P-matrix if and only if it has a representation

m

Aij = Z qikdjk

k=1

where m < n.

This follows from the fact that a quadratic form is positive semidefinite if and
only if it can be transformed by a linear transformation to the sum of m < n
squares.

(ii) If (a;;) and (b;;) are P-matrices, then so is the matrix ¢;; = a;;b;;.
Indeed, by using (i), we get
Z cijlit; = Z Zbij(%’kti)(%’ktj) > 0.
ij ko dj
(i) If (a;;) is a P-matrix, then ¢;; = e* is also a P-matrix.
This follows from (ii) and 3.1.A.
(iv) Suppose that a (n +1) x (n + 1) matrix (a;;)j and an n x n-matrix (b;;)}
are connected by the formula
(31) bij:—aij—kaio—ka()j—aoo, i,j:l,...,n.
Then, for all ¢g,...,t, such that to +---+1t, =0,
n n
Z aijtitj = — Z bijtitj-
i,j=0 i,j=1
Therefore (a;;) is an N-matrix if and only if (b;;) is a P-matrix.
Now we can prove the following proposition:

3.1.B. A matrix (a;;) belongs to class N if and only if ¢;;(\) = e % is a
P-matrix for all A > 0.
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PRrROOF. 1°. First, we prove that if (a;;) is an N-matrix, then (¢;;())) is a P-
matrix. Clearly, it is sufficient to check this for A = 1. Define (b;;) by formula (3.1)
and note that

Cij = ebid g~ i0 g™ 30 p@00
The first factor defines a P-matrix by (iii), and e~ *®e~%0 is a P-matrix by (i). The
product is a P-matrix by (ii).

2°. Now suppose that ¢;j(A) = e *%i is a P-matrix for all A\ > 0. Clearly,
[1 —¢i;(A)]/A is an N-matrix. By passing to the limit as A — 0, we get that (a;;)
is in class N. O

3.2. P-functions and N-functions. Suppose that G is a subset of a linear
space closed under the addition and the multiplication by constants a > 0. (We
deal with G = B and, more generally, G = B".) We say that a real-valued function
on G is a P-function if, for every n > 1 and for all f1,..., f, € G

(3.2) aij = u(fi+ f;)
is a P-matrix. We call u an N-function if the matrix (3.2) is an N-matrix for every
n>2andall fi,..., f, € G.

3.2.A. If u is a P-function, then, for all f,

(3.3) u(f) >0 and u(f)? < u(2f)u(0).
If, in addition, u is bounded, then, for all f,
(3.4) u(f) < u(0).

PROOF. The first inequality in (3.3) holds because a 1 x 1-matrix u(f/2+ f/2)
is a P-matrix. The second inequality is true because the determinant of a 2 x 2

P-matrix
( u(2f)  u(f) )
u(f)  u(0)
0 if u(0) = 0. If w(0) > 0, then v(f) = u(f)/u(0)
v(2f) which implies that, for every n,

is positive. By (3.3), u(f) =
satisfies the condition v(f)? <

u(f)* < (2"f).
If v is bounded, then the sequence v(f)?" is bounded and therefore v(f) <1. O

3.3. Laplace functionals of random measures. Let (X, P) be a random
measure on (S, Bg). The corresponding Laplace functional is defined on f € B by
the formula
(3.5) L(f) = Pe~ %0 = / e~ X @) P(dw).

Q

THEOREM 3.1. A function u on B is the Laplace functional of a random measure
if and only if it is a bounded P-function such that

(3.6) u(fn) —1 as fr, | 0.

It is clear that a Laplace functional has all the properties described in the
theorem. To prove the converse statement, we use the Krein-Milman theorem on
extreme points of convex sets in topological linear spaces H (see, e.g., [BJR84],
Section 2.5). Recall that a set K in H is called convex if it contains, with every
u,v € K, a point pu+ qv where p,q > 0,p+¢q = 1. A point p € K is called extreme
if a relation p = pu 4+ qv with u,v € K, p,q > 0,p+ g = 1 implies that u = v = p.



52 3. BRANCHING EXIT MARKOV SYSTEMS

The Krein-Milman theorem holds for all locally convex Hausdorff topological
linear spaces but we need only a special case formulated in the next proposition:

PROPOSITION 3.1. Let G be an arbitrary set and let H = H(G) be the space of
all bounded functions on G endowed with the topology of pointwise convergence.

Suppose that K is a compact conver subset of H and that the set K. of all
extreme points of K is closed. Then every u € K can be represented by the formula

(3.7) u(f) = /K p(F)(dp)

where v is a probability measure on K..

We apply Proposition 3.1 to H(B) and to the class K of all bounded P-functions
u on B subject to the condition u(0) =1 (we get this condition from (3.6) by taking
fn = 0). By 3.2.A, K is contained in the space of all functions from B to [0, 1]
which is compact with respect to the topology of pointwise convergence (see, e.g.,
[Kel57b], Chapter 5, Theorem 13 or [Kur66], section 41, Theorem 4). Being its
closed subset, K is also compact.

The first step in the proof of Theorem 3.1 is the following: *

PROPOSITION 3.2. A function p on B belongs to K. if and only if:

(3-8) p(f +9) = p(f)plg)  for all f,g,
(3.9) 0<p(f) <1 forall f andp(0)=1.
PROOF. Suppose that p in K.. Fix g € B and consider a family of functions

px(f) = p(f) +Ao(f +9)
where \ € R. Note

(3.10) > oalfi + fi)tity = p(0) + Ap(g)
where
i(9) =Y titip(fi + i +9).

For all s, and g,

> saspilga +98) = Y tiatipp(fia + fin)

a,B a,i;0,J
with t;o = t;Sa, fia = fi + go- Hence, p is a P-function. By (3.4), p(g) < p(0) and
therefore (3.10) implies that, for |A| < 1, py is a P-function . Since p € K, it satisfies
(3.9). To prove (3.8), we note that ¢ = [1 — p(g)]/2 > 0 and p = [1 + p(9)]/2 > ¢.
If ¢ > 0, then p = pu + qv where u = p1/(2p),v = p_1/(2q). Since p is extreme,
p = u. Hence, p(f) = [p(f)+p(f +9)]/[1+ p(g)] which implies (3.8). If ¢ = 0, then
p—1(0) = 0. Therefore, for all f p_1(f) = 0 by (3.4), and p(f + g) = p(f) which
also implies (3.8) because p(g) = 1.

Now suppose that p satisfies conditions (3.8)—(3.9). By using (3.8), we check

that p is a P-function. Suppose that p = pu+qv where u,v € K,p,q > 0,p+q = 1.
By (3.3), u(f)? < u(2f),v(f)? < v(2f) and therefore

(3.11) pu(f)® +qu(f)* < pu2f) + qu(2f) = p(2f) = p(f)* = [pu(f) + qu(f)]*.
Since ¢(t) = t? is a strictly convex function, (3.11) implies u(f) = v(f) = p(f).
Hence p € K.. O

“In [BJR84], functions p with the properties (3.8)~(3.9) are called bounded semicharacters.
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PROOF OF THEOREM 3.1. Suppose that p satisfies conditions (3.8)—(3.9) and,
in addition,

(3.12) o(fn)—1 as f, 0.

For every f and every n, p(f) = p(f/n)", and (3.12) implies
(3.13) p(f) > 0.

It follows from (3.8), (3.12) and (3.13) that

(3.14) I/p(B) = —10gp(1B),B € Bs

is a finite measure on S and moreover (f,v,) is measurable in p for every f € B.
Denote by K. the set of p € K, which satisfy (3.12). If

(3.15) V(K \ Kp) =0,
then, by (3.7) and (3.14),

u(f)= [ e r(dp

and therefore u(f) is the Laplace functional of the random measure (v,, 7).
In fact, the assumption (3.6) does not imply (3.15). It implies a weaker condi-
tion:

(3.16) If f, | 0, then p(f,) — 1 for y-almost all p.
Indeed, by (3.8), p(fr) is an increasing sequence and, if p(f,) 1 B(p), then, by (3.7)

[ Btortap) =tim [ p(furtdp) = timu ) = 1.

By (3.9), 8(p) < 1. Hence, S(p) = 1 for y-almost all p.

Fortunately, by a result on the regularization of pseudo-kernels ([Get75], Propo-
sition 4.1), the property (3.16) is sufficient to define v, € M(S) such that, for every
f, {f,v,) is measurable in p and

(f,v,) =—logp(f) for v-almost all p.

We have
uh = [ otntin) = [ e
and therefore, u is the Laplace functional of the random measure (v, 7). O

The probability distribution of a random measure (X, P) is a probability mea-
sure P on the space M(S) of finite measures on S. The domain of P is the o-algebra
generated by functions Fp(u) = u(B), B € Bs. The Laplace functional of (X, P)
can be expressed through P by the formula

= e~ ) V).
L(f) /M(S) P(dv)

The Laplace functional of a probability measure P on M(S)" is defined by the
formula

(3.17) Lo(fi,..., fn) = /e’<f1"’1>""’<f"’”">73(d1/1, o dvy).

By identifying M (S)™ with the space of finite measures on the union of n copies
of S, we get a multivariant version of Theorem 3.1:
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THEOREM 3.2. A functional u(fi,..., fn) on B™ is the Laplace functional of
a probability measure on M(S)™ if and only if it is a bounded P-function with the

property

(3.18) u(fiyooofa) =1 as fi 10, fy L 0.

3.4. Constructing a BEM system. We say that a function v from G to B
is an N-function if, for every z, u(f)(x) is a real-valued N-function. By 3.1.A, this
implies (u(f), p) is in the class N for all p € M(S). The class of P-functions from
G to B is defined in a similar way.

THEOREM 3.3. A V-family V.= {V;} corresponds to a BEM system if and only
(a) Vg satisfy conditions 2.2.A-2.2.C" and 2.3.A;

(b) for every I, Vi(f{) — 0 as f{ | 0;

(¢c) for every I, Vi is an N-function.

PROOF. If V corresponds to a BEM system, then (a) follows from Theorem 2.1
and 2.1.B, and (b)—(c) follow from (3.18) and 3.1.B.

Suppose that V satisfies (a)—(c). If |I| = n, then, by 3.1.A, for every u € M(S),
(Vi(f1), p) is an N-function and, by 3.1.B, L, 1(fr) = e~ {V1U/1):#) is an P-function.
By Theorem 3.2, L,, ; is the Laplace functional of a probability measure on M (S)™.
These measures satisfy consistency conditions and, by Kolmogorov’s theorem, they
are probability distributions of X relative to P, for a system X of random measures
(Xq, P.). By Theorem 2.1 and 2.1.B, X is a BEM system. O

THEOREM 3.4. Suppose that operators Vg acting in B satisfy conditions 2.2. A~
2.2.C and 2.5.A. They are the transition operators of a BEM system if, in addition:

3.4.A. For every n and every N-function U from B™ to B, VQU is also an N-
function.

PRrROOF. By Theorem 2.2, Vg are a part of a V-family {V;}. We need only
to check that this family satisfies conditions (b)—(c) of Theorem 3.3. We use the
induction in n = |I|. For n =1, (b) follows from 2.2.A and we get (c) by taking an
identity map from B to B for U in 3.4.A. Let V; be given by (2.12). Clearly, if V;,
satisfy (b)-(c), then so does V7. By (2.10) and 3.4.A, the same is true for V;. By
induction, (b)—(c) hold for all I. O

3.5. Passage to the limit. Transition operators not satisfying 3.4.A can be
obtained by a passage to the limit. We denote by B. the set of all Bg-measurable
functions f such that 0 < f < ¢ and we put ||f|| = supg | f(y)| for every function f
on S. Writing V¥ % V means that V* converges to V uniformly on each set B..

THEOREM 3.5. Suppose that X* is a sequence of BEM systems and that VQk
are the transition operators of X*. If VQk = Vg for every @ € O and if Vg satisfies
the Lipschitz condition on every B., then Vg are the transition operators of a BEM
system.

The proof is based on Theorem 3.3 and two lemmas.

Put [[fl| = max{|[fill,...,[[fall} for f = (f1,...,fn) € B". Writing f € By
means that 0 < f; <cfori=1,...,n.
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LEMMA 3.1. Suppose that V¥ are operators from B to B, VF L V and V
satisfies the Lipschitz condition on each B.. Suppose that VE are operators from
B™ to B, VE SV oand V satisfies the Lipschitz condition on each BY. Then
VFVE L VY and VV satisfies the Lipschitz condition on each BY.

PROOF. We have
IVE(F) = V(I <ex(e) for f € B,

IVE() = V(DI < éle)  for f e B

with ex(¢) + &x(c) — 0 as k — oo. There exist constants a(c) and a(c) such that
V() =Vl <a(@llf —gll forall f,ge B,

V() = V(@ <ale)llf -3l forall f,g € B

By taking g = g = 0, we get

(3.19)

(3.20)

(3.21) V(NI cae) for feBey  [[V()I < cile) for feB.
Note that o o
IVFIVED] = VIVIOII < a(k) + h(k)
where
q(k) = [VFIVF())] = VIVFA)I
and

h(k) = |VIVED)] = VIVDII-
For all sufficiently large k and for all f € BY, |[V*(f) — V(f)|| <1 and, by (3.21),
IVE()| < é = calc) + 1. By (3.19), q(k) < ex(¢1). By (3.20) and (3.19),
h(k) < a(@)IV*(f) = V(DI < a(@)ér (o).
Therefore VEVF 2% VV. We have
VIV = VIV@IIl < a@)IV(H) = V@) < a@)ale)| f - al.-
O

LEMMA 3.2. Suppose V* is a sequence of V-families and let Vé“ satisfy the
conditions of Theorem 3.5. Then

(i) a limit Vi(f) of VE(f) exists for every I = (Q1,...,Qn) C O and every
f:(fla"'afn) GBH;

(i) the convergence is uniform on every set BY;
(i5i) Vi(f) satisfies the Lipschitz condition on every B?;
PROOF. By (2.11)-(2.12)

(3.22) VE=Vh VE

where

(3.23) vE_ ) fi T VE(fry o @,
! 0 on Qr

and therefore, for all k, m,

|f/]]j(f11)_‘~/[7:l(fll> on Qlca

(3.24) \VE(fr) = Vi ()l = {0 on Q.
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If conditions (i)-(iii) hold for V¥, then, by (3.24), they hold for V} and, by Lemma
3.1, they hold for V7. O

PRrROOF OF THEOREM 3.5. It is sufficient to prove that operators V; defined in
Lemma 3.2 satisfy the conditions (a)—(c) of Theorem 3.3. The property (ii) implies
that (b) and (c) for V; follow from analogous properties for V. The same is true for
2.2.A, 2.2.B and 2.2.C. The condition 2.3.A follows from (ii) and Lemma 3.1. O

3.6. Extension of class M. Suppose that X = (X, P,),Q € O,p e Misa
branching exit system. We get a new branching exit system by extending class M
to the class o(M) of all measures p1 = Y 1° pin, where p,, € M and by defining P, as
the convolution of measures P, . For every Z € Z,

(3.25) P.Z =[] Pu.2

By using this formula, it is easy to check that 1.3.A holds for the extended system.
Condition 1.3.B holds because, if Y = X (Q) and p € (M), then, for every A > 0,

—AY _ -AY
Pe = HP#ne

and by tending A to +oo, we get P, {Y =0} = [[P.,.{Y=0}=1.
By 1.3.C, P,e M/X@) = ¢~ M) for 2 ¢ Q. If u(Q) =0, then, by 1.3.A,
P IXa) — =Mfm)

and property 1.3.C follows from Lemma 2.1 [which is true also for infinite measures|.

4. Some properties of BEM systems

4.1. CB-property. We say that a CB-property holds for a positive measur-
able function Z and a measure p € M if

(4.1) log P, Z = /1og P,Z u(dy).
Note that this condition is equivalent to

(4.2) P,Z = e (wm)

where

(4.3) u(y) = —log P, Z.

By 1.3.A, this is true for all Z € Z and all p € M. Suppose that Z, | Z and

0<Z,<1. Then P,Z, | P,Z and 0 < —log P,Z,, T —log P,Z. By the monotone

convergence theorem, the condition (4.1) holds for Z, u if it holds for Z,, .
Denote by Y the class of functions

Y = (i X))
1

where Q1,...,Qn, - € Qand fi,..., f,,... are positive Bg-measurable functions.

PROPOSITION 4.1. If Y € Y, then the CB-property holds for {Y = 0} and all
we M.

Indeed, if Y, = 37" (fi, Xo,), then Z™ = e~™¥m belongs to Z for all n and
Zm | 1y, —o as n — oo. Hence the CB-property holds for {Y,, = 0} and p. It
remains to note that {¥;;, =0} | {Y =0} as m — oc.
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PROPOSITION 4.2. IfY1,Ys € Y and if u(Q°) = 0 then the relation
(1.4) Vi =0} c (v, =0}
holds P,-a.s. if it holds Py-a.s. for ally € Q.

PROOF. The relation (4.4) is equivalent to {Y; = 0} = {Y1 + Y2 = 0} which
holds P,-a.s. if and only if P,{Y: =0} = P,{Y1 +Y> = 0}. O

4.2. Writing “a.s.” means “almost sure with respect to all P, u € M”.

THEOREM 4.1. Suppose that X = (Xg,P.),Q € O, € M is a BEM system
and let Q1 C Q2 be elements of Q. Then:

4.2.A.
{XQI = O} C {XQ2 = 0} a.S..
4.2.B. For every u € M and every bounded measurable function f on M x M,
P#f(XQl ) XQz) = P#F(XQl)
where
F(v) = P, f(v, Xqs,)-
4.2.C. If 0 < 1 < w9 and @2 =0 on Q2, then

<</71aXQ1> < <<P2aXQ2> a.s.

4.2.D. IfT C Q$, then Xo, (') < Xg,(T') a.s.
Proor. By 1.3.D,
P{Xqg, =0,Xq, #0} = Pulxq, =0Pxq, {Xg, #0} =0

which implies 4.2.A.

Bounded functions f for which 4.2.B is true form a linear space closed under
the bounded convergence. By the Markov property 1.3.D, this space contains all
functions fi(v1)f2(v2). By the multiplicative systems theorem (see Theorem 1.1 in
the Appendix A), it contains all bounded measurable functions.

To prove 4.2.C, we consider

F(v) = P{{p1,v) < (2, Xq,)}-
By 4.2.B,
(4.5) Pu{{p1, Xq,) < (02, X@.)} = Pu F(Xq,).
Let v/ be the restriction of v to Q5. For all A > 0, by 1.3.A and 1.3.C,

PVS*MLszXQz) < Py/e*MLszXQz) — o Mw2t) M) =AM )

By Lemma 2.1, this implies F(v) = 1 and 4.2.C follows from (4.5).
To get 4.2.D, it is sufficient to apply 4.2.C to ¢1 = 2 = 1r. O
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5. Notes

5.1. Branching particle systems corresponding to a diffusion £ were stud-
ied, first, in [Sko64]. Special classes of such systems were investigated earlier
in [Sev58]. A general theory of branching particle systems was developed in
[INW68|-[INWE69|.

In earlier papers, a superdiffusion was interpreted as a Markov process X; in
the space of measures. A reacher model based on the concept of exit measures has
been introduced in [Dyn91c] in the time homogeneous case and in [Dyn92] in
the time inhomogeneous setting. In [Dyn93|, an integral equation describing the
joint probability distribution of Xgq,, ..., Xg, was introduced and solved, and the
Markov and the branching properties were proved.

An alternative approach based on the concept of a historical process was de-
veloped by Dawson and Perkins in [DP91]. ® A historical process is a family X of
random measures (Xt, P,) on the space S of paths in S. Exit measures for X can

be expressed in terms of X (see [Dyn91b]).

5.2. In the presentation of the properties of N-functions and their relations
to P-functions, we follow the book [BJR&84]. Theorem 3.1 is due to Fitzsimmons
(see the Appendix in [Fit88]).

5More on this approach can be found in section 14.11.



CHAPTER 4

Superprocesses

We define a superprocess as a BEM system with the transition operator sat-
isfying a certain integral equation. We construct superprocesses by two different
methods. The first one uses a passage to the limit from branching particle systems.
The second method is based on Theorem 3.3.4.

1. Definition and the first results

1.1. Definition of a superprocess. We denote by Ry the half-line [0, c0).
We say that a BEM system

X:(XQ,P#), QG@,/LGM(S)

is a (&, v)-superprocess if O is a class of open subsets of S = Rx E, if £ = (&, 11, ;) is
a right continuous strong Markov process, 1)(z,t) is a positive function on S x R
and if the transition operators Vg of X satisfy the condition: for every f € B,
u = Vg(f) is a solution of the equation

(1.1) u+ Gov(u) = Kof.

Here K¢ is the Poisson operator defined by 2.(3.1), G is Green’s operator defined
by 2.(5.13) and v(u) means ¥(r, z; u(r, x)).

1.2. Gronwall’s lemma and its application. Does equation (1.1) deter-
mine uniquely Vo? The answer is positive for a wide class of sets () and functions
.

Put Q € Qp if @ is an open subset of S and if Q C A x E for some finite
interval A.This is equivalent to the condition:

1.2.A. There exists a constant N such that 7(Q) — r < N for all paths of £
starting from (r,z) € Q.

We use the following modification of Gronwall’s inequality:

LEMMA 1.1. Let 7 be the first exit time from Q € Qg. If a positive bounded
function h(r,x) satisfies the condition:

(1.2) hir,z) <a+ quE/ h(s,&) ds inQ

for some constants a and q, then

(1.3) h(r,z) < all, et in Q.
PROOF. Suppose that h < A. We prove, by induction, that

(1.4) h(r,z) <TI, ; Y, (r)

59
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where
r)"

A Gt N G
Ya(r)=a) q" =+ A"
k=0
Clearly, (1.4) holds for n = 1. If it is true for n, then, by (1.2),

(1.5) h(r,z) <a+ qHT,m/ I, ¢, Y, (s) ds in Q.

By the Markov property 2.(2.3),
IO ;15500 ¢ Yo (s) =11 5 1,5Y,(s) forall (r,z) € Q

because {7 > s} C {7 = 75} where 7, is the first after s exit time from @ and 75 is
F>s-measurable. Hence, the right side in (1.5) is equal to

a+ qHT,m/ Yo (s) ds =11, ;Y 41(r)
and (1.4) holds for n + 1. Bound (1.3) follows from (1.4) and 1.2.A. O

THEOREM 1.1. Suppose that Q € Qg and (z,t) is locally Lipschitz continuous
in t uniformly in z, i.e., for every ¢ > 0, there exists a constant q(c) such that

(1.6) [(z;u1) — ¥(z;u2)] < q(e)|ur —ua|  for all z € S, uq,uq € [0, .

Then equation (1.1) has at most one solution. Moreover, if u satisfies (1.1) and if
U+ Goy(a) = Kqf, then

(1.7) u—al < efON|f—f| forall f,f € B,

where N is the constant in 1.2.A.
Suppose ¥ (z,0) is bounded and ug + Goy(ug) = Kofs. If f € B. and || fz —
fll = 0 as 8] 0, then there exists a solution u of (1.1) such that

(1.8) lug —ul] < eq<2C)N||fg — fll for all sufficiently small 3.
PrOOF. By (1.1), [lul| < ||f], @]l < || f]l and
u—1=Kq(f = f)+ Gl (@) — p(u)).
Put h = |u —4|. By (1.6), |(a) — ¥ (u)| < q(c)h and therefore
h<||f = fll +a(e)Goh

and (1.7) follows from Gronwall’s inequality (1.2).
If f € B., then for all sufficiently small 3, fg € Ba. and, by (1.7), for sufficiently
small 8 and 3,
lup = ugl < "N f5 — f5]
which implies the existence of the limit v = limug and the bound (1.8). By (1.6),

P(ug) < ¥(0) + 2cq(2¢) and, by the dominated convergence theorem, u satisfies
(1.1). O

REMARK. Similar arguments based on Gronwall’s lemma show that, if
(2, t) — (2, 1) <e(c) forall z € S,te0,c]
and if @ + Goi(a) = Ko f, then
u—al < Ne®®Ne(c).
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1.3. BEM systems corresponding to branching particle systems. We
return to the branching particle system and the corresponding BEM system X =
(Xq, P,) described in section 3.1.2. Recall that such a system is determined by a
right continuous strong Markov process £ = (&, 11, 5), a set of probabilities p, (¢, )
describing a branching and a parameter k£ defining the life time probability distri-
bution. If X is an associated BEM system, then

Vo(f) = —logw
where
(1.9) w(r, z) = P e~ fXa),

We introduce an offspring generating function
o(t, x; 2) antx , 0<2z<1.

The four principles stated at the begmmng of section 3.1.2 imply
(1.10)  w(r,z) =1I,, [ek(TT)ef(T’gf) + k/ e 7RG ds (s, gy w(s, &)

where 7 is the first exit time of (¢,&) from (. The first term in the brackets
corresponds to the case when the particle started the process is still alive at time
7, and the second term corresponds to the case when it dies at time s € (r, 7). [If
N is a random measure equal to nd(s ) with probability p,(s,y), then

Pye=fXe) ansy )" = (s, y3w(s, y)).]

1.4. An integral identity. We simplify equation (1.10) by using the follow-
ing lemma which has also other important applications.

LEmMmA 1.2. If

(1.11) w(r,z) =1, [ek(TT)U(T, &)+ /T e (s, &) dS] :
then
(1.12) (r,z —|—er/ kw(s, &) ds =11, 4 |:’U,(7',§7-)—|—/ v(s, &) ds].

PRrROOF. Note that
H(r t) = e k¢

satisfies the relation

¢

(1.13) k/ H(s,t) ds=1—H(r,t)
and that

(1.14) w(r,z) =1, (Y, + Z,)
where

}/s = H(Sa T)U(Ta g"')’

Zs = /T H(s,t)v(t,&) dt



62 4. SUPERPROCESSES
By (1.14) and Fubini’s theorem,

Hr,m/ kw(s, &) ds :/ KL, 3l I e, (Ys + Zs) ds.

By the Markov property 2.(2.4),
Hr,m15<‘rHs,§s (}/s + Zs) - Hr,m15<‘r(}/s + Zs)

and therefore
(1.15) w(r,z) + T, , /T kw(s, &) ds =, (I, + 1)
where '
I = H(r,m)u(t, &) + k/TYS ds and I = /T[H(r, s)u(s,&s) + kZs] ds.

By (1.13) and Fubini’s theorem

h=u(r&), L= [ owe)d,
and (1.12) follows from (1.15). O

1.5. Heuristic passage to the limit. By applying Lemma 1.2 to u(s,z) =
e~/ and (s, z) = keo(s, z;w(s, x)), we get the following result:

THEOREM 1.2. Let Vi be the transition operators of X. Then for every f € B,
function v = Vg (f) satisfies the equation

(1.16) eV 10, [k [ as.giemee)) ds i

where
D(t,z;2) = p(t,x;2) — 2.

Assuming that all particles have mass 3, we get a transformed system of random
measures X° = (Xg, Pf), w € MP where

M? = BM, X[, = fXq, P} = Py.

The transition operators of X? are related to the transition operators of X by the
formula VQﬁ (f) = Vo(Bf)/8 and therefore (1.16) implies the following equation for

vg =V (f)

(1.17) e Pus(ne) — 11, [ / k®(s, £g; e PUa(5:8)) dg 4 e=AI(TE0)

T

Note that (1.17) is equivalent to the equation

(1.18) ug(r, r)+ IL, . / 1/)ﬁ(5a &ss ug(s, §s)) ds = Hr,me(Ta &)
where

(1.19) ug=[L—e2]/B, fa=[1—-e"]/p

and

(1.20) Ya(r,z;u) = [pp(r,x; 1 — fu) — 1+ Bulkg/B  for fu < 1.
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[We assume that parameters ¢ and k depend on . Since fug = 1— e Pvs < 1, the
value ¢g(r, z; 1 — Bug) is defined.] Equation (1.18) can be rewritten in the form

(1.21) ug + Goplug) = Ko fs.

Suppose that 3 — 0. Then fz — f. If 93 — 9, then we expect that ug tends
to a limit u which is a solution of the equation (1.1).

2. Superprocesses as limits of branching particle systems
2.1. We use the bounds
0<1—e?<1AN,
@1) 0<e—14+A<AAN

for all A > 0. Put

(2.2) e(\) =e =14
Since, for u > 0,0 < €’'(u) =1 —e* < 1 Awu, we have
(2.3) le(uz) — e(Aup)| < (1Ve)AAN)|ug —uq|  for all ug,us € [0, c].

2.2. A class of superprocesses.

THEOREM 2.1. A (&, 1)-superprocess exists for every function
(2.4) Y(r, z;u) = b(r, v)u? —|—/ (™ — 1 4 Mu)n(r, z; dN)
0

where a positive Borel function b(r,x) and a kernel n from (S, Bs) to Ry satisfy
the condition

(2.5) b(r, x) and/ AANn(r, 2;d))  are bounded.
0

REMARK. The family (2.4) contains the functions
(2.6) P(u) = const. u®, 1 < ar < 2

that correspond to b = 0 and n(d)\) = const. \~(1+®) g,
Theorem 2.1 can be proved for a wider class of ¢ (see [Dyn93]). We restrict
ourselves by the most important functions.

Proor. 1°. We choose parameters ¢g, kg of a branching particle system to
make 13 given by (1.20) independent of 5. To this end we put

(2.7)

2 _
pp(z;u) =u+ 6—1/) (Z; 1Tu> for0<u<1
Y

where vy is a strictly positive constant. We need to show that ¢g is a generating
function. To simplify formulae, we drop arguments z. Clearly, pg(1) = 1. We have

o0
pa(u) =Y pput
0
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where

2 1
Py = %1/)(5),

1 o0
PP = ;[”y — 92— 5/0 A1 — e MPn(aN)],

b1
Py =—+ —/ e MBAIn(dN),
Y YJo

o /Oo oM (§>kn(d)\) for k > 2.
k k"‘)/ 0 6

pg and pfj are positive for all 5 > 0 and k£ > 2. Function pf is positive for 0 < g <1

if 4 is an upper bound of
20 + /Oo A AN n(dN).
2°. We claim that there exists ; solution u of (1.1) and a function a(c) such
that
(2.8) lu —vg| < Ba(c) forall f € B, and all sufficiently small 3.

If A is an upper bound for the functions (2.5), then, by (2.3), ¥ satisfies the
condition (1.6) with ¢(c) =3A(1V ¢).

Suppose f € B.. Then, by (1.19) and (2.1), f — fz = e(Bf)/B < Bf* < B2
and, by Theorem 1.1, there exists a solution u of (1.1) such that, for sufficiently

small 3,
(2.9) ug — ul| < e?PIN 2,
By (1.19), vg = =3 *log(1 — Bug) and
vp —up = Fy(ug)
where Fj(t) = —3 ' log(1l — 8t) — t. Note that Fz(0) =0 and, for 0 < 8t < 1/2,
0< Fj(t)=pt(1—pt)"" <26t

which implies 0 < Fp(t) < Bt?. We have 0 < fz < f and ug < Kgf. Therefore
ug € B, and

(2.10) lug — ug| < Bc® for 0 < B < 1/(2).

It follows from (2.9) and (2.10) that (2.8) holds with a(c) = ¢?(e?ZIN 4 1).
3°. We conclude from 2° that the limit Vi of operators Vg satisfies the Lipschitz

condition on each set B. and that VQﬁ 5 Vg. By Theorem 3.3.5, there exists a BEM

system X with transition operators V. Since u = V(f) satisfies (1.1), this is a

(&, 1)-superprocess. O
3. Direct construction of superprocesses

3.1. Analytic definition of operators V.
THEOREM 3.1. Suppose that Q € Qg and that ¥ satisfies the conditions:

3.1.A. Y(z,0) =0 for all z.
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3.1.B. 1 is monotone increasing in t, i.e., ¥(z,t1) < P(z,t2) for all z € S and
all t;1 <ty € Ry

3.1.C. ¢ is locally Lipschitz continuous in t uniformly in z (i.e., it satisfies
(1.6)).

Then the equation (1.1) has a unique solution for every f € B. We denote it Vo(f).

PROOF. ! By Theorem 1.1, equation (1.1) can have no more than one solution.
Suppose that f € B.. Fix a constant k > g(c) where ¢(c) is defined in (1.6)
and put, for every u > 0,

(3.1) T(u) =M, |e *T) f(r,6,) + / ’ e FETB (s, Egsu(s, &) ds

T

where ®(u) = ku — 1(u). [We do not indicate explicitly the dependence on T of k
and f.] The key step is to prove that the sequence

uOZOa

2
(3.2) Up =T (up—1) forn=1,2,...

is monotone increasing and bounded. Clearly, its limit u is a bounded solution of
the equation

(3.3) u(r,z) =1, 4 [ek(TT)f(T, &)+ /T eik(sfr)fl)(s, Es;u(s, &) ds] )

T

By Lemma 1.2, (3.3) implies

u(r, x) + kHT,I/ u(s, &) ds =11, 4 [f(T, &) —|—/ D(s, & uls, &s)) ds]

which is equivalent to (1.1).
We prove that:

(a) T(v1) < T(vg) if 0 <y <wy <cin@;

(b) T'(c) <ec.
To get (a), we note that, for 0 < ¢; <ty <,

O(t2) — ©(t1) = k(t2 — t1) — [Y(t2) — ¥(t1)] = (t2 — t1)(k — q(c)) > 0.
Since ¥ > 0, ®(u) < ku and therefore

T(c) < M, plee ™ ) 4 ck / e R gg].

Since e #(7=") 4+ k [T e~k(s=")ds = 1, this implies (b).
By 3.1.A uy = T(0) > 0. By (a) and (b), u1 = T(0) < T'(c) < ¢. We use (a)
and (b) to prove, by induction in n, that 0 = ug < -+ <wu, <c. O

'We use the so called monotone iteration scheme (cf., e.g., [Sat73]).
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3.2. Properties of V. We claim that:

3.2.A. If f < f, then Vg (f) < Vo(f).
32B. If Q C Q and if f =0 on Q, then Vo (f) < Vi(f)-
3.2.C. If fu T f, then Vo(fn) T Vo ().

To prove 3.2.A and 3.2.B, we indicate explicitely the dependence of operator
(3.1) from k, @ and f and we note that, if 0 < f < f<candifk > q(c), then
Tk, Q, f;u) < T(k,Q,f; u) for every function 0 < u < ¢. This implies 3.2.A.
If Q C Q, then the first exit time 7 from Q is bigger than or equal to 7. If
n. = (1,.&) € Q, then f(n;) = 0, and if , ¢ Q, then 7 = 7. In both cases,
e k=) f(n,) = e FE=) f(nz). If k > g(c) and 0 < u < ¢, then T(k,Q, f;u) >
T(k,Q, f;u) which implies 3.2.B.

Suppose that f, 1 f and let u, = Vo (f,). By 3.2.A, u,, T u. By passing to the
limit in the equation u, + Go¥(un) = Kqfn, we get u+ Goi(u) = Ko f. Hence
u = Vg (f) which proves 3.2.C.

3.3. An alternative construction of superprocesses. We deduce a slightly
weaker version of Theorem 2.1 by a method suggested by Fitzsimmons (see [Fit88]).

THEOREM 3.2. A (&,v)-superprocess exists for function v given by (2.4) if b
and n satisfy condition (2.5) and an additional assumption

B
(3.4) sup/0 ANn(z;d\) — 0 as (0.

REMARK. Condition (2.5) implies pointwise but not the uniform convergence
of [V X2n(z;dN) to 0 as 3] 0.

We need the following lemma:

LEMMA 3.1. Suppose that u is a solution of equation (1.1) and f € B. If
Q' € Q, then

(3.5) u+GQ/1/)(u) = Kqgru.

Proor. By 2(32) and 2(515), Kg Kg = Kg and GQ = GQ/ +KQ/GQ. The
equation (1.1) implies that Goy(u) € B. Hence, Ko Goy(u) € B. Therefore

u+ Goip(u) =u+ Goip(u) — Ko Goi(u) = Ko (Kqf — Gy (u)) = Kqru.
O

Proor oF THEOREM 3.2. 1°. Operators Vg defined in Theorem 3.1 satisfy
conditions of Theorem 3.2.1. Indeed, by (1.1), Vo(f) < K¢ f which implies 3.2.2.A.
Properties 3.2.2.B and 3.2.2.C also follow easily from (1.1). Let us prove 3.2.3.A.
Suppose Q@ C Q € Q. By Lemma 3.1, v = VQ(f) satisfies the equation v +
Goy(v) = Kgv. On the other hand, u = Vg(v) is a solution of the equation
u+ Goy(u) = Kgu. The equality u = v follows from Theorem 1.1.

We claim that operators Vg satisfy condition 3.3.4.A if:

3.3.A. There exists k > 0 such that ku(f) — ¢ (-;u(f)) is an N-function from B
to B for every real-valued N-function u(f) on B.
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Indeed, let T be the operator defined by (3.1). It follows from 3.3.A that, for
all sufficiently large k, ®(u(f)) belongs to the class N if u(f) is an N-function and,
by 3.3.1.A, operator T preserves the class N. Therefore Vg (f) which is the limit of
T™(f) has the same property.

By Theorem 3.3.4, Vi are the transition operators of a BEM system X and,
since Vg (f) is a solution of (1.1), X is a (§, ¥)-superprocess.

2°. Condition 3.3.A holds for ¢ given by (2.4) under an extra assumption

(3.6) b=0,m(z) = /°° An(z,d\) is bounded.
0
Indeed,
ku —¢(u) = /0 (1 — e *)n(d\) + (k — m)u.

If w € N, then 1 — e~** belongs to N by 3.3.1.B, and ku — 1 (u) is an N-function
if k> m(z) for all z.

3°. To eliminate the side condition 3.3.A, we approximate ¢ given by (2.4) by
functions

Yg(u) = /Ooo(em — 1+ Au) ng(dA)
where 0 < 8 < 1 and
ng(d\) = 1xsgn(d)) + 265 255.
Note that 1z satisfies (2.5). It satisfies (3.6) because

/Oo Mng(d\) < g1 /Oo AA N n(dN) + 2b/8.
0 0

Let Vg be the transition operators of the (£, ¢g)-superprocess. We demonstrated
in the proof of Theorem 2.1 that Vi satisfies the Lipschitz condition on each set B..
By Theorem 3.3.5, to prove the existence of a (£, 1)-superprocess, it is sufficient to
show that Vg = Vg. We have

P(u) —Pp(u) = Ra(u)

B
Rs(u) = /0 (e™ —1 — Au)n(d\) + 2b372[1 — Bu + (Bu)?/2 — e P4].

We use the bound (2.1) and its implication
(3.7) 0<1-pu+ (Bu)?/2—eP* < (Bu)® forall B>0,u>0
and we get

B
|Ra(u)| < u2/ A AN n(dN) + 2b6u.
0

By conditions (2.5) and (3.4), ¥z converges to 1 uniformly on each set S x [0, c].
It follows from Remark to Theorem 1.1 that operators VQﬁ = Vo. O
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4. Supplement to the definition of a superprocess

4.1. Extension of parameter sets. We constructed a superprocess as a
BEM system with parameter sets My = M(S) and Og. Now we extend Qg to
the class Oy of all open subsets of S and we extend My to the class My = o(Mj).
Measure P, is defined for 1 € M; by formula 3.(3.25). Forevery Qand k =1,2,. ..,
we denote by Q* the intersection of Q with (—k, k) x E. By 3.4.2.D,

(4.1) Xore1(I') > Xor(I')  aus. for every I' € Q°.
Therefore there exists a measure XQ such that
Xo(I) =limXor () for I € Q°,
XoM)=0 forI'cCQ

[Every Xq is defined only up to equivalence. We choose versions of Xqx for all

positive integers k in such a way that (4.1) holds for all w and all k.] Clearly, X¢
is a measure of class M; and

XQ =Xgo Psas forall Qe O, pe M.
It VQ is the transition operator of X = (XQ, P,),Q € O, p € My, then
Vor = Vor  for all k,
VQk HnN1 VQ(f) for every f € B.

By a monotone passage to the limit, we establish that 3.1.3.A holds for X and
that 3.2.2.B, 3.2.2.C and 3.2.3.A hold for VQ. Hence, Xisa branching system and,
by Theorem 3.2.1, X is a BEM system.

If ¢(r, ;) is continuous in w and satisfies condition 3.1.B, then, for every
Q € Oy, u = Vo(f) is a solution of (1.1). Indeed, by 3.2.2.B, u = V(') where
f/=1gef. Since Q" € Oy, function u = Vi (f’) satisfies the equation

(4.2)

ug(r, ) + IL, . / ) P(s, &5 ur(s, &) ds = anf/(Tka §re)

where 7y, is the first exit time from Q*. For sufficiently large k, it is equal to 7 A k
where 7 is the first exit time from Q. If 7 > k, then (7x,&;,) € Q. Therefore

Tk
ug(r, x) + ng/ P(s,&s5ur(s,&s)) ds =y p 1< f(1,&7) forr < k.
By passing to the limit as k — oo, we get that u is a solution of (1.1).

4.2. Branching measure-valued Markov processes. To every superpro-
cess X = (Xg, P,),Q € O, u € M(S) there corresponds a measure-valued Markov
process X = (X;, P,,)). Here X; is the restriction of Xs_, to S; = {t} x E and
Pm, = P5 x,. Let fA stand for the o-algebra generated by Xt,t € A. Clearly,
Flr,t] C Fcs., and F>; C Fog_, and the Markov property of X follows from

3.1.3.D. If ¢ € B(FE) and if f(s,x) = ¢(z) for all s, then, for all r < ¢,

Byye X — ot
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where u; = Vg_,(f) satisfies the equation
t
(4.3) ug(r, z) + ng/ (s, & ue(s,&s)) ds =T, (&)  for r < t.
ks

4.3. More properties of Xgo. Put Y = (f,Xg). By the definition of a
superprocess,

(4.4) P = el
where

(4.5) u) + GQU)(’UJA) = )\KQf.
We have:

4.3.1. Measure X is finite, P,-a.s., for every open set () and every pu € M(S).

PrOOF. Let Y = (1,Xg). By (4.4) and (4.5), P,e Y > e ML because
ux < AKgl < A. By taking A — 0, we get P,{Y < o0} =1. O

4.3.2. For every total subset 7 of dQ and every u concentrated on @,
PAXo(T%) =0} = 1.
Indeed, if f = 0 on 7, then Ko f = 0in Q and, by (4.4) and (4.5), P,e~{/¥e) =

We say that a function 1) belongs to class CR ? if
(4.6) Pu(f, Xq) = (Kqf, 1)

for every open set @), every positive Borel function f and every measure u € M(S).

LEMMA 4.1. Suppose that 1 satisfies condition 3.1.B and the condition:

4.8.A. Function (z,u)/u is bounded on every set Q x [0, k] and it tends to 0 as
u — 0.

Then ¥ € CR.

PROOF. It is sufficient to prove (4.6) for bounded f vanishing outside a set Sa
with finite A. The general case can be obtained then by a monotone passage to
the limit.

By (4.5), ux/A < Kqf <|/f|l and, by 3.1.B and 4.3.A,

Aoy () < Go W] =0 as A =0
and therefore (4.5) implies

(4.7) (un, i)/ A — (Kofo) as A — 0.
On the other hand, by (4.4),

1—e Y 1 — e {unn)
Pl—— )| =(—m—— ).
() -

By (4.7), the right side tends to (K¢ f, u). Since the left side tends to P,Y, we get
(4.6). 0

2This is an abbreviation for “critical” — the name used often in the literature.
31t follows from Fatou’s lemma that P,Y < ||f||(1, 1) < co and, by (2.1), we can apply the
dominated convergence theorem.
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In the rest of this chapter we assume that ¢ belongs to the class CR.
5. Graph of X

5.1. Random closed sets. Suppose (2, F) is a measurable space, @ is a
locally compact metrizable space and w — F(w) is a map from  to the collection
of all closed subsets of Q). Let P be a probability measure on (2, F). We say that
(F, P) is a random closed set (r.c.s.) if, for every open set U in @,

(5.1) {w:Fw)nU =0} e FF
where FF is the completion of F relative to P. Two r.c.s. (F,P) and (F, P) are
equivalent if P{F = F} = 1. Suppose (F,, P),a € A is a family of r.c.s. We say
that a r.c.s. (F,P) is an envelope of (Fy, P) if:

(a) Fy C F P-as. for every a € A.

(b) If (a) holds for F, then F C F P-a.s.

An envelope exists for every countable family. For an uncountable family, it
exists under certain separability assumptions.

Note that the envelope is determined uniquely up to equivalence and that it
does not change if every r.c.s. (Fy, P) is replaced by an equivalent set.

Suppose that (M, P) is a random measure on @.The support S of M satisfies
condition

(5.2) {SNU =0} ={M{U)=0}e F
for every open set U and therefore S(w) is a r.c.s.

5.2. Definition and construction of graph. In section 5 we consider a
(&,4)-superprocess X corresponding to a continuous strong Markov process €. Let
F be the o-algebra in Q generated by Xo(U) corresponding to all open sets O, U.
The support Sp of Xp is a closed subset of S. To every open set O and every
€ M(S) there corresponds ar.c.s. (Sp, P,) in S (defined up to equivalence). We
shall prove that, for every @ and every pu, there exists an envelope of the family
(So,P,),0 C Q. We call it the graph Gg of X in Q and we denote it (Gg, P,).
We write G for Gg.

THEOREM 5.1. Consider a countable family of open subsets {O1,...,0n,...}

of Q such that for every open set O C Q there exists a subsequence O, exhausting
O. * Put a, = (1,X0,) V1 and denote by S the support of the measure

(5.3) y=> L Xo, .

ap2™
The r.c.s. (S, P,) is the graph of X in Q.

A key step in the proof of Theorem 5.1 is the following:

LEMMA 5.1. Suppose that Oy, exhaust O. Then, for all p € M(S) and all open
sets U,

(5.4) P{Xo,(U)=0 forallk, Xo(U)#0}=0.
We deduce this result from a relation between exit measures for X and exit

points for &:

4For instance, take a countable everywhere dense subset A of Q). Consider all balls contained
in @ centered at points of A with rational radii and enumerate all finite unions of these balls.
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LEMMA 5.2. Let O1 C Og C --- C Oy € O and let 7; be the first exit time from
O; and T be the first exit time from O. Fiz an open set U and put

A = {Xo, (U) = ... Xo, (U) = 0},
By = {nTla"'anTk ¢ U}

For every positive Borel function f and every z € O,

(5.5) /A (f, Xo) P, < / Ly eocf(ny) dIL.

By
PRrROOF. Formula (5.5) holds for z ¢ Oy because in this case 14, = ly<(z)
P.-a.s. and 1p, = 1ye(z) II;-a.s. (For z ¢ U, we refer to (4.6).)
For k > 1, Ay = Ap_1 N {XQk (U) e 0} and By = Br_1 N {nq-k ¢ U} [FOI‘
k =1, these relations hold if we put Ag = Q, By = Q] °
For k = 0, (5.5) follows from (4.6). If k > 1, then, by the Markov property
3.1.3.D,

(5.6) /A <f,XO>sz:/ IXOk(U):()(f,XO)dPZ

= / Ix,, ()=0Px0, (f, X0)dP:.
Ap_1

It follows from (4.6) that Px, (f,Xo) = (g, Xo.) where g(z) = P.(f, Xo) =
Ko f(z). For every v, 1,uy=0(g, ) < (g lye,v) and, by (5.6),

(5.7) [ trx0yar.< [ (v g.Xo,) ap.
Ay Ak
Suppose that (5.5) holds for & — 1. Then the right side in (5.7) is dominated by
(5.5) | el ). = TLX (10 Ko(f)) (1)
k—1
where

X = 1Bk,11UC(7’]Tk)17'k<oo = 1Bk 1Tk<oo
is a pre-7 function. By 2.2.1.B (applied to the pair 7, < 7 and to Q' = O), the
right side in (5.8) is equal to

I, X106 (0r ) 1r<oo f(0r) = 15,10 (N ) 1r<oo f(117),
and (5.7) implies (5.5). O

PROOF OF LEMMA 5.1. Put

Yi=) Xo,(U), Ys=Yi+Xo(U).
1

We need to prove that {Y7 = 0} C {Y5 = 0} P,-a.s. for all 4. By Proposition 3.4.1,
it is sufficient to prove this relation for P,,z € S. If z ¢ O, then P.{Y; = Yy =
0} =1forz ¢ U and P.,{Y1 =Y = o0} =1for z € U. If z € O, then we apply
Lemma 5.2 and we pass to the limit in (5.5). Note that A | Aw = {Xo,(U) =
0 for all k}; and By | Boo = {0+, ¢ U for all k}. Choose a continuous bounded
function f such that f > 0on U and f = 0 on U°. Note that 7 T 7. If 7 < oo, then

SParameter w in X (w) and in & (w) takes values in two unrelated spaces which we denote
Q and Q.
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Nr, — 0y and f(nr,) — f(ns). Hence, {Bs,T < 00} C {f(n-) = 0}. We deduce
from (5.5) that

(5.9) Pla(f, Xo) <1:lp, r<ocf(nr) = 0
which implies (5.4). O

PROOF OF THEOREM 5.1. We fix a measure p € M(S) and we use a short
writing a.s. for P,-a.s. Let us prove that, for each O C Q, S D Sp a.s. Note that,
if Fy, Fy are closed sets, then F} D F5 if and only if, for every open U,

{FiNnU =0} C{FnU=10}.
Therefore we need only to prove that, for every open U,
(5.10) {SNU =0} Cc{SonU =0} as.

Since S and the measure (5.3) are related by (5.2), it is sufficient to demonstrate
that

(5.11) {Y(U)=0} C{Xo(U) =0} as. forallOCQ.
Clearly,

(5.12) {Y(U) =0} c {Xo,(U)=0 forall n}.
Consider a subsequence O,,, of O,, exhausting O. By Lemma 5.1,
(5.13) {Xo,, (U)=0 forall k} C{Xo(U) =0} as.

Formula (5.11) follows from (5.12) and (5.13).
Suppose that F' is a r.c.s. such that So C F a.s. for all O C Q. Then
Xo(F¢) =0 and therefore Y (F°) =0 a.s. which implies that S C F a.s. O

5.3. Graphs and null sets of exit measures. We write p € M(B) if
w(B°) = 0 (i.e., if p is concentrated on B). We denote by M,.(Q) the class of
measures p such that the support of p is compact and is contained in Q.

First we prove the following result.

THEOREM 5.2. Let B be a closed subset of S and let O,, be bounded open sets
such that Op,_1 C O, and O,, T B®. Then

(5.14) {Xo, =0} 17{G is compact and GN B =0} a.s.

[If measure g is not specified, then “a.s.” means “P,-a.s. for all p”.]
The sequence {Xp, = 0} is, a.s., monotone increasing by 3.4.2.A. To prove
(5.14), it is sufficient to establish that

{Q (@ Onfl} (@ {Xon = O} C {g C On} a.s.
This is an implication of the following two propositions:

5.3.A. If O; C O3 C Q, then

(5.15) {Gg € 01} C {Xo0, =0} as.
PRroOF. By the definition of the graph, Xo, is concentrated, a.s., on Gg. By
3.1.3.B, it is concentrated on OS. Since O; N OS = ), we get (5.15). O

5.3.B. For every @,
(5.16) {Xo=01c{gcQ} as



5. GRAPH OF X 73
PROOF. Let U be an arbitrary open subset of S. By 3.4.2.D applied to @1 =
U,Q2=QUU,T = Q35, we have Xy (Q$) < Xour(Q$5) a.s. By 3.4.2.A,
{XQ = O} C {XQU[] = 0} a.s.
Hence

{Xo =0} C {Xv(Q3) =0}
Since Xy is concentrated on U¢, the condition {Xg = 0} implies that Xy is

concentrated, a.s., on Q2 N U C @ and therefore Sy C Q. |

COROLLARY 5.1. If Q, are bounded open sets such that Q, C Quy1 and Qp 1
S, then

(5.17) {Xg, =0} 1{G is compact} a.s.

THEOREM 5.3. Let I" be a closed subset of 0Q which contains all irreqular points
and let

(5.18) Qr ={Gq is compact and GoNT = (}.

If Q,, is a (Q,T)-sequence [see 2. Lemma 4.4], then the sequence
An ={Xq,(Q) =0}

satisfies the conditions: for every u € M(Qg),

(5.19) A C Ak+1 c---CA,C... P#—a.s.,
(5.20) UA4n=ar Pias.
n>k

The proof is based on the following three propositions:

5.3.C. If p € M(Q), then, P ,-as., Xg € M(9Q).

PRrROOF. For every I', we have P,e”Xe() = ¢~ where u = Vi (1r) satisfies
equation (1.1). Clearly, u < Kg(1r). If T = Q°, then Ko (1r) = 0 on Q. Hence,
u=0onQ and Xg(T') =0 P,-a.s. because P,e”*2() = 1. By 3.1.3.B, Xo(Q) =0
a.s. which implies 5.3.C. O

5.3.D. If Q1 C Q2 and if u € M(Q1), then

(5.21) {X01(Q2) = 0} C {X0,(Q5) = 0} Py-as.

PROOF. We note that A = {Xg,(Q2) = 0} € Fcg, and C = {X,(Q5) >
0} € F5q,. Therefore, by the Markov property 3.1.3.D,

(5.22) P,AC = P,{14Px,, (C)}.

If v(Q2) = 0, then Xq, = Xq, =v Py-as. and P,(C) = 1,g¢)s0- If, in addition,

v(Q) = 0, then P,(C) = 0. By 5.3.C, X, is concentrated, P,-a.s., on @1 and

therefore (5.22) implies (5.21). O
5.3.E. If Q1 C Q2 and if u € M(Q1), then

(5.23) {X0,(Q2) =0} C {Go, C 1} Pyas.
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PROOF. It is sufficient to show that the relation

(5.24) {X@,(Q2) = 0} < {Xu(Q7) = 0}

holds P,-a.s. for every U C Q2. By Proposition 3.4.2, we need only to establish
that (5.24) holds P,-a.s. for all z € Q1. It holds for z ¢ U because, for such z,
Xu(Qf) =6.(Q$) =0 P.-as. by 3.1.3.C. If z € Uy = U N Qy, then, by 5.3.D,

{Xu,(U) =0} c {Xy € M(Th)} C {Xv € M(Q1)}P: — as.
It remains to show that, P.-a.s.,

(5.25) {X@,(Q2) = 0}  {Xy, (U) = 0}.
Put ' = UNQS. By 3.1.3.B, Xy, (U) = X, (T) as. By 3.4.2.D, Xy, (I) <
Xq,(T') a.s. because Uy C @1 and I' C Q. Since I' C U C @2, we have

Xu, () < Xo, () < X,(Q2) as.
which implies (5.25). |
PROOF OF THEOREM 5.3. 1°. We claim that, if p € M(Q), then
B,={Go CQu} T P,as.

To prove this, we establish that every compact set K C Q disjoint from T is
contained in Q,, for all sufficiently large n. Indeed, if this is false, then, for every
n, there exists x,, € K such that z,, € Q \ Q. If x,,, — z, then z € K N (Q\ Q)
for all n and therefore x € 9Q \T'. Since 0Q, NQ T IQ \ T, x belongs to 9Q,, N OQ
for some m. But then the relation x,, — x is in contradiction with the definition
of (Q,T')-sequence (see 2.(4.15)).

2°. We fix a measure p concentrated on @ and we drop indications that each
of subsequent statements holds P,-a.s. Let n > k. Then

(526) A, C {XQ (sz) = O} - An+1-

The first part follows from 5.3.D. The second part holds because, by 5.3.C, Xq,, .,
is concentrated on 0Qy1; therefore A, 11 = {Xq, ., (QNOQn+1) = 0}. It remains
to note that Q¢ D Q41 N Q.

3°. By 5.3.E, A, C B,,. By the definition of the graph, B,, C {Xq,,, (Q%) = 0}
and, by (5.26), B, C A,4+1. Formulae (5.19) and (5.20) follow from 1°. O

COROLLARY 5.2. The CB property holds for Qr and P, if I' is a closed subset
of 0Q which contains all irregular points and if p € M.(Q).

This follows from Theorem 5.3 and Proposition 3.4.1.

6. Notes

6.1. Early history. Various generalizations of Galton-Watson process are
presented in books of Harris [Har63], Sevast’yanov [Sev71], Athreya and Ney
[ANT2] and Jagers [Jag75]. Feller [Fel51] considered a passage to the limit in the
Galton-Watson model and he obtained this way a Markov process on Ry which, in
our terminology, is a (£, ©)-superprocess with a single point space FE, & = &, and
(u) = u?. Superprocesses with the same space E but more general 1) were stud-
ied by Lamperti [Lam67]. Jifina [JiF58] investigated superprocesses with finite
space E. [He called them continuous state branching processes.] The foundations
of a general theory of superprocesses were laid by S. Watanabe in [Wat68]. Like
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all his predecessors, he worked with time homogeneous ¢ and time independent
1 and he investigated the corresponding time homogeneous branching measure-
valued process (X, P,). He paid a special attention to the quadratic branching
(x,u) = b(z)u?. He proved, that in this case X; is continuous and that it can
be obtained by a passage to the limit from branching particle systems. Dawson
[Daw75] initiated another approach to superprocesses via the It6 stochastic calcu-
lus. A series of papers by Dawson and his collaborators was devoted to investigation
of the super-Brownian motion with the quadratic branching mechanism. This pro-
cess is often called the Dawson-Watanabe superprocess. [The name “superprocess”
appeared, first in [Dyn88].] Dawson’s Saint-Flour lecture notes [Daw93| contain
a survey of the literature on measure-valued processes until 1992.

6.2. General measure-valued branching Markov processes. The branch-
ing property for a measure-valued Markov process X = (X, P,,) can be stated as
follows. For every v and every f,

(6.1) log P,,e” (/X :/ logP(Tng)e%f’Xf> v(dx).
E

The problem of description of all measure-valued Markov processes with this prop-
erty has attracted a number of investigators. A survey of the results in this direction
is given in section 14.1.

6.3. Regularity properties, range and graph. Regularity properties of
paths of superprocesses were investigated by Fitzsimmons [Fit88] in time homo-
geneous setting. His results were extended to a nonhomogeneous case in [Kuz94]
(see also [Dyn89al). A set-valued process supp X; was investigated in great de-
tail in the case of the Dawson-Watanabe superprocess [DHT79], [Per88|, [Per89),
[Per90], [DIP89]. (We describe main results of this work in section 14.3.)

In [Dyn92] the graph of X; was defined as the minimal closed set which con-
tains supports of X; for all ¢. The definition and construction of the graph of X in
this chapter follows [Dyn98a].

A closely related concept of the range of X (see the definition in Chapter 10)
was investigated in [DIP89] (see also [Isc88], [She97], [Dyn91c]).

6.4. Limit theorems. Convergence of rescaled branching particle system to
superprocesses in various settings was studied by a number of authors (see, in par-
ticular, [Daw75], [EK86], Chapter 9, [Dyn91al, [Dyn91b]). Recently it was dis-
covered that the Dawson-Watanabe process is the limit of other well known particle
systems (contact processes, voter models, coalescing random walks...) [CDP99],
[DP99], [CDPO00], [BCGO1].






CHAPTER 5

Semilinear parabolic equations and superdiffusions

1. Introduction

In this chapter we investigate semilinear differential equations

(1.1) i+ Lu=1(u) inQ

and their connections with superprocesses. !

We say that a (&, v)-superprocess is an (L, )-superdiffusion, if £ is an L-
diffusion. If ¥ has the form described in Theorem 4.2.1, then for every L-diffusion &,
there exists an (L, 1)-superdiffusion and we can use it for investigating the equation
(1.1). (In particular, this is possible for functions k(z)u® with 1 < o < 2). For
a wider class of ¥, we use analytic tools and diffusions. A link between (1.1),
diffusions and superdiffusions is provided by the integral equation
(1.2) u+ Goy(u) = Ko f
(cf. 4.(1.1)).

We start from the study of relations between (1.1) and (1.2). Then we estab-
lish that, under mild conditions on 1, all solutions of (1.1) are locally uniformly
bounded. At the end of the chapter we investigate boundary value problems for
(1.1) (with functions on the boundary taking values in [0, +00]). We construct the
minimal solution with prescribed boundary value on a portion of the boundary and
the maximal solution vanishing on a given part of the boundary. Both solutions
have simple expressions in terms of an (L, v)-superdiffusion (in the case when such
a superdiffusion exists).

At various stages of our investigation, we impose some of the following assump-
tions on ¢: 2

1.A. 9(z,0) =0 for all z.
1.B. All the first partials of ¢ are continuous.
1.C. 7 is monotone increasing in t.

1.D. 4 is locally Lipschitz continuous in ¢ uniformly in z.

2. Connections between differential and integral equations

2.1. From integral equation (1.2) to differential equation (1.1). We use
the following results on operators K¢g and G¢ proved in Chapter 2 [see Theorem
2.3.1, Theorem 2.4.2 and propositions 2.5.3.A, 2.5.3.C].

Suppose that @ is a bounded open set and f € B. Then:

'We consider positive solutions u of (1.1) which belong to class C2(Q) defined in section
2.1.2.
2Cf. conditions 3.1.A, 3.1.B, 3.1.C in Chapter 4

7
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2.1.A. Function u = K¢ f belongs to class C*(Q) and
w4+ Lu=0 in Q.
If Z is a regular point of dQ and if f is continuous at Z, then
u(z) — f(2) asz— Z.

2.1.B. Function w = Ggqf belongs to C*Q). If f € CMNQ), then w € C%(Q)
and it is a solution of the equation

w+ Lw=—f in Q.
If Z is a regular point of 9Q, then

w(z) =0 asz— Z.

THEOREM 2.1. Suppose that f € B. Under the condition 1.B, every solution u
of (1.2) satisfies (1.1).
If Z € 0regQ and f is continuous at Z, then

(2.1) u(z) — f(2) asz—Z,z€Q.

PRrROOF. By Lemma 4.3.1, equation (1.2) implies a similar equation in every
subdomain of ). Therefore we can assume that @ is bounded.

Function h = Kgf is bounded. Since u < h, u is also bounded. Function
¥ is bounded on each set @ x [0,¢]. Hence, p = ¥(u) is bounded. By 2.1.A and
2.1.B, h and F = Ggp belong to C*(Q). Therefore u = h — F € C*(Q). By 1.B,
p € CNQ). By 2.1.A and 2.1.B, this implies h, F € C?(Q) and therefore u also
belongs to C2(Q). By using 2.1.A and 2.1.B once more,we prove that u is a solution
of (1.1).

The second part of the theorem also follows from 2.1.A and 2.1.B. (I

The following result is an immediate implication of Theorem 2.1 and the defi-
nition of a superdiffusion.

THEOREM 2.2. If (Xq, P,) is an (L, v)-superdiffusion and if v satisfies condi-
tion 1.B, then, for every f € B, function

(2.2) u(z) = —log P,e~Xa)
is a solution of equation (1.1).

2.2. From differential equation (1.1) to integral equation (1.2). Recall
the Improved maximum principle 2.3.6.C:

2.2.1. Suppose that 7 is a total subset of Q. If v € C%(Q) is bounded above
and if it satisfies conditions

v+ Lv >0 inQ,

limsupwv(z) <0 asz—Z forallZeT,
then v <0 in Q.

By using this principle, we get:
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2.2.A. Suppose @ is bounded, T C 0@ is total in Q) and u is a bounded
solution of (1.1) in Q. If u is continuous on Q U 7, then

(2.3) u+ Goy(u) = Kqu.

PROOF. By 2.1.A and 2.1.B, Fi = u+Gqy(u) and F> = Kqu satisfy equation
F+LF=0inQand F; = F, = uw on 7. It follows from 2.2.1 that F; = F; in
Q. O

2.2.B. If u is a solution of (1.1) in @, then Vi (u) = u for every U € Q.

PROOF. We need to check that
(2.4) u+ Guyp(u) = Kyu.

If U is regular, this follows from 2.2.A . In general, we consider a sequence of
regular open sets U, exhausting U (which exists by Theorem 2.4.5) and we pass to
the limit in the equation u + Gy, ¥ (u) = Ky, u. O

2.2.C. If u is a bounded solution of (1.1) in @ and if u = f on a total subset 7°
of 0Q, then u satisfies equation (1.2).

PRrROOF. We consider a sequence of open sets @, exhausting . By (2.4),
u+ G, ¥(u) = Kg,u. If 7, and 7 are the first exit times from @, and @, then
Tn T 7 Il;-a.s. for all z € . Hence, Kg,u — Kqgf and Gg,u — Ggou which
implies (1.2). O

2.3. Comparison principle. The following theorem provides for semilinear
equations a tool similar to 2.2.1.

THEOREM 2.3. Suppose that T is a total subset of 0Q and 1 satisfies 1.C.
Then u < v in Q assuming that:

(a) u,v € C*(Q);

(b) u— v is bounded above and
(2.5) U+ Lu—¢(u) > v+ Lv—y(v) in@Q;

(c) for every Z€ T,

(2.6) limsup[u(z) —v(2)] <0 asz — Z.

PROOF. Let w = u—wv. If the theorem is false, then Q = {z : z € Q, w(z) > 0}
is not empty. By (2.5), w(z) + Lw(z) > 9(z,u(z)) — ¢(z,v(2)) > 0 in Q. Note
that 7 = 0Q N (Q U T) is a total subset of 0Q. If Z € 9Q N Q, then w(z) = 0. If
Z€0QNT, then

limsupw(z) <0 asz—2,z€Q
by (2.6). We arrive at a contradiction with 2.2.1. O

Suppose u € C?(Q). We say that u is a supersolution of (1.1) if
(2.7) U+ Lu <9(u) inQ
and that it is a subsolution of (1.1) if
(2.8) U+ Lu>9Y(u) inQ.

The Comparison principle implies
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2.3.A. If w is a subsolution and v is a supersolution in a domain @ and if u — v
is bounded above, then (2.6) implies that v < v in Q.

3. Absolute barriers

3.1. Classes BR and BR;. A real-valued function u°(z) is called an absolute
barrier for the equation (1.1) in @ if it is an upper bound for every bounded positive
subsolution of (1.1). Note that, if u{ is an absolute barrier in @Q; fori = 1,...,n,
then maxwu? is an absolute barrier in the union of Q;. If @, T @ and if u? is an

absolute barrier in @, then

W0 — uf on Q1
Y on Q,\Qn1 forn>1

is a barrier in Q.

Put ¢ € BR if (1.1) has an absolute barrier in every open set Q). Clearly,
class BR contains with every function % all functions bigger than 1. To prove that
1 € BR, it is sufficient to construct an absolute barrier in each cylinder

(3.1) Q = (t1,t2) x D where D = {z: |2 — 2°| < R}.

Moreover, it is sufficient to do this for sufficiently small d(Q) = t2 — t1 + R. Recall
that

(3.2) T = [(t1,t2) x D] U [{t2} x D]

is a total subset of 0Q (see section 2.4.2). Denote by Qy the class of all cylinders
(3.1) with the property: there exists a supersolution u” in @ such that

(3.3) u’(z) w00 asz—2,2€Q

for all Z € 7. Put ¢ € BR; if Qy is a base of topology in S (i.e., if, for every z
and every neighborhood U of z there exists Q € Qy such that z € Q C U). By
Theorem 2.3, a supersolution u” with property (3.3) is an absolute barrier in Q and
therefore BR; C BR. Later we will see that BR; = BR.

THEOREM 3.1. A function 1 : Ry — Ry belongs to class BRy if:
3.1.A. v is convex and ¥(0+) =0, (u) > 0 for u > 0.

3.1.B. [y ds [fos Y(u) du]il/2 < oo for some N > 0.

REMARK 3.1. If a function t(u) satisfies conditions 3.1.A and 3.1.B, then
P(u)/u — 0o as u — oo. Condition 3.1.A implies that assumption 3.1.B holds for
all N > 0 if it holds for some N > 0.

REMARK 3.2. Function 9 (u) = ku® satisfies conditions 3.1.A-3.1.Bif a > 1
and k > 0 is a constant. If k(z) is a continuous and strictly positive function, then
P(z,u) = k(z)u® belongs to class BR because it is bigger than a function of this
class on every cylinder (3.1).

Proof of Theorem 3.1 is based on an inequality ¥ (u + v) > ¥(u) + 1(v) which
follows from the condition 3.1.A. Namely, we use that

ul(r, ) = u(r) +v(z)
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is a supersolution with the property (3.3) if
u§1/)(u) for t1 <r <ta,

(3-4) u=o00 forr=ts
and

Ly <y(v in D,
(3.5) <90

v=o00 ondD.

In an important particular case 9 (u) = u®, & > 1, problems (3.4) and (3.5) can
be solved easily by taking

(3.6) u(r) = [(a = 1)(tz —r)] /7D
and
(3.7) o(x) = AN(R? — |z — 20[2)~2/(e=D)

with sufficiently big A\. ® For a general 1, we solve problems (3.4) and (3.5) by
investigating certain ordinary differential equations. This will be done by proving
a series of lemmas in the next section.

3.2. We assume that 1) satisfies conditions 3.1.A-3.1.B.
LEMMA 3.1. Problem (3.4) has a solution for sufficiently small ta — t1.

PROOF. By 3.1.A, #(s) and (s)/s are monotone increasing functions and
therefore, for s > 1,

/0 " p(u) du < sp(s) < (s (1),
Hence,

Vo) /Noo vl tdu s [ " af / () du) 2 < oo

for N > 1. The function
Flw) = / W(s)] " ds, w € [N, 00)

is continuous, monotone decreasing and satisfies conditions F'(co0) = 0 and F'(w) =

—1/9(w). The inverse function w(r) is a solution of equation w = —(w) on the
interval (0, F(N)) and w(0+) = oco. If to —t1 < F(N), then u(r) = w(ts —r)
satisfies equation u(r) = ¥[w(tz — r)] on (t1,t2) and u(tz) = co. O

LEMMA 3.2. Suppose that 0 < R < 1 and that ¢ is a function of class* C?[0, R).
Let

(3.8) u’(z) = ¢(p)
where p = |v — 2°|%2. Then u° belongs to C*(D). If
(3.9) ¢'(t) and ¢"(t) >0 for all t,

30ne can take A = CRZ/(O"l)(l \Y, R)l/(o"l) where c¢ is a constant depending only on upper
bounds of the coefficients of L in D. [See [Dyn91c]|, pp. 101-102].
4We denote, as usual, by C? the class of twice continuously differentiable functions.
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then
(3.10) Lu®(z) < ad”(p(x)) + B (p(x)) in D

where positive constants o, 8 depend only on the coefficients a;;,b; of L in D.

PROOF. Put z; = x; — 2. We have

oud
P 2¢'(p)zi,
9?u0
— 46/ (p)ziz; fori # J,
8351-8%- J
a2u0
e = 40 (0= +20'(0)
Note that
Lu® = A1¢"(p) + A20'(p)
where

A = 42 @ij%i %,
Ay = 22&1-1- + 2Zbizi.
If a1 (x) is the maximal eigenvalue of the matrix 4a;;(x), then
42 aij(7)ziz; < aq(z)|2]*

Therefore A; < a where « is an upper bound for aq(z) in D. If 3; is an upper
bound for (3 b;(2)?)"/? in D, then Ay < 8 =23, + ad . This implies (3.10). O

LEMMA 3.3. For every e > 0, there exists a constant 0 < R < € and a solution
of equation

(3.11) ') =(ft)) forO<t<R
with the properties

(3.12) £H757>0 and f/(0)=0
(3.13) F(R-) =,

(3.14) 0< f'(t) <tp(f(t)) forO<t<R.

PROOF. We consider all values of R for which there exists a solution f of (3.11)
subject to the conditions f(0) = ¢, f/(0) = 0 and we denote by R, the supremum of
such R. A basic theorem on ordinary differential equations implies that R. > 0 for
every ¢ > 0. We are going to prove that R. — 0 as ¢ — oo and that f(R.—) = co.

We have

(3.15) f@—Awqmwrmmﬂa
and
(3.16) —c—|—/ ds/ P(f dr on (0, R.).

It is clear from (3.15) and (3.16) that f satisfies conditions (3.12) and (3.14) o
0, Re).
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Put
(3.17) q(s0, s /1/)
Note that
Z ()2 = " ) dt = = r for 0 <r < R..
)/Of(t t/w Ydt =q(c, f(r)) for0<r<
Hence,
(3.18)
R, f(Re)
= 71/2 7/205 .
Re= [ f/ s @) = s | ) ds

Since ¥(r) < 3(r 4 ¢) for ¢ > 0, we have ¢(0, ¢) < ¢(c, 2¢) and therefore
q(0,s) = q(0,¢) + g(e, s) < 2¢(c,s) for s> 2c.

Hence, q(c, s)~Y/? < v/2q(0,5)~/? and

(3.19) R. < I(c) + J(c)

where )
1 / ¢ —1/2 /OO —-1/2
I(c) = —= q(c, s ds, J(c)= q(0,s ds.
(c) 7). (¢,s) (c) g (0,s)
For s € (¢,2¢), q(c,s) > ¢¥(c)(s — ¢) and therefore

2c
2c
< (s — )] I/st: —— — 0 asc— oo.
1<) e 7
By 3.1.B, J(c) also tends to 0 as ¢ — co. By (3.19), R, — 0.

If f(t—) < oo, then, by (3.14), f'(t—) < oo and a solution of (3.11) can be
continued to an interval (0,¢1) with ¢; > ¢. Hence, t < R.. We conclude that
f(Re—) = 0. O

LEMMA 3.4. For every e € (0,1), there exists 0 < R < & such that the problem
(3.5) has a solution in D = {|z — 2°| < R}.

PROOF. It is sufficient to construct, for some R < e, a function ¢ of class
C?[0, R) with the property (3.9) such that ¢(R—) = oo and

(3.20) ag” + ¢ <(¢) on (0, R).
Indeed, by Lemma 3.2, (3.20) implies that u° given by (3.8) is a solution of the
problem (3.5).

We apply Lemma 3.3 to function ¢/a with e replaced by Ae and we get a
constant R’ € (0, Ae) and a function f on an interval (0, R’) subject to the condition
(3.12) and the conditions
(3.21)

F(R' =) = oo, f"(t) =¥(f(t))/a and 0 < f'(t) <t(f(t)/a for0<t< R
We define ¢ by the formula ¢(p) = f(Ap) for 0 < p < R where R = R’/ < e. Note
that left side in (3.20) is equal to

ar® f"(Ap) + ABf" (Ap)
which, by (3.21), does not exceed A\?9[¢(p)][1 + Bea™?] for 0 < p < R. Condition
(3.20) holds if A is sufficiently small. O
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3.3. Passage to the limit.

THEOREM 3.2. Suppose that 1v € BR satisfies conditions 1.B and 1.C and that
un, — u at every point of Q. If u, are solutions of (1.1), then so is u.

ProOOF. Every z € Q is covered by U € Q. By 2.2.B, equation (2.4) holds for
Up. Since ¢ € BR, u, are uniformly bounded in U. By the dominated convergence
theorem, (2.4) holds also for u. By Theorem 2.1, u is a solution of (1.1) in U. O

THEOREM 3.3. Let v € BRy satisfy 1.B and 1.C' and suppose that solutions
U, of (1.1) converge to u at every point of Q. Let O C Oreg@ be relatively open in
0Q and let f be a continuous function on O. If u, satisfy the boundary condition

(3.22) up=f onO,
then the same condition holds for .
The proof is based on the following lemma.

LEMMA 3.5. Suppose that ¢ satisfies the conditions of Theorem 3.3 and that O
is a relatively open subset of 0Q. Denote U(O, k) the class of all positive solutions
of (1.1) such that, for all 2’ € O,

(3.23) limsupu(z) <k asz— 2.

Then, for every z € O, there exist N < oo and an open cylinder V' containing Z
such that

(3.24) u(z) N forallu € U(O,k) and all z€ QNV.

PROOF. Since 1 € BR;, there exists a cylinder U € Qy which contains Z. We
can choose this cylinder in such a way that A = UNdQ C O and that the boundary
of Q" = QN U is the union of A and B = 0U N Q. Let u° be a supersolution in U
exploding on the set 7 defined by (3.2). We can assume that u® > x (otherwise we
replace it by u® + k). The set 79 = (7 N Q) U A is total in 9Q°. If u € U(O, k),
then

limsup(u(z) —u’(z)) <0 asz— 2 €7T".

By the comparison principle, u < u® in Q°. Let V' be a cylinder such that z € V
and V C U. The condition (3.24) holds for V and the maximum N of u® on V. O

PROOF OF THEOREM 3.3. We can assume that O C Oreg®@ and f < k on O
for some k. Let Z € O and let V be the cylinder constructed in Lemma 3.5. If the
diameter of V is sufficiently small, then 4, = VNoQ C O and Q, = VNQ is
strongly regular by Lemma 2.4.3. Put f, = f on A; and f, = u, on 9,Q; \ A;.
By 2.2.C,

Un + GQlw(un) = KQl fn
By (3.24), u, < N in Q*. Since u,, — u in Q*,

U+ GQldj(u) = KQlf

by the dominated convergence theorem. By Theorem 2.1, this implies u(Z)

£(2). 0
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4. Operators Vg

4.1. In this section we assume that 1 satisfies conditions 1.A, 1.C and 1.D.
The transition operators of a superprocess (Xq, P,,) were defined originally by
the formula

(4.1) Vo(f)(z) = —log P.e™{/Xa)
for @ € Qg and f € B. Function u = Vg (f) satisfies the equation
(4.2) u+ Goy(u) = Ko f.

In section 4.4.1 both formulae were extended to all open sets (). By a monotone
passage to the limit they can be extended to all measurable functions f with values
in [0, oo].

On the other hand, in Theorem 4.3.1, we introduced Vg (f) for @ € Qq, f €
B starting from the equation (4.2) without assuming the existence of a (£, )-
superprocess. Properties 4.3.2.A-4.3.2.C allow us to define Vg (f) for all open sets
Q@ and all positive functions f by the formula

(4.3) Vo (f) = S]:IE) VQk (fne ch)
where QF is the intersection of Q and S* = (—k, k) x E. If there exists a (&,)-

superprocess, then (4.3) is equivalent to the probabilistic formula (4.2).
Note that Vo (f) = f on Q¢ and that Vo (f) = Vo(f) if f = f on Q°. Moreover,

Vo(f) = Vo(f) on Q if f = f on 0Q.
We have:

4.1.A. Tf f < f on Q°, then Vo (f) < Vio(f). Moreover, Vo(f) < Vo(f) on Q if
f< fondQ.

41B. If Q C Q and if f =0 on @, then Vo (f) < Vi(f)-
These properties follow immediately from 4.3.2.A-3.2.B.

4.LC. If fu T £, then Vo(fu) T Vo(f).
ProoF. By 4.3.2.C, for every k,

as n — oc0. By (4.3),

sup Vo(fn) = sups:g) Vor (fu AN 1ge)
= supsup Vor (fn Al 1ge) =sup Vor (f AL 1ge) = Vo (f).
kLl n ket
O

4.1.D. For arbitrary @ and f, u = Vg (f) satisfies the integral equation (4.2). °

PROOF. Because of 4.1.C, it is sufficient to prove this for bounded f. Functions
Un, = Von(flge) satisty equation

(4.4) Un + Gontp(un) = Kon (flge).

5Both sides in 4.2 can be infinite in which case the equation is rather useless.
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Note that the first exit time from Q™ is equal to 7 An where 7 is the first exit time
from Q. If 7 > n, then 1,5, € Q.Therefore

Kan(flge)(2) = I{f(n:), 7 < n} — Kqo(f)(2).
We get (4.2) by passing to the limit in (4.4). O
4.1.E. For arbitrary open sets Q' € Q,
(4.5) Vo Vo = Vo.

PRrOOF. If f € B, then (4.5) follows from Lemma 4.3.1. For an arbitrary f
and f, = f An, we have Vo'V (fn) = V(fn). By 4.1.C, this implies Vo Vo (f) =
Va(f). O

4.2.  We use notation Q* = Q N S* introduced in the previous section.
ProrosiTION 4.1. If f™ 1 f, then
(4.6) Vor(F™1ge) 1 Valf) ask 1 o,m 1 .
Proor. It follows from 4.1.A and 4.1.B that
Ukem = Vor (f™ N llge)
increases in k, ¢ and m. Denote its supremum by u. By (4.3),
SUP Wt = Vo (f™)
and, by 4.1.C,
u=sup Vo (") = Vo(f).
On the other hand, by 4.1.C,
SL;p Uem = Vor (f™ 1qe).

Therefore
Vo(f)=u= iupVQk (f™1ge).

ProrosiTION 4.2. If f* T f, then
(4.7) Vo (f") 1 Vo(f) asm 1 oo,n 1 cc.

PrROOF. By 4.1.A and 4.1.B, um, = Vgm (f™) is increasing in m and n.
Note that Q" N S¥ = Q""* and, by (4.3),

Umn = SUpP VQm/\k [fn AL 1(Qm/\k)c].
k0

Therefore

sup Vom (f) = sup Vi [f™ N1 (qiye] = sup Vo (f™) = Vo(f).
m,n j,lmn n
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LEMMA 4.1. Suppose that v» € BR, Q is an open set and O is a regular ©
relatively open subset of 0Q. Let [ be a function with values in [0, 00] equal to 0 on
S\ O. Suppose that Q,, € Oy, Qn T Q, O, is a relatively open subset of 0Q N OQ,
and O, 1 O. Let f, be a bounded function vanishing on S\ O,. If f,, T f on O,

then Vg, (fa) — Vo(f).

PROOF. 1°. Suppose that @ € Oy and f € B. Then u = Vg(f) is a unique
solution of the equation

(4.8) u+ Goy(u) = Kq(f)
and u, = Vg, (f») is a solution of
(4-9) Up + GQJ/’(un) =Kq, (fn)

It follows from 4.1.A and 4.1.B that w, is an increasing sequence. We claim that
u = limuw,, satisfies (4.8). By the monotone convergence theorem, Gg,¥(u,) —
Goy(u). To get (4.8) from (4.9), it is sufficient to show that Kq, (fn) — Ko(f)
which will be established if we prove that

(4.10) fo(mz,) T f(0r)

where 7 and 7,, are the first exit times from @ and @Q,,. Put A = {n, € O}, A,, =
{1+, € O,}. Since O, is regular, we have

Ap C{m =710 {n: € O,}.

Therefore A7 C Ay C --- C A, C --- C A. Denote by n(I) the image of an
interval I under the mapping ¢ — 7. Note that A = {n[a,7] C Q@ U O} and
A, = {n]a, ) CQUOL}. If nla, 7] € Q U O, then, for some n, nja, 7] C QU O,
and therefore nlo, 7,,] C QUO,,. Hence A, 1 A, and (4.10) holds because f,(n.,) =

fa(r)1a, = fn(nr)la, and f(n-)1a = f(nr).
2°. Now we consider the case when f € B and @ is an arbitrary open set.

Denote by Q*, Q%, OF and OF the intersections of Q, Q,, O and O,, with S*. Put

M= talog, f*=flox, Vi=Voe, up=V(f)
If n’ > n, then O, D O, and f, = f, on O,. It follows from 4.1.A and 4.1.B that
k is increasing in n and k. By Proposition 4.1,

sup VE(E) = Ve (F5).

u

By Proposition 4.2,
sup Vr (%) = Vo (f)

and
sup VE(fR) = V. (fa)-

Hence, Vo(f) = sup Vg, (fa).
3°. If f is unbounded, then, by 2°,
Vo(f ne) = sup Vg, (fa N O)
for every ¢. By 4.1.C,
Vo(f) = sup Vo(f NO) = sup V. (fa N L) = sup Vg, (fn)-

6This means: all points of O belong to OregQ.
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5. Boundary value problems

5.1. In the rest of this chapter we assume that & is an L-diffusion and that
v satisfies conditions 1.A-1.D. [These conditions hold if ¢ does not depend on z,
and satisfies 3.1.A and 1.B.]

For a bounded strongly regular domain @ and for a continuous function f,
u = Vg(f) can be defined as a unique bounded solution of the boundary value
problem

i+ Lu=1(u) in @,

u=f on0.Q.
Indeed, u = Vo (f) is bounded because uv < Kq f and f is bounded. By Theorem
2.1, u satisfies (5.1) and, by the comparison principle (Theorem 2.3), the problem

(5.1) has no more than one bounded solution.
A more general boundary value problem is treated in the following theorem.

(5.1)

THEOREM 5.1. Suppose that v € BR, Q is an open set and O is a reqular

relatively open subset of 0Q).
If a function f : 0Q — [0, 00| is continuous on O and equal to 0 on T = 0Q\ O,
then u = Vg (f) is the minimal solution of the boundary value problem

4 Lu=1vu) inQ,

(5:2) u=f onO.

PROOF. By Lemma 2.4.4, there exists a (Q,T')-sequence @,,. Denote by O,
the set of all z € O such that d(z,Q \ @Q.) > 0. Clearly, O,, T O. Functions

IR Ad(z,Q\Qu)n]  for z € Oy,
fa(2) = {0 for = ¢ O,

satisfy conditions
(i) fn >0 and f, =0 on OF;
(ii) f, are continuous on 9Qy;
(i) £ T f;
(iv) for an arbitrary k, O, N{f < k} C {f = fn} for all sufficiently large n.
By (i)-(ii), the function u, = Vg, (f») is a solution of the problem

Up + Luy =Y(uy)  in Qp,
Up = fn o0 0pQn.
It follows from 4.1.A and 4.1.B (or from 4.3.2.A and 3.2.B) that u,, < u,4+1 in Q.
By Theorem 3.2, v = limw,, satisfies the equation @ + Lu = ¥ (u) in Q. By (iv),
fn = f for all sufficiently large n on the set O, N {f < k}. Since O,, C 9,Qn,
up, = fon O, N{f < k} by (5.3). By Theorem 3.3, u = f on O N{f < co}. If
z € O N{f = oo}, then, for every n > k, z belongs to O,, and, by (5.3),
un(2) = fn(2) = d(z,Q\ @n)n.

Since u > Uy, u(z) = oo = f(2).

We proved that u is a solution of (5.1). If v is an arbitrary solution of this
problem, then v > u,, on @, by the comparison principle. Hence, v > u on Q.

(5.3)
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It remains to prove that v = Vg (f). Since u, = Vg, (fn) by 2.2.C, this is an
implication of Lemma 4.1. (I

COROLLARY 5.1. Suppose Q) C Q and O = dQ N Q is reqular for Q. Then
Vo(lgt) < for every @ € U(Q).

Indeed, @ € U(Q) satisfies (5.2) with f = 15u. By Theorem 5.1, u = Vo(f) is
a minimal solution of (5.2). Hence, u < 4.

COROLLARY 5.2. A function 1) belongs to the class BR if and only if it belongs
to BRl

We already know (see section 3.1) that BR; C BR. Now let ¢y € BR. If Q is a
cylinder (3.1) and if O = 7 is given by (3.2), then, by Theorem 5.1, the condition
(3.3) holds for u® = V(f) where f = oo on O, f =0 on dQ \ O. Hence, ¢ € BR;.

5.2. Minimal absolute barrier. Here is another implication of Theorem 5.1.

THEOREM 5.2. Let ¢ € BR. If Q is strongly regular, then u = Vg(co - 1s,0) *
is equal to the supremum of all bounded subsolutions of the equation (1.1). [Hence,
it is the smallest absolute barrier in Q.]

PROOF. Let @ be the supremum of bounded subsolutions in (. Functions
U, = Vg(nls,q) are bounded and, by Theorem 5.1, they satisfy the equation (1.1).
Therefore u,, < u. By 4.1.C, u,, T u. Hence, u < . On the other hand, if v is any
bounded subsolution, then v < u by Theorem 2.3. Thus u < u. [l

REMARK 5.1. Suppose that O is a regular relatively open subset of 0Q. If X
is an (L, v)-superdiffusion, then

(5.4) Vo(so - 10)(2) = —log P.{Xo(0) = 0},

If @ is strongly regular, then a minimal absolute barrier for (1.1) is given by the
formula

(5.5) u’(z) = —log P.{X¢g = 0}.
Indeed, by (4.1), Vo(nlo)(z) = —log P,e "X2(©). By passing to the limit as
n — 0o, we get (5.4). Theorem 5.2, (5.4) and 4.4.3.2 imply (5.5).

5.3. Maximal solutions.

THEOREM 5.3. Suppose that v € BR and Q is an arbitrary open set. If a closed
subset T' of 0Q contains all irreqular points, then there exists a mazximal solution
wg of the problem

U+ Lu=1vu) inQ;
u=0 onoQ\T.
If X is an (L, v)-superdiffusion, then

(5.6)

(5.7) wg(z) = —log P.(Qr)
where
(5.8) Qr ={Gq is compact and GoNT = 0}.

7A notation oo - ¢ is used for the function equal to infinity on the set {¢ > 0} and equal to
0 on the set {¢ = 0}.
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The mazimal solution wq of equation (1.1) is given by the formula
(5.9) wg(z) = —log P.{Gg is compact and Gg C Q}.
PrOOF. 1°. Cousider a (Q,T')- sequence @,, and put
On =0:QnNQ, fn=00-10,,vn = Vg, (fn)-
By Theorem 5.1,
Un + Lvy, = ¥(vy)  In Qp;

v, =00 on Oy.

(5.10)

By 4.1.D,
Up + GQnU)(vn) = Kann
and therefore v, < Kq, fn, =0 on B, = 0Q, \ O,. We claim that

(5.11) Upt1 < Up  On Q.

To prove this, we use the Comparison principle (Theorem 2.3). Since 9,Q,, is total
in 0Q,,, we need only to check that v,11 < v, on 9,Q,, and that v,, 1 is bounded on
Q. The first statement is true because v,, = oo on O,, and v,4+1 =0 on B,,. The
second one holds because v,, 41 is continuous on Qn. By Theorem 3.2 and Theorem
3.3, wg = lim v, is a solution of the problem (5.6). If u is an arbitrary solution,
then u is bounded on @,, and v = 0 on B, v, = co on O,. By the Comparison
principle, u < v, in Q. Therefore u < wg in Q.

2°.If X is an (L, ¢)-superdiffusion, then, by (5.4), v, = —log P.{Xq, (O,) =
0}. By 4.4.3.2, X, does not charge, a.s., the set of all irregular points of 0Q).
Since all points in 0Q, N Q not in O, are irregular, Xq, (0,) = Xg, (Q) a.s. and
vn(z) = —log P.{Xgq, (Q) = 0}. By Theorem 4.5.3,

(5.12) P.AXq,(Q) =0} T P.(Qr)
and therefore v, — —log P, (Qr).
We get (5.9) by applying (5.7) to I' = 9Q. O

REMARK 5.2. The construction in the proof shows that
(5.13) wg =1mVy, (fn)

where @, is a (@, T')-sequence and

f _{OO on O, =0,Q,NQ,

(5.14) 0 ondQn\ O,

THEOREM 5.4. Suppose ¢ € BR, Q C Q are open sets and I is a closed subset
of 0Q NOQ. IfT contains all irreqular points of 0Q, then wg < wg

PROOF. If there exists an (L, v¢)-superdiffusion, this follows immediately from
(5.7)-(5.8) because G5 C Gg a.s.

In the general case, we apply Remark 5.2. Note that, if Q,, is a (@, T')-sequence,
then @, = Q,NQ is a (Q, I')-sequence. Let f» be given by (5.14) with @,, and O,
replaced by @, and O,, = Q N dQ,,. Then f/Qn ( fn) is the minimal solution of the
problem

i+ Lu=(u) inQy,

u=o00 on O,.
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Since the restriction of Vg, fn, also satisfies these conditions, we have VQn ( fn) <
Vq,, fn which implies our theorem. (I

6. Notes

Relations between semilinear parabolic equations and superdiffusions were stud-
ied in [Dyn92] and [Dyn93] for the case ¥(u) = u* 1 < a < 2.

Conditions for the existence of absolute barriers for the equation Au = 9 (u)
were obtained independently by Keller [Kel57a] and Osserman [Oss57]. A more
general equation Lu = 1)(u) was considered in the Appendix in [DK98a]. Theorem
3.1 provides an adaptation of the previous results to a parabolic setting.

The minimal solution of the problem (5.2) and the maximal solution of the
problem (5.6) were investigated in [DK99] under the assumption of the existence
of an (L,)-superdiffusion. ® The minimal solution in an elliptic setting was
studied earlier in [Dyn97b]. In section 5 of Chapter 5 we cover a much wider class
of functions ¢ by combining probabilistic and analytic arguments.

8In [DK99] a more general operator L with a zero order term was considered.
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CHAPTER 6

Linear elliptic equations and diffusions

In section 1 we formulate some fundamental results on elliptic differential equa-
tions of the second order. We also give exact references to books where the proofs
of these results can be found. Most references are to monographs [GT98] and
[Mir70]. We were not able to find a proof of an important bound for the Poisson
kernel in any book and we give such a proof (based on a paper [MazT75]) in the
Appendix B.

In section 2 we introduce time homogeneous diffusions and we consider their
Poisson and Green’s operators. (We use mostly a shorter name “homogeneous”
instead of “time homogeneous”.)

At the end of the chapter we establish a probabilistic formula for a solution of
the Dirichlet problem for the equation Lu(z) = a(z)u(z).

1. Basic facts on second order elliptic equations

1.1. Holder classes. Let D be a domain in R?. A function f is called Holder
continuous in D with Holder’s exponent A if there exists a constant A such that

[f(z) = f(y)l < Alz —y|* forallz,y e D.

It is assumed that 0 < A < 1,A > 0. A is called Holder’s coefficient Hélder
coefficient of f. The class of all Holder continuous functions in D with Holder’s
exponent ) is denoted by C*(D). We put f € C*(D) if f € C*(U) for all domains
U e D. ' A function f belongs to C1A(D) if all D;f are in C*(D) and f belongs
to C*X(D) if all D;;jf € CN(D) for all i,j. . Notation C1*(D),C**(D) have a
similar meaning. Note that C2*(D) is a subclass of the class C?(D) of all twice
continuously differentiable functions.

Let E and E be open subsets of R? and let & = T(z) be a mapping from F

onto E. Suppose that the coordinates (%1,...,2q) of & are functions of class C%*
of the coordinates (z1,...,74) of  and (z1,...,24) are functions of class C** of
(%1,...,%4). Then we call T a diffeomorphism of class C?*.

Formula u(z) = a(&) where & = T(z) (and z = T~'(Z)) establishes a 1-1
correspondence between functions on E and functions on E and u € C?**(E) if and
only if & € C?*(E).

1.2. Operator L. We consider a second order differential operator

d d
(1.1) Lu(z) = Z aij(x)Diju(z) + Z bi(z)Diu(x)

ISome times functions f € C*(D) are called locally Holder continuous and functions f &
C*(D) are called uniformly Hélder continuous in D.

95
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in a domain D in R%. Without loss of generality we can put a;; = a;;. We assume
that

1.2.A. 2 There exists a constant x > 0 such that
> ai(@)tit; > kY t; foralla € Dity,... tg €R.

1.2.B. All coefficients a;;(z) and b;(z) are Hélder continuous in D with exponent
A and Holder’s coefficient A.
From time to time we use the adjoint operator

d d d d

(12)  L'u= Y Dilagu)+» Dilbiu)= Y aj;Diju+ Y biDiu+cu
ij=1 i=1 ij=1 i=1

where

afj:aij, br :bi+2ZDjaij,

J
Cx = Zlel + ZDUQU'
% ij

Operator L* is well defined if, in addition to 1.2.A-1.2.B, we impose the condition:
1.2.C. ai; € 02’)‘(1_)), b; € CI’A(D).

Moreover L* has the form (1.1) with an additional term c*u where ¢* € C*(D).

Suppose that T is a diffeomorphism from an open set E C R? onto an open set
E c R%. To every differential operator L in E of the form (1.1) there corresponds
an operator L in E of a similar form defined by the formula

(1.3) o=Lu
where @(Z) = u(z) and (&) = v(x) = Lu(z). The coefficients of L and the
coefficients of L are connected by the formulae
(1.4) Gij(T) = Y chcjare(x), bi(E) = ceare+ Y cibi()
k. k¢ k

i _ 0%y i 9%
where ¢, = For and ¢, = Serdss

1.3. Straightening of the boundary. We say that D is a smooth domain
(or a domain of class C%?) if, for every y € OD, there exists a ball U, centered at y
and a diffeomorphism v, of class C%* from U, onto D c R such that Y(UyND) C
RY = {z € R?: 24 > 0} and (U, NID) C ORY = {z € R : 24 = 0}. We say that
1y straightens the boundary near y.

Diffeomorphisms 1, can be chosen in such a way that: 3

(a) all operators L, obtained from L by 1, satisfy conditions 1.2.A-1.2.B with
constants %, \, A which depend only on &, A and A (but not on y);

(b) ¥y(y) = 0 and L, = A at point y (that is, for the transformed operator,
ELij = 5”)

If diffeomorphisms 1), with the properties described above exist only for y in a
subset O of 0D, then we say that O is a smooth portion of 0D.

2The property 1.2.A is called uniform ellipticity and & is called the ellipticity coefficient of
L.
3See [GT98], section 6.2 and the proof of Lemma 6.1.
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1.4. Maximum principle. We use the following versions of the maximum
principle: 4

1.4.A. Suppose that D is a bounded domain and a(z) > 0 for all z € D. If
u € C%(D) satisfies conditions

(1.5) Lu—au>0 in D,
and, for all T € 9D,
(1.6) limsupu(z) <0 asz — 7,

then v <0 in D.

1.4.B. Suppose that D is an arbitrary domain, u € C?(D) and Lu < 0. If u
attains its minimum at a point xy € D, then it is equal to a constant.

1.5. L-harmonic functions. A function h € C?(D) is called L-harmonic if
it satisfies the equation Lh = 0 in D. Classical harmonic functions are A-harmonic
where A is the Laplace operator. We use the shorter name “harmonic functions”
if there is no need to refer explicitly to L.

The set H(D) of all positive harmonic functions in a domain D has the following
properties.

1.5.A. (Harnack’s inequality) For U € D there exists a constant A such that
h(z1) < Ah(xz) for all 1,29 € U and all h € H(D).

1.5.B. If h,, € H(D) and if the values hy(c) at some point ¢ € D are bounded,
then there exists a subsequence h,,, which converges uniformly in every U € D.

For the Laplacian L = A these results can be found in the most textbooks
on partial differential equations (e.g., [Pet54]). The general case is covered, for
instance, in [Mir70] and [Fel30].

It follows from 1.5.A, 1.5.B and Lemma 2.3.3 that:

1.5.C. If hy, € H(D) converge pointwise to h and if h(c) < oo for some ¢, then
h € H(D) and the convergence is uniform on every U € D.

REMARK. Under condition 1.2.C; 1.5.C holds also for positive solutions of
L*u =0 (see [GT9I8], section 6.1).

The maximum principle 1.4.B implies:

1.5.D. Every h € H(D) either is strictly positive or it vanishes identically.

1.6. Poisson’s equation. Poisson’s equation
(1.7) Lu=—f inD

can be investigated by the Perron method. Here is the way this method is presented
in [GT98]. °

A continuous function w in D is called a supersolution of (1.7) if, for every open
ball U € D and every v such Lv = —f in U the inequality v > v on QU implies that
w > v in U. A function u is called a subsolution if —u is a supersolution. Suppose

4Proofs can be found, for instance, in [GT98] (sections 3.1 and 3.2), [Mir70] (Chapter 1,
section 3) or [BJS64] (Part II, Chapter 2).

5The case L = A and f = 0 is treated in many books including [Pet54] and [Doo84].
Gilbarg and Trudinger cover also the general case. Theorem 1.1 below is stated as Theorem 6.11
in [GT98].
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that ¢ is a function on dD. We call u € C(D) a superfunction (subfunction) relative
to ¢ if it is a supersolution (subsolution) and u > ¢ (u < ¢) on 0D.

THEOREM 1.1. Suppose that D is a bounded domain, L satisfies conditions
1.2.A-1.2.B, f € CN(D) and ¢ is a bounded Borel function on OD. Then there
exists a unique solution u of Poisson’s equation (1.7) such that u1 < u < ug for
every subfunction uy and every superfunction ug (relative to p). Moreover, u €

C?* (D).
We call u the Perron solution of (1.7) corresponding to ¢.

THEOREM 1.2. If D is a bounded smooth domain and if ¢ is continuous then
the Perron solution u is a unique solution of the Dirichlet problem

Lu=—f inD,
u=¢@ ondD.
This follows, for instance, from Theorem 6.13 in [GT98].

(1.8)

1.7. Green’s function. The problem (1.8) can be reduced to two particular
cases. In the case when ¢ = 0 the solution can be expressed in terms of the Green’s
function g(z,y) of L in D. This is a function from D x D to (0, cc]. The following
results, due to Girod, are presented in Miranda’s monograph [Mir70]° (see section
21 and, in particular, Theorem 21.VT).

THEOREM 1.3. Suppose that D is a bounded smooth domain, L satisfies con-
ditions 1.2.A-1.2.C and f € C*(D). Then the solution of the problem (1.8) with
@ =0 is given by the formula

(1.9) u(z) = /D oz, 9) F(y)dy.

The Green’s function g(z,y) is strictly positive and it has the following properties:

1.7.A. For everyy € D, u(x) = g(z,y) is a solution of the problem
Lu=0 1in D\ {y},

(1.10) u=0 ondD.

Ifd > 2, then g(y,y) = co. For every x € D, v(y) = g(z,y) is a solution of the
problem

L*v =0 in D\ {z},

(1.11) v=0 ondD.
1.7.B. " For all z,y € D,
(1.12) g(z,y) < CT(z —y)
where C' is a constant depending only on D and L and
Ed ford >3,
(1.13) I'(z)= ¢ —(log|z|]) V1 ford=2,
1 ford=1.

6The case L = A is considered also in [GT98], Chapter 4 and in [Doo84], Part 1, Chapter
VII .

7Corollary to Theorem 3 in [Kry67] implies that 1.7.B holds under very mild conditions on
the coeflicients of L.
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1.8. Poisson kernel. The problem (1.8) in the case of f = 0 can be solved
in terms of the Poisson kernel k(x,y) [which is a function from D x 0D to (0, c0)]
and the normalized surface area v [which is a probability measure on 9D].

Let T be a subset of R?. We call it a smooth surface if, for every 5o € I, there
exists € > 0 such that the intersection of I' with the e-neighborhood U; of yy can
be described by parametric equations y; = @;(t1,...,tq—1) where t = (t1,...,di—1)
is in an open subset of R4~! and ¢; are C**-functions such that the (d — 1) x d
matrix b} = gflz has the rank d — 1. The boundary 9D of a smooth domain D is a
smooth surface.

The measure g is defined on the I' N U, by the formula

(114) "yo(B) = / \ D(t)dtl .. .dtd,1
v~ 1(B)

where D(t) is the determinant of the matrix

dij =Y biby.
k=1

Note that D(t) is continuously differentiable and 0 < D(t) < co. The measure 7
does not depend on a parameterization of I'. It is called the surface area. The
corresponding normalized surface area v is equal to vy divided by ~0(9D).

The Poisson kernel k(z,y) can be expressed through Green’s function g(z,y)
by the formula

d

(1.15) ka,y) =Y ai(y)Dy.9(x,y)

where ny, = (q1(y), - - -, qa(y)) is the conormal to dD at y. ® In other words, k(z, y)
is the derivative of g(x,y) considered as a function of y in the direction of inward
conormal n, to dD at point y.

THEOREM 1.4. Poisson kernel k(x,y) is continuous in y and it has the following

properties:

1.8.A. If D and L are as in Theorem 1.3 and ¢ € C(9D), then the solution of
the problem (1.8) with f = 0 is given by the formula

h(x) = /6  Ka9)ely) 2(d)

where v is the normalized surface area on OD. For everyy € 0D, h(x) = k(z,y)
is a solution of the problem

Lh=0 inD,

(1.16) h=0 ondD\ {y}.

1.8.B. Forallz € D,y € 0D,
(1.17) K(z,y) < Cd(x, D)z — y| .
These properties are also proved in [Mir70]. An exception is the property
1.8.B. We prove it in the Appendix B.

81t is defined as directed inwards vector ny with |ny| = 1 that is orthogonal to D in the
Riemannian metric 3 a®7 (z)dz;dz; associated with L. [(a™/) is the inverse to the matrix (a;;).]
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2. Time homogeneous diffusions

2.1. Homogeneous L-diffusions. An L-diffusion corresponding to an op-
erator 2.(1.1) was introduced in section 2.2.2. For an operator (1.1) with time
independent coefficients, this is a homogeneous Markov process (see the definition
in section 3.5 of the Appendix A). If ¢ is continuous and bounded, then

(21) uta) = Tegls) = [ mla)etn) dy
satisfies conditions

(2.2) uw=Lu fort>0,z€kE

and

(2.3) u(t,z) = p(x) ast |0

[(2.1) is a particular case of 2.(2.13) and (2.2)-(2.3) follow from 2.(1.10)].

2.2. First exit times from a bounded domain.

LEMMA 2.1. Let 7 be the first exit time from a bounded open set D. There exist
constants v < 1 and C such that, for all s > 0 and all x,

(2.4) I {1;5s7} < CH°.
Therefore I, < C.

PRrROOF. Function F(z) = pi(x, D) is continuous in = and strictly positive.
Therefore there exists 8 > 0 such that F(z) > 8 for all x € D. This implies
I{r > 1} <y =1- 4. By (3.12) in the Appendix A, {7 > s}0;{r > 1} = {r >
s+ 1} and therefore, by the Markov property (the Appendix A.(3.10)),

IL{r > s+ 1} =150 {7 > 1} <AIL {7 > s}.
Thus I {7 > n} <~" and

Hx17->57':/ M {r>thdt< Y 7"

n>s—1

which implies (2.4). O

2.3. Regular open sets. A point a of 9D is called regular if, for every € > 0,
II,{ € D for all 0 < s < ¢} = 0. We say that an open set D is regular if all points
of 0D are regular. This is a stronger definition than one used in the parabolic
setting (see section 2.4.2). It is justified because, in the elliptic setting, every open
set can be approximated by regular domains in the present stronger sense. °

Theorem 2.4.4 implies that a € 0D is regular if there exists a closed ball A
such that a is the only common point of A, D and a neighborhood of a. It follows
from this criterion that all smooth domains are regular.

INote that, if D is regular in an elliptic setting, then every cylinder (¢1,t2) X D is regular in
the sense of section 2.4.2.



2. TIME HOMOGENEOUS DIFFUSIONS 101

2.4. Poisson operator. The Poisson operator corresponding to D is defined
by the formula

(2'5) KDf(x) = Hacl‘r<oof(§‘r)

where 7 = 7(D) is the first exit time from D.
The following results are elliptic versions of the results proved in section 3 of
chapter 2:

2.4.A. A continuous function h is L-harmonic in D if and only if Kyh = h for
allU € D.

2.4.B. If D and ¢ are bounded, then h = Kp¢ is the Perron solution of the
equation Lh = 0 corresponding to .

These propositions can be proved by the same arguments as their parabolic
counterparts or they can be deduced from the results of Part 1. Indeed, if K¢ are
operators defined by 2.(3.1), then, for a time independent function ¢, Kgp = Kpgp
with @ =R x D. To get 2.4.A, we use the following lemma:

LEMMA 2.2. Let Q% = (=k,k) x D. If ,7(D) < oo and if f is bounded and
time independent, then

(2.6) Korf(r,x) — Kpf(xz) for allr.
PRrOOF. If ¢ D, then both parts of (2.6) are equal to f(z). If x € D and
r € (=k, k), then (r,z) € Q* and, II, ,-a.s., the first exit time 73 from Q* is equal

to 7 A k where 7 = 7(D). Hence, II, z-a.s., f(&r,) — f(&-) and (2.6) follows from
the dominated convergence theorem. O

We leave it to the reader to get, in a similar way, 2.4.B.
It follows from (3.11) in the Appendix A that, for all U € D,

(2.7) KyKp = Kp.
(Cf. 2.(3.2).)
For bounded smooth D and continuous ¢,
(28) Kpgla) = [ ko)

where k(z,y) is the Poisson kernel described in section 1.8. Indeed, by 2.4.B and
Theorems 1.1-1.3, both sides represent the Perron solution of Lu = 0 in D corre-
sponding to ¢. Formula (2.8) can be extended to all positive Borel .

Theorem 2.4.2 implies:

2.4.C. If a is a regular point of 9D and if ¢ is a bounded function on 9D which
is continuous at a, then

(2.9) Kpy(z) — p(a) asz — a.

2.5. Green’s operators. Green’s operator for (&,1I1,) in D is defined by the
formula

(2.10) Gpf(x) =11, /OT f(&) ds

where 7 = 7(D).
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If G¢ are operators defined by the formula 2.(5.13), then, for a time indepen-
dent function f, Gof = Gpf for @ = R x D. Indeed, by (3.12) in the Appendix
A

{r <7} CH{OLs<r f(&5)] = Ls<r—r f(Esr)}

and therefore

(2.11) o [ e ds= [ e ds

on the set {r < 7}. For every (r,z) € Q, I, ,{r < 7} = 1. The equation
Gpf = Ggf follows from (3.9) in the Appendix A and (2.11).
The relation 2.(5.15) implies that, if D C D, then

(2.12) Gp =Gp+ KyGp.

LEMMA 2.3. Let 7 = 7(D) and let Q¥ = (—k,k) x D. If Gp|f| < oo for all
x € D, then

(2.13) Gor f(r,x) — Gpf(x) for all (r,x).
The convergence is uniform if f and D are bounded.

PROOF. Let (r,x) € QF. If T is the first exit time from D, then, II, ,-a.s., TAk
is the first exit time from Q* and therefore G f(r, z) = 1II,.,Y where

v | ™ e as

It follows from (2.11) that

TA(k—7r)
Y = HT/ f(&s) ds T, z-a.s.
0

and, by (3.9) in the Appendix A,

TA(k—r)
Gor f(r,x) = Hm/o f(&s) ds.

Therefore
(2.14) Gpf(x) - Gauf(ra) =TI, / F(&.) ds.

TA(k—7r)

The integrand tends to 0 as k — oo and it is dominated in the absolute value by
fOT |f(&5)] ds. By the dominated convergence theorem, the integral tends to 0.
If f and D are bounded, then the convergence is uniform by (2.14). O

We have:

2.5.A. If f and D are bounded and if ¢ is a regular point of 9D, then
(2.15) Gpf(z) -0 asxz— a.

This follows from 2.(5.17) and Lemma 2.3.
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2.5.B. If D is a bounded regular domain and if f is bounded, then u = Gp f €
CMND). If f € CX(D), then u € C*(D), Lu = —f in D and u = 0 on dD.

Indeed, let Q* be the domains defined in Lemma 2.3. If f is bounded, then,

by 2.5.3.A, up = Ggr f belong to CMQF). By Lemma 2.3, u;, converge uniformly

to u which implies the first part of 2.5.B. If f € C(D), then, by 2.5.3.A, uy, is a

solution of the equation s + Luy = —f in Q¥. Therefore the second part of 2.5.B
follows from Lemma 2.3, 2.5.3.E and 2.5.A.

2.5.C. For every bounded smooth D and every bounded or positive Borel func-
tion f,

(2.16) Gpf(x) = /D o(z.9) 1 (y) dy

where g(z,y) is the Green’s function in D described in Theorem 1.3.

For f € C*(D), this follows from 2.5.B and Theorem 1.3. It can be extended
to all bounded Borel functions f by the multiplicative systems theorem (Theorem
1.1 in the Appendix A) and to all positive Borel f by a monotone passage to the
limit.

2.5.D. Let g,g,k, k be the Green’s and Poisson’s kernels for two bounded smooth
domains D C D. Then

(2.17) g(z,y) = g(z,v) —|—/ k(x, 2)y(d2)g(z,y) forall z,y € D

C

and

(2.18) k(z,y) = k(z,y) —|—/ k(x, 2)y(d2)k(z,y) forallz e D,yec A
C

where A = 9D NJD, C = DNAD and 7 is the normalized surface area on 9D.

Let us prove (2.18) [(2.17) can be proved in a similar way]. Denote by 7 and
7 the first exit times from D and D. Consider a continuous function f>0on oD
vanishing off A. Note that 0z f(&;) = f(&;) on {7 < 7} and therefore, by (3.11) in
the Appendix A, for every z € D,

(2-19) Hocf(&') = Hrl?:ff(gr) + Hm1?<TH£+ f(ff)

Since {7 = 7} = {& € A}, the first term is equal to [, k(z,y)v(dy)f(y). If
7 < 7, then & € C and therefore the second term is equal

/C R, )y (d2)ILf(E) = /C Rz, 2)(dz) /A k(2 9 (dy) £ ().

The left side in (2.19) is equal to [, k(z,y)v(dy) f(y). Therefore, for every = € D,
the equation (2.18) holds v-a.e. on A. It holds everywhere because both sides are
continuous in y.

2.6. The Dirichlet problem for Poisson’s equation. We have:

2.6.A. If D is bounded and regular, f € C*(D),p € C(dD), then u = Gpf +
Kpyp is a unique solution of the problem

Lu=—f in D,

(2.20) u=¢@ ondD.
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Indeed, Lu = —f by 2.4.B and 2.5.B. By 2.4.C and 2.5.A, u = ¢ on dD. The
uniqueness follows from the maximum principle 1.4.A.

2.6.B. Suppose that D is a bounded regular domain and f € CMD). If u is
continuous in D and Lu = —f in D, then u = Gpf + Kpu.

This follows from 2.6.A because v = Gpf + Kpu is a solution of the problem
(2.20) with ¢ = u.

REMARK. For smooth domains 2.6.A and 2.6.B follow from Theorem 1.3. The
equation Lw = — f holds for w = Gpf even if f is not bounded but G p|f| is finite.

2.7. Green’s function for an arbitrary domain. For an arbitrary domain
D, we consider a sequence of bounded smooth domains D,, exhausting D. It follows
from 2.5.D that gp, < gp,.,,. Therefore there exists a limit

gp(z,y) = limgp, (z,y).

Clearly, this limit does not depend on the choice of D,, and we have:

2.7.A. If D C D, then g5 < gp in D.
2.7.B. If D,, T D, then gp, T gp-

It follows from 1.7.A and 1.5.C that, if gp(z,y) < oo for some x,y, then
u(z) = gp(x,y) is L-harmonic in D \ {y} and v(y) = gp(z,y) is L*-harmonic in
D\ {z}. We say that the domain D is a Greenian if, for every D € D, the bound
(1.12) holds for € D,y € D. By 1.7.B all bounded domains are Greenian.

The part of € in Q = R x D is a homogeneous Markov process on a random time
interval [0, 7) with a stationary transition function p(z,y) = pg(0,x;t,y) where
pgo is defined by 2.(5.1). Note that, by (2.10) and 2.(5.2),

o0

Gpf(x) = /D dyf () / ds pa(z, y).

By comparing this expression with (2.16), we conclude that, for a bounded smooth
domain D,

(2.21) o) = [ " pelmy) ds.

This formula can be extended to all domains D.

3. Probabilistic solution of equation Lu = au
3.1.

THEOREM 3.1. Suppose & is an L-diffusion, T is the first exit time from a
bounded regular domain D, a > 0 is bounded and belongs to CN(D). If ¢ > 0 is a
continuous function on 0D, then

(3.1) ) = ep [ [ ate) as) ote)

is a unique solution of the problem

Lu=au 1w D,

(3:2) u=¢@ ondD.
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It is also a unique solution of the integral equation

(3.3) u+ Gp(au) = Kpe.

ProOOF. 1°. If
Y, =exp [_/ a(&s) dS] )
t

Y/, =a(&)Y; forte (0,7)

then

and therefore .
/ a(&s)Ys ds=1-Y,.
0
We have 0;Yy = Y, 010(&;) = (&;) for t € (0,7) and, by the Markov property,

G p(aw)(z) =TI, / (&), You(e,) dt

- / " a6)Yip(,) di = TL(1 — Yo)o(&,) = Kpple) — u().

This implies (3.3).

2°. Every solution of (3.3) satisfies (3.2). Indeed, since ¢ is bounded, Kpy and
u are bounded and therefore au is also bounded. By 2.5.B, v = G p(au) € C*(D).
By 2.4.B, w = Kpp € C%(D) and therefore u = w — v € C*(D). We conclude that
u=Gpf+ Kpp where f = —au and our statement follows from 2.6.A.

3°. The maximum principle 1.4.A implies that the problem (3.2) has no more
than one solution. O

3.2. Suppose that a > 0 belongs to C*(E). Theorem 3.1 implies the following
properties of the equation

(3.4) Lu=au in E.

3.2.A. A positive function u is a solution of (3.4) if and only if
(3.5) u+ Gp(au) = Kpu forall D € E.

The class coincides with the class of continuous u subject to the condition
(3.6) u(z) =1, exp[—/ a(&s)ds|u(é,) forall D @ B
0

where 7 = 7(D).
To get 3.2.A it is sufficient to apply Theorem 3.1 to ¢ = u on 9D.
It follows from 3.2.A that:

3.2.B. If solutions u,, of (3.4) are locally uniformly bounded and if they converge
pointwise to u, then w is a solution of (3.4).
We also have:

3.2.C. If u > 0 satisfies (3.4), then either w is strictly positive or it is identically
equal to 0.

Indeed, suppose u(c) = 0 at ¢ € F and let ¢ € D € E. It follows from (3.6)
that w(¢;) = 0 II.-a.s. Hence, Kpu(c) = 0. By 1.5.D, Kpu = 0 in D, and, by
(3.5),u=01in D.
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4. Notes

4.1. Formula (3.1) can be considered as a version of the Feynman-Kac for-
mula. The original version of this formula was proved for L. = A. A probabilistic
approach to boundary value problems for general elliptic operators L was developed
in [Dyn65]. All propositions in sections 2 and 3 of Chapter 6 can be deduced from
the results presented in [Dyn65].

4.2. A concept of a Greenian domain was introduced by Doob (see [Doo84])
in the case L = A. The entire space R? is Greenian if d > 2. For d = 2, D
is Greenian if and only if gp(x,y) < oo for all z # y € D. In terms of the
corresponding Brownian motion, D is Greenian if and only if II,7(D) < oo for all
reD.

For a general elliptic operator L, all bounded domains are Greenian. The class
of unbounded Greenian domains depends on L. It is proved in [LSW63] that the
bound (1.12) for D = R? holds if L is of divergence form

Lu= Z Di(aiiju)
2%}
(with the coefficients a;; subject to very broad conditions). Hence, for such op-

erators all domains D C R% are Greenian for d > 2. This is true also for the
Laplace-Beltrami operator on a Riemannian manifold.

4.3. A lower bound

with C' > 0 similar to the upper bound (1.17) is also true. For operators L of
divergence form this follows , e.g, from Lemma 6 in [Maz75].



CHAPTER 7

Positive harmonic functions

We fix a Greenian domain E in R? d > 2 and we use shorter notation
K,G,H,... for Kp,Gg, H(E),.... Denote by ¢ the first exit time from E.

In this chapter we investigate the set H of all positive harmonic functions in
E. If F is smooth, then every h € ‘H has a representation

h@»:iéEk@awuuw

where k(x,y) is the Poisson kernel and v € M(JFE). Moreover, this formula es-
tablishes a 1-1 correspondence between M (JE) and H. A similar correspondence
exists in the general case, but instead of JE we need to consider a certain subset of
the Martin boundary OE and the Poisson kernel must be replaced by the Martin
kernel.

1. Martin boundary

1.1. The Martin kernel. According to Theorem 6.1.3, g(x,y) > 0 for all
x,y; since F is a Greenian domain, g(z,y) < oo for # # y and, since d > 2,
g(x,z) = co. Fix a point ¢ € E. The Martin kernel k is defined by the formula

g(z,y) for
- Y # e,
(1.1) ky(z) = k(z,y) = {g( v)

0 fory =c.

Denote by Cj the class of all positive continuous functions on E which vanish
outside U for some U € E. Put

b0) = [ o) da k().
LEMMA 1.1. For every ¢ € Cy, function ky(¢) is continuous and bounded.
Proor. Put
F(x) = /00 e 'pi(e,x) dt.
Note that ’ -
[ mlealge.n) do= [ pein) ds < gley).
Therefore ) O:
[ F@atea) do< [t e gt = st
and [ F(z)ky(z) dz < 1. Since F is continuous and strictly positive, the ratio ¢/F
is bounded on every U € E. It vanishes outside some U € E. If ¢/F < Ny, then

ky(0) < N¢/EF(x)ky(x) dz < Ny.

107
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O

It follows from 6.1.7.A and (1.1) that &, is a harmonic function in E'\ {y}. Note
that ky(c) = 1. Denote by H' the class of all h € H such that h(c) = 1. Suppose
that a sequence y, € E contains only a finite number of points in every U € FE.
If k,, — h, then, by 6.1.5.C, h € H'. Let H stand for the subset of H' obtained
by this procedure. We will show that every element of H! can be obtained as a
barycentre of a probability measure on H.

1.2. The Martin boundary. A metrizable compact topological space Eis
called a compactification of E if it contains an everywhere dense open subset home-
omorphic to E. It is called the Martin compactification if k(z,y) can be extended
to a continuous function on E x (E\ {c}) such that ky, # ky, for every y1 # yo € E.
We use the name the Martin kernel and the notation k also for the extended func-
tion. The complement OE of F in E is called the Martin boundary. For every
y € OF, k(-,y) belongs to H!. By 6.1.4.B, k(z,y) > 0 for all z € E,y € JE.

To construct a Martin compactification, we consider a countable everywhere
dense subset W of Cj (in the sense of the uniform convergence), we choose constants
cg > 0 such that

Z cpNg < 00
peW
and we put

yl,yz Z Ky, (@) = Ky, (d)cy  for y1,y2 € E.
peW
If d(y1, y2) = 0, then ky, (¢) = ky, (@) for all ¢ € W and therefore k,, = k,,. Since
ko(y) = oo if and only if 2 = y, this implies y; = y». Clearly, d is a metric in E.
We define F as the completion of ' with respect to this metric.

LEMMA 1.2. Ify, € E,y € E\ E and if d(yn,y) — 0, then ky, converges to
an element of H!

PROOF. Since d(ym,yn) — 0 as m,n — oo, we have lky,. (&) — ky,(#)] — O
for all ¢ € W and therefore there exist limits limk,, (¢) = ¢(¢) < co. By Fatou’s
lemma, liminfk,, (x) < oo for some = and, by 6.1.5.B, k,, contains a subsequence
k., which converges uniformly in every U € E. The limit h belongs to H!. To
prove the lemma, it is sufficient to show that every subsequence of &, contains
a subsequence tending to h. ' We already know that k,, contains a convergent
subsequence k,,. We need only to check that h = lim k., = h. This follows from
the equations [ he = [ hé =£(¢) for all p € W. O

Note that lim £,,, does not depend on the choice of y, € F tending to y € OE.
We denote it k,.

For every distinct points y,y’ € E, ky # ky. We already have seen this if
y,y € E. Ifye E,y ¢ E, then ky(y) = oo and ky(y) < co. Finally, if y,¢/ ¢ E
and if d(yn,y) — 0, then d(yn,y’) > d(y,y')/2 for all sufficiently large n which
is impossible if k, = k. It remains to prove that E is compact and that the

Yf ky,, (x) does not converge to h(z), then there exists e > 0 and a subsequence ny, such that
|kyn, (z) — h(z)| > € and no subsequence of ky,, (z) converges to h(z).
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metrics d(z,y) and |z — y| define the same topology on E. This follows from three
propositions:

1.2.A. Every sequence 4, € F contains a subsequence y,, such that d(y, ,y) —
0 for some y € E.

12B. If y, € E and y, — y € E\ {c}, then k,, (z) — ky(x) for all z # y and
d(yn,y) — 0.

1.2.C. Ify, € B,y € E\ {¢} and if d(y,,y) — 0, then |y, — y| — 0.

To prove 1.2.A, we note that, for every ¢ € W, the sequence k,, (¢) is bounded
by Lemma 1.1 and therefore there exists a subsequence y,, such that k,, (¢) con-
verges for all ¢ € W. This implies the convergence of y,, in E.

1.2.B follows from the continuity of g(z,y) in y for every = # y.

Let us prove 1.2.C. It follows from 1.2.A that the sequence y,, is contained in
some U € E. It follows from 1.2.B that, if |y,, — z| — 0 for a subsequence yy,,
then z = y. Hence, |y, —y| — 0.

We conclude that E is the Martin compactification of E. For every subset B
of E we denote by B¢ the closure of B in E.

~ REMARK 1.1. If E is a smooth Greenian domain, then the Martin boundary
OF can be identified with dFE. The Martin kernel kj; and the Poisson kernel kp
defined by 6.(1.15) are connected by the formula

(1.2) ki (,y) = kp(z, y)/kp(c,y).
Both statements follow from the fact: if y, € E, z € OF and if |y, — z| — 0, then
(1.3) 9(@,yn)/9(c,yn) — kp(, 2)/kp(c, 2).

By the straightening of the boundary near z (see 6.1.3), we reduce the general case
to the case when there exists a ball U centered at z such that ENU C Ri, OENU C
OR% . Since g(z,y) = 0 fory € OF, we have g(x,y) = (Yya—2a)Dy,9(z, 2)+o(jy—2z|).
This implies (1.3).

To get an integral representation of any h € H!, we use an L-diffusion in E
and its transformation related to h.

2. The existence of an exit point {;_ on the Martin boundary

2.1. L-diffusion in E. A time homogeneous L-diffusion was introduced in
section 2 of Chapter 6. In section 2.5.1 we defined a part of an L-diffusion in an
open subset @ of S. If @ = Ry x E, then this is a time-homogeneous Markov
process in E over a random time interval [0, () where ( is the first exit time of
1 from @ which coincides with the first exit time of & from E. We put & =
(“cemetery”) for t > (. If py(xz,y) is the transition density of £, then, for all
reFE0<t; < - <ty,By,...,B, € Bg,

(21) Hx{é.tl S Bl;---;gtn S Bn}
= / dyr .. / Ayn Do, (T, Y1)Pta—t, (Y15 Y2) - DPen—tn_1 Yn—1,Yn)
B B,

(cf. 2.(5.3)). 2

2Condition t, < ¢ can be dropped because it follows from {&;,, € By}
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2.2.  Our next goal is to prove the following result.
THEOREM 2.1. A limit

(2.2) &- = limé,

in the topology ofE exists, ll.-a.s., and it belongs to dE. For every positive Borel
f and every x € F,

(2.3) I f(&c-) = ek (z, &) f(&c-)-

2.3. We say that o is an L-time if 0 < ¢ and 6,0 = (0 — t)4 for all t > 0.
3 This condition is satisfied for ¢. It holds also for the last exit time o from any
U C F defined by the formula

o=sup{s:& e U}.

If o is an L-time, then, for every s > 0,(c — s)4+ is also an L-time. We denote by
P, the class of all positive F-measurable functions Y such that, for every ¢t > 0,

(2.4) {t<o}C{6,Y =Y}

Heuristically, P, is the set of functions determined by &;,t > o. Note that &, € P,
and that P,_s), D P, for all s > 0.
The first step in proving Theorem 2.1 is the following result:

THEOREM 2.2. If o is an L-time and if a bounded Y belongs to P, then, for
every ¢ € Cy,

(25) elpoihe, (0 = [ {1 }o(o) da.
E
PrROOF. 1°. We claim that, for every ¥ € P, and for all p > 0, f > 0,

(2.6) I, / T ycop) f(Et)Y dt = /E o, 1) f ()L Z dy

where Z = 1,59p(0)Y.
Change of variables s = o — t shows that the left side in (2.6) is equal to

(2.7) 1L, /0 ls<op(o —s)f(&)Y ds.
For all s > 0, by (2.4),
0s[f(§0)Z] = Ls<op(o — ) f(&5)Y.
Therefore, by the Markov property of £ (see (3.10) in the Appendix A),
L 1coplo =€)V = LI [(6)2] = [ pule.n)Pw) dy

where F(y) = II,[f(%)Z] = f(y)II,Z. By 6.(2.21), this implies that the integral
(2.7) is equal to the right side in (2.6).
2°. By applying formula (2.6) to = ¢, we get

II. /Ooo Licop(t) f(€o—t)Y dt = /Eg(c, y)f(YI, Z dy.

3a+ is an abbreviation for a V 0.



2. THE EXISTENCE OF AN EXIT POINT &:- ON THE MARTIN BOUNDARY 111

If f(y) = ky(x), then g(c,y) f(y) = g(z,y) and therefore
I, / Lcop(t)ke, ,(2)Y dt = / o, )11, Z dy.
0 E

Formula (2.6) with f =1 yields

/ 9@, )y Z dy = Hx/ Licop(t)Y dt.
E 0

By Fubini’s theorem, this implies

/ p(t) dtTl 1, ke, ()Y = / dt/ dz ¢(x),1,.,Y.
0

Since this is true for all p € Cy, (2.5) holds for almost all ¢ > 0. To complete the
proof, it is sufficient to show that both parts of (2.5) are right continuous in ¢.

3°. Since ¢ € (), it vanishes outside some U € FE. Since F is a Greenian
domain, k(z,y) < CT(x —y) for all x € E,y € U. Therefore k,(¢) is continuous in
yon E\ {c} and k¢, (¢) is continuous in ¢. Right continuity of the left side in (2.5)
follows from Lemma 1.1 and the dominated convergence theorem. The other side
is right continuous because {o > t,} 1 {o >t} as t, | t. O

2.4. Our next step is:

THEOREM 2.3. Suppose o is the last exit time from U € E and let ¢ € Cy. If
Zy = Licoke, . (9),

then (Zy,11.) is a right continuous supermartingale on the interval [0, 00) relative

to a suitable filtration A;.

Proor. We put A € Ay if 14 € Po_s)4. Clearly, A, is a filtration and
Zy € A Right continuity of Z; follows from continuity of ke,. If 0 < s < ¢ and if
A€ A, then 14 € P, and, by (2.5),

(2.8) /A Zp dl = Mo 1psike, ,(6)14 = /E L{A, 0> t}é(z) dz

The right side is monotone decreasing in ¢ and therefore

/Zt dll, g/ Zg dll,.
A A

Hence, (Z;,11.) is a supermartingale relative to A;. O

2.5. PROOF OF THEOREM 2.1.

1°. By Theorem 2.3, to every U € E there corresponds a positive right contin-
uous supermartingale. Denote it by Z(U). By Theorem 4.2 in the Appendix A, for
every 0 < a < b,
(2.9) II.DU) <b/b— a)
where D(U) = D(Z(U), Ry, [a, b]) is the number of downcrossings of [a, b] by Z(U).

We claim that D(U) > U(U) where U(U) is the number of upcrossings of [a, b]
by the process

Yi(U) = Licoke, (9).

Indeed, Z;(U) = 14<oYo—¢ for ¢t > 0. Suppose that U(U) > n. Then there exist

0<51 <8< - <Sp_1<8m <0
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such that
Yo, (U) < a,Yey(U) > b,... Vs, (U) < a,Ys,, (U) > b.
Let
t1 =0 — Sop,lo =0 — Sop—1,...tan—1 = 0 — 82,2y, = 0 — S1.
Then
0<ti <to< - <tgp1<to, <o
and

Ztl (U) Z b, Zt2(U) S a, .. .Zt2n71(U) Z b, Zt2n (U) S a.
Hence, D(U) > n.

We conclude from (2.9) that II.U(U) < b/(b — a) for every U € E. Therefore
IT.U < b/(b — a) where U the number of upcrossings of [a, b] by 1;<cke, (¢). This
implies the existence, Il.-a.s., of the limit of k¢, (¢) as ¢t T ¢. Hence, J({S, &) — 0
as s,t 17 ¢ and therefore there exists the limit (2.2).

2°. To prove formula (2.3) we consider a sequence D,, exhausting F and we
apply (2.5) to the last exit time o, from D,, to Y = f(§{-) and to t = 0. We get

el,, soke, (@)Y = /EHm(lgn>0Y)¢(x) dz.

Passing to the limit yields
ke, (9)Y :/ I, Y¢(x) dx.
E

Since this is true for all ¢ € Cp, formula (2.3) holds for almost all z. Since both
parts are harmonic functions in F, it holds for all x. O

3. h-transform

3.1.
LEMMA 3.1. For every stopping time T and for every pre-T positive Y ,
(3.1) Y1, . =L YA(E,).

PRrROOF. It is sufficient to prove (3.1) for bounded Y. Every harmonic function
is superparabolic, and, by Proposition 2.3.1, X; = 1;<ch(&) is a supermartingale
relative to F10,t] and II,. Consider simple stopping times 7,, approximating 7 (see
section 2 in the Appendix A). By 4.3.B in the Appendix A, X, are uniformly
integrable with respect to II,. Therefore, if (3.1) holds for 7, it holds also for 7.

We start from the case 7 =t and Y = 1p,(&,) ... 1B, (&, ) where By, ..., B, €
Bg,0<t; <---<t, <t. Inthis case (3.1) follows from (??). By the multiplicative
systems theorem (Theorem 1.1, Appendix A), it holds for all Y € F]0, ¢].

If 7 is simple with values 0 < t; < --- <t < ..., then we have

Yice=) Yilu<
k

where Y3, =Y1,—;, € F<;,. Note that
HZYk1C>tk = HIYkh(&k)
which implies (3.1). O

REMARK. By applying Lemma 3.1, we can deduce that &; is II"-a.s. continuous
on [0,¢) from the fact that it is continuous II,-a.s.
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4. Integral representation of positive harmonic functions

4.1. The Green’s function corresponding to p" is given by the formula

e 1
(11) g )= [ pblay) dt = ol i)
0 (z)
and the Martin kernel has an expression
h h
(42) kh(x, ) _ g (x,y) _ (C) k(x, )

- g"(ey)  h(=)
Since k'(¢) = h(c)ky(¢/h) and since ¢/h € Cy if ¢ € Cp, the Martin compact-
ification F constructed starting from p is also a Martin compactification for all

h-transforms p". Moreover, the arguments in the proof of Theorem 2.1 can be ap-
plied to measures II" = I1" /h(z) and they yield the existence II"-a.s. of the limit

&¢c— in the topology of E and the formula
T3 f(€e-) = TI2K" (2, &) F(€c-)-

For h € H;, this is equivalent to the formula

(4.3) T f(6c-) = k(e &) f(c-).
Put
(4.4) vn(B) = I {&c_ € BY.
We have:
h = vh.
(45) W) = [ ram

By (4.3)and (4.5),

(4.6) T f(c ) = T k(x, € ) (€ ) = / k(. 9)F () valdy).

OF
By taking f =1, we get

(4.7) h(x) = /6 Kz, ) va(dy).

This is the Martin integral representation of positive harmonic functions. The next
step is to investigate properties of measures vy,.

4.2. Put
v = 11", Uy = Up
for h = k,. Since ky(c) = 1, vy is a probability measure.
Denote by E’ the set of all y € F such that vy = 0dy. For every z € E,
(4.8) E'={y:vy(y) =1} ={y : T{- =y} = k(z, )}

[If y € E’, then probability measure : j can be interpreted as the conditional

i
k(w,y
probability distribution of the path given that {— = y.]

THEOREM 4.1. For every h € H, the measure vy, is concentrated on E'.
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PRrOOF. Consider a sequence D,, exhausting E and let 7,, be the first exit time
from D,,. Choose two positive continuous functions ¢ and f on E. It follows from
(3.1) and the strong Markov property of £ (see (3.11) in the Appendix A) that

E(&r, ) f(€r) = Moo (6, TIE, [ (&r)-

By passing to the limit as n — oo, we obtain

(4.9) G (Er, ) f(Ec-) = e (&, )T, f(Ec-)-
By (4.6), the right side is equal to
Hc(b(&m)/k(ﬁfm,y)f(y)wz(dy) :/Vh(dy)f(y)ﬂcfb(ﬁrm)k(&m,y)-

By (3.1),
Hep(&r, )k (6rr y) = TED(Ex, )
Therefore by (4.9), (4.6) and Fubini’s theorem,

T0(6r, )f(6-) = T0(Er,) [ 6, 0) ) (d)
- / o (dy) F )T k(Er, )66, ) = / v (dy) F ()T B(Es,, ).

By passing to the limit as m — oo, we get
oA (&) = [ mdnsWnLot-).
By (4.5), this implies
Jenw i) = [ [ mianswom, a),
Therefore, for every o,
6) = [ oG (dz) s,

We conclude that vy = 6, for vj-almost all y which means that vy, is concentrated
on E'. O

4.3. It follows from (4.7) and Theorem 4.1 that every h € H has a represen-
tation

(1.10) @)= [ ke, pldy)
where v = v}, is a probability measure.
THEOREM 4.2. A measure v is determined uniquely by (4.10).
PROOF. If f € C(E), then, by (4.5) and (3.1),
@iy [ F =T ) = T AE,) = Hm L)),
By (4.10) and (3.1),

L)) = [ M€ b6 () = [ vl iLf(cs,)

’
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Hence, (4.11) and (4.5) imply
| fWvnldy) =Tl | v (dy)IEf (&, )

E/ = [ wanmsiec) = [ vian [ 5wz

Since v, = §, for y € E’, we conclude that v, = v. O

4.4. We say that h € H' is an extreme element if the decomposition
h= / hy(dh)
where 7 is a probability measure on H! implies that « is concentrated at a single
point h.
THEOREM 4.3. The set of extreme elements of H' coincides with the set ky,y €
E'.

PROOF. If his an extreme element of H!, then the representation (4.10) implies
that v is concentrated at a single point. Hence, h =k, for some y € E’.
On the other hand, suppose that

/H y(dh) = k.

Formula (??) implies IIY = [II"~(dh) and, by (4.4),

(4.12) vy = /H1 vpy(dh).

If y € E’, then, by (4.8), vy(y) = 1. On the other hand, for all h € H!, v,
is a probability measure and therefore v (y) < 1. Formula (4.12) implies that
vp(y) = 1 for y-almost all h. Hence, v, = ¢, for v-almost all h and, by (4.10),
h = [ kydvy, =k, for y-almost all h. O

Theorems 4.1-4.3 imply the following result:

THEOREM 4.4. Let OF be the Martin boundary and k(z,y) be the Martin kernel
for a domain E. Denote by E' the set of y € OF for which ky = k(-,y) is an extreme
element of H'. Formula (4.10) defines a 1-1 mapping K from the set of all finite
measures on E' onto H.

If h and v are connected by formula (4.10), then we write h = h,,v = trh and
we call v the boundary trace of h . Note that, if tr h = v, then, by (4.6),

(4.13) HH&fGBkﬁék@wwww

for every Borel subset of OE.

REMARK 4.1. As we know (see Remark 1.1), dE = OE for a smooth Greenian
domain E. We claim that in this case E’ also coincides with OF. It is sufficient to
prove that, if h(z) = k(z,y),y € OF, then II"{&_ # y} = 0. To this end we show
that, for every neighborhood U of y, IT"¢(&:—) = 0 for every bounded continuous
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function ¢ vanishing in U. Let 7, be the first exit time from D, = {x € FE :
d(z,0F) > 1/n}. By Lemma 3.1, I"¢(&,, ) = I.(¢h)(&,,) and therefore

(4.14) () = limILe(oh) (&7, )-
If {— € U, then (ph)(&r,) = 0 for all sufficiently large n. If {_ ¢ U, then, by

6.(1.16), limh(&,,) = h(§—) = 0. By 6.1.8.B, ph is bounded. By the dominated
convergence theorem, the right side in (4.14) is equal to zero.

5. Extreme elements and the tail o-algebra

5.1. We prove that h € H' is extreme if and only if IT"(4) = 0 or 1 for all A
in a certain o-algebra 7.

We define this o-algebra for an arbitrary homogeneous continuous strong Markov
process (&;,11,) in a domain £ C R?. Denote by £ the family of the first exit times
7 from all domains D € E. Denote by FY the minimal o-algebra in € which con-
tains pre-7 sets forall 7 € £. Put A€ T if Ae FO and if 074 = A for all T € £.
We call 7 the tail o-algebra.

We say that a probability measure p on a o-algebra B is trivial if, for every
B € B, u(A) =0 or 1. If B is the Borel o-algebra in a compact or o-compact space,
then p is trivial if and only if it is concentrated at a single point. *

If a measure I17 is trivial on the tail o-algebra 7', then the measure v, is trivial
on the Borel o-algebra in E’. Therefore it is concentrated at a point z € E’ and
h = k. is an extreme element of H'. After some preparations we prove the converse
result.

THEOREM 5.1. If h € H! is extreme, then all measures I are trivial on T .
5.2. Let h € H'. We say that a function ¢ is h-harmonic if

Mho(ér,) = ()

for all D € FE and all x € E. This is equivalent to the condition ¢h € H. By
Theorem 4.1,

(1) (o)) = [ Ko won(d).
We have:

5.2.A. If h is an extreme element of H! and if an h-harmonic function ¢ is
bounded, then p(z) = ¢(c) for all z.

Indeed, the condition ph < Nhimplies v, < Nvy and, by the Radon-Nikodym
theorem,
(5.2) Von(dy) = p(y)vn(dy).

Since vy, is extreme, it is concentrated at z € E’. Hence h = k, and, by (5.1) and
(5.2),

which implies 5.2.A.

4This is true for every topological space such that every cover by open sets contains a count-
able subcover.
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5.2.B. [Strong Markov property of (¢&,1I").] If 7 < ¢ and if X is a bounded
pre-7 function, then, for every bounded Y € F,

2 (X0,Y) = TA(XTIE Y).

Proor. We can assume that ¥ € F<;. Then 0,Y € F<,, and, by Lemma
3.1,
M2 X0.Y = o XY h(érpe) = M X1 YA(E) = L XTIE Y.

The right side is equal to II"(X flg Y) because I1,Z = I"Z/h(¢,) for every pre-t
Z. O

5.2.C. If A € T, then p(z) = 11"(A) is h-harmonic. If 7, = 7p, where D,
exhaust F, then

(5.3) 14 =limp(&,,) IMl-as.
for all z € E.

PRrROOF. The first part follows from 5.2.B.
If X is a bounded pre-7,, function, then, by 5.2.B,

(5.4) Xy =1'X6, Y =" Xp(&,,).

Therefore p(&,, ) is a martingale relative to F<,, and IT". By 4.3.A in the Appendix
A, there exists, [T"-a.s., the limit Y of (&, ). It follows from (5.4) that ' XY =
HhX Y for all X € }'<Tn. By the multlphcatlve systems theorem, this is true for
all bounded X € F° and therefore Y =Y II"-a.s. O

5.3. Proof of Theorem 5.1. By 5.2.C, ¢(z) = I1"(A) is h-harmonic. Clearly,
¢ < 1. If h is extreme, then, by 5.2.A, ¢(z) = ¢(c). We conclude from 5.2.C that
14 = ¢(c) I*-a.s. Hence ¢(c) = 0 or 1 which implies Theorem 5.1.

6. Notes

6.1. In 1941 Martin [Mar41], a young mathematician at the University of
Illinois proposed a method of characterizing all positive solutions of the Laplace
equation in an arbitrary domain of R?. He died shortly after his paper appeared
and the importance of his results was not immediately appreciated. It seems that
Brelot was the first who attracted attention to Martin’s paper. A probabilistic
interpretation of Martin’s ideas was suggested by Doob [D0o059] who applied them
to harmonic functions associated with discrete Markov chains. A new approach
to Martin’s theory is due to Hunt. In [Hun68] he has shown that the Doob’s
results can be deduced from the study of the limit behavior of paths of the chain
as t — 0o. An improved and simplified presentation of Hunt’s theory is given in
[Dyn69a]. In [Dyn69b] and [Dyn70] the Martin theory was extended to processes
with continuous time parameter and general state space under minimal conditions
on the process. [Some results in this direction were obtained earlier by Kunita and
Watanabe [KW65].] The results in section 5 are due to Doob (see section 2.X.11
in [Doo84]).

The papers [Dyn69b] and [Dyn70] are the basis of Chapter 7. However, by
imposing stronger conditions on the Green’s function, we are able to simplify greatly
the presentation.
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6.2. In this book, we concentrate on diffusions in R%, but the boundary theory
developed in Chapter 7 depends only on the existence of Green’s function for £ and
on certain properties of this function. The most important is the bound 6.(1.12).
Instead of this bound, it is sufficient to require that

g(x, y)m(dz) — 0,
Ue(y)

g(x,y)m(dy) — 0
U (@)

uniformly on every compact subset of E as e — 0. Here U.(z) is the e-neighborhood
of z, and m is a measure in the definition of the transition density of .



CHAPTER 8

Moderate solutions of Lu = ¢ (u)

1. Introduction

Our objective is to investigate the set U(E) of all positive solutions of the
equation

(1.1) Lu=4¢(u) in E.

We assume that 1) and the coefficients of L do not depend on time and that
satisfies conditions:

1.A. For every x, ¥(z,-) is convex and t(x,0) = 0, ¥(z,u) > 0 for u > 0.
1.B. 9(x,u) is continuously differentiable.

1.C. 7 is locally Lipschitz continuous in » uniformly in x: for every t € Ry,
there exists a constant ¢; such that

[¥(x,u1) —(x,uz)| < ci|ur —ug| for all x € E, uq,ug € [0,1t].

[Note that 1.A implies that ¢ (z, u1) < t(x, uz) for all 0 < uy < ug.] Additional
conditions will be mentioned each time explicitely.

In section 2 we establish some properties of operators Vp. Starting from section
3, we fix a Greenian domain FE and we consider an L-diffusion £ in E [see section
7.2.1]. Tt is terminated [sent to a “cemetery” t] at the first exit time ¢ from E. If
we agree to put f(f) = 0 for all functions f defined on F, then the formula 6.(2.5)
takes the form

(1.2) Kp f(x) =T f(&)1r<¢

In Chapter 8, we investigate solutions of (1.1) dominated by harmonic func-
tions.

2. From parabolic to elliptic setting

2.1. Operators Vp. The values of V(f) for all open subsets @ of R x R? and
all Borel functions f : R x R? — [0, 00] were defined in section 4 of Chapter 5. If
Q =R x D, then Vg preserves the set of time-independent functions and we denote
by Vp its restriction to this set. Operators Krxp and Grxp induce the Poisson
and Green’s operators Kp and Gp defined by the formulae 6.(2.5) and 6.(2.16).
Proposition 5.4.1.D implies:

2.1.A. For every D and every Borel f > 0, u = Vp(f) satisfies the integral
equation

(2.1) u+Gp(u) = Kpf.

119
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It follows, respectively, from Theorem 5.2.1, 5.4.1.A, 5.2.2.B, 5.4.1.E and
Corollary 5.5.1 that:
2.1.B. If f is bounded, then (2.1) implies that Lu = ¢ (u) in D. If & € 9D is
regular and if f is continuous at Z, then Vp(f)(z) — f(Z) as x — 7.
2.1.C. If fl S f2, then VD(fl) S VD(fQ)
2.1.D. (Mean value property) If u € U(D), then, for every U € D, Viy(u) = u
and therefore u + Guy(u) = Kyu.
2.1.E. If D' € D, then Vp/'Vp = Vp.
2.1.F. Suppose D' C D and D' N D is regular for D'.Then Vp/(1pu) < u for
every u € U(D).
We also have:
2.1.G. If Dy C Dy C D and 9D N D is regular for Do, then Vp,(1pu) <
Vp, (1pu) for every u € U(D).
Indeed, by 2.1.E, 2.1.F and 2.1.C,

(22) VD2(1DU) = VDIVD2(1D’UJ) S VDl(lDU).

Theorem 5.2.3 implies the following version of the comparison principle:
2.1.H. Suppose D is bounded. Then u < v assuming that u,v € C?(D),

(2.3) Lu —(u) > Lv —(v) in D

and, for every 7 € 9D,

(2.4) limsupu(z) —v(z)] <0 asz — Z.
This principle is used in the proof of the next proposition:

2.1.I1. Suppose » € BR is monotone increasing in u. If f : 9D — [0,00]
is continuous on a regular relatively open subset O of dD and if it vanishes on
0D\ O, then u = Vp(f) is the minimal solution of the boundary value problem

Lu=v¢(u) in D,

(2:5) u=f onO.

PROOF. Let Q¥ = (—k,k) x D and let fi(r,x) = f(z) for (r,x) € Oy =
(=k,k) x O and fi(r,z) = 0 on Q" \ Oy. By Theorem 5.5.1, uy, = Vi (fx) is a
minimal solution of the problem
ur + Lug = 1/)(’U,k) in Qk,
u=f on O.
Since u = Vp(f) = limug, (2.5) holds by Theorems 5.3.2 and 5.3.3. If v is an

arbitrary solution of the problem (2.5), then v > wuz in Q* by the comparison
principle. Hence v > u in D. (I

A stronger version of 2.1.B follows from Theorems 5.3.2 and 5.3.3:

2.1.J. Suppose that ¢ € BR. For every D and every Borel f > 0, the function
u = Vp(f) is a solution of the equation Lu = ¢(u) in D. If € dD is regular and
if f is continuous in a neighborhood of Z, then u(zx) — f(z) as © — Z.

To prove this statement, we apply 2.1.B to f,, = f A n and then pass to the
limit.
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2.2. Subadditivity of Vp.

THEOREM 2.1. If ¢ satisfies condition 1.A, then
(2.6) Vo(fi+ f2) < Vb (f1) + Vb(f2)
for all f1, f2 > 0.

We prove the theorem by using two lemmas that are also of independent inter-
est.
Consider operators

(2.7) %ﬂ@—lher@V@J%
where
(2.8) <mw:mm—éa@wm

and a is a positive Borel function on D. [This is Green’s operator of the L-diffusion
in D with the killing rate a(z).] Note that G% = Gp.

LEMMA 2.1. If Gpl|f| < oo, then
(2.9) Gplf +aGpf]l =Gnpf.

PROOF. Tt is sufficient to prove (2.9) for f > 0. Put Gp = G, G% = G and let
F =Gf. We have

GlaF) ) =11, [ ds H(s)aE)Te, [ fe)dt
- J .

:/ ﬁmh«H@Mﬁk/f@W-
0 0

By the strong Markov property of £ ((3.11) in the Appendix A) and Fubini’s theo-
rem, the right side is equal to

(2.11)
[ ds e Hspate) [ st
0 s

=1, O/OO/OOO ds dt locs<i<rH(s)a(s) f(&r) = o /OT f(&)dt /Ot H(s)a(&s)ds.

Therefore the left side in (2.9) is equal to
(2.12) Hx/ f&)Y (t) dt
0

where Y (t) = H(t) + fot H(s)a(&s) ds. Note that Y’(¢) = 0 and Y(0) = 1. Hence,

Y (t) =1 and (2.12) is equal to Gf. O
LEMMA 2.2. If u,v,p > 0 and if

(2.13) u+ GpyY(u) + Gpp =v+ Gpy(v) < o0,

then v = u + G%p and therefore v > u.
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PROOF. Put w = v —u, f = ¢(v) — 1(u). There exists a function a > 0 such
that f = aw. We have Gp|f| < Gpy(u) + Gpy(v). By (2.13), Gpy(u) < co and
G pip(v) < co. Hence, Gp|f| < co. By Lemma 2.1, f satisfies (2.9). By (2.13),
(2.14) w+Gpf=Gpp
which implies f + aGpf = aGpp and

Gp(f +aGpf) = Gp(aGpp).
By (2.9), the left side is equal to Gpf and the right side is equal to Gpp — Ghp.
Hence, Gpf = Gpp — G}p and, by (2.14), w=Gpp — Gpf = G}p. O

PrROOF OF THEOREM 2.1. By 5.4.1.C, it is sufficient to prove (2.6) for
bounded fi, fo. Let u; = Vp(fi),i = 1,2, u = Vp(f1 + f2) and v = w3 + us. By
(2.1),

(215) U; + GDU)(’U,l) = Kpfi, U+ G[ﬂ/)(’U,) =Kpfi + Kpfs.

Condition 1.A implies that (u; + uz2) — ¥ (u1) is an increasing function of u; and
therefore p = (v) — ¥(u1) — ¥(uz) > 0. Note that

v+ GpY(v) = u1 +us + Gp(ur) + Gpy(uz) + Gpp
=Kp(fi + f2) + Gpp =u+ Gpi(u) + Gpp.

It follows from (2.15) that wu;, ¥ (u;) and Gpw(u;) are bounded. Therefore v > u
by Lemma 2.2 which implies (2.6). O

COROLLARY 2.1. For every D1, Do,
(216) VDlﬁDz(f) < VDl(f) +VD2(f) in D1 N Da.

ProOF. Put D = D; N Dy. Note that D = B; U By where B; C 8D1,
B2 C 8D2 and Bl n B2 = 0 Put fl = 1B1f We have 18Df = fl + f2 . By
Theorem 2.1,
Vpo(lapf) < Vp(f1) + Vb(f2)
which implies (2.16) because Vp(lopf) = Vp(f) and Vi (fi) < Vb, (fi) < Vp,(f)
in D by 5.4.1.A-5.4.1.B. O

COROLLARY 2.2. For every ¢ > 0, Vp(cu) < 2(cV 1)Vp(u).

This follows from 2.1.C for ¢ < 1. If ¢ > 1 and if ¢ < 2 < 2¢, then, by 2.1.C
and (2.6), Vp(cu) < Vp(2Fu) < 25Vp(u) < 2¢Vp(u).

2.3. Homogeneous superdiffusions. Suppose that £ = (&,II;) is a ho-
mogeneous right continuous strong Markov process in a topological space E and
let ¥(z,u) be a positive function on F x Ry. We say that a BEM system X =
(Xp,Pu),D € O, € M is a homogeneous (&, 1)-superprocess if O is the class of
all open subsets of E, Ml = M(FE) is the class of all finite measures on E and if, for
every f € B(E) and all D € O, p € M,

(2.17) P,e~Xp) = = (Vo (Hm)

where u = Vp(f) is a solution of the equation (2.1).

To construct such a process, we start from the superprocess X described in
section 4.4.1. We imbed E into R x E by identifying 2 € E with (0,z) € R x E.
We define Xp as the projection of XRX p on E and we put P, = I:’(;DX u for every
finite measure p on E (Jp is the unit mass on R concentrated at 0).
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We deal with homogeneous (L, 1)-superdiffusions, that is with homogeneous
(&,4)-superprocesses corresponding to homogeneous L-diffusions £&. By Theorem
4.2.1, an (L, v)-superdiffusion exists for

(2.18) Y, u) = b(x)u? + /Oo(e*)‘“ — 14+ Mu)n(z,dN)
0
if
(2.19) b(x) and /00 AA N n(z,d)\) are bounded.
0

The conditions 1.A-1.C hold for functions of the form (2.18) under mild restrictions
on b and n.

3. Moderate solutions

3.1. Operators i and j. Fix an arbitrary domain F in R? and denote by H
the set of all positive L-harmonic functions in £ and by U the set of all positive
solutions of (1.1). We say that u € U is a moderate solution and we write u € U if
u < h for some h € H. We establish a 1-1 correspondence between U; and a subclass
‘Hy of class H. Our arguments are applicable to all continuously differentiable
functions ¥ (z, u) that are monotone increasing in u.

Fix a sequence D, exhausting E and put K, = Kp,_ ,G, = Gp,,V, =
Vp,,K = Kg,G=Gg.

THEOREM 3.1. For every u € U, a limit

(3.1) jlu) =lim K,u

exists and

(3.2) Jj(u) = u+ Gy(u).
For every h € 'H, there exists a limit

(3.3) i(h) = limV,,h.

7 is a 1-1 mapping from Uy onto a subset Hi of H and i is the inverse mapping
from Hy onto Uy. Moreover, h = j(u) is the minimal harmonic function dominating
uw and u is the mazimal solution of (1.1) dominated by h.

The relation

(3.4) u+ Gy(u) =h
holds for h € H and u > 0 if and only if h € Hy and v = i(h).
ProoF. 1°. If u € U, then, by the mean value property 2.1.D,
u+ Gpo(u) = hy

where h,, = K,u.

Since the sequence G,u is increasing, the sequence h,, is also increasing and
therefore the limit (3.1) exists and it satisfies (3.2). By 6.1.5.C, it belongs to H
unless it is identically equal to infinity.

2°. If uw € Uy, then h = j(u) belongs to H and it is the minimal harmonic
function dominating uw. Indeed, if v € U, then u < h € H and therefore K,u <
KniL = h for all n. Hence, h < h.
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3°. Suppose that h € H and let u,, = V,,(h). Since K,h = h, we have
Up + Gpip(un) = h

and therefore u,, < h for all n. By the mean value property 2.1.D and the mono-
tonicity 2.1.C of V,, ,

Un+1 = Vn(unJrl) < Vn(h/) = Un.

This implies the existence of the limit (3.3). Since u, € U(D,), u = i(h) € U(E)
by Theorem 5.3.2. We get (3.4) by a monotone passage to the limit.

If 4 € U(FE) is dominated by h, then @ = V,, (@) < V,(h) and therefore @ < i(h).

4°. Let us prove that i[j(u)] = w for all u € U;. Indeed, let h = j(u) and
i(h) = u'. Functions u, = V,(h) satisfy the equation u, + Gp¥(u,) = h. By
Fatou’s lemma and (3.2), v’ + Gy (u') < h = u+ Gy (u). By (3.2) v < h. Hence,
Vi (h) > Vi (u) = w and v’ > u. We conclude that 0 < o' —u < Gyp(u) —Gyp(u') <0
and therefore v’ = u.

5°. If h € Hy, then h = j(u) for some u € Uy, and, by 4°, j[i(h)] = j[i(j(v))] =
jlu) = h.

6°. Let h € H and u > 0 satisfy (3.4). Then Gy(u) = h — u. By 6.2.12, for
every U € E, G = Gy + KyG. Therefore Gyyp(u) + Ky(h — u) = h —u and
u+ Guy(u) = Kyu. Since u < h is bounded in U, Lu = ¢(u) in U by 2.1.B.
Therefore v € Y. Clearly, u € U;.

By (3.2), h = j(u). Hence, h € Hy and u = i(h). O

The equation (3.4) implies that, if gg(x,y) = oo for all z,y € F, then the only
moderate solution is 0.

3.2. Characterization of class H;. Let u € M(E). A sequence of functions
fn is called uniformly p-integrable if, for every € > 0 there exists N such that

(3.5) I(n, N) = / ful du < e forall n.
[fnl>N

If this condition is satisfied and if f, — f p-a.e., then [ f, du — [ f du. Indeed,
gn = | fn — f| are uniformly integrable and g, — 0 p-a.s. We have g, < gy, + 9,
where gy, = 1y,<Ngn and gy, = lg,>ngn. For every e, there exists N such
that ng,n dp < € and, for every N, fg§vn dp — 0 as n — oo by the dominated
convergence theorem.

We prove the converse statement for positive functions f,.

LEMMA 3.1. Suppose that f,, >0 and f, — f p-a.e. If

(36) [twin— [ £dn<
then f, are uniformly p-integrable.

PROOF. Note that

I(n,N) = /j U= dus /j du <o)+ 8, N)
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where
3.7 «an)= n— f| du = — fn) du + w—fd
@.1) ot = [ 14~ 1l du /M(f fu) di /M,(f f) du
~[G-ndus2 [ G- h)du
E f>TIn
and

s )= [ fn
fa>N
If f,, > N, then either f > N — 1 or f, — f > 1. Therefore

(3.8) B(n, N) < / £ dpi+(n)

f>N—1

A(n) = /, Jan

By the dominated convergence theorem and by (3.7), lim~y(n) = lima(n) = 0 and
therefore, for every e > 0 there exists ng such that a(n) + vy(n) < /2 for all
n > ng. By (3.8), there exists Ny such that, for all N > Ny, n > ng, 8(n,N) < ¢&/2
and, consequently, I(n, N) < e. Since all f,, are integrable, there is N7 such that
I(n,N) < e for all N > Ny,n <ng. Hence (3.5) holds for N > Ny V Nj. O

where

THEOREM 3.2. A function h € H belongs to Hy if and only if, for every x,
functions

(3.9) EL(Y) = galz, y)¢[Va(h)](y)

are uniformly integrable (with respect to the Lebesgue measure).
If E is connected, then h € H belongs to Hi if the family FS is uniformly
integrable for some c.

PROOF. Since K,h = h, function u,, = V;,(h) satisfies the equation
(3.10) Un + Gpp(uy) = h.
Note that
Gutun)(a) = [ Fi(0) dy
If w =i(h), then, by (3.3), u, — u and therefore

Fi(y) = F*(y) = g(z, y)¢¥[u(y)]-
Equation (3.10) implies that the functions F¥ are integrable.
If F? are uniformly integrable, then

Gntp(un) — G(u),

and the equation (3.10) implies (3.4). By Theorem 3.1, h € H;.

If h € Hy and if w = i(h), then h = j(u), and (3.4) follows from (3.2). Hence,
Un + Gp(un) = u + Gip(u) and Gpp(u,) — Gi(u) because u, — u. Functions
(3.9) are uniformly integrable by Lemma 3.1.

If F is connected, then, for every u € U, h = u+G1(u) either belongs to H or it
is infinite in all E. This follows from 6.1.5.C because, by (3.1)-(3.2), h = lim K, u.
If the family (3.9) is uniformly integrable for some ¢ € E, then h(c) < oo and
therefore h € H;. O
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COROLLARY 3.1. If h € Hi,h € H and if h < h, then h € H;.

Indeed, by 2.1.C, V;,(k) < V,,(h) and therefore [V, (k)] < ¥[V,,(h)].
More can be said on the set H; under an additional assumption:

3.2.A. There is a constant a such that
U(x,2u) < ap(x,u)

for all © and .

THEOREM 3.3. If 9 satisfies conditions 1.A and 3.2.A, then H;y is a convex
cone.

PROOF. It follows from 1.A and (2.6) that

YV + h2)] < V() + Valha)] < Z0RVa(ho)] + 212V (ha)].

If ¢ satisfies 3.2.A, then the right side does not exceed ${¢[V,,(h1)] + ¢[Va(h2)]}.
If the conditions of Theorem 3.2 hold for h; and hg, then they hold for iy + he.

We claim that, for every ¢ > 0, ch satisfies the conditions of Theorem 3.2 if
this is true for h. Clearly, that this is correct for 0 < ¢ < 1. If 1 < ¢ < 2¥, then, by
Corollary 2.2, V,,(ch) < 2¢V,,(h) and, by 3.2.A,

Y[Valch)] < w[2eVa(h)] < [2¥F1V, (R)] < a*FH[Vi (h)).
O

3.3. Trace of moderate solutions. By Theorem 7.4.4, every h € H has a
unique representation h = Kv where v is a finite measure on E’. Put v € N if
h € Hy. Corollary 3.1 implies that A; contains, with every measure v, all measures
7 < v. We have a 1-1 mapping v — u, = i(Kv) from N; onto U;. If u = u,, then
we say that v is the boundary trace of u and we write v = tr u.

4. Sweeping of solutions

4.1. Operators Qp. Suppose E is a domain in R? and B is a compact subset
of OE. We claim that, for every € > 0, the set

D(B,e) ={zx € E:d(z,B) > ¢}

satisfies the condition: all points a € O = 9D(B,e) N E are regular. To prove this,
we use the criterion of regularity stated in section 6.2.3. Note d(a, B) = ¢ and
there exists a point b € B such that d(a, B) = d(a,b). Define A as the closed ball
centered at ¢ = (a + b)/2 of radius £/2. If x € AN D, then d(z,b) > d(z,B) > ¢
and d(z,c) < /2. Since d(b,c) = €/2, we have d(z,c) + d(c,b) < d(z,b). Hence,
x,c, b lie on a straight line, and x = a.

We say that a sequence of open sets D,, is a [E, B]-sequence if

D,1E, D,1E\B, dD,,E\D,;1)>0 anddD,NE isregular for D,

To every sequence &, | 0 there corresponds an [F, Bl-sequence D,, = D(B,&,).
We deal with positive functions on E and we agree to continue them by 0 to E°.
Suppose that D,, is a [E, B]-sequence and v € Y. It follows from 2.1.G that Vp,, (u)
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is a monotone decreasing sequence. The sweeping Qp(u) of u to B is defined by
the formula

(4.1) Qp(u) =limVp, (u).
It is easy to see that the limit does not depend on the choice of a [E, B]-sequence.
Theorem 5.3.2 implies that it belongs to Y. Operators @p have the following
properties:

4.1.A. Qp(ur) < Qp(usz) for uy < us.

4.1.B. @p(u) < u.

4.1.C. If By C By, then Qp, (u) < Qp, (u).

4.1.D. For every By, Ba, Qp,un,(u) < Qp, (u)+ Qp,(u).

4.1.E. Qogr(u) =u.

4.1.F. If u < uy + ug, then Qp(u) < Qp(u1) + @n(usz).

Properties 4.1.A and 4.1.B follow, respectively, from 2.1.C and 2.1.F. If By C

By, then D(Bsg,e) C D(Bq,¢) and therefore 2.1.G implies 4.1.C. 4.1.D is an impli-
cation of (2.16) and the relation D(B; U Bg,e) = D(By,¢) N D(Bag,¢). 4.1.E holds

because, by 2.1.D, Vpsr)(u) = u for all €. Finally, 4.1.F follows from (2.6) and
2.1.C.

4.2. Extended mean value property. According to the mean value prop-
erty 2.1.D, if Lu = ¢(u) in E, then, for every D € E, Vp(u) = u which is equivalent
to the relation
(4.2) u+ Gpy(u) = Kpu.

In general, this is not true for D C E. However we will prove (4.2) under some

additional assumptions on u and D.

THEOREM 4.1. (Extended mean value property.) Let u be a moderate solution
with trace v. The relation (4.2) holds if DN B =0 and if v is concentrated on B.

Proor. Consider a sequence l~)n exhausting £ and put D,, = l~)n N D. Since
D,, € E, we have
(4.3) u+Gp,Y(u) = Kp, u.
Let 7, and 7 be the first exit times from D, and from D. Clearly, 7, T 7 and
therefore Gp, ¥ (u) T Gpy(u). We get (4.2) from (4.3) if we prove that
(44) KDn'UJ — KDu.
Since 7, < 7, we have

Kp,u(z)=1I,+ Jn
where
I, = U {u(ér, )1, = } = Do{u(ér) 1, = }

and

Jn =T {u(é ) 1r, <7} = e {(ulp) (&) }-
Note that {7, = 7} T {7 < ¢} and therefore I,, — Kpu. It remains to show that
Jn — 0. By the condition of the theorem, u is dominated by a harmonic function

hx) = /B Kz, y)v(dy)



128 8. MODERATE SOLUTIONS OF Lu = 9 (u)

and, by Lemma 7.3.1,

Jn <M {(P1p)(¢r,)} = T{E,, € D}
Note that

{5‘1’" S D} l/ {T = CagC* € C}
where C' = OE N D. Therefore

I {¢,, € D} <T'{g. € C}.
By 7.(4.6),
Wi{ee € Oy = [ ke ywias)
Since v(C) = 0, the integral is equal to 0. O

COROLLARY 4.1. If trace v of u is concentrated on B, then Qp(u) = u.
4.3. Trace of Qp(u).

THEOREM 4.2. If u is a moderate solution with the trace v, then v = Qp(u) is
a moderate solution with the trace equal to the restriction vg of v to B.

PROOF. Put h(z) = [, k(z,y)v(dy) and hp(z) = [ k(z,y)v(dy). Let D, be
a [E, B]-sequence and let 7, be the first exit time from D,,. We claim that

(4.5) I,h(&,) — hp(z). asn — oco.
Indeed, {7, < (¢} | {{c— € B} and therefore
(4.6) M {r < ¢} LT3 {&- € B}

By 7.(4.13), the right side is equal to hp(r). By Lemma 7.3.1, Il {7, < (} =
M7 (&, ). Therefore (4.6) implies (4.5).
Note that
Va(u) < Kpu =1lu(&s,) < ah(&r,)
and, by (4.1) and (4.5), v = @p(u) < hp which implies that trv < vp.
Since hg < h, vg = i(hp) < i(h) = u and therefore tr vp is concentrated on
B. By the Corollary 4.1, vg = Qp(vs) < Qp(u) = v and vg = trvg < tro. O

5. Lattice structure of U

5.1. Operator 7. Denote by C(E) the class of all positive functions f €
C(E). Put u € D(n) and 7(u) = v if u € C4(F) and Vp, (u) — v pointwise for
every sequence D,, exhausting F. By 2.1.B and Theorem 5.3.2, w(u) € U. It follows
from 2.1.C that 7(u1) < w(ue) if u; < us.

Put

U ={ueCL(E):Vp(u) <u forall D € E}
and
UT ={ue C(E): Vp(u) >u forall D€ E}.
By 2.1.D,U Cc U~ NUT. If h € H, then, by (2.1), Vp(h) < Kph = h for every
D € E. Hence, HCU™.
For every sequence D,, exhausting E, we have:
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51.A. Ifu e Y, then Vp, (u) | 7(u) and
m(u) =sup{a e U : u < u} <u.

Indeed, by 2.1.E, Vp,,,u = Vp,Vp
=) <7(u).

u < Vp,u. If u < wu, then, by 2.1.D,

n+1

Analogously,
5.1.B. If ¢y € BR and if u € U™, then Vp,_ (u) T m(u) and

m(u) =inf{a el :a>u} >u.

Clearly,
5.1.C. If u,v € U™, then max{u,v} € UT. If u,v € U™, then min{u,v} € U~.

It follows from subadditivity of Vp (Theorem 2.1) that:
5.1.D. lf u,v e U™, then u+v e U™.

5.2. Lattices of functions and measures. Let (L, <) be a partially ordered
set. Writing v = Sup C' means that v < v for all w € C and that v < v if u < v for
all uw € C. The Inf C is defined in a similar way. A partially ordered set is called a
lattice if Sup{u, v} and Inf{u, v} exist for every pair u,v € L. These two elements
are denoted u V v and u A v.

A lattice L is called complete if Sup C' and inf C' exist for every C' C L.

EXAMPLES

1. The set [0, 00] with the order < is a complete lattice. The set [0, 00) is an
incomplete lattice.

2. The set C(F) of all continuous functions from a topological space E to
[0, oo] with the order < is a complete lattice. The same is true for the set of all
positive Borel functions.

3. The set M(E) of all finite measures on a measurable space (E, B) is a lattice.
Measure p V v can be calculated by the formula max{a, b}dy where v = p+ v and
a = dp/dv,b = dv/dy. A similar expression holds for pu A v. Clearly, the lattice
M(E) is incomplete.

5.3. Lattice U. In the rest of this chapter we assume that 1 € BR. The set
U with the partial order < is a lattice with v V v = w[max{u,v}] and u A v =
m[min{u, v}] (if u,v € U, then max{u, v} and min{u, v} belong to D(w) by 5.1.C).
In addition, we introduce in U/ an operation u @ v = w(u + v).

THEOREM 5.1. The lattice U is complete. Moreover:

5.8.A. For every C C U, there exists a sequence u, € C such that SupC =
Sup uy, .

5.8.B. If C is closed under V and if v = SupC, then there exists a Sequence
up € C such that uy(x) 1 v(x) for all x € E. We have v(x) = supg u(x) for all
reKL.

PrROOF. By Theorem 5.3.2, every monotone increasing sequence u, € U con-
verges pointwise to an element u of U. Clearly, v = Supu,. If v, is an arbitrary
sequence in U, then u,, = v1 V- -V v, is monotone increasing and Sup v,, = Sup u,,.
Therefore Sup Cy exists for every countable set CY.
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Let C C U. For every z € E, l(x) = supsu(x) < oco. Select a sequence
x), everywhere dense in E. For every k there exists a sequence u,x € C such that
Unk(zr) — £(zx). Consider a countable set Co = {unx :n=1,2,..., ,k=1,2,...}
and put v = Sup Cy. We claim that v = SupC. Indeed, if u € C, then v(xg) >
l(xy) > u(xy) for all k and, since u and v are continuous, v > w. If & € U is an
upper bound of C, then @ > u,y, for all n, k which implies & > v. The existence of
Inf C can be established in a similar way.

Our arguments prove also 5.3.A. The first part of 5.3.B follows immediately
from 5.3.A. It remains to prove the second part. If C is closed under V, then
there exist w, € C such that v(z) = limwu,(x) for all z. By the definition of ¢,
un(x) < £(z) for all n and x. Hence, v(z) < ¢(z). On the other hand, we have
already proved that ¢(z) < v(z). Thus v = £ which implies 5.3.B. O

For any u,v € N, the relation u, < u, is equivalent to the relation p < v.
Therefore

(5.1) Upvy = Uy V Uy, Upay = Uy A Uy, Upygy = Uy D Uy
and
(5.2) ifv, TveN;, thenu,, Tu,.
5.4. Class Ny and o-moderate solutions. If 1 < --- < 1, < ... is an

increasing sequence of measures, then v = lim v, is also a measure. We put v € Ny
if v, € M. Note that

5.4.A. A measure v € Ny belongs to N if and only if v(F) < oco.

Since all measures of class N are finite, we need only to demonstrate that, if
Vp € M,v, T v and v(E) < oo, then v € N;. By the Radon-Nikodym theorem,
vn(dy) = pn(y)v(dy). Since v, T v, p, T 1 v-a.e. and

() = K (z) = / k(2 9)on (9)0(dy) T h(z) = Ku(z).

By Theorem 3.1, hy, = up + GY(uy) where u, = i(hy,) which implies that h =
u+ G(u) where u = limu,.

5.4.B. If v € Ny and if u < v, then p € Np.

Indeed, suppose v, € N1 and v,, T v. Then u,, = v, A u € N7 by Corollary 3.1,
and p, T p.

We say that u € U is o-moderate and we write u € Uy if there exist moderate
solutions u, such that u, T u.

LEMMA 5.1. There exists a monotone mapping v — u, from Ny onto Uy such
that u, = i(Kv) for v e Ny and

(5.3) Uy, Tuy, ifv, o

PROOF. Suppose v, T v,v), T v and u,, 1 u,u,, T o for v,,v, € N1 and
put Vi = vm A v,,. Note that vp, 1 v as n — oo and, by (5.2), uy,,, T uy,,-
Therefore

v= lim w,, = lim lim w,,,6 =supsupu,,,,
m—0o0 m—o0 N—0o0 m n
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Analogously, v’ = supsupu,,,,. Thus u = w’. We proved that u, = limu,, does

not depend on the ghoi:’:le of v, T v. Clearly, u, defined by this formula satisfies
(5.3). O

Note that the map v — u, from Aj onto Uy is not 1-1: it can happen that
U, = uy for v#£v'.

LEMMA 5.2. Suppose E is a bounded smooth domain and O is a relatively open
subset of OF. If v € Ny and v(0) =0, then u, =0 on O.

PROOF. There exist v, € N7 such that w, = u,, T u,. The moderate solution
Uy, is dominated by a harmonic function

fin) = /6 oo HE 0 ).

It follows from 6.1.8.B and the dominated convergence theorem that h,(z) — 0 as
x — Z € O. This implies uy,(z) — 0, and u,(z) — 0 by Theorem 5.3.3. O

5.5. Solutions ug. Let v be a measure on E’ and let B be a Borel subset of
E’. We put v € N(B) if v is concentrated on B, i.e., if ¥(E'\ B) = 0. We put
Ni(B) = N1 NN (B),No(B) = Ny N N(B). An important role is played by the
solutions

(5.4) up = Sup{u, : v € N1(B)}.
We claim that:
(55) UB,;UB> < up, + UB,.

Indeed, if v € N(By U By), then v = vy + vy with v; € N(By) and vs € N (By). If
v € N1, then v and vs belong to N by Corollary 3.1. Since u,,, Uy, € U™, Uy, + Uy,
in YU~ by 5.1.D. By (5.1) and 5.1.A, uy = uy, @ Uy, = Ty, + Upy] < Uyy + Uy,
which implies (5.5).

We have:

5.5.A. up > u, for all v € Ny(B) and up = u, for some v € Ny(B).

[Hence, all up are o-moderate.]

The first part follows from the definition of Sup. The second part is true

because, by 5.3.B, there exist v, € Ni(B) such that u,, T ug. If v, T v, then by
(5.2), uy, 1 u,. Hence, ug = u,.

REMARK. We say that v is a (0, co)-measure if v(B) = 0 or oo for all B. To
every measure v there corresponds a (0, 00)-measure oo - v = lim kv. It belongs

k—o00

to Mo(B) if v € Ny(B). Therefore measure v in 5.5.A can be chosen to be a
(0, 0o)-measure.

6. Notes

6.1. Most results presented in this chapter can be found in [DK96b], [DK98¢],
[DK98b] and [DK98a]. The concept of moderate solutions was introduced in
[DK96b]. Theorem 3.1 was proved there in the case ¥(u) = u*, 1 < a < 2. Sweep-
ing operators Qp (also for ¥(u) = u®) appeared in [DK98c|, [DK98b] ! as a

n [DK98b], operators Qg are introduced for closed subsets B of the Martin boundary OE
of a Riemannian manifold E.
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tool in the theory of the rough boundary trace of a solution (presented in Chapter
10). Lattice properties of U were used in [Kuz98c] and [DK98a] to define and
investigate the fine trace (see Chapter 11).

6.2. A number of authors studied solutions of Au = 1(u) tending to infinity
as distance to the boundary tends to 0. ? By 2.1.I, Vp(occ) is the minimal among
these solutions. Very simple arguments show that the equation Au = u® can not
have more than one solution in a star domain D. A domain D is called a star
domain if there is a point g € D such that, for every y € 9D, it contains the open
line segment connecting y and zo. Suppose that v and v are two large solutions.
Without any loss of generality, we can assume that zg = 0. Put vy(z) = )\%v()\x)
with A < 1. Note that AD C D, Avy = v§ in D and vy < oo on dD. By the
comparison principle, vy < w. Hence, v < u. Analogously v < v and therefore
u = .

The uniqueness of a large solution was proved under various conditions on
and D in [LN74], [BM92]. More general equation Lu = t(u) was considered
in [BM95]. For the equation Au = u® and very broad class of domains D the
uniqueness was proved in [MV97].

A Wiener-type criterion for the existence of u > 0 such that Au = u? in D and u
blows up at a given point of 9D was given by Dhersin and Le Gall in [DL97]. Their
criterion implies a complete characterization of the class of domains in which large
solutions exist. Obtained by probabilistic methods, this result was much stronger
than the conditions known to analysts at that time. Very recently Labutin [Lab01]
proved, by analytic methods, a similar result for all equations Au = u® with o > 1.
Parabolic versions of the results of [DL97] were obtained in [DD99].

2The name “large solutions” or ”solutions with blow-up on the boundary” are used in the
literature.



CHAPTER 9

Stochastic boundary values of solutions

In this chapter we characterize an arbitrary positive solution of Lu = ¥ (u) in
an arbitrary domain F in terms of (L, 1)-superdiffusion X. We define a o-algebra
Fa = Fa(E) describing the class of events observable at the exit of X from E and
we introduce a class 3 of Fy-measurable functions which we call boundary linear
functionals of X. We establish a 1-1 correspondence between U(E) and 3. If Z
corresponds to u, then we say that Z is the stochastic boundary value of v and that
u is the log-potential of Z. We investigate subclasses 31 and 3 of 3 corresponding
to the class U, of moderate solutions and to the class Uy of o-moderate solutions.
In particular, we get a relation between the stochastic boundary values of u and
its minimal harmonic majorant h = j(u). At the end of the chapter we establish
a connection between superdiffusions and conditional diffusions. This connection
was the original motivation of the theory of the fine trace presented in Chapter 11.

1. Stochastic boundary values and potentials

1.1. Definition. We fix a domain £ in R? and we put p € M. if 4 belongs
to M(E) and is concentrated on a compact subset of E. Writing “a.s.” means
“P,-a.s. for all p e M,”.

Let (Xp, P,) be an (L, ¢)-superdiffusion. We assume that ¢ belongs to BR and
satisfies conditions 8.1.A-1.C. Suppose that u is a Borel function with values in
Ry. Wesay that Z > 01is a stochastic boundary value of u and we write Z = SBV (u)
if, for every sequence D,, exhausting F,

(1.1) lim (u,Xp,) =2 as.

Clearly, Z is defined by (1.1) uniquely up to equivalence. [We say that Z; and Z
are equivalent if Z; = Z a.s.] ! We call u the log-potential of Z and we write
u=LPT(Z) if

(1.2) u(z) = —log Pre 2
1.2. Existence of SBV(u).

THEOREM 1.1. For every u € U™, there exists a stochastic boundary value Z.
The log-potential of Z is equal to w(u). More generally,

(1.3) p‘ue*Z — o~ (m(u)p)

for all pe M,. 2
1t is possible that Z; and Zo are equivalent but P,{Z1 # Zs} > 0 for some pu € M(E).
2Convoxity of 1 is not used in the proofs of Theorems 1.1 and 1.2.

133
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PrOOF. Put Y, = e (®Xpn) By the Markov property 3.1.3.D, for every
Ace fCDna

/ Ypi1 dP, = / Px, Yni1 dP,.
A A

By 8.(2.17),

Pxp Yni1 = e VDpiy (u),XDn)

and, since Vp, , (u) < u, by the definition of &/~ , we have

/1fn+1 P, > / Y, dP,.
A A

Hence (Y,,, Fcp,,P.) is a bounded submartingale. By 4.3.A in the Appendix A,
this implies the existence, P,-a.s., of lim(u, Xp,,).

Functions Vp_ (u) € U(D,,) are uniformly bounded on every D € E and there-
fore (Vp, (u), ) — (m(u),p) for p € M.(E). Hence, P,Y, = e~ Voalwhm
e~ ()1 and, since Y,, — e %, P,-a.s., (1.3) holds by the dominated convergence
theorem. O

REMARK 1.1. The same arguments are applicable to the case of u € UT. Recall
that m(u) = u for u € Y.

REMARK 1.2. By Jensen’s inequality, P,e™? > e~ "»Z and therefore (1.3) im-
plies that, for all 4 € M.,

(mw(u), p) < PuZ.

1.3. Linear boundary functionals. Denote by F-g_ the minimal o-algebra
which contains F-p for all D € E and by F5g_ the intersection of F5p over all
D € E. Note that, if D,, is a sequence exhausting E, then F-g_ is generated by
the union of F-p, and F-g_ is the intersection of F5p .

We define Fy as the completion of the o-algebra F-p_ N F-p_ with respect
to the family of measures P,, 1 € M..

We say that a positive function Z is a linear boundary functional  if

1.3.A. Z is Fs-measurable.
1.3.B. For all p € M.,

—~log Pe? = /[— log Ppe~ 2] p(dx).

1.3.C. P{Z<x}>0 forallzekFE.

We denote by 3 the set of all such functionals (two functionals that coincide
a.s. are identified).

THEOREM 1.2. The stochastic boundary value Z of any u € U™ belongs to 3.
Let Z € 3. Then the log-potential u of Z belongs to U and Z is the stochastic
boundary value of u.

3The word “boundary” refers to condition 1.3.A and the word “linear” refers to 1.3.B. In

the terminology introduced in section 3.4.1, 1.3.B means that the CB-property holds for e=% and
we Me.
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PROOF. If u € U~ and if Z = SBV(u), then condition 1.3.A follows from (1.1),
1.3.B follows from (1.3). Since u(z) < oo for all z € E, (1.2) implies 1.3.C.

Now suppose that Z € 3 and v = LPT(Z). By 1.3.C, u < oo. Suppose D,
exhausts E. By 1.3.A and the Markov property,

P{e ?|Fep,} = Px,, e 7.
If p e M, the_n, P,-a.s., Xp, belongs to M, (it is concentrated on the union of

compact sets D,, and the support of x) and therefore, by 1.3.B and (1.2),

Px,. e ? = (wXon),

Therefore
e Z = P‘u{efzy]:cE,} = lime ™ (®Xpn)
which implies (1.1).
It follows from (1.1) and (1.2) that v = LPT(Z) = lim u,, where

Un(z) = — log Pye™ (4X0n)

By 8.2.1.J, Lu, = ¥(uy,) in D,,. Theorem 5.3.2 implies that u € U. O
1.4. Properties of 3, LPT and SBV.

THEOREM 1.3. If Z1, Zs € 3, then Zy+Z5 € 3 and LPT(Z1 +Z5) < LPT(Z,)+
LPT(Zs). If Z € 3, then ¢Z € 3 for all ¢ > 0.
IfZ, €3, Z, — Z a.s., then Z € 3.

PRroOOF. 1°. If Z1,Z5 € 3, then Z = Z + Z, satisfies the condition 1.3.A. To
check the condition 1.3.B, we note that, by Theorem 1.2,

Zy =lim(uy, Xp,), Z2=I1lim(uz, Xp,) a.s.
where u; = LPT(Z1), uz = LPT(Z3), and therefore
Z =lim(u, Xp,) a.s.
with u = u; + ug. For every u € Mq,

(14)  —log Pe (Xpn) = — / log Pre™(#X00) y(dr) = / Vi, (u)(@)(da).

Since P#(f(“’XDn> — P#e*Z and Pye~(wXpn) — P e=Z we get 1.3.B by a passage
to the limit in (1.4). To justify an application of the dominated convergence theorem
to the integral in the right side of (1.4), we use a bound

(1.5) Vb, (w) < Vp, (u1) + Vp, (u2) = u1 + ug

which follows from Theorem 8.2.1.

Since LPT(Z1 + Z3) = limVp, (u1 + u2), subadditivity of LPT follows from
(1.5).

The condition 1.3.C is equivalent to the condition LPT(Z) < co. The subad-
ditivity of LPT implies that (1.3.C) holds for Z if it holds for Z; and Z,.

2°.If Z € 3, then c¢Z satisfies 1.3.A and 1.3.C. To check 1.3.B, we use the same
arguments as in 1°, but instead of (1.5) we apply a bound for Vp(cu) established
in Corollary 2.2 in Chapter 8.

3°. If Z, — Z as., then u, = LPT(Z,) — v = LPT(Z). Since v € BR,
solutions u,, are uniformly bounded on every D,, and, if 1.3.B holds for Z,,, then it
holds for Z. O
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Both mappings (1.1) and (1.2) are monotonic and therefore 3 is a lattice iso-
morphic to . We have:

1.4.A. For every uj,us € U,

Indeed, by 8.5.1.D, uy +uz € U~. If Z; = SBV(u;), then
I+ 2y = SBV(u1 + UQ)
and, by Theorem 1.1, 7w(uy + uz) = LPT(Z; + Z2) which implies (1.6).

1.4.B. Let u, € U and Z,, = SBV(u,). If u, T u, then Z,, T Z = SBV(u).

Indeed, u = Supu,, in the lattice &. Therefore Z = Sup Z,, in 3, and Z, | Z
because Z,, is monotone increasing.

1.5. Example. If Z € 3, then, by Theorem 1.3,

Z% = lim \Z,
(1.7) A=0
7% = )\hm VA

also belong to 3. The corresponding solutions are

u’(z) = —log P,{Z < oo},
(1.8) u™®(x) = —log P,{Z = 0}.

2. Classes 3; and 3

2.1. Stochastic boundary value of a positive harmonic function. We
introduce a subclass of class 3 which is in 1-1 correspondence with the sets H; and
Ni. Then we extend the correspondence to larger classes 3¢, Ho and Njp.

In the rest of this chapter, we assume (in addition to the conditions stated at
the beginning of the chapter) that ¢ is in class CR (i.e., it satisfies the condition
4.(4.6)).

If h € H, then h € U~ and, by Theorem 1.1, there exists a stochastic boundary
value Z = lim(h, Xp, ). By Theorem 1.2, it belongs to 3. By 4.(4.6) and 6.2.4.A

Pu(h, Xp,) = (Kp, (k) ) = (h, ).
It follows from (1.1) and Fatou’s lemma that
(2.1) Puz < (h, p)
for all p € M. If (h, Xp,) are uniformly P,-integrable, then
(2.2) P,Z = (h, p).

Lemma 8.3.1 implies that the equality (2.2) holds only if (h, Xp, ) are uniformly
P,-integrable.
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2.2. Connections between 3; and H;. We say that h is the potential of Z
and we write h = PT(Z) if

(2.3) h(z) = P, Z.
Put Z€3,if Z€ 3 and P,Z < oo for some = € E.
2.2.A. For every h € H, Z = SBV(h) belongs to 3;.
Indeed, by (2.1), P.Z < h(x).
2.2.B. Let Z € 31,h =PT(Z),u=LPT(Z). Then u € Uy and h = j(u) € H;.

PrROOF. By Theorem 1.2, u € U and Z = SBV(u) = lim(u, Xp,) a.s. By
Fatou’s lemma,
(2.4) h(z) = P, Z <liminf h,(x)

where hy,(z) = Py(u,Xp,). By 4.(4.6), hy, = Kp,u. By Remark 1.2, (u,pu) =
(m(u),p) < P,Z for every p € M,.. The Markov property implies hy,(z) =
Py(u,Xp,) < P,Px, 7 = P,Z = h(z). Hence,

(2.5) lim sup hy, (z) < h(z).
It follows from (2.4) and (2.5) that h,, — h. By 6.1.5.C, h € H. According to
8.(3.1), h = j(u). Since u < h, u belongs to U; and therefore h € H;. O

22.C. If Z € 37 and if h = PT(Z), then the equality (2.2) holds for every
we Me.

PROOF. Put Z) =
Zy<Z. By (21),P,Z

(2.6) PuZ\ — P,Z as A — 0.

(1 — e %)/ and note that Zy — Z as A — 0 and 0 <
< (h, u) < oo and, by the dominated convergence theorem,

Consider a function
1 1
U, (\) = Y log P,e ¥ = Y log(1 — AP, Zy).

Since log(1 +1t) =t +o(t) as t — 0, it follows from (2.6) that ¥,(\) — P,Z as
A—0.
By Theorem 1.3, AZ € 3 for all A > 0, and, by 1.3.B,

B0 = [ e Wuda).
By Jensen’s inequality, P,e=*% > e~ =% and therefore ¥,(\) < P,Z. By the
dominated convergence theorem,

tim 0, () = [ Jim W, (V(do) = (1 ).

2.2.D. If h € Hy and Z = SBV(h), then h = PT(Z).

Indeed, Z € 31 by 2.2.A and therefore, by 2.2.C, (h, Xp, ) are uniformly inte-
grable. Hence,
P.Z =lim P, (h, Xp,) = h(z).
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22.E. If Z € 3; and h = PT(Z), then Z = SBV(h).
Indeed, by the Markov property and 2.2.C,

PA{Z|Fcp,} = Px,, Z = (h,Xp,)

and therefore
lim(h, Xp,) = P{Z|Fcp-} = Z.

22F. If Z€ 3, and h = PT(Z), then (h, Xp,) are uniformly P,-integrable for
every g € M.

This follows from Lemma 8.3.1 because (h, Xp_ ) — Z by 2.2.E and
Pyh,Xp,)=P.Px, Z=P,Z
by 2.2.C and the Markov property.

2.2.G. Each of the following conditions is necessary and sufficient for a positive
harmonic function A to belong to H;:

(a) (h, Xp, ) are uniformly P.-integrable for some ¢ € E.
(b) (h, Xp, ) are uniformly P,-integrable for all p € M..

PROOF. If h € H, then, by Theorem 1.2, Z = SBV(h) € 3. Put h = PT(Z).
By (2.1), h < h and therefore Z € 3;. By 2.2.B, h € H;. The function hy =h —h
belongs to H. If (a) holds, then, by (2.2), hi(c) = 0. By 6.1.5.D hy(x) = 0 for all
r€E, and h=heH,.

On the other hand, if h € H;, then, by 2.2.D, h = PT(Z) where Z = SBV(h).
By 2.2.A, Z € 31. The property (b) follows from 2.2.F. O

2.3. It follows from 2.2.B, 2.2.D and 2.2.E that PT is a 1-1 mapping from
31 onto H; and SBV is the inverse mapping from H; onto 3;. Both mapping
are monotonic and they preserve the addition and the multiplication by positive
numbers. One of implications is that H; is a convex cone. *

2.4. Let v — u, be the mapping from Ny onto Uy described in Lemma 8.5.1.
Formula Z, = SBV(u,) defines a monotone mapping from N, onto 39 such that
Zy, 1 Z, ifv, T v. fve Ny, then Z, is the element of 3; with potential Kv.
Note that, for all vy, ve,v € N7 and all A > 0,

(2.7) Zoiive = Zop, + Zoyy Zny = Ay,

Formulae (2.7) remain valid for vy, v2, v € Nj.

3. A relation between superdiffusions and conditional diffusions

3.1. In Theorem 3.1 we establish a relation between an (L, 1)-superdiffusion
and the h-transform (&, I1%) of an L-diffusion introduced in section 3.1 of Chapter
7. First, we prove a lemma that will be also used in Chapter 11.

4This was proved under assumption 8.3.2.A in Theorem 8.3.3. Instead of this assumption
we use the existence of an (L, v)-superdiffusion.
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LEMMA 3.1. Let

(3.1) u+ Gp(au) = h € H(D).
Then
(3.2) u(a) = espl- [ a(é.) ds

where T is the first exit time from D.

PRrROOF. Note that
H(t) = e Joal®®) di

satisfies the equation
(3.3) / a(&)H(t) dt =1— H(r).
0

By Fubini’s theorem and Lemma 7.3.1,

T o T .
[ aene) a=1k [ @) i

By Lemma 8.2.1, (3.1) implies that the left side is equal to Gp(au) = h —u. By
(3.3), the right side is equal to h(z) — T2 H(7). O

THEOREM 3.1. For every Z € 3 and every v € Ny,

’

(3.4) P.Z,e7 % = efu(x)/ e~y (dy)

where u = LPT(Z),

¢
3.5 d(u) = "u(€)] d
(3.5) (w) /Owus)] '
andﬂgzﬂz withh:ky.

PRrOOF. If formula (3.4) holds for v, then it holds for v = Y v,. Therefore
it is sufficient to prove the theorem for v € Nj. Let h = Kv. It follows from
the definition of the measures II” in section 7.3.1 that II? = [ g 1Y dv. Therefore
formula (3.4) is equivalent to

(3.6) v(z) = e W
where
(3.7) v(z) = e @ P, Z,e 7.

Note that PT(Z,) = h. [This follows from 2.2.B because h = j(u,) where u, =
LPT(Z,)] By 2.2.E, Z, = SBV(h). By Theorem 1.2, Z = SBV (u). Hence

(3.8) Z =limZ, a.s., Z, =1limY,, a.s.
where
Zn = {(u,Xp,), Y,=(h,Xp,).
By 8.2.1.D, Vp, (u) = u and therefore
—log P %m = u(x).

By 4.(4.6),
P.Y, = Kp, h(z) = h(z).
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Consider functions

us () = —1ong67Z"7SY", vn () = —u; () ’520 .

We have 2 = u and
d
(3.9) PY,e % = ——

ds
By (3.8),

= v, (2)e @),

(efui(r)) ’s:O
PY,e % — P, Z,e

because Y,, are uniformly P,-integrable by 2.2.G. By (3.9) and (3.7), this implies

(3.10) Up — 0.

We have
uy + Gp,¥(u)) = Kp, (u+ sh) = Kp,u+ sh.
By taking the derivatives with respect to s at s =0, we get

(3.11) vn + Gp, [V (Wvp] = h.
By Lemma 3.1, (3.11) implies
(3.12) vp(z) = II" exp [—/ W[u({t)]dt]
0
where 7, is the first exit time from D,. Formula (3.6) follows from (3.10) and
(3.12). 0
4. Notes

An idea to represent solutions of semilinear differential equations in terms of
superdiffusions was inspired by a well known connection between solutions of the
Laplace equation and the Brownian motion: if & is bounded and Ah = 0 in D, then

h(z) = TL, limh(&)

where 7 is the first exit time from D. [This follows immediately from the fact
that k(&) is a bounded martingale.] A representation of solutions of the equation
U 4 Lu = 1)(u) through a (L, 1)-superdiffusion appeared, first, in [Dyn93].> Most
results presented in Chapter 9 can be found (in the case ¥ (u) = u®) in [Dyn98b).

The connection between superdiffusions and conditional diffusions stated in
Theorem 3.1 was established in [Dyn97a].

SLinear boundary functional are defined in [Dyn93] (and [Dyn98b]) as F p_-measurable
functions but, in the proofs, measurability with respect to a o-algebra which we call Fjy is used.



CHAPTER 10

Rough trace

Now we suppose that the Martin boundary of E coincides with OF. [This is
true for all bounded smooth domains.] We define a boundary trace of an arbitrary
solution by using two tools introduced in Chapter 8: (a) traces of moderate solu-
tions; (b) sweeping of solutions. With the regard of the function 1), we assume that
it belongs to class BR and satisfies the conditions 8.1.A-1.C and 8.3.2.A.

1. Definition and preliminary discussion

1.1. Definition of rough trace. Let F be a bounded smooth domain in
R<. We say that a compact set B C OF is moderate for u if the solution Qp(u)
is moderate. Let vp stand for the trace of @p(u). By 8.4.1.D, the union of two
moderate sets is moderate. Suppose that B is moderate and let B C B. By 8.4.1.C,
Bis moderate, and by Theorem 8.4.2, vz is the restriction of vp to B.

A relatively open subset A of OF is called moderate if all compact subsets of
A are moderate. The union O of all moderate open sets is moderate. Clearly, there
exists a unique measure v on O such that its restriction to an arbitrary compact
subset B coincides with vg. The measure v has the property: for every compact
B C O the restriction of v to B belongs to the class V7. We denote by N1 (O—)
the class of measures with this property. We call O the moderate boundary portion
and we call ' = OF \ O the special set for the solution u. We call the pair (T, v)
the rough boundary trace of u and we denote it by tr(u).

1.2. Extremal characterization of sweeping. Let B be a compact subset
of OF and let

D(B,e) ={z € E:d(z,B) > ¢}
(cf. section 8.4.1). To any sequence &, | 0, there corresponds an [F, B]-sequence
D, ={x € FE:d(z,B) >e,}
and we have
(1.1) @p(u) =limVp, (u)
(cf. 8.(4.1))

THEOREM 1.1. For every u € U, function v = Qp(u) is the mazimal element
of U subject to conditions:

(1.2) v<wu; v=0 ondFE\B.

PROOF. Recall that we put u = 0 on E° and therefore Vp,_ (u) = Vp, (fn)
where f,, = v on O, = dD,, N E and f,, = 0 on the rest of dD,,. Put 4,, = {x €

141
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OF : d(z,B) > e,}. By 8.2.1.J, v, = Vp_(f») is a solution of the problem

Lv, =¥(v,) in Dy,

v, =u on Oy,

v, =0 on A,.
It follows from Theorems 5.3.2 and 5.3.3 that v = limv,, belongs to I/ and it satisfies
(1.2).
Suppose (1.2) holds for 4. Then & < u = v, on O, and & = 0 < v, on

oD, \ O,, C OE \ O,,. By the comparison principle 8.2.1.H, @ < v, in D,, and
therefore @ < v. O

1.3. The maximal solution wgp and the range R.

THEOREM 1.2. Suppose that B is a compact subset of OF and that all points
of OF'\ B are regular. Then there exists a mazimal solution wp of the problem

Lu=1(u) inE;

(1.3) u=0 ondE\B.

It can be obtained by the formula
(1.4) wp =1imVp, (fn)

where D,, is an [E, B]-sequence and

oo ondD,NE,
1. n =
(15) / {O on 0D, NOFE.

PrOOF. By Theorem 5.5.3, there exists a maximal solution wg of problem
5.(5.6) for @ = Rx E and I = R x B. If u(r,z) is a solution of 5.(5.6), then
ug(r,x) = u(t + r,z) is also a solution of this problem. Therefore the maximal
solution wg does not depend on r. It is easy to see that wp = wg is the maximal
solution of (1.3).

The second part of the theorem follows from Remark 5.5.2 (which is true even
if @,, are unbounded). O

The range R = Rp of a (L, y)-superdiffusion in E is defined as the envelope
of random closed sets (Sp, P,), D C E [ Sp is the support of Xp]. If the graph
G =Gp in Q =R x F is compact, then R is its projection from Q =R x E to E.

THEOREM 1.3. Suppose that E is bounded and regular. If X is an (L,v)-
superdiffusion, then the mazimal solution of the problem (1.3) is given by the for-
mula

(1.6) wp(z) = —log P,{R N B = (}.

The range R is compact Py-a.s. and the mazimal solution w of equation Lu =
Y(u) in E is given by the formula
(1.7) w(z) = —log PB,{RNOE = 0}.

PROOF. First, we apply Theorem 5.5.3t0 Q = Rx E and ' = () (since E is reg-
ular, all points of 0Q are regular). We get that w(r,z) = —log P, »{G is compact}

is the maximal solution of the equation @+ Lu = ¢(u) in @ such that u = 0 on 9Q).
Since w does not depend on time, it satisfies the equation Lu = 9(u) in E with
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the boundary condition v = 0 on OF. By the comparison principle 8.2.1.H, w = 0.
Hence, P, ;{Gq is compact} = 1.
Now we take I' = R x B and we identify x € E with (0,2) € Q. By 5.(5.7),

wg(x) = —log P,{GNT = 0} and, since, P,-a.s., R is the projection of G on E,
wp = wg is given by (1.6). We get (1.7) by taking B = OF. O

REMARK 1.1. The CB property holds for {R N B = ()} and P, assuming that
B C OF is compact and p € M.(E).

Indeed, if fi is the image of 4 € M.(F) under the mapping z — (0, z) from F
to @ =R x E, then i belongs to M.(Q) and, by Corollary 4.5.2,

log Pi{GNT =0} = / i(dz) log P,{GNT = 0}.
Q
The left side is equal to log P,{R N B = 0} and the right side is equal to

/ w(dz) log P,{R N B = 0}.
E
REMARK 1.2. Note that wp is the log-potential of

0 if RNB=0,
(18) ZB_{oo if RNB 0.

We claim that Zg € 3. Indeed, by (1.6),
P{Zp <0} =PA{RNB =0} = exp[-wp(x)] >0

because wp(z) < oco. Property 9.1.3.B follows from Remark 1.1. Property 9.1.3.A
can be deduced from the relation {RNB =0} = {GoNT =0} for ' = R x B and
@ =R x F and Theorem 4.5.3. By Theorem 9.1.2, Zp = SBV(wp).

We have:

1.3.A. wp, <wpg, if B C Bs.
1.3.B. Qp(u) <wp for all u € U.
1.3.C. Qp(wr)=0if BNT = 0.
1.3D. Qp(wp) = wp.

1.3.E. wp,uB, Lwp, +wp,.

1.3.F. If B, | B, then wgp, | wp.

1.3.A and 1.3.B follow from the maximal property of wp (recall that Qp(u) =0
on OF \ B). To prove 1.3.C, we note that, by 8.4.1.B, @p(wr) < wr. Since wr =0
on OE\T and @Qp(wr) = 0 on OF \ B, @p(wr) vanishes on OF and, by the
comparison principle, it vanishes on F.

Note that v = wp satisfies conditions v < wp,v =00on JF \ B and Qg (wpg) is
a maximal solution with these properties. Hence, wg < @p(wg). Therefore 1.3.D
follows from 1.3.B.

To prove 1.3.E, we put B = By U By and we note that, by 1.3.D, 8.4.1.D and
1.3.B,

wp = Qp(wp) < Qp, (wp) + @p,(wp) < wp, +wa,.
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Let us prove 1.3.F. Function w,, = wp, is a maximal element of &/ vanishing on
O, = 0E\ B,. By 1.3.A w, | v > wp. By Theorems 5.3.2-3.3, v is a solution
equal to 0 on O = 9F \ B. Hence, v < wp.

1.4. Removable and polar boundary sets. We say that a compact set
B C OF is removable if 0 is the only solution of the problem (1.3). [In the literature,
such sets are called removable boundary singularities for solutions of the equation
Lu = 1(u).] Clearly, B is removable if and only if wp = 0. A set A is called polar
if all its compact subsets are removable. If X is a (L, ¥)-superdiffusion, then, by
Theorem 1.3, a compact set B is removable if and only if P,{RN B # 0} = 0 for
every z € E. It follows from 1.3.A and 1.3.E that:

1.4.A. All compact subsets of a removable set are removable and all subsets of
a polar set are polar.

1.4.B. The class of all removable sets is closed under the finite unions.

We say that a Borel boundary subset B is weakly polar or w-polar if v(B) =0
for all v € Nj. This name is justified by the following proposition:

1.4.C. All polar Borel sets are w-polar.

PROOF. The class N] contains, with every v, its restriction to any B (see
Corollary 8.3.1). Therefore it is sufficient to show that, if v € N is concentrated
on a removable compact set B, then v = 0. The property 6.1.8.B of the Poisson
kernel k(x,y) implies that h = Kv = 0 on OF \ B. The solution i(h) satisfies the
same condition because i(h) < h. Therefore i(h) < wp. If wp = 0, then i(h) = 0.
Thus h =0 and v = 0. O

We also have:

1.4.D. If wp is moderate, then B is removable. If B C T and if Qp(wr) is
moderate, then B is removable.

PRrROOF. The second part follows from the first one because, by 1.3.A, wp < wr
and, by 1.3.D and the monotonicity of @p, wg = Q@p(wp) < Qp(wr).

Suppose that wp is moderate. By Theorem 8.3.1, wg = i(h) for some h € H;.
By Theorem 8.3.3, 2h € H;. By 8.(3.3) and Theorem 8.2.1,

i(2h) = lim V,,(2R) < 21im V,, (h) = 2i(h) = 2wp.

Hence, i(2h) = 0 on OF \ B which implies that i(2h) < wp. By the monotonicity
of j, 2h < j(wp) = h. Therefore h =0 and wp = i(h) = 0. O

1.4.E. Suppose I is removable and let B,, = {x € OF : d(z,T") > &, }. If &, | 0,
then Qp, (u) T u for every u € U.

Proor. Put I, = {y € OF : d(y,T') < 2¢,}. Note that I',, U B,, = OF and
', | T. By 84.1.E and 8.4.1.D, u = Qar(u) < Qr, (u) + @p, (v). By 1.3.B and
1.3.F, Qr, (v) <wp, | wr = 0 and therefore 1.4.E follows from 8.4.1.B. O
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2. Characterization of traces

2.1. Properties of the trace. We say that x is an explosion point of a mea-
sure v and we write ¢ € Ex(v) if v(U) = oo for every neighborhood U of z. If
BN Exz(v) =0 and if B is compact, then v(B) < co. Note that O N Ez(v) = () for
every measure v € N1(0O—).

We say that (T, v) is a normal pair if:

(a) T is a compact subset of OF;

(b) v € N1(O—) where O = 9E \ T};

(¢) the conditions:

(2.1) ACT ispolar and contains no explosion points of v, T'\ A is compact—

imply that A = 0.
We will prove that these conditions hold for the trace of an arbitrary solution
u. First, we prove a few auxiliary propositions.

2.1.A. If u € U vanishes on a compact set B € F, then Qp(u) = 0.

Indeed, by Theorem 1.1, v = @p(u) =0 on OF \ B and v < u. Hence, v =0
on OF, and v = 0 by the comparison principle 8.2.1.H.

2.1.B. Suppose that tr(u) = (I',v). If v = 0 on an open subset O;, then
O1NT =0 and v(07) = 0.
Indeed, for every compact subset B of O1, Qp(u) = 0 by 2.1.A and therefore
v(B)=0.

2.1.C. Let tr(u) = (I, v). If T is removable and v is finite, then u is moderate.

To prove this, we apply 1.4.E. Let v, be the restriction of v to B,. We have
un, = @p, (u) < Ky, because u,, is a moderate solution with the trace v,. By
1.4.E, uy, T u. Since Kv, T Kv, we get that u < h.

THEOREM 2.1. The trace of an arbitrary solution u is a normal pair.

PROOF. 1°. Properties (a) and (b) follow immediately from the definition of
the trace. Let us prove (c). Suppose that A satisfies the conditions (2.1) and let
I'o =T\ A. Theorem will be proved if we show that v = @Qp, (u) is moderate for
every compact subset By of Op = OF \ T'g. Indeed, this implies Oy C F \ T.
Therefore T'o DT and A = 0.

2°. Let (I'1, 1) be the trace of v. By 2.1.C, it is sufficient to prove that I'y is
polar and v is finite.

Put O=0F\T and O; = 90F \T';. By 8.4.1.B, v < u and 8.4.1.A implies

(2.2) OcO,, Ihcl', »<v onO.

By (1.2), v =0o0n OF\ B; and, by 2.1.B, 0E'\ By C 0E\T;. Hence, I'y C B;. By
(22), I'ncBinT.

Note that By € O U A. Therefore I'y C A is polar.

3°. Measure v is concentrated on By. Indeed, if BN By = (), then, by 1.3.A
and 1.3.B,

[\]

Q@p(v) = Qpl@s (v)] < @p(wp,) = 0.
We have
I/l(Ol) = I/l(Bl n 01) S I/l(Bl n F) + I/l(Bl n O)
Since By NT is polar and vy € N(O1—), the first term is 0 by 1.4.C. Since O and
A contain no explosion points of v, v(B;) < co. Therefore v1(01) < 0. O
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2.2. Maximal solution with a given trace. Note that N7(0O—) C Ay and
therefore, by section 8.5.4, to every v € N;(O—) there corresponds a o-moderate
solution u,. We construct a maximal solution with a given trace by using the
operation @&. We start with the following observations:

2.2.A. Let I'y,I's and T" be special sets for ui,us and v = wuy @ us and let
01, O2, O be the corresponding moderate boundary portions. Then I' = T'; U T,
and O = 01 n 02.

Indeed, u; Vug < u < uy +ug. Therefore, by 8.4.1.A and 8.4.1.F,

(2.3) Qp(u1) vV Qp(uz) < Qp(u) < Qp(ur) + Qp(uz).
Hence, B is moderate for u if and only if it is moderate for u; and for wus.

2.2.B. If u =u; ®uz and Qp(uz) =0, then Qp(u) = Qp(u1).
This follows from (2.3).

2.2.C. For every v € Ny and every compact B C O, Qp(u,) = u,, where vp is
the restriction of v to B.

Indeed, B is contained in an open subset O; of OF such that O; C O. Let 11
and vy be the restrictions of v to O; and to O\ O;. By Lemma 8.5.2, u,, = 0 on O1.
By 2.1.A, Qp(uy,) = 0. By 2.2.B, @p(uy) = Qp(u,, ). Note that the restriction
of 11 to B coincides with vg. Since u,, is moderate, @p(u,,) = u,, by Theorem
8.4.2,

THEOREM 2.2. If (T',v) is a normal pair, then u = wr ® w, is a solution with
the trace (I',v). Moreover, every solution v with the trace (I',v) is dominated by u.

Proor. 1°.If B C O = 9E\T, then, by 1.3.C, @g(wr) = 0 and, by 2.2.B and
2.2.G, QB(’U’) = QB(uu) = Uyg-

2°. Denote the trace of u by (Tg,vp). It follows from 1° that O C Oy =
OE\ Ty and v = vy on Oqy. Since v is concentrated on O, we have v < vy and
therefore Ex(v) C Ex(vy) C Ty C T'. Every compact B C A = T'\ 'y is moderate
for u (because B C Ogp) and it is removable by 1.4.D. Thus, A is polar. Since
ANEx(v) =0 and T\ A =Ty is compact, A = () by the definition of a normal pair.
Hence (T, v) = (T, vo).

3°. Suppose that trv = (T, v). Consider compact sets

B,={zx€dFE:d(z,T)>1/n}, T,={x€dFE:d(z,T)<1/n}.

Since B, UT,, = 0F

(2.4) v =CQor(v) <@g, (v) +Qr,(v)

by 8.4.1.E and 8.4.1.D. Note that @ g, (v) = u,, < u, where v, is the restriction of
v to By,. By 1.3.B Qr, (v) < wp, and, by 1.3.F wr_ | wr. Therefore (2.4) implies
that v < wu, + wr and v < u because u is the maximal element of &/ dominated by
wr + Uy. O

REMARK 2.1. By 9.1.4.A, SBV(wr ® u,) = Zr + Z, where Zr is defined by
(1.8) and Z, = SBV(u, ). Hence, wr ® u,, = LPT(Zr + Z,) which means

(2.5) (wr @ uy)(x) = —log / e % dP,.
RNAC=0
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2.3. Relation to a boundary value problem.

THEOREM 2.3. Suppose that
Lu=1v(u in B,
(2.6) ()
u=yf onO

where O is an open subset of OE and f is a continuous function on O. Then
tr(u) = (T, v) satisfies the conditions: TN O =0 and

(2.7) v(B) = /Bf(y)”y(dy) forall BC O

where 7 is the surface area on OE. The mazimal solution of problem (2.6) is given
by the formula wr ® u, where T'=0FE \ O and v is defined by (2.7).

PRrOOF. If B is a compact subset of O, then u is bounded in a neighborhood
of B. By Theorem 1.1, v = Qp(u) vanishes on 0F \ B and v < u. Therefore v is
bounded and B is moderate. Since O is a moderate open set, ' NO = ). Let D,,
be an [F, B]-sequence. By the extended mean value property (Theorem 8.4.1)
(2.8) v+ Gp, Y(v) = Kp,v.

If 7,, is the first exit time from D,,, then {7, < ¢} | {{c~ € B} and therefore

Kp,v(z) = av(&r, )1r, <¢ L L (f1B)(8c-)-

By 6.(2.8), the right side is equal to [ k(x,y)f(y)v(dy). It follows from (2.8)
that v + G (v) = h which implies (2.7). Now suppose that I' = 9E \ O. If
u’ is an arbitrary solution of (2.6) and if (IV,v’) is its trace, then IV C T' and
V' = v+ v; where v is given by (2.7) and v is the restriction of v/ to I' \ TV.
By 8.(5.1), uyr = uy @ uy,. By Lemma 8.5.2, u,, = 0 on O. By Theorem 2.2,
v < wpr ®uy = 4@ u, where ¢ = wpr ® uy,, = 0 on O. Hence & < wr and
u < wr D uy,. O

3. Solutions wg with Borel B

3.1. Assuming the existence of an (L,1)-superdiffusion, we construct such
solutions by using, as a tool, capacities related to the range. We calculate tr(wpg)
and tr(wp ®u,) for all v € Nj.

3.2. Choquet capacities. Suppose that E is a separable locally compact
metrizable space. Denote by K the class of all compact sets and by O the class of
all open sets in E. A [0, +oo]-valued function Cap on the collection of all subsets
of F is called a capacity if:

3.2.A. Cap(A) < Cap(B) if A C B.
3.2.B. Cap(4,) T Cap(A) if A, 1T A.
3.2.C. Cap(K,) | Cap(K) if K, | K and K, € K.
These conditions imply
(3.1) Cap(B) =sup{Cap(K): K C B,K € K} =inf{Cap(0) : 0 D B,0 € O}

for every Borel set B. !

IThe relation (38.1) is true for a larger class of analytic sets but we do not use this fact.
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The following result is due to Choquet [Cho54]. Suppose that a function
Cap : K — [0, +0o0] satisfies 3.2.A-3.2.C and the following condition:

3.2.D. For every K1, K> € K,
Cap(K7 U K») + Cap(K1 N K3y) < Cap(K7) + Cap(K»).

Then Cap can be extended to a capacity on E.

An important class of capacities related to random closed sets has been studied
in the original memoir of Choquet [Cho54]. Let (F, P) be a random closed set in
E. Put
(3.2) Ap={w: Fw)NB#0}.

The definition of a random closed set (see, section 4.5.1) implies Ap belongs to the
completion F¥ of F for all B in O and K.
Note that
Ay CAp if ACB,
Aaup =AaUAB, Aanp CA4NAB,

A, 1 Ap if B, 1 B,

AKn lAK if K, | K and K,, € K.
Therefore the function
(3.3) Cap(K)=P(Ak), KeK

satisfies conditions 3.2.A-3.2.D and it can be continued to a capacity on E. It
follows from 3.2.B that Cap(O) = P(Ao) for all open O. Suppose that B is a
Borel set. By (3.1), there exist K,, € K and O,, € O such that K,, C B C O,
and Cap(0,,) — Cap(K,) < 1/n. Since P(Ag,) < P(Ap) < P(Aop,) and since
P(MAo,) — P(Ag,) < 1/n, we conclude that Ag € FF and

(3.4) Cap(B) = P(Ap).

3.3. Solutions wg. Suppose X = (Xp, P,) is an (L, ¢)-superdiffusion and R
is its range in a bounded smooth domain E. Denote by C,, the capacity on 0F
corresponding to a random set (R, P,) and put C,, = C; if p = 6. Formula (3.4)
implies

C.(B) = P,{RN B # 0}.
By Remark 1.2,
(3.5) {RNB#0} e Fs

for every compact set B C OF. Since Fpy is complete with respect to all measures
€ Mg, (3.5) holds for all Borel B. Note that the function wp defined by (1.6),
can be expressed as follows:

(3.6) wp(z) = —log[l — Cu(B)].

We use this expression to define wp for all Borel B. By (3.1), wp(x) = sup{wg(z) :
K C B,K € K}. Therefore a Borel set B is polar if and only if wp(z) = 0 for all
x € E (which is equivalent to the condition Cy(B) = 0 for all z € E).

THEOREM 3.1. For every Borel subset B of OF, wp belongs to U and
(3.7) (wg, py = —log[l — C,(B)] = —log P,{RN B = 0}
for all p e M..
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ProOF. 1°. First, we prove that, for every u € M., there exists an increasing
sequence of compact subsets K, of B such that C,(K,) 1 C.(B) and wg, (z) T
wp(z) p-a.e. To this end we consider, besides C),, another capacity C* associated
with a random closed set (R, P*) where

pr = / P, pu(dz).

There exists an increasing sequence K, € K such that C,(K,) T C.(B) and
CH(K,) 1 C*(B). ? Put

¢n($):Px{RﬂKn7A®}, <P(x):Px{RﬂB7£®}
and note that ¢, T @ < . Since
(pn, 1) = CH(Kn) T C*(B) = (¢, 1),

we have ¢ = ¢ p-a.e. Therefore ¢, T ¢ p-a.e. and wg, T wp p-a.e.
2°. By Remark 1.1,

—logP{RNK, =0} = /,u(dx)[— log P.{R N K, = 0}]

and therefore
~logll — Cu(Kn)] = (i, 1.
By passing to the limit, we get (3.7).
3°. Note that wp = LPT(Zp) where Zp is defined by (1.8). By Theorem 9.1.2,

to prove that wg € U, it is sufficient to show that Zg € 3. By (3.5), Zp satisfies
the condition 9.1.3.A. Formula (3.7) implies 9.1.3.B. By (1.7),

P{Zp <00} =P, {RNB=0}>P,{RNIE =0} =e @ >0
and therefore Zp satisfies 9.1.3.C. [l

3.4. Trace of wp.

LEMMA 3.1. Let B be a Borel subset of OE. The trace of wg is equal to (T',0)
where T is the smallest compact set such that BN (OE \ T) is polar.

PROOF. Suppose trwp = (I',v) and put A = BN O where O = 0E \T'. Let
K be a compact subset of A. It follows from (3.6) that wx < wp. By 1.3.D and
8.4.1.A, wg = Qr(wk) < Qr(wp). Since K C O, Qk(wp) is moderate. Hence
wg is also moderate and K is removable by 1.4.D. We conclude that A is polar.

Now suppose that IV is an arbitrary compact set such that A’ = BN O’ is polar
(here O" = OE\T"). Since B C T U A’, we have, by 3.2.D, that C,(B) < C,(I") +
Cy(A") = Cx(I). By (3.6), this implies wp < wr/ and therefore Qg (wp) <
Qx (wrs). We use this inequality to establish: (a) IV D T'; (b) v = 0.

Indeed, if K C O, then Qx(wr/) = 0 by 1.3.C. Hence, Qx(wp) = 0. We
conclude that O’ is a moderate open set. Therefore O' C O. This implies (a). By
taking IV = T', we get that Qx(wp) < Qk(wr). Hence, for K C O, Qx(wg) =0
which implies (b). O

2We can define K, as the union of K/, and K/ such that C,,(K%) 1 C,(B) and C*(K!) 1
CH(B).
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3.5. Le Gall’s example. The following theorem, due to Le Gall, shows that,
in general, the rough trace does not determine a solution.

THEOREM 3.2. Suppose that there exists an (L, v)-superdiffusion, ¥ € CR and:
3.5.A. All single-point subsets of OF are polar.

Then there exist infinite many solutions with the trace (OF,0).

[We will see in Chapter 13 that, in the case ¥(u) = u®*, « > 1 and a bounded
smooth domain F, the condition 3.5.A is satisfied if and only if a@ > % (the
so-called supercritical case).]

The proof of Theorem 3.2 uses the following lemmas.

LEMMA 3.2. Let ¢y € CR. If u,v € U and u > v, then either u(z) = v(z) for
allz € E or u(xz) > v(x) for allz € E.

PROOF. It is sufficient to prove that if D is a smooth domain such that D € FE
and if v and v coincide at a point ¢ € D, then v = v in D. By the mean value
property 8.2.1.D,

PC€7<u’XD> _ efu(c), PC€7<U’XD> _ efv(c)
and therefore (u, Xp) = (v, Xp) Pe-a.s. By 4.(4.6),
Kpu(c) = P(u, Xp) = P.{v, Xp) = Kpv(c).

We conclude from this equation and formula 6.(2.8) that k(c, y)u(y) = k(c,y)v(y)
for y-almost all y € dD. Since k(c,y) > 0 and u, v are continuous on D, u = v on
0D. By the comparison principle, u = v in D. |

LEMMA 3.3. If O is a nonempty relatively open subset of OE, then O is not
polar. If v € CR, then wo(x) >0 for allx € E.

PROOF. Let O; be a nonempty open subset of O such that O; C O. By 8.2.1.1,
there exists a non-zero solution « vanishing on dE \ O. Since wg, is the maximal
solution equal to 0 on 8D \ Oq, we have ws, > u and wep, (z) > 0 at some z € E.
Hence, C,(O) > C,(0O1) > 0 and O is not polar. The second part of the lemma
follows from Lemma 3.2. O

LEMMA 3.4. Under the condition 3.5.A, tr(wa) = (OF,0) for each open every-
where dense subset A of OF.

PROOF. By Lemma 3.1, tr(wy) = (T, 0) for some I'. Let us prove that I' = 0F.
Suppose B is a compact subset of A= O NA where O = 9E \T. Solution Qp(wx)
is moderate because B C O. Since B C A, we have Qp(wp) > Qp(wp) = wp, and
wp is moderate. By 1.4.D, B is removable. Hence, A is polar. Since A is open, it
is empty by Lemma 3.3. Hence A C I". Since A is everywhere dense, ' = 0E. [O

PRrROOF OF THEOREM 3.2. Let B be a countable everywhere dense subset of
OF. Fix z € E. Condition 3.5.A implies that Cy(B) = 0 and therefore there exists
a decreasing sequence of open subsets O,, of F such that O,, > B and C,.(0,,) — 0.
By Lemma 3.3, wo, () > 0. Since wo, () — 0, the sequence wo, contains infinite
many different functions. By Lemma 3.4, each of them has the trace (9E,0). O
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3.6. (B, v)-solutions.

LEMMA 3.5. Let v € Ny. The trace of u, is equal to (I', u) where I' = Ex(v)
and p coincides with the restriction of v to OE \ T.

PROOF. Let B be a compact subset of OF. By 2.2.C, Q@5 (u,) = u,, where vg
is the restriction of v to B. Therefore B is moderate for u, if and only if u,, is
moderate, that is if and only if v(B) < co. Note that 0F \ Ex(v) is the maximal
open set such that v(B) < oo for all its compact subsets. Clearly, 4 = v on this
set. O

Now we calculate the rough trace of wg @ u, for an arbitrary Borel B and
arbitrary v € Ny. [We call wg @ u, the (B,v)-solution.]

THEOREM 3.3. The trace (I', ) of a (B,v)-solution u = wp & u, can be de-
scribed as follows: T is the smallest compact set such that T' D Ex(v) and BNO is
polar (here O = OE\T), and u is the restriction of v to O.

PROOF. By Lemma 3.1, tr(wp) = (I'1,0) where I'; is the smallest compact set
such that BN O; is polar (here O = OE \ T'1). By Lemma 3.5, tr(u,) = (I'z, p)
where T's = Exz(v) and p is the restriction of v to Oy = JE \ I'2. By 2.2.A,
I=T3UT2 and O = O; NO;. Hence, I' O Ex(v) and BN O is polar.

Let us prove the minimal property of I'. If I is compact and B N O’ (where
O’ = 9FE \ T”) is polar, then, by Lemma 3.1, IV D I';. If; in addition IV D Ez(v),
then I'V D Iyul's, =T.

Suppose K is a compact subset of O. Then K C O;. Since tr(wg) = (T'1,0),
Qk(wp) = 0. By 2.2.B, this implies Qx(u) = Qx(u,). By Theorem 8.4.2,
Qx (uy) = u,, where vk is the restriction of v to K. Therefore = v on O. O

4. Notes

4.1. A program to describe the set U of all positive solutions of a semilinear
equation

(4.1) Lu = (u),
(initiated by Dynkin in the earlier 1990s) was a subject of a discussion with H.
Brezis during his visit to Cornell University. Brezis suggested that boundary values
of u € U may be described as measures on the boundary.
A pioneering result in this direction was announced by Le Gall in [Le 93b].

He established a 1-1 correspondence between all solutions of equation Au = u? in
the unit disk D C R? and all pairs (', v) where I is a compact subset of D and v
is a Radon measure on O = 9D \ T'. Roughly speaking " was defined as the set of
points y € 9D near which u behaved like the inverse of the squared distance to the
boundary. More precisely, y € T" if

limsup d(z, dD)*u(z) > 0.

r—y,x€D
The measure v was defined as a vague limit of measures 1o (y)u(r, y)y(dy) as r 11
(v is the Lebesgue measure on D). Le Gall expressed the solution corresponding to
(T', v) in terms of the Brownian snake — a path-valued Markov process introduced in
his earlier publications (closely related to the super-Brownian motion). In [Le 97],

the results announced in [Le 93b] were proved and extended to all smooth domains
in R2.
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4.2. The presentation in Chapter 10 is based on [DK98c| and [DKO00]. In
[DK98c], the traces of solutions of equation Lu = u® with 1 < o < 2 in an arbitrary
bounded smooth domain in R¢ were investigated . In [DKOO], more general results
covering a large class of functions ¢ (not just ¢¥(u) = u®) were obtained.

In [DK98b] the results of [DK98c] were extended to a wide class of nonsmooth
domains E and even to a certain class of Riemannian manifolds. The main diffi-
culty is that the extremal characterization of the sweeping [ Theorem 1.1] is not
available. Among tools used to overcome this difficulty was a stochastic version of
the comparison principle.

4.3. The equation Au = u® in the d-dimensional unit ball B with arbitrary
a > 1 and d was investigated by purely analytic methods by Marcus and Véron.
The results were announced in [MV95] and proved in [MV98a] and [MV98b].
[The name “trace” for a pair (T, v) was suggested, first, in [MV95].] The case of
a subcritical value o < (d +1)/(d — 1) was studied in [MV98a] and the case of
a> (d+1)/(d—1) was treated in [MV98b]. A principal difference between these
cases is that there exist no polar sets except the empty set in the first case and
such sets exist in the second case (see section 13.3.) Marcus and Véron defined
the special set T' [which they call the singular boundary] by the condition: y € B
belongs to I if, for every neighborhood U of y in 0B,

/ u(ry)y(dy) — oo asr 1.
U

Their definition of the measure v is similar to that of Le Gall. They also observed
that a pair (I', ) can be replaced by one outer regular measure > y on B: T
consists of all explosion points of p and v is the restriction of u to 9B \T.

In [MV98a] Marcus and Véron proved that tr(u) determines w uniquely for
subcritical values of .. Le Gall’s example (see Theorem 3.2) shows that this is not
true for supercritical values. [A parabolic version of this example was published in
[Le 96].]

30uter regularity means that, for every Borel A, u(A) is equal to the infimum of u(U) over
all open sets U D A.



CHAPTER 11

Fine trace

As in the case of the rough trace, the fine trace of u € U is a pair (T', v) where
I" is a subset of the boundary and v is a measure on the portion of the boundary
complementary to I'. However, I' may not be closed (it is closed in a fine topology)
and v does not need to be a Radon measure (but it is o-finite). In contrast to the
case of the rough trace, there is no special advantage in restricting the theory to
smooth domains, and we return to the general setting of Chapters 7-9 when F
is an arbitrary Greenian domain in R%, k(z,y) is a Martin kernel and dE is the
Martin boundary corresponding to L.

The first step in the definition of the rough trace was constructing a measure
v on the moderate boundary portion O. The first (and main) part in the theory
of the fine trace is the study of the set I' of all singular points of u. We denote it
SG(u). Roughly speaking, y € SG(u) if ¢'(u) tends to infinity sufficiently fast as
x — y,x € E. The function ¢'(u) plays a key role in the description of the tangent
cone to U at point u. It is also a principle ingredient in the probabilistic formula
9.(3.4). An important step is an investigation of a curve u; = u @ uy, in U. If there
exists a (L, v)-superdiffusion, then we deduce from 9.(3.4) an integral equation for
ut (see, Theorem 11.3.1). For a general v, we prove a weaker statement about w,
but it is sufficient for establishing fundamental properties of SG(u). Relying on
these properties, we introduce a fine topology on the Martin boundary. The fine
trace is defined by the formula 11.(7.1). The main results on the fine trace are
stated in Theorems 11.7.1 and 11.7.2. At the end of the chapter we demonstrate
that for the solutions in Le Gall’s example (having identical rough traces) the fine
traces are distinct.

In this chapter we assume that 1 satisfies conditions 8.1.A-1.C and 8.3.2.A
and, moreover, that:

0.A. Function W is continuously differentiable.

1. Singularity set SG(u)

1.1. Points of rapid growth. We consider the tangent cone to U at point u
which we define as the set of tangent vectors v to all smooth curves w; in U with
the properties:

(a) up =w and uy € U for 0 < t < ¢

(b) u¢(x) is monotone increasing in ¢.

Condition (a) implies that Lu; = 9(u) for 0 < ¢ < ¢ and therefore v(x) =
Ouy(x)/ 8t’ 1o Satisfies a linear equation

(1.1) Lv=av

153
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where
a =" (u).

[We use abbreviation ¢’(u) for W.] Since 1 is monotone increasing in w,
a(xz) > 0.

Condition (b) implies that v(z) > 0. In the case a = 0, we established, in
Chapter 7, an integral representation of all positive solutions of (1.1) through the
Martin kernel k(zx,y)

(12) o) = [ kapldy)

where v is a finite measure on a Borel subset E’ of OF. A similar representation
is possible for any a > 0. However the corresponding kernel k,(z,y) can vanish
identically in = for some points y € E’. This happens if a blows up sufficiently fast.
We say that y € E’ is a point of rapid growth for a if ko(x,y) =0 forallz € E. We
say that y € E’ is a singular point of u € U and we write y € SG(u) if y is a point
of rapid growth of ¢’ (u), i.e., if ju(2,y) = kyr(u)(z,y) = 0 for all 2 € E. The rest
of boundary points are called regular points of u. We denote the set of all regular
points by RG(u).

We give an analytic and a probabilistic construction of the kernel k,. Based
on the latter, we introduce an equivalent definition of singular points y in terms of
the behavior of ¢’(u) along IT¥-almost all paths.

1.2. Analytic construction of kernel k,. Suppose a > 0 is a continuously
differentiable function on E, h € H(F) and D € E is regular. By Theorem 6.3.1,
the boundary value problem

Lu—au=0 1in D,

(1.3) w=h ondD

is equivalent to the integral equation
(1.4) u+ Gplau) =h
and each of the problems (1.3) and (1.4) has a unique positive solution. We denote

it K§h. We have:

1.2.A. K%h < hand KQh = h.

1.2.B. If DC D € E, then Kyh > K% h.

Indeed, let u = Kj)h and @ = K{h. We have h = @ + G p(a@) > 4. Therefore
w=1u—u < 0ondD because u = h on dD. Since Lw—aw = 0 in D, the maximum
principle 6.1.4.A implies that w < 0 in D.

Put ky(z) = k(z,y) and denote by k2 (z,y) the value of K%k, at point z. Note
that, for h given by (1.2),

(15) Kih(a) = [ KD(@y)v(dy).

Consider a sequence of regular domains D,, exhausting E. By 1.2.B, the sequence
kDn is monotone decreasing, and we denote its limit by k4 (x,y). [The limit does
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not depend on the choice of D,.] If h is defined by (1.2), then, by the dominated
convergence theorem,

(1.6) // ko(z,y)v(dy) = lim K7, h(z).

By 6.3.2.B, this is a solution of equation 6.(3.4) and, by 6.3.2.C, it is either strictly
positive or equal to 0 for all . In particular, this is true for functions k. (-, y) and
therefore k,(x,y) > 0 for all x € F if y is not a point of rapid growth of a.

1.3. Probabilistic definition of kernel k,. A probabilistic formula for a
solution of equation (1.4) is given by Lemma 9.3.1. By applying this formula to a
sequence of regular domains D,, exhausting F, we get

(17) ¥ () =T expl— [ a(é)ds
0
where 7, is the first exit time from D,,. By passing to the limit as n — oo, we get
an expression
(1.8) ka(z,y) = TYe %

where

¢
(1.9) @, —/0 a(&s) ds.

If a; < ag, then &,, < &4, and k., > kq,. Note that y is a point of rapid growth
for a if and only if
(1.10) &, =00 IIY —as.

forall x € F.

The set A = {®, = 0o} belongs to the tail o-algebra 7 and, by Theorem 7.5.1,
if condition (1.10) is not satisfied, then for all z € F, II%(A) = 0 and therefore
&, < oo IT¥-a.s. Onme of implications is that a point y € E’ is a point of rapid
growth for a; 4+ as if and only if it is a point of rapid growth either for a; or for as.

2. Convexity properties of Vp

2.1. Condition 8.1.A implies that, for all 0 < w1 < ug, ¥(u1) < ¥(u2) and
the ratio

2.1) P(uz) —P(ur)

Uz —Uj

is monotone increasing in u; and in us. Note that every function, for which the
ratio (2.1) is monotone increasing in wug (or in uy), is convex.

2.2,

THEOREM 2.1. Suppose that D is a bounded regular domain and v satisfies
8.1.A. Letu > 0,0 > @ >0 be continuous functions on 0D. Then

(2.2) Vo(u+¢) = Vp(u+ @) <Vb(p) — Vb(p).
Function F(t) = Vp(u + tp),t > 0 is concave.

Proof is based on the following lemma.
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LEMMA 2.1. Let D and % be as in Theorem 2.1 and suppose that continuous
functions fi1, fa, f1, fa on 0D and a constant A\ > 0 satisfy conditions

(2.3) 0< fi < fi < fo, 0<fi<fo<fo
and

(2.4) fo=fi <Afa— F).

Then

(2.5) Vb(f2) = Vo (f1) < AV (f2) — Vb ()]

PrROOF. Put u; = Vp(f;) and 4; = Vp(fi). By 8.2.1.C, v = ug —ug > 0 and
U =1y — 1 > 0. We have Luj; — ¢¥(u1) = L(u2) —(uz) = 0 and therefore Lv = av

where

- 1/’(”2) - 1/’(ul)

- U — U
and a = 0 for u; = ug. By 6.3.2.C, v =0 in D or v is strictly positive. The same
is true for ©. Formula (2.5) holds if o = 0. If v = 0, then f1 = w1 + Gp¥(w1) =
us + Gp(uz) = fao. By (2.4), fl = fg, and we again have (2.5). Therefore we can
assume that v and v are strictly positive.

Put

for u; # ug,

a = [P(uz) —Y(u)]/v, a= [P(a2) — ¥(@1)]/7.
By (2.3), u1 < @17 < @9 and w3 < ug < @g. Since the ratio (2.1) is monotone
increasing in u; and in wug, we have a > a. Put w = v — Av. Note that
Lw=Lo—-Aw=at—lav =aw+ (& —a)v in D.
Hence, Lw — aw > 0 in D. On 8D, u; = f;, @ = f; and, by (2.4), w < 0. By the
maximum principle 6.1.4.A; w < 0 in D which implies (2.5). O

2.3. Proof of Theorem 2.1. To prove (2.2), it is sufficient to apply Lemma
21to fi=¢, fo=¢, fi=u+@, fo=ute, A=L
By taking
fA=h=Ff+sp. fa=f+to, fo=f+tp, A=(—9)/(t—s)
in (2.5), we see that [F'(t) — F(s)]/(t — s) is monotone decreasing in ¢ and therefore
F' is concave. O

REMARK. By applying Theorem 2.1 to ¢ = 0, we get another proof of subad-
ditivity of Vp but only for bounded regular domains — a restriction not imposed in
Theorem 8.2.1.

3. Functions J,

3.1. To every u € U and every v € N7 there corresponds a positive function
on E given by the formula

(31) L)@ = [ uepwidy

where j,(z,y) = ko(x,y) with a = ¢’ (u). Note that J,(v) = 0 if and only if v is
concentrated on SG(u).
By using the probabilistic expression (1.8) for k,, we get

(3.2) Ju(v)(z) = / / e~ 2y (dy).
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3.2. A 1-1 mapping v — u, from N; onto the class U of all moderate solu-
tions was defined in section 8.3.3. (Formula v = tru describes the inverse mapping
from U to N7.) By Theorem 8.3.3, under condition 8.3.2.A, tv € N for all £ > 0
ifve Nl.

THEOREM 3.1. Let uy = u @ uy, where w € U,v € Ny. If there exists an
(L, )-superdiffusion, then

¢
(3.3) U =1u +/ Ju, (V)ds.
0
PRroOF. If Z, = SBV(uy), then, by Theorem 9.1.1, u; = LPT(Z;) which means
(3.4) eu(® = p e 2t

Put Z = SBV(u), Z, = SBV(u,), Zs, = SBV (us). By 9.1.4.A and 9.(2.7), Z, =
Z+ Zy, = Z + tZ,. Therefore (3.4) implies

(3.5) e “du,/dt = P Z,e %",
By applying Theorem 9.3.1 to Z;, we get
(3.6) P, Z,e % = e @) ], (v)(x).

By (3.5) and (3.6),
dus/dt = e* Py Z,e= %t = J,,(v)
which implies (3.3). O
3.3. Formula (3.3) plays a central role in the theory of the fine trace. Without
assuming the existence of an (L, v¥)-superdiffusion, we prove a weaker form of The-

orem 3.1 by using the convexity properties of operators Vp established in section
2.

THEOREM 3.2. For allu € U,v € N7 and t > 0,

(3.7) u@ugy < u+tJy,(v)
and
¢
(3.8) Uty = / Ju,, (V) ds.
0

We use the following lemmas:
LEMMA 3.1. For every A > 0, there exists a constant C'(X\) such that
(3.9) ' (M) < CA\)Y (u)  for all u > 0.

PrROOF. Let 2™ > A+ 1. By 8.1.A, ¢’ is positive and monotone increasing and

therefore
A +D)u 2™

w) (Au) < / ' (t)dt < /w’(t)dt: (2" u).
Au 0
By 8.3.2.A and 8.1.A,

Y(2"u) < a™p(u) = a” /“ ' (t)dt < a™u’ (u).
0
Therefore (3.9) holds with C'(\) = a™. O
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LEMMA 3.2. If f is a continuous function on an interval [a,b] and its right
derivative f(t) < A for all a <t <b, then

f(b) = f(a) < A(b - a).
PROOF. Consider a continuous function F.(t) = f(t) — f(a) — (A + &)(t — a).
We have Ff(a) < 0 because fT(a) < A. Hence F.(t) < 0 in a neighborhood of a.
If F.(b) > 0, then there exists a point ¢ € (a, b) such that F.(c) =0 and F.(¢) >0
for t € (c,b]. This implies f(t) — f(c) > (A+¢)(t — ¢) and therefore FF(c) > A +e.
This contradicts our assumption. Hence F.(b) < 0 for all € > 0. O

PROOF OF THEOREM 3.2. By Lemma 3.2, to prove (3.7), it is sufficient to
show that u; = u @ uy, is continuous in ¢ and that its right derivative w; satisfies
the condition
(3.10) wy < Jy (V).

Let D,, be a sequence of regular sets exhausting £. Put V,, = Vp _, K, =
Kp,,G,=Gp, and let h = Kv,u} = V,,(u + th).

1°. Note that u;, < K(tv) = th. By 8.5.1.D, u+ th € U~, and, by 8.5.1.A,
u > ud (th) > uy.

It follows from the monotonicity of V,, (8.2.1.C), Theorem 2.1 and the mean
value property (8.2.1.D) that

0 <up —Vp(u+uw) < Vo(th) — Vi(uw) = Vi (th) — ug.
Asn — oo, Vi, (u+ ug) — up and V,,(th) — i(th) = uy, and therefore

(3.11) nlirrgo uy = ug.

Note that V,,(th) < th because th € U_ (see 8.5.1.A). Therefore by (2.2),

(3.12) 0 <up —u=V,(u+th) — Vy(u) <V,(th) < th.

By passing to the limit, we get

(3.13) 0<wus—u<th.

2°. We claim that v} = (u}’ — )/t satisfies the equation

(3.14) vy + Gplagvy) =h

where

(5.15) = {Wu?) — o)/ —w) i uf .
U’ (u) if ul = wu.

Indeed,

(3.16) uy + Gpp(uy) = Kp(u+ th) = Kpu + th

and, by the mean value property 8.2.1.D,

(3.17) u+ Gpp(u) = Kpu.

Formulae (3.14)—(3.15) follow from (3.16) and (3.17).

3°. By Theorem 2.1, functions u}' are concave and, by (3.11) u; is also concave.
By (3.12) and (3.13), uy and u; are continuous at 0. Hence, they are continuous
and have right derivatives for all ¢ > 0. We denote them w} and w;. Since w; is
decreasing and since uy > ug, uj = uo, we have

(3.18) wy < wo < wygy.
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Note that v}* T wy as ¢ | 0 and, by (3.14), v}* < h. We see from (3.15) and (3.12)
that af | a = ¢'(u) as ¢ | 0. It follows from 8.1.A that af < a} < ¢/(ul) for all
€ [0, 1]. Since u} and h are bounded in D,

Gr(agvy) — Gplawy) ast—0
by the dominated convergence theorem, and (3.14) yields
(3.19) wy + Gp(awg) = h.

Therefore wi = K7, h and, by (3.18), wy < K7, h. By (1.6) and (3.1), K, h —
Ju(v) as n — oo which implies (3.10) and (3.7).

4°. To prove (3.8), it is sufficient to show that the right derivative wy of function
us = Ug, satisfies the equation

(3.20) ws + G(a’ws) = h

where a® = ¢/’ (us) and h = Kv. Indeed, (3.20) implies that (1.4) (with a replaced
by a®) holds for every D € F and therefore ws = Kj:’;nh. By (1.6), ws = Ju, (V)
and we get (3.8) by integrating w, over [0, t].

Since up, = i(th),

(3.21) u + Gp(uy) = th
by 8.(3.4), and therefore, for every 0 < s < t,
(3.22) Vst + G(asvst) = h
where vg = (ur — us)/(t — s) and
. { () = ()} e = ) i g # s,
P (us) if up = us,.
We have
Vgt — W, Qg — a° ast] s.
Equation (3.20) follows from (3.22) if we prove that
(3.23) G(agvst) — G(a’ws) ast | s.

By (3.22) and Fatou’s lemma,

(3.24) G(a’ws) < h < 0.
Clearly,
(3.25) Vot < Wy, asy < ' (usy1) for s <t<s+1.

Since u; is concave and 1’ is monotone increasing, we get usy; < Asus with

As = (s +1)/s and ¢/ (us1) < Y (Asus). It follows from (3.25) and (3.9) that
(3.26) Vstst < W) (usr1) < weth' (Nsus) < C(Ag)wsa® for s <t < s+ 1.

Relation (3.23) holds by (3.26), (3.24) and the dominated convergence theorem. [
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4. Properties of SG(u)
4.1. Tt is clear from the probabilistic description of k, that

¢
SG(u)={y € E": / P'[u(s)] ds =00 I¥—a.s. forall x € E};
(4.1) 0

¢
RG(u) ={y € E": / P [u(és)] ds < oo IY—a.s. for all x € E}.
0
It follows immediately from the definitions of J,, and SG(u) that:

4.1.A. If uy < ug, then J,, > Jy, and SG(u1) C SG(uz), RG(u1) D RG(uz).
We also have:

4.1.B. If u < ug + ug, then SG(u) C SG(u1) U SG(us).
Indeed, we can assume that u; > ug. It follows from 8.1.A and (3.9) that
Y (ur +u2) <Y (2u1) < e (ur) < i (ur) + ' (u2)]

where ¢ = C(2). Therefore every y € SG(u) is a point of rapid growth of ¢'(u1) +
¥’ (uz). Hence, it is a point of rapid growth of ¢’ (u1) or ¢’ (uz).

4.2. Weput SG(v) = SG(u,), SG(B) = SG(up). The notation RG(v), RG(B)
has a similar meaning.

We have:

4.2.A. If v € M is concentrated on SG(u), then u, < u.

Indeed, u, = 7(u,) < w(u+u,) = udu, because u, < u+u,. Since J,(v) =0,
(3.7) implies u @ u, < u.

4.2.B. Every v € N7 is concentrated on SG(oco - v/).

PROOF. Put u; = uy,. We need to prove that v is concentrated on SG(u)
where © = uo,. For every t € Ry, uy < uso and Jy,, > J,, by 4.1.A. It follows from
(3.8) that tJ,(v) < uy < u. By passing to the limit as ¢ — oo, we conclude that
Ju(v)=0. O

4.2.C. If u € U, then SG(u) is w-polar.

PROOF. Let 7 be the restriction of v € N7 to I' = SG(u). For every ¢ € Ry,
measure t € Ni(T), and up < w by 4.2.A. If w € Uy, then v = u, for some
p € Ni. The inequality usp < uy, implies t7 < p. Hence, 7 =0 and v(I') =0. O

4.2.D. Set A = BNRG(B) is w-polar for every B.

PROOF. Let © be the restriction of ¥ € Nj to B. The measure v/ = oo - ¥
belongs to Ny(B), and the definition of ug (see 8.(5.4)) implies that u,» < up. By
4.1.A, RG(uy’) D RG(B) and therefore v(A) = v(A) < 7[RG(B)] < v[RG(uy)].
By 4.2.B, 7[RG(u,)] = 0. Hence, v(A) = 0. O

We write By ~ By if the symmetric difference B1ABs is w-polar. If this is the
case, then v € N is concentrated on B if and only if it is concentrated on By and
therefore up, = up,.

42.E. I T = SG(u), then ur <wu, SG(T') CT" and A =T\ SG(T") is w-polar.
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ProoF. If v € Nj is concentrated on I', then u, < u by 4.2.A. Therefore
ur < u. This implies SG(T') = SG(ur) C SG(u) =T. Set A = TNRG(T) is w-polar
by 4.2.D. O

42.F. If I' = SG(B), then ur = up and SG(I') =T.

Indeed, ur < up by 4.2.E. Note that B = (BNT)UA’ where A’ = BNRG(B)
is w-polar by 4.2.D. Hence, up = upnr < ur.

4.2.G. For every uj,us € U,
(4.2) SG(uy ® uz) = SG(u1) USG(uz).
For every Borel By, Bs,
(4.3) SG(B; U Bg) = SG(B1) USG(Bs).

PROOF. Since u1 V ug < uy @ us < ug + ug, we get from 4.1.A and 4.1.B that
SG(u1) USG(u2) C SG(u1 & u2) C SG(u1) U SG(uz) which implies (4.2).

By 8.(5.5), up,uB, < up, +up, and, by the definition of ®, up,up, < up, Bup,.
Hence, by (4.2), SG(B; U By) C SG(B1)USG(B3). This implies (4.3) since SG(By)
and SG(Bz) are contained in SG(B; U Bz). O

5. Fine topology in F’

5.1. Put B € F if B is a Borel subset of E and if SG(up) C B. Let B € Fif
B is the intersection of a collection of sets of class Fy. It follows from (4.3) that the
class Fy is closed under finite unions . Therefore F has the same property. Clearly,
F is also closed under intersections. Thus (see, e.g., [Kur66], I.5.1) F is the class
of all closed sets for a topology in E’. We call it the fine topology or f-topology.
Elements of F will be called f-closed sets. For every B C E’, we denote by B/ the
f-closure of B that is the intersection of all f-closed sets C' O B.

Here are some properties of the f-topology.

5.1.A. The set SG(u) belongs to Fy for every u € U.

Indeed, SG(u) is a Borel set because it consists of y € E’ such that j, (zo,y) =0
for a fixed z¢ € E. By 4.2.E, SG[SG(u)] C SG(u).

5.1.B. The f-closure B/ of a Borel set B is equal to BUT where I' = SG(B).
Moreover, Bf ~T.

ProOOF. If B € C € Fy, then T' = SG(B) € SG(C) € C and BUT C C.
Hence, BUT C B’. On the other hand, BUT =T'UA where A = BN RG(B) is
w-polar by 4.2.D. Hence, BUT ~ T',upur = ur and SG(BUT') = SG(T") C T" by
4.2.F. We conclude that BUT € Fy and therefore Bf ¢ BUT. [l

We define the f-support Supp v of v as the intersection of all sets B € Fy such
that v(E’\ B) = 0. It is not clear if the Supp v is a Borel set. However, for v € N,
this follows from the next proposition.

5.1.C. For every v € Ny, Suppr = SG(co - v) € Fy and v is concentrated on
Supp v.
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PROOF. Note that v/ = oo - v € Ny, that Supprv = Suppv’. By 5.1.A, T’ =
SG(v') € Fo. If B € Fy and if v(E’ \ B) = 0, then u,» < up by 8.(5.4) and I' =
SG(v') C SG(B) C B by 4.1.A. Hence I' C Suppv. On the other hand, if v,, T v
and v, € N1, then, by 4.2.B, v,, are concentrated on SG(oco - v,) C SG(v') =T.
Hence v is concentrated on I' and Suppv CT. (I

5.1.D. For every v € Ny, SG(v) C Supp v
Indeed, by 4.1.A, SG(v) C SG(oo - v) and, by 5.1.C, SG(co - v) = Suppv.
5.1.E. Let v € Ny and T' = SG(v). If Suppv C T, then u, = ur.

PrOOF. If € Nj is concentrated on I', then u, < u, by 4.2.A. Hence,
ur < u,. On the other hand, v is concentrated on Suppr by 5.1.C. Hence, v is
concentrated on I' and w, < up by the definition of up. [l

5.1.F. If v € N is a (0, 00)-measure, then SG(v) = Suppv. If, in addition,
u, = ur, then Suppv = SG(T).

Since oo - v = v, the first part follows from 5.1.C. The second part follows from
the first one because SG(v) = SG(T') if u, = ur.

5.1.G. If Bl,BQ e Fy and if UB, = UB,, then By ~ Bs.

PROOF. Clearly, SG(Bl) = SG(BQ) By 51B, B; ~ SG(Bl) Hence B; ~
Bs. O

6. Auxiliary propositions

6.1. More about operations ¢ and V.
6.1.A. For every u > @,v > 0 in U,

(6.1) uPv—uPI<u—u+v—7.

PrOOF. Let D, be a sequence exhausting E. By Theorem 2.1 and the mean
value property, 8.2.1.D,

Vp(u+v) —Vplu+9) <Vpw) —Vp(®)=v—0 forallDe€E.

By 8.5.1.D and 8.5.1. A, this implies u®v—u®? < v—9. Analogously, u®? — @B <
U — U. O

6.1.B. If u,,vp, u,v €U and if u,, T u,v, T v, then u, Dv, T udv.
This follows from 6.1.A.

6.1.C. If p,v € N, then uyt, = u, @ uy and upyy = uy V Uy,

To prove 6.1.C, we consider i, v, € N1 such that u, T p,v, 1 v. By Lemma
8.5.1, upu, T Uy, uy, Ty, and 6.1.C follows from 8.(5.1) and 6.1.B.

6.1.D. For every Borel I' and every v € Ny,
ur G u, =ur Vu,.

Indeed, by Remark after 8.5.5.A, ur = u, for a (0, co)-measure p. For such a
measure, ft +v = p Vv and u, © Uy, = Uy, = Uyve = Uy VU, by 6.1.C.
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6.2. On X-finite and o-finite measures. We say that a measure v on a
measurable space (5, Bg) is X-finite if it can be represented as the sum of a series
of finite measures. All measures in Ny are X-finite.

6.2.A. For every Y-finite measure v, there exists a finite measure m and a posi-
tive function p such that dv = pdm.

PROOF. Suppose that v = v; +---+ v +... where v are finite measures. All
measures v, are absolutely continuous relative to

m = E apli
k

where ar = 27%v4(S)~!. By the Radon-Nikodym theorem, dvy = prpdm and there-
fore dv = pdm where p =3, px. O

6.2.B. For every X-finite measure v there exists a partition of .S into two disjoint
sets S and S* such that the restriction ¥*° of v to S is a (0, co)-measure and the
restriction v* of v to S* is o-finite. Measures v¥*° and v* are determined uniquely.

PROOF. If p and m are as in 6.2.A, then the sets S = {p = co} and S* =
{p < oo} satisfy 6.2.B.

Suppose that v = v +v9 where 14 is a (0, 00)-measure and v is o-finite. Denote
by v9° and v the restriction of v; to S°° and to S*. The measures v{ and v5° are
o-finite (0, co)-measures and therefore they are equal to 0. We have
(6.2) v =v{+uvy=v) v =v+v¥ =0

v =vi®+rvi=v, ve=v¥4vi=v

and therefore v; = v, vy = ¥, O

6.2.C. If v; < vy are X-finite, then there exists a measure «y such that v = v +7.

PRrROOF. By 6.2.A, there exists a finite measure m such that dv; = p;dm. Since
v1 < vy, we have p; < py m-a.e. Put p = ps —p; on the set p; < oo and p = 0 on its
complement. Clearly, p+p1 = po m-a.e. and vp = vy +7 with y(B) = [ pdm. O

7. Fine trace

7.1. Main results. With every u € U we associate
I' = SG(u),
v(B) =sup{u(B) : p € N1, u(T') = 0,u, < u}.
We call the pair (T, v) the fine trace of u and we denote it by Tr(u). We prove:

(7.1)

THEOREM 7.1. The fine trace of every solution u has the following properties:

7.1.A. T is a Borel f-closed set.
7.1.B. v is a o-finite measure of class Ny such that v(T') =0 and SG(u,) CT.

If Tr(u) = (T, v), then ur , = urSu, is the mazimal o-moderate solution dominated
by u.

We say that pairs (I', v) and (I, V') are equivalent and we write (I', v) ~ (I, /)
if v = v/ and the symmetric difference between I' and T" is w-polar. Clearly,
Ur,y = ur/,p’ if (F, I/) ~ (F/, I//).
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THEOREM 7.2. Let (T',v) satisfy conditions 7.1.A-7.1.B. Then the fine trace of
ur,, = ur ®u, is equivalent to (T',v). Moreover, ur,, is the minimal solution with
this property and the only one which is o-moderate.

7.2. Proof of Theorem 7.1. 1°. Let Tr(u) = (', v). Property 7.1.A follows
from 5.1.A.

Denote by L the set of all € N; such that u, < u and p(T") = 0 and apply
Theorem 8.5.1 to C = {u,,pu € L}. Let v = SupC. By 8.5.3.B, there is a
sequence u, € C such that, for all z, u,(x) T v(z) and v(z) = sup{u,(z), p € L}.
The sequence v, = tr(u,) is increasing and therefore v, 1 v/ € Ny. By 8.(5.3),
Up = Uy, T u, and therefore u,, = v < u. The condition v,(I") = 0 implies that
V() =0.

2°. We claim that, for every B, v/(B) is equal to

v(B) = sup{u(B) : p € L}

and therefore v is a measure of class AVy. The inequality v'(B) < v(B) follows from
the relation v, (B) < v(B). It remains to prove that

(7.2) v(B) < V'(B).

Let p € £. Consider k = pV v/. We have u, < u,s and therefore u,, = u,/ Vv
u, = u, by 6.1.C. Suppose v/ # k. By 6.2.C, there exists a measure vy such
that v/ +~v = k. By 854.B, v € Ny. By 6.1.C, upy = u, = uy & u, and
therefore u, = uyr @ Upy > Upy for every n. Hence voo.y < upr < u. By 4.1.A,
SG(oo - v) € SG(u) =T. By 5.1.C, ~ is concentrated on Suppy = SG(cc -v) C T
Relations u(T') = v/(I') = 0 imply that x(I') = 0 and therefore v(I') = 0. We
conclude that vy = 0 and v/ = k = p V v/. Hence, v’ > p which implies (7.2).

3°. Let v = v* + v*° be the decomposition described in 6.2.B. By 5.1.C, v*° is
concentrated on SG(r*>°). Since uy~ < u, < u, SG(r*>) C T by 4.1.A, and v is
concentrated on I'. Since v(I") = 0, we conclude that ¥°>° = 0 and v = v* is o-finite.
This completes the proof of the first part of Theorem 7.1.

4°. By 4.2.E, u > ur and therefore u > ur V u,, which coincides with ur ® u,
by 6.1.D.

5°. Solution u, is o-moderate because v € My. Solution ur is also o-moderate
by 8.(5.4) and 8.5.3.B. It follows from 6.1.B that ur , € Up.

Let us prove that, if 4 € Uy and if Tr(a) = (T',v), then @ < ur,. We know
that @ = wu, for some p € Ny. Consider the restrictions p; and ps of p to I’
and I'°. Note that u,, < up by the definition of ur. Let \; T p2, \i € Ni. By
Lemma 8.5.1, uy; T uy,. Since A\; € £, we have uy, < u, and u,, < u,. Therefore
U= Uy, DUy, < Ur D Uyp. O

7.3. Proof of Theorem 7.2. 1°. Let Tr(ur,) = (I",v'). By 4.2.G, IV =
SG(ur @ u,) = SG(ur) USG(u,) and, by 7.1.A-7.1.B, TV C T'. Note that I'\ T C
'\ SG(ur) = 'NRG(T) which is w-polar by 4.2.D. Therefore IV ~ I". Since v € Nj
does not charge w-polar sets, v(I'') = v(I") = 0 by 7.1.B.

2°. Since v € Ny, there exist v, € N such that v, T v. We have u,,, < u, <
ur,, and, by (7.1), v, <v'. Hence, v < v'. By 6.2.C, v/ = v + . By Theorem 7.1,
ur,, > urs,, (because Tr(ur,) = (I'V,v') ). Hence,

U,y = Uy DU = Uy D Ur = Uy G Uy G Ur = Ur,y D Usy.
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We get, by induction, that ur , > ur ,~ for all n. Hence, ur , > Ur oo.y = Uso.y- BY
4.1.A,SG(00 %) C SG(ur,,) =TI". By 5.1.F, a (0, 00)- measure oo-+y is concentrated
on SG(oo - ). Therefore it is concentrated on I and, since v < oo -, v does not
charge the complement of IV. But v(I'") < v/(I') = 0. Hence v =0, v/ = v and
(T, v) ~ (T, V).

3°. Let @ be a solution with the fine trace (I'',v") ~ (T',v). By Theorem 7.1,
U > urs,,» = ur,, which implies the minimal property of ur ,. If, in addition, @ is
o-moderate, then, by Theorem 7.1, @ < urs ,» = ur, and therefore & = ur ,. [l

8. On solutions wp

8.1. Solutions wo corresponding to open subsets O of E were used in section
10.3.5 to define infinite many solutions with the same rough trace. Now we show
that these solutions have distinct fine traces. It follows from Theorem 7.2 that this
goal will be achieved if we prove that all solutions wo are o-moderate. We use as
a tool a uniqueness theorem.

8.2. Uniqueness of solutions blowing up at the boundary. It is known
that a solution of the problem

Lu=4¢(u) in E,

u=o00 onodkE

(8.1)

is unique for wide classes of domains E and functions ¢ (see [BM92], [MV97]). We
present here a very short proof for bounded star-shaped domains F, the Laplacian
L = A and ¢(u) = u®. [The case of a ball and o = 2 was considered in [Isc88].]
Without loss of generality, we can assume that E is star-shaped relative to 0 that
is, for every A > 1, E) = %E C E. Note that, if

Au=u" InFE
)

u=o00 onJdF,

(8.2)

then uy(x) = \2/(*~Dy(Az) satisfies (8.2) in E\. Suppose that @ is another solution
of (8.2). Both uy and u satisfy the equation Au = u® in E) and @ < uy = 0o on
OF). By the Comparison principle 8.2.1.H, & < u) in E). By taking X | 1, we get
that @ < u in E. Analogously, u < 4.

8.3. Proof that wo are o-moderate. Recall that solutions up defined by
the formula 8.(5.4) are o-moderate. Hence, it is sufficient to prove:

THEOREM 8.1. Suppose that the problem (8.1) has a unique solution. Then
wo = uo
for every open subset O of OFE.

PRrOOF. 1°. First, we prove that up < wo.

By the definition of up (see 8.(5.4)), it is sufficient to show that, for every
v € N1(0) and every D € E, u, < wgo in D. We use the following fact established
in the first part of the proof of Theorem 10.3.1: for every Borel set B C dF and
every measure u € M.(F), there exists a sequence of compact sets K,, C B such
that wg, T wp p-a.e. We apply this fact to B = O and the Lebesgue measure on
D. By Theorem 5.3.2, v = limwg, € U. Since v = wo p-a.e. and both functions
are continuous, they coincide on D.
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Let v € N1(O) and let v, be the restriction of v to K,,. By Lemma 8.5.2,
u,, = 0 on OF \ K,, and, since wg, is the maximal solution with this property,
Uy, < wg,. By Lemma 8.5.1, u,,, T u,. Since wg, T wo in D, we get that u, < wo
in D.

2°. To prove that up > wo, it is sufficient to demonstrate that uop > wp for
every closed B C O.

Consider measure v = oo -y where + is the surface area on JE. It follows from
Theorem 5.5.1 that u, = oo on JE. Since u, and wyg > u, satisfy (8.1), they
coincide. The relation u,, = wyg > wp and properties 8.4.1.A and 10.1.3.D of Qp
imply
(8.3) Qp(uy) > Qp(wp) = wp.

Note that u, = u,, ®u,, where v; and vq are the restrictions of v to O and OE\ O.
By 10.2.1.A, @Qp(uy,) = 0 and, by 10.2.2.B , Qp(u,) = @p(u,,). By 8.4.1.B,
Uy, > Qpuy,) = @p(u,), and, by (8.3), u,, > wp. By 85.5.A, up > u,, and
therefore up > wp. [l

9. Notes

In spring of 1996, in response to a question of Dynkin, Le Gall communicated
by e-mail an example of nonuniqueness of solutions with a given (rough) trace.
Soon after that Kuznetsov conjectured that this difficulty could be overcame by
using a finer topology on the boundary. Such a topology was suggested by Dynkin
in [Dyn97al. Its definition included two ingredients:

(a) a set SG(u) of boundary singularities of u described in terms of conditional
Brownian motions as in section 1.3;

(b) solutions wp(x) corresponding to Borel subsets B of the boundary and
defined in terms of hitting probabilities of B by the range of the superdiffusion (see
section 10.3.3).

However, when we tried to use this topology, we were not able to make a
fundamental step — to prove that SG(wg) is closed. We fixed this problem by
replacing wp by up as defined in section 8.5.5. (We still do not know if ug = wp
for all B or not.) This was our motivation for introducing a class of o-moderate
solutions which are determined uniquely by their fine traces. We characterized all
pairs (T, v) which are fine traces and we described for each pair (', ) the minimal
solution with the fine trace (I',v) (it is o-moderate). These results for equation
Lu = u® with 1 < a £ 2 in a smooth domain E were obtained by Kuznetsov and
published in [Kuz98c|. In [DK98a] we extended them to the general equation
Lu = (u) in an arbitrary domain.

The presentation of the fine trace in Chapter 11 is based on [DK98a]. In
addition, a section is included on traces of solutions wg.



CHAPTER 12

Martin capacity and classes N; and N

In this chapter we restrict ourselves to the case of ¥(u) = u® with o > 1.
The Martin capacity C'M,, is one of the Choquet capacities discussed in section
10.3.2. We prove that a measure v which charges no null sets of CM, belongs to
the class N7 if it is finite and it belongs to Ny if it is X-finite. We also prove that
CM,(B) = 0 for all w-polar sets B. Clearly, if v € Ny, then v(B) = 0 for all w-
polar B. If the class of null sets of C'M,, and the class of w-polar sets coincide, then
we get two versions of necessary and sufficient conditions characterizing classes N
and Np. In the next chapter we show that this is true for bounded smooth domains
Fandl<a <2

1. Martin capacity

1.1. The Martin capacity is defined on compact subsets B of the Martin
boundary OF by the formula

(1.1)  CMy(B) =sup{v(B) : v € M(B),/

E

s | [ k(x,y>u<dy>]a <1

where k is the Martin kernel, g is Green’s function, o > 1 and c is the reference
point used in the definition 7.(1.1) of the kernel k.

The capacity (1.1) is a special case of a capacity corresponding to a function
k(z,y) from E x E to [0, 40c] where E and E are two separable locally compact
metrizable spaces and k(z,y) is lower semicontinuous in # and Borelian in y. For
every a > 1 and every Radon measure m on FE, there exists a Choquet capacity
given on compact subsets of E by the formula

(1.2) Cap(B) =sup{v(B) :v € M(B),/Em(dx)[/B k(z,y)v(dy)]* < 1}.

The existence is proved, for instance, in [Mey70] and in [AH96], Chapter 2. For
every two Borel sets A, B,

(1.3) Cap(A U B) < Cap(A) + Cap(B).

[This follows from Proposition 2.3.6 and Theorem 2.5.1 in [AH96].]
Formula (1.1) is a particular case of (1.2) when E is a Greenian domain in R?,
E = 0F and

(1.4) m(dx) = g(c, x) dz.
Both (1.2) and (1.1) hold for all Borel sets.

167
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1.2.  We consider the linear space L% = L*(E, m) where m is defined by (1.4).
It consists of functions f such that

(1.5) Iflla = /E [f(@)|* dm = G([f]*)(c) < oc.

(Functions which coincide m-a.e. are identified.) Formula (1.1) can be written in
a form

(1.6) CM,(B) =sup{v(B) : v € M(B),||Kv|. <1}

where

Ku(x) = /B ke, y)v(dy).

Since k(z,y) > 0 for all z € E,y € JE, ' CM4(B) = 0 if and only if |Kv|q = 0o
for all nontrivial v € M(B). ? In particular, a single-point set g is a null set of
CM, if and only if

(1.7) /Eg(c, x)k(x,y0)® dxr = 0.

1.3.

THEOREM 1.1. Let E be a Greenian domain in R%. CM,(B) = 0 for all w-polar
sets B.

ProoF. Without any loss of generality we can assume that B is compact. We
prove that, if C M, (B) > 0, then there exists a measure v € N such that v(B) > 0.

If CM,(B) > 0, then there exists a nontrivial measure v € M(B) such that
G(h*)(c) < oo where h = Kv. Clearly, v(B) > 0. Theorem 8.3.2 implies that
v € Ni. Indeed, if K,,G, and V,, are operators corresponding to a sequence
D,, exhausting E, then K,h = h (by 6.(2.7)) and u, = V,(h) < h (because
Un+Gp(u®) = K,h = h). Functions FS(y) given by 8.(3.9) are uniformly integrable
because they are dominated by an integrable function g(c, y)h(y)*. Therefore h €
Hl and v € ./\/1. O

1.4. The main result of this chapter is the following theorem.

THEOREM 1.2. A measure v not charging null-sets of capacity C M, belongs to
N1 if it is finite and it belongs to Ny if it is L-finite.

The results stated at the beginning of this chapter follow from Theorems 1.1
and 1.2.
To prove Theorem 1.2, we need some preparations.

2. Auxiliary propositions

2.1. Classes H* and N®. Put H* = H N L* and denote by N'® the set of
all finite measures v on JF such that Kv € H*. We have:

2.1.A. H* C H;.

This follows from Theorem 8.3.2. Indeed, since V;,(h) < h, the functions F¢(y)
defined by 8.(3.9) are dominated by an integrable function ¢(y) = g(c, y)h(y)*.

I This follows from 6.1.5.D because ky (z) = k(z,y) is a harmonic function in E and ky(c) = 1.
2We say that v is nontrivial if (A) # 0 for some A.
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2.1.B. CM,(B) =0 if and only if v(B) = 0 for all v € N°.

PRrOOF. If v € N®, then its restriction vp to B also belongs to N*. If
CMy(B) =0, then vp = 0 because ||[Kv|q < oo.

If CM,(B) > 0, then there exists v, concentrated on B such that 0 < ||Kv|, <
o0. Clearly, v € N and v(B) > 0. O

Writing “q.e.” (quasi-everywhere) means “everywhere except a set of capacity
0”.
2.1.C. Let ¢ be a Borel function on dE. The condition (¢, v) = 0 for all v € N
is equivalent to the condition ¢ = 0 q.e.

Indeed, (p,v) = 0 for all v € N* if and only if [, @dv = 0 for all B and all
v € N® which is equivalent to the condition v{p # 0} =0 for all v € N'*.

2.2. Operator K and space K. For every positive Borel function f on FE,
we set

(2.1) K1) = [ mdn)f@k(z. o). < B
where m is defined by (1.4).

Put (f,f) = [ ff dm. If f € LY 3 where o/ = a/(a — 1), then, for every
ve N (Kfv) = (f,Kv) < oo and therefore v{Kf = oo} = 0. By 2.1.C,
Kf <o q.e.

For an arbitrary f € L, fy = f V0, f— = (—f) V 0 belong to Lﬂ‘r/. Therefore,
q.e., K(fy) and K(f_) are finite and the formula

(2:2) Kf=K(fy)-K(f)
determines K f q.e. Note that
(2.3) (Kf,v)=(f Kv) forall fe L veN®

Put f € Lif f € L* and Kf = 0 q.e. It follows from (2.3) and 2.1.C that
L={f¢€ L (f,9) =0 for all g € H*}. Therefore L is a closed subspace of L
and, since H® is a closed subspace of L%, we have

(2.4) HY={feL*:(f,g)=0 forallgel}.

The quotient space Lo /L is a locally convex linear topological space. We
denote by K its image under the mapping K (two funct1ons are identified if they
coincide q.e.). We have an 1-1 linear map K from L® /L onto K. We introduce in
K a topology which makes K a homeomorphism. 4 Denote by K, the image of

+ . A linear functional ¢ on K is called positive if £(p) > 0 for all ¢ € K.

LEMMA 2.1. Ewvery positive continuous linear functional £ on K has the form

(2.5) Up) = (p,v)
where v € N'%,

3Wr1t1ng fe LO‘ means that f € L% and f >0 m-a.e.
4This topology is defined by the family of subsets of the form K(U) where U is an open
subset of L&’ /L.
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ProOF. Formula R . )
Uf)=UKf), felL®
defines a positive continuous linear functional on Lo Sucl} a functional has the
form £(f) = (h, f) where h € LS. If f € L, then (h, f) = ¢(K f) = 0 and, by (2.4),
h € H®. Hence, h = Kv with v in N, If ¢ = K f with f € L', then
Up) = Uf) = (f,Kv) = (Kf,v) = (p,v)

by (2.3).

LEMMA 2.2. If f,, — f in LO‘/, then IA('fn,c — Kf g.e. for someny < --- <
ne <....

PROOF. 1°. Suppose f € L* and Kf > 1 on B. By (2.3) and Holder’s
inequality, A
v(B) < (Kf,v)=(f,Kv) < | fllwlKv|a

for every v € N@. If v € M(OE) is not in N'®, then this bound for v(B) is trivial.
Therefore, by (1.6),

CM,(B) =sup{v(B): v(E'\ B) =0, ||Kv|o < 1}
< | fllorsup{l| KVl : [[Kv|a <1} < || fllar-

2°. Choose ny < -+ < ny ... such that || f,, — fllar < 47F. Let pr = 25| fn, — f]
and By = {K((pk) > 1} By (26), CMQ(Bk) < ||<PkHo/ < 2=k Put BF = By U

(2.6)

Bri1U... and let A = B* N B2.... It follows from (1.3) and 10.3.2.B that
CM,(B*) < 2=# =1 and therefore CM,(A) = 0. If = ¢ A, then K(|fn, — f]) < 27°
for all sufficiently large ¢ and therefore K f,,, — K f — 0. O

3. Proof of the main theorem
3.1. Theorem 1.2 will follow if we prove

THEOREM 3.1. Suppose that v is a finite measure with the property: v(B) =0
if CMy(B) = 0. Then there exist measures v, € N such that v, T v.

Indeed, by 2.1.A, N* C N;. Hence v,, € N7 and v € N7 by 8.5.4.A. If a X-
finite measure v does not charge null sets of CM,,, then there exist finite measures

v, with the same property such that v, T v. By Theorem 3.1, v, € Nj. Hence
IS No.

3.2. Choose a strictly positive function fy € L% such that (fo, Kv) < oc.
Put 9 = K fy and consider a functional

(3.1) p(p) ://mdv, pekK

where ¢ = ¢ V 0. First, we prove Theorem 3.1 by using the following Lemma 3.1.
Then we prove Lemma 3.1.

LEMMA 3.1. For every e > 0, there exists a continuous linear functional €. on
K such that

(3.2) le(p) <plp) forall p €K,

and

(3.3) Ce (o) > p(wo) — €.
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3.3. Proof of Theorem 3.1. It follows from (3.2) and (3.1) that {.(¢) > 0 if
¢ € Kis positive. Indeed, (—¢)+ = 0 and therefore ¢.(—¢) < p(0) = 0. By Lemma
2.1, there is a n. € N such that

(3.4) (.(¢) = (p,n.) forall p € K.
We claim that
(3.5) ne < v, (po, v —me) < €.

Indeed, by (2.3), for every f € Lﬂ‘r/,
(f. Kv) = (Kf.v) = p(K ),

(fs Kne) = (K fyme) = L(Kf)
and therefore, by (3.2), (f, Kv) > (f, Kn.). Function h = Kv — K7, is harmonic.
It is positive because (f, h) > 0 for all positive f € L%, Hence, h = K ~e for some
finite measure ., and v — 7. = . This implies the first part of (3.5). The second
part follows from (3.3) because (po, v —1:) = p(vo) — (o) by (3.1) and (3.4).

There exists a constant C' such that (a + b)* < C(a® + b®) for all a,b > 0.

Therefore H® and N'® are closed under addition and

V":771+77%+-~-+77% e N«
Since

Un=mVniV---Vn1 <"
it also belongs to M. By (3.5),

NnL <vp SV
and
(po, v —vp) < <<P0,V—77%> <1/n.
Clearly, vy <wvy <-.-<w,--- and therefore v,, T v. 0

3.4. Proof of Lemma 3.1. 1°. We use the following version of the Hahn-
Banach theorem (see, e.g.,[DS58],V.2.12): If B is a closed convex set in a locally
convex linear topological space and if = ¢ B, then there exists a continuous linear
functional ¢ such that
(3.6) sup {(y) < {(x)

yeB
(that is, x can be separated from B by a a hyperplane ¢ = const.). Suppose that
B has the property:

(3.7) If y € B, then Ay € B for all A > 0.
Then (3.6) implies
(3.8) sup {(y) =0 < £(x)

yeB

[because a = 0 if sup,.y Aa = a < oo].
2°. This result is applicable to a subset

B ={(p,t) : p(p) <t}
of the space K x R. Indeed, since p is subadditive and p(A¢) = Ap(p) for all A > 0,

the set B is convex and it satisfies (3.7). It remains to prove that B is closed.
Suppose that (¢, t,) € B tends to (¢, t) in K x R. Then ¢,, — ¢ in K and ¢,, — t.
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By the definition of K there exist f,, f € L such that ¢, = K fn,¢ = Kf and
fn— fin L. By Lemma 2.2, a subsequence ¢,, — ¢ q.e. Since v does not charge
null sets of CM,, ¢n, — ¢ v-a.e. By Fatou’s lemma, p(p) < liminfp(p,,) < t.
Hence, (¢,t) € B.

3°. All continuous linear functionals in K x R have the form

(3.9) l(p,t) = o(p) + bt
where ¢ is a continuous linear functional on K and b € R. Since x = (¢o, p(po)—¢) ¢
B, conditions (3.8) hold for a functional (3.9) which means

(3.10) a(e) +bt <0 if p(e) <t,

(3.11) (o) + blp(po) — €] > 0.
Since p(0) = 0 < 1, condition (3.10) implies that b < 0. An assumption that
b = 0 leads to a contradiction: o(¢p) < 0 by (3.10) and o(pg) > 0 by (3.11).

Hence, b < 0. Continuous linear functional ¢(¢) = —o(¢)/b satisfies conditions
(3.2)-(3.3). O

4. Notes

4.1. The main Theorem 1.2 was proved in [DK96b]. The proof is close to the
proof of Theorem 4.1 in [BP84b] which the authors attribute to Grune-Rehomme
[GRTT].

By proposition 10.1.4.C and Theorem 1.1, the class of w-polar sets contains the
class of polar sets and is contained in the class of null sets of C'M,,. Characterization
of classes A7 and N in terms of this intermediate class is a novelty introduced in
the present book.

4.2. Boundary value problems with measures. A number of authors con-
sidered boundary value problems of the type
Lu=4¢(u) in E,

(4.1) w=v ondF

where E is a smooth domain in R? and v is a finite measure on the boundary. The
results of Chapter 12 can be interpreted in terms of an analogous problem in a
general setting. Let E be an arbitrary Greenian domain in R? and let v be a finite
measure on the Martin boundary OE. By a solution of the boundary value problem

Lu=4¢(u) in E,
w=v ondE

we mean a solution of the integral equation
(13) u@)+ [ glep)ulu) dy= | ki),

where g(x,y) is Green’s function and k(x,y) is the Martin kernel for L in E (cf.
8.(3.4)). By Theorem 8.3.1, the problem (4.2) has a solution if and only if v € A}
and, by the results of Chapter 12, the condition “v(B) = 0 for all w-polar sets B”
is necessary and the condition “v(B) = 0 for all null sets B of C'M,” is sufficient
for the existence of such a solution.

(4.2)



CHAPTER 13

Null sets and polar sets

In Chapter 12 we established the following inclusions between three classes of
exceptional boundary sets

{polar sets} C {w — polar sets} C {null sets of CM,}.
Now we consider the equation
Lu=u% 1l<a<2

in a bounded smooth domain E and we assume that L satisfies the condition 6.1.2.C
besides 6.1.2.A-6.1.2.B. We prove that, under these conditions, all three classes
coincide.

In our case, the Martin boundary can be identified with OF (see Remark 7.1.1).
Formula

m(dz) = d(xz,0F)dx.

defines a measure on £ which we call the canonical measure. We consider capacities
Cap defined by the formula 12.(1.2) with the canonical measure m. We show in
section 1 that the class of boundary sets B such that Cap(B) = 0 is the same for
a wide variety of kernels k(z,y). One can take the Martin kernel or the Poisson
kernel of L. Moreover, in the definition of the Poisson kernel k(x,y) = D, g(x,y)
(see section 6.1.8), the conormals n, can be replaced by an arbitrary nontangen-
tial vector field on the boundary directed inwards; and g(z,y) can be replaced by
g(x,y)q(y) where ¢ is a strictly positive differentiable function.

The main result of Chapter 13 is the following theorem:

THEOREM 0.1. All null sets are polar.

One of our tools is the straightening of the boundary. To use this tool, we
need to investigate the action of diffeomorphisms on the null sets. This is done
in section 2. In section 3 we study the cases when there exist no nonempty null
sets. In section 4 we demonstrate that Theorem 0.1 can be deduced from its special
case Theorem 4.1 and we establish a test of the removability. This test and a dual
definition of capacities introduced in section 5 are applied in sections 7 to prove
Theorem 0.1. The restriction o < 2 is not used before section 6. !

1. Null sets

1.1. Poisson kernel. It follows from Theorems 6.1.4 and 6.1.2 that the Pois-
son kernel k(z,y) is uniquely determined by the condition: for every ¢ € C(OF),

(1.1) hx) = /6 k(a)e(s) ()

11t is used in the proof of Theorem 6.1. Probably, Theorem 0.1 is true also for a > 2.

173



174 13. NULL SETS AND POLAR SETS

is a unique solution of the problem
Lh=0 in F,

(1.2) h=¢ ondFE.

[Here « is the normalized surface area on 0F.]
Recall that every positive harmonic function h in E has a unique representation

(1.3) hx) = /a k() vidy)

where v is a finite measure. ~ ~
We say that two kernels k(x, y) and k(z, y) are equivalent if k(z, y) = k(z, y)p(y)
where p(y) > 0. The role of this concept is illuminated by the following lemma:

LEMMA 1.1. Suppose that k(-,y) is harmonic in E for every y € 0E. Every
positive harmonic function h has a representation

(1.4) hx) = /a Eawtdy)

if and only zfl; is equivalent to k.

PROOF. The representation (1.4) easily follows from (1.3) if k(z, y) = k(z, y)p(y).
If (1.4) holds for all positive harmonic functions, then, for every y € OF, there exists
a measure 7, such that

k(z,y) = /aE l;(x, 2)vy(dz).

Since k(-,y) is an extremal harmonic function, we have v, = p(y)d, and k(z,y) =

k(x,y)p(y). Since k(x,y) > 0, p is strictly positive. O

It follows from 7.(1.2) that the Martin kernel is equivalent to the Poisson kernel.
If 7, is an arbitrary vector field on OF directed inward and if g(z,y) = g(x, y)q(y)
with ¢ > 0, then the derivative k(z,y) of g(z,y) in the direction of 7, is equivalent
to k(z,y).

1.2. Classes N(m, k). We say that B is an (m, k)-null set and we write B €
N(m, k) if Cap(B) = 0 where Cap is defined by the formula 12.(1.2). According to
section 12.1.2, B € N(m, k) if and only if

(1.5) [omtan) | [ sawian)] =oc
E OE
for every non-trivial v € M(B).
We have:

1.2.A. If k and k are equivalent, then N(m, k) = N(m, k).

PrOOF. Let Cap and (/35&) be the capacities associated with (k, m) and (I;, m)
and let k(z,y) = k(z,y)p(y) with p > 0. We need to prove that, if Cap(B) = 0,
then (/JELE)(B) = 0. Since B, = BN {p > 1/n} 1 B, it is sufficient to show that
Cap(B,) = 0 if Cap(B,) = 0. Note that Kv = K& where #(dy) = p(y)v(dy). We
have fE(IE'Vn)O‘ dm >n~% [ (Kv,)* dm. Hence, the condition (1.5) holds for k if
it holds for &. O



2. ACTION OF DIFFEOMORPHISMS ON NULL SETS 175

Let my and mo be measures on E. We say that m; is dominated by ms and we
write my < mg if m; < Cmgy on the complement of F¢ = {x € E : d(z,0F) > ¢}
for some € > 0 and some C'. We have:

1.2.B. If k is given by (1.6) and if my < mg, then N(my, k) C N(ma, k).

Indeed, for every v € M(B), Kv = [, k(z,y)v(dy) is bounded on E°. Therefore,
the condition (1.5) holds for (meg, k) if it holds for (mq, k).

REMARK 1.1. Clearly, N(m, k1) C N(m, ko) if k1/ko is bounded. In particular,
the bound 6.1.8.B implies that N(m, k1) C N(m, k) for the Poisson kernel kr of L

and
_ d(z,0F)
(1.6) k(z,y) = [E—TE

Moreover, the bound 6.(4.1) implies that N(m, k) = N(m, k) (and therefore N(m, k1)
does not depend on L).

1.3. Null sets on OF. Let L be an elliptic operator in E. We reserve the
name null sets for the elements of N(m, k) where m is the canonical measure on FE
and k is the Poisson kernel of L or any equivalent kernel. ? Note that the class of
null sets contains N(my, k) where

(1.7) mo(dz) = g(c, x)dx.
This is an immediate implication of 1.2.B and the following lemma:

LEMMA 1.2. If e > 0 is sufficiently small, then
(1.8) g(c,x) < Cd(z,0F) forallz e E.={x € E:d(z,0F) < €}.

PROOF. If z € Ey. and if € < d(c, OF)/3, then d(c, 0F) < d(c,z) + d(z,0F) <
d(c,x) + 2d(c,0F)/3. Hence, d(c,z) > d(c,0F)/3. Note that OF is a relatively
open subset of F,.. By 6.1.7.A, v(z) = g(c¢, x) is harmonic in Fs., continuous on
Ey. and v = 0 on OF. By Theorem 2.3 in the Appendix B, v € C?*(Ey. U OE).
Hence, all partial derivatives D;v are bounded in E. which implies (1.8). O

2. Action of diffeomorphisms on null sets

2.1. Change of surface area. Suppose that a smooth surface I' is given by
a parameterization y = (t),t € U where U is an open subset of R~ and ¢ €
C?*(U). Formula 6.(1.14) implies that, if 7 is the surface area (or the normalized
surface area) on I, then, for an arbitrary Borel function ¥ > 0 on T,

(2.1) AF@WWOZ/FW@M@ﬁ

U
where p is a strictly positive continuous function.

Suppose that I' is contained in a domain V' and let T' be a diffeomorphism of
class C?* from V onto V. If y = (t) is a parameterization of T, then @(t) = T[p(t)]
is a parameterization of a smooth surface T lying in V. We claim that, for every
Borel function F on f,

(2.2) AF@%@:/FU@WNMW@)

r

2According to Remark 1.1, the class of null sets does not depend on L.
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where [(y) is a strictly positive continuous function. Indeed, by formula (2.1)
applied to T,

[ F@yin = [ Pl d
U
where p is a strictly positive continuous function. Put

Bly) = ple™ W/ ple~" W)]-
Note that p(t) = p(t)B[¢(t)] and therefore

/F[¢(t)]ﬁ(t) dt:/ [T ((t))]p(t) dt
U

U
where Fy(y) = F(y)B(y). Therefore (2.2) follows from (2.1).

2.2. Transformation of the Poisson kernel.

LEMMA 2.1. Suppose T is a diffeomorphism from V to 1% and let E be a smooth
domain such that E € V. Consider operators L in E and L in E related by the
formula 6.(1.4) and the corresponding Poisson kernels k(z,y) and k(Z,7). We have

(2.3) k(z,y) = K(T(x), T(y))8(y)

where 3 is a continuous strictly positive function.

PROOF. Recall that, for every o, € C(9E),

(2.0 m@ = | k@)
is a unique solution of the problem

Lhi =0 inE,
(2.5)

h,l = 1 on 8E

[Here 7 is the normalized surface area on OE.] If o(y) = ¢1[T(y)], then hy(z) =
hi[T(x)] is a solution of the problem (1.2). Function h defined by (1.1) also satisfies
(1.2) and therefore h = hy which means that

(2.6) /6 k(@)e(s)(dy) = / KT (@). 3o ()31,

9]
Now we apply (2.2) to T’ = dE and F(§) = k(T(x), §)e1(7) and we get

[ HT@. 500 @) = [ K@) T0)ew)80) (),
OF

OF
and (2.6) implies (2.3). O

_ 2.3. Change of variables. Suppose T'is a measurable mapping from £ to
E. The image of v € M(E) under T is a measure vy defined by the formula
vr(B) = v[T~Y(B)]. For every Borel function F > 0 on F,

(2.7) /E F§r(dj) = /E FIT () (dy).

Moreover, if E is open and if T is a diffeomorphism of class C2* from E onto E,
then

(2.8) | F@wrtan) = [ Fr@)n) do

E
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oz, ]

where Jp(z) is the Jacobian of T' [that is the determinant of the matrix ¢} = Ser)-

2.4. Transformation of the canonical measure.

LEMMA 2.2. Let E,T,E’ be the same as in Lemma 2.1. If m and m are the
canonical measures on E and E, then

(2.9) C™'mp <m < Cmyr
where C > 0 is a constant.

PROOF. By (2.7) and (2.8)
(2.10) /EF(f)mT(dis):/EF[T(x)]m(dx):/EF[T(x)]d(x,aE) dx
and
(2.11) /EF(f)ﬁL(di:):/EF(j)d(j,aE) di::/EF[T(x)]d(T(x),aE)|JT(x)| dx.

Since FE is compact, there exists a constant C; > 0 such that Cfl <|Jp(z)| < Cq
forallz € F and C; *d(z,y) < d(T(z), T(y)) < Cid(z,y) forall z,y € E. Therefore
formula (2.9) follows from (2.10) and (2.11). O

2.5. Invariance of null sets.

LEMMA 2.3. Let E, T, E be the same as in Lemmas 2.1 and 2.2. If B is a null
set in OF, then T(B) is a null set in OF.

PROOF. By (2.7) applied to F(§) = k(T(z), )

U and
/6 KT (i) = /6 KT, Tw)wldy) - / Blu)~ k(. y)v(dy).
Therefore, by (2.9) and (2.7),

L[ [ Raowan] zo [ ma [ [ K o]
—c [t | [ 6<y>1k<x,y>u<dy>]a.

Since 37! is bounded, this implies

[tan| [ Eé(f,@w(dg)]a >0 [ mian)| [ Ek(x,y>u<dy>]a.

Since v — v is a 1-1 mapping from M(B) onto M(T(B)), we conclude that T'(B)
is a null set if so is B. O

3. Supercritical and subcritical values of «

3.1. Let ¢(u) = u® a > 1. We say that a value of « is supercritical in
dimension d if, for every bounded smooth domain E C R%, all single-point subsets
of OF are null sets of CM,. We say that « is subcritical if CM,(B) > 0 for all
singletons B. [Clearly, this implies that C M, (B) > 0 for every nonempty set B].

We establish that
d+1

d—1
is the supremum of all subcritical « and the infimum of all supercritical «.

a(d) =
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3.2. We fix a point ¢ of E and we put
Q) = gl a)ke.) Tn) = [ Qo) da,

Note that « is supercritical if and only if

(3.1) I(yp) = 0o for all yo € OF.
(cf. 12.(1.7)) and « is subcritical if and only if
(3.2) I(yo) < oo for all yo € OF.

We denote by C' a strictly positive constant. Its value can change from line to
line.

3.3.
THEOREM 3.1. All a < a(d) are subcritical.
Proor. Put
A={zeE:|lz—y|<e}, B={reE:|r—y|>ce}
If x € A, then, by (1.8), g(¢,z) < Cd(z,0F) and, by 6.1.8.B,
k(z,y0) < Cd(z, OB)|z — yo| .

Hence
Q(z,y0) < Cd(x, 0E)*|x — yo|~9* < Cla — yo' T4
and [, Q dx < CfOETaerfda dr. If a < a(d), then a+d—da > -1 and [, Q dz <

0.
Since k(x, o) is bounded on B,

/QdeC/ g(e,x) dx < oo.
B E
Hence the condition (3.2) is satisfied. O
3.4.
THEOREM 3.2. All a > «(d) are supercritical.
Proor. 1°. Put
Ee={zeE:|r—yl|<e},  O-={ycE:ly—yol <e}

By using the straightening the boundary near yo (see section 6.1.3), we reduce the
general case to the case when, for sufficiently small e, E. C R = {2 : 24 > 0} and
Oy C 8Ri = {x: 24 = 0}. We can assume that ¢ ¢ E.. Consider an open subset
U=U.={(y,t) :y € OF, |y — yo| < &,0 <t < 2¢} of the set IF x Ry. Denote
by V =V, its image under the mapping T'(y,t) = y + tn, where n, is the directed
inwards unit conormal to OF at y € OF. If € is sufficiently small, then V C E and
T is a diffeomorphism from U onto V. We have,

1) = [ Q) do= [ I.0QIT (0] dt dy
v U
where Q(z) = Q(x,yo) and J is the Jacobian of T'. Since J > C > 0 in U, we get

(3.3) I(y) > C /U QIT(y,1)) di dy.
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2°. We claim that, if € is sufficiently small, then, for every (y,t) € U,

(3.4) 9(c,T(y,t)) = Ct;
(3.5) d(T(y,t),0F) > Ct;

First, we prove (3.4). By 6.1.7.A, the function h(x) = g(c¢,x) is L*-harmonic
in V, continuous on V and equal to 0 on the portion O, of V. By Theorem 2.3 in
the Appendix B, h € C**(VUO,). Put v(y,t) = h[T(y, t)] and let 0(t,y) = %.
Note that 9(y, 0) = k(c, y) is a strictly positive continuous function on O.. Hence,
0(y,0) > C > 0 on O.. Since v is Holder continuous, it is bounded from below on
U by a strictly positive constant C'. This implies (3.4).

For y € O, the coordinates (21, ...,zq4) of n, are continuous functions of y
and zg > 0. Therefore zg > C > 0 for all y € O.. If ¢ is sufficiently small, then
d(T(y,t),0F) = tzq > Ct which implies (3.5).

Since |ny| =1, we have |T'(y,t) — yo| < |y — yo| + ¢ and the bound (3.6) follows
from 6.(4.1) and (3.5).

3°. By (3.3), (3.4) and (3.6),

2e
I@»zq/dy/ dt ° (ly — yo| + 1)~
O¢ 0

Since 2¢/|y — yo| > 2 for y € O, the change of variables t = s|y — yo| yields that

2e
[ ey =l + 7% de = Cly = ol
0

where )
c :/ S 4 5)7% ds > 0.
0
Hence .
I(yo) > C/ ly —yol* T dy = C/ retdm A gy = oo
O 0
for o > a(d) which implies (3.1). O

4. Null sets and polar sets

4.1. Theorem 12.1.1 and the proposition 10.1.4.C imply that all polar sets
are null sets and therefore, to prove Theorem 0.1, we need only to prove that every
null set is polar. It is sufficient to prove that every compact null set is removable.

First, we consider a special case which can be treated by a direct computation.
Put

E={z=(21,...,24): 0 < 2qg < 1} =R x (0, 1),
OE ={z:24=0} =R x0.
THEOREM 4.1. Let 1 < o < 2. Suppose that:

(a) E is a bounded smooth domain such that E C EU 0'E;
(b) B is a compact subset of O'E such that d(B,E\ E) > 0;
(C) k(xay) = |mf—dy|d7’

(d) m(dx) = x4 dx.

If B is a (m, k)-null set, then B is removable.
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[The function k(x,y) coincides, up to a constant factor, with the Poisson kernel
for the Laplacian A in the half-space {z4 > 0} .]

Theorem 0.1 follows from Theorem 4.1 and the arguments presented in the next
few sections.

4.2. LC-property of null sets. We prove that a change of JF away from
A C OF preserves the family of null sets B that are contained in A. In the next
section, we prove an analogous property (we call it LC-property) 3 for removable
sets.

PRroPOSITION 4.1. Let E C E be bounded smooth domains and let B be a
compact subset of OE NOE at a strictly positive distance from E\ E. Then B is a
null set of OF if and only if it is a null set of OF.

PROOF. 1°. Let C = ENOFE and A= {z € E : d(z, B) < d(x,C)}. All points
of E sufficiently close to B belong to A and, if z € A, then d(z,dE) = d(z, dE).
Hence, canonical measures m and /m on E and on E coincide on A.

2°.If K and K are the Poisson operators in F and E, then, for every v € M(B),
Kv < Kv and, since Kv is bounded on E \ A,

[ &y i< [ @ am 0 < [ g0 am o

It follows from (1.5) that, if B is a null set of OF, then it is a null set of IE.
3°. By 6.(2.18),

(4.1) Kv=Kv+ /C k(xz, 2) f(2)7(dz)

where f(z) = [ k(x,y)v(dy). By 6.1.8.B, f is bounded on C' and therefore Kv <
Kv + C5. Hence,

/(Ky)a dm < / (Kv)™ dm + C3 < /(Ky+02)a dim + Cs.
E A E

By Minkowski’s inequality, this implies

[ /E (Kv)® dm] v < [ /E (Kv)® dm] a +Cy

Therefore B is a null set of A if it is a null set of JE. O

4.3. LC-property of removable sets.

LEMMA 4.1. Let f > 0 be a continuous function on OF. If B C OF is remov-
able, then the boundary value problem

Lu=u* inFE
)

(42) u=f ondE\ B,

cannot have more than one solution

3LC stands for “local character”.
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PROOF. If v is the maximal solution of (4.2) (see Theorem 10.2.3) and if u is
any solution, then g =v —wu >0 and g = 0 on OF \ B. Consider a [F, B]-sequence
D,, and denote by w,, a solution of the boundary value problem

Lw, =wy in D,,
(4.3) v "
w, =g on dD,.
Since @ > 1, we have g* < v® — u® and therefore Lg = v* —u* > g% in E. By
the comparison principle 8.2.1.H, w,, > ¢. Since w,4+1 > g = w, on 9D, the
comparison principle implies w, 1 > w, in D,. Put w = limw,. Clearly, w > g
and, by Theorems 5.3.2-3.3,

Lw=w" in E,

(44) w=g=0 ondE\B.

By the definition of a removable set, w = 0. Therefore g =0 and v = w. O

PROPOSITION 4.2. Let E,E’ and B be as in Proposition 4.1. Then B is a
removable subset of OF if and only if it is a removable subset of OF.

PRrROOF. Consider the maximal solution wp of the problem 10.(1.3) and the
maximal solution wp of an analogous problem with E replaced by E. We need to
prove that wp = 0 if and only if wg = 0.

By Theorem 5.5.4, wp = 0 if wg = 0. Now suppose that wp = 0. Consider
a continuous function f on dE which vanishes on dE NJE and is equal to wp on
OE N E. Functions wg and V(f) are solutions of the problem

Lu=u* inE
)

(4.5) w=f ondE\B.

By Lemma 4.1 they coincide. Function Vj(f) is bounded in E. Hence, wg is
bounded in E. Since it vanishes on OF \ B, it is bounded in OF and, by the
comparison principle, it is moderate. By 10.1.4.D, wg = 0. O

REMARK. Proofs in section 4.3 are applicable not only to ¥ (u) = u® but also
to all functions ¢ considered in Chapters 8 and 10.

4.4. Reduction to the special case. We use a straightening of the boundary
described in section 6.1.3. Clearly, every compact subset of a null set is a null set
and, by 12.(1.3), the union of two null sets is a null set. Similar properties of
removable sets follow from 10.1.3.A and 10.1.3.E. Therefore Theorem 0.1 holds for
Bj U---U B, if it holds for each of these sets.

Suppose that B is a null set on JE. Without any loss of generality we can
assume that there exists a diffeomorphism T of class C?* from a ball U O B onto
a domain U’ C R? such that T(UNE) C E and T(U N OF) C J'E.

Let W be a smooth subdomain of V.= U N E such that B C 0W and B is at a
positive distance from V\ W. The images B’, V' and W’ of B, V, W have analogous
properties. By Proposition 4.1, B is a null set on OV and, by Lemma 2.3, B’ is a
null subset of V' and therefore it is also a null subset of JE. By Remark 1.1, B is
an (m, k)-null set for m and k defined in Theorem 4.1. If Theorem 4.1 is true, then
B’ is a removable set on JE. By Proposition 4.2, B’ is a removable subset of 9V"’.
It follows easily from the definition of removable sets that this class is invariant
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under diffeomorphisms and therefore B is a removable subset of V. By applying
once more Proposition 4.2, we conclude that B is a removable subset of OF.

4.5. Test of removability. To prove Theorem 4.1 we use the following test.

PROPOSITION 4.3. Suppose E, B, m,k satisfy conditions (a)—(d) of Theorem
4.1. A set B C OF is removable if there exists an open subset U of E such that
d(B,E\U) >0 and

(4.6) /Uu(x)o‘m(dx) < o0

for every solution u of the problem
Lu=u"* inE,

(47) u=0 ondE\B.

ProOOF. By 10.1.4.D, it is sufficient to demonstrate that the maximal solu-
tion wp of the problem (4.2) with f = 0 is moderate. By Theorem 5.5.4, wp is
dominated by the maximal solution u of the problem (4.7) and therefore, by (4.6),

(4.8) / wxdm < 00.
U

Choose € > 0 such that U. = {z € E : d(z, B) < ¢} C U and the bound (1.8) holds
in Ue. Then g(c, z) is bounded in U, and, by (4.8),

/ g(e, x)wp(x)® dr < .
Ue
Since wp is finite and continuous in E \ U, it is bounded in E \ U.. Hence,

G (o) < /

g(e,x)wp(x)® do + const./ gle,x) dx < o0
Ue

E\UE

and the function h = wp+G(w$) is finite at point c¢. By Theorem 8.3.1, h = j(wg)
is the limit of harmonic functions. Since h(c) < 00, h is harmonic by 6.1.5.C. Hence,
wp < h is moderate. O

To prove Theorem 4.1, it is sufficient to construct, for every (m, k)-null set B
subject to the condition (b), a set U with properties described in Prop