CHAPTER 15

Section 15-2

- 15-1 1. The parameter of interest is median of pH.
 - $2. H_0: \widetilde{\mu} = 7.0$
 - $3 H_1: \tilde{\mu} \neq 7.0$
 - 4. $\alpha = 0.05$
 - 5. The test statistic is the observed number of plus differences or $r^{+}=8$.
 - 6. We reject H_0 if the *P-value* corresponding to $r^+ = 3$ is less than or equal to $\alpha = 0.05$.
 - 7. Using the binomial distribution with n = 10 and p = 0.5, P-value = $2P(R^+ \ge 3 \mid p = 0.5) = 1$
 - 8. Conclusion: we cannot reject H_0 . There is not enough evidence to reject the manufacturer's claim that the median of the pH is 7.0
- 15-2 1. The parameter of interest is median titanium content.
 - $2. H_0: \tilde{\mu} = 8.5$
 - $3 H_1 : \tilde{\mu} \neq 8.5$
 - 4. $\alpha = 0.05$
 - 5. The test statistic is the observed number of plus differences or $r^+ = 7$.
 - 6. We reject H_0 if the *P-value* corresponding to $r^+=7$ is less than or equal to $\alpha=0.05$.
 - 7. Using the binomial distribution with n=10 and p=0.5, P-value = $2P(R^* \le 7|p=0.5)=0.359$
 - 8. Conclusion: we cannot reject H_0 . There is not enough evidence to reject the manufacturer's claim that the median of the titanium content is 8.5.
- 15-3 1. Parameter of interest is the median impurity level.
 - $2. H_0: \tilde{\mu} = 2.5$
 - $3. H_1: \widetilde{\mu} < 2.5$
 - 4. $\alpha = 0.05$
 - 5. The test statistic is the observed number of plus differences or $r^+=2$.
 - 6. We reject H_0 if the *P-value* corresponding to $r^+ = 2$ is less than or equal to $\alpha = 0.05$.
 - 7. Using the binomial distribution with n = 22 and p = 0.5, P-value = $P(R^+ \le 2 \mid p = 0.5) = 0.0002$
 - 8. Conclusion, reject H_0 . The data supports the claim that the median is impurity level is less than 2.5.
- 15-4 1. The parameter of interest is median of pH.
 - $2. H_0: \widetilde{\mu} = 7.0$
 - $3H_1: \widetilde{\mu} \neq 7.0$
 - 4. $\alpha = 0.05$
 - 5. The test statistic is $z_0 = \frac{r^* 0.5n}{0.5\sqrt{n}}$
 - 6. We reject H_0 if $|Z_0| > 1.96$ for $\alpha = 0.05$.

7. r*=8 and
$$z_0 = \frac{r^* - 0.5n}{0.5\sqrt{n}} = \frac{8 - 0.5(10)}{0.5\sqrt{10}} = 1.90$$

8. Conclusion: we cannot reject H_0 . There is not enough evidence to reject the manufacturer's claim that the median of the pH is 7.0

$$P$$
-value = $2[1 - P(|Z_0| < 1.90)] = 2(0.0287) = 0.0574$

- 15-5
 - 1. Parameter of interest is the median compressive strength
 - $2. H_0: \tilde{\mu} = 2250$
 - 3. $H_1: \tilde{\mu} > 2250$
 - 4. $\alpha = 0.05$
 - 5. The test statistic is the observed number of plus differences or $r^+=7$.
 - 6. We reject H_0 if the *P-value* corresponding to $r^+ = 7$ is less than or equal to $\alpha = 0.05$.
 - 7. Using the binomial distribution with n = 12 and p = 0.5, P-value = $P(R^+ \ge 7 \mid p = 0.5) = 0.3872$
 - 8. Conclusion, cannot reject H_0 . There is not enough evidence to conclude that the median compressive strength is greater than 2250.

 - 1. Parameter of interest is the median compressive strength
 - $2. H_0: \widetilde{\mu} = 2250$
 - 3. H_1 : $\tilde{\mu} > 2250$
 - 4. α=0.05
 - 5. Test statistic is $z_0 = \frac{r^+ 0.5n}{0.5\sqrt{n}}$
 - 6. We reject H_0 if the $|Z_0| > Z_{0.025} = 1.96$
 - 7. Computation: $z_0 = \frac{7 0.5(12)}{0.5\sqrt{12}} = 0.577$
 - 8. Conclusion, cannot reject H_0 . The *P-value* = 1- Φ (0.58) = 1 0.7190 = 0.281. There is not enough evidence to conclude that the median compressive strength is greater than 2250.
- 15-6 1. Parameter of interest is the median margarine fat content
 - 2. H_0 : $\tilde{\mu} = 17.0$
 - $3. H_1: \tilde{\mu} \neq 17.0$
 - 4. $\alpha = 0.05$
 - 5. The test statistic is the observed number of plus differences or $r^+=3$.
 - 6. We reject H_0 if the *P-value* corresponding to $r^+ = 7$ is less than or equal to $\alpha = 0.05$.
 - 7. Using the binomial distribution with n=6 and p=0.5, P-value = $2*P(R^* \ge 3|p=0.5,n=6)=1$.
 - 8. Conclusion, cannot reject H_0 . There is not enough evidence to conclude that the median fat content differs from 17.0.
- 15-7 1. Parameter of interest is the median titanium content
 - 2. H_0 : $\tilde{\mu} = 8.5$
 - $3. H_1: \tilde{\mu} \neq 8.5$
 - 4. $\alpha = 0.05$
 - 5. Test statistic is $z_0 = \frac{r^+ 0.5n}{0.5\sqrt{n}}$

 - 6. We reject H_0 if the $|Z_0| > Z_{0.025} = 1.96$ 7. Computation: $z_0 = \frac{7 0.5(20)}{0.5\sqrt{20}} = -1.34$
 - 8. Conclusion, cannot reject H_0 . There is not enough evidence to conclude that the median titanium content differs from 8.5. The *P-value* = 2*P(|Z| > 1.34) = 0.1802.

- 15-8 1. Parameter of interest is the median impurity level
 - $2. H_0: \widetilde{\mu} = 2.5$
 - $3. H_1: \tilde{\mu} < 2.5$
 - 4. α=0.05
 - 5. Test statistic is $z_0 = \frac{r^+ 0.5n}{0.5\sqrt{n}}$

 - 6. We reject H_0 if the $Z_0 < Z_{0.05} = -1.65$ 7. Computation: $Z_0 = \frac{2 0.5(22)}{0.5\sqrt{22}} = -3.84$
 - 8. Conclusion, reject H_0 and conclude that the median impurity level is less than 2.5. The *P-value* = P(Z<-3.84) = 0.000062
- 15-9 1. Parameters of interest are the median hardness readings for the two tips
 - $2. H_0: \widetilde{\mu}_D = 0$
 - $3. H_1: \widetilde{\mu}_D \neq 0$
 - 4. $\alpha = 0.05$
 - 5. The test statistic is $r = min(r^+, r^-)$.
 - 6. Because $\alpha = 0.05$ and n = 8, Appendix A, Table VII gives the critical value of $r_{0.05}^* = 0$. We reject
 - H_0 in favor of H_1 if $r \le 0$.
 - 7. $r^+ = 6$ and $r^- = 2$ and r = min(6,2) = 2
 - 8. Conclusion, cannot reject H_0 . There is not a significant difference in the tips.
- 15-10 1. Parameters of interest are the median drying times for the two formulations
 - $2. H_0: \widetilde{\mu}_D = 0$
 - $3. H_1: \widetilde{\mu}_D \neq 0$
 - 4. α=0.01
 - 5. The test statistic is $r = min(r^+, r^-)$.
 - 6. Because $\alpha = 0.01$ and n = 20, Appendix A, Table VII gives the critical value of $r_{0.01}^* = 3$. We reject
 - H_0 in favor of H_1 if $r \le 3$.
 - 7. There are two ties that are ignored so that $r^+ = 3$ and $r^- = 15$ and r = min(3,15) = 3
 - 8. Conclusion, reject H_0 . There is a significant difference in the drying times of the two formulations at $\alpha =$
- 1. Parameters of interest are the median drying times of the two formulations 15-11
 - $2. H_0: \tilde{\mu}_D = 0$
 - $3. H_1: \widetilde{\mu}_D \neq 0$
 - 4. α=0.01
 - 5. Test statistic $z_0 = \frac{r^+ 0.5n}{0.5\sqrt{n}}$

 - 6. We reject H_0 if the $|Z_0| > Z_{0.005} = 2.58$ 7. Computation: $z_0 = \frac{3 0.5(18)}{0.5\sqrt{18}} = -2.83$
 - 8. Conclusion, reject H_0 and conclude that there is a significant difference between the drying times for the two formulations at $\alpha = 0.01$.

The *P*-value = $2[1-P(|Z_0| < 2.83) = 0.005$.

- 15-12 1. Parameters of interest are the median caliper measurements
 - $2.\,H_0:\widetilde{\mu}_D=0$
 - $3. H_1: \widetilde{\mu}_D \neq 0$
 - 4. $\alpha = 0.05$
 - 5. The test statistic is $r = min(r^+, r^-)$.
 - 6. Because $\alpha = 0.05$ and n = 12, Appendix A, Table VII gives the critical value of $r_{0.05}^* = 2$. We reject
 - H_0 in favor of H_1 if $r \le 2$.
 - 7. There are four ties that are ignored so that $r^+ = 6$ and $r^- = 2$ and r = min(6,2) = 2
 - 8. Conclusion, reject H_0 . There is a significant difference in the median measurements of the two calipers at $\alpha = 0.05$.
- 15-13 1. Parameters of interest are the median blood cholesterol levels
 - $2. H_0: \tilde{\mu}_D = 0$
 - $3. H_1: \widetilde{\mu}_D \neq 0$
 - 4. $\alpha = 0.05$
 - 5. The test statistic $r = min(r^+, r^-)$.
 - 6. Because $\alpha = 0.05$ and n = 15, Appendix A, Table VII gives the critical value of $r_{0.05}^* = 3$. We reject
 - H_0 in favor of H_1 if $r \le 3$.
 - 7. $r^+ = 14$ and $r^- = 1$ and r = min(14,1) = 1
 - 8. Conclusion, reject H_0 . There a significant difference in the blood cholesterol levels at $\alpha = 0.05$.
- 15-14 1. Parameters of interest are the median caliper measurements
 - $2. H_0: \tilde{\mu}_D = 0$
 - $3. H_1: \widetilde{\mu}_D \neq 0$
 - 4. α=0.05
 - 5. Test statistic $z_0 = \frac{r^+ 0.5n}{0.5\sqrt{n}}$
 - 6. We reject H_0 if the $|Z_0| > Z_{0.025} = 1.96$
 - 7. Computation: $z_0 = \frac{6 0.5(8)}{0.5\sqrt{8}} = 1.41$
 - 8. Conclusion, do not reject H_0 . There is not a significant difference in the median measurements of the two calipers at $\alpha = 0.05$.
 - The *P*-value = $2[1-P(|Z_0| < 1.41) = 0.159$.
- 15-15 1. Parameter of interest is the difference in blood cholesterol levels
 - $2. H_0 : \widetilde{\mu}_D = 0$
 - $3. H_1: \widetilde{\mu}_D \neq 0$
 - 4. $\alpha = 0.05$
 - 5. Test statistic $z_0 = \frac{r^+ 0.5n}{0.5n}$
 - 6. We reject H_0 if the $|Z_0| > Z_{0.025} = 1.96$
 - 7. Computation: $z_0 = \frac{14 0.5(15)}{0.5\sqrt{15}} = 3.36$
 - 8. Conclusion, reject H_0 . There is a difference between the blood cholesterol levels.

The *P*-value = 2*P(|Z| > 3.36) = 0.0008.

15-16 a)
$$f(x) = \lambda e^{-\lambda x}$$
 for $x > 0$. Because 3.5 is the median $\int_{0}^{3.5} \lambda e^{-\lambda x} = 0.5$. Solving for λ , we find $\lambda = 0.198$ and $E(X) = 1/\lambda = 5.05$

b) Because $r^* = 3 > 1$, do not reject H_0

c)
$$\beta$$
 = P(Type II error)=P(R* > 1| $\widetilde{\mu}$ =4.5)

For
$$\tilde{\mu} = 4.5$$
, $E(X) = 6.49$ and $P(X < 3.5 | \tilde{\mu} = 4.5) = \int_{0.0}^{3.5} 0.154 e^{-0.154x} = 0.4167$. Therefore, with

 $n = 10, p = 0.4167, \beta = P(Type II error) = P(R^* > 1 | \tilde{\mu} = 4.5) = 0.963$

15-17 a)
$$\alpha = P(Z > 1.96) = 0.025$$

b)
$$\beta = P\left(\frac{\overline{X}}{\sigma/\sqrt{n}} = 1.96 \mid \mu = 1\right) = P(Z < -1.20) = 0.115$$

c) The sign test that rejects if $R^- \le 1$ has $\alpha = 0.011$ based on the binomial distribution.

d)
$$\beta = P(R^- \ge 2 \mid \mu = 1) = P(Z > 1) = 0.1587$$
. Therefore, R^- has a binomial distribution with $p = 1$

0.1587 and n = 10 when $\mu = 1$. Then $\beta = 0.487$. The value of β is greater for the sign test than for the normal test because the Z-test was designed for the normal distribution.

- 15-18 P-value = $2P(R^- \ge 6 \mid p = 0.5) = 0.289$. The P-value is greater than 0.05, therefore we cannot reject H₀ and conclude that there is no significant difference between median hardness readings for the two tips. This result agrees with the result found in Exercise 15-9.
- 15-19 P-value = $2P(R^- \le 3 \mid p = 0.5) = 0.0075$. The exact P-value computed here agrees with the normal approximation in Exercise 15-11 in the sense that both calculations would lead to the rejection of H_0 .

Section 15-3

Note to Instructors: When an observation equals the hypothesized mean the observation is dropped and not considered in the analysis.

- 15-20 1. Parameter of interest is the mean pH
 - $2. H_0: \mu = 7.0$
 - $3. H_1: \mu \neq 7.0$
 - 4. $\alpha = 0.05$
 - 5. The test statistic is $w = min(w^+, w^-)$.
 - 6. We reject H_0 if $w \le W_{0.05}^* = 8$, because $\alpha = 0.05$ and n = 10, Appendix A, Table VIII gives the critical value.
 - 7. $w^+ = 50.5$ and $w^- = 4.5$ and w = min(50.5, 4.5) = 4.5
 - 8. Conclusion, because 4.5 < 8, we reject H_0 and conclude that the mean pH is not equal to 7.
- 15-21 1. Parameter of interest is the mean titanium content
 - $2. H_0: \mu = 8.5$
 - $3. H_1: \mu \neq 8.5$
 - 4. α=0.05
 - 5. The test statistic is $w = min(w^+, w^-)$.
 - 6. We reject H_0 if $w \le w_{0.05}^* = 52$, because $\alpha = 0.05$ and n = 20, Appendix A, Table VIII gives the critical value.
 - 7. $w^+ = 80.5$ and $w^- = 109.5$ and w = min(80.5, 109.5) = 80.5

- 8. Conclusion, because 80.5 > 52, we cannot reject H_0 . The mean titanium content is not significantly different from 8.5 at $\alpha = 0.05$.
- 15-22 1. Parameter of interest is the mean titanium content
 - $2. H_0: \mu = 8.5$
 - $3. H_1: \mu \neq 8.5$
 - 4. $\alpha = 0.05$
 - 5. The test statistic is $Z_0 = \frac{W^+ n(n+1)/4}{\sqrt{n(n+1)(2n+1)/24}}$
 - 6. We reject H_0 if the $|Z_0| > Z_{0.025} = 1.96$, at $\alpha = 0.05$ 7. $w^+ = 80.5$ and $w^- = 109.5$ and

$$Z_0 = \frac{80 - 19(20)/4}{\sqrt{19(20)(39)/24}} = -0.58$$

- 8. Conclusion, because 0.58 < 1.96, we cannot reject H_0 . The mean titanium content is not significantly different from 8.5 at α =0.05.
- 15-23 1. Parameter of interest is the mean impurity level
 - $2. H_0: \mu = 2.5$
 - 3. H_1 : μ < 2.5
 - 4. $\alpha = 0.05$
 - 5. The test statistic is $w = min(w^+, w^-)$.
 - 6. We reject H_0 if $w \le w_{0.05}^* = 52$ because $\alpha = 0.05$ and n = 20 Appendix A, Table VIII gives the critical value.
 - 7. $w^+ = 205$ and $w^- = 5$ and w = min(205, 5) = 5
 - 8. Conclusion, because 5 < 65, we reject H_0 and conclude that the mean impurity level is less than 2.5 ppm.
- 15-24 1. Parameter of interest is the difference in mean hardness readings for the two tips
 - $2. H_0: \mu_D = 0$
 - $3. H_1: \mu_D \neq 0$
 - 4. $\alpha = 0.05$
 - 5. The test statistic is $w = min(w^+, w^-)$.
 - 6 We reject H_0 if $w \le W_{0.05}^* = 3$, because $\alpha = 0.05$ and n = 8 Appendix A, Table VIII gives the critical value.
 - 7. $w^+ = 24.5$ and $w^- = 11.5$ and w = min(24.5, 11.5) = 11.5
 - 8. Conclusion, because 11.5 > 3 cannot reject H_0 . There is not a significant difference in the tips.
- 15-25 1. Parameter of interest is the difference in mean drying times
 - $2. H_0: \mu_D = 0$
 - $3. H_1: \mu_D \neq 0$
 - 4. $\alpha = 0.05$
 - 5. The test statistic is $w = min(w^+, w^-)$.
 - 6. We reject H_0 if $w \le W_{0.05}^* = 27$ because $\alpha = 0.01$ and n = 18 Appendix A, Table VIII gives the critical
 - 7. $w^+ = 144$ and $w^- = 27$ and w = min(144, 27) = 27
 - 8. Conclusion, because 27 = 27, we reject H_0 .
- 15-26 1. Parameter of interest is the difference in the mean caliper measurements
 - $2. H_0: \mu_D = 0$
 - $3. H_1: \mu_D \neq 0$
 - 4. α=0.05
 - 5. The test statistic is $w = min(w^+, w^-)$.

- 6. We reject H_0 if $w \le w_{0.05}^* = 3$ because $\alpha = 0.05$ and n = 8 Appendix A, Table VIII gives the critical value.
- 7. $w^+ = 21.5$ and $w^- = 14.5$ and w = min(21.5, 14.5) = 14.5
- 8. Conclusion, do not reject H_0 because 14.5 > 13. There is a not a significant difference in the mean measurements of the two calipers at $\alpha = 0.05$.
- 15-27 1. Parameter of interest is the difference in mean blood cholesterol levels
 - $2. H_0: \mu_D = 0$
 - $3. H_1: \mu_D \neq 0$
 - 4. $\alpha = 0.05$
 - 5. The test statistic is $w = min(w^+, w^-)$.
 - 6. We reject H_0 if $w \le w_{0.05}^* = 25$, because $\alpha = 0.05$ and n = 15, Appendix A, Table VIII gives the critical value
 - 7. $w^+ = 119$ and $w^- = 1$ and w = min(119, 1) = 1
 - 8. Conclusion, because 1 < 25, we reject H_0 and conclude that the difference in the mean blood cholesterol levels is significant at $\alpha = 0.05$.

Section 15-4

- 1. The parameters of interest are the mean current (note: set circuit 1 equal to sample 2 so that Table IX can be used. Therefore μ_1 =mean of circuit 2 and μ_2 =mean of circuit 1)
 - $2. H_0: \mu_1 = \mu_2$
 - $3. H_1: \mu_1 > \mu_2$
 - 4. $\alpha = 0.025$
 - 5. The test statistic is $w_2 = \frac{(n_1 + n_2)(n_1 + n_2 + 1)}{2} w_1$
 - 6. We reject H_0 if $w_2 \le w_{0.025}^* = 51$, because $\alpha = 0.025$ and $n_1 = 8$ and $n_2 = 9$, Appendix A, Table IX gives the critical value.
 - 7. $w_1 = 78$ and $w_2 = 75$ and because 75 is less than 51, do not reject H_0
 - 8. Conclusion, do not reject H_0 . There is not enough evidence to conclude that the mean of circuit 1 exceeds the mean of circuit 2.
- 15-29 1. The parameters of interest are the mean flight delays
 - $2. H_0: \mu_1 = \mu_2$
 - $3. H_1: \mu_1 \neq \mu_2$
 - 4. $\alpha = 0.01$
 - 5. The test statistic is $w_2 = \frac{(n_1 + n_2)(n_1 + n_2 + 1)}{2} w_1$
 - 6. We reject H_0 if $w \le w_{0.01}^* = 23$, because $\alpha = 0.01$ and $n_1 = 6$ and $n_2 = 6$, Appendix A, Table IX gives the critical value.
 - 7. $w_1 = 40$ and $w_2 = 38$ and because 40 and 38 are greater than 23, we cannot reject H_0
 - 8. Conclusion, do not reject H_0 . There is no significant difference in the flight delays at $\alpha = 0.01$.
- 15-30 1. The parameters of interest are the mean heat gains for heating units
 - $2. H_0: \mu_1 = \mu_2$
 - $3. H_1: \mu_1 \neq \mu_2$
 - 4. $\alpha = 0.05$
 - 5. The test statistic is $w_2 = \frac{(n_1 + n_2)(n_1 + n_2 + 1)}{2} w_1$

- 6. We reject H_0 if $w \le W_{0.01}^* = 78$, because $\alpha = 0.01$ and $n_1 = 10$ and $n_2 = 10$, Appendix A, Table IX gives the critical value.
- 7. $w_1 = 77$ and $w_2 = 133$ and because 77 is less than 78, we can reject H_0
- 8. Conclusion, reject H_0 and conclude that there is a significant difference in the heating units at $\alpha = 0.05$.
- 15-31 1. The parameters of interest are the mean image brightness of the two tubes
 - $2. H_0: \mu_1 = \mu_2$
 - $3. H_1: \mu_1 > \mu_2$
 - 4. $\alpha = 0.025$
 - 5. The test statistic is $z_0 = \frac{W_1 \mu_{w_1}}{\sigma_{w_1}}$
 - 6. We reject H_0 if $Z_0 > Z_{0.025} = 1.96$
 - 7. $w_1 = 78$, $\mu_{w_1} = 72$ and $\sigma_{w_1}^2 = 108$

$$z_0 = \frac{78 - 72}{10.39} = 0.58$$

Because $Z_0 < 1.96$, cannot reject H_0

- 8. Conclusion, fail to reject H_0 . There is not a significant difference in the heat gain for the heating units at $\alpha = 0.05$. *P*-value =2[1 P(Z < 0.58)] = 0.5619
- 15-32 1. The parameters of interest are the mean heat gain for heating units
 - $2. H_0: \mu_1 = \mu_2$
 - $3. H_1: \mu_1 \neq \mu_2$
 - 4. $\alpha = 0.05$
 - 5. The test statistic is $z_0 = \frac{W_1 \mu_{w_1}}{\sigma_{w_0}}$
 - 6. We reject H_0 if $|Z_0| > Z_{0.025} = 1.96$
 - 7. $w_1 = 77$, $\mu_{w_1} = 105$ and $\sigma_{w_1}^2 = 175$

$$z_0 = \frac{77 - 105}{13.23} = -2.12$$

Because $|Z_0| > 1.96$, reject H_0

- 8. Conclusion, reject H_0 and conclude that there is a difference in the heat gain for the heating units at α =0.05. *P*-value =2[1 P(Z < 2.19)] = 0.034
- 15-33 1. The parameters of interest are the mean etch rates
 - $2. H_0: \mu_1 = \mu_2$
 - $3. H_1: \mu_1 \neq \mu_2$
 - 4. $\alpha = 0.05$
 - 5. The test statistic is $w_2 = \frac{(n_1 + n_2)(n_1 + n_2 + 1)}{2} w_1$
 - 6. We reject H_0 if $w \le W_{0.05}^* = 78$, because $\alpha = 0.05$ and $n_1 = 10$ and $n_2 = 10$, Appendix A, Table IX gives the critical value.
 - 7. $w_1 = 73$ and $w_2 = 137$ and because 73 is less than 78, we reject H_0
 - 8. Conclusion, reject H_0 and conclude that there is a significant difference in the mean etch rate at $\alpha = 0.05$.

- 15-34 1. The parameters of interest are the mean temperatures
 - $2. H_0: \mu_1 = \mu_2$
 - $3. H_1: \mu_1 \neq \mu_2$
 - 4. $\alpha = 0.05$
 - 5. The test statistic is $w_2 = \frac{(n_1 + n_2)(n_1 + n_2 + 1)}{2} w_1$
 - 6. We reject H_0 if $w \le w_{0.05}^* = 185$, because $\alpha = 0.05$ and $n_1 = 15$ and $n_2 = 15$, Appendix A, Table IX gives the critical value.
 - 7. $w_1 = 258$ and $w_2 = 207$ and because both 258 and 207 are greater than 185, we cannot reject H_0
 - 8. Conclusion, do not reject H_0 . There is not significant difference in the pipe deflection temperature at $\alpha = 0.05$
- 15-35. 1. The parameters of interest are the mean etch rates
 - $2. H_0: \mu_1 = \mu_2$
 - $3. H_1: \mu_1 \neq \mu_2$
 - 4. α=0.05
 - 5. The test statistic is $z_0 = \frac{W_1 \mu_{w_1}}{\sigma_{w_1}}$
 - 6. We reject H_0 if $|Z_0| > Z_{0.025} = 1.96$
 - 7. $w_1 = 73$, $\mu_{w_1} = 105$ and $\sigma_{w_1}^2 = 175$

$$z_0 = \frac{73 - 105}{13.23} = -2.42$$

Because $|Z_0| > 1.96$, reject H_0

- 8. Conclusion, reject H_0 and conclude that there is a significant difference between the mean etch rates. P-value = 0.0155
- 15-36 1. The parameters of interest are the mean temperatures
 - $2. H_0: \mu_1 = \mu_2$
 - $3. H_1: \mu_1 \neq \mu_2$
 - 4. $\alpha = 0.05$
 - 5. The test statistic is $z_0 = \frac{W_1 \mu_{w_1}}{\sigma_{w_1}}$
 - 6. We reject H_0 if $|Z_0| > Z_{0.025} = 1.96$
 - 7. $w_1 = 55$, $\mu_{w_1} = 232.5$ and $\sigma_{w_1}^2 = 581.25$

$$z_0 = \frac{258 - 232.5}{24.11} = 1.06$$

Because $|Z_0| < 1.96$, do not reject H_0

8. Conclusion, do not reject H_0 . There is not a significant difference in the pipe deflection temperatures at $\alpha = 0.05$. P-value =2[1 - P(Z < 1.06)] = 0.2891

Section 15-5

15-37 Kruskal-Wallis Test on strength mixingte N Median Ave Rank 2945 0.55 4 9.6 1 2 4 3075 12.9 2.12 3 4 2942 9.0 0.24 4 4 2650 2.5 -2.91 Overall 16 8.5 H = 10.00 DF = 3 P = 0.019H = 10.03 DF = 3 P = 0.018 (adjusted for ties) * NOTE * One or more small samples

Reject H₀ and conclude that the mixing technique has an effect on the strength.

15-38 Kruskal-Wallis Test on strength

methods	N	Median	Ave Rank	Z
1	5	550.0	8.7	0.43
2	5	553.0	10.7	1.65
3	5	528.0	4.6	-2.08
Overall	15		8.0	

H = 4.83 DF = 2 P = 0.089 H = 4.84 DF = 2 P = 0.089 (adjusted for ties)

Do not reject H_0 . The conditioning method does not have an effect on the breaking strength at $\alpha = 0.05$.

15-39 Kruskal-Wallis Test on angle

manufact	N	Median	Ave Rank	Z
1	5	39.00	7.6	-1.27
2	5	44.00	12.4	0.83
3	5	48.00	15.8	2.31
4	5	30.00	6.2	-1.88
Overall	20		10.5	
H = 8.37	DF = 3	P = 0.03	9	

Do not reject H_0 . There is not a significant difference between the manufacturers at $\alpha = 0.01$.

15-40 Kruskal-Wallis Test on uniformity

```
flow
rate
            Ν
                 Median
                           Ave Rank
                  3.100
                                5.8
125
            6
                                         -2.06
                  4.400
160
            6
                                13.0
                                          1.97
250
            6
                  3.800
                                9.7
                                          0.09
Overall
                                 9.5
           18
```

```
H = 5.42 DF = 2 P = 0.067

H = 5.44 DF = 2 P = 0.066 (adjusted for ties)
```

Do not reject H_0 . There is not a significant difference between the flow rates on the uniformity at $\alpha = 0.05$.

- 15-41 P-value = 0.018 (use the chi-square distribution)
- 15-42 P-value = 0.066 (use the chi-square distribution)

Supplemental Exercises

15-43 1. Parameter of interest is median surface finish

$$2. H_0: \widetilde{\mu} = 10.0$$

$$3 H_1 : \tilde{\mu} \neq 10.0$$

4.
$$\alpha = 0.05$$

5. The test statistic is the observed number of plus differences or $r^+=5$.

6. We reject H_0 if the *P-value* corresponding to $r^+ = 5$ is less than or equal to $\alpha = 0.05$.

7. Using the binomial distribution with n = 10 and p = 0.5, P-value = $2P(R^* \ge 5 | p = 0.5) = 1.0$

8. Conclusion, we cannot reject H_0 . We cannot reject the claim that the median is 10 μ in.

15-44 1. Parameter of interest is median of surface finish

$$2. H_0: \widetilde{\mu} = 10.0$$

$$3 H_1 : \tilde{\mu} \neq 10.0$$

4.
$$\alpha = 0.05$$

5. Test statistic is
$$z_0 = \frac{r^+ - 0.5n}{0.5\sqrt{n}}$$

6. We reject H_0 if the $|Z_0| > Z_{0.025} = 1.96$

7. Computation:
$$z_0 = \frac{5 - 0.5(10)}{0.5\sqrt{10}} = 0$$

8. Conclusion, cannot reject H_0 . There is not sufficient evidence that the median surface finish differs from 10 microinches.

The *P*-value =
$$2[1-\Phi(0)] = 1$$

15-45 1. The parameter of interest is the median fluoride emissions.

$$2.H_0: \tilde{\mu} = 6$$

$$3.H_1: \tilde{\mu} < 6$$

4.
$$\alpha = 0.05$$

5. The test statistic is the observed number of plus differences or $r^+=4$.

6. We reject H_0 if the *P-value* corresponding to $r^+ = 4$ is less than or equal to $\alpha = 0.05$.

7. Using the binomial distribution with n = 15 and p = 0.5, P-value = $P(R^+ \le 4 \mid p = 0.5) = 0.1334$

8. Conclusion, do not reject H_0 . The data does not support the claim that the median fluoride impurity level is less than 6.

Using Minitab (Sign Rank Test)

Do not reject H₀

15-46 1. Parameter of interest is median fluoride impurity level

$$2. H_0: \widetilde{\mu} = 6.0$$

$$3 H_1: \tilde{\mu} < 6.0$$

4.
$$\alpha$$
=0.05

5. Test statistic is
$$z_0 = \frac{r^+ - 0.5n}{0.5\sqrt{n}}$$

6. We reject
$$H_0$$
 if the $Z_0 < -Z_{0.05} = -1.65$
7. Computation: $z_0 = \frac{4 - 0.5(13)}{0.5\sqrt{13}} = -1.39$

8. Conclusion, do not reject H_0 . There is not enough evidence to conclude that the median fluoride impurity level is less than 6.0 ppm. The *P-value* = $2[1-\Phi(1.39)] = 0.1645$.

- 15-47 1. Parameter of interest is the difference between the impurity levels.
 - $2. H_0: \tilde{\mu}_D = 0$
 - $3. H_1: \widetilde{\mu}_D \neq 0$
 - 4. $\alpha = 0.05$
 - 5. The test statistic $r = min(r^+, r^-)$.
 - 6. Because $\alpha = 0.05$ and n = 7, Appendix A, Table VII gives the critical value of $r_{0.05}^* = 0$. We reject

 H_0 in favor of H_1 if $r \le 10$.

- 7. $r^+ = 1$ and $r^- = 6$ and r = min(1,6) = 1
- 8. Conclusion, cannot reject H_0 . There is not a significant difference in the impurity levels.
- 15-48 1. Parameter of interest is mean surface finish.
 - $2. H_0: \mu = 10.0$
 - $3 H_1: \mu \neq 10.0$
 - 4. $\alpha = 0.05$
 - 5. The test statistic is $w = min(w^+, w^-)$.
 - 6. We reject H_0 if $w \le W_{0.05}^* = 8$, because $\alpha = 0.05$ and n = 10, Appendix A, Table VIII gives the critical value
 - 7. $w^+ = 28.5$ and $w^- = 26.5$ and w = min(28.5, 26.5) = 26.5
 - 8. Conclusion, we cannot reject H_0 . We cannot reject the claim that the mean surface finish is 10 μ in.
- 15-49 1. Parameter of interest is mean fluoride impurity level.
 - $2. H_0: \mu = 6.0$
 - $3 H_1: \mu < 6.0$
 - 4. $\alpha = 0.05$
 - 5. The test statistic is $w = min(w^+, w^-)$.
 - 6. We reject H_0 if $w \le W_{0.05}^* = 21$, because $\alpha = 0.05$ and n = 13, Appendix A, Table VIII gives the critical value
 - 7. $w^+ = 19$ and $w^- = 72$ and w = min(19,72) = 19
 - 8. Conclusion, reject H_0 . We conclude that the mean fluoride impurity level is less than 6.0 ppm.

```
Using Minitab Wilcoxon signed-rank t test Test of median = 6.000 versus median < 6.000 N for Wilcoxon Estimated N Test Statistic P Median Y 15 13 19.0 0.035 5.000 Reject H_0
```

The Wilcoxon signed-rank test applies to symmetric, continuous distributions. The test in this exercise applies to the mean of the distribution while the sign test applied to the median.

- 15-50 1. Parameters of interest are the mean weights
 - $2. H_0: \mu_D = 0$
 - $3. H_1: \mu_D \neq 0$
 - 4. α=0.05
 - 5. The test statistic is $w = min(w^+, w^-)$.
 - 6. We reject H_0 if $w \le w_{0.05}^* = 8$ because $\alpha = 0.05$ and n = 10 Appendix A, Table VIII gives the critical value.
 - 7. $w^+ = 55$ and $w^- = 0$ and w = min(55, 0) = 0
 - 8. Conclusion, because 0 < 8, we reject H_0 and conclude that there is a difference in the weights due to the diet modification experiment.

15-51 1. The parameters of interest are the mean mileages for a Volkswagen and Mercedes.

2.
$$H_0$$
: $\mu_1 = \mu_2$

$$3. H_1: \mu_1 \neq \mu_2$$

4.
$$\alpha = 0.01$$

5. The test statistic is
$$w_2 = \frac{(n_1 + n_2)(n_1 + n_2 + 1)}{2} - w_1$$

- 6. We reject H_0 if $w \le w_{0.01}^* = 71$, because $\alpha = 0.01$ and $n_1 = 10$ and $n_2 = 10$, Appendix A, Table IX gives the critical value.
- 7. $w_1 = 55$ and $w_2 = 155$ and because 55 is less than 71, we reject H_0
- 8. Conclusion, reject H_0 and conclude that there is a difference in the mean mileages of the two different vehicles
- 15-52 1. The parameters of interest are the mean mileages for a Volkswagen and Mercedes

$$2. H_0: \mu_1 = \mu_2$$

$$3. H_1: \mu_1 \neq \mu_2$$

4.
$$\alpha = 0.01$$

5. The test statistic is
$$z_0 = \frac{W_1 - \mu_{w_1}}{\sigma_{w_1}}$$

6. We reject
$$H_0$$
 if $|Z_0| > Z_{0.005} = 2.58$

7.
$$w_1 = 55$$
, $\mu_{w_1} = 105$ and $\sigma_{w_1}^2 = 175$

$$z_0 = \frac{55 - 105}{13.23} = -3.78$$

Because $|Z_0| > 2.58$, reject H_0

- 8. Conclusion, reject H_0 and conclude that there is a significant difference in the mean mileages at $\alpha = 0.01$. P-value = 2[1 P(Z < 3.78)] = 0.00016
- 15-53 1. The parameters of interest are the in mean fill volumes

2.
$$H_0$$
: $\mu_1 = \mu_2$

$$3. H_1: \mu_1 \neq \mu_2$$

4.
$$\alpha = 0.05$$

5. The test statistic
$$w_2 = \frac{(n_1 + n_2)(n_1 + n_2 + 1)}{2} - w_1$$

- 6. We reject if $H_0 w \le w_{0.05}^* = 78$, because $\alpha = 0.05$ and $n_1 = 10$ and $n_2 = 10$, Appendix A, Table IX gives the critical value.
- 7. $w_1 = 58$ and $w_2 = 152$ and because 58 is less than 78, we reject H_0
- 8. Conclusion, reject H_0 and conclude that there is a significant difference in the mean fill volumes at $\alpha = 0.05$.

$$2. H_0: \mu_1 = \mu_2$$

$$3. H_1: \mu_1 \neq \mu_2$$

4.
$$\alpha = 0.05$$

5. The test statistic is
$$z_0 = \frac{W_1 - \mu_{\scriptscriptstyle w_1}}{\sigma_{\scriptscriptstyle w_1}}$$

6. We reject H_0 if $|Z_0| > Z_{0.025} = 1.96$

7.
$$w_1 = 58$$
, $\mu_{w_1} = 105$ and $\sigma_{w_1}^2 = 175$

$$z_0 = \frac{58 - 105}{13.23} = -3.55$$

Because $|Z_0| > 1.96$, reject H_0

8. Conclusion, reject H_0 and conclude that there is a significant difference in the mean mileages at $\alpha = 0.05$. P-value =2[1 - $P(Z < 3.55)] \cong 0.000385$

15-55. Kruskal-Wallis Test on RESISTAN

ALLOY	N	Median	Ave Rank	Z
1	10	98.00	5.7	-4.31
2	10	102.50	15.3	-0.09
3	10	138.50	25.5	4.40
Overall	3.0		15.5	

$$H = 25.30 DF = 2 P = 0.000$$

$$H = 25.30$$
 DF = 2 P = 0.000
 $H = 25.45$ DF = 2 P = 0.000 (adjusted for ties)

Reject H_0 , P-value $\cong 0$

15-56 Kruskal-Wallis Test on TIME

time	N	Median	Ave Rank	Z
0	9	1106.0	24.8	2.06
7	9	672.2	19.7	0.38
14	9	646.2	20.9	0.79
21	9	377.6	8.7	-3.23
Overall	36		18.5	

$$H = 11.61 DF = 3 P = 0.009$$

Reject H_0 at $\alpha = 0.05$

15-57. Kruskal-Wallis Test on VOLUME

TEMPERAT	N	Median Av	<i>r</i> e Rank	Z		
70	5	1245	12.4	2.69		
75	5	1220	7.9	-0.06		
80	5	1170	3.7	-2.63		
Overall	15		8.0			
H = 9.46	DF = 2	P = 0.009				
H = 9.57	DF = 2	P = 0.008	(adjusted	for ties)		

Reject H_0 at $\alpha = 0.05$

Mind-Expanding Exercises

15-58 Under the null hypothesis each rank has probability of 0.5 of being either positive or negative. Define the random variable X_i as

$$X_{i} = \begin{cases} 1 & \textit{rank} & \textit{is} & \textit{positive} \\ 0 & \textit{rank} & \textit{is} & \textit{negative} \end{cases}$$

Then,

$$R^+ = \sum_{i=1}^n x_i i$$
 and $E(R^+) = \sum_{i=1}^n E(x_i) i = \frac{1}{2} \sum_{i=1}^n i = \frac{n(n+1)}{4}$ since $E(x_i) = \frac{1}{2}$

where $V(R^+) = \sum V(x_i)i^2$ by independence

$$V(X_i) = 1^2 \frac{1}{2} + 0^2 \frac{1}{2} - [E(X_i)]^2 = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$

Then,
$$V(R^+) = \frac{n(n+1)(2n+1)}{24}$$

15-59 a)
$$p = P(X_{i+5} > X_i) = \frac{4}{5}$$
 There appears to be an upward trend.

b) V is the number of values for which $X_{i+5} > X_i$. The probability distribution of V is binomial with n = 5 and p = 0.5.

c)
$$V = 4$$

- 1. The parameter of interest is number of values of i for which $\,X_{i+5} > X_i\,$.
- 2. H_0 : there is no trend
- $3 H_1$: there is an upward trend
- 4. $\alpha = 0.05$
- 5. The test statistic is the observed number of values where $X_{i+5} > X_i$ or V = 4.
- 6. We reject H_0 if the *P-value* corresponding to V = 4 is less than or equal to $\alpha = 0.05$.
- 7. Using the binomial distribution with n = 5 and p = 0.5, P-value = P($V \ge 4$ | p = 0.5) = 01875
- 8. Conclusion: do not reject H_0 . There is not enough evidence to suspect an upward trend in the wheel opening dimensions at α =0.05.

15-60 a) 32 sequences are possible

b) Because each sequence has probability 1/32 under H_0 , the distribution of W^* is obtained by counting the sequences that result in each value of W^*

*	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Prob*1/32	1	1	1	2	2	3	3	3	3	3	3	2	2	1	1	1

c) P(W $^* > 13$) = 2/32

d) By enumerating the possible sequences, the probability that W^* exceeds any value can be calculated under the null hypothesis as in part (c). This approach can be used to determine the critical values for the test.