CHAPTER 10

Section 10-2

10-1. a) 1) The parameter of interest is the difference in fill volume $\mu_1 - \mu_2$. Note that $\Delta_0 = 0$.

2)
$$H_0$$
: $\mu_1 - \mu_2 = 0$ or $\mu_1 = \mu_2$

3)
$$H_1: \mu_1 - \mu_2 \neq 0$$
 or $\mu_1 \neq \mu_2$

4)
$$\alpha = 0.05$$

5) The test statistic is

$$z_{0} = \frac{(\overline{x}_{1} - \overline{x}_{2}) - \Delta_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$

6) Reject H_0 if $z_0 < -z_{\alpha/2} = -1.96$ or $z_0 > z_{\alpha/2} = 1.96$ 7) $\overline{x}_1 = 16.014$ $\overline{x}_2 = 16.006$

7)
$$\overline{x}_1 = 16.014$$
 $\overline{x}_2 = 16.006$

$$\sigma_1 = 0.032$$
 $\sigma_2 = 0.024$
 $n_1 = 10$ $n_2 = 10$

$$n_1 = 10$$
 $n_2 = 10$

$$z_0 = \frac{(16.014 - 16.006)}{\sqrt{\frac{(0.032)^2}{10} + \frac{(0.024)^2}{10}}} = 0.63$$

8) Because -1.96 < 0.63 < 1.96, do not reject the null hypothesis. There is not sufficient evidence to conclude that the two machine fill volumes differ at $\alpha = 0.05$.

b) P-value =
$$2(1 - \Phi(0.63)) = 2(1 - 0.7357) = 0.5287$$

c)
$$\beta = \Phi \left(z_{\alpha/2} - \frac{\Delta - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \right) - \Phi \left(-z_{\alpha/2} - \frac{\Delta - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \right)$$

$$= \Phi \left(1.96 - \frac{0.04}{\sqrt{\frac{(0.032)^2}{10} + \frac{(0.024)^2}{10}}} \right) - \Phi \left(-1.96 - \frac{0.04}{\sqrt{\frac{(0.032)^2}{10} + \frac{(0.024)^2}{10}}} \right)$$

$$= \Phi \left(1.96 - 3.16 \right) - \Phi \left(-1.96 - 3.16 \right) = \Phi \left(-1.2 \right) - \Phi \left(-5.12 \right) = 0.1151 - 0 = 0.1151$$

Power =
$$1 - 0.1151 = 0.8849$$

$$\begin{split} d) \quad \left(\overline{x}_1 - \overline{x}_2\right) - z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} &\leq \mu_1 - \mu_2 \leq \left(\overline{x}_1 - \overline{x}_2\right) + z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \\ & (16.014 - 16.006) - 1.96 \sqrt{\frac{(0.032)^2}{10} + \frac{(0.024)^2}{10}} \leq \mu_1 - \mu_2 \leq \left(16.014 - 16.006\right) + 1.96 \sqrt{\frac{(0.032)^2}{10} + \frac{(0.024)^2}{10}} \\ & - 0.0168 \leq \mu_1 - \mu_2 \leq 0.0328 \end{split}$$

With 95% confidence, we believe the true difference in the mean fill volumes is between -0.0098 and 0.0298. Because 0 is contained in this interval, we can conclude there is no significant difference between the means.

$$n \approx \frac{\left(z_{\alpha/2} + z_{\beta}\right)^{2} \left(\sigma_{1}^{2} + \sigma_{2}^{2}\right)}{\delta^{2}} = \frac{\left(1.96 + 1.645\right)^{2} \left(0.032^{2} + 0.024^{2}\right)}{\left(0.04\right)^{2}} = 12.96$$
Use $n = n = 13$

10-2. 1) The parameter of interest is the difference in breaking strengths
$$\mu_1 - \mu_2$$
 and $\Delta_0 = 10$

2)
$$H_0$$
: $\mu_1 - \mu_2 = 10$

3)
$$H_1: \mu_1 - \mu_2 > 10$$

4)
$$\alpha = 0.05$$

5) The test statistic is

$$z_{0} = \frac{(\overline{x}_{1} - \overline{x}_{2}) - \Delta_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$

6) Reject H₀ if
$$z_0 > z_{\alpha} = 1.645$$

7)
$$\overline{x}_1 = 162.5$$
 $\overline{x}_2 = 155.0$ $\delta = 10$

$$\sigma_1 = 1.0$$
 $\sigma_2 = 1.0$
 $n_1 = 10$ $n_2 = 12$

$$n_1 = 10$$

$$l_2 = 12$$

$$z_0 = \frac{(162.5 - 155.0) - 10}{\sqrt{\frac{(1.0)^2}{10} + \frac{(1.0)^2}{12}}} = -5.84$$

8) Because -5.84 < 1.645 do not reject the null hypothesis and conclude there is insufficient evidence to the use of plastic 1 at $\alpha = 0.05$. support

10-3
$$\beta = \Phi \left(1.645 - \frac{(12-10)}{\sqrt{\frac{1}{10} + \frac{1}{12}}} \right) = \Phi(-3.03) = 0.0012$$

Power = 1 - 0.0012 = 0.9988

$$n = \frac{(z_{\alpha/2} + z_{\beta})^2 (\sigma_1^2 + \sigma_2^2)}{(\Delta - \Delta_0)^2} = \frac{(1.645 + 1.645)^2 (1+1)}{(12-10)^2} = 5.42 \cong 6$$

Yes, the sample size is adequate

10-4. a) 1) The parameter of interest is the difference in mean burning rate,
$$\mu_1 - \mu_2$$

2)
$$H_0$$
: $\mu_1 - \mu_2 = 0$ or $\mu_1 = \mu_2$

3)
$$H_1: \mu_1 - \mu_2 \neq 0 \text{ or } \mu_1 \neq \mu_2$$

4)
$$\alpha = 0.05$$

$$z_{0} = \frac{(\overline{x}_{1} - \overline{x}_{2}) - \Delta_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$

6) Reject H₀ if
$$z_0 < -z_{\alpha/2} = -1.96$$
 or $z_0 > z_{\alpha/2} = 1.96$ 7) $\overline{x}_1 = 18$ $\overline{x}_2 = 24$

7)
$$\bar{x}_1 = 18$$
 $\bar{x}_2 = 24$

$$\sigma_1 = 3$$
 $\sigma_2 = 3$

$$n_1 = 20$$
 $n_2 = 20$

$$z_0 = \frac{(18 - 24)}{\sqrt{\frac{(3)^2}{20} + \frac{(3)^2}{20}}} = -6.32$$

8) Because -6.32 < -1.96 reject the null hypothesis and conclude the mean burning rates differ significantly at $\alpha = 0.05$.

b) P-value =
$$2(1 - \Phi(6.32)) = 2(1 - 1) = 0$$

c)
$$\beta = \Phi \left(z_{\alpha/2} - \frac{\Delta - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \right) - \Phi \left(-z_{\alpha/2} - \frac{\Delta - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \right)$$

$$= \Phi \left(1.96 - \frac{2.5}{\sqrt{\frac{(3)^2}{20} + \frac{(3)^2}{20}}} \right) - \Phi \left(-1.96 - \frac{2.5}{\sqrt{\frac{(3)^2}{20} + \frac{(3)^2}{20}}} \right)$$

$$= \Phi (1.96 - 2.64) - \Phi (-1.96 - 2.64) = \Phi (-0.68) - \Phi (-4.6) = 0.24825 - 0 = 0.24825$$

$$\begin{split} d) \quad \left(\overline{x}_1 - \overline{x}_2\right) - z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} &\leq \mu_1 - \mu_2 \leq \left(\overline{x}_1 - \overline{x}_2\right) + z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \\ \left(18 - 24\right) - 1.96 \sqrt{\frac{\left(3\right)^2}{20} + \frac{\left(3\right)^2}{20}} &\leq \mu_1 - \mu_2 \leq \left(18 - 24\right) + 1.96 \sqrt{\frac{\left(3\right)^2}{20} + \frac{\left(3\right)^2}{20}} \\ -7.86 \leq \mu_1 - \mu_2 \leq -4.14 \end{split}$$

We are 95% confident that the mean burning rate for solid fuel propellant 2 exceeds that of propellant 1 by between 4.14 and 7.86 cm/s.

10-5.
$$\overline{x}_1 = 30.87$$
 $\overline{x}_2 = 30.68$ $\sigma_1 = 0.10$ $\sigma_2 = 0.15$ $\sigma_1 = 12$ $\sigma_2 = 10$

a) 90% two-sided confidence interval:

$$(\overline{x}_1 - \overline{x}_2) - z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \le \mu_1 - \mu_2 \le (\overline{x}_1 - \overline{x}_2) + z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

$$(30.87 - 30.68) - 1.645 \sqrt{\frac{(0.10)^2}{12} + \frac{(0.15)^2}{10}} \le \mu_1 - \mu_2 \le (30.87 - 30.68) + 1.645 \sqrt{\frac{(0.10)^2}{12} + \frac{(0.15)^2}{10}}$$

$$0.0987 \le \mu_1 - \mu_2 \le 0.2813$$

We are 90% confident that the mean fill volume for machine 1 exceeds that of machine 2 by between 0.0987 and 0.2813 fl. oz.

b) 95% two-sided confidence interval:

$$\begin{split} &\left(\overline{x}_{1}-\overline{x}_{2}\right)-z_{\alpha/2}\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}\leq\mu_{1}-\mu_{2}\leq\left(\overline{x}_{1}-\overline{x}_{2}\right)+z_{\alpha/2}\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}\\ &\left(30.87-30.68\right)-1.96\sqrt{\frac{\left(0.10\right)^{2}}{12}+\frac{\left(0.15\right)^{2}}{10}}\leq\mu_{1}-\mu_{2}\leq\left(30.87-30.68\right)+1.96\sqrt{\frac{\left(0.10\right)^{2}}{12}+\frac{\left(0.15\right)^{2}}{10}}\\ &0.0812\leq\mu_{1}-\mu_{2}\leq0.299 \end{split}$$

We are 95% confident that the mean fill volume for machine 1 exceeds that of machine 2 by between 0.0812 and 0.299 fl. oz.

Comparison of parts (a) and (b):

As the level of confidence increases, the interval width also increases (with all other values held constant).

c) 95% upper-sided confidence interval:

$$\begin{split} &\mu_1 - \mu_2 \leq \left(\overline{x}_1 - \overline{x}_2\right) + z_\alpha \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \\ &\mu_1 - \mu_2 \leq \left(30.87 - 30.68\right) + 1.645 \sqrt{\frac{(0.10)^2}{12} + \frac{(0.15)^2}{10}} \\ &\mu_1 - \mu_2 \leq 0.2813 \end{split}$$

With 95% confidence, we believe the fill volume for machine 1 exceeds the fill volume of machine 2 by no more than 0.2813 fl. oz.

10-6. a) 1) The parameter of interest is the difference in mean fill volume $\mu_1 - \mu_2$

2)
$$H_0$$
: $\mu_1 - \mu_2 = 0$ or $\mu_1 = \mu_2$

3)
$$H_1$$
: $\mu_1 - \mu_2 \neq 0$ or $\mu_1 \neq \mu_2$

4)
$$\alpha = 0.05$$

5) The test statistic is

$$z_{0} = \frac{(\overline{x}_{1} - \overline{x}_{2}) - \Delta_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$

6) Reject H₀ if $z_0 < -z_{\alpha/2} = -1.96$ or $z_0 > z_{\alpha/2} = 1.96$

7)
$$\overline{x}_1 = 30.87$$
 $\overline{x}_2 = 30.68$

$$\sigma_1 = 0.10$$
 $\sigma_2 = 0.15$

$$n_1 = 12$$
 $n_2 = 10$

$$z_0 = \frac{(30.87 - 30.68)}{\sqrt{\frac{(0.10)^2}{12} + \frac{(0.15)^2}{10}}} = 3.42$$

8) Because 3.42 > 1.96 reject the null hypothesis and conclude the mean fill volumes of machine 1 and machine 2 differ significantly at $\alpha = 0.05$.

b) P-value =
$$2[1 - \Phi(3.42)] = 2(1 - 0.99969) = 0.00062$$

c) Assume the sample sizes are to be equal, use $\alpha = 0.05$, $\beta = 0.10$, and $\Delta = 0.20$

$$n \cong \frac{\left(z_{\alpha/2} + z_{\beta}\right)^{2} \left(\sigma_{1}^{2} + \sigma_{2}^{2}\right)}{\left(\Delta - \Delta_{0}\right)^{2}} = \frac{\left(1.96 + 1.28\right)^{2} \left(\left(0.10\right)^{2} + \left(0.15\right)^{2}\right)}{\left(-0.20\right)^{2}} = 8.53, \quad n = 9, \text{ use } n_{1} = n_{2} = 9$$

10-7.
$$\overline{x}_1 = 89.6 \quad \overline{x}_2 = 92.5$$

$$\sigma_1^2 = 1.5$$
 $\sigma_2^2 = 1.2$

$$n_1 = 15$$
 $n_2 = 20$

a) 95% confidence interval:

$$\left(\overline{x}_1-\overline{x}_2\right)-z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}\leq \mu_1-\mu_2\leq \left(\overline{x}_1-\overline{x}_2\right)+z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}$$

$$(89.6 - 92.5) - 1.96\sqrt{\frac{1.5}{15} + \frac{1.2}{20}} \le \mu_1 - \mu_2 \le \left(89.6 - 92.5\right) + 1.96\sqrt{\frac{1.5}{15} + \frac{1.2}{20}}$$

$$-3.684 \le \mu_1 - \mu_2 \le -2.116$$

With 95% confidence, we believe the mean road octane number for formulation 2 exceeds that of formulation 1 by between 2.116 and 3.684.

- b) 1) The parameter of interest is the difference in mean road octane number $\mu_1 \mu_2$ and $\Delta_0 = 0$
 - 2) H_0 : $\mu_1 \mu_2 = 0$ or $\mu_1 = \mu_2$
 - 3) H_1 : $\mu_1 \mu_2 < 0$ or $\mu_1 < \mu_2$
 - 4) $\alpha = 0.05$
 - 5) The test statistic is

$$z_0 = \frac{(\bar{x}_1 - \bar{x}_2) - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- 6) Reject H_0 if $z_0 < -z_\alpha = -1.645$
- 7) $\overline{x}_1 = 89.6 \quad \overline{x}_2 = 92.5$

$$\sigma_1^2 = 1.5$$
 $\sigma_2^2 = 1.2$
 $n_1 = 15$ $n_2 = 20$

$$n_1 = 15$$
 $n_2 = 20$

$$z_0 = \frac{(89.6 - 92.5)}{\sqrt{\frac{1.5}{15} + \frac{1.2}{20}}} = -7.25$$

- 8) Because -7.25 < -1.645 reject the null hypothesis and conclude the mean road octane number for formulation 2 exceeds that of formulation 1 using $\alpha = 0.05$.
- c) P-value $\cong P(z \le -7.25) = 1 P(z \le 7.25) = 1 1 \cong 0$
- 10-8. 99% level of confidence, E = 4, and $z_{0.005} = 2.575$

$$n \cong \left(\frac{z_{0.005}}{E}\right)^2 \left(\sigma_1^2 + \sigma_2^2\right) = \left(\frac{2.575}{4}\right)^2 (9+9) = 7.46,$$

95% level of confidence, E = 1, and $z_{0.025} = 1.96$ 10-9.

$$n \cong \left(\frac{z_{0.025}}{E}\right)^2 \left(\sigma_1^2 + \sigma_2^2\right) = \left(\frac{1.96}{1}\right)^2 (1.5 + 1.2) = 10.37,$$

10-10. Case 1: Before Process Change

 μ_1 = mean batch viscosity before change

$$\bar{x}_1 = 750.2$$

$$\sigma_1 = 20$$

$$n_1 = 15$$

Case 2: After Process Change

 μ_2 = mean batch viscosity after change

$$\overline{x}_2 = 756.88$$

$$\sigma_2 = 20$$

$$n_2 = 8$$

90% confidence on $\mu_1 - \mu_2$, the difference in mean batch viscosity before and after process change:

$$\left(\overline{x}_1-\overline{x}_2\right)-z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}\leq \mu_1-\mu_2\leq \left(\overline{x}_1-\overline{x}_2\right)+z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}$$

$$(750.2 - 756.88) - 1.645\sqrt{\frac{(20)^2}{15} + \frac{(20)^2}{8}} \leq \mu_1 - \mu_2 \leq \left(750.2 - 756 / 88\right) + 1.645\sqrt{\frac{(20)^2}{15} + \frac{(20)^2}{8}}$$

$$-21.08 \le \mu_1 - \mu_2 \le 7.72$$

We are 90% confident that the difference in mean batch viscosity before and after the process change lies within -21.08 and 7.72. Because 0 is contained in this interval we can conclude with 90% confidence that the mean batch viscosity was unaffected by the process change.

$$\begin{array}{cccc} 10\text{-}11. & \underline{Catalyst\ 1} & \underline{Catalyst\ 2} \\ & \overline{x}_1 = 65.22 & \overline{x}_2 = 68.42 \\ & \sigma_1 = 3 & \sigma_2 = 3 \\ & n_1 = 10 & n_2 = 10 \end{array}$$

a) 95% confidence interval on $\mu_1 - \mu_2$, the difference in mean active concentration

$$\begin{split} &\left(\overline{x}_{1}-\overline{x}_{2}\right)-z_{\alpha/2}\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}\leq\mu_{1}-\mu_{2}\leq\left(\overline{x}_{1}-\overline{x}_{2}\right)+z_{\alpha/2}\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}\\ &\left(65.22-68.42\right)-1.96\sqrt{\frac{\left(3\right)^{2}}{10}+\frac{\left(3\right)^{2}}{10}}\leq\mu_{1}-\mu_{2}\leq\left(65.22-68.42\right)+1.96\sqrt{\frac{\left(3\right)^{2}}{10}+\frac{\left(3\right)^{2}}{10}}\\ &-5.83\leq\mu_{1}-\mu_{2}\leq-0.57 \end{split}$$

We are 95% confident that the mean active concentration of catalyst 2 exceeds that of catalyst 1 by between 0.57 and 5.83 g/l.

b) Yes, because the 95% confidence interval did not contain the value 0, we would conclude that the mean active concentration depends on the choice of catalyst.

10-12. a) 1) The parameter of interest is the difference in mean batch viscosity before and after the process change, $\mu_1 - \mu_2$

2)
$$H_0$$
: $\mu_1 - \mu_2 = 10$

3)
$$H_1$$
: $\mu_1 - \mu_2 < 10$

4)
$$\alpha = 0.10$$

5) The test statistic is

$$z_0 = \frac{(\overline{x}_1 - \overline{x}_2) - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

6) Reject
$$H_0$$
 if $z_0 < -z_\alpha$ where $z_{0.1} = -1.28$

7)
$$\overline{x}_1 = 750.2$$
 $\overline{x}_2 = 756.88$ $\Delta_0 = 10$

$$\sigma_1=20 \qquad \quad \sigma_2=20$$

$$n_1 = 15$$
 $n_2 = 8$

$$z_0 = \frac{(750.2 - 756.88) - 10}{\sqrt{\frac{(20)^2}{15} + \frac{(20)^2}{8}}} = -1.90$$

8) Because -1.90 < -1.28 reject the null hypothesis and conclude the process change has increased the mean by less than 10.

b) P-value =
$$P(Z \le -1.90) = 1 - P(Z \le 1.90) = 1 - 0.97128 = 0.02872$$

c) Parts (a) and (b) above give evidence that the mean batch viscosity change is less than 10. This conclusion is also seen by the confidence interval given in a previous problem because the interval does not contain the value 10. The upper endpoint of the confidence interval is only 7.72.

- 10-13. 1) The parameter of interest is the difference in mean active concentration, $\mu_1 \mu_2$
 - 2) H_0 : $\mu_1 \mu_2 = 0$ or $\mu_1 = \mu_2$
 - 3) $H_1: \mu_1 \mu_2 \neq 0 \text{ or } \mu_1 \neq \mu_2$
 - 4) $\alpha = 0.05$
 - 5) The test statistic is

$$z_{0} = \frac{(\overline{x}_{1} - \overline{x}_{2}) - \Delta_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$

- 6) Reject H₀ if $z_0 < -z_{\alpha/2} = -1.96$ or $z_0 > z_{\alpha/2} = 1.96$
- 7) $\overline{x}_1 = 65.22$ $\overline{x}_2 = 68.42$ $\delta = 0$

$$\sigma_1 = 3$$
 $\sigma_2 = 3$
 $n_1 = 10$
 $n_2 = 10$

$$n_1 = 10$$
 $n_2 = 10$

$$z_0 = \frac{(65.22 - 68.42) - 0}{\sqrt{\frac{9}{10} + \frac{9}{10}}} = -2.385$$

8) Because -2.385 < -1.96 reject the null hypothesis and conclude the mean active concentrations do differ significantly at $\alpha = 0.05$.

$$P$$
-value = $2(1 - \Phi(2.385)) = 2(1 - 0.99146) = 0.0171$

The conclusions reached by the confidence interval of the previous problem and the test of hypothesis conducted here are the same. If the value of the parameter under test that is specified in the null hypothesis falls outside the confidence interval, this is equivalent to rejecting the null hypothesis.

10-14.

$$\beta = \Phi \left(1.96 - \frac{(5)}{\sqrt{\frac{3^2}{10} + \frac{3^2}{10}}} \right) - \Phi \left(-1.96 - \frac{(5)}{\sqrt{\frac{3^2}{10} + \frac{3^2}{10}}} \right)$$
$$= \Phi(-1.77) - \Phi(-5.69) = 0.038364 - 0$$
$$= 0.038364$$

Power = $1 - \beta = 1 - 0.038364 = 0.9616$.

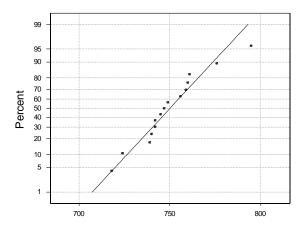
Based on the power, it appears that the sample sizes are adequate to detect the difference of 5.

Calculate the value of n using α and β .

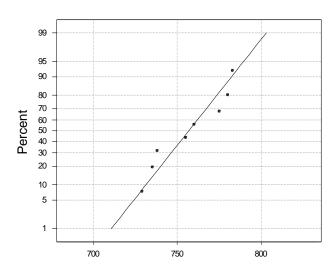
$$n \cong \frac{\left(z_{\alpha/2} + z_{\beta}\right)^{2} \left(\sigma_{1}^{2} + \sigma_{2}^{2}\right)}{\left(\Delta - \Delta_{0}\right)^{2}} = \frac{\left(1.96 + 1.77\right)^{2} (9 + 9)}{\left(5\right)^{2}} = 10.02,$$

Therefore, 10 is only slightly too few samples.

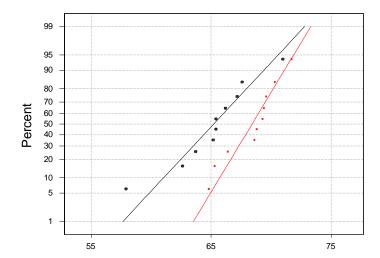
10-15. The data from the first sample n = 15 appear to be normally distributed.



The data from the second sample n=8 appear to be normally distributed



10-16. The data all appear to be normally distributed based on the normal probability plot below.



Section 10-3

10-17. a) 1) The parameter of interest is the difference in mean rod diameter, $\mu_1 - \mu_2$

2)
$$H_0: \mu_1 - \mu_2 = 0$$
 or $\mu_1 = \mu_2$

3)
$$H_1: \mu_1 - \mu_2 \neq 0 \text{ or } \mu_1 \neq \mu_2$$

4)
$$\alpha = 0.05$$

5) The test statistic is

$$t_{0} = \frac{(\overline{x}_{1} - \overline{x}_{2}) - \Delta_{0}}{s_{p}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}$$

6) Reject the null hypothesis if $t_0 < -t_{\alpha/2,n_1+n_2-2}$ where $-t_{0.025,30} = -2.042$ or $t_0 > t_{\alpha/2,n_1+n_2-2}$ where $t_{0.025,30} = 2.042$

7))
$$\overline{x}_1 = 8.73$$
 $\overline{x}_2 = 8.68$ $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$ $s_1^2 = 0.35$ $s_2^2 = 0.40$ $= \sqrt{\frac{14(0.35) + 16(0.40)}{30}} = 0.614$ $n_1 = 15$ $n_2 = 17$ $t_0 = \frac{(8.73 - 8.68)}{0.614\sqrt{\frac{1}{15} + \frac{1}{17}}} = 0.230$

8) Because $-2.042 \le 0.230 \le 2.042$, do not reject the null hypothesis and conclude the two machines do not produce rods with significantly different mean diameters at $\alpha = 0.05$.

b)
$$P$$
-value = $2P(t > 0.230) > 2(0.40)$, P -value > 0.80

c) 95% confidence interval: $t_{0.025,30} = 2.042$

$$\begin{split} &\left(\overline{x}_{1}-\overline{x}_{2}\right)-t_{\alpha/2,n_{1}+n_{2}-2}(s_{p})\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}\leq\mu_{1}-\mu_{2}\leq\left(\overline{x}_{1}-\overline{x}_{2}\right)+t_{\alpha/2,n_{1}+n_{2}-2}(s_{p})\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}\\ &\left(8.73-8.68\right)-2.042(0.614)\sqrt{\frac{1}{15}+\frac{1}{17}}\leq\mu_{1}-\mu_{2}\leq\left(8.73-8.68\right)+2.042(0.643)\sqrt{\frac{1}{15}+\frac{1}{17}}\\ &-0.394\leq\mu_{1}-\mu_{2}\leq0.494 \end{split}$$

Because zero is contained in this interval, we are 95% confident that machine 1 and machine 2 do not produce rods whose diameters are significantly different.

10-18.

Assume the populations follow normal distributions and $\sigma_1^2 = \sigma_2^2$. The assumption of equal variances may be relaxed in this case because it is known that the t-test and confidence intervals involving the t-distribution are robust to this assumption of equal variances when sample sizes are equal.

 $\frac{\text{Case 1: AFCC}}{\mu_1 = \text{mean foam expansion for AFCC}}$ $\frac{\mu_2 = \text{mean foam expansion for AFCC}}{\overline{x}_1 = 4.7}$ $\frac{\kappa_1}{x_2} = 6.9$ $\kappa_1 = 0.6$ $\kappa_1 = 5$ $\kappa_2 = 0.8$ $\kappa_2 = 5$

95% confidence interval:
$$t_{0.025,8} = 2.306$$

$$s_p = \sqrt{\frac{4(0.60^2) + 4(0.80^2)}{8}} = 0.7071$$

$$(\overline{x}_1 - \overline{x}_2) - t_{\alpha/2, n_1 + n_2 - 2}(s_p) \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \le \mu_1 - \mu_2 \le (\overline{x}_1 - \overline{x}_2) + t_{\alpha/2, n_1 + n_2 - 2}(s_p) \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

$$(4.7 - 6.9) - 2.306(0.7071) \sqrt{\frac{1}{5} + \frac{1}{5}} \le \mu_1 - \mu_2 \le (4.7 - 6.9) + 2.306(0.7071) \sqrt{\frac{1}{5} + \frac{1}{5}}$$

$$-3.23 \le \mu_1 - \mu_2 \le -1.17$$

Yes, with 95% confidence, we believe the mean foam expansion for ATC exceeds that of AFCC by between 1.17 and 3.23.

10-19. a) 1) The parameter of interest is the difference in mean catalyst yield, $\mu_1 - \mu_2$, with $\Delta_0 = 0$

2)
$$H_0$$
: $\mu_1 - \mu_2 = 0$ or $\mu_1 = \mu_2$

3)
$$H_1$$
: $\mu_1 - \mu_2 < 0$ or $\mu_1 < \mu_2$

4)
$$\alpha = 0.01$$

5) The test statistic is

$$t_{0} = \frac{(\overline{x}_{1} - \overline{x}_{2}) - \Delta_{0}}{s_{p}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}$$

6) Reject the null hypothesis if $t_0 < -t_{\alpha, n_1 + n_2 - 2}$ where $-t_{0.01, 25} = -2.485$

7)
$$\overline{x}_1 = 86$$
 $\overline{x}_2 = 89$ $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$
 $s_1 = 3$ $s_2 = 2$ $= \sqrt{\frac{11(3)^2 + 14(2)^2}{25}} = 2.4899$
 $n_1 = 12$ $n_2 = 15$ $t_0 = \frac{(86 - 89)}{2.4899\sqrt{\frac{1}{12} + \frac{1}{15}}} = -3.11$

8) Because -3.11 < -2.485, reject the null hypothesis and conclude that the mean yield of catalyst 2 significantly exceeds that of catalyst 1 at $\alpha = 0.01$.

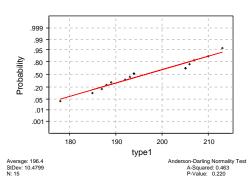
b) 99% confidence interval: $t_{0.005,19} = 2.861$

$$\begin{split} &\left(\overline{x}_{1}-\overline{x}_{2}\right)-t_{\alpha/2,n_{1}+n_{2}-2}(s_{p})\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}\leq\mu_{1}-\mu_{2}\leq\left(\overline{x}_{1}-\overline{x}_{2}\right)+t_{\alpha/2,n_{1}+n_{2}-2}(s_{p})\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}\\ &\left(86-89\right)-2.787\left(2.4899\right)\sqrt{\frac{1}{12}+\frac{1}{15}}\leq\mu_{1}-\mu_{2}\leq\left(86-89\right)+2.787\left(2.4899\right)\sqrt{\frac{1}{12}+\frac{1}{15}}\\ &-5.688\leq\mu_{1}-\mu_{2}\leq-0.3122 \end{split}$$

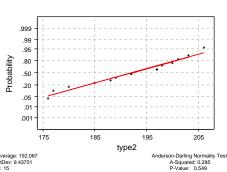
We are 95% confident that the mean yield of catalyst 2 exceeds that of catalyst 1 by between 0.3122 and 5.688

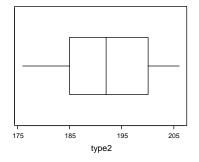
a) According to the normal probability plots, the assumption of normality appears to be met since the data fall approximately along straight lines. The equality of variances does not appear to be severely violated either because the slopes are approximately the same for both samples.

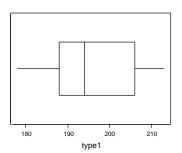
Normal Probability Plot



Normal Probability Plot







- b) 1) The parameter of interest is the difference in deflection temperature under load, $\mu_1 \mu_2$, with $\Delta_0 = 0$
 - 2) $H_0: \mu_1 \mu_2 = 0$ or $\mu_1 = \mu_2$
 - 3) H_1 : $\mu_1 \mu_2 < 0$ or $\mu_1 < \mu_2$
 - 4) $\alpha = 0.05$
 - 5) The test statistic is

$$t_0 = \frac{(\overline{x}_1 - \overline{x}_2) - \Delta_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

- 6) Reject the null hypothesis if $t_0 < -t_{\alpha, n_1 + n_2 2}$ where $-t_{0.05, 28} = -1.701$
- 7) <u>Type 1</u> <u>Type 2</u>

$$\begin{split} \overline{x}_1 &= 196.4 & \overline{x}_2 &= 192.067 & s_p &= \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \\ s_1 &= 10.48 & s_2 &= 9.44 & = \sqrt{\frac{14(10.48)^2 + 14(9.44)^2}{28}} = 9.97 \\ n_1 &= 15 & n_2 &= 15 \\ t_0 &= \frac{(196.4 - 192.067)}{9.97\sqrt{\frac{1}{15} + \frac{1}{15}}} = 1.19 \end{split}$$

8) Because 1.19 > -1.701 do not reject the null hypothesis and conclude the mean deflection temperature under load for type 2 does not significantly exceed the mean deflection temperature under load for type 1 at the 0.05 level of significance.

- c) P-value = 2P(t < 1.19) 0.75 < P-value < 0.90
- d) $\Delta = 5$ Use s_p as an estimate of σ :

$$d = \frac{\mu_2 - \mu_1}{2s_p} = \frac{5}{2(9.97)} = 0.251$$

Using Chart VI g) with $\beta = 0.10$, d = 0.251 we get $n^* \cong 100$. Because $n^* = 2n - 1$, $n_1 = n_2 = 50$. Therefore, the sample sizes of 15 are not adequate.

- 10-21. a) 1) The parameter of interest is the difference in mean etch rate, $\mu_1 \mu_2$, with $\Delta_0 = 0$
 - 2) H_0 : $\mu_1 \mu_2 = 0$ or $\mu_1 = \mu_2$
 - 3) $H_1: \mu_1 \mu_2 \neq 0 \text{ or } \mu_1 \neq \mu_2$
 - 4) $\alpha = 0.05$
 - 5) The test statistic is

$$t_0 = \frac{(\overline{x}_1 - \overline{x}_2) - \Delta_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

6) Reject the null hypothesis if $t_0 < -t_{\alpha/2, n_1 + n_2 - 2}$ where $-t_{0.025, 18} = -2.101$ or $t_0 > t_{\alpha/2, n_1 + n_2 - 2}$ where $t_{0.025, 18} = 2.101$

7)
$$\overline{x}_1 = 9.97$$
 $\overline{x}_2 = 10.4$ $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$

$$s_1 = 0.422 \quad s_2 = 0.231 \quad = \sqrt{\frac{9(0.422)^2 + 9(0.231)^2}{18}} = 0.340$$

$$n_1 = 10 \quad n_2 = 10$$

$$t_0 = \frac{(9.97 - 10.4)}{0.340\sqrt{\frac{1}{10} + \frac{1}{10}}} = -2.83$$

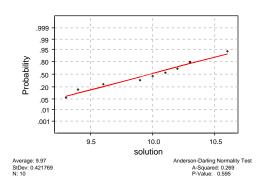
- 8) Because -2.83 < -2.101 reject the null hypothesis and conclude the two machines mean etch rates do significantly differ at $\alpha = 0.05$.
- b) P-value = 2P(t < -2.83) 2(0.005) < P-value < 2(0.010) = 0.010 < P-value < 0.020
- c) 95% confidence interval: $t_{0.025,18} = 2.101$

$$\begin{split} &\left(\overline{x}_{1}-\overline{x}_{2}\right)-t_{\alpha/2,n_{1}+n_{2}-2}(s_{p})\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}\leq\mu_{1}-\mu_{2}\leq\left(\overline{x}_{1}-\overline{x}_{2}\right)+t_{\alpha/2,n_{1}+n_{2}-2}(s_{p})\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}\\ &\left(9.97-10.4\right)-2.101(.340)\sqrt{\frac{1}{10}+\frac{1}{10}}\leq\mu_{1}-\mu_{2}\leq\left(9.97-10.4\right)+2.101(.340)\sqrt{\frac{1}{10}+\frac{1}{10}}\\ &-0.7495\leq\mu_{1}-\mu_{2}\leq-0.1105 \end{split}$$

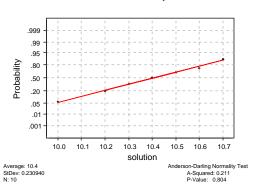
We are 95% confident that the mean etch rate for solution 2 exceeds the mean etch rate for solution 1 by between 0.1105 and 0.7495.

d) According to the normal probability plots, the assumption of normality appears to be met since the data from both the samples fall approximately along a straight line. The equality of variances does not appear to be severely violated either since the slopes are approximately the same for both samples.

Normal Probability Plot



Normal Probability Plot



- a) 1) The parameter of interest is the difference in mean impact strength, $\mu_1 \mu_2$, with $\Delta_0 = 0$ 10-22.
 - 2) H_0 : $\mu_1 \mu_2 = 0$ or $\mu_1 = \mu_2$
 - 3) H_1 : $\mu_1 \mu_2 < 0$ or $\mu_1 < \mu_2$
 - 4) $\alpha = 0.05$
 - 5) The test statistic is

$$t_0 = \frac{(\overline{x}_1 - \overline{x}_2) - \Delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

6) Reject the null hypothesis if $t_0 < -t_{\alpha, \nu}$ where $t_{0.05, 23} = 1.714$ since

$$v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)} = 23.72$$

 $\nu \cong 23$ (truncated)

$$\overline{x}_1 = 290 \quad \overline{x}_2 = 321$$

$$s_1 = 12$$
 $s_2 = 22$

$$s_1 = 12$$
 $s_2 = 22$ $n_1 = 10$ $n_2 = 16$

$$t_0 = \frac{(290 - 321)}{\sqrt{\frac{(12)^2}{10} + \frac{(22)^2}{16}}} = -4.64$$

- 8) Because -4.64 < -1.714 reject the null hypothesis and conclude that supplier 2 provides gears with higher mean impact strength at the 0.05 level of significance.
- b) P-value = P(t < -4.64): P-value < 0.0005
- c) 1) The parameter of interest is the difference in mean impact strength, $\mu_2 \mu_1$
 - 2) H_0 : $\mu_2 \mu_1 = 25$
 - 3) $H_1: \mu_2 \mu_1 > 25$
- or $\mu_2 > \mu_1 + 25$
- 4) $\alpha = 0.05$
- 5) The test statistic is

$$t_0 = \frac{(\overline{x}_2 - \overline{x}_1) - \delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

6) Reject the null hypothesis if $t_0 > t_{\alpha, y} = 1.714$ where

$$v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)} = 23.72$$

$$v \approx 23$$

$$7) \overline{x}_1 = 290 \quad \overline{x}_2 = 321 \qquad \Delta_0 = 25 \quad s_1 = 12 \qquad s_2 = 22 \quad n_1 = 10 \qquad n_2 = 16$$

$$t_0 = \frac{(321 - 290) - 25}{\sqrt{\frac{(12)^2}{10} + \frac{(22)^2}{16}}} = 0.898$$

- 8) Because 0.898 < 1.714, do not reject the null hypothesis and conclude that the mean impact strength from supplier 2 is not at least 25 ft-lb higher that supplier 1 using $\alpha = 0.05$.
- 10-23. Using the information provided in Exercise 9-20, and $t_{0.025,25} = 2.06$, we find a 95% confidence interval on the difference, $\mu_2 \mu_1$:

$$(\overline{x}_2 - \overline{x}_1) - t_{0.025,25} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \le \mu_2 - \mu_1 \le (\overline{x}_2 - \overline{x}_1) + t_{0.025,25} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

$$31 - 2.069(6.682) \le \mu_2 - \mu_1 \le 31 + 2.069(6.682)$$

$$17.175 \le \mu_2 - \mu_1 \le 44.825$$

With 95% confidence, we can conclude that Supplier 2 provides gears with a higher mean impact strength than Supplier 1. This is visible from the interval (17.175, 44.825) because zero is not contained in the interval and the differences are all positive, meaning that $\mu_2 - \mu_1 > 0$.

- 10-24 a) 1) The parameter of interest is the difference in mean speed, $\,\mu_1-\mu_2$, $\Delta_0=0$
 - 2) $H_0: \mu_1 \mu_2 = 0$ or $\mu_1 = \mu_2$
 - 3) H_1 : $\mu_1 \mu_2 > 0$ or $\mu_1 > \mu_2$
 - 4) $\alpha = 0.10$
 - 5) The test statistic is

$$t_0 = \frac{(\overline{x}_1 - \overline{x}_2) - \Delta_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

6) Reject the null hypothesis if $t_0 > t_{\alpha, n_1 + n_2 - 2}$ where $t_{0.10, 14} = 1.345$

$$t_0 = \frac{(1.15 - 1.06)}{0.1005\sqrt{\frac{1}{8} + \frac{1}{8}}} = 1.79$$

8) Because 1.79 > 1.345 reject the null hypothesis and conclude reducing the film thickness from 25 mils to 20 mils significantly increases the mean speed of the film at the 0.10 level of significance (Note: an increase in film speed will result in *lower* values of observations).

b) P-value = P(t > 1.79) 0.025 < P-value < 0.05

c) 90% confidence interval:
$$t_{0.025,14} = 2.145$$

$$(\overline{x}_1 - \overline{x}_2) - t_{\alpha/2,n_1 + n_2 - 2}(s_p) \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \le \mu_1 - \mu_2 \le (\overline{x}_1 - \overline{x}_2) + t_{\alpha/2,n_1 + n_2 - 2}(s_p) \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

$$(1.15 - 1.06) - 2.145(0.1005) \sqrt{\frac{1}{8} + \frac{1}{8}} \le \mu_1 - \mu_2 \le (1.15 - 1.06) + 2.145(0.1005) \sqrt{\frac{1}{8} + \frac{1}{8}}$$

$$-0.0178 \le \mu_1 - \mu_2 \le 0.1978$$

We are 90% confident the mean speed of the film at 20 mil exceeds the mean speed for the film at 25 mil by between -0.0178 and $0.1978~\mu J/in^2$.

10-25. 1) The parameter of interest is the difference in mean melting point, $\mu_1 - \mu_2$, with $\Delta_0 = 0$

2)
$$H_0$$
: $\mu_1 - \mu_2 = 0$ or $\mu_1 = \mu_2$

3)
$$H_1: \mu_1 - \mu_2 \neq 0 \text{ or } \mu_1 \neq \mu_2$$

4)
$$\alpha = 0.02$$

5) The test statistic is

$$t_0 = \frac{(\overline{x}_1 - \overline{x}_2) - \Delta_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

6) Reject the null hypothesis if $t_0 < -t_{\alpha/2, n_1 + n_2 - 2}$ where $-t_{0.0025, 40} = -2.021$ or $t_0 > t_{\alpha/2, n_1 + n_2 - 2}$ where

$$t_{0.025,40} = 2.021$$

7)
$$\overline{x}_1 = 420$$
 $\overline{x}_2 = 426$ $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$
 $s_1 = 4$ $s_2 = 3$ $= \sqrt{\frac{20(4)^2 + 20(3)^2}{40}} = 3.536$
 $n_1 = 21$ $n_2 = 21$
 $t_0 = \frac{(420 - 426)}{3.536\sqrt{\frac{1}{21} + \frac{1}{21}}} = -5.498$

8) Because -5.498 < -2.021 reject the null hypothesis and conclude that the data do not support the claim that both alloys have the same melting point at $\alpha = 0.02$.

$$P$$
-value = $2P(t < -5.498)$ P -value < 0.0010

$$10\text{-}26. \qquad d = \frac{|\mu_1 - \mu_2|}{2\sigma} = \frac{3}{2(4)} = 0.375$$

Using the appropriate chart in the Appendix, with $\beta = 0.10$ and $\alpha = 0.05$ we have: $n^* = 75$, so

$$n = \frac{n^* + 1}{2} = 38$$
, $n_1 = n_2 = 38$

- 10-27. a) 1) The parameter of interest is the difference in mean wear amount, $\mu_1 \mu_2$, with $\Delta_0 = 0$
 - 2) H_0 : $\mu_1 \mu_2 = 0$ or $\mu_1 = \mu_2$
 - 3) $H_1: \mu_1 \mu_2 \neq 0 \text{ or } \mu_1 \neq \mu_2$
 - 4) $\alpha = 0.05$
 - 5) The test statistic is

$$t_0 = \frac{(\overline{x}_1 - \overline{x}_2) - \Delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

6) Reject the null hypothesis if $t_0 < -t_{0.025,26}$ or $t_0 > t_{0.025,26}$ where $t_{0.025,26} = 2.056$ because

$$v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)} = 26.98$$

$$\frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_2}\right)}{n_2 - 1}$$

$$v \cong 26$$
 (truncated)

7)
$$\bar{x}_1 = 20 \quad \bar{x}_2 = 15$$

$$s_1 = 2$$
 $s_2 = 8$

$$s_1 = 2$$
 $s_2 = 8$
 $n_1 = 25$ $n_2 = 25$

$$t_0 = \frac{(20-15)}{\sqrt{\frac{(2)^2}{25} + \frac{(8)^2}{25}}} = 3.03$$

- 8) Because 3.03 > 2.056 reject the null hypothesis and conclude that the data support the claim that the two companies produce material with significantly different wear at the 0.05 level of significance.
- b) P-value = 2P(t > 3.03), 2(0.0025) < P-value < 2(0.005)

$$0.005 < P$$
-value < 0.010

- c) 1) The parameter of interest is the difference in mean wear amount, $\mu_1 \mu_2$
 - 2) H_0 : $\mu_1 \mu_2 = 0$
 - 3) $H_1: \mu_1 \mu_2 > 0$
 - 4) $\alpha = 0.05$
 - $t_0 = \frac{(\overline{x}_1 \overline{x}_2) \Delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ 5) The test statistic is
 - 6) Reject the null hypothesis if $t_0 > t_{0.05,27}$ where $t_{0.05,26} = 1.706$ since

7)
$$\bar{x}_1 = 20 \quad \bar{x}_2 = 15$$

$$s_1 = 2$$
 $s_2 = 8$

$$x_1 = 20$$
 $x_2 = 15$
 $s_1 = 2$ $s_2 = 8$
 $n_1 = 25$ $n_2 = 25$ $t_0 = \frac{(20 - 15)}{\sqrt{\frac{(2)^2}{25} + \frac{(8)^2}{25}}} = 3.03$

8) Because 3.03 > 1.706 reject the null hypothesis and conclude that the data support the claim that the material from company 1 has a higher mean wear than the material from company 2 using a 0.05 level of significance.

10-28 1) The parameter of interest is the difference in mean coating thickness, $\mu_1 - \mu_2$, with $\Delta_0 = 0$.

2)
$$H_0$$
: $\mu_1 - \mu_2 = 0$

3)
$$H_1: \mu_1 - \mu_2 > 0$$

4)
$$\alpha = 0.01$$

5) The test statistic is

$$t_0 = \frac{(\overline{x}_1 - \overline{x}_2) - \delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

6) Reject the null hypothesis if $t_0 > t_{0.0118}$ where $t_{0.0118} = 2.552$ since

$$v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)} 18.37$$

$$\nu \cong 18$$

(truncated)

7)
$$\overline{x}_1 = 103.5$$
 $\overline{x}_2 = 99.7$

$$s_1 = 10.2$$
 $s_2 = 20.1$

$$n_1 = 11$$
 $n_2 = 13$

$$t_0 = \frac{(103.5 - 99.7)}{\sqrt{\frac{(10.2)^2}{11} + \frac{(20.1)^2}{13}}} = 0.597$$

8) Because 0.597 < 2.552, do not reject the null hypothesis and conclude that increasing the temperature does not significantly reduce the mean coating thickness at $\alpha = 0.01$.

P-value = P(t > 0.597). 0.25 < P-value < 0.40

10-29. If α = 0.01, construct a 99% two-sided confidence interval on the difference in means. Here, $t_{0.005,19}$ = 2.878

$$(\overline{x}_1 - \overline{x}_2) - t_{\alpha/2,\nu} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \le \mu_1 - \mu_2 \le (\overline{x}_1 - \overline{x}_2) + t_{\alpha/2,\nu} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

$$(103.5 - 99.7) - 2.878 \sqrt{\frac{(10.2)^2}{11} + \frac{(20.1)^2}{13}} \le \mu_1 - \mu_2 \le (103.5 - 99.7) - 2.878 \sqrt{\frac{(10.2)^2}{11} + \frac{(20.1)^2}{13}}$$

$$-14.52 \le \mu_1 - \mu_2 \le 22.12$$

Because the interval contains 0, there is not a significant difference in the mean coating thickness between the two temperatures; that is, raising the process temperature does not significantly reduce the mean coating thickness.

10-30. For part (a) use a 95% two-sided confidence interval:

$$\begin{split} &\left(\overline{x}_{1}-\overline{x}_{2}\right)-t_{\alpha,\nu}\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}\leq\mu_{1}-\mu_{2}\leq\left(\overline{x}_{1}-\overline{x}_{2}\right)+t_{\alpha,\nu}\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}\\ &\left(20-15\right)-2.056\sqrt{\frac{\left(2\right)^{2}}{25}+\frac{\left(8\right)^{2}}{25}}\leq\mu_{1}-\mu_{2}\leq\left(20-15\right)+2.056\sqrt{\frac{\left(2\right)^{2}}{25}+\frac{\left(8\right)^{2}}{25}}\\ &1.609\leq\mu_{1}-\mu_{2}\leq8.391 \end{split}$$

For part (c) use 95% lower one-sided confidence interval:

$$t_{0.05,26} = 1.706$$

$$\left(\overline{x}_1 - \overline{x}_2\right) - t_{\alpha,\nu} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \leq \mu_1 - \mu_2$$

$$(20-15)-1.706\sqrt{\frac{(2)^2}{25}+\frac{(8)^2}{25}} \le \mu_1-\mu_2$$

$$2.186 \le \mu_1 - \mu_2$$

For part a):

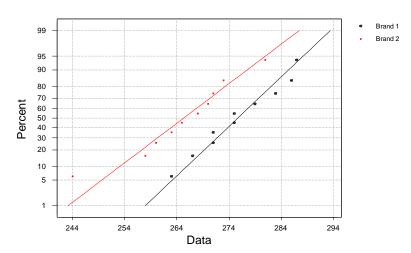
We are 95% confident the mean abrasive wear from company 1 exceeds the mean abrasive wear from company 2 by between 1.609 and 8.391 mg/1000.

For part c):

We are 95% confident the mean abrasive wear from company 1 exceeds the mean abrasive wear from company 2 by at least 2.19 mg/1000.

10-31 a.)

Normal Probability Plot for Brand 1...Brand 2



- b`
- 1) The parameter of interest is the difference in mean overall distance, $\mu_1 \mu_2$, with $\Delta_0 = 0$
- 2) H_0 : $\mu_1 \mu_2 = 0$ or $\mu_1 = \mu_2$
- 3) $H_1: \mu_1 \mu_2 \neq 0 \text{ or } \mu_1 \neq \mu_2$
- 4) $\alpha = 0.05$
- 5) The test statistic is

$$t_0 = \frac{(\overline{x}_1 - \overline{x}_2) - \Delta_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

6) Reject the null hypothesis if $t_0 < -t_{\alpha/2, n_1 + n_2 - 2}$ or $t_0 > t_{\alpha/2, n_1 + n_2 - 2}$ where $t_{0.025, 18} = 2.101$

7)
$$\overline{x}_1 = 275.7$$
 $\overline{x}_2 = 265.3$ $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$ $s_1 = 8.03$ $s_2 = 10.04$ $s_2 = 10.04$ $s_3 = 10.04$ $s_4 = 10$ $s_5 = 10.04$ $s_6 = 10.04$ $s_7 = 10.04$ $s_8 = 10.04$ $s_9 = 10.04$

$$t_0 = \frac{(275.7 - 265.3)}{9.09\sqrt{\frac{1}{10} + \frac{1}{10}}} = 2.558$$

8) Because 2.558 > 2.101 reject the null hypothesis and conclude that the data do not support the claim that both brands have the same mean overall distance at $\alpha = 0.05$.

c.) P-value =
$$2P(t > 2.558)$$
 P-value $\approx 2(0.01) = 0.02$

d.)
$$d = \frac{5}{2(9.09)} 0.275$$
 $\beta = 0.95$ Power = 1 - 0.95 = 0.05

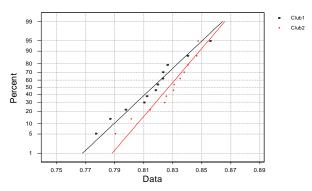
e.)
$$\beta = 0.25$$
 $d = \frac{3}{2(9.09)} = 0.165$ $n*=100$ $n = \frac{100 + 1}{2} = 50.5$

Therefore, n = 51

$$\begin{split} \text{f.)} & \left(\overline{x}_1 - \overline{x}_2 \right) - t_{\alpha, \nu} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \leq \mu_1 - \mu_2 \leq \left(\overline{x}_1 - \overline{x}_2 \right) + t_{\alpha, \nu} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \\ & (275.7 - 265.3) - 2.101(9.09) \sqrt{\frac{1}{10} + \frac{1}{10}} \leq \mu_1 - \mu_2 \leq \left(275.7 - 265.3 \right) + 2.101(9.09) \sqrt{\frac{1}{10} + \frac{1}{10}} \\ & 1.86 \leq \mu_1 - \mu_2 \leq 18.94 \end{split}$$

10-32 a.)

Normal Probability Plot for Club1...Club2 ML Estimates - 95% CI



The data appear to be normally distributed and the variances appear to be approximately equal. The slopes of the lines on the normal probability plots are almost the same.

- b)
- 1) The parameter of interest is the difference in mean coefficient of restitution, $\mu_1 \mu_2$
- 2) H_0 : $\mu_1 \mu_2 = 0$ or $\mu_1 = \mu_2$
- 3) $H_1: \mu_1 \mu_2 \neq 0 \text{ or } \mu_1 \neq \mu_2$
- 4) $\alpha = 0.05$
- 5) The test statistic is

$$t_0 = \frac{(\overline{x}_1 - \overline{x}_2) - \Delta_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

6) Reject the null hypothesis if $t_0 < -t_{\alpha/2, n_1 + n_2 - 2}$ or $t_0 > t_{\alpha/2, n_1 + n_2 - 2}$ where $t_{0.025, 22} = 2.074$

7)
$$\overline{x}_1 = 0.8161$$
 $\overline{x}_2 = 0.8271$ $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$

$$s_1 = 0.0217$$
 $s_2 = 0.0175$ $= \sqrt{\frac{11(0.0217)^2 + 11(0.0175)^2}{22}} = 0.01971$

$$n_1 = 12$$
 $n_2 = 12$

$$t_0 = \frac{(0.8161 - 0.8271)}{0.01971\sqrt{\frac{1}{12} + \frac{1}{12}}} = -1.367$$

8) Because -1.367 > -2.074 do not reject the null hypothesis and conclude that the data do not support the claim that there is a difference in the mean coefficients of restitution for club1 and club2 at $\alpha = 0.05$

c.) *P*-value =
$$2P(t < -1.36)$$
 P-value $\approx 2(0.1) = 0.2$

d.)
$$d = \frac{0.2}{2(0.01971)} = 5.07 \ \beta \approx 0 \ \text{Power} \approx 1$$

e.)
$$1-\beta = 0.8$$
 $\beta = 0.2$ $d = \frac{0.1}{2(0.01971)} = 2.53$ $n^* = 4$, $n = \frac{n^* + 1}{2} = 2.5$ $n \cong 3$

f.) 95% confidence interval

$$\left(\overline{x}_1 - \overline{x}_2\right) - t_{\alpha,\nu} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \le \mu_1 - \mu_2 \le \left(\overline{x}_1 - \overline{x}_2\right) + t_{\alpha,\nu} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

$$(0.8161 - 0.8271) - 2.074(0.01971) \sqrt{\frac{1}{12} + \frac{1}{12}} \le \mu_1 - \mu_2 \le (0.8161 - 0.8271) + 2.074(0.01971) \sqrt{\frac{1}{12} + \frac{1}{12}}$$

$$- 0.0277 \le \mu_1 - \mu_2 \le 0.0057$$

Zero is included in the confidence interval, so there is not a significant difference in the mean coefficients of restitution at α =0.05.

Section 10-4

10-33. $\overline{d} = 0.2736$ $s_d = 0.1356$, n = 9 95% confidence interval:

$$\overline{d} - t_{\alpha/2, n-1} \left(\frac{s_d}{\sqrt{n}} \right) \le \mu_d \le \overline{d} + t_{\alpha/2, n-1} \left(\frac{s_d}{\sqrt{n}} \right)$$

$$0.2736 - 2.306 \Biggl(\frac{0.1356}{\sqrt{9}}\Biggr) \leq \mu_d \leq 0.2736 + 2.306 \Biggl(\frac{0.1356}{\sqrt{9}}\Biggr)$$

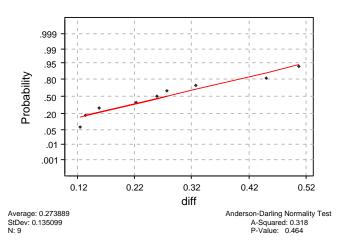
 $0.1694 \le \mu_d \le 0.3778$

With 95% confidence, we believe the mean shear strength of Karlsruhe method exceeds the mean shear strength of the Lehigh method by between 0.1694 and 0.3778. Because 0 is not included in this interval, the interval is consistent with rejecting the null hypothesis that the means are the same.

The 95% confidence interval is directly related to a test of hypothesis with 0.05 level of significance, and the conclusions reached are identical.

10-34. It is only necessary for the differences to be normally distributed for the paired *t*-test to be appropriate and reliable. Therefore, the t-test is appropriate.

Normal Probability Plot



- 10-35. 1) The parameter of interest is the difference between the mean parking times, μ_d
 - 2) H_0 : $\mu_d = 0$
 - 3) $H_1: \mu_d \neq 0$
 - 4) $\alpha = 0.10$
 - 5) The test statistic is

$$t_0 = \frac{\overline{d}}{s_d / \sqrt{n}}$$

6) Reject the null hypothesis if $t_0 < -t_{0.05,13}$ where $-t_{0.05,13} = -1.771$ or $t_0 > t_{0.05,13}$ where $t_{0.05,13} = 1.771$

7)
$$\overline{d} = 1.21$$

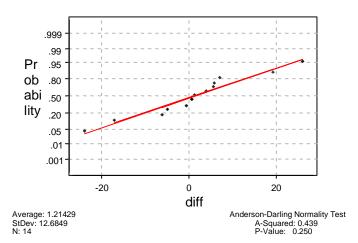
 $s_d = 12.68$
 $n = 14$

$$t_0 = \frac{1.21}{12.68 / \sqrt{14}} = 0.357$$

8) Because -1.771 < 0.357 < 1.771 do not reject the null and conclude the data do not support the claim that the two cars have different mean parking times at the 0.10 level of significance. The result is consistent with the confidence interval constructed because 0 is included in the 90% confidence interval.

10-36. According to the normal probability plots, the assumption of normality does not appear to be violated since the data fall approximately along a straight line.

Normal Probability Plot



10-37 $\overline{d} = 868.375$ $s_d = 1290$, n = 8 where $d_i = brand 1 - brand 2 99% confidence interval:$

$$\begin{split} \overline{d} - t_{\alpha/2, n-1} & \left(\frac{s_d}{\sqrt{n}} \right) \leq \mu_d \leq \overline{d} + t_{\alpha/2, n-1} & \left(\frac{s_d}{\sqrt{n}} \right) \\ 868.375 - 3.499 & \left(\frac{1290}{\sqrt{8}} \right) \leq \mu_d \leq 868.375 + 3.499 & \left(\frac{1290}{\sqrt{8}} \right) \\ -727.46 & \leq \mu_d \leq 2464.21 \end{split}$$

Because this confidence interval contains zero, there is no significant difference between the two brands of tire at a 1% significance level.

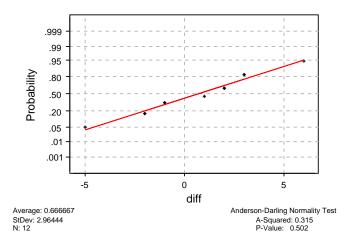
10-38. a) $\overline{d} = 0.667$ s_d = 2.964, n = 12 95% confidence interval:

$$\begin{split} \overline{d} - t_{\alpha/2, n-1} \left(\frac{s_d}{\sqrt{n}} \right) &\leq \mu_d \leq \overline{d} + t_{\alpha/2, n-1} \left(\frac{s_d}{\sqrt{n}} \right) \\ 0.667 - 2.201 \left(\frac{2.964}{\sqrt{12}} \right) &\leq \mu_d \leq 0.667 + 2.201 \left(\frac{2.964}{\sqrt{12}} \right) \\ -1.216 &\leq \mu_d \leq 2.55 \end{split}$$

Because zero is contained within this interval, there is no significant indication that one design language is preferable at a 5% significance level.

b) According to the normal probability plots, the assumption of normality does not appear to be violated since the data fall approximately along a straight line.

Normal Probability Plot



- 10-39. 1) The parameter of interest is the difference in blood cholesterol level, μ_d where d_i = Before After.
 - 2) H_0 : $\mu_d = 0$
 - 3) $H_1: \mu_d > 0$
 - 4) $\alpha = 0.05$
 - 5) The test statistic is

$$t_0 = \frac{\overline{d}}{s_d / \sqrt{n}}$$

6) Reject the null hypothesis if $t_0 > t_{0.05,14}$ where $t_{0.05,14} = 1.761$

7)
$$\overline{d} = 26.867$$

$$s_d = 19.04$$

$$n = 15$$

$$t_0 = \frac{26.867}{19.04/\sqrt{15}} = 5.465$$

- 8) Because 5.465 > 1.761 reject the null and conclude the data support the claim that the mean difference in cholesterol levels is significantly less after fat diet and aerobic exercise program at the 0.05 level of significance.
- 10-40. a) 1) The parameter of interest is the mean difference in natural vibration frequencies, μ_d where d_i = finite element Equivalent Plate.
 - 2) H_0 : $\mu_d = 0$
 - 3) $H_1: \mu_d \neq 0$
 - 4) $\alpha = 0.05$
 - 5) The test statistic is

$$t_0 = \frac{\overline{d}}{s_d / \sqrt{n}}$$

6) Reject the null hypothesis if $t_0 < -t_{0.025,6}$ or $t_0 > t_{0.005,6}$ where $t_{0.005,6} = 2.447$

7)
$$\bar{d} = -5.49$$

$$s_d = 5.924$$

$$n = 7$$

$$t_0 = \frac{-5.49}{5.924 / \sqrt{7}} = -2.45$$

- 8) Because -2.45 < -2.447, reject the null and conclude that the two methods produce significantly different mean values for natural vibration frequency at the 0.05 level of significance.
- b) 95% confidence interval:

$$\begin{split} \overline{d} - t_{\alpha/2, n-1} \left(\frac{s_d}{\sqrt{n}} \right) &\leq \mu_d \leq \overline{d} + t_{\alpha/2, n-1} \left(\frac{s_d}{\sqrt{n}} \right) \\ -5.49 - 2.447 \left(\frac{5.924}{\sqrt{7}} \right) &\leq \mu_d \leq -5.49 + 2.447 \left(\frac{5.924}{\sqrt{7}} \right) \\ -10.969 &\leq \mu_d \leq -0.011 \end{split}$$

With 95% confidence, the mean difference between the natural vibration frequency from the equivalent plate method and the finite element method is between -10.969 and -0.011 cycles.

- 10-41. 1) The parameter of interest is the difference in mean weight, μ_d where d_i =Weight Before Weight After.
 - 2) H_0 : $\mu_d = 0$
 - 3) $H_1: \mu_d > 0$
 - 4) $\alpha = 0.05$
 - 5) The test statistic is

$$t_0 = \frac{\overline{d}}{s_d / \sqrt{n}}$$

- 6) Reject the null hypothesis if $t_0 > t_{0.05.9}$ where $t_{0.05.9} = 1.833$
- 7) $\overline{d} = 17$

$$s_d = 6.41$$

$$n = 10$$

$$t_0 = \frac{17}{6.41/\sqrt{10}} = 8.387$$

- 8) Because 8.387 > 1.833 reject the null hypothesis and conclude that the mean weight loss is significantly greater than 0; that is, the data support the claim that this particular diet modification program is effective in reducing weight at the 0.05 level of significance.
- 10-42. 1) The parameter of interest is the mean difference in impurity level, μ_d where d_i = Test 1 Test 2.
 - 2) H_0 : $\mu_d = 0$
 - 3) $H_1: \mu_d \neq 0$
 - 4) $\alpha = 0.01$
 - 5) The test statistic is

$$t_0 = \frac{\overline{d}}{s_d / \sqrt{n}}$$

- 6) Reject the null hypothesis if $t_0 < -t_{0.005,7}$ or $t_0 > t_{0.005,7}$ where $t_{0.005,7} = 3.499$
- 7) $\overline{d} = -0.2125$ $s_d = 0.1727$

$$n = 8$$

$$t_0 = \frac{-0.2125}{0.1727/\sqrt{8}} = -3.48$$

- 8) Because -3.499 < -3.48 < 3.499 cannot reject the null hypothesis. There is not sufficient evidence that the tests give different mean impurity levels at $\alpha = 0.01$.
- 10-43. 1) The parameter of interest is the difference in mean weight loss, μ_d where $d_i = \text{Before} \text{After}$.

2)
$$H_0$$
: $\mu_d = 10$

3)
$$H_1$$
: $\mu_d > 10$

4)
$$\alpha = 0.05$$

5) The test statistic is

$$t_0 = \frac{\overline{d} - \Delta_0}{s_d / \sqrt{n}}$$

6) Reject the null hypothesis if $t_0 > t_{0.05,9}$ where $t_{0.05,9} = 1.833$

7)
$$\overline{d} = 17$$

 $s_d = 6.41$

$$n = 10$$

$$t_0 = \frac{17 - 10}{6.41 / \sqrt{10}} = 3.45$$

8) Because 3.45 > 1.833 reject the null and conclude there is evidence to support the claim that this particular diet modification program is effective in producing a mean weight loss of at least 10 lbs at the 0.05 level of significance.

10-44. Use s_d as an estimate for σ :

$$n = \left(\frac{(z_{\alpha} + z_{\beta})\sigma_d}{10}\right)^2 = \left(\frac{(1.645 + 1.29)6.41}{10}\right)^2 = 3.53, \ n = 4$$

Yes, the sample size of 10 is adequate for this test.

Section 10-5

10-45 a)
$$f_{0.25,5,10} = 1.59$$

d)
$$f_{0.75,5,10} = \frac{1}{f_{0.25,10.5}} = \frac{1}{1.89} = 0.529$$

b)
$$f_{0.10,24,9} = 2.28$$

e)
$$f_{0.90,24,9} = \frac{1}{f_{0.10,9,24}} = \frac{1}{1.91} = 0.525$$

c)
$$f_{0.05,8,15} = 2.64$$

f)
$$f_{0.95,8,15} = \frac{1}{f_{0.05,15,8}} = \frac{1}{3.22} = 0.311$$

10-46 a)
$$f_{0.25,7,15} = 1.47$$

d)
$$f_{0.75,7,15} = \frac{1}{f_{0.25,15,7}} = \frac{1}{1.68} = 0.596$$

b)
$$f_{0.10,10,12} = 2.19$$

e)
$$f_{0.90,10,12} = \frac{1}{f_{0.10,12,10}} = \frac{1}{2.28} = 0.438$$

f) $f_{0.99,20,10} = \frac{1}{f_{0.01,10,20}} = \frac{1}{3.37} = 0.297$

c)
$$f_{0.01,20,10} = 4.41$$

f)
$$f_{0.99,20,10} = \frac{1}{f_{0.01,10,20}} = \frac{1}{3.37} = 0.297$$

10-47. 1) The parameters of interest are the variances of concentration, σ_1^2, σ_2^2

2)
$$H_0: \sigma_1^2 = \sigma_2^2$$

3)
$$H_1: \sigma_1^2 \neq \sigma_2^2$$

4)
$$\alpha = 0.05$$

5) The test statistic is

$$f_0 = \frac{s_1^2}{s_2^2}$$

6) Reject the null hypothesis if $f_0 < f_{0.975,9.15}$ where $f_{0.975,9.15} = 0.265$ or $f_0 > f_{0.025,9.15}$ where $f_{0.025,9.15} = 3.12$

7)
$$n_1 = 10$$

$$n_2 = 16$$

$$s_1 = 4.7$$

$$s_2 = 5.8$$

$$f_0 = \frac{(4.7)^2}{(5.8)^2} = 0.657$$

8) Because 0.265 < 0.657 < 3.12 do not reject the null hypothesis and conclude there is insufficient evidence to indicate the two population variances differ significantly at the 0.05 level of significance.

1) The parameters of interest are the etch-rate variances, σ_1^2, σ_2^2 . 10-48.

2)
$$H_0$$
: $\sigma_1^2 = \sigma_2^2$

3)
$$H_1: \sigma_1^2 \neq \sigma_2^2$$

4)
$$\alpha = 0.05$$

5) The test statistic is

$$f_0 = \frac{s_1^2}{s_2^2}$$

6) Reject the null hypothesis if $f_0 < f_{0.975,9.9} = 0.248$ or $f_0 > f_{0.025,9.9} = 4.03$

7)
$$n_1 = 10$$

$$n_2 = 10$$

$$s_1 = 0.422$$

$$s_2 = 0.231$$

$$f_0 = \frac{(0.422)^2}{(0.231)^2} = 3.337$$

8) Because 0.248 < 3.337 < 4.03 do not reject the null hypothesis. There is not sufficient evidence that the etch rate variances differ at the 0.05 level of significance.

- 10-49. With $\lambda = \sqrt{2} = 1.4 \, \beta = 0.10$, and $\alpha = 0.05$, we find from Chart VI o) that $n_1^* = n_2^* = 100$. Therefore, the samples of size 10 would not be adequate.
- 10-50. a) 90% confidence interval for the ratio of variances:

$$\left(\frac{s_1^2}{s_2^2}\right) f_{1-\alpha/2, n_1-1, n_2-1} \le \frac{\sigma_1^2}{\sigma_2^2} \le \left(\frac{s_1^2}{s_2^2}\right) f_{\alpha/2, n_1-1, n_2-1} \\
\left(\frac{(0.35)}{(0.40)}\right) 0.412 \le \frac{\sigma_1^2}{\sigma_2^2} \le \left(\frac{(0.35)}{(0.40)}\right) 2.33 \qquad 0.3605 \le \frac{\sigma_1^2}{\sigma_2^2} \le 2.039 \quad 0.6004 \le \frac{\sigma_1}{\sigma_2} \le 1.428$$

b) 95% confidence interval:

$$\left(\frac{s_1^2}{s_2^2}\right) f_{1-\alpha/2, n_1-1, n_2-1} \le \frac{\sigma_1^2}{\sigma_2^2} \le \left(\frac{s_1^2}{s_2^2}\right) f_{\alpha/2, n_1-1, n_2-1} \\
\left(\frac{(0.35)}{(0.40)}\right) 0.342 \le \frac{\sigma_1^2}{\sigma_2^2} \le \left(\frac{(0.35)}{(0.40)}\right) 2.82 \qquad 0.299 \le \frac{\sigma_1^2}{\sigma_2^2} \le 2.468 \qquad 0.5468 \le \frac{\sigma_1}{\sigma_2} \le 1.5710$$

The 95% confidence interval is wider than the 90% confidence interval.

c) 90% lower-sided confidence interval:

$$\begin{split} & \left(\frac{s_1^2}{s_2^2}\right) f_{1-\alpha,n_1-1,n_2-1} \leq \frac{\sigma_1^2}{\sigma_2^2} \\ & \left(\frac{(0.35)}{(0.40)}\right) 0.500 \leq \frac{\sigma_1^2}{\sigma_2^2} \\ & 0.438 \leq \frac{\sigma_1^2}{\sigma_2^2} \\ & 0.661 \leq \frac{\sigma_1}{\sigma_2} \end{split}$$

10-51 a) 90% confidence interval for the ratio of variances:

$$\left(\frac{s_1^2}{s_2^2}\right) f_{1-\alpha/2, n_1-1, n_2-1} \le \frac{\sigma_1^2}{\sigma_2^2} \le \left(\frac{s_1^2}{s_2^2}\right) f_{\alpha/2, n_1-1, n_2-1}
\left(\frac{0.6^2}{0.8^2}\right) 0.156 \le \frac{\sigma_1^2}{\sigma_2^2} \le \left(\frac{0.6^2}{0.8^2}\right) 6.39$$

$$0.08775 \le \frac{\sigma_1^2}{\sigma_2^2} \le 3.594$$

b) 95% confidence interval:

$$\begin{split} &\left(\frac{s_1^2}{s_2^2}\right) f_{1-\alpha/2,n_1-1,n_2-1} \leq \frac{\sigma_1^2}{\sigma_2^2} \leq \left(\frac{s_1^2}{s_2^2}\right) f_{\alpha/2,n_1-1,n_2-1} \\ &\left(\frac{(0.6)^2}{(0.8)^2}\right) 0.104 \leq \frac{\sigma_1^2}{\sigma_2^2} \leq \left(\frac{(0.6)^2}{(0.8)^2}\right) 9.60 \\ &0.0585 \leq \frac{\sigma_1^2}{\sigma_2^2} \leq 5.4 \end{split}$$

The 95% confidence interval is wider than the 90% confidence interval.

c) 90% lower-sided confidence interval:

$$\begin{split} &\left(\frac{s_{1}^{2}}{s_{2}^{2}}\right) f_{1-\alpha,n_{1}-1,n_{2}-1} \leq \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \\ &\left(\frac{\left(0.6\right)^{2}}{\left(0.8\right)^{2}}\right) 0.243 \leq \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \\ &0.137 \leq \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \end{split}$$

- 10-52 1) The parameters of interest are the thickness variances, σ_1^2, σ_2^2
 - 2) H_0 : $\sigma_1^2 = \sigma_2^2$
 - 3) $H_1: \sigma_1^2 \neq \sigma_2^2$
 - 4) $\alpha = 0.02$
 - 5) The test statistic is

$$f_0 = \frac{s_1^2}{s_2^2}$$

- 6) Reject the null hypothesis if $f_0 < f_{0.99,7,7}$ where $f_{0.99,7,7} = 0.143$ or $f_0 > f_{0.01,7,7}$ where $f_{0.01,7,7} = 6.99$
- 7) $n_1 = 8$ $n_2 = 8$ $s_1 = 0.11$ $s_2 = 0.09$

$$f_0 = \frac{(0.11)^2}{(0.09)^2} = 1.49$$

- 8) Because $0.143 \le 1.49 \le 6.99$ do not reject the null hypothesis. The thickness variances do not significantly differ at the 0.02 level of significance.
- 10-53 1) The parameters of interest are the strength variances, σ_1^2, σ_2^2
 - 2) H_0 : $\sigma_1^2 = \sigma_2^2$
 - 3) $H_1: \sigma_1^2 \neq \sigma_2^2$
 - 4) $\alpha = 0.05$
 - 5) The test statistic is

$$f_0 = \frac{s_1^2}{s_2^2}$$

- 6) Reject the null hypothesis if $f_0 < f_{0.975,9,15}$ where $f_{0.975,9,15} = 0.265$ or $f_0 > f_{0.025,9,15}$ where $f_{0.025,9,15} = 3.12$
- 7) $n_1 = 10$ $n_2 = 16$
 - $s_1 = 12$ $s_2 = 22$

$$f_0 = \frac{(12)^2}{(22)^2} = 0.297$$

- 8) Because 0.265 < 0.297 < 3.12 do not reject the null hypothesis and conclude the population variances do not significantly differ at the 0.05 level of significance.
- 10-54 1) The parameters of interest are the melting variances, σ_1^2, σ_2^2
 - 2) H_0 : $\sigma_1^2 = \sigma_2^2$
 - 3) $H_1: \sigma_1^2 \neq \sigma_2^2$
 - 4) $\alpha = 0.05$
 - 5) The test statistic is

$$f_0 = \frac{s_1^2}{s_2^2}$$

- 6) Reject the null hypothesis if $f_0 < f_{0.975,20,20}$ where $f_{0.975,20,20} = 0.4058$ or $f_0 > f_{0.025,20,20}$ where $f_{0.025,20,20} = 2.46$
- 7) $n_1 = 21$ $n_2 = 21$ $s_1 = 4$ $s_2 = 3$

$$f_0 = \frac{(4)^2}{(3)^2} = 1.78$$

- 8) Because 0.4058 < 1.78 < 2.46 do not reject the null hypothesis and conclude the population variances do not significantly differ at the 0.05 level of significance.
- 10-55. 1) The parameters of interest are the thickness variances, σ_1^2, σ_2^2
 - 2) H_0 : $\sigma_1^2 = \sigma_2^2$
 - 3) $H_1: \sigma_1^2 \neq \sigma_2^2$
 - 4) $\alpha = 0.01$
 - 5) The test statistic is

$$f_0 = \frac{s_1^2}{s_2^2}$$

6) Reject the null hypothesis if $f_0 < f_{0.995,10,12}$ where $f_{0.995,10,12} = 0.1766$ or $f_0 > f_{0.005,10,12}$ where

$$f_{0.005,10,12} = 5.0855$$

- 7) $n_1 = 11$ $n_2 = 13$ $s_1 = 10.2$ $s_2 = 20.1$

$$f_0 = \frac{(10.2)^2}{(20.1)^2} = 0.2575$$

- 8) Because 0.1766 < 0.2575 < 5.0855 do not reject the null hypothesis and conclude the thickness variances are not equal at the 0.01 level of significance.
- 10-56. 1) The parameters of interest are the time to assemble standard deviations, σ_1, σ_2
 - 2) H_0 : $\sigma_1^2 = \sigma_2^2$
 - 3) $H_1: \sigma_1^2 \neq \sigma_2^2$
 - 4) $\alpha = 0.02$
 - 5) The test statistic is

$$f_0 = \frac{s_1^2}{s_2^2}$$

6) Reject the null hypothesis if $f_0 < f_{1-\alpha/2,n_1-1,n_2-1} = 0.365$ or $f_0 > f_{\alpha/2,n_1-1,n_2-1} = 2.86$

7)
$$n_1 = 25$$
 $n_2 = 21$

$$n_2 = 21$$

$$S_1 = 0.98$$

$$s_2 = 1.02$$

$$f_0 = \frac{(0.98)^2}{(1.02)^2} = 0.923$$

8) Because 0.365 < 0.923 < 2.86 do not reject the null hypothesis and conclude there is not sufficient evidence to support the claim that men and women differ in repeatability for this assembly task at the 0.02 level of significance.

10-57. 98% confidence interval:

$$\left(\frac{s_1^2}{s_2^2}\right) f_{1-\alpha/2, n_1-1, n_2-1} \leq \frac{\sigma_1^2}{\sigma_2^2} \leq \left(\frac{s_1^2}{s_2^2}\right) f_{\alpha/2, n_1-1, n_2-1}$$

$$(0.923)0.365 \le \frac{\sigma_1^2}{\sigma_2^2} \le (0.923)2.86$$

$$0.3369 \le \frac{\sigma_1^2}{\sigma_2^2} \le 2.640$$

Because the value 1 is contained within this interval, we can conclude that there is no significant difference between the variance of the repeatability of men and women for the assembly task at a 2% significance level.

- 10-58 For one population standard deviation being 50% larger than the other, then $\lambda = 2$. Using n = 8, $\alpha = 0.01$ and Chart VI p), we find that $\beta \approx 0.85$. Therefore, we would say that $n = n_1 = n_2 = 8$ is not adequate to detect this difference with high probability.
- 10-59 1) The parameters of interest are the overall distance standard deviations, σ_1, σ_2

2)
$$H_0$$
: $\sigma_1^2 = \sigma_2^2$

3)
$$H_1: \sigma_1^2 \neq \sigma_2^2$$

4)
$$\alpha = 0.05$$

5) The test statistic is

$$f_0 = \frac{s_1^2}{s_2^2}$$

6) Reject the null hypothesis if $f_0 < f_{.0.975, 9.9} = 0.248$ or $f_0 > f_{0.025, 9.9} = 4.03$

7)
$$n_1 = 10$$
 $n_2 = 10$ $s_1 = 8.03$ $s_2 = 10.04$
$$f_0 = \frac{(8.03)^2}{(10.04)^2} = 0.640$$

8) Because 0.248 < 0.640 < 4.04 do not reject the null hypothesis. There is not sufficient evidence that there is a difference in the standard deviation of the overall distance of the two brands at the 0.05 level of significance.

95% confidence interval:

$$\left(\frac{s_1^2}{s_2^2}\right) f_{1-\alpha/2,n_1-1,n_2-1} \leq \frac{\sigma_1^2}{\sigma_2^2} \leq \left(\frac{s_1^2}{s_2^2}\right) f_{\alpha/2,n_1-1,n_2-1}$$

$$(0.640)0.248 \le \frac{\sigma_1^2}{\sigma_2^2} \le (0.640)4.03 \qquad 0.159 \le \frac{\sigma_1^2}{\sigma_2^2} \le 2.579$$

Because the value 1 is contained within this interval, we can conclude that there is no significant difference in the variance of the distances at a 5% significance level.

10-60 1) The parameters of interest are the time to assemble standard deviations, σ_1, σ_2

2)
$$H_0$$
: $\sigma_1^2 = \sigma_2^2$

3)
$$H_1: \sigma_1^2 \neq \sigma_2^2$$

4)
$$\alpha = 0.05$$

5) The test statistic is

$$f_0 = \frac{s_1^2}{s_2^2}$$

6) Reject the null hypothesis if
$$f_0 < f_{.0.975,11,11} = 0.288$$
 or $f_0 > f_{0.025,11,11} = 3.474$

7)
$$n_1 = 12$$
 $n_2 = 12$ $s_1 = 0.0217$ $s_2 = 0.0175$
$$f_0 = \frac{(0.0217)^2}{(0.0175)^2} = 1.538$$

8) Because 0.288 < 1.538 < 3.474 do not reject the null hypothesis. There is not sufficient evidence that there is a difference in the standard deviation of the coefficient of restitution between the two clubs at the 0.05 level of significance.

95% confidence interval:

$$\begin{split} &\left(\frac{s_1^2}{s_2^2}\right) f_{1-\alpha/2,n_1-1,n_2-1} \leq \frac{\sigma_1^2}{\sigma_2^2} \leq \left(\frac{s_1^2}{s_2^2}\right) f_{\alpha/2,n_1-1,n_2-1} \\ &(1.538)0.288 \leq \frac{\sigma_1^2}{\sigma_2^2} \leq (1.538)3.474 \\ &0.443 \leq \frac{\sigma_1^2}{\sigma_2^2} \leq 5.343 \end{split}$$

Because the value 1 is contained within this interval, we can conclude that there is no significant difference in the variances of the coefficient of restitution at a 5% significance level.

Section 10-6

10-61. 1) The parameters of interest are the proportion of defective parts, p_1 and p_2

2)
$$H_0: p_1 = p_2$$

3)
$$H_1: p_1 \neq p_2$$

4)
$$\alpha = 0.05$$

5) Test statistic is
$$z_0 = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \quad \text{where } \hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$$

6) Reject the null hypothesis if $z_0 < -z_{0.025}$ or $z_0 > z_{0.025}$ where $z_{0.025} = 1.96$

7)
$$n_1 = 300$$
 $n_2 = 30$
 $x_1 = 15$ $x_2 = 8$

$$n_2 = 300$$

$$x_1 = 15$$

$$x_2 = 8$$

$$\hat{p}_1 = 0.05$$

$$\hat{p}_1 = 0.05$$
 $\hat{p}_2 = 0.0267$ $\hat{p} = \frac{15 + 8}{300 + 300} = 0.0383$

$$z_0 = \frac{0.05 - 0.0267}{\sqrt{0.0383(1 - 0.0383)\left(\frac{1}{300} + \frac{1}{300}\right)}} = 1.49$$

8) Because $-1.96 \le 1.49 \le 1.96$ do not reject the null hypothesis and conclude that yes the evidence indicates that there is not a significant difference in the fraction of defective parts produced by the two machines at the 0.05 level of significance.

$$P$$
-value = $2[1 - P(Z < 1.49)] = 0.13622$

10-62. 1) The parameters of interest are the proportion of satisfactory lenses, p_1 and p_2

2)
$$H_0: p_1 = p_2$$

3)
$$H_1: p_1 \neq p_2$$

4)
$$\alpha = 0.05$$

5) Test statistic is

$$z_0 = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \quad \text{where} \quad \hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$$

6) Reject the null hypothesis if $z_0 < -z_{0.005}$ or $z_0 > z_{0.005}$ where $z_{0.005} = 2.58$

7)
$$n_1 = 300$$

$$n_2 = 300$$

$$x_2 = 196$$

$$p_1 = 0.843$$

$$\hat{p}_2 = 0.653$$

$$x_1 = 253$$
 $x_2 = 196$ $\hat{p}_1 = 0.843$ $\hat{p}_2 = 0.653$ $\hat{p} = \frac{253 + 196}{300 + 300} = 0.748$

$$z_0 = \frac{0.843 - 0.653}{\sqrt{0.748(1 - 0.748)\left(\frac{1}{300} + \frac{1}{300}\right)}} = 5.36$$

8) Because 5.36 > 2.58 reject the null hypothesis and conclude yes. There is significant difference in the fraction of polishing-induced defects produced by the two polishing solutions at the 0.01 level of significance.

$$P$$
-value = $2[1 - P(Z < 5.36)] = 0$

By constructing a 99% confidence interval on the difference in proportions, the same question can be answered by considering whether or not 0 is contained in the interval.

$$\begin{aligned} & \text{10-63.} & \text{a) Power} = 1 - \beta \\ & \beta = \Phi \left(\frac{z_{\alpha/2} \sqrt{pq} \left(\frac{1}{n_1} + \frac{1}{n_2} \right) - \left(p_1 - p_2 \right)}{\hat{\sigma}_{\hat{p}_1 - \hat{p}_2}} \right) - \Phi \left(\frac{-z_{\alpha/2} \sqrt{pq} \left(\frac{1}{n_1} + \frac{1}{n_2} \right) - \left(p_1 - p_2 \right)}{\hat{\sigma}_{\hat{p}_1 - \hat{p}_2}} \right) \\ & \bar{p} = \frac{300(0.05) + 300(0.01)}{300 + 300} = 0.03 \qquad \bar{q} = 0.97 \\ & \hat{\sigma}_{\hat{p}_1 - \hat{p}_2} = \sqrt{\frac{0.05(1 - 0.05)}{300} + \frac{0.01(1 - 0.01)}{300}} = 0.014 \\ & \beta = \Phi \left(\frac{1.96 \sqrt{0.030.97} \left(\frac{1}{3.00} + \frac{1}{300} \right) - (0.05 - 0.01)}{0.014} \right) - \Phi \left(\frac{-1.96 \sqrt{0.03(0.97} \left(\frac{1}{300} + \frac{1}{300} \right) - (0.05 - 0.01)}{0.014} \right) \\ & = \Phi(-0.91) - \Phi(-4.81) = 0.18141 - 0 = 0.18141 \\ & \text{Power} = 1 - 0.18141 = 0.81859 \\ & b)_{R} = \frac{\left(z_{\alpha/2} \sqrt{\frac{\left(p_1 + p_2 \right) \left(q_1 + q_2 \right)}{2} + z_{\beta} \sqrt{p_1 q_1 + p_2 q_2}} \right)^2}{\left(p_1 - p_2 \right)^2} \\ & = \frac{\left(1.96 \sqrt{\frac{\left(0.05 + 0.01 \right) \left(0.95 + 0.99 \right)}{2} + 1.29 \sqrt{0.05(0.95) + 0.01(0.99)}} \right)^2}{2} = 382.11 \\ & n = 383 \end{aligned}$$

$$10-64. \quad \text{a) } \beta = \frac{\left(z_{\alpha/2} \sqrt{pq} \left(\frac{1}{n_1} + \frac{1}{n_2} \right) - \left(p_1 - p_2 \right)}{\hat{\sigma}_{p_1 - p_2}} \right) - \Phi \left(\frac{-z_{\alpha/2} \sqrt{pq} \left(\frac{1}{n_1} + \frac{1}{n_2} \right) - \left(p_1 - p_2 \right)}{\hat{\sigma}_{p_1 - \hat{p}_2}}} \right) \\ & \bar{p} = \frac{300(0.05) + 300(0.02)}{300 + 300} = 0.035 \qquad \bar{q} = 0.965 \\ & \hat{\sigma}_{\hat{p}_1 - \hat{p}_2} = \sqrt{\frac{0.05(1 - 0.05)}{300} + \frac{0.02(1 - 0.02)}{300}} \\ & 0.015 \qquad 0.015} - 0.015 \\ & = \Phi(-0.04) - \Phi(-3.96) = 0.48405 - 0.00004 = 0.48401 \\ & \text{Power} = 1 - 0.48401 = 0.51599 \end{aligned}$$

b)
$$n = \frac{\left(z_{\alpha/2}\sqrt{\frac{(p_1 + p_2)(q_1 + q_2)}{2}} + z_{\beta}\sqrt{p_1q_1 + p_2q_2}\right)^2}{(p_1 - p_2)^2}$$

$$= \frac{\left(1.96\sqrt{\frac{(0.05 + 0.02)(0.95 + 0.98)}{2}} + 1.29\sqrt{0.05(0.95) + 0.02(0.98)}\right)^2}{(0.05 - 0.02)^2} = 790.65$$

$$n = 791$$

10-65. 1) The parameters of interest are the proportion of residents in favor of an increase, p₁ and p₂

2)
$$H_0$$
: $p_1 = p_2$

3)
$$H_1: p_1 \neq p_2$$

4)
$$\alpha = 0.05$$

5) Test statistic is
$$z_0 = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \quad \text{where } \hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$$

6) Reject the null hypothesis if $z_0 < -z_{0.025}$ or $z_0 > z_{0.025}$ where $z_{0.025} = 1.96$

7)
$$n_1 = 500$$
 $n_2 = 400$ $x_1 = 385$ $x_2 = 267$ $\hat{p}_1 = 0.77$ $\hat{p}_2 = 0.6675$ $\hat{p} = \frac{385 + 267}{500 + 400} = 0.724$

$$z_0 = \frac{0.77 - 0.6675}{\sqrt{0.724(1 - 0.724)\left(\frac{1}{500} + \frac{1}{400}\right)}} = 3.42$$

8) Because 3.42 > 1.96 reject the null hypothesis and conclude yes. There is a significant difference in the proportions of support for increasing the speed limit between residents of the two counties at the 0.05 level of significance.

$$P$$
-value = $2[1 - P(Z < 3.42)] = 0.00062$

10-66. 95% confidence interval on the difference:

$$\begin{split} &(\hat{p}_1 - \hat{p}_2) - z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}} \leq p_1 - p_2 \leq (\hat{p}_1 - \hat{p}_2) + z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}} \\ &(0.05 - 0.0267) - 1.96 \sqrt{\frac{0.05(1 - 0.05)}{300} + \frac{0.0267(1 - 0.0267)}{300}} \leq p_1 - p_2 \leq (0.05 - 0.0267) + 1.96 \sqrt{\frac{0.05(1 - 0.05)}{300} + \frac{0.0267(1 - 0.0267)}{300}} \\ &- 0.0074 \leq p_1 - p_2 \leq 0.054 \end{split}$$

Because this interval contains the value zero, there is no significant difference in the fraction of defective parts produced by the two machines. We have 95% confidence that the difference in proportions is between -0.0074 and 0.054.

10-67 95% confidence interval on the difference:

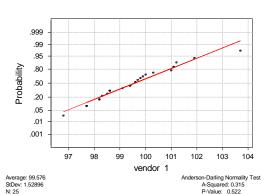
$$\begin{split} (\hat{p}_1 - \hat{p}_2) - z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}} &\leq p_1 - p_2 \leq (\hat{p}_1 - \hat{p}_2) + z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}} \\ (0.77 - 0.6675) - 1.96 \sqrt{\frac{0.77(1 - 0.77)}{500} + \frac{0.6675(1 - 0.6675)}{400}} &\leq p_1 - p_2 \leq (0.77 - 0.6675) + 1.96 \sqrt{\frac{0.77(1 - 0.77)}{500} + \frac{0.6675(1 - 0.6675)}{400}} \\ 0.0434 \leq p_1 - p_2 \leq 0.1616 \end{split}$$

Because this interval does not contain the value zero, we are 95% confident there is a significant difference in the proportions of support for increasing the speed limit between residents of the two counties and that the difference in proportions is between 0.0434 and 0.1616.

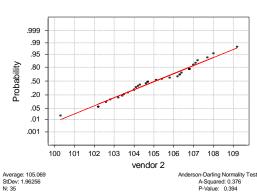
Supplemental Exercises

a) Assumptions that must be met are normality, equality of variance, independence of the observations and of the populations. Normality and equality of variances appears to be reasonable, see normal probability plot. The data appear to fall along a straight line and the slopes appear to be the same. Independence of the observations for each sample is assumed. It is also reasonable to assume that the two populations are independent.

Normal Probability Plot



Normal Probability Plot



- b) 1) The parameters of interest are the variances of resistance of products, σ_1^2, σ_2^2
 - 2) $H_0: \sigma_1^2 = \sigma_2^2$
 - 3) $H_1 : \sigma_1^2 \neq \sigma_2^2$
 - 4) $\alpha = 0.05$
 - 5) The test statistic is

$$f_0 = \frac{s_1^2}{s_2^2}$$

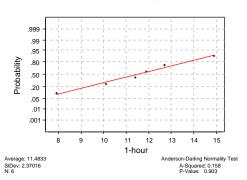
 $f_0 = \frac{s_1^2}{s_2^2}$ 6) Reject H₀ if f₀ < f_{0.975,24,34} where f_{0.975,24,34} = $\frac{1}{f_{0.025,34,24}} = \frac{1}{2.18} = 0.459$ or $f_0 > f_{0.025,24,34}$ where $f_{0.025,24,34} = 2.07$

7)
$$s_1 = 1.53$$
 $s_2 = 1.96$ $n_1 = 25$ $n_2 = 35$
$$f_0 = \frac{(1.53)^2}{(1.96)^2} = 0.609$$

- 8) Because 0.609 > 0.459, cannot reject H₀. Not sufficient evidence to conclude that the variances are different at $\alpha = 0.05$.
- 10-69 a) Assumptions that must be met are normality, equality of variance, and independence of the observations. Normality and equality of variances appears to be reasonable, see normal probability plot. The data appear to fall along a straight line and the slopes appear to be the same. Independence of the observations for each sample is obtained if a random sample is selected.

Normal Probability Plot

Normal Probability Plot



Average: 16.3556 StDev: 2.06949

b)
$$\overline{x}_1 = 16.36$$
 $\overline{x}_2 = 11.483$
 $s_1 = 2.07$ $s_2 = 2.37$
 $n_1 = 9$ $n_2 = 6$

99% confidence interval: $t_{\alpha/2,n_1+n_2-2} = t_{0.005,13}$ where $t_{0.005,13} = 3.012$

$$s_{p} = \sqrt{\frac{8(2.07)^{2} + 5(2.37)^{2}}{13}} = 2.19$$

$$(\overline{x}_{1} - \overline{x}_{2}) - t_{\alpha/2, n_{1} + n_{2} - 2}(s_{p})\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}} \le \mu_{1} - \mu_{2} \le (\overline{x}_{1} - \overline{x}_{2}) + t_{\alpha/2, n_{1} + n_{2} - 2}(s_{p})\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}$$

$$(16.36 - 11.483) - 3.012(2.19)\sqrt{\frac{1}{9} + \frac{1}{6}} \le \mu_{1} - \mu_{2} \le (16.36 - 11.483) + 3.012(2.19)\sqrt{\frac{1}{9} + \frac{1}{6}}$$

$$1.40 \le \mu_{1} - \mu_{2} \le 8.36$$

- c) Yes, we are 99% confident the results from the first test condition exceed the results of the second test condition because the confidence interval contains only positive values.
- 10-70. a) 95% confidence interval for σ_1^2 / σ_2^2

95% confidence interval on $\frac{\sigma_1^2}{\sigma_2^2}$:

$$f_{0.975,8,5} = \frac{1}{f_{0.025,5,8}} = \frac{1}{4.82} = 0.2075, \qquad f_{0.025,8,5} = 6.76$$

$$\frac{s_1^2}{s_2^2} f_{0.975,8,5} \le \frac{\sigma_1^2}{\sigma_2^2} \le \frac{s_1^2}{s_2^2} f_{0.025,8,5}$$

$$\left(\frac{4.283}{5.617}\right) (0.2075) \le \frac{\sigma_1^2}{\sigma_2^2} \le \left(\frac{4.283}{5.617}\right) (6.76)$$

$$0.1582 \le \frac{\sigma_1^2}{\sigma_2^2} \le 5.157$$

- b) Because the value 1 is contained within this interval, the population variances do not differ significantly at a 5% significance level.
- 10-71 a) 1) The parameter of interest is the mean weight loss, μ_d where d_i = Initial Weight Final Weight.
 - 2) H_0 : $\mu_d = 3$
 - 3) $H_1: \mu_d > 3$
 - 4) $\alpha = 0.05$
 - 5) The test statistic is

$$t_0 = \frac{\overline{d} - \Delta_0}{s_d / \sqrt{n}}$$

6) Reject H₀ if $t_0 > t_{\alpha,n-1}$ where $t_{0.05.7} = 1.895$.

7)
$$\bar{d} = 4.125$$

$$s_d = 1.246$$

$$n = 8$$

$$t_0 = \frac{4.125 - 3}{1.246 / \sqrt{8}} = 2.554$$

- 8) Because 2.554 > 1.895, reject the null hypothesis and conclude the average weight loss is significantly greater than 3 at $\alpha = 0.05$.
- b) 2) H_0 : $\mu_d = 3$
 - 3) $H_1: \mu_d > 3$
 - 4) $\alpha = 0.01$
 - 5) The test statistic is

$$t_0 = \frac{\overline{d} - \Delta_0}{s_d / \sqrt{n}}$$

- 6) Reject H_0 if $t_0 > t_{\alpha,n-1}$ where $t_{0.01,7} = 2.998$.
- 7) $\bar{d} = 4.125$

$$s_d = 1.246$$

$$n = 8$$

$$t_0 = \frac{4.125 - 3}{1.246 / \sqrt{8}} = 2.554$$

- 8) Because 2.554 <2.998, do not reject the null hypothesis. The average weight loss is not significantly greater than 3 at $\alpha = 0.01$.
- c) 2) H_0 : $\mu_d = 5$
 - 3) $H_1: \mu_d > 5$
 - 4) $\alpha = 0.05$
 - 5) The test statistic is

$$t_0 = \frac{\overline{d} - \Delta_0}{s_d / \sqrt{n}}$$

- 6) Reject H_0 if $t_0 > t_{\alpha,n-1}$ where $t_{0.05,7} = 1.895$.
- 7) $\bar{d} = 4.125$

$$s_d = 1.246$$

$$n = 8$$

$$t_0 = \frac{4.125 - 5}{1.246 / \sqrt{8}} = -1.986$$

8) Because -1.986 < 1.895, do not reject the null hypothesis and conclude that the average weight loss is not significantly greater than 5 at $\alpha = 0.05$.

Using $\alpha = 0.01$

- 2) H_0 : $\mu_d = 5$
- 3) $H_1: \mu_d > 5$
- 4) $\alpha = 0.01$
- 5) The test statistic is

$$t_0 = \frac{\overline{d} - \Delta_0}{s_d / \sqrt{n}}$$

- 6) Reject H_0 if $t_0 > t_{\alpha,n-1}$ where $t_{0.01,7} = 2.998$.
- 7) $\bar{d} = 4.125$

$$s_d = 1.246$$

$$n = 8$$

$$t_0 = \frac{4.125 - 5}{1.246 / \sqrt{8}} = -1.986$$

8) Because -1.986 < 2.998, do not reject the null hypothesis and conclude the average weight loss is not significantly greater than 5 at $\alpha = 0.01$.

10-72. $(\overline{x}_1 - \overline{x}_2) - z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \le \mu_1 - \mu_2 \le (\overline{x}_1 - \overline{x}_2) + z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$

a) 90% confidence interval: $z_{\alpha/2} = 1.65$

$$(88-91)-1.65\sqrt{\frac{5^2}{20} + \frac{4^2}{20}} \le \mu_1 - \mu_2 \le (88-91) + 1.65\sqrt{\frac{5^2}{20} + \frac{4^2}{20}}$$
$$-5.362 \le \mu_1 - \mu_2 \le -0.638$$

Yes, the data indicate that the mean breaking strength of the yarn of manufacturer 2 exceeds that of manufacturer 1 by between 5.362 and 0.638 with 90% confidence.

b) 98% confidence interval: $z_{\alpha/2} = 2.33$

$$(88-91)-2.33\sqrt{\frac{5^2}{20}+\frac{4^2}{20}} \le \mu_1 - \mu_2 \le (88-91)+2.33\sqrt{\frac{5^2}{20}+\frac{4^2}{20}}$$
$$-6.340 \le \mu_1 - \mu_2 \le 0.340$$

Because the confidence interval contains zero we cannot conclude that one yarn has greater mean breaking strength with 98% confidence.

c) The results of parts (a) and (b) are different because the confidence level used is different. Which one is used depends upon the level of confidence considered acceptable.

10-73 a) 1) The parameters of interest are the proportions of children who contract polio, p_1 , p_2

- 2) $H_0: p_1 = p_2$
- 3) $H_1: p_1 \neq p_2$
- 4) $\alpha = 0.05$
- 5) The test statistic is

$$z_0 = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

6) Reject H₀ if $z_0 < -z_{\alpha/2}$ or $z_0 > z_{\alpha/2}$ where $z_{\alpha/2} = 1.96$

7)
$$\hat{p}_1 = \frac{x_1}{n_1} = \frac{110}{201299} = 0.00055$$
 (Placebo) $\hat{p} = \frac{x_1 + x_2}{n_1 + n_2} = 0.000356$ $\hat{p}_2 = \frac{x_2}{n_2} = \frac{33}{200745} = 0.00016$ (Vaccine)

$$z_0 = \frac{0.00055 - 0.00016}{\sqrt{0.000356(1 - 0.000356)\left(\frac{1}{201299} + \frac{1}{200745}\right)}} = 6.55$$

8) Because 6.55 > 1.96 reject H_0 and conclude the proportion of children who contracted polio is significantly different at $\alpha = 0.05$.

b) $\alpha = 0.01$

Reject H_0 if $z_0 < -z_{\alpha/2}$ or $z_0 > z_{\alpha/2}$ where $z_{\alpha/2} = 2.58$. Still $z_0 = 6.55$.

Because 6.55 > 2.58, reject H₀ and conclude the proportion of children who contracted polio is different at $\alpha = 0.01$.

c) The conclusions are the same because z_0 is so large it exceeds $z_{\alpha/2}$ in both cases.

$$\begin{array}{ll} 10\text{-}74 & \quad a) \; \alpha = 0.10 & \quad z_{\alpha/2} = 1.65 \\ & \quad n \cong \frac{\left(z_{\alpha/2}\right)^2 \left(\sigma_1^2 + \sigma_2^2\right)}{\left(E\right)^2} \cong \frac{\left(1.65\right)^2 \left(25 + 16\right)}{\left(1.5\right)^2} = 49.61 \; , \quad n = 50 \\ & \quad b) \; \alpha = 0.10 & \quad z_{\alpha/2} = 2.33 \\ & \quad n \cong \frac{\left(z_{\alpha/2}\right)^2 \left(\sigma_1^2 + \sigma_2^2\right)}{\left(E\right)^2} \cong \frac{\left(2.33\right)^2 \left(25 + 16\right)}{\left(1.5\right)^2} = 98.93 \; , \quad n = 99 \end{array}$$

c) As the confidence level increases, sample size will also increase.

d)
$$\alpha = 0.10$$
 $z_{\alpha/2} = 1.65$
$$n \cong \frac{\left(z_{\alpha/2}\right)^2 \left(\sigma_1^2 + \sigma_2^2\right)}{\left(E\right)^2} \cong \frac{\left(1.65\right)^2 \left(25 + 16\right)}{\left(0.75\right)^2} = 198.44 , \quad n = 199$$

e)
$$\alpha = 0.10$$
 $z_{\alpha/2} = 2.33$
$$n \cong \frac{\left(z_{\alpha/2}\right)^2 \left(\sigma_1^2 + \sigma_2^2\right)}{\left(E\right)^2} \cong \frac{\left(2.33\right)^2 \left(25 + 16\right)}{\left(0.75\right)^2} = 395.70 , \quad n = 396$$

f) As the error decreases, the required sample size increases.

10-75
$$\hat{p}_1 = \frac{x_1}{n_1} = \frac{387}{1500} = 0.258 \qquad \hat{p}_2 = \frac{x_2}{n_2} = \frac{310}{1200} = 0.2583$$

$$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$
a) $z_{\alpha/2} = z_{0.025} = 1.96$

$$(0.258 - 0.2583) \pm 1.96 \sqrt{\frac{0.258(0.742)}{1500} + \frac{0.2583(0.7417)}{1200}}$$

$$-0.0335 \le p_1 - p_2 \le 0.0329$$

Because zero is contained in this interval, there is no significant difference between the proportions of unlisted numbers in the two cities at 5% significance level.

b)
$$z_{\alpha/2} = z_{0.05} = 1.65$$

$$\left(0.258 - 0.2583\right) \pm 1.65 \sqrt{\frac{0.258(0.742)}{1500} + \frac{0.2583(0.7417)}{1200}}$$

$$-0.0282 \le p_1 - p_2 \le 0.0276$$

The proportions of unlisted numbers in the two cities do not significantly differ at 5% significance level.

c)
$$\hat{p}_1 = \frac{x_1}{n_1} = \frac{774}{3000} = 0.258$$

 $\hat{p}_2 = \frac{x_2}{n_2} = \frac{620}{2400} = 0.2583$

95% confidence interval:

$$\left(0.258 - 0.2583\right) \pm 1.96\sqrt{\frac{0.258(0.742)}{3000} + \frac{0.2583(0.7417)}{2400}} \\ -0.0238 \le p_1 - p_2 \le 0.0232$$

90% confidence interval:

$$\left(0.258 - 0.2583\right) \pm 1.65\sqrt{\frac{0.258(0.742)}{3000} + \frac{0.2583(0.7417)}{2400}} - 0.0201 \le p_1 - p_2 \le 0.0195$$

Increasing the sample size decreased the error and width of the confidence intervals, but does not change the conclusions drawn. The conclusion remains that there is no significant difference.

- 10-76 a) 1) The parameters of interest are the proportions of those residents who wear a seat belt regularly, p₁, p₂
 - 2) $H_0: p_1 = p_2$
 - 3) $H_1: p_1 \neq p_2$
 - 4) $\alpha = 0.05$
 - 5) The test statistic is

$$z_0 = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1 - \hat{p}) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

6) Reject H₀ if $z_0 < -z_{\alpha/2}$ or $z_0 > z_{\alpha/2}$ where $z_{0.025} = 1.96$

7)
$$\hat{p}_1 = \frac{x_1}{n_1} = \frac{165}{200} = 0.825$$
 $\hat{p} = \frac{x_1 + x_2}{n_1 + n_2} = 0.807$
$$\hat{p}_2 = \frac{x_2}{n_2} = \frac{198}{250} = 0.792$$

$$z_0 = \frac{0.825 - 0.792}{\sqrt{0.807 (1 - 0.807) \left(\frac{1}{200} + \frac{1}{250}\right)}} = 0.8814$$

8) Because $-1.96 \le 0.8814 \le 1.96$ do not reject H_0 . There is not sufficient evidence that there is a difference in seat belt usage at $\alpha = 0.05$.

b)
$$\alpha = 0.10$$

Reject H₀ if $z_0 < -z_{\alpha/2}$ or $z_0 > z_{\alpha/2}$ where $z_{0.05} = 1.65$ $z_0 = 0.8814$

Because $-1.65 \le 0.8814 \le 1.65$, do not reject H_0 . There is not sufficient evidence that there is a difference in seat belt usage at $\alpha = 0.10$.

c) The conclusions are the same, but with different levels of significance.

d)
$$n_1 = 400$$
, $n_2 = 500$

$$\alpha = 0.05$$

Reject H₀ if
$$z_0 < -z_{\alpha/2}$$
 or $z_0 > z_{\alpha/2}$ where $z_{0.025} = 1.96$

$$z_0 = \frac{0.825 - 0.792}{\sqrt{0.807(1 - 0.807)\left(\frac{1}{400} + \frac{1}{500}\right)}} = 1.246$$

Because -1.96 < 1.246 < 1.96 do not reject H₀. There is not sufficient evidence that there is a difference in seat belt usage $\alpha = 0.05$.

$$\alpha = 0.10$$

Reject H₀ if
$$z_0 < -z_{\alpha/2}$$
 or $z_0 > z_{\alpha/2}$ where $z_{0.05} = 1.65$ $z_0 = 1.246$

Because $-1.65 \le 1.246 \le 1.65$, do not reject H_0 . There is not sufficient evidence that there is a difference in seat belt usage $\alpha = 0.10$.

As the sample size increased, the test statistic has also increased (because the denominator of z_0 decreased). However, the sample size increase was not enough to change our conclusion.

- 10-77. a) Yes, there could be some bias in the results due to the telephone survey.
 - b) If it could be shown that these populations are similar to the respondents, the results may be extended.
- 10-78 a) 1) The parameters of interest are:

the proportion of lenses that are unsatisfactory after tumble-polishing, p_1 , p_2

- 2) $H_0: p_1 = p_2$
- 3) $H_1: p_1 \neq p_2$
- 4) $\alpha = 0.01$

5) The test statistic is

$$z_0 = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p}) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

6) Reject H₀ if $z_0 < -z_{\alpha/2}$ or $z_0 > z_{\alpha/2}$ where $z_{\alpha/2} = 2.58$

7) x_1 =number of defective lenses

$$\hat{p}_1 = \frac{x_1}{n_1} = \frac{47}{300} = 0.1567$$

$$\hat{p} = \frac{x_1 + x_2}{n_1 + n_2} = 0.2517$$

$$\hat{p}_2 = \frac{x_2}{n_2} = \frac{104}{300} = 0..3467$$

$$z_0 = \frac{0.1567 - 0.3467}{\sqrt{0.2517(1 - 0.2517)\left(\frac{1}{300} + \frac{1}{300}\right)}} = -5.36$$

- 8) Because -5.36 < -2.58 reject H₀ and conclude there is strong evidence to support the claim that the two polishing fluids are different.
- b) The conclusions are the same whether we analyze the data using the proportion unsatisfactory or proportion satisfactory.

10-79.

$$n = \frac{\left(2.575\sqrt{\frac{(0.9+0.6)(0.1+0.4)}{2}} + 1.28\sqrt{0.9(0.1) + 0.6(0.4)}\right)^{2}}{(0.9-0.6)^{2}}$$
$$= \frac{5.346}{0.09} = 59.4$$
$$n = 60$$

10-80 The parameter of interest is $\mu_1 - 2\mu_2$

$$\begin{array}{ccc} H_0{:}\mu_1 = 2\mu_2 & & & H_0{:}\mu_1 - 2\mu_2 = 0 \\ H_1{:}\mu_1 > 2\mu_2 & & & H_1{:}\mu_1 - 2\mu_2 > 0 \end{array}$$

Let $n_1 = \text{size of sample } 1$

 \overline{X}_1 estimate for μ_1

Let n_2 = size of sample 2

 \overline{X}_2 estimate for μ_2

 $\overline{X}_1 - 2\overline{X}_2$ is an estimate for $\mu_1 - 2\mu_2$

The variance is V(
$$\overline{X}_1 - 2\overline{X}_2$$
) = V(\overline{X}_1) + V(2 \overline{X}_2) = $\frac{\sigma_1^2}{n_1} + \frac{4\sigma_2^2}{n_2}$

The test statistic for this hypothesis would then be:

$$Z_0 = \frac{(\overline{X}_1 - 2\overline{X}_2) - 0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{4\sigma_2^2}{n_2}}}$$

We would reject the null hypothesis if $z_0 > z_{\alpha/2}$ for a given level of significance.

The *P*-value would be $P(Z \ge z_0)$.

10-81.
$$H_0: \mu_1 = \mu_2$$

$$H_1 : \mu_1 \neq \mu_2$$

$$n_1 = n_2 = n$$

$$\beta = 0.10$$

$$\alpha = 0.05$$

Assume normal distribution and $\sigma_1^2 = \sigma_2^2 = \sigma^2$

$$\mu_1 = \mu_2 + \sigma$$

$$d=\frac{|\mu_1-\mu_2|}{2\sigma}=\frac{\sigma}{2\sigma}=\frac{1}{2}$$

From Chart VI e)
$$n^* = 50$$
 and $n = \frac{n^* + 1}{2} = \frac{50 + 1}{2} = 25.5$ and $n_1 = n_2 = 26$

10-82 a)
$$\alpha = 0.05$$
, $\beta = 0.05$ $\Delta = 1.5$ Use $s_p = 0.7071$ to approximate σ in equation 10-19.

$$d = \frac{\Delta}{2(s_p)} = \frac{1.5}{2(.7071)} = 1.06 \cong 1$$

From Chart VI e),
$$n^* = 20$$
 $n = \frac{n^* + 1}{2} = \frac{20 + 1}{2} = 10.5$

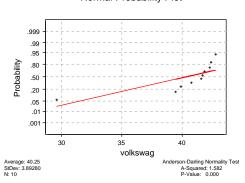
n=11 would be needed to reject the null hypothesis that the two agents differ by 0.5 with probability of at least 0.95.

b) The original size of n = 5 in Exercise 10-18 was not appropriate to detect the difference because it is necessary for a sample size of 11 to reject the null hypothesis that the two agents differ by 1.5 with probability of at least 0.95.

10-83 a) No.

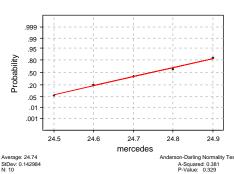
Normal Probability Plot

Normal Probability Plot

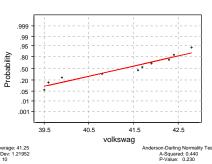


b) The normal probability plots indicate that the data follow normal distributions because the data appear to fall along a straight line. The plots also indicate that the variances could be equal because the slopes appear to be the same.

Normal Probability Plot



Normal Probability Plot



- c) By correcting the data points, it is more apparent the data follow normal distributions. Note that one unusual observation can cause an analyst to reject the normality assumption.
- d) 95% confidence interval on the ratio of the variances, σ_V^2 / σ_M^2

$$s_V^2 = 1.49$$

$$\begin{split} s_V^2 &= 1.49 & f_{9,9,0.025} = 4.03 \\ s_M^2 &= 0.0204 & f_{9,9,0.975} = \frac{1}{f_{9,9,0.025}} = \frac{1}{4.03} = 0.248 \end{split}$$

$$\left(\frac{s_V^2}{s_M^2}\right) f_{9,9,0.975} < \frac{\sigma_V^2}{\sigma_M^2} < \left(\frac{s_V^2}{s_M^2}\right) f_{9,9,0.025}$$

$$\left(\frac{1.49}{0.0204}\right)$$
0.248 < $\frac{\sigma_V^2}{\sigma_M^2}$ < $\left(\frac{1.49}{0.0204}\right)$ 4.03

$$18.114 < \frac{\sigma_V^2}{\sigma_M^2} < 294.35$$

Because the does not include the value of unity, we are 95% confident that there is evidence to reject the claim that the variability in mileage performance is the same for the two types of vehicles. There is evidence that the variability is greater for a Volkswagen than for a Mercedes.

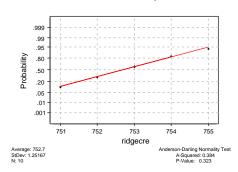
- 1) The parameters of interest are the variances in mileage performance, σ_1^2, σ_2^2 10-84
 - 2) $H_0: \sigma_1^2 = \sigma_2^2$ Where Volkswagen is represented by variance 1, Mercedes by variance 2.
 - 3) $H_1: \sigma_1^2 \neq \sigma_2^2$
 - 4) $\alpha = 0.05$
 - 5) The test statistic is

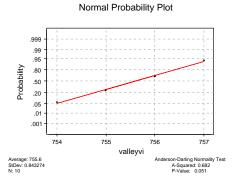
$$f_0 = \frac{s_1^2}{s_2^2}$$

6) Reject H_0 if $f_0 < f_{0.975,9,9}$ where $f_{0.975,9,9} = \frac{1}{f_{0.025,9,9}} = \frac{1}{4.03} = 0.248$

or
$$f_0 > f_{0.025,9,9}$$
 where $f_{0.025,9,9} = 4.03$

- 8) Because 72.78 > 4.03, reject H₀ and conclude that there is a significant difference between Volkswagen and Mercedes in terms of mileage variability. The same conclusions are reached in 10-83(d).
- 10-85 a) Underlying distributions appear to be normal Because the data fall along a straight line on the normal probability plots. The slopes appear to be similar, so it is reasonable to assume that $\sigma_1^2=\sigma_2^2$. Normal Probability Plot





b) 1) The parameter of interest is the difference in mean volumes, $\mu_1 - \mu_2$

2)
$$H_0$$
: $\mu_1 - \mu_2 = 0$ or $\mu_1 = \mu_2$

3)
$$H_1: \mu_1 - \mu_2 \neq 0 \text{ or } \mu_1 \neq \mu_2$$

4)
$$\alpha = 0.05$$

5) The test statistic is

$$t_0 = \frac{(\overline{x}_1 - \overline{x}_2) - \delta}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

6) Reject H_0 if $t_0 < -t_{\alpha/2,\nu}$ or $z_0 > t_{\alpha/2,\nu}$ where $t_{\alpha/2,\nu} = t_{0.025,18} = 2.101$

7)
$$\overline{x}_1 = 752.7$$
 $\overline{x}_2 = 755.6$

$$s_p = \sqrt{\frac{9(1.252)^2 + 9(0.843)^2}{18}} = 1.07$$

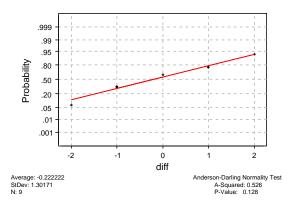
$$s_1 = 1.252$$
 $s_2 = 0.843$
 $n_1 = 10$ $n_2 = 10$

$$n_1 = 10$$
 $n_2 = 10$

$$t_0 = \frac{(752.7 - 755.6)}{1.07\sqrt{\frac{1}{10} + \frac{1}{10}}} = -6.06$$

- 8) Because $-6.06 \le -2.101$, reject H₀ and conclude there is a significant difference between the two wineries with respect to mean fill volumes at a 5% significance level.
- 10-86. From Section 10-3.3, d = 2/2(1.07) = 0.93, giving a power of just under 80%. Because the power is relatively low, an increase in the sample size would improve the power of the test.
- 10-87. a) The assumption of normality appears to be valid. This is evident by the fact that the data lie along a straight line in the normal probability plot.

Normal Probability Plot



- b) 1) The parameter of interest is the mean difference in tip hardness, μ_{d}
 - 2) H_0 : $\mu_d = 0$
 - 3) $H_1: \mu_d \neq 0$
 - 4) No significance level, calculate P-value
 - 5) The test statistic is

$$t_0 = \frac{\overline{d}}{s_d / \sqrt{n}}$$

- 6) Reject H₀ if the P-value is significantly small.
- 7) $\bar{d} = -0.222$

$$s_d = 1.30$$

$$n = 9$$

$$t_0 = \frac{-0.222}{1.30 / \sqrt{9}} = -0.512$$

8) P-value = 2P(T < -0.512) = 2P(T > 0.512) 2(0.25) < P-value < 2(0.40) 0.50 < P-value < 0.80

Because the P-value is larger than any acceptable level of significance, do not reject H_0 and conclude there is no significant difference in mean tip hardness.

c) $\beta = 0.10$

$$\mu_d = 1$$

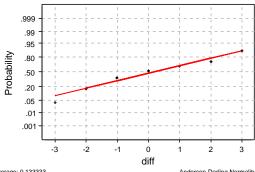
$$d = \frac{1}{\sigma_d} = \frac{1}{1.3} = 0.769$$

From Chart VI f) with $\alpha = 0.01$, n = 30

10-88.

a) From the normal probability plot the data fall along a line and consequently they appear to follow a normal distribution.

Normal Probability Plot



Average: 0.133333 StDev: 2.06559 N: 15

Anderson-Darling Normality Test A-Squared: 0.518 P-Value: 0.158

10-46

- b) 1) The parameter of interest is the mean difference in depth using the two gauges, μ_{d}
 - 2) H_0 : $\mu_d = 0$
 - 3) $H_1: \mu_d \neq 0$
 - 4) No significance level, calculate a P-value
 - 5) The test statistic is

$$t_0 = \frac{\overline{d}}{s_d \, / \, \sqrt{n}}$$

- 6) Reject H₀ if the *P*-value is significantly small.
- 7) $\bar{d} = 0.133$

$$s_d = 2.065$$

$$n = 15$$

$$t_0 = \frac{0.133}{2.065 / \sqrt{15}} = 0.25$$

- 8) *P*-value = 2P(T > 0.25)
- 2(0.40) < P-value
- 0.80 < *P*-value

Because the P-value is larger than any acceptable level of significance, do not reject H₀ and conclude there is no significant difference in mean depth measurements for the two gauges.

c) Power = 0.8. Because Power= $1 - \beta$, β = 0.20

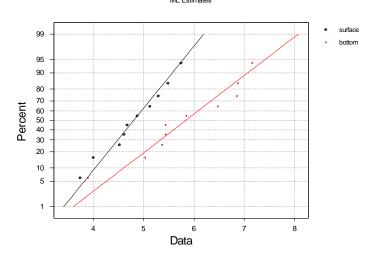
$$\mu_d = 1.65$$

$$d = \frac{1.65}{\sigma_d} = \frac{1.65}{(2.065)} = 0.799$$

From Chart VI f) with $\alpha = 0.01$ and $\beta = 0.20$, we find n = 30.

10-89 a.) The data from both depths appear to be normally distributed, but the slopes are not equal. Therefore, it may not be assumed that $\sigma_1^2 = \sigma_2^2$.

Normal Probability Plot for surface...bottom ML Estimates



- b.) 1) The parameter of interest is the difference in mean HCB concentration, $\,\mu_1-\mu_2$, with $\Delta_0=\,0$
 - 2) H_0 : $\mu_1 \mu_2 = 0$ or $\mu_1 = \mu_2$
 - 3) $H_1: \mu_1 \mu_2 \neq 0 \text{ or } \mu_1 \neq \mu_2$
 - 4) $\alpha = 0.05$
 - 5) The test statistic is

$$t_0 = \frac{(\overline{x}_1 - \overline{x}_2) - \Delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

6) Reject the null hypothesis if $t_0 < -t_{0.025,15}$ or $t_0 > t_{0.025,15}$ where $t_{0.025,15} = 2.131$. Also

$$v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)} = 15.06$$

$$\frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{n_1 - 1} = 15.06$$

(truncated)

(truncated)

7)
$$\overline{x}_1 = 4.804$$
 $\overline{x}_2 = 5.839$ $s_1 = 0.631$ $s_2 = 1.014$
 $n_1 = 10$ $n_2 = 10$

$$t_0 = \frac{(4.804 - 5.839)}{\sqrt{\frac{(0.631)^2}{10} + \frac{(1.014)^2}{10}}} = -2.74$$

8) Because $-2.74 < -2.131$ reject the null hypothesis. Conclude tha

- 8) Because -2.74 < -2.131 reject the null hypothesis. Conclude that the mean HCB concentration is different at the two depths sampled at the 0.05 level of significance.
- c) Assume the variances are equal. Then $\Delta = 2$, $\alpha = 0.05$, $n = n_1 = n_2 = 10$, $n^* = 2n 1 = 19$

and $d = \frac{2}{2(1)} = 1$. From Chart VI e) we find $\beta \approx 0.05$, and then calculate power = $1 - \beta = 0.95$

d.) Assume the variances are equal. Then
$$\Delta = 2$$
, $\alpha = 0.05$, $n = n_1 = n_2$, $n^* = 2n - 1$, $\beta = 0.1$ and $d = \frac{2}{2(1)} = 0.5$. From Chart VI (e) we find $n^* = 50$ and $n = \frac{50 + 1}{2} = 25.5$, so $n = 26$.

Mind-Expanding Exercises

The estimate of μ is given by \overline{X} . Therefore $\overline{X} = \frac{1}{2}(\overline{X}_1 + \overline{X}_2) - \overline{X}_3$. The variance of \overline{X} can be shown to

be $V(\overline{X}) = \frac{1}{4} \left(\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \right) + \frac{\sigma_3^2}{n_2}$. Use s_1, s_2 , and s_3 as estimates for $\sigma_1 \sigma_2$ and σ_3 respectively.

a) A $100(1-\alpha)\%$ confidence interval on μ is then:

$$\overline{\overline{X}} - Z_{\alpha/2} \sqrt{\frac{1}{4} \left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right) + \frac{s_3^2}{n_3}} \leq \mu \leq \overline{X} + Z_{\alpha/2} \sqrt{\frac{1}{4} \left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right) + \frac{s_3^2}{n_3}}$$

b) A 95% confidence interval for

$$\left(\frac{1}{2}(4.6+5.2)-6.1\right)-1.96\sqrt{\frac{1}{4}\left(\frac{0.7^2}{100}+\frac{0.6^2}{120}\right)+\frac{0.8^2}{130}} \le \mu \le \left(\frac{1}{2}(4.6+5.2)-6.1\right)+1.96\sqrt{\frac{1}{4}\left(\frac{0.7^2}{100}+\frac{0.6^2}{120}\right)+\frac{0.8^2}{130}} -1.2-0.163 \le \mu \le -1.2+0.163 -1.363 \le \mu \le -1.037$$

Because zero is not contained in this interval, and because the possible mean difference (-1.363, -1.037) is negative, we can conclude that there is sufficient evidence to indicate that pesticide three is more effective.

The $V(\overline{X}_1 - \overline{X}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$ and suppose this is to equal a constant k. Then, we are to minimize

 $C_1 n_1 + C_2 n_2$ subject to $\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} = k$. Using a Lagrange multiplier, we minimize by setting the partial

derivatives of $f(n_1, n_2, \lambda) = C_1 n_1 + C_2 n_2 + \lambda \left(\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} - k \right)$ with respect to n_1, n_2 and λ equal to zero.

These equations are

$$\frac{\partial}{\partial n_1} f(n_1, n_2, \lambda) = C_1 - \frac{\lambda \sigma_1^2}{n_1^2} = 0 \qquad (1)$$

$$\frac{\partial}{\partial n_2} f(n_1, n_2, \lambda) = C_2 - \frac{\lambda \sigma_2^2}{n_2^2} = 0$$
 (2)

$$\frac{\partial}{\partial \lambda} f(n_1, n_2, \lambda) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} = k \tag{3}$$

Upon adding equations (1) and (2), we obtain $C_1 + C_2 - \lambda \left(\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \right) = 0$

Substituting from equation (3) enables us to solve for λ to obtain $\frac{C_1 + C_2}{\lambda} = \lambda$

Then, equations (1) and (2) are solved for
$$n_1$$
 and n_2 to obtain
$$n_1 = \frac{\sigma_1^2(C_1 + C_2)}{kC_1} \qquad n_2 = \frac{\sigma_2^2(C_1 + C_2)}{kC_2}$$

It can be verified that this is a minimum and that with these choices for n_1 and n_2 .

$$V(\overline{X}_1 - \overline{X}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

Maximizing the probability of rejecting H $_0$ is equivalent to minimizing

$$P\left(-z_{\alpha/2} < \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1 + \frac{\sigma_2^2}{n_2}}}} < z_{\alpha/2} \mid \mu_1 - \mu_2 = \delta\right) = P\left(-z_{\alpha/2} - \frac{\delta}{\sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1 + \frac{\sigma_2^2}{n_2}}}} < Z < z_{\alpha/2} - \frac{\delta}{\sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1 + \frac{\sigma_2^2}{n_2}}}}\right)$$

where z is a standard normal random variable. This probability is minimized by maximizing $\frac{\delta}{\sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1 + n_2}}}$

Therefore, we are to minimize $\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$ subject to $n_1 + n_2 = N$.

From the constraint, $n_2 = N - n_1$, and we are to minimize $f(n_1) = \frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{N - n}$. Taking the derivative of $f(n_1)$

with respect to n_1 and setting it equal to zero results in the equation $\frac{-\sigma_1^2}{n_1^2} + \frac{\sigma_2^2}{(N-n_1)^2} = 0$

Upon solving for n_1 , we obtain $n_1 = \frac{\sigma_1 N}{\sigma_1 + \sigma_2}$ and $n_2 = \frac{\sigma_2 N}{\sigma_1 + \sigma_2}$

Also, it can be verified that the solution minimizes $f(n_1)$

10-93 a) $\alpha = P(Z > z_{\varepsilon} \text{ or } Z < -z_{\alpha-\varepsilon})$ where Z has a standard normal distribution.

Then,
$$\alpha = P(Z > z_{\varepsilon}) + P(Z < -z_{\alpha-\varepsilon}) = \varepsilon + \alpha - \varepsilon = \alpha$$

b)
$$\beta = P \big(-z_{\alpha - \epsilon} < Z_0 < z_{\epsilon} \big| \mu_1 = \mu_0 + \delta \big)$$

$$\beta = P \big(-z_{\alpha - \epsilon} < \frac{\overline{x} - \mu_0}{\sqrt{\sigma^2 / n}} < z_\epsilon \big| \mu_1 = \mu_0 + \delta \big)$$

$$= P(-z_{\alpha - \epsilon} - \frac{\delta}{\sqrt{\sigma^2/n}} < Z < z_{\epsilon} - \frac{\delta}{\sqrt{\sigma^2/n}})$$

$$=\Phi(z_{\epsilon}-\frac{\delta}{\sqrt{\sigma^{2}/n}})-\Phi(-z_{\alpha-\epsilon}-\frac{\delta}{\sqrt{\sigma^{2}/n}})$$

The requested result can be obtained from data in which the pairs are very different. Example: 10-94.

pair	1	2	3	4	5
sample 1	100	10	50	20	70
sample 2	110	20	59	31	80

$$\overline{x}_1 = 50 \quad \overline{x}_2 = 60$$

$$s_1 = 36.74$$
 $s_2 = 36.54$

$$s_{pooled} = 36.64$$

Two-sample t-test :
$$t_0 = -0.43$$
 P -value = 0.68 $\overline{x}_d = -10$ $s_d = 0.707$

$$P$$
-value = 0.68

$$\bar{x}_d = -10$$
 $s_d = 0.707$
Paired t-test: $t_0 = -31.62$

$$s_d = 0.707$$

$$P$$
-value ≈ 0

10-95 a.) $\theta = \frac{p_1}{p_2}$ and $\hat{\theta} = \frac{\hat{p}_1}{\hat{p}_2}$ and $\ln(\hat{\theta}) \sim N[\ln(\theta), \sqrt{(n_1 - x_1)/n_1 x_1 + (n_2 - x_2)/n_2 x_2}]$

The $(1-\alpha)$ confidence interval for $ln(\theta)$ can use the relationship

$$Z = \frac{\ln(\hat{\theta}) - \ln(\theta)}{\left(\left(\frac{n_1 - x_1}{n_1 x_1} \right) + \left(\frac{n_2 - x_2}{n_2 x_2} \right) \right)^{1/4}}$$

$$\ln(\hat{\theta}) - Z_{\frac{\alpha}{2}} \left(\left(\frac{n_1 - x_1}{n_1 x_1} \right) + \left(\frac{n_2 - x_2}{n_2 x_2} \right) \right)^{1/4} \le \ln(\theta) \le \ln(\hat{\theta}) + Z_{\frac{\alpha}{2}} \left(\left(\frac{n_1 - x_1}{n_1 x_1} \right) + \left(\frac{n_2 - x_2}{n_2 x_2} \right) \right)^{1/4} \le \ln(\theta) \le \ln(\theta) \le \ln(\theta) + Z_{\frac{\alpha}{2}} \left(\left(\frac{n_1 - x_1}{n_1 x_1} \right) + \left(\frac{n_2 - x_2}{n_2 x_2} \right) \right)^{1/4} \le \ln(\theta) \le \ln$$

b.) The $(1 - \alpha)$ confidence interval for θ can use the CI developed in part (a) where $\theta = e^{-\alpha}(\ln(\theta))$

$$\hat{\theta} - e^{Z_{a/2} \left(\left(\frac{n_1 - x_1}{n_1 x_1} \right) + \left(\frac{n_2 - x_2}{n_2 x_2} \right) \right)^{1/4}} \le \theta \le \hat{\theta} + e^{Z_{a/2} \left(\left(\frac{n_1 - x_1}{n_1 x_1} \right) + \left(\frac{n_2 - x_2}{n_2 x_2} \right) \right)^{1/4}}$$

c.)
$$\hat{\theta} - e^{\frac{Z_{\alpha/2}\left(\left(\frac{n_1 - x_1}{n_1 x_1}\right) + \left(\frac{n_2 - x_2}{n_2 x_2}\right)\right)^{25}}{\leq \theta \leq \hat{\theta} + e^{\frac{Z_{\alpha/2}\left(\left(\frac{n_1 - x_1}{n_1 x_1}\right) + \left(\frac{n_2 - x_2}{n_2 x_2}\right)\right)^{25}}}$$

$$1.42 - e^{\frac{1.96\left(\left(\frac{100 - 27}{2700}\right) + \left(\frac{100 - 19}{1900}\right)\right)^{1/4}}{\leq \theta \leq 1.42 + e^{\frac{1.96\left(\left(\frac{100 - 27}{2700}\right) + \left(\frac{100 - 19}{1900}\right)\right)^{1/4}}}$$

$$-1.317 \leq \theta \leq 4.157$$

Because the confidence interval contains the value 1, we conclude that there is no significant difference in the proportions at the 95% level of significance.

$$\begin{split} 10\text{-}96 \qquad & H_0: \sigma_1^2 = \sigma_2^2 \\ & H_1: \sigma_1^2 \neq \sigma_2^2 \\ & \beta = P \bigg(f_{_{1-\alpha/2,n_1-1,n_2-1}}^2 < \frac{S_1^2}{S_2^2} < f_{_{\alpha/2,m_1-1,n_2-1}}^2 \, \big| \, \frac{\sigma_1^2}{\sigma_2^2} = \delta \neq 1 \bigg) \\ & = P \bigg(\frac{\sigma_2^2}{\sigma_1^2} f_{_{1-\alpha/2,n_1-1,n_2-1}} < \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} < \frac{\sigma_2^2}{\sigma_1^2} f_{_{\alpha/2,n_1-1,n_2-1}} \, \big| \, \frac{\sigma_1^2}{\sigma_2^2} = \delta \bigg) \\ & \text{where } \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \text{ has an } F \text{ distribution with } n_1 - 1 \text{ and } n_2 - 1 \text{ degrees of freedom.} \end{split}$$