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Introduction

Fluids do not slip at solid boundaries. The fluid
velocity changes from zero to one that matches the
“far field’ in a transition, or boundary, layer where
friction and shear (the rate of change of velocity
with distance from the boundary) are strong. The
thickness of the ocean bottom (benthic) boundary
layer is determined by the bottom stress and the rate
of rotation of the earth. The benthic boundary layer
is usually thin (O(10m)) compared to typical ocean
depths of ~ 4000m. However, in coastal regions
which are shallow, and where currents and thus
friction are relatively strong compared to the deep
ocean, the benthic boundary layer may span most of
the water column.

The boundary layer can be separated into several
layers within which some forces are much stronger
than others. Neglect of the weaker forces leads to
scaling and parameterization of the flow within each
layer. The benthic boundary layer is usually con-
sidered to consist of (1) an outer or Ekman layer in
which rotation and turbulent friction (Reynolds
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stress) are important, (2) a very thin (O (107’ m))
viscous layer right next to the boundary where
molecular friction is important, and (3) a transitional
layer between these, usually called the logarithmic
layer, in which turbulent friction is important (Fig-
ure 1). The pressure gradient is an important force
in all three layers. Because the velocity profile with-
in the logarithmic layer must match smoothly with
both the Ekman layer above and the viscous layer
below, it will be considered last.

The Ekman Layer

Most of the open ocean is essentially frictionless, or
geostrophic, and well described by a balance be-
tween the Coriolis force which pushes the flow to
the right (in the Northern Hemisphere) and the
pressure gradient which keeps it from veering (Fig-
ure 2A). This picture changes as the bottom is
approached. Friction acts against the flow and
decreases the velocity U. However, the pressure
gradient remains and is not completely balanced by
the Coriolis force fU. The current backs leftward so
that friction, which is directed against the current,
establishes a balance of forces in the horizontal
plane (Figure 2B). Progressively closer to the
bottom, the increasing friction slows the flow and
brings it to a complete halt right at the bottom
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Figure 1 A conceptual sketch of the three sublayers forming
the bottom boundary layer. The pressure-gradient, friction and
Coriolis forces are in balance in the Ekman layer whereas only
friction and pressure-gradient forces are significant in the
logarithmic and viscous layers. Friction stems predominantly
from the Reynolds stress of turbulence in the logarithmic layer
whereas it comes mainly from molecular effects in the viscous
layer.

while also further backing the flow direction. A ver-
tical profile of the two components of the horizontal
velocity might look like those depicted in Figure 3.

The equations of motion and their boundary con-
ditions are

EPSRT Bt N L L
pdx pdz’ pdy p oz
U=U,,V=V,17,=1,=0 asz— o [1]

U=V=0 atz=0

where we have assumed that the vertical velocity,
W, is zero (flat bottom), taken the bottom at z = 0,
assumed that both components of the stress (z,, 7,)
vanish far above the bottom and assigned the x- and
y-components of the geostrophic velocity to U, and

V,, respectively. The flow is geostrophic far above
the bottom, that is
10P 10P
= . _ el 2
U= = 5 —MVe= =5 12

and if the density is homogeneous within the bound-
ary layer, the pressure gradient is independent of
height within this layer. Substituting eqn [2] into
eqn [1] gives the so called Ekman equation for the
boundary layer, namely
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Figure 2 Plan view of the balance of forces in the geostrophic
flow far above the bottom (A) and in the Ekman layer (B). The
current, U, is directed to the right in the positive x-direction. Far
above the bottom, the pressure gradient in the y-direction is
balanced by Coriolis force in the opposite direction and this
force is always directed to the right of the current (in the
Northern Hemisphere). Within the Ekman layer, friction, t, acts
against the current. A balance of forces in both the x- and the
y-directions is only possible if the current backs anti-clockwise
when viewed from above.

It is convenient to assume that the bottom stress has
no y component so that the bottom stress 7, = 7,(0)
is directed entirely in the x-direction, i.e., 7,(0) = 0.
Solving eqn [3] for the velocity profile requires the

Height —

Current —
Figure 3 A conceptual velocity profile that may result from the
effect of friction as depicted in Figure 2. A positive current
component, V, is directed to the left of the geostrophic current.
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relationship between stress and velocity, which is
a major focus of boundary layer research. Fortu-
nately, the height above the bottom over which
friction is important can be determined using only
dimensional analysis. For example, the x-component
of velocity must be some function, F, of the
parameters and variables in eqn [3] and its bound-
ary condition t,(0) = 74, so that

U:F(Pﬂmf,z) [4]

The four variables in eqn [4] cannot all be indepen-
dent. For example, p and 7, must always appear as
a ratio because they are the only ones with the
dimension of mass. The root of this ratio

0

has dimensions of velocity and is called the “friction
velocity’. It represents a scale for the turbulent velo-
city fluctuations in the boundary layer. The only
other independent variable is

1 jtp u,
Bl U ) 6
fﬁ f o

and this is the only dimensional group that can be
used to nondimensionalize z, the height above the
bottom. Thus, the velocity profile must be

H

(U - Ug)/u* = Fu(z/H)
[7]
(V= V,)/u, = F,(z/H)

where the F, and F, are universal functions. Equa-
tion [7] is usually called the velocity defect law. The
order of magnitude of the height of the boundary
layer, the layer in which friction is important, is
given by H and this is usually called the Ekman
height. The actual height to which friction is
important is within a factor of order unity of H.
The Ekman height can also be considered the
transition height; for z < H, friction dominates
over the Coriolis force whereas above this level,
the reverse holds. An important effect of rotation is
that the thickness of the benthic boundary layer
does not grow in the downstream direction (for
uniform bottom conditions) whereas the boundary
layer over a nonrotating and flat surface grows
downstream.

Numerical values for the Ekman height can be
derived from a traditional formulation of the

bottom stress in terms of a drag coefficient, such as
2
7o = pCp Ug (8]

where the drag coefficient, Cp, must depend on the
bottom characteristics, such as roughness. Typical
values are Cp ~ 0.002. Using a geostrophic flow of
U, ~0.1ms~ ' commonly found in the open ocean,
and f=1x10"*s™" gives a friction velocity of
u, =4.5x10°ms™"' and an Ekman height of
H =45 m which is 100 times smaller than the aver-
age ocean depth. The friction layer is thus thin
compared to the ocean depth, as assumed.

Ekman solved eqn [3] almost a century ago for
the special case of a stress proportional to the shear.
That is,

ou
Ty = — pKV_;

0z

ov
= —pKyg 9]

where Ky is the eddy viscosity. The mathematically
elegant spiral predicted by eqns [3] and [9] is pre-
sented in standard texts books on fluid mechanics.
However, the predicted profile has never been ob-
served and will surely remain undetected because
the assumption of a constant eddy viscosity is un-
realistic for turbulence close to a solid boundary (as
shown below).

Viscous Sublayer

Very near a smooth bottom, z < H, a layer forms in
which momentum is transferred only by molecular
diffusion - a viscous sublayer. In general the stress,

[10]

T, = pv—— — pu't

dz

is the sum of molecular friction which stems from
the mean vertical shear (first term on the right hand
side of eqn [10]) and the Reynolds stress — pu'w/,
where v = p/p is the kinematic molecular viscosity
(~1x107°m?s™"). The covariance #'w’ of hori-
zontal, #', and vertical, w’, velocity fluctuations
leads to a transfer of momentum from the fluid
towards the wall. Very near the wall vertical velo-
city fluctuations are strongly suppressed (no normal
flow boundary condition) and the Reynolds stress is
negligible compared to molecular friction.

The Ekman height, H, is not an appropriate para-
meter for non-dimensionalizing the height above the
bottom in the thin viscous layer. Rather, the viscous
scale is used:

5= wn, [11]
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Using eqn [3] the nondimensionalized momentum
balance is

1) _ d(z,/u3)
 Hu, V=V = d(z/0)
0 d(z, /u3,) 121
T M*
Hu, U=V = d(yz/é)

To estimate the magnitude of the terms on the right
hand side of eqn [12] the following is noted. From
eqn [8], the ratio of the geostrophic speed to friction
velocity is related to the drag coefficient by,
U,/u, = Cp'? and this equals approximately 25.
The velocity is at most comparable to the geo-
strophic velocity, so the factor (U — U,)/u, is no
more than about 25. Even for very weak flows, the
terms in eqn [12] are smaller than O(10~%). Thus,
the vertical divergence of the stress is zero and the
stress itself is constant.

When the stress stems entirely from molecular
friction, the only possible velocity profile is a linear
one that has a shear which is commensurate with
the bottom stress, that is,

[13]

=—=z+
v

U _zu,

u*
Laboratory observations of flow over smooth surfa-
ces show that eqn [13] holds to about z, = 5; this
inner most region is called the viscous sublayer.
A typical dimensional thickness for the viscous sub-
layer is Sv/u, > 0.001 m. Thus, this layer never ex-
tends more than a few millimeters above the
bottom. Most of the ocean bottom is not ‘smooth’
compared to this scale.

The Wall Layer

Further above the bottom but still well below the
Ekman layer, for v/u, <z < H = u,/f, neither the
Ekman height, H, nor the molecular viscosity, v,
can be relevant parameters controlling the velocity
profile. The only parameter that can non-dimen-
sionalize the vertical height is either the thickness of
the viscous sublayer or the characteristic height of
bottom roughness features, z,. Equation [12] is still
the appropriate nondimensional momentum balance
if 2 is substituted for 6. The left hand side of eqn
[12] is no longer as small as for the viscous sublayer
but it is still small compared to 1, and the stress can
be taken as constant. Thus, the wall layer and the
viscous sublayer are usually called the constant
stress layer. The stress eqn [10], however, is now
entirely due to the Reynolds stress. Because the

bottom stress has no component in the y-direction,
there is also no bottom velocity in this direction.

The only parameters that control the velocity pro-
file are the bottom stress and the roughness height.
On purely dimensional grounds, we have near the
wall:

Viu, =0

[14]
Ulu, = g(2/20)

where g, is a, yet to be determined, universal func-
tion. Equation [14] is the law of the wall for rough
bottoms. The law of the wall must be matched to
the velocity-defect law eqn [7] and this is usually
done by matching the shear rather than the velocity
itself. The result is that

£= —F((0)=—-A
M*
v =1ln<z> [15]
u, K )
LA =11n<H> e
u, K <0

where k¥ = 0.4 is von Karman’s constant and atmo-
spheric observations indicate that A~ 12 and
C ~ 4. These equations are valid for z/z, > 1 and
z/H <1, simultaneously. Thus, the velocity in-
creases logarithmically with increasing height and
this profile ultimately turns into an ‘Ekman’-like
spiral that matches the geostrophic flow at
z = O(H). A thin viscous sublayer may underlay this
profile if the bottom is very smooth in which case
2o is chosen to match the profile given by eqn [13]
for the same bottom stress.

It is frequently convenient to express the stress in
terms of an eddy viscosity and the shear such as in
eqn [9]. However, a constant stress and a logarith-
mic velocity profile make the eddy viscosity propor-
tional to height, namely

K=wu,xz [16]
Thus, a constant eddy diffusivity is not a good
model for the wall layer and may well be inappro-
priate in much of the Ekman layer.

The Reynolds stress in the presence of a shear
leads to the production of turbulent kinetic energy
within the wall layer. It is thought that almost all of
the turbulent Kinetic energy is dissipated locally and
that the rate of dissipation is given by

[17]
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Thus, profiles of the rate of dissipation of kinetic
energy should provide an alternate measure of the
bottom stress to that which can be derived from the
velocity profile.

Observations

Values of the bottom stress are required for two
major purposes: as a boundary condition for flows
above the bottom and for the prediction of sediment
motions. The near bottom velocity profile eqn [15]
provides a convenient method for estimating the
bottom stress through a fitting of U against the
logarithm of z. This profile method is the one most
frequently used to estimate the bottom stress. Point
current meters have been placed within a few meters
of the bottom and, under the assumption that they
are within the logarithmic region, the bottom stress
was estimated from as few as a pair of current
meters. Some bottom velocity ‘profile’ measure-
ments were accompanied by concurrent measure-
ments of the turbulent fluctuations of along-flow
and vertical velocity components. The covariance of
these fluctuations, — p#'w’, is an unambiguous
measure of the Reynolds stress and, when this stress
is extrapolated to the bottom, it usually agrees
closely with the stress (pu3,) inferred from the slope
of the logarithmic velocity profile.

Taking profiles of velocity within the benthic
boundary layer is very difficult. Consequently, there
is very little observational evidence on the form of
the velocity profile. One of the best deep-ocean
velocity profiles was taken in the North Atlantic
Western Boundary Current over the Blake Outer
Ridge and reached to within Sm of the bottom
(Figure 4). The potential density was homogeneous
within 250m of the bottom and so the pressure
gradient was independent of height as assumed in
eqn [3]. The current in the upper parts of the homo-
geneous layer was 0.22ms ™' and directed along the
isobaths (approximately southward). The along-
slope current had a very slight maximum at 40m,
decreased sharply below 15m and dropped to
0.18ms ™' at Sm. The full decay to zero current at
the bottom was not resolved for instrumental rea-
sons. The cross-slope current was negligible further
than 50m above the bottom. It increased to
0.025ms~ ' at Sm and was consistently directed to
the left of the along-slope current (approximately
eastward). The veering of the velocity vector with
height above the bottom was like that depicted in
Figures 2 and 3 and reached a maximum of 8° at
the lowest observation located at 5 m. Simultaneous
measurements of the rate of dissipation of turbulent
kinetic energy indicate that the turbulence was neg-

ligible for heights greater than 50m above the
bottom. The dissipation rate decreased monotonically
with increasing height up to 50m. Above this
height, it was small and fairly uniform. Thus, the
frictional layer was 50m thick and 5 times thinner
than the homogeneous layer. It is common to find
different heights for the homogeneous (mixed) and
the turbulent (mixing) layers. The height of the
Ekman layer, H, predicted by eqn [6] was 120m
and the actual height to which friction was impor-
tant was close to the expected value of kH = 50m,
where k = 0.41 is the von Karman constant.

The height of the logarithmic layer (eqn [15]) has
not been extensively surveyed and based on the
scaling arguments it must be small compared to the
Ekman height. Measurements in a tidal channel in-
dicate that profiles depart from a logarithmic form
at about 3-4% of the Ekman height. The height of
the constant stress layer cannot be greater than the
logarithmic profile height.

For horizontally homogeneous bottom roughness,
such as flat sand and fine gravel, the roughness
height, z,, is approximately 30 times smaller than
the actual roughness. The notion is that the velocity
profile reaches zero somewhere below the highest
bottom features. Thus, there must be considerable
local variations of the velocity profile for heights
less than z ~ 30z, and eqn [15] represents a hori-
zontally averaged velocity profile. The constancy of
2o is not well established for any particular site nor
does it increase consistently with increasing bottom
roughness. A systematic decrease in z, with increas-
ing speed above 0.2ms ™' has been found and this
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Figure 4 A sketch of the along-, U, and across-isobath, V,
flow over the Blake Outer Ridge in the North Atlantic Western
Boundary Current as reported by Stahr and Sanford (1999).
Dashed lines within 5m of the bottom are hypothetical
extensions.
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has been attributed to the onset of sediment motions
and its smoothing effect on the bottom.

The bottom roughness is seldom horizontally
homogeneous and the major contribution to rough-
ness comes from bedforms (ripples and sand waves,
for example) and other features with horizontal
scales far greater than the largest pieces of bottom
material. Thus, bottom profiles well above z ~ 30z,
should show horizontal variations (Figure 5). For
example, a wavy bottom may appear locally to have
a roughness scale commensurate with the bottom
material (such as sand) but, at a height comparable
to the amplitude of sand waves, the bottom turns
‘rough’ as the turbulent eddies respond to the larger
horizontal-scale structures on the bottom and not
just the local features. Additional drag will be
exerted on the flow by the pressure differences
across sand waves (or other obstacles) due to
stream-line asymmetry and outright flow separation
when the slope on the lee side of objects is very
steep. This is usually labeled form drag due to its
similarity to the drag on bluff bodies. This feature
was first observed in 1982 in profiles taken over the
continental shelf off Oregon. Two logarithmic
layers with differing slopes were found (Figure
6A). The lower layer extended to 0.1m, and its
logarithmic slope implies a friction velocity of
u, = 0.004ms~". This layer appears to be associated
with skin friction over a fairly smooth surface. The
upper layer reached to at least 0.2m and its much
greater slope is indicative of stress due to form drag.
More recent and much more extensive measurements
in a tidal channel show a similar double logarithmic

Figure 5 Conceptual sketch of spatial variations in the vertical
profile of velocity over bedforms with long horizontal scales,
such as sand waves. The vertical and dashed lines give a
zero-velocity reference. The flow accelerates and streamlines
compress on the ‘up-wind’ side of crests and the flow decelerates
and its streamlines dilate on the lee side. This causes a
pressure drop in the flow direction. If slopes are steep, flow
separation and back flow may occur in the troughs and over the
lee sides as depicted for the right profile.

velocity profile (Figure 6B). The slope increased by a
factor of 2 near 4 m. Span-wise oriented sand waves
of 0.3 m amplitude and 16 m wavelength were pres-
ent but with heights much smaller than 4m. The
effect of long horizontal-scale features on the flow
over the bottom is still being investigated.

An alternate method of estimating the bottom
stress is provided by the dissipation profile tech-
nique eqn [17]. Profiles of the rate of dissipation
have verified the inverse height dependence pre-
dicted by eqn [17] for heights of up to 10 m. How-
ever, when the estimates of bottom stress derived
from dissipation profiles are compared to the stress
estimated from a fit of the velocity profile to a logar-
ithmic form, the dissipation based estimates are typ-
ically three times smaller. Momentum budgets for
bottom streams such as the Mediterranean outflow
are consistent with the drag determined from the
velocity profile but not with the drag inferred from
dissipation profiles. There is still no satisfactory ex-
planation for such discrepancies.

Discussion

The oceanic bottom boundary layer is a thin region
of strong shear and friction with a characteristic
height H =u,/f, the Ekman height, that extends
some 10-50m above the bottom. A logarithmic

Oregon shelf Tidal channel
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Figure 6 A sketch of velocity profiles plotted against the
logarithm of height above the bottom based on data reported by
Chriss and Caldwell (1982) (A) and Sanford and Lien (1999)
(B). Approximately ten data points were available for each
regression in (A) whereas data from about 100 different depths
were used for (B). Both profiles imply a factor of 2 jump in
friction velocity and a factor of 4 increase in stress for the upper
logarithmic layer compared to the lower layer.
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velocity profile usually exists in the lower few
percent of the Ekman height and the slope of this
profile can be used to infer the bottom stress. It has
only recently become feasible to make detailed verti-
cal velocity profiles and these reveal two logarithmic
regions. The inner layer is controlled by the very
local characteristics of the bottom and its slope
gives the stress experienced by particulates on the
bottom. The outer layer reveals the large addition of
form drag due to long horizontal-scale bottom fea-
tures and this drag provides the boundary condition
for the flow well above the bottom. That is, circula-
tion models should use a drag coefficient consistent
with the friction velocity derived from the outer
layer. The outer layer may be important to sedi-
mentation after the onset of suspension.

See also

Ekman Transport and Pumping.
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Introduction

This article describes sensors and techniques used to
measure turbulent kinetic energy dissipation in the
ocean. Dissipation may be thought of simply as the
rate at which turbulent mechanical energy is con-
verted into heat by viscous friction at small scales.
This is a complicated indirect measurement requir-
ing mathematical models to allow us to envisage
and understand turbulent fields. It will require using
this theory to understand how sensors might be
developed using basic principles of physics to
measure properties of a turbulent field to centimeter
scales. Instruments must be used to carry these
sensors into the ocean so that the researcher can
measure its turbulent characteristics in space and
time. It is also this sensor-instrument combination
that converts the sensor output into a quantity,
normally a voltage varying in time, that is used by
the experimenter to calculate turbulent intensity.
Thus, both the characteristics of sensors and the
way in which the sensor-instrument combination
samples the environment must be understood and
will be discussed below.

Understanding Turbulence in the
Ocean

There is no universally accepted definition of turbu-
lence. Suppose that one stirs a bowl of clear water
and injects some colored dye into it. One sees that
filaments of dye become stretched, twisted and
contorted into smaller and smaller eddies and even-
tually the bowl becomes a uniform color. This ex-
periment leads to one definition of turbulence. It
includes the concept that eddies in the water are
distributed randomly everywhere in space and time,
that energy is transferred from larger to smaller
eddies, and that over time the mean separation of
the dyed particles increases. In contrast, the ocean is
typically stratified through a density that is deter-
mined by the temperature and salt in the water as
well as the pressure. In this environment, a vertical
shear in the velocity in the water column can be
large enough to overcome the stability. Energy from
the mean flow is converted into large-scale eddies
determined by flow boundary conditions that charac-
terize turbulent kinetic energy at its maximum scales.
Further vortex stretching creates smaller and smaller
eddies resulting in a turbulent cascade of energy (ve-
locity fluctuations) to smaller scales until viscous for-
ces begin to dominate where the energy is eventually
dissipated as heat. This article focuses on sensors to
measure this dissipation process directly by measur-
ing the effect of viscosity on the turbulent cascade.



