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Introduction

Ocean surface waves are the most common oceano-
graphic phenomena that are known to the casual
observer. They can at once be the source of inspira-
tion and primal fear. It is remarkable that the com-
plex, random wave field of a storm-lashed sea can
be studied and modeled using well-developed theor-
etical concepts. Many of these concepts are based
on linear or weakly nonlinear approximations to the
full nonlinear dynamics of ocean waves. Early con-
tributors to these theories included such luminaries
as Cauchy, Poisson, Stokes, Lagrange, Airy, Kelvin
and Rayleigh. Many of the current challenges in the
study of ocean surface waves are related to non-
linear processes which are not yet well understood.
These include dynamical coupling between the
atmosphere and the ocean, wave-wave interactions,
and wave breaking.

For the purposes of this article, surface waves are
considered to extend from low frequency swell from
distant storms at periods of 10s or more and
wavelengths of hundreds of meters, to capillary
waves with wavelengths of millimeters and frequen-
cies of O(10) Hz. In between are wind waves with
lengths of O(1-100) m and periods of O(1-10)s.
Figure 1 shows a spectrum of surface waves mea-
sured from the Research Platform FLIP off the coast
of Oregon. The spectrum, @, shows the distribution
of energy in the wave field as a function of fre-
quency. The wind wave peak at approximately 0.13
Hz is well separated from the swell peak at approx-
imately 0.06 Hz.

Ocean surface waves play an important role in
air-sea interaction. Momentum from the wind goes
into both surface waves and currents. Ultimately the
waves are dissipated either by viscosity or breaking,
giving up their momentum to currents. Surface
waves affect upper-ocean mixing through both wave
breaking and their role in the generation of Lang-
muir circulations. This breaking and mixing influen-
ces the temperature of the ocean surface and thus
the thermodynamics of air-sea interaction. Surface
waves impose significant structural loads on ships
and other structures. Remote sensing of the ocean

surface, from local to global scales, depends on the
surface wave field.

Basic Formulations

The dynamics and kinematics of surface waves are
described by solutions of the Navier-Stokes equa-
tions for an incompressible viscous fluid, with ap-
propriate boundary and initial conditions. Surface
waves of the scale described here are usually gener-
ated by the wind, so the complete problem would
include the dynamics of both the water and the air
above. However, the density of the air is approxim-
ately 800 times smaller than that of the water,
so many aspects of surface wave kinematics and
dynamics may be considered without invoking
dynamical coupling with the air above.

The influence of viscosity is represented by the
Reynolds number of the flow, R, = UL/v, where
U is a characteristic velocity, L a characteristic
length scale, and v = p/p is the kinematic viscosity,
where u is the viscosity and p the density of the
fluid. The Reynolds number is the ratio of inertial
forces to viscous forces in the fluid and if R, > 1, the
effects of viscosity are often confined to thin bound-
ary layers, with the interior of the fluid remaining
essentially inviscid (v = 0). (This assumes a homo-
geneous fluid. In contrast, internal waves in a con-
tinuously stratified fluid are rotational since they
introduce baroclinic generation of vorticity in the
interior of the fluid). Denoting the fluid velocity by
u = (u,v,w), the vorticity of the flow is given by
{=Vxu If {=0, the flow is said to be irrota-
tional. From Kelvin’s circulation theorem, the
irrotational flow of an incompressible (V.u =0)
inviscid fluid will remain irrotational as the flow
evolves. The essential features of surface waves may
be considered in the context of incompressible ir-
rotational flows.

For an irrotational flow, u = V¢ where the scalar
¢ is a velocity potential. Then, by virtue of incom-
pressibility, ¢ satisfies Laplace’s equation

V=0 1]

We denote the surface by z = n(x,y,t), where (x,y)
are the horizontal coordinates and ¢ is time. The
kinematic condition at the impermeable bottom at
z= —bh, is one of no flow through the boundary:

% _

oz —bh (2]

0 at z=
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(A) Surface displacement spectrum measured with an electromechanical wave gauge from the Research Platform FLIP

in 8 m s~ winds off the coast of Oregon. Note the wind-wave peak at 0.13 Hz, the swell at 0.06 Hz and the heave and pitch and roll
of FLIP at 0.04 and 0.02 Hz respectively. (B) An extension of (A) with logarithmic spectral scale, note that from the wind sea peak to
approximately 1 Hz the spectrum has a slope like f~#, common in wind-wave spectra. (Reproduced with permission from Felizardo
FC and Melvile WK (1995). Correlations between ambient noise and the ocean surface wave field. Journal of Physical

Oceanography 25: 513-532.)

There are two boundary conditions at z = #:

on on = on
op 1, _
E‘i‘zu +gn=(p. —p-)/p- (4]

The first is a kinematic condition which is equiva-
lent to imposing the condition that elements of fluid
at the surface remain at the surface. The second is
a dynamical condition, a Bernoulli equation, which
is equivalent to stating that the pressure p_ at
z=1n_, an infinitesimal distance beneath the sur-
face, is just a constant atmospheric pressure, p,,
plus a contribution from surface tension. The effect
of gravity is to impose a restoring force tending to
bring the surface back to z = 0. The effect of surface
tension is to reduce the curvature of the surface.

Although this formulation of surface waves is
considerably simplified already, there are profound
difficulties in predicting the evolution of surface
waves based on these equations. Although Laplace’s
equation is linear, the surface boundary conditions
are nonlinear and apply on a surface whose speci-
fication is a part of the solution. Our ability to
accurately predict the evolution of nonlinear waves

is limited and largely dependent on numerical
techniques. The usual approach is to linearize the
boundary conditions about z = 0.

Linear Waves

Simple harmonic surface waves are characterized by
an amplitude a, half the distance between the crests
and the troughs, and a wavenumber vector k with
|k| = k = 27/A, where A is the wavelength. The sur-
face displacement, (unless otherwise stated, the real
part of complex expressions is taken)

i(k.x —at)

[5]

n=ae

where ¢ = 27/T is the radian frequency and T is the
wave period. Then ak is a measure of the slope of
the waves, and if ak«1, the surface boundary con-
ditions can be linearized about z = 0.

Following linearization, the boundary conditions
become

on

v (6]
Gl0) /o oy
E—i-gn—;(@—i-a—yz at z=0 [7]
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where the linearized Laplace pressure is

o’y

o’y
pa _p* - F<G_xZ

where T is the surface tension coefficient.

Substituting for n and satisfying Laplace’s equa-
tion and the boundary conditions at ¢ =0 and — 5
gives

_igla coshk(z + h)

0= coshkh 1l
where
¢* = g'ktanh kb [10]
and
g =g(1 +Tk/p) [11]

Equations relating the frequency and wavenumber,
o = a(k), are known as dispersion relations, and for
linear waves provide a fundamental description of
the wave kinematics. The phase speed,

¢ 12
c=g/k= <ktanh kh>

[12]
is the speed at which lines of constant phase (e.g.,
wave crests) move.

For waves propagatinge in the x-direction, the
velocity field is

u_%cosh(z-i—h)

i(kx — at)
o cosh kh ¢ ]
v=20 [14]
_iglaksinh(z +h) ooy
w= - o cosh kb ¢ 1]
and the pressure

_, cosh(z +h)

P =ren= 16l

The velocity decays with depth away from the sur-
face, and, to leading order, elements of fluid execute
elliptical orbits as the waves propagate.

For shallow water, kbh«1,

'k
(1,v,10, ) = (%,o,o, pg’)n [17]

so that there is no vertical motion, just a uniform
sloshing backwards and forwards in the horizontal
plane in phase with the surface displacement 7. The
phase speed ¢ = (g'h)"*, is independent of the
wavenumber. Such waves are said to be nondisper-
sive. Waves propagating towards shore eventually
attain this condition, and, as the depth tends to
zero, nonlinear effects become important as ak in-
creases.
For very deep water, kh>1,
/ .,
gk 0 ig'k

(Mavswsp) = ( PR - pg/>ekzn [18]

b
g

so that the water particles execute circular motions
that decay exponentially with depth. The horizontal
motion is in phase with the surface displacement,
and the phase speed of the waves

172
c=(g/k)" = [%(1 + l"kz/pg)} [19]

These deep-water waves are dispersive; that is, the
phase speed is a function of the wavenumber as
shown in Figure 2. The influence of surface tension
relative to gravity is determined by the value of the
dimensionless parameter ¥ = I'k?/pg. When X = 1,
the wavelength 1 =1.7cm and the phase speed is
a minimum at ¢ =23cms~'. When X1, surface
tension is the dominant restoring force, the
wavelength is less than 1.7 cm, and the phase speed

10 +
3 ¢ = (g/k + k/p)*?
[3) 1F \
0.1 b . . . . .
0.001  0.01 0.1 1 10 100
A (m)

Figure 2 The phase speed of surface gravity-capillary waves
as a function of wavelength 2. A minimum phase speed of
23 cm s~ ! occurs for A =0.017 m. Shorter waves approach
pure capillary waves, whereas longer waves become pure grav-
ity waves. Note that there are both capillary and gravity waves
for a given phase speed. This is the basis of the generation of
parasitic capillary waves on the forward face of steep gravity
waves.
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increases as the wavelength decreases. When X« 1,
gravity is the dominant restoring force, the
wavelength is greater than 1.7cm, and the phase
speed increases as the wavelength increases.

The Group Velocity

Using the superposition principle over a continuum
of wavenumbers a general disturbance (in two spa-
tial dimensions) can be represented by

N, 1) = r

where, as above, only the real part of the integral
is taken. Assuming the disturbance is confined to
wavenumbers in the neighbourhood of k,, and
expanding (k) about k, gives

a(k)e® = dk [20]

d
olk) = olh,) + (k — ko) s, + o [21]
whence
n(x, t)iei(k"x“(k‘))’)J a(k)e® kel 4
[22]
where
do
Cg = dk - (23]

is the group velocity. Eqn [22] demonstrates that the
modulation of the pure harmonic wave propagates
at the group velocity. This implies that an isolated
packet of waves centered around the wavenumber
k, will propagate at the speed c,, so that an ob-
server wishing to follow waves of the same length
must travel at the group velocity. Since the energy
density is proportional to a* (see below), it is also
the speed at which the energy propagates. These
properties of the group velocity apply to linear
waves, and more subtle effects may become impor-
tant at large slopes. In general, ¢, # c.
For deep-water gravity waves,

1 1 g 1/2
sz”z(%)

so the wave group travels at half the phase speed,
with waves appearing at the rear of a group
propagating forward and disappearing at the front
of the group.

[24]

For deep-water capillary waves,

o =Tk/p, c=(Tk/p)'"?, [25]

Ce =37C

[\S] S}

so waves appear at the front of the group and
disappear at the rear of the group as it propagates.
For shallow water gravity waves, kh«1, ¢, = c.

Second Order Quantities

The energy density (per horizontal surface area) of
surface waves is

1
E=5pga [26]

being the sum of the kinetic and potential energies.
In the case of gravity waves, the potential energy
results from the displacement of the surface about
its equilibrium horizontal position. For capillary
waves, the potential energy arises from the stretch-
ing of the surface against the restoring force of
surface tension.
The mean momentum density M is given by

M= %paazcoth khe = %e [27]

where the unit vector e = k/k.

To leading order, linear gravity waves transfer
energy without transporting mass; however, there is
a second order mass transport associated with sur-
face waves. In a Lagrangian description of the flow
it can be shown that for irrotational inviscid wave
motion the mean horizontal Lagrangian velocity
(Stokes drift) of a particle of fluid originally at
2=2, 18

u = akaz%}(}?’k;h)e [28]
which reduces to (ak)*ce***>e when kb > 1. This
second order velocity arises from the fact that the
orbits of the particles of fluid are not closed. Integ-
rating eqn [28] over the depth it can be shown that
this mean Lagrangian velocity accounts for the wave
momentum M in the Eulerian description. The
Stokes drift is important for representing scalar
transport near the ocean surface, but this transport
is likely to be significantly enhanced by the intermit-
tent larger velocities associated with wave breaking.

Longer waves, or swell, from distant storms can
travel great distances. An extreme example is the
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propagation of swell along great circle routes from
storms in the Southern Ocean to the coast of Cali-
fornia. For waves to travel so far, the effects of
dissipation must be small. In deep water, where
the wave motions have decayed away to negligible
levels at depth, the contributions to the dissipation
come from the thin surface boundary layer and the
rate of strain of the irrotational motions in the bulk
of the fluid. It can be shown that the integral is
dominated by the latter contributions, and the time-
scale for the decay of the wave energy is just

1dE\ ! -
7, = <E dt> = (4vk?) [29]
or /8nvk* wave periods. This gives negligible dissi-
pation for long-period swell in deep water over
scales of the ocean basins. More realistic models of
wave dissipation must take into account breaking
and near surface turbulence which is sometimes
parameterized as a ‘super viscosity’ or eddy viscos-
ity, several orders of magnitude greater than the
molecular value. When waves propagate into shal-
low water, the dominant dissipation may occur in
the bottom boundary layer.

Egn [27] shows that dissipation of wave energy is
concomitant with a reduction in wave momentum,
but since momentum is conserved, the reduction of
wave momentum is accompanied by a transfer of
momentum from waves to currents. That is, net
dissipative processes in the wave field lead to the
generation of currents.

Waves on Currents: Action
Conservation

Waves propagating in varying currents may ex-
change energy with the current, thus modifying the
waves. Perhaps the most dramatic examples of this
effect come when waves propagating against a cur-
rent become larger and steeper. Examples occur off
the east coast of South Africa as waves from the
Southern Ocean meet the Aghulas Current; as North
Atlantic storms meet the northward flowing Gulf
Stream, or at the mouths of estuaries as shoreward
propagating waves meet the ebb tide.

For currents U = (U, V) that only change slowly
on the scale of the wavelength, and a surface dis-
placement of the form

n = alx,y, )e’" >0 [30]
where a is the slowly varying amplitude and 0 is the
phase. The absolute local frequency w = — 00/0¢,

and the x- and y-components of the local wave
number are given by k = 00/0x, [ = 00/0y. The fre-
quency seen by an observer moving with the current
U is

- <@ + U.Vé)) [31]

ot

which is equal to the intrinsic frequency ¢. Thus

c=w—Uk [32]
which is just the Doppler relationship.
We also have,
ok
Fn + Vo =0, [33]

which can be interpreted as the conservation of
wave crests, where k is the spatial density of crests
and w the wave flux.

The velocity of a wave packet along rays is

dx; do
dt —U,’+aixi—U,'+Cg,-

[34]

which is simply the vector sum of the local current
and the group velocity in a fluid at rest. Further-
more, refraction is governed by
dk;, oU;, 0o
dt N /axi ax,-

[35]

where the first term on the right represents refrac-
tion due to the current and the second is due to
gradients in the waveguide, such as changes in the
depth. It is this latter term which results in waves,
propagating from deep water towards a beach,
refracting so that they propagate normal to shore.

For steady currents, the absolute frequency is con-
stant along rays but the intrinsic frequency may
vary, and the dynamics lead to a remarkable and
quite general result for linear waves. If E is the
energy density then the quantity ./ = E/o, the wave
action, is conserved:

0o/ 0
E +67x,[(U’ + Cgl-)&{] =0

[36]
In other words, the variations in the intrinsic fre-
quency o and the energy density E, are such as to
conserve the quotient.

This theory permits the prediction of the change
of wave properties as they propagate into varying
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currents and water depths. For example, in the case
of waves approaching an increasing counter current,
the waves will move to shorter wavelengths (higher
k), larger amplitudes, and hence greater slopes, ak.
As the speed of the adverse current approaches the
group velocity, the waves will be ‘blocked’ and be
unable to propagate further. In this simplest theory,
a singularity occurs with the wave slope becoming
infinite, but higher order effects lead to reflection of
the waves and the same blocking effect. This theory
also forms the basis of models of long-wave-short-
wave interaction that are important for wind-wave
generation and the interpretation of remote sensing
measurements of the ocean surface, including the
remote sensing of long nonlinear internal waves.

Nonlinear Effects

The nonlinearity of surface waves is represented
by the wave slope, ak. For typical gravity waves
at the ocean surface the average slope may be
O(1072-107"); small, but not negligibly so. Non-
linear effects may be weak and can be described as
a perturbation to the linear wave theory, using the
slope as an expansion parameter. This approach,
pioneered by Stokes in the mid-nineteenth century,
showed that for uniform approach deep-water
gravity waves,

o’ =gk(l +a’k* + ), [37]

and

1
nzacos€)+za2kc0529+ [38]

Weakly nonlinear gravity waves have a phase speed
greater than linear waves of the same wavelength.
The effect of the higher harmonics on the shape of
the waves leads to a vertical asymmetry with
sharper crests and flatter troughs.

The largest such uniform wave train has a slope
of ak = 0.446 a phase speed of 1.11¢, and a discon-
tinuity in slope at the crest containing an included
angle of 120°. This limiting form has sometimes
been used as the basis for the models of wave
breaking; however, uniform wave trains are
unstable to side-band instabilities at significantly
lower slopes, and it is unlikely that this limiting
form is ever achieved in the ocean.

With the assumption of both weak nonlinearity
and weak dispersion (or small bandwidth,
Ok/k,<«1), it may be shown that if

(%, 5, 1) = Re[Alx, y, t)e'*o> "] [39]

where o, = o(k,) and %, means that the real part is
taken, then the complex wave envelope A(x,y,?)
satisfies a nonlinear Schrodinger equation or one of
its variants. Solutions of the nonlinear Schrédinger
equation for initial conditions that decay sufficiently
rapidly in space evolve into a series of envelope
solitons and a dispersive tail. Solitons propagate as
waves of permanent form and survive interactions
with other solitons with just a change of phase.
Attempts have been made to describe ocean surface
waves as fields of interacting envelope solitons;
however, instabilities of the two-dimensional soliton
solutions, and the effects of higher-order nonlineari-
ties, random phase and amplitude fluctuations in
real wave fields give pause to the applicability of
these idealized theoretical results.

Resonant Interactions

Modeling the generation, propagation, interaction,
and dissipation of wind-generated surface waves is
of great importance for a variety of scientific, com-
mercial and social reasons. A rigorous theoretical
foundation for all components of this problem does
not yet exist, but there is a rational theory for
weakly nonlinear wave-wave interactions.

For linear waves freely propagating away from
a storm, the spectral content at any later time is
explicitly defined by the initial storm conditions. For
a nonlinear wave field, wave-wave interactions can
lead to the generation of wavenumbers different
from those comprising the initial disturbance. For
surface gravity waves, these nonlinear effects lead
to the generation of waves of lower and higher
wavenumber with time. The timescale for this
evolution in a random homogeneous wave field is of
the order of (ak)* times a characteristic wave period;
slow, but significant over the life of a storm.

The foundation of weakly nonlinear interactions
between surface waves is the resonant interaction
between waves satisfying the linear dispersion rela-
tionship. It is a simple consequence of quadratic
nonlinearity that pairs of interacting waves lead to
the generation of waves having sum and difference
frequencies relative to the original waves. Thus

ky=tki+k, o3=t0 %0, [40]
If in addition, a;(i = 1,2, 3) satisfies the dispersion
relationship, then the interaction is resonant. In
the case of surface waves, the nonlinearities
arise from the surface boundary conditions, and
resonant triads are possible for gravity capillary
waves, and gravity waves in water of intermediate

depth.
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For deep-water gravity waves, cubic nonlinearity
is required before resonance occurs between a
quartet of wave components:

kl ikz ika ik4=0,

o to, to3to, £ =0, O'i:<gki)1/2 [41]
These quartet interactions comprise the basis of
nonlinear wave-wave interactions in operational
models of surface gravity waves. Exact resonance is
not required, since even with detuning significant
energy transfer can occur across the spectrum. The
formal basis of these theories may be cast as prob-
lems of multiple spatial and temporal scales, and
higher-order interactions should be considered as
these scales increase, and the wave slope increases.

Parasitic Capillary Waves

The longer gravity waves are the dominant waves
at the ocean surface, but recent developments in
air-sea interaction and remote sensing, have placed
increasing importance on the shorter gravity-
capillary waves. Measurements of gravity-capillary

waves at sea are very difficult to make and much
of the detailed knowledge is based on laboratory
experiments and theoretical models.

Laboratory measurements suggest that the initial
generation of waves at the sea surface occurs
in the gravity-capillary wave range, initially at
wavelengths of O(1) cm. As the waves grow and
the fetch increases, the dominant waves, those at the
peak of the spectrum, move into the gravity-wave
range. A simple estimate of the effects of surface
tension based on the surface tension parameter X
using the gravity wavenumber k would suggest
that they are unimportant, but as the wave slope
increases and the curvature at the crest increases,
the contribution of the Laplace pressure near the
crest increases. A consequence is that so-called
parasitic capillary waves may be generated on the
forward face of the gravity wave (Figure 3).

The source of these parasitic waves can be repre-
sented as a perturbation to the underlying gravity
wave caused by the localized Laplace pressure com-
ponent at the crest. This is analogous to the ‘fish-
line’ problem of Rayleigh, who showed that due to
the differences in the group velocities, capillary
waves are found ahead of, and gravity waves

QY

B)

©

(D)

Figure 3 (A)-(D) Evolution of a gravity wave towards breaking in the laboratory. Note the generation of parasitic capillary waves
on the forward face of the crest. (Reproduced with permission from Duncan JH et al. (1994) The formation of a spilling breaker.

Physics of Fluids 6: S2.)
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Figure 4 Waves in a storm in the North Atlantic in December
1993 in which winds were gusting up to 50-60 knots and wave
heights of 12-15m were reported. Breaking waves are (A)
large, (B) intermediate and (C) small scale. (Photographs by
E. Terrill and W.K. Melville; reproduced with permission from
Melville, (1996).)

behind, a localized source in a stream. In this con-
text the capillary waves are considered to be steady
relative to the crest. The possibility of the direct
resonant generation of capillary waves by perturba-
tions moving at or near the phase speed of longer
gravity waves is implied by the form of the disper-
sion curve in Figure 2. Free surfaces of large curva-
ture, as in parasitic capillary waves, are not
irrotational and so the effects of viscosity in trans-
porting vorticity and dissipating energy must be ac-
counted for. Theoretical and numerical studies show
that the viscous dissipation of the longer gravity

waves is enhanced by one to two orders of magni-
tude by the presence of parasitic capillary waves.
These studies also show that the observed high
wavenumber cut-off in the surface wave spectrum
that has been observed at wavelengths of approxim-
ately O(107°-107%)m can be explained by the
properties of the spectrum of parasitic capillary
waves bound to short steep gravity waves.

Wave Breaking

Although weak resonant and near-resonant inter-
actions of weakly nonlinear waves occur over slow
timescales, breaking is a fast process, lasting for
times comparable to the wave period. However, the
turbulence and mixing due to breaking may last for
a considerable time after the event. Breaking, which
is a transient, two-phase, turbulent, free-surface
flow, is the least understood of the surface wave
processes. The energy and momentum lost from the
wave field in breaking are available to generate
turbulence and surface currents, respectively. The
air entrained by breaking may, through the asso-
ciated buoyancy force on the bubbles, be dynam-
ically significant over times comparable to the wave
period as the larger bubbles rise and escape through
the surface. The sound generated with the breakup
of the air into bubbles is perhaps the dominant
source of high frequency sound in the ocean, and
may be used diagnostically to characterize certain
aspects of air-sea interaction. Figure 4 shows exam-
ples of breaking waves in a North Atlantic storm.

Since direct measurements of breaking in the field
are so difficult, much of our understanding of break-
ing comes from laboratory experiments and simple
modeling. For example, laboratory experiments and
similarity arguments suggest that the rate of energy
loss per unit length of the breaking crest of a wave
of phase speed ¢ is proportional to pg~'c’, with
a proportionality factor that depends on the wave
slope, and perhaps other parameters. Attempts are
underway to combine such simple modeling along
with field measurements of the statistics of breaking
fronts to give an estimate of the distribution of
dissipation across the wave spectrum. Recent devel-
opments in the measurement and modeling of
breaking using optical, acoustical microwave and
numerical techniques hold the promise of significant
progress in the next decade.

See also

Acoustic Noise. Breaking Waves and Near-surface
Turbulence. Bubbles. Heat and Momentum Fluxes
at the Sea Surface. Internal Waves. Langmuir
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Circulation and Instability. Surface Films. Wave
Energy. Wave Generation by Wind. Whitecaps
and Foam. Wind Driven Circulation.
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