
of other species. The short answer is ‘yes’, and is
best illustrated by a return to an earlier example
} interactions between species on rocky shores of
islands on the west coast of South Africa (Figure 3).
In its undisturbed state, each of the key interactions
in this ecosystem is buffered in some way. Limpets
are consumed by oystercatchers, but some escape by
growing too large to be eaten, aided by the high
primary production. Limpets and other invert-
ebrates graze on algae, but their effects are muted
by predation on them and by the enhancement of
algal growth by guano. Waders eat small seaweed-
associated invertebrates, but emigrate in winter.

For several reasons, human impacts are not con-
strained in these subtle ways. First, human popula-
tions do not depend on rocky shores in any manner
limiting their own numbers. They can harvest these
resources to extinction with impunity. Second, mod-
ern human effects are too recent a phenomenon for
the impacted species to have evolved defenses.
Thirdly, humans are supreme generalists. Simulta-
neously, they can act as predators, competitors,
amensal disturbers of the environment, and ‘com-
mensal’ introducers of alien species. Fourthly,
money, not returns of energy, determines proRtabil-
ity. Fifthly, long-range transport means that local
needs no longer limit supply and demand. Sixthly,
technology denies resources any refuge.

Thus, humans supersede the ecological and evolu-
tionary rules under which natural systems operate;
and only human-imposed rules and constraints can
replace them in meeting our self-proclaimed goals of
sustainable use and maintenance of biodiversity.

See also

Beaches, Physical Processes Affecting.
Coastal Circulation Models. Coastal Trapped
Waves. Eutrophication. Exotic Species, Introduc-

tion of. Internal Tides. Intertidal Fishes. Macro-
benthos. Seabird Conservation. Seabirds and
Fisheries Interactions. Tides. Upwelling Eco-
systems. Waves on Beaches.
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Introduction: What Are Rossby
Waves?

Among the many wave motions that occur in the
ocean, Rossby (or planetary) waves play one of the

most important roles. They are largely responsible
for determining the ocean’s response to atmospheric
and other climate changes; their energy dominates
the ocean’s energy spectrum at long timescales; they
are responsible for setting up and maintaining the
intense oceanic western boundary currents, and can
be generated by those currents; they affect ocean
color and biological interactions near the surface;
and they moderate the ocean’s behavior to decadal
features such as El Nin8 o and the North Atlantic
Oscillation. The waves have a strong westward
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Figure 1 Contours of the speed of the fastest long baroclinic Rossby wave (m s~1). Contour intervals are nonuniform: 0.3, 0.2,
0.15, 0.1, 0.08, 0.06, 0.04, 0.02, 0.01 m s~1. Negative signs mean speed is westward. Values are masked within 53 of the equator
where other theory holds, and for depths of less than 1000 m.

component in their phase speed (though short waves
can propagate their energy eastward). There are two
types of Rossby wave, as with many oceanic waves.
The Rrst is barotropic (independent of depth), which
propagates rapidly (typically at 50 m s~1), has vari-
able space and time scales, and can cross an ocean
basin in a few days. The second type of Rossby
wave is baroclinic (varying with depth) and propa-
gates fairly slowly (a few centimeters per second),
has a long space scale (hundreds of kilometers), has
a long period (of order a year), and takes a decade
or more to cross an ocean basin westward. There is
a countable inRnity of baroclinic modes, but just
one barotropic mode. Similar waves exist in the
atmosphere, and are known to be responsible for
most of the low-frequency variability observed there.

Figure 1 shows contours of the speed of the
fastest propagating depth-varying Rossby wave
within the ocean. This speed, as we shall see, in-
creases dramatically near the equator, and decreases
to become very slow at high latitudes.

All waves exist and propagate because of wave-
guides. Rossby waves owe their existence to an
east}west waveguide that is present because the Co-
riolis parameter increases northward. In the simplest
case of depth-independent two-dimensional Sow
(Figure 2), wave propagation occurs because of con-

servation of absolute vorticity of a Suid particle.
(Absolute vorticity is the sum of the rotational, or
relative, vorticity due to water motions plus the
intrinsic, or planetary, vorticity due to the back-
ground earth rotation.) Imagine a line of particles
oriented east}west (Figure 2A). These particles have
no relative vorticity and no current shear. Now
suppose the line is perturbed north}south in some
manner (Figure 2B). The particles moved northward
increase their intrinsic vorticity. To conserve their
absolute vorticity, they must acquire negative rota-
tional vorticity. The particles moved southward
similarly acquire positive rotational vorticity. The
rotational motions induced by these vorticity
changes are shown in Figure 2C, and their effect on
the particles in Figure 2D. The net effect is to move
the original disturbed pattern of particle positions
(B) westward.

In the more usual case of depth-varying Sow,
consider the ocean stratiRcation as comprising
a single layer of uniform depth H. When particles
are displaced, they conserve their (potential) vortic-
ity, which is now given for long length scales by
f/H, where f is the Coriolis vector (the vorticity
argument above continues to hold for short length
scales). It is the variation of this quantity
north}south that again induces a westward wave

ROSSBY WAVES 2435

RWOS 0307 SHIVA KUMAR GSRS



N

E

Earth s rotation smaller′

Earth s rotation larger′

(A)

(B)

(C)

(D)

Motion induced as
shown:
net wave propagation
to west

Original displacement
as in (B)

New
position

T
im

e

Conservation of vorticity
induces rotations as shown

Figure 2 Schematic of depth-independent Rossby wave
transmission; time reads up the diagram. An east}west line of
particles (A) is displaced (B) and gathers vorticity owing to
changes in the background Earth’s rotation (C). This vorticity
induces flow changes (D) that act to move the displacement
pattern westward.

N

E

(D)

(C)

(B)

(A)

Motion induced as
shown:
net wave propagation
to west

Conservation of vorticity /
induces depth changes as shown

f h

h unchanged h changed

Large h

Small h Small h

Earth s rotation smaller′

Earth s rotation larger′

T
im

e

Original displacement
as in (B)

New
position

Figure 3 As Figure 2, but for a fluid layer. As the layer is
displaced (B), it changes its depth (C) to conserve potential
vorticity. These depth changes induce geostrophic flows (D) that
act to move the displacement pattern westward.
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Figure 4 Schematic of long Rossby wave motions, which lie
predominantly normal to the direction of phase propagation.

propagation. Particles displaced northward (Figures
3A and B) increase f and so increase H to compen-
sate; particles moving southward decrease H. Thus
the particle motions in Figure 3C give depth } and
hence pressure } changes that lead to geostrophic
Sows (Figure 3D) that have similar effects on the
displacements, moving the pattern westward. These
schematic arguments also hold, with some modiRca-
tions, near the equator.

For most practical purposes of measurement,
Rossby waves propagate as a series of low and high
pressures, which are constant normal to the direc-
tion of wave phase propagation. The resulting geo-
strophic Sow is alternately in one direction and then
in the opposite, perpendicular to the propagation
direction. Figure 4 shows an example of this.

The generation mechanisms for Rossby waves are
unclear, though some form of surface forcing must
be involved to induce changes in the upper ocean
structure which can then propagate as waves. Thus,
direct forcing by wind stress and to a lesser extent,
by buoyancy forcing will both generate Rossby
waves. Free waves must still be forced somewhere,
and possible candidates include upwelling and

downwelling on the eastern boundary induced by
alongshore wind stress and topographic wave
shedding over ocean ridges.

Observations of Rossby Waves

Rossby waves have been well observed in the atmo-
sphere for decades. The large scale of oceanic
Rossby waves necessitates an array of observations
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Figure 5 HovmoK ller (or time}longitude) diagram, and its method of generation, for the South Indian Ocean. Snapshots of sea
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with time running upward (right-hand side of diagram). The signals of westward propagation then show clearly as bands tilted from
upper left to lower right. One cycle is about 10 days. Note the amplitudes, typically about 10 cm and speed of waves, about
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spanning a noticeable fraction of an ocean basin to
distinguish phase variations, and the data obtained
from cruises and ships of opportunity have been
inadequate for the task, despite some valiant efforts.
Rossby waves were, therefore, remarkably difRcult
to observe in the ocean until recently. (Observing
barotropic Rossby waves is likely to continue to be
difRcult: their high speed makes the design of an
observation network almost impossible.) Thus the
theory of Rossby waves, discussed below, consider-
ably predates their observation.

The launch of altimetric satellites changed all
this dramatically. The barotropic Rossby waves
remained essentially unobservable by satellites (the
phases move so rapidly that they become indistin-
guishable between satellite passes). However,
altimeter coverage proved ideal for the detection of
surface signatures of baroclinic waves, which pos-
sessed surface height variations of a few centimeters
and so were, at least for the TOPEX/Poseidon
instrument, observable to the accuracy of the
altimeter.

Satellite altimeters, to date, can only provide rela-
tive measures of sea surface height; in other words,
they can report the variation of height accurately,

but not the absolute value. For the purposes of
observing wave propagation, this limitation presents
no difRculties. Nonetheless, the ocean surface vari-
ation is made up of a superimposition of many
different waves, direct responses to local forcing,
and so on, so that the detection of Rossby waves
still required massaging of the data.

The simplest approach used is to construct
a time}space, or HovmoK ller, diagram (Figure 5).
A speciRc geographical line along which wave
propagation is to be studied is chosen, typically
a line of constant latitude. At successive times, de-
termined by the repeat pattern of the satellite, the
surface height } usually measured relative to some
long-term average at each location so as to remove
as much bias as possible } is plotted as a function of
distance along the chosen line. These plots are then
stacked perpendicular to each other, at separations
proportional to the time interval. Wave propagation
will then appear as contour lines across the dia-
gram; the slope of these lines is a direct measure of
the speed of the wave. Waves propagating at con-
stant speed show up as lines of constant slope; those
whose speed varies along the line will show a slope
variation. In some cases more than one wave can
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be inferred, suggesting that various vertical modes
are present simultaneously. There are hints that
waves are sometimes generated near midocean
ridges, though the reasons are as yet unclear. Cer-
tainly wavelike features can be identiRed in many
parts of the ocean by this approach.

The HovmoK ller diagram approach as in Figure 5
is biased toward the direction of the chosen line (in
this case toward east}west propagation). Here
waves can be seen propagating 303 in longitude in
about 60 cycles, with a cycle time of 10 days, this
gives a speed of 0.06 m s~1. Lines can be, and have
been, oriented at other angles, but obviously a more
systematic approach is necessary to locate the pre-
ferred orientation of the waves. Various methods
have been used (e.g., Fourier transforms), with
a popular approach being the Radon transform.
This can be thought of as a simultaneous examina-
tion of HovmoK ller diagrams at all possible angles,
seeking for the orientation that gives the most ener-
getic signal. So far, the preferred orientation for
waves has been within a few degrees of westward,
despite the fact that north}south propagation
remains perfectly possible in theory. The reason
remains unknown.

Detection is made more uncertain by the difRculty
of disentangling other possible mechanisms that
might have produced the given pattern. For
example, a westward propagating eddy would
appear as a wave on a HovmoK ller diagram, while
a propagating disturbance on a western bound-
ary layer could appear as an eastward-oriented
wave.

Recent increases in accuracy of other satellite in-
strumentation has meant that these too can be used
to detect Rossby waves (and, more generally, large-
scale anomaly propagation). Sea surface temper-
ature measurements are a case in point. Their signal
is dominated by the seasonal cycle. This can be
removed in various ways (e.g., by removing the
cycle explicitly at each location, or by taking the
east}west derivative of the data at each point). The
resulting signal also shows westward-propagating
modes at similar, but not identical, speeds to the
altimeter in most cases. This has been interpreted
as the simultaneous presence of wave modes with
different vertical structures (and so with different
speeds). In the altimeter signal, one wave appears
dominant; in the surface temperature signal, another
mode is dominant. This is conRrmed by theory,
which shows that the relation between surface
height and temperature variability depends strongly
on the vertical structure of the wave, so that each
wave could appear dominant when observed by one
of the instruments.

Ocean color passive microwave instruments are
now also used to elucidate large-scale wave propa-
gation.

Theory of Rossby Waves

Theoretical predictions of Rossby waves have exis-
ted since the 1930s, and have long been known to
give good predictions for atmospheric motions. The
theory involves taking the three-dimensional prob-
lem and splitting it into two subproblems. The Rrst
involves the horizontal and time (as in the schema-
tics above) and the second involves only the vertical
structure. The latter is known as ‘normal mode
theory.’ The idea is to Rnd vertical structures that
are maintained as the wave propagates, leaving the
actual propagation behavior to be described by the
pseudo-horizontal problem.

Horizontal Variation

It is logical to begin with the horizontal problem,
for small motions in an ocean of uniform depth H,
with a perturbation h. (An effective depth H will be
determined later.) The momentum equations in the
east (x) and north (y) directions for the velocity
components (u, v, respectively) are

ut!fv"!ghx [1]

vt#fu"!ghy [2]

since the dynamic pressure (p/o0, where p is pressure
and o0 the mean density of sea water) is given by gh.
Here h

x
means Rh/Rx. Conservation of mass gives

ht#H(ux#vy)"0 [3]

The dispersion relation for wave motions satisfying
these equations involves a little work, since the
coefRcients possess y-variation due to the terms in f.
To a good degree of approximation, if the waves are
slow (formally, R/Rt is assumed small compared
with f ), the velocity components are

u+
ghy

f
!

ghxt

f 2 [4]

v+
ghx

f
!

ghyt

f 2 [5]

and substitution of these into mass conservation
gives a single equation for h:

R
Rt(h!a2+2h)!

bC2

f 2 hx+0 [6]

2438 ROSSBY WAVES

RWOS 0307 SHIVA KUMAR GSRS



where +2
"(R2/Rx2)#(R2/Ry2) and various small

terms have been neglected, and

C2
"gH [7]

is the speed of long surface waves and

a"C/f [8]

is the ‘deformation radius,’ or ‘Rossby radius,’ the
natural length scale for the problem. Here b repres-
ents df/dy, the northward gradient of the Coriolis
parameter. Equation [6] represents conservation of
vorticity of the Suid column. Although its coefR-
cients depend on latitude, because no more differen-
tiation is required, it is traditional to ‘freeze’ the
coefRcients and treat f and b as if they are constant.
We then pose

hJexp i(kx#ly!ut) [9]

which gives the dispersion relation connecting fre-
quency u with wavenumbers k, l as

u"!ba
ak

1#(aK)2 [10]

where

K2
"k2

#l2 [11]

is the modulus of the wavenumber. Equation [10]
has been written in a manner that emphasizes the
importance of the size of the wavenumber in units
of inverse deformation radius. From the dispersion
relation all details of wave propagation may be
determined.

To start with, [10] does not permit waves of all
frequencies; there is a cutoff frequency of Dba D2,
above which Rossby waves may not propagate.
Since a varies inversely with Coriolis parameter,
this frequency becomes smaller as the poles are
approached. (Baroclinic waves at the annual cycle
can only exist for latitudes less than about 40}453,
for example.)

The phase velocity (c
x
, c

y
) is formally given by

cx"
uk
K2 "!ba2 (ak)2

(aK)2[1#(aK)2]
[12]

cy"
ul
K2"!ba2 (ak)(al)

(aK)2[1#(aK)2]
[13]

although these are not the propagation speeds of
points of constant phase in the x and y directions,

which are given by u/k and u/l, respectively. The
Rrst of these shows that waves propagate with crests
moving westward (i.e., c

x
is negative), with a

maximum speed ba2, when k and l are small (long
waves). Since a varies inversely with Coriolis para-
meter, this speed will be a strong function of latit-
ude, becoming inRnite at the equator, where this
midlatitude theory breaks down. The north}south
phase velocity can take various values depending on
the orientation of the wave crests.

The group velocity (cgx, cgy), i.e., the velocity at
which the wave energy propagates, is given by

cgx"
Ru
Rk"!ba2 1#[(al)2

!(ak)2]
[1#(aK)2]2 [14]

cgy"
Ru
Rl "2ba2 (ak)(al)

[1#(aK)2]2 [15]

In general the group velocity is not the same as the
phase velocity, so that Rossby waves are dispersive.
If ak is sufRciently large (i.e., the waves are sufR-
ciently short in the east}west direction), eqn [14]
shows that cgx can be positive: while crests move
west, the wave energy moves east. The simplest case
to discuss is when al is small, so that the waves are
long in the north}south direction. Then the disper-
sion relation becomes

u"!ba
ak

1#(ak)2; cx"!ba2 1
1#(ak)2;

cgx"!ba2 1!(ak)2

[1#(ak)2]2 [16]

which is shown in Figure 6. This shows the following.

f Long waves (ak@1) have the same phase and
group velocity, !ba2

"!bC2/f 2, and so are
nondispersive.

f Zero group velocity occurs when ka"!1.
f There is a maximum eastward group velocity of

one-eighth the fastest westward group velocity.

Vertical Variation

We now return to the vertical structure of the
waves. The idea is to seek a situation in which the
waves may propagate without changing that struc-
ture. Write

Au, v,
p
o0B"(u8 ,v8 , ghI )(x, y, t) ) u( (z) [17]

w"w8 (x, y, t) )w( (z). [18]

ROSSBY WAVES 2439

RWOS 0307 SHIVA KUMAR GSRS



Maximum eastward
group velocity
1

x b= _ a

x

x b_ /≈ k

ak

1 + ( )ak
2

ba

0.5 (maximum frequency)

Maximum
group and phase velocity
= _ , i.e. to
the west

ba 2

Eastward
group velocity

Short
waves

Long
waves

Westward
group velocityZ

er
o 

gr
ou

p 
ve

lo
ci

ty
_ 3 _ 2 _1 0

ka

8
ba2

Figure 6 Dispersion diagram for Rossby waves that are long north}south, showing frequency u as a function of east}west
wavenumber k (assumed negative).

Substitution into the two horizontal momentum and
the divergence, buoyancy, and hydrostatic equa-
tions, linearized about a basic state of stratiRcation
o6 (z), where N2(z)"!go6 z/o0 is the buoyancy
frequency, gives respectively

(u8 t!fv8 )u("!ghI xu( [19]

(v8 t#fu8 )u("!ghI yu( [20]

(u8 x#v8 y)u(#w8 w( z"0 [21]

!

got

o0
#w8 N2w( "0 [22]

!

go
o0

"ghI u( z [23]

(Note that the density o has not had a vertical
structure deRned but that its vertical structure is like
N2w( (z)). Eqs [19] and [20] already permit the can-
cellation of the common factor u( (z) as required.
Equation [21] will also permit cancellation of u( (z)
provided that we choose

w( (z)"u( z(z) [24]

Finally, combination of eqns [22] and [23] can only
permit cancellation of the vertical structure if

u( z(z)JN2w( or w( zz#
N2

C2 w( "0 [25]

Here C, with dimension of velocity, is an unknown
constant of proportionality. It is given as an eigen-
value by solving eqn [25] with suitable boundary
conditions at surface and Soor.

There are a countable inRnity of solutions, or
normal modes. The zeroth (using a traditional num-
bering) is the barotropic mode, in which u( is ap-
proximately independent of depth and w( is linear
with depth; C is given to an excellent degree of
approximation by C2

"gH, where H is the Suid
depth. This gives values for C of around 200 m s~1

in ocean depths of 4000 m. This is just the long-
wave speed of an unstratiRed Suid. The remaining
solutions, called baroclinic, have much smaller
eigenvalues C, and for these modes, to a good
approximation, w( vanishes at surface and Soor. The
nth vertical mode has n!1 zeros of w( and n zeros
of u( in the Suid column, so that high modes oscillate
strongly in the vertical. For various reasons, many
not well understood, high modes are rarely found in
observations. Typical values of C are 2}3 m s~1 for
the Rrst mode, and steadily slower for high modes.
Figure 7 shows the vertical structure of w( and u( for
the Rrst two baroclinic modes, for the stratiRcation
(N) shown, which is an average over the major
ocean basins.

Substitution back into the remaining (horizontal)
part of the system gives for each normal mode in turn,

u8 t!fv8 "!ghI x [26]

v8 t#fu8 "!ghI y [27]
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Figure 8 Schematic HovmoK ller diagram showing the ocean’s
response to an applied steady wind stress. Long Rossby waves
from the east and short, slower Rossby waves from the west
move from their respective boundaries. Where they have not
yet reached there is a linear spinup. After the wavefront
has passed, a Sverdrup interior and a time-varying western
boundary current remain.

ghI t#C2(u8 x#v8 y)"0 [28]

If we deRne an effective depth H by

H"C2/g [29]

then the system of eqns [26] and [28] reduces to [1]
to [3], as required, though with H taking a different
meaning. Thus each vertical mode has a separate
horizontal behavior, characteristic speeds, and so
on.

The fastest westward phase speed (i.e., for long
waves), !ba2

"!bC2/f 2, for mode 1, the fastest
baroclinic mode, is shown in Figure 1.

Time Variation: Ocean Spinup

The theory above is derived for free waves. When
the waves are forced, the approach is to express the
forcing as a sum of vertical normal modes in the
same way, with coefRcients varying with (x, y and
t), and add the forcing on the right-hand-sides of
eqns [26] to [28]. The simplest such problem is the
response of an ocean to a wind that is suddenly
turned on; for simplicity the wind does not vary
east}west.

Several things happen immediately, indicated in
the HovmoK ller diagram in Figure 8. In the ocean
interior, where no waves have yet reached, the
ocean responds linearly in time to the local forcing.
Near the eastern boundary, a Rossby wave is
initiated, carrying with it information that the ocean
has an eastern boundary. This moves westward at
the long-wave speed !ba2. Behind it, the ocean
becomes steady, in Sverdrup balance with the
forcing. Near the western boundary, short waves,
moving at speed ba2/8, move eastward, conveying
information about the western boundary to the Suid

interior. (The solution left behind by these waves is
complicated, and is heavily affected by any dissi-
pative terms present.) Eventually the two wave-
fronts meet, giving a long-term solution with
Sverdrup balance over most of the ocean, and
a time-varying area near the western boundary that
takes the form of an effective western boundary
current.

Comparison with Observations

The satellite observations of Rossby waves discussed
above showed that Rossby waves were found in
many areas of the subequatorial and subpolar
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oceans. Their westward speeds were estimated using
the HovmoK ller diagram, or other approaches, and
compared with the theory above (as indicated in
Figure 1). The Rndings fall into three latitudinal
bands (Figure 9). First, near the equator, observed
wave speeds were usually somewhat less than pre-
dicted by theory. However, some of this area would
be affected by equatorial wave theory, so making
comparison difRcult. Second, around latitudes of
103 to 203, linear theory has succeeded admirably in
estimating wave speeds. Third, for latitudes pole-
ward of 203, there appears to be a steady increase
in the discrepancy between theory and observations,
with theoretical speeds becoming as much as 2}3
times slower than observed speeds at high latitudes.
(Some debate remains as to the magnitude of this
shortfall, which depends to some extent on the
longitude bands chosen for comparison. But the
shortfall at high latitudes does seem to be unequivo-
cal.) In areas such as the Antarctic Circumpolar
Current (ACC), there is evidence of eastward propa-
gation of Rossby waves. This is almost certainly
caused by a combination of two factors: the natural
speed of Rossby waves is very small at high latit-
udes, and the ACC is one of the few currents where
the barotropic mean Sow is large and eastward.
Thus, the waves are simply swept eastward by the
mean Sow in a Doppler shift process.

Improvements to Theory

Several suggestions have been made to explain the
discrepancies, which assume either that the inter-

pretation of the data is incorrect (i.e., that linear
theory is in fact correct), or that some aspect of
linear theory must be modiRed. The answer prob-
ably lies in a combination of these.

If the waves are forced by a wind which has (say)
an annual cycle, then the ocean responds with
a combination of free propagating waves (e.g., as
sin (kx!ut)) and a forced response (e.g., as sin ut).
The sum of these two possesses a term in sin
(kx!2ut), and it could be this term that apparently
yields wave propagation at twice the predicted
value. However, this term occurs multiplied by
sin kx, and so the waves disappear at regular inter-
vals east}west, which is not generally observed;
in addition, Fourier and other methods of signal
processing would show the two linear responses
and not generate an erroneous doubling of the
speed.

It is thus probable that some aspect of Sat-bot-
tom, dissipation-free linear theory has broken down.
A prime candidate during the last 20 years has been
that of varying ocean topography, which can gener-
ate a waveguide and permit the propagation of
‘topographic Rossby waves’ in which the bottom
slope plays a role similar to that of the variations of
Coriolis parameter. The resulting waves are fre-
quently, but not always, trapped near the bottom;
these waves can be faster or slower than their Sat
bottom relatives. Whether a topography that both
rises and falls (e.g., over a midocean ridge) would
generate any net speed increase remains unclear.

Active research is examining various options.

f If the waves are dissipative (either directly, or
indirectly by heat losses at the surface), then the
generation of a decay scale can induce an appar-
ently different phase speed. This mechanism is
particularly effective near an eastern boundary; if
it is too successful, the dissipation stops the wave
propagation completely.

f If the waves are of large enough amplitude,
several things can happen. Pairs of waves can
interact. Single large waves (sometimes known as
‘solitons’) can self-advect, at speeds that may dif-
fer from linear wave theory. Both these effects are
beyond the scope of this article. Large waves can
modify the ocean background stratiRcation and
increase their speed. However, the ubiquity of
faster propagation at mid to high latitude would
argue for almost permanent changes to the back-
ground stratiRcation, which are not observed.

f The effects of ocean topography are being
reexamined, with emphasis on the propagation
of waves over a slowly varying Soor (and
concomitant normal mode change during the
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propagation). The results are as yet incomplete,
but it looks as though the suggestion above that
topography oriented in a variety of directions
cannot yield a net speed increase continues to
hold.

f The mid-latitude ocean is known to possess tele-
connections with the equatorial ocean, so that
there may be anomalous responses at mid latitude
related to the faster-travelling equatorial systems.
It is hard to see how this effect could propagate
to higher latitudes, however, where there would
be a severe mismatch in speeds.

f Finally, the background ocean is not at rest. This
has three possible effects. First, a strong enough
barotropic Sow could simply sweep the waves
westward with the speed of the Sow. However,
we do not believe that depth-averaged midocean
Sows are even one-twentieth of the speed neces-
sary to achieve this; so the barotropic Sow can be
discounted. Second, mean Sow could change the
normal mode calculation in the vertical. How-
ever, oceanic motions are seldom as fast as the
2}3 m s~1 speed of the Rrst vertical mode, so this
can be discounted. Third, and more seriously,
depth-varying ocean motions are as fast as the
few centimeters per second speed of the fastest
baroclinic Rossby wave. A background Sow
} produced geostrophically by density variations
across the ocean basin } can strongly modify
the northward potential vorticity gradient of the
system. Direct calculations of the changes this
produces in phase speed suggest that much, but
not all, of the discrepancy between observations
and linear theory is explained by the presence of
such background Sows.

Conclusions

The ocean appears to possess Rossby waves in most
of its basins. Theory for such waves has existed for
many years, but they have only recently been ob-
served by satellite altimeters and other approaches.
The theory gives predictions of the right order of
magnitude for Rossby wave speeds, but at mid and
high latitudes appears to underestimate the speeds
by a factor of 2. Various theories have been put
forward to explain this discrepancy, of which the
most promising is the inclusion of background mean
Sow, not as a simple depth-independent advection
but as a genuine interaction with the wave. None of
these theories forms a complete explanation. It will

probably be necessary to combine the processes
(e.g., to include both topographic variation and
a background mean Sow) before the theory can be
regarded as satisfactory.

Symbols

a Rossby, or deformation, radius
c
x
, c

y
Phase velocity

c
gx

, c
gy

Group velocity
f Coriolis parameter
g Acceleration due to gravity
h Perturbation to depth of a Suid layer
k Eastward wavenumber
l Northward wavenumber
p Pressure
t Time
u Eastward velocity
v Northward velocity
w Vertical velocity
x Eastward coordinate
y Northward coordinate
z Vertical coordinate
C Modal wave speed
H Ocean depth, or equivalent depth
K Modulus of wavenumber
N Buoyancy frequency of water
b Rate of change of f with distance north
o0 Mean density of sea water
u Frequency

See also

Coastal Trapped Waves. Ekman Transport And
Pumping. Internal Waves. Mesoscale Eddies. Wind
Driven Circulation.
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