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Introduction

The general purpose of population models of plank-
ton species is to describe and eventually to predict
the changes in abundance, distribution, and produc-
tion of targeted populations under forcing of the
abiotic environment, food conditions, and pred-
ation. Computer-based approaches in plankton
ecology were introduced during the 1970s with the
application of population models to investigate
large-scale population phenomena by the use of
mathematical models.

Today, virtually every major scientiRc research
project of population ecology has a modeling com-
ponent. Population models are built for three main
objectives: (1) to estimate the survival of individuals
and the persistence of populations in their physical
and biological environments, and to look at the
factors and processes that regulate their variability;
(2) to estimate the Sow of energy and matter
through a given population; and (3) to study dif-
ferent aspects of behavioral ecology. The study of
internal properties of a population, like the various
effects of individual variability, and the study of
interactions between populations and successions of

population are also topics related to population
models. The Reld of biological modeling has diversi-
Red and, at present, complex mathematical
approaches such as neural networks, genetic algo-
rithms, and dynamical optimization are coming
into use, along with the application of supercom-
puters. However, the use of models in marine re-
search should always be accompanied by extensive
Reld data and laboratory experiments, for initializa-
tion, veriRcation or falsiRcation, or continuous
updating.

Approach for Modelling Plankton
Populations

Population Structure and Units

A population is deRned as a group of living organ-
isms all of one species restricted to a given area and
with limited exchanges of individuals from other
populations. The Rrst step in building a population
model is to identify state variables (components of
the population) and to describe the interactions be-
tween these state variables and external variables of
the system and among the components themselves.
The components of a population can be (1) the
entire population (one component); (2) groups of
individuals identiRed by a certain state: developmen-
tal stages, weight or size classes, age classes (Rxed
numbers of components); or (3) all individuals
(varying numbers of components).
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Figure 1 The growth of a plankton population with density
regulation and its fitting by the logistic equation.

The usual unit in population dynamics models is
the number of individuals per volume of water, but
the population biomass can also be used (in g
biomass or carbon (C) or nitrogen (N)). When all
individuals or groups of individuals are represented,
the individual weight can be considered as a state
variable. The forcing variables inSuencing the popu-
lation dynamics are biological factors, mainly nutri-
ents and predators, and physical factors, mainly
temperature, light, advection, and diffusion.

Individual and Demographic Processes

Population models usually work with four major
processes: individual growth, development, repro-
duction, and mortality. Growth is computed by the
rate of individual weight change. Development is
represented by the change of states (phases in
phytoplankton and protozoan cell division, develop-
mental stages in zooplankton) through which each
individual progresses to reach maturity. Reproduc-
tion is represented by the production of new indi-
viduals. Mortality induces loss of individuals, and
can be divided in two components: natural physiolo-
gical mortality (due, for instance, to starvation) and
mortality due to predation. Combination of the four
processes permits one to stimulate (1) increase in
terms of number of individuals in the population,
(2) the body growth of these individuals, and (3) by
combination of the two previously simulated values,
the increase in total biomass of the population
(which is usually termed ‘population growth’).

Plankton Characteristics

Essential information to be built into models of
plankton organisms are (1) the individual life dura-
tion (a few hours for bacteria; one to a few days
for phytoplankton and unicellular animals; several
weeks to years for zooplankton and ichthyoplank-
ton organisms); (2) the range of change in size or
weight between the beginning and the end of a life
cycle; and (3) the number of individuals produced
by a mother individual (from two individuals up to
thousands of individuals). When developmental
stages in the life cycle are identiRed, the stage dura-
tions are needed.

The observation time step has to be deRned to
adequately follow the timescale of the chosen vari-
ables, and thus should be smaller than the duration
of the shortest phases.

Plankton Population Models

The most modeled component in marine planktonic
ecosystems is phytoplankton production. Most of
the phytoplankton models simulate the growth of

phytoplankton as a whole, using only the process of
photosynthesis. Few models deal with phytoplank-
ton population growth dynamics at the species level.
Existing models of other unicellular plankton organ-
isms (bacterioplankton, species of microzooplan-
kton) usually treat them as a single unit, except for
a few models simulating phytoplankton and micro-
bial cell cycles. In contrast, mesozooplanktonic or-
ganisms, including the planktonic larval stages of
benthic species (meroplankton), and Rsh that have
complex life cycles are extensively modeled at the
population level.

Dynamics of Single Species

Population Models Described by the Total Density

When a population is observed at timescales much
larger than the individual life span, and on a large
number of generations, models with one variable
(the total number of individuals or the total biomass
in that population) are the simplest. These models
postulate that the rate of change of the population
number, N, is proportional to N (eqn [1], where r is
the difference between birth and death rates).

dN
dt

"rN [1]

The logistic equation (eqn [2]) represents limitation
due to the resources or space (see Figure 1).

dN
dt

"rNA1!
N
KB [2]

where K is the carrying capacity.
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Figure 2 Total population abundance in controlled conditions.
The population is initiated with newborn individuals, and
decreases, first owing to mortality, until the maturation period,
when a new generation is produced. At the end of the recruit-
ment period of new individuals of second generation, the total
abundance decreases, again owing to mortality. Owing to
individual variability in development, loss of synchronism in
population induces a broader recruitment period for the third
generation. In nonlimiting food conditions, recruitment of new
individuals is continued after few generations. The three genera-
tions correspond to the exponential phase presented in Figure
1 (i.e., without density regulation).

Population growth of bacteria, phytoplankton, or
microzooplankton can be simulated adequately by
the logistic equation. With addition of a time delay
term into the logistic equation, oscillations of the
population can be represented.

Population Models of Organisms with
Description of the Life Cycle

If observations of a population are made with
a time step shorter than the life cycle duration
(Figure 2), the population development pattern is
a succession of periods with decreasing abundance
of individuals due to mortality, and increasing
abundance due to recruitment of new individuals in
periods of reproduction (cell division or egg produc-
tion). Recruitment is deRned as the input Sux of
individuals in a given state (stage, size class, etc.).

To represent such patterns, it is necessary to
identify different phases in the life cycle, based on
age, size, developmental stages, and so on. Two
types of models can be developed:

f Structured population models, which consider the
Sux of individuals through different classes

f Individual-based models, which simulate birth,
growth and development through stages and
death of each individual

The major distinction between physiologically struc-
tured population models and individual-based mod-
els in a stricter sense is that individual-based models
track the fate of all individuals separately over time,
while physiologically structured population models
follow the density of individuals of a speciRc type
(age or size classes, stages). These models are parti-
cularly used for representing the complex life cycles
of zooplankton and ichthyoplankton, but have also
been useful for studying the population growth of
bacteria, phytoplankton, and microzooplankton,
particularly division synchrony in controlled condi-
tions (chemostat).

Structured Population Models

A population can be structured with respect to age
(age-structured population models), stage (stage-
structured population models), or size or weight
(size or weight-structured population models). Two
types of equations systems are usually used: matrix
models, which are discrete-time difference equation
models, and continuous-time structured population
models.

Matrix models constitute a class of population
models that incorporate some degree of individual
variability. Matrix models are powerful tools for
analyzing, for example, the impact of life history
characteristics on population dynamics, the inSu-
ence of current population state on its growth
potential, and the sensitivity of the population dy-
namics to quantitative changes in vital rates. Matrix
models are convenient for cases where there are
discrete pulses of reproduction, but not for popula-
tions with continuous reproduction. They are not
suitable for studying the dynamics of populations
that live in Suctuating environments.

The Leslie matrix is the simplest type of age-
structured dynamic considering discrete classes. Sup-
pose there are m age classes numbered 1, 2,2, m,
each covering an interval q. If Nj,t denotes the num-
ber of individuals in age class j at time t and
Gj denotes the fraction of the population in this age
class that survive to enter age class j#1, then eqn
[3] applies.

Nj`1, t`1"GjNj,t [3]

Individuals of the Rrst age class are produced by
mature individuals from older age classes and eqn
[4] applies, where Fj is the number of age class
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1 individuals produced per age class i individual
during the time step q.

N1,t`1"

m

+
j/1

FjNj,t [4]

The system of eqns [3] and [4] can be written in
matrix form (eqn [5]).

C
N1

N2

N3

F

Nm
D(t#1)"C

0 F2 F3 2 Fm

G1 0 0 2 0

0 G2 0 2 0

F } } 2 F

0 0 Gm~1 0 DC
N1

N2

N3

F

Nm
D(t)

[5]

The Leslie matrix can easily be modiRed to deal
with size classes, weight classes, and developmental
stages as the key individual characteristics of the
population. Organisms grow through a given stage
or size/weight class for a given duration.

There are several variations of matrix models,
differing mainly in the expression of vital rates,
which can vary with time depending on external
factors (e.g., temperature, food concentration,
competitors, predators) or internal (e.g., density-
dependent) factors.

The earlier type of continuous-time structured
model is usually referred to as the McKendrick}von
Foerster equation, and uses the age distribution on
a continuous-time basis in partial differential equa-
tions. This type of model has been developed to the
extent that it can be used to describe population
dynamics in Suctuating environments. In addition, it
also applies to situations in which more than one
physiological trait of the individuals (e.g., age, size,
weight, and energy reserves) have strong inSuences
on individual reproduction and mortality. The
movement of individuals through the different struc-
tural classes is followed over time. Age and weight
are continuous variables, whereas stage is a discrete
variable.

The general equation is eqn [6], where n is abund-
ance of individuals of age a and mass m at time t.

Rn(a, w, t)
Rt #

Rn(a, w, t)
Ra #

Rg(a, w, t)n(a, w, t)
Rw

"!k(a, w, t) n(a, w, t) [6]

where k(a, w, t) is the death rate of the population
of age a, weight w at time t.

The von Foerster equation describes population
processes in terms of continuous age and time (age-

structured models) according to eqn [7].

Rn(a, t)
Rt #

Rn(a, t)
Ra "!k(a, t) n(a, t) [7]

The equation has both an initial age structure u at
t"0 (eqn [8]) and a boundary condition of egg
production at a"0 (eqn [9]).

n(a, 0)"u0(a) [8]

n(0, t)"P
=

0
F(a, S

R
) n(a, t) da [9]

F is a fecundity function that depends on age (a) and
the sex ratio of the population S

R
. These kinds of

equations are mathematically and computationally
difRcult to analyze, especially if the environment is
not constant.

The same type of equation as [7] can be used
where the age is replaced by the weight (weight-
structured models (eqn [10]).

Rn(w, t)
Rt #

Rg(w, T, P)n(w, t)
Rw "!k(w, t) n(w, t)

[10]

The weight of the individual w and the growth g are
inSuenced by the temperature T, the food P, and by
the weight itself through allometric metabolic rela-
tionships.

The equation has both an initial age structure
u at t"0 (eqn [11]) and a boundary condition of
egg production at w"w0 (eqn [12]).

n(w, 0)"u0(w) [11]

N(0, t)"P
=

0
F(w, S

R
) n(w, t) dw [12]

F is the fecundity function, which depends on
weight (w) and the sex ratio of the population S

R
.

The numerical realization of this equation re-
quires a representation of the continuous distribu-
tion n(w, t) by a set of discrete values n

i
(t) that are

spaced along the weight axis at intervals
*wi"wi`1!wi . Using upwind difference discretiz-
ation to solve the equations, and recasting the rep-
resentation in terms of the number of individuals in
the ith weight class, Ni(t)+ni(t) *wi , the dynamic
equation becomes eqn [13], where ki(t) replaces
k(wi , t)

dNi

dt
"C

gi~1

*wi~1DNi~1!C
gi

*wiDNi!kiNi [13]
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Figure 3 Schematic representation of the population dynam-
ics mathematically represented by eqns [17]}[20]. ai"transfer
rate of stage i to stage i#1; ki"mortality rate in stage i;
R"recruitment: number of eggs produced by females per day.

This describes the dynamics of all weight classes
except the Rrst (i"2) and last (i"Q). If R(t) rep-
resents the total rate of recruitment of newborns to
the population, and all newborns are recruited with
the same weight w1, then the dynamic of the weight
class covering the range *w1 is described by eqn
[14].

dN1

dt
"R!C

g1

*w1DN1!k1N1 [14]

If we assume that individuals in only the Qth weight
class are adult, and that adult individuals expend all
assimilated energy on reproduction rather than
growth, the population dynamics of the adult popu-
lation is given by eqn [15].

dNQ

dt
"C

gQ~1

*wQ~1DNQ~1!kQNQ [15]

The rate of recruitment of newborns to the popula-
tion is given by eqn [16] where b(t) represents the
per capita fecundity of an average adult at time t.

R(t)"b(t)NQ(t) [16]

The weight intervals *wi increase with class number
i as an allometric function. The growth rate g(w, t)
can be calculated by a physiological model.

Stage-structured Population Models

Plankton populations often have continuous recruit-
ment and are followed in the Reld by observing
stage abundances over time. A large number of
zooplankton population models deal with popula-
tion structures in term of developmental stage, using
ordinary differential equations (ODEs).

A single ODE can be used to model each develop-
ment stage or group of stages: for instance,
a copepod population can be subdivided into four
groups: eggs, nauplii, copepodites, and adults. The
equation system is eqns [17]}[20], where R is
recruitment, a is the transfer rate to next stage,
and k is the mortality rate.

Eggs
dN1

dt
"R!a1N1!k1N1 [17]

Nauplii
dN2

dt
"a1N1!a2N2!k2N2 [18]

Copepodids
dN3

dt
"a2N2!a3N3!k3N3 [19]

adults
dN4

dt
"a3N3!k4N4 [20]

The system of ODEs is solved by Euler or
Runge}Kutta numerical integration methods, usu-
ally with a short time step (approximately 1 hour).

In the model presented in Figure 3, the transfer
rate of animals from stage to stage and the mortality
at each stage are expressed as simple linear func-
tions, which induce a rapidly stable stage distribu-
tion. To represent the delay of growth within
a stage, more reRned models consider age-classes
within each stage, or systems of delay differential
equations. They have a high degree of similarity
with observed cohort development in mesocosms or
closed areas (Figure 4).

Individual-based Models of a Population

Individual-based models (IBMs) describe population
dynamics by simulating the birth, development, and
eventual death of a large number of individuals
in the population. IBMs have been developed
for phytoplankton, zooplankton, meroplanktonic
larvae, and early life history of Rsh populations.
Object-oriented programming (OOP) and cellular
automata techniques have been applied to IBMs.

As powerful computers become more accessible,
numerous IBMs of plankton populations have been
developed, mainly to couple them with 1D-mixed
layer models (phyto- and zooplankton) and circula-
tion models (zooplankton).

IBMs treat populations as collections of indi-
viduals, with explicit rules governing individual
biology and interactions with the environment. Each
biological component can change as a function of
the others. Each individual is represented by a set of
variables that store its i-state (age, size, weight,
nutrient or reserve pool, etc.). These variables may
be grouped together in some data structure that
represents a single individual, or they may be col-
lected into arrays (an array of all the ages of the
individuals, an array of all the sizes of the indi-
viduals, etc.), in which case an individual is an
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Figure 4 Simulation of the cohort development of the copepod Euterpina acutifrons in mesocosms with a structured stage and
age-within-stage model. (A) Total population during development, with variable temperature and constant food supply
(points"experimental data; line"simulation). The initial density decreases owing to mortality and then increases to newborn
individuals (as the first part in Figure 2). (B) Naupliar stages (N1 to N6), copepodite stages (C1 to C5), and adults during
development (points"experimental data; line"simulation). The simulation start with similar N1 of same age. Reproduced from
Carlotti F and Sciandra A, 1989. Population dynamics model of Euterpina acutifrons (Copepoda: Harpacticoida) coupling individual
growth and larval development. Mar. Ecol. Prog. Ser., 56, 3, 225I242.
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index number in the set of arrays. The i-state of an
individual changes as a function of the current i-
state, the interactions with other individuals, and
the state of the local environment. The local envi-
ronment can include prey and predator organisms
that do not warrant explicit representation as indi-
viduals in the model. Population-level phenomena
(e.g., temporal or spatial dynamics) or vital rates
can then be inferred directly from the contributions
of individuals in the ensemble.

The model starts with an initial population and
the basic environment, then monitors the changes of
each individual. At any time t, the i-state of indi-
vidual j changes as eqn [21].

Xi,j(t)"Xi,j(t!dt)#f(X1,j(t!dt),2 , Xi,j(t!dt))

[21]

Xi,j(t) is the value of the i-state of individual j, and
f is the process modifying Xi,j , as a function of the
values of different i-states of the organism and
external parameters such as the temperature. When
the fate of all individuals during the time-step dt has
been calculated, the changes to the environment
under the effects of individuals can be updated. Any
stochastic process can be added to eqn [21].

This type of model can add a lot of detail in the
representation of physiological functions. Individual
growth can be calculated as assimilation less meta-
bolic loss, and the interindividual variation in physi-
ology can be represented by adding stochastic
processes or parameters describing the character-
istics of each individual (growth and development
parameters, mortality coefRcient, and parameters
connected with reproduction). The end results are
unique life histories, which when considered as
a whole give rise to growth/size distributions that
provide a measure of the state of the population.

Calibration of Parameters

Parametrization of a model can range from very
simplistic to extremely complex depending upon the
amount of information known about the population
under consideration. Bioenergetic processes (inges-
tion, egestion, excretion, respiration, and egg pro-
duction) are usually modeled from experimental
results, whereas biometrics (size, weight,2) and
demographic (development rate, mortality rate, 2)
parameters are estimated by combining data from
life tables collected in the Reld or from laboratory
studies.

To solve for the unknown parameters, new tech-
niques have been developed such as inverse methods
and data assimilation by Rtting simulations to data.

Spatial Distribution of Single
Plankton Populations

An important development in plankton population
modeling is to make full use of the increased power
of computers to simulate the dynamics of plankton
(communities or populations) in site-speciRc situ-
ations by coupling biological and transport models,
giving high degrees of realism for interpreting
plankton population growth, transport, spatial
distribution, dispersion, and patchiness. Structured
population models and individual-based models
allow detailed simulations of zooplankton popula-
tions in different environmental conditions.
Physical}biological models of various levels of
sophistication have been developed for different
regions of the ocean.

Spatial Plankton Dynamics with Advection^
Diffusion^Reaction Equations

Equation [22] is the general physical}biological
model equation used to describe the interaction
between physical mixing and biology.

RC
Rt #+ ) (vaC)!+ ) (K+C)"‘biological terms’

[22]

C(x, y, z, t) is the concentration of the biological
variable, which is a functional group (phytoplank-
ton, microzooplankton, or zooplankton), a species
or a developmental stage, or a size class (in which
case the number of equations would equal the num-
ber of stages or size classes) at position x, y, z at
time t. The concentration can be expressed as num-
bers of organisms or biomass of organisms per unit
volume. va (ua, va, wa) represents the advective Suid
velocities in x, y, z directions. Kx, Ky , Kz are dif-
fusivities in x, y, z directions. +"(R/Rx, R/Ry, R/Rz) is
the Laplacian operator.

On the left-hand side of eqn [22], the Rrst term is
the local change of C, the second term is advection
caused by water currents, and the third term is the
diffusion or redistribution term. The right-hand side
of eqn [22] has the biological terms that represent
the sources and sinks of the biological variable at
position x, y, z as a function of time.

The biological terms may or may not include a ve-
locity component (swimming of organisms, migra-
tions, sinking,2), and the complexity of the
biological representation can vary from the disper-
sion of one (the concentration of a cohort) to detailed
population dynamics. Physical}biological models of
various levels of sophistication have been developed
recently for different regions of the ocean.
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Figure 5 Model of Calanus marshallae in the Oregon upwell-
ing zone. The figure shows the simulated zonal distribution of
(A) eggs, (B) nauplii, and (C) early copepodites at noon on 15
August. Concentrations of each stage are expressed as a frac-
tion of the total population (all stages m~3). (Reproduced with
permission from Wroblewski JS, 1982. Interaction of currents
and vertical migration in maintaining Calanus marshallae in the
Oregon upwelling zoneNa simulation. Deep Sea Research 29:
665I686.

Biological models can be conRgured as compart-
mental ecosystem models in an upper-ocean mixed
layer, where phyto-, microzoo-, and mesozooplank-
ton are represented by one variable. In extended
cases, the model takes into account several size
classes of phyto-, microzoo-, and zooplankton. Such
types of ecosystem model have been coupled to one-
dimensional physical, and embedded into two-
dimensional and three-dimensional circulation.

Studies of plankton population distribution in
regions where plankton may be aggregated (e.g.,
upwelling and downwelling regions, Langmuir cir-
culations, eddies) can be undertaken with popula-
tions described by equations of the McKendrick}
von Foester type coupled with 2D or 3D hydro-
dynamical models.

In 1982, Wroblewski presented a clear example
with a stage-structured population model of
Calanus marshallae, a copepod species, embedded in
a circulation system simulating the upwelling off the
Oregon coast. Simulations of the dynamics focused
on the interaction between diel vertical migration
and offshore surface transport.

The zonal distribution of the life stage categories
Ci of C. marshallae over the Oregon continental
shelf was modeled by the two-dimensional (x, z, t)
equation [23], where wbi is the vertical swimming
speed of the ith stage, assumed to be a sinusoidal
function of time: wbi"wsi sin(2nt), with wsi the
maximum vertical migration speed of the ith stage.

RCi(x, z, t)
Rt #

R [ua(x, z, t)Ci(x, z, t)]
Rx

#

R[wa(x, z, t)Ci(x, z, t)]
Rz

!

R
RxCK(x, t)

RCi(x, z, t)
Rx D!

R
RzCK(z, t)

RCi(x, z, t)
Rz D

"populationdynamics#
R[wbi(x, z, t)Ci(x, z, t)]

Rz [23]

The population dynamics model was presented in
eqns [17]}[20].

The upwelling zone extended 50 km from the
coast down to a depth of 50 m, and was divided
into a grid with spacing 2.5 m in depth and 1 km in
the horizontal. The author used a Rnite-difference
scheme with a time step of 1 h, which fell within the
bounds for computational stability (Figure 5).

Coupling IBMs and Spatially Explicit Models

Individual-based models are more and more fre-
quently used to assess the inSuence of space on the

population dynamics, namely on the time course
of population abundances and the pattern formation
of populations in their habitats. This approach
uses simulated currents from sophisticated 3D
hydrodynamic models driving Lagrangian models
of particle trajectories to examine dispersion
processes.

The approach is relatively straightforward and
is a Rrst step in formulating spatially explicit
individual based models. Given a ‘properly
resolved’ Sow Reld, particle (larval Rsh/zooplan-
kton/meroplanktonic larvae) trajectories are
computed (generally with standard Runge}Kutta
integration methods of the velocity Reld).
SpeciRcally, hydrodynamic models provide the
velocity vector v"(u, v, w) as a function of
location x"(x, y, z) and time t, and the particle
trajectories are obtained from the integration of
eqn [24].

dx
dt

"v(x, y, z, t) [24]
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The simplest model of dispersion is a random walk
model in which individuals move along a line from
the same starting position. These trajectories could
be modiRed by turbulent dispersion as described in
the section below. Once the larval/particle position
is known, additional local physical variables can be
estimated along the particle’s path: e.g., temper-
ature, turbulence, light, etc., and input to the IBM.
The physical quantities are then included in biolo-
gical (physiological or behavioural) formulations of
IBMs (see below).

Simulations considering trajectories of plankton
as passive particles are a necessary step before con-
sidering any active swimming capability of plank-
tonic organisms. They show the importance of
physical features in the aggregation or dispersion of
the particles.

Plankton transport models that include biological
components typically use a prescribed vertical mi-
gration strategy for all or part of an animal’s life
history or a vertical motion (sinking or swimming)
that is determined by animal’s development and
growth. The simulated plankton distributions from
these models tend to compare better with observed
distributions than do models that use passive par-
ticles. Sensitivity studies show that behavior is an
important factor in determining larval transport
and/or retention.

The coupling of IBMs of zooplankton and Rsh
populations and 3D circulation models is a recent
Reld of study, even for Rsh models. Generally,
models that describe the spatial heterogeneity of the
habitat have been designed to answer questions
about the spatial and temporal distribution of
a population rather than questions about the num-
bers and characteristics of surviving individuals.
They allow us to explore the potential effects of
habitat alteration on these populations. Using this
approach, biological mechanisms that are strongly
dependent on habitat and that are not fully under-
stood could be studied by examining different
scenarios.

Modeling Behavioral Mechanisms, Aggregation
and Schooling, and Patches

Different types of models have been built, some of
them focusing on the structure and shape of ag-
gregations depending on internal and external phys-
ical forces, others dealing with the beneRts for
individuals of living in groups with regard to feed-
ing (foraging models) and to predation. The Lagran-
gian approach can take into account the behavior of
individual organisms and the effects of the physical
environment upon them. Although Eulerian ap-
proaches are mathematically tractable, the methods

do not explicitly address the density dependence
of aggregating individual behavior within a
patch.

Dynamic optimization allows descriptions of
the internal state of individuals, which may lead
to both variable and Suctuating motivations
among individuals over short time periods.

Interactions between Populations

Models with Plankton Populations in Interaction

Simple models of two species interactions take the
form of eqns [25] and [26].

dN1

dt
"r1N1!k1N1N2 [25]

dN2

dt
"r2N2!k2N1N2 [26]

These population models represent some special
experimental situations or typical Reld situations.
Interactions between two species have been rarely
treated by population models with description of the
life cycle, although structured population models as
well as IBM models can represent interactions be-
tween species such as predation, parasitism, or even
cannibalism.

As an example, Gaedke and EbenhoK h presented
in 1991 a study on the interaction between two
estuarine species of copepods, Acartia tonsa and
Eurytemora afTnis. They Rrst used a simple model
based on eqns [25] and [26] including (a) predation
(including self-predation of immature stages) by
Acartia on the two, (b) a term of biomass gain
of Acartia by this predation, and (c) a density-
dependent loss term caused by predation by
invertebrates or by starvation of the two species.
This simple model did not result in stable
coexistence between the two species with a
reasonable parameter range under steady-state
conditions.

These authors then used two-stage-structured
population models with stage-speciRc interactions
(with similar equations to [17]}[20]) allowing the
predation of large individuals of A. tonsa
(copepodites 4 to adults) on nauplii of both species
to be represented. The results of this detailed nu-
merical model were compared with results obtained
using the simpler model with two variables. The
predation on nauplii by Acartia tonsa appears to be
key factor in the interaction of the two copepod
populations.
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Food Webs with Population Models

Structured models should be chosen to stimulate the
dynamics of several interacting species. The stage-
based approach will be acceptable with few species,
but quickly become intractable with increasing
numbers of species. In this case, a community model
based on size structure and using prey}predator size
ratio is the alternative approach. There is a con-
tinuum of models from detailed size spectrum struc-
ture up to large size classes representing functional
(trophic) groups in food web models. The detailed
size spectrum approach is particularly useful when
simulating the predation of a Rsh cohort on its
prey, whereas large functional groups are required
for large-scale ecosystem models. Numerous exam-
ples include models with size structure of herbivor-
ous zooplankton populations and their prey, and
their interactions, in a nutrient}phytoplankton}
herbivore}carnivore dynamics model. Size-based
plankton model with large entities consider the size
range 0.2}2000 km, picophytoplankton, bacteriop-
lankton, nanophytoplankton, heterotrophic Sagel-
lates, phytoplankton, microzooplankton, and
mesozooplankton.

See also

Biogeochemical Data Assimilation. Carbon Cycle.
Fish Larvae. Fish Migration, Vertical. Fish Pred-
ation and Mortality. Gelatinous Zooplankton. Krill.
Lagrangian Biological Models. Large Marine Eco-
systems. Marine Mesocosms. Microbial Loops.
Network Analysis of Food Webs. Nitrogen Cycle.
Ocean Gyre Ecosystems. Patch Dynamics. Phos-
phorus Cycle. Plankton. Polar Ecosystems. Small-
scale Patchiness, Models of. Small-scale Physical
Processes and Plankton Biology. Upwelling Eco-
systems.
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Introduction

This article provides a brief overview of the prin-
ciples of population genetics and applications in
ocean science. The specialized vocabulary of genetics

is deRned, and central concepts and approaches are
summarized in an abbreviated historical context.
Finally, speciRc topics that have been addressed in
the marine biological literature illustrate major
areas of application of population genetics in ocean
science.

De\nitions and Historical Approaches

Population genetics is the branch of genetics that
explores the consequences of Mendelian inheritance
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