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the overall thermohaline circulation itself. Indeed,
the role of interior mixing in the thermohaline circu-
lation can be compared to the role of the wind stress
in the wind-driven circulation; that is, turbulence
provides the essential interior balance of vertical
upwelling with downward mixing of heat, just as
the wind stress pattern at the surface imparts circu-
lation to the ocean’s horizontal gyres. The high
latitude sinking regions are then analogs of the
western boundary currents that close the wind-
driven flows. This view more clearly shows that it is
the interior mixing acting on available density gradi-
ents, rather than the surface formation of dense
water, that acts as the driving agent for the thermo-
haline circulation. Indeed, without mixing, the deep
circulation would become cold and stagnant and
oceanic warmth would be confined to a thin surface
boundary layer. This issue is of major concern, since
the substantial circulation of warm water poleward
is responsible for much of the heat flux carried by
the ocean. There is evidence that the North Atlantic
limb of the thermohaline circulation was cut off at
various times in the past, and some suggest that
global warming could shut it off in future, due to
surface water freshening by an enhanced hydrologic

cycle. Recent modeling work shows that there is
a delicate balance between the fresh water forcing
and the rate of interior mixing that determines the
stability of the thermohaline circulation. A better
understanding of oceanic mixing is thus essential for
prediction of the future evolution of the Earth’s
climate system.
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Mixing. Thermohaline Circulation. Tracer Release
Experiments. Upper Ocean Mixing Processes.
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Introduction

Among the most significant scientific events of the
last century is the discovery of hydrothermal vent
fields and their unusual ecological communities
along the crests of the mid-ocean ridges. The vent-
ing consists of localized sources of very hot
(~350°C) water that rises 100-300m above the
vent before it spreads laterally, similar to the
plume from a smokestack. Venting also occurs as
less intense and relatively cool diffuse flow
(~10°C above the ambient ocean temperature)
spread out over a much broader area than the fo-
cused high-temperature vents. Diffuse flow
rises only a few meters above the seafloor before it
is mixed with the ambient sea water. While the
diffuse flow carries about half of the total hy-
drothermal heat flux, its effect on the overlying

water column is much less dramatic than the high-
temperature vents.

The hydrothermal venting from diffuse and local-
ized high-temperature venting is essentially continu-
ous over periods of years to decades. On longer
timescales the individual vent sites will dissipate and
new sites will emerge at other locations along the
ridge crest. This nearly continuous venting is also
punctuated by intense short duration venting events.
These intense events are produced by magma erup-
tions on the seafloor or tectonic activity that rapidly
exposes large quantities of sea water to hot rock or
releases large quantities of very hot water from the
crust. The result is the creation of huge ‘mega
plumes’ that can rise 500-1000m above the ridge
crest to form mesoscale eddies with diameters of
O(20km) and thickness of O(500m).

Because of its large buoyancy and the dynamical
control exerted by the Earth’s rotation, vent fluid is
not simply advected away by background flow. The
venting is capable of forcing circulation on a variety
of temporal and spatial scales and this may have
important consequences on how the vent fluid is
ultimately dispersed. This article focuses on the flow
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produced by high-temperature venting and mega-
plumes, since they are most relevant for long-range
dispersal of vent fluids as a consequence of their
large vertical penetration into the water column.

The fate of the heat, chemicals, and biological
material released by the vent is of interest for many
reasons. To geophysicists, the hydrothermal heat
flux represents a substantial fraction of the total
heat flux (conductive plus convective) from mid-
ocean ridges. For chemists, the vent fluid is laden
with chemicals and minerals leeched from the sub-
seafloor rock that over geologic time may contribute
to the geochemical state of the oceans. The unique
biological communities that accompany venting
depend upon the chemical and thermal energy de-
livered by the venting. Since most of these unusual
animals can survive only at vent sites, the dispersal
of vent fluid is the primary mechanism of larvae
dispersal and the colonization of remote new vent
sites.

The Rising Plume

The cascade of scales initiated by a high-temper-
ature vent begins with the fast O(1h) rise of the
buoyant fluid from the vent to the spreading level
O(100 m) above the source. Fluid emerging from an
isolated hot vent rises as a turbulent plume, entrain-
ing and mixing with the ambient sea water as it
rises (see Figure 1). Because the entrained ambient
water is denser than the fluid in the turbulent
plume, the plume buoyancy decreases continually
with height above the source. If the ambient envi-
ronment had uniform density the plume fluid would
remain less dense than the environment and it
would rise indefinitely. However, even in the deep
ocean the ambient water is stratified. Eventually the
plume density increases until it equals the back-
ground density. After a short overshoot of this neu-
tral density level due to the momentum of the rising
fluid, the plume spreads horizontally as an intrusive
density current, or it may be swept downstream by
ambient currents.

Figure 2 shows a transect through a hydrothermal
plume on the Juan de Fuca Ridge in the North
Pacific. The figure is typical of many such observa-
tions made worldwide over the last two decades.
In the figure temperature and light attenuation
anomalies (defined relative to the background values
along isolines of density) are contoured as functions
of depth and horizontal distance along the
centerline of the axial valley. High values of light
attenuation anomaly are due to particulates intro-
duced into the water column by venting. Indeed, in
many cases light attenuation is a more useful indi-
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Figure 1 Sketch of a plume from a localized high-temperature
hydrothermal vent. The plume rises to a maximum height
Z,, above the source. The rising stem of the plume continually
entrains ambient fluid so that the density of the plume buoyancy
decreases with height above the bottom. Eventually the plume
density equals the ambient density and it spreads laterally at
some height Zs above the source.

cator of hydrothermal activity than temperature
anomaly. As discussed below, the temperature
anomaly may be very small, or even negative.

The main features of the buoyant rise, entrain-
ment, and spreading processes can be determined
with a theoretical plume model that conserves mo-
mentum, mass, and buoyancy integrated on a hori-
zontal slice across the plume. The key assumption is
that the entrainment velocity, or the rate at which
ambient fluid is drawn into the plume, is linearly
proportional to the vertical velocity within the
plume. (Details of the basic plume models and the
justification of the assumptions are discussed in
Morton et al. (1956), see Further Reading section.)

Modeling, laboratory experiments, and observa-
tions show that the maximum rise height the plume
above the source Z, is given by:

Zy = 3.8(F,N 31+ [1]

where
Fy = Qg(‘”’_ps> 2]
Po
and
NZ _ — 8 dpa [3]
po dz
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Figure 2 Transect of temperature (A) and light attenuation (B) anomalies through a hydrothermal plume on the Juan de Fuca
Ridge in the North Pacific. The transect was taken along the axis of the axial valley. The maxima of temperature and light
attenuation are located directly over the vent. (Reproduced with permission from Baker and Massoth, 1987).

Here F, is the buoyancy flux from the vent and N is
the buoyancy frequency of the ambient water,
which over the rise height of the plume is assumed
to be constant. Q is the source volume flux and p;
(po) is the source (ambient) fluid at the level of the
vent. The background density is p,(z), z is the height
above the source, and g is the acceleration due to
gravity.

While the maximum plume rise is Z,,, the radial
outflow is centered at a slightly lower height
Zs ~0.8Z,. The thickness of the spreading
layer over the source is =~ 0.2Z. Typical values
of Fy=10"?m*s™? and N=10"%s"" give
Zy ~210m. The time taken for a parcel of fluid
to ascend from the vent to the spreading level
~ N7, Doubling the vent buoyancy flux leads to
only a very minor change in Zy. This weak
quarter power dependency on F, is significant
because observation of Z,, and N are often used
to estimate the heat flux from a vent
H = psc,O(Ts — Ty) = psc,Fo/go, where ¢, is the
specific heat, « is the coefficient of thermal expan-
sion and T, and T, are the temperatures of the
source and ambient fluids, respectively. From eqn
[1], H oc Z3;N°. Estimates of H are very sensitive to
small errors in either Z,; or N.

The model and eqn [1] were derived under ideal
conditions. Others effects will affect plume behav-
ior. For example, in an ambient flow with velocity
U, Zy oc(FoU 'N"H)'"3. Increasing U leads to
decreasing rise heights. Mid-ocean ridge crests are
locations of rough, variable topography and this
may affect plume behavior. For example, the slow
spreading Mid-Atlantic Ridge is characterized by
axial valleys that are typically deeper than the

plume rise spreading level, Z; while the fast spread-
ing Pacific ridges have axial valleys shallower than
Zs. Deep-valley topography will constrain the
plume outflow and direct it along the ridge axis,
limiting off-ridge dispersal of vent fluids.

Despite limitations the basic plume model pro-
vides useful insight into the dispersal of vent fluids.
The entrainment of ambient water into the plume
causes a substantial dilution of a parcel of vent
fluid. The volume flux into the spreading level
Oy =1.3(EN)" . For F,=10"?m*s™® and
N=10"%s"", Oy =O(10°m’s™"). This gives a
dilution of O(10% for a typical source flux O = O
(107*m?®s™"). Entertainment occurs at all levels, but
the largest velocities of background fluid into the
plume occur in the lower quarter of the rise height.
Larvae of bottom dwelling vent organisms can eas-
ily be swept into the plume and rapidly transported
up to the spreading level. They then have a greater
likelihood of dispersal over the distances typical of
individual vent spacing (O(10km)), Furthermore,
these larvae are in water that is chemically distinct
from the ambient environment and this may
enhance survival during the dispersal process.

The temperature and salinity anomalies at the
spreading level (where the density anomaly is zero)
are dependent on the ambient temperature and
salinity gradients and can be counter-intuitive. In
the deep Pacific salinity decreases with height above
the bottom, as does temperature. These background
gradients results in relatively warm and salty
spreading plume water. An example of the temper-
ature and salinity vertical profiles through the efflu-
ent layer of a plume on the Juan de Fuca Ridge is
shown in Figure 3. The spreading plume is easily
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Figure 3 (A) Vertical profiles of temperature, salinity and den-
sity through a hydrothermal effluent layer on the Juan de Fuca
Ridge. The relatively warm and salty effluent layer is clear in
plots of potential temperature, 0, versus potential density, o, (B)
and salinity versus density (C). (Reproduced with permission
from Lupton et al., 1985.)

distinguished as a layer of nearly uniform temper-
ature and salinity in Figure 3A. In Figure 3B and
C the potential temperature 6 and salinity are
plotted against potential density, 6,, and clearly
show the relatively warm and salty effluent layer. In
comparison, in the deep Atlantic where the salinity
increases with height above the bottom the spread-
ing plume is relatively cold and fresh. The temper-
ature of the plume at the neutral level is colder than
the ambient water despite the enormous temper-
ature of the source fluid. Thus temperature alone
may not always be an obvious indicator of
hydrothermal activity. In either case, temperature
anomalies at the spreading level are O(107' °C) des-
pite source temperature anomalies of ~ 350°C.

The rise characteristics of event megaplumes are
similar to the continuous venting, except that the
source duration is limited and the buoyancy flux, F,,
is typically one to two orders of magnitude larger.
For comparison, the heat flux from a typical high
temperature vent is 1-100 MW, while mega-
plume sources are estimated to be > 1000 MW.
If the source duration is small compared with the
parcel rise time, N~'!, then the plume model
must be replaced by a model for an isolated
thermal. In this case Zy =2.7(B,N %)Y, where
By = Vyglpo — ps/po) is the buoyancy and V, the
volume of the pulse of hot fluid forming the release.
Entrainment into and dilution of a thermal are com-
parable to the continuous release.

Mesoscale Flow and Vortices

A high temperature vent continuously delivers
plume fluid to the spreading level. Ambient currents
can simply advect this fluid away from the vent
location, but if the currents are weak, or oscillatory
with small mean, then plume fluid accumulates over
the vent and a radial outflow must develop. On
a timescale f ~' this radial flow will be retarded by
rotation. Here f=2Qsin(¢) is the Coriolis para-
meter, Q is the rotation rate of Earth and ¢ the
latitude. At 45°N f=10"*s"'. The outward-flow-
ing fluid parcels turn to the right (looking from
above in the northern hemisphere) and an anti-
cyclonic circulation will develop. With time a slowly
growing lens of plume fluid will be formed. Below
the spreading level, entrainment into the rising limb
of the plume causes a radial inflow of ambient
water. The Coriolis acceleration again results in
fluid parcels turning to the right as they move
inward and cyclonic circulation is established. The
result is a baroclinic vortex pair: an anticyclonic
lens of plume fluid at the spreading level and cyc-
lonic circulation of ambient fluid around the rising
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Figure 4 Sketch of the effect of the Earth’'s rotation on a hydrothermal plume. Rotation causes an anticyclonic horizontal
circulation in the spreading fluid and cyclonic circulation below. These flows are indicated by the arrows. Lateral spreading of plume
fluid is retarded by rotation and eventually the plume may become unstable, producing isolated vortices of plume fluid which have
aradius L ~ Z,N/f, which is about 2 km at mid-latitudes. A continuous vent could result in the production of numerous eddies which

propagate away from the vent site.

buoyant plume. This circulation is sketched in
Figure 4. The dynamical balance is geostrophic
wherein the radial pressure gradients are balanced
by the Coriolis acceleration.

Figure 5 shows results from a laboratory experi-
ment that illustrates the effects of rotation on plume
structure. In the photographs dense fluid, dyed for
visualization, is released from a small source into
a tank of water that has been stratified with salt to
give a constant density gradient (constant N). The
tank is on a table rotating about the vertical axis to
simulate the Coriolis effect. These photographs are
taken looking in from the side a short time after the
source has been turned on. The experiments were
done with dense fluid which falls, rather than light
fluid that rises. This is inconsequential for the phys-
ics and the hydrothermal vent situation can be en-
visioned simply by turning the figures upside down.
As the rotation increases, as measured by decreasing
values of the ratio N/f, lateral spreading of the
plume is retarded and the anticyclonic lens of plume
fluid becomes thicker. Dynamical scaling arguments

and experiments show that the aspect ratio of the
resulting eddy, /L ~ 0.75 f/N. Here b is the central
thickness of the anticyclonic eddy (dyed fluid in the
figure) and L is the radius. These arguments also
give the eddy azimuthal, or swirling, velocity
v~ (F,f)"*. For the typical values of F, and
f=10"*s"", v ~0.03ms ~'. This is comparable to
observed background flows over ridges and suggests
that plume vortex flow can persist in the presence of
a background flow.

The anticyclonic plume eddy will continue to
grow until it reaches a critical radius L ~ Z,N/f at
which it becomes unstable and breaks up. An
example of plume break up is shown in Figure 6,
which contains a sequence of photographs looking
down on the experiment. The plume vortex was
initially circular (not shown), but eventually the
eddy elongates (Figure 6A). It then splits into two
separate vortex pairs (Figure 6B) which propagate
away from the source (Figure 6C). The process of
formation and instability process then begin again.
A steady source results in the unsteady production
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Figure 5 Side-view photographs showing the effects of rotation on convective plumes. In (A) the rotation is zero. The classic
turbulent plume and spreading layer are evident. Panel (B) has weak rotation, N/f= 5.02. The lateral spreading is inhibited and the
falling plume is partially obscured by the cyclonic circulation which has developed around the plume. In (C) the rotation is stronger,
N/f=1.42, and the anticyclonic lens of dyed fluid is thicker and has a smaller radius. See the text for a description of the
experiment. (Reproduced with permission from Helfrich and Battisti, 1991.)

of vent vortices as depicted in Figure 4. The time-
scale for this production process is ty ~ 10°Nf ~2
For typical mid-latitude values of N and f and Z,,
L ~2km and #; ~ 2 months. Note that / decreases
as the equator is approached, resulting in larger
diameter eddies which take longer to grow if other
factors remain constant.

The small size and long production time contrib-
ute to difficulty in directly observing these eddies,
although observations of the water column proper-
ties do show indications of eddy-like features with
the expected scales. Futhermore, ambient flows can
be expected to influence this idealized scenario. But
even with ambient flows that would tend to carry

plume fluid from a vent, the tell-tale anticyclonic
circulation at the spreading level and cyclonic flow
below is expected. Indeed, there is observational
evidence for this vorticity signature in time mean
measurements of flow in the vicinity of a vent.
However, the most compelling evidence for this
dynamical scenario comes from megaplume
observations. Figure 7 shows temperature and light
attenuation (a measure of particulate concentration
indicative of hydrothermal source fluid) anomaly
sections across a megaplume observed near the Juan
de Fuca Ridge in the North Pacific. Note the much
larger rise height and lateral scales of this plume
compared with the example in Figure 2. The
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Figure 6 Photographs of a laboratory experiment showing the
formation and break up of a plume vortex. The view is from
above and time increases from panel (A) to (C). A single con-
tinuous source produces one plume vortex which eventually
becomes unstable (A), and forms two smaller baroclinic vortex
pairs which move away from the source (B), after which the
process of plume vortex formation begins again (C). (Repro-
duced with permission from Helfrich and Battisti, 1991.)

structure of the megaplume is indicative of anticyc-
lonic circulation within the core and this has been
confirmed by detailed analysis.

The production of eddies from either continuous
high temperature venting or episodic megaplume
events is important for the dispersal of the vent
fluid. While dispersal by simple advection and
stirring by prevailing flows may be the dominant
dispersal mechanism, even occasional eddy forma-
tion is significant. Coherent anticyclonic vortices are
known to have closed streamlines and can retain
their anomalous properties over long distances and
large time periods. These eddies provide a mecha-
nism for the long-range dispersal of vent organisms
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Figure 7 Observations of the temperature and light attenu-
ation anomalies of a megaplume found near the Juan de Fuca
Ridge. The figure shows a slice in depth and horizontal distance
through the center of a nearly circular (in plan view) plume. The
eddy aspect ratio b/L ~ f/N as predicted by the scaling theory
and laboratory experiments. The lower level high in light attenu-
ation may be the result of a separate, less intense hydrothermal
source. The horizontal dashed lines are density isolines (o
contours) and the saw-tooth lines indicate the trajectory of the
measurement package. (Reproduced with permission from
Baker et al., 1989.)
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which are entrained into the rising plumes and then
trapped in the eddies. Within the eddies larvae are
suspended in water with anomalous properties that
may enhance survival.

Large-scale flow

Small-scale localized convection over the ridge crest
can result in a large-scale circulation extending
O(1000km) from the ridge. From the point of view
of the large-scale mid-depth (2000-3000m) circula-
tion, venting at numerous locations along a ridge
crest segment produces an average net upwelling
localized over the ridge crest characterized by diver-
gent isopycnals over the ridge crest. This can set up
a mean circulation similar to the circulation from
an individual vent plume, anticyclonic flow at the
spreading level and cyclonic below, but now extend-
ing along the length of the ridge crest segment. Fluid
entrained into the plumes and upwelled to the
spreading level must be replaced. This requires
a broad downwelling flow to close the mass bal-
ance. However, on these scales of 100-1000km the
variation of the Corriolis parameter due to the
spherical shape of the earth, the f-effect, causes the
two circulation cells to extend to the west of the
ridge (regardless of hemisphere) to form what has
been termed a f-plume. The ideal f-plume described
here will be affected by the ridge crest topography
and any background mid-depth flow. However,
there is some observational evidence suggestive of

this model of long-range dispersal of plume fluid.
Observations near 15°S in the eastern Pacific
(Figure 8) show a plume of anomalously high
values of °He (a distinctive signature of hydro-
thermal origin water) centered in the water column
just above the depth of the ridge crest. The plume
extends over 2000km west of the ridge. As pre-
dicted by the f-plume dynamics the westward ex-
tension of the plume is greatest closer to the
equator. There are no similar observation in the
Atlantic; this is perhaps explained by the deep axial
topography.

Discussion

Localized high-temperature hydrothermal venting
along ridge crest is capable of forcing circulations
on scales many orders of magnitude larger than the
vent field size. This is a consequence of the combi-
nation of the large buoyancy flux of hydrothermal
vents and the dynamical effects of the Earth’s rota-
tion. Rotating flows are very sensitive to vertical
motions such that small vertical flows are amplified
into large horizontal circulations. The immense
buoyancy flux of the high-temperature vents and
megaplumes gives rise to rapid vertical ascent and
just as importantly large entrainment of background
fluid into the rising plumes. These combine to force
a localized net upwelling many times larger than
the mass flux of the individual vent. The stacked
nature of the resulting horizontal flow, anticyclonic
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Figure 8 Transect along 15°S in the Pacific showing a plume of *He anomaly, (*He), extending over 2000 km west of the East

Pacific Rise. (Reproduced with permission from Lupton, 1995.)
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circulation at one level and cyclonic below, is typi-
cally unstable and produces eddies which have
scales comparable to the local Rossby radius of
deformation, L, = Z,;N/f, based on the plume rise
height. In reality the ultimate dispersion of high-
temperature vent fluid probably occurs through
a combination of simple advection and stirring by
background flow and the formation of long-lived
coherent vortices and fS-plumes.

The reader might wonder whether these rotation-
ally influenced convective processes are at work in
the atmosphere where smokestacks and fires
routinely cause localized plumes. There is one im-
portant difference between the atmosphere and the
ocean in this regard. The scale at which rotation
influences the flow and would produce eddies, the
deformation radius L,, is very much larger in the
atmosphere than the ocean due to the greater static
stability of the atmosphere (larger N). So these fea-
tures are not likely to occur as a consequence of
smokestacks and fires, which are simply too small to
be affected by rotation. However, hurricanes are an
example of the interaction of convection and rota-
tion which produces intense vortices. Also, it would
be possible for large volcanic eruptions which rise
into the stratosphere to produce the atmospheric
equivalent of oceanic megaplumes. Finally, oceanic
deep convection produced by surface cooling and
sinking induces some of the same circulation charac-
teristics discussed here, but over typically much lar-
ger horizontal scales than isolated high-temperature
vents.

List of Symbols

Zy maximum plume rise height.

Z, plume spreading level height.

F, source buoyancy flux.

N  background buoyancy frequency.

g  gravitational acceleration.
source volume flux.

po  density of the ambient fluid at vent level.
ps  source fluid density.

p. ambient density.

z depth above the source.

0  latitude, potential temperature.

¢ latitude.

H  heat flux.

¢, specific heat at constant pressure.
T, source temperature.

T, ambient temperature at vent level.
o coefficient of thermal expansion.
o, measure of density.

B, initial buoyancy of a thermal.

V, initial volume of a thermal.

f  Coriolis parameter.

Q  rotation rate of the Earth.

b vertical thickness of the anticyclonic plume
eddy.

L radius of the anticyclonic plume eddy.

v azimuthal velocity within the plume eddy.

ty  timescale for plume break up.

L, Rossby radius of deformation.

See also

Hydrothermal Vent Biota. Hydrothermal Vent

Ecology. Hydrothermal Vent Fluids, Chemistry of.
Meddies and Sub-surface Eddies. Mesoscale
Eddies.
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