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Introduction

Data assimilation is the systematic use of data to
constrain a mathematical model. It is assumed that
the dynamics that are responsible for a particular
process or distribution are inherent in the data. By
inputting data of various types into a mathematical
model, the model, which is a truncated version of
the real world, will more accurately stimulate a
particular environment or situation. Through data
assimilation, the hindcast, nowcast, and/or forecast
of the model will be improved.
Data assimilation was Rrst used in the 1960s in

numerical weather forecasting models, with the goal
of providing short-term predictions of meteorologi-
cal conditions. The use of data assimilation tech-
niques was made feasible by the development of
a worldwide atmospheric data network that could
provide the measurements needed. Data assimilation
provided a methodology for using these observa-
tions to improve the forecasting skills of the opera-
tional models. Although weather forecasts are now
taken for granted, to a large extent the accuracy of

these forecasts results from assimilation of meteoro-
logical observations.
In the 1970s, numerical ocean general circulation

models (OGCMs) became an important tool for
understanding ocean circulation processes. Initial
applications of these models focused on simulation
of the large-scale structure of ocean currents. From
these simulations, the limitations of the OGCMs
were clear. Data assimilation was looked to as an
approach for constraining these dynamical models
with available data. For example, data assimilation
could be used to quantitatively and systematically
test and improve poorly known sub-grid-scale
parametrizations and boundary conditions that are
so abundant in OGCMs. With recent advances in
data availability, it is also now feasible to use data-
assimilative OGCMs for making forecasts of the
ocean state, such as the El-Nin� o}La Nin� a cycle in
the equatorial PaciRc Ocean.
Implementing data-assimilative biogeochemical

models has been problematic because of the paucity
of adequate data. Historically, biological and chem-
ical data were obtained almost exclusively by ship
surveys, and thus were extremely limited in both
space and time. However, advances in satellite and
mooring instrumentation, as well as in the under-
standing of the structure and function of marine
ecosystems, now makes it feasible to begin the
development of data-assimilative biogeochemical
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models. As a result, since the mid 1990s there has
been a dramatic increase in the types of data that
are input into marine ecosystem models, and the
development of robust and varied approaches for
assimilating these data. This research provides
a framework for future studies of biogeochemical
data assimilation and predictive biogeochemical
modeling that will inevitably play a major role in
the next generation of large interdisciplinary
oceanographic observational programs.
The following section provides a brief history of

how the Reld of marine biogeochemical modeling
has matured as more and more data have become
available. This is followed by a description of some
data assimilation methods and speciRc examples of
how two of these methods can be used in conjunc-
tion with a simple marine ecosystem model. The
Rnal section provides a summary.

Biogeochemical Models and Data
Availability

Mathematical models provide a quantitative frame-
work for investigating processes that are responsible
for the biological and chemical distributions that
underlie the structure and function of marine eco-
systems. Mathematical models were Rrst used to
study marine ecosystems in the late 1940s and these
models had their basis in the predator}prey models
developed in the early 1900s. These early modeling
attempts were focused on understanding the pro-
cesses that allow large blooms of phytoplankton and
zooplankton to occur. The models were simple in
nature, including only average population character-
istics, basic biological processes resulting in plant
and animal growth, and interactions at the lowest
trophic levels, e.g., primary and secondary pro-
ducers. Effects of environmental factors such as
temperature and circulation, which are important in
marine systems, were not explicitly included in these
models.
The following generation of models included

more complex biogeochemical processes, differenti-
ation of species, and coupling of the marine bio-
geochemical system to circulation models. These
more realistic models were made possible by the
development of large multidisciplinary oceano-
graphic programs in the 1970s, which, for the Rrst
time, provided concurrent physical, biological, and
chemical measurements that could be input to
coupled circulation}biogeochemical models. The
resulting models clearly demonstrated the utility of
modeling for integrating and synthesizing large
multidisciplinary oceanographic datasets. However,

more importantly, the realism of the simulated dis-
tributions obtained from the coupled modeling ef-
forts helped establish this approach as an important
research tool for understanding marine biogeo-
chemical systems. Present-day multidisciplinary
oceanographic programs now routinely include
a mathematical modeling component.
At the time coupled circulation}biogeochemical

models were being developed, signiRcant advances
were being made in the measurements of biological
and chemical distributions in the ocean. In the
1980s, the Coastal Zone Color Scanner satellite was
launched, which provided large-scale ocean color
distributions, from which phytoplankton chloro-
phyll distributions, and their evolution over space
and time, could be derived. The ocean color data
also facilitated making inferences about the relative
roles of circulation versus biogeochemical processes
in controlling phytoplankton distributions. The
availability of large-scale observations of chloro-
phyll has been enhanced with the subsequent launch
of the Sea-viewing Wide Field-of-view Sensor in
1997. Instrumentation capable of providing bio-
logical measurements at Rne space and time scales,
e.g., moored optical and acoustic measurements,
now provide in situ observations that can be com-
bined with ocean color to reveal a more complete
view of chlorophyll distributions. Also, moored
buoy arrays provide concurrent physical data. Thus,
high-resolution datasets that can be used to study
marine systems are becoming increasingly available.
These new, high-quality datasets can now be used

to validate coupled circulation}biogeochemical
models. In many cases simulated distributions from
the models reproduce many of the features seen
in the ocean color observations. However, the
simulated Relds are often unable to reproduce the
variability observed on short space (tens of kilo-
meters) and time (days) scales. There are many
potential explanations for these discrepancies, in-
cluding mismatches in the space and time scales that
the model resolves versus those resolved by the
measurements. There may also be inconsistencies
between the model structure and the observations.
For instance, speciRc parameter values or choices
for empirical formulations, forcing functions, or
initial conditions may be in error.
Along with these new types of data comes the

possibility of developing a new generation of data-
assimilative biogeochemical models that will not
only be better able to reproduce the observed varia-
bility in biogeochemical Relds but may also have the
potential for signiRcantly improving the accuracy of
model predictions. In the 1990, researchers began
to investigate the use of data assimilation as an
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approach for improving these coupled models, and
as an approach for making better use of the many
types of environmental and biogeochemical data
that are becoming available.

Data Assimilation Methods

Many techniques exist for systematically combining
data with mathematical models. The development
and reRnement of many of these techniques have
been through the use of meteorological and oceanic
general circulation models. These data assimilation
methods are just starting to be tested in marine
biogeochemical models; however, it is not clear
whether the same methods can be used with these
multidisciplinary models, since biogeochemical
ocean models differ substantially from their physical
counterparts. For instance, biological systems
have no analogue to the Navier}Stokes equations
that form the basis for Suid dynamics. Thus,
biogeochemical models are by necessity largely
empirical and nonlinear, and abound with poorly
known formulations. For example, such models typ-
ically include large numbers of parameters that are
difRcult (in situ growth rates), or even impossible
(mortality rates) to measure with current oceano-
graphic instrumentation. The timescales of these
models are also typically short, since the model
must resolve the rate at which populations double in
number, which for most of the abundant phyto-
plankton species is one day or less.
Because of these innate differences between

physical models and biogeochemical models, the ap-
plication of data assimilation techniques to biogeo-
chemical ocean models, and speciRcally to marine
ecosystem models, presents many exciting new chal-
lenges. Although considerable effort will undoubted-
ly be put into developing new assimilation schemes
speciRc to these types of models, the data-assimila-
tive marine ecosystem models that have been de-
veloped using existing assimilation methods already
show much promise.
One of the most straightforward methods that has

been used to combine model dynamics with data
entails simply replacing the model solution with
data whenever such information is available. This
technique, referred to as data insertion, integrates
the model forward in time until additional observa-
tions become available, at which point the model is
reinitialized and the process is repeated. A basic
assumption underlying this method is that there
is adequate knowledge of the governing model
dynamics and parameter values.
This technique has been used to estimate velocity

Relds by inserting temperature and salinity data into

relatively complex physical oceanographic models.
In these analyses, however, model}data inconsisten-
cies caused the resulting simulations to compare
poorly with observations. This led to the develop-
ment of a technique in which the model solution is
‘nudged’ toward observations whenever they be-
come available, instead of being directly replaced by
the observations. Although this more gentle method
of nudging may provide a signiRcant improvement
in simulation skill, like data insertion, it still lacks
a means by which information on data uncertainty
can be incorporated, and does not provide an
estimate of the errors in the resulting solution.
More advanced assimilation schemes, such as op-

timal interpolation and Kalman Rltering, have been
successfully applied by meteorologists, yet hold little
hope for marine ecosystem models because of the
inherent nonlinearities of biological systems. In-
stead, variational schemes, which have recently been
applied to nonlinear physical oceanographic sys-
tems, may be more applicable to multidisciplinary
problems containing biological components. These
variational methods of data assimilation, such as the
adjoint method and simulated annealing, have their
basis in optimization theory and rely on minimizing
the differences between observed and simulated
quantities, pursuant to predetermined minimization
criteria. At the most basic level, these methods can
be thought of as nonlinear least-squares analyses,
which determine the optimal solution (including
parameter values and initial and/or boundary condi-
tions) that maximizes agreement between the model
simulation and observations.
The adjoint method is a variational scheme that

has found considerable success in the Reld of phys-
ical oceanography. Although this method is now
also being used in marine ecosystem modeling, the
nonlinear nature of these types of models may result
in the recovery of suboptimal parameter sets.
Simulated annealing is another assimilation scheme
that has been used with data-assimilative ecosystem
models. Although this method is typically capable
of recovering a single optimal parameter set, the
stochastic, ‘random-walk’ nature of simulated
annealing causes this technique to be considerably
less efRcient than the adjoint method. As a result,
simulated annealing may be computationally too
intensive to be of use in large-scale marine bio-
geochemical assimilation analyses.

Numerical Twin Experiments

Before the application of data assimilation tech-
niques to marine biogeochemical models becomes
routine, a number of methodological questions need
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Figure 1 Schematic illustrating the implementation of an
identical twin experiment. The true simulation (thin solid line)
represents the solution for one component of the model (e.g.,
phytoplankton, zooplankton, or nutrient concentration) obtained
using the best estimates of the model parameters and initial
conditions. A second simulation, using a different parameter set
or initial conditions, provides a reference simulation (thick solid
line). (A) The true simulation is subsampled to create a synthetic
data set. (B) The assimilation of the synthetic data into the
reference simulation results in a third model solution (dashed
line). The difference between this solution and the true solution
(shaded region) is a measure of the error in the data-assimila-
tive solution.

C
on

ce
nt

ra
tio

n

Time

N
P
Z

Figure 2 Schematic of the time evolution of nutrient (N),
phytoplankton (P), and zooplankton (Z) concentrations, obtained
from a marine ecosystem model simulation.

to be addressed. For instance, how many data are
needed for these studies? What types of sampling
strategies are optimal? What level of uncertainty in
the data can be tolerated? Are these models too
complex, or too simple? What types of data assimi-
lation schemes will work best for these highly non-
linear models?
One method for addressing such methodological

questions is through the use of identical twin experi-
ments. In an identical twin experiment, the model is
initially run using best estimates for the model para-
meters in order to provide a ‘true’ simulated time-
series. This time-series is subsampled to generate
a synthetic data set (Figure 1A). The model is then
run a second time, using an imperfect parameter set
in order to generate a ‘reference’ (no assimilation)
time-series. This same imperfect parameter set is
used in the third and Rnal model run, but this time
the synthetic data are assimilated into the model
(Figure 1B). The success of the assimilation process
is judged by the difference between these results and
the true simulation, and is typically normalized by

the difference between the true and reference simu-
lations.
Identical twin experiments are a necessary precur-

sor to true data-assimilative model runs, and have
the potential to provide considerable insight into
a number of important issues regarding the assimila-
tion process. For instance, they can be used to rigor-
ously compare different assimilation schemes, to
determine optimal sampling strategies, and to assess
the effects of assimilating observations that are asso-
ciated with known levels of noise. Furthermore,
identical twin experiments can be invoked to deter-
mine whether a certain set of model parameters can
be estimated independently, and thus whether or not
a given model may need to be simpliRed. Although
the utility of identical twin experiments is well
accepted within the Relds of meteorology and phys-
ical oceanography, this approach has only recently
been applied to ecosystem modeling analyses. The
two examples described below illustrate some of the
strengths and weaknesses of this approach for
understanding data-assimilative marine biogeo-
chemical models.

Example 1: Data Insertion and Nudging

The pros and cons of using data insertion or ‘nudg-
ing’ to assimilate biogeochemical data can be illus-
trated using a three-component marine ecosystem
box model (nitrogen, phytoplankton, zooplankton).
Simulations with a non-data-assimilative version of
this model (Figure 2) show the behavior that is
expected in this type of marine system. Nitrogen
concentrations decrease over time, as nitrogen is
used to support a bloom of phytoplankton. Zoo-
plankton, the primary grazer of the phytoplankton,
blooms subsequently and results in a decrease of the
phytoplankton.
The accuracy of this basic simulation can be im-

proved by inserting phytoplankton concentrations,
such as those derived from ocean color measure-
ments. Results of an identical twin experiment
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Figure 3 Schematics of the change in model solution error
obtained in an identical twin experiment, when data are inserted
into the nutrient}phytoplankton}zooplankton model (Figure 2)
between t"T0 and t"T1. (A) Only phytoplankton (P) observa-
tions are inserted every other day, and (B) nutrient (N), phyto-
plankton, and zooplankton (Z) observations are inserted daily.
Deterioration represents movement of the data-assimilative
solution farther from the true solution; improvement represents
convergence of the data-assimilative and true solutions. No
change occurs when the data-assimilative model solution
remains the same as in the non-data-assimilative (reference)
solution.

demonstrate that at times when average chlorophyll
concentrations are inserted into the box model (e.g.,
every other day in Figure 3A), the error in the
simulation of phytoplankton decreases to zero.
Nudging yields similar results, except that the error
in the phytoplankton Reld would be reduced to
a Rxed nonzero value, dependent upon the strength
of the nudging.
One requirement for data insertion or nudging is

that data must be available on timescales coincident
with those of the dominant biological processes.
Because biological processes, such as phytoplankton
growth, have timescales of 1}2 days in many
regions of the ocean, data with this level of time
resolution are required for data insertion methods
to adequately represent the biological dynamics. As
illustrated in Figure 3A, the improvement in simula-
tion skill lasts only 1 to 2 days beyond the point at
which phytoplankton data are no longer available
for insertion. Hence, when using these methods,
fully data-assimilative marine biogeochemical
models can potentially create a huge demand on
data resources.
Another primary factor limiting the use of data

insertion methods for marine biogeochemical
models is that these models usually consist of many
components, all of which must be updated to be in

balance with the assimilated data. For instance,
although estimates of phytoplankton biomass are
improved as a result of the assimilation of phyto-
plankton data, the accuracy of the other model
components is reduced (Figure 3A). The error pro-
duced in the other model state variables is variable,
and depends upon the level of coupling between the
various components of the marine biogeochemical
system. This problem may be alleviated if data exist
for the other model components, since the assimila-
tion of these additional data (Figure 3B) can sub-
stantially reduce errors in the other model
components. Since the adjustment timescales for the
model components differ (Figure 3B), the insertion
of data may be required at varying time intervals
for the different model components. Unfortunately,
data sufRcient to update the other ecosystem model
components often do not exist. In this case ad hoc
approaches, perhaps based on maintaining ratios
between different ecosystem components, can be
invoked; however, such approaches also have the
potential to introduce errors that may negate the
gains made through data assimilation.
Thus, data insertion and nudging are easy to

implement and in certain instances may improve
the accuracy of biogeochemical model predictions.
However, many issues remain to be addressed be-
fore this method can be used successfully for data-
assimilative biogeochemical models. For instance,
because data insertion assumes that the input data
sets are perfect representations of the real world,
model}data inconsistencies can be magniRed and
can cause model solutions to become dynamically
unbalanced. This is especially a problem for simula-
tions of systems in which the circulation is the
dominant control on the biogeochemical distribu-
tions. Perhaps most importantly, however, neither
data insertion nor nudging readily lends itself to
improving model parametrizations or model
structure.

Example 2: Adjoint Method

Even a relatively simple marine ecosystem model,
such as the model shown in Figure 2, typically
contains 10}20 model parameters that must be spe-
ciRed for a given simulation. This is a crucial aspect
of ecosystem modeling, since even small changes in
some of these parameters may result in large differ-
ences in simulation results. Unfortunately, values for
these parameters are often poorly constrained in
space and time, and some, such as in situ zoo-
plankton mortality rates, are virtually unknown.
Thus, the speciRcation of an optimal parameter set
for a given biogeochemical model is a challenge at
best, and in most cases, nearly impossible. For these
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Figure 4 Schematics illustrating the results of using the
adjoint method to assimilate phytoplankton data into the
nutrient}phytoplankton}zooplankton model (Figure 2) in an
identical twin experiment. (A) The phytoplankton (P1, P2) and
zooplankton (Z1) parameters converge to their true values, but
the nutrient parameter (N1) cannot be recovered without the
assimilation of nutrient data. (B) Model solution error is greatly
reduced for both phytoplankton (P) and zooplankton (Z), but not
nutrient (N) concentrations. Deterioration represents movement
of the data assimilative solution farther away from the true
solution; improvement represents convergence of the data
assimilative and true solutions. No change occurs when the
data-assimilative model solution remains the same as the non-
data-assimilative (reference) solution.

reasons, the adjoint method, which searches para-
meter space to Rnd a parameter set that minimizes
model}data misRts, holds considerable potential for
use in data-assimilative marine biogeochemical
models.
The utility of the adjoint method can be demon-

strated by applying identical twin experiments to
the three-component ecosystem model (Figure 2).
Because marine biogeochemical models typically
contain many parameters that are very highly corre-
lated, it is often not possible to recover a parameter
set in its entirety. Therefore, sensitivity or correla-
tion analyses can be performed in order to choose
a subset of relatively uncorrelated parameters that
will be recovered.
If an identical twin experiment is carried out in

which phytoplankton data are assimilated every
other day using the adjoint method, phytoplankton
and zooplankton parameters may be recovered
precisely (Figure 4A). As a result, the errors in the
phytoplankton and zooplankton simulations will be
signiRcantly reduced. (In Figure 4B the error in the
phytoplankton is shown to be zero for the entire
model run). However, if no nutrient data are as-
similated, the parameter(s) on which nutrient
concentration is most highly dependent, e.g., N1

(Figure 4A), will not be recovered, and therefore no
signiRcant improvement in the simulation skill of
the nutrient component will result (Figure 4B). If
synthetic phytoplankton, zooplankton, and nutrient
data are all available for assimilation, all parameters
may be recovered precisely, and the errors in all
model components may be reduced to zero for the
entire model run.
Research on data-assimilative marine ecosystem

models has shown that under certain conditions the
results described above are characteristic of those
obtained when real data are assimilated using the
adjoint method. However, in other instances it is
possible that the assimilative model may fail to
recover an optimal parameter set. This can occur
even if the model has been well tested and calib-
rated, and implies that the model is in some way
inconsistent with the assimilated data set. For in-
stance, changes in plankton community dominance
might result in inconsistencies in the model and data
that cannot be resolved simply through data assimi-
lation. If this is the case, it may be possible to
isolate the speciRc model assumption(s) that have
been violated, e.g., the assumption of a constant
species composition, to reformulate the model in
a more realistic fashion and to repeat the assimila-
tion analysis in order to test this hypothesis.
Sometimes the adjoint method may recover mul-

tiple parameter sets, each dependent on the initial
choices made for the model parameters. In these
situations, rigorous approaches for choosing be-
tween the possible parameter sets are required. One
approach is to establish a speciRc uncertainty range,
either from experimental or from theoretical consid-
erations, for each parameter that is allowed to vary
in the adjoint analysis. Alternatively, the optimal
parameter set could be selected on the basis of
the ability of each parameter set in simulating an
independent data set.

Summary

Data assimilation techniques for marine biogeo-
chemical models are just beginning to be explored.
Initial results are encouraging and data assimilation
approaches, such as adjoint methods, hold great
promise for improving the capability of these mod-
els. For instance, recent analyses of data-assimilative
biogeochemical models demonstrate that the
assimilation of biogeochemical data can reduce
model}data misRt by recovering optimal parameter
sets using multiple types of data. Perhaps even more
importantly, these data assimilation analyses can
demonstrate whether or not a given model structure
is consistent with a speciRc set of observations.
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When model and data are shown to be consistent,
the speciRc mechanisms underlying observed
patterns in simulated distributions can be identiRed.
If a model is determined to be inconsistent
with observations, it may be possible to isolate
the speciRc model assumption that has been
violated, and to reformulate the model in a more
realistic fashion. Thus, although the assimilation of
data into a marine biogeochemical model cannot
necessarily overcome inappropriate model dynamics
and structure, it can serve to guide model refor-
mulation.
During the 1990s, large interdisciplinary oceano-

graphic programs included model prediction and
forecasting as speciRc research objectives. However,
new studies are revealing that much more work
needs to be performed before this becomes a realis-
tic and achievable goal. Until high-resolution biolo-
gical and chemical data are available over large
regions of the ocean, and until a much clearer un-
derstanding of the intricacies of marine ecosystems
is attained, data assimilation in biogeochemical
models will be more useful for model improve-
ment and parameter estimation than for model
prediction and forecasting. By providing a means
for recovering the best-Rt set of parameters for
a given model, certain assimilation techniques may
prove to be a crucial tool for marine biogeochemical
modelers.
The importance of inclusion of data in all steps of

model development and implementation cannot be
emphasized enough. It is through model and data
comparisons that models are advanced and better
observation systems are developed. Therefore, an
important aspect of furthering the development of

predictive marine biogeochemical models is recog-
nizing the need for interdisciplinary multiscale
observational and experimental networks. The
availability of such data will necessitate the develop-
ment of techniques for input of these data into
models, and facilitate the development of data-
assimilative marine biogeochemical models.
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Introduction

Bioluminescence is the capacity of living organisms
to emit visible light. In doing so they utilize a var-
iety of chemiluminescent reaction systems. It has
historically been confused with phosphorescence

and the latter term is still frequently (and erroneous-
ly) used to describe marine bioluminescence. Some
terrestrial species (e.g., RreSies) have the same abil-
ity, but this adaptation has been most extensively
developed in the oceans. Bioluminescent species
occur in only Rve terrestrial phyla, and only in one
of these (Arthropoda, which includes the insects) are
there many examples. In contrast, bioluminescence
occurs in 14 marine phyla, many of which include
numerous luminescent species (Table 1). All oceanic
habitats, shallow and deep, pelagic and benthic,
include bioluminescent species, but the phenomenon
is commonest in the upper 1000m of the pelagic
environment.
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