APPENDIX 2. USEFUL VALUES

Molecular mass of dry air, $m_a = 28.966$

Molecular mass of water, $m_{\rm w} = 18.016$

Universal gas constant, $R = 8.31436 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1}$

Gas constant for dry air, $R_a = R/m_a = 287.04 \,\mathrm{J \, kg^{-1} \, K^{-1}}$

Gas constant for water vapor, $R_v = R/m_w = 461.50 \,\mathrm{J\,kg^{-1}\,K^{-1}}$

Molecular weight ratio $\varepsilon \equiv m_{\rm w}/m_{\rm a} = R_{\rm a}/R_{\rm v} = 0.62197$

Stefan's constant $\sigma = 5.67 \times 10^{-8} \,\mathrm{W \, m^{-2} \, K^{-4}}$

Acceleration due to gravity, $g (m s^{-2})$ as a function of latitude φ and height z (m)

$$g = (9.78032 + 0.005172\sin^2\varphi - 0.00006\sin^22\varphi)(1 + z/a)^{-2}$$

Mean surface value, $\bar{g} = \int_0^{\pi/2} g \cos \varphi \, d\varphi = 9.7976$

Radius of sphere having the same volume as the Earth, $a = 6371 \,\mathrm{km}$ (equatorial radius = $6378 \,\mathrm{km}$, polar radius = $6357 \,\mathrm{km}$)

Rotation rate of earth, $\Omega = 7.292 \times 10^{-5} \,\mathrm{s}^{-1}$

Mass of earth = 5.977×10^{24} kg

Mass of atmosphere = 5.3×10^{18} kg

Mass of ocean = 1400×10^{18} kg

Mass of ground water = $15.3 \times 10^{18} \,\mathrm{kg}$

Mass of ice caps and glaciers = 43.4×10^{18} kg

Mass of water in lakes and rivers = 0.1267×10^{18} kg

Mass of water vapor in atmosphere = 0.0155×10^{18} kg

Area of earth = $5.10 \times 10^{14} \,\mathrm{m}^2$

Area of ocean = $3.61 \times 10^{14} \,\mathrm{m}^2$

Area of land = $1.49 \times 10^{14} \,\text{m}^2$

Area of ice sheets and glaciers = $1.62 \times 10^{13} \,\text{m}^2$

Area of sea ice = 1.9×10^{13} m² in March and 2.9×10^{13} m² in September (averaged between 1979 and 1987)