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Preface

This manual provides detailed solutions to all the end-of-chapter (b) Exercises, and to the even-numbered
Discussion Questions and Problems. Solutions to Exercises and Problems carried over from previous
editions have been reworked, modified, or correcied when needed.

The solutions to the Problems in this edition rely more heavily on the mathematical and molecular
modeling software that is now generally accessible to physical chemistry students, and this is particularly
true for many of the new Problems which request the use of such software for their solutions, But almost
all of the Exercises and many of the Problems can still be solved with a modern hand-held scientific
calculator. When a guantum chemical calculation or molecular modeling process has been called for,
we have usually provided the solution with PC Spartan Pro™ because of its common availability.

In general, we have adhered rigorousiy to the rules for significant figures in displaying the final
answers. However, when intermediate answers are shown, they are often given with one more figure
than would be justified by the data. These excess digits are indicated with an overline.

We have carefully cross-checked the solutions for errors and expect that most have been eliminated.
We would be grateful to any readers who bring any remaining errors to our attention.

We warmly thank our publishers for their patience in guiding this complex, detailed project to
completion.

P.W. A,
CAT
M.P.C.

C.G
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The properties of gases

Di1.2

D1.4

D1.6

E1.1(b)

Answers to discussion questions

The partial pressure of a gas in a mixture of gases is the pressure the gas would exert if it occupied alone
the same container as the mixture at the same temperature. It is a limiting law because it holds exactly
only under conditions where the gases have no effect upon each other. This can only be true in the limil
of zero pressure where the molecules of the gas are very far apart. Hence, Dalton’s law holds exactly
only for a mixture of perfect gases; for real gases, the law is only an approximation.

The critical constants represent the state of a system at which the distinction between the liquid and
vapor phases disappears. We usually describe this situation by saying that above the critical temperature
the liquid phase cannot be produced by the application of pressure alone. The liquid and vapor phases
can no longer coexist, though fluids in the so-called supercritical region have both liquid and vapor
characteristics. {See Impacr 1.4.1 for a more thorough discussion of the supercritical state.)

The van der Waals equation is a cubic equation in the volume, V. Any cubic equation has certain
properties, one of which is that there are some values of the coefficients of the variable where the
number of real roots passes from three to one. In fact, any equation of state of odd degree higher than
1 can in principle account for critical behavior because for equations of odd degree in V there are
necessarily some values of temperature and pressure for which the number of real roots of V passes
from 1 (odd) to 1. That is, the multiple values of V converge from n to 1 as T — T¢. This mathematical
result is consistent with passing from a two phase region {more than one volume for a given T and p) to
a one phase region (only one V for a given T and p and this corresponds to the observed experimental
result as the critical point is reached.

Solutions to exercises
(a) The perfect gas law is
pV =nRT

implying that the pressure would be

_ nRT

P==
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All guantities on the right are given to us except n, which can be computed from the given mass

of Ar.
n= ﬁ = 0.626 mol
sop— (0.626 mol) x (8.31 x 1072 ?:::13; K~ 'mol™") x (30 + 273 K) _
not 2.0 bar.

(b) The van der Waals equation is
RT a
Vm—b V2
_(8.31 x 1072 dm® bar K~"'mol™") x (30 + 273) K
P= (1.53 dm?/0.626 mol) — 3.20 x 10~2 dm? mol™!

(1.337 dmPatm mol™2) x (1.013 bar atm™!}
_ =|10.4 bar

(1.5 dm® /0.626 mol)2

P=

E1.2(b) (a) Boyle’s law applies:
pV = constant so peVr =pmV;

and

piVe (197 bar) x (2.14dm%)
_ = = 1.07 bar|
A=y, (2.14 + 1.80) dm®

(b) The original pressure in bar is
.~ (107 ba) x 1 atm . 760 Torr _ (33T
pi= A7 DAL 1.013 bar latm / il

E1.3(b)  The relation between pressure and temperature at constant volume can be derived from the perfect
gas law

Pi  Pr
V =nRT so xT and — ==—
P P T, T

The final pressure, then, ought to be
piTr  (125kPa) x (11 +273) K
=—= =120 kP:
=" 1)K [120 kPe

E1.4{(b)  According to the perfect gas law, one can compute the amount of gas from pressure, temperature,
and volume. Once this is done, the mass of the gas can be computed from the amount and the molar
mass using

pV =nRT

pV (100 atm) x (1.013 x 10°Paatm™') x (4.00 x 10° m’)
RT ™ (83145 5K~ 'mol™!) x (20+273) K

and m = (1.66 x 10° mol) x (16.04 g mol™") = 2.67 x 10%g =[2.67 x 10° kg

= 1.66 x 10°mol




E1.5(b}

E1.6(b)

E1.7(b)

THE PROPERTIES OF GASES §
Identifying pex in the equation p = pex + pgh [1.3] as the pressure at the top of the straw and p as the
atmospheric pressure on the liquid, the pressure difference is

p—pex = pgh=(1.0x 103kgm™) x (9.81ms™%) x (0.15m)

=[1.5 % 10° Pa|(= 1.5 x 1072 atm)

The pressure in the apparatus is given by

P = pam + pgh [1.3]
Paum = 760 Torr = 1 atm = 1.013 x 10° Pa

1k 105 cm3
pgh=1355gcm™? x | —= ) x “M ) % 0.100m x 9.806 ms~2 = 1.33 x 10* Pa
103 g m3

p=1013x 10°Pa + 1.33 x 10° Pa = 1.146 x 10° Pa=| 115kPa

All gases are perfect in the limit of zero pressure. Therefore the extrapolated value of pVy, /T will give
the best value of R.

The molar mass is obtained from pV = nRT = %RT
mRT _ RT

which upon rearrangement gives M = —— = p
Vop P

The best value of M is obtained from an extrapolation of p/p versus p to p = 0; the intercept is M /RT.

Draw up the following table

p/atm (pVer/T)/(dm? atm K~'mol™")  (o/p)/(dm~3atm™")

0.750 000 0.082 0014 1.428 39
0.500 000 0.082 0227 1.428 22
0.250 000 0.082 0414 1.427 90

14
From Figure 1.1(a), (’iT—“‘) = (0.082 061 5 dm? atm K~' mol~!
p=0

ol
-
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"
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i

Figure 1.1(a)
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From Figure 1.1(b), (3) = 1.42755 g dm=> atm™"
p=0

£/(gdn au-

Figure 1.1(b)

M =RT (3) = (0.082 061 5 dm® atm mol™' K™') x (273.15 K} x (1.42755 g dm™atm™")
p=0

P
=|31.9987 g mol~!

The value obtained for R deviates from the accepted value by 0.005 percent. The error results from the
fact that only three data points are available and that a linear extrapolation was employed. The molar
mass, however, agrees exactly with the accepted value, probably because of compensating plotting

errors.
The mass density p is related to the molar volume ¥, by

M
Vm =
0

where M is the molar mass. Putting this relation into the perfect gas law yields

M
pVa =RT so 22 _RT
P

Rearranging this result gives an expression for M, once we know the molar mass, we can divide by the
molar mass of phosphorus atoms to determine the number of atoms per gas molecule

RTp (8314 Pam’mol™") x [(100 + 273) K] x (0.6388kg m™)
o 1.60 % 104 Pa

=0.124 kg mol™' = 124 g moi™'

M=

The number of atoms per molecule is

124 g mol™!

— =400
31.0 g mol~!

suggesting a formula of
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E1.9(b) Use the perfect gas equation to compute the amount; then convert to mass.

pV

V =nRT so =
r " 0 N 7T

We need the partial pressure of water, which is 53 percent of the equilibrium vapor pressure at the given
lemperature and standard pressure.

p = (0.53) x (2.69 x 10*Pa) = 1.43 x 10* Pa

3 (1.43 x 10° Pa) x (250m*)
T 83145JK 'mol™") x (23 + 273)K

or m= (145 x 10> mol) x (18.0g mol™') =2.61 x 10% g =[2.61 kg

E1.10(b) (a) The volume occupicd by each gas is the same, since each completely fills the container. Thus solving
for V we have (assuming a perfect gas}

50 1 = 1.45 x 10% mol

mRT 0.225 ¢
—_ HNe = 1
2] 20.18 g mol

= 1115 % 107 mol, pne =8.87kPa, T =300K

(1115 x 1072 mol) x {8.314 dm’ kPa K~' mol™") x 300 K)

8.87 kPa
=

{b) The total pressure is determined from the total amount of gas, n = ichH, + Mar + Ane.

|4

=3.137dm?

0320 ¢ - 0.175 ¢
e, = —————— = 1995 x 10 *mol npr = ————— =438 x 10 *mol
16.04 g mol™ 39.95 g mol™
n=(1.995 + 0.438 + 1.115) x 107 2mol = 3.548 x 10™2mol
nRT (3.548 x 1072 mol) x (8.314 dm” kPa K~' mol™") x (300 K)

_[Ezi]

E1.19(b) This is similar to Exercise 1.11(a) with the exception that the density is first calculated.

3.137 dm?

RT
M= ,o-;}m [Exercise 1.8(a)]

_ 335mg
7= 250em?

1340 g dm™?) x (62.36 dm? Torr K~! mol~!
= (0-1340gdm™) x (62.36dm” Torr K™  mol™ ') x (298K) _ 16.14 g mol~!
152 Torr

E1.12(b) Thisexerciseis similar to Exercise [.12(a) in that it uses the definition of absolute zero as that temperature
at which the volume of a sample of gas would become zero if the substance remained a gas at low
temperatures. The solution uses the experimental fact that the volume is a linear function of the Celsius
temperature.

= 0.1345g dnfj, p=152Torr, T =298K
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Thus V=Vo+aVpl = Vo + b8, b =aVp
At absolute zero, V = 0, or 0 = 20.00dm? + 0.0741 dm? °C~! x #(abs. zero)

20.00 dm®
£ (abs. zero) = o Sam =270°C

0.0741 dm?°C~!

which is close to the accepted value of —273°C.

nRT
E1.13(b} (a) p= Vv

1 = 1.0mol
T = (i) 273.15K; (ii) 500K
V = (i) 22.414dm’; (i} 150cm?

_ (1.0mol) x (8.206 x 10~?dm’ atmK~' mol™") x (273.15K)

i
® 22 414 dm?
=
(i _ (1.0mol) x (8.206 x 107 dm’ atm K~' mol™") x (500K)
h 0.150dm?

= (2 significant figures)
(b) From Table (1.6) for H2S

a = 4.484 dm® atm mol ™! b =434 x 1072 dm® mol ™'

_ nRT an*
P= V —nb e

_ (1.0 mol) x (8.206 x 1072 dm’ atm K~ mol™!) x (273.15K)

i
® 22.414 dm® — (1.0 maol) x (4.34 x 102 dm? mol™
{4.484 dm® atm mol™") x (1.0 mol)?
(22.414 dm*Y’
=
() _ (1.0mol) x (8.206 x 1072 dm* atm K=" mol™") x (500K)
0.150dm’ — (1.0 mol) x (4.34 x 10-2 dm’ mol™')

(4.484 dmbatmmol ™) x (1.0 mol)?
(0.150 dm>)2

= I185.6atm ~ (2 significant figures).

E1.14(b) The conversions needed are as follows:

latm=1.013x 10°Pa; JPa=lkgm™'s™% 1dm®=10"%m% I1dm®=10""m’
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Therefore,

a = 1.32 atm dm® mol™? becomes, after substitution of the conversions

a =| 1.34 x 107" kg m*s~2mol~? |, and

b = 0.0436 dm® mol~! becomes

b =436 x 10~° mmol~!

The compression factor is

7= Vm Vi

T RT T Ve

(a) Because Vi = V3, +0.12 V2 = (1.12)V3, we have Z =[ 1.12 Repulsive | forces dominate.
(b) The molar volume is

V= (LI2)VS = (1.12) x (RP_T)

3 -1 =1
V= (112) x ((0.08206dm amK~' mol™') x (3501()) I Pypmc—

12 atm

@ o KT _ B34IK 'mol™) x 298.15K)

moop (200 bar) x {10° Pabar™!)

=124 x 107*m? mol™! = 0.124 dm? mol™'

{b) The van der Waals equation is a cubic equation in Viy. The most direct way of obtaining the molar
volume would be to solve the cubic analytically. However, this approach is cumbersome, so we
proceed as in Example 1.4. The van der Wazls equation is rearranged to the cubic form

RT b RT b
v}n—(b+—)v§1+(5)vm—"—=o or xJ—(b+—)x2+(f)x—“—=o
P P P P p P

with x = Vi /(dm? mol™!).
The coefficients in the equation are evaluated as

(8.206 x 10~2dm> mol™!) x (298.15 K)
(200 bar) x (1.013 atmbar™")

RT
b+ = (3.183 x 1072 dm® mol™') +

= (3.183 x 1072 4+ 0.1208) dm® mot™! = 0.1526 dm’mol~!

a 1.360 dm® atm mol ™2

= — = 6.71 x 107(dm’ mol™')?
P (200 bar) x {(1.013 atm bar™")

ab (1360 dm® atm mol %) x (3.183 x 10"2dm"* mol~")

, =2.137 x 10~*(dm’ mo!™")?
{200 bar) x (1.013 atm bar™ "}

Thus, the equation to be solved is x> — 0.1526x2 + (6.71 x 10~%)x — (2.137 x 10~%) = 0.



E1.17(b)

E1.18(b)

E1.19(b}
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Calculators and computer software for the solution of polynomials are readily available. In this case
we find

x=0.012 or Vu=|0112dm’ mol~! |

The difference is about 15 percent.

The melar volume is obtained by solving Z = pV,,,/RT [1.17], for Vi, which yields

. 0 3 -1 —1 _
V, = ZRT _ (0.86) x (0.08206 dm” atm K~ mol™ ') x (300 K) — 1.055 dm? mol~!
p 20atm

(a) Then, V = nVy, = (8.2 x 107> mol) x (1.059dm’ mol~') =87 x 10~ dm® =

(b) An approximate value of B can be obtained from eqn 1.19 by truncation of the series expansicn after
the second term, B/Vy,, in the series. Then,

VY,
B:vm("R—;‘—l)=vmx(Z—1)

= (1.059 dm? mol~") x (0.86 — 1) =| —0.15 dm’mol '

(a) Mole fractions are

nN 2.5 mol
== =[0.63
™ Mo (2.5 4+ 1.5y mol -

Similarly, xy =

(b) According to the perfect gas law

PowlV = moalRT

Mo RT
5O Dol = v
4.0mol) x (0.08206 dm’ at 17T K1y % (273.15K
=( mol) x ( m” atm mo yx ( )=

22 4dm?

(¢) The partial pressures are

PN = INpior = (0.63) X (4.0atm) =
and py = (0.37) x (4.0atm) =

The critical volume of a van der Waals gas is

Ve =3b

sob =1V, = $(148cm? mol™") = 49.3cm3 mol™' ={0.0493 dm’ mol ™!

By interpreting & as the exciuded volume of a mole of spherical molecules, we can obtain an estimate
of molecular size. The centers of spherical particles are excluded from a sphere whose radius is the



THE PROPERTIES OF GASES 11

diameter of those spherical particies (i.e. twice their radius); that volume times the Avogadro constant
is the molar excluded volume &

47 (2r)? L { 36 \'?
b=NA( 3 ) S0 '-=§(4JTNA)

1/3
1 3(49.3 cm’ mol~!

F= - ( cm TO ) ; =194x108ecm=[194x10""9m
2 \ 47 (6.022 x 1023 mol™ )

The critical pressure is

/]

Pe= 31

soaq= 27'pcb2 = 27(48.20atm) x (0.0493 dm? mol~ "2 =|3.16 dm® atm mol~2

But this problem is overdetermined. We have another piece of information

_ 8a
~ 27Rb

c

According to the constants we have already determined, T, should be

B 8(3.16 dm® atm mol~?)
"~ 27(0.08206 dm” atm K=! mol™") x (0.0493 dm® mol™!)

=231 K

T.

However, the reported T 1s 305.4 K, suggesting our computed @/b is about 25 percent lower than it
should be.

E1.20(b) {a) The Boyle temperature is the temperature at which limy, _, oo dZ/{d(1/Vy,}) vanishes. According
to the van der Waals equation

( RT a )V
_PVYm A\Vm-—0 V2 i _ Vn a

RT RT T Va—b VaRT

dZ ( dZ ) ( dVm )
SO —— =\ X\ —/——————
d(1/Vm}) dVn d{1/Vin)

dz - —Vm | a
= —V2 —_— = —v"
" (dvm) " ((Vm - b)Z * Vm —b + V%RT)
_ V,%b a
T (Vm—b2 RT

Z

In the limit of large molar volume, we have

dz
V—oo d(1/Vi) RT RT

4.484 dm® atm mol_z)

a (

GTo & = [1259K]
o Rb ~ (0.08206dm’ atm KL mol~") x (0.0434 dm> mol)
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(b) By interpreting b as the excluded volume of a mole of spherical molecules, we can obtain an estimate
of molecular size. The centres of spherical particles are excluded from a sphere whose radius is the
diameter of those spherical particles (i.e. twice their radius); the Avogadro constant times the volume
is the molar excluded volume b

am(2r)? 1/ 3 \'?
b= Na 3 s I‘=5 4T Na

1 ( 3(0.0434 dm> mol™")

1/3
=1.286x 1072dm = 1.29 x 107" m ={0.129 nm
4(6.022 x 102 mor‘))

2

E1.21(b) States that have the same reduced pressure, temperature, and volume are said to correspond. The reduced
pressure and temperature for Nz at 1.0 atm and 25°C are

1.0at T  (25+4273)K
2 M 0030 and T, = = EF2IK 46

Pr= pe T 3354am .= 1263K

The corresponding states are

(a) For HyS

p = prpe = (0.030) x (88.3atm) =
T =TT = (236) x (373.2K) =

(Critical constants of H3S obtained from Handbook of Chemistry and Physics.)
(b) For CO,

p = pepe = (0.030) x (72.85atm) =
T = T,Te = (2.36) x (304.2K) = [ 718 K

(¢} For Ar

p = pepe = (0.030) x (48.00atm) =
T = T,T; = (2.36) x (150.72K) =356 K

E1.22(b) The van der Waals equation is

__RT a
P =V =b V2

which can be solved for &

RT 8.3145J K "mol™! 288K
b=Vpy— ———— =400 x 107*m’ mol™' — ( s ):( )2
a 0.76 m® Pamol~
Ptyz 40 x 105Pa + Sm-Pamol —_
(4.00 x 10~? m3® mol~')2

=113 x 10~*m? mol~!




P1.2

THE PROPERTIES OF GASES 13

The compression factor is

_ pVm (4.0 x 10°Pa) x (4.00 x 107 m*mol™') _
T ORT (8.3145J K~ mol™") x (288K) -

Solutions to problems
Solutions to numerical problems

Solving for n from the perfect gas equation [1.8] yields n = pV/RT and n = m/M, hence p = m/V =

RT RT RT
Mp/RT. Rearrangement yields the desired relation, thatis|p = p—- |, or g —,and M = —

M P M plo

Draw up the following table and then plot p/p versus p 1o find the zero pressure limit of p/ o where all
gases behave ideally.

pfgdm™3) = p/(kg m);

lat 1.013 x 10°P
1 Torr = (1 Torr} x ( am ) X (#) = 133.3Pa

760 Torr | atm
p/Torr 91.74 18898 2773 4528 6393  760.0
p/(10* Pa) 1223 2.519 3.696  6.036 8522  10.132
p/(kgm~%) 0225 0456 0.664 1062 1468  1.734
(p/p) (10°m?s™2) 544 552 5.56 5.68 5.81 5.84

2 s plotted in Figure 1.2. A straight line fits the data rather well. The extrapolation to p = 0 yields an
P

intercept of 5.40 x 10* m? s~2. Then

_ RT _ (8314JK'mol™') x (298.15K)
T 540 x 10°m2s72 540 x 109 m?s~2

= 0.0459kgmol~! =|45.9 g mol™!

—— ¥=5.3963 + 0.046074x R = 0.99549

(plp) 1 (10%m*s™")

pi{10*Pa) Figure 1.2



P1.4

P1.6

14 INSTRUCTOR’'S SOLUTIONS MANUAL

COMMENT. This method of the determination of the molar masses of gaseous compounds is due to Can-
nizarrc who presented it at the Karlsruhe conference of 1860 which had been called to resolve the problem of
the determination of the molar masses of atoms and molecules and the molecular formulas of compounds.

The mass of displaced gas is pV, where V is the volume of the bulb and p is the density of the gas. The
balance condition for the two gases is m(bulb) = pV (bulb}, m{bulb) = p’'V (bulb)

which implies that p = p’. Because [Problem 1.2] p = pM/RT

the balance condition is pM = p'M’

P

which implies that M’ = = x M

This relation is valid in the limit of zero pressure (for a gas behaving perfectly).
In experiment 1, p = 423.22 Torr, p’ = 327.10 Torr; hence

. 423.22 Torr

=" 7 »70.014 1-1 = 90.59 1!
327100~ (0014 gmo gmo

In experiment 2, p = 427.22 Torr, p’ = 293.10 Torr; hence

, 42122 Torr

e isiadbials 014 1=! = 102.0 1!
293-101‘0”><'.’001 g mo gmo

In a proper series of experiments one should reduce the pressure (e.g. by adjusting the balanced
weight). Experiment 2 is closer to zero pressure than experiment 1; it may be safe to conclude that

| M 2 102 g mol~" | The molecules [ CH,FCF; | or | CHF2CHF; | have M ~ 102 gmol~".

We assume that no Ha remains after the reaction has gone to completion. The balanced equation is
N2 + 3H; — 2ZNHj3

We can draw up the following table

N2 H» NH; Total

Initial amount n I 0 n+n

Final amount n — %n’ 0 %n' n+ %n’
Specifically 033mol 0 1.33mol 1.66 mol
0

Mole fraction 0.20 0.30 1.00

RT 8.206 x 10~2dm” atm K~ mol™! 273.15K
p="RT _ (66mol) x | 820X L L ) x )Y =166 aum
Vv 22.4dm
p(H2) = x(H2)p = [0]

p(Nz) = x(Na)p = (0.20 x (1.66atm)) =
p(NH3) = x(NH3)p = (0.80) x (1.66 atm) =
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P1.8 From definition of Z [1.16] and the virial equation [1.19], Z may be expressed in virial form as
o)

1 I\~
z=1+8()re(y) +
Vi Vi

Since Vi, = RT/p [assumption of perfect gas], 1/Vy,, = p/RT; hence upon substitution, and dropping
terms beyond the second power of (1/ V)

_ I4 A%
Z=1 +B(RT)+C(RT)
100 at
Z =1+ (=217 x 10~% dm® mol~!) x ( . = )
(0.0821dm” atm K™ 'mol™") x (273 K)
100 at 2
+(1.200 x 1072 dm® mol™2) x ( - - )
(0.0821 dm” atm K~ mol™}) x (273 K)

Z =1 - (0.0968) + (0.0239) =
3 -1 —1
Ve = (0927 (J’j)_T) — (0927) x ((0.0821dm atm K=" mol ') x (273 K)) _[oz080n]

100 atm

Question. What is the value of Z obtained from the next approximation using the value of Vi just
calculated? Which value of Z is likely to be more accurate?

P1.10 Since B'(Tg) = 0 at the Boyle temperature {Section 1.3b): B'(Tg) = a + be=Ti =0

—(1131K%) :

) [ —(—0.1993 bar—")
(0.2002 bar™ 1)

Solving for Tg : Tg =

2 2a \'** 1 2aR\'"?
P112  FromTable 167, = (2 ) x (—=) . pe={—)x (<%
rom fabie 15 Te (3)x(3bR) Pe (12)x(3b3)

20 \'* 125
(ﬁ) may be solved for from the expression for p. and yields (Tpc) Thus

_ 2 lchb _ 8 Pcvc
r=(3) (%) =(5)~ (°%)
40 at 160 x 1073 dm’ mol™! =
8 (40 atm) x (160 x m’ mo ))=

-()- B
3 8.206 x 10-2dm* atm K~ mol™

-6 3 -1
b _(I)X(Vc) 160 x 10~° m~” mol 886 % 10-2 3

Vol = — = | = — | =
T NA T A3 Na/ ) x (6022 x 108 mol™")
Vmol = 4_1{1'3

3

3 —29 3 3
;-=(Ex(s.86x10 m®)} =[0.28 nm|
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Solutions to theoretical problems

=Zn - —5 Rravm [see Exercise 1.20(a).]
Vm

b\ b \?
which upon expansion of (1 — ——) =14 —+ (——) + ... yields

We note that all terms beyond the second are necessarily positive, so only if

a b 4 b \? .
- i .
RTVy, Vi Vm
can Z be less than one. If we ignore terms beyond b/ Vi, the conditions are simply stated as

Z<1 whcni>b Z=>=1 wheni-:b
RT RT

Thus Z < 1 when attractive forces predominate, and Z > 1 when size effects (short-range repulsions)
predominate.

The Dieterici equation of state is listed in Table 1.7. Al the critical point the derivatives of p with respect
to (wrt) Vi, equal zero along the isotherm for which T = T,. This means that (3p/3Vn)r = 0 and
(82p/8V2)r = 0 at the critical point.

_ RT e #/RTVm ap ) _ [aYm—ab—RTV],
LT V)7 © | VE(Vm — BYRT)

( p ) _ (8_p) [an —ab — RTV?, (—2aV2 + 4Vyab + RTV3, — 2ab?)
3vi/)r \Vm/7 | VA(Ve — BY(RT) P (VEI(Vm — BRI}

Each of these equations is evaluated at the critical point giving the three equations:

RTC e—a/RT,: Ve

Pe=—9y"3 aV. —ab— RT,V: =0

— 2aV? +4Veab + RT V] — 2ab* =0

Solving the middle equation for T, substitution of the result into the last equation, and solving for V,
yields the result: V. = 26 or b = V,/2 (The solution V; = b is rejected because there is a singularity
in the Dieterici equation at the point Vy, = b.) Substitution of V, = 2b into the middle equation and
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solving for 7, gives the result; T, = a/4bR or a = 2RT. V. Substitution of V; = 2b and T, = a/4bR
into the first equation gives:

l ra

=3 ()"
The equations for V¢, T¢, p. are substituted into the equation for the critical compression factor (eqn 1.23)
topgive: Z; = pc Ve /RT, = 2¢~2 = 0.2707. Thisis significantly lower than the critical compression factor
that is predicted by the van der Waals equation (eqn 1.21a): Z.(vdW) = p.V/RT. = 3/8 = 0.3750.
Experimental values for Z; are summarized in Table 1.5 where it is seen that the Dieterici equation
prediction is often better.

PvlTl # ' 2

—RT=1+Bp+Cp*+--- [1.18]

RT

PYm B

c
=l —+—+--[l19
RT +vm“LvZJr [1.19]

m

B C
whence Bp+ C'p> + - = — + 4.

Vo | V2
Now multiply through by Vi, replace pV, by RT{I + (B/Vw) + - - - }, and equate coefficients of

1 BB'RT + C'R*T? c
powersof — :BRT+ —MMM 4+ - =B84 — +---
vI'I'I Vm m
: : . , B
Hence, B'RT = B, implying that| B’ = —
RT
# 2ol 2 22 . . ' C—Bz
Also, BB'RT + C'R*T? = C, or B® + CR*T? = C, implying that | C" = &

aV, v,
Write Vi, = f(T,p); thendVp, = (_m) dr + (_m) dp
oT p op T

Restricting the variations of T and p to those which leave Vi, constant, that is dV, = 0, we obtain

()
(), (), (). - (), (), -
aT /, o /r aT J Vm /o aT /v, ap
Vm /7

From the equation of state

ap RT i ap R b
P} = - — 202+ BTV, AL T
(avm)T vz ~ At O (aT B AT

m

R b re (b
SN =) B G )
(_ﬁr_)p__( RT 2(a+bT)) - (5{+2(a+b1‘))

W Ve V2

Substituting
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bT RT
From the equation of state (a+—7) =p- —
V,‘ﬁ Vm
b b
R+ — R+ —
Then aVm _ ( Vm) _ ( Vrn) - RVm-i-b
aT p_RT+2 RT ~ , RT | 2pV,, —RT
Vin Vi Vm
P1.22 Z = Vi /VE, where V5 = the molar volume of a perfect gas
From the given equation of state
RT b+ Ve b
Vm=b+ -~ =b+ V] then Z = t m =14 —
P Va Vi
For Vip = 10k, 10b = b+ V3 or VS =9
10b 10
thenZ = — =|— = 1.11
9 9
P1.24 The virial equation is
B C
Vm=RT |1+ —+—=+--
PVm (+Vm+v%+ ) or
PVm B C
=l4+—+ =+
RT Vi V2

(a) If we assume that the series may be truncated after the B term, then a plot of (pV,, /RT) vs (1/V)

will have B as its slope and | as its y-intercept. Transforming the data gives

p/MPa  (Vy/dm®)/(mol™")  pVn/RT (1/Vm)/(mol dm™)

0.4000 6.2208 0.9976 0.1608
0.5000 4.9736 0.9970 0.2011
0.6000 4.1423 0.9964 0.2414
0.8000 3.1031 0.9952 0.3223
1.000 2.4795 0.9941 0.4033
1.500 1.6483 0.9912 0.6067
2.000 1.2328 0.9885 0.8112
2.500 0.98357 0.9858 1.017

3.000 0.81746 0.9832 1.223

4.000 0.60998 0.9782 1.639

A plot of the data in the third column against that of the fourth column is shown in Figure 1.3. The
data fit a straight line reasonably well, and the y-intercept is very close to 1. The regression yields

B=|—-132x 10"2dm’mol™"' |
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1.00 T = 0.99949 — 1.3245 x 1072x
L R=0999
0.99 i
PVm
RT
0.98
0.97 : = :
0 1 2

(Vi dmPmol™ .
Figure 1.3

{b) A quadratic function fits the data somewhat belter (Figure 1.4) with a slightly better correlation
coefficient and a y-intercept closer to 1. This fit implies that truncation of the virial series after the
term with C is more accurate than after just the B term. The regression then yields

B=|-151 % 102dm’mol~'| and € =|1.07 x 1073 dm® mol~?2

050947 | 5051 x IO Y 0741 NETRLEAN
0.97 [R2 = 1.000 i H
0 1 2
{11V, M(dm*mel™)

Figure 1.4

Solutions to applications

P1.26 The perfect gas law is

pv
V = nRT =—
P n S0 n RT

At mid-latitudes

_ (100 atm) x [(1. 00dm?) x (250 x 10~%cm)/10¢m dm™"] _ TIVRTE

(0.08206 dm® atm K~'mol~!) x (273 K)

In the ozone hole

100 x 1073 -1
iy (1.00 atm) x [(1. 00dm?) x ( x cm)/10cm dm™'] _[4.46 % 10-% mol

(0.08206 dm” atm K~ 'mol™") x (273 K)
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The corresponding concentrations are

-3
2= L12 x 1077 mol =[2.8 x 1079 mot dm=3 |
V. (1.00dm?) x (40 x 103 m) x (10dm m™")
4.46 x 10~ mol
a2 X mo =|l.l Y, 10‘9moldm_3|

Vo (1.00dm?) x (40 x 103 m) x (10dm m™")
respeclively.

v 4 4 _
n= I;—T[I.S]. V= Tﬂ.r3 == Tﬂ x 3.0m)? =113 m® = volume of balloon

p=10am, T =298K

) 3 3
@) . (1.0atm) x (113 x 10°dm’}) =

T (8.206 x 10~2dm® atm K~ mol™") x (298 K)

(b) The mass that the balloon can lift is the difference between the mass of displaced air and the mass
of the balloon. We assume that the mass of the balloon is essentially that of the gas it encloses.
Then m(Hz) = nM(Ha) = (4.62 x 10° mol) x (2.02gmol™1) =9.33 x 10% ¢
Mass of displaced air = (113m%) x (1.22kgm™3) = 1.38 x 107 kg

Therefore, the payload is (138 kg) — (9.33kg) =| 1.3 x 10%kg

(¢) For helium, m = nM(He) = (4.62 x 10° mol) x (4.00 gmol™') = I8kg

The payload is now 138kg — 18kg = | 1.2 x 10%kg

Avogadro’s principle states that equal volumes of gases represent equal amounts (moles) of the gases,
50 the volume mixing ratio is equal to the mole fraction. The definition of partial pressures is

p1=x5p
The perfect gas law is

mo_pL_ 0P

pV=nRT so — = =
V  RT RT
(@  (CCLF) _ (261 x 10~'%) x (1.0atm) =1t x 101 mol dm
v (0.08206 dm’ atm K~'mol™!) x (10 + 273)K -
—12
and n(CChFy) _ (509 x 10~'?) % (ll.Oatm) =|2‘2 y lo-llmoldm-ﬂ
|4 (0.08206 dm” atm K~ 'mol™!) x (10 + 273)K
(b) n(CCLF) _ (261 x 107'%) x (0.050 atm) =|30 10— mol dm_3|
14 (0.08206 dm” atm K~'mol™!) x (200K) '
—12
| n(CChF2) _ (509 leo } x (0.050 atm) =| 6 % 10~ mol dms j
1% (0.08206 dm> atm K~ "mol™") x (200K)




2 The First Law

D2.2

D2.4

D2.6

E2.1(b)

Answers to discussion questions

Rewrite the two expressions as follows:
(1) adiabatic p & 1/VY (2} isothermal p o< 1/V

The physical reason for the difference is that, in the isothermal expansion, energy flows into the system
as heat and maintains the temperature despite the fact that energy is lost as work, whereas in the adiabatic
case, where no heat flows into the system, the temperature must fall as the system does work. Therefore,
the pressure must fall faster in the adiabatic process than in the isothermal case. Mathematically this
corresponds to y > 1.

The change in a state function is independent of the path taken between the initial and final states; hence
for the calculation of the change in that function, any convenient path may be chosen. This may greatly
simplify the computation involved, and illustrates the power of thermodynamics.

The following list includes only those state functions that we have encountered in the first two chapters.
More will be encountered in later chapters.

Temperature, pressure, volume, amount, energy, enthalpy, heat capacity, expansion coefficient, iso-
thermal compressibility, and Joule-Thomson coefficient.

One can use the general expression for 717 given in Further Informarion 2.2 (and proved in Section 3.8,
eqn 3.48) to derive its specific form for a van der Waals gas as given in Exercise 2.30(a), that is,
T = a/V,%] . (The derivation is carried out in Example 3.6.)} For an isothermal expansion in a van der
Waals gas dUy, = (a/Vim)?. Hence AlUn = —a(1/Vina — 1/ Vm.). See this derivation in the solution to
Exercise 2.30(a). This formula corresponds to what one would expect for a real gas. As the molecules
get closer and closer the molar volume gets smaller and smaller and the energy of attraction gets larger
and larger.

Solutions to exercises

The physical definition of work is dw = —F dz [2.4]

In a gravitational field the force is the weight of the object, which is F = mg
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If g is constant over the distance the mass moves, dw may be inlergrated to give the total work
of i
w = —f Fdz = —f mgdz = —mg(zr — 5) = —mgh  where I = (zr — zj)

w = —(0.120kg) x (9.81 ms~2) x (50m) = —59J =59 J needed

This is an expansion against a constant external pressure; hence w = —pex AV [2.8]

The change in voiume is the cross-sectional area times the linear displacement:

3
AV = (50.0cm?) x (15¢cm) x ( ) =175 x 1074 m?,

100 cm

5o w=—(121 x 10°Pa) x (7.5 x 107" m*) =| 91 J]as 1 Pam® = 11.

For all cases AU = 0, since the internal energy of a perfect gas depends only on temperature. (See
Molecular interpretation 2.2 and Section 2.1 (b) for a more complete discussion.) From the definition
of enthalpy, H = U + pV.s0 AH = AU + A(pV) = AU + A(nRT) (perfect gas). Hence, AHf =0 as

well, at constant temperature for all processes in a perfect gas.

(2)

y = T In .
¥ n V.

31.7dm?

= —(2.00mol} x (8.3145TK " mol™") x (22 + 273K x In SR = —1.62 % 10°}

dm

g=-w=|162x100J
®

w= —p AV [2.8]
where pey in this case can be computed from the perfect gas law
pV = nRT
(2.00mol) x (8.3145JK~"mol™") x (22 + 273K
P= 31.7dm?

—{155x 10°P 31.7 — 22.8) dm?®
and = —4:33 X 107 Pa) x ( Ydm T 38 % 10%)
(10dmm~1)3

g=-w=|[138x10%]
{c) AU=AH =0
[free expansion] g = AU —w=0-0 =@

COMMENT, An isothermal free expansion of a perfect gas is also adiabatic.

The perfect gas law leads to

pIV  nRT mTs (111kPa) x (356 K)
= 2 =[143 kPa]
vV aRT, O PPT 277K [143 ko]

x (10dmm~57 = 1.55 x 10° Pa
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There is no change in volume, so . The heat flow is

g = ]Cv dT =~ CyAT = (2.5) x (8.3145J K~ " mol™") x (2.00mol) x (356 — 27T) K

=|3.28 x 1037
AU=g+w=1328 x 10*]

—(1.7 x 10° Pa) x (2.5dm"?)
E25(b) (a) w=—puAV = G0 dm T3 =

Vi
by w=—nRT In (7) [2.11]

(2.5 + 18.5) dm?

6.56
W= (__g_) x (831451 K"mol™") x (305K) x In .
18.5dm’

39.95 g mol™!

=[-5281
E2.6(b) AH = AgopaH = —BpH = —(2.00mol) x (35.3kImol™") = | —70.6 kI

Since the condensation is done isothermally and reversibly, the external pressure is constant at 1.00 atm.
Hence,

—pex AV [2.8] where AV = Vjjq — Vigp = =V  because  Viig € Vigp

W

On the assumption that methanol vapor is a perfect gas, Viyp = nRT/p and p = pex. since the
condensation is done reversibly. Hence,

w % nRT = (2.00mol) x (8.3145TJ K~ mol™") x (64 + 273)K =[5.60 x 10°]
and AU =g+ w = (-70.6+5.60)kJ} =! —65.0kJ

E2.7(b})  The reaction is
Zn+2H" — Zn?t 4 Hy

so it liberates | mol of Ha(g) for every | mol Zn used. Work at constant pressure is

W = —pex AV = —pVys = —nRT

50g ) 21—l
=—| —— 1 x(8.3145JK" "mol x (23 4273 K=-—1SSJ
(65.4gmol‘I ( ) ( )
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E2.8(b) (a) At constant pressure, g = AH.

100+273K
q= f CpdT = f [20.17 4 (0.4001)T/K]dT JK™!

0+273K
313K

1 2
= | (20.17) T + ={0.4001) x (—)] 1!
[ 2 K /llax

=[(20.17) x (373 — 273) + =(0.4001) x (3732 — 273%) [J =| 149 x 103 ] | = AH
[( ) % ( )+ 5(04001) x ( )]
w=—pAV = —nRAT = — (1.00mol) x (8.314511(‘l mol") x (100K) =
AU=g+w=(149-083)kJ =[14.1 KJ

{b) The energy and enthalpy of a perfect gas depend on temperature alone. Thus, AH =| 14.9 kJ [and

AU = as above. At constant volume, w = @ and Al = g,5049 = .

E2.9(b) For reversible adiabatic expansion

vV, l/e
Tr=T (Vf) [2.28a]

where
_ Cym _ Cpm—R _ (37.11 —83145) J K~'mol™!

= = 3.463,
R R 8.3145] K~!mol~!

so the final temperature is

1/3.463
500 x 1073 dm?
Tr = (298.15K) x (#) =[200K

2.00dm?

E2.10(b) Reversible adiabatic work is
w=CyAT [227] = n(Cpm — R) x (Tt = Tj)

where the temperatures are related by [solution to Exercise 2.15(b)]

CV.m _ Cp.m —-R

= =2.503
R R

V. /e
T =Tl — | [2.28a] where ¢=
Vi

1/2.503
400 x 1073dm?
2.00dm’ ) = 1ok

So Ty ={(23.0 + 273.15) K] x (

and w = (&) x (29.125 — 8.3145) T K" mol ™" x (156 — 296) K =[—325J |

28.0 gmol™!

E2.11(b) For reversible adiabatic expansion

1.3
ViNY 500 x 103 dm’
V! = piV? 2291 so pr=pi (7) =(8.73Torr)x(-x——m— = [8.5 Torr]
T

3.0dm’
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E2.12(b) gp = nCpm AT [2.24]

Com = = =|53JK |
Pm = UAT T 19mol x 178K o
Cvamn = Com —R = (53 —8.3)JK™ ' mol™! =45 JK~! mol”!

E2.13(b) AH = g, = C,AT [2.23b,2.24] = nCpmAT

AH =g, = 2.0mol) x (37.11 J K" mol™!) x (277 - 250)K = I 2.0 x10% J mol™!

AH = AU+ A(pV) = AU +nRAT so AU = AH —nRAT
AU =20x 100 Imol™! — (2.0mol) x (8.31451 K~ mol™") x (277 — 250)K

=[1.6 x10% ¥ moi~' |

E2.14(b} In an adiabatic process, g = @ Work against a constant external pressure is

—(78.5 x 103 Pa) x (4 x 15 — 15)dm?
W= —paAV = 0dmm-1)3 =|-35x10°]
AU=g+w=|-35x10%]

One can also relate adiabatic work to AT (eqn 2.27):

W
”(Cp.m -R) ’

—-35x% 10%)]
T = =-—24K.
(5.0mol) x (37.11 — 8.3145) JK~! mol~!

AH = AU + A(pV) = AU 4+ nRAT,

= —35x 1037+ (5.0mol) x (8.3145TK " moal™!) x (=24K) =| —4.5 x 103 J

E2.15(b) In an adiabatic process, the initial and final pressures are related by (eqn 2.29)

w=CyAT =n(Cpm — R)AT s0 AT =

Com _ Cpm 20.8JK~! mol~! — L67

VY =pi V¥ where = = = =
P Piti Y= Cvm Com—R  (208—831)JK ' mol"

Find V; from the perfect gas law:

_ nRT; _ (1.5mol)(8.311K~' mol=")(315K)

V, = =0.0171m?
= 330 x 109 Pa "
pi\"" . (230KkPa\ /b =
so V=V, (—) = (0.0171m?) (170kPa) =(0.0205 m® |
Pr

Find the final temperature from the perfect gas law:

prVe (170 x 10° Pa) x (0.0205m?) p
Tr="— = =279
=2 [275%]

(1.5 mob)(8.31 J K~ mol™!)

25
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Adiabatic work is (eqn 2.27)

w=CyAT = (208 — 83D JK "mol™! x 1.5mol x (279 — 315)K =| —67 x 1021

E2.16(b}) At constant pressure

= AH = nAwpH® = (0.75mol) x (32.0kJ mol_[) =1240kJ
q p

and w = —pAV & —pVyper = —nRT = —(0.75mol) x (8.3145J K~ mol™!) x (260K)
w=—1.6x 10T =[—1.6k]
AU =w+q=240—16kI =|22.4k)

COMMENT. Because the vapor is here treated as a perfect gas, the specific value of the external pressure
provided in the statement of the exercise does not affect the numerical valug of the answer,

E2.17(b) The reaction is

CgHsOH(l) + 70:(p) — 6CO2(g) + 3H0(1)

AcH® = 6AH®(CO1) 4+ 3A:H® (H20) — ArH® (CsHs0H) — TAH®(07)

= [6(—393.15) + 3(—285.83) — (—165.0) — 7(0)]1 kI mol ™' =|—3053.6 kJ mol~!

E2.18(b) We need AfH? for the reaction
(4) 2B(s)+ 3Ha(g) — B2Hs(g)

reaction(4) = reaction(2) + 3 x reaction(3) — reaction(1)

Thus, ArH® = A H%{reaction(2)] + 3 x A H®[reaction(3)} — A H*{reaction(1)}
=[—2368+ 3 x (—241.8) — (—1941)] ki mol~" =
E2.19(b) For anthracene the reaction is
CiaHuols) + £02(2) = 14C02(g) + SH20()
AU® = AcH® — AmgRT [2.21),  Ang = —3 mol
AcU® = 7061 KImol~ = (=3 x 8.3 x 107 kI K mol™! x 298 K)

= —7055k] mol™!

225x 1073 g
172.23 gmol ™!

Il 0.0922kJ . -
= = T _0.0683kIK ! =|68.
C= = —gep = 00683 68.31K

gt = lgv] = [nAU®| = ( ) x (7055 kJ mol-’) = 0.0922kJ
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When phenol is used the reaction is
CHsOH(s) + £ 02(g) — 6CO2(g) + 3H,0(1)
AcH® = 3054 kI mol~! [Table2.5]
AU = AH — AngRT,  Any = —%

= (—3054kImol™") + () x (8.314 x 107> kIK ™" mol ") x (298K)
= —3050 kJ mol ™

135 x 1073 ¢g
lgl = | ———

oi s r‘) x (3050 Kmol™) = 4375k
A2gmo

lq! 4.375k]
AT =L o -~ =-+64.l K
C  0.0683kIK™!

COMMENT. In this case A.U® and A H® differed by about 0.1 percent. Thus, to within 3 significant figures,
it would not have mattered if we had used AcH® instead of A:U®, but for very precise work it would.

E2.20(b) The reaction is AgBr(s) — Ag*(aq) + Br{aq)

AoH® = AfH® (AgT,aq) + ArH®(Br~,aq) — ArH®(AgBr, s)

= [105.58 + (—121.55) — (—100.37)] kJmol ' =| 4+84.40kJ mol ™"

E2.21(b) The combustion products of graphite and diamond are the same, so the transition C{gr) — C(d) is
equivalent to the combustion of graphite plus the reverse of the combustion of diamond, and

AgansH® = [—393.51 — (395.41 kIimol~! =| 4+1.90 kJ mol~!

E2.22(b) (a} reaction(3) = (-2} x reaction( |} + reaction(2) and Ang = —1
The enthalpies of reactions are combined in the same manner as the equations (Hess's law).
AH®(3) = (=2) x A HT(1) + AH(2)
= [(—2) x (52.96) + (—483.64)] k] mol~!

=|—589.56 k]I mol !

AU® = AH® — AngRT

= —589.56kImol™! — (=3) x (8.314JK 'mol™") x (298 K)

= —589.56 ki mol™' + 7.43 ki mol™' =| —582. 13K mol~!

(b} ArH® refers to the formation of one mole of the compound, so

A¢HO(HD) = } (52.96 kJ mor‘) =|26.48 kJ mol~!

ArH(H,0) = § (~483.64 kI mol ™) =| —241.82 kI mol ! |
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AH® = A, U° + RTAng [2.21]
= 7727k mol™! + (5) x (8.3145 x 1073 kI K~ 'mol™") x (298 K)

=|—760.3 kI mol~!

Combine the reactions in such a way that the combination is the desired formation reaction. The enthalpics
of the reactions are then combined in the same way as the equations to yield the enthalpy of formation.

AHE /I mol™)

INa(g) + 30a(g) — NO(g) +90.25
NO(g) + 3Cl2(g) — NOCl(g) —1(75.5)
INa(g) + 30:(g) + 3Ch(g) — NOCl(g) +52.5

Hence, AfH®(NOCl, g) =| +52.5kJ mol~!

According to Kirchhoff’s law [2.36]

100°C
AH®(100°C) = A H®(25°C) + AC2dT
25°C r

where A; as usual signifies a sum over product and reactant species weighted by stoichiometric
coefficients. Because Cp m can frequently be parametrized as

Cpm = a+bT +¢/T?

the indefinite integral of Cp  has the form
f CpmdT = aT + $bT% — ¢/T

Combining this expression with our original integral, we have

373K
AH®(100°C) = AH®(25°C) + (TAa + 3T Ak — Arc/T) ro8K

Now for the pieces

AH®(25°C) = 2(~285.83 kI mol~") — 2(0) — 0 = ~571.66 k¥ mol ™~

Ara = [2(75.29) — 2(27.28) — (29.96))JK~' mol~! = 0.06606 kJ K~! mol™!

Arb = [2(0) — 2(3.29) — (4.18)] x 1073 TK "2 mol™! = —10.76 x 107 KIK~> mol™"
Arc = [2(0) = 2(0.50) — (—1.67)] x 10° TK mol~! = 67kJ K mol~!
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1
AH®(100°C) = [—57].66 + (373 — 298) x (0.06606) 4- 5(3732 —298%)

1 l
~10.7 6y — e — -1
x{(=~10.76 x 107°) — (67) x (373 298)] kJ mol

= [-566.93 k1 mol~! |

E2.26(b) The hydrogenation reaction is
(1) C2Ha(g) + Ha(g) = CaHa(g) AHO(T) =7

The reactions and accompanying data which are to be combined in order to yield reaction (1) and
AHP(T) are

2 Ha(g) + 102(g) = H0()  AH®(2) = —285.83kI mol ™'
3) C2Hs(g) + 302(g) — 2H0(1) +2C02(g)  AH®(3) = ~1411kImol ™

(4) CoHa(g) + 202(g) — Ha0() +2C02(g)  AcH®(4) = —1300kI mol ™'

reaction (1) = reaction (2) — reaction (3) + reaction (4)

(a) Hence, at 298 K:

AH® = AHT(2) — AH®(3) + AH®(4)

= [(—285.83) — (—1411) -+ (—1300)] kJ mol ™' ={—175k) moi~!

AU® = AH® — AngRT  [2.21};  Ang = —1
175K mol™! — (=) x (248K mol~"y = [ <173 kI mot~1]
(b) At 348 K:

AH®(348K) = AH®(298K) + A,C; (348K — 298K)  [Example 2.6]

ACp=Y UCrn(1N[237] = Cyr(C2Ha, ) — Copy(C2Ha, 8) — Gl (Ha, 8)
J

= (43.56 — 43.93 — 28.82) x 107 KTK " mol™! = —29.19 x 103 kI K~ mol™"

AH®(348K) = (—175kI mol™!) — (29.19 x 107> kI K~  mol™!) x (50K)
=|—176kJ mol~!
E2.27(b) NaCl, AgNO3, and NaNOj are strong electrolytes; therefore the net ionic equation is

Ag*(aq) + Cl™(aq) — AgCI(s)
AH® = ArH® (AgCl) — AfHO (Ag™) — AfHS(CHT)

= [(=127.07) — (105.58) — (—167.16)] kY mol ™' =| —65.49kJ mol~!
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Ca*(g) -+ 2e” + 2Br(g)

lonization Ca(g) + 2Br (g)
Dissociation Ca(g) + Bra(g) Electron
gain Br
]‘S’?Pmi?ﬂ“c'“ Cal(g) + Bra(1) Ca™ () + 2Br™{s)
A
Sublimation
Ca Ca{s} + Brafl) Hydration Br~
Ca’*(g) + 2Br™(aq) 4
-Fommation CaBrs(s)
A Hydration Ca®*
—Solution
Y Figure 2.1

E2.28(b) The cycle is shown in Figure 2.1.
—AnyaH®(Ca**) = —AgonH®(CaBra) — ArH® (CaBry, ) + AupH® (Ca)

+ AvapH® (Br2) + AdissH® (Br2) + Ain H® (Ca)

+ AinH®(Cat) + 28, H®(Br) + 284yaH® (Br™)
= [—(—103.1) — (—682.8) + 178.2 + 30.91 + 192.9

+ 589.7 + 1145 + 2(—331.0) + 2(=337)1 kI mol ™!

=| 1587 kJ mol~!
50 OnyaH® (Ca®t) =| 1587 kImol ™!

E2.29(b) The Joule-Thomson coefficient u is the ratio of temperature change to pressure change under conditions
of isenthalpic expansion, So

T AT ~10K P
= JRE— xz—— = . aim
K=\%p /), Bp ~ (100-22)am

E2.30(b) The internal energy is a function of temperature and volume, Uy, = U (T, V), so

aUm aUlm ab’ll'l
] —_— V. =
4Unm (aT )V,“d”(avm)rd [’” (av )T]

For an isothermal expansion dT = (; hence

m

Vi Vma g4 22.1dm? mol~! dvi, a
Aly = din = —dVy, =« = ——
V2 2
V, v, m 100dm’ mol~! V5 Vi

au
dUp, = (a ) AV = 77 dVy = %dvm
T m

22.1dm* mol !

o1 .l 1.00 dm* mol~!

a a 21.1a
- 7 o1+ T T 3
22.1dm" mol 1.00 dm” mol 22.1dm” mol

= 0.95475a dm ™ mol




E2.31(b)

E2.32(b)

E2.33(b)
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From Table 1.6, a = 1.337 dm® atm mol ™!

AUy, = (095475 mol dm?) x (1.337 atm dm® mol=2)

— I 3
(1.2765 atm dm® mol™") x (1.01325 x 10° Paatm™}) x (L)

103 dm?
129 Pam® mol~! =] 129 I mol~!

RT a
w=—[pdVy, where p= — — for a van der Waals gas.
Voo — b 4
Hence,
RT a
W= — TR dVn, + V—I%de =—qg+ AU,
Thus
22.1dm" mol ™! RT v RT In(V b 22.1dm? mol ™!
7= .[I.UOdn13nlo]" (Vm — b) "o AV =) 1.00 dm* mol =
22.1 — 3.20 % 1072 —
= {8314 YK~ mol™! 298 K) x | =|+7.7465 kI mol ™!
( mol™ x { )Xn(l.00—3.20><10—2) [+ mol~!
and w = —q + AUp = —(7747 T mol™") + (129 T mol~") =| —7618 Jmol~! | = —7.62 kI mol~" |

The expansion coefficient is

aT

b (BV) _VEIx 107K +2x 152 x 1070 TK™?)
v R Vv
VBT x 107 42 x 1.52 x 1078 (T/K) K~

V/[0.77 + 3.7 x 10-4(T/K) + 1.52 x 10-8(T/K)?]

3.7 x 1074 +2 % 1.532 x 107310 K~!
_ [3.7 x +2%x1.52 % (310)] _ =|l.27><10‘3K"J
0.77 + 3.7 x 10~%(310) + 1.52 x 10~¢(310)2

Isothermal compressibility is

I fav sy, AV
kp=——|—}) & ——— 5 = ———
T="v\ep /)y “vap P= " Ver

A density increase of 0.08 percent means AV/V = ~0.0008. So the additional pressure thai must be
applied is

0.0008 p 2
Ap = =|3.6 x 10 atm
2.21 x 10=6atm™!

The isothermal Joule-Thomson coefficient is

oH
(3—) =—uCp=—(L.1IKatm™") x 37.11JK™ " mol™!) = | —41.2Jatm~" mol~!
P/T
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If this coefficient is constant in an isothermal Joule-Thomson experiment, then the heat which must be
supplied to maintain constant temperature is AH in the following relationship

AH[n

=—412Jatm 'mol”! so AH = —(41.2Jatm™' mol~")nAp

AH = —(412Jam ™ ' mol™!) x (12.0mol) x (-=55atm) =;27.2x 10%]

Solutions to problems

Assume all gases are perfect unless stated otherwise. Unless otherwise stated, thermochemical data are
for 298 K.

Solutions to numerical problems

RT
W= —pu AV [2.8] Vi = i

Vi, oso AV =V

Pex

RT
Hence w & (—pex) X (” ) = _nRT = (—1.0mol) x (8.314 TK~  mol™!) x (1073 K)

ex

Even if there is no physical piston, the gas drives back the atmosphere, so the work is also

The virial expression for pressure up to the second coefficient is

(BN (14 28 (1.19]
P=\Vm Vim '
f r
RT B Vit 1 1
w=— dV=—nf (—) x (|+—) dv, =—nRTln(l)+nBRT( ——)
[ P i Vi Vm " Vm i Vm I Vm.i

From the data,

RRT = (70 x 10~ mol) x (8.314TJ K~ 'mol™") x (373K) = 217J

5.25cm’ _ 6.20 cm? -
Vyi= —— = 750cm’ mol™", Vyr=-—- =89.0cm®mol™!

™= 0% 10-3 mol cm- mo m = 30 x 10-3 mol cmmo

1 1 1 1
and so 3(— - —) = (=28.7cm?*mal™!) x ( = ])

Vor Vi £9.9cm3 mol™ 75.0cm? mol™
=634 x 1072
Therefore,

= 6.29 = - _
w= (=275 %I (E) +(217]) x (6.34 x 1072) = (=39.21) + (13.8]) =
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Since AU=g+wand AU=4835), g=AU —w=(8350)+(25))=|+109]

B
AH = AU+ A(pV) with pV =nRT (l+—)

m

A(pV) = nuRTBA (vl—) = nRTB (

m

1 |
——). as AT =0

m,f m.i

=(2170) x (634 x 1072y = 138]J

Therefore, AH = (83.51) + (13.8]) =

L nRT nla
= — dv ith =— - — Table 1.7
it fVl P W P=vy_"w ™ V2 [ )

Va V.

2 4dv T dv V2 —nb 1 |

Therefore, w = —nRTf +n2af - = —nRT ln( 270 ) —nlg (— - —--)
V| V—nb v Vv V| —nb V2 V[

This expression can be interpreted more readily if we assume V 3 nb, which is certainly valid at all but
the highest pressures. Then using the first term of the Taylor series expansion,

x2
In(l =) = ~x ==+ forfr| <1

nb nb
In(V—-—nb)=InV+hn|l—-—)=hV-—
n{ nb) n +n( ‘V) n v

and, after substitution

V2 5 11 5 {1 1
A~ —nRT In| — BRT | — — — | —n'al — — —
w n n(vl)+n (V2 Vl) na(v2 Vl)

v ]
~—nRTIn{ =2 ) —n?a—bRTD){ — — —
Vi 12

~ +wg — n*(a — bRT) (Vi2 — V%) = Perfect gas value + van der Waals correction.
wg, the perfect gas value, is negative in expansion and pesitive in compression. Considering the correction
term, in expansion Vs > V,, 50 ({1/Va2) — (1/V)) < 0. If attractive forces predominate, @ > bRT and
the work done by the van der Waals gas is less in magnitude (less negative) than the perfect gas—the gas
cannot easily expand. If repulsive forces predominate, bRT > a and the work done by the van der Waals
gas is greater in magnitude than the perfect gas—the gas easily expands. In the numericat calculations,
consider a doubling of the initial volume.
Vi 2.0dm? )

a =—nRTIn{ — | = (=1.0mol™") x (8.314J K~ mol™!) x (298K) x |
(a) wo n n(vi) ( mol™!) x ( mol™) x ( ) x n(l.Odm3

wp = —1.72 x 103J=

()  w=wo—(1.0mol)? x [0— (5.11 x 1072dm’ mol™") x (8.314JK™'mol™") x (298K)]

1 1 - _
x( ):(—1.72x1031)—(631)=—|.78x|031=

20dm®  1.0dm’
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1 1
C w = wp — (LOmol? x (4.2dm°® atm mol_z) X ( — )
(e 0~ ) 20dm’  1.0dm’

w=wp+ 2.1 dm” atm

3 5
_ | 1.01 x 105P
= (=172 x 10*]) + (2.1 dm*atm) x ( i ) v ( o “)

10dm 1 atm
= (=1.72x 10°D) 4+ (021 x 10°)) =[ —1.5kJ

Schematically, the indicator diagrams for the cases (a), (b), and (c) would appear as in Figure 2.2.
For case (b) the pressure is always greater than the perfect gas pressure and for case (c) always less.
Therefore,

V2 Va vz
f pdV{c) <[ pdVi(a) <f pdv(b)
v i

Vi

Figure 2.2

The calorimeter is a constant-volume instrument as described in the text (Section 2.4); therefore
AU =gqv

The calorimeter constant is determined from the data for the combustion of benzoic acid

0.825
U= ( g

m) x (=3251 kI mol™) = —21.96KJ
1Zgmo

, lgl 2196 kJ
AT=1940K, C=—=
Since 0K, AT - 1940K

For D-ribose, AU = —CAT = —(11.32 KJK ™'} x (0.910 K)

=1132kIK"!
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150.13 gmol ™!

Al 5 -1
= —_—= - - 1
Therefore, AU " (J132KIK™") x (0910 K) x ( 6727 8

) = 2127 kI mol ™!
The combustion reaction for D-ribose is
CsHj00s(s) + 502(g) — 5CO2(g} + 5SH20(D)

Since there is no change in the number of moles of gas, A H = AU [2.21]

The enthalpy of formation is obtained from the sum

AH /(kJ mol~1)

5C02(g) + 5SH20(1) — C5H|O0s(s) 4+ 502(g) 2130
5C(s) + 502(g) — 5CO2(g) 5 x (—393.51)
SH2(g) + 302(g) — SH20(1) 5 x (—285.83)
5C(s) + 5Ha(g) + 302(g) — CsH 00s(s) — 1267
Hence ArH=|—1267 k) mol ™!
P2.10 Data: methane-octane normal alkane combustion enthalpies
Species CH4 CaHg CzHg CaHio CsHia CeHig CgH)z
AcH/(KImol™'y  —890  —1560 —2220 —2878 3537 —4163 —5471
M/{gmol™") 16.04 3007 4410 5813 7215  86.18 114.23

Suppose that AcH = kM". There are two methods by which a regression analysis can be used to
determine the values of & and ». If you have a software package that can perform a “power fit” of the
type ¥ = aX?, the analysis is direct using ¥ = A.H and X = M. Then, k = a and n = b. Alternatively,
taking the logarithm yields another equation—one of linear form

In|AH|=Inlk| +nlnM where k < 0

This equation suggests a linear regression fit of In(AcH) against ln M (Figure 2.3). The intercept is Ink
and the slope is n. Linear regression fit

Injk| = 42112, standard deviation = 0.0480; & = —e*2!12 =[_67.44]

n=0.9253] standard deviation = 0.0121

R = 1.000

This is a good regression fit; essentially all of the variation is explained by the regression.

For decane ihe experimental value of A.H equals —6772.5 kI mol ™' (CRC Handbook of Chemistry and
Physics). The predicted value is

AcH = kM" = —67.44(142.28)9959 k) mol ™" = | —6625.5 kJ mol~!

—0772.5 — (—6625.5
Percent error of prediction = ( ) x 100
~6625.5
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Normal alkane combustion enthalpies

8.0 C

In (—AH /(K] mol™"))

75 |

70 |

65 L o1 e by
25 3.0 35 4.0 4.5 5.0
In M/(gmal™") Figure 2.3

Percent error of prediction = 2.17 percent

H,0% (ag) + NaCH3COO - 3H,0(s) — Na™ (aq) + CH3COOH(aq) + 4H,0(1)
Rgale = Misa/Msae = 1.3584 g/(136.08 gmol™') = 0.0099824 mol

Application of eqns 2.14 and 2.19b gives:

AcHm = —Acatorimeter H /1san = —Cealorimeter-contents AT g
= —(Cealorimeter + Csomtion) AT /nsan
= —(91.0JK™' +4.144TJK ' em™? x 100cm?) x (—0.397 K)/0.0099824 mol

= 20.1kJ mol ™'

Application of eqn 2.32 gives:

AH® = AfH®(Nat,aq) + ArH® (CH3COOH, aq) + 3ArH® (H20,1)
— AfHP(H', aq) — ArH®(NaCH,COO - 3H;0, 5)

(where the water coefficient is 3 not 4 because one water in the chemical equation is part of the hydrated
hydrogen ion). Solving for AfH®(Nat, aq) and substituting ArH® values found in Tables 2.5 and 2.7

gives:
ApH® (Nat,aq) = A[H® — A¢H®(CH3;COOH, aq) — 3A¢H® (H20,1) + AfH®(HT, 2q)
+ AcH® (NaCH3COO - 3H;0, 5)

ArH® (Na®,aq) = {20.1 — (—485.76) — 3(—285.83) + (0) + (—1604)} ki mol~'

={241%J mol™!
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P2.16
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THE FIRST LAW 37
We must relate the formation of DyCl,
Dy(s) + 1.5Cla{g) — DyCl;(s)

to the three reactions for which for which we have information. This reaction can be seen as a sequence
of reaction (2), three times reaction (3), and the reverse of reaction (1}, so

ArH® (DyCls, s) = A H®(2) + 3AH®(3) — AH®(1),
AfH®(DyCly, s) = [~699.43 + 3(—158.31) — (—180.06)] kJ mol ™'

=] —994.3013 mol! |

(@) AH® = AcH®(SiH30H) — AfH®(SiHa) — 3 AtH(02)

= [-675—-343 ~ }(OKImol™! =[—101 8 KI moi! |

(b) AH® = AH®?(SiH20) — ArH® (Ho0) — ArH® (SiHy) — AcH®(02)

= [—23.5 + (—285.83) — 34.3 — 0] kJ mol~" =| —344.2 kI moi~' |

(© AH® = ArH®(SiH20) — ArH® (SiH30H) — A(H® (Hp)

=[-23.5 — (—67.5) — O1kImol™" = |44.0kJ mo]~!

oH aH oH

dH=(—) dT+(—) dp or dH=(— dp [constant temperature]
T/, ap/r op /1

0 m 2a
_— = — R =—-|{ —-=5
(% )T Com 223 (RT )

_ (2) x (3.60 dm® atm mol~2)
B (0.0821 dm® atm K=} mol ™'} x (300 K)

— 0.044 dm? mol"])

= ~0.2483 dm? mol ™!

P a3 - _
AH = f dH = f (—0.2483 dm’ mol™") dp = —0.2483(p; — p;) dm? mol ™
Pi M

RT

a
=—— — —[l21b
P=y—p v%[ 1

((0.0821 dm? atm K=" mol ="} x (300 K)) (3.60 dm® atm mol—2
pi = -

— —— —— 5 | = l.225aim
(20.0dm™ mol™") — (0.044 dm” mol ') (20.0dm’ mol ™'

I

_ { (0.0821 dm® atm K=" mol~!) x (300K) 3.60 dm® atm mol~*
= (10.0dm> mol~') — (0.044 dm?® mol~") (10.0 dm® mol~")2

) =2.438atm
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AH = (—0.2483dm” mol™") x (2.438 atm — 1.225atm)

L 3 1.013 x 10°P
= (=030l dm*atmmol=) x | —— ) [ 22X Y [ 2305 mol-!
10dm atm

Solutions to theoretical problems

P2.20 A function has an exact differential if its mixed partial derivatives are equal. That is, f(x,¥) has an exact
differential if

= (5)-56)
dx By) By ox

i of &
— | = | = —(2x =
(a) SN =2 and oo (ay) 720 +6)
5 (&)
— — =—(cosxy—xysmxy)
ax
. r ol - 2
= — xsinxy — xsinxy — x“ycosxy = —2xsinxy — x“y cosxy
and - () = i(—xzsinxy)=—2xsin,vcy—xzyc:os,xy
dx \ dy ax
a [/a a3
c) i(g) =2t =6 and —(—f)=—(2x3y)=6x3y
dy \ dx ay 8x \ 3y ix
8 {of Gl a [faf d
d ~\=1== * y=c¢' — == —2 ) = ¢'
@ a:(s) grle th=e  and as(a:) rte=e
p2.22
o ()
ar v

3 (a a (8
(aa%)T = (B_V (3_(7)",) V)T = (ﬁ (%)T)V [derivatives may be taken in any order]

(B_U) = 0 for a perfect gas [Section 2.11(b)]
av /;

aCy
H —_— =0
ence, ( v )

Likewise C —(311) S0 (%) = i(B_H) —(i (B_H) )
T N\er/, p Jr \op\aT /)~ \oT \dp/7/,

aH
(—) = ( for a perfect gas.
ap Jy

aC,
Hence, ( p) =0.
ar Jr
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P2.24 Using the Euler’s chain relation and the reciprocal identity [Further information 2.2)

(55),=- (), GF).

Substituting into the given expression for C; — Cy

v 2
v T/,

Using the reciprocal identity again

T (3V/aT)

Cp—Cv =
PR @V/ap)r

For a perfect gas, pV = nRT, so
(3V)2 (nR)2 § (BV) nRT
—_— - —_— an —_— —_— e —_—
ar I P ap T P2

—T (nR/p)’
0 Cp—Cy=——""C —|nR
> P v —nRT /p?

+
Q| @
""il"i.'

P2.26 (a) V = V(p,T); hence,dV = ( ) dp

Likewisep:p(V,T),sodp:( ) (
o senen=(3) () mvose = (3
euseqa = 7 oT), A3] and k7 =
dinV dV ov d l oV dT = d dT
=g =(3) (), o+ (5) (&), o7 = Comereat)

d 1 /a i /d
Likewise dlInp= e (_P) dv + - (_P) dT
P pAdV /gy pAIT Jy

d
We express ) interms of KT:
v/ +

1 /av ap\ 17 ap) 1
==} ==|V[— L) =
T v (BP)T [ (3V)T:| % (BV T xrV

3
We express _p) in terms of k7 and o
T J v

(2),(5),E), - = (2,
aTJy\av /) \op /1 aT/)y BV/epr 1

ap
ar

[

)dr
(

av
8_) [2.44] and obtain

39
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dv adT l dv

50 dlnp=— + —=|—[@dT - —

perV pxr PET Vv
V2 2 gv 2 qv
P2.28 w=— j pdV = —nRTf + nzaf —
v, 1% V—nb g V2

Va —nb
= —nRTIn | - i —n’a L—L
Vi —nb Vo W
By multiplying and dividing the value of each variable by its critical value we obtain
— (nb/V 2 Ve ¥,
w=—nR x (1) Te xIn ((VZ/VC) (mb/ C)) - (M) X (—c — —C)
T, (Vi/Ve) — (nb/Ve) Ve Va ¥
T _v _ 8a
Ve’ ¢ 27RD

8na Via — (1/3) na 1 |
T, S M) (2 _—
() (E=07m) - &)< (7 7
The van der Waals constants can be eliminated by defining w, = 3bw/a, then w = aw; /35 and
" SnT ]n(v,,z—(1/3)) ( 1 1 )
=|—— —_—l-nl|l— - —
L9 T\ =3 iz Va

Along the critical isotherm, Tr = 1,

V. = 3nb [Table 1.7]

Vi1 = 1, and V2 = x. Hence

wr 8 3x—1 1
P2.30 = (2—:}1) [2.51]
H

Use of Euler’s chain relation [Further information 2.2] yields

(aHm/aP)T [2.53]
Cop.m

) ) o[22 -2 212
a /r \ /7 ap Iy \dVm/r\ 3 /7 T

ap

Use the virial expansion of the van der Waals equation in terms of p. {See the solution to Problem 1.9.)
Now let us evaluate some of these derivatives.

(aUm) = (E =nmr = 4 [Exercise 2.30]
W) \BV &

7
pvm:RT[1+Rl( - == )P+ ]
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[0t L2 (2) L
o Ir RT’ ap /r .5

oH a RT a —aRT a
tuti e b — —
Substituting ( ap )T (vz) X ( p2) ' (b RT) PV )2 ( RT)

"
Since (3H /3p)y is in a sense a correction term, that is, it approaches zero for a perfect gas, little error
will be introduced by the approximation, (pVm)? = (RT)%.

Thus (9H/3p) ~ (—a/RT) + (b — (@/RT)) = (b — (2a/RTY) and p = ((2a/RT) — b)/Cpam
_! (3_") -1
*Tvi\ar),” varaw,

a = l X !
V' (T/(V —nb)) — (2na/RV3} x (V —nb

[reciprocal identity, Further information 2.2]

) [Problem 2.31]

(RV2) x (V — nb)
(RTV3) — (2na) x (V — nb)?

1 /8V -1
r=-y (55)1 = W [reciprocal identity]
1 1
— X
V " (—nRT/(V — nb)?) + (2n%a/V?)

[Problem 2.31]

Ky = —

V2V — nb)?
aRTV3 — 2n2a(V — nb)?

Then «7 /o = (V — nb)/nR, implying that k7R = a(Vp, — b)

Alternatively, from the definitions of o and «7 above

kr _ —@V/op)r _ -1

= = [reciprocal identit
@ T T@V/aT), _ @p/av)r @VaDy, ¢ )

aT . .
(—) [Euler chain relation]
/v
V—nb
= " [Problem 2.31],
nR

al(V —nb)
n

kTR =

Hence, k7R = a{Vy, — b)

Work with the left-hand side of the relation to be proved and show that after manipulation using the
general relations between partial derivatives and the given equation for (8U//3V ), the right-hand side
is produced.
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1%
(ﬁ) = (%) (3_) [change of variable]
Bp T BV T 3]) T

b Vv av
= (M) (—) (definition of H)
av T ap T

_[BUY [BV ApV)\ [8V
- (), &), (%), (5),
[ (% av V) _ oU
~{r(37), =} (55), + (552), [eaumiontn (57) |
_ 3[)) (BV) (BV) (EV)
—7{ & Y (L v kA

(3T v\dp/r P ap T+ P ap [+

V —
=T (:_‘;)V (Z_p)r +V= é + V [chain relation]
v/,

oV ] ] .
=|—-T | -] + V |[reciprocal identity]
P

_ _ 172
5 (8.314TK~"mol™') x (298K) x 3
For argon, y = =, soc = =322 m 5!
gy =3 ( 39.95 x 10~3 kg mol™! (322 7]

Solutions to applications

{a) (i) One major limitation of Hooke's law is that it applies to displacements from a single equilibrium
value of the end-to-end distance. In fact, if a DNA molecule or any other macromolecular chain
that is susceptible to strong non-bonding intramolecular interactions is disturbed sufficiently
from one equilibrivm configuration, it is likely to settle into a different equilibrivm configuration,
a so-called "local minimum” in potential energy. Hooke’s law is a good approximation for
systems that have a single equilibrium configuration corresponding to a single minimum in
potential energy. Another limitation is the assumption that it is just as easy (or as difficult) to
move the ends away from each other in any direction. In fact, the intramolecular interactions
would be quite different depending on whether one were displacing an end along the chain or
outward from the chain. (See Figure 2.4.)

I~

Figure 2.4
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(ii) Work is dw = —Fdx = +kp x dx. This integrates to

xr X
W =f kpxdx = %kpxz 0 = %k}:x?
0

il /
oy L\ /

M /
vl 1\ /
M /

0.1 \ /

0

work

-1 08 06 04 02 0 02 04 06 08 1

displacement Figure 2.5

(b) (i) One obvious limitation is that the model treats only displacements along the chain, not
displacements that take an end away from the chain. (See Figure 2.4.)

(i) The displacement is twice the persistence length, so

x=2 n=2,v=n/N=2/200=1/100

kT 1+ v (1.381 x 107 B TK")(298K) (I.Ol _
dIF|==—1 = n[— |} =91 x 07N
and |F = "(1—v) 2% 45x 109m "\ 0.99 x 10

(iii) Figure 2.6 displays a plot of force vs. displacement for Hooke's law and for the one-dimensional
freely jointed chain. For small displacements the plots very nearly coincide. However, for large
displacements, the magnitude of the force in the one-dimensional model grows much faster. In
fact, in the one-dimensional model, the magnitude of the force approaches infinity for a finite
displacement, namely a displacement the size of the chain itself {|v| = 1). (For Hooke’s law,
the force approaches infinity only for infinitely large displacements.)

kT (1 INT (1
(iv) Workisdw:—Fd.x:Eln(l—i_v)dx:Tln( +”)d»
i V)
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' — Hooke
-=--1-D model

force
=)

-1 -08-06-04-02 0 02 04 06 08 1

displacement Figure 2.6

This integrates to

' kNT I+vw ENT [
W= —In dv=— [In{l + v) — In{l — v)]dv
0 2 1—v 2 0

KNT o
= T[(1 +v)In(1 +v) — v+ (L = v)In(l —v) + v]|,

ENT
= T[(l + e In(l + ve) + (1 — ve) In(1 — wp)]

(v) The expression for work is well behaved for displacements less than the length of the chain;
however, for vr = £ 1, we must be a bit more careful, for the expression above is indeterminate
at these points. In particular, for expansion to the full length of the chain

. kNT
w= I}1_?1' —2—-[(1 +v)In(l +v) + (1 —v)In{l — v}]

_ AT [(1 + 1 In(1 + 1) + lim (1 — v}In(l — v)} - MNT |:2ln2+ lim M]
2 v—1 2 v (1 —v) :

where we have written the indeterminate term in the form of a ratie in order to apply I'Hospital’s
rule, Focusing on the problematic limit and taking the required derivatives of numerator and
denominater yields:

In(l—v) . —(l—v)""

i T R R L

kNT
Therefore w = T(Z In2) =|kNTIn?2
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(¢) For v < |, the nawral log can be expanded: In{l + v) = v and In{l — v) & —v . Therefore

KT (14w kT
|F|_Eln(l_v) = 7 0In(1 +v) = In(l = v)]

kT [V — (—v)] vkT  nkT  xkT
— — (V)| =m— = —
2/ { Nt N2
(d) Figure 2.6 above already suggested what the derivation in part (c} confirms: that the one-dimensional
chain model and Hooke’s law have the same behavior for small displacements. Part (c} allows us to
identify kT /Ni? as the Hooke’s law force constant.

P2.40 The needed dara are the enthalpy of vaporization and heat capacity of water, available in the Data section.
Com(Hz0,1) = 75.31K ™ 'mol™"  AypH®(H0) = 44.0kI mol ™"
65k
n(H20) = ————2 __ —36x 10° mol
0.018 kg mol™

From AH = nCpn AT we obtain

AH 1.0 % 104K)
AT = = =[+37K]
nChm (3.6 x 103 mol) x (0.0753kI K~ moi™") -
o m s
From AH = nA,H® = MAVHPH

Mx AH  (0018kgmol™") x (1.0 x 10*Kk))
m= = =(4.09kg
AvapH® 44.0kJ mol ™"

COMMENT. This estimate would correspend to about 30 glasses of water per day, which is much higher
than the average consumption. The discrepancy may be a result of our assumption that evaporation of water
is the main mechanism of heat loss.

P2.42 (a) gy = —nAU%; hence
(i) The complete aerobic oxidation is

CsH1206(s) + 602(g) — 6CO2(g) + 6H20()
Since there is no change in the number of moles of gas, A H = A U/ [2.21] and

AH® = A U® =| —2802 kI mol~!

—qv _ —CAT _ —MCAT

() AU® = where m is sample mass and M molar mass

n n

nt
180.16 g mol 1) x (641 1K'} x (7.793K —
50 AU = - gmol ) x( ) x{ )~ [—28072 kJ mol~!
032128

(ili) AH® = 6A(H®(COs,g) + 6AH® (H20, 1) — AtH®(CgH 204, 5) — 6AH® (02, 2)
50 AfH®(CsH1206,5) = 6ArH®(CO2, 8) + 6ArH (H20,1) — 6ArH® (02, 8) — AH®
ArH®(CeH 206, 5) = [6(—393.51) + 6(—285.83) — 6{0) ~ (—2802)] kJ mol~!

=| —1274 kJ mol~!
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(b) The anaerobic glycolysis to lactic acid is
CgH ;204 — 2CH3CH(OH)COOH

AcH® = 2A¢H® (lactic acid) — ArH®(glucose)

= {(2) x (—694.0) — (—=1274}} kJ mol~" = — 114 kJ mol~!

Therefore, aerobic oxidation | is more exothermic by 2688 kI mol~' | than glycolysis.

The three possible fates of the radical are

(a) teri-C4Ho — sec-CaHg
(b) rert-C4Ho — C3Hg + CH3
() tert-C4Ho — CoHy + C;Hj;

The three correspending enthalpy changes are

{a) AH® = ArH® (sec-CaHo) — AcH? (tert-C4Hg) = (67.5 — 51.3) kI mol ™!

=|16.2kJ mol™!

by  AH® = AfH®(C3Hg) + ArH®(CHs) — ApH® (rert-C4Hg)

= (20.42 + 145.49 — 51.3) kI mol~! = 1146 kJ mol "

(©) AH® = AfH®(C3Hy) + ArHT(C2Hs) — ArH® (tert-CyHag)
= (5226 + 121.0 — 51.3) kJ mol ! = 122.0 kJ mol™!
(a) The Joule-Thomson coefficient is related to the given data by

= —(1/CY@H [3pyr = —(=3.29 x 10* Tmol™' MPa~!y/(110.0J K™ mol™")

=|29.9K MPa~!

(b) The Joule-Thomson coefficient is defined as
u =0T /3p)y = (AT/Ap}u

Assuming that the expansion is a Joule—-Thomson constant-enthalpy process, we have

AT = pAp = (29.9KMPa~") x [(0.5— 1.5) x 107" MPa] =| —2.99 K



3 The Second Law

D3.2

Answers to discussion questions

The device proposed uses geothermal heat (energy) and appears o be similar to devices currently in
existence for heating and lighting homes. As long as the amount of heat extracted from the hot source
(the ground) is not less than the sum of the amount of heat discarded to the surroundings (by heating
the home and operating the steam engine) and of the amount of work done by the engine to operate
the heat pump, this device is possible; at least, it does not violate the first law of thermodynamics.
However, the feasibility of the device needs Lo be tested from the point of view of the second law as
well. There are various equivalent versions of the second law; some are more directly useful in this case
than others. Upon first analysis, it might seem that the net result of the operation of this device is the
complele conversion of heat into the work done by the heat pump. This work is the difference between
the heat absorbed from the surroundings and the heat discharged to the surroundings, and all of that
difference has been converted o work. We might, then, conclude that this device violates the second
law in the form stated in the introduction to Chapter 3; and therefore, that it cannot operate as described.
However, we must carefully examine the exact wording of the second law. The key words are “sole
result”” Another slightly different, though equivalent, wording of Kelvin’s statement is the following:
It is impossible by a cyclic process to take heat from a reservoir and convert it into work without at
the same time Lransferring heat from a hot to a cold reservoir.” So as long as some heat is discharged to
surroundings colder than the geothermal source during its operation, there is no reason why this device
should not work. A detailed analysis of the entropy changes associated with this device follows.

Environment at 7,

Pump

Flow

“ground” water ut 7},

Figure 3.1 Cy and C, are the temperature dependent heat capacities of water
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Three things must be considered in an analysis of the geothermal heat pump: Is it forbidden by the first
law? Is it forbidden by the second law? Is it efficient?

AFo = AEwaer + AEgromd + AEenvironmen
AEuyer =0

AEgound = —Cy (TaM{Th — T}
AEenvironment = —Cv(Tn){Th — Tt}

Adding terms, we find that AE, = 0 which means that the first law is satisfied for any value of T}
and T¢.

ASiot = ASwaer + ASgn:runr.l + ASenvironment

ASwaer =0
Qground _Cp(Th){Th - T}
AS = =
ground Ty T,
Genvironment Cp(Te){Th — Te)
ASenvironment = =
T. Te

Adding terms and estimating that Cp(T},) = Cp(T;) = Cp, we find that

1 |
ASior = Cpl{Th — T}y = — =
ot p[ h c} ‘ T, Th
This expression satisfies the second law (ASi; > 0) only when Ty, > T;. We can conclude that, if the
proposal involves collecting heat from environmentally cool ground water and using the energy to heat a
home or to perform work, the propesal cannot succeed no matter what level of sophisticated technology
is applied. Should the “ground™ water be collected from deep within the Earth so that 7, > T, the
resultant geothermal pump is feasible. However, the efficiency, given by eqn 3.10, must be high to
compete with fossil fuels because high installation costs must be recovered during the lifetime of the
apparatus.
Te
Eepw=1——
TCY Th
with T, =2 273 K and T, = 373 K (the highest value possible at 1 bar), Ev = 0.268. At most, about
27% of the extracted heat is available to do work, including driving the heat pump. The concept works
especially well in Iceland where geothermal springs bring boiling water to the surface.

All of these expressions are obtained from a combination of the first law of thermodynamics with the
Clausius inequality in the form TdS = dg (as was done at the start of Justification 3.2). It may be
written as

—dU — pexdV + dwygy + TdS = 0

where we have divided the work into pressure—volume work and additional work. Under conditions of
constant energy and volume and no additional work, that is, an iselated system, this relation reduces to

ds =0
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which is equivalent to ASio; = ASuniverse = 0. (The universe is an isolated system.)

Under conditions of constant temperature and volume, with no additional work, the relation reduces to
dA <0,

where A is defined as U — TS.

Under conditions of constant temperature and pressure, with no additional work, the relation reduces to
dG <0,

where G is definedas U +pV — TS =H - TS§.

In all of the these relations, choosing the inequality provides the criteria for spontaneous change.
Choosing the equal sign gives us the criteria for equilibrium under the conditions specified.

See the solution to Exercise 2.30(a) and Example 3.6, where it is demonstrated that 77 = a/f Vrf, for a
van der Waals gas. Therefore, there is no dependence on & for a van der Waals gas. The internal pressure
results from attractive interactions alone. For van der Waals gases and liquids with strong attractive
forces (large a) at small volumes, the internal pressure can be very large.

The relation (3G/8T), = —S shows that the Gibbs function of a system decreases with T at constant P
in proportion to the magnitude of its entropy. This makes good sense when one considers the definition
of G, which is G = U + pV — TS. Hence, G is expected to decrease with T in proportion to § when p
is constant. Furthermore, an increase in temperature causes entropy to increase according to

f
AS=] dgrev/T
i

The corresponding increase in molecular disorder causes a decline in the Gibbs energy. (Entropy is
always positive.)

Solutions to exercises

Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated.
AS = f Yeew _ 4
T T

XX 10
= =|1. K-!
(a) AS K 1.8 x 102]

50 % 10%]

=——— " —(15x%x10*JK"!
(70 + 273K x

(b) AS

At 250 K, the entropy is equal to its entropy at 298 K plus AS where

dgrev f CymdT Tr
AS = = . =Cynin—
f T T van B
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250K

— -1 -1 _ 4 -1 —1
so0 S=15484JK " mol~" 4+ [(20.786 — 8.3145}J K~ "'mol ]><]n298K

5 ={152.651K" mol! |

However the change occurred AS has the same value as if the change happened by reversible heating at
constant pressure (step 1) followed by reversible isothermal compression (step 2)

AS = AS| + AS;

For the first step

dgrev f Cp.m dT Ty
AS) = = =Chpmlin—
! [ T T pn

7 B (135 +273)K
AS) = (2.00 mol - 83145JK 'mol™") x In ————— > = 18.3]K"!
1=( mo)x(z)x( mo )xn(25+273)K
and for the second
dqrev Grev
AS; = =
2 [ T T
Vi P
where grey = —w = [ pdV =aRTIn — = nRT In —
Vi o
; 1.50 at
50 AS> = nRIn 2 = (2.00 mol) x (8.3145J K" mol™) x In = — _256JK~!

Pr 7.00 atm

AS=(183—-256)JK ' =|-7.3TK"!

The heat lost in step 2 was more than the heat gained in step 1, resulting in a net loss of entropy. Or the
ordering represented by confining the sample to a smaller volume in step 2 overcame the disordering
represented by the temperature rise in step 1. A negative entropy change is allowed for a system as long
as an increase in entropy elsewhere results in ASigr > 0.

4 = grev = 0 [adiabatic reversible process]
As—fr dgrev _IE'
i T

AU = nCy AT = (200 mol) x {27.5J K ' mol™!) x (300 — 250) K

=27501 =[+2.75kI |
w= AU — g =275kl - 0=[2.75k]]

AH = nCpn AT
Copm =Cym+R=27.5TK ' mol™! +8314JK ' mol™') = 35.814TK ™" mol !

So AH = (2.00mol) x (35.814J KT mol™!y x (+50K) = 3581.4] =|3.58 k]
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E3.5(b)  Since the masses are equal and the heat capacity is assumed constant, the final temperature will be the
average of the two initial temperatures,

Tr = 1(200°C + 25°C) = 112.5°C

The heat capacity of each block is
C =mCy; where C; is the specific heat capacity

so AH (individual) = mC,AT = 1.00 x 10°g x 0.449TK 1 g~' x (£87.5K) = £39kJ

These two enthalpy changes add up to zero:

T - —
AS =mCIn (Fr) 200°C =473.2K; 25°C =298.2K; 112.5°C = 385.7K

385.7 -
AS = (1.00x 10°g) x (0449JK™ ' g )y x In [ === | = 115.5]K™!
208.2
A8y = (1.00x 10%g) x (0449JK™ ' g™") x In (%) = —91.802J K™

ASom = AS) + ASy =|24TK !

E3.6(b) (a) g = 0 [adiabatic]
1.01 x 107 Pa ) Im?
(b} W= —peAV = —(1.5atm) x | ————— ] x (100.0cm®) x (15cm) x | ——
atm 108 cm3

©  AU=g+w=0-230)=[-230]]

(d) AU = nCy n AT

AU —22721
AT = =

nCym  (1.5mol) x (28.8TK~"mol™")

-4

(e) Entropy is astate function, so we can compute it by any convenient path, Aithough the specified trans-
formation is adiabatic, a more convenient path is constant-volume cooling followed by isothermal
expansion. The entropy change is the sum of the entropy changes of these two steps:

3

T v
AS = AS) + AS; = nCyIn (}i) +nRIn (Vf) [3.19 and 3.13]

Ty =288.15K — 526 K = 2829K

_ nRT _ (1.5mol) x (8.206 x 10~2dm’ atm K=" mol"') x (288.2K)
T op 9.0 atm
=3.942 dm’

Vi
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—_ l dm?
Ve = 3.942 dm® 4 (100 cm?) x (15 _
t 2 dm” 4+ (100 em*) x { cm)x(lOOOcm3)

= 3.942 dm? + 1.5 dm” = 5.44 dm?

-
AS = (1.5mol) x {(28.8JK 'mol™") x In (ﬂ)

+(8.314JK "mol™ ') x In 5'41
3.942

= 1.5mol(—0.5346 JK~'mol~! +2.678 J K~ ' mol™') =|3.2 JK™!
AvpH 3527 x 103 Jmol™! =
E3.7(b a) AypS = = =+104.58JK™! =| 1046 3K™!
(b) (a) vap Tp 64.1 +273.15 K +

(b) If vaporization occurs reversibly, as is generally assumed

ASeys + ASqr =0 50 ASqr =|—104.6JK~!

E3.8(b) (a) AS® = $2(Zn’* aq) 4+ S2(Cu,s) — 55 (Zn,s) — S2(Cu’*, aq)

= [~112.1 +33.15 - 41.63 + 99.6] JK~' mol™" =| ~21.0 K~ 'mol™!

(b  AS® =1252(COs,g) + 11S2(Hy0,1) — So(Ci12Hz2011,8) — 1255(02, £)
=[(12 x 213.74) + (11 x 69.91} — 360.2 — (12 x 205.14)] JK~" mol~!

=|+512.0] K~ mol™!

E39(b) (a)  ArH® = AcH®(Zn? aq) — ArH®(Cu’t,ag)
= —153.89 — 64.77kI mol~! = —218.66 kJ mol ™'

AG® = —218.66 kI mol~! — (298.15K) x (—21.0F K™ " mol™!) = | —212.40kJ mol ! |

(b) AHT = AH® = —5645 k] mol ™!

AG® = —5645kT mol ™! — (298.15K) x (512.0J K ' mol™!) =| —5798 kJ mo!~!

E3.10(b) (a)  A,G° = ArG®(Zn?t,aq) — A;G®(Cu?t, aq)

— —147.06 — 65.49 kI mol ™" =| —212.55 kI mol”! |

(b) A£;G® = 124G (COy, g) + L1A(G®(H0,1) — ArG®(C12H22011,5) — 12A:G7 (02, 8)
== [12 % (=394.36) + 11 x (—237.13) — (—1543) — 12 x 0] kI mol™!

=| —5798 kI mol~!

COMMENT. In each case these values of A,G® agree closely with the calculated values in Exercise 3.9(b).
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E3.11(b) CO(g) + CH30H(l) — CH3COOH(l)

AH® = Z vAfH® — Z vArH® [2.32]

Products Reactants
= —484.5kT mol~! — (—238.66 kI mol~!) — (=110.53kJ mol™})
= —1353T kI mol™!

AS®= 3 vsm— 3 wsmi32ll

Products Reactants
= 1598JK " mol™' — 126.81K~! mol™! — 197.67J K~ mol™!
= —164.67 1K mol~!
AGT = AH® —TAS®

= —1353TkJmol~' — (298K) x (—164.67JK~ ' mol™})

= —1353TkImol™! +49.072 kI mol~' =| —86.2kJ mol !

E3.12(b} The formation reaction of urea is

Cgr) + 102(g) + Na(g) + 2Hz(g) — CO(NH2z)2(s)

The combustion reaction is

CO(NHy)2(s) + 302(g) — CO2(g) + 2H20(1) + N2(g)

AcH = AtH®(CO,, £) + 2ArH® (Hy0, 1) — ArH® (CO(NH32)2,5)

AsH® (CO(NH3)a, 8) = AfH®(CO2, g8) + 2A1H® (H20, 1) — AcH(CO(NH3)2, 5)
= —393.51 kI mol~' + (2) x (—285.83kImol™") — (—632kImol ")
= —333.17kJ mol !

ArS® = SS(CO(NHz)2,5) — So(C, gr) — 155(02.8) — Sp(Na,g) — 255 (Hz, g)
= 104.60 1K~ mol™' —5.7401K "  mol~! — £(205.138JK ™" mol™")
—191.61 JK ! mol™! — 2(130.684 K~ mol™")
= —456.687JK ! mol™

AfG® = A(H® — TAgS®
= —333.17kJ mol~! — (298 K) x (—456.68TJK~' mol™")
= —333.17 k¥ mol™! + 136.093 kJ mol~!

=|=197kImol~!
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_ Ve _(—_2e
E3.13(b) (a) AS(gas}) = nRIn (Vi) [3:-13] = (39,95gmol“'

=3.020JK~!' =|3.01K"'
AS(surroundings) = —AS(gas) =| —3.0J K~ | [reversible]

AS(otal) =[0]

(b) AS(gas) = | +3.0JK~' |[S is a state function]

AS(surroundings) = @ [no change in surroundings]

AS(total) =| 4+3.0JK™!
(©) grev =0 so AS(gas) = @

AS(surroundings) = @ [No heat is transfered to the surroundings)

AS(total) = [0]

) x (8314TK ' mol™"}In2

E3.14(b) C3Hz(g) + 502(g) = 3CO02(g) + 4H0(D)
AG® = 3A:G%(C0a, 8) + 4A:G° (H20,1) — A;G®(C3Hg, g) — 0
=3(—394.36 kI mol™') + 4(=237.13 kI mol™") — 1(-23.49 kI mol ')
= —2108.11 kJ mol™"

The maximum non-expansion work is | 2108.11 kJ mol™! lsince |woaal = |AG].

T. 500 K
E3.15(b —1- 20 =1- 225 _Tos00
® @ e T, 210 1000 K

(b) Maximum work = glgp| = (0.500) x (1.0 kJ} =[0.50 kJ

(©) Emax = Erev  and  Wmax| = fgn] — 1gc.minl
[geminl = lgnl — [Wmax|
= 1.0kI —0.50k]
=
E3.16(b) AG = nRT In ([;—:) [3.56] = nRT In (%) [Boyle’s law]

AG =25 x 107 mol) x (83141K ™" mol™!) x 298K) x In () =

dG aGr oG,
. — | =-=8[350]; h — | =-58, and | —
E3.17(b) (BT),, [ ] ence ( T )p f, an ( BT)

AS=Sr—Si=—(@) +(£) =_(M)
ot ), \ar /, T/,
aAG b T

=—|— ] =—— [ -73.1J4+428) x —
(G ),, ar (-7 g)

= _Si
P
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dG = —SdT + Vdp [3.49]; atconstant T,dG = V dp; therefore

b
AG:/ Vdp
pi

The change in volume of a condensed phase under isothermal compression is given by the isothermal
compressibility (eqn 2.44),

L faV
=—{—] =126x10"%pa”"
KT V(ap)-r x a

This small isothermal compressibility (typical of condensed phases) tells us that we can expect a small
change in volume from even a large increase in pressure. So we can make the following approximations
to obtain a simple expression for the volume as a function of the pressure

1 fV =V 1 /V-V
oy R — e — so V=Vl —«rp)
Vip—pi Vi Ig

where V; is the volume at 1 atm, namely the sample mass over the density, m/p.

100MPa
A(;:f 20— wrp)dp
100kPa £
. 100 MPa 100 MPa
= f dp — K'Tf pdp
£ \J100kPa 100 kPa
m { 10OMPa | 100MPa
=—1p - _KTP-'
I 100kPa 2 100kPa
= 22 (999 107Pa— (126 x 10~ Pa~!) x (1.00 x 1016 Pa?)
0.791 gcm—3 2
3180 x (=) x 936 x 107Pa
=11, 36 x
100cm

=296 x 1001 =[3.0kl

AGy = Gnf — Cni=RTIn (ﬁ) [3.56]
Pi

252.0
= (8.314JK ' mol™") x (323K) x In (Ez“&) =271 kImol~!

For an ideal gas, Gf% =G, +RTIn ([%) [3.56 with G,y = Gg]

But for a real gas, Gy = G, + RTIn (f ) [3.58]

e

S0 Gy —GY = RTln‘[ {3.58 minus 3.56]; f_ @
P P

= RTIng = (8314 JK~" mol™") x (200K) x (In0.68) =
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E3.21(b) AG = nVuAp [3.55]1 = VAp

1 3
AG = (1.0dm?) x (103';‘ 3) x (200 x 10°Pa) = 200Pam® ={2001]
m

100.0 kP:
p‘) = (8314 JK~ ' mol™!) x (500K) x In (—-—3) =|+2.88 kI mol™~!

) AGn =RTIn |2
E3.22(b) m n ( o 50.0kPa

Solutions to problems

Solutions to numerical problems

T2 dT T2 T
ASm=f CPLB.IS]:] (a+ )dT:aln(2)+b(Tz—T|)
T T T T Tl

P3.2
1 1
a=91471K " mol~!, =75 x 1072 JK~? mol~!
300 K
ASm = (91.47J K™ 'mol™") x In (2731{) +(0.075JK 2 mol™"y x 27K)
=[10.7 K=" mol"!
P3.4 First, determine the final state in each section. In section B, the volume was halved at constant temper:
ature, so the pressure was doubled: pg s = 2pg.i. The piston ensures that the pressures are equal in both

chambers, so par = 2ppj = 2pa.j- From the perfect gas law

T 1% 2pni 3.00dm?
Tar _ pasfVar _ (@paid x( m) _ 300 so Tas=900K.

Tai PaiVai  (pas) x (2.00dm?)

V
(@  ASa=nCymln (M) [3.19] + nR In (ﬂ) [3.13]
Tai Vai

ASa = (2.0mol) x (20J K~ mol™") x In3.00

.00dm*
+ (2.00mol) x (8.314I K~  mol™!) x In (M)
2.00dm-"

=[s071¢71]

% 1.00dm?
ASy = aR1n (—B[) = (2.00mol) x (8.314JK~ mol™') x In { —
v 2.00dm’

B.i
=|-115JK"!

(b) The Helmholtz free energy is defined as A = U/ — 7§ [3.29]. Because section B is isothermal,
AU =0and A(TS) =TAS, so

AAp = —TgASp = —(300K)(—11.5JK™") = 3.46 x 10°] = | +3.46 kJ
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In Seclion A, we cannot compute A(TS), so we cannot compute AU. AA in

both magnitude and sign. We know that in a perfect gas, U depends only on temperature; moreover,

U(T) is an increasing function of T, for 3L//8T =C (heat capacity), which is positive; since

AT > 0, AU > Qaswell. But A(TS) > 0too, since both the temperature and the entropy increase.
(¢} Likewise, under constant-temperature conditions

AG=AH —TAS

In Section B, AHg = 0 (constant temperature, perfect gas}, so

AGp = —TaASg = —(300K) x (—I11.5JK™") =[3.46 x10° }
Al 1S in both magnitude and sign.
(d) AS(total system) = ASp + ASp = (50.7 — 11.5)JK™! =|{4+39.2TK~!

If the process has been carried out reversibly as assumed in the statement of the problem we
can say

AS(systemn) + AS(surroundings) = 0

Hence, AS(surroundings) = [ —39.2 ¥ K~

Question. Can you design this process such that heat is added to section A reversibly?

P3.6 ,
q w Al = AH AS ASsur ASiot
Path (@) 2.74 kJ ~2.74%] 0 9.13JK™! —9.131K™! 0
Path {(b) 1.66 kJ —1.66 kI 0 9.13JK™! —5.53JK! 3.60JK!

FPath (a)

Vr Pi ,
w=—nRTIn{ — | [3.13] = —nRT In | — | [Boyle's law]
pr

3.00atm
1.00 atm

= —(1.00mol) x (8.314J K~ " mol™") x (300K} x ln(

[Camw

) =274 x 10°1]

AH=AU= @ [isothermal process in perfect gas]

g=AU—w=0—(—274%k]) =} 4+2.74K]

Grev . 2.74 x 10°1 -
AS = th = —— =149.13]JK

= e = 27421

ASio = IEI [reversible process]

ASiol = ASsur = ASit — AS=0—-9.13JK~' =|-9.13JK™!
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Path (b)

RT RT
w=—pex(Vr — Vi} = —pex (n B L._) — _RT (Pﬂ _ &)
pr Pi pop

1.00ain  1.00atm
1.00atm  3.00atm

= —(1.00mol) x (8.314JK™") x (300K) x (
=—166x 10°T=]|—-1.66K]
AH =AU = @ [isothermal process in perfect gas]
g=AU—-w=0—(—1.66kl) =|41.66k]
274 x 101
AS = “"’% [isothermal] = —5(-;;}(— =|+9.135x"

{Note: One can arrive at this by using g from Parth {) as the reversible path, or one can simply use AS
from Path (a), realizing that entropy is a state function.}

Fsur —q —1.66 x 10?1 o

AS =—=—=—=_—5.53.TK
i Tour Tour 300K

ASir = AS + ASqyr = (9.13 = 5.53) JK™! =| +3.60TK~!

T
P3.8 AS depends on only the initial and final states, so we can use AS = nCp In =t [3.19]
i
I
Since ¢ = nCpnm(Tt =T, Tr=Ti+ —— =T + (g =itV = I*Ri]
"Cp.m nlpm
I*Re
That is, AS =nComIny |
at 1s nCpmin ( =+ HCp,mTi)
500
Since n = ———0— = 7.87mol
63.5g mol™

AS = (7.87mol) x (24.4JK " mol™!) x In (1 +

=(|921K-1)x(1n1.27)=

[1]J=1AVs = [ A’Q5s]

{1.00 A)2 x (100082} x (15.0 s))
(7.87) % (24.4TJ K1) x (293K)

For the second experiment, no change in state occurs for the copper hence, AS(copper) = 0. However,
for the water, considered as a large heat sink

Rt 1.00 A)2 x (100082 [5.0;
AS(WatCI‘):%:T:( 00A) X(293K ) % ( $) =|4+512TK"!

P3.10 Consider the temperature as a function of pressure and enthalpy: T = T'(p, H)

50 dT—(E) d +(3T) dH
“\ap /), T \aH/,
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The Joule-Thomson expansion is a constant-enthalpy process (Section 2.12). Hence,
aT
dT = (—) dp=pdp
/)y
pr
AT = f pdp = pAp  [pis constant]
P

= (0.21 Katm™") x (1.00 atm — 100 atm) =

Tr=Ti+AT =373 -21)K=352K[MeanT = 363K]

Consider the entropy as a function of temperature and pressure: § = S(T, p}
as as
Therefore, dS = (_) dT + (_) dp
T/, P/

aS) Cy (BS) (BV)
2y =22 — ] =—{—] [Table3.5}
(BT v T ap/r ar P

RT
For Vip = — (1 + Bp)
p

aV R
—= ) =—(1+Bp)
aT p P

C R
Then dSy = %de— =(1 +Bp)dp
P

C R
or dSm= %dr — —dp— RBdp
P

Upon integration

2
T
ASm = f dSpm = CpanIn (—3) ~Rln (’2) — RB(p2 — p1)
i T P

5 352 1 0.525 atm™"

=[+35.90 K~ mol~! |

AH® = Z wAH® () — Z v ACH® () [2.34]

reaclants

P3.12
products

AH®(298K) = | x AfH®(CO,p) + 1 x AfH®(H20,2) — 1 x AfHT(CO2,8)

= (—110.53 — 241.82 — (~393.51)} kI mol~' =|+41.16 kI mol !

AST= Y uSi— Y wSpdhB21]

products reactants

AST(298K) = | x S7(CO, g} + 1 x Sa(H20,g) — I x 5;(CO2,8) — 1 x S5 (Hz, 8)

= (197.67 + 188.83 — 213.74 — 130.684) kJ mol~' =|442.08J K=" mol !
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398K
AH®(398K) = AH®(298K) + [ A CpdT [2.36]
298K

= 8:H%(298K) + A;C,AT [heat capacities constant]
AC,=1x C,,,m(CO. 8+ 1% Com(H0,8) — 1 x Cpm{CO2,8) — | x Cym(Ha2, )

=(29.14 +33.58 — 37.11 — 28820 J K~ ' mol™" = =321 JK~" mol™!
AH®(398K) = (41.16 kJ mol™") + (—=3.21F K~ mol™") x (100K) = | +40.84 kJ mol~!

For each substance in the reaction

T X
ASm = Cpm In (}i) = CpmIn (398 ) [3.19)

; 298K
Thus
o Tr Tr
AS®(398K) = ASTQ298K) + D wCpmDIn{—)— Y wCnln{—
T; T
products reactants
= AS®Q98K) + AC, In | ks
- P\ 298K

= (42.01JK™" mol™") + (=321 JK™" mol ™) In (398K)

298K

= 42,01 — 0.93)J K~ mol~' =|+41.08 JK~! mol~' |

COMMENT. Both AH® and A;S® changed little over 100 K for this reaction. This is not an uncommon
result.

P3.14 Draw up the following table and proceed as in Problem 3.11.

T/K 14.14 16.33 20.03 31.15 44.08 64.81
(Cpm/T) FK 2 mol™!) 0.671 0.778 0.908 1.045 1.063 i.024
T/K 100.90 14086  183.59  225.10 26299  298.06

(Com/T)IKZmol™"y 0942 0861 0787 0727  0.685  0.659

Plot Cpm against T(Figure 3.2(a)) and Cp, /T against T (Figure 3.2(b)), extrapolating to 7 = 0 with
Cpm = aT? fitted at T = 14.14K, which gives a = 3.36mJ K~ mol ~'. Integration by determining
the area under the curve then gives

298K

Cpm dT =|34.4kI mol !

Ho(298K) — HL(0) = j
0

298K Cpm
Sm(298 K) =sm(0)+[ %dr = S5p(0) +| 243 T K ~' mol™!
[
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(b)
T
aQ
E
III
b
£
E
)
0 T T T T T I I T
0 100 200 300
7K Figure 3.2
P3.16 The Gibbs—Helmholtz equation [3.52] may be recast into an analogous equation involving AG and AH,
since
(BAG) _ (BGf) (aci)
aT /, ar /, oT /,
and AH = Hf — Hj
Thus,
( g A ) AH®
=TT
aT » T
AG 3 AG® AH®
( ) (B_T rT )p dT [constant pressure] = — ;2 dT
B T AH®dAT
= Tc =

o T ar 11
= —AH 77 = AH® T [A;H® assumed constant]
c

¢

Therefore,

&rGB(T) _ AGE(TY) ~ AH® _!_ _ L
T. d T T

AFGQ‘(T) = TEArGe(Tc) -+ (1 - %) ArHG(Tl:)

and so

T
=TAG(Te) + (| — T)AH(T.) where T = T

<

For the reaction

2C0O(g) + Ox(g) — 2C0a(g)

AG?(T) = 241G°(CO,, 8) — 2A:G7(CO, g)

=[2 % (—394.36) — 2 x (—137.17)] kimol~' = —514.38 kI mol~!



P3.18

P3.20
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AH® (T =2A1H®(COs, g) — 2AcH°(CO, g)
=[2 x (=393.51) — 2 x (—110.53)] kJ moi~' = —565.96 k] mol ™!
Therefore, since v = 375/298.15 = 1.258

AGE(3T5K) = {(1.258) x (—514.38) + (1 — 1.258) x (—565.96)} k] mol~!

=|—501 kI mol ™!

Pz -1
A graphical integration of In ¢ = f (T) dp [3.60] is performed. We draw up the following table
0
p/atm ] 4 7 10 40 70 100
s (21 -1
10°f — atm —-29 =301 -3.03 -3.04 -3.17 -319 -3.13
r

The points are plotted in Figure 3.3. The integral is the shaded area, which has the value —0.313, so at
100 atm

p=e" =073

and the fugacity of oxygen is 100 atm x 0.73 =

=270 [T T T T T 7 LI R I B B B B NN B B
280 | :
E ]
g 290 L -
= 3 : i ;
T [ ]
¥ 300 | i ]
= r : 1
-3.10 [ :
"3.20 C 1 1 1 I L 1 1 ] 1 1L L l—
0 20 40 60 80 160
platm Figure 3.3

Solutions to theoretical problems

Paths A and B in Figure 3.4 are the reversible adiabatic paths which are assumed to cross at state 1. Path
C {dashed) is an isothermal path which connects the adiabatic paths at states 2 and 3. Now go round the
cycle (| — 2,step 1;2 — 3,step2; 3 — 1, step 3).



P3.22

P3.24
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vV Figure 3.4

Step I AUy =g + w) =w) [q) = 0, adiabatic]

Step 2 AlU,p = g2 + wa = 0 [isothermal step, energy depends on temperature only]

Step 3 AUz = g3 + w3 = w3 [g3 = 0, adiabatic]

Forthecycle AU =0=w| + g2+ w2 + waorwnet) =w| + w2 + w3 = —2

But, AUy = ~Al4 [AT) = —ATH]; hence w; = —ws3, and w(net) = wy = —g2, or —w(net) = g».

Thus, a net amount of work has been done by the system from heat obtained from a heat reservoir at
the temperature of step 2, without at the same time transferring heat from a hot to a cold reservoir.
This violates the Kelvin statemnent of the Second Law. Therefore, the assumption that the two adiabatic
reversible paths may intersect is disproven.

Question. May any adiabatic paths intersect, reversible or not?

aG RT
V= (—) 3.50]=|— + B +C'p+Dp?
W/ P

which is the virial equation of state.
We start from the fundamental relation

dUV =TdS —pdV [3.43]

But, since / = U (8§, V), we may also write

dU = %) dS+(a—U) av
35/ av /

Comparing the two expressions, we see that

W\ _. . (3UY _
as ), 0 M \wv), 777

These relations are true in general and hence hold for the perfect gas. We can demonstrale this more
explicitly for the perfect gas as follows. For the perfect gas at constant volume

dU = Cy dT
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and
dS:dqrev=CvdT
T T
du LYY, CydT
Then [S2) =22} = X _ -7
en (dS)V (as)‘, (CvdT)
T

For a reversible adiabatic (constant-entropy) change in a perfect gas

dU=dw=—-pdV

Therefore, (ﬂ =-—p
av jg

P3.26 o () ( )[38]' K (I)X(BV [3.14]
N = 0], T=— V 5)1. -

ar
(a) ( ) ( ) [Maxwell relation]
v

(&)

av 3
3 T) ( p ) [Euler chain relation, Further information 2.2]

———L% [reciprocal identity, Further informarion 2.2

=
(&7
()
(
G,

(&),

@), .
G,

aVv aT .
(_.H = —) [Maxwell relation]
as p ap s

ar aT as
(—) =— (H) (—) [Euler chain] =
op /s as/,\dp/r
First treat the numerator:

av
(E) =— (—) [Maxwell relation] = —aV
ap/r aT/,

As for the denominator, at constant p

3s dgey dH  C,dT
as={2Y) dr and as= 7 _ dg, = dH
(BT)P an T 7T 7 (44 =dA]

v
1
v

(&),
(&),

[reciprocal]
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a
Therefore, BY_& and vy _|eV
7). =T 55),7|C,

ap
(b) (ﬁ) )

- (B—T) = —-l— [Euler chain] =
5

ar
- (W)s [Maxwell relation]

(57)
3V )+
(as
) 7).
(%) (). Gr)
3T av 8T

v T P [Euler chain]

[Maxwell relation] = (BS) (BU)
Vv v

[reciprocal]

au aT

(37), (5s)
\aT/, \8s T |[[8U
ﬂ) d 30 Y [reciprocal identity, twice] = K:Cv [(E)v = T]
ap Jr \3T Jy
First use an identity of partial derivatives that involves a change of variable
(BH) _ (BH) (BS) n (EH)
3 /1 s/, \op/r N /s
We will be able to identify some of these terms if we examine an expression for df analogous to the
fundamental equation [3.43]). From the definition of enthalpy, we have:

P3.28

dH = dU +pdV + Vdp =TdS —pdV [3.43]1 +pdV + Vdp =TdS + Vdp

Compare this expression to the exact differential of H considered as a function of S and p:

9H o
di =| — — 1} d
(as),,d“(ap)s P

aH H
) =T, (3_) = V [dH exact]
P P/s

Thus, | —
us (BS

aH as av
Substitution yields (—) =T (—) +V=|-T (—) + V | [Maxwell relation]
o/ /T r

(&) For pV = nRT

v H —nR
a_) = ﬁ' hence (a_) = nRT +V =]E|
T/, op Jr p

RT 2
e ‘% [Table 1.7]

F = —
(b} For p V —nb
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Because we cannot express V in closed form as a function of T, we solve for T as a function of ¥ and

evaluate
aH v -T
—_ =-T{— V=—--— V [reciprocal identit
(3P)T (ar)p+ (ﬂ) + V [recip identity]
av »
p(V — ub) na(V — nb)
T=
nk RV2
na 2na(V — nb)
Rv2 RV3
ol -T
Therefore, —) = +V
ap)r P 4 na 2na(V — nb)
nR  RV? RV3

which yields after algebraic manipulation

- 2na T 1%
1— [ — }+*
(RW)

b
Whenv— <1, A= 1and

mt

ap

2na\ 1
(BH) nb—(RT)A. A__]_ﬂ
T

2na 2na 1 2na . P 2pa
_— = — X =z =
RTV  RT | RT nRT  RT?

oH
Therefore, (——-) N
op /¢ | ( 2pa )

RT2

For argon, @ = 1.337dm% atm mol 2, b = 3.20 x 10~2dm® mol~!,

2na _ () x (1.0mol) x (1337dm atmmol %) _ s
RT ~ (8.206 x 10~2dm’ atmK~' mol™') x (298K}
2pa  (2) x (10.0atm) x (1.337 dm® atm mol %) 0045

RPT® ™ {18206 x 10-2dm>atmK~' mol~!) x (298K)]’

3.20 x 1072) — 0.11)} dm?
Hence,(%) %[( * )~ ©.11)} dm =—0.0817dm3=
T

ap 1 —0.045

AH ~ (%)Tﬁ\p ~ (—8.31atm") x (latm) =
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oT au -1
wiCy = (B_V)U (ﬁ)v = T [Euler chain relation]
al/

Il
|
PN
\.__,/
o
o,
=
=
o
%]
=2
a
o
=
=
-
-
—
‘t:
n-.]
PN
"'-!I'\::

) [3.48]
v

(a_p)v - (_—l [Euler chain] = (_‘T,))p

oV

oT BT) (BV) (
v/, \ap/r
T
Therefore, | 11Cy = p — a
KT
l av 1
ks=—{ =} x| — =——
’ v) \w)sT (ap)
v /g
The only constant-entropy changes of state for a perfect gas are reversible adiabatic changes, for which
pV¥ = const
ap & const const —yp
Th —_— ] == /)y =_£
e (av) (av vy )5 v X (VY+1) v

-1 l
Therefore, ks = —5—— = *

v(722) e
14

The starting point for the calculation is eqn 3.60. To evaluate the integral, we need an analytical expression
for Z, which can be obtained from the equation of state.

(a) We saw in Section 1.4 that the van der Waals ccefficient a represents the attractions between
molecules, so it may be set equal to zero in this calculation. When we neglect « in the van der
Waals equation, that equation becomes

__RT
P=v. b
and hence
bp
Z=1+—
RT

The integral in egn 3.60 that we require is therefore

Pz PLb bp
l - —_— = = —
ne fo( » )d” fo(Rr) P =Ry



68 INSTRUCTOR'S SOLUTIONS MANUAL

Consequently, from eqns 3.60 and 3.59, the fugacity at the pressure p is

From Table 1.6, # = 3.71 x 10~2dm® mol~!, so pb/RT = 1.516 x 1072, giving

f = (10.00 atm) x 515 =

COMMENT. The effect of the repulsive term {as represented by the coefficient b in the van der Waals equation)
is to increase the fugacity above the pressure, and so the effective pressure of the gas—its “"escaping
tendency” —is greater than if it were perfect.

{b) When we neglect & in the van der Waals equation we have

_ RT a
P=y. v
and hence
a
Z=1-
RTV,

Then substituting intc eqn 3.60 we get

PrZ—1 P —a
wo= [ ()= [ =2
0 p o PRTVm
In order to perform this integration we must eliminate the variabie ¥, by solving for it in terms of
p. Rewriting the expression for p in the form of a quadratic we have

RT
V2 - Zva+ 20
P P

The solution is
1 /RT 1
Vi == (— &~/ (RT)? —4ap)
Z\p p
Applying the approximation (RT)? > 4ap we obtain

| {RT RT
= (2 +)

2\p p
Choosing the + sign we get

RT
Vm = — which is the perfect-gas volume.
Then

_{f__e o _|__a
I"‘ﬁ_[o ®TE P 7| " RY
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For ammonia a = 4.169 atm dm® mol ~2

4.169 atm dm> mol~! x 10.00 at
_ T A X e  — _0.06%5
(0.08206 dm? atm K" mol~! x 298.15K)?

¢ = 09237 = J:
P

f = ¢p=09237 x 10.00atm =|9.237 atm

Ingp =

Solutions to applications
Taking the hint, we have
AgsST(25°C) = AS; + ASii + ASii.

We are not given the heat capacity of either the folded or unfolded protein, but if we let Cp r; be the heat
capacity of the folded protein, the heat capacity of the unfolded protein is Cpm + 6.28 kI K~  mol~!.
So for the heating and cooling steps, we have:

Ty 348.7K
ASi=Coln {21} = ComIn | o } [3.19
L= "(Ti) pm "(298.21{)[ ]

348.7K

and  ASii = (Cpm +6.28kJK™ mol™") In (
) 4+ (Cpm 4+ 628KJ K™ mot™") In (

348.7K
298.2K

298.2 K)

298.2
S0 AS + ASj; = Cp.m In ( K)

348.7K
298.2K
348.7TK

= (628K K™! mor‘)ln( ) = —0.983KkJ K~ mol™!

For the transition itself, use Trouton’s rule (eqn 3.16):

ApsH®  509KkJ mol ™! e
AS; = = = 1.460kJ K~! mol
" Tus 3482 K

Hence, AysS® = (1.460 — 0.983) kI K~ mol~! = 0477kIK " mol™! ={477 ) K=! mol ™!

(a) At constant iemperature,

_ AH = AG

AG=AH—-TAS so AS T

—20 - (=31} kI mol™!
and A5 = =% (31302 S — +0035kIK~ mol™! = | +35JK~" mol~"

(b) The power density P is

_ |AGn
v

P
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where » is the number of moles of ATP hydrolyzed per second

N 10651

= —18 -1
=W T R0 10m et 6 107 mals

N

and V is the volume of the cell

V=14nr =3r(10x 10 m)® =4.19 x 107 % m?

3

A 31 x 103 Tmol™") x (1.66 x 10~'¥ mols™!
ThusP=l rVG|M=( b mol™") x ( x mol s )=

4.19 x 10-15m3

This is orders of magnitude less than the power density of a computer battery, which is about

1SW 100cm\? T
Pratery = 100 e’ X( T ) =|l.5 x 10" Wm J

() Simply make a ratio of the magnitudes of the free energies

14.2kJ (mol glutamine)™' 0.46__mol ATP
3Lkl (mol ATP)"' | mol glutamine

P3.40 The Gibbs—Helmholtz equation is

3 (AGY _ AH
T\ T/~ T2

so for a small temperature change

AGE AH® AGY AGY AH®
A= = AT and —2=—C1L1__F
T 7= T3 T T-AT
AG® AHOT AGlyg  AGayg of 1 L
so | do = d _ 8% e L
m/ T / T2 o Tion Txp A Tioo  Tazo

T T
A;Gigg = Ar@zo% +AH® (1 - ]90)

220 220

For the monohydrate

190K 190K
AGye = (46.2kI mol ™!y x ( ) + (127 kImol ™"y x (I - —)

220K 220K
A;Glgo ={57.2 kI mol™!

For the dihydrate

190K 190 K
ArGﬁ;0=(69.4kJmol")x(9_)_}_(1881(““01—1))((1_ 90 )1

220K 220K
A, Grg = | 85.6 kI mol ™!
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For the trihydrate

190K
B,Glyy = (93.2kImol™") x ( )Hmkj mol=) x (1 3 I9OK)‘

220K 220K
ArGlyy =|112.8kImol™!

P3.42 In effect, we are asked to compute the maximum work extractable from a gallon of octane, assuming
that the internal combustion engine is a reversible heat engine operating between the specified temper-
atures, and (o equake that quantity of energy with gravitational potential energy of a 1000-kg mass. The

efficiency is
T T,
e= Mg Mo =1- 5000 so |w|=|AH|(1——°)
i |aH] T T

300 % 10% g 1 mol

x = 1.448 x 1081
| gal 11423 g

|AH] = 5512 x 10° Tmol ! x 1.00 gal x

_1073K
2273K

If this work is converted completely to potential energy, it could lift a 1000-kg cbject to a height /i given
by |w| = mgh, s0

] 7.642 x 1071 3
g M =7.79 x 10°m =[7.79km]
*= g (1000kg)(98Ims-2) m =[7.79km]

P3.44 (a) As suggested, relate the work to the temperature-dependent coefficient of performance
[fmpact 13.1]:

50 |w| = 1.448 x 108) x (1 ):7_64§x 107]

G| _

T C
(Th - T)
Integrating yields

T Ve Ty
Thf —+[ dT}:C,,
Ti T T

||

_ ldge| _
-

ThdT T
T

lw| = C,u

T T
Thln = —(Tr—Ti)‘ :C,,(Thln—‘ —Ti+rf)
T; T

(b} The heat capacity is C, = (4.184J K1 g=!) x (250 g) = 1046 JK ', s0 the work associated with
cooling the water from 293 K to the freezing temperature is

_ 293K
Wleooting = 10463 K™ x (293 K xIn o — 203K 4273 K) =748]

The refrigerator must also remove the heat of fusion at the freezing temperature. For this isothermal
process, the coefficient of performance docs not change, so

| ApusH Th—T.
[ lireere = TE = ““%) = A H —7,‘.—&
Th—T¢

250 293 — 273 _
= 6.008 x 10°Tmol " x £ _ x( 93 ):6113]
18.0g mol™ 273
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The total work is

Whotat = Wlcooting + Wlireere = (748 + 6113)] =| 6.86 x 10° ] =6.86 kJ

At the rate of 100 W = 100 s~!, the refrigerator would freeze the water in

a
(= 280X 10T ]

1001s~!



Physical transformations
of pure substances

D4.2

D4.4

D4.6

E4.1(b)

Answers to discussion questions

Refer to Figure 4.9 of the text. The white lines represent the regions of superheating and supercooling.
The chemical potentials along these lines are higher than the chemical potentials of the stable phases
represented by the colored lines. Though thermodynamically unstable, these so-called metastable phases
may persist for a long time if the system remains undisturbed, but will eventually transform into the
thermodynamically stable phase having the lower chemical potential. Transformation to the condensed
phases usually requires nucleation centers. In the absence of such centers, the metastable regions are
said to be kinetically stable.

At 298 K and 1.0 atm, the sample of carbon dioxide is a gas. (a) After heating to 320 K at constant
pressure, the system is still gaseous. (b) Isothermal compression at 320 K to 100 atm pressure brings the
sample into the supercritical region. The sample is now not much different in appearance from ordinary
carbon dioxide, but some of its properties are (see Impacr 14.1). (¢} After cooling the sample to 210 K
at constant pressure, the carbon dioxide sample solidifies. (d} Upon reducing the pressure to 1.0 atm at
210 K, the sample vaporizes {(sublimes); and finally (e} upon heating to 298 K at 1.0 atm, the system
has resumed its initials conditions in the gaseous state. Note the lack of a sharp gas to liquid transition
in steps (b} and {c). This process illustrates the continuity of the gaseous and liquid states.

The Clapeyron equation is exact and applies rigorously to all first-order phase transitions. It shows
how pressure and temperature vary with respect to each other {temperature or pressure) along the phase
boundary line, and in that sense, it defines the phase boundary line.

The Clausius—Clapeyron equation serves the same purpose, but it is not exact; its derivation involves
approximations, in particular the assumptions that the perfect gas law holds and that the volume of
condensed phases can be neglected in comparison to the volume of the gaseous phase. It applies only to
phase transitions between the gaseous state and condensed phases.

Solutions to exercises

Assume vapor is a perfect gas and AvspH is independent of temperature

lnp—“= =+AV“pH 11
P R \T T+
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*

1 1 R P
—_—= e In —
T T AwH p
I 8314 K~ mol™! 58.0
= + xIn{ —
2932K 327 % 103 mol™! 66.0
=3378 x 1073 K™!

‘ — 296K ={23°C]

r=—
3378 x 103 K-!

E4.2(b) dp _ ApS
dT ~ ApgV

dp Ap
ApsS = Afusv(ﬁ) = Afusvﬁ
assuming A, S and AgV independent of temperature.

1.2 x 108 Pa) — (1.01 x 10°P
AgsS = (152.6cm3 mol~! — 142.0cm? mol™!y x (1.2 x a) — (1.01 x 107 Pa)
42926 K — 427.15K

1 m3
= (106cm*mol™") x { ——
( ) (106 cm3

=552Pam*K ' mol™! =[5.51 K "mol™!

ApsH = TrAS = (427.15K) x (5.52] K™ mot™")

=24k} mol™!

E4.3(b) Usefdlnp—f L
) — ) Rr?

AvupH

) x (521 x 10°Pa K™

In p = constant —

Terms with 1/T dependence must be equal, so

_ 30368K _ AwpH
T/K =~ RT

AvapH = (303683 K)R = (8.314J K~  mol™') x (3036.8K)

=1{25.25 kI mol~!

log p = constant — Ay /(RT(2.303))

E4.4(b) (a)
Thus
AvpH = (1625K) x (8.314J K™"mol™!) x (2.303)

={31.11 kJ mol™!
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(b) Normal boiling point corresponds lo p = 1.000 atm = 760 Torr
1625
log(760) = 8.750 — ——
og(760) T/K
1625
—— = 8.750 — log(760
T/K 0g(760)
1625

= 8.750 — log(760)

. TrAgesV
E4.5(b) ar = BV Ay TrAns xAp:TfA”MxA(')

T/K = 276.87

X ap
ApsS Ay AguH P
[Ty = —3.65+273.15 = 269.50 K]

_ (269.50 K} x (99.9 MPa)M < ( 1 1 )

AT —
8.68 kJ mot ™! 0.78%gem=3  0.801 gem—3

3
= (3.10T7 x 10° K PaJ~' mol) x (M) x (+0.01899 cm®/g) x { ——
108 cm?

= (+5889 x 10 2KPam® I g~ mo)M = (+5.889 x 1072 K ¢~! mol)M
AT = (46.07 gmol™") x (+5.889 x 1072 K g~' mol)

=4+271K
T =269.50K + 2.71 K ={ 272K
d d
E4.6(b) g = d_’: x My,0 where n = A l I
vap
de  dg/dt (087 x 18 Wm™?) x (10* m?)
dt ~ AwpH 44.0 x 103 J mol™!

=197.71s" 17 mol
=200mols !

dm
dt

(1977 mols™') x (18.02gmol ')

[owr]

E4.7(b)  The vapor pressure of ice at —5°C is 0.40 kPa. Therefore, the frost will sublime. A partial pressure of
0.40 kPa or more will ensure that the frost remains.

E4.8(b) (a} According to Trouton’s rule (Section 3.3(b), egn 3.16)

AvapH = 85T K™ ' mol™") x Ty, = (85T K™ mol™") x (342.2K) =[29.1 k) mol™!

(b} Use the Clausius—Clapeyron equation [Exercise 4.8(a)]

In 12 =Mx .li._.._l_
P R nn T
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AtTy =342.2K, p2 = 1.000 atm; thus at 25°C

S 29.1 x 10°J mol ™! y 1 1 1505
Pr= T 83141 KT mol ! 2982K  3422K) -
p1 ={0.22 atm | = 168 Torr

At 60°C,

29.7 x 10* ) mol™! 1 1 _
Inpi =-— - = —0.27
ne (3.3141 K" ol ) 3 (333.21( 342.21() 0276
p1 =|0.76 atm | = 576 Torr

TosApM (1
E4.9(b) AT = Tys (10 MPa) — Tie(0.1 MPa) = ~2=22 A (

— ) [See Exercise 4.5(b)]
ApgsH L )

ApsH = 6.01 kJ mol™!

A7 — | QT315K) x (99 x 10°Pa) x (18 x 10~ kg mol~!)
B 6.01 x 103 J mol~!

1 |
| - |
998 x 102kgm™  9.15 x 102kgm™

= -0.74K
Trs(10MPa) = 273.15K — 0.74K =[27241 K
E4.10(b) AvapH = AppU + Ayyp(@V)

AvypH = 43.5kI mol™"
Avap(PV) = pAvipV = p{Vias — Viig) = PVgas = RT [per mole, perfect gas]
Avap(pV) = (8314T K~ mol™!) x (352K) = 29271 mol ™!

Avp(pV) 2,927 kI mol ™!
A\.rnle 43 5kJ mol ™!

=|6.73 x 1072 | = 6.73 percent

Solutions to problems

Fraction =

Solutions to numerical problems

P4.2 Use the definite integral form of the Clausius—Clapeyron equation {Solution to Exercise 4.8(b)].
AvapH 1 1
In ([2) = x (— - —) ; T) = normal boiling point; p; = 1.000 atm
P R T T

In(pa/atrm) = 20.25 x 103 I mol ! 1
A =\ 83147 K- mol ™! 2440K _ 3132K

p2 =9.07 atm | ~ 9atm

) = 2.206
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COMMENT. Three significant figures are not really warranted in this answer because of the approximations
employed.

P4.4 (a) (M) - (a“ ) ) = —Su(1) + Sm(s) [Section 4.7, eqn 13]
p P

aT aT
~AgeH
= —ApsS = Tf“" . ApsH = 6.0l kKJmol~! [Table 2.3]
f
—6.01 k) mol™!
= — = | =2, K_I -1
273.15K 22,01 K~'mol”! |

(b) Bu(g)) 3 (B,u(l)) a _
(—BT , _BT , Smg) + Smll) = A\mps

—AvpH  —40.6KImol ™! =
= = =[-109.0 J K~ mol™!
T 373.15K | me

ap
(© Apm|—=] AT = —SpAT [4.1]
aT/,

Aul) — Ap(s) = pu(1,—5°C) — u(1,0°C) — u(s, =5°C) + u(s,0°C)
= u(l, ~5°C) — u(s, —5°C) [(u(1,0°C) = p(5,0°C)]
2 —{Sml) = SnGAT = —ApsSAT

= —(5K) x (=22.0 3K "mol™") =|+110J mol~!

Since, (1, =5°C) > (s, —5°C), there is a thermodynamic tendency to freeze.

d_P = AfusS [4.6]= AgysH
dT AgsV TAwsV

T2 Poot T Ac. V
AT = f dT = f Ll AR PY
T, Piop AfusH

P4.6

m.|
~ T AgsV

AT 7= x Ap [T, ApusH, and ApV assumed constant]
AgusH

Ap = poo — Pop = Pgh

Therefore
AT = TmpghApsV
At'us;H
_ (2343K) x (13.6 x 103kgm™?) x (9.81ms™2) x (10m) x (0.517 x 10~%m? mol™")
B 2.292 x 10% I mol™!

=0.070K

Therefore, the freezing point changes to] 234.4 K

dinp Ayt

P4.8 =
dT RT?

[4.11], vields upon indefinite integration

AvapH
In p = constant — —_
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Therefore, plot In p against 1/T and identify — Ay, H /R as its slope. Construct the following lable

8/°C 0 20 40 50 70 8 90 100

T/K 273 293 313 323 343 353 363 373
1000 K/T 366 341 3.9 310 292 283 275 2.68
In(p/kPa) 0652 1.85 287 332 4.13 449 483 514

The points are plotted in Figure 4.1. The slope is —4569 K, so

—AvgpH
T“p = —4569K, or AwpH =|+38.0kJ mol”!

55

In(p/kPa)

30

26 28 3.0 32 34 36 3.8
(104 K Figure 4.1

The normal boiling point occurs at p = 760 Torr, or at In(p/Torr) = 6.633, which from the figure

corresponds to 1000 K/T = 2.80. Therefore, T =| 357 K (84 °C) | The accepted value is 83 °C.

P4.10 The equations describing the coexistence curves for the three states are

{a) Sohd-liquid boundary

A T
=p* In — [4.8
p=p +Afu.-;V HT*[ ]

(b) Liquid—vapor boundary

AyapH 1 |
= praX — v ———)4.12
p=per, X R X<T T*) [ ]

{c) Solid—vapor boundary

AwsH (1 1
p=pre’X, x= “;'; x (? - F) [similar to 4.12]
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We need AubH = ArysH + AupH = 414k mol ™!

1 ! 78.11 ! 1 | -
AV =M x (— -— | = Lemy X | — - _) = +1.197 cm?® mol ™!
pll)  pls) gem ™3 0.879 0.891

After insertion of these numerical values into the above equations, we obtain

10.6 x 10% I mol™! T
(a) p=p*+( X U °mo )m—

£.197 x 10-6 m3 mol™! T*
* = 9 T * 7 T
=p* + 8.855 x 107 Pa x In T =p* + (6.64 x 10 Torry In T~ (I Torr = 133.322 Pa)
This line is ploued as « in Figure 4.2, starting at (p*, T*) = (36 Torr, 5.50°C (278.65 K)).
30.8 x 10* J mol™! I - 11
(b) X = . i R (— - —) = (3705K) x (_ - _)
2.314JK~! mal™ T T~ T T*

p = pre= TS Kx(1/T= 1Ty

This equation is plotted as line b in Figure 4.2, starting from (p*, T*} = (36 Torr, 5.50°C (278.65K}).

414 x 103 J mol~! 11 — L1
(c) = % (— - —) = (4980 K} x (— - —)
: (8.314] K~'mol™ ) T T T T

p= p*e—4980Kx(l/?'fl/T')

These points are plotted as line ¢ in Figure 4.2, starting at (36 Torr, 5.50°C).

The lighter lines in Figure 4.2 represent extensions of lines & and ¢ into regions where the liquid and
solid states respectively are nol stable.

80
E 60
e H
>
£ i
40 i
2
Figure 4.2
P4.12 The slope of the solid—vapor coexistence curve is given by
dp AgnHC s dp
— = — 50 AuwpH® =TAwV" —
dT ~ TAuV® o AT
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80
The slope can be obtained by differentiating the coexistence curve graphically (Figure 4.3)

d
P _ 441PaK”!
ar
=478m?

m
r

So

y= 2.6593 % 10-I0+U.73-EI.\
L, 40 -
o - 4
. H :
= : :
-
2 i
1 b

150 152 154 156

144 146 148
T/K Figure 4.3

Solutions to theoretical problems
dH = C,dT + V dp implying that dAH = AC,dT + AV dp

P4.14
However, along a phase boundary dp and dT are related by

H
—— [Clapeyron equation, e.g. 4.6, 4.7, or 4.10]

dp _
dT = TAV
Therefore,
AH
) dT = (ACP + T) dT and ﬁ = ACp +

dAH = | AC, + AV x
( rt TA

Then, since
d fAH\ 1dAH AH | (dAH AH
dTr\ T /T 4T T — 7\ dT T

substituting the first result gives
d (AHY AG
dT\ 7/ T

Therefore,
AH AC,dT
—) =—L — =|AC,dInT

d
(T T

according to the exponential best fit of the data. The change in volume is the volume of the vapor

v _ RT _ (831451 K= mol™!) x (150K)
T p 26.1Pa
AsobH® = (150K) x (47.8m’) x (441 PaK™') = 3.16 x 10*Jmol™" =|31.6 ki mol™'

AH

T
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Pa.16 p = poe MEMRT (Ipact 11.1]
— A\,‘“pH 1 I
=p'e™* x= x| =—- =) M@12
p=pe’ Xx R T T {4.12]

Let T* = T}, the normal boiling point; then p* = | atm. Let T = Ty, the boiling point at the altitude 7.
Take pg = | atm. Boiling occurs when the vapor (p) is equal to the ambient pressure, that is, when
p(T) = p(h), and when this is so, T = T},. Therefore, since pg = p*, p(T} = p(h) implies that

e—MgIl,"RT = exp _A"'“pH % L — L)
R Th T

It follows that

1 | Mgh

Th Ty TAwpH

where T is the ambient temperature and M the molar mass of the air. For water at 3000 m, using

M =29gmol™!
| | (29 x 1073 kg mol™") x (9.81 ms~2) x (3.000 x 10* m})
- = + =
Ty = 373K (293K) x {40.7 x 103 ] mal™!)
1 1
= +
373K 1397 x 104K

Hence, T, = (90°QC).

Pa18 (1) V= V(T,p)

dv (E)V) dT+(3V) d
=\ —) dp
T/, /)y

i av
(5), ()=
T /, ap /)y

hence, dV = aV dT —xrVdp
This equation applies to both phases 1 and 2, and since V is continuous through a second-order
transition

a1 dT — k7, dp = ¢ dT — iy 2dp

. dp . dp az — o)
Sol for — Ids — = ——————
olving for ar yiclds ar T2 — KT

(2) Sm =5Sm(T. )
aSm 3S5m
dSm=|—] dT — | dp.

(BSm) _ Cp.m
ar p_ T

3 3V,
[Problem 3.26] ( S“‘) =— (—ﬂ) [Maxwell relation]
ap T aT P

=—aVny
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C
Thus, dSy, = % dT —aV, dp
This relation applies to both phases. For second-order transitions both S, and Vi, are continuous through
the transition, Sy 1 = Sm2Vm1 = V2 = Vin. 50 that
Cp.m. 1 Cp.m.l

T dT — oV dp = TdT—angdp

d_p _ Cp,m‘z - Cp.m.l
dT = TVale: —ayp) |

. dp .
Solving for ar yields

The Clapeyron equation cannot apply because both AV and AS are zero through a second-order
transition, resulling in an indeterminate form 0/0.

Solutions to applications
(a) AGh = —HAwmHy — (1 — 2)Ti App S (1)

The enthalpy term is justified by n — 4 independent hydrogen bonds for which each requires Appfn
of heat to break during melting dissociation. The entropy term is justified by n — 2 highly ordered,
but independent, structures for which each experiences an entropy increase of AppS,, during the
melting process. According to [3.39], the enthalpy and entropy terms give a Gibbs energy change
of AG = AH — TAS for a constant temperature process. Eqn (1) above has this necessary form.

A[rsH AU'SH

(b) AysS = [3.16] yields Ty = which here becomes
us irs
_ (1= A
" (n — 2)AnpSim

(c) See Figure 4.4

1
0.8 1
0.6
TS, _n—4
hme n-2 04 1
02 A
D T T T T
0 5 10 15 20 25

n Figure 4.4

dn

. 1 dTy AwpHm  d(Tm AneSm/ BrvFm) n—=2\d (n-4
Consider — — = -
T dn T A hbSm dn n—4 n—2

_(11—2)( 2 )_. 2
“An-—4 m—22) (m—Dn-2)
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This expression will be less than 16 when 2/((n — 4)(n — 2)) 5 0.01 or when n equals, or is larger
than the value given by n*> — 6n + 8 = 200. The positive root of this quadratic is n = . T
changes by about 1% or less upon addilion of another amino acid residue when the polypeptide

consists of 17 or more residues.

P4.22 (a) The phase boundary is plotted in Figure 4.5.

10 E
g ]
1 g -
£ ]
‘é L E
S I : h
0.1 =_ ..... .
E H 3
F p
F H i 1
001 b i 2 o = L 5L
80 100 120 140 160 180 200
TIK Figure 4.5

(b) The standard boiling point is the temperature at which the liquid is in equilibrium with the standard
pressure of 1 bar (0.1 MPa). Interpolation of the plotted points gives Tp =| 112 K
(¢} The slope of the liquid—vapor coexistence curve is given by

dp _ AwpH
AT~ TAypV

d
0 AypH = (TAWPV)ﬁ

The slope can be obtained graphically or by fitting the points nearest the boiling point. Thendp/dT =
8.14 x 1073 MPaK~!, so

-89 — 0.0380) dm® mol~!
AvipH = (112K} x ((889 0.0580) dmt_mo )x(s.14kPaK-‘)= 8.07 kI mol~!

1000 dm® m?
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D5.2

D5.4

D5.6

E5.1(b)

Answers to discussion questions

For a component in an ideal solution, Raoult’s law is: p = xp*. For real solutions, the activity, a,
replaces the mole fraction, x, and Raoult’s law becomes p = ap*.

All the colligative properties are a result of the lowering of the chemical potential of the solvent due to
the presence of the solute. This reduction takes the form pa = p} + RT Inxa or ua = it} + RT Inay,
depending on whether or not the solution can be considered ideal. The lowering of the chemical potential
results in a freezing point depression and a boiling point elevation as illustrated in Figure 5.21 of the text.
Both of these effects can be explained by the lowering of the vapor pressure of the solvent in solution
due to the presence of the solute. The solute molecules get in the way of the solvent molecules, reducing
their escaping tendency.

The Debye-Hiickel theory is a theory of the activity coefficients of ions in solution. It is the coulombic
(electrostatic) interaction of the ions in solution with each other and also the interaction of the ions with
the solvent that is responsible for the deviation of their activity coefficients from the ideal value of 1.
The electrostatic ion—ion interaction is the stronger of the two and is fundamentally responsible for the
deviation. Because of this interaction there is a build up of charge of opposile sign around any given ion
in the overall electrically neutral solution. The energy, and hence, the chemical potential of any given ion
is lowered as a result of the existence of this ionic atmosphere. The lowering of the chemical potential
below its ideal value is identified with a non-zero value of RT In y.. This non-zero value implies that y4
will have a value different from unity which is its ideal value. The role of the solvent is more indirect.
The solvent determines the dielectric constant, £, of the solution. Looking at the details of the theory
as outlined in Further Information 5.1 we see that ¢ enters into a number of the basic equations, in
particular, Coulomb’s law, Poisson’s equation, and the equation for the Debye length. The larger the
dielectric constant, the smaller (in magnitude) is In y4..

Solutions to exercises

Total volume V = naVa + ngVp = n{xa Va + xpVp)
Total mass m = naMa + npMg

=n(xaMa + (1 —xa)Mp) wheren =np +nn
m _
xaMa + (1 —xa)Mp

n
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1.000kg(10° g/kg) -
n= = 4.6701 mol
(0.3713) x (241.1g/mol) + (1 — 0.3713) x (198.2 g/moi)

V = n{xaVa +xaVE)
= (4.6701 mol) x [(0.3713) x (188.2 cm® mol™") + (1 — 0.3713) x (176.14 cm* mol ™))

=[8435 o]

Let A denote water and B ethanol. The total volume of the solutionis V = naVa +npgVs
We know Vg we need to determine ns and ng in order to solve for V.

Assume we have 100 cm? of solution: then the mass is
m=pV = (0.9687 gcm™) x (100 cm’®) = 96.87 g

of which (0.20) x (96.87 g} = 19.374 g is ethanol and (0.80) x (96.87 g) = 77.496 g is water.

77.496 —
ny = —gl = 4.30 mol H>0O
18.02 g mol™
19.374 —_
E = —gl = (1.4205 mol ethanol
46.07 g mol™
V —npVp 100 cm® — (0.4205 mol) x (52.2 cm?® mol ™)
nma 4.30 mol

18.15 cm?
=

Check that pg/xg = a constant (Kg)

XB 0.010 0.015 0.020
(pa/xg)/kPa 82 x 10° 8.1 x10° 83x 103

Kg = p/x, average value is| 8.2 x 10° kPa

In Exercise 5.3(b), the Henry’s law constant was determined for concentrations expressed in mole
fractions. Thus the concentration in molality must be converted to mole fraction.

1000 —
m(A) = 1000g, corresponding to n{A) = ——LI = 13.50 mol n(B) = 0.25 mol
74.1 g mol™
Therefore,
0.25 mol _
X5 mo = 0.0182

"~ 0.25 mol + 13.50 mol

using K = 8.2 x 10% kPa [Exercise 5.3(b)]

p = 00182 x 82 x 10° kPa =| 1.5 x 10? kPa
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E5.5(b) We assume that the solvent, 2-propanol, is ideal and obeys Raoult’s law,

xa(solvent) = p/p* = % = (1.9924
Ma{C3HgO) = 60.096 g mol ™'
250 g
60.096 g mol~!
np Ha

Xp = Nna +ng = —
Hp +ng XA

1
g = na (— - l)
XA

— 1 = _2

s 3gmol™ =[270g mor”!|
Mp=——— 8 273 gmol™ =|270 g mol
B~ 37186 x 102 mol &mo

Hp = = 4.1600 mol

E5.6(b) K; = 6.94 for naphthalene
mass of B
B = -—
ng

ng = mass of naphthalene - bg

AT (mass of B) x K¢

bp=— 50
B X

B= {mass of naphthalene) x AT

(5.00 g) x (6.94 K kg mol~") 3
Mg = ={178 g mol
B (0.250 kg) = (0.780 K)

ng np
mass of water ~ Vp

E5.7(b) AT = K[bB and bB =
L= 10 kg m~3 (density of solution == density of water)

v i
mp=— AT=Kf—— K;=186Kmol™'kg
RT RTp
(1.86 K kg mol™") x (99 x 10° Pa)

T 8314 TK " mol™!) x (288K) x (I0°kg m>)

E5.8(b) AnixG = nRT (xp Inxs + xg Inxg)

=77x 107%K

224

Har == NNe, Xar =JXNe = 0.3, n=ns+0ne = RT

AmixG =pV(3In3+}In})=—pVin2

| m?
—(100 x 103 Pa) x (250em™) (W) In?2

= —173Pam’ = -17.3J
—AminG 1731
T 273K

BrixS = =[634 x 102K |




E5.9(b)

E5.10(b)

E5.11(b)

SIMPLE MIXTURES 87

AminG =nRT ) xylnx; [5.18]
J

—AnixG

Amin§ = —HRZ)CJ Inx; [5.19] = T

I
#1 = 1.60mol + 1.00 mol = 2.00 mol

x(Hex) = x(Hep) = 0.500
Therefore,

AmixG = (2.00 mol) x (8314 T K~ mol™") x (298 K) x (0.500 In 0.500 + 0.500 In 0.500)

=|—-3.43kJ
Lt
= ———=[+I115]JK
Amixd 798 K +11.57

AnmixH for an ideal solution is zero as it is for a solution of perfect gases [7.20]. It can be demonstrated
from

AmisH = ApixG + TApiS = (343 x 10° 1) + (298 K) x (1L5JK ™) = @
Benzene and ethylbenzene form nearly ideal solutions, so
Amixd = —nR(xa Inxs + xg Inxg)

To find maximum A5, differentiate with respect to x4 and find value of xa at which the derivative
is zero.

Note thatxp = | — x4 50
AmixS = —nR(xalnxa 4+ (1 — xa) In(l —xa))

dinx i
use = -
X

XA

d
—(Amixrd) = —nR(nxa +1 —In{l —xp)—1)=—nRIn
dx 1 —xa

1
=0 h = —
when xa 2

Thus the maximum entropy of mixing is attained by mixing equal molar amounts of two components.

g | mg/Mg mg Mg 106.169
—_— = = — X — = =

ng meg/Meg  mp T Mg 78.115
mp

— =1{0.7358

=

With concentrations expressed in molalities, Henry's law [5.26] becomes pg = bpK.

= 1.3591

Solving for b, the molality, we have bg = pg/K = xpial/K and powal = Pam
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For N, K = 1.56 x 10° kPa kg mol~' [Table 5.1]

. 1.3 kP!
b= 078 x 101.3 kPa ¢ =|0.51 mmol kg™
1.56 x 105 kPa kg mol~

For Oy, K = 7.92 x 10* kPa kg mol™" [Table 5.1]

0.21 x 101.3 kP
b= s 4 —[0.27 mmolkg™!
7.92 x 10% kPa kg mol™

ps 2.0 x 101.3kPa
K~ 3.01 x 103 kPa kg mol~"

by = = 0.067 mol kg~!

The molatity will be about 0.067 mol kg~! and, since molalities and molar concentrations for dilute
aqueous solutions are approximately equal, the molar concentration is about | 0.067 mol dm—3

The procedure here is identical to Exercise 5.13(a).

ApaH 1 1
Inxg = r"Tg x (F — ?) [5.39; B, the solute, is lead]

52 % 10° I mol™! 1 1
= =X -
8314 JK~! mol™! 600K 553K

= —0.0886, implying that xg = 0.92

Pb Bi
nPB) _ iolying that n(pb) = 2B7EY

B = (Pb) + n(BL)’ I —xp

1000 g

For 1 kg of bismuth, n(Bi) = —————
208.98 g mol™

= 4.785 mol

Hence, the amount of lead that dissolves in 1 kg of bismuth is

92) x (4.785 mol
n(eb) = &2 )1’( (0 % moh _ s5mol, or

COMMENT. It is highly unlikely that a solution of 11 kg of lead and 1 kg of bismuth could in any sense be
considered ideal. The assumptions upon which egn 5.39 is based are not likely to apply. The answer above
must then be considered an order of magnitude result only.

Proceed as in Exercise 5.14(a). The data are plotted in Figure 5.1, and the slope of the line is
1.78 em/(mgcm™) = 1.78 em/(g dm™) = 1.78 x 1072 m* kg~ .
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¢/(mgem™?) Figure 5.1

Therefore,

8.314JK~' mol™') x (293.15K
(8.314TK~! mol™") x (293.15K) = 14.0 kg mol™"

M=
(1.000 x 103 kgm™?) x (9.81 ms=2) x (1.78 x 10~2 m* kg™!

E5.15(b) Let A = water and B = solute.

0.02239 at
ap = i—f [5.43] = -2 2 _ 59701
A

0.02308 atm
aa na
ya = — and xp =
XA na +ng
0.920 k _ 0.122 k
na=————E __ —5105mol and np= —— "~ 0.506 mol
0.01802 kg mol™ 0.241 kg mol -

51.05 0.9701
=0990 and ya = 0950 = 0.980

Xy = o
51.05 + 0.506
E5.16(b) B = Benzene ug{l) = pj(1) + RT Inxp [5.25, ideal solution]
RTInxg = (8314 J K~ mol™") x (353.3 K) x (In0.30) = | —3536 J mol~!
Thus, its chemical potential is lowered by this amount.

pp = appl [5.43] = yexpph = (0.93) x (0.30) x (760 Torr) =

Question. What is the lowering of the chemical potential in the nonideal solution with y = 0.93?

E5.17(b) — PA_ PA — 0314
A= a+pa  1013kPa

pa = (1013 kPa) x (0.314) = 31.8 kPa

pg = 101.3 kPa — 31.8 kPa = 69.5 kPa

89
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31.8 kP
ap=P2 = 2250 0436

P T 73.0kPa
=t = e ™
Ya = j—: = % =
n= =
ES5.18(b) 1= L3 .bi/6°) 2 [5.71)

and for an M, X, salt, by /6% = pb/b®, b_[b® = 4bjb®, so

I= 5}(pzi + qz2)b/b®
b(K3[Fe(CN)gl)  &(KCl)  b(NaBr)
) e + e + e

I = I(K3[Fe(CN)g]) + I(KCl) + /(NaBr} = %(3 +32

= (6) x (0.040) + (0.030) + (0.050) =

Question. Can you establish that the statement in the comment following the solution to Exercise 5.18(a)
holds for the solution of this exercise?
b
E5.19(b} I = I{(KNO3) = b—Q(KNO3) =0.110
Therefore, the ionic strengths of the added salts must be 0.890.

—, so 5(KNO3) = 0.890mol kg™

and (0.890 mol kg™!) x (0.500 kg) = 0.445 mol KNO;
So (0.445 mol) x (101.11 g mol~') = 45.0 g KNO3 must be added.

b
(a) I(KNO3} = e

1
(b) [(Ba(NO3)9) = 5(22 +2x 12);@ = 3b—9 = 0.890

0.890 -
b= Tgbe = 0.2967 mol kg™

and (0.2967 mol kg ') x (0.500kg) = 0.1484 mol Ba(NQO3)2
So (0.1484 mol) x (261.32 g mol~') =|[38.8 g Ba(NO3);

E5.20(b) Since the solutions are dilute, use the Debye—Hiickel limiting law

logy, = —|zpz|AI'?

= % Zz,-z(b,-/bg) = %{l x (0.020) 4+ 1 x (0.020) + 4 x (0.035) + 2 x (0.035)}

=0.125
logyy = —1 x 1 x 0.509 x (0.125)!/2 = —0.17996

(For NaCl) y,, = 107%179% —
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Alzgz |17

The extended Debye-Hiickel law islog y, = T3 BIZ

Solving for B

B _ L+A]z+1—| _ 1 +0.509)
TN gy, /0 N /62T logy,

Draw up the following table

b/(mol kg™") 5.0x 107> 100x 1073 500 x 1073
Vi 0.927 0.902 0.816
B 1.32 1.36 1.29

B=[13]

Solutions to problems

Solutions to numerical problems

av v 1 ~
Va=|— [5.1, A =NaCl(aq), B = water] = | — mol™" [with b = b/(mol kg™ '}]
a”A np n(H20)

= ((16.62) +3 x (LT x (02 + (2) x (0.121;)) cm® mol ™!

= 17.5cm?® mol~! when b = 0.100

For a solution consisting of 0.100 mol NaCl and 1.000 kg of water, corresponding to 55.49 mel H»0,
the total volume is given both by

v

[(1003) + (16.62) + (0.100) x (1.77) x (0.100)>/% + (0.12) x (0.100)*]cm?
1004.7 cm?

and by

V = n(NaCl)Vnacy 4 n(H20) Vg0 [5.3] = (0.100mol) x (17.5cm* mol™") + (55.49 mol) x Vii,0

1004.7cm® — 1.75cm?
Therefore, Vi, = ;;“4%0[ ‘T~ [18.07 cm? mol~!

COMMENT. Within four significant figures, this resuit is the same as the molar volume of pure water at 25°C.

Question. How does the partial molar volume of NaCl(aq) in this solution compare to molar volume of
pure solid NaCl?

Let m{CuSQy), which is the mass of CuSQy4 dissoltved in 100 g of solution, be represented by

100 g
w = ——— = mass percent of CuS50y
ma + Mg
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where mp is the mass of CuSQ4 and mp is the mass of water. Then using

ma + mg Ma
P=r—7T" "Ha=
v Ma

the procedure runs as follows
oV aV
VA = _— = _— MA
ona " oma /g

_ 3 (mA +mg) « M4
ana p
1

Ma d
= — + (ma +mp)Ma——
P BmA P

31_(3w)81_ —w a1
dma p \9ma 8wp_nmA+mBawp

Therefore,
M a 1
VA = —i — WMA— -
p dwp

and hence

1 Va + d (l)
=R =
p Ma dw \ p

Therefore, plot 1/2 against w and extrapolate the tangent to w = 100 to obtain Vg /Mg. For the actual
procedure, draw up the following table

w 5 10 15 20

p/(gcm™3) 1.05s1  1.107 1167 1.230
t/(p/gcm™) 0951 0903 0857 0813

The values of 1/p are plotted against w in Figure 5.2.

1.0
e
E
w 0.5
T N
=
e
.
.
0

0 20 40 60 80 100
w Figure 5.2
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Four tangents are drawn to the curve at the four values of w. As the curve is a straight line to
within the precision of the data, all four tangents are coincident and all four intercepts are equal at
0.075g~' cm’. Thus

V(CuSO4) = 0.075¢" em? x 159.6 g mol™! = 12.0 cm® mol™!

RT}xg M(CH3COOH
AT = —L " (536], xp=~ L _ 1M )
AnsH n(CH3;COOH) 1000 g
ngMRT}? bgMRT}?

Hence, AT =

= [5g: molality of solution]
ApsH x 1000 g AqnH

b (0.06005 kg moi~!) x (8.314J K~'mol~') x (290 K)?
- 11.4 x 10*Jmol !

= 3.68K x bg/{mol kg~ ")

Giving for bg, the apparent molality,

by = vh =

where bg is the actual molality and v may be interpreted as the number of ions in solution per one
formula unit of KCl. The apparent molar mass of KCl can be determined from the apparent molality by
the relation

bg 0 1 0 1 -1
Mg (apparent) = e XxMp=—xMg=— x(7456gmol™ ")
B v v

where Mg is the actual molar mass of KCI.

We can draw up the following table from the data.

b9 /(mol kg™") 0.015 0.037 0.077  0.295 0.602
AT/K 0.115 0.295 0.470 1.381 2.67
bp/(molkg™") 0.0312 00802 0128 0375  0.726
v =ba/b} 2.1 2.2 1.7 1.3 1.2
Mplapp)(g mol™"y 26 34 44 57 62

A possible explanation is that the dissociation of KCl into ions is complete at the lower concentrations
but incomplete at the higher concentrations. Vatues of v greater than 2 are hard to explain, but they could
be a result of the approximations involved in obtaining equation 5.36.

See the original reference for further information about the interpretation of the data.
(a) On a Raoult’s law basis, &« = p/p*, a = yx, and ¥y = p/ap*. On a Henry’s law basis, a = p/K,

and y = p/xK. The vapor pressures of the pure components are given in the table of data and are:
pi = 47.12kPa, p}; = 37.38kPa.
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(b) The Henry’s iaw conslants are determined by plotting the data and extrapolating the low concentra-
tion data to x = 1. The data are plotted in Figure 5.3. K5 and K] are estimated as graphical tangents
atx; = | and x; = 0, respectively. The values obtained are: K4 =|60.0 kPa |and Kj =| 62.0 kPa

plkPa

Figure 5.3

Then draw up the following table based on the values of the partial pressures obtained from the plots
at the values of x; given in the figure.

x| 0 0.2 0.4 0.6 08 1.0
p1/kPa 0 12.3 22.0 30.7 38.7 47.12%
pafkPa 37387 30.7 24.7 18.0 10.7 0

n(R) — 1.30 1.17 1.09 1.03 1.000[p; /x:p} ]
Ya(R) 1.000 1.03 1.10 1.20 1.43 — [pa/xapi)
7 (H) 1.000 0.990  0.887 0824 0780  0.760[p1/xiK;']

“The value of p%; *the value of pi.

Question. In this probiem both I and A were treated as solvents, but only I as a solute. Extend the table
by including a row for ya (H).

The partial molar volume of cyclohexane is

(&)
Vo= —
dne p.T.na

A similar expression holds for V;,. Ve can be evaluated graphically by plotting V against nc and finding
the slope at the desired point. In a similar manner, ¥, can be evaluated by plotting V against »z,. To find
Ve, V is needed at a variety of s, while holding n, constant, say at 1.0000 mol; likewise to find Vp, Vis
needed at a variety of np while holding . constant. The mole fraction in this system is

ne Xehp

S0 N =
ne +itp — Xc

Xe =

From n; and rp, the mass of the sample can be calculated, and the volume can be calculated from

" neMe + npM,
P Iy
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(a) )]
1400 : 240
y=27945 + 108.96x .- y=109.00 + 279.28x -
1200 | R= 1000 b mo |
”- ~ P
= 800 =
160
600 e - 140 :
400 S S SR SRR 120 NS S L S -
2 4 6 8 10 0.1 0.2 0.3 0.4 0.5
ncfmol ngfmol Figure 5.4

The following table is drawn up

nefmol(ng =1y V/em*  x.  p/gem™ np/mol{ng=1) V/cm?
p P

2.295 5294 0.6965  0.766] 0.4358 230.7
3.970 7122 07988  0.7674 0.2519 179.4
9.040 1264 09004  0.7697 0.1106 139.9

These values are plotted in Figures 5.4(a) and (b).

These plots show no curvature, so in this case, perhaps due to the limited number of data points, the
molar volumes are independent of the mole numbers and are

Ve =|109.0cm’ mol™' | and V¥, =|279.3 cm® mol~!

The activity of a solvent is
Pa
ap = — = Xa¥a
A

so the activity coefficient is

Pa yap
VA= — = T %
XAP 4 XAl

where Lhe last equality applies Dalton’s law of partial pressures Lo the vapor phase.

Substituting the data, the following table of results is obtained.

p/kPa xr yr ¥r YE
23.40 0.000 0.000

21.75 0.129 0.065 0.418 (.998
20.25 0.228 0.145 0.490 1.031
18.75 0.353 0.285 0.576 1.023
18.15 0511 0.535 0.723 0.920
20.25 0.700 0.805 0.885 0.725
22.50 0.810 0915 0.966 0.497

26.30 1.000 1.000
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§ = Spe?/T may be written in the form In S = In S + (r/T), which indicates that a plot of In S against
/T should be linear with slope 7 and intercept InSy. Linear regression analysis gives |z = 165 K |,

standard deviation = 2 K

In(So/mol dm™?) = 2.990, standard deviation = 0.007; Sy = ¢*?*®moldm™ =| 19.89 mol dm~3
R =[0.99978

The linear regression explains 99.98 percent of the variation.

Equation 5.39 is

xp = e_(ﬂ[ﬂﬁ('}'_%)) — B—Aru_\H/RTeAfu‘H/RT'

Comparing 10 § = Spe™7, we see that

Agu T /RT

|So=e*

where T* is the normal melting point of the solute and Ay is its heat of fusion| T = An /R

According to the Debye—Hiickel limiting law

p\ 172
log y+ = —0.509|z4z_ |/ = —0.509 (b_e) [5.71]

We draw up the following table

b/(mmol kg~") 1.0 20 5.0 10.0 20.0
172 0.032 0.045 0.071 0.100 0.141
v (calc) 0.964 0.949 0.920 0.889 0.847
y+ (exp) 09649 09519 0.9275 0.9024 0.8712
log y= (calc) —0.0161 —0.0228 —0.0360 —0.0509 —0.0720
log ¥+ (exp) —0.0155 —-0.0214 -0.0327 -0.0446 —-0.0599

The points are plotted against /'/2 in Figure 5.5. Note that the limiting slopes of the calculated and
experimental curves coincide. A sufficiently good value of B in the extended Debye—Hiickel law may
be obtained by assuming that the constant A in the extended law is the same as A in the limiting law.
Using the dara at 20.0 mmol kg~ we may solve for B.

A | 0.509 l -
=2 _____ - = 1.403
logyz 172 (—00599) 0.141
Thus,
0.509/172
logye = —

1 + 1.40571/2
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Figure 5.5

In order to determine whether or not the fit is improved, we use the data at 10.0 mmol kg™

| —(0.509) x (0.100)
logve = 57208 x (0.100) ~ 0446

which fits the data almost exactly. The fits to the other data points will also be almost exact.

Solutions to theoretical problems
xa duea +xg dpp = 0[5.12, Gibbs-Duhem equation]

P5.18
Therefore, after dividing through by dxa

a ad
(), () -
p.T XA /pT

dxa
or, since dxg = —dwxa, as x5 +xp = 1
(HMA ) ( dup )
xa | — —xg | — =0
axa pT dxp pT

duep dup dx
or, = dlnx = —
p.T dlnxg /ot X

dlnxp
dal al
Then,sincep,=,u,°+RT1nL,( an) =( nfs
p? \dlnx, pT dlnxg pT

) dlnpa dInpg
On replacing f by p, (31 ) = (81
nXxa p.T X p.T

If A satisfies Raoult’s law, we can write pa = xap}, which implies that

al dinph
_ dlnxa PA — 140

(BlnpA) +
dlnxa ),y dlnxa  dinxa

97
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al
Therefore, ( an) =1
Inxg pT

which is satisfied if pgp = xppp (by integration, or inspection). Hence, if A satisfies Raoult’s law, so
does B.

Inxs = —AnpsG/RT (Section 5.5 analogous to equalion for Inxg used in derivation of egn 5.39)

dlInxp 1 d [ AnsG
——— e — X —
dT R T T

A T AnsH AnsH 74T
f dlinxs = f fl.m2 dT == fus f =
| T RT R o T

—ApsH b |
Inxg = X\ =— =
R T T

) [Gibbs—Helmholiz equation]

The approximations Inxs = —xp and T == T* then lead to eqns 5.33 and 5.37, as in the text.

Retrace the argument leading to eqn 5.40 of the text. Exactly the same process applies with aa in place
of xa. At equilibrium

ua(p) = ui(xa,p+ 1)

which implies that, with 1 = p* 4+ RT In a for a real solution,

p+i
ﬂ;(p)=ﬂ;(p+n)+RTlnaA=u:\(p)+f Vmdp+ RT lnaps
P

p+i
and hence that f Vmdp = —RT Inaa
r
For an incompressible solution, the integral evaluates to Vy,, so Vi = —RT Inapa

In terms of the osmotic coefficient ¢ (Problem 5.21)

XB np XA 1
MV =r¢RT r=—=— ¢=——Inay =—-Inay
XA NHA Xxp r

For a dilute solution, na Vi, = V

Hence, V = ng¢RT

and therefore, with [B] = HVB T = ¢[B]RT

Solutions to applications

The 97% sawrated haemoglobin in the lungs releases oxygen in the capillary until the haemoglobin is
75% saturated.

100 cm® of blood in the lung containing 15 g of Hb at 97% saturated with Oy binds

134em’ g™ x 152 =20cm® 02
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The same 100 cm? of blood in the arteries would contain

75%
97%

20 em® Oy x = 155cm?

Therefore, about (20 ~ 15.5) cm? ot of Oz is given up in the capillaries to body tissue.

EBJboun
u=[[]$ and  (EBloound = [EBlin — [EBJon

Draw up the following table:

[EBlow/(zmol dm™>) 0042 0092 0204 0526 1.150

[EBlbouna/(umol dm™) 0250 0498 1.000 2.005 3.000
v 0.250 0498 1.000 2.005 3.000

V/[EBlou 595 541 490 381 26l
Z,umol"1

A plot of v/[EB]ay is shown in Figure 5.6.

~

— y=6.1124 + -1.1672 x R? = 0.99511

EN ] (=]

Y[EB]ow
o
OMITTTr T T T I T T I T T IprT T T

n

-

rerr Py Vg Ve Yoy L1l
1 2 3 4 5 6
v Figure 5.6

L=

The slope is —1.167 dm® zzmol~", hence K =| 1.167 dm’ zmol ™" | The interceptat v = Qis| N =5.24

and this is the average number of binding sites per oligonucleotide. The close fit of the data to a straight

line indicates that the identical and independent sites model | is applicable |

PX.(s) = P" + (aq) + vX~(aq)

This process is a solubility equilibrium described by a sclubility constant K
Ky =ap +ay-
Introducing activity coefficients and concentrations, &, we obtain

Ks — bpl' + b;’(_ y:\t'-‘rl
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At low to moderate ionic strengths we can use the Debye-Hiickel limiting law as a good approximation
for y+

log ye = —lz4z-141'72

Addition of a salt, such as (NHz)2S04 causes / to increase and log y to become more negative and
y+ will decrease. However, K; is a true equilibrium constant and remains unchanged. Therefore, the
concentration of P*T increases and the protein solubility increases proportionately.

We may also explain this effect with the use of Le Chatelier’s principle. As the ionic strength increases
by the addition of an inert electrolyte such as (NH4)2504, the ions of the protein that are in solution
attract one another less strongly, so that the equilibrium is shifted in the direction of increased solubility.

The explanation of the salting out effect is somewhat more complicated and can be related to the failure
of the Debye-Hiickel limiting law at higher ionic strengths. At high ionic strengths we may write

log v+ = —|z4 |AIY2 + KT

where K is the salting out constant. At low concentrations of inert salt, / 142 o I and salting in occurs,
but at high concentrations, / > '/2, and salting out occurs. The Le Chatelier’s principle explanation is
that the water molecules are tied up by ion—dipole interactions and becorne unavailable for solvating the
protein, thereby leading to decreased solubility.

We use eqn 5.41 in the form given in Example 5.4 with [T = pgh, then
T RT ( B ) RT RTB
— = |l+—c|l=—+ —c
c

M M-}_M2

where ¢ is the mass concentration of the polymer. Therefore plot f7/c against ¢. The intercept gives
RT/M and the slope gives RT /M?.

The transformed data to plot are given in the table

¢/(mg cm™3) 133 210 452 7.8 9.87
(T/ey/(Nm~2mg='cm®) 2256 2429 29.20 3426 39.51

The plot is shown in Figure 5.7. The intercept is 29.09N m~2/(mgem=3). The slope is
1.974N m~%/{mg cm™3)2. Therefore

RT
M= —
209.09N m_2/(mg cm™3)

83145 K~ mol~' x 303.15K y ( g ) (106cm3)
= xX

20.09N m~2/{mg cm3) 10° mg 1 m?

= 1255 x 10° g mol™ =/ 1.26 x 10%g mol™'




A/(Nm~?mg' em®)

» =20.093 + 1.9741x, R =0.99983

SIMPLE MIXTURES

40.0 T I —T I —T 1 | —T T | T j

30.02— r~ —

20.0:"'i1-'i'1'i'1':;' :
0 2 4 6 8

M
B= o= x 1974N m~2/(mg cm™3)?

@

1.255 x 10° g mol™! x 1.974N m~2/(mg cm

% 1.974Nm~2/(mg cm™>)?

—3)2

20.09N m~2/(mg cm—3)
=1.23 x 10* g mol™' /(mg cm™3)
1.23 x 107 g mol ™' /(g cm™)

=[123 x 10* am’ mol !

—_
<

Figure 5.7

101



6 " Phase diagrams

D6.2

D6.4

Answers to discussion questions

The principal [actor is the shape of the two-phase liquid—vapor region in the phase diagram (usually a
temperature—composition diagram). The closer the liquid and vapor lines are to each other, the more
theoretical plates needed. See Figure 6.15 of the text. But the presence of an azeotrope could prevent the
desired degree of separation from being achieved. Incomplete miscibility of the components at specific
concentrations could also affect the number of plates required

See Figures 6.1(a) and 6.1(b).

P = conslant
AL T3
Liquid Aand B
T 1quli A m T
T A&B
Solid B
Tan = | Liquid A & B
Solid B Solid AB, Solid A °
and / ‘L T
Solid AB, Euteclic
Solid AB, and Sclid A
f
B 0.33 Ne A

XA —» Figure 6.1(a)
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E6.1(b)

p = constant

See Figure 6.2.

Solid A

Liquid
A&B

Xp —>

Liquid (A & B)

Solid B

Solid A
Solid A,B

Two solid phases

Solid A,B

Solid ByA

Two solid phases

Solid B

Solid BaA

Twao solid phases

A 0.333
AqB

8 —* 0.666
B,A

Solutions to exercises

p=pa+ps=xaph + (1 —xa)pp

P —Ph
xa=LPB
Pa— P

FHASE DIAGRAMS

Figure 6.1(b)

Figure 6.2

103
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E6.2(b)

E6.3(b) (a)

(b)

INSTRUCTOR'S SOLUTIONS MANUAL

19kPa — 18 kPa . .
Xp = m =|(0.5)| Ais I, 2-dimethylbenzene

_ XAy _ (0.5) x {20kPa) _
T ph+(ph -ph)xa  18KPa+ (20kPa— 18kPa)0.5

&l
o

Y4 0.5

~
yva=1-0526=0474=05
Pa = yap =0.612p = xap; = xa(68.8 kPa)

pe =ypp = (1 —ya)p = 0.388p = xgpg = (I — xa) x 82.1kPa

IAP. _ TATR
Ysp  Xpy

0612 68.8xa
0.388 ~ 82.1¢1 —xa)

an

(0.388) x (68.8)xs = (0.612) x (82.1) — (0.612)(82.1)xa
26.694xs = 50.245 — 50.245x,

50245
26694 + 50.245

=[0.653] xp = 1 — 0.653 =[0.347]

p = xaph + xpph = (0.653) x (68.8kPa) + (0.347) x (82.1kPa) =

XA

If Raoult’s law holds, the solution is ideal.
pa = xaph = (0.4217) x {110.1 kPa) = 46.43kPa
pB = xppg = (| —0.4217) x (94.93kPa} = 54.90kPa

p=pa+ps =(4643 4+ 5490)kPa = 101.33kPa = 1.000 atm

Therefore, Raoult’s law correctly predicts the pressure of the boiling liquid and[the solution is ideal &,
PA 46.43 kPa
= — = ——— =|0.4582
YA P 101.33 kPa
yg =1 —ya = 1.000 — 0.4582 = 0.5418

E6.4(b) Let B = benzene and T = toluene. Since the solution is equimolar zg = z1 = 0.500

(a)

(b)

Initially xg = zp and x7 = zT; thus
p =xppp +arpy [6.3] = (0.500) x (9.9kPa) + (0.500) x (2.9kPa)

= 4.95kPa + 1.45kPa =| 6.4 kPa

PB 4,95 kPa
p=— [64] = ———— =077 |y =1 -0.77 =]0.23
=2 [641= o 0.77]yr 0.23

(¢} Near the end of the distillation

yg =zg = 0.500 and y1 =z = 0.500
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Equation 6.5 may be solved for x4 [A = benzene = B here]

YBPY (0.500) x (2.9kPa)
XB= oy o = =0.23
ph+ (s —pt)ys  (9.9kPa) + (2.9 — 9.9)kPa x (0.500)
xr=1-023=077

This result for the special case of zg = zr =0.500 could have been obtained directly by realizing that

yp (initial) = xr (final); yr (initial) = xg (final)
p(final) = xpp}y + xrp} = (0.23) x (9.9kPa) + (0.77) x (2.9kPa) =

Thus in the course of the distillation the vapor pressure fell from 6.4 kPa to 4.5 kPa

E6.5(b) See the phase diagram in Figure 6.3.

@  ya=[08I
()  xa=[067] ya=[0925]

155
150
145
140

9/°C
135

130

125

120

Figure 6.3

E6.6(b) Al**, Ht, AICI3, AI(OH)3;, OH™, Cl~, B20 giving seven species. There are also three equilibria

AICI3 + 3H,0 = Al(OH); + 3HCI
AICI = AP + 301
H,O = HY + OH™

and one condition of electrical neutrality
[H¥] + 3[A*] = [OH7] +[CI7]

Hence, the number of independent components is

C=7—(3+1)=
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NH4Cl(s) = NHs(g) + HCl(g)

(a) For this system [Example 6.1] and (s and g).

(b) If ammonia is added before heating, (because NH4Cl, NH; are now independent) and

(s and g).
(a) Siill (Na2804, H,0), but now there is no solid phase present, so (liquid solution,

vapor).

(b) The varianceis F=2—-2+2= . We are free to change any two of the three variables, amount
of dissolved salt, pressure, or temperature, but not the third. If we change the amount of dissolved
salt and the pressure, the temperature is fixed by the equilibrium condition between the two phases.

See Figure 6.4.

i iSolid NHy+ NaHy |
_90 T - PN TS

0 x(N2Hy) I Figure 6.4

See Figure 6.5. The phase diagram should be labeled as in figure 6.5. (a) Solid Ag with dissolved
Sn begins to precipitate at a|, and the sample solidifies completely at az. (b) Solid Ag with dissolved
Sn begins to precipitate at b, and the liquid becomes richer in Sn. The peritectic reaction occurs at b2, and

(a) b (b)
F -
200 - Liqgud | 7 |/ beecooo__]
&
L 4+ Ag solid Fozzozzzz]
conlaminated b
) with Sn 460°C
sol T LT
I + Ag
L+ Sn minaled -
solid~ | h Sn
g B A | b N
200 4 Sn + AgiSn solids a

Sn Ag;Sn Ag Time Figure 6.5
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as cooling continues Ag;Sn is precipitated and the liquid becomes richer in Sn, At b3 the system has its
eutectic composition (e) and freezes without further change.

See Figure 6.6. The feature denoting incongruent melting is circled. Arrows on the tie line indicate the
decomposition products. There are two eutectics: one at xg = m T= ; another at xg = .

T=.

Temperature, T

T

0 0.33 0.67
A Xn B Figure 6.6

The cooling curves corresponding to the phase diagram in Figure 6.7(a) are shown in Figure 6.7(b).
Note the breaks (abrupt change in slope) at temperatures corresponding to points ay, &, and &2. Also
note the eutectic halts at a; and b3.

(@) (b)

Temperature, T

T \
0.33 0.67 I
xp B Figure 6.7

o
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E6.13(b) Rough estimates based on Figure 6.37 of the text are
(@) xp = (b) xaB, ~ (c) XaB; &

E6.14(b) The phase diagram is shown in Figure 6.8. The given data points are circled. The lines are schematic

at best.
1000 F Liquid
Liquid
+ .
o0 | Solid
&} Liquid
e +
Solid
800 |
700 Solid
1 1 1 'l ). 1 1
0 0.2 04 0.6 0.8
x(ZrFy4)

Figure 6.8

A solid solution with x(ZrF4) = 0.24 appears at 855°C. The solid solution continues to form, and
its ZrF4 content increases until it reaches x(ZrFs) = 0.40 and 820 °C. At that temperature, the entire

sample is solid.

E6.15(b) The phase diagram for this system (Figure 6.9) is very similar to that for the system methyl ethyl ether
and diborane of Exercise 6.9(a). The regions of the diagram contain analogous substances. The solid
compound begins to crystallize at 120 K. The liquid becomes progressively richer in diborane until the
liquid composition reaches 0.90 at 104 K. At that point the liquid disappears as heat is removed. Below
104 K the system is a mixture of solid compound and solid diborane.

0 .\f{B:Hﬁ) 1

Figure 6.9
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E6.16(b) Refer to the phase diagram in the solution to Exercise 6.14(a). The cooling curves are sketched in

Figure 6.10.
() {b) () (d} ()
95 1
93 |
9]
o
= 89
87 |
85
8 = { — Figure 6.10

E6.17(b) (a) When x4 falls to 0.47, a second liquid phase appears. The amount of new phase increases as xa falls
and the amount of original phase decreases until, at x4 = 0.314, only one liquid remains.

(b) The mixture has a single liquid phase at all compositions.
The phase diagram is sketched in Figure 6.11.

54

52 F

50

a8 |

8/°C

46

44

42

a0

38 I X 1 1 1 1 1 1 1
01 02 03 04 05 06 07 08 09 10
XA Figure 6.11

Solutions to problems
Solutions to numerical problems

P6.2 (a) The phase diagram is shown in Figure 6.12,

{b) We need not interpolate data, for 296.0 K is a temperature for which we have experimental data.
The mole fraction of N, ¥-dimethylacetamide in the heptane-rich phase (z, at the left of the phase
diagram) is 0.168 and in the acetamide-rich phase (8, at right) 0.804. The proportions of the two
phases are in an inverse ratio of the distance their mole fractions are from the composition point in
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310

305
E\ 300

295

294

0.0 0.2 0.4 06 0.8 1.0
X Figure 6.12

question, according to the lever rule. That is

nefng = lgfly = (0.804 —0.750)/(0.750 — 0.168) = | 0.093

The smooth curve through the data crosses x = 0.750 at| 302.5 K [, the temperature point at which
the heptane-rich phase will vanish.

P6.4 The phase diagram is shown in Figure 6.13(a). The values of x5 corresponding to the three compounds
are: (1) P4S3, 0.43; (2) P4Sq, 0.64; (3) P4S0, 0.71.

350
|
300
250
1t
200 f
‘Li). ! €3
D f.',
150
f3
€2
100 f2 ‘
]
Sz S] ed
; d il 043 0.64] |071 .
0 :Sl 1 / l\ / 1
[¢] 0.2 0.4 0.6 0.8 1.0
Xg Figure 6.13(a)

The diagram has four eutectics labelled ey, €2, €3, and e4; eight two-phase liquid—solid regions, 7| through

#g; and four two-phase solid regions, S|, 82, S3, and S4. The composition and physical state of the regions
are as follows:

Iz liquid § and P;

S51: solid P and solid P4S3; Sa: solid P4S3 and solid P4Sy;
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S5 :solid P4S7 and P4Sg; S4: solid P4S g and solid S

)

1 : liquid P and S and solid P

3: liquid P and S and selid P4S3
t5: liquid P and S and solid P45
7+ liquid P and S and solid P45

—
[+

: liquid P and S and solid P4S3
: liquid P and S and solid P45y
: liquid P and S and solid P4S o
g: liquid P and S and solid 5

—
~
[= -

-
—

A break in the cooling curve (Figure 6.13(b)) occurs at point by & 125°C as a result of solid P4S3
forming; a eutectic halt occurs at point e) = 20°C.

300

250

200

&eC

100

50

! Figure 6.13(b)

P6.6 See Figure 6.14{a). The number of distinct chemical species (as opposed to components) and phases
present at the indicated points are, respectively

(a) (b

1200 4
a
: o
1
E
80 o4y
& a AT
g 2
7 HBN— S }----d
1 €9
e
400 - : Y
i e
)
1
|I 1 1 T
Cu MgCuz MgaCu Mg Time Figure 6.14(a)

b(3,2), d(2,2), e(4,3), f(4,3), g4, 3), k(2,2)

[Liquid A and solid A are here considered distinct species.]
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The cooling curves are shown in Figure 6.14(b).

8/°C

(a)

(b)

(©

6] (b)

1200 =
a
' Q
1
i
800 - éa
a AT
4 9] i
AN T
1 &
i
400 : Y
1 €3
1]
]
[I T T T
Cu MgCu; Mg;Cu Mg Time Figure 6.14(b)

The AmixG{xpy) curves show that at 1500 K lead and copper are totally miscible. They mix to form
a homogeneous solution no matter what the relative amounts may be. However, the curve at 1300 K
appears to have a small double minimum, which indicates two partially miscible phases (Sections
5.4b and 6.5b) at temperatures lower than 1300 K (1100 K curve of the figure) there are two very

distinct minimum and we expect two partially miscible phases. The upper critical temperature is
about 1300 K at 1500 K,

F=C-P+2=2—1+2=[3]at 100K
F=C-P+2=2-2+2=2]

When a homogeneous, equilibrium mixture with xpy, = 0.1 is cooled from 1500 K to 1100 K, no
phase separation occurs. The solution composition does not change.

If an xpp, = 0.7 homogeneous, equilibrium mixture is cooled slowly, two partially miscible phases
appear at about 1300 K. The separation occurs because the composition lies between two minimum
on the A G curve at 1300 K and phase separation lowers the total Gibbs energy.

The composition of the two phases is determined by the equilibrium criterion pi (o) = i (8) between
the & and B8 phase. Since the chemical potential is the tangent of the Apy;x G curve, we conclude that
the straight [ine that is tangent to A G(x) at two volumes of x (a double tangent) determine the
composition of the two partially miscible phases. The 1100 K data is expanded (this can be done
on a photocopy machine) so that the numerical values may be extracted more easily. The double
tangent is drawn and the tangent points give the composition | xppla) =0.19 |and lpr(ﬂ) =086
See Figure 6.15. (Notice that the tangent points and the minimum do not normally coincide.) The
relative amounts of the two phases is determined by the lever rule {eqn 6.7).

{ 0.86 — 0.70
B _B 2T _T036
ng Iy 070-0.19
Solubility at 1100 K is determined by the positions of the two minimum in the Ap;;G curve. The
maximum amount of lead that can be dissolved in copper yields a mixture that has xpy = 0.17, any
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more lead produces a second phase.
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0.17 metPb 207.19gPb 1 met€i
lubility of PbinCu = | ———— | X | ——— —— } =[0.67g Pb/g Cu
solubrity ot o A (o.smm) ( I melPb )x(63.54gCu) il
The second minumum in the Ay G curve at 1100 K is at xp, = 0.86.
lubility of Cut in Pb (0.14111% (63.54gCu 9 1 mol Pb
solubili =|——) %
Y ' 0.86 mol Pb | motew 207.19g Pb
={0.050 g Cu/g Pb
Cu-Pb mixwres at 1100 K
-0.5
06—
| compasition at min: 0.86

T 07k
E L 1 composition at min: 0.17
2 o8l
Q, I
4 ool

-10

double tangent line
-1.1 : . -
0.0 2 0.4 06 0.8 1.0
*Pb
tangent composition 0.19 tangent composition 0.86 Figure 6.15

The data are plotted in Figure 6.16. At 360°C, KaFeCly(s) appears. The solution becomes richer in
FeCl, until the temperature reaches 351 °C, at which point KFeCl3(s) also appears. Below 351°C the

system is a mixture of KyFeCls(s) and KFeClj(s).

-
. 4+ kel

| &)

9 H T : H
o H

= :

" Liquid +

FeCly, i}
2

iy T

0.4
x(FeCly)

Figure 6.16
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Solutions to theoretical problems

P6.12 The implication of this problem is that energy in the form of heat may be transferred between phases and
that the volumes of the phases may also change. However, l/; + Us = constant and V; + Vg = constant.
Hence,

dUg = —dUy (b) and dVg = —dV, (c)
The general condition of equilibrium in an isolated system is dS = 0; hence
d§ =dS; +dSg =0 (a)

S=S8/, V)

35, 88 as as
dS=( S) dua+(—uﬁ) dv.,+(—") duﬁ+(—ﬂ) vy
3 /), Ve /4, 8Us )y, Vs )y,

Using conditions (b) and (c), and eqn 3.45

] 1 Pa  Pg
as=[— - — }dU, 2 _ P ldv, =0
(Tu Tﬁ) °'+(Ta T “

The only way in which this expression may, in general, equal zero is for

1 I

=0 and 22 -2 _y

T, Tp T« Tg

Therefore, | T, = Tg and py = pg

Solutions to applications

P6.14 Above about 33 °C the membrane has the highly mobile liquid crystal form. At 33 °C the membrane
consists of liquid crystal in equilibrium with a relatively small amount of the gel form. Cooling from
33 °C to about 20 °C, the equilibrium persists but shifts to a greater relative abundance of the gel form.
Below 20 °C the gel form alone is stable.

P6.16 Kevlar is a polyaromatic amide. Pheny! groups provide aromaticity and a planar, rigid structure. The
amide group is expected to be like the peptide bond that connects amine acid residues within protein
molecules. This group is also planar because resonance produces partial double bond character between
the carbon and nitrogen atoms. There is 4 substantial energy barrier preventing free rotation about the
C—N bond. The two bulky phenyl groups on the ends of an amide group are trans because steric
hinderance makes the ¢is conformation unfavorable.
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The fiatness of the Kevlar polymeric molecule makes it possible to process the material so that many
molecules with parallel alignment form highly ordered, untangled crystal bundles. The alignment makes
possible both considerable van der Waals attractions between adjacent molecules and for strong hydrogen
bonding between the polar amide groups on adjacent molecules. These bending forces create the high

thermal stability and mechanical strength observed in Kevlar.

: Z //
hydrogen bond
,H o+ Z 2
0 (5‘
hydrogen bond N C ,5+
D polar, covalent bonds
Q ()'
H/ polar cavalent bonds

Kevlar is able to absorb great quantities of energy, such as the kinetic energy of a spreading bullet,

through hydrogen bond breakage and the transition 1o the cis conformation.

P6.18 In the float zoning (FZ) method of silicon purification, a polycrystalline silicon rod is positioned atop a
seed crystal and lowered through an electromagnetic coil. The magnetic field generated by the coil creates
electric currents, heating, and local melting in the rod. By slowly moving the coil upward impurities
move with the melt zone. The lower surface of the melt zone solidifies to an ultrapure, single crystal as

it stowly cools. See Figure 6.17. Search www.nrel.gov
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feed rod

R F coil

crystal
(boule)

Figure 6.17

Advantages Disadvantages

Produces ultrapure silicon for high efficiency Requires a smooth, uniform diameter, and

photovoltaic cells and infrared detectors for crack-free feed rod

space, defense, and environmental applications

No crucible contamination High cost of heating

Produces large boules (10 cm diameter} Process must be conducted under helium or
argon and 10> Torr vacuum
Boron impurity is not removed from silicon
Boule must be sliced with a diamond saw into
thin wafers for microelectronic devices. This
reduces the useful volume of the boule

P6.20 The temperature—composition lines can be calculated from the formula for the depression of freezing
point [5.36].

_ RT*2xg
ApysH

AT

For bismuth

RT*:  (8314JK™' mol™!) x (544.5K)2

= =227K
AnpsH 10.88 x 103 ITmol™!
For cadmium
2 3141K ! mol™! 4.5 K)2
RT*?  (8314]K~' mol™') x (594.5K) g3k

AnsH 6.07 x 103 I mol~!



PHASE DIAGRAMS 117

We can use these constants to construct the following tables

x(Cd) 0.1 0.2 0.3 0.4

AT/K 227 454 681 908 (AT =x(Cd) x 227K)
T/K 522 499 476 454  (Ty=T7 — AT)

x(Bi) 0.1 0.2 0.3 0.4

AT/K 483 9606 145 193 (AT = x(Bi) x 483K)
/K 546 497 449 401 (Tr=TF — AT)

These points are plotted in Figure 6.18(a).

(a} (b)
600 o R e R B d

400

Figure 6.18

The eutectic temperature and concentration are located by extrapolation of the plotted freezing point
lines until they intersect at e, which cormresponds to 7g =~ 400 K and xg(Cd) = 0.60

Liguid at @ cools without separation of a solid until @’ is reached (at 476 K). Solid Bi then separates, and
the liquid becomes richer in Cd. At "' (400 K) the composition is pure solid Bi + liquid of composition
xg; = 0.4, The whole mass then solidfies to solid Bi + solid Cd.

(a) At460 K (point &), @ = @

a(s) ()

(b) At375 K (point " there is| no liquid |. The cooling curve is shown in Figure 6.18(b).

COMMENT. The experimental values of T and xg(Cd) are 417 K and 0.55. The extrapolated values can be
considered to be remarkably clase to the experimental ones when one considers that the formulas employed
apply only to dilute (ideal) solutions.

2 5 by the lever rule.
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D7.2

D7.4

D7.6

D7.8

Answers to discussion questions

The thermodynamic equilibrium constant involves activities rather than pressures. See eqn 7.16 and
Example 7.1. For systems involving gases, the activities are the dimensionless fugacities. At low pres-
sures, the fugacity may be replaced with pressures with little error, but al high pressures thal is not a
good approximation. The difference between the equilibrium constant expressed in activities and the
constant expressed in pressures is dependent upon two factors: the stoichiometry of the reaction and
the magnitude of the partial pressures. Thus there is no ene answer to this question. For the example of
the ammonia synthesis reaction, in a range of pressures where the fugacity coefficients are greater than
one, an increase in pressure resulls in a greater shift to the product side than would be predicted by the
constant expressed in partial pressures. For an exothermic reaction, such as the ammonia synthesis, an
increase in temperature will shift the reaction to the reactant side, but the relative shift is independent of
the fugacity coefficients. The ratio In(K=/K) depends only on A H. See eqn 7.23.

The physical basis of the dependence of the equilibrium constant on temperature as predicted by the
van't Hoff equation can be seen when the expression A,G® = A H® — TAS® is written in the form
Rln K = —AH®/T + A.5% When the reaction is exothermic and the temperature is raised, In K and
hence K decrease, since T occurs in the denominator, and the reaction shifts to favor the reactants. When
the reaction is endothermic, increasing T makes In K less negative, or X more positive, and producls
are favored. Another factor of importance when the reaction is endothermic is the increasing entropy of
their reacting system resulting in a more positive In X, favoring products.

The potential difference between the electrodes in a working electrochemical cell is called the cell
potential. The cell potential is not a constant and changes with time as the cell reaction proceeds. Thus
the cell polential is a potential difference measured under non-equilibrium conditions as electric current
is drawn from the cell. Electromotive force is the zero-current cell potential and corresponds to the
potential difference of the cell when the cell (not the cell reaction) is at equilibrium. Infinitesimally
small changes from this equilibrium are reversible with constant concentration and, consequently, it is
possible to relate emf to thermodynamic properties.

Construct a cell using a standard hydrogen electrode and an electrode designed around the redox couple of
interest. The cell potential £ is measured with a high impedance voltmeter under zero current conditions.
When using SHE as a reference elecirode, E is the desired half-reaction potential [7.13]. Should the
redox couple have one or more electroactive species (i) that are solvated with concentration b;, E must
be measured over a range of 5; values.
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The Nernsl equation [7.29], with Q being the cell reaction quotient, is the starting point for analysis of
the E(b;) data,

RT
E=E®——]|
v ngQ

It would seem that substitution of £ and @ values would allow the computation of the standard redox
potential £ for the couple. However, a problem arises because the calculation of Q requires not only
knowledge of the concentrations of the species involved in the cell reaction but also of their activity
coefficients. These coefficients are not usually available, so the calculation cannot be directly completed.
However, at very low concentrations, the Debye—Hiickel limiting law for the coefficients holds. The
procedure then is to substitute the Debye-Hiickel law for the activity coefficients into the specific form
of the Nernst equation for the cell under investigation and carefully examine the equation to determine
what kind of plol to make of the E(b;) data so Lhal extrapolation of the plot to zero concentralion, where
the Debye-Hiickel law is valid, gives a plot intercept that equals £°. See Section 7.8 for the details
of this procedure and an example for which the relevant graph involves a plot of £ + (2RT/F) In b
against b'/2,

Solutions to exercises

N204(g) = 2NO2(g)

Amount at equilibrium (1 —a)n 2an
. | — & 2
Mole fraction
| +o |+
. (I —a}P 2aP
Partial pressure
| +o |+

Assuming that the gases are perfect, ay = P—;
7

_{pnoa/P°Y . 4d?p
(PN20,/P°) (1 —a?)p®

2

4o-

il
| —

(a) at equilibrium
4(0.201)? —
=0.201 K=————=|0.1684]
(b) @ 0.20 1 _0.201’_’

() AG® = —RTInK = —(8.3141K ™' mol™') x (298 K) x In(0.16841)

=441kl mol™!

Forp =p®. K =




120 INSTRUCTOR'S SOLUTIONS MANUAL

E7.2(b) (a) Bra(g) = 2Br(g) « =024

Amount at equilibrium (Il —a)n 2an
1 —

Mole fraction ad 2a
l -+ 14+«
I —a)P 2P

Partial pressure ) z

l+ea 1+ a

Assuming both gases are perfect a; = p_;

K=<p3r/p9)2= da’p 4o o =p°1
per/p°  (l—e?)p® 1-w

4(0.24)2

(b) AG® = —RTInK = —(8.314J K~ " mol™!) x (1600 K) x In(0.2445)
AH® 1 |
(©) InK(2273K) = In K(1600K) — — (22731{ - 16001{)
= In(0.2445) — (%) x (—1.851 x 1074
= 1.084
K(2273K) = ' % =
E7.3(b) v(CHCl3) =1, v(HCl) =3, v(CHz) =—1, u(Cl)=-3

(@)  AG® = AfG®(CHCl3,1) + 3A¢G®(HCl, g) — AfG®(CHas, g)

= (=73.66 kI mol™") + (3) x (—95.30 kI mol™") — (—50.72kI mol™!)

=] —308.84 kJ mol ™!

e —(—308.84 x 10 Jmol ™!
mk=-29 178)= ( - , mol )
RT (8.31451 K" mol™") x (298.15K)

)  AH® = AfH®(CHCl, ) + 3AcH®(HCL, g) — ArH®(CHa, g)

= 124.584

= (=13447 kI mol™") + (3) x (—=92.31 kI mol™") — (—74.81 kI mol™ ")
= —336.59 kJ mol™’
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| |
232K 2982K

AH®
In K(50°C) = In K(25°C) — — (

R ) [7.25)

—336.59 x 10° Jmol™!
8.3145JK~! mol™!

= 124.584 — (

A,G®(50°C) = —RT InK(50°C) [7.17] = —(8.3145J K~ mol™") x (323.15K) x (114.083)
=1306.52kJ mol~!

E7.4(b)  Draw up the following table.

) x (—2.594 x 1079 K1) = 114.083

A + B = C + 2D Total
Initial amounts/mol 2.00 1.00 0 3.00 6.00
Stated change/mol +0.79
Implied change/mol —7.09 —7.09 +7.09 +1.58
Equilibrium amounts/mol 1.21 0.21 0.79 4.58 6.79
Mole fractions 0.1782 0.0302 0.1162 0.6742 0.9999

(a) Mole fractions are given in the table.

(b) K. =T,
I

0.1163) x (0.6745)2
Kr—( { ) ~[ss]

7 (0.1782) x (0.0309)

(€) p1 = xjp. Assuming the gases are perfect, ay = p;/p®, so

(pc/p®) x (pp/p®)? (p )
K= =k ({Z£)=K whenp=100b
(Pa/P®) x (pB/P7) £ T *

pe
@ AG® = —RTInK = —(8.314JK "' mol™") x (298 K) x In(9.609)

=|—5.6kImol™!

E7.5(b) At 1120 K, A;G® = +22 x 10% J mol™!

AG® (22 x 103 I mol™!) B
RT ~  (8314JK~'mol™') x (1120K)

K =e 233 947 x 1072

AH® (] 1
InK; =Ink; -2 \m T

InK(1120K) = —2.383
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Solvefor T atin K2 = 0(Ks = 1)

[ RInKy 1 (8314JK™'mol™') x (-2.363) 1 e
= = *o = + =736 x 10
T, AMH® T (125 x 10*T mol™!) 1120K

o YO —AHT
ATy R

E7.6(b) 9]

1 y?
We have inK = —2.04 — 1176 K (?) +2.1x 107K3 (?)

9

AH® 703 1
e 176K+ (21 x 107K x 3] =
R + (2.1 x ) T

T =450K so

2

1 - —
73
— + (2. —— | = 865K

AH® = +(865K) x (8314Tmol™' K~')y = 7.19T kI mol~!

Find A,S% from A,G®

AH®

AG® = —RTInk

1176 K . 2.1 x 107 K3
450K {450 K)3

—(8314JK 'mol™") x (450K) x [—2.04 -

16.55 kJ mol™!

AG® = AH® —TAS®
AH® — AG®  7.191kImol™"! — 16.55k] mol™

ASE = = =—20.791K " mol!
r T 450K me
=|[-21TK ! mol™!
E7.7(b) U(s) + 3H2(g) = UH3(s), A¢G® = —RTInk

At this low pressure, hydrogen is nearly a perfect gas, a(H2) = (p/p®). The activities of the solids are 1.

=372 3
Hence, InK = In (%) =——In La
p 2

e=3

P
3 P
AFG® = ZRTIn —
r 2" M pe
3 139P
={2) x 8314JK~" mol~!) x (500K) x In{ ——-2
7 1.00 x 10° Pa

=|—4] 0kImol™!
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K, = ij " [analogous to 7.16]
]

The relation of K, to K is established in Hinstration 1.5

v
] . )
K, = l_[ (l%) |:7.l6 with ay = [%]

J

y] v
= I—[leu (P_;) [pr = xipl =K, x (%) I:v = Zu1j|
AV P

J

Therefore, K. = K {p/p®)”", K¢ o p~" [K and p® are constants)

v=1-+4+1-1—1=0, thus IKX(Zba.r)=K\-(1bar)|

Na{g) + O2(g) = 2NO(g) K = 1.69 x 10~3a1 2300 K

Initial moles Ny = — 08 _ 02380 mol Na
28.01 gmol !
2.0 _
Initial moles 07 = ——~—2— = 6.250 x 102 mol O;
32.00 gmol™

Na 8)} NO Total
Initial amount/mol 0.2380 0.0625 0 0.300
Change/mol -z -z +2z 0
Equilibrium amount/mol ~ 0.2380 — ¢ 0.0625 — z 2z 0.300

0.2380 — z 0.0625 — z 2z
Mole fracti ]
ole fractions 0300 0.300 0300 W
k=i (2 |v= =
=K. | = U_ZUJ—O , then
4 J
. (2:/0.300)°
K=ke= 0.2380 — z 0.0625 — z
— X —
0.300 0.300
4 2
i — 169 x 1073

= (02380 — 2)(0.0625 — 2)

422 = 1.69 x 107*{0.01488 — 0.3005z + z°)

2.5T4 x 1075 — (5.078 x 107"z + (1.69 x 10~
400 —1.69x 1072 =400 so

4722 + (5.078 x 100H7 — 2514 x 1075 =0

123
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—5.078 x 1074 £ {(5.078 x 107%)% — 4 x (4) x (—2.514 x 1073)}}/2
=
8

1 —
= g(~=5.078 x 107% £2.006 x 107%)
z > 0 [z < Qis physically impossible] so

z=2444 x 107?

444 x 1073

K AHC (1]
E7.10(b) he=—\5"7

K
T=310K, T =325K; let? =«

8.314 7K~ mol ™" -
Now A7H® = — MOl ) nk = 5584k mol™" Ink

T((1/310K) — (1/325K))
(@ « =2  AfH® = (5584kImol™") x (In2) =
(b) k= % AH® = (5584kImol™") x (In§) =

£7.11(b) NH4Cl(s) = NHa(g) + HCI(g)
p = p(NH3) + p(HCI) = 2p(NH3) [p(NH3) = p(HCD)]

@ Kk=[1d117.16);, a(gases) = 2.  a(NH4CI, 5) = |
l:I i) g pe

2 2
K= (p(N:I:.)) 5 (p(Héil)) _ p(Nis) _L (%)
P P P 4 J

| [608kPa\>
. P oLl N vy
At427°C (700K), e (100kPa)

. I (1115kPa\\?

(b) A,G® = —RTInK [7.8] = (—8.314J K~ 'mol™!) x (700K) x (In9.24)

=|—129klmol™!| (atd27°C)

RINK'/K) 0 os)

(/T -1/T"

=1 -1 4
~ (8.314TK "mol™") x In(31.08/9.24) =
(1/700K) — (17732 K)

() AH® =

AH® — AG® (161 kImol™!) — (—=12.9kI mol™")

(d) AS® =

=|+2487 K~ mol~!

T 700K
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E7.12(b} The reaction is
CuSQ4 - 5H;0(s5) = CuS04(s) + SH20O(g)
For the purposes of this exercise we may assume that the required temperature is that temperature at
which K=1, which corresponds to a pressure of 1 bar for the gaseous products. For K = 1,InX =0,
and A,G® =0.

AG® = AH® —TA5° =0 when AH® =TAS®

Therefore, the decomposition temperature (when K = 1) is
AH®
T =
AS®

CuS0; - 5H20 (s) = CuS0Qy4 (s) + 5H20 (g)
AHT = [(—=T71.36) -+ (5) x (—241.82) - (—2279.7)] kJ mo!™' = +299.2 kI mol™!
A.S5® = [(109) + (5) x (188.83) — (300.4}] JK™' mol™! = 75281 K~! mol ™"

299.2 x 10% I mol™!
Therefore, T = = -397 K
752.8TK~! mol™!

Question. What would the decomposition temperature be for decomposition defined as the state at which
K=1/27

E7.13(b) Pbla(s) = Pbla(aq)  Ks= 14 x 1078
AG® = —RTInKs = —(8.314JK ™' mol™") x (298.15K) x In (1.4 Y 10*3)
= 44.83 kJ mol ™
AG® = A(G® (Pbla, aq) — AfG® (Pbly,s)

ArG® (Pbly,aq) = A.G®A 4+ ArG® (Pbly, 5)
=44 83kI mol~! — 173.64 kI mol~"

= 12881 mo1~"!

E7.14(b) The cell notation specifies the right and left electrodes. Note that for proper cancellation we must equalize
the number of electrons in half-reactions being combined.

For the calculation of the standard emfs of the cells we have used E® = E‘}; —EE’ , with standard electrode
potentials from Table 7.2.

(@ R: Ag,CrOs(s) +2e~ — 2Ag(s) + CrO2~(aq) +0.45V
L: Clg) +2e~ — 2Cl™(aq) +1.36V
Overall (R —L):  Ag,CrOa(s) + 2C1~ (aq) — 2Ag(s) + CrO2~(ag) + (Chg) —091V
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(b) R: Sni*(aq) +2e~ — Sn’*(aq) +0.I5V
L: 2Fe**(aq) +2¢~ — 2Fe’*(aq) +0.77V
Overall (R —L):  Sn**(ag) + 2Fe?*(ag) — Sn’*(aq) + 2Fe** (aq) —062V

(©) R: MnOi(s) +4H*(aq) + 2e~ — Mn>*(aq) + 2Fe** (aq) +1.23V
L: Cug"'(aq) -+ 2e” — Cu(s) +0.34V
Overall (R —L): Cu(s) + MnOz(s) + 4H*(aq) — Cu* (aq) + Mn’*(aq)

+2H,0(1) +0.89V

COMMENT. Those cells for which £® > O may operate as spontaneous galvanic cells under standard condi-
tions. Those for which £2 « O may operate as nonspontaneous electrolytic cells, Recall that £ informs us
of the spontaneity of a cell under standard conditions only. For other conditions we require £.

E7.15(b) The conditions (concentrations, etc.) under which these reactions occur are not given. For the pur-
poses of this exercise we assume standard conditions. The specification of the right and left electrodes
is determined by the direction of the reaction as written. As always, in combining half-reactions
to form an overall cell reaction we must write half-reactions with equal number of electrons to
ensure proper cancellation. We first identify the half-reactions, and then set up the corresponding
cell.

(a) R: 2H,0(l)+ 2¢~ — 20H (ag) + Hz(g) - 0383V
L: 2Na+(aq) 4 2e~ — 2Naf(s) 271V

and the cell is

Na(s)[Na™ (aq)|, OH (aq) [Ha(g) Pt

or more simply

Na(s)|NaOH(aq)|Ha(g)IPt |

(b) R: Ia(s)+2e” — 21" (aq) +0.54V
L: 2H%(aq) +2e” — Haig) 0

and the cell is

Pt [Ha(g)| H* (aq), 1™ (aq) [la(s)] Pt

or more simply

Pt/Hz(g)|H* (aq)| La(s)| Pt

(¢) R: 2H"(agq) + 2¢~ — Ha(g) 0.00V
L: 2H,0(1)+ 2e~ — Ha(g) + 20H (aq) 0.083V

and the cell is

Pt|Ha(g)| H* (ag), OH " (aq)|H2 (g) Pt 0.083V
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or more simply

Pt|Ha () Hz0(D)|Ha2(g) [Pt |

COMMENT. All of these cells have £ = 0, corresponding to a spontaneous cell reaction under standard
conditions. If £2 had turned out to be nagative, the spontaneous reacticn would have been the reverse of
the one given, with the right and left electrodes of the cell also reversed.

E7.16(b) (a) E=E®——~InQ v=2
vF

_ v o2 2 P _
0= l_[ ay = ap.to- [all other activities = 1]
]

b
=ata® = (yeb)? x (y-b-)? [b = ;5 here and below]

= (rey-)? x (b ) =y [5.66, b4 = b, b- =b]

RT 2RT
_ e 43Y _ | pe
Hence, £ =E —?ln(yib)_ E ——ﬁ—ln(yib)

(B)  AG = —vFE [1.27] = —(2) x (96485 x 10* Cmol~!) x (0.4658 V) =| —89.89J mol~" |

(©) log yy = —lepz-|AI'/2[5.69] = —(0.509) x (0.010)!/2 [ = b for HCl(aq}] = —0.0509

y, = 0.889

o 2RT L
E® = E+ == In(y,h) = (04658 V) + () x (25.693 x 107 v) x In (0.889 x 0.010)

- [V

The value compares favorably to that given in Table 7.2.

vFE®

E7.17(b} Ineachcase In K = [7.30]

{a) Sn(s) + CuSO4(aq) = Cu(s) + SnS04(aq)

R: Cu’f(aq)+2e — Cufs) +034V
L: Sn’t(ag)+2~ — Sn(s) —0.14V

(2) x (048 V) —
InK=—m——-= A, =|1. 10L6

(b) Cut(ag)+ Cu(s) = 2Cu™*(aq)

} + 048V

R: Cu’*(ag)+e” — Culaq) +0.16V
L: Cu* (aq) + e~ — Cu(s) + 052V

—036V _
InK=————=—-140 K=|82x10"7
n 25.693mV ?

} —036V
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R: 2Bi**(aq) + 6e~ — 2Bi(s)
L: BixS3(s) + 6e~ — 2Bi(s) + 357 (aq)
Overall (R —L): 2Bi**(aq) + 35> (ag) — BizS3(s) v=6

VFE®  6(0.96V)

= =224
RT (25.693 x 10-3 V)

InK =

229

K=e

aBi1$3(s) _ M 274
Tt s-ag  [BPF] 8T
In the above equation the activity of the solid equals 1 and, since the solution is extremely dilute,
the activity coefficients of dissolved ions also equals 1. Substituting 8] = 1.5[Bi3+] and solving
for [Bi’*] gives [Bi**] = 2.7 x 10~2° M. Bi,S; has a solubility equal | to 14 x10720 M.

(a) K=

(b} The solubility equilibrium is written as the reverse of the cell reaction. Therefore,

Ks=K' =1/ |52 %10~

Solutions to problems

Solutions to numerical problems
CHa(g) = C(s) + 2Ha(g)
This reaction is the reverse of the formation reaction.
(a) AG® = —A(G®
ArG® = AfH® — TA:S®
= —74850 Jmol ™' — 298 K x (—80.67JK ™' mol™')
= —5.08 x 10* Ymol™!

AGE 5.08 x 104 Jmot™!
K =29 g = x = = —20.508
—RT ~8314JK "mol™! x 298K
K ={124 x107°
(b) AH® = —AfH® = 74.85kJmol !
In K(50°C) = InK(298K) AcH® : 1 [7.25]
f =n R \33K 208K/
7.4850 x 10* I mol™! - _
— —20.508 — LI (—2.597 x 10-“) = —18.17D
8.3145J K" mol~



P7.4

CHEMICAL EQUILIBRIUM 129

(c) Draw up the equilibrium table

CHj(g) Ha(g)

Amounts (I —a)n 2an
. | —a 2o
Mole fractions
| + o 1+
Partial pressure L -e 2a
i S
P l +a P 1+«
v (s /P®)"
k=[]a’17.16] = 7——=
] (pcn. /p°)
o ()
124 x 1077 = " !% ~da’p o« 1]

1.24 x 1077
=" =|18x 107"

(d) Le Chatelier’s principle provides the answers.

As pressure increases, o decreases, since the more compact state (less moles of gas) is favored at
high pressures. As temperature increases the side of the reaction which can absorb heat is favored.
Since A H® is positive, that is the right-hand side, hence « increases. This can also be seen from
the results of parts (a) and (b), K increased from 25 °C to 50 °C, implying that o increased.

COa(g) = CO(g) + 102(g)

Draw up the following equilibrium table

CO> CO ()
1
Amounts (1l —akn cent Eom
(1l —a) o (1/2)a

Mole fractions
(I+ (/2 (A+(x/2) (1+(a/2)

{1—a)p ap ap
(IL+(/2) (+{@/2)) 2(1+(2/2))

Partial pressures

1/2

K= (H“I”’)) (.16) = PeolP”) (Pciz/p )
! equilibrium {pco,/p°)

@/ + (@/2)) x (@/2)/(1 + (@/2)'? x (p/p®)'"?
- (1 — )/ (1 + (@/2))

372
K = o [ee < 1 at all the specified temperatures]

A
AG® = —RTInK [7.8]
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The calculated values of K and A, G are given in the table below. From any two pairs of K and 7, A H
may be calculated.

AH® /] |
inks =Ink; — ‘T (— - —) [7.25]

Solving for A H®

-6
B314IK mol™!) s n (T X 107
1.22 x 10-¢

AH® = ————"— [Exercise 7.10] I I
(13951( B 14931()

[3.00 x 10° Jmol~' |

AH® - AG®

ASE =
T

The calculated values of A.S® are also given in the table.

T/K 1395 1443 1498
a/1074 144 250 471
K/10°° 122 280 7.23
AG®/(kImol™" 158 153 147

ASC /K mol ™!y 102 102 102

COMMENT. A:S® is essentially constant over this temperature range but it is much different from its vatue at
25°C. A+, however, is only slightly different.

Question. What are the values of A;H® and A,S® at 25°C for this reaction?
P7.6 AG(H2CO, g) = AG®(HyCO, D + Ay GT(H2CO, 1)

For H,CO() = HyCO(g), K(vap) = =
14

AvipG® = —RT InK(vap) = —RT In 1% p° =750 Torr

1500 Torr

= —(8.314JK~ " moi~! K)x In{ ———
(8.3 mol™ ") x (298 K) x n(750Torr

) = —1.72kJ mol™!
Therefore, for the reaction
CO(g) + Ha(g) = H2CO(g),

AG® = (+28.95) + (—1.72) KT mol ™' = +27.23 kJ mol !

3 ~I -1 =1
Hence, K = e(72'.’.2331:10 Jmol ™)/ (8314 J K™ mol™ )= (298K} _ e—lﬂ.99 =|1.69 x 10—5
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P7.9 Draw up the following tablie using Ha(g) + 12 = 2HI(g}
Ha I HI Total
Initial amounts/mol 0.300 0.400 0.200 0.900
Change/mol —Xx —Xx +2x
Equilibrium amounts/fmol ~ 0.300 — x 0.400 — x 0.200 + 2x (.900
Mole fraction (0.300 — x)/0.900  (0.400 ~ x}/0.900  (0.200 + 2x)/0.900 1
(p(Hn)2
° x(HI)? (0.200 + 2x)2 :
K = = h= = = 870
PN /PN, w20 =P = 5300 —x)0400 — 1) Lgiven]
P° p°

Therefore,

(0.0400) + (0.800x) + 4x% = (870) x (0.120 — 0.700x + x*) or
866x% — 609.80x + 104.36 = 0

which solves tox = 0.293 {x = 0.411 is excluded because x cannot exceed 0.300]. The final composition

is therefore | 0.007 mol Ha |, 0.107 mol Iz, and | 0.786 mol HI |

P7.10 If we knew A H® for this reaction, we could calculate AfH®(HCIO) from
AH® = 28,H®(HCIO) — AfH®(CL0) — AfH®(H0)
We can find A H® if we know A;G? and A.5%, since
AGT = AH —TAS
And we can find A,G® from the equilibrium constant.
K = exp(—AG®/RT) so AG® =—RTIK,
AG® = —(83145 x 1073 KK~ mol ™"y x (298K)In8.2 x 1072
=6.2kImol™’
AH® = AG® +TAS®
=6.2kImol™" + (298K) x (1638 x 103 kI K™ ' mol™h),
AH® = 11.1 kI mol™

Finally,
I
ArH®(HCIO) = E[lﬁ.rﬁ'e + AfH®(CL:0) + ArH T (Ha0)],

!
ArH®(HCIO) = 5[1 1.1+ 772 + (—241.82)] kI mol !

=|76.8kJImal !
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P7.12 The equilibrium to be considered is (A = gas)

A(g, 1 bar) = A(sol'n) K = (c/c®) s

/P s°
dink
d(/T)

InK =1In (Sie) =2.303log (si‘*)

AH® = —Rx

[7.23]

*(Hy) = — d_(_s39_ 768K
AH®(Hy) = —(2.303) x (R) x d(l/T)( 5.39 )

= 2.303R x 768K = | +14.7 kJ mol !

d(1/T)

= 2.303R x 980K = | +18.8 kJ mol~!

P7.14 (a) The cell reaction is

AHE(CO) = —(2.303) x (R) x d (_5_93 _ M)

Ha(g) + 302(g) = H,0(1)

A;G® = A;G® (H20, 1) = —237.13 kI mol™! [Table 2.7]

AGE . 1!
E° — G (7.28 +237.13 kI mo

= . = =[+123V
vF ) (2) x (96.485kCmol™")

() CiHio(®) + 20:(g) — 4C0;(g) + 5H0()

AfG® = 4A;G®%(CO3, g) + 5A1G® (H20,1) — ArG® (C4Hy0, 8)

= (4} x (—394.36) + (5) x (—237.13) — (—17.03)] kI mol ! [Table 2.7)

= —2746.06 kJ mol ™

In this reaction the number of electrons transferred, v is not immediately apparent as in part {a). To
find v we break the cell reaction down into half-reactions as follows

R : L0,(g) +26e” + 26H™ (ag) > 13H,0())
L: 4C0,(g) + 26e + 26H (aq) — C4H p(g) + 8H20(1)
R—L: CsHio(g) + F02(g) = 4C02(g) + 8H0()

Hence, v = 26. |
—AG® 46.06 kI mol~
Therefore, £ = AG = +2746.06 kT mo

vF (26) x (96.485kC mol™")
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25.693 mV
@  E=£°—2222"Y 000 Ultustration7.10, 25°C)
vV

Q = a(Zn’*t)a®(CI7)

b b \?
=¥+ (b_e) (Zn*)y2 (5_9) (CI7), B(EZn®Y) =b; BCIT) =26, yeyl =13

b
Therefore, Q =y} x 45 [b = 43 here and below]

25.693 mV 3
and E = E° — Tm In(db>y3) = E® — (E) % (25.693mV) x In(4'3byy)

=|E®%—(38.54 mV) x In(4!/>p)—(38.54 mV)ln(yiﬂ

(b)  E°(Cell) = ES — EY = E®(Hg,Cly,Hg) — E®(Zn?*,Zn)

= (0.2676 V) — (—0.7628 V) =

(c) AG = —vFE = —(2) x (9.6485 x 10° Cmol™") x (1.2272 V) = —236.81 kI mot™!

AG® = —VFE® = —(2) x (9.6485 x 10° Cmol™') x (1.0304 V) =| —198 84 I mol~! |

AGE 1.9884 x 10° J moi™!
nk = 26 _ x U mo 30211 K =16.84 x 10%

RT ~ (831451K-"mol™ ) x (208.15K)

(d) From part (a)
12272V = 1.0304 V — (38.54mV) x In(4'/3 x 0.0050) — (38.54 mV) x In px

1.2272V) — (1.0304 V) — (0.1863 V _
nys = - ) ;038054\/) ¢ ) — 02698,y =[0763]

(e log ye = —|zz4 14172 [5.69]

1 bi
=5 Zz,? (b—e) (5.70)

H(Zn**) = b= 0.0050molkg™!  H(CI™) =26 = 0.010 mol kg~
I = 1[4 x (0.0050) + (0.010)] = 0.015

log ya = —(2) x (0.509) x (0:015)'/% = —0.125; yy =

This compares remarkably well to the value obtained from experimental data in part (d).

0AG
(f) Arsz—( aT )P

= vF (g—i) [7.39] = (2) x (9.6485 x 10°Cmol™") x (-4.52 x 107*VK™)
P

=[-87.20K " mol~!|

AH = A;G +TAS = (—236.81 k) moi™!) 4 (298.15K) x (—87.2] K™ !'mol™")

=| —262.4 kI mol™!

133
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P7.18 Pt|H,(g)|NaOH(aq), NaCl(aq)|AgCl(s)| Ag(s)

Ha(s) 4 2AgCl(s) — 2Ag(s) + 2C1 7 (ag) + 2H (ag) v =2

E=E®°— % InQ, @=aMaCl™) [/p°=1]

RT RT Kya(Cl™ RT  Kuysb(CI™
= £° = B namtyacy = g9 - BL g Kol _ po BT, Kuyaeb(CL)

F F a(OH™) F ' yzb(OH™)

RT  Kyb(Cl™ RT RT  b(CI™
=E°——lnL_)=E°——anw——ln ( _)

F  b(OHM) F F " b(OH™)

RT RT . 5(CI7) 0K
— E°4(2.303) = x pKu — | Ky = —log Ky =
+H2303) 7 xp F " 5OH") (p W= TR 2.303 )

| (b(cr)

n

E—E® H(OH™) E—E°®

Hence, pKy = = 0.05114
ence. Phw = S aRT/F T 2303 2303RT/F |

E® = E§ — Ef = E®(AgCl, Ag) — ES(H /Ha) = +0.22V — 0 [Table 7.2)

We then draw up the following table with the more precise value for £% = +0.2223 V [See the solution
to Problem 10.8, 7th edition]

0/°C 20.0 25.0 30.0
E/V 1.04774 1.04864 1.04942
(2.303RT/F)

0.05819 0.05918 0.06018
pKw 14.23 14.0t 13.79

dinkKy AH®

a7 BT (7.23]

d
Hence, A H® = —(2.303)RTQE(pKw)

then with

dpKw _ ApKy
T AT

1379 — 14.23

AH® = —(2.303) x (8.314TK ™' mol™!) x (298.15K)? x T

+74.9kI mol ™!
ArG® = —RT In Ky = 2.303RT x pKy = | +80.0kI mol~!

AH® — AG®
By5° = 25— 2 —[—17.15K mol ! |

See the original reference for a careful analysis of the precise data.
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The method of the solution is first to determine A,G®, A.H?, and A.S5? for the cell reaction
1Ha(g) + AgCl(s) — Ag(s) + HCl(aq)

and then, from the values of these quantities and the known values of A;G®, AfH®, and §°, for all the
species other than Cl™(aq), to calculate AsG®, AfH®, and $* for C1™(aq).

AG® = —vFE®
A1298.15 K (25.00°C)

E®/V = (0.23659) — (4.8564 x 107™%) x (25.00) — (3.4205 x 107%) x (25.00)
+ (5.869 % 1077 x (25.00)° = +0.22240V

Therefore, AG® = —(96.485kCmol™') x (0.22240V) = —21.46kJ mol ™!

o [3DG°N  [IE® 3 AE®\ °C o
AS® =— ( o7 )p = (a_T),, x vF = vF (ﬁ)p © [48/°C=dT/K] (a)
(3E®/36)
Tf’ = (—4.8564 x 107%/°C) — (2) x (3.4205 x 107%9/(°C)%)
+(3) x (5869 x 107%%/ (°C)°)
(BEG/BB)P —4 —6 (n o -8 1 o0)2
e (—a.8564 x 107¢) — (6.8410 x 107 (6/°C) ) + (17607 x 1078 (6/°C)*)

Therefore, at 25.00°C,
dE®
— | =—6.4566 x 107*V/°C
3 /,
and
dE® —4 47 10 o —4 =1
T = (—6.4566 x 107" V/°C) x (°C/K) = —6.4566 x 107" VK
r
Hence, from equation (a)

AS® = (—96.485kC mol™") x (6.4566 x 107* VK™ !) = —62.30J K" mol ™!

and AH® = AG® + TA,S®
= —(21.46kJmol '} + (298.15K) x (—62.30J K~ "mol™") = —40.03 kJ mol ™

For the cell reaction

sHa(g) + AgCl(s) — Ag(s) + HCl(aq)

AG® = &GP (HY) + ATG®(CL™) — ArG®(AgCl)
= ArGE(C1T) — A¢G®(AgCl)  [AG®(HY) =10]
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Hence, ArG®(C17) = A:G® + A;G® (AgCl) = [(—21.46) — (109.79) kJ mol ]

=[-131.25 K mol~! |

Similarly, AfH®(CI7) = AH® + AcH®(AgChH = (—40.03) — (127.07kI mol™")

=|—167.10kI mol! |

For the entropy of CI™ in solution we use
AS® = S°(Ag) + S°(HT) + S°(C17) — 1S°(Ha) — S°(AgCh
with §° (H*) = 0. Then,

SP(CIT) = AS® — $°(Ag) + $5°(Ha) + S (ApCD)

= (—6230) — (42.55) + (1) x (130.68) + (96.2) = |+ 56.7 JK~" mol""

P7.22 Electrochemical cell equation:
1Ha (g, 1 bar) + AgCl(s) = HT (aq) + CI™(aq) + Ag(s)
where f(Hz) = 1 bar = p®a¢- = yo-b
Weak acid equilibrium:
BHt =B+ H"
where bgy = bp =&
and Ky = apay+/asn = ys bay+/yeu b = yB an+/veH
oray = ysuKa/vB

Ionic strength (neglect bu+ because by+ <& b).
1.2 2
= E{ZBHbBH + ZCl‘bCr} =pb

according to the Nernst equation [7.29]

~ RT In(l
E:ﬁ—ﬂln(ﬂ):ﬁ'e—ﬂ

F "\ T pooglantacr)

F KayeuYo-b
— (E-E%)=-— _b) = —log | 222
Rﬂn(m)( E™) log(ay+ ver- &) og( v )

= pK, — log(b) — 2log(y+)
2A/b

—(E - E®) =pK, — log(b) + ———— — 2kb
RTIn(10) " ) =pha—loe®)+ 7o

where A = 0.5091.



P7.24

CHEMICAL EQUILIBRIUM 137

The expression to the left of the above equality is experimental data that is a function of 5. The parameters
pK,, B, and & on the right side are systematically varied with a mathematical regression software until
the right side fits the left side in a least squares sense.

pKy = 6.736, B = 1.997kg®mol~03
k = —0.121 kg mol ™!

Y+ = lo(ﬁ%-‘-kb)

(a) The Nemst equation appropriate to the Auoride selective electrode is
RT
E=Ep+ ﬁ? In{aF- + kp- on-a0H-)
at 298 K, this may be written, after setting 8 = 1,
E = Eyp + 0.05916 Viog(ar- + kr_ oH-a0H-)
(b) Athigh pH, agy- is large, and the second term inside the parentheses may be a significant fraction

of ag_. At low pH, F~ is converted to HF, to which the electrode is insensitive. The activities of the
species involved are related to each other through Ka.

ay+ar— Kianp 3.5 x 107 %apE
Ka - aF-. = =
ayF ap+ ay+

ay+ and agy- are refated through Kw = ap4+aou-.

K
E = Eqp +0.05916V log [ap_ +kr—on- (_E)]

ap+

In the following analysis, let us set all activity coefficients equal to 1. Let us draw up the following table
for £ — Eyp

[F‘]\pH 4 5 6 7 8 9
1077 ~0.414 —0.414 -0414 —0.412 —0.396 —0.353
10-6 —0.355 —0.355 —0.355 —0.355 —0.353 —-0.337
1073 —0.296 —0.296 —0.296 —0.296 —0.296 —0.293
10~ —0.237 —0.237 —0.237 —0.237 —0.237 —0.236
103 —0.177 —0.177 —0.177 —0.177 ~0.177 —0.177
10-2 —-0.118 —0.118 —0.118 —0.118 —0.118 —0.118
10-! —0.059 —0.059 —0.059 —0.059 —0.059 -0.059
1 0 0 0 0 0 0

We see that at pH < 8 the emf responds linearly to log ar_. At pH = 5 and below, the ratio

aHF  ay+ ay+ 103

ap- K  35x10% 35x10°

=0.029
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indicates that a significant fraction (>0.03) of F~ has been removed from the test solution. Therefore,

the acceptable pH range for the use of this electrode is 5 < pH < 8,

Solutions to theoretical problems

P7.26 AG = AH —TAS

T.F
AH = ArH+f ArCpdT [2.36]
T

™ ACp ,
AS = A S+ f T d7T [3.19, with A.S in place of §]

T
4 r r r s AFCP
AG =AGH ACpdT +(T-THAS-T daT

T T
T T
= AG+ (T — THAS + f (1 - F) A.CpdT
T
Ac
ACy=ba+Tab+
T Ac  TAa ] T Ac
(l—?)AGC=Aa+TAb+F— T —TAb——T3

T'aa  Ac T'Ac

= Aa~T'Ab+TAb— ac_Z1ac
“ T T

’

T ’
T . 1 , T
f (1 — ?) A CpdT = (Aa — T'ALYT - T) + E(T'rz - TZ)Ab — T Aaln T
T

11 1, 1 1
+AC(T—F)_§TAC(E_F)

Therefore, | A,G' = A,G + (T — TYAS +aha+ BAb+yAc|

7

T
wherea:T’—T—T’ln-Tr,-

i
B= 5(7"2 -TH-T(T'=T)
11 1 1
==+ T = - =
V=77 772 (sz T2)
For water,

|
Ha(g) + 5 02(8) > H20(D) ArG®(T) = —237.13kI mol !

ASHTY = —163.34 1K~ mol™!
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Ad = a(H20) — a(Ha) — %(I(Oz) = (75.29 — 27.88 — 14.98) JK ™! mol ™"

= +33.03JK~! mol™!
Ab=[(0) — (3.26 x 1073 — (2.09 x 107" HIK 2 mol™! = =5.35 x 1073 T K2 mol~!
Ac = [(0) — (0.50 x 10°) + (0.83 x 10°)]JKmol™! = +0.33 x 10° JK mol™"

T =298K, T' =372K, so
«=-85K, B=-2738K?, y=-8288xI10° K"

and 50

ArGe3T2K) = (—237.13kI mol ™) + (=74 K) x (—163.34JK ' mol™")
4+ (~85K) x (33.03 x 1073 KIK" ' mol™h)

+ (—2738K?) x (=5.35 x 107 kI K™% mol™")
+{—8.288 x 107K} % (0.33 x 103k} K mol™!)

= [(—237.13) + (12.09) — (0.28) + (0.015) — (0.003)] kJ mol

=1-2253]1 kI mol™!

Note that the 8 and y terms are not significant (for this reaction and temperature range).

Solutions to applications

(a)

{b)

ATP hydrolysis at physiological pH, ATP{aq)+H,0(1) — ADP(aq}+P; (agq)+H307 (aq), converts
two reactant moles in three product moles. The increased number of chemical species present in
solution increases the disorder of the system by increasing the number of molecular rotational,
vibrational, and translational degrees of freedom. This is an effective increase in the number of
available molecular states and an increase in entropy.

Atphysiological pH the oxygen atoms of ATP are deprotonated, negatively charged, and the molecule
is best represented as ATP*~. The electrostatic repulsions between the highly charged oxygen atoms
of ATP*~ is expected to give it an exergonic hydrolysis free energy by making the hydrolysis
enthalpy negative. Also, the deprotonated phosphate species, Pij(ag), produced in the hydrolysis
ATP has more resonance structures than ATP*~. Resonance lowers the energy of the dissociated
phosphate making the hydrolysis enthalpy more negative and contributing to the exergonicity of the
hydrolysis.

The electrostatic repulsion between the highly charged oxygen atoms of ATP*~ is a hypothesis that is
consistent with the observation that protonated ATP, H4ATP, has an exergonic hydrolysis free energy
of smaller magnitude because the negative repulsions of oxygen atoms are not present. Likewise for
MgATP?~ because the Mg®t ion lies between negatively charged oxygen atoms, thereby, reducing
repulsions and stabilizing the ATP molecule.
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Adenosine triphosphate, ATP+

/0_
0---"":._-13 -
N 0
HoN /4 \\N C{ 0 Repulsion reduces the stability
2 N4 of ATP and contributes o
—_— /P\ _ exothermicity of hydroysis.
o 0] 8]
AN e
=

HO

Refer to Impact 17.2 for information necessary to the solution of this problem. The biological stand-
ard value of the Gibbs energy for ATP hydrolysis is &= =30k] mol~!. The standard Gibbs energy of
combustion of glucose is ~2880kJ mol™!.

(a) If we assume that each mole of ATP formed during the aerobic breakdown of glucose produces
about —30kJ mol~’, then

) 38 x (=30kI mol™!)
efficiency = x 100% == -40‘7
Y = T 2880 ki mol~! ’ :

{b) For the oxidation of glucose under the biological conditions of
pco, =53 x 10~2 atm po, = 0.132 atm, and [glucose] = 5.6 x 102 mol dm~? we have

AG = AGEP+RTInQ

(pco./P®® (53 x 10728

h = -
where Q [glucose] x (PO;/PQ)g 5.6 x 1072 x (0.132)°

=325
Then

AG = —2880kTmol™' +8.314TK ™" mol™ x 310K x In(32.5)

=|—-2871kJI mol™~!

which is not much different from the standard value.

For the ATP — ADP conversion under the given conditions

QI
AG = AG® L RTIn e
[ADP][Pi][H30%] Ix1x 1077 _
& — = =10""7
where @ [ATP] 1 0
and
0= 1.0 x 107* x 1.0 x 1074 x 10774 _ 014

1.0 x 10-4
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then

AG = =30kl mol™" + RT In(10~*%)

= —30kImol™" +8.314JK "mol™! x 310K x (—10.1)

=|—-56kJ mol~!

With this value for A,.G" the efficiency becomes

38 % (—56 kI mol~!
efficiency = X mol ) _

—2871 kI mol~!

(c} The theoretical limit of the diesel engine is

T 1 873K

=1- = 55%
T 1923K ?

75% of the theoretical limit is 41%.

We see that the biological efficiency under the conditions given is greater than that of the diesel
engine, What limits the efficiency of the diesel engine, or any heat engine, is that heat engines
must convert heat (g = A Hf) into useful work (wygdmax = ArG). Because of the Second Law, a
substantial fraction of that heat is wasted. The biological process involves A G directly and does
not go through a heat step.

P7.32 Refer to Impact 17.2. ApH=-14
The contribution to AGp, from the potential difference is now

AGm = FA¢ = 9.6485 x 10*Cmol™! x 0.070V = +6.8kI mol™!

The total AGp, is then + 8.0 kI mol~! + 6.8 kI mol~! or 14.8 kI mol~'.
For4molHt, AG=4 x 148 kImol~! = +59.2 kJ

Therefore, the amount of ATP that could be synthesized is

59.2k]
— = L.9mol &|2mol|
31 kI mol !

P7.34 {a) The equilibrium constant is given by

—-AG® —AH® AcS®
K =exp R = exp RT exp R

—AH® AS®
+
RT R

solnk = —



P7.36

142 INSTRUCTOR'S SOLUTIONS MANUAL

A plot of In K against 1/T should be a straight line with a slope of —A#/® /R and a y-intercept of
AS®/R (Figure 7.1).

= 17321+ 87119x
LR=0

In K

3.2 34 3.6 3.8 4.0 4.2 4.4
1000/(7/K) Figure 7.1

SoAH® = —R x slope = — (83145 x 107 kImol 'K~} x {8.71 x 10°K
p

=|—72.4kImol™!

and A §° = R x intercept = (8.3145J K" mol™') x (=17.3) = | —144JK~! mol~! |

b) AH® = AH® ((ClO),) — 2A¢H® (CI0)  so  AfH® ((Cl0),) = AH® +2AH® (ClO),

ArH® ((CI0);) = [=72.4 + 2 (101.8)] kI mol~" =| +131.2kJ mol ™

§° ((CIOY,) = [—144 +2 (226.6)] I K" mol~" = | +309.21K~" mol~' |

INa2(g) + 3Ha(g) — NHa(g); Av=—1/2

First, calculate the standard reaction thermodynamic functions with formation thermodynamic properties
found in the appendix (Table 2.7).

AH®(298) = —46.11k] and A5%(298) = —99.38 J K~

Use appendix information 1o define functions for the constant pressure heal capacity of reactants and
products (Table 2.2). Define a function A,C,,f'(T) that makes it possible to calculate A.Cp at | bar and
any temperature (eqn 2.37). Define functions that make it possible to calculate the reaction enthalpy
and entropy at | bar and any temperature (egns 2.36 and 3.19).

T
AHS(T) = AH(298) +f AC(T)dT
298.15K
T ACYT)
ASE(T) = ArSQ(298)+f —P 47
208.15K T

For a prefect gas reaction mixture A/ is independent of pressure at constant temperature. Consequently,
AH(T,p) = AH®(T). The pressure dependence of the reaction entropy may be evaluated with the
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expression:
? a5
AST)=AS°T+ Y v ( a"’) ap
Products—Reaclants I bar Pl
P v,
= AS%(T) - > v ™ | dP [Table 3.5]
1 bar aT
Products—Reactants P
? R
= AS(T) — > v ~dp
Ibar P

Producis—Reanctams

= ASH(T) — 3 u:| RIn (ﬁ)

Producis—Reactants

— ASE(T) - 12 £
ASE(T) /Rln(lbar)

The above two eqns make it possible to calculate A,G(T, p).
AG(T, p)y = AH(T,p) — TAS(T.p)

Once the above functions have been defined on a scientific calculator or with mathematical software on
a computer, the root function may be used to evaluate pressure where A.G(T,p) = —5007] at a given
temperature.

(i) {a) and (b) perfect gas mixture:
For T = (450 + 273.15) K = 723.15K, r00t(A,;G(723.15 K, p) + 5001) = | 156.5 bar
For T = (400 + 273.15) K = 673.15 K, root(A,G(673.15 K, p} + 500]) =

For a van der Waals gas mixwre AH does depend upon pressure. The calculational equation is:

n -
AH(T.PY= AH (D) + ) "f (aHm) o
1 T

q ap
Praducts—Reactints bar I

s i dH,
—sHemr S of ["“"T(ﬁ)p}d”

Producis—Reactans

[Theoretical Problem 3.28]

where (3Vin/3T)p = R(Vin ~ B HRT (Vi — )72 = 22V 1!

Vin— b W

m

RT a
and V,(T,p) =root | P — +

The functional equation for A.S calculations is:

PofavV
2 m
AS(T, Py = AS®(T) — > ufl ( 5T )pdp

Producis—Reactants bar

where (3Vn/38T), and Vi (T, p) are calculated as described above. As usual, A G(T,p) = AH(T,p) —
TAS(T, p).
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(a) and (b) van der Waals gas mixture:

For T =723.15K, root(A G(723.15K,p) + 500]) =| 132.5 bar
For T = 673.15K, root(A,G(673.15K,p) + 500)) =| 73.7bar

van der Waals gas approximation

1000 T T T T T
500 _
i L 673K 723K
3 :
E )
=2 0r -
9
<
—500 -
_ i .'1. | 1 )
000 60 B0 100 120 140 160
plbar Figure 7.2

{c} AG(T, p) isotherms Le Chatelier’s principle. Along an isotherm, A G decreases as pres-
sure increases. This corresponds to a shift to the right in the reaction equation and reduces the stress
by shifting to the side that has fewer total moles of gas. Additionally the reaction is exothermic, so
Chatelier’s principle predicts a shift to the left with an increase in temperature. The isotherms confirm
this as an increase in A G as temperature is increased at constant pressure. See Figure 7.2.
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Quantum theory:
introduction and principles

D8.2

D8.4

D8.6

Answers to discussion questions

A successful theory of black-body radiation must be able to explain the energy density distribution of
the radiation as a function of wavelength, in particular, the observed drop to zero as A — 0. Classical
theory predicts the opposite. However, if we assume, as did Planck, that the energy of the oscillators
that constitute electromagnetic radiation are quantized according to the relation £ = nhv = nhc/i,
we see that at short wavelengths the energy of the oscillators is very large. This energy is too
large for the walls to supply it, so the short-wavelength oscillators remain unexcited. The effect
of quantization is to reduce the contribution to the total energy emitted by the black-body from
the high-energy short-wavelength oscillators, for they cannot be sufficiently excited with the energy
available.

In quantum mechanics all dynamical properties of a physical system have associated with them a cor-
responding operator. The system itself is described by a wavefunction. The observable properties of the
system can be obtained in one of two ways from the wavefunction depending upon whether or not the
wavefunction is an eigenfunction of the operator.

When the function representing the state of the system is an eigenfunction of the operator £2, we solve
the eigenvalue equation (eqn 8.25b)

QU = wl

in order to obtain the observable values, @, of the dynamical properties.

When the function is not an eigenfunction of £, we can only find the average or expectation value of
dynamical properties by performing the integration shown in eqn 8.34,

($2) = [ ¥*Qurdr.

See Figs. 8.16, 8.26-8.30 of the text.
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Solutions to exercises

E8.1(b) The de Broglie relation is

h h 6.626 x 10735
A=w=-=— 50 Vv=—=

p mv mk (1.675 x 10~27kg) x (3.0 x 10~2m)
v={13x10"% ms~! | extremely slow!

E8.2(b)  The moment of a photon is

h o 6626 x 1075

AR ——— 10727k =1
A 350 x 107%m l 89 x gms

p:

The momentum of a particle is

P 1.89 x 107¥ kgms™!
p=mv SO V=—= — 1 3 ]
m  2(1.0078 x 10~ kgmol™'/6.022 x 102 mol™")

v=|0.565 m s~!

E8.3(b}  The uncertainty principle is
ApAx > %ﬁ,
so the minimum uncertainty in position is

A h 1.0546 x 107Js
28p  2mAv 20911 x 10731kg) x (0.000010) x (995 x 1¥ms~T)

N ETPTRE

A
EB4(b) E —hv= TC; E(per mole) = NAE = =

Ax =

he = (662608 x 10724Js) x (2.99792 x 10¥ms™!) = 1.986 x 1072 Im
Nahc = (602214 x 102 mol™") x (1.986 x 1072 Jm) = 0.1196J m mol !

1.986 x 10727 0.11967 -1
Thus, E = X - M. E(permole) = %

We can therefore draw up the following table

by E/S E/(k] mol™!)
(2) 200 nm 0.93 x 10" 598
(b) 150 pm 132 x 10715 7.98 x 10°

(¢) 1.00 cm 1.99 x 10~ 0.012
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E8.5(b}  Assuming that the “He atom is free and stationary, if a photon is absorbed, the atom acquires its
momentum p achieving a speed v such that p = mv.

m=4.00 x 1.6605 x 1077 kg = 6.642 x 107%7 kg

6626 x 1073 Jg

(a) = o< T0m 3313 x 107 kgms™!
v= m£ - 3-3?6:2]2_12;—};%[:;_1 =

(b) = %% =4417 x 107X kgms™!
=

(© = %;;S =6.626 x 10732 kgms~!
o e =[St

E8.6(b) Each emitted photon increases the momentum of the rocket by /2/A. The final momentumn of the rocket
will be Nk/A, where N is the number of photons emitted, so the final speed will be Na/Amocker- The
rate of photon emission is the power (rate of energy emission) divided by the energy per photon (hc/A),

SO
P tPA h tP
N= — and v=|—] x =
he he Afrocket CllIrgeket

(10.0yr) x (365dayyr~!) x (24hday™") x (3600sh™') x (1.50 x 1072 W)

(2.998 x 108 ms-1) x (10.0kg)

EB.7(b)  Rate of photon emission is rate of energy emission (power) divided by energy per photon (hc/A)

P (0.10 W) x (700 x 10~° m) 7=
= =|3.52 x 10 !
@ e = " = (6626 x 10-%15) x (2998 x 105ms ) =2
(LOW) x 000 x 1074 [3:52x 10 571
b te = =[3.52 x 10'% 5!
by et = 6 % 10 )s) x (2998 x 0¥ ms—1) x 2 °

E8.8(b)  Conservation of energy requires

Ephoton = ® +Ex =hv =hc/A so Ex =hc/h— &

2EK)”2

and Ex = %mev2 50 v =
e



E8.9(b)

EB.10(b)
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(6.626 x 107*Js) x (2998 x 108 ms™)
650 x 10~9m

But this expression is negative, which is unphysical. There is no kinetic energy or velocily because

the photon does not have encugh energy to dislodge the electron.

(6.626 x 107M1s) x (2.998 x 108 ms~1)
195 % 10~-%m

=684 % 107197

2(6.84 x 107197y
and =
9.1l x 10-3 kg

(@ Ex= —(2.09eV) x (1.60 x 1071%)ev™])

() Ex= —(2.09eV) x (1.60 x 10~7Jev~1)

12
) =123 x10° m 5!

E=hv=h/t 50

(@ E=6626x 1073J5/2.50 x 107155 =|2.65 x10~'° J = 160 Kk mol ' |

() E=6626x 107315/221 x 1055 =(3.00 x 101 J = 181 kJ mol ! |

(© E=6626x10"%s/1.0 x 10-3s=[6.62 %1073 J1=4.0 %1070 &J mot ~! |

The de Broglie wavelength is

h
A= -
P
The momentum is related to the kinetic energy by
2

Ex = L 50 p= (2mE'K)'/2
2m

The Kinetic energy of an electron accelerated through I Vis 1 eV = 1.60 x 1071°J, so
= I
T (2mEx)\?

6626 x 107*]s

(a) A= 73
(2(9.11 x 1037 kg) x (100eV) x (1.60 x 10-19Tev—ly) /"
=123 x107"%m
6626 x 107M]s
by Ar= 7
(209.11 x 10-3tke) x (1.0x 103eV) x (1.60 x 10-19Jev—ly/~
~[3510 m
6.626 x 107™]s
¢y ir=

(209.11 x 10-3kg) x (100 x 103eV) x (1.60 x 10-19Jev-1)"?

3.88 x10~2m



E8.11(b}

E8.12(b)

E8.13(b)

E8.14(b)
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The upper sign in the following equations represents the math using the A +iB operator. The lower sign

is for the A — iB operator. 7 is a generalized coordinate.

[vriasibwsar = [ ridiwar £i [ vribiuer

={ [ wpidnee =i [ e |

={ [ wpié= ]

This shows that the A + iB operators are not hermitian. If they were hermitian, the result would be

[f WA :I:if?h,ir,‘dr!*.

The minimium uncertainly in position is . Therefore, since AxAp > %h

h 1.0546 x 107335
2Ax  2(100 x 10712 m)

A 53 x 107 kgms™!
av = 22 = e —[58x10°ms~!
m 9.11 x 10-31 kg

=53x 107 ¥ kgms™!

Conservation of energy requires

Ephoion = Evinding + %mcv2 =hv=hc/} $0 Epinding = hec/) — %me v
(6.626 x 1073 Js) x (2.998 x 108 ms™1)

121 x 10-12m
— 1911 x 107" kg) x (5.69 x 10" ms™")?

=|1.67 x10~10 ]

and Ebinding =

COMMENT. This calculation uses the non-relativistic kinetic energy, which is only about 3 percent less than
the accurate (relativistic} value of 1.52 x10~1° J. In this exercise, however, Evinding is a small difference of
two larger numbers, so a small error in the kinetic energy results in a larger error in Eyinging: the accurate

value is Ebinding =1.26 x10~16,

The quality Q] f?g - .ngh [[Hfustration 8.3] is referred to as the commutator of the operators .Q| and
£2-. In obtaining the commutator it is necessary to realize that the operators operate on functions; thus,

we form

@) 2af (1) — $2621f(0)
_hd

Py = T a

R d . d
Therefore a = (x + ha) and e’ = (,\' - ha)

= [w;wﬁwf,-dr} ii{fwﬁfiwf,-dr} Aand B are hermitian [8.30]
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Then aa'f(x) = ! i+ A Y x (5—n d fix)
aa X)) = 2 X dx X ld_x
. 1 d d
and a“af (x) = 5 (i - Iia) X (i‘ + ha)f(x)

The terms in 32 and (d/dx)?* obviously drop out when the difference is taken and are ignored in what
follows; thus

1 A_rd rd )
5 —Aza+zax fx

. 1/ d d
a'af(x) = 2 (xhax - ﬁax)f(l')

aan(J:) =

These expressions are the negative of each other, therefore
(aa’ — d'a)f (x) = hiif(x) - h,'\‘if(x)
T dx

d fod - d UL Y—
= h(ax —xa)f(l) = fif (x)

Therefore, (aa-‘L - ﬂTa) =

Solutions to problems

Solutions to numerical problems

¢ he
P8.2 Amaxd = ?2 wherec; = -

Therefore, AmaxT = hc/Sk and, if we find the mean of the Apgx T values, we can obtain i from the
equation i = 5k/¢ (AmaxT)mean. We draw up the following table.

6/°C 1000 1500 2000 2500 3000 3500
TIK 1273 1773 2273 2773 3273 3773
Amax/nM 2181 1600 1240 1035 878 763

Amax T/ (1060mK) 2,776 2837 2.819 2870 2.874 2879

The mean is 2.84 x 10° nmK u;isth a stlandard deviation g)f 0.04 x 109 nm K
(5} x (138066 x 1072 TK~1) x (2.84 x 1073 mK)
dh= =[6.534 x1073#]
. and 299792 x 108 ms ! >

COMMENT. Planck’s estimate of the constant / in his first paper of 1900 on black bedy radiation was
6.55 x 10~27 ergsec(1 erg = 10-7 Jy which is remarkably close to the current value of 6.626 x 10734 Js
and is essentially the same as the value obtained above. Also from his analysis of the experimental data he




P8.4

P8.6

P8.8
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obtaingd values of k {the Boltzmann constant), N, (the Avogadro constant), and e (the fundamental charge).
His values of these constants remained the most accurate for almost 20 years.

The full solution of the Schrédinger equation for the problem of a particle in a one-dimensional box
is given in Chapter 9. Here we need only the wavefunction which is provided. It is the square of the

2

2
wavefunction that is related to the probability. Here % = 7 sin % and the probability that the particle

will be found between a and b is

b
P(a,b) = f w2dx [Section 8.4]

b b
2 .y X x . 2nx
= - s —dx=|—— —sin——
L/, L L 2n L
a

b—a 1 ( 2 b . ZJra)

s —— — §8in ——

L 2 L L
L =10.0nm
_ 010 1 . {2m) x (5.05) . (2m) x (4.95)
(a) P(4.95,5.05) = 100 2 (sm T — sin 0.0 )

= 0.010+40.010 =|0.020
0.10 1 (Sin (@) x (2.05) _ (2n)x(l.95))

(b)  P(.95.205 = {55~ 57 10.0 T 00
=0.010—0.0031 =
010 1 [ @m)x(100) __ (21) x (9.90)
P(9.90,100) = —— — — -
@  POI0,100) =55 2:1( 100 00 )

= 0.010 — 0.009993 =
d  P(5.0,100) = [by symmetry]

1 2 1 1 4 2
Pl-L ZL)=>——|sin— —sin=—— ) =]0.
(e) (3 3 ) 3~ o (sm sin ) 0.6]

The average position (angle) is given by:
ot g~ ime 1 2r ¢2 2n

2 1
(¢)=['ﬂ ¢Wdf=fo W¢Wd¢=§ A ¢d¢=§;? =[]

0

Note: this result applies to all values of the quantum number s, for it drops out of the calculation.

The expectation value of the commutator is:
(%, p1) = S ¥*[%,5)¥ dr.

First evaluate the commurator acting on the wavefunction. The commutator of the position and
momentum operators is defined as

o ai_ma oan hd Hhd
pl=Xp—pi=xx—-——-—x
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so the commutator acting on the wavefunction is

where = (2a)}/2e%,

Evaluating this expression yields

(20) ]/2 e—(l.\' + xa(Za) 12 e—(L\:]‘

. h h
%,y = ?(2a)'/2ae-‘“ - {[

hi2 1/2 ,—ax .
u(m — 1 — xa) = ihQa)! ? ™,

(%, p]¢r =

which is just ik times the original wavefunction. Putting this result into the expectation value yields:

[=2]

o
(&ﬂ=j‘ammfﬂmawﬂ€“¢=mm[ e dx
0 0

o0

_[@

0
Note: Although the commutator is a well defined and useful operator in quantum mechanics, it does not
correspond to an observable quantity. Thus one need not be concerned about obtaining an imaginary
expectation value.

—2ex

{[%, 51} = 2iak x

Solutions to theoretical problems

We look for the value of A at which g is a maximum, using (as appropriate) the short-wavelength
(high-frequency) approximation

8mhe 1
Y (ehc/lkT - 1) [8.5]

dp 5 he ( ehc/AT

ar —_xp+l2kT e-’lc/).kT_l)p=0 ALA = Aman

he E:hc‘/ AT

Then, -5 + T x __elrc/AkT — =

0

Hence, 5 — Sel/MT 4 h_cehc/AkT =0
' AT

If he/AkT > 1 [short wavelengths, high frequencies], this expression simplifies. We neglect the initial
5, cancel the two exponents, and obtain

hc
he = SAkT  for A = Anax and AT » 1

or J\-maxT = — =

he o
Sk 5

, in accord with observation.

COMMENT. Most experimental studies of black-bady radiation have been done over a wavelength range of
a factor of 10 to 100 of the wavelength of visible light and over a temperature range of 300K to 10 000 K.
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Question. Does the short-wavelength approximation apply over ali of these ranges? Would it apply to
the cosmic background radiation of the universe at 2.7 K where A &= 0.2cm?

Pa.12 (a) With a little manipulation, a small-wavelength approximation of the Planck distribution can be
derived that has the same form as Wien's formula. First examine the Planck distribution,

8rhe
PPlanck = m.

for small-wavelength behavior. The factor A~% gets large as A itself gets small, but the other factor,
namely 1/(e"/*T — 1) gets small even faster. Focus on that factor, and try to express it in terms
of a single decaying exponential (as in Wien’s formula), at least in the small-A limit. Multiplying
it by one in the form of e"":/)""T/e*"C/“T, yields e""'c/u'T/l — e Me/MT where e /AT {5 gmall,
s0 let us call it £, The factor, then, becomes £/(1 — &), which can be expressed as a power series
ine as e(l + ¢ + ---). For sufficiently small wavelengths, then, the Planck distribution may be
approximated as:

8mhce _ 8 hee~he/MT

PPianck = 35 = 35

This has the same form as Wien's formula:

A —biMT
OWien = 3 e BT,

Comparing the two formulas gives the values of the Wien constants:

a: and b=.

{b) The wavelength at which the Wien distribution is a maximum is found by setting the derivative of
the distribution function to zero:

dowein _ o _ @ bt ( b ) _ 30 bt _ @ bynT (L _ 5)
dx A5 22T 16 A8 AT ’

b b he
0 —5=0and Ay = —— = —<_
SO T ANC Amax = ST T ST

Pulting this in the same form as the Wien displacement law, we get:
A = —1 h = —
T = c2, WNEerc ey = .
max 5 < 2 k

as was demonstrated in Problem 8.10.

The Stefan—Boltzmann law gives the energy density as a function of temperature, The energy density is
related to the distribution function by:

(=]
dE = pdA so E=f pdi.
0

The energy density implied by the Wien distribution is:

o0
E= f 8 e~biMT g,
o A
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Integration by parts several times yields:

By} b \2 6bT2 alk* |®  6aT?
E=e t/MT [ 2 (=) 7+ — +67° = ,
¢ w) P\ T N R
AR kAT
E— 8 ‘
h3c3

in other words, a constant times 7%, consistent with the Stefan—-Boltzmann law.

P8.14 In each case form Nvr; integrate

f(N#f)* (Ny) dr
set the integral equal to 1 and solve for V.

@ ¢=N (2 - i) e"/20
do
2 2 ry /
= N 2 o —rjdp
vi=w(e-)e

3 5 oo ) 4r3 4 r/a T n
yedr =N 4rf—— + = Je odr sin @ d& do
0 a  aj 0 0

6a)  24a}
=N? (4 x 203 — 4 x -2 4 #) x (2) x (2m) = 32w agN?;
ag ag

| /2
hence| N = | ——
32na}

where we have used

o2 n!
[ e % dx = —T [Problem &.13 and inside front cover]
1] 43
¥ = Nrsin@ cos ¢ ¢~/ )

el T 2
[¢2 dr =sz0 Freriao gy fo sinlasinadafo cos? ¢ dep

l
= N24!agf (1 —c0529)dc059 X 7T
-1

1/2
2 [
= N24!ag (2 - —) T = 327ragN§; hence| N = | ——
3 N2ra
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where we have used fJ' cos” 8sin6dg = — /™' cos” 6§ dcos = f1oxndx

and the relations at the end of the solution to Problem 8.13.

(b) The functions will be orthogonal if the following integral, which uses the unnormalized functions,
proves to equal zero.

f¢l¢2df=f{(2—§)cﬁ} lrsin@ cosq&eﬁ]dr
oo[( r?. r T ) 2
=[ 2r——) edo drf sin BdB[ cosg dep
5 Ao 0 0

The integral on the far right equals zero.
i -
/ cosp d¢ = sing|;" = sin(2z) —sin(0) =0-0=10
0

Consequently, the functions are orthogonal.

Pa.16 Operate on each funciion with 7; if the function is regenerated multiplied by a constant, it is an
eigenfunction of I and the constant is the eigenvalue,

@  f=x—k
fod —kx) = —x3 + ke = —f

Therefore, f is an eigenfunction with eigenvalue,
(b) f=coskx
fcoskx = cos(—kx) = coskx =f

Therefore, f is an eigenfunction with eigenvalue,
(c) f=x2+3x—1

ol +3x—1 =xr—3x—1 £ constant x f
Therefore, f is not an eigenfunction of I.

P8.18 ¥ o= (cos x)e £ (sinx)e ™ = ¢ e 4 ¢ye ™ The linear momentum operator is py =
hod
-— [8.26
1dx [ ]
As demonstrated in the text (Example 8.6), e ™" is an eigenfunction of j, with eigenvalue +k#; likewise
e is an eigenfunction of j, with eigenvalue —k#. Therefore, by the principle of linear superposition
(Section 8.5(d), Justification 8.4),

(a) P = c% = cos? x

(b) P =c} =|sin?

z
=]
>~
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() cf =0.90 = cos® X, so cosy =095

c% =0.10 = sin” g, so sin x = £0.32; hence

| ¥ = 0.95¢7 +0.32¢~ %

5 d
PB8.20 P = —l — [8 26]

2 * 2 _ 1
=N [ ¥ pprde; N

T Jeryde
R (d¥
=f¢r*f).\-wdx:7f"’ (&)«
Jovde =7 [

(a) ¥ = ey, % = ikyr
Hence,
Tﬁ x ikfx[r*t}rd.r

Tora L

(p.r) =

(b) i = cos kx, j—f:—ksinkx
o0

[ v,lr*]'!r =—k/ coskxsinkxdx =0
dx —o0

Therefore, {py} @
\.’;

() W= A A P
o2 dl,[l = —daxt . . .
f Y —dx = —20:[ xe”*"dx = 0 [by symmetry, since x is an odd function]
oo dx o

Therefore, {p) = [0]

172
1
P8.22 Y= (—) e~"/® [Example 8.4]

(a) (V)= [ YV de |:f/ =- , Section 10.1:|
TEr

l '—‘82 oo =
Yrdt = re ¥leodr x dx
JT[]O 47‘1’8(}

—?

45T egelg
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(b) For three-dimensional systems such as the hydrogen atom the kinetic energy operator is

h,2

7= —3 V2 [Table 8.1, m, 2 u for the hydrogen atom]

fle

32 28 1 1 a2 [
2 2 2
v = —4+ -—4+ = A —(_)x(a_z)r+r_21\

> )
ars ror r- r r

Azw =0 [vhas no angular coordinates]

1/2 )
()03
ay r dr

1/2
() () e
nag agr a%
1 2 T o 2 | a2
X\ —= d¢ | sin6dd (= )+(5]|e*rdr
Tay o ¢ 0 agr a
22 oo 2 2
=_( 3 3)[ [_ (_’)+(r_q)i|e—2r/uodr
0 ag ag
(e ([ e 2]
meap’ 4/ ant! 2mea}

()
=
o

Then, (T) = — (

FL?’
Inserting ap = JTEO, [Chapter 10]
M€=
2
e 1
{T)y = =—={V}

8mepap 2

R A A NE o4 * ..
P8.24 <!22) =f¢r*921,trdr =[1,tr*s‘2.(2y’;dr = {f (.Qz,!/) .Qx/;dr] because £2 is an hermitian operator

The integrand on the far right is a function times its complex conjugate, which must always be a real,
positive number. When this type of integrand is integrated over real space, the result is always real,
positive number. Thus, the expectation value of the square of an hermitian operator is always positive.

Solutions to applications

l.44cm K
P8.26 Amax = ———E;Ln— [See problems 8.2 and 8.10]
{.4dcm K 107 nm
= =50x107°
5(5800K) x L oem ( 102 cm)

Amax = | 500 nm, blue—green | [see Figure 10.1 in the text]
11 —a)\* 7 (393Wm2) x (1 - 0.30)
T\ 567 x 108 Wm—2K4

-[5K]

1/4

oy

P8.28 =al+M=al +oT* soT=(
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where 7 is the incoming energy Aux, a the albedo (fraction of incoming radiation absorbed), M the
excitance and o the Stefan—Boltzmann constant. (See the solution to Problem 8.11.) Wien’s displacement
law relates the lemperature to the wavelength of the most intense radiation

a2 l44em K
5T~ 5(255K)

1.13 x 107%m = in the infrared.

Thmax = ¢€2/5, 80 Apax =
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Do.4

D9.6

Answers to discussion questions

The correspondernce principle states that in the limit of very large quantum numbers quantum mechanics
merges with classical mechanics. An example is a molecule of a gas in a box. At room temperature, the
particle-in-a-box quantum numbers corresponding to the average energy of the gas molecules (% kT per
degree of freedom) are extremely large; consequently the separation between the levels is relatively so
small (n is always small compared to n%, compare eqn 9.7 to eqn 9.4a) that the energy of the particle
is effectively continuous, just as in classical mechanics. We may also look at these equations from the
point of view of the mass of the particle. As the mass of the particle increases to macroscopic values, the
separation between the energy levels approaches zero. The quantization disappears as we know it must.
Tennis balls do not show quantum mechanical effects. (Except those served by Pete Sampras.) We can
also see the correspondence principle operating when we examine the wavefunctions for large values of
the quantum numbers. The probability density becomes uniform over the path of motion, which is again
the classical result. This aspect is discussed in more detail in Section 9.1(c).

The harmonic oscillator provides another example of the correspondence principle. The same effects
mentioned above are observed. We see from Figure 9.26 of the text that probability distributions for
large values on rz approach the classical picture of the motion. (Look at the graph for v = 20.)

The physical origin of tunnelling is related to the probability density of the particle, which according to
the Born interpretation is the square of the wavefunction that represents the particle. This interpretation
requires that the wavefunction of the system be everywhere continuous, even at barriers. Therefore, if
the wavefunction is non-zero on one side of a barrier it must be non-zero on the other side of the barrier
and this implies that the particle has tunnelled through the barrier. The transmission probability depends
upon the mass of the particle (specifically m!/2, through eqns 9.16 and 9.20): the greater the mass the
smaller the probability of tunnelling. Electrons and protons have small masses, molecular groups large
masses; therefore, tunnelling effects are more observable in process involving electrons and protons.

Macroscopic synthesis and material development always contains elements of molecular randomness.
Crystal structures are never perfect. A product of organic synthesis is never absolutely free of impurities,
although impuritics may be at a level that is lower than measurement techniques make possible. Alloys are
grainy and slightly non-homogeneous within any particular grain. Furthermore, the random distribution
of atcmic/molecular positions and orientations within, and between, macroscopic objects causes the
conversion of energy to non-useful heat during manufacturing processes. Production efficiencies are
difficult to improve. Nanometer technology on the | nm to 100 nm scale may resolve many of these
problems. Self-organization and production processes by nanoparticles and nanomachines may be able
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to exclude impurities and greatly improve homogeneity by effective examination and selection of each
atom/molecule during nanosynthesis and nanoproduction processes. Higher efficiencies of energy usage
may be achievable as nanomachines produce idealized materials at the smaller sizes and pass their
products to larger nanomachines for production of larger scale materials.

The directed, non-random, use of atoms and molecules by nanotechniques holds the promise for the
production of smaller transistors and wires for the electronics and computer industries. Unusual material
strengths, optical properties, magnetic properties, and catalytic properties may be achievable. Higher
efficiencies of photo-electronic conversion would be a boon to mankind. There is hope that science will
devise nanoparticles that destroy pathogens and repair tissues. See Impact 9.1 for discussion of SPM
examination of atom positions on a macroscopic surface and for the current nanotechnological method
for positioning atoms on a surface. See Impact 9.2 for discussion of nano-quantum dets that have unusual
optical and magnetic properties.

Solutions to exercises

2 h?
E=——=1[94
8mi L2 [9.4a]
hl . 1 —34 2 _
_— (6626 x 10~ 1) —2.678 x 10-20]
8m.L- 8(9.109 x 10-3! kg) x (1.50 x 10~? m)?

The conversion factors required are

1eV=1602x10"19]; lem™'=1986x10"22]; 1eV = 96.485 %) mol™!

hz 20
E3—E =(9- = 8(2. N
@) B3 —E1 = O = gy = 82678 x 1072°)
=[2.14 x 107%3 ]| =[134eV] =| 1.08 x 10! em~! | =| 129 kI mol ! |
2
(b) E7— Eg = (49 — 36) —— = 13(2.678 x 1072])
8m.L-

=[348 x 10793]=[217ev] =175 x 10*em~! | = 210 KT mol ! |

The probability is

2 nwx 2Ax nTx
— * _ = s 2 - o =2
P—fllf i,lld.x_Lfsm (—L)dJL — - Sin (_L)

where Ax = 0.02L and the function is evaluated at x = 0.66 L.
2(0.02L) . , -
{(a) Forn=1 P= — sin“(0.66m) =| 0.031

2(0.02L =
(by Forn=2 P= %sinz[Z(O.éﬁﬂ)] =|0.029
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The expectation value is

b= [ v as
but first we need pyr

. d /2 1s2 . /RWX (2 2 NI X

piftf = —lﬁa(z) sin (T) = —Iﬁ,(z) T (o0 1.3 (T)

- —2iknm Y . /nmx nTx
so {p) = T./{; mn(T)cos(T)dx:@

hin?

and {p?} = 2m{H}y = 2mE, = e

foralln.Soforn=2

L
{p)_ Lz

The zero-point energy is the ground-state energy, that is, with ny, =y = n. = I:

Gt 4 53 I 5 1oty with equal Tengihs] =
- . €qual len 5] =
8mlL? witheq § 8mlL?

Set this equal to the rest energy me? and solve for L:

30 N2 n 3\

2

= — L= - — =} = A
me 8mlL? 50 ( 8 ) me ( 8 ) ¢

where Ac is the Compton wavelength of a particle of mass m.

e 2 f5mx
w-(2) = (7)

Px) o 1,052 o sin’ (SHTX)

dP(x) —0

4 by o a2 i (T TN esin (%Y 2sinecosa = sin2a]
—_ R _— — | COS| — siInjf —— Ino S = §1 o
= Y i 2 2 2

Maxima and minima in P(x) correspond to

sin =0when8 =0,7,2m,.... 070 (" =01,2,..)

10 'L
™ _Wm forn <10 so x= o
L 10

163
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x = 0,x = L are minima. Maxima and minima alternate, so maxima correspond to

d d

AIEARRAIEARE?
'=1,3579 x=|—=||=}|ZtFt =
" *“lTor|1ollz2f|T0[]| 10

E9.6(b)  The energy levels are

(n% + n% + n%)h2

e = El(nf + n% + n%)

Em Jaat =

where E} combines all constants besides quantum numbers. The minimum value for all the quantum
numbers is 1, so the lowest energy is

Ej1 =3E

The question asks about an energy 14/3 times this amount, namely 14E;. This energy level can be
obtained by any combination of altowed quantum numbers such that

mtnri+nd=14=3 422417
The degeneracy, then, is [6], corresponding to (ny,mz,n3) = (1, 2, 3%, (1,3, 2), (2, 1, 3), (2, 3, ),
(3, ,2,0r (3,2, .
E9.7(b) E= %kT is the average translational energy of a gaseous molecule (see Chapter 17).

EWC Y I Y
2 8miL? 8ml.2

E= (%) % (1381 x 1002 7K1y x (300K) = 6.214 x 107!

8ml?
n? = o

h2
If L3 = 1.00m?, then L2 = 1.00m?2.

B2 (6.626 x 10734 J5)?2

e = : =1.180 x 107%2)
i . I-
& ( 0.02802 kg mo ) < 100m?

6.022 x 1023 mol~!

6.214 x 1072 ] =

2 21 10
—2f Y T 5265 x 102 n= _-7.26 10
" 1.180 x 10-42) X " a

AE = Epy1 — Eu = Eqa6a0041 — E726x1010
2

i n? 14.52 x 101942
=Q — )= 26 % 1010 -
AE=(2n+1) (SmLz) [(2) x (7.26 x 107) + 1] x (gmLz) 8L

= (14.52 x 10'%) x (1.180 x 1072 ) =|1.71 x 10731
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The de Broglie wavelength is obtained from

]
r=2=" 1812
p v

The velocity is obtained from

Ex = imv* = 3T = 6214 x 10721

6.214 x 10721 .
i * =267 x 10°m?s~2; v=51Tms"!

( 1 ) 0.02802 kg mol ™!
- x
2 6.022 x 1023 mol™!
6.626 x 107341 s |
A= =275x 107" m=(275
@65 10-% kg) x (517 ms—1) g m

The conclusion to be drawn from all of these calculations is that the translational motion of the nitrogen
molecule can be described classically. The energy of the molecule is essentially continuous,

AF * 1
£ .

E9.8(b) The zero-point energy is
1/2

2 2 \m

={392x 1072}

E9.9(b) The difference in adjacent energy levels is

1/2 5 —1
Eo = Lo = ln(ﬁ) = %(1.0546 % 1073 Js) x ( 85 Nm )

5.16 x 10-2kg

K\ 12
AE=E,;1 ~E,=lhw[926] =k (—) [9.25]
n

m(AEY (288 x 1072 kg) x (3.17 x 10721 )2 3
50 h2 (1.0546 x 10— JS)2

E9.10(b) The difference in adjacent energy levels, which is equal to the energy of the photon, is

112
AE = hw = hv so fi(—) = —
m

and

= 27(2.998 x 108 ms™) x (

r=132x 10_5m=

(15.9949 u) x (1.66 x 10~ kgu~')\'?
544 Nm-!
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The difference in adjacent energy levels, which is equal to the energy of the photon, is

Sk 172 e
AF = hw = hv so i| — = —
m

he (kN oy L2
di=—|— =2re| —
o k (m) ﬂc(k)

Doubling the mass, then, increases the wavelength by a factor of 2172, So taking the result from Exercise
9.10(b), the new wavelength is

A=272(13.2 um) =

AE = fiw = hv

(a) AE =hv = (6.626x 1073 JHz"") x (33 x 10°Hz) =(2.2 x 10727

c )2 I 1 I
(b) AE =hw= h(—) l:— = — + — withm = mg]

Mefl Meff nry ha

For a two-particle oscillator sy, replaces m in the expression for w. (See Chapter 13 for a more complete
discussion of the vibration of a diatomic molecule.)

2

/2 -1 172
AE:n(zk) =(1.055x|0‘3415)x( (2) x (1177 Nm~") )

m (16.00) x (1.6605 x 10-27 kg)
=[3.14 x 10729

The first excited-state wavefunction has the form

¥ = 2N yexp (—%yz)

where M| is a collection of constants and y = x(ma/R)'/?. To see if it satisfies Schrédinger’s equation,
we see what happens when we apply the energy operator to this function

w d? l
ﬁ d.:f + Emwz.\'zy'f

Ay = -
We need derivatives of

dyy  dirdy mwy /2 9 I 5
—_— = ———={— 2N l —y° —=y
dx dy dx (ﬁ) (2M1) x ¢ ")XEXP( 2))

2 2 N2
w TL YOV (10 s g (1) = (22) w07

A dy? \dx h i
. W new 3 I 5,
So Ay = x (T) x 07 = 3 + zmaP

——lhwx0'2—3)><1,b+li' ?2ij—§hm1,[f
=72 2"V =3
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Thus, i is a solution of the Schridinger equation with energy eigenvalue

E=|5hw

ol

The harmonic oscillator wavefunctions have the form

1 X K2 4
W) = NuH, () exp ——y2 with y=— and a = — [9.28]
2 o mk

The exponential function approaches zero only as x approaches F00, so the nodes of the wavefunction
are the nodes of the Hermite polynomials.

Hs(y) = 325° — 160y" + 120y = 0 [Table 9.1] = 8y(dy* — 20y + 15)

So one solution is y = 0, which leads to x = 0. The other factor can be made into a quadratic equation
by letting z = y*

42> =20z +15=0

—b & Vb — dac _ 20+ /202 —4 x4 x 15 _5%4J10

so =
2a 2x4 2

Evaluating the result numerically yields z=092 or 4.08, so y=+0.96 or £2.02. Therefore
x=[0,£096w, or +2.02 |

COMMENT. Numerical values coutd also be obtained graphically by plotting Hs{y).

The zero-point energy is

E lf' ]I' k)
O_ZW_Zl mefr

For a homonuclear diatomic molecule, the effective mass is half the mass of an atom, so

! -3
Ep==(1.0546 x 107" Js) x

22038 N m-| )” :
2

£(14.0031u) x (1.66054 x 10-27 kgu~')

Ep = 23421 x 10-25 |

Orthogonality requires that

fl,c'/,’:,y[f,, dr =0
it #n.

Performing the integration

2 2

2r i X T,
f]p:rw” dr = V/[; Ne—mn;) Ne|1r¢ d(f) — NZ] el(n—m)d: d¢

0
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If m # n, then

an-myo| " N2
1—in — _ 1 —
i{n — m)e 0 iln — m)(l )=0

[ ipar =

Therefore, they are orthogonal.

E9.17(b) The magnitude of angular momentum is

o 1/2
(B2 = 00+ 1)'72R (9,541 = (23)1'72(1.0546 x 1074 T5) =

Possible projections onto an arbitrary axis are

(Lz) = mh [9.54b]

where #my = 0 or 1 or £2. So possible projections include

[0, +£1.0546 x 10739 J's and £2.1109 x 10~ Js

E9.18(b) The cones are constructed as described in Section 9.7(d) and Figure 9.40(b) of the text; their edges are
of length {6(6 + 1)}'/2 = 6.48 and their projections are m; = +6, +5, ..., —6. See Figure 9.1(a).

The vectors follow, in units of k. From the highest-pointing to the lowest-pointing vectors (Figure 9.1(b}),
the values of iy are 6,5,4,3,2,1,0,—1, -2, -3, —4, -5, and —6.

m=+6
+5

Figure 9.1(a)

Figure 9.1(b)
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Solutions to problems

Solutions to humerical problems

K\ 12
w= (;) [9.25 with p in place of m]

2me .
Also, w =2nv = - =27cy

- 4722 0%mm
Therefore k = w?p = 42?0y = R L

m) +mz
We draw up the following table using information from the Data Section, p. 991.

IH35CI ]HEHBr lHIZTI 12cl60 I4N160
p/m™! 299 000 265 000 231000 217000 190400
10%7m, fkg 1.6735 1.6735 1.6735 19.926 23.253
10 o fkg 58.066 134.36 210.72 26.560 26.560
kN m™") 516 412 314 1902 1595

Thercfore, the order of stiffness, is [HI < HBr < HCl < NO < €O |

I+ DR I+ DK
E= —( _;I) [9.53] = ———(?_;ﬁ;z = meﬁRz,meff in place of m]
e
e I+ 1) x (1.055 x 107 Js5)? oL !
T A(2) x (1.6605 x 10-27 kg) x (160 x 10~12m)? 1.008 ' 126.90

[ 1 1 1 ]
—_— =4 —
Meff My
Therefore,
E=1(0+1)x (131 x 10722])
The energies may be expressed in terms of equivalent frequencies with
£ 33 =1 =1
v=z=(1.509>< 10°J7 ' sT)E.

Hence, the energies and equivalent frequencies are

{ 0 1 2 3

102E/) [0] 262 7.86 15.72
0

v/GHz 396 1188 2376

169
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Treat the gravitational potential energy as a perturbation in the energy operator:
HWY = Mgx.

The first-order correction to the ground-state energy, E|, is:

L L 1/2 172
2 X 2 X
(1) _ (O (D), () 5 . | : |
E = j.:; y O My @ g, _'/:) (Z) sin (——L )mga (Z) sm(—L )d.\,
2 L .
P ";g[) .\'sinz(T) '

B = 28 (5 o (Y oin () - 70 ()

Ei” = %mgL

nl.
I

Not surprisingly, this amounts to the energy perturbation evaluated at the midpoint of the box.
Form = mc,Ef”/L =447 x 10730 ym—1.

Solutions to theoretical problems

The energy of any given molecule is

_ n2h?
T 8ml?

[9.12b with n? = 1 + nf + n2 and equal lengths]

(The lowest energy levelisn, =n, =n, = |, s0 n? = 3; however, what follows applies to any allowed
energy level.) So the internal energy of a sample of N molecules is
Nnli? Nnth?

=NE = ——— = —
v &ml? 8mVv2/3

In the last step we used V = L3, because we are interested in how the energy changes with volume.
Consider an adiabatic change of volume, that is, a change in which no heat enters or leaves the sample.
In that case, the change in energy is entirely work (First Law with ¢ = 0). Differentiate the expression
for U:

at/ N ?.] 2
dw = —) dv = — n-hn dv (a)
Y / adiabatic 12mVv3/3

In Chapter 2, we learned that expansion work has the form dw = —pexdV. Can these expressions be
reconciled, and if so, under what conditions? First, note that the expression that multiplies dV in equation
() refers to the sample, so if it is some sort of pressure, it must be the sample pressure, and not an arbitrary
external pressure, so if the expressions can be reconciled, it must be for reversible adiabatic expansion
or compression. The expression that multiplies dV can be expressed as

Nn*R? 2N

Rt
12mv3/3 3y

N
In fact, the kinetic model of gases (Chapter 21) says that the pressure of a gas is equal to ng where

E is the average kinetic energy of the gas molecules—completely consistent with interpreting it as the
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average particle-in-a-box energy. To summarize, reversible adiabatic work for a gas of particle-in-a-box
molecules is dw = —pdV, where the pressure is

_ Ni2h? _ 2N
P= 12mL5 ~ 3V

In expansion, the volume increases, meaning that the box gets bigger. Equation 9.12b tells us that the
kinetic energy decreases, even as the quantum numbers remain constant. This is also consistent with
what we know of adiabatic expansion and the kinetic model of gases: the temperature of the sample
drops on expansion, and temperature is related to the kinetic energy (T2 « E).

In isothermal expansion, energy must enter the system as heat to maintain the temperature. We can
interpret this influx of heat as an increase in quantum numbers (an excitation of the molecules) that
offsets the falling energy levels.

A

o T

Figure 9.2a

{a) The wavefunctions in each region (see Figure 9.2(a)) are (eqns 9.14, 9.16, and 9.17):
Vi) = 7 4 BreTier
V2(x) = A + Bye™'2
Ya(x) = Aze

With the above choice of Aj = | the transmission probability is simply T = |A3 |2. The wavefunction
coefficients are determined by the criteria that both the wavefunctions and their first derivatives with
respect to x be continuous at potential boundaries

Y1(0) = ¥2(0);  ¥a(l) = yn(l)
dyi(0)  dyn(0)  dya(l) _ dya(L)
dr  — de dr ~ dx

These criteria establish the algebraic relationships:

l1+B) —~A»—~B:=0
(—ik) — k2)Az + (—ik) + k2)B2 + 2k =0
Azesz.. + Bze_le _ A}CihL =0

AskreX?l — Bakse 2L — iAzkyelst = 0
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Solving the simultaneous equations for A3 gives

s 4y kpeikrt
3= lia + by ekl — (ia — bye—hL

where a = k2 — kik3 and b = kik + kaks.

Since sinh(z) = (¥ —e~%)/2 ore? = 2sinh(z) + %, substitute ¢2¢ = 2 sinh(kzL) + e %L giving:

4 o 2k, kyert
37 g + b) sinh(kaL) + be—*eL

2 k3
T=]A3]" =A3 x A} = —
(a2 + by sinh* (kL) 4 b2

where a2 + b? = (k2 + £3)(3 + k2) and b2 = & (ky + ka)?

(b) In the special case for which V| =V3=0, eqns 9.14 and 9.17 require that k; =k3. Addi-

tionally,
ki\2 E
MY 2 o f Ghere e=E/Va.
ko Vo — F l—¢

2
k 2
a2+b2=(k$+k§)2=kg[1+(k—‘) }
2

b = 4k}
2 2
K211+ (Iﬂ)
at + b? - k2 i
b 4k? ~ 4e(l—¢)
_ b2 _ 1
T2 2 + p2ysinh? - 22
b% 4 (a% + b¢) sinh” (ka2 L) L+ (a ;; )sinhz(kgL)
=1 -1
ro by sinh® (L) | _ | (@~ ealy?
- 4g{l —¢) - 16£(1 — &)

This proves eqn 9.20a where V] = V3 = 0.
In the high wide barrier limit 2L 3> 1. This implies both that e~*2 is negligibly small compared

to e*2L and that 1 is negligibly small compared to e?2L /{16€(1 — £)}. The previous equation simp-

lifies to
T = 16e(1 — £)e~ %L [9.20b)
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E=10kl/mol, ¥,=V4=0, L=50pm
0.25 T T T T

0.2

0.15 .
T
0.1 4
0.05 T
0 1 1 |
| 12 14 16 1.8 2
Ve (ie. Vo/E) Figure 9.2(b)
K2 d? 1
P9.12 The Schrodinger equation is —— ol + —kx?y = Eyr
2m de® 2
d
and we write ¥r = e 8% s0 E‘b = —nge_g'rz
d2
Eﬁi = —2ge78 +agh%e T = —2gy + g™y
K2 2h2g? 1
(2)+- (520 s
m m 2

2 2.2
()] (- 2200
m 2 m

This equation is satisfied if

K2 1 1 fmik\?
E = g and 2&22=5mk, or g:i(m_)

“m 2
Therefore,
1 /&N 1 kN2
E=- — =—hw fo=[—
(5)" =g ite=(5)
+o0 oo
Po.14 Wy =amyy =a | gy dr= o f Wy Ix=ay)
—0o —o0

+0o0
Y j wiy3dy = @ by symmetry [y” is an odd function of y]

[=2]

<x4>—a5f+°°w“ a
= i Y dy

>8]

Y =y NH,e ™12
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=y (§Hort +vH,o)) =2 [% (3He2 + @+ DH) +v (38, + v = l)H‘,_g)]
= 7 [$Hua + (v + L) B+ v = DH, o
= [ (3ss+ 0+ D)+ (v 4 4) x ($Hops +vEL )
90 = 1) x (HHet + 0= DHys )]
=y (§Hor3 + 30+ DHopy + 3P Hioy + v — 1) X (v = D3

Only yH,,. and yH,_; lead to H, and contribute to the expectation value (since H, is orthogonal to all
except H,) [Table 9.1]; hence

YH = 3y((v + DHupy + 2005+ -
=3 [(v +1) (%Hm + v+ l)H\-) +20° (%H,, +(v— 1)H‘,_2)] +
=+ 1) Hy + vV H) + -

=32+ + DH A+ -

Therefore
oa +o0 a a 3
f Yyl dy = 22v? + 2v + 1)N2f Hle™ dy=—(2* +2v+1)
N -0 4o
and so

Yy = (@) x (%) x (WP Lwy )= %(21»3 + 20+ Dot

Po.16 p= f Yrxipy dr = @ f Yuydu dy [r=ay]

v, =N, (%Hl,+ |+ uHu,,) e¥'/2 [Table 9.1]

1 2 j;
Hence u = otzN,,NUr[ (iHu’HuH + VH,,rHu_1)e_-‘ dy =0 unless v =v =+ 1 [Table 9.1]

Forv =v+1

I 2 2t | 2 1/25u+1 v+ 1\
n= Ea NoNop | Hy et dy = 50{“N.,N,,.,.|Jr 2 v+ I = 2

Forv =v—1

2 1/2
= v NN,y fH?,_,e--“ dy = v NNy 07227 (o = 1)l = | @ (3)

No other vatues of v’ result in a non-zero value for u; hence, no other transitions are allowed.
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To address this time-dependent problem, we need a time-dependent wavefunction, made up from
solutions of the time-dependent Schrédinger equation
oW (x, 1)

AV =ik ¢
ar

[Table 8.1]

If 4 (x) is an eigenfunction of the energy operator with energy eigenvalue E, then
Wi 1) = g oneH

is a solution of the time-dependent Schridinger equation (provided the energy operator is not itself time
dependent). To verify this, evaluate both sides of the time-dependent Schrodinger equation. On the left
we have

HY G, 0 = Ay e B = Ey (e 0 = Ew(x, 1)

On the right we have

I (x, t
YD

9 o .
= i () ge " = 2By e B = Evixn,

the same as on the left, Our wavepacket is an arbitrary superposition of time-evolving harmonic oscillator
states,

W(ix,n) = Z Cl;k!'f,,(.\')e'igl"/ﬁ

v=0
where ¥, (x) are time-independent harmonic-oscillator wavefunctions and

Eo=(v+})ho 925]

Hence, the wavepacket is

W(x, 1) = e~ w2 Zc.nﬁ'p (xye e

=0

The angular frequency w is related to the period T by T = 2 /w, so we can evaluate the wavepacket at
any whole number of periods after 7, that is at a time ¢ + »#T, where n is any integer. (Note: n is not a
quantum number.) Note that

t+nT =14 2nnjfw,

50

W(x,t 4+ nT) = e—iwr/2e—imnT/'2 chw“ (x)e—ivwre—iwun]"
=0

it/ —i —iver =27
—e |wr/_e mH § :Cul,[ﬁ.(.r)e ||mre 2Tivn
=0

Noting that the exponential of (27i x any integer) = 1, we note that the last factor inside the sum is |
for every state. Also, since e™""7" = (—1)", we have

W(x,t+nT) = (=1Y"0, 1)
At any whole number of periods after time ¢, the wavefunction is either the same at time 7 or — 1 times

its value at time 7. In any event, |¥|? returns to its original value each pertod, so the wavepacket returns
to the same spatial distribution each period.
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P9.20 In each case, if the function is an eigenfunction of the operator, the eigenvalue is also the expectation
value; if it is not an eigenfunction we form

Q) = [ W*Qyr dr [8.34]

(a) e = TEe“ﬁ = he'®; hence /. =

1

" . h d . .
(b) le ¢ — %ae‘z"” = —2he~ %% hence !, =

© fh (Eiow)d —th in g d =[0]
C 1) X A cos g idqbc ¢ x A cosg singgdeg =

ke . . B i
(d) () = sz (cos xe'? - sin ye )" (E%) % (cos xe'? + sin xe ?) d¢
0 i

h 2m . ) . )
= 7N2f (cos xe™® + sin xe'®) x (icos xe'® — sin xe ) do
1 0
ek 4

= hN? (coszx — sin?'x + cos x sin x[ezm — e_2i¢]) dep
0

= N (costy ~ sin?y) x (2m) = 2w AN? cos 2x

We must evaluate the normalization constant:
Az . . . .
sz (cos xe'® + sin e '?)*(cos xe'® + sin xe ) d¢ = 1
0
pod . .
1= Ngf (cos?x -+ sin’y + cos x sin x [e¢ + e~ 2¥])dg
0

1
=2aN%(cos’x +sin’x) = 22N> soN? = 7

7

Therefore

{) = [x is a parameter]

For the kinetic ene S 0361 = -2 L 19409
T [he KInetlc ener we use = = = - = —-— R
0 gy K 27 dg?
. PP K2
(a) Te¥ = —%(ize'“ﬁ) = %e""; henece (T) = o
. k2 -V, 252
(b) Te 20— —%(m)za-z"?5 = Z—;emz"ﬁ; hence (T} = TL
N K2 2 h?
© Tcos¢= —%(—cosqﬁ) = 2”—1 cos ¢ hence {T) = %
R . L i , T . _ ,
(d) T(cos xe? + sin ye '#)=— 5(—005 xel? — sin ye ) = E(cos xe'® + sin ye~¥)

K

and hence ({T) = 27




P9.22

QUANTUM THEORY: TECHNIQUES AND APPLICATIONS 177

COMMENT. All of these functions are eigenfunctions of the kinetic energy operator, which is also the total
energy or Hamiltonian operator, since the potential energy is zero far this systern,

Mathematical software can animate the real part or the imaginary part of ¥ (¢, ), or you may wish to
have it display | &2 (¢, r)|. Try a “pure” state, that is, let ¢ = | for one value of m; and 0 for all others.
This “packet” does not spread, but only circulates. Also try making all the coefficients in the sum equal
{all 1, for example). Whatever your choice of coefficients, the paitern will repeat with a peried T that
makes all the time-dependent factors equal to the exponential of (271 x an integer):

_ L5 d

TR

making the exponent iE,, 1/ equal to 2x im,2 when r = T and at intervals of T thereafter. (See Problem
9.18.) An example of this approach using Mathcad is illustrated below:

T

h-t L .
and let each function in the superposition

Wavepacket on a Ring as a MathCad Document. Let r = -
of m + 1 functions contribute with equal probability. The normalized angular functions are:

1

Ww(m,¢) == (L)E g-m
2.7

The normalized superposition is:

1 \2 " —im2e
W{Mmax, $, ) == (m_+1 - Z vim,¢) -e
m=0

{[2.38b] where m is an integer.)

2.7r.j

N:=500 j:=0.N ¢:= N Mmax =8 At :=.03

The probability density of the superposition is: P(g, 1) == Y(Mmax, ¢, t) - ¥{Mmax, $, 1)

8 T T I ]
61 _f'-
P(9;.0)
...... N
P(¢},3- A1) A} :
———— — 1 ] [
P(9;,6-41) ,,' 4 ;
-_— - !
] i
P(9;,9-a1) oo
— b i
b h o -
RV LN
!
P S
o | -------- P Y, - Nty
0 0.2 04 06 0.8 1
%

2 Flgure 9.3
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The above plot (Figure 9.3) shows that as the initially localized wave propagates around the ring il
spreads with time and the uncertainty in knowing particle position increases. The effect of increasing or
decreasing the energies accessible to the particle may be explored by increasing or decreasing the value

of mymax in the MathCad document.

T 2 1
Yi.Ya3sin@dédg = | —
fo _/0 3373350 ¢ ( &

(L1
T \64

35 b 2n
_) f sin® 6 sin 8 d@ f d¢ [Table 9.3]
0 0

T

35 ! v.3
X - X (er)fl(l —cos @) dcos@

[sin@dd = dcos8, sin%0 = 1 — cos>8)

I
I
)
1
=

35
32
R A
T ax? B_y2 az?
a2 s 2 )
o2 ="t gpf=-b7

|
%f (1 =3 +3x* =% dx [x =cosf]
-1

35 1,1 33 32
IRl

and f is an eigenfunction with eigenvalue | —(a® + b* + ¢%)

Upon making the operator substitutions
h @ d 8
] an: , = = —
Py =15 Py = 1oy

into 22 we find

S_h(B 0
TIUs e

5 x4 ayad dzd
But o = — — 4+ = —
9  dpox ¢ dy 08¢0z

— — which is the chain rule of partial differentiation.

a—x=i(rsinf?cos.q))=—rsin6’sin¢>=—y
9p o¢
g-;:%(rsin@sinqb):rsin@cosq&:x
G
ﬁ:o

Thus, 3 g +Jci

3¢ ox Ty
Upon substitution,

. hO 9
f=-— = —ihi—

R Y EY)



QUANTUM THEORY: TECHNIQUES AND APPLICATIONS 179

P9.30 (a) Suppose that a particle moves classically at the constant speed v. It starts at x = O at t = 0 and at
t=rtisatpositionx =L.v=L/7 and x = vi.

l T l T
(x)=—f xdt:—f vt dt
T Ji=0 T Ji=0

T T
v v
= - tdr = —fz
T Ji=0 27

=0
3
vt~ VT L
= =72 =2=%
1 T 2 T
=) = —f Ldr=2 | Par
T Ji=0 T Jr=0
L R ) G o
31' 1=0 3 3
L
2 _
V=g

12 !
M Ya= (Z) sin (%f) forO<x<L [9.4b]
L * ) 2 L .2 nwx ]
(X)” = £=0 ‘,!'/”I'l,b'"d.l = Z./(; X SIn (T) dx

. {2nmx o 2\ 7t
xsin cos
2 L L

X
4 4(nm/L) 8(nm/L)?

2712 L
= ZI:T] = 5 = {x)n

This agrees with the classical result.

x=0

L

L 2 nwx
2y _ %2 _ = 2 .2
{x ),,_£=0 Yrpx w,,dx_L£=01 sin (—L )d.).

] nmx 7°=F
2|53 x2 1 ) sin (Zm'tx o8 L
= —_ - 1 -
B(nm/L)?

|

6 \4(am/L) L

L =0

[l ]

L3 L
| 6 8(nm/L)?
B I? 1

T3 4(nm/L)?

W = (’;2 _ ;)”2
" 3 d(nm/L)?
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This agrees with the classical result in the limit of large quantum numbers:

L
NN S
rll—lvngo(x W= 31/2

Solutions to applications

The rate of tunnelling is proportional to the transmission probability, so a ratic of tunnelling rates is
equal to the corresponding ratio of transmission probabilities (given in eqn 9.20a). The desired factor is
T1/T>, where the subscripts denote the tunnelling distances in nanometers:

Lz —kiay2
F— e =
|, et ey

T 165(1 — o)
TZ . (exLl _ e—KL| )2 -
16e(l —¢)
(exLz _ e—ng)Z
f —F L,
16e(1l —€) >

wly _ —xilan2
then 1L &7 TN (a1} . g200/om20-10mm {7} 5 5 |0
T2 (exL] - e—xLl)Z . )

This is, the tunnelling rate increases about a million-fold. Note: if the first approximation does not hold,
we need more information, namely ¢ = E/V. If the first approximation is valid, then the second is also
likely 1o be valid, namely that the negative exponential is negligible compared to the positive one.

Assuming that one can identify the CQ peak in the infrared spectrum of the CO-myoglobin complex,
taking infrared spectra of each of the isotopic variants of CO-myoglobin complexes can show which
atom binds fo the haem group and determine the C=O force constant. Compare isotopic variants lo
120160 a5 the standard; when an isotope changes but the vibrational frequency does not, then the atom
whose isotope was varied is the atom that binds to the haem. See table below, which includes predictions
of the wavenumber of all isotopic variants compared to that of #('2C'%0). (As usual, the better the
experimental results agree with the whole set of predictions, the more confidence one would have with
the conclusion.)

Wavenumber for If O binds If C binds

isotopic variant

;,(IZ(:IBO) — i(l2clﬁo)‘i' (16/18)1/25(12C160)
‘1)(13cl60) — (12/13)I/2§(l2cl60) F(I2C160)1‘
(3CB) = (12/13)1/25¢12¢C'160) (16/18)1/25(12C1%0)

T That is, no change compared to the standard.

The wavenumber is related to the force constant as follows:

172
w=2rch = (—) so k=mQ2rci)’,

m

k = m(1.66 x 1072 kg u~")[(27)(2.998 x 10' cm s~ 5('2C100)1%,

and  k/(kgs™") = (5.89 x 1075} (m/u)[5('2C'®0)/em™ ]2,
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Here m is the mass of the atom that is not bound, i.e. 12 u if O is bound and 16 u if C is bound. (Of course,
one can compute k from any of the isotopic variants, and take & to be a mean derived from all the relevant
data.)

P9.36 See solution to ¥2.38, parts (c) and (d). First, let f = n /N; therefore, f is the fraction of the totally
stretched chain represented by the end-to-end distance.

kT (N+n) kT (N(1+f)) kT (l+f)
Fee—hn|l—|=—-——=h|-—————F]=—-%Ih{—=
2 N—n 21 ) 21 | —f
L In(i
———27[11( +f)—In(i —f)]

When n & N, then f < 1, and the natural log can be expanded: In(l + f) 2 f and In(1 — f) = —f.
Therefore

AT kT kT

kT
Fr—qi -COl=="r =" = ~m*

In the last step, we note that the distance x between ends is equal to n/, son = x/I. This is a Hooke’s
law force with force constant KT/NI2.

The root mean square displacement is {x2)!/2. In part (b) of P9.15, (x?) for a harmonic oscillator was
evaluated and was found to be

1 NG
(xz = (V + —) b4 ( )
) 2 mkforce

Therefore, putting in the appropriate values for the ground state (v = 0} of this model

w2y = Ly (B NP 2 (N
X = - —_— —_— = — _
2 Nm kT 2 mkT

12 1/4
172 hi |
wa (2 =(5) * (i)

P9.38 (a) In the box, the Schrédinger equation is

IS T L
—_—— N R —_— =E
2m (3x2 + 3y? + 322) v v

Assume that the solution is a product of three functions of a single variable; that is, let
¥ix, .2} = XY () Z(2).
Substituting into the Schridinger equaticn gives

K2 ;X5 ¢ 8y a2z
—— |(¥Z2—= +XZ— +X¥— | = EXYZ
2m ( a2 Tt 322)
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(b)

(c)

(d)
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Divide both sides by XYZ:

R /1 8%x 19y 18z
—— st to—=|=F
2m\X 3x2 Y »?  Zaz?

For the purposes of illustration, isolate the terms that depend on x on the left side of the equation:

RE (1 9%X R (1322 19%
|y )=ttt
2m \ X ax 2m \Z oz Y ay
Note that the left side depends only on one variable, x, while the right side depends on two different
and independent variables, y and z. The only way that the two sides can be equal to each other for

all x, y, and z is if they are both equal to a constant. Call that constant E,, and we have, from the left
side of the equation:

R f13%X B LD ¢ £y
—— )= 0—— = E,X.
2m \ X ax? a 2m dx2 !

Note that this is just the Schrédinger equation for a particle in a one-dimensional box. Note also that
we could just as easily have isolated y terms or z terms, leading to similar equations.

hzazY—EY and nlalz_Ez
2m 8y2 " 2m 32 ¢

The assumption that the wavefunction can be written as a product of single-variable functions is a
valid one, for we can find ordinary differential equations for the assumed factors. That is what it
means for a partial differential equation to be separable.

Since X, ¥, and Z are particle-in-a-box wavefunctions of independent variables x,y, and z respect-
ively, each of them has its own quantum number. The three-dimensicnal wavefunction is a product
of the three, and therefore depends on all three quantum numbers:

21\1/? HelTX 2\ Iy 2372 nTZ
LV.2) = X YWZ(z) = — in — - in = - in =
Yrix,y,z) xXYWMZ(z) (Ll) sin L X (Lz) sin L X (L3) sin I

Each constant of separation (Ey, E;, and E;) depends on its own quantum number. The three
constants of separation add up to the total energy, which therefore depends on all three quantum
numbers:

W n? N% n?
E=E_\;+E‘.+E:=— —‘2+_+_'-
’ B \ L; 1_,% L%

Foracubicbox, L, =L =L3; =L, so
_ he (n_% + 11)2. + ”3)
- 8ml?
The energy levels are shown in Figure 9.4.

Compare this energy-level diagram to Figure 9.2 of the textbook. The energy levels here are
much more closely spaced. In a one-dimensional box, the 15th energy level is not reached until
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30 —
2,34
1,1,5;3,33
1,3,4
25
2,24
2,33
1,2,4
20 —
1,3,3
1,14
223
15 —
1,2,3
222
11,3
10
1,2,2
1,1,2
5
11,1
0 Figure 9.4
E . . . . .
————— = 225, and the previous level is 29 units below that. In the three-dimensional box, the
h2/8mL?

first 15 energy levels fit within the range of 29 units. The energy levels in a one-dimensional box
are sparse compared to those in a three-dimensional box.



Atomic structure and
atomic spectra

D10.2

D10.4

D10.6

D10.8

Answers to discussion questions

(1) The principal quantum number, », determines the energy of a hydrogenic atomic orbital through
eqn 10.11.

(2) The azimuthal quantum number, /, determines the magnitude of the angular momentum of
a hydrogenic atomnic orbital through the formula {/(/ + 1))!/*%.

(3) The magnetic quantum number, r, determines the z-compenent of the angular momentumn of
a hydrogenic orbital through the formula my5.

(4) The spin quantum number, s, determines the magnitude of the spin angular momentum through the
formula {s(s + 1)}*/2h. For hydrogenic atomic orbitals, 5 can only be 1/2.

{5) The spin quantum number, m;, determines the z-component of the spin angular momentum through
the formula m:h. For hydrogenic atomic orbitals, my can only be £1/2.

(2) A boundary surface for a hydrogenic orbital is drawn so as to contain most (say 90%) of the
probability density of an electron in that orbital. Its shape varies from orbital to arbital because the
electron density distribution is different for different orbitals.

(b) The radial distribution function gives the probability that the electron will be found anywhere within
a shell of radius r around the nucleus. It gives a better picture of where the electron is likely to be
found with respect to the nucleus than the probability density which is the square of the wavefunction.

The first ionization energies increase markedly from Li to Be, decrease slightly from Be to B, again
increase markedly from B to N, again decrease slightly from N to O, and finally increase markedly from
N to Ne. The general trend is an overall increase of /| with atomic number across the period. That is to
be expected since the principal quantum number (¢lectron shell) of the outer electron remains the same,
while its attraction to the nucleus increases. The slight decrease from Be to B is a reflection of the outer
electron being in a higher energy subshell (larger { value) in B than in Be. The slight decrease from N
to O is due to the half-filled subshell effect; half-filled sub-shells have increased stability. O has one
electron outside of the half-filled p subshell and that electron must pair with another resulting in strong
electron—electron repulsions between them.

An electron has a magnetic moment and magnetic field due to its orbital angular momentum. It also
has a magnetic moment and magnetic field due to its spin angular momentum. There is an interaction
energy between magnetic moments and magnetic fields. That between the spin magnetic moment and the
magnetic field generated by the orbital motion is called spin—orbit coupling. The energy of interaction is
proportional to the scalar product of the two vectors representing the spin and orbital angular momenta
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and hence depends upon the orientation of the two vectors. See Figure 10.27. The total angular momentum
of an electron in an atom is the vector sum of the orbital and spin angular momenta as illustrated in
Figure 10.28 and expressed in eqn 10.46. The spin—orbit coupling results in a splitting of the energy
levels associated with atomic terms as shown in Figures 10.29 and 10.30. This splitting shows up in
atomic spectra as a fine structure as illustrated in Figure 10.30.

Solutions to exercises

E10.1(b) The energy of the photon that struck the Xe atom goes into liberating the bound electron and giving it
any kinetic energy it now possesses

Ephoton = I + Exinetic I = ionization energy

The energy of a photon is related to its frequency and wavelength

he
Epholon =hv= By

and the kinetic energy of an electron is related to its mass and speed, s

1 2
Einetic = FMieS

hc 1 he 1
SOT =I+5mes2 = [ = U Emes2

_ (6.626 x 10—3415) x (2.998 x 108m5_1) 1 »
= 584 x 107%m - 5(9.11 x 10 kg)

x (1.79x 10‘5ms-‘)2

=194 x 1078 J[=12.1eV

E10.2(b} The radial wavefunction is [Table 10.1]
1 2 — /6 22r . .
Rig=4Al06-2p+ 6'0 e ?/° where p = —, and A is a collection of constants.
ag

[Note: p defined here is 3 x p as defined in Table 10.1]

Differentiating with respect to p yields

dr 1 1
30 =4 (6—2,0 + 6'02) X (_8) e84 (—2+ gp)Ae”"’fﬁ

dp
2
5
—pe—Pl(_P_ L2, 13
€ (54+9‘°

This is a quadratic equation

i
0=ap’+5b herea = ——, b=, = -3.
ap-+bp+ec where a 7 5 and ¢ 3
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The solution is

—b (B - dac)!?
p= (2a 4 151347

15 3(7)\ ag
={== =1
S50 (2 2 7

Numerically, this works out 1o p = 7.65 and 2.35, s0 r = | 11.5a9/Z | and [ 1.53a9/Z | Substituting
Z=1land ag=5.292 x 10~'' m,r =607 pm | and | 187 pm |

The other maximum in the wavefunction is at . It is a physical maximum, but not a calculus
maximum: the first derivative of the wavefunction does not vanish there, so it cannot be found by
differentiation.

The complete radial wavefunction, R4, is not given in Table 10.1; however in the statement of the
exercise we are told that it is proportional to

(20 — 10p + p*)p where p = Zaior [Note: o defined here is n x p as defined in Table 10.1]
The radial nodes occur where the radial wavefunction vanishes, namely where

(20 — 10p + p)p = 0.
The zeros of this function occur at

p=0, r=0
and when

(20 — 10p + p?) = 0, withroots p = 2.764, and p = 7.236

___pay _ pag 2.764aq 7.236ap
then r = 57 = 3 - 53 = 1.382ag| and 7 =

orr=[731x10""'m] and [1.917 x 100 m]|

Normalization requires

oo T 2
f|w|2dr= 1 =f0 fo fo [N — rfag)e~"/?12 dg sin6 do r dr

2 o —rfag 2.2 T o
1=N A e (2 —rjag)redr A sin & dé | d¢

Integrating over angles yields
e 172
1 = 47 N? [ e N2 — rlag) et dr
0

a0}
= 4w N? [0 e T — drfay + r* fal)r” dr = 4 N*(8ap)
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In the last step, we used

oo o o
f e 2 dr = 26, [ e~ dr = 64%, and / e” M rtdr = 2445,
0 0 ¢

1
So|N =

3
4,/ 2map

E10.5(b) The average kinetic energy is

(Ex) = ] gy de

Z
and p = bl here

4\ 2wa’ ag

| 73 1/2
where v = N(2 — p)e""/2 with N = - (——)
0

3n2sin@dpded
Be=-92  dr=rsinodrdodp = 28 51“23" ¢

In spherical pelar coordinates, three of the derivatives in V2 are derivatives with respect 1o angles, so
those parts of V2y vanish. Thus

Vz¢,=82w+3%=82w(6_p)2+2_2(% b _(ZN\' (%W 200
ar2  r dr  8p? \ar? pap \ dp / ar g

3

LoNe—pyx (1) e 2 _Ne P2 =N (Lp—2) e

ar < 2

82‘# L [ —nf2 | —-pf2 3 1 —-p/2

Vi = (af) Ne™?%(~4/p +5/2 — p/4)
0

and

oo pw p2n 2 _E2
0 0 0 ap 2m

3 ; 2
de sin @ df p2d
x Ne™P1%(—4/p +5/2 — p/4) 2 ¢S‘”Z3 pep

The integrals over angles give a factor of 4, so

-2 oo
Fro) = 2 (40 B - 422, Lo -p
(Ex) = 4N (Z)x( 2}")[0 2 .O)X( 4420 = 30" )P0 dp

oo
The integral in this last expression works out to —2, using [ e Pp"dp =nlforn=12,and 3. So
0

- 23 ag hz FLZZZ
Fx)=4r | ——= — — )=
Ex) Jlr(327{(13)X(Z)x(n:)

2
8ma0
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The average potential energy is

72 72,2
v =f¢*v¢dr where V= ———= - __Z°¢
4 egr dmegapp
n 2¢2 3p?sinfdpddd
and V) f f f N(2 p)e—plz( AT N(Z-—-p)e_plzaop sin P ¢
dmeqaop z3

The integrals over angles give a factor of 4, s0
Zz 2 a’ oo
(V) = 4z N? Y IV [ (2 — pYpe=* dp
dmwegag AN

[ o]
The integral in this last expression works out to 2, using f e Pp'dp=nlforn=1,2,3, and 4. So
0

73 722 a3 72,2
(V) = 4 ) x (m= ) [ 2 ) x 2 = | -
I2ra 45T gpag Z 16T g0y

The radial distribution function is defined as

P =4arr*y? so Py = 4nri(YooRa0)2,

_ 1 | 4 312 p
Pas = dmr? (4 )x(243) (ao)x(ﬁ 6p + p)e

2Z 2Z
wherep—nj‘g—g; here.

But we want to find the most likely radius, so it would help to simplify the function by expressing it in
terms either of r or p, but not both. To find the most likely radius, we could set the derivative of P,
equal to zero; therefore, we can collect ail multiplicative constants together (including the factors of
ap/Z needed to turn the initial 2 into p?) since they will eventually be divided into zero

Py = C?pX(6 —6p +p°)2e™”

Note that not ail the extrema of P are maxima; some are minima. But all the extrema of (P3s)'?
correspond to maxima of P1;. So let us find the extrema of (P3)172

d(P3;)'/? d
d(Ps;) 7 =0=—Cp(6—6p + ple "
dp dp

= Clp(6 — 6p + p?) x (—-) +(6 = 120 + 3p) e~/
0=C(6-150+60> — §p*) e 50 12-30p + 120> = p* =0

Numerical solution of this cubic equation yields

p =049, 279, and 8.72

corresponding to

r=|0.74ay/Z, 4.19a0/Z, and 13.08a9/Z |
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COMMENT. If numerical methods are to be used to locate the roots of the equation which locates the
extrema, then graphical/numerical methods nmight as well be used to locate the maxima directly. That is, the
student may simply have a spreadsheet compute P3¢ and examine or manipulate the spreadsheet to locate
the maxima.

The most probable radius occurs when the radial wavefunction is a maximum. At this point the derivative
of the function wrt either r or p equals zero.

dR d {4 — p) pe=?/? :
(J) oo (4@ =) e [Table 10.1] = (4—4p+ p—) el
dp max dp max 2

The function is 2 maximum when the polynomial equals zero. The quadratic equation gives the roots
p=44+ 2.2 = 6.89 and p=4— 2+/2 = 1.17. Since p = (2Z/nap)r and n = 3, these correspond to

Ra1 (m1) Ry (1.17)
r=10.3 x ag/Z and r = 1.76 x ag/Z. However, =
/ / R31 (p2) R3; (10.3)

that the function is 4 maximum at p = 1.17 which corresponds to| r = 1.76ag/Z.

Orbital angular momentum is

= 4.90. So, we conclude

(LH? = hag + 1p'72

There are / angular nodes and » — ! — | radial nodes

(a) n=4,1=2 so(IH1? =62r = {245 x 107MJs angular nodes | 1 |radial node
(b) n=21=1,so0 (L% =2"2h = | 1.49 x 107 Js| [ 1 | angular nodes @ radial nodes
©) n=31=1, s0 (f,z)”2 =225 =149 x 107375 mangular node |I| radial node

For!/ >0, j=Ix1/2,50

(a) =1, soj=
(b)  1=5 soj=|9Ror1l2]

Use the Clebsch—Gordan series in the form
J=j1+j si+i—L..h -l

Then, withj; = 5andj» =3

J=|8,7,6,543,2

The degeneracy g of a hydrogenic atom with principal quantum number » is ¢ = n?, The energy E of
hydrogenic atoms is

heZ®Ry _ heZ’Ry

n? g
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so the degeneracy is

IICZZRH
E

g:

@ g M@Rw

—4hcRy
he ()2 Ry

O e= T, T
q H

he(5) Ry
(c} = T T |25
& —hcRy

The letter F indicates that the total orbital angular momentum quantum number L is 3; the superscript 3
is the multiplicity of the term, 25 + 1, related to the spin quantum number § = |; and the subscript 4
indicates the total angular momentum quantum number J.

The radial distribution function varies as

P= 431r2y'12 = — e/

S &

The maximum value of P occurs at r = ag since

dP 252 4
— (21' - L) e~ ¥/M —0 at r=ap and Ppas = —e >
d ap

P falls to a fraction f of its maximum given by

f= (4"2/08)3_2"/0() _ ﬁe?.ef?.r/ag
(4/ap)e? ag

and hence we must solve for »- in

1/2 .
f — J_e—r/(r[l
e ap

(@  f=050

-
0.260 = —e "% splves to r = 2.08an = and to r = 0.380ag = | 20.1 pm

b =075

-
0.319 = ——e~"/% golves (o r = 1.63ag = | 86 pm |and to r = 0.555aqy = | 29.4

In each case the equation is solved numerically (or graphically) with readily available personal computer
software. The solutions above are easily checked by substitution into the equation for f. The radial
distribution function is readily plotted and is shown in Figure 10.1.
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0.15

0.10 |

P/{4nN?)

005 |

0.00 £

rfao Figure 10.1

E10.14(b) (a) 5d — 2sis an allowed (ransition, for Al = —2 (Al must equal £1).

(b) 5p = 3sis , since Af = —1.

(¢} 5p—3fis allowed, for Af = 42 (A must equal £1).
(d) 6/ :! = 5; maximum occcupancy =

E10.15(b) VI : 1522522p03523p%34% = [Ar]3d?

The only unpaired electrons are those in the 3¢f subshell. There are three.

S= and %—l:.

For$ = 3, Mg=|+jand +3

for§ =3, Ms= %

=—

E10.16{b) (a) Possible values of § for four electrons in different orbitals are{ 2, |, and 0 }; the multiplicity is 25 +1,

so multiplicities are | 5, 3, and | [ respectively.
{b) Possible values of S for five elecirons in different orbitals are | 5/2, 3/2 and 1/2 §; the multiplicity is
28 + 1, so muitiplicities are | 6, 4, and 2 | respectively.

E10.17(b) The coupling of a p electron (! = 1) and a d electron (/ = 2) givesrise to L = 3 (F}, 2(D), and | (P}
terms. Possible values of S include 0 and 1. Possible values of J {using Russell-Saunders coupling) are
3,2,and 1 (§ =0)and 4, 3,2, 1, and 0 (§ = 1). The term symbols are

["F3:Fa, s, Fa; ' Do '3, *Da, 2D TPy, P2, Py P |

Hund’s rules state that the lowest energy level has maximum multiplicity. Consideration of spin-orbit
coupling says the lowest energy level has the lowest value of J(J + 1) — L{(L + 1) — S(S + 1). So the

lowest energy level is .

E10.18{(b)} (a) 'DhasS = landL =2,s0J =[3, 2, and 1 |are present. J = 3 hasstates, withM; =0, +1,4£2,

or3; J =2hasstates, withM; =0,£l,or£2; J =1 hasstates, with M; =0, or £1.
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(b) “Dhas S = 3/2and L = 2,50J = | 7/2,5/2, 32, and 1/2 | are present. J = 7/2 has | 8 | possible
states, with My = +7/2,+5/2,£3/2 or £1/2; J = 5/2 has IE] possible states, with My =
+5/2,+3/2 or +1/2; J = 3/2 has[4]possible states, with M; = +3/2 or +1/2; J = 1/2has[2]
possible states, with My = £1/2.

() 2G has $=1/2 and L=4, so J =9/2 and 7/2 are present. J =9/2 has [ 10] possible states, with
M= +£9/2,+7/2,£5/2,£3/2, or £1/2; J=7/2 has possible states, with My = £ 7/2,
+5/2,£3/2, or £1/2.

Closed shells and subshells do not contribute to either L or S and thus are ignored in what follows.
(a) Sc[Ar]3d'4s%: 5 = 1,L =2;J = 3, 3, so the terms are 2Ds 3 and 2D3».

(b) Br[Ar]3d104sz4p5. We treat the missing electron in the 4p subshell as equivalent to a single “electron”

with! =1, s= 1. Hence L = 1, S = }, andJ = 3, §, so the terms are | 2P3/z and 2Py ;2 |

Solutions to problems
Solutions to numerical problems

All lines in the hydrogen spectrum fit the Rydberg formula
I 1 1 S | -1
—=Ry|l=—-—=]|101, withv=—-]| Ryg=109677cm
A n% n% A

Find #n; from the value of Agax, which arises from the transition n)+1—m
1 1 l o 2m+
AmaxRe  n2 (m A+ D2 ndng + 12

n¥(ny + 1)?

= (656.46 x 10~" m) x (109677 x 10° m~!) = 7.20
2n + 1

A-muxRH =

and hence ny = 2, as determined by trial and error substitution. Therefore, the transitions are given by

2

1 11
b=—=(09677em ) x{~-—- =), m=3456
X 4 ns

The next line has #n, = 7, and occurs at

-1 1 1 1
U=-}:=(109677Cm )X(Z_E)= 397.13nm

The energy required to ionize the atom is obtained by letting #; — o¢. Then
. l I
b= = (109677em™!) x (Z - 0) =27419cm™!, or |3.40eV
o

(The answer, 3.40eV, is the onization energy of an H atom that is already in an excited state, with
n=2)
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COMMENT. The series with ny = 2 is the Balmer series.

The lowest possible value of 7 in 1s2nd" is 3; thus the series of ?D terms correspond to 15°3d, 15%4d,
etc. Figure 10.2 is a description consistent with the data in the problem statement.

P

P10.4

h ! p— 1525d
R'/9 1s24d}zD
15234
E| €| E
= = c
e o
I s § v
1s22p?P
=
=
2
L=
152525 Figure 10.2

If we assume that the energies of the & orbitals are hydrogenic we may write

heR'
E(1s*nd",’D) = — :2 [n=3,4,5L]

Then for the 2D — 2P transitions

1 1E(1s%2p),%P 4 h N AE
5 1 JEUs2p, TR R AE =iy =8 _ hep, 5= 22
A he n? A he
from which we can write
1 N R @
—_— —_— a
61036 x 10-7em 9
|E(1s*2p",?P)] 1 R 1 R
——— =t 5=+ — (b
he A R 460.29 % 10" cm 16
1 R

(c)

41323 x 10-Tom T 25

{b) — (a) solves to R = 109 886cm ™!
Then {a) — (c) solves to B' = 109910cm™! } Mean = 109920 em™!
(b) — (c) solves to R' = 109963 crn ™!

The binding energies are therefore

/

R
E(15%34','D) = 5 = —12213em™!

1
_— _12213cm™! = —28597cm™!
610.36 x 10~7cm 213cm cm

1
670.78 x [0~7cm

E(15%2p,°P) =

E(15%*25'.28) = — —28597cm~! = —43505cm ™"
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Therefore, the ionization energy is
1(15725',28) = 43505em™!, or [539eV

The ground term is [Ar]ds’ 251/2 and the first excited is [Ar]4pl 2P. The latter has two levels with
J=1+4%=3andJ =1~} =1 which are split by spin-orbit coupling (Section 10.8). Therefore,

ascribe the transittons to 2F‘3/2 -2 Siy2 |land 2P1/2 —2 S1/2 |(since both are allowed), For these values

of J, the splitting is equal to %A (Example 10.5). Hence, since

(766.70 x 10~ cm)™' — (770.11 x 10”7 em)™' = 57.75¢cm ™!

we can conclude that A = | 38.50 cm™*

The Rydberg constant for positronium (Rp,) is given by

R R | ) . .
Rps = l-l—_me = m = ER [10.16; also Problem 10.7; m (positron) = m,]
Nle

=54869cm™' [R=109737cm™']

Hence

| I 1
V= — =(54869cm_|) X (—— —?), n=34,...
A 4 n-

=[7621em=1| [10288 em L] [11522em1] ...

The binding energy of Ps is

E = —heRp,, corresponding to (—)54 869 cm ™!
The ionization energy is therefore 54 869 cm™!, or|6.80eV |

If we assume that the innermost electron is a hydrogen-like Ls orbital we may write

52.92
"= %“ [Examplel0.3] = —12%’3 = [0.420pm

Solutions to theoretical problems

In each case we need to show that

[ wivaer=o
all space

o px plm
(a) [ f f YisWrasr drsin® dé dg = 0
0 0 0

L2
¥y = RioYoo I
o = — Table 9.3
o = Ra0Yo0 Yoo 47 (Table 9.3]
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Since Yoo is a constant, the integral over the radial functions determines the orthogonality of the
functions.

[ »]
f R ,0R2|0r2 dr
0

Ry o 6Pl = ¢=Zrla [ p= Q]
0

4]
2 e—erZag p= &
ap ag

= 2 ® 7 Zr Zr 120 2
[ Rig,Rapr-dr oc[ e~ Zrfao (g _ =Y o=/ 20,2 g
0 0 ag

Rag & (2 — p/2)e ?* = (2

oo 0z oo Z i
= f 23‘(3/—) r/ﬂ(),,?. dr — [ “ c,(}/_)zr/aﬂr-j dr
0 0 do

WL A P T Y

3z)? ap 3z )
2ag 2ag
Hence, the functions are orthogonal.
(b) We use the p; and p, orbitals in the form given in Section 10.2(f}, eqn 10.24
Px X X, Py XY

Thus

+oo p+00 pt00
f Px py dr dy dz [ f [ xy dx dy dz
all space —00 J—00 v -0

This is an integral of an odd function of x and y over the entire range of variable from —occ

to 400, therefore, the . More explicitly we may perform the integration using

the orbitals in the form (Section 10.2(f), eqn 10.24)
pe=f(r)sing coseg Dy = f(rysind sin¢

o}

o0 i =T
[ Px Py +2dr sin@ do d¢ = f f(irtdr f sin® @ dé f cos ¢ sin ¢ dg
all space ¢ 0 0

The first factor is nonzero since the radial functions are normalized. The second facior is /2. The third
factor is zero. Therefore, the product of the integrals is and the functions are orthogonal.

P10.14 We use the py and p, orbitals in the form (Section 10.2(f))

py=rf(risinfcosg¢ py =rfir)sindsing

| I . 1 . .
and use cos ¢ = E(e""’ +e”i%) and sing = z(e“f’ —e7'%) then

1 . . . .
Py = Erf(r) sin 8(e'? +e7'%) Py = %rf(r) sing(e? — e7¥)
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~ hd
I = n % [Problem 9.28 and Section 9.6 and eqn 9.46]

- h . h .
Lp. = %rf(r) sin@e'® — %rf(r) sin@e ™ = ifip, 5 constant X py

~

h ) g, N ) —ig )
I.p, = frf(r) sinfe”¥ + Erf(r) sinfe™ ¥ = —ifip, 3= constant x py
: 1

Therefore, neither py nor py are eigenfunctions of /;. Howcver,| px + ipy and py — ipy |are eigenfunctions

pe+ipy=rf(r)sinfe®  po—ipy =rf(rysinge?

since both &® and e~ are eigenfunctions of I, with eigenvalues +h and —h.

| 1/2
Y5 = (—3) e~r/a0 [10.18]
T

g

The probability of the electron being within a sphere of radius ' is

Fopm o020
f f f yiridrsing dode
(] 4] 4]

‘We set this equal to 0.90 and solve for r’. The integral over 8 and ¢ gives a factor of 4r; thus

a
090 = f rPe~2/® gr
0

2
r/
f rle~%/90 dr is integrated by parts to yield
0

¢ N ao aoe‘-z;-/au

N2 2 3 3
_ _ao(r)'e r/magr e2rtao _ 20 -2r'tag %0
2 2 4 4

aorze—ZF/au r

B 2

—2rfay

agre
+ ag [ >

0

rﬂ
0}

Multiplying by 4/ag and factoring e~ /a0

i 2 : 1y 2 /
0.90 = [—2 (r—) -2 (L) — 1jl e~ 2r'/m0 1 or 2 (r—) 42 (’—) +1=0.10e2%
ag ag ag ag

It is easiest to solve this numerically. It is seen that satisfies the above equation.

Mathematical software has powerful features for handling this type of problem. Plots are very con-
venient to both make and use. Solve blocks can be used as functions. Both features are demonstrated
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below using Mathcad.

Let z= #a,. The prohability, Prob(z), that a 1s electron is within a sphere of radius z is:

]
m®@;¢jf{“a
0

. T
Variables needed for plot: N = 800 i=0.N Ty = 5 LT
1 T T
08
06 b *¥Value I 2.6625
Prov{z,) Y¥alue IO 90018 CoppY |
04 ¥ Track Data Paints Close |
12 -
1 1 1 ]

0 1 a 3 4 3
5

The plot indicates that the probability of finding the electron in a sphere of radius z is sigmoidal.
The trace feature of Mathcad is used to find that with z =266 (r=2.66 ap) there is 2 90.0%
probability of finding the electron in the sphere,

Figure 10.3(a)

The following Mathcad document develops a function for calculating the radius for any desired

probability. The probability is presented to the function as an argument

z:=2 Estimate of z needed for computation within following Given/Find solve block for
the function z(Probability).

Given
o i _-21x
Probabilily = 4‘J.l e U dx

0
ZProbabilily) = Find(z)

I 9) = 2661
Figure 10.3(b)
2 1
The attractive Coulomb force = —— - —
4zep r
angul omentum)*
The repulsive centrifugal force = (angular m 3 ’ (” ) 5 [postulated]
met
The two forces balance when
Zer 1 nK? drn®heg

— x — = ——, implying that r =
dreg  r? er’ pylig Ze2m,
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The total energy is

I K Ze? (postulated]
X — = — —— [postulate
ro 2mert  4mepr P

n2h? Zedm, 2 Ze? Zelm, Z2e%m, |
= — ) x{———— ] — X - X —
2me drnihiteg dmreg drnhleg R2r2eln? T n?

P10.20 Refer to Problems 10.8 and 10.18 and their solutions.

(angular momf:mum)2 Ze?

E = F] V= —
k+ 21 dmeg

gl
[y = ————— R Mg [mp = mass of proton}
Me + mp
IeMipos me
ipy = ———— = —  [ripos = mass of proton = ]
Mg + Mpos 2

4mh?
a=r(n=1)= jzms" [10.13 and Problem 10.18]

(]

To obtain ap, the radius of the first Bohr orbit of positronium, we replace i, with pps = m,/2; hence,

el
mheg
%M,

The energy of the first Bohr orbit of positronium is

}
E\ps = —hcRps = —gkw [Problem 10.8]

1
Thus, | Ey ps = EEI'H

Question. What modifications are required in these refations when the finite mass of the hydrogen
nucleus is recognized?

P10.22 (a) The speed distribution in the molecular beam is related to the speed distribution within the chamber
by a factor of vcos@ as shown in Figure 10.4. Since an integration over all possible 8 must be

performed, the cos & factor may be absorbed into the constant of proportionality.

Joeam (v} = Cvfehamber (v}  where C is to be determined

vcosd
Chamber

» Molecular beam

Figure 10.4
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By normalization over the possible beam speeds (0 < vpgam < 00)

2 9
Soeam = Cv (v?'e—(’"\’ /Z’.AT))

— Cv3e—(mv2/?.k]")

oo = 3¢ .’/'MT) i
dv=1=C e dy = O ———————
v=0fbcam v f=0‘ € ¥ { 2(”1/2!{,[,)2 ]

C = 2(m/2kT)?

o ]
(Vz) = f "szcam(l’) dv = C-/ pie /T g,
i)

_Cl 1 }_ (m/2kT)
T T m2kT3 | T T (mp2k)3
4T
T m

B0 =20 = 5 (57) =[]

4Eg /) dz
dB  4ExAx  4(2kT)Ax
Az 2upl? T 2upl?
4kT Ax
o = Tusl?
_4(1.3807 x 1072 K1) x (1000K) x (1.00 x 10~% m)
- (9.27402 x 10~ JT~") x (50 x 10~2m)?

Solutions to applications

A stellar surface temperature of 3000—4000 K (a “red star”) doesn’t have the energetic particles and
photons that are required for either the collisional or radiation excitation of a neutral hydrogen atom.
Atomic hydrogen affects neither the absorption nor the emission lines of red stars in the absence of
excitation. “Blue stars™ have surface temperature of 15000-20000 K. Both the kinetic energy and the
blackbody emissions display energies great enough to completely ionize hydrogen. Lacking an electron,
the remaining proton cannol affect absorption and emission lines either.

In contrast, a star with a surface temperature of 8000-10000 K has a temperature low encugh 1o avoid
complete hydrogen ionization but high enough for blackbody radiation to cause electrenic transitions of
atomic hydrogen. Hydrogen spectral lines are intense for these stars.

Simple kinetic energy and radiation calculations confirm these assertions. For example, a plot of black-
body radiation against the radio photon energy and the ionization energy, /, is shown below. It is clearly
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seen that at 25 000 K a large fraction of the radiation is able to ionize the hydrogen (hv/I). It is likely that
at such high surface temperatures all hydrogen is ionized and, consequently, unable to affect spectra.

Alternatively, consider the equilibrium between hydrogen aloms and their component charged
particles:

H=Ht +e"

The equilibrium constant is:

PP —AG® ~AH® —AS®
K=pHpe=exp( BT ):exp( R X exp = )

Clearly AS® is positive for ionization, which makes two particles out of one, and AH®, which is close
to the ionization energy, is also positive. At a sufficiently high temperature, ions will outnumber neutral
molecules. Using concepts developed in Chapters 16 and 17, one can compute the equilibrium constant;
it turns out to be 60. Hence, there are relatively few undissociated H atoms in the equilibrium mixture
that is consistent with the weak spectrum of neutral hydrogen observed.

The details of the calculation of the equilibrium constant based on the methods of Chapter 17
follows. Consider the equilibrium between hydrogen atoms and their component charged
particles:

H=H"4e".

The equilibrium constant is:

K = PP = exp (_AGQ) .

pup® RT

Jump ahead to Section 17.7(b) to use the statistical thermodynamic analysis of a dissociation
equilibrium:

where ¢° =

RT ® o\
o7 and A=
gPTA 2nkTm

and where g is the degeneracy of the species. Note that g4 =2, g_ =2, and gy =4. Consequently,
these factors cancel in the expression for K.

372 372
S0 k = KT (Zn'i{T)/ (m_m+) (N
PoNa h* my

Note that the Boltzmann, Avogadro, and perfect gas constants are related (R = Nak), and collect powers
of kT; note also that the product of masses is the reduced mass, which is approximately equal to the
mass of the electron; note finally that the molar energy A,Ep divided by R is the same as the atomic
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jonization energy (2.179 x 10~!% J from Chapter 10.2(b)} divided by £:
K = (kT)5/*(2rme)*? o ENT
e .

o 11381 x 102 7K) 25 000 K)]** [27 (9.1 x 10731 Kg)]/?

(105 Pa) (6.626 x 10-3Js)’

«ex —-2.179 x 10713
P (1.381 x 10~ K1) (25000K) }

K =60.

Thus, the equilibrium favors the ionized species, even though the ionization energy is greater than k7

heR;
P10.26 Ey =~ where Ry = 109677 cm™! [10.11 with 10.15]
n?
For n = 100
1 1y s
AE = EH+1 — E" = —hCRH m - W =1.97 x 107 hcR
AE

b= e = 1.97 x 107%R =|0.216cm™!
¢

Py =n° [1 + % + (1 - l(l:; l))] az—" [10.19]

2

{(r)pp = nzﬂ = 100%ag = 10%ap = | 529 nm
heRy
1=E°°—En=—E"= 3
n

I
hoo = 10~*hcRy s0 | =% = 10.9677 cm™!
[

At

11 m
W (138 x 10-BITK-1) x (298K) (—102cm)
he

=207cm™!
(6.63 x 1077 15) x 300 X [0 ms-1) 20 em

so the thermal energy is readily available to ionize the state n = 100. Let vy, be the minimum speed
required for collisional ionization. Then

Lmnvpy _ oo
2 he = ke

[th (1100)]1/2
Vmin = | — | 5
my \ hc
B 2(6.63 x 1073 J5) x (3.00 x 108ms™!) x (10.97em™")
(1.008 x 10-3kgmol™") x (6.022 x 102 mol™')~" x (—r
\

102¢m
[very slow for an H atom]
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4

The radius of a Bohr orbit is a, = n2ag: hence the geonetric cross-section rra;-: 22N Jm(z). Forn =1

this is 8.8 x 1072 m?; forn = 100, itis|8.8 x10~!* m? | Thus a neutral H atom in its ground state is
likely to pass right by the » = 100 Rydberg atom, leaving it undisturbed, since it is largely empty space.

The radial wavefunction for » = 100 will have 99 radial nodes and an extremely small amplitude above
rfag ~ 20. For large values of n we expect the radial wavefunction [10.14] 1o be governed largely by
the product of p"~! and e ~#/2" and thus to approach a smoothly decreasing function of distance, as the
exponential will predominate over the power term.

Electronic configurations of neutral, fourth period transition atoms in the ground state are summarized in
the following table along with observed, positive oxidation states. The most common, positive oxidation
states are indicated with bright boxing.

Group 3 4 5 6 7 8 9 10 11 12
Oxidation | Sc Ti \Y Cr Mn Fe Co Ni Cu Zn
State
0 3dd4s® | 3d%s” | 3d’4s® | 3d4s | 3d%4s | 3d%4s? | 3d4s? | 3d%4s” | 3d"4s | 3d'%s’
+1
+2 ®© © 3] © © ©
+3 @) © © @ © @
+4 © &) ©
+5 ©
+6 ©
+7 ©

Toward the middle of the first transition series (Cr, Mn, and Fe) elements exhibit the widest ranges of
oxidation states. This phenomenon is related to the availability of both electrons and orbitals favorable
for bonding. Elements to the left (S¢ and Ti) of the series have few electrons and relatively low effective
nuclear charge leaves d orbitals at high energies that are relatively unsuitable for bonding. To the far
right {(Cu and Zn) effective nuclear charge may be higher but there are few, if any, orbitals available
for bonding. Consequently, it is more difficult to produce a range of compounds that promote a wide
range of oxidation states for elements at either end of the series. At the middle and right of the series
the +2 oxidation state is very commonly observed because normal reactions can provide the requisite
ionization energies for the removal of 4s electrons. The readily available 42 and +3 oxidation states
of Mn, Fe, and the +1 and +2 oxidation states of Cu make these cations useful in electron transfer
processes occurring chains of specialized protein within biological cells. The special size and charge of
the Zn2+ cation makes it useful for the function of some enzymes. The tendency of Fe’* and Cu™ to
bind oxygen proves very useful in hemoglobin and electron transport (respiratory) chain, respectively.
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Answers to discussion questions

Consider the case of the carbon atom. Mentally we break the process of hybridization into two major
steps. The first is promotion, in which we imagine that one of the electrons in the 2s orbital of carbon
(25*2p?) is promoted to the empty 2p orbital giving the configuration 2s2p>. In the second step we
mathematically mix the four orbitals by way of the specific linear combinations in eqn 11.3 corresponding
to the sp® hybrid orbitals. There is a principle of conservation of orbitals that enters here. If we mix four
unhybridized atomic orbitals we must end up four hybrid orbitals. In the construction of the sp? hybrids
we start with the 2s orbital and two of the 2p orbilals, and after mixing we end up with three sp® hybrid
orbitals. In the sp case we start with the 2s orbital and one of the 2p orbitals. The justification for all of
this is in a sense the First Law of thermodynamics. Energy is a state function and therefore its value is
determined only by the final state of the system, not by the path taken to achieve that state, and the path
can even be imaginary.

It can be proven that if an arbitrary wavefunction is used to calculate the energy of a system, the
value calculated is never less than the true energy. This is the variation principle. This principle allows
us an enormous amount of latitude in constructing wavefunctions. We can continue modifying the
wavefunctions in any arbitrary manner until we find a set that we feel provides an energy close to
the true minimum in energy. Thus we can construct wavefunctions containing many parameters and
then minimize the energy with respect to those parameters. These parameters may or may not have
some chemical or physical significance. Of course, we might strive to construct trial wavefunctions that
provide some chemical and physical insight and an interpretation that we can perhaps visualize, but that
is not essential. Examples of the mathematical steps invelved are illustrated in Sections 11.5(c) and (d),
Justification 11.3, and Section 11.6.

These are all terms originally associated with the Hiickel approximation used in the treatment of con-
jugated m-electron molecules, in which the -electrons are considered independent of the o-electrons.
m-electron binding energy is the sum of the energies of each m-electron in the molecule. The delocaliz-
ation energy is the difference in energy between the conjugated molecule with i double bonds and the
energy of n ethene molecules, each of which has one double bond. The 7 -bond formation energy is the
energy released when a wr-bond is formed. It is obtained from the total m-electron binding energy by
subtracting the contribution from the Coulomb integrals, o.
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In ab initic methods an attempt is made to evaluate all integrals that appear in the secular determin-
anl. Approximations are still employed, but these are mainly associated with the construction of the
wavefunctions involved in the integrals. In semi-empirical methods, many of the integrals are expressed
in terms of spectroscopic data or physical properties. Semi-empirical methods exist at several levels. At
some levels, in order to simplify the calculations, many of the integrals are set equal to zero. Density
functional theory (DFT) is considered an ab initio method, but it is different from the Hartree—Fock
(HF) or self-consistent field (SCF) approach in that DFT focuses on the electron density while HF/SCF
methods focus on the wavefunction. They are both iterative self consistent methods in that the calcu-
lations are repeated unti! the energy and wavefunctions {HF) or energy and electron density (DFT) are
unchanged to within some acceptable tolerance.

Solutions to exercises

Use Figure 11.23 for Hy, 11.33 for Ny, and 11.31 for 03,

(a) Hjy (3 electrons) : b=105

(b} N3 (10 electrons) : l 162202174302 | b=3

©  Oxl2electrons) : | 162207302 1x%2n*2 | b=2

CIF is isoelectronic with Fa, CS with Na.

@  CIF(l4clectrons): | lo%20*? 301%™ | b=1

(b) CS(10electrons) : | lo226*2 174302 | b=3

() O, (I3 electrons) : 16226™230217%27*} b =15
2

Decide whether the electron added or removed increases or decreases the bond order. The simplest
procedure is to decide whether the electron occupies or is removed from a bonding or antibonding
orbital. We can draw up the following table, which denotes the orbital involved

N2 NO 03 Ca F» CN

(a) AB~ In* 27" 2 30 4c* 3o
Change in bond order —1/2 —1/2 —1/2 +1/2 —172 +1/2

{b) AB™ 3o 27* 2r* 1w 2r* 3o
Change in bond order —1/2 +172 +1/2 —1/12 +1/2 —1/2

(a) Therefore,|C> and CN |are stabilized (have lower energy) by anion formation.

(b) { NO, ©» and F; |are stabilized by cation formation; in each of these cases the bond order increases.

Figure i1.1 is based on Figure 11.31 of the text but with Cl orbitals lower than Br orbitals. BrCl is likely
1o have a shorter bond length than BrCl™; it has a bond order of 1, while BrCl~ has a bond order of 1/2.
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Figure 11.1

O (11 electrons) : 16220*235% 1n*22*! b =5/2
Oy(12electrons) :  1o220*23021n%27™? b =2
05 (13¢lectrons) : 16220230 In27*® b =32

0} (14electrons) : 16220230 1n%27* b=

Each electron added to Oi" is added to an antibonding orbital, thus increasing the length. So the sequence

Oi" » 02,05, Og_ has progressively longer bonds.

fwz dv = N? f (WA + Agp)2dr = | = N? ] (W2 + A%WE + 2ayae) dr = 1

1 2
Hence|N = [ ————
ence (1 + 228 + 12)

= N1+ 22+ 228) U Yavpdr = Sj|

We seek an orbital of the form aA + bB, where a and b are constants, which is orthogonal to the orbital
N(0.1454 - 0.844B). Orthogonality implies

f(aA + bBIN(0.145A + 0.844B)dr =0

N f[O.l45aA2 + (0.145b + 0.844a)AB + 0.844hB%]dt = 0

The integrals of squares of orbitals are | and the integral { ABdr is the overlap integral S, so

0.1455 +0.844

= (0.145 844, 14 0.844)b = -
0= + 0.8445)a + (0.1455 + Yo so a 0125 5 03435
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This would make the orbitals orthogonal, but not necessarily normalized. If § = 0, the expression
simplifies to

0.844

=-—"b

0.145

and the new orbital would be normalized if a = 0.844N and b = —0.145N. That is

|N(0.844A —0.145B) |

The trial function ¥ = x2(L — 2x) does not obey the boundary conditions of a particle in a box, so it is
. In particular, the function does not vanish at x = L.

The variational principle says that the minimum energy is obtained by taking the derivative of the trial
energy with respect to adjustable parameters, setting it equal to zero, and solving for the parameters:

£ 3ah? eﬁ( a )lfz dEga  3R2 &2 1 \'/?
al=—— —{— s0 =— - —| — =
wal = 50 e N2l da 2 2gp \2m3a
Solving for a yields:

32 24 1 \'? . e N1/ nlet
—_—= S0 a= — | ="
2u 28 \2n%a 3k ) \ 277 1873 hted

Substituting this back into the trial energy yields the minimum energy:

1/2
. 32 42 g u2et ! et
al=— 1"\ =| —1
T 2u \1sadnted | eo \ 1873R4e2 - 203 1273212

Energy is conserved, so when the photon is absorbed, its energy is transferred to the electron. Part of
it overcomes the binding energy (ionization energy) and the remainder is manifest as the now freed
electron’s kinetic energy.

Ephoton = I + Exinetic

he (6626 x 1073 Jg) x (2998 x 108 ms™ )
$0  Eiinetic = E —J=—-I= —4.69eV
kinetle = Zphoton A (584 x 102 m) x (1.602 x 10-19Jev-1)

=[2119ev] =339 x 10716 J

The molecular orbitals of the fragments and the molecular orbitals that they form are shown in Figure 11.2.

We use the molecular orbital energy level diagram in Figure 11.41. As usual, we fill the orbitals starting
with the lowest energy orbital, obeying the Pauli principle and Hund’s rule. We then write

(a) CgH, (7 electrons) : a%lle‘lige;“

E =2 +28)+ 4+ B) + (@ — B) =[To + 78]
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Figure 11.2

(b) CeH{ (Selectrons) : | aj,e7,

E=2a+28)+3+p) =[5¢ + 78]

The secular determinants from E11.13(a) can be diagonalized with the assistance of generai-purpose
mathematical software. Alternatively, programs specifically designed for Hiickel calculations (such
as the one at Australia’s Northern Territory University, http://www.smps.ntu.edu.auv/modules/mod3/
interface.html) can be used. In both molecules, 14 m-electrons fill seven orbitals.

{a) In anthracene, the energies of the filled orbitals are @ + 2,414 218, «+2.000008, o+ 1.414218
(doubly degenerate), o + 1.000 008 (doubly degenerate), and o« + 0.414 218, so the total energy is

l4or + 19.313 688 and the 7 energy is| 19.313 688 |

(b) For phenanthrene, the energies of the filled orbitals are o + 2.434768, « 4+ 1950638, o +
1.516278, o+ 1305808, o+ 1.142388, «4+0.769058, o« +0.605238, so the total energy is

l4a + 19.448 248 and the 7 energy is| 19.448248 |

Solutions to problems

Solutions to numerical problems

Draw up the following table

Riag 0 1 2 3 4 5 6 7 8 9 10

S 1.000 0.858 0.586 0346 0.18% 0.097 0.047 0.022 0.010 0.005 0.002

The points are plotted in Figure 11.3.

Quantitatively correct values of the total amplitude require the properly normalized functions

| 1/2
Wi = (m) (A£B)[11.7 and Example 11.1]
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ENEN
08 \Vsus. 15)
s \

0.6 %
oo LTI

\
02 N

o -y
0 2 4 6 810
Ria, Figure 11.3

We first calculate the overlap integral at R = 106 pm = 2ag. (The expression for the overlap integral, $

is given in Problem 11.2.)

1
S= (1 +2+ 5(2)"-) e~2 = 0.586

i72
Then Ny = ( ) = 0.561

] 172 1
24 +S)) = (2(1 +0.586)

I 12 1 172 )
-= (2(1 —S)) = (2(1 —0.586)) =109

3
JTGU

andrg both measured from nucleus A, that is

12 172
1 l .
We then calculate with = (—) gAYy = Ny (—3) [e=Tala0 4 g8/} with rp
nay

172
L) (eteliao o le-Rifeo)
Tn‘.'ag

LA =N:l:(

with z measured from A along the axis toward B. We draw up the following table with R = 106 pm and

apg =529 pm.
z/pm ~100 —80 —60 —40 20 O 20 40
—‘f'*—m 0096 0.4 020 030 044 064 049 042
(1/na}
i 014 021 031 045 065 095 054 020

(l,lfrag)l/z
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z/pm 60 80 100 120 140 160 180 200

L 0.47 0.59 0.49 0.33 0.23 0.16  0.11
(1/za)"?

¥ o1l _o43 —081 —073 —050 —034 -023 —0.16
(l/:rraa)”2

The points are plotted in Figure 11.4.

08 1

04 |

-0.8

-2

-100 0 100 200

Z/ pm Figure 114

P11.6 Ri2 Ri2

A z=0 B
@ L —& z

(a) With spatial dimensions in units (multiples) of ag, the atomic orbitals of atom A and atom B may

be written in the form

l 2420 7yt
= R/2 [ ++Ri2 /2
Prh = g7 (z+R/2)e

and

1 2,2 211/2
R = (7 — R/ R R/ /2
PeB = gy &~ R1De



210 INSTRUCTOR'S SOLUTIONS MANUAL

Following eqn 11.7 and Example 11.1, we form LCAO-MOs of the form:

PzA — PzB

_ P:ATP:B
Ve, 201 — 8§12

BRI [antibonding] and W, =

[bonding]

oo oo OO
where § = [ f [ Paapap dxdydz [11.17]
—CQ —0C —0Q
Computations and plots are readily prepared with mathematical software such as Mathcad.
Probability densities along intermuclear axis (x=y=0) with R=3.

(all distances in units of ap}

0.015 o i i -

W 0.01 _

5 10

Figure 11.5(a)

(b) With spatial dimensions in units of ag, the atomic orbitals for the construction of 7 molecular
orbitals are:

= ! ‘[-'2+.\'2+(:+R/2)3]”3/2

P = er
1 o[t ra-R2)' 2

P.\'.B - W"e

The 7-MOs are:

Pra T PeB . Px.s — PxB . .
Ifln—u = W [bondmg] and 'tlfn-g = W [antlbondmg]
00 00 ©oQ
where § = f [ f Pxapxp dx dy dz
—00 —00 —CQ

The plots clearly show the constructive interference that makes a bonding molecular orbital. Nodal
planes created by destructive interference are clearly seen in the antibonding molecular orbitals.
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Ampliutde of Sigma Antibonding MO in xz

Probability Density of Sigma Antibonding MO

Amplilde of Sigma Bonding MO inxz

Probability Density of Sigma Bending MO

Amplitnde of Sigma Antibonding MO in xz

Ampliwde of Sigma Bonding MO inxz

Figure 11.5(b)
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R=3
2p Pi Bonding Amplitude Surface 2p Pi Bonding Probability Density Surface
2p Pi Antibonding Amplitude Surfacc 2p Pi Antibonding Probability Density Surface
2p Pi Bending 2p Pi Antibonding

Figure 11.5(c)
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When calculations and plots are produced for the R = 10 case, constructive and destructive
interference is seen to be much weaker because of the weak atomic orbital overlap.
P11.8 En = E| = —hcRy [Section 10.2(b)]
Draw up the following table using the data in question and using
2 ] el
e e” ag e ag
=T X = 2 ™S
dregR  4dmepag R dreg x (dmweghs fmge”) R

4 4
Ric€ ag ap Nl
¢ *x — = E X — [Eh———°—=2thH]

~ lex2e2n R R ~ T6n263R?
vl
()
so that AdreaR ] _—
En R
R/ag 0o 2 3 4 o

(2 f4megR) / En oo 1 0500 0333 0250 0
(VI + Va)/ By 2000 1465 0843 0529 0342 0
(E — En)/En co 0212 -0031 -0.059 -0038 0O

The poinis are plotted in Figure 11.6.

Figure 11.6

The minimum occurs at R = 2.5ag, so R = 130 pm. At that bond length

E—Ey=—-007E,=—-191eV

Hence, the dissociation energy is predicted to be about and the equilibrium bond length about

(5]
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The electron configuration of Fz is 1022032302 1mi2m®; that of Fy is 107202307 Lng2i; 4ot
So F; has one more antibonding electron than does Fa, suggesting a lower bond order (1/2 versus 1)
and therefore a weaker bond. By definition a weaker bond has a smaller dissociation energy (hence the
difference in D.). Weaker bonds tend to be longer (hence the difference in R} and less stiff (hence
the difference in #, reflecting a difference in the force constant &) than stronger bonds between similar
atoins.

Energy is conserved, so when the photon is absorbed, its energy is transferred to the electron. Part of
il overcomes the binding energy (ionization energy) and the remainder is manifest as the now freed
electron’s kinetic energy.

Ephoton = 7 + Ekingtic SO I = Ephoion — Ekinetic

so the first three ionization energies are:

=2121eV—11.0leV =[1020eV
I =2121eV —823eV =|1298eV
and Iz =21.21eV —5.22eV =|15.99eV

0
8 | -1,=-1020eV
o
t
I=-12.98 ¢V
—1,=-15.99eV Figure 11.7
E = 1'1'2]12 s o w 3 (2)1/2 iin (E) [S ction 9.1]
n—-—gmLz,H— V2. "=17 51 L € :

Two electrons occupy each level {by the Pauli principle), and so butadiene (in which there are four &
electrons) has two electrons in ) and two electrons in 2

12 ! -
no () o e ()

These orbitals are sketched in Figure 11.8(a).
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¥
Compared
with

with

Figure 11.8(a)

The minimum excitation energy is

"
AE=FE3—Ey=5| ——
1T (Sm.:[,2 )

In CHy=CH—CH=CH—CH=CH—CH=CH3 there are eight m electrons to accommodate, so the
HOMQOQ will be y#4 and the LUMO 5. From the particle-in-a-box solutions
n? 9h?

AE=Fs—E;j=025-16)—— = ——
> = )SmEL-’- 8m.L?

(9 x (6.626 x 107152

= = ——— =43 x 107'7)
(8) x (9.109 x 10-3 kg) x (1.12 x 10~9 m)?

which corresponds to[ 2.7 eV | The HOMO and LUMO are
2\'?  nwx
Wy = (Z) sin (T)
with 7 = 4, 5 respectively; the two wavefunctions are sketched in Figure 11.8(b).

¥
Uiy

Figure 11.8(b)

COMMENT. It follows that

—34 X 108 -1
- 'z*% _ (6.626 x 10 4J38) >;O(_219938 x 10°ms™) —46 x 107 m, or
3 x

The wavelength 460 nm corresponds to blue light; so the molecule is likely to appear in white light
{since blue is subtracted).
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In the absence of numerical values for o and 8, we express orbital energies as (E; — «)/B for
the purpose of comparison. Recall that B is negative (as is « for that matter), so the orbital
with the greatest value of (E; — «)/f has the lowest energy. Draw up the following table,
evaluating

E,—« 2k
=2cos —
N

energy (Ex —a)/p

orbital, ¢ CgHg CgHg

+4 —2.000

+3 —2.000 -1414

X2 —1.000 0

= 1.000 1.414
0 2.000 2.000

In each case, the lowest and highest energy levels are non-degenerate, while the other energy levels
are doubly degenerate. The degeneracy is clear for all energy levels except, perhaps, the highest:
each value of the quantum number k corresponds to a separate MO, and positive and negative values
of % therefore give rise to a pair of MOs of the same energy. This is not the case for the highest energy
level, though, because there are only as many MOs as there were AOs input to the calculation, which
is the same as the number of carbon atoms; having a doubly-degenerate top energy level would yield
one extra MO.

The total energy of the i electron system is the sum of the energies of occupied orbitals weighted
by the number of electrons that occupy them. In CgHs, each of the first three orbitals is doubly
occupied, but the second level (k = %1} is doubly degenerate, so

2
= 2Ep +2 x 2E) =2(a+2,6cosO)+4(a+2,Bcos%r) = 6o + 88

The delocalization energy is the difference between this quantity and that of three isolated double
bonds:

Ede!oc=EJT_6(a+.6)=60t+8ﬁ—6(c{+ﬁ)=

For linear hexatriene, Egeoc = 0.9888, so benzene has considerably more delocalization energy
(assuming that £ is similar in the two molecules). This extra stabilization is an example of the

special stability of compounds.

In CgHj, each of the first three orbitals is doubly occupied, but the second level (¢ = +1) is doubly
degenerate. The next level is also doubly degenerate, with a single electron occupying each orbital.
So the energy is

Ex =2E0+2x2E +2x 1E
2T 4
= 2{w + 28 cos0) + 4 a+2ﬁcos? +2 a+2,8cos?

= 8ar + 9.657 8
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The delocalization energy is the difference between this quantity and that of four isolated double
bonds:

Egetoc = Ep — 8(ct + B) = 8 + 9.6578 ~ 8{c + B) = 1.6578

This delocalization energy is not much different from that of linear octatetraene (1.518 8), so cyclo-
ocatetraene does not have much additional stabilization over the linear structure. Once again, though,
we do see that the delocalization energy stabilizes the 7 orbitals of the closed ring conjugated
system to a greater extent than what is observed in the open chain conjugated system. However,
the benzene/hexatriene comparison shows a much greater stabilization than does the cyclooctat-
etraene/octatetraene system. This is a demonstration of the Hiickel 4n + 2 rule, which states
that any planar, cyclic, conjugated system exhibits unusual aromatic stabilization if it contains
4n + 2 n electrons where “n” is an integer. Benzene with its six & electrons has this aromatic
stabilization whereas cyclooctatetraene with eight 7 electrons doesn’t have this unusual stabiliz-

ation. We can say that it is , consistent with indicators of aromaticity such as the

Hiickel 4n + 2 rule.

The table displays computed orbital energies and experimental 7% «— 7 wavenumbers of ethene
and the first few conjugated linear polyenes.

Species ELumo/evV* Eygomo/eV* AE/ev* fem™!

CzHa 1.2282 —10.6411 11.8693 61500
CaHeg 0.2634 —9.4671 9.7305 46080
CsHs —0.2494 —38.8993 8.6499 39750
CgHjo —0.5568 —B.5767 8.0199 32500
CioHi2 —0.7356 —8.3755 7.6199

* Semi-cmpirical, PM3 level, PC Spartan ProT™

A plot of the computed energy difference vs. experimental wavenumbers appears in Figure 11.9.
The computed points fall on a rather good straight line. Of course a better fit can be obtained to a
quadratic and a perfect fit to a cubic polynomial; however, the improvement would be slight and the
Jjustification even more slight. The linear least-squares best fit is:

AEfeV =3.3534 + 1.3791 x10~* flem™" | (% = 0.994)

Tem™! Figure 11.9
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{(c) Invert the fit equation obtained in (b) above:

5 em=! = AE/eV —3.3534
13791 x 1074

So for CgHj3, we expect a transition at:
7.6199 — 3.3534 _
- -1 -1
= ———— =130937
bfem 13791 x 102 [30937¢m™ |

(d) The fitting procedure is necessary because the orbital energies are only approximate. Remember
that an orbital wavefunction is itself an approximation. A semi-empirical computation is a further
approximation. If the orbitals were exact, then we would expect the energy difference to be directly
proportional to the spectroscopic wavenumbers with the following proportionality:

L (6626 x 1073 ]5)(2.998 x 100 cems™ i
AE = hev = ,
1.602 x 10-19J/eV

50 AEfeV = 1240 x 107 §/cm™!,

Clearly this is different than the fit reported above. A further illustration of why the fitting procedure
is necessary can be discerned by comparing the table from part (a) to a corresponding table based
on a different computational model, namely Hartree-Fock computations with an STO-3G basis

set:

Species Erumo/eV* Eyomo/eV* AE/evV*
CzHy 8.9335 —9.1288 18.0623
C4Hg 6.9667 -7.5167 14.4834
CeqHg 6.0041 —6.6783 12.6824
CgHigo 5.4488 —6.1811 11.6299
CigHi2 5.0975 —5.8621 10.9596

* Ab initio. STQ-3G, PC Spartan Pro™
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Obviously these energy differences are not the same as the PM3 differences computed above. Nor
are they energy differences that correspond to the experimental frequencies.

COMMENT, The STO-3G data also fit a straight line. That fit can also be used to estimate the transition in
CioHi2:

. _1 AE/eV —3.8311

vemT = ——————,
2.3045 x 104

so for CigH2 we expect a transition at

—y _ 10.8596 — 3.8311

= 30933.
2.3045 x 101

Bjcm

Even though the computations differed considerably in detail, with the calibration procedure they result in
nearly identical predictions.

P11.20  (a) The standard enthalpy of formation (A¢H®/kJ mol~!) of ethene and the first few linear polyenes is
listed below.

Species  Computed*  Experimental’ % error

CyHy 69.580 52.46694 32.6
C4Hg 129,834 108.8 +0.79 19.3

111.9+ 096 16.0
CgHs 188.523 168. + 3 12.2
CgHio 246.848 295 9¥ 16.6

* Semi-cmpirical, PM3 level, PC Spartan ProT™
T hup:#fwebbook.nist. govichemistry/
t Pedley. Naylor, and Kirby. Fhiermodyearmic Data of Organic Compornds.

{b) The % error, shown in the table, is defined by:

ArHC (calc) — ArH® (expt)

100%.
ApH® (expt) x ?

Yoerror =

(c) For all of the molecules, the computed enthalpies of formation exceed the experimental values by
much more than the uncertainty in the experimental value. This observation serves to illustrate that
melecular modeling software is not a substitute for experimentation when it comes to quantitative
measures. It is also worth noting, however, that the experimental uncertainty can vary a great deal,
The NIST database reports ArH® for C2Hy to seven significant figures (with no explicit uncertainty).
Even if the figure is not accurate to | part in 5000 000, it is clearly a very precisely known quantity—
as one should expect in such a familiar and well studied substance. The database lists two different
determinations for ArH®(C4Hg), and the experimental values differ by more than the uncertainty
claimed for each; a critical evaluation of the experimental data is called for. The uncertainty claimed
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for AfH® (C¢Hg) is greater still (but still only about 2%). Finally, it should go without saying that
not all of the figures reported by the molecular modeling software are physically significant.

Solutions to theoretical problems
Pi1.22 We need to determine whether E_ + E; > 2Ey

Vi—Va &t Vi+Va 22
1—S  4mepR  1+S  4meoR
_ i -vx(1+9+0 -9 x Wi+ Vo)) | 2¢* 28,
(1=8)x(1+8) 4meoR
s —Vy) | 2
T8 4meoR

E_+E =-

+ 2Ey

+ 2Eq

The nuclear repulsion term is always positive, and always tends to raise the mean energy of the orbitals
above Ey. The contribution of the first term is difficult to assess. If § &~ 0,5V = 0 and V; = 0, then the
first term is small compared to the nuclear repulsion term. If § = ] and SV» & V|, then once again the
nuclear repulsion term is dominant. At intermediate values of S, the first term is negative, but of smaller
magnitude than the nuclear repulsion term. Thus in all cases E_ + E4 > 2Eq.

2 2
P11.24  (a) yr=e* H=_Fg__¢

2u dmwegr

0 4 2r T
-[1];2 dr =f rze_zk'dr[ sin9d9f d¢ = ~
0 0 0 k

1 e} ) Fig 2 T
f‘”“ﬁ‘”:f re_urdrf siné)def dp = —
r 0 0 0 k

1 d? ) 2k
[wv%;rdr :fw——(re“’)dr=f¢r K- )ydr
rdr? r
m ZJr_ 14
Tk kT &
Therefore
R oox &2 7
Hydt = — X — — —— X —
[ﬁfﬂff Z,uxk 4Jreoxk2

and

hr etm
o A2uk dmegh?) KR Sk

T/ 2 4mep

dE ﬁl 2 2
—=2{— k—i—=0 when k=—eE—
dk 21 4mey 4 egh?
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The optimum energy is therefore

4
e'n
E=———+— = -—thH the exact value.
32 2eln?

(b) ¥ = e~**  H as before.

o0 koo 2 /2
fwzd: =f e_ﬂ"zrzdr/ sin @ daj d¢ = = (i)
o 0 o 2 \2k3
1 o0 3 ™ 2r
qu—w dr =f re =2k dr[ sinedef d¢ =
r i} 0 0

jq;v%z; dr = —2[ ¥ (3k — 262y dr

=|H

[es) 5 T 2
=-2 f (3kr® — 262 rHe~ 2 gr [ sin @ do dep
1] 0

0
3k 2 2
- {(5) ) - T (39) |

Therefore
3Rk e* k1?2
2u so2m)2
dE e4,u2
— =0 when k= ————
dk 1873l Rt

and the optimum energy is therefore

et

E=————+
12m3edR?

8
=|—— x hcR
3w €fH

Since 8/37 < 1, the energy in (a) is lower than in (b), and so the exponential wavefunction is better than
the Gaussian,

Solutions to applications

P11.26  (a) a—E B B
B a«a—E B |=0
B B o —FE
_ a—E B _ B B a—F
@£ g E’ ‘B\ﬁ E‘Jrﬁ‘ﬁ 8 “0
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(@ - E) x {(@ — E)> — B*} — BlBle — E) — B*} + BIB* — (@ ~ E)B) =0
(@—E) x {(« —EY — 2} =28 la —E- B} =0
(@—E)x(@—E—-B)x@—E+p)—28a—E—-B) =0
(@—E—-B) x{l@a—E)x{a—-E+8)—28%)=0
@-E-Px{l@a—E)x(@—E+28) - pla—E)-287)=0
@—E—-Byx{(@-E)x(@—E+28)—Bla—E+28)}=0

(e —FE—-Byx(e—E+28)yx{e—E—-pB)=0

Therefore, the desired roots are E =| -8, a—f,ande +28 I The energy level diagram is shown
in Figure 11.10.

A

Energy a—-f

o+ 2B

Figure 11.10

The binding energies are shown in the following table.

Species Number of e~ Binding energy
HY 2 2a +28) =2a +48
H; 3 20e+28)+ (o —p)=3u+38
Hy 4 2 +28)+ 2o — By =4a + 28
(b) Hi(g — 2H(g) + H*(g) AH| = 849kJ mol~!
H*(g) + Ha(g) — Hy (g) AHy =7
Ha(g) — 2H(g) AH3 = [2(217.97) — 0] kJ mol !

AHy = AHy — AH| = 2[(217.97) — 849] kI mol ™!
AH> =| =413 kJ mol™!

This is only slightly less than the binding energy of Hz (435.94 kJ mol™")
(c) 20 + 48 = —AH| = —849kJ mol ™!

_ —AH| — 2«

B = 4 where AH) = 849kJ mol™!
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Species Binding energy
Hy 2a +4f = —AH; =| —849 kimol~!
AH| + 20 1 AH) -1
H; 3a+3ﬂ=3(a——~4—)=3(5a—T) =[3(/2) — 212K mol"! |
AHp +2 AH
Hy 4a+2ﬁ=4a—#=3a—TI=|3a—425kJmol']|

As « is a negative quantity, all three of these species are expected to be stable.

P11.28 (a) The orbitals are sketched in Figure 11.11(a). v is a bonding orbital, showing no nodes between
adjacent atoms, and ¥r3 is antibonding with respect to all three atoms. ¥+ is non-bonding, with
neither constructive nor destructive interaction of the atomic orbitals of adjacent atoms.

Figure 11.11(a)
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(b) This arrangement onty works if the entire peptide link is coplanar. Let us call the plane defined by
the O, C, and N atoms the xy plane; therefore, the p orbitals used to make the three MOs sketched
above are p, orbitals. If the p, orbital of N is used in the st system, then the o bonds it makes must be
in the xy plane. Hence the H atom and the atom labeled Cp2 must also be in the xy plane. Likewise,
if the p, orbital of the C atom in the peptide link is used in the 7 system, then its o bonds must also
lie in the xy plane, putting the atom labeled Cy, in that plane as well.

() The relative energies of the orbitals and their occupancy are shown in Figure 11.11a. There are four
electrons to be distributed. If we look at the conventional representation of the peptide link (10 in the
text), the two electrons represented by the C=0 m bond are obviously part of the 7 system, leaving
the two lone pairs on O, the C—O o bond, and the two other ¢ bonds of C as part of the o system.
Turning now to the Lewis octet of electrons around the N atom, we must assign two electrons to

Figure 11.11(b)
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each of the ¢ bonds involving N; clearly they cannot be part of the m system. That leaves the lone
pair on N, which must occupy the other orbital that N contributes to the molecule, namely the p,
orbital that is part of the & system.

(d) The orbitals are sketched in Figure 11.11(b). ¥4 is a bonding orbital with respect to C and O, and
e is antibonding with respect to C and Q. 5 is non-bonding, involving only the N atom. There are
four electrons (o be placed in this system, as before, two each in a bonding and non-bonding orbital.

{(e) This system cannot be planar. As before, the atom labeled C, must be in the xy plane. As before,

the atoms bound to N must be in a plane perpendicular to the orbital that N contributes to this system,
which is itself in the xy plane; the bonding partners of N are therefore forced out of the xy plane.

() The bonding MO | must have a lower energy than the bonding MO 4, for ¥ is bonding (sta-
bilizing) with respect to all three atoms, while 174 is bonding with respect to only two of them.
Likewise, the antibonding MO 13 must have a higher energy than the antibonding MO s, for i3
is antibonding (destabilizing) with respect to all three atoms pairwise, while g is antibonding only
with respect to two of them. The non-bonding MOs yr2 and s must have similar energies, not much
different than the parameter e, for there is no significant constructive or destructive interference
between adjacent atoms in either one.

{g) Because bonding orbital ) has a lower energy than 4, the planar arrangement has a lower energy
than the non-planar one. The total energy of the planar arrangement is

Epianar =2E, + 2.
Compare this to the energy of the non-planar arrangement:
Enon-plana.r =2E4+2Es » 2B + 26 = Eplanar-

The fact that 3 > Eg is immaterial, for neither of those orbitals is occupied.



| 2 Molecular symmetry

D12.2

D12.4

D12.6

D12.8

E12.1(b)

E12.2(b)

Answers to discussion questions

Symmetry operations Symmetry elements

1. Identity, £ 1. The entire object

2. n-fold rotation 2. n-fold axis of symmetry, C,,

3. Reflection 3. Mirror plane, ¢

4. Inversion 4. Centre of symmetry, {

5. n-fold improper rotation 5. n-fold improper rotation axis, S,

A molecule may be chiral, and therefore optically active, only if it does not possess an axis of improper
rotation, $,. Animproper rotation is a rotation followed by a reflection and this combination of operations
always converts aright-handed object into a lefi-handed object and vice versa; hence an S, axis guarantees
that a molecule cannot exist in chiral forms.

See Sections 12.4(a) and (b).
The direct sum is the decomposition of the direct preduct. The procedure for the decomposition is the

set of steps outlined in Section 12.5(a) and demonstrated in Hlusirarion 12.1.

Solutions to exercises

CCl, has| 4 Cy axes | (each C—Cl axis), | 3 C; axes | (bisecting Cl—C—Cl angles), {the same

as the C» axes), and | 6 dihedral mirror planes | (each C1—C—ClI plane).

Only molecules belonging to Cy, C,,, and €,y groups may be polar, so ...

(a) CH3CI{Csv)| may be potar | along the C—Cl bond;

(b)Y HW3(CO)o(D4p) | may not be polar
{¢) SnCly(Ty)| may nol be polar
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E12.4(b)

E12.5(b)

E12.6(b)

E12.7(b)
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The factors of the integrand have the following characters under the operations of Dgy,

E 2C 203 (& 3G, 3Cg i 257 25  on log 3oy

P 2 1 -1 -2 0 0 =2 -1 I 2 0 0
z l 1 | I -1 -1 -1 -1 -1 -1 1 1
P | 1 1 1 =1 -1 - -1 -1 -1 1 1
Integrand 2 | -1 -2 0 0 -2 -1 1 2 0 0

The integrand has the same set of characters as species Eyy,, so it does not include Ayy; therefore the

integral | vanishes |.

We need to evaluate the character sets for the product A|,Eag, where g = x,y, or z

E 2Cs 203 C; 3C, 3¢, i 25 28 o 3og 3o

Alg 1 1 1 1 1 ] 1 1 l 1 ] 1
Ez, 2 -1 -1 2 0 0 -2 1 1 -2 0 0
(x,» 2 1 -1 -2 0 0 -2 -1 1 2 0 0
Integrand 4  —1 1 —4 0 0 4 -1 1 -4 0 0

To see whether the totally symmetric species A, is present, we form the sum over classes of the number
of operations times the character of the integrand

clArg) = @) +2(=1) 3+ 2(1) + (—=4) + 3(0) + 3(0) + (4)
+2(=-D+2(D)+ (- + 30 +3(0) =0

Since the species Ay is absent, the transition is | forbidden | for x- or y-polarized light. A similar
analysis leads to the conclusion that Ay is absent from the product Aoy ; therefore the transition is

forbidden.

The classes of operations for £, are: E, Ca(x), C2(y), and C2(z). How does the function xyz behave
under each kind of operation? E leaves it unchanged. C»(x) leaves x unchanged and takes y to —y
and z to —z, leaving the product xyz unchanged. C2(y) and Cz(z) have similar effects, leaving one
axis unchanged and taking the other two into their negatives. These observations are summarized as
follows

E Ca(x) Gy ()

xyz 1 | 1 1

A look at the character table shows that this set of characters belong to symmetry species .

A molecule cannot be chiral if it has an axis of improper rotation. The point group T4 has
S4 axes j and 1mirror planes (= §) | which preclude chirality. The 7y, group has, in addition, a

l center of inversion (= S52) |

The group multiplication table of group Cy, is



228 INSTRUCTOR'S SOLUTIONS MANUAL

E cf Cy 8] av(x) ov(y) od(xy}  ag(—xy)
E E cy C, o] oy (x) ov(y) ag(xy)  og(—xy)
cf cr Cs E o oalxy)  ag(—xy) o) opx)
Cy c; E Cy cy og(—xy) og(xy) ovlx)  av(y)
Ca Ca cy Loyl E ou(y)  oulx)  oa(—xy) oqlxy)
av(x) av(x) od(—xy) calxy)  av(y) E Ca C, ct
o y) oy} oglxy)  oa(—xy) oy(x) 2 E ct o
calxy) oglry)  oux) o) o) Cf Cy E (o)
oa(=xy) ga(—xy) ov(y)  oulx)  oalxy) € c;y C2 E

E12.8(b) See Figure 12.1.

Cu
(a) é’
1

(b)
G
Cs
ﬁl @ °|
@ Figure 12.1

(a) Sharpened pencil: E, Cy, ov; therefore

(b) Propellor: E, C3,3C;; therefore

(¢) Square table: E, C4, 40y therefore ; Rectangular table: E, C», 20; therefore
(d) Person: E, gy (approximately); therefore .

E12.9(b) We follow the Bow chart in the text (Figure 12.7). The symmetry elements found in order as we proceed
down the chart and the point groups are

(a) Naphthalene: E, C3, C}, Cy, 30h, i3 Dan |
(b) Anthracene: E, Cz, C3, C5, 3oy, i;



E12.10(b)

E12.11(b)

E12.12(b)
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(¢) Dichlorobenzenes:

(i) 1,2-dichlorobenzene: E, Ca, oy, o.;| Cay

(ii) 1,3-dichlorobenzene: E, Ca, oy, a,;] Cay
(iii) 1,4-dichlorobenzene: E, C3, C, Cy, 30, i;[ D |

(a) H-F Cuv
(b} () (d) Dy,
F F Qc
F aoc CO
F 0 N\ /
F Dsy, Con Fo
F Y
F o oc Yco
F F
Fe
oc/ N
(e} 0 Ta GoC co
F
F :
: :
: :
1 1
: o Eobt
"L_-- - “’
J” F

The following responses refer to the text flow chart (Figure 12.7) for assigning point groups.

(a) HF: linear, no i, so

(b) IF7: nonlinear, fewer than 2C,, with n > 2, C5,5C§ perpendicular to Cs, oy, 50

(¢) XeO,F;: nonlinear, fewer than 2C, with n > 2, C;, no Cé perpendicular to C2, no oy, 26y, sO
{d) Fe;(CO)o: nonlinear, fewer than 2C, with n > 2, C3, 3C; perpendicular to C3, oy, 50

(e} cubane (CgHg): nonlinear, more than 2C,, with n > 2,{, no Cs, so

(f) tetrafinorocubane (23): nonlinear, more than 2C, withn > 2, no i, 50 .

(a) Only molecules belonging to Cs,C,, and C,y groups may be polar. In Exercise 12.9(b)

| ortho-dichlorobenzene |and| meta-dichlorobenzene Ibelong 1o Cyy and so may be polar; in Exercise

12.6(b), | HF and XeQOF, |belong to C, groups, so they may be polar.

(b} A molecule cannot be chiral if it has an axis of improper rotation — including disguised or degenerate
axes such as an inversion centre (S3) or a mirror plane (S)). In Exercises 12.5(b) and 12.6(b), all the
melecules have mirror planes, so can be chiral.

In order to have nonzero overlap with a combination of orbitals that spans E, an orbital on the central
atom must itself have some E character, for only E can multiply E to give an overlap integral with a totally

symmetric part. A glance at the character table shows that | orbitals available to a bonding N
p 8 Py and p,

atom have the proper symmetry. If d orbitals are available {as in SO3), | all 4 orbitals except 2 | could
prop Z

have nonzero overlap.
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The product I x I"(u) x I must contain A| (Example 12.7). Then, since /7 = By, I'(u) = I"'(y) = B
(Czy character table), we can draw up the following table of characters

E Cr Ty o,

B, 1 -1 -1 |
B, 1 -1 1 -1
BB, | | —1 —1 =A2

Hence, the upper state is . because A x Az = A).

(@) Anthracene
H H H
H H
QOO »»
d H
H H H

The components of i span Bay(x), B2y (y), and By (z). The totally symmetric ground state is Ag.

Since Ay x I = I" in this group, the accessible upper terms are (x-polarized), (y-

polarized), and {z-polarized).

(b) Coronene, like benzene, belongs to the Dgn group. The integrand of the transition dipole moment
must be or contain the A, symmetry species. That integrand for transitions from the ground state is
Ajqgf, where g is x,y, or z and f is the symmelry species of the upper state. Since the ground state
is already totally symmetric, the product gf must also have A |, symmetry for the entire integrand to
have Az symmetry. Since the different symmetry species are orthogonal, the only way gf can have
A symmetry is if g and f have the same symmetry. Such combinations include zAgy,xEyy, and

vE|u. Therefore, we conclude that transitions are allowed to states with symmetry.

E 2C 3a.
Ay 1 1 l
Al 1 | -1
E 2 -1 0
sin & | Linear combinations of 1
cosé I sin @ and cos & -1
Product 1 1 -1

The product does not contain A, so the integral vanishes,

Solutions to problems

The operations are illustrated in Figure 12.2. Note that R? = E for all the operations of the groups, that
ER = RE = R always, and that RR" = R'R for this group. Since Caoy =i, oni = Ca, and iC; = oy, we
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can draw up the following group multiplication table

E G Oh f
E E 3 Oh i
Ca s E i Oh
Oh Oh i E Ca
i i o C2 E

0
O
i
&
Figure 12.2

The | rrans-CHCI=CHCI | molecule belongs to the group Cap.

COMMENT. Note that the rnultiplication table for Con can be put into a one-to-one correspondence with the
multiplication table of D2 obtained in Exercise 12.5. We say that they both belong to the same abstract group
and are isomorphous.

Question. Can you find another abstract group of order 4 and obtain its multiplication table? There is
only one other.

P124 Refer to Figure 12.3 of the text. Place orbitals 4; and /1; on the H atoms and s, p,, p,, and p_ on the O
atorn. The z-axis is the C; axis; x lies perpendicular to o, y lies perpendicular to 0. Then draw up the
following table of the effect of the operations on the basis

E (8] oy a,
hy R I h h
e ha h h h2
s 5 5 5 5
Px Px —Px Pr —Px
Py Py —Py —Py Py
Pz P P P: Pz

Express the columns headed by each operation R in the form
(new) = D{R)(original)

where D(R) is the 6 x & representative of the operation R. We use the rules of matrix multiplication set
out in Jusrification 12.1.
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(i) E: (1, ha, 8, pe, by, pz) < (f1, b, 5, po, Py P2) is reproduced by the 6 x 6 unit matrix
(iiy Cy : (h2, hy, 5, =Py, =Py, P2} < (h1, 12, 5, px, Pys Do) is reproduced by

D(C2) =

[on e B e B e T )
OO D -
SO — o0
OOvl—OOO
O, O OO
— o oo OO

(iii) 0y : (h2, A1, 5, Pes =Py P2) < (A1, B2, S, Pes Py, po) is reproduced by

0100 00
1000 00
0010 00

Dey=1p 001 00
0000 -1 0
0000 01

(IV) O';: . (hl- hZ’ 5 —Px» p,‘y" Pz) — (hls h2v Sy Px» Pyv Pz) is I'CpI'OdLlCEd by

D(oy) =

OO C OO -
oo O — O
COO~=0O0C
OD»l—tOOO
[ e R en B s o]
- o o0OoO OO0

(a) To confirm the correct representation of C2oy = o, we write

010 0 o00o0][fo1 00 00
1 00 O O 0|1 000 00
0 01 0 0 O|(0OO0O 1O 00

DEIDO@I=15 696 -1 oollooo1 0o
000 0 -1 0fl0o 000 -1 0
0o o0 0o o 1]Jfoooo0 0 1
1 0 0 0 0 0]
01 0 000
001 000 :
—OOO—IOO_D(U")
000 010
000 00 1]
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(b) Similarly, to confirm the correct representation of ava, = C2, we write

o 1t 00 o0 0]J[1t 00 00 0]
1 000 ©O0O0|{0O1 0O 00O
0010 0O0[|lOOCTI1T 000
0001 000|000 -1 00
0 000 -1 O[]OOO 010
0000 0 1][000 00 1]
0 1 0 0 0 0]
1 00 0 00
600! 0 00
=lo 00 -1 o o =P
000 0 -1 0
000 0 0 1]

(a) The characters of the representatives are the sums of their diagonal elements:

E Ch Oy ol

v

6 0 2 4

(b} The characters are not those of any one irreducible representation, so the representation is reducible.

(¢) The sum of the characters of the specified sum is

E 2 ay !

3A 3 3 3 3
B 1 -1 i -1
2B2 2 -2 -2 2
3A;+B| +2B; 6 0 2 4

which is the same as the original. Therefore the representation is 3A) + B| + 2B;.

Representation |

D(CID(Cay=1x1=1=D(Cg)

and from the character table is either A| or Az. Hence, either D(oy) = D(oy) = respec-
tively.

Representation 2

D(C}D(Cy) = 1 x (—1) = =1 = D(C¢)

and from the character table is either B, or Ba. Hence, either D(ov) = —IHoy) = III or D(oy) =

—D(og) = respectively.
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A quick rule for determining the character without first having to set up the matrix representation is
to count 1 each time a basis function is left unchanged by the operation, because only these func-
tions give a nonzero entry on the diagonal of the matrix representative. In some cases there is a sign
change, (... —f...) « (... f...); then —1 occurs on the diagonal, and so count — 1. The character
of the identity is always equal to the dimension of the basis since each function contributes | to the
trace.

E: all four orbitals are left unchanged; hence y =4
C3: One orbital is left unchanged; hence y =1
C»>: No orbitals are left unchanged; hence x =0

S4: No orbitals are left unchanged; hence x = 0

a4: Two orbitals are left unchanged; hence x = 2

The character set 4, 1, 0, 0, 2 spans . Inspection of the character table of the group Ty shows
that 5 spans A| and that the three p orbitals on the C atom span T3. Hence, the orbitals of the

C atom may form molecular orbitals with the four His orbitals. In Ty, the d orbitals of the central alom
span E + T3 (character table, final column), and so only the Ts set | (dy,,d,,d-,) | may contribute 1o
molecular orbital formation with the H orbitals.

The most distinctive symmetry operation is the axis through the central atom and arematic nitrogens

on both ligands. That axis is also a axis. The group is .

(a) Working through the flow diagram (Figure 12.7) in the text, we note that there are no C,, axes with
n > 2 (for the C3 axes present in a tetrahedron are not symmetry axes any longer), but it does have
Cy axes; in fact it has 2 C7 axes perpendicular to whichever C we call principal; it has no ay, but it

has 2 ¢ry. So the point group is .

(b) Within this point group, the distortion belongs to the fully symmetric species for its motion is
unchanged by the S4 operation, either class of Ca, or gg.

{c) The resulting structure is a square bipyramid, but with one pyramid’s apex farther from the base
than the other’s. Working through the Aow diagram in Figure 12.7, we note that there is only one
C, axis with 1 > 2, namely a C4 axis; it has no Cz axes perpendicular to the Cy4, and it has no oy,

but it has 4¢y. So the point group is .

(d) Within this point group, the distortion belongs to the fully symmetric species . The translation
of atoms along the given axis is unchanged by any symmetry operation for the motion is contained
within each of the group’s symmetry elements.

(a) xyz changes sign under the inversion operation (one of the symmetry elements of a cube); hence it
does not span A and its integral m

(b) xyz spans A, in Ty [Problem 12.13] and so its integral
(¢) xyz > —xyzunder z = —z (the oy, operation in Dgp), and so its integral
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P12.16 We shall adapt the simpler subgroup Cgy of the full Dgp, point group. The six s -orbitals span A + By +
E{ + E3, and are

l

a) = —(m +ry+m+ma9+ 75+ 7s)
NG
1

b= —={m) —m2+ 73— M4+ 75 — 7}
V6

1
—=(2m — m — w3 + 2wy — w5 — W)

e = \/l_i

|
E(Trz — w3 + 15 — 7e)

|
—(2m + mz — 7y — 2mwa — 75 -+ 7G)

[

M'—ﬁ
N

= (72 + w3 — 5 — 7a)

The hamiltonian transforms as A ; therefore all integrals of the form f Y H+r dr vanish unless ¥’ and
¥ belong to the same symmetry species. It follows that the secular determinant factorizes into four
determinants

1
Ay Hypg :gf(ﬂ'l+“‘+N6)H(ﬂ'l+"'+H6)dr=a+2ﬁ

|
By:  Hp, =€[(N|—Hz+---)H(H| —m+--)dt=a—28

Ei: Hoeaw=c¢—8 Howem=a2—-8 He@eawm=0

Hence

[l
!
[
]

w—f—¢ ’=Osolvestos=a—ﬂ (twice)

Ery: Homew=o+8 Homewn =a+8. Howew =0

a+f8—¢ 0

Hence
en 0 a+fB—e

=0solvestoe = o + f (twice)

P12.18 (a) For a photon o induce a spectroscopic transition, the transition moment () must be nonzero. The
transition moment is the integral [ W pif; dv, where the dipole moment operator has components
proportional to the Cartesian coordinates. The integral vanishes unless the integrand, or at least
some part of it, belongs to the totally symmetric representation of the molecule’s point group. We
can answer the first part of the question without reference to the character table, by considering the
character of the integrand under inversion. Each component of ¢ has u character, but each state has g
character; the integrand is g % g x u = u, 5o the integral vanishes and the | transition is not allowed.

(b) However, if a vibration breaks the inversion symmetry, a look at the [ character table shows that the
components of i have T character. To find the character of the integrand, we multiply together the
characters of its factors. For the transition to T
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E 12Cs 12C? 20C,  15G;
A 1 | 1 | 1
(1) S -
T, 304V Z0-v® 0 -l
Integrand 9 %(3 + /5) %(3 - /3) 0 t

The decomposition of the characters of the integrand into those of the irreducible representations is
difficult to do by inspection, but when accomplished it is seen to contain Aj. Therefore the transition to
T, would become allowed. It is easier to use the formula below which is obtained from what is referred
to as the “little orthogonality theorem” of group theory. (See the Justification in Section 15.5 of the 5th
edition of this text.} The coefficient of A in the integrand is given as

‘9+ 12 [%(3 + JS)] +12 [%(3 - ﬁ)] +20(0) + 15(1)]
=1
60

1
car =5 8O0 =
C

S0 the integrand contains A, and thel transition to T would become aliowed | For the transition to G

E 12Cs 12¢2 2003 15C;

A 1 1 1 1 1
1 1

#(T1) 3 5(1+J§) 50—«/3) 0 -1

G 4 -1 ~1 1 0
1 1

Integrand 12 ——(1+ V5 —50 - NG 0 0

The little orthogonatity theorem gives the coefficient of A in the integrand as

| |12+12[—%(1+~/§)} +12[— %(1—\/3)] +20(0)+15(0)}
ca, =E;8(C)X(C)= 60 =0

So the integrand does not contain Ay, and the| transition to G would still be forbidden |

Solutions to applications

The point group for the square Hy molecule is Dy, with # = 16 symmetry species. To find the irreducible
representations or symmetry species spanned by four s orbitals, we use the methodology of Section 12.5¢.



P12.22

MOLECULAR SYMMETRY 237

Dan E 2Cy C ZCE ch i 254 Oh 20, 204
Number of unchanged basis 4 0 0 2 0 0 0 4 2 0
members

The basis representation is obviously a linear combination of the D4y, symmetry species; it is reducible.
Only the E,2C}, oy, and 2o, symmetry elements contribute (The others have factors of zero) to the
number of times symmetry species I” contributes (a{I"}) to the representation of the basis.

E 26, Oh 20y

l
a(A|g)=E{4-l-l + 2.2.1 + 4.1:.1 + 2-2-1} =1

a(Azg)=%{4-l-l + 2-2-(=1) + 4-1-1 + 2-2:(-1)} =0

aBig) = Tgl4-1-1 + 2:2:1 + 4-1-1 + 2.2.1) =1
a(ng)=1L6{4-l-l + 2.2.(=1) + 4-1-1 + 2.2-(=1} =0
a(Eg)=%:4-1-2 + 2.2.0 + 4.1.(=2) + 2-2-0} =0
a(Am)=|—16[4.1-1 + 2-2-1 + 4.1-(=1) + 2.2-(=h} =0
a(Agu)=li6{4-|-1 + 2.2-(=1) + 4-1-(=1) + 2-2-1) =0

a(B1u)=%[4-1-l + 221 + 4-1-(=1) + 2.2.(-1)) =0

1

aBu)= 411 4 2:2:(=D) + 4 01(=D) + 2:2:1] =0
1

aB)=qeld-1-2 + 2:2:0 4 412 4 2:2:00 =1

The basis spans .

Can the E, excited state be reached by a dipole transition from the Ay ground state? Only if the
representation of the product ¥ i includes the totally symmetric species Ajg. The z component of
the dipole operator belongs to symmetry species Agy, and the x and ¥ components belong to E,. So
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the products we musl consider are E;Ax,A ), and EyEyAjg. For z-polarized transitions, the relevant
characters are:

E 2Cy Ca ZC_% ZCE’ i 284 Oh 2o, 20y
Ey 2 0 -2 0 0 -2 0 2 0 0
Asy 1 1 1 -1 -1 -1 —1 —1 1 1
Ajg 1 1 | 1 1 ] 1 1 | l
EuAzyAlg 2 0 -2 0 0 2 0 -2 0 0

To see whether EyAz Ay contains Agg, we would multiply the characters of the E,AayAp by
the characters of Ajg, sum those products, and divide the sum by the order /1 of the group; since
the characters of Ay, are all |, we can simply sum the characters of E Ay Ayg. Since they sum Lo zero,

the product EyAayAjp does not contain A g, and the | z-polarized trangition is not allowed |.

For x- or y-polarized transitions:

E 2C4 C2 ZCé 2Cg i 284 o 20'\: 20'(1
E, 2 0 -2 0 0 -2 0 2 0 0
Eu 2 0 -2 0 0 -2 0 2 ¢ 0
Aig 1 | 1o 1 Lo 1 I |
EuEsAl, 4 O 4 0 0 4 0 4 0 0

Summing the characters of E,E A g, yields 16, the order of the group. Therefore the product EyEuA g

does contain Ay, and the | transilion is allowed |
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Answers to discussion questions

The gross selection rules tell us which are the allowed spectroscopic transitions. For both microwave and
infrared spectroscopy, the allowed transitions depend on the existence of an oscillating dipole moment
which can stir the electromagnetic field into oscillation (and vice versa for absorption). For microwave
rotational spectroscopy, this implies that the molecule must have a permanent dipole moment, which
is equivalent to an oscillating dipole when the molecule is rotating. See Figure 13.17 of the text. In
the case of infrared vibrational spectroscopy, the physical basis of the gross selection rule is that the
molecule have a structure that allows for the existence of an oscillating dipole moment when the molecule
vibrates. Polar molecules necessarily satisfy this requirement, but non-polar molecules may also have a
Auctuating dipole moment upon vibration. See Figure 13.28.

The answer to this question depends precisely on what is meant by equilibrium bond length. See the
solution to Problem 13.22 where it is demonstrated that the centrifugally distorted bond length r¢ is
given by the relation

fe

re= ———.
| — mgre? fk

The angular velocity depends upon the quantum number J through the relation
W? =JW 4+ DR s

thus, the distortion is greater for higher rotational energy levels. But the equilibrium bend length 1,
remains constant, if by that term one means the value of r corresponding to a vibrating non-rotating
molecule with / = 0. However, if one describes the vibration of the melecule in a higher rotational
state as having a new “equilibrium” distance rg, the polential energy of vibration will also be different.
It is lowered by the amount shown in egqn 13.33, that is, —DyJ?(J + )2, A detailed analysis of the
combined effects of rotation and vibration is quite complicated. The treatment in Section 13.12 ignores
the effects of centrifugal distortion and anharmonicity. See the references under Further Reading for a
more thorough discussion.

Solutions to exercises

The ratio of coefficients A/B is

A 8mivd 8m(6.626 x 1073 ) x (500 x 1005~ 1)}
== = =773x 107 m™
® B e’ (2.998 x 108 ms~!)3 ( X Im7s
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(b) The frequency is

8wh _ 8m(6.626 x 107*]s)

- -28 -3
W T TGox102my  CLe2x 107 Jws

v =

A
50 — =
B

>0

E13.2(b) A source approaching an observer appears to be emitting light of frequency

Vv
Uapprouching = K [13 15, SECtiOl’l 13.3]

4

|
Since v T Aops = (L —s/c) A

For the light to appear green the speed would have to be

Aobs 3 ~1 520 nm - 1
= —_— - . 1 — = R
5 (1 3 )c (2998 x 10°ms™ ") x |1 560 nm |636x]0 ms

or about 1.4 x 108 m.p.h.

(Since s == ¢, the relativistic expression

b (1 +(s/c)):)/2
obs — ——l — (S/C)

should really be used. It gives s = 7.02 x 107 ms~!.)
E13.3(b) The linewidth is related to the lifetime t by

531cm™! 531 cm™!
5= 22 [13.19] so 7 = Zie ps
T/ps 5

(a) We are given a frequency rather than a wavenumber

(5.31cm™!) x (2.998 x 10% cms™!)

100 x 106 g1 ps = 1.59 % 103 ps

D=vfc 50 T=

or[159 7]
3lem™!

E13.4(b) The linewidth is related to the lifetime 7 by

_ 53lem™! (5.3l em™ Y
W=— s dy= ——m—

T/ps T,/ps
(a) If every collision is effective, then the lifetime is 1/(1.0 x 107 571y = 1.0 x 10795 = 1.0 x 10% ps

3lem™! 2.998 x 109 -1
5ﬁ=(5 = )XI(OXIO)J( cme )=l.6x1085_1= 160 MHz
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{b) If only one collision in 10 is effective, then the lifetime is a factor of 10 greater, 1.0 x 104 ps

. (531cm™) x (2998 x 100 ems™") 7 1
3 = 0% 107 =1.6x 10" s™! =| 16 MHz

E13.5(b} The frequency of the transition is related to the rotational constant by

hv = AE = hcAF = heBlJ(J + 1) — (J — 1)J] = 2heBS

where J refers to the upper state (J = 3). The rotational constant is related to molecular structure by

B oo k
T dwcd  dAmemesR2

where ! is moment of inertia, m,gr is effective mass, and R is the bond length. Putting these expressions
ogether yields

=2Bfi = ——
b= 27T Pogy R2

The reciprocal of the effective mass is

m =m mz! = (12w)! +(15.9949 u)~
ef =Me T T 66054 x 1027 kgu~!

=8.78348 x 10%° kg™!

(878348 x 105 kg™') x (1.0546 x 107 J5) x (3) _

11 -1
22 (112.81 x 10-12m)? 34754 x 107 s

Sov

E13.6(b) (a) The wavenumber of the transition is related to the rotational constant by
hev = AE = he AF = heBlJ(J + 1) — (J — 1DJ] = 2hcBJ

where J refers to the upper state (J = 1). The rotational constant is related to molecular structure by

where I is moment of inertia. Putting these expressions together yields

_ hJ nJ (1.0546 x 1071 s) x (1)
v=28J = sol=—=
2l cb 2mx(2.998 x 10%cm s~y x (1693 cm™1)

I =3.307 x 10747 kg m? ]

{b) The moment of inertia is related to the bond length by

I )1/2
Miefr

=) = = 4 e o (10078 u)~! 4 (809163 u)~!
off —TH TR T 66054 x 10-27 kg u~!

I = megR? soR=(

= 6.0494 x 10 kg™
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and R = {(6.0494 x 10% kg ') x (3.307 x 107%" kg m?)}'/*

= 1.414 % 107 %m =

E13.7(b) The wavenumber of the transilion is related to the rolational constant by
hed = AE = heAF = heB[J(J + 1) — (J — 1)J] = 2heBS

where J refers {o the upper state. So wavenumbers of adjacent transitions (transitions whose upper states
differ by 1) differ by

h h
= sof = —
2act 2weAv

Avr =28

where [ is moment of inertia, merr is effective mass, and R is the bond length.

(1.0546 x 107 J 5)

So f =
O (29979 x 100 cms-1) x (1.033 em—1)

=5.420 x 1074 kg m?

The moment of inertia is related to the bond length by

I 1/2
= H!c[‘[‘Rz soR = ( )
Medr

_p (189984 u)"! +(34.9688 u)~!

-1 -1 a5 -1
Mo =M +Mey = =489196 x 107 k
off = MF T ey 166054 x 10-27 kg u™! g

and R = {(4.89196 x 107 kg™") x (5.420 x 107* kg m?)}'/2

—1.628 x 107'°m =

E13.8(b) The rotational constant is

h 3 AN
B = = so R=| ———
4rcl  4rc(moR?) 8mempB
where [ is moment of inertia, s is effective mass, and R is the bond length.

172

R ( (1.0546 x 107 ] 5) )
T \87(2.9979 x 100 cms—) x (15.9949 u) x (1.66054 x 10-27 kg u~')(0.390 21)

=1.1621 x 107" m =| 116.21 pm

E13.9(b) This exercise is analogous to Exercise 13.9(a), but here our solution will employ a slightly different
algebraic technique. Let R = Roc, R = Res, 0 ='%0,C ="2C.

I= i [Comment 13.4]

4T B

1.05457 x 1073 7] 5
(4) x (6.0815 x 1095~ 1)

1.05457 % 1073 s
(47) x (5.9328 x 10% s—1)

10C*8) = = 13799 x 107 kg m®> = 8.3101 x 1077 u m’

1(0CH8) = =14145x 10" kgm?> = 85184 x 107" um?
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The expression for the moment of inertia given in Table 13.} may be rearranged as follows.
Im = mamR? + memR” — (AR — mcR')?
= mMnR2 + mcmR'z - miR2 + 2mamcRR' — méR’z

= ma(mp + me)RE + me(mp + mp)R™ + 2mamcRR’

Let mc = m3zg and mp = magq

I ’

% = %;%(ma +me)R* + (ma + mp)R™ + 2maRR (@)

o' mg fyp? 9 /

— = ;F(MB + me )R+ (ma + mp}R™ + 2maRR (b)
C C

Subtracting

[ ]f /
mo_om o [(ﬁ) {mp + nic) — (2) {mpg + nr&)i| R?
m

me omg ne c

Solving for R?

dm P ’ '
R — mc arg _ mefm —mci'm
r
[(ﬂa) (mp + mc) — (’_":1) (mpg + m&)] mpma (e — mc)
me nig

Substituting the masses, with ma = mg, mg = mc, hic = Mazg, and m& = M3y

m = (15.9949 4 12.0000 4- 31.9721) u = 59.9670 u
m' = {15.9949 + 12.0000 + 33.9679) u = 61.9628 u

gt — (33.9679 ) x (8.3101 x 107'% u m?) x (59.9670 u)
" (12.0000 u) x (15.9949 u) x (33.9679 u — 31.9721 v)

(33.9721 u) x (8.5184 x 10~'? u m?} x (61.9628 u)
(12.0000 u) x (15.9949 u) x (33.9679 u — 31.972{ u)

_ 516446 x 1077 m?)
B 383.071

R=1.161Tx 10""m =:Roc

Because the numerator of the expression for R? involves the difference between two rather large numbers
of nearly the saine magnitude, the number of significant figures in the answer for R is certainly no greater
than 4. Having solved for R, either equation (a) or (b) above can be solved for ®'. The result is

R'=1559x10"""m ={155.9 pm|= Res

E13.10(b) The wavenumber of a Stokes line in rotational Raman is

= 13482 x 1079 m?

l-’Smkcs = ‘.-’i - 28(2-] + 3) []3.423]

where J is the initial (lower) rotational state. So

Doiokes = 20623 em ' — 2(1.4457 cm™ '} x [2(2) + 3] = 20603 cm ™!
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The separation of lines is 48,50 B = JT % (3.5312 cm“) =0.88280 cm™!

h

Th R=|———
en we use (4erc[ch

1/2
) {Exercise 13.8(a}]

with megr = Sm(*%F) = § x (18.9984 u) x (1.6605 x 10~ kgu™') = 1.577342 x 1072 kg

_ ( 1.0546 x 101’ )"2
T \4m(1.577342 x 10-26 kg) x (2.998 x 109 cm s—!) x (0.88280 cm~!)

= 141785 x 107" m =] 141.78 pm

Polar molecules show a pure rotational absorption spectrum. Therefore, select the polar molecules based
on their well-known structures. Alternatively, determine the point groups of the molecules and use the
rule that only molecules belonging to Cy, Cyy, and Cg may be polar, and in the case of C,, and C,y, that
dipole must lie along the rotation axis. Hence all are polar molecules.

Their point group symmetries are
(a) H20, Cay, (b) HyO7, Cz, (€) NH3, Cay, (@) N20O, Cooy

show a pure rotational spectrum.

A molecule must be anisotropically polarizable to show a rotational Raman spectrum; all molecules

except spherical rotors have this property. So | CH»Cl, | l CH;CH;J, and | INPLY | can display rotational
Raman spectra; SFg cannot.

The angular frequency is

A% 2 2 142 -3
w= — =2rv so k=Cwuvym=Q2r) x (3.0s ) x (2.0 x 107" kg)

e=[071Nn]

k 1/2 L 172
w=( ) w’=( ) [prime = 2HYCI)

I
Mlefl M

The force constant, &, is assumed to be the same for both molecules. The fractional difference is

£\ 2 L \2 [ \12 L\
o -w _ (’néﬁ) - (mcﬂ') _ (’n;ff) B (meﬁ') _ (@)]/2 |
o L N2 = NUE =\
(meﬂ') (mcﬂ')

Mot
172
o —w (mcrr) / = [ IMyMC] {m2,; + mazy) }1/2 |
Miggy myg +mey (g X magg)

_ [(1.0078 1) x (349688 u) (20140 u) + (36.9651 u) .
~ 1 (1.0078 v) + (34.9688 u) ~ (2.0140 u) x (36.9651 u)

= —0.284

Thus the difference is | 28.4 percent
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The fundamental vibrational frequency is

P N2
w= ( ) =2nv=27ch so k= (2ach)mer
Hieff

We need the effective mass

mzb = mb +my! = (789183 w)~! + (80.9163 u)™! = 0.0250298 u™'
‘= [27(2.998 x 100 cms™") x (3232 cm™")]? % (1.66054 x 10737 kgu~")

0.0250298 u~!
= 12459 N m~'

The ratio of the population of the ground state (Np) to the first excited state (M) is

No o\ (=hed
— =g — | =
N, - P\ GT Py

No —(6.626 x 1073 7Ts) x (2.998 x 10'%cm s ) x (321 cm-‘))
M _ =(0212
@ ¥ XP( (1381 x 10-21 K1) x (298K)

No —(6.626 x 1073 s) x (2.998 x 100 cms™1) x (321cm-1))
by — = =0.561
) Ny exp( (1.381 x 102 J K~} x (BOOK)

The relation between vibrational frequency and wavenumber is

¢ \172 1 e N2 syl
w=( ) =2mv=12nct so 17=—( ) =%
Meff 2me \ Mefi 27¢

The reduced masses of the hydrogen halides are very similar, but not identical

-1 _ -1 -1
Mo = Mp + my

245

We assume that the force constants as calculated in Exercise 13.18(a) are identical for the deuterium

halide and the hydrogen halide.

For DF
2. ~1 4 (18.9984 u)~!
) _ 20140w" + (189 “I) = 33071 x 10% kg~ !
¢ 1.66054 x 10~*7 kg u~
33 B g ! Dakgs=2)}'/2
o (33071 x 10%kg ") x (967.04kgs™)}!2 =
2m(2.9979 x 109 cms—!)

For DCL

ol 2010w 4 (349688 u) !
T 166054 x 10-27 kg u~!

_ {(3.1624 x 10% kg™") x (515.59kgs~2)}/2 _
= =|2143.7 !
v 27(2.9979 x 100 ¢cms—1)

=3.1624 x 10%® kg™!
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For DBr

_1_ (2.0140w)~" 4 (809163 u)~!

mo = = 3.0646 x 10%¢ kg~
eff 1.66054 x 10-27 kg u™" g

261~ —2172
5 {(3.0646 x 10°°kg™") x (411.75kgs™")} _[1885.8 e~
27 (2.9979 x 10/%cms—1})
For DI

_1 (20140 u)~" + (126.9045 u)~!
7 =
ot 1.66054 x 10-27 kg u™!

= 3.0376 x 107 kg~!

_ {(3.0376 x 10%kg™") x (314.21 kgs~2))\12 -
= = —1640.1 -
v 27(2.9979 x 10Wcms-1) o

E13.19(b) Data on three transitions are provided. Only two are necessary to obtain the value of v and x,. The third
datumn can then be used to check the accuracy of the calculated values.

AG( =1 «0) = b — 2ix, = 2345.15cm™" [13.57]
AG(y =2 « 0) = 20 — 6Dx, = 4661.40 cm™' [13.58]

Multiply the first equation by 3, then subtract the second.

U= (3) x (2345.15cm™ ") — (4661.40 cm™') =| 2374.05 ¢cm™!

Then from the first equation

v — . -1 (2374.05 — 2345.1 =1
e = v 2345~15 cm _ (2374.05 345.15)em = 6.087 % 103
20 (2) x (2374.05cm™ 1)

X, data are usually reported as x. which is

%0 = 14.45cm™!

AGr =3 «0) =30 — 12ux. = (3) x (2374.05em™ ") — (12) x (14.45cm™")
= 6948.74 cm™!

which is close to the experimental value.

E13.20(b) AGypypp = — 2v + Dxeb [13.57] where AGyq12 = G + 1) ~ G(v)

Therefore, since
NGz = (1= 2x)0 — 2vxe b

a plot of AG,11/2 against v should give a straight line which gives (I — 2x.)0 from the intercept at
v = 0 and —2x,. ¥ from the slope. We draw up the following table
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v 0 l 2 3 4

G(v)/cm™! 1144.83 337490 5525.51 7596.66 9588.35
AG,,H/g/cm“l 2230.07 2150.61 2071.15 1991.69

The points are plotted in Figure 13.1.

AG.,H,g/cm"
i
o
S

2000

v Figure 13.1

The intercept lies at 2230.51 and the slope = —76.65 cm™'; hence xc# = 39.83 cm™'.
Since ¥ — 2x. 7 = 2230.5] cm~ ! it follows that b = 2310.16 cm™!
The dissociation energy may be obtained by assuming that a Morse potential describes the molecule and

that the constant D in the expression for the potential is an adequate first approximation for it. Then

32 (2310.16 cm™')?
dx.0 (4 % (39.83 cm—)

D, = [1355] = =3350x 103 ecm™! = 4.15eV
e

However, the depth of the potential well D, differs from Dy, the dissociation energy of the bond, by the
zero-point energy; hence

Do=De— o5 = (33.50 x 10° em="y — (L 2310.16 cm !
o_czu_(.x cm™ ) 3 ) > ( Jdéem™ )

=[3235 x 10*cm~" | =[4.01 eV |

E13.21(b} The wavenumber of an R-branch IR transition is
vr = v+ 28(J + 1) [13.62¢]

where J is the initial {lower) rotational state, So

Up = 2308.09cm™ +2(651l em™') x (24 1) =|2347.16 cm™!
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E13.22(b) See
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Section 13.10. Select those molecules in which a vibration gives rise to a change in dipole moment.

It is helpful to write down the structural formulas of the compounds. The infrared active compounds are

(a) CH3CHas; (b) CHy; (¢) CH; C1

COMMENT. A more powerful method for determining infrared activity based on symmetry considerations is
described in Section 13.15.

E13.23(b) A nonlinear molecule has 3N — 6 normal modes of vibration, where N is the number of atoms in the
molecule; a linear molecule has 3N — 5.

(a) CeHs has 3(12) — 6 = [ 30 normal modes.

(b)

CgHsCH3 has 3(16) — 6 = | 42 | normal modes.

(¢) HC=C—C=CH is linear; it has 3(6) — 5 = { 13 | normal modes.

E13.24(b) (a)

(b)

A planar AB; molecule belongs to the D3y, group. Its four atoms have a total of 12 displacements,
of which 6 are vibrations. We determine the symmetry species of the vibrations by first determining
the characters of the reducible representation of the molecule formed from all 2 displacements and
then subtracting from these characters the characters corresponding to translation and rotation. This
latter information is directly available in the character table for the group D3y. The resulting set of
characters are the characters of the reducible representation