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PREFACE

The first edition of this book appeared over fifteen years ago. It was the first
chemical engineering textbook to combine modeling, simulation, and control. It
also was the first chemical engineering book to present sampled-data control.
This choice of subjects proved to be popular with both students and teachers and
of considerable practical utility.

During the ten-year period following publication, I resisted suggestions
from the publisher to produce a second edition because I felt there were really
very few useful new developments in the field. The control hardware had changed
drastically, but the basic concepts and strategies of process control had under-
gone little change. Most of the new books that have appeared during the last
fifteen  years are very similar in their scope and content to the first edition. Basic
classical control is still the major subject.

However, in the last five years, a number of new and useful techniques have
been developed. This is particularly true in the area of multivariable control.
Therefore I feel it is time for a second edition.

In the area of process control, new methods of analysis and synthesis of
control systems have been developed and need to be added to the process control
engineer’s bag of practical methods. The driving force for much of this develop-
ment was the drastic increase in energy costs in the 1970s. This led to major
redesigns of many new and old processes, using energy integration and more
complex processing schemes. The resulting plants are more interconnected. This
increases control loop interactions and expands the dimension of control prob-
lems. There are many important processes in which three, four, or even more
control loops interact.

As a result, there has been a lot of research activity in multivariable control,
both in academia and in industry. Some practical, useful tools have been devel-
oped to design control systems for these multivariable processes. The second
edition includes a fairly comprehensive discussion of what I feel are the useful
techniques for controlling multivariable processes.

xxi
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Another significant change over the last decade has been the dramatic
increase in the computational power readily available to engineers. Most calcu-
lations can be performed on personal computers that have computational horse-
power equal to that provided only by mainframes a few years ago. This means
that engineers can now routinely use more rigorous methods of analysis and
synthesis. The second edition includes more computer programs. All are suitable
for execution on a personal computer.

In the area of mathematical modeling, there has been only minor progress.
We still are able to describe the dynamics of most systems adequately for engi-
neering purposes. The trade-off between model rigor and computational effort
has shifted toward more precise models due to the increase in computational
power noted above. The second edition includes several more examples of models
that are more rigorous.

In the area of simulation, the analog computer has almost completely dis-
appeared. Therefore, analog simulation has been deleted from this edition. Many
new digital integration algorithms have been developed, particularly for handling
large numbers of “stiff” ordinary differential equations. Computer programming
is now routinely taught at the high school level. The-second edition includes an
expanded treatment of iterative convergence methods and-  of numerical integra-
tion algorithms for ordinary differential equations, including both explicit and
implicit methods.

The second edition presents some of the material in a slightly different
sequence. Fifteen additional years of teaching experience have convinced me that
it is easier for the students to understand the time, Laplace,  and frequency tech-
niques if both the dynamics and the control are presented together for each
domain. Therefore, openloop dynamics and closedloop control are both dis-
cussed in the time domain, then in the Laplace  domain, and finally in the fre-
quency domain. The z domain is discussed in Part VII.

There has been a modest increase in the number of examples presented in
the book. The number of problems has been greatly increased. Fifteen years of
quizzes have yielded almost 100 new problems.

The new material presented in the second edition has come from many
sources. I would like to express my thanks for the many useful comments and
suggestions provided by colleagues who reviewed this text during the course of its
development, especially to Daniel H. Chen, Lamar University; T. S. Jiang, Uni-
versity of Illinois-Chicago; Richard Kerrnode, University of Kentucky; Steve
Melsheimer, Cignson University; James Peterson, Washington State University;
and R. Russell Rhinehart, Texas Tech University. Many stimulating and useful
discussions of multivariable control with Bjorn Tyreus of DuPont and Christos
Georgakis of Lehigh University have contributed significantly. The efforts and
suggestions of many students are gratefully acknowledged. The “ LACEY”  group
(Luyben, Alatiqi, Chiang, Elaahi, and Yu) developed and evaluated much of
the new material on multivariable control discussed in Part VI. Carol Biuckie
helped in the typing of the final manuscript. Lehigh undergraduate and graduate
classes have contributed to the book for over twenty years by their questions,
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youthful enthusiasm, and genuine interest in the subject. If the ultimate gift that
a teacher can be given is a group of good students, I have indeed been blessed.
Alhamdulillahi!

William L. Luyben



PROCESS MODELING, SIMULATION,
AND CONTROL FOR CHEMICAL ENGINEERS



CHAPTER

1
INTRODUCTION

This chapter is an introduction to process dynamics and control for those stu-
dents who have had little or no contact or experience with real chemical engi-
neering processes. The objective is to illustrate where process control fits into the
picture and to indicate its relative importance in the operation, design, and devel-
opment of a chemical engineering plant.

This introductory chapter is, I am sure, unnecessary for those practicing
engineers who may be using this book. They are well aware of the importance of
considering the dynamics of a process and of the increasingly complex and
sophisticated control systems that are being used. They know that perhaps 80
percent of the time that one is “on the plant” is spent at the control panel,
watching recorders and controllers (or CRTs). The control room is the nerve
center of the plant.

1.1 EXAMPLES OF THE ROLE
OF PROCESS DYNAMICS AND CONTROL

Probably the best way to illustrate what we mean by process dynamics and
control is to take a few real examples. The first example describes a simple
process where dynamic response, the time-dependent behavior, is important. The
second example illustrates the use of a single feedback controller. The third
example discusses a simple but reasonably typical chemical engineering plant and
its conventional control system involving several controllers.

Example 1.1. Figure 1.1 shows a tank into which an incompressible (constant-
density) liquid is pumped at a variable rate F,  (ft3/s). This inflow rate can vary with

1
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FIGURE 1.1
Gravity-flow tank.

time because of changes in operations upstream. The height of liquid in the vertical
cylindrical tank is h (ft). The flow rate out of the tank is F (ft’/s).

Now F,  , h, andf will all vary with time and are therefore functions of time t.
Consequently we use the notation Foe,), I+,),  and F(,,  . Liquid leaves the base of the
tank via a long horizontal pipe and discharges into the top of another tank. Both
tanks are open to the atmosphere.

Let us look first at the steadystate conditions. By steadystate we mean, in
most systems, the conditions when nothing is changing with time. Mathematically
this corresponds to having all time derivatives equal to zero, or to allowing time to
become very large, i.e., go to infinity. At steadystate the flow rate out of the tank
must equal the flow rate into the tank. In this book we will denote steadystate
values of variables by an overscore or bar above the variables. Therefore at steady-
state in our tank system Fe  = F.

For a given F,  the height of liquid in the tank at steadystate would also be
some constant Ii. The value of h would be that height that provides enough hydrau-
lic pressure head at the inlet of the pipe to overcome the frictional losses of liquid
flowing down the pipe. The higher the flow rate F,  the higher 6 will be.

In the steadystate design of the tank, we would naturally size the diameter of
the exit line and the height of the tank so that at the maximum flow rate expected
the tank would not overflow. And as any good, conservative design engineer knows,
we would include in the design a 20 to 30 percent safety factor on the tank height.

Actual height specified_________-------------------

Maximum design height

F

FIGURE 1.2FIGURE 1.2
Steadystate height versus flow.Steadystate height versus flow.
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Since this is a book on control and instrumentation, we might also mention that a
high-level alarm and/or an interlock (a device to shut off the feed if the level gets too
high) should be installed to guarantee that the tank would not spill over. The tragic
accidents at Three Mile Island, Chernobyl, and Bhopal illustrate the need for well-
designed and well-instrumented plants.

The design of the system would involve an economic balance between the cost
of a taller tank and the cost of a bigger pipe, since the bigger the pipe diameter the
lower is the liquid height. Figure 1.2 shows the curve of !i  versus F for a specific
numerical case.

So far we have considered just the traditional steadystate design aspects of
this fluid flow system. Now let us think about what would happen dynamically if we
changed Fe. How will he) and F$)  vary with time? Obviously F eventually has to
end up at the new value of F,. We can easily determine from the steadystate design
curve of Fig. 1.2 where h will go at the new steadystate. But what paths will h(,,  and
Fgb  take to get to their new steadystates?

Figure 1.3 sketches the problem. The question is which curves (1 or 2) rep-
resent the actual paths that F and h will follow. Curves 1 show gradual increases in
h and F to their new steadystate values. However, the paths could follow curves 2
where the liquid height rises above its final steadystate value. This is called
“overshoot.” Clearly, if the peak of the overshoot in h is above the top of the tank,
we would be in trouble.

Our steadystate design calculations tell us nothing about what the dynamic
response to the system will be. They tell us where we will start and where we will
end up but not how we get there. This kind of information is what a study of the
dynamics of the system will reveal. We will return to this system later in the book to
derive a mathematical model of it and to determine its dynamic response quantita-
tively by simulation.

Example 1.2. Consider the heat exchanger sketched in Fig. 1.4. An oil stream passes
through the tube side of a tube-in-shell heat exchanger and is heated by condensing
steam on the shell side. The steam condensate leaves through a steam trap (a device
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FIGURE 1.4

that only permits liquid to pass through it, thus preventing “blow through” of the
steam vapor). We want to control the temperature of the oil leaving the heat
exchanger. To do this, a thermocouple is inserted in a thermowell in the exit oil
pipe. The thermocouple wires are connected to a “temperature transmitter,” an elec-
tronic device that converts the millivolt thermocouple output into a 4- to 20-
milliampere “control signal.” The current signal is sent into a temperature
controller, an electronic or digital or pneumatic device that compares the desired
temperature (the “setpoint”) with the actual temperature, and sends out a signal to
a control valve. The temperature controller opens the steam valve more if the tem-
perature is too low or closes it a little if the temperature is too high.

We will consider all the components of this temperature control loop in more
detail later in this book. For now we need’only appreciate the fact that the auto-
matic control of some variable in a process requires the installation of a sensor, a
transmitter, a controller, and a final control element (usually a control valve). Most
of this book is aimed at learning how to decide what type of controller should be
used and how it should be “tuned,” i.e., how should the adjustable tuning param-
eters in the controller be set so that we do a good job of controlling temperature.

Example 1.3. Our third example illustrates a typical control scheme for an entire
simple chemical plant. Figure 1.5 gives a simple schematic sketch of the process
configuration and its control system. Two liquid feeds are pumped into a reactor in
which they react to form products. The reaction is exothermic, and therefore heat
must be removed from the reactor. This is accomplished by adding cooling water to
a jacket surrounding the reactor. Reactor emuent  is pumped through a preheater
into a distillation column that splits it into two product streams.

‘Traditional steadystate design procedures would be used to specify the
various pieces of equipment in the plant:

Fluid mechanics. Pump heads, rates, and power; piping sizes; column tray
layout and sizing; heat-exchanger tube and shell side batlling  and sizing

Heat transfer. Reactor heat removal; preheater, reboiler, and condenser heat
transfer areas; temperature levels of steam and cooling water

Chemical kinetics. Reactor size and operating conditions (temperature, pres-
sure, catalyst, etc.)



FC = flow control loop
TC = temperature control loop
PC = pressure control loop
LC = level control loop

Bottoms
product I I I -

FIGURE 15
Typical chemical plant and control system.
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Thermodynamics and mass transfer. Operating pressure, number of plates and
reflux ratio in the distillation column; temperature profile in the column; equi-
librium conditions in the reactor

But how do we decide how to control this plant? We will spend most of our time in
this book exploring this important design and operating problem. All our studies of
mathematical modeling, simulation, and control theory are aimed at understanding
the dynamics of processes and control systems so that we can develop and design
better, more easily controlled plants that operate more efficiently and more safely.

For now let us say merely that the control system shown in Fig. 1.5 is a
typical conventional system. It is about the minimum that would be needed to run
this plant automaticalljl  without constant operator attention. Notice that even in
this simple plant with a minimum of instrumentation the total number of control
loops is IO. We will find that most chemical engineering processes are multivariable.

1.2 HISTORICAL BACKGROUND

Most chemical processing plants were run essentially manually prior to the
1940s. Only the most elementary types of controllers were used. Many operators
were needed to keep watch on the many variables in the plant. Large tanks were
employed to act as buffers or surge capacities between various units in the plant.
These tanks, although sometimes quite expensive, served the function of filtering
out some of the dynamic disturbances by isolating one part of the process from
upsets occurring in another part.

With increasing labor and equipment costs and with the development of
more severe, higher-capacity, higher-performance equipment and processes in the
1940s and early 195Os,  it became uneconomical and often impossible to run
plants without automatic control devices. At this stage feedback controllers were
added to the plants with little real consideration of or appreciation for the
dynamics of the process itself. Rule-of-thumb guides and experience were the only
design techniques.

In the 1960s chemical engineers began to apply dynamic analysis and
control theory to chemical engineering processes. Most of the techniques were
adapted from the work in the aerospace and electrical engineering fields. In addi-
tion to designing better control systems, processes and plants were developed or
modified so that they were easier to control. The concept of examining the many
parts of a complex plant together as a single unit, with all the interactions
included, and devising ways to control the entire plant is called systems engineer-
ing. The current popular “buzz” words artificial intelligence and expert systems
are being applied to these types of studies.

The rapid rise in energy prices in the 1970s provided additional needs for
effective control systems. The design and redesign of many plants to reduce
energy consumption resulted in more complex, integrated plants that were much
more interacting. So the challenges to the process control engineer have contin-
ued to grow over the years. This makes the study of dynamics and control even
more vital in the chemical engineering curriculum than it was 30 years ago.
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13 PERSPECTIVE

Lest I be accused of overstating the relative importance of process control to the
main stream of chemical engineering, let me make it perfectly clear that the tools
of dynamic analysis are but one part of the practicing engineer’s bag of tools and
techniques, albeit an increasingly important one. Certainly a solid foundation in
the more traditional areas of thermodynamics, kinetics, unit operations, and
transport phenomena is essential. In fact, such a foundation is a prerequisite for
any study of process dynamics. The mathematical models that we derive are
really nothing but extensions of the traditional chemical and physical laws to
include the time-dependent terms. Control engineers sometimes have a tendency
to get too wrapped up in the dynamics and to forget the steadystate aspects.
Keep in mind that if you cannot get the plant to work at steadystate you cannot
get it to work dynamically.

An even greater pitfall into which many young process control engineers
fall, particularly in recent years, is to get so involved in the fancy computer
control hardware that is now available that they lose sight of the process control
objectives. All the beautiful CRT displays and the blue smoke and mirrors that
computer control salespersons are notorious for using to sell hardware and soft-
ware can easily seduce the unsuspecting control engineer. Keep in mind your
main objective: to come up with an effective control system. How you implement
it, in a sophisticated computer or in simple pneumatic instruments, is of much
less importance.

You should also appreciate the fact that fighting your way through this
book will not in itself make you an expert in process control. You will find that a
lot remains to be learned, not so much on a higher theoretical level as you might
expect, but more on a practical-experience level. A sharp engineer can learn a
tremendous amount about process dynamics and control that can never be put in
a book, no matter how practically oriented, by climbing around a plant, talking
with operators and instrument mechanics, tinkering in the instrument shop, and
keeping his or her eyes open in the control room.

You may question, as you go through this book, the degree to which the
dynamic analysis and controller design techniques discussed are really used in
industry. At the present time 70 to 80 percent of the control loops in a plant are
usually designed, installed, tuned, and operated quite successfully by simple, rule-
of-thumb, experience-generated techniques. The other 20 to 30 percent of the
loops are those on which the control engineer makes his money. They require
more technical knowledge. Plant testing, computer simulation, and detailed con-
troller design or process redesign may be required to achieve the desired per-
formance. These critical loops often make or break the operation of the plant.

I am confident that the techniques discussed in this book will receive wider
and wider applications as more young engineers with this training go to work in
chemical plants. This book is an attempt by an old dog to pass along some useful
engineering tools to the next generation of pups. It represents over thirty years of
experience in this lively and ever-challenging area. Like any “expert,” I’ve learned
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from my successes, but probably more from my failures. I hope this book helps
you to have many of the former and not too many of the latter. Remember the
old saying: “If you are making mistakes, but they are new ones, you are getting
smarter.”

1.4 MOTIVATION FOR STUDYING
PROCESS CONTROL

Some of the motivational reasons for studying the subjects presented in this book
are that they are of considerable practical importance, they are challenging, and
they are fun.

1. Importance. The control room is the major interface with the plant. Automa-
tion is increasingly common in all degrees of sophistication, from single-loop
systems to computer-control systems.

2. Challenging. You will have to draw on your knowledge of all areas of chemical
engineering. You will use most of the mathematical tools available (differential
equations, Laplace  transforms, complex variables, numerical analysis, etc.) to
solve real problems.

3. Fun. I have found, and I hope you will too, that process dynamics is fun. You
will get the opportunity to use some simple as well as some fairly advanced
mathematics to solve real plant problems. There is nothing quite like the thrill
of working out a controller design on paper and then seeing it actually work
on the plant. You will get a lot of satisfaction out of going into a plant that is
having major control problems, diagnosing what is causing the problem and
getting the whole plant lined out on specification. Sometimes the problem is in
the process, in basic design, or in equipment malfunctioning. But sometimes it
is in the control system, in basic strategy, or in hardware malfunctioning. Just
your knowledge of what a given control device should do can be invaluable.

1.5 GENERAL CONCEPTS

I have tried to present in this book a logical development. We will begin with
fundamentals and simple concepts and extend them as far as they can be gain-
fully extended. First we will learn to derive mathematical models of chemical
engineering systems. Then we will study some of the ways to solve the resulting
equations, usually ordinary differential equations and nonlinear algebraic equa-
tions. Next we will explore their openloop  (uncontrolled) dynamic behavior.
Finally we will learn to design controllers that will, if we are smart enough, make
the plant run automatically the way we want it to run: efficiently and safely.

Before we go into details in the subsequent chapters, it may be worthwhile
at this point to define some very broad and general concepts and some of the
terminology used in dynamics and control.
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1. Dynamics. Time-dependent behavior of a process. The behavior with no con-
trollers in the system is called the openloop  response. The dynamic behavior
with feedback controllers included with the process is called the closedloop
response.

2. Variables.
a. Manipulated oariables. Typically flow rates of streams entering or leaving a

process that we can change in order to control the plant.
b. Controlled variables. Flow rates, compositions, temperatures, levels, and

pressures in the process that we will try to control, either trying to hold
them as constant as possible or trying to make them follow some desired
time trajectory.

c. Uncontrolled variables. Variables in the process that are not controlled.
d. Load disturbances. Flow rates, temperatures, or compositions of streams

entering (but sometimes leaving) the process. We are not free to manipulate
them. They are set by upstream or downstream parts of the plant. The
control system must be able to keep the plant under control despite the
effects of these disturbances.

Example 1.4. For the heat exchanger shown in Fig. 1.4, the load disturbances are oil
feed flow rate F and oil inlet temperature TO.  The steam flow rate F, is the manipu-
lated variable. The controlled variable is the oil exit temperature T.

Example 1.5. For a binary distillation column (see Fig. 1.6),  load disturbance vari-
ables might include feed flow rate and feed composition. Reflux, steam, cooling
water, distillate, and bottoms flow rates might be the manipulated variables. Con-
trolled variables might be distillate product composition, bottoms product composi-
tion, column pressure, base liquid level, and reflux drum liquid level. The
uncontrolled variables would include the compositions and temperatures on all the
trays. Note that one physical stream may be considered to contain many variables:

Feed flow rate fi Distillate composition xg
.

Load
disturbances Feed composition z

w
Bottom composition x,,

1 Level reflux drum MR~ Controlled
variables

Manipulated
variables

i

FIGURE 1.6

i

Uncontrolled
variables
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Disturbance

Manipulated variable

7

Control
valve +*

c
Controlled variable

Process c

I
Measurement
device

FIGURE 1.7
Feedback control loop.

its flow rate, its composition, its temperature, etc., i.e., all its intensive and extensive
properties.

Feedback control. The traditional way to control a process is to measure the
variable that is to be controlled, compare its value with the desired value (the
setpoint  to the controller) and feed the difference (the error) into a feedback
controller that will change a manipulated variable to drive the controlled vari-
able back to the desired value. Information is thus “fed back” from the con-
trolled variable to a manipulated variable, as sketched in Fig. 1.7.
Feedforward control. The basic idea is shown in Fig. 1.8. The disturbance is
detected as it enters the process and an appropriate change is made in the
manipulated variable such that the controlled variable is held constant. Thus
we begin to take corrective action as soon as a disturbance entering the system
is detected instead of waiting (as we do with feedback control) for the dis-
turbance to propagate all the way through the process before a correction is
made.
Stability. A process is said to be unstable if its output becomes larger and
larger (either positively or negatively) as time increases. Examples are shown
in Fig. 1.9. No real system really does this, of course, because some constraint
will be met; for example, a control valve will completely shut or completely
open, or a safety valve will “pop.” A linear process is right at the limit of

Disturbance

I

*
Manipulated variable Process

output
e

Measurement
device

- Feedforward +
controller

FIGURE 1.8
Feedforward control.
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FIGURE 19
Stability.

Time

stability if it oscillates, even when undisturbed, and the amplitude of the oscil-
lations does not decay.

Most processes are openloop  stable, i.e., stable with no controllers on the
system. One important and very interesting exception that we will study in
some detail is the exothermic chemical reactor which can be openloop
unstable. All real processes can be made closedloop unstable (unstable when a
feedback controller is in the system) if the controller gain is made large
enough. Thus stability is of vital concern in feedback control systems.

The performance of a control system (its ability to control the process
tightly) usually increases as we increase the controller gain. However, we get
closer and closer to being closedloop unstable. Therefore the robustness of the
control system (its tolerance to changes in process parameters) decreases: a
small change will make the system unstable. Thus there is always a trade-off
between robustness and performance in control system design.

1.6 LAWS AND LANGUAGES
OF PROCESS CONTROL

1.6.1 Process Control Laws

There are several fundamental laws that have been developed in the process
control field as a result of many years of experience. Some of these may sound
similar to some of the laws attributed to Parkinson, but the process control laws
are not intended to be humorous.

(1) FIRST LAW. The simplest control system that will do the job is the best.
Complex elegant control systems look great on paper but soon end up on

“manual” in an industrial environment. Bigger is definitely not better in control
system design.
(2) SECOND LAW. You must understand the process before you can control it.
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No degree of sophistication in the control system (be it adaptive control,
Kalman filters, expert systems, etc.) will work if you do not know how your
process works. Many people have tried to use complex controllers to overcome
ignorance about the process fundamentals, and they have failed! Learn how the
process works before you start designing its control system.

1.6.2 Languages of Process Control

As you will see, several different approaches are used in this book to analyze the
dynamics of systems. Direct solution of the differential equations to give func-
tions of time is a “time domain” technique. Use of Laplace  transforms to charac-
terize the dynamics of systems is a “Laplace  domain” technique. Frequency
response methods provide another approach to the problem.

All of these methods are useful because each has its advantages and dis-
advantages. They yield exactly the same results when applied to the same
problem. These various approaches are similar to the use of different languages
by people around the world. A table in English is described by the word
“TABLE.” In Russian a table is described by the word “CTOJI.”  In Chinese a
table is “ $ 5.” In German it is “der Tisch.” But in any language a table is still
a table.

In the study of process dynamics and control we will use several languages.

English = time domain (differential equations, yielding exponential time
function solutions)

Russian = Laplace  domain (transfer functions)
Chinese = frequency domain (frequency response Bode and Nyquist plots)
Greek = state variables (matrix methods applies to differential equations)
German = z domain (sampled-data systems)

You will find the languages are not difficult to learn because the vocabulary that
is required is quite small. Only 8 to 10 “words” must be learned in each lan-
guage. Thus it is fairly easy to translate back and forth between the languages.

We will use “English” to solve some simple problems. But we will find that
more complex problems are easier to understand and solve using “Russian.” AS

problems get even more complex and realistic, the use of “Chinese” is required.
So we study in this book a number of very useful and practical process control
languages.

I have chosen the five languages listed above simply because I have had
some exposure to all of them over the years. Let me assure you that no political
or nationalistic motives are involved. If you would prefer French, Spanish,
Italian, Japanese, and Swahili, please feel free to make the appropriate substitu-
tions! My purpose in using the language metaphor is to try to break some of the
psychological barriers that students have to such things as Laplace  transforms
and frequency response. It is a pedagogical gimmick that I have used for over
two decades and have found it to be very effective with students.



PART

MATHEMATICAL
MODELS

OF
CHEMICAL

ENGINEERING
SYSTEMS

In the next two chapters we will develop dynamic mathematical models for
several important chemical engineering systems. The examples should illus-

trate the basic approach to the problem of mathematical modeling.
Mathematical modeling is very much an art. It takes experience, practice,

and brain power to be a good mathematical modeler. You will see a few models
developed in these chapters. You should be able to apply the same approaches to
your own process when the need arises. Just remember to always go back to
basics : mass, energy, and momentum balances applied in their time-varying form.
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CHAPTER

2
FUNDAMENTALS

2.1 INTRODUCTION

2.1.1 Uses of Mathematical Models

Without doubt, the most important result of developing a mathematical model of
a chemical engineering system is the understanding that is gained of what really
makes the process “tick.” This insight enables you to strip away from the
problem the many extraneous “confusion factors” and to get to the core of the
system. You can see more clearly the cause-and-effect relationships between
the variables.

Mathematical models can be useful in all phases of chemical engineering,
from research and development to plant operations, and even in business and
economic studies.

1. Research and development: determining chemical kinetic mechanisms and
parameters from laboratory or pilot-plant reaction data; exploring the effects
of different operating conditions for optimization and control studies; aiding
in scale-up calculations.

2 Design: exploring the sizing and arrangement of processing equipment for
dynamic performance; studying the interactions of various parts of the
process, particularly when material recycle or heat integration is used; evalu-
ating alternative process and control structures and strategies; simulating
start-up, shutdown, and emergency situations and procedures.

15
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3. Plant operation: troubleshooting control and processing problems; aiding in
start-up and operator training; studying the effects of and the requirements for
expansion (bottleneck-removal) projects; optimizing plant operation. It is
usually much cheaper, safer, and faster to conduct the kinds of studies listed
above on a mathematical model than experimentally on an operating unit.
This is not to say that plant tests are not needed. As we will discuss later, they
are a vital part of confirming the validity of the model and of verifying impor-
tant ideas and recommendations that evolve from the model studies.

2.1.2 Scope of Coverage

We will discuss in this book only deterministic systems that can be described by
ordinary or partial differential equations. Most of the emphasis will be on lumped
systems (with one independent variable, time, described by ordinary differential
equations). Both English and SI units will be used. You need to be familiar with
both.

2.1.3 Principles of Formulation

A. BASIS. The bases for mathematical models are the fundamental physical and
chemical laws, such as the laws of conservation of mass, energy, and momentum.
To study dynamics we will use them in their general form with time derivatives
included.

B. ASSUMPTIONS. Probably the most vital role that the engineer plays in mod-
eling is in exercising his engineering judgment as to what assumptions can be
validly made. Obviously an extremely rigorous model that includes every phe-
nomenon down to microscopic detail would be so complex that it would take a
long time to develop and might be impractical to solve, even on the latest super-
computers. An engineering compromise between a rigorous description and
getting an answer that is good enough is always required. This has been called
“optimum sloppiness.” It involves making as many simplifying assumptions as
are reasonable without “throwing out the baby with the bath water.” In practice,
this optimum usually corresponds to a model which is as complex as the avail-
able computing facilities will permit. More and more this is a personal computer.

The development of a model that incorporates the basic phenomena
occurring in the process requires a lot of skill, ingenuity, and practice. It is an
area where the creativity and innovativeness of the engineer is a key element in
the success of the process.

The assumptions that are made should be carefully considered and listed.
They impose limitations on the model that should always be kept in mind when
evaluating its predicted results.

C. MATHEMATICAL CONSISTENCY OF MODEL. Once all the equations of the
mathematical model have been written, it is usually a good idea, particularly with
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big, complex systems of equations, to make sure that the number of variables
equals the number of equations. The so-called “degrees of freedom” of the system
must be zero in order to obtain a solution. If this is not true, the system is
underspecified or overspecified and something is wrong with the formulation of
the problem. This kind of consistency check may seem trivial, but I can testify
from sad experience that it can save many hours of frustration, confusion, and
wasted computer time.

Checking to see that the units of all terms in all equations are consistent is
perhaps another trivial and obvious step, but one that is often forgotten. It is
essential to be particularly careful of the time units of parameters in dynamic
models. Any units can be used (seconds, minutes, hours, etc.), but they cannot be
mixed. We will use “minutes” in most of our examples, but it should be remem-
bered that many parameters are commonly on other time bases and need to be
converted appropriately, e.g., overall heat transfer coefficients in Btu/h  “F ft’  or
velocity in m/s. Dynamic simulation results are frequently in error because the
engineer has forgotten a factor of “60” somewhere in the equations.

D. SOLUTION OF THE MODEL EQUATIONS. We will concern ourselves in
detail with this aspect of the model in Part II. However, the available solution
techniques and tools must be kept in mind as a mathematical model is developed.
An equation without any way to solve it is not worth much.

E. VERIFICATION. An important but often neglected part of developing a math-
ematical model is proving that the model describes the real-world situation. At
the design stage this sometimes cannot be done because the plant has not yet
been built. However, even in this situation there are usually either similar existing
plants or a pilot plant from which some experimental dynamic data can be
obtained.

The design of experiments to test the validity of a dynamic model can
sometimes be a real challenge and should be carefully thought out. We will talk
about dynamic testing techniques, such as pulse testing, in Chap. 14.

2.2 FUNDAMENTAL LAWS

In this section, some fundamental laws of physics and chemistry are reviewed in
their general time-dependent form, and their application to some simple chemical
systems is illustrated.

2.2.1 Continuity Equations

A. TOTAL CONTINUITY EQUATION (MASS BALANCE). The principle of the
conservation of mass when applied to a dynamic system says
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The units of this equation are mass per time. Only one total continuity equation
can be written for one system.

The normal steadystate design equation that we are accustomed to using
says that “what goes in, comes out.” The dynamic version of this says the same
thing with the addition of the world “eventually.”

The right-hand side of Eq. (2.1) will be either a partial derivative a/at or an
ordinary derivative d/dt of the mass inside the system with respect to the inde-
pendent variable t.

Example 2.1 Consider the tank of perfectly mixed liquid shown in Fig. 2.1 into
which flows a liquid stream at a volumetric rate of F,  (ft3/min or m3/min)  and with
a density of p,, (lb,,,/ft’  or kg/m’). The volumetric holdup of liquid in the tank is V
(ft3 or m”),  and its density is p. The volumetric flow rate from the tank is F, and the
density of the outflowing stream is the same as that of the tank’s contents.

The system for which we want to write a total continuity equation is all the
liquid phase in the tank. We call this a macroscopic system, as opposed to a micro-
scopic system, since it is of definite and finite size. The mass balance is around the
whole tank, not just a small, differential element inside the tank.

F,  p,, - Fp = time rate of change of p V

The units of this equation are lb&nin or kg/min.

(2.2)

(AL)(!!) - (EJ!!)  = ‘“3zf3)

Since the liquid is perfectly mixed, the density is the same everywhere in the tank; it
does not vary with radial or axial position; i.e., there are no spatial gradients in
density in the tank. This is why we can use a macroscopic system. It also means that
there is only one independent variable, t.

Since p and V are functions only of t, an ordinary derivative is used in E,q.
(2.2).

4Pv-=F,p,-Fp
dt

Example 2.2. Fluid is flowing through a constant-diameter cylindrical pipe sketched
in Fig. 2.2. The flow is turbulent and therefore we can assume plug-flow conditions,
i.e., each “slice” of liquid flows down the pipe as a unit. There are no radial gra-
dients in velocity or any other properties. However, axial gradients can exist.

Density and velocity can change as the fluid flows along the axial or z direc-
tion. There are now two independent variables: time t and position z. Density and
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z=o I z + dz z=L

FIGURE 2.2
Flow through a pipe.

velocity are functions of both t and z: pg..) and I+,,~).  We want to apply the total
continuity equation [Eq. (2.111  to a system that consists of a small slice. The system
is now a “microscopic” one. The differential element is located at an arbitrary spot
z down the pipe. It is dz thick and has an area equal to the cross-sectional area of
the pipe A (ft’ or ml).

Time rate of change of mass inside system:

44  dz)
at (2.4)

A dz is the volume of the system; p is the density. The units of this equation are
lb,,,/min or kg/mm.

Mass flowing into system through boundary at z:

UAP

Notice that the units are still lbdmin = (ft/min)(ft2)(lb,,,/ft3).
Mass flowing out of the system through boundary at z + dz:

(2.5)

The above expression for the flow at z + dz may be thought of as a Taylor series
expansion of a function fez,  around z. The value of the function at a spot dz away
from z is

(2.7)

If the dz is small,  the series can be truncated after the first derivative term. Letting
j& = oAp gives Eq. (2.6).

Substituting these terms into Eq. (2.1) gives

a(Ap  = u,$,  _
at

uAp  + d(uAp)  dz
az 1

Canceling out the dz terms and assuming A is constant yield

(2.8)

B COMPONENT CONTINUITY EQUATIONS (COMPONENT BALANCES).
Unlike mass, chemical components are not conserved. If a reaction occurs inside
a system, the number of moles of an individual component will increase if it is a
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product of the reaction or decrease if it is a reactant. Therefore the component
continuity equation of thejth chemical species of the system says

[

Flow of moles ofjth flow of moles ofjth
-component into systemI[ component out of system1

[ rate
+

of formation of moles of jth
component from chemical reactions 1

[ time rate of change of moles of jth
=

component inside system 1 (2.9)

The units of this equation are moles of component j per unit time.
The flows in and out can be both convective (due to bulk flow) and molecu-

lar (due to diffusion). We can write one component continuity equation for each
component in the system. If there are NC components, there are NC component
continuity equations for any one system. However, the one total mass balance
and these NC component balances are not all independent, since the sum of all
the moles times their respective molecular weights equals the total mass. There-
fore a given system has only NC independent continuity equations. We usually
use the total mass balance and NC - 1 component balances. For example, in a
binary (two-component) system, there would be one total mass balance and one
component balance.

Example 2.3. Consider the same tank of perfectly mixed liquid that we used in
Example 2.1 except that a chemical reaction takes place in the liquid in the tank.
The system is now a CSTR (continuous stirred-tank reactor) as shown in Fig. 2.3.
Component A reacts irreversibly and at a specific reaction rate k to form product,
component B.

k
A - B

Let the concentration of component A in the inflowing feed stream be CA, (moles of
A per unit volume) and in the reactor CA. Assuming a simple first-order reaction,
the rate of consumption of reactant A per unit volume will be directly proportional
to the instantaneous concentration of A in the tank. Filling in the terms in Eq. (2.9)
for a component balance on reactant A,

Flow of A into system = F, CA,

Flow of A out of system = FC,

Rate of formation of A from reaction = - VkC,

P O

GO
CBO
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The minus sign comes from the fact that A is being consumed, not produced. The
units of all these terms must be the same: moles of A per unit time. Therefore the
Y/K,  term must have these units, for example (ft3)(min-‘)(moles  of A/ft3).  Thus
the units of k in this system are min- ‘ .

d(VCA)Time rate of change of A inside tank = 7

Combining all of the above gives

WCJ- = F,C,,  - FC, - VkC,
dt

We have used an ordinary derivative since t is the only independent variable in this
lumped system. The units of this component continuity equation are moles of A per
unit time. The left-hand side of the equation is the dynamic term. The first two
terms on the right-hand side are the convective terms. The last term is the gener-
ation term.

Since the system is binary (components A and B), we could write another
component continuity equation for component B. Let CB  be the concentration of B
in moles of B per unit volume.

WC,)- = F,  C,,  - FCB + VkCA
dt

Note the plus sign before the generation term since B is being produced by the
reaction. Alternatively we could use the total continuity equation [Eq. (2.3)]  since
C, , CB  , and p are uniquely related by

MAC,++  M,Cg=p (2.11)

where MA  and M, are the molecular weights of components A and B, respectively.

Example 2.4. Suppose we have the same macroscopic system as above except that
now consecutive reactions occur. Reactant A goes to B at a specific reaction rate k,,
but B can react at a specific reaction rate k, to form a third component C.

A-B-k2  c

Assuming first-order reactions, the component continuity equations for com-
ponents A, B, and C are

4VCJ-=F,C,,-FC,-Vk,C,
dt

WC,)-=F,,CBO--FCB+VklCA-Vk2CB
dt

(2.12)

WC,)-=F,&-FC,+Vk,C,
dt
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The component concentrations are related to the density

i MjCj=p
j=A

(2.13)

Three component balances could be used or we could use two of the component
balances and a total mass balance.

Example 2.5. Instead of fluid flowing down a pipe as in Example 2.2, suppose the
pipe is a tubular reactor in which the same reaction A h B of Example 2.3 takes
place. As a slice of material moves down the length of the reactor the concentration
of reactant CA decreases as A is consumed. Density p, velocity V, and concentration
CA can all vary with time and axial position z. We still assume plug-flow conditions
so that there are no radial gradients in velocity, density, or concentration.

The concentration of A fed to the inlet of the reactor at z = 0 is defined as

C Act. 0) -- CAO(r)

The concentration of A in the reactor ehluent  at z = L is defined as

C A&  L)  -- CAL(r)

(2.14)

We now want to apply the component continuity equation for reactant A to a small
differential slice of width dz,  as shown in Fig. 2.4. The inflow terms can be split into
two types: bulk flow and diffusion. Diffusion can occur because of the concentration
gradient in the axial direction. It is usually much less important than bulk flow in
most practical systems, but we include it here to see what it contributes to the
model. We will say that the diffusive flux of A, N,  (moles of A per unit time per unit
area), is given by a Fick’s law type of relationship

where fD, is a diffusion coefficient due to both diffusion and turbulence in the fluid
flow (so-called “eddy diffusivity”). fDA has units of length’ per unit time.

The terms in the general component continuity equation [Eq. (2.9)]  are:
Molar flow of A into boundary at z (bulk flow and diffusion)

= vAC, + AN, (moles of A/s)

z I + dz z=L
z=o

FIGURE 2.4
Tubular reactor.
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Molar flow of A leaving system at boundary z + dz

= @AC,,  + AN,)  + a(uACA  + ANA) dzaZ

Rate of formation of A inside system = -kc,.4  dz

Time rate of change of A inside system =
d(A dz CA)

at

Substituting into Eq. (2.9) gives

a(A  ;  “) = @AC, + AN,) -
(

uAC,  + AN, +
d(uAC,  + AN,)

aZ dz
>
- kCA Adz

$$+ @CA + NA)  + kC
aZ A

= o

Substituting Eq. (2.16) for N,,

a(ucA)f&A+-
aZ

+kC,=;  ‘BA$$
( >

(2.17)

The units of the equation are moles A per volume per time.

2.2.2 Energy Equation

The first law of thermodynamics puts forward the principle of conservation of
energy. Written for a general “open” system (where flow of material in and out of
the system can occur) it is

Flow of internal, kinetic, and

I[

flow of internal, kinetic, and
potential energy into system - potentia1  energy out of system
by convection or diffusion by convection or diffusion 1

heat added to system by I[ work done by system on
+ conduction, radiation, and - surroundings (shaft work and

reaction PV work)

time rate of change of internal, kinetic,
=

and potential energy inside system 1 (2.18)

Example 2.6. The CSTR system of Example 2.3 will be considered again, this time
with a cooling coil inside the tank that can remove the exothermic heat of reaction 1
(Btu/lb  . mol of A reacted or Cal/g. mol of A reacted). We use the normal convention
that 1 is negative for an exothermic reaction and positive for an endothermic reac-
tion. The rate of heat generation (energy per time) due to reaction is the rate of
consumption of A times 1.

Q.  = -RVC,k (2.19)
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F
CA
P FIGURE 2.5
T CSTR with heat removal.

The rate of heat removal from the reaction mass to the cooling coil is -Q (energy
per time). The temperature of the feed stream is To and the temperature in the
reactor is T (“R or K). Writing Eq. (2.18) for this system,

FOPOUJO  + Ko + 40)  - F&U + K + $4 + (Qc + Q)

- W + FE’  - F, PO)  = $ [(U + K + @VP] (2.20)

where U = internal energy (energy per unit mass)
K = kinetic energy (energy per unit mass)
4 = potential energy (energy per unit mass)

W = shaft work done by system (energy per time)
P = pressure of system

PO = pressure of feed stream

Note that all the terms in Eq. (2.20) must have the same units (energy per time) so
the FP terms must use the appropriate conversion factor (778 ft. lbr/Btu in English
engineering units).

In the system shown in Fig. 2.5 there is no shaft work, so W = 0. If the inlet
and outlet flow velocities are not very high, the kinetic-energy term is negligible. If
the elevations of the inlet and outlet flows are about the same, the potential-energy
term is small. Thus Eq. (2.20) reduces to

4pV
d t

=F,p,U,-FpU+Q,+Q-Fp$+F,p,z

= F,  po(Uo  + PO Fob)  - Fp(U + Pv)  + Q.  + Q (2.21)

where P is the specific volume (ft3/lb,  or m3/kg),  the reciprocal of the density.
Enthalpy, H or h, is defined:

Horh=U+PP (2.22)

We will use h for the enthalpy,of  a liquid stream and H for the enthalpy of a vapor
stream. Thus, for the CSTR, Eq. (2.21) becomes

&Vu)--Fopoh,-Fph+Q-AVkC,
d t

(2.23)
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For liquids the PP  term is negligible compared to the U term, and we use the
time rate of change of the enthalpy of the system instead of the internal energy of
the system.

d@  W-=F,p,ho-Fph+Q--VkC,
d t

The enthalpies are functions of composition, temperature, and pressure, but
primarily temperature. From thermodynamics, the heat capacities at constant pres-
sure, C, , and at constant volume, C,, are

cp=(gp  c”=(g)” (2.25)

To illustrate that the energy is primarily influenced by temperature, let us
simplify the problem by assuming that the liquid enthalpy can be expressed as a
product of absolute temperature and an average heat capacity C, (Btu/lb,“R  or
Cal/g K) that is constant.

h=C,T

We will also assume that the densities of all the liquid streams are constant. With
these simplifications Eq. (2.24) becomes

WT)
PC, d t
- = pC&F,  To  - FT) + Q - IVkC, (2.26)

Example 2.7. To show what form the energy equation takes for a two-phase system,
consider the CSTR process shown in Fig. 2.6. Both a liquid product stream F and a
vapor product stream F, (volumetric flow) are withdrawn from the vessel. The pres-
sure in the reactor is P. Vapor and liquid volumes are V, and V. The density and
temperature of the vapor phase are p, and T, . The mole fraction of A in the vapor is
y. If the phases are in thermal equilibrium, the vapor and liquid temperatures are
equal (T = T,).  If the phases are in phase equilibrium, the liquid and vapor composi-
tions are related by Raoult’s law, a relative volatility relationship or some other
vapor-liquid equilibrium relationship (see Sec. 2.2.6). The enthalpy of the vapor
phase H (Btu/lb,  or Cal/g) is a function of composition y, temperature T,,  and
pressure P. Neglecting kinetic-energy and potential-energy terms and the work term,

Fo VL CA P T I
CA0

PO

To

P

FIGURE 2.6
Two-phase CSTR with heat removal.
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and replacing internal energies with enthalpies in the time derivative, the energy
equation of the system (the vapor and liquid contents of the tank) becomes

d@,KH+pV,h)
d t

= F,p,h,  - Fph - F,p,H  + Q - IVkCA (2.27)

In order to express this equation explicitly in terms of temperature, let us
again use a very simple form for h (h = C, T) and an equally simple form for H.

H = C,  T + 1, (2.28)

where 1,  is an average heat of vaporization of the mixture. In a more rigorous
model A,  could be a function of temperature TV,  composition y, and pressure P.
Equation (2.27) becomes

0, KW, T + 4) + PV, C,  T3
d t

= F,p,C,T,  - F&T

- F,pdC,  T + I,)  + Q - WkC, (2.29)

Example 2.8. To illustrate the application of the energy equation to a microscopic
system, let us return to the plug-flow tubular reactor and now keep track of tem-
perature changes as the fluid flows down the pipe. We will again assume no radial
gradients in velocity, concentration, or temperature (a very poor assumption in
some strongly exothermic systems if the pipe diameter is not kept small). Suppose
that the reactor has a cooling jacket around it as shown in Fig. 2.7. Heat can be
transferred from the process fluid reactants and products at temperatur<Zlto  the
metal wall of the reactor at temperature TM. The heat is subsequently transferred to
the cooling water. For a complete description of the system we would need energy
equations for the process fluid, the metal wall, and the cooling water. Here we will
concern ourselves only with the process energy equation.

Looking at a little slice of the process fluid as our system, we can derive each
of the terms of Eq. (2.18). Potential-energy and kinetic-energy terms are assumed
negligible, and there is no work term. The simplified forms of the internal energy
and enthalpy are assumed. Diffusive flow is assumed negligible compared to bulk
flow. We will include the possibility for conduction of heat axially along the reactor
due to molecular or turbulent conduction.

TV
(1.  2)

-. Water

c

FIGURE 2.7
Jacketed tubular reactor.
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Flow of energy (enthalpy) into boundary at z due to bulk flow :

VA&,  T
lb Btu

with English engineering units of -&fP 2 - “R = Btu/min
ft3 lb,,, “R

Flow of energy (enthalpy) out of boundary at z + dz:

vApC
P

T + a(vApCpT)  dz
a2

Heat generated by chemical reaction = -A dz kCA  1

Heat transferred to metal wall = -h&tD dz)(T  - TM)

where h, = heat transfer film coefficient, Btu/min  ft2 “R
D = diameter of pipe, ft

Heat conduction into boundary at z = qZ A

where qZ  is a heat flux in the z direction due to conduction. We will use Fourier’s
law to express qr in terms of a temperature driving force:

q, = -k,  E (2.30)

where k, is an effective thermal conductivity with English engineering units of Btu/ft
min “R.

Heat conduction out of boundary at z + dz = qZ A + 7WA)  dz

Rate of change of internal energy (enthalpy) of the system =
a(pA  dz C,  79

at

Combining all the above gives

tic, T)  + WPC, 7.7 + IkC
at az A

+ %D (T  - TM)  = aCkA;;‘az)l (2.31)

2.2.3 Equations of Motion

As any high school student, knows, Newton’s second law of motion says that
force is equal to mass times acceleration for a system with constant mass M.

&!! (2.32)
CL

where F = force, lbr
M = mass, lb,,,

a = acceleration, ft/s2
gc = conversion constant needed when English engineering units are used

to keep units consistent = 32.2 lb,,, ft/lbr s2
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This is the basic relationship that is used in writing the equations of motion for a
system. In a slightly more general form, where mass can vary with time,

i q = jiI Fji
ge

(2.33)

where Ui  = velocity in the i direction, ft/s
Fji  = jth force acting in the i direction

Equation (2.33) says that the time rate of change of momentum in the i direction
(mass times velocity in the i direction) is equal to the net sum of the forces
pushing in the i direction. It can be thought of as a dynamic force balance. Or
more eloquently it is called the conservation ofmomentum.

In the real world there are three directions: x, y, and z. Thus, three force
balances can be written for any system. Therefore, each system has three equa-
tions of motion (plus one total mass balance, one energy equation, and NC - 1
component balances).

Instead of writing three equations of motion, it is often more convenient
(and always more elegant) to write the three equations as one vector equation.
We will not use the vector form in this book since all our examples will be simple
one-dimensional force balances. The field of fluid mechanics makes extensive use
of the conservation of momentum.

Example 2.9. The gravity-flow tank system described in Chap. 1 provides a simple
example of the application of the equations of motion to a macroscopic system.
Referring to Fig. 1.1, let the length of the exit line be L (ft) and its cross-sectional
area be A, (ft’).  The vertical, cylindrical tank has a cross-sectional area of A, (ft’).

The part of this process that is described by a force balance is the liquid
flowing through the pipe. It will have a mass equal to the volume of the pipe (APL)
times the density of the liquid p. This mass of liquid will have a velocity v (ft/s) equal
to the volumetric flow divided by the cross-sectional area of the pipe. Remember we
have assumed plug-flow conditions and incompressible liquid, and therefore all the
liquid is moving at the same velocity, more or less like a solid rod. If the flow is
turbulent, this is not a bad assumption.

M = A,Lp

F (2.34)
v=-

4

The amount of liquid in the pipe will not change with time, but if we want to change
the rate of outflow, the velocity of the liquid must be changed. And to change the
velocity or the momentum of the liquid we must exert a force on the liquid.

The direction of interest in this problem is the horizontal, since the pipe is
assumed to be horizontal. The force pushing on the liquid at the left end of the pipe
is the hydraulic pressure force of the liquid in the tank.

Hydraulic force = A,ph  f
c

(2.35)
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The units of this force are (in English engineering units):

32.2 ft/s2
32.2 lb,,, ft/lb,  s2

= lb,

where g is the acceleration due to gravity and is 32.2 ft/s2 if the tank is at sea level.
The static pressures in the tank and at the end of the pipe are the same, so we do
not have to include them.

The only force pushing in the opposite direction from right to left and
opposing the flow is the frictional force due to the viscosity of the liquid. If the flow
is turbulent, the frictional force will be proportional to the square of the velocity
and the length of the pipe.

Frictional force = K,  Lu2 (2.36)

Substituting these forces into Eq. (2.33),  we get

1 d(A,Lpu)

s, dt
= A,,h-f-  K,Lv2

c

d”-gh  KFgevz
dt-  L pA,

(2.37)

The sign of the frictional force is negative because it acts in the direction opposite
the flow. We have defined left to right as the positive direction.

Example 2.10. Probably the best contemporary example of a variable-mass system
would be the equations of motion for a space rocket whose mass decreases as fuel is
consumed. However, to stick with chemical engineering systems, let us consider the
problem sketched in Fig. 2.8. Petroleum pipelines are sometimes used for trans-
ferring several products from one location to another on a batch basis, i.e., one
product at a time. To reduce product contamination at the end of a batch transfer, a
leather ball or “pig” that just fits the pipe is inserted in one end of the line. Inert gas
is introduced behind the pig to push it through the line, thus purging the line of
whatever liquid is in it.

To write a force balance on the liquid still in the pipe as it is pushed out, we
must take into account the changing mass of material. Assume the pig is weightless
and frictionless compared with the liquid in the line. Let z be the axial position of
the pig at any time. The liquid is incompressible (density p) and flows in plug flow.
It exerts a frictional force proportional to the square of its velocity and to the length
of pipe still containing liquid.

Frictional force = - z)u2 (2.38)

Liquid

FIGURE 2.8
Pipeline and pig.
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The cross-sectional area of the pipe is A,. The mass of fluid in the pipe is
@ - zP,P.

The pressure P,  (lbr/ft’  gauge) of inert gas behind the pig is essentially con-
stant all the way down the pipeline. The tank into which the liquid dumps is at
atmospheric pressure. The pipeline is horizontal. A force balance in the horizontal z
direction yields

(2.39)

Substituting that v = dz/dt  we get

(2.40)

Example 2.11. As an example of a force balance for a microscopic system, let us
look at the classic problem of the laminar flow of an incompressible, newtonian
liquid in a cylindrical pipe. By “newtonian” we mean that its shear force (resistance
that adjacent layers of fluid exhibit to flowing past each other) is proportional to the
shear rate or the velocity gradient.

7 -2av,
IZ  -

g,  ar
(2.41)

where r,=  = shear rate (shear force per unit area) acting in the z direction and per-
pendicular to the r axis, lbr/ft’

V, = velocity in the z direction, ft/s

av
2 = velocity gradient of u, in the r direction
ar

p = viscosity of fluid, 1bJft  s

In many industries viscosity is reported in centipoise or poise. The conversion factor
is 6.72 x 10e4  (lb,,,/ft  s)/centipoise.

We will pick as our system a small, doughnut-shaped element, half of which is
shown in Fig. 2.9. Since the fluid is incompressible there is no radial flow of fluid, or
u, = 0. The system is symmetrical with respect to the angular coordinate (around
the circumference of the pipe), and therefore we need consider only the two dimen-
sions r and z. The forces in the z direction acting on the element are

Forces acting left to right:

Shear force on face at r = 1,,(2m dz) with units of lb, 2
p ft (2.42)

Pressure force on face at z = (2nr  dr)P (2.4;)

Forces acting right to left :

Shear force on face at r + dr = 2m  dz r,,  + $ (2nr dz T,J  dr

Pressure force on face at z + dz = 2nr  dr P + i (2nr dr P)  dz
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FIGURE 2.9
Laminar  flow in a pipe.

The rate of change of momeritum  of the system is

+ ; (2~  dz dr  pv,)
c

Combining all the above gives

The aP/az  term, or the pressure drop per foot of pipe, will be constant if the fluid is
incompressible. Let us call it AP/L. Substituting it and Eq. (2.41) into Eq. (2.44)
gives

(2.45)

2.2.4 Transport Equations

We have already used in the examples most of the laws governing the transfer of
energy, mass, and momentum. T ese transport laws all have the form of a flux
(rate of transfer per unit area) bein

i
proportional to a driving force (a gradient in

temperature, concentration, or velo ,‘ty).  The proportionality constant is a physi-
cal property of the system (like thermal conductivity, diffusivity, or viscosity).

For transport on a molecular vel, the laws bear the familiar names of
Fourier, Fick,  and Newton. +

‘\\Transfer relationships of a more m croscopic  overall form are also used; for
kexample, film coefficients  and overall toe rcients  in heat transfer. Here the differ-

ence  in the bulk properties between two locations is the driving force. The pro-
portionality constant is an overall transfer eoeficient. Table 2.1 summarizes some
to the various relationships used in developing models.
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TABLE 2.1

Transport laws

Quantity Heat Mass Momentum

Flux 4 N.4

Molecular transport

aT
Driving force

z
Law Fourier’s Fick’s
Property Thermal Diffusivity

conductivity

b 9,

Overall transport

Driving force AT AC,t
Relationship q=h,AT N, = k, A C ,

au,
dr
Newton’s
Viscosity

P

AP

$

t Driving forces in terms of partial pressure.s  and mole fractions are also
commonly used.

t The most common problem, determining pressure drops through pipes,
uses friction factor correlations,f  = (g, D AP/L)/Zpv*.

2.2.5 Equations of State

To write mathematical models we need equations that tell us how the physical
properties, primarily density and enthalpy, change with temperature, pressure,
and composition.

Liquid density = pL =&r,  r,  Xi,

Vapor density = pv = j&, r, yi,
. .

Liquid enthalpy = h = j&, r, Xi)

Vapor enthalpy = H = &.,  r, uij

(2.46)

Occasionally these relationships have to be fairly complex to describe the system
accurately. But in many cases simplification can be made without sacrificing
much overall accuracy. We have already used some simple enthalpy equations in
the examples of energy balances.

h=C,T

H=C,T+&

The next level of complexity would be to make the C,‘s  functions of temperature:

h  =  =Cpo,  dT
s

(2.48)
T O

A polynomial in T is often used for C, .

C pm =  4 +  A2  T
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Then Eq. (2.48) becomes

[

T2 =
h =  A,T+A211 To

=A,(T-To)++(T2-T;) (2.50)

Of course, with mixtures of components the total enthalpy is needed. If heat-of-
mixing effects are negligible, the pure-component enthalpies can be averaged:

“c” xjhjMj
h = ‘=ic (2.51)

jzl  Xj”j

where xi = mole fraction ofjth component
M, = molecular weight of jth component
hj = pure-component enthalpy of jth component, energy per unit mass

The denominator of Eq. (2.51) is the average molecular weight of the mixture.
Liquid densities can be assumed constant in many systems unless large

changes in composition and temperature occur. Vapor densities usually cannot
be considered invariant and some sort of PVT relationship is almost always
required. The simplest and most often used is the perfect-gas law :

PV = nRT

where P = absolute pressure (lb,/ft2  or kilopascals)
V = volume (ft3 or m3)

(2.52)

n = number of moles (lb * mol or kg. mol)
R = constant = 1545 lbt  ft/lb. mol “R  or 8.314 kPa  m3/kg  .mol  K
T = absolute temperature (OR  or K)

Rearranging to get an equation for density pv (lb,,,/ft3  or kg/m3)  of a perfect gas
with a molecular weight M, we get

nM M P
P”=y=E (2.53)

2.2.6 Equilibrium

The second law of thermodynamics is the basis for the equations that tell us the
conditions of a system when equilibrium conditions prevail.

A. CHEMICAL EQUILIBRIUM. Equilibrium occurs in a reacting system when

(2.54)

where vi  = stoichiometric coefficient  of the jth component with reactants having
a negative sign and products a positive sign

,lj = chemical potential of jth component
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The usual way to work with this equation is in terms of an equilibrium
constant for a reaction. For example, consider a reversible gas-phase reaction of
A to form B at a specific rate k, and B reacting back to A at a specific reaction
rate k2. The stoichiometry of the reaction is such that v, moles of A react to form
vb moles of B.

kl
v,A  Y

kz “,B

Equation (2.54) says equilibrium will occur when

vbfiB  - vapA  = o (2.56)
The chemical potentials for a perfy

___c_------
pj = p)’ + RT In 9, (2.57)

where $ = standard chemical potential (or Gibbs free energy per mole) of the jth
component, which is a function of temperature only

Pj  = partial pressure of the jth component
R = perfect-gas law constant
T = absolute temperature

Substituting into Eq. (2.56),

vb(& + RT In YrJ  - v,,(&  + RT In  Y,J  = 0

RT ln (4)‘”  - RT ln (p> = v.pi  - vb&

(2.58)

The right-hand side of this equation is a function of temperature only. The term
in parenthesis on the left-hand side is defined as the equilibrium constant K,,
and it tells us the equilibrium ratios of products and reactants.

(2.59)

B. PHASE EQUILIBRIUM. Equilibrium between two phases occurs when the
chemical potential of each component is the same in the two phases:

p;  = py (2.60)
where pi  = chemical potential of the jth component in phase I

~7  = chemical potential of the jth component in phase II

Since the vast majority of chemical engineering systems involve liquid and
vapor phases, many vapor-liquid equilibrium relationships are used. They range
from the very simple to the very complex. Some of the most commonly used
relationships are listed below. More detailed treatments are presented in many
thermodynamics texts. Some of the basic concepts are introduced by Luyben  and
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Wenzel in Chemical Process Analysis: Mass and Energy Balances, Chaps. 6 and 7,
Prentice-Hall, 1988.

Basically we need a relationship that permits us to calculate the vapor com-
position if we know the liquid composition, or vice versa. The most common
problem is a bubblepoint calculation: calculate the temperature T and vapor
composition yj, given the pressure P and the liquid composition xi. This usually
involves a trial-and-error, iterative solution because the equations can be solved
explicitly only in the simplest cases. Sometimes we have bubblepoint calculations
that start from known values of xi and T and want to find P and yj. This is
frequently easier than when pressure is known because the bubblepoint calcu-
lation is usually noniterative.

Dewpoint  calculations must be made when we know the composition of the
vapor yi and P (or T) and want to find the liquid composition x, and T (or P).
Flash calculations must be made when we know neither Xj nor yj and must
combine phase equilibrium relationships, component balance equations, and an
energy balance to solve for all the unknowns.

We will assume ideal vapor-phase behavior in our examples, i.e., the partial
pressure of the jth component in the vapor is equal to the total pressure P times
the mole fraction of the jth component in the vapor yj (Dalton’s law):

Pj = Pyj

Corrections may be required at high pressures.
In the liquid phase several approaches are widely used.

1. Raoult’s law. Liquids that obey Raoult’s are called ideal.

(2.61)

(2.62)

where Pi”  is the vapor pressure of pure component j. Vapor pressures are func-
tions of temperature only. This dependence is often described by

(2.64)

2. Relative volatility. The relative volatility aij of component i to component j is
defined :

YJx*- -
Crij  -

Yjlxj
(2.65)

Relative volatilities are fairly constant in a number of systems. They are con-
venient so they are frequently used.
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In a binary system the relative volatility c(  of the more volatile com-
pone\nt  compared with the less volatile component is

Y/X
IX  = (1 - y)/(l  - x)

Rearranging,

ax
y = 1 + (a - 1)x

(2.66)

3. K values. Equilibrium vaporization ratios or K values are widely used, partic-
ularly in the petroleum industry.

Kj  =t (2.67)

The K’s are functions of temperature and composition, and to a lesser extent,
pressure.

4. Activity coefficients. For nonideal  liquids, Raoult’s law must be modified to
account for the nonideality in the liquid phase. The “fudge factors” used are
called activity coefficients.

NC

P  =  c xjp,syj
j=l

(2.68)

where yj is the activity coefficient for the jth component. The activity coefi-
cient  is equal to 1 if the component is ideal. The y’s are functions of composi-
tion and temperature

2.2.7 Chemical Kinetics

We will be modeling many chemical reactors, and we must be familiar with the
basic relationships and terminology used in describing the kinetics (rate of
reaction) of chemical reactions. For more details, consult one of the several excel-
lent texts in this field.

A. ARRHENIUS  TEMPERATURE DEPENDENCE. The effect of temperature on
the specific reaction rate k is usually found to be exponential :

k = Cle.-E/RT (2.69)

where k = specific reaction rate
a = preexponential factor

E = activation energy; shows the temperature dependence of the reaction
rate, i.e., the bigger E, the faster the increase in k with increasing tem-
perature (Btu/lb  * mol or Cal/g * mol)

T = absolute temperature
R = perfect-gas constant = 1.99 Btu/lb. mol “R or 1.99 Cal/g.  mol K
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This exponential temperature dependence represents one of the most severe non-
linearities in chemical engineering systems. Keep in mind that the “apparent”
temperature dependence of a reaction may not be exponential if the reaction is
mass-transfer limited, not chemical-rate limited. If both zones are encountered in
the operation of the reactor, the mathematical model must obviously include
both reaction-rate and mass-transfer effects.

B. LAW OF MASS ACTION. Using the conventional notation, we will define an
overall reaction rate Yt  as the rate of change of moles of any component per
volume due to chemical reaction divided by that component’s stoichiometric
coefficient.

(2.70)

The stoichiometric coefficients vj  are positive for products of the reaction and
negative for reactants. Note that 3 is an intensive property and can be applied to
systems of any size.

For example, assume we are dealing with an irreversible reaction in which
components A and B react to form components C and D.

Then

k
v,A  + v,B  - V, c + v,j D

The law of mass action says that the overall reaction rate ZR  will vary with tem-
perature (since k is temperature-dependent) and with the concentration of reac-
tants raised to some powers.

3. = k&*)“G)b

where CA = concentration of component A
Cr,  = concentration of component B

(2.72)

The constants a and b are not, in general, equal to the stoichibmetric coefficients
v,  and vb  . The reaction is said to be first-order in A if a = 1. It is second-order in
A if a = 2. The constants a and b can be fractional numbers.

As indicated earlier, the units of the specific reaction rate k depend on the
order of the reaction. This is because the overall reaction rate % always has the
same units (moles per unit time per unit volume). For a first-order reaction of A
reacting to form B, the overall reaction rate R, written for component A, would
have units of moles of A/min ft3.

3. = kCA

If C,  has units of moles of A/ft3,  k must have units of min-‘.
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If the overa%  reaction rate for the system above is second-order in A,

3%  = kc;

3X still has units of moles of A/min ft3.  Therefore k must have units of ft3/min
mol A.

Consider the reaction A + B -+  C. If the overall reaction rate is first-order
in both A and B,

3% still has units of moles of A/min ft3.  Therefore k must have units of ft3/min
mol B.

PROBLEMS

2.1. Write the component continuity equations describing the CSTR of Example 2.3 with:
(a) Simultaneous reactions (first-order, isothermal)

k1
A-B

h
A - C

(b) Reversible (first-order, isothermal)

2.2. Write the component continuity equations for a tubular reactor as in Example 2.5
with consecutive reactions occurring:

kl kz
A - B - C

2.3. Write the component continuity equations for a perfectly mixed batch reactor (no
inflow or outflow) with first-order isothermal reactions:
(a) Consecutive
(b) Simultaneous
(c) Reversible

2.4. Write the energy equation for the CSTR of Example 2.6 in which consecutive first-
order reactions occur with exothermic heats of reaction 1, and 1,.

kl kz
A - B - C

2.5. Charlie Brown and Snoopy are sledding down a hill that is inclined 0 degrees from
horizontal. The total weight of Charlie, Snoopy, and the sled is M. The sled is essen-
tially frictionless but the air resistance of the sledders is proportional to the square of
their velocity. Write the equations describing their position x, relative to the top of
the hill (x = 0). Charlie likes to “belly flop,” so their initial velocity at the top of the
hill is u,,  .

What would happen if Snoopy jumped off the sled halfway down the hill
without changing the air resistance?

26. An automatic bale tosser on the back of a farmer’s hay baler must throw a 60-pound
bale of hay 20 feet back into a wagon. If the bale leaves the tosser with a velocity u, in
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a direction 0 = 45” above the horizontal, what must u, be? If the tosser must acceler-
ate the bale from a dead start to u, in 6 feet, how much force must be exerted?

Bale
initially
at rest wagon

FIGURE P2.6

2.7. A mixture of two immiscible liquids is fed into a decanter. The heavier liquid a settles
to the bottom of the tank. The lighter liquid /I forms a layer on the top. The two
interfaces are detected by floats and are controlled by manipulating the two flows F,
and F, .

F, = K,h,

F, = KB(h,  + h,)

The controllers increase or decrease the flows as the levels rise or fall.
The total feed rate is F,  . The weight fraction of liquid a in the feed is x,. The

two densities pa  and ps are constant.
Write the equations describing the dynamic behavior of this system.

Decanter

Fa

Fo -

FO FIGURE P2.7
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SYSTEMS

3.1 INTRODUCTION

Even if you were only half awake when you read the preceding chapter, you
should have recognized that the equations developed in the examples constituted
parts of mathematical models. This chapter is devoted to more complete exam-
ples. We will start with simple systems and progress to more realistic and
complex processes. The most complex example will be a nonideal, nonequimolal-
overflow, multicomponent distillation column with a very large number of equa-
tions needed for a rigorous description of the system.

It would be impossible to include in this book mathematical models for all
types of chemical engineering systems. The examples cover a number of very
commonly encountered pieces of equipment: tanks, reactors of several types, and
distillation columns (both continuous and batch). I hope that these specific exam-
ples (or case studies) of mathematical modeling will give you a good grasp of

40
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strategies and procedures so that you can apply them to your specific problem.
Remember, just go back to basics when faced with a new situation. Use the
dynamic mass and energy balances that apply to your system.

In each case we will set up all the equations required to describe the system.
We will delay any discussion of solving these equations until Part II. Our
purpose at this stage is to translate the important phenomena occurring in the
physical process into quantitative, mathematical equations.

3.2 SERIES OF ISOTHERMAL,
CONSTANT-HOLDUP CSTRs

The system is sketched in Fig. 3.1 and is a simple extension of the CSTR con-
sidered in Example 2.3. Product B is produced and reactant A is consumed in
each of the three perfectly mixed reactors by a first-order reaction occurring in
the liquid. For the moment let us assume that the temperatures and holdups
(volumes) of the three tanks can be different, but both temperatures and the
liquid volumes are assumed to be constant (isothermal and constant holdup).
Density is assumed constant throughout the system, which is a binary mixture of
A and B.

With these assumptions in mind, we are ready to formulate our model. If
the volume and density of each tank are constant, the total mass in each tank is
constant. Thus the total continuity equation for the first reactor is

4PV;)-=pF,-pF,  =o
dt (3.1)

Likewise total mass balances on tanks 2 and 3 give

F, = F,  = F,  = F, = F (3.2)

where F is defined as the throughput (m3/min).
We want to keep track of the amounts of reactant A and product B in each

tank, so component continuity equations are needed. However, since the system
is binary and we know the total mass of material in each tank, only one com-
ponent continuity equation is required. Either B or A can be used. If we arbi-
trarily choose A, the equations describing the dynamic changes in the amounts of

- -
Fo

* “I
Fl

* “2 -
F2

t “3 ’
F3

t

k, ’ k2 4

CA0 CA1 CA2 _  (3

FIGURE 3.1
Series of CSTRs.
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reactant A in each tank are (with units of kg - mol of A/min)

v dCA1
- = F(cAO  - CAlI  - VlklCA1’ dt

y dCAz- = F(C,,
’ dt - cA2)  - v, k2  cA2

I

(3.3)

v dCA3- = F(cA2
3 dt - CA3) - v3 k, CA3

The specific reaction rates k, are given by the Arrhenius equation

k, = CIe-E/RTm n = 1, 2, 3 (3.4)

If the temperatures in the reactors are different, the k’s are different. The n refers
to the stage number.

The volumes V, can be pulled out of the time derivatives because they are
constant (see Sec. 3.3). The flows are all equal to F but can vary with time. An
energy equation is not required because we have assumed isothermal operation.
Any heat addition or heat removal required to keep the reactors at constant
temperatures could be calculated from a steadystate energy balance (zero time
derivatives of temperature).

The three first-order nonlinear ordinary differential equations given in Eqs.
(3.3) are the mathematical model of the system. The parameters that must be
known are Vi, V,  , V,  , kl, k2, and k, . The variables that must be specified before
these equations can be solved are F and CA,.  “Specified” does not  mean that
they must be constant. They can be time-varying, but they must be known or
given functions of time. They are theforcingfunctions.

The initial conditions of the three concentrations (their values at time equal
zero) must also be known.

Let us now check the degrees of freedom of the system. There are three
equations and, with the parameters and forcing functions specified, there are only
three unknowns or dependent variables: CA1,  CA2,  and cA3.  Consequently a
solution should be possible, as we will demonstrate in Chap. 5.

We will use this simple system in many subsequent parts of this book.
When we use it for controller design and stability analysis, we will use an even
simpler version. If the throughput F is constant and the holdups and tem-
peratures are the same in all three tanks, Eqs. (3.3) become

~

dt

&
dt

dCA3
dt

(3.5)
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where r = V/F with units of minutes.

There is only one forcing function or input variable, CA0 .

3.3 CSTRs  WITH VARIABLE HOLDUPS

If the previous example is modified slightly to permit the volumes in each reactor
to vary with time, both total and component continuity equations are required
for each reactor. To show the effects of higher-order kinetics, assume the reaction
is now nth-order in reactant A.

Reactor 1:

dV’=F  -F
dt ’ ’

f (v,c,,) = Fo  CAO - FICAI  - V,kl(CAl) (3.6)

Reactor 2:

dVZ=F  -F
dt ’ 2

f (v, cA2)  = FICA,  - F, CAZ  - v,  k,(C,,) (3.7)

Reactor 3 :

dV3- = F,  - F3
dt

f 05 cA3)  = F2  cA2 - F, CAS  - v,  k,(CA,) (3.8)

Our mathematical model now contains six first-order nonlinear ordinary
differential equations. Parameters that must be known are k,, k,,  k,, and n.
Initial conditions for all the dependent variables that are to be integrated must be
given:  CA1,  cA2,  CA3, VI,  V2, and V,  . The forcing functions CAo(r)  and Focr,  must
also be given.

Let us now check the degrees of freedom of this system. There are six equa-
tions. But there are nine unknowns: C*i, CA,,  C,,  , VI,  V,, V,,  F,, F,, and F,.
Clearly this system is not sufficiently specified and a solution could not be
obtained.

What have we missed in our modeling? A good plant operator could take
one look at the system and see what the problem is. We have not specified how
the flows out of the tanks are to be set. Physically there would probably be
control valves in the outlet lines to regulate the flows. How are these control
valves to be set? A common configuration is to have the level in the tank con-
trolled by the outflow, i.e., a level controller opens the control valve on the exit
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line to increase the outflow if the level in the tank increases. Thus there must be a
relationship between tank holdup and flow.

Fl =A”,) F2  =.& F, =-I&j) (3.9)

The f functions will describe the level controller and the control valve. These
three equations reduce the degrees of freedom to zero.

It might be worth noting that we could have considered the flow from the
third tank F,  as the forcing function. Then the level in tank 3 would probably be
maintained by the flow into the tank, F,  . The level in tank 2 would be controlled
by F,, and tank 1 level by F,  . We would still have three equations.

The reactors shown in Fig. 3.1 would operate at atmospheric pressure if
they were open to the atmosphere as sketched. .If  the reactors are not vented and
if no inert blanketing is assumed, they would run at the bubblepoint pressure for
the specified temperature and varying composition. Therefore the pressures could
be different in each reactor, and they would vary with time, even though tem-
peratures are assumed constant, as the C,‘s  change.

3.4 TWO HEATED TANKS

As our next fairly simple system let us consider a process in which two energy
balances are needed to model the system. The flow rate F of oil passing through
two perfectly mixed tanks in series is constant at 90 ft3/min.  The density p of the
oil is constant at 40 lb,,,/ft3,  and its heat capacity C, is 0.6 Btu/lb,“F.  The volume
of the first tank V, is constant at 450 ft3,  and the volume of the second tank V,  is
constant at 90 ft3.  The temperature of the oil entering the first tank is T,  and is
150°F at the initial steadystate. The temperatures in the two tanks are T1  and T2.
They are both equal to 250°F at the initial steadystate. A heating coil in the first
tank uses steam to heat the oil. Let Q1 be the heat addition rate in the first tank.

There is one energy balance for each tank, and each will be similar to Eq.
(2.26) except there is no reaction involved in this process.

Energy balance for tank 1:

d(pcfitvLT1’  = pC,(Fo To - FIT,)  + Q1

Energy balance for tank 2:

OC, v,  T,)
d t = PC,(FIT,  - F,  W (3.11)

Since the throughput is constant F, = F, = F, = F. Since volumes, densities,
and heat capacities are all constant, Eqs. (3.10) and (3.11) can be simplified.

PC, v,  % = &,FCG  - T) + QI

pC,  V, 2 = PC, F(T, - T,)
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Let’s check the degrees of freedom of this system. The parameter values that
are known are p, C,, Vi, V,  , and F. The heat input to the first tank Q1 would be
set by the position of the control valve in the steam line. In later chapters we will
use this example and have a temperature controller send a signal to the steam
valve to position it. Thus we are left with two dependent variables, T1 and T2,
and we have two equations. So the system is correctly specified.

3.5 GAS-PHASE, PRESSURIZED CSTR

Suppose a mixture of gases is fed into the reactor sketched in Fig. 3.2. The
reactor is filled with reacting gases which are perfectly mixed. A reversible reac-
tion occurs :

/
2A+ B-

The forward reaction is 1.5th-order  in A; the reverse reaction is first-order in B.
Note that the stoichiometric coefficient for A and the order of the reaction are
not the same. The mole fraction of reactant A in the reactor is y. The pressure
inside the vessel is P (absolute). Both P and y can vary with time. The volume of
the reactor I’  is constant.

riction (control valve) into
another vessel which is held at a constant pressure P,  (absolute). The outflow will
vary with the pressure and the composition of the reactor. Flows through control
valves are discussed in more detail in Part III; here let us use the formula

(3.14)

C, is the valve-sizing coefficient. Density varies with pressure and composition.

where M = average molecular weight
MA = molecular weight of reactant A
MB = molecular weight of product B
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The concentration of reactant in the reactor is

with units of moles of A per unit volume. The overall reaction rate for the
forward reaction is

The overall reaction rate for the reverse reaction is

With these fundamental relationships pinned down, we are ready to write
the total and component continuity equations.

Total continuity :

Component A continuity:

p&&c
dt o A0 - FCA  - 2Vk,(C*)‘.5  + 2Vk,  CR

The 2 in the reaction terms comes from the stoichiometric coefficient of A.
There are five equations [Eqs. (3.14) through (3.18)]  that make up the math-

ematical model of this system. The parameters that must be known are V,  C,, k,,
kz,  R, MA,  and MB.  The forcing functions (or inputs) could be P,,  po,  Fo,  and
CA,.  This leaves five unknowns (dependent variables): C, , p, P, F, and y.

3.6 NONISOTHERMAL CSTR

In the reactors studied so far, we have shown the effects of variable holdups,
variable densities, and higher-order kinetics on the total and component conti-
nuity equations. Energy equations were not needed because we assumed isother-
mal operations. Let us now consider a system in which temperature can change
with time. An irreversible, exothermic reaction is carried out in a single perfectly
mixed CSTR as shown in Fig. 3.3.

k
A - B

The reaction is nth-order in reactant A and has a heat of reaction A (Btu/lb. mol
of A reacted). Negligible heat losses and constant densities are assumed.

To remove the heat of reaction, a cooling jacket surrounds the reactor.
Cooling water is added to the jacket at a volumetric flow rate F, and with an
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FJ

TJ
TJ

v

T

FJ  -
‘J CA

TJO

I

F
CA
T

FIGURE 3.3
k

A - B Nonisothermal CSTR.

inlet temperature of I”, . The volume of water in the jacket V,  is constant. The
mass of the metal walls is assumed negligible so the “thermal inertia” of the
metal need not be considered. This is often a fairly good assumption because
the heat capacity of steel is only about 0.1 Btu/lb,“F,  which is an order of mag-
nitude less than that of water.

A. PERFECTLY MIXED QlCU.ING  JACKET. We assume that the temperature
e in the jacket is TJ.  The heat transfer between  the process at tem-

rature T and the cooling water at temperature TJ  is described by an cuuxall
heat transfer coefficient.

Q = f-J4rV’  - ‘I’

where Q = heat transfer rate
U = overall heat transfer coefficient

AH  = heat transfer area

In general the heat transfer area c* vary with the J&&p  in the reactor if
some area was not completely-d with reaction mass liquid at all times. The
equations describing the system are:

Reactor total continuity:

Reactor component A continuity :

d(vcA)~ = Fo  CA0  - FCA  - Vk(CJ
dt

Reactor energy equation :

p y = p(Foho  - Fh) - LVk(CJ”  - UA,,(T  - TJ) (3.20)
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Jacket energy equation :

PJ  v, % = F.,PJ@,,  - h,) + UAAT  - TJ)

where pJ = density of cooling water
h = enthalpy of process liquid

h,  = enthalpy of cooling water

The-n  of constant densities makes C, = C, and permits  us to use en-
thalpies in the time derivatives to replace internal energies,

A hydraulic- between reactor holdup and the flow out of the
reactor is also needed. A level controller is assumed to change the outflow as the
volume in the tank rises or falls: the higher the volume, the larger the outflow.
The outflow is shut off completely when the volume drops to a minimum value
Vm i n  *

F  =  K,(V - Vrni”) (3.22)

The level controller is a proportional-only feedback controller.
Finally, we need enthalpy data to relate the h’s to compositions and tem-

peratures. Let us assume the simple forms

h=C,T and h,=CJT,

where C, = heat capacity of the process liquid
C, = heat capacity of the cooling water

(3.23)

Using Eqs. (3.23) and the Arrhenius relationship for k, the five equations
that describe the process are

dv=F  -F
dt ’

(3.24)

d(VCd- = F,-,  CA0  - FCA  - V(CA)“ae-E’RT
dt

(3.25)

4W
PC, d t
- = pC,(F, To  - FT) - ,lV(C,)“ae-E’RT  - UA,,(T  - TJ) (3.26)

PJ YrC, $ = FJPJCGJO - G) + U&V - Trl (3.27)

F = I&@ - Vmin) (3.28)

Checking the degrees of freedom, we see that there are five equations and
five unknowns: V, F, CA, T, and TJ.  We must have initial conditions for these
five dependent variables. The forcing functions are To,  F,  , CA,,  and F,  .

The parameters that must be known are n, a, E,  R, p, C,, U,  A,, pJ,  V,,
CJ,  TJo,  K,,  and Vmin.  If the heat transfer area varies with the reactor holdup it
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would be included as another variable, but we would also have another equation;
the relationship between area and holdup. If the reactor is a flat-bottomed verti-
cal cylinder with diameter D and if the jacket is only around the outside, not
around the bottom

A,+ (3.29)

We have assumed the overall heat transfer coefficient U  is constant. It may be a
function of the coolant flow rate F, or the composition of the reaction mass,
giving one more variable but also one more equation.

B. PLUG FLOW COOLING JACKET. In the model derived above, the cooling
water inside the jacket was assumed to be perfectly mixed. In many jacketed
vessels this is not a particularly good assumption. If the water flow rate is high
enough so that the water temperature does not change much as it goes through
the jacket, the mixing pattern makes little difference. However, if the water tem-
perature rise is significant and if the flow is more like plug flow than a perfect mix
(this would certainly be the case if a cooling coil is used inside the reactor instead
of a jacket), then an average jacket temperature TJA  may be used.

&A =
‘GO + TJexit

2
(3.30)

where TJ.aait  is the outlet cooling-water temperature.
The average temperature is used in the heat transfer equation and to rep-

resent the enthalpy of jacket material. Equation (3.27) becomes

&A
PJGCJ  dt-  = FJ  PJ  CJ(TJO  -  &exit)  + UAdT  -  TJA) (3.31)

Equation (3.31) is integrated to obtain TJA  at each instant in time, and Eq. (3.30)
is used to calculate TJexi, , also as a function of time.

_ C. $UMPEb  JACKET MODEL. Another alternative is to 9 up the jacket
volume into a number of perfectly mixed “lumps” as shown in Fig. 3.4.

An energy equation is needed for&lump. Assuming four lumps of&
volume and heat transfer area, we@ fp energy equations for the jacket:

dTr,
:PJ  vJ  cJ -dt =  FJ  PJ  CJ(TJO  -  T,,) +  iu&tT -  TJI)

&z
iPJ  GcJ  &-  =  F,f’,  ~,(TJ, -  T,,) +  ~~A,XT  -  qz)

d=h
iPJ  vJcJ  dt-  =  FJ  L’J  ~,(TJ, -  TJ&  +  %&IV  -  %)

(3.32)

tPJ  vJ  cJ
d%
-  =  FJI’JCJ(TJ,  -  &4)  +  tU&V  -  TJ~)dt
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Lumped jacket model.

D. S-CANT METAL WA&s In some reactors, particularly-.--
m-pressure v& or smaller-scale equipment,  the mass of the metal walls and
its effects on the thermal dynamics m be considered. To be rigorous, the
energy equation for the wall should be a partial differential equation in time and
radial position. A less rinorous but frequently used approximation is to “hunp”
the mass of the metal and assume the metal is all at one temperature I’,‘,.  This
assumption is a fairly ed one when the wall is not too sand  the thermal-
conductivity of the metal is large.

Then effective i@ide and @e film coefficients h,  and h, are used as

P
in Fig. 3.5.

The three energy equations for the process are: ,

PC 4v”r)
* at

= pCkF,  To  - FT) - AV(CA)“ae-E’RT  - h,AXT  - TM)

is-
PJ vJ cJ dt - FJ PJ CJ~%I  - r,)  + ho ‘%(TM  - TJ)

.-
where hi -- inside heat transfer film coefficient

h, = outside heat transfer film coefficient

FIGURE 3.5
Lumped  metal model.

(3.33)
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pM = density of metal wall
CM = heat capacity of metal wall
V, = volume of metal wall
Ai = inside heat transfer area
A, = outside heat transfer area

3.7 SINGLE-COMPONENT VAPORIZER

aoiling  systems represent some of the most interesting and important operations
in chemical engineering processing and are among the most dificult  to model. To
describe these systems rigorously, conservation equations must be written for
both the vapor and liquid phases. The basic problem is finding the rate of vapor-
ization of material from the liquid phase into the vapor phase. The equations
used to describe the boiling rate should be physically reasonable and mathemati-
cally convenient for solution.

Consider the vaporizer sketched in Fig. 3.6. Liquefied petroleum gas (LPG)
is fed into a pressurized tank to hold the liquid level in the tank. We will assume
that LPG is a pure component: propane. Vaporization of mixtures of com-
ponents is discussed in Sec. 3.8.

The liquid in the tank is assumed perfectly mixed. Heat is added at a rate Q
to hold the desired pressure in the tank by vaporizing the liquid at a rate W,
(mass per time). Heat losses and the mass of the tank walls are assumed negligi-
ble. Gas is drawn off the top of the tank at a volumetric flow rate F,. F, is the
forcing function or load disturbance.

A. STEADYSTATE MODEL. The simplest model would neglect the dynamics of
both vapor and liquid phases and relate the gas rate F, to the heat input by

P,F,W, - ho) = Q (3.34)

where I-Z,  = enthalpy of vapor leaving tank (Btu/lb,  or Cal/g)
h, = enthalpy of liquid feed @&u/lb,  or Cal/g)

FIGURE 3.6
LPG vaporizer.
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B. LIQUID-PHASE DYNAMICS MODEL. A somewhat more realistic model is
obtained if we assume that the volume of the vapor phase is small enough to
make its dynamics negligible. If only a few moles of liquid have to be vaporized
to change the pressure in the vapor phase, we can assume that this pressure is
always equal to the vapor pressure of the liquid at any temperature (P = P,  and
WV = pu F,).  An energy equation for the liquid phase gives the temperature (as a
function of time), and the vapor-pressure relationship gives the pressure in the
vaporizer at that temperature.

A total continuity equation for the liquid phase is also needed, plus the two
controller equations relating pressure to heat input and liquid level to feed flow
rate F, . These feedback controller relationships will be expressed here simply as
functions. In later parts of this book we will discuss these functions in detail.

Q =fim Fo =fz(YL) (3.35)

An equation of state for the vapor is needed to be able to calculate density
pv from the pressure or temperature. Knowing any one property (T, P,  or p,)  pins
down all the other properties since there is only one component, and two phases
are present in the tank. The perfect-gas law is used.

The liquid is assumed incompressible so that C, = C, and its internal
energy is C, T. The enthalpy of the vapor leaving the vaporizer is assumed to be
of the simple form: C, T + I,.

Total continuity :

Energy :

c
?
p d(l/,  T)
-=PoC,FOTO-~,F,(C,T+~,)+Qdt

State :

(3.38)

Vapor pressure :

lnP=$+B

Equations (3.35) to (3.39) give us six equations. Unknowns are Q, F,, P,  V’, pv,
and T.

C. LIQUID AND VAPOR DYNAMICS MODEL. If the dynamics of the vapor
phase cannot be neglected (if we have a large volume of vapor), total continuity
and energy equations must be written for the gas in the tank. The vapor leaving
the tank, pv F, , is no longer equal, dynamically, to the rate of vaporization W,  .
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The key problem now is to find a simple and reasonable expression for the
boiling rate W,.  I have found in a number of simulations that a “mass-transfer”
type of equation can be conveniently employed. This kind of relationship also
makes physical sense. Liquid boils because, at some temperature (and composi-
tion if more than one component is present), it exerts a vapor pressure P greater
than the pressure P, in the vapor phase above it. The driving force is this pres-
sure differential

W”  = K&P - P”) (3.40)

where K,, is the pseudo mass transfer coefficient. Naturally at equilibrium (not
steadystate) P = P,. If we assume that the liquid and vapor are in equilibrium,
we are saying that KM, is very large. When the equations are solved on a com-
puter, several values of K,, can be used to test the effects of nonequilibrium
conditions.

The equations describing the system are:

Liquid phase

Total continuity:

pZ=p,F,-- W”

Energy :

P
d(v,  UL)-=poFOh,-  W,H,+Q

dt

Vapor pressure :

Vapor phase

Total continuity:

Energy :

State :

p = @/T+B

WC P,)-= w,--P”F”
dt

MP,
” = RT,

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

where UL = internal energy of liquid at temperature T
HL = enthalpy of vapor boiling off liquid
U,  = internal energy of vapor at temperature T,
Hv = enthalpy of vapor phase
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Thermal-property data are needed to relate the enthalpies to temperatures.
We would then have 10 variables: Q, FO, V,,  WV,  T,  V,,  pO, T,,  P,  and P,.
Counting Eqs. (3.35) and (3.40) to (3.46) we see there are only nine equations.
Something is missing. A moment’s reflection should generate the other relation-
ship, a physical constraint: V’ + V, = total volume of tank.

D. THERMAL EQUILIBRIUM MODEL. The previous case yields a model that is
about as rigorous as one can reasonably expect. A final model, not quite as
rigorous but usually quite adequate, is one in which thermal equilibrium between
liquid and vapor is assumed to hold at all times. More simply, the vapor and.
liquid temperatures are assumed equal to each other: T = T, . This eliminates the
need for an energy balance for the vapor phase. It probably works pretty well
because the sensible heat of the vapor is usually small compared with latent-heat
effects.

If the simple enthalpy relationships can be used, Eq. (3.42) becomes

pc d(v,  T)
-=p,,F,C,T,-  W,(C,T+I,)+Q

p dt
(3 .47)

The simpler models discussed above (such as cases A and B) are usually
good enough for continuous-flow systems where the changes in liquid and vapor
holdups and temperatures are not very large. Batch systems may require the
more rigorous models (cases C and D) because of the big variations of most
variables.

3.8 MULTICOMPONENT FLASH DRUM

Let us look now at vapor-liquid systems with more than one component. A
liquid stream at high temperature and pressure is “flashed” into a drum, i.e., its
pressure is reduced as it flows through a restriction (valve) at the inlet of the
drum. This sudden expansion is irreversible and occurs at constant enthalpy. If it
were a reversible expansion, entropy (not enthalpy) would be conserved. If the
drum pressure is lower than the bubblepoint pressure of the feed at the feed
temperature, some of the liquid feed will vaporize.

Gas is drawn off the top of the drum through a control valve whose stem
position is set by a pressure controller (Fig. 3.7). Liquid comes off the bottom of
the tank on level control.

The pressure P,  before the pressure letdown valve is high enough to
prevent any vaporization of feed at its temperature To and composition Xgj  (mole
fraction jth component). The forcing functions in this system are the feed tem-
perature To, feed rate F, and feed composition xoj. Adiabatic conditions (no heat
losses) are assumed. The density of the liquid in the tank, pL,  is assumed to be a
known function of temperature and composition.

PL  =&, T) (3.48)
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FL

xi
c Liquid

FIGURE 3.7
Flash drum.

The density pv of the vapor in the drum is a known function of temperature T,
composition Yj  and pressure P. If the perfect-gas law can be used,

MY
“- R T (3.49)

where My  is the average molecular weight of the gas.

WY = ,flMj  Yj

where Mj is the molecular weight of thejth component.

(3.50)

A. STEADYSTATE MODEI.,.  The simplest model of this system is one that
neglects dynamics completely. Pressure is assumed constant, and the steadystate
total and component continuity equations and a steadystate energy balance are
used. Vapor and liquid phases are assumed to be in equilibrium.

Total continuity:

PoFo=P,F,+PL.FL (3.51)

Component continuity:

PoF,x P”  J’v PLFL

MY 01 - MW  yj  + -” Mr  ‘j

Vapor-liquid equilibrium :

Energy equation :

Yj =.&cj.  T, P) (3.53)

ho PO Fo = HP,  Fv + ~PL FL (3.54)
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Thermal properties :

4 = Axe,.  To) h =“&j.  T) H =-f&j,  T,  0 (3.55)

The average molecular weights Ma’  are calculated from the mole fractions
in the appropriate stream [see Eq. (3.50)].  The number of variables in the system
is 9 + 2(NC-  1):  Pv,  F,,  M?, Yl, Y,,  . . . . YNC-1,  PL,  FL,  MY’,  XI,  xz, . ..>
XNc-r,  T,  h, and H. Pressure P and all the feed properties are given. There are
NC - 1 component balances [Eq. (3.52)].

There are a total of NC equilibrium equations. We can say that there are
NC equations like Eq. (3.53). This may bother some of you. Since the sum of the
y’s has to add up to 1, you may feel that there are only NC - 1 equations for the
y’s. But even if you think about it this way, there is still one more equation:
The sum of the partial pressures has to add up to the total pressure. Thus, what-
ever way you want to look at it, there are NC phase equilibrium equations.

Total continuity
Energy
Component continuity
Vapor-liquid equilibrium
Densities of vapor and liquid
Thermal properties for liquid and

vapor streams
Average molecular weights

Number of
Equation equations
(3.5 1) 1 ,
(3.54) 1
(3.52) “NC-1
(3.53) N C
(3.48) and (3.49) 2

(3.55) 2
(3.50) 2

2NC+7

The system is specified by the algebraic equations listed above. This is just a
traditional steadystate “equilibrium-flash” calculation.

B. RIGOROUS MODEL. Dynamics can be included in a number of ways, with
varying degrees of rigor, by using models similar to those in Sec. 3.7. Let us
merely indicate how a rigorous model, like case C of Sec. 3.7, could be developed.
Figure 3.8 shows the system schematically.

An equilibrium-flash calculation (using the same equations as in case A
above) is made at each point in time to find the vapor and liquid flow rates and
properties immediately after the pressure letdown valve (the variables with the
primes: FL,  F’, , yi , xi,  . . . shown in Fig. 3.8). These two streams are then fed into
the vapor and liquid phases. The equations describing the two phases will be
similar to Eqs. (3.40) to (3.42) and (3.44) to (3.46) with the addition of (1) a multi-
component vapor-liquid equilibrium equation to calculate P,  and (2) NC - 1
component continuity equations for each phase. Controller equations relating V,
to F, and P, to F,  complete the model.
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FIGURE 3.8
Dynamic flash drum.

C. PRACTICAL MODEL. A more workable dynamic model can be developed if
we ignore the dynamics of the vapor phase (as we did in case B of Sec. 3.7). The
vapor is assumed to be always in equilibrium with the liquid. The conservation
equations are written for the liquid phase only.

Total continuity :

4 v, ~3-=PoFo-P,F,-PLFLdt
Component continuity :

d
PO Fo P”  f’, PLFL

dt =~XOj-M:‘Yj-px’My  ’
(3.58)

Energy :

, dK',p,h)

dt = PoFoho  - P”F,H  - pLF,h

The NC vapor-liquid equilibrium equations [Eqs. (3.53)],  the three enthalpy
relationships [Eqs. (3.55)],  the two density equations [Eqs. (3.48) and (3.49)],  the
two molecular-weight equations [Eq. (3.50)],  and the feedback controller equa-
tions [Eqs. (3.56)]  are all needed. The total number of equations is 2NC + 9,
which equals the total number of variables: P,,  V,, p”, F,, My,  y,,  y,, . . .,
YN~-~,P~,F~,MBLV,X~,X~,...,~N~-~,T,~,~~~H.

Keep in mind that all the feed properties, or forcing functions, are given:
Fo, PO, ho,  Xoj,  and JG"'V.,,,,t

i.

3.9 BATCH REACT&

Batch processes offer some of the most interesting and challenging problems in
modeling and control because of their inherent dynamic nature. Although most
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FIGURE 3.9
Batch reactor.

large-scale chemical engineering processes have traditionally been operated in a
continuous fashion, many batch processes are still used in the production of
smaller-volume specialty chemicals and pharmaceuticals. The batch chemical
reactor has inherent kinetic advantages over continuous reactors for some reac-
tions (primarily those with slow rate constants). The wide use of digital process
control computers has permitted automation and optimization of batch processes
and made them more efficient and less labor intensive.

Let us consider the batch reactor sketched in Fig. 3.9. Reactant is charged
into the vessel. Steam is fed into the jacket to bring the reaction mass up to a
desired temperature. Then cooling water must be added to the jacket to remove
the exothermic heat of reaction and to make the reactor temperature follow the
prescribed temperature-time curve. This temperature profile is fed into the tem-
perature controller as a setpoint  signal. The setpoint  varies with time.

First-order consecutive reactions take place in the reactor as time proceeds.
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The product that we want to make is component B. If we let the reaction go on
too long, too much of B will react to form undesired C; that is, the yield will be
low. If we stop the reaction too early, too little A will have reacted; i.e., the
conversion and yield will be low. Therefore there is an optimum batch time when
we should stop the reaction. This is often done by quenching it, i.e., cooling it
down quickly.

There may also be an optimum temperature profile. If the temperature-
dependences  of the specific reaction rates kl and k2 are the same (if their activa-
tion energies are equal), the reaction should be run at the highest possible
temperature to minimize the batch time. This maximum temperature would be a
limit imposed by some constraint: maximum working temperature or pressure of
the equipment, further undesirable degradation or polymerization of products or
reactants at very high temperatures, etc.

If k, is more temperature-dependent than k,, we again want to run at the
highest possible temperature to favor the reaction to B. In both cases we must be
sure to stop the reaction at the right time so that the maximum amount of B is
recovered.

If kl is less temperature-dependent that k,, the optimum temperature
profile is one that starts off at a high temperature to get the first reaction going
but then drops to prevent the loss of too much B. Figure 3.10 sketches typical
optimum temperature and concentration profiles. Also shown in Fig. 3.10 as the
dashed line is an example of an actual temperature that could be achieved in a
real reactor. The reaction mass must be heated up to T,,,.  We will use the
optimum temperature profile as the setpoint  signal.

With this background, let us now derive a mathematical model for this
process. We will assume that the density of the reaction liquid is constant. The

FIGURE 3.10

-I Batch pro!ilcs.
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total continuity equation for the reaction mass, after the reactants have been
charged and the batch cycle begun, is

4p VI-=0-o
dt

(3.60)

There is no inflow and no outflow. Since p is constant, dV/dt  = 0. Therefore the
volume of liquid in the reactor is constant.

Component continuity for A:

v%=  -Vk,C,
Component continuity for B :

V f$$  = Vk,C,  - Vk, C,

(3.61)

Kinetic equations :

k,  = ClIe-ElIR= k, = a2  ,-EzIRT (3.63)

Using a lumped model for the reactor metal wall and the simple enthalpy equa-
tion h = C, T, the energy equations for the reaction liquid and the metal wall
are :

Energy equation for process :

pVC,  $f = -A,Vk,C,  - A2  Vk, C,  - h,A,(T  - TM)

Energy equation for metal wall :

pM V, C, $ = h, A,(TJ - TM)  - hi A,(T,  - T)

(3.64)

where 1,  and 2, are the exothermic heats of reaction for the two reactions.
Notice that when the reactor is heated with steam, TJ  is bigger than TM  and

TM  is bigger than T. When cooling with water, the temperature differentials have
the opposite sign. Keep in mind also that the outside film coefficient h, is usually
significantly different for condensing steam and flowing cooling water.

This switching from heating to cooling is a pretty tricky operation, particu-
larly if one is trying to heat up to T,,, as fast as possible but cannot permit any
overshoot. A commonly used system is shown in Fig. 3.9. The temperature con-
troller keeps the steam valve (V-l) open and the cooling water valve (V-2) shut
during the heat-up. This is accomplished by using split-ranged valves, discussed
later in Part III. Also during the heat-up, the cooling-water outlet valve (V-3) is
kept closed and the condensate valve (V-4) is kept open.

When cooling is required, the temperature controller shuts the steam valve
and opens the cooling-water valve just enough to make the reactor temperature



EXAMPLES OF MATHEMATICAL MODELS OE CHEMICAL ENGINEERING SYSTEMS 61

follow the setpoint. Valve v-3  must be opened and valve V-4 must be shut when-
ever cooling water is added.

We will study in detail the simulation and control of this system later in
this book. Here let us simply say that there is a known relationship between the
error signal E (or the temperature setpoint  minus the reactor temperature) and
the volumetric flow rates of steam F, and cooling water F, .

F, = h(E) Fw =.fm (3.66)

To describe what is going on in the jacket we may need two different sets of
equations, depending on the stage: heating or cooling. We may even need to
consider a third stage: filling the jacket with cooling water. If the cooling-water
flow rate is high and/or the jacket volume is small, the time to fill the jacket may
be neglected.

A. HEATING PHASE. During heating, a total continuity equation and an energy
equation for the steam vapor may be needed, plus an equation of state for the
steam.

Total continuity:

(3.67)

where pJ = density of steam vapor in the jacket
V,  = volume of the jacket
pS = density of incoming steam

WC  = rate of condensation of steam (mass per time)

The liquid condensate is assumed to be immediately drawn off through a steam
trap.

Energy equation for steam vapor:

v W,p,)

J -=FF,p,H,-h,A,(T,-T,)-  W,h,
dt

(3.68)

where UJ  = internal energy of the steam in the jacket
H, = enthalpy of incoming steam
h, = enthalpy of liquid condensate

The internal energy changes (sensible-heat effects) can usually be neglected com-
pared with the latent-heat effects. Thus a simple algebraic steadystate energy
equation can be used

w = ho ‘%tTJ  - Th4)
e

Hs - k
(3.69)
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The equations of state for steam (or the steam tables) can be used to calcu-
late temperature TJ  and pressure P, from density pJ  . For example, if the perfect-
gas law and a simple vapor-pressure equation can be used,

(3.70)

where M = molecular weight of steam = 18
A, and B,  = vapor-pressure constants for water

Equation (3.70) can be solved (iteratively) for TJ  if pJ  is known [from Eq. (3.67)].
Once TJ  is known, P, can be calculated from the vapor-pressure equation. It is
usually necessary to know PJ  in order to calculate the flow rate of steam through
the inlet valve since the rate depends on the pressure drop over the valve (unless
the flow through the valve is “critical”).

If the mass of the metal surrounding the jacket is significant, an energy
equation is required for it. We will assume it negligible.

In most jacketed reactors or steam-heated reboilers the volume occupied by
the steam is quite small compared to the volumetric flow rate of the steam vapor.
Therefore the dynamic response of the jacket is usually very fast, and simple
algebraic mass and energy balances can often be used. Steam flow rate is set
equal to condensate flow rate, which is calculated by iteratively solving the heat-
transfer relationship (Q = UA  AT) and the valve flow equation for the pressure
in the jacket and the condensate flow rate.

B. COOLING PHASE. During the period when cooling water is flowing through
the jacket, only one energy equation for the jacket is required if we assume the
jacket is perfectly mixed.

PJ  vJ cJ  z = Fw  CJ PATJO  - TJ)  + ho  4Ui.t - q) (3.7 1)

where TJ = temperature of cooling water in jacket
pJ  = density of water
C, = heat capacity of water
TJ, = inlet cooling-water temperature

Checking the degrees of freedom of the system during the heating stage, we
have seven variables (C, , CB , T, TM,  TJ  , p J, and W,)  and seven equations [Eqs.
(3.61),  (3.62),  (3.64),  (3.65),  (3.67),  (3.69),  and (3.70)].  During the cooling stage we
use Eq. (3.71) instead of Eqs. (3.67),  (3.69),  and (3.70),  but we have only TJ  instead
OfT,,p,,and  WC.

3.10 REACTOR WITH MASS TRANSFER

As indicated in our earlier discussions about kinetics in Chap. 2, chemical reac-
tors sometimes have mass-transfer limitations as well as chemical reaction-rate
limitations. Mass transfer can become limiting when components must be moved
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FIGURE 3.11
Gas-liquid bubble reactor.

from one phase into another phase, before or after reaction. As an example of the
phenomenon, let us consider the gas-liquid bubble reactor sketched in Fig. 3.11.

Reactant A is fed as a gas through a distributor into the bottom of the
liquid-filled reactor. A chemical reaction occurs between A and B in the liquid
phase to form a liquid product C. Reactant A must dissolve into the liquid before
it can react.

A+B:C

If this rate of mass transfer of the gas A to the liquid is slow, the concentration of
A in the liquid will be low since it is used up by the reaction as fast as it arrives.
Thus the reactor is mass-transfer limited.

If the rate of mass transfer of the gas to the liquid is fast, the reactant A
concentration will build up to some value as dictated by the steadystate reaction
conditions and the equilibrium solubility of A in the liquid. The reactor is
chemical-rate limited.

Notice that in the mass-transfer-limited region increasing or reducing the
concentration of reactant IS will make little difference in the reaction rate (or the
reactor productivity) because the concentration of A in the liquid is so small.
Likewise, increasing the reactor temperature will not give an exponential increase
in reaction rate. The reaction rate may actually decrease with increasing tem-
perature because of a decrease in the equilibrium solubility of A at the gas-liquid
interface.
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Let us try to describe some of these phenomena quantitatively. For simplic-
ity, we will assume isothermal, constant-holdup, constant-pressure, and constant
density conditions and a perfectly mixed liquid phase. The gas feed bubbles are
assumed to be pure component A, which gives a constant equilibrium concentra-
tion of A at the gas-liquid interface of Cx (which would change if pressure and
temperature were not constant). The total mass-transfer area of the bubbles is
A and could depend on the gas feed rate FA. A constant-mass-transfer coetli-
ciF:t k, (with units of length per time) is used to give the flux of A into the liquid
through the liquid film as a function of the driving force.

N, = kL(CX  - C,) ( 3 . 7 2 )

Mass transfer is usually limited by diffusion through the stagnant liquid film
because of the low liquid diffusivities.

We will assume the vapor-phase dynamics are very fast and that any unre-
acted gas is vented off the top of the reactor.

FY  = F,  - AM,  NA MA (3.73)
P A

Component continuity for A :

Vf%A N
dt MT  A

- FL CA  - VkCA  CB

Component continuity for B:

V$$=F,C,,-F,C.-VkC&,

Total continuity :

4p VI-=O=FgpB+MANAAMT-FLp
d t

(3.74)

(3.75)

(3.76)

Equations (3.72) through (3.76) give us five equations. Variables are NA,
C,,  C, , F, , and F, . Forcing functions are F,, F,  , and CBO  .

3.11 IDEAL BINARY DISTILLATION COLUMN

Next to the ubiquitous CSTR, the distillation column is probably the most
popular and important process studied in the chemical engineering literature.
Distillation is used in many chemical processes for separating feed streams and
for purification of final and intermediate product streams.

Most columns handle multicomponent feeds. But many can be approx-
imated by binary or pseudobinary mixtures. For this example, however, we will
make several additional assumptions and idealizations that are sometimes valid
but more frequently are only crude approximations.
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The purpose of studying this simplified case first is to reduce the problem to
its most elementary form so that the basic structure of the equations can be
clearly seen. In the next example, a more realistic system will be modeled.

We will assume a binary system (two components) with constant relative
volatility throughout the column and theoretical (100 percent efficient) trays, i.e.,
the vapor leaving the tray is in equilibrium with the liquid on the tray. This
means the simple vapor-liquid equilibrium relationship can be used

ax”
yn = 1 + (a - 1)X”

(3.77)

where x, = liquid composition on the nth tray (mole fraction more volatile
component)

y, = vapor composition on the nth tray (mole fraction more volatile
component)

c1  = relative volatility

A single feed stream is fed as saturated liquid (at its bubblepoint) onto the
feed tray N,. See Fig. 3.12. Feed flow rate is F (mol/min)  and composition is z
(mole fraction more volatile component). The overhead vapor is totally con-
densed in a condenser and flows into the reflux drum, whose holdup of liquid is
M, (moles). The contents of the drum is assumed to be perfectly mixed with
composition xD.  The liquid in the drum is at its bubblepoint. Reflux is pumped
back to the top tray (NT)  of the column at a rate R. Overhead distillate product
is removed at a rate D.

We will neglect any delay time (deadtime) in the vapor line from the top of
the column to the reflux drum and in the reflux line back to the top tray (in
industrial-scale columns this is usually a good assumption, but not in small-scale
laboratory columns). Notice that y,,  is not equal, dynamically, to xD.  The two
are equal only at steadystate.

At the base of the column, liquid bottoms product is removed at a rate B
and with a composition xB . Vapor boilup is generated in a thermosiphon reboiler
at a rate V.  Liquid circulates from the bottom of the column through the tubes in
the vertical tube-in-shell reboiler because of the smaller density of the vapor-
liquid mixture in the reboiler tubes. We will assume that the liquids in the reboil-
er and in the base of the column are perfectly mixed together and have the same
composition xB and total holdup M, (moles). The circulation rates through well-
designed thermosiphon reboilers are quite high, so this assumption is usually a
good one. The composition of the vapor leaving the base of the column and
entering tray 1 is y, . It is in equilibrium with the liquid with composition xB .

The column contains a total of N,  theoretical trays. The liquid holdup on
each tray including the downcomer is M, . The liquid on each tray is assumed to
be perfectly mixed with composition x,. The holdup of the vapor is assumed to
be negligible throughout the system. Although the vapor volume is large, the
number of moles is usually small because the vapor density is so much smaller
than the liquid density. This assumption breaks down, of course, in high-pressure
columns.
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A further assumption we will make is that of equimolal overflow. If the
molar heats of vaporization of the two components are about the same, whenever
one mole of vapor condenses, it vaporizes a mole of liquid. Heat losses up the
column and temperature changes from tray to tray (sensible-heat effects) are
assumed negligible. These assumptions mean that the vapor and liquid rates
through the stripping and rectifying sections will be constant under steadystate
conditions. The “operating lines” on the familiar McCabe-Thiele diagram are
straight lines.

However, we are interested here in dynamic conditions. The assumptions
above, including negligible vapor holdup, mean that the vapor rate through all

F
z

Cooling
water

Mu XD LC

?!iii?D

xD

FIGURE 3.12
Binary distillation column.
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trays of the column is the same, dynamically as well as at steadystate.

Remember these V’s are not necessarily constant with time. The vapor boilup can
be manipulated dynamically. The mathematical effect of assuming equimolal
overtlow  is that we do not need an energy equation for each tray. This- is quite a
significant simplification.

The liquid rates throughout the’ column will not be the same dynamically.
They will depend on the fluid mechanics of the tray. Often a simple Francis weir
formula relationship is used to relate the liquid holdup on the tray (M,) to the
liquid flow rate leaving the tray (L,).

F,  = 3.33Lw(h,w)‘.5 (3.78)

where F,  = liquid flow rate over weir (ft3/s)
L,  = length of weir (ft)
h,,  = height of liquid over weir (ft)

More rigorous relationships can be obtained from the detailed tray hydraulic
equations to include the effects of vapor rate, densities, compositions, etc. We will
assume a simple functional relationship between liquid holdup and liquid rate.

Finally, we will neglect the dynamics of the condenser and the reboiler. In
commercial-scale columns, the dynamic response of these heat exchangers is
usually ,much  faster than the response of the column itself. In some systems,
however, the dynamics of this peripheral equipment are important and must be
included in the model.

With all these assumptions in mind, we are ready to write the equations
describing the system. Adopting the usual convention, our total continuity equa-
tions are written in terms of moles per unit time. This is kosher because no
chemical reaction is assumed to occur in the column.

Condenser and Rejlux  Drum
Total continuity:

dM,--V-R-D
dt

Component continuity (more volatile component):

d(MD  xd
dt = VYNT - (R + D)x,

Top Tray (n = NT)

Total continuity:
dM,,- = R - LNT

dt

(3.80)

(3.81)

(3.82)
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Component continuity :

4Mm  XNT)
dt = Rx,  - LNT XNT + ~YNT-  I - vYNT

Next to Top Tray (n = N,  - 1)

Total continuity:

dM,,-1  L
- =dt NT - LNT-l

Component continuity i

(3.83)

(3.84)

d(MN,-  1 XNT-  1)  =  L

dt NT
x

N T  - LNT-lXNT-l  +  vYNT-Z  - I/YNT-l (3*85)

nth Tray

Total continuity:

i!LLL -L
dt-“+I  ’

Component continuity:

d(Mnxn)  _L

dt n+lX,+l - JkX” + VY,-1 - VY”

Feed Tray (n = NF)

TotaI  continuity:

dM,,=L
dt

NF+l - LNF + F

Component continuity :

d(M,, XNF)  =
dt LNF+l  XNF+l - LNF  XNF  +  ~YNF  - I

First Tray (n = 1)

Total continuity :

dM,- = L, - L,
dt

Component continuity :

(3.86)

(3.87)

(3.88)

VyNF + FZ (3.89)

(3.90)

(3.91)
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Reboiler and Column Base

Total continuity:

dM,-=L,-V-B
dt

(3.92)

Component continuity :

d(M, 4
d t

= L,x,  - vy,  - Bx,

Each tray and the column base have equilibrium equations [Eq.  (3.77)].
Each tray also has a hydraulic equation [Eq. (3.79)].  We also need two equations
representing the level controllers on the column base and reflux drum shown in
Fig. 3.12.

D = fiwm B =.fws~ (3.94)

Let us now examine the degrees of freedom of the system. The feed rate F
and composition z are assumed to be given.

Number of variables :
Tray compositions (x, and y.)
Tray liquid flows (I,,)
Tray liquid holdups (M,)
Reflux drum composition (xD)
Reflux drum flows (R and D)
Reflux drum holdup (M,)
Base compositions (xg and y,)
Base flows (V  and B)
Base holdup (MB)

Number of equations :

Tray component continuity
Tray total continuity
Equilibrium (trays plus base)
Hydraulic
Level controllers

= 2Nr
= N,
=N,
= 1
= 2
= 1
=2
= 2
= 1

4NT+9

=N,
= N,
=N,+l
= N,
= 2

Reflux drum component continuity = 1
Reflux drum total continuity = 1
Base component continuity = 1
Base total continuity = 1

4NT+7

n

Equation
number
(3.87)
(3.86)
(3.77)
(3.79)
(3.94)
(3.8 1)
(3.80)
(3.93)
(3.92)

Therefore the system is underspecified by two equations. From a control
engineering viewpoint this means that there are only two variables that can be
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controlled (can be fixed). The two variables that must somehow be specified are
reflux flow R and vapor boilup Y (or heat input to the reboiler). They can be held
constant (an openloop  system) or they can be changed by two controllers to try
to hold some other two variables constant. In a digital simulation of this column
in Part II we will assume that two feedback controllers adjust R and V to control
overhead and bottoms compositions xD and xB .

3.12 MULTICOMPONENT NONIDEAL
DISTILLATION COLUMN

As a more realistic distillation example, let us now develop a mathematical model
for a multicomponent, nonideal  column with NC components, nonequimolal
overflow, and inehicient  trays. The assumptions that we will make are:

1.
2 .
3 .
4 .

Liquid on the tray is perfectly mixed and incompressible.
Tray vapor holdups are negligible.
Dynamics of the condenser and the reboiler will be neglected.
Vapor and liquid are in thermal equilibrium (same temperature) but not in
phase equilibrium. A Murphree vapor-phase efficiency  will be used to describe
the departure from equilibrium.

E  ,=Ynj-YLI,i

n’ Yn*j-YynT-1.j
(3.96)

where yzj = composition of vapor in phase equilibrium with liquid on nth tray
with composition xnj

ynj  = actual composition of vapor leaving nth tray
y,‘_  i, j = actual composition of vapor entering nth tray

Enj  = Murphree vapor efficiency  forjth component on nth tray

Multiple feeds, both liquid and vapor, and sidestream drawoffs, both liquid
and vapor, are permitted. A general nth tray is sketched in Fig. 3.13. Nomencla-
ture is summarized in Table 3.1. The equations describing this tray are:

Total continuity (one per tray):

dM
A = L,+1 + F;4  + F,Y-,  + v,-, - v, - L,  -s; - s.’

dt
(3.97)

Component continuity equations (NC - 1 per tray):

4Mn  Xnj)  = L
dt “+I xn+l,j  + Fkx$  + FL-d-1.j  + K-IYn-1,j

- Vn Y,j  - L,  Xnj - Sf;  X,j - S,’  )‘,I (3.98)
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FIGURE 3.13
nth tray of multicomponent column.

Energy equation (one per tray):

hd&f, M  _ L

dt n+1 n+1+  F;4hf + ~,Y_Je-1+  I/,-lH,-,

- ~‘,H,-L,h,-S;4h,-S,YH” (3.99)

where the enthalpies have units of energy per mole.

Phase equilibrium (NC per tray):

Y,*j  = Lj,  Pm.  T-1 (3.100)

An appropriate vapor-liquid equilibrium relationship, as discussed in Sec. 2.2.6,
must be used to find y~j.  Then Eq. (3.96) can be used to calculate the ynj  for the
inefficient tray. The y,‘_  r, i would be calculated from the two vapors entering the
tray: FL-, and V,-,.

Additional equations include physical property relationships to get densities
and enthalpies, a vapor hydraulic equation to calculate vapor flow rates from
known tray pressure drops, and a liquid hydraulic relationship to get liquid flow

TABLE 3.1

Streams on nth tray

Nlllllber Flow rate Composition Temperature

F:

c 1
L“+I

v,

K-1

s:

L”

S.’
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rates over the weirs from known tray holdups. We will defer any discussion of
the very real practical problems of solving this large number of equations until
Part II.

If we listed all the variables in this system and subtracted all the equations
describing it and all the parameters that are fixed (all feeds), we would find that
the degrees of freedom would be equal to the number of sidestreams plus two.
Thus if we have no sidestreams, there are only two degrees of freedom in this
multicomponent system. This is the same number that we found in the simple
binary column. Typically we would want to control the amount of heavy key
impurity in the distillate x,,,  HK and the amount of light key impurity in the
bottoms xg, LK.

3.13 BATCH DISTILLATION WITH HOLDUP

Batch distillation is frequently used for small-volume products. One column can
be used to separate a multicomponent mixture instead of requiring NC - 1 con-
tinuous columns. The energy consumption in batch distillation is usually higher
than in continuous, but with small-volume, high-value products energy costs
seldom dominate the economics.

Figure 3.14 shows a typical batch distillation column. Fresh feed is charged
into the still pot and heated until it begins to boil. The vapor works its way up
the column and is condensed in the condenser. The condensate liquid runs into

FIGURE 3.14
Batch distillation.
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the reflux drum. When a liquid level has been established in the drum, reflux is
pumped back to the top tray in the column.

The column is run on total reflux until the overhead distillate composition
of the lightest component (component 1) xm reaches its specification purity.
Then a distillate product, which is the lightest component, is withdrawn at some
rate. Eventually the amount of component 1 in the still pot gets very low and the
xm purity of the distillate drops. There is a period of time when the distillate
contains too little of component 1 to be used for that product and also too little
of component 2 to be used for the next heavier product. Therefore a “slop” cut
must be withdrawn until xD2  builds up to its specification. Then a second product
is withdrawn. Thus multiple products can be made from a single column.

The optimum design and operation of batch distillation columns are very
interesting problems. The process can run at varying pressures and reflux ratios
during each of the product and slop cuts. Optimum design of the columns
(diameter and number of trays) and optimum operation can be important in
reducing batch times, which results in higher capacity and/or improved product
quality (less time at high temperatures reduces thermal degradation).

Theoretical trays, equimolal overflow, and constant relative volatilities are
assumed. The total amount of material charged to the column is M,,  (moles).
This material can be fresh feed with composition zj  or a mixture of fresh feed and
the slop cuts. The composition in the still pot at the beginning of the batch is
XBoj.  The composition in the still pot at any point in time is xBj.  The instanta-
neous holdup in the still pot is M,. Tray liquid holdup and reflux drum holdup
are assumed constant. The vapor boilup rate is constant at V (moles per hour).
The reflux drum, column trays, and still pot are all initially filled with material of

.  .
composition x,ej.

The equations describing the batch distillation of a multicomponent
mixture are given below.

Still pot:
dM,-c-D

dt

4MB  XBjl
dt

= Rx,~  - VY,

Uj XBj
YBj  = NC

c ak xBk
k=l

Tray n :

M, dx,j  = R[x,+,, j
dt - Xnjl  + UYn-  1, j - Ynjl

(3.101)

(3.103)

clj Xnj
Ynj  = NC

c ak  xnk
k=l
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Tray NT (top tray):

M dxNT,i
NT  at

= RCxDj  - XNT, jI  + ~[YNT-  I,]-  YNT. J (3.106)

Reflux drum :

MD dx, = VyNT,  j
at - CR + ax,j

(3.107)

(3.108)

R = V - D (3.109)

3.14 pH SYSTEMS

The control of pH  is a very important problem in many processes, particularly in
effluent wastewater treatment. The development and solution of mathematical
models of these systems is, therefore, a vital part of chemical engineering dynamic
modeling.

3.141 Equilibrium-Constant Models

The traditional approach is to keep track of the amounts of the various chemical
species in the system. At each point in time, the hydrogen ion concentration is
calculated by solving a set of simultaneous nonlinear algebraic equations that
result from the chemical equilibrium relationships for each dissociation reaction.

For example, suppose we have a typical wastewater pH  control system.
Several inlet feed streams with different chemical species, titration curves, and pH
levels are fed into a perfectly mixed tank. If the feed streams are acidic, some
source of OH- ions is used to bring the pH  up to the specification of seven. A
slurry of CaCO, and/or caustic (NaOH)  are usually used.

The equilibrium-constant method uses a dynamic model that keeps track of
all chemical species. Suppose, for example, that we have three dissociating acids
in the system. Let the concentration of acid HA at some point in time be CA.
This concentration includes the part that is dissociated, plus the part that is not
dissociated. The same quantity for acid HB is C, and for acid C is Cc. These
three acids come into the system in the feed streams.

HA-H+  +A-

HB+H+  +B-

HC+H+  +C-
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These dissociation reactions are reversible and have different forward and reverse
rate constants, The equilibrium relationships for these three reactions are
expressed in terms of the equilibrium constants KA  , K, , and Kc.

(3.110)

(3.112)

To solve for the concentration of hydrogen ion [H’] at each point in time,
these three nonlinear algebraic equations must be solved simultaneously. Let

x = fraction of HA dissociated

y = fraction of HB dissociated

z = fraction of HC dissociated

Then

Concentration of A- = x

Concentration of B- = y

Concentration of C-  = z

Concentration of undissociated HA = CA - x

Concentration of undissociated HB = C, - y

Concentration of undissociated HC = Cc - z

Concentration of H+ = x + y + z

(3.113)

These concentrations are substituted in Eqs. (3.110) to (3.112),  giving three highly
nonlinear algebraic equations in three unknowns: x, y, and z.

These nonlinear equations must be solved simultaneously at each point in
time. Usually an iterative method is used and sometimes convergence problems
occur. The complexity grows as the number of chemical species increases.

This modeling approach requires that the chemical species must be known
and their equilibrium constants must be known. In many actual plant situations,
this data is not available.

3.14.2 Titration-Curve Method

The information that is available in many chemical plants is a titration curve for
each stream to be neutralized. The method outlined below can be used in this
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situation. It involves only a simple iterative calculation for one unknown at each
point in time.

Let us assume that titration curves for the feed streams are known. These
can be the typical sharp curves for strong acids or the gradual curves for weak
acids, with or without buffering. The dynamic model keeps track of the amount
of each stream that is in the tank at any point in time. Let C, be the concentra-
tion of the nth stream in the tank, F, be the flow rate of that stream into the tank,
and F,,, be the total flow rate of material leaving the tank.

If the volume of the liquid in the tank is constant, the outflow is the sum of
all the inflows. The flow  rates of caustic and lime slurry are usually negligible.
For three feed streams

F,,, = F, + F2  + F, (3.114)

The dynamic component balance for the nth stream is

VdC,=F
dt n - Cn  F,,,

where V = volume of the tank.

The dynamic balance for the OH- ion in the system is

dCoHV-
dt = FOH  + &is - Fout  COH (3.116)

where Con = concentration of OH- ions in the system
F,, = total flow rate of OH- ion into the system in the caustic and lime

slurry streams
Rdis  = rate of OH- ion generation due to the dissolving of the solid

CaCO, particles

The rate of dissolution can be related to the particle size and the OH- concentra-
tion.

&is = k,Xs
kz - COH (3.117)

z

where kl, k2, and r are constants determined from the dissolution rate data for
solid CaC03 and X,  is the solid CaCO, concentration at any point in time.

The steps in the titration-curve method are:

1. At each point in time, all the C.‘s  and Con are known.
2. Guess a value for pH in the tank.
3. Use the titration curve for each stream to determine the amount of OH- ion

required for that stream to bring it up to the guess value of pH.
4. Check to see if the total amount of OH- actually present (from Con) is equal

to the total amount required for all streams.
5. Reguess pH  if step 4 does not balance.
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The method involves a simple iteration on only one variable, pH.  Simple
interval-halving convergence (see Chap. 4) can be used very effectively. The titra-
tion curves can be easily converted into simple functions to include in the com-
puter program. For example, straight-line sections can be used to interpolate
between data points.

This method has been applied with good success to a number of pH  pro-
cesses by Schnelle (Schnelle and Luyben, Proceedings of ISA 88, Houston,
October 1988).

PROBLEMS

3.1. A fluid of constant density p is pumped into a cone-shaped tank of total volume
HxR2/3.  The flow out of the bottom of the tank is proportional to the square root of
the height h of liquid in the tank. Derive the equations describing the system.

F=K&- FIGURE P3.1

3.2. A perfect gas with molecular weight M flows at a mass flow rate W,  into a cylinder
through a restriction. The flow rate is proportional to the square root of the pressure
drop over the restriction:

W,  = K,,,/m

where P is the pressure in the cylinder and P, is the constant upstream pressure. The
system is isothermal. Inside the cylinder, a piston is forced to the right as the pres-
sure P builds up. A spring resists the movement of the piston with a force that is
proportional to the axial displacement x of the piston.

F, = K,x

PO

W0-

Pressure on the spring
side of the piston is

atmospheric.

FIGURE P3.2



78 MATHEMATICAL MODELS OF CHEMICAL ENGINEERING SYSTEMS

The piston is initially at x = 0 when the pressure in the cylinder is zero. The cross-
sectional area of the cylinder is A. Assume the piston has negligible mass and fric-
tion.
(a) Derive the equations describing the system.
b) What will the steadystate piston displacement be?

a
3.3. perfectly mixed, isothermal CSTR has an outlet weir. The flow rate over the weir

s proportional to the height of liquid over the weir, h,,, to the 1.5 power. The weir
height is h, . The cross-sectional area of the tank is A. Assume constant density.

A first-order reaction takes place in the tank:

k
A - B

Derive the equations describing the system.

V t
CA hw

I

FIGURE P3.3

3.4. In order to ensure an adequate supply for the upcoming set-to with the Hatfields,
Grandpa McCoy has begun to process a new batch of his famous Liquid Lightning
moonshine. He begins by pumping the mash at a constant rate F,  into an empty
tank. In this tank the ethanol undergoes a first-order reaction to form a product that
is the source of the high potency of McCoy’s Liquid Lightning. Assuming that the
concentration of ethanol in the feed, C,,  is constant and that the operation is iso-
thermal, derive the equations that describe how the concentration C of ethanol in
the tank and the volume V of liquid in the tank vary with time. Assume perfect
mixing and constant density.

35. A rotating-metal-drum heat exchanger is half submerged in a cool stream, with its
other half in a hot stream. The drum rotates at a constant angular velocity w

TH
Hot temp

FIGURE P3.5
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(radians per minute). Assume TH  and T,  are constant along their respective sections
of the circumference. The drum length is L, thickness d, and radius R. Heat transfer
coefficients in the heating and cooling zones are constant (U, and U,).  Heat capac-
ity C, and density of the metal drum are constant. Neglect radial temperature gra-
dients and assume steadystate operation.
(a) Write the equations describing the system.
(b) What are the appropriate boundary conditions?

0

3.6. nsider the system that has two stirred chemical reactors separated by a plug-flow
adtime  of D seconds. Assume constant holdups (VI  and V,),  constant throughput

(F),  constant density, isothermal operation at temperatures Tl and T2,  and first-
order kinetics with simultaneous reactions:

h
A - B

kz
A - C

No reaction occurs in the plug-flow section.
Write the equations describing the system.

FIGURE P3.6

3.7. Consider the isothermal hydraulic system sketched below. A slightly compressible
polymer liquid is pumped by a constant-speed, positive displacement pump so that
the mass flow rate WI is constant. Liquid density is given by

P = PO + w - PO)

where p. , fl, and PO  are constants, p is the density, and P is the pressure.
Liquid is pumped through three resistances where the pressure drop is pro-

portional to the square of the mass flow: AP = RWZ.  A surge tank of volume V is
located between R, and R, and is liquid full. The pressure downstream of R, is
atmospheric.
(a) Derive the differential equation that gives the pressure P in the tank as a func-

tion of time and WI.
(b) Find the steadystate value of tank pressure P.

Pump

FIGURE P3.7

3.& Develop the equations describing an “inverted” batch distillation column. This
system has a large reflux drum into which the feed is charged. This material is fed to
the top of the distillation column (which acts like a stripper). Vapor is generated in a
reboiler in the base. Heavy material is withdrawn from the bottom of the column.

Derive a mathematical model of this batch distillation system for the case
where the tray holdups cannot be neglected.
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3.9. An ice cube is dropped into a hot, perfectly mixed, insulated cup of coffee. Develop
the equations describing the dynamics of the system. List all assumptions and define

6’ terms.3.10. n rsothermal,  irreversible reaction

L// k
A - B

J takes place in the liquid phase in a constant-volume reactor. The mixing is not
perfect. Observation of flow patterns indicates that a two-tank system with back
mixing, as shown in the sketch below, should approximate the imperfect mixing.

Assuming F and F, are constant, write the equations describing the system.

FIGURE P3.10

3.11.

Q

he liquid in a jacketed, nonisothermal CSTR is stirred by an agitator whose mass is
ignificant  compared with the reaction mass. The mass of the reactor wall and the

mass of the jacket wall are also significant. Write the energy equations for the
system. Neglect radial temperature gradients in the agitator, reactor wall, and jacket
wall.

reaction 3A + 2B + C is carried out in an isothermal semibatch reactor.
B is the desired product. Product C is a very volatile by-product that must

be vented off to prevent a pressure buildup in the reactor. Gaseous C is vented off
through a condenser to force any A and B back into the reactor to prevent loss of
reactant and product.

Assume F, is pure C. The reaction is first-order in CA. The relative volatilities
of A and C to B are aAB  = 1.2 and am = 10. Assume perfect gases and constant
pressure. Write the equations describing the system. List all assumptions.

FIGURE P3.12

the equations describing a simple version of the petroleum industry’s impor-
cracking operation. There are two vessels as shown in Fig. P3.13.
is fed to the reactor where it reacts to form product B while depos-
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iting component C on the solid fluidized catalyst.

A + B + O.lC

Spent catalyst is circulated to the regenerator where air is added to burn off C.

C+O+P

Combustion products are vented overhead, and regenerated catalyst is returned to
the reactor. Heat is added to or removed from the regenerator at a rate Q.

Your dynamic mathematical model should be based on the following assump-
tions :

(1) The perfect-gas law is obeyed in both vessels.
(2) Constant pressure is maintained in both vessels.
(3) Catalyst holdups in the reactor and in the regenerator are constant.
(4) Heat capacities of reactants and products are equal and constant in each vessel.

Catalyst heat capacity is also constant.
(5) Complete mixing occurs in each vessel.

Product Stack gas

Reactor Rqwrrator

- - - - - - ,------
,------

_------__----__-----_-----_------__----__-----_-----_------

Air

Reactor reaction: A9  B+  A C 1

Regenerator reaction: C +O? P

FIGURE P3.13

3.14. Flooded condensers and flooded reboilers are sometimes used on distillation
columns. In the sketch below, a liquid level is held in the condenser, covering some
of the tubes. Thus a variable amount of heat transfer area is available to condense
the vapor. Column pressure can be controlled by changing the distillate (or reflux)
drawoff  rate.

Write the equations describing the dynamics of the condenser.
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FIGURE P3.14
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3.15. When cooling jackets and internal cooling coils do not give enough heat transfer
area, a circulating cooling system is sometimes used. Process fluid from the reactor is
pumped through an external heat exchanger and back into the reactor. Cooling
water is added to the shell side of the heat exchanger at a rate F,  as set by the
temperature controller. The circulation rate through the heat exchanger is constant.
Assume that the shell side of the exchanger can be represented by two perfectly
mixed “lumps” in series and that the process fluid flows countercurrent to the water
flow, also through two perfectly mixed stages.

The reaction is irreversible and fist-order in reactant A:
k

A - B

The contents of the tank are perfectly mixed. Neglect reactor and heat-exchanger
metal.

Derive a dynamic mathematical model of this system.

CA
T

FIGURE P3.15
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3.16. A semibatch reactor is run at constant temperature by varying the rate of addition of
one of the reactants, A. The irreversible, exothermic reaction is first order in reac-
tants A and B.

k
A + B - C

The tank is initially filled to its 40 percent level with pure reactant B at a
concentration CBO . Maximum cooling-water flow is begun, and reactant A is slowly
added to the perfectly stirred vessel.

Write the equations describing the system. Without solving the equations, try
to sketch the profiles of.F,A, CA, and C, with time during the batch cycle.

Coolingw
waterwater

FIGURE P3.16FIGURE P3.16

3.17. Develop a mathematical model for the three-column train of distillation columns
sketched below. The feed to the first column is 400 kg * mol/h and contains four
components (1, 2, 3, and 4),  each at 25 mol %. Most of the lightest component is
removed in the distillate of the first column, most of the next lightest in the second
column distillate and the final column separates the final two heavy components.
Assume constant relative volatilities throughout the system: ai, a2, and as. The
condensers are total condensers and the reboilers are partial. Trays, column bases,
and reflux drums are perfectly mixed. Distillate flow rates are set by reflux drum

F-

D3

B3

FIGURE P3.17
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level controllers. Reflux flows are fixed. Steam flows to the reboilers are set by
temperature controllers. Assume equimolal overflow, negligible vapor holdup, and
negligible condenser and reboiler dynamics. Use a linear liquid hydraulic relation-
ship

where L and fi, are the initial steadystate liquid rate and holdup and fl is a con-
stant with units of seconds.

3.18. The rate of pulp lay-down F on a paper machine is controlled by controlling both
the pressure P and the height of slurry h in a feeder drum with cross-sectional area
A. F is proportional to the square root of the pressure at the exit slit. The air vent
rate G is proportional to the square root of the air pressure in the box P. Feedback
controllers set the inflow rates of air G, and slurry F,  to hold P and h. The system is
isothermal.

Derive a dynamic mathematical model describing the system.

Restriction

FIGURE P3.18

3.19. A wax filtration plant has six filters that operate in parallel, feeding from one
common feed tank. Each filter can handle 1000 gpm when running, but the filters
must be taken off-line every six hours for a cleaning procedure that takes ten
minutes. The operating schedule calls for one filter to be cleaned every hour.

How many gallons a day can the plant handle? If the flow rate into the feed
tank is held constant at this average flow rate, sketch how the liquid level in the feed
tank varies over a typical three-hour period.

3.20. Alkylation is used in many petroleum refineries to react unsaturated butylenes with
isobutane to form high octane iso-octani:  (alkylate). The reaction is carried out in a
two liquid-phase system: sulfuric acid/hydrocarbon.

The butylene feed stream is split and fed into each of a series of perfectly
mixed tanks (usually in one large vessel). This stepwise  addition of butylene and the
large excess of isobutane that is used both help to prevent undesirable reaction of
butylene molecules with each other to form high-boiling, low octane polymers. Low
temperature (40°F) also favors the desired iC,/Ch  reaction.

The reaction is exothermic. One method of heat removal that is often used is
autorefrigeration: the heat of vaporization of the boiling hydrocarbon liquid soaks
up the heat of reaction.
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The two liquid phases are completely mixed in the agitated sections, but in the
last section the two phases are allowed to separate so that the acid can be recycled
and the hydrocarbon phase sent off to a distillation column for separation.

Derive a dynamic mathematical model of the reactor.

Vapor to compressor

Acid recycle

k,
c; - polymer

FIGURE P3.20

3.21. Benzene is nitrated in an isothermal CSTR in three sequential irreversible reactions:

Benzene + HNO, ‘ I- nitrobenzene + H,O

Nitrobenzene + HNO, ”- dinitrobenzene + H,O
P

Dinitrobenzene + HNO, x trinitrobenzene  + H,O
‘L

_I

Assuming each reaction is linearily dependent on the concentrations of each reac-
tant, derive a dynamic mathematical model of the system. There are two feed
streams, one pure benzene and one concentrated nitric acid (98 wt %). Assume con-
stant densities and complete miscibility.





PART

II
COMPUTER

SIMULATION

In the next two chapters we will study computer simulation techniques for
solving some of the systems of equations we generated in the two preceding

chapters. A number of useful numerical methods are discussed in Chap. 4, includ-
ing numerical integration of ordinary differential equations. Several examples
are given in Chap. 5, starting with some simple systems and evolving into more
realistic and complex processes to illustrate how to handle large numbers of
equations.

Only digital simulation solutions for ordinary differential equations are pre-
sented. To present anything more than a very superficial treatment of simulation
techniques for partial differential equations would require more space than is
available in this book. This subject is covered in several texts. In many practical
problems, distributed systems are often broken up into a number of “lumps”
which can then be handled by ordinary differential equations.
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Our discussions will be limited to only the most important and useful
aspects of simulation. The techniques presented will be quite simple and unso-
phisticated, but I have found them to work just as well for most real systems as
those that are more mathematically elegant. They also have the added virtues of
being easy to understand and easy to program.

Some of the simple linear equations that we will simulate can, of course, be
solved analytically by the methods covered in Part III to obtain general solu-
tions. The nonlinear equations cannot, in general, be solved analytically, and
computer simulation is usually required to get a solution. Keep in mind,
however, that you must give the computer specific numerical values for param-
eters, initial conditions, and forcing functions. And you will get out of the com-
puter specific numerical values for the solution. You cannot get a general
solution in terms of arbitrary, unspecified inputs, parameters, etc., as you can
with an analytic solution.

A working knowledge of FORTRAN 77 digital programming language is
assumed and all programs are written in FORTRAN. Those who prefer other
languages will find the conversion fairly easy since the programs are simple trans-
lations of the equations into source code. All programs can be run on any type of
computer, personal computers or mainframes. The big multicomponent distilla-
tion column simulations require a lot of number crunching so are usually run on
a mainframe. Most of the other programs can be conveniently run on personal
computers.



CHAPTER

NUMERICAL
METHODS

4.1 INTRODUCTION

Digital simulation is a powerful tool for solving the equations describing chemi-
cal engineering systems. The principal difficulties are two: (1) solution of simulta-
neous nonlinear algebraic equations (usually done by some iterative method), and
(2) numerical integration of ordinary differential equations (using discrete finite-
difference equations to approximate continuous differential equations).

The accuracy and the numerical stability of these approximating equations
must be kept in mind. Both accuracy and stability are affected by the finite-
difference equation (or integration algorithm) employed, Many algorithms have
been proposed in the literature. Some work better (i.e., faster and therefore
cheaper for a specified degree of accuracy) on some problems than others. Unfor-
tunately there is no one algorithm that works best for all problems. However, as
we will discuss in more detail later, the simple first-order explicit Euler algorithm
is the best for a large number of engineering applications.

Over the years a number of digital simulation packages have been devel-
oped. In theory, these simulation languages relieve the engineer of knowing any-
thing about numerical integration. They automatically monitor errors and
stability and adjust the integration interval or step size to stay within some accu-
racy criterion. In theory, these packages make it easier for the engineer to set up
and solve problems.

In practice, however, these simulation languages have limited utility. In
their push for generality, they usually have become inefficient. The computer
execution time for a realistic engineering problem when run on one of these simu-
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lation packages is usually significantly longer than when run on a FORTRAN,
BASIC, or PASCAL program written for the specific problem.

Proponents of these packages argue, however, that the setup and program-
ming time is reduced by using simulation languages. This may be true for the
engineer who doesn’t know any programming and uses the computer only very
occasionally and only for dynamic simulations. But almost all high school and
certainly all engineering graduates know some computer programming language.
So using a simulation package requires the engineer to learn a new language and
a new system. Since some language is already known and since the simple, easily
programmed numerical techniques work well, it has been my experience that it is
much better for the engineer to develop a specific program for the problem at
hand. Not only is it more computationally efficient, but it guarantees that the
engineer knows what is in the program and what the assumptions and techniques
are. This makes debugging when it doesn’t work and modifying it to handle new
situations much easier.

On the other hand, the use of special subroutines for doing specific calcu-
lations is highly recommended. The book by Franks (Modeling and Simulation in
Chemical Engineering, John Wiley and Son, Inc., 1972) contains a number of
useful subroutines. And of course there are usually extensive libraries of sub-
routines available at most locations such as the IMSL subroutines. These can be
called very conveniently from a user’s program.

4.2 COMPUTER PROGRAMMING

A comprehensive discussion of computer programming is beyond the scope of
this book. I assume that you know some computer programming language. All
the examples will use FORTRAN since it is the most widely used by practicing
chemical engineers.

However, it might be useful to make a few comments and give you a few
tips about programming. These thoughts are not coming from a computer scien-
tist who is interested in generating the most efficient and elegant code, but from
an engineer who is interested in solving problems.

Many people get all excited about including extensive comment statements
in their code. Some go so far as to say that you should have two lines of com-
ments for every one line of code. In my view this is ridiculous! If you use symbols
in your program that are the same as you use in the equations describing the
system, the code should be easy to follow. Some comment statements to point
out the various sections of the program are fine.

For example, in distillation simulations the distillate and bottoms composi-
tion should be called “XD(J)” and “XB(J)” in the program. The tray composi-
tions should be called “X(N,J),”  where IV is the tray number starting from the
bottom and J is the component number. Many computer scientists put all
the compositions into one variable “X(N,J)”  and index it so that the distillate is
X(l,J),  the top tray is X(2,J),  etc. This gives a more compact program but
makes it much more difficult to understand the code.
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Another important practical problem is debugging. Almost always, you will
have some mistake in your program, either in coding or in logic. Always, repeat
always, put loop counters in any iterative loops. This is illustrated in the bubble-
point calculation programs given later in this chapter. If the program is not
running, don’t just throw up your hands and quit. It takes a fair amount of
tenacity to get all the kinks out of some simulations. Maybe that’s why the Dutch
are pretty good at it.

When your program is not working correctly, the easiest thing to do is to
put into the program print statements at each step in the calculations so that you
can figure out what you have done wrong or where the coding or logic error is
located.

One of the most frustrating coding errors, and one that is the toughest to
find, is when you overfill an array. This usually just wipes out your program at
some spot where there is nothing wrong with the program, and many
FORTRAN compilers will not give a diagnostic warning of this problem. Be very
careful to check that all dimensioned variables have been adequately dimen-
sioned.

Subroutine arguments and COMMON statements can also be trouble-
some. Always make sure that the calls to a subroutine use the correct sequence of
arguments and that all COMMON statements in all subroutines are exactly the
same-as  that in the main program.

For the experienced programmer, the above comments are trivial, but they
may save the beginner hours of frustration. The fun part of using the computer is
getting useful results from the program once it is working correctly, not in coding
and debugging.

43 ITERATIVE CONVERGENCE METHODS

One of the most common problems in digital simulation is the solution of simul-
taneous nonlinear algebraic equations. If these equations contain transcendental
functions, analytical solutions are impossible. Therefore, an iterative trial-and-
error procedure of some sort must be devised. If there is only one unknown, a
value for the solution is guessed. It is plugged into the equation or equations to
see if it satisfies them. If not, a new guess is made and the whole process is
repeated until the iteration converges (we hope) to the right value.

The key problem is to find a method for making the new guess that con-
verges rapidly to the correct answer. There are a host of techniques. Unfor-
tunately there is no best method for all equations. Some methods that converge
very rapidly for some equations will diverge for other equations; i.e., the series of
new guesses will oscillate around the correct solution with ever-increasing devi-
ations. This is one kind of numerical instability.

We will discuss only a few of the simplest and most useful methods. Fortu-
nately, in dynamic simulations, we start out from some converged initial steady-
state. At each instant in time, variables have changed very little from the values
they had a short time before. Thus we always are close to the correct solution.

k



92 COMPUTER SIMULATION

For this reason, the simple convergence methods are usually quite adequate for
dynamic simulations.

The problem is best understood by considering an example. One of the
most common iterative calculations is a vapor-liquid equilibrium bubblepoint
calculation.

Example 4.1. We are given the pressure P and the liquid composition x. We want to
find the bubblepoint temperature and the vapor composition as discussed in Sec.
2.2.6. For simplicity let us assume a binary system of components 1 and 2. Com-
ponent 1 is the more volatile, and the mole fraction of component 1 in the liquid is x
and in the vapor is y. Let us assume also that the system is ideal: Raoult’s and
Dalton’s laws apply.

The partial pressures of the two components (?r and Fz)  in the liquid and
vapor phases are :

In liquid: P, = XP, 92  = (1 - x)Pz (4.1)

In vapor: Si  = YP LP2 = (1 - y)P (4.2)

where Pj = vapor pressure of pure component j which is a function of only tem-
perature

InPi =$+B, In Pi = $ + 8,

Equating partial pressures in liquid and vapor phases gives

P = xp;  + (1 - x)Pz (4.4)

(4.5)

Our convergence problem is to find the value of temperature T that will
satisfy Eq. (4.4). The procedure is as follows:

1. Guess a temperature T.

2. Calculate the vapor pressures of components 1 and 2 from Eq. (4.3).
3. Calculate a total pressure Pcalc  using Eq. (4.4).

4. Compare PC”’ with the actual total pressure given, P. If it is sufficiently close to
P (perhaps using a relative convergence criterion of 10e6),  the guess T is correct.
The vapor composition can then be calculated from Eq. (4.5).

5. If Pcalc is greater than P, the guessed temperature was too high and we must
make another guess of T that is lower. If PC*” is too low, we must guess a
higher T.

Now let us discuss several ways of making a new guess for the example
above.
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43.1 Interval Halving

This technique is quite simple and easy to visualize and program. It is not very
rapid in converging to the correct solution, but it is rock-bottom stable (it won’t
blow up on you numerically). It works well in dynamic simulations because the
step size can be adjusted to correspond approximately to the rate at which the
variable is changing with time during the integration time step.

Figure 4.1 sketches the interval-halving procedure graphically. An initial
guess of temperature To  is made. P“” is calculated from Eq. (4.6). Then Pea”  is
compared to P. A fixed increment in temperature AT is added to or subtracted
from the temperature guess, depending on whether Pcalc  is greater or less than P.

We keep moving in the correct direction at this fixed step size until there is
a change in the sign of the term (P - Pcalc).  This means we have crossed over the
correct value of T. Then we back up halfway, i.e., we halve the increment AT.
With each successive iteration we again halve AT, always moving either up or
down in temperature.

Table 4.1 gives a little main program and a FORTRAN subroutine that
uses interval halving to perform this bubblepoint calculation. Known values of x
and P and an initial guess of temperature (To) are supplied as arguments of the
subroutine. When the subroutine returns to the main program it supplies the
correct value of T and the calculated vapor composition y. The vapor-pressure
constants (Al and Bl  for component 1 and A2 and B2 for component 2) are
calculated in the main program and transferred into the subroutine through the
COMMON statement. The specific chemical system used in the main program is
benzene-toluene at atmospheric pressure (P = 760 mmHg)  with the mole fraction
of benzene in the liquid phase (x) set at 0.50. Ideal VLE is assumed.

The initial guess of T can be either above or below the correct value. The
program takes fixed steps DT equal to one degree until it crosses the correct
value of T. The logic variables “FLAGM” and “FLAGP” are used to tell us
when the solution has been crossed. Then interval halving is begun.

P
k! .

g
To

0.

Correct value of T

Temperature

F’IGURE 4.1
Interval-halving convergence.
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TABLE 4.1

Example of iterative bubblepoint calculation using “interval-halving” algorithm

C
C MAIN PROGRAM SETS DIFFERENT VALUES FOR
C INITIAL GUESS OF TEMPERATURE
C AND DIFFERENT INITIAL STEP SIZES
C SPECIFIC CHEMICAL SYSTEM IS BENZENE/TOLUENE
C AT 760 MM HG PRESSURE
C PROGRAM MAIN

COMMON Al,Bl,A2,B2
C CALCULATION OF VAPOR PRESSURE CONSTANTS FOR
C BENZENEANDTOLUENE
C DATA GIVEN AT 100 AND 125 DEGREES CELCIUS

Al=LOG(26OO./l36O.)/((1./(125.+273.))  - (L/(100.+273.)))
BkLOG(2600.)  - A1/(125.+273.)
A2=LOG(1140./550.)/((1./(125.+273.))  - (L/(100.+273.)))
B2=LOG(1140.) - A2/(125.+273.)

C SET LIQUID COMPOSITION AND PRESSURE
x=0.5
P=760.
WRITE(B,J)X,P

3 FORMAT(’  X = ‘,F8.5,’ P = ‘,F8.2,/)
TO=80.
DO 100 NT=1,3
DTO=2.
DO 50 NDT=1,4
WRITE(6,l)  TO,DTO

1 FORMAT(’  INITIAL TEMP GUESS = ‘,F7.2,’ INITIAL DT = ‘,F7.2)
T=TO
DT=DTO
CALL BUBPT(X,T,DT,P,Y,LOOP)
WRITE(6,2)  T,Y,LOOP

2 FORMAT(’ T = ‘,F7.2,’ Y = ‘,F7.5,’ LOOP = ‘,13,/)
50 DTO=DTO*‘L.

100 TO=T0+20.
STOP
END

C
C

SUBROUTINE BUBPT(X,T,DT,P,Y,LOOP)
COMMON Al,Bl,A2,B2
LOOP=0
FLAGM=-1.
FLAGP=-1.

C TEMPERATURE ITERATION LOOP /

100 LooP=LooP+1
IF(LOOP.GT.lOO)THEN

WRITE(6,l)
1 FORMAT(’  LOOP IN BUBPT SUBROUTINE’)

STOP
ENDIF

PSl=EXP(Al/(T+273.)  + Bl)
PS2=EXP(A2/(T+273.)  + B2)
PCALC=X*PSl  + (l.-X)*PSP
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TABLE 4.1 (continued)

C TEST FOR CONVERGENCE
IF(ABS(P-PCALC). LT. P/lOOOO.)GO  TO 50
IF(P-PCALC) 20,20,30

C TEMPERATURE GUESS WAS TOO HIGH
20 IF(FLAGM.GT.O.)DTcDT/2.

T=T-DT
FLAGP=l.
GO TO 100

C TEMPERATURE GUESS WAS TOO LOW
30 IF(FLAGP.GT.O.)DT=DT/2.

T=T+DT
FLAGM=l.
GO TO 100

50 Y=X*PSl/P
RETURN
END

Results  of babblepoint  calculations

X = 0.50000 P = 760.00

INITIAL TEMP GUESS = 80.00 INITIAL DT =
T = 92.20 Y = 0.71770 LOOP = 16

INITIAL TEMP GUESS = 80.00 INITIAL DT =
T = 92.20 Y = 0.71770 LOOP = 14

INITIAL TEMP GUESS = 80.00 INITIAL DT =
T = 92.20 Y = 0.71770 LOOP = 13

INITIAL TEMP GUESS = 80.00 INITIAL DT =
T = 92.20 Y = 0.71770 LOOP = 13

INITIAL TEMP GUESS = 100.00 INITIAL DT =
T = 92.20 Y = 0.71770 LOOP = 13

INITIAL TEMP GUESS = 100.00 INITIAL DT =
T = 92.20 Y = 0.71770 LOOP = 12

INITIAL TEMP GUESS = 100.00 INITIAL DT =
T = 92.20 Y = 0.71770 LOOP = 12

INITIAL TEMP GUESS = 100.00 INITIAL DT =
T = 92.20 Y = 0.71770 LOOP = 13

INITIAL TEMP GUESS = 120.00 INITIAL DT =
T = 92.20 Y = 0.71770 LOOP = 23

INITIAL TEMP GUESS = 120.00 INITIAL DT =
T = 92.20 Y = 0.71770 LOOP = 17

INITIAL TEMP GUESS = 120.00 INITIAL DT =
T = 92.20 Y = 0.71770 LOOP = 15

INITIAL TEMP GUESS = 120.00 INITIAL DT =
T = 92.20 Y = 0.71770 LOOP = 14

2.00

4.00

8.00

16.00

2.00

4.00

8.00

16.00

2.00

4.00

8.00

16.00
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Clearly, the number of iterations to converge depends on how far the initial
guess is from the correct value and the size of the initial step. Table 4.1 gives
results for several initial guesses of temperature (TO) and several step sizes (DTO).
The interval-halving algorithm takes 10 to 20 iterations to converge to the
correct temperature.

Note the presence of a loop counter. LOOP is the number of times a new
guess has been made. If the iteration procedure diverges, the test for LOOP
greater than 100 will stop the program with an appropriate explanation of where
the problem is.

Interval halving can also be used when more than one unknown must be
found. For example, suppose there are two unknowns. Two interval-halving
loops could be used, one inside the other. With a fixed value of the outside
variable, the inside loop is converged first to find the inside variable. Then the
outside variable is changed, and the inside loop is reconverged. This procedure is
repeated until both unknown variables are found that satisfy all the required
equations.

Clearly this double-loop-iteration procedure can be very slow. However, for
some simple problems it is quite effective.

4.3.2 Newton-Raphson Method

This method is probably the most popular convergence method. It is somewhat
more complicated since it requires the evaluation of a derivative. It also can lead
to stability problems if the initial guess is poor and if the function is highly
nonlinear.

Newton-Raphson amounts to using the slope of the function curve to
extrapolate to the correct value. Using the bubblepoint problem as a specific
example, let us define the function &):

AT)  = P@ - P (4.7)

We want to find the value of T that makesh,,  equal to zero; i.e., we want to find
the root of An.  We guess a value of temperature To.  Then we evaluate the func-
tion at To,  j&. Next we evaluate the slope of the function at To,  fiT,,)  =
(dfdT),r,,  . Then from the geometry shown in Fig. 4.2 we can see that

=Ar!k
(To) K - T, (4.8)

Solving for T1 gives

TI  = To -;+ (4.9)
U-o)

T1  in Eq. (4.9) is the new guess of temperature. If the curve Jr,  were a straight
line, we would converge to the correct solution in just one iteration.
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T Newton-Raphson convergence.

Generalizing Eq. (4.9),  we get the recursive iteration algorithm :

where Tn + 1 = new guess of temperature
Tn = old guess of temperature
f, = value off,,, at T = T.
fi = value of the derivative off, df/dT,  at T = T.

(4.10)

The technique requires the evaluation off ‘,  the derivative of the function
f(r)  with respect to temperature. In our bubblepoint example this can be
obtained analytically.

AT,  = PC;:  - p = x  &WT+BI)  + (1 _ $  &‘z/T+Bz)

-xA,P, -(l -x)&P;
=

T2
(4.11)

If the function .were  so complex that an analytical derivative could not be
obtained explicitly, an approximate derivative would have to be calculated
numerically: make a small change in temperature AT, evaluate fat T + AT and
use the approximation

(4.12)

A digital computer program using Eqs. (4.10) and (4.11) is given in Table
4.2. The problem is the same bubblepoint calculation for benzene-toluene per-
formed by interval-halving in Table 4.1, and the same initial guesses are made of
temperature. The results given in Table 4.2 show that the Newton-Raphson algo-
rithm is much more effective in this problem than interval halving: only 4 to 5
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TABLE 4.2

Example of iterative bubblepoint calculation using “ Newton-Rapbson”  algorithm

C
C MAIN PROGRAM SETS DIFFERENT VALUES FOR INITIAL
C GUESS OF TEMPERATURE
C SPECIFIC CHEMICAL SYSTEM IS BENZENE/TOLUENE
c AT 760 MM HG PRESSURE
C

PROGRAM MAIN
COMMON Al,Bl,A2,B2

C CALCULATION OF VAPOR PRESSURE CONSTANTS
C FORBENZENEANDTOLUENE
C DATA GIVEN AT 100 AND 125 DEGREES CELCIUS

A1=L0G(2600./1360.)/((1./(125.+273.))  - (L/(100.+273.)))
BkLOG(2600.)  - A1/(125.+273.)
A2=L0G(1140./550.)/((1./(125.+273.))  - (1./(100.+273.)))
B2=LOG(1140.) - A2/(125.+273.)

C SET LIQUID COMPOSITION AND PRESSURE
x=0.5
P=760.
WRITE(6,3)X,P

3 FORMAT(’  X = ‘,F8.5,’ P = ‘,F8.2,/)
TO=80.
DO 100 NT=1,3
WRITE(6,l)  TO

1 FORMAT(’  INITIAL TEMP GUESS = ‘,F7.2)
T=TO
CALL BUBPT(X,T,DT,P,Y,LOOP)
WRITE(6,2)  T,Y,LOOP

2 FORMAT(’ T = ‘,F7.2,’ Y = ‘,F7.5,’ LOOP = ‘,13,/)
100 TO=T0+20.

STOP
END

iterations are required with Newton-Raphson, compared to 10 to 20 with
interval-halving.

If the function is not as smooth and/or if the initial guess is not as close to
the solution, the Newton-Raphson method can diverge instead of converge.
Functions that are not monotonic are particularly troublesome, since the deriv-
ative approaching zero makes Eq. (4.10) blow up. Thus Newton-Raphson is a
very efficient algorithm but one that can give convergence problems. Sometimes
these difficulties can be overcome by constraining the size of the change permit-
ted to be made in the new guess.

Newton-Raphson can be fairly easily extended to iteration problems involv-
ing more than one variable. For example, suppose we have two functionsf,(,,, X2j
and f,(,,, X2)  that depend on two variables x1 and x2.  We want to find the values
of x1 and x2 that satisfy the two equations

f1(x1*  x2)  = 0 and hfx,, xz) = 0
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TABLE 4.2 (continued)

C
SUBROUTINE BUBPT(X,T,DT,P,Y,LOOP)
COMMON Al,Bl,A2,B2
LOOP=0

C TEMPERATURE ITERATION LOOP
100 LooP=LooP+1

IF(LOOP.GT.lOO)THEN
WRITE(6,l)

1 FORMAT(’  LOOP IN BUBPT SUBROUTINE’)
STOP
ENDIF

PSl=EXP(Al/(T+273.)  + Bl)
PS2=EXP(A2/(T+273.)  $ B2)
PCALC=X*PSl  + (l.-X)+PSP

C TEST FOR CONVERGENCE
IF(ABS(P-PCALC). LT. P/lOOOO.)GO  TO 50
F=PCALC-P
DF=  - (X+PSl*Al  + (l.-X)ePSZ*A2)/(T+273.)**2
T=T-F/DF
GO Td  100

50 Y=X*PSl/P
RETURN
END

RdtS

X = 0.50000 P = 760.00

INITIAL TEMP GUESS = 80.00
T = 92.19 Y = 0.71765 LOOP = 4

INITIAL TEMP GUESS = 100.00
T = 92.19 Y = 0.71765 LOOP = 4

INITIAL TEMP GUESS = 120.00
T = 92.19 Y = 0.71765 LOOP = 5

Expanding each of these functions around the point (xIn,  X&  in a Taylor series
and truncating after the first derivative terms give

afl+ ax, (Xl”. X2”)( > (X2,JI+1 -x23 (4.13)

f2(~1,.+1.~2,.+1)  =f ah
2h",X2")

+ dx, (Xl".X2")( >
(x

lsn+l  -
x13

834
+ ax,( >(x,n,  x*“k  n+ 1 - -4 (4.14)



I()()  COMPUTER SIMULATION

Settingfl~xl,“+I.x*,“+l)  andf2~xl.“+Lx*,.+l, equal to zero and solving for the new
guessesxr,.+i  and xZ,“+i  give

fi(afllax2) -flw2la~2)x
l*“+  l = X1n + (afl/axl)(af*/ax2)  - (afl/ax2)(af2/axl)

(4.15)

f2@fllW -f1@!/%)x 2,n+1 = X2”
+ @!1l~x,Xef2/~x,)  - w-1lwGf,Px,)

(4.16)

All the partial derivatives and the functions are evaluated at xrn and x2”.
Equations (4.15) and (4.16) give the iteration algorithm for reguessing the

two new values each time through the loop. Four partial derivatives must be
calculated, either analytically or numerically, at each iteration step.

Equations (4.13) and (4.14) can be written more compactly in matrix form.
We set the left sides of the equations equal to zero and call the changes in the
guessed variables Ax = x,+  r - x, .

(4.17)

All the functions and the partial derivatives are evaluated at xln and x2”.  The
2 x 2 matrix of partial derivatives is called thejacobian matrix.afl aflax,ax,’ = x2 af2[ 1ax,ax, (4.18)

All of the terms in this matrix are just constants that are calculated at each
iteration.

The Ax’s can be calculated by solving the matrix equation

(4.19)

where J- ’ is the inverse of the J matrix. We will discuss matrices in more detail
in Chap. 15, but this notation is presented here to indicate how easy it is to
extend the Newton-Raphson method to more than one variable. If there are three
unknowns, the jacobian matrix contains nine partial derivative terms. If there are
N unknowns, the jacobian matrix contains N2 terms.

4.3.3 False Position

This convergence technique is a combination of Newton-Raphson and interval
halving. An initial guess TO  is made, and the function&,,, is evaluated. A step is
taken in the correct direction to a new temperature Tr  and&,,, is evaluated. If
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TABLE 16.2 (continued)

C
SUBROUTINE PROCTF(GM,W,N,KP,TAU,D)
DIMENSION KP(4,4),TAU(4,4,4),D(4,4)
C O M P L E X  GM(4,4),ZL,ZD
REAL KP
ZL(X)=CMPLX(l.,X*W)
ZD(X)=CMPLX(COS(W*X),-SIN(W*X))
DO 10 I=l,N
DO 10 J=l,N

10 GM(I,J)=KP(I,J)*ZD(D(I,J))*ZL(TAU(l,I,J))/ZL(TAU(2,I,J))
+ /ZL(TAU(3,I,J))/ZL(TAU(4,I,J))
RETURN
END

Results

W WQl) WQl) RE(Q2)  IWQ2)
.OlOOO  -10.93861 -73.93397 -.69893  -10.97331
.01259  -10.77362 -57.94015 -.70154  -8.69403
.01585  -10.52296 -45.07131 -.70426  -6.87520
.01995  -10.15061 -34.67506 -.70560  -5.41860
.02512  -9.61544 -26.25261 -.70209  -4.24563
.03162  -8.88105 -19.43858 -.68745  -3.29489
.03981  -7.93375 -13.98019 -.65334  -2.52193
.05012  -6.80296 -9.70591 -.59328  -1.89904
.06310  -5.56933 -6.48106 -.50896  -1.41125
.07943  -4.34690 -4.16391 -.41292  -1.04679
.10000
.12589
.15849
.19953
.25119
.31623
.39811
.50119
.63096
.79433

1 .ooooo
1.25893
1.58489
1.99526
2.51189

-3.24441
-2.33036
-1.62209
-1.09771
-.71786
-.19787
-.19106
-.19649
-.20761
-.19927
-.14416
-.10863
-.10893
-.05624

-2.58527 -.32303 -.78823
-1.56020 -.25321 -.61188
-.91593 -.20913 -.49410
-.51329 -.19052 -.41728
-.25031 -.19364 -.37372
-.35982 -.45773 -.06077
-.33411 -.29072 .05551
-.28201 -.16390 .10739
-.20640 -.06256 .10977
-.11268 .00200 .07250
-.03580 .00868 .03019
-.03576 .02118 .04213
.01474 .04596 -.01127
.03026 -.00732 -.01991
.06183 -.02432 -.01433

Note that these eigenvalues are neither the openloop eigenvalues nor the closed-
loop eigenvalues of the system! They are eigenvalues of a completely different
matrix, not the 4 or the 4cL  matrices.

Characteristic loci plots for the Wood and Berry column are shown in Fig.
16.3. They show that the empirical controllers settings give a stable closedloop
system, but the ZN settings do not since the q1 eigenvalue goes through the
(- JO) point.

A brief justification for the characteristic loci method (thanks to C. C. Yu) is
sketched below. For a more rigorous treatment see McFarland and Belletrutti
(Automatica 1973, Vol. 8, p. 455). We assume an openloop stable system so the
closedloop characteristic equation has no poles in the right half of the s plane.
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Wood and Berry

2

4,

Ga ins  = 0 .20
Resets = 4 .44

Wood and Berry

- 2
I

- 0 . 0 4
2 .61

2

2 -

42

I I I I I
- 2 2

- 2 - - - 2

Gains = 0.96 - 0 . 1 9Resets = 3.25 9 .20 I

FIGURE 16.3

The closedloop characteristic equation for a multivariable closedloop
process is

Det  Cl + GM,,,  &I = Det  U + &I  = 0
Let us canonically transform the Q matrix into a diagonal matrix 4. which has
as its diagonal elements the eigenvzlues  of $I$

Q = kY’llQW’-’ (16.11)
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where

where qi = ith eigenvalue &

(16.2)

Det [L + Q] = 0

Det CL  + W4Q  V-l]= 0

Det [WLW-’ + w4Q We’]  = 0

(Det W)  (Det [r + &I)  (Det W- ‘) = 0 (16.13)

Since the W matrix is not singular, its determinant is not zero. And the determi-
nant of its inverse is also not zero. Thus the closedloop characteristic equation
becomes

ru + 41) 0 -I

Det l-J + &]  = 0 = Det

I

0 (1  + q2)  0 (16.14). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . o 1 + qN)J

(1  + 41x1 + q2)  “’ t1 + qN)  = o (16.15)

Now, the argument (phase angle) of the product of a series of complex numbers is
the sum of the arguments of the individual numbers.

arg {Det [L + Q]>  = arg (1 + ql) + arg (1 + q2) + ... + arg (1 + qN) (16.16)

If the argument of any of the (1 + qi)  functions on the right-hand side of Eq.
(16.16) increases by 21~ as o goes from 0 to co (i.e., encircles the origin), the
closedloop characteristic equation has a zero in the right half of the s plane.
Therefore the system is closedloop unstable. Instead of plotting (1 + qi) and
looking at encirclements of the origin, we plot just the 4;s  and look at encircle-
ments of the (- 1,0) point.

16.1.4 Niederlinski Index

A fairly useful stability analysis method is the Niederlinski index. It can be used
to eliminate unworkable pairings of variables at an early stage in the design. The
settings of the controllers do not have to be known, but it applies only when
integral action is used in all loops. It uses only the steadystate gains of the
process transfer function matrix.

The method is a “necessary but not sufficient  condition” for stability of a
closedloop system with integral action. If the index is negative, the system will be
unstable for any controller settings (this is called “integral instability”). If the
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index is positive, the system may or may not be stable. Further analysis is neces-
sary.

Niederlinski index = NI =
Det  C&lN (16.17)

II KPjj
j=l

where KP = GM<,,,  = matrix of steadystate gains from the process openloop GM
transfer function

Kpjj  = diagonal elements in steadystate gain matrix

Example 16.3. Calculate the Niederlinski index for the Wood and Berry column.

(16.18)

NI  = Det [gP]
=

fi K~ii

(12.8)(  -l9.4)  - (- 18.9M6.6)  = o 498
(12.8X- 19.4) - ’

(16.19)

. .
j=l

Since the NI is positive, the closedloop system with the specified pairing may be
s t a b l e .

Notice that the pairing assumes distillate composition x, is controlled by
reflux R and bottoms composition xs is controlled by vapor boilup  V.

If the pairing had been reversed, the steadystate gain matrix would be

(16.20)

(16.21)

and the NI for this pairing would be

NI  = Det [BP] (-18.9X6.6) - (12.8X- 19.4)

fi K,, =
(- l&9)(6.6)

= -0.991

j=l

Therefore, the pairing of xD with V and xa with R  gives a closedloop system that is
“integrally unstable” for any controller tuning.

16.2 RESILIENCY

Some processes are easier to control than others. Some choices of manipulated
and controlled variables produce systems that are easier to control than others.
This inherent property of ease of controllability is called resiliency.

Morari (Chemical Eng. Science, 1983, Vol. 38, p. 1881) developed a very
useful measure of this property. The Morari resiliency index (MRI) gives an indi-
cation of the inherent controllability of a process. It depends on the controlled
and manipulated variables, but it does not depend on the pairing of these vari-



514 MULTIVARIABLE PROCESSES

ables  or on the tuning of the controllers. Thus it is a useful tool for comparing
alternative processes and alternative choices of manipulated variables.

The MRI is the minimum singular value of the process openloop  transfer
function matrix Gu,i,. It can be evaluated over a range of frequencies o or just
at zero frequency. If the latter case, only the steadystate gain matrix yP is needed.

MRI = r~@~~~.,~ (16.22)

The larger the value of the MRI, the more controllable or resilient the
process. Without going into an elaborate mathematical proof, we can intuitively
understand why a big MRI is good. The larger the minimum singular value of a
matrix, the farther it is from being singular and the easier it is to find its inverse.
Now a feedback controller is an approximation of the inverse of the process.
Remember back in Chap. 11 where we discussed Internal Model Control and
showed that perfect control could be achieved if we could make the controller the
inverse of the plant. Thus the more invertible the plant, the easier it is to build a
controller that does a good control job.

Example 16.4. Calculate the MRI for the Wood and Berry column at zero fre-
quency.

We use Eq. (15.44) for the singular values and select the smallest for the MRI.

(16.23)

G&P  = -1;; -,;j[‘;:; 33 = [ -;;;:;6 -;;:::;]
To get the eigenvalues of this matrix we solve the equation Det [Ai - &F BP] = 0

Det (I - 207.4) 369.96
369.96 (1  - 733.57)1 = A2 - 940.971+ 15,272 = 0

A = 916.19, 16.52

Therefore the minimum singular value of & is m = 4.06 = MRI.

Example 16.5. Yu and Luyhen (Ind. Eng. Chem. Process Des. Dev., 1986, Vol. 25, p.
498) give the following steadystate gain matrices for three alternative choices of
manipulated variables: reflux and vapor boilup  (R - V), distillate and vapor boilup
(D - V), and refiux ratio and vapor boilup  (RR - V).

R - V D - V R R V

G MI1 16.3 -2.3 1.5
G MI2 - 18.0 1.04 - 1.12
G M21 - 26.2 3.1 - 2.06
G M22 28.63 1.8 4.73

Calculate the MRIs for each choice of manipulated variables.
Using Eq. (16.23),  we calculate MRIs for each system: R - V = 0.114,

D - V = 1.86, and RR - V = 0.89. Based on these results, the D - V system should
be easier to control (more resilient).
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One important aspect of the MRI calculations should be emphasized at this
point. The singular values depend on the scaling use in the steadystate gains of
the transfer functions. If different engineering units are used for the gains, differ-
ent singular values will be calculated. For example, as we change from time units
of minutes to hours or change from temperature units in Fahrenheit to Celsius,
the values of the singular values will change. Thus the comparison of alternative
control structures and processes can be obscured by this effect.

The practical solution to the problem is to always use dimensionless gains
in the transfer functions. The gains with engineering units should be divided by
the appropriate transmitter spans and multiplied by the appropriate valve gains.
Typical transmitter spans are 100”F,  50 gpm, 250 psig, 2 mol % benzene, and the
like. Typical valve gains are perhaps twice the normal steadystate flow rate of the
manipulated variable. The slope of the installed characteristics of the control
valve at the steadystate operating conditions should be used. Thus the gains that
should be used are those that the control system will see. It gets inputs in mA  or
psig from transmitters and puts out mA or psig to valves or to flow controller
setpoints.

16.3 INTERACTION

Interaction among control loops in a multivariable system has been the subject of
much research over the last 20 years. Various types of decouplcrs were explored
to separate the loops. Rosenbrock presented the inverse Nyquist array (INA)  to
quantify the amount of interaction. Bristol, Shinskey, and McAvoy  developed the
relative gain array (RGA) as an index of loop interaction.

All of this work was based on the premise that interaction was undesirable.
This is true for setpoint  disturbances. One would like to be able to change a
setpoint  in one loop without affecting the other loops. And if the loops do not
interact, each individual loop can be tuned by itself and the whole system should
be stable if each individual loop is stable.

Unfortunately much of this interaction analysis work has clouded the issue
of how to design an effective control system for a multivariable process. In most
process control applications the problem is not setpoint responses but load
responses. We want a system that holds the process at the desired values in the
face of load disturbances. Interaction is therefore not necessarily bad, and in fact
in some systems it helps in rejecting the effects of load disturbances. Niederlinski
(AZChE  J 1971, Vol. 17, p. 1261) showed in an early paper that the use of decou-
plers made the load rejection worse.

Therefore the discussions of the RGA, INA, and decoupling techniques will
be quite brief. I include them, not because they are all that useful, but because
they are part of the history of multivariable control. You should be aware of
what they are and of their limitations.
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16.3.1 Relative Gain Array (Bristol Array)

Undoubtedly the most discussed method for studying interaction is the RGA. It
was proposed by Bristol (IEEE Trans. Autom. Control AC-II, 1966, p. 133) and
has been extensively applied (and in my opinion, often misapplied) by many
workers. Detailed discussions are presented by Shinskey  (Process Control
Systems, McGraw-Hill, New York, 1967) and McAvoy  (Interaction Analysis,
Instr. Sot.  America, Research Triangle Park, N.C., 1983).

The RGA has the advantage of being easy to calculate and-only requires
steadystate gain information. Let’s define it, give some examples, show how it is
used, and point out its limitations.

A. DEFINITION. The RGA is a matrix of numbers. The ijth element in the array
is called fiij.  It is the ratio of the steadystate gain between the ith controlled
variable and the jth manipulated variable when all other manipulated variables
are constant, divided by the steadystate gain between the same two variables
when all other controlled variables are constant.

p,,  = CXihjlak
” Cxihjlzk

(16.24)

For example, suppose we have a 2 x 2 system with the steadystate gains K,, .

XI = K,,  1 ml + KP,2 m,

x2 = K,,, ml + K,,, m2 (16.25)

For this system, the gain between x1 and m1  when m2  is constant is

XlCl-ml  Bz
= Km,

The gain between x1 and ml when x2 is constant (x2 = 0) is found from solving
the equations

Xl = K,,, “1 + K,,,  m2

0 = K,,, ml  + KPz2 m2 (16.26)

x1  = K,,, ml + K,,,

hu,  Km, - Km Km
K P22 1 ml

KPllKP22  - KPlZKP21

K P22 1
(16.27)

(16.28)
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Therefore the /?rr term in the RGA is

Al = K
P11

K (16.29)
P21

(16.30)

Example 16.6. Calculate the pII element of the RGA for the Wood and Berry
column.

1 1
Bll = 1 - K,,,  KP2,/(KP11  KP2J  = 1 - (- 18.9)(6.6)/[(12.8X-  19.4)]

= 2.01

Equation (16.30) applies to only a 2 x 2 system. The elements of the RGA
can be calculated for any size system by using the following equation.

pij = (0th  element of Kp)(uth  element of [&Pr]r) (16.31)

Note that Eq. (16.31) does not say that we take the 0th  element of the product of
the IJP and [&; r]r matrices.

Example 16.7. Use Eq. (16.31) to calculate all of the elements of the Wood and
Berry column.

811 = (12.8) = 2.01

This is the same result we obtained using Eq. (16.30).

(16.32)

Note that the sum of the elements in each row is 1. The sum of the elements in each
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column is also 1. This property holds for any RGA, so in the 2 x 2 case we only
have to calculate one element.

Example 16.8. Calculate the RGA for the 3 x 3 system studied by Ogunnaike and
Ray (AZChE  .Z, 1979, Vol. 25, p. 1043).

h, =

TABLE 16.3

0.66e-2.6s -061e-3.5”

6.7s + 1 8.64s + 1

l.lle-6.5S -2.36em3”
3.25s + 1 5s + 1

- 34.68e - g.2s 46.2e- 9.4s
8.15s + 1 10.9s + 1

0.66 -0.61
lit-= 1.11 -2.36

-34.68 46.2

- O.O049e-"
9.06s + 1

-o.o12e-  l.ZS
7.09s + 1

0.87(11.61s  + l)e-”
(3.89s + 1)(18.8s + 1)

-0.0049
-0.012 1

0.87 1

RGA for the Ogunnaike and Ray column
REAL KP(4,4)
COMPLEX G(4,4),GIN(4,4),GINT(4,4),WA(24)
DIMENSION WK(4),BETA(4,4)

C PROCESS STEADYSTATE GAIN DATA
DATA KP(l,l),KP(1,2),KP(1,3)/0.66,-0.61,-0.0049/
DATA KP(2,1),KP(2,2),KP(2,3)/1.11,-2.36,-0.012/
DATA KP(3,1),KP(3,2),KP(3,3)/-34.68,46.2,0.87/

C SET PARAMETERS FOR IMSL SUBROUTINE “LEQ2C”
N=3
IB=4
M=N
IA=4
IJOB=O
WRITE(6,lO)

10 FORMAT(’ RGA FOR OR 3X3  COLUMN’)
DO 30 I=l,N
DO 30 J=l,N

30 G(I,J)=  CMPLX(KP(I,J),O.)
CALL IDENT(GIN,N)
CALL LEQZC(G,N,IA,GIN,M,IB,IJOB,WA,WK,IER)
CALL MTRAN(GIN,GINT,N)

CCALCULATEEACHBETAELEMENTOFTHERGA
DO 40 I=l,N
DO 40 J=l,N

40 BETA(I,J)=G(I,J)*GINT(I,J)
DO 50 I=l,N

50 WRITE(6,2)(BETA(I,J),J=l,N)
2 FORMAT(lX,4F10.3)

STOP
END
Results of RCA  calcuIations

RGA FOR OR 3X3  COLUMN
1.962 -.665 -.297
-.670 1.892 -.222
-.292 -.227 1.519

(16.33)
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The program given in Table 16.3 uses Equation 16.31 to calculate the elements of
the 3 x 3 RGA matrix. The IMSL subroutine LEQ2C is used to get the inverse of
the matrix. The other subroutines are from Chapter 15. The results are

[

1.96 -0.66 -0.30
RGA = -0.67 1.89 -0.221 (16.34)-

-0.29 -0.23 1.52

Note that the sums of the elements in all rows and all columns are 1.

B. USES AND LIMITATIONS. The elements in the RGA can be numbers that
vary from very large negative values to very large positive values. The closer the
number is to 1, the less difference closing the other loop makes on the loop being
considered. Therefore there should be less interaction, so the proponents of the
RGA claim that variables should be paired so that they have RGA elements near
1. Numbers around 0.5 indicate interaction. Numbers that are very large indicate
interaction. Numbers that are negative indicate that the sign of the controller
may have to be different when other loops are on automatic.

As pointed out earlier, the problem with pairing on the basis of avoiding
interaction is that interaction is not necessarily a bad thing. Therefore, the use of
the RGA to decide how to pair variables is not an effective tool for process
control applications. Likewise the use of the RGA to decide what control struc-
ture (choice of manipulated and controlled variables) is best is not effective. What
is important is the ability of the control system to keep the process at setpoint in
the face of load disturbances. Thus, load rejection is the most important criterion
on which to make the decision of what variables to pair, and what controller
structure is best.

The RGA is useful for avoiding poor pairings. If the diagonal element in the
RGA is negative, the system may show integral instability: the same situation
that we discussed in the use of the Niederlinski index. Very large values of the
RGA indicate that the system can be quite sensitive to changes in the parameter
values.

163.2 Inverse Nyquist Array (INA)

Rosenbrock (Computer-Aided Control System Design, Academic Press, 1974) was
one of the early workers in the area of multivariable control. He proposed the use
of INA  plots to indicate the amount of interaction among the loops.

In a SISO system we normally make a Nyquist plot of the total openloop
transfer function GM B. If the system is closedloop stable, the (- 1, 0) point will
not be encircled positively (clockwise). Alternatively, we could plot (l/G,  B).  This
inverse plot should encircle the (- 1, 0) point negatively (counterclockwise) if the
system is closedloop stable. See Fig. 16.4.

An INA  plot for an Nth-order multivariable system consists of N curves,
one for each of the diagonal elements of the matrix that is the inverse of the
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G,+fB  plane

w=o

FIGURE 16.4
SISO Nyquist and inverse Nyquist plots.

product of the GMCsj and &)  matrices. If this product is defined as.  Qeiw)  =
GMfi,)  &,,), then the INA  plots show the diagonal elements of Q&. It is conve-
nient to use the nomenclature

(16.35)

and let the 0th  element of the Q matrix be ~ij.

(16.36)

The three plots for a 3 x 3 system of 9r1,  Qz2,  and G33  are sketched in Fig. 16.5.
Then the sum of the magnitudes of the off-diagonal elements in a given row

of the $ matrix is calculated at one value of frequency and a circle is drawn with
this ra&us.  This is done for several frequency values and for each diagonal
element.

I1 = I612  I + I613  I + . . . + I GIN  I

f-2 = I421  I + I423  I + . . . + I d2N  I
(16.37)

The resulting circles are sketched in Fig. 16.5 for the Gil  plot. The circles are
called Gershgorin rings. The bands that the circles sweep out are Gershgorin
bands. If all the off-diagonal elements were zero, the circles would have zero
radius and no interaction would be present. Therefore the bigger the circles, the
more interaction is present in the system.

If all of the Gershgorin bands encircle the (- 1, 0) point, the system is
closedloop stable as shown in Fig. 16.6~.  If some of the bands do not encircle the



FIGURE 16.5
Multivariable INA

(- 1, 0) point, the system may be closedloop unstable (Fig. 16.6b).  The INA  plots
for the Wood and Berry column are shown in Fig. 16.6~.

Usually the INA  is a very conservative measure of stability. Compensators
are found by trial and error to reshape the INA  plots so that the circles are small
and the system is “diagonally dominant.” The INA  method strives for the elimi-
nation of interaction among the loops and therefore has limited usefulness in
process control where load rejection is the most important question.

16.3.3 Decoupling

Some of the earliest work in multivariable control involved the use of decouplers
to remove the interaction between the loops. Figure 16.7 gives the basic structure
of the system. The decoupling matrix Qt9, is chosen such that each loop does not
affect the others. Figure 16.8 shows the details of a 2 x 2 system. The decoupling
element D,  can be selected in a number of ways. One of the most straightforward
is to set D,, = D,, = 1 and design the D,, and D,, elements so that they cancel
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Gershgorin  bands

(a) Stable (b) May be unstable

4
f---4

(c) Wood and Berry

FIGURE 16.6
INA  plots.
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FIGURE 16.7
Decoupling.

FIGURE 16.8
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(in a feedforward way) the effect of each manipulated variable in the other loop.
For example, suppose x1 is not at its setpoint  but x2 is. The Bi  controller will
change ml in order to drive x1 back to ~7’. But the change in m,  will disturb x2
through the GY2, transfer function.

If, however, the D,, decoupler element was set equal to ( -GMZ1/GM2J,
there would be a change in m, that would come through the GM,,  transfer func-
tion and would cancel out the effect of the change in m, on x2.

--GM21D,, =-
G

(16.38)
Mzz

Using the same arguments for the other loop, the D,, decoupler could be set
equal to

-%D,,=-
G

(16.39)
Ml1

This so-called “simplified decoupling” splits the two loops so that they can be
independently tuned. Note, however, that the closedloop characteristic equations
for the two loops are not 1 + GMMI1  B, = 0 and 1 + G,,,  Bz  = 0. The presence of
the decouplers changes the closedloop characteristic equations to

Gl+B,  M11 %z  - Lz%lG = o (16.40)
Mzz

l+ B, GM11 Ghf22 - Ghfl,  GM21 = ()

G
(16.41)

Ml1

Other choices of decouplers are also possible. However, since decoupling may
degrade the load rejection capability of the system, the use of decouplers is not
recommended except in those cases where setpoint changes are the major dis-
turbances.

16.4 ROBUSTNESS

The design of a controller depends on a model of the process. If the controller is
installed on a process whose parameters are not exactly the same as the model
used to design the controller, what happens to its performance? Is the system
unstable? Is it too underdamped or too slow? These are very practical questions :
because the parameters of any industrial process always change somewhat due to i
nonlinearities, changes in operating conditions, etc. i

If a control system is tolerant to changes in process parameters, it is called 1
“robust.” In previous chapters for SISO systems, we designed for reasonable
damping coefficients or reasonable gain or phase margins or maximum closed-
loop log moduli so that the system would not be right at the limit of stability and :
could tolerate some changes in parameters. In particular, + 2 dB for a maximum I

closedloop log modulus was often used as a design criterion.
i
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In multivariable systems the question of robustness is very important. One
method developed by Doyle and Stein (IEEE Trans., 1981, Vol. AC-26 p. 4) is
quite useful and easy to use. It has the added advantage that it is quite similar to
the maximum closedloop log modulus criterion used in SISO systems.

Another procedure, recommended by Skogestad and Morari (Chemical
Engineering Science, Vol. 24, 1987, p. 1765),  involves designing the controller so
that the closedloop resonant peak occurs at a frequency region where the uncer-
tainty is not too large.

16.4.1 Trade-off Between Performance and Robustness

Before we discuss these two methods of robustness analysis, let us consider the
general relationship between performance and robustness.

In SISO systems, performance is improved (closedloop time constants are
decreased giving tighter control) as controller gain is increased. However, increas-
ing the gain also typically decreases the closedloop damping coefficient, which
makes the system more sensitive to parameter changes. This is an example of the
trade-off that always exists in any system between performance and robustness.
In multivariable systems the same trade-offs occur: the tighter the control, the
less robust the system.

A good example of this is in jet fighter control systems. During attack
periods when performance is very important, the pilot switches to the “attack
mode” where the controller type and settings are such that time constants are
small and performance is high. However, the plane is operating close to the sta-
bility region. Underdamped behavior can result in large overshoots.

When the pilot is trying to land the aircraft, this type of performance is
undesirable. An overshoot of position may mean the plane misses the deck of the
aircraft carrier. Also during landing it is not important to have lightning-fast
response to “joystick” coamands.  Therefore the pilot switches the control
system into the “landing mode” which has lower performance but is more
robust.

16.4.2 Doyle-Stein Criterion

A. SCALAR SISO SYSTEMS. Remember in the scalar SISO case we looked at the
closedloop servo transfer function GME/(l  + GM@. The peak in this curve, the
maximum closedloop log modulus Ly (as shown in Fig. 16.9a),  is a measure of
the damping coefficient of the system. The higher the peak, the more under-
damped the system and the less margin for changes in parameter values. Thus, in
SISO systems the peak in the closedloop log modulus curve is a measure of
robustness.

Now let us rearrange the closedloop servo transfer function.

GhfB 155
1 + GMMB 1 + l/G,B

(16.42)
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‘)
FIGURE 16.9

log w SISO  closcdloop  plots.

If we plotted just the denominator of the right-hand side of Eq. 16.42, the curve
would be the reciprocal of the closedloop servo transfer function and would look
something like that shown in Fig. 16.9b.  The lower the dip in the curve, the lower
the damping coefficient and the less robust the system.

B. MATRIX MULTIVARIABLE SYSTEMS. For multivariable systems, the Doyle-
Stein criterion for robustness is very similar to the reciprocal plot discussed
above. The minimum singular value of the matrix given in Eq. (16.43) is plotted
as a function of frequency o. This gives a measure of the robustness of a closed-
loop multivariable system.

Doyle-Stein criterion: minimum singular value of u + &,$ (16.43)

The Q matrix is defined as before Quo)  = GM,,-,  &,,, .
The tuning and/or structure of the feedback controller matrix B~ic,  is

changed until the minimum dip in the curve is something reasonable. Doyle and
Stein gave no definite recommendations, but a value of about - 12 dB seems to
give good results.

The procedure is summarized in the program given in Table 16.4 which
calculates the minimum singular value of the B + &$J  matrix for the Wood
and Berry column with the empirical controller settings. Figure 16.10 gives plots
of the singular values as a function of frequency. The lowest dip occurs at 0.23
radians per minute and is about - 10.4 dB.
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TABLE MA

Doyle-Stein criterion for Wood and Berry column

REAL KP(4,4),KC(4)
DIMENSION RESET(4),TAU(4,4,4),D(4,4),WK(4),WKEIG(12),SVAL(4)
COMPLEX GM(4,4),B(4,4)&(4,4),QIN(4,4),YID(4,4)
COMPLEX A(4,4),ASTAR(4,4),H(4,4),CEIGEN(4),WA(24),VECT(4,4)

C PROCESS TRANSFER FUNCTION DATA
DATA KP(1,1),KP(1,2),KP(2,1),KP(2,2)/12.8,-18.9,6.6,-19.4/
DATA TAU(1,1,1),TAU(1,1,2),TAU(1,2,1),TAU(1,2,2)/4~0./
DATA TAU(2,1,1),TAU(2,1,2),TAU(2,2,1),TAU(2,2,2)

+ /16.7,21.,10.9,14.4/
DO 1 Id,2
DO 1 J=1,2
TAU(B.I,J‘)=O.

1 TAUi4,i,Jj=O.
DATA D(l,l),D(1,2),D(2,1),D(2,2)/1.,3.,7.,3./

C EMPIRICAL CONTROLLER SETTINGS
DATA KC(l),KC(2)/0.2,-0.04/
DATA RESET(l),RESET(2)/4.44,2.67/

C SET INITIAL FREQUENCY AND NUMBER OF POINTS PER DECADE
W=O.Ol
DW=(lO.)w(1./20.)
N=2
IA=4
M=N
IB=4
IJOB=O

C MAIN LOOP FOR EACH FREQUENCY
WRITE(6,lO)

10 FORMAT(’  FREQUENCY SINGULAR VALUES’)
100 CALL PROCTF(GM,W,N,KP,TAU,D)

C A L L  FEEDBK(ti,W,k,Ik,RESET)
CALL MMULT(GM,B,Q,N)
CALL IDENT(QIN,N)
CALL LEQ2C(Q,N,IA,QIN,M,IB,IJOB,WA,WK,IER)
CALL IDENT(YID,N)
CALL MADD(YID,QIN,A,N)
CALL CONJT(A,ASTAR,N)
CALL MMULT(ASTAR,A,H,N)
IZ=4
JOBN=O
CALL EIGCC(H,N,IA,JOBN,CEIGEN,VECT,IZ,WKEIG,IER)
DO 6 I=l,N

6 SVAL(I)=SQRT(REAL(CEIGEN(I)))
WRITE(6,7)W,  (20.*ALOGlO(SVAL(I)),I=l,N)

7 FORMAT(lX,4F10.5)
W=W*DW
IF(W.LT.l.) GO TO 100
STOP
END

FREQUENCY SINGULAR VALUES
.OlOOO  -.00281  -.02777
.01122  -.00410  -.03454
.01259  -.00573  -.04311
.01413  -.00775  -.05402
.01585  -.01024  -.06790
.01778  -.01323  -.08560
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TABLE 16.4 (continued)

.01995  -.01674  -.10818

.02239  -.02068  -.13696

.02512  -.02476  -.17357

.02818  -.02836  -.21995

.03162  -.03018  -.27835

.03548  -.02781  -.35125

.03981  -.01686  -.44131

.04467 .01029  -.55131

.05012  .06633  -.68430

.05623 .17099  -.84406

.06310 .35212  -1.03602

.07079  .64339  - 1 . 2 6 8 3 8

.07943  1.07633 -1.55325

.08913  1.66805 -1.90751

.lOOOO  2.41108 -2.35387
.11220  3.27344 -2.92264
.12589  4.20928 -3.65467
.14125  5.17272 -4.60511
.15849  6.12728 -5.84469
.17783  7.04909 -7.43694
.19953  7.92596 -9.27595
.22387  8.75518 -10.43061
.25119  9.54200 -9.13860
.28184  10.29958 -6.10422
.31623  11.05093 -2.98828
.35481  11.83274 -.26051
.39811  12.69999 2.05383
.44668  13.72702 3.98402
.50119  5.55631 14.99744
.56234  6.81744 16.58355
.63096  7.85957 18.54112
.70795  8.81277 20.94697
.79433  9.81271 23.97799
.89125  10.95702 28.01324

16.4.3 Skogestad-Morari Method

The Doyle-Stein criterion discussed in the previous section gives us a simple way
to evaluate quantitatively the robustness of a multivariable system. However, it
assumes random variability in all the parameters of the system.

Skogestad and Morari recommend the use of “uncertainty” models for the
design of robust controllers. The idea is easy to visualize for an SISO system.
Suppose we have a process with the following openloop transfer function:

(16.44)

Let us assume that there is some uncertainty in the value of the deadtime  D. It
can vary f 6 fraction of D.

GM(s)

= K emDS
P- (emDds  + 1 - 1) =
t,s+  1

:'e;;  (1  + 4 (16.45)
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Wood and Berry

Gains = 0.20 - 0.04
Resets = 4.44 2.67 n/P

FIGURE 16.10

where
A e e-D&s  - 1 (16.46)

The A function is a measure of the model uncertainty. If we plot A as a
function of frequency (see Fig. 16.11) we can see that its magnitude is quite small
at low frequencies, but increases as frequency is increased. The larger the uncer-
tainty (the bigger a),  the lower the frequency at which the magnitude of the uncer-
tainty becomes large.

The basic idea proposed by Skogestad and Morari is to design the control-
ler so that the closedloop resonant frequency of the system occurs at a frequency
that is lower than the region where the uncertainty becomes significant. For
example, suppose K, = zP  = 1 in Eq. (16.44). If a proportional controller is used
and a tuning criterion of +2 dB maximum closedloop log modulus is assumed,
the value of the controller gains and closedloop resonant frequencies for different
deadtimes are listed below.

0 . 1 8.03 9.55
0 . 2 4.12 6 . 3 1
0 . 5 1 . 9 5 3.02
1 . 0 1.21 1 . 8 2
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Frcqucncy
lo FIGURE 16.11

Uncertainty plots.

If the uncertainty in the deadtime is 0.01 min, Fig, 16.11 shows that its
magnitude becomes significant (magnitude greater than -20 dB, that is, 10
percent) at frequencies above 10 radians per minute. Therefore this much uncer-
tainty would not require controller detuning for deadtimes greater than 0.2, but
the 0.1 deadtime may have to be detuned somewhat to maintain stability despite
the uncertainty.

However, if the uncertainty is 0.1 min, its magnitude becomes significant at
frequencies greater than 1 radian per second. Therefore lower gains would have
to be used in all of the cases.

For the multivariable case, an uncertainty matrix 4 must be defined which
contains the uncertainty in the various elements of the plant transfer function
(and also could include uncertainties in setting control valves or in measure-
ments).

G&f=Gd+al (16.47)

where GM  is the nominal model of the system.
In the SISO case we look at magnitudes. In the multivariable case we look

at singular values. Thus plots of the maximum singular value of the 4 matrix will
show the frequency region where the uncertainties become significant. Then the
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controllers should be designed so that the minimum dip in the Doyle-Stein cri-
terion curves (the minimum singular value of the matrix [1;  + Q--l])  occurs in a
frequency range where the uncertainty is not significant. z

If the uncertainty has a known structure, “structured singular values” are
used. In the book by Morari and Zafiriou (Robust Process Control, 1989,
Prentice-Hall) this topic is discussed in detail.

PROBLEMS

16.1. Wardle  and Wood (I. Chem.  E. Symp.  Series, 1969, No. 32, p.  1) give the following
transfer function matrix for an industrial distillation column:

GM$iEi$  ‘.~~~~;l,j

The empirical PI controller settings reported were:

K, = 18/-24 7, = 19124

(a) Use a multivariable Nyquist plot and characteristic loci plots to see if the system
is closedloop stable.

(b) Calculate the values of the RGA, the Niederlinski index, and the Morari
resiliency index.

16.2. A distillation column has the following transfer function matrix:

34 -44.7

G (54s + 1)(0.5s  + 1)2  (114s + l)(OSs + l)*
hi

=

I

31.6 -45.2

(78s + l)(OSs + 1)’ (42s + 1)(0.5s  + 1)’ J

Empirical PI diagonal controller settings are:

K, = 1.6/-  1.6 7, = 2019  min

(a) Check the closedloop stability of the system using a multivariable Nyquist plot
and characteristic loci plots.

(b) Calculate values of the RGA, the Niederlinski index, and the Morari resiliency
index.

16.3. A distillation column is described by the following linear ODES:

4- = -4.14x,  + 5.99x,  + 0.708R - 0.472V
dt

dx,
- = 10.84x,  - 18.24x,  + 1.28R  - 1.92V  + 42
dt

(a) Use state-variable matrix methods to derive the openloop  transfer function
matrix.

(b) What are the openloop  eigenvalues of the system?
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(c) If the openloop  steadystate gain matrix is

0.958 - 0.936
Y, =

0.639 - 0.661 1
calculate the RGA, the Niederlinski index, and the Morari resiliency index.

16.4. A 2 x 2 process has the openloop  transfer function matrix

1 2 -1

G”=(s+l)  2  2[ 1
A diagonal proportional feedback controller is used with both gains set equal to K, .
Time is in minutes.
(a) What is the openloop  time constant of the system?
(b) Calculate the closedloop eigenvalues as functions of K, .
(c) What value of K, will give a closedloop time constant of 0.1 min?

16.5. Air and water streams are fed into a pressurized tank through two control valves.
Air flows out of the top of the tank through a restriction, and water flows out
the bottom through another restriction. The linearized equations describing the
system are

dP
dt  = -0.8P  + 0.5F,  + OM,

dh
- = -0.4P  - O.lh + 0.5F’,
dt

where P = pressure
h = liquid height

F,  = air flow rate into tank
F, = water flow rate into tank

Use state variable methods to calculate:
(a) The openloop  eigenvalues and the openloop  transfer function matrix.
(b) The closedloop eigenvalues if two proportional SISO controllers are used with

gains of 5 (for the pressure controller manipulating air flow) and 2 (for the level
controller manipulating water flow).

(c) Calculate the RGA and the Niederlinski index for this system.

16.6. A 2 x 2 multivariable process has the following openloop  plant transfer function
matrix:

G,=L  2 l[ 1s+l 1 2

A diagonal feedback controller is used with proportional controllers.

(a) What is the closedloop characteristic equation of this system?
(b) What are the RGA, Morari resiliency index, and Niederlinski index?
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16.7. The state-space description of a process is given below:

&=&+(;m

-whereg=[:i]  n-t=[z:]

4=[-;  -;I  c=[;  -;I

Derive the openloop  plant transfer function matrix relating controlled variables Xi

and manipulated variables mj.



CHAPTER

17
DESIGN
OF
CONTROLLERS
FOR
MULTIVARIABLE
PROCESSES

In the last two chapters we have developed some mathematical tools and some
methods of analyzing multivariable closedloop systems. This chapter studies the
development of control structures for these processes.

The first part of this chapter deals with the conventional diagonal structure:
multiloop SISO controllers. Full-blown multivariable controllers are briefly dis-
cussed at the end of the chapter.

17.1 PROBLEM DEFINITION

Most industrial control systems use the multiloop SISO diagonal control struc-
ture. It is the most simple and understandable structure. Operators and plant
engineers can use it and modify it when necessary. It does not require an expert
in applied mathematics to design and maintain. In addition, the performance of
these diagonal controller structures is usually quite adequate for process control
applications. In fact there has been little quantitative, unbiased data showing that

594
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the performances of the more sophisticated controller structures are really that
much better! Some comparisons of performance are given in Sec. 17.7, and you
can be the judge as to whether the slight (if any) improvement is worth the price
of the additional complexity and engineering cost of implementation and main-
tenance.

So the multiloop SISO diagonal controller remains an important structure.
It is the base case against which the other structures should be compared. The
procedure discussed in this chapter was developed to provide a workable, stable,
simple SISO system with only a modest amount of engineering effort. The
resulting diagonal controller can then serve as a realistic benchmark, against
which the more complex multivariable controller structures can be compared.

The limitations of the procedure should be pointed out. It does not apply to
openloop  unstable systems. It also does not work well when the time constants of
the different transfer functions are quite different; i.e., some parts of the process
much faster than others. The fast and slow sections should be designed separately
in this case.

The procedure has been tested primarily on realistic distillation column
models. This choice was deliberate because most industrial processes have similar
gain, deadtime, and lag transfer functions. Undoubtedly some pathological trans-
fer functions can be found that the procedure cannot handle. But we are inter-
ested in a practical engineering tool, not elegant, rigorous all-inclusive
mathematical theorems.

The procedure is called the “LACEY” procedure (not because it is full of
holes, as claimed by some!) from its developers: Luyben, Alatiqi, Chiang, Elaahi,
and Yu. The steps are summarized below. Each step is discussed in more detail in
later sections of this chapter.

1. Select controlled variables. Use primarily engineering judgment based on
process understanding.

2. Select manipulated variables. Find the set of manipulated variables that gives
the largest Morari resiliency index (MRI).

3. Eliminate unworkable variable pairings. Eliminate pairings with negative Nie-
derlinski indexes.

4. Find the best pairing from the remaining sets.
(a)  Tune all combinations using BLT tuning and check for stability

(characteristic loci plots) and robustness (Doyle-Stein and Skogestad-
Morari criteria).

(b) Select the pairing that gives the lowest magnitude closedloop load transfer
function : Tyreus load-rejection criterion (TLC).

You can see from the acronyms used above that I like to use ones that are
easy to remember: BLT (bacon, lettuce, and tomato) and TLC (tender loving
care). Remember we also discussed the “ATV” (all-terrain vehicle) identification
method back in Chap. 14.
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17.2 SELECTION OF CONTROLLED VARIABLES

17.2.1 Engineering Judgment

Engineering judgment is the principal tool for deciding what variables to control.
A good understanding of the process leads in most cases to a logical choice of
what needs to be controlled. Considerations of economics, safety, constraints,
availability and reliability of sensors, etc. must be factored into this decision.

For example, in a distillation column we are usually interested in control-
ling the purities of the distillate and bottoms product streams. In chemical reac-
tors, heat exchangers, and furnaces the usual controlled variable is temperature.
Levels and pressures must be controlled. In most cases these choices are fairly
obvious.

It should be remembered that controlled variables need not be simple
directly measured variables. They can also be computed from a number of sensor
inputs. Common examples are heat removal rates, mass flow rates, ratios of flow
rates, etc.

However, sometimes the selection of the appropriate controlled variable is
not so easy. For example, in a distillation column it is frequently difficult and
expensive to measure product compositions directly with sensors such as gas
chromatographs.  Instead, temperatures on various trays are controlled. The
selection of the best control tray to use requires a considerable amount of knowl-
edge about the column, its operation, and its performance. Varying amounts of
non-key components in the feed can affect very importantly the best choice of
control trays.

17.2.2 Singular Value Decomposition

The use of singular value decomposition (SVD), introduced into chemical engi-
neering by Moore and Downs (Proc.  JACC, paper WP-7C,  1981) can give some
guidance in the question of what variables to control. They used SVD to select
the best tray temperatures. SVD involves expressing the matrix of plant transfer
function steadystate gains & as the product of three matrices: a u matrix, a
diagonal z matrix, and a ET matrix.

Kp  = uc=vT (17.1)

It is somewhat similar to canonical transformation. But it is different in that the
diagonal C  matrix contains as its diagonal elements, not the eigenvalues of the &,
matrix, but its singular values.

The biggest elements in each column of the Q matrix indicate which
outputs of the process are the most sensitive. Thus SVD can be used to help
select which tray temperatures in a distillation column should be controlled.
Example 17.1 from the Moore and Downs paper illustrates the procedure.

Example 17.1. A nine-tray distillation column separating isopropanol and water
has the following steadystate gains between tray temperatures and the manipulated
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variables reflux R and heat input Q.

Tray En Ei
number A R AQ

-0.00773271 0.0134723
- 0.2399404 0.2378752
-2.5041590 2.4223120
- 5.9972530 5.7837800
- 1.6773120 1.6581630

0.0217166 0.0259478
0.1976678 -0 .1586702  ’
0.1289912 -0.1068900
0.0646059 -0.0538632

The elements in this table are the elements in the steadystate gain matrix of the
column KP,  which has 9 rows and 2 columns.

Now KP  is decomposed into the product of three matrices.

Y, = VZY’

u=

--0.0015968 - 0.082898 1
-0.0361514 -0.0835548
-0.3728142 -0.0391486
-0.8915611 0.1473784
-0.2523613 - 0.6482796

-0.0002581 -0.6482796

0.0270092 -0.4463671

0.0178741 - 0.2450451

0.0089766 -0.1182182

9.3452 0

0.052061 1

(17.2)

(17 .3 )

(17.4)

(17.5)

y’ =
0.7191619 -0.6948426

-0.6948426 -0.71916191 (17.6)

The largest element in the first column in u is -0.8915611 which corresponds to
tray 6. Therefore SVD would suggest the control of tray 6 temperature.

The software to do the SVD calculations is readily available (Computer Methods
For Mathematical Computations, Forsythe, Malcolm, and Moler, Prentice-Hall,
1977).
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17.3 SELECTION OF MANIPULATED VARIABLES

Once the controlled variables have been specified, the control structure depends
only on the choice of manipulated variables. For a given process, selecting differ-
ent manipulated variables will produce different control structure alternatives.
These control structures are independent of the controller structure, i.e., pairing of
variables in a diagonal multiloop SISO structure or one full-blown multivariable
controller.

For example, in a distillation column the manipulated variables could be
the flow rates of reflux and vapor boilup (R - V) to control distillate and
bottoms compositions. This choice gives one possible control structure. Alterna-
tively we could have chosen to manipulate the flow rates of distillate and vapor
boilup (D - V). This yields another control structure for the same basic distilla-
tion process.

The Morari resiliency index (MRI) discussed in Chap. 16 can be used to
choose the best set of manipulated variables. The set of manipulated variables
that gives the largest minimum singular value over the frequency range of inter-
est is the best. The differences in MRI values should be fairly large to be mean-
ingful. If one set of manipulated variables gives an MRI of 10 and another set
gives an MRI of 1, you can conclude that the first set is better. However, if the
two sets have MRIs  that are 10 and 8, there is probably little difference from a
resiliency standpoint and either set of manipulated variables could be equally
effective.

This selection of control structure is independent of variable pairing and
controller tuning. The MRI is a measure of the inherent ability of the process
(with the specified choice of manipulated variables) to handle disturbances,
changes in operating conditions, etc.

The problem of the effect of scaling on singular values is handled by
expressing the gains of all the plant transfer functions in dimensionless form. The
gains with engineering units are divided by transmitter spans and multiplied by
valve gains. This yields the dimensionless gain that the controller sees and has to
cope with.

17.4 ELIMINATION OF POOR PAIRINGS

The Niederlinski index (Sec. 16.1.4) can be used to eliminate some of the pairings.
Negative values of this index mean unstable pairings, independent of controller
tuning. As illustrated in Example 16.3, pairing xD with V and xB with R gives a
negative Niederlinski index, so this pairing should not be used.

For a 2 x 2 system, a negative Niederlinski index is equivalent to pairing
on a negative RGA element. For example, in Example 16.7 the flii RGA element
is positive (2.01). This says that the xD to R pairing is okay. However, the pi2
element is negative (- l.Ol),  telling us that the xD to V pairing is not okay.
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17.5 BLT TUNING

One of the major questions in multivariable control is how to tune controllers in
a diagonal multiloop SISO system. If PI controllers are used, there are 2N tuning
parameters to be selected. The gains and reset times must be specified so that the
overall system is stable and gives acceptable load responses. Once a consistent
and rational tuning procedure is available, the pairing problem can be attacked.

The tuning procedure discussed below (called BLT,  biggest log-modulus
tuning) provides such a standard tuning methodology. It satisfies the objective of
arriving at reasonable controller settings with only a small amount of engineering
and computational effort. It is not claimed that the method will produce the best
results or that some other tuning or controller structure will not give superior
performance. What is claimed is that the method is easy to use, is easily under-
standable by control engineers, and leads to settings that compare very favorably
with the empirical settings found by exhaustive and expensive trial-and-error
tuning methods used in many studies.

The method should be viewed in the same light as the classical SISO
Ziegler-Nichols method. It gives reasonable settings which provide a starting
point for further tuning and a benchmark for comparative studies.

BLT tuning involves the following four steps :

1. Calculate the Ziegler-Nichols settings for each individual loop. The ultimate
gain and ultimate frequency w, of each diagonal transfer function Gjj(,)  are
calculated in the classical SISO way. To do this numerically, a value of fre-
quency o is guessed. The phase angle is calculated, and the frequency is varied
to find the point where the Nyquist plot of Gjjciw) crosses the negative real axis
(phase angle is - 180 degrees). The frequency where this occurs is w,.  The
reciprocal of the real part of GjjcioJ is the ultimate gain. Table 17.1 gives a
FORTRAN program with a subroutine ZNT which does this iterative calcu-
lation using simple interval halving.

2. A detuning factor F is assumed. F should always be greater than. 1. Typical
values are between 1.5 and 4. The gains of all feedback controllers K,i are
calculated by dividing the Ziegler-Nichols gains KzNi  by the factor F.

KZNi
Kci  = ~

F
(17.7)

where KZNi  = KJ2.2.

Then all feedback controller reset times rIi are calculated by multiplying the
Ziegler-Nichols reset times rZNi  by the same factor F.

TIi = TZNi F (17.8)

where ZZNi  = 2~/1.2w,i. (17.9)

The F factor can be considered as a detuning factor which is applied to all
loops. The larger the value of F, the more stable the system will be but the
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TABLE 17.1
BLT tuning for Wood and Berry column

REAL KP(4,4),KC(4)
DIMENSION RESET(4),TAU(4,4,4),D(4,4)
COMPLEX GM(4,4),B(4,4),Q(4,4),YID(4,4),CHAR(4,4),A(4,4),C(4,4)
COMPLEX XDETER,WFUNC
EXTERNAL D2,D3,D4

C PROCESS TRANSFER FUNCTION DATA
DATA KP(l,l),KP(1,2),KP(2,1),KP(2,2)/12.8,-18.9,6.6,-19.4/
DATA TAU(1,1,1),TAU(1,1,2),TAU(1,2,1),TAU(1,2,2)/4~0./
DATA TAU(2,1,1),TAU(2,1,2),TAU(2,2,1),TAU(2,2,2)

+  /16.7,21.,10.9,14.4/
DO 1 I=1,2
DO 1 .J=1,2
TAU(3,I,J)=O.

1 TAU(4,I,J)=O.
DATA D(l,l),D(1,2),D(2,1),D(2,2)/1.,3.,7.,3./
N=2
CALL BLT(N,KP,TAU,D,KC,RESET,FBLT)
STOP
END

SUBROUTINE BLT(N,KP,TAU,D,KC,REsET,FBLT)
COMPLEX G(4,4),B(4,4),&(4,4),YID(4,4),CHAR(4,4),A(4,4),C(4,4)
COMPLEX XDETER,CLTF
REAL KC.KP.KU
DIMENSIdN  i<P(4,4),TAU(4,4,4),D(4,4),KC(4),RESET(4),KU(4),WU(4)
FLAGP=l.
FLAGM=l.
LOOP=0
FBLT=lO.
DF=2.

C FIND ZIEGLER-NICHOLS SETTINGS
DW=10.**(1./80.)
CALL ZNT(N,KP,TAU,D,KU,WU)
WRITE(6,77)

77 FORMAT(’  F D B M A X W M A X  ‘ )
1000 DO 10 K=l,N

KC(K)=KU(K)/Z.Z/FBLT
10 RESET(K)=FBLT  +2.+3.1416/WU(K)/1.2

DBMAX=-200.
W=.Ol
I,ooP=LooP+1
IF(LOOP.GT.30)THEN
WRITE(G,*)’  BLT  LOOP ’
STOP
ENDIF

C EVALUATE PROCESS TRANSFER FUNCTION MATRIX
C GAIN KP(I), DEADTIME  D(I), LEAD TAU(l,I,J)
C THREE LAGS TAU(B,I,L),  TAU(3,I,J),  TAU(4,I,J)

100 CALL PROCTF(G,W,N,KP,TAU,D)
C EVALUATE DIAGONAL PI  CONTROLLER MATRIX

CALL FEEDBK(B,W,N,KC,RESET)
CALL IDENT(YID,N)
CALL MMULT(G,B,Q,N)
CALL MADD(YID,Q,CHAR,N)
CALL DETER(N,CHAR,A,C,XDETER)

C FORM W FUNCTION = DET(I+GB) - 1 .
XDETER=XDETER-1.
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TABLE 17.1 (continued)

CLTF=XDETER/(l.+XDETER)
DBCL=ZO.+ALOGlO(CABS(CLTF))
IF(DBCL.GT.DBMAX)THEN
DBMAX=DBCL
WMAX=W
ENDIF
W=W+DW
IF(W.LT.lO.)GO  TO 100
WRITE(6,2)FBLT,DBMAX,WMAX

2 FORMAT(lX,3F10.5)
C DBMAX SPECIFICATION IS 2+N

IF(ABS(DBMAX-Z.*N).LT.  .Ol)GO  TO 50 *
C USE INTERVAL HALVING TO CHANGE FBLT

IF(DBMAX-2.*N)20,20,30
20 IF(FLAGM.LT.O.)DF==DF/2.

FBLT=FBLT-DF
IF(FBLT,LT..5)  GO TO 30
FLAGP=-1.
GO TO 1000

30 IF(FLAGP.LT.O.)DF=DF/2.
FBLT=FBLT+DF
FLAGM=-1.
GO TO 1000

50 WRITE(6,9)(KC(I),I=l,N)
9 FORMAT(’  BLT GAINS = ‘,4F8.4)
WRITE(6,8)(RESET(I),I=l,N)

8 FORMAT(’  BLT RESET TIMES = ‘,4F8.2)
RETURN
END

C
SUBROUTINE ZNT(N,KP,TAU,D,KU,WU)
COMPLEX G(4,4),B(4,4),&(4,4),YID(4,4),CHAR(4,4),A(4,4),C(4,4)
COMPLEX XDETERCLTF
REAL KC,KP,KU,KZN
DIMENSION KP(4),TAU(4,4,4),D(4,4),KC(4),RESET(4),KU(4),WU(4)
DO 1000 K=l,N
FLAGP=l.
FLAGM=l.
LOOP=0

C GUESS FREQUENCY
WZ=l./TAU(P,K,K)
IF(TAU(3,K,K).LE.O.)  THEN
w=w2
G O T 0 5
ELSE
Wl=l./TAU(3,K,K)
w=w2
IF(W2.LT.Wl)W=Wl
ENDIF

5 DW=W
C CALCULATE PHASE ANGLE

100 DEG=-W+D(K,K)+ATAN(W1;TAU(l,K,K))-ATAN(W*TAU(2,K,K))
+-ATAN(W*TAU(3,K,K))-ATAN(W+TAU(4,K,K))
DEG=DEG*180./3.1416
LooP=LooP+1
IF(LOOP.GT.200)THEN
WRITE(G,+)‘Z-N  LOOP ’
STOP



602 MULTIVARIABLE PROCESSES

TABLE 17.1 (continued)

ENDIF
C CHECK IF PHASE ANGLE IS -180

IF(ABS(DEG+lSO.).LT..l)  GO TO 50
C USE INTERVAL HALVING TO REGUESS FREQUENCY

IF(DEG+180.)20,20,30
20 IF(FLAGM)21,21,22
21 DW=DW+.5
22 W=W-DW

FLAGP=-1.
GO TO 100

30 IF(FLAGP)31,31,32
31 DW=DW*.5
32 W=W+DW

FLAGM=-1.
GO TO 100

50 WU(K)=W
C CALCULATE ULTIMATE GAIN

CALL PROCTF(G,W,N,KP,TAU,D)
KU(K)=-l./REAL(G(K,K))

1000 CONTINUE
WRITE(G,+)’  ZIEGLER-NICHOLS TUNING’
WRITE(G,+)’  N  K U  W U KZN T Z N ’
DO 200 K=I,N
KZN=KU(K)/2.2
TZN=2.*3.14lS/WU(K)/1.2

200 WRITE(6,99)K,KU(K),WU(K),KZN,TZN
99 FORMAT(lX,I2,3X,4F8.2)

RETURN
END

Results

ZIEGLER-NICHOLS TUNING

N KU WU KZN TZN
1 2.10 1.61 .96  3 . 2 5
2 -.42 .56 -.19  9 . 2 8
F D B M A X W M A X
10.00000 -.19344 .01000
8.00000 .07800 .01000
6.00000 .18621 .01000
4.00000 .79220 .17783
2.00000 6.47123 .37584
3.00000 2.62291 .28184
2.50000 4.16342 .32546
2.75000 3.32153 .30726
2.62500 3.72360 .31623
2.56250 3.93576 .32546
2.53125 4.04989 .32546
2.54688 3.99289 .32546

BLT GAINS = .3750  -.0753
BLT RESET TIMES = 8.29 23.63
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more sluggish will be the setpoint and load responses. The method yields set-
tings that give a reasonable compromise between stability and performance in
multivariable systems.

3. Using the guessed value of F and the resulting controller settings, a multivari-
able Nyquist plot of the scalar function IV&,,)  = - 1 + Det [L + GYCioI  &,,J
is made. See Sec. 16.1.2, Eq. (16.5). The closer this contour is to the (- 1, 0)
point, the closer the system is to instability. Therefore the quantity W/(1  + W)
will be similar to the closedloop servo transfer function for a SISO loop
G, B/(1  + G, B). Therefore, based on intuition and empirical grounds, we
define a multivariable closedloop log modulus L,,

W
L,, = 20 log,, -I I1+w

(17.10)

The peak in the plot of L,, over the entire frequency range is the biggest log
modulus L,“,““.

4. The F factor is varied until Lz”,“”1s  equal to 2N, where N is the order of the
system. For N = 1, the SISO case, we get the familiar +2 dB  maximum
closedloop log modulus criterion. For a 2 x 2 system, a t4 dB value of LE’,“”
is used; for a 3 x 3, +6 dB;  and so forth. This empirically determined cri-
terion has been tested on a large number of cases and gives reasonable per-
formance, which is a little on the conservative side.

This tuning method should be viewed as giving preliminary controller set-
tings which can be used as a benchmark for comparative studies. Note that the
procedure guarantees that the system is stable with all controllers on automatic
and also that each individual loop is stable if all others are on manual (the F
factor is limited to values greater than one so the settings are always more con-
servative than the Ziegler-Nichols values). Thus a portion of the integrity ques-
tion is automatically answered. However, further checks of stability would have
to be made for other combinations of manual/automatic operation.

The method weighs each loop equally, i.e., each loop is equally detuned. If it
is important to keep tighter control of some variables than others, the method
can be easily modified by using different weighting factors for different controlled
variables. The less-important loop could be detuned more than the more-
important loop.

Table 17.1 gives a FORTRAN program that calculates the BLT tuning for
the Wood and Berry column. The subroutine BLT is called from the main
program where the process parameters are given. The resulting controller settings
are compared with the empirical setting in Table 17.2. The BLT settings usually
have larger gains and larger reset times than the empirical. Time responses using
the two sets of controller tuning parameters are compared in Fig. 17.1.

Results for the 3 x 3 Ogunnaike and Ray column are given in Table 17.2
and in Fig. 17.2. The “ +4” and “ + 6” refer to the value of L,“,“” used. Both of
these cases illustrate that the BLT procedure gives reasonable controller settings.
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TABLE 17.2

BLT, Ziegler-Nichols, and empirical controller
tuning

Wood and Berry Ogunnaike and Ray

Empirical
Kc 02-0.04 1.2/-0.15/0.6

TI 4&t/2.61 511014

Z-N
K 0.96/-0.19 3.24/-0.63J5.66

*I 3.2519.2 7.62/8.36/3.08

BLT
L: (dB)  +4 +6
F factor 2.55 2.15

KC 0.375/-0.075 1.51/-0.295/2.63

TI 8.29123.6 16.4/18/6.61

If the process transfer functions have greatly differing time constants, the
BLT procedure does not work well. It tends to give a response that is too oscil-
latory. The problem can be handled by breaking up the system into fast and slow
sections and applying BLT to each smaller subsection.

The BLT procedure discussed above was applied with PI controllers. The
method can be extended to include derivative action (PID controllers) by using
two detuning factors: F detunes the ZN reset and gain values and F, detunes the
ZN derivative value. The optimum value of F, is that which gives the minimum

x, 08

0

0
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0
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f;‘l--::”

Time. mm

FIGURE 17.1
Wood and Berry column: BLT and empirical tuning
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FIGURE 17.2
Ogunnaike and Ray column: BLT and empirical tuning.

value of F and still satisfies the + 2N maximum closedloop log modulus criterion
(see the paper by Monica, Yu, and Luyben in IEC  Research, Vol. 27, 1988, p.
969).

17.6 LOAD REJECTION PERFORMANCE

In most chemical processes the principal control problem is load rejection. We
want a control system that can keep the controlled variables at or near their
setpoints in the face of load disturbances. Thus the closedloop regulator transfer
function is the most important.

The ideal closedloop relationship between the controlled variable and the
load is zero. Of course this can never be achieved, but the smaller the magnitude
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of the closedloop regulator transfer function, the better the control. Thus a
rational criterion for selecting the best pairing of variables is to choose the
pairing that gives the smallest peaks in a plot of the elements of the closedloop
regulator transfer function matrix. This criterion was suggested by Tyreus (Paper
presented at the Lehigh University Short Course on Distillation Control,
Bethlehem, Pa., 19841,  so we call it the Tyreus load-rejection criterion (TLC).

The closedloop relationships for a multivariable process were derived in
Chap. 15 [Eq. (15.64)]

x = CCL  + GM,,,  &)I  ’ GM(,)  &&set  + CCL  + GM,,, B(s)1  %&l~(S, (17.11)
For a 3 x 3 system there are three elements in the x vector, so three curves are
plotted of each of the three elements in the vector [[L + GMcicu,  &iJIG,,,o,]  for
the specified load variable L. Table 17.3 gives a program that calculates the TLC
curves for the 3 x 3 Ogunnaike and Ray column.

17.7 MULTIVARIABLE CONTROLLERS

Several multivariable controllers have been proposed during the last few decades.
The optimal control research of the 1960s used variational methods to produce
multivariable controllers that minimized some quadratic performance index. The
method is called linear quadratic (LQ). The mathematics are elegant but very few
chemical engineering industrial applications grew out of this work. Our systems
are too high-order and nonlinear for successful application of LQ methods.

In the last decade several other multivariable controllers have been pro-
posed. We will briefly discuss two of the most popular in the sections below.
Other multivariable controllers that will not be discussed but are worthy of
mention are “minimum variance controllers” (see Bergh and MacGregor, IEC
Research, Vol. 26, 1987, p. 1558) and “extended horizon controllers” (see Ydstie,
Kershenbaum, and Sargent, AlChE  J.,  Vol. 31, 1985, p. 1771).

17.7.1 Multivariable DMC

Undoubtedly the most popular multivariable controller is the multivariable
extension of dynamic matrix control. We developed DMC for a SISO loop in
Chap. 8. The procedure was a fairly direct least-squares computational one that
solved for the future values of the manipulated variable such that some per-
formance index was minimized.

The procedure can be extended to the multivariable case with little concep-
tual effort. You simply expand the 4 matrix discussed in Chap. 8 to include all
the individual 4 matrices relating all of the outputs to all of the inputs. The
performance index is expanded to include the errors in all the controlled vari-
ables plus weighting the moves in all the manipulated variables. The book-
keeping and the number-crunching become more extensive but the concept is the
same.
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TABLE 17.3

TLC for Ogunnaike and Ray column

REAL KP(4,4),KC(4j,KL(4)
DIMENSION RESET(4),TAU(4,4,4),D(4,4),TAUL(4,4),DL(4)
COMPLEX GM(4,4),B(4,4),Q(4,4),YID(4,4),CHAR(4,4),A(4,4),C(4,4)
COMPLEX GL(4)

C GM PROCESS TRANSFER FUNCTION DATA
DATA KP(l,l).KP(l,2),KP(1,3)/0.66,-0.61,.0.0049/
DATA KP(2,1),KP(2,2),KP(2,3)/1.11,-2.36,.0.012/
DATA KP(3,1),KP(3,2),KP(3,3)/-34.68,46.2,0.87/
DATA TAU(1,1,1),TAU(l,1,2),TAU(l,l,3)/3+0./
DATA TAU(l,2,l),TAU(l,2,2),TAU(1,2,3)/3+0./
DATA TAU(1,3,1),TAU(1,3,2),‘~AU(l,3,3)/2+0.,  11.61/
DATA TAU(2,l,l),TALJ(2,1,2),TAU(2,1,3)/6.7,8.64,9.06/
DATA TAU(2,2,l),TAU(2,2,2),TAU(2,2,3)/3.25,5.0,7.09/
DATA TAU(2,3,1),TAU(2,3,2),‘TAU(2,3,3)/8.15,10.9,3.89/
DATA TAU(3,1,l),TAU(3,1,2),TAU(3,1,3)/3*0./
DATA TAU(3,2,1),TAU(3,2,2),TAU(3,2,3)/3+0./
DP.TA  TAU(3,3,l),TAU(3,3,2),TAU(3,3,3)/2*0.,18.8/
DO 1 1=1,3
DO 1 J=1,3

1 TAU(4,I,J)=O.
DATA D(l,l),D(1,2),D(1,3)/2.6,3.5,1./
DATA D(2,1),D(2,2),D(2,3)/6.5,3.,1.2/
DATA D(3,1),D(3,2),0(3,3)/9.2,9.4,1./

C GL PROCESS TR.ANSFER.  FUNCTION DATA
DATA KL(l),KL(2),KL(3)/0.14,0.53,-11.54/
DATA TAUL(l,l),TAUL(1,2).TAUL(1,3)/3*0./
DATA TAUL(2,1),TAUL(2,2),TAUL(2,3)/6.2,6.9,7.01/
DO 2 I=1,3
TAUL(3,1)=0.

2 TAUL(4,1)=0.
DATA DL(l),DL(2),DL(3)/12.,10.5,0.6/

C CONTROLLER DATA - EMPIRICAL SETTINGS
DATA KC(l),KC(2),KC(3)/1.2,-0.15,0.6/
DATA RESET(l),RESET(2),RESET(3)/5.,10.,4./
N=3
CALL TLC(N,KP,TAU,D,KL,TAUL,DL,KC,RESET)
STOP
END

C
SUBROUTINE TLC(N,KP,TAU,D,KL,TAUL,DL,KC,RESET)
REAL KP(4,4),KC(4),KL(4)
DIMENSION RESET(4),TAU(4,4,4),D(4,4),TAUL(4,4),DL(4)
COMPLEX GM(4,4),B(4,4),Q(4,4),HIN(4,4),H(4,4)
COMPLEX GL(4),WA(24),XTLC(4)
DIMENSION DB(4),WK(4)
W=.Ol
DW=(lO.)**(l./lO.)
NN=N
IA=4
M=N
IB=4
IJOB=O
WRITE(6,77)

7 7  FORMAT(’  W  TLC1 TLC2 TCL3’)
100 CALL PROCTF(GM,W,N,KP,TAU,D)

CALL FEEDBK(B,W,N,KC,RESET)
CALL MMULT(GM,B,Q,N)
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TABLE 17.3 (continued)
CALL IDENT(HIN,N)
CALL MADD(HIN,Q,H,N)
CALL LEQ2C(H,NN,IA,HIN,M,IB,IJOB,WA,WK,IER)
CALL LOADTF(GL,W,N,KL,TAUL,DL)
CALL MVMULT(HIN,GL,XTLC,W,N)
DO 6 I=l,N

6 DB(I)=20.*ALOGlO(CABS(XTLC(I)))
WRITE(6,7)W,(DB(I),I=l,N)

7 FORMAT(lX,F7.4,4F9.3)
W=W*DW
IF(W.LT.lO.)GO  TO 100
RETURN
END

C
SUBROUTINE LOADTF(GL,W,N,KL,TAUL,DL)
COMPLEX GL(4),ZL,ZD
DIMENSION DL(4),TAUL(4,4)
REAL KL(4)
ZL(X)=CMPLX(l.,X*W)
ZD(X)=CMPLX(COS(WtX),-SIN(W*X))
DO 10 I=l,N
GL(I)=KL(I)*ZD(DL(I))*ZL(TAUL(l,I))/ZL(TAUL(2,1))/

+ ZL(TAUL(3,I))/ZL(TAUL(4,1))
10 CONTINUE

RETURN
END

C
C MATRIX-VECTOR MULTIPLICATION

SUBROUTINE MVMULT(A,B,C,W,N)
COMPLEX A(4,4),B(4)$(4)
DO 30 I=l,N
C(I)=CMPLX(O.,O.)
DO 20 J=l,N

20 C(I)=A(I,J,*B(J)+C(I)
30 CONTINUE

RETURN
END

Results

W  T L C 1 TLC2 TCL3
.OlOO -51.187 -18.386 -7.112
.0126 -47.967 -17.091 -3.642
.0158 -45.022 -16.026 .240
.0200 -42.393 -15.209 3.093
.0251 -40.119 -14.645 6.361
.0316 -38.231 -14.331 9.540
,039s -36.722 -14.266 12.547
.0501 -35.442 -14.440 15.252
.0631 -34.002 -14.781 17.553
.0794 -32.012 -15.072 19.407
.lOOO -29.484 -14.857 20.770
.1259 -26.696 -13.620 21.450
.1585 -23.911 -11.456 20.922
.I995 -21.406 -9.153 17.734
.2512 -19.702 -7.744 7.871
.3162 -19.614 -8.386 15.111

W TLC1 TLC2 TCL3
.3981  -21.309 -11.531 15.413
.5012  -24.020 -16.312 8.943
6310 -27.079 -19.446 9.338
.7943  -29.796 -19.764 6.413

1.0000 -32.102 -21.345 5.627
1.2589 -35.142 -24.907 3.107
1.5849 -37.406 -26.733 ,995
1.9953 -39.624 -28.397 -1.342
2.5119 -41.039 -29.725 -3.389
3.1623 -42.692 -32.305 -5.623
3.9811 -45.035 -34.280 -7.692
5.0119 -46.915 -36.055 -9.727
6.3096 -49.044 -38.224 -11.729
7.9433 -50.828 -40.280 -13.540

10.0000 -52.814 -42.443 -15.796
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Figure 17.3 gives some comparisons of the performance of the multivariable
DMC structure with the diagonal structure. Three linear transfer-function models
are presented, varying from the 2 x 2 Wood and Berry column to the 4 x 4
sidestream column/stripper complex configuration. The DMC tuning constants
used for these three examples are NP = 40 and NC = 15. See Chap. 8, Sec. 8.9.

The weighting factors (f) for the changes in the manipulated variables were
10, 0.1, and 0.1 for the three cases. These were chosen so that the maximum
magnitudes of the changes in the manipulated variables did not exceed those
experienced when the diagonal structure was used. If these weighting factors were
made smaller, tighter control could be achieved, but the changes in the manipu-
lated variables would be larger. In most chemical engineering systems, we cannot
permit rapid and large swings in manipulated variables. For example, such large
swings in steam to the reboiler of a distillation column could flood the column or
even blow out trays in the lower section of the tower.

Using the multivariable DMC produces some improvement for setpoint
disturbances. However, as Fig. 17.3 shows, there are only slight differences
between DMC and the diagonal structure (with BLT tuning) for load dis-
turbances. Thus the real economic incentive for the more complex multivariable
configuration has yet to be demonstrated by impartial evaluators.

17.7.2 Multivariable IMC

In theory, the internal model control methods discussed for SISO systems in
Chap. 11 can be extended to multivariable systems (see the paper by Garcia and
Morari in IEC Process Design and Development, Vol. 24, 1985, p. 472).

In practice, however, this extension is not as straightforward as in DMC. In
multivariable DMC, there is a definite design procedure to follow. In multi-
variable IMC, there are steps in the design procedure that are not quantitative
but involve some “art.” The problem is in the selection of the invertible part of
the process transfer function matrix. Since there are many possible choices, the
design procedure becomes cloudy.

The basic idea in multivariable IMC is the same as in single-loop IMC. The
ideal controller would be the inverse of the plant transfer function matrix. This
would give perfect control. However, the inverse of the plant transfer function
matrix is not physically realizable because of deadtimes, higher-order denomina-
tors than numerators, and RHP zeros (which would give an openloop  unstable
controller).

So the openloop  plant transfer function matrix GM is split up into two
parts : an invertible part and a noninvertible part.

GAf=G+G- (17.12)

Then the multivariable IMC controller is set equal to the invertible part times a
“filter” matrix which slows up the closedloop response to give the system more
robustness. The filter acts as a tuning parameter (like setting the closedloop time
constant in the SISO case in Chap. 8).
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However, the procedure for specifying the invertible part G- is not a defi-
nite, step-by-step recipe. There are several invertible parts that could be chosen.
These problems are discussed in the book by Morari and Zafiriou (Robust
Process Control, Prentice-Hall, 1989).

PROBLEMS

17.1. Calculate the BLT settings for the Wardle and Wood column (see Prob. 16.1). Using
these controiler  settings, calculate the minimum singular value from the Doyle-Stein
method.

17.2. Determine the BLT settings for the 2 x 2 multivariable system given in Prob. 16.2.
17.3. Alatiqi presented (I&EC Process Design Deu.  1986, Vol. 25, p. 762) the transfer func-

tions for a 4 x 4 multivariable complex distillation column with sidestream stripper
for separating a ternary mixture into three products. There are four controlled vari-
ables: purities of the three product streams (x,,, x,,, and x8J  and a temperature
difference AT to minimize energy consumption. There are four manipulated vari-
ables: reflux R, heat input to the reboiler QR  , heat input to the stripper reboiler Qs,
and flow rate of feed to the stripper L,.  The 4 x 4 matrix of openloop transfer
functions relating controlled and manipulated variables is :

4.09e-  ‘3s - 6.36e-  1.2s

(33s + 1)(8.3s  + 1) (31.6s + 1x20s  + 1)

-025e-l.4~

21s+  1
- 0.49e-  6s

(22s + 1)2
-4.17eC5” 6.93e-‘.02” - O.OSe-  ” 1.53e-3.*S

45s+ 1 44.6s + 1 (34.5s + 1)2 48s+ 1
1.73e-‘*’ 5.11eF12” 461e-1.0'" - 5  49e-'.55

(13s + 1)2 (13.3s + 1)2 18.5s + 1 15s+ 1
- 11.2e-2.6” 14(1Os  + l)e-“.02s (-jJe-0.05s 4.49e-0.6s

(43s + 1)(6.5s  + 1) (45s + lX17.4~’  + 3s + 1) (31.6s + 1x5s  + 1) (48s + 1)(6.3s  + 1)

The vector of openloop transfer functions relating the controlled variables to the
load disturbance (feed composition: mole fraction of intermediate component) is:

-0.86ee6’

(19.2s + 1)2
- l.O6e-‘”

35s + 1
1.2em9”
24s + 1

16s2  + 4s + Ii

Calculate the BLT settings and the TLC curves using these settings.
17.4 A distillation column has the following openloop transfer function matrix relating

controlled variables (x, and xs) to manipulated variables (reflux ratio RR and
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reboiler heat input QR):

I

3.7e-1.2S - 5,ge-  1.3s

G = (6.9s + 1x162s + 1) (1.8s + 1)(119Os  + 1)
M - 170e-0.*s 323e-‘.*”

(0.6s  + 1)(127s  + l)* (1.3s + 1)(4OOs  + 1)

(a) Calculate the RGA and Niederlinski index for this pairing
(h) Calculate the Morari resiliency index at zero frequency.
(c) Calculate the Ziegler-Nichols settings for the individual diagonal loops.
(d)  Check the closedloop stability of the system when these ZN settings are used by

making a multivariable Nyquist plot.
(e) Use the BLT procedure to determine a detuning F factor that gives a maximum

closedloop log modulus of + 4 dB.
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