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PREFACE

The first edition of this book appeared over fifteen years ago. It was the first
chemica engineering textbook to combine modeling, simulation, and control. It
also was the first chemical engineering book to present sampled-data control.
This choice of subjects proved to be popular with both sudents and teachers and
of condderable practicd  Utility.

During the ten-year period following publication, | resisted suggestions
from the publisher to produce a second edition because | felt there were redly
very few usful new developments in the fidd. The control hardware had changed
drastically, but the basic concepts and strategies of process control had under-
gone little change. Most of the new books that have appeared during the last
fifteen years are very similar in their scope and content to the first edition. Basic
casscd control is dill the mgor subject.

However, in the last five years, a number of new and useful techniques have
been developed. This is particularly true in the area of multivariable control.
Therefore | fed it is time for a second edition.

In the area of process control, new methods of analysis and synthesis of
control  systems have been developed and need to be added to the process control
engineer's bag of practicd methods. The driving force for much of this develop-
ment was the drastic increase in energy costs in the 1970s. This led to major
redesigns of many new and old processes, using energy integration and more
complex processng schemes. The resulting plants ae more interconnected.  This
increases control loop interactions and expands the dimension of contral prob-
lems. There are many important processes in which three, four, or even more
control loops interact.

As a reault, there has been a lot of research activity in multivariable control,
both in academia and in industry. Some practical, useful tools have been devel-
oped to design control systems for these multivariable processes. The second
edition includes a fairly comprehensive discussion of what | feel are the useful
techniques for contralling multivariable  processes.

XXi



se
XX} PREFACE

Another significant change over the last decade has been the dramatic
increase in the computational power readily available to engineers. Most calcu-
lations can be peformed on persond computers that have computationd horse
power equal to that provided only by mainframes a few years ago. This means
that engineers can now routinely use more rigorous methods of analysis and
gynthess. The second edition includes more computer programs. All are  wuitable
for execution on a persond computer.

In the area of mahematicd modding, there has been only minor progress.
We dtill are able to describe the dynamics of most systems adequately for engi-
neering purposes. The trade-off between model rigor and computational effort
has shifted toward more precise models due to the increase in computational
power noted above. The second edition includes severd more examples of modds
that are more rigorous.

In the area of simulation, the analog computer has amost completely dis-
gppeared.  Therefore, andog smulation has been deeted from this edition. Many
new digital integration algorithms have been developed, particularly for handling
large numbers of “tiff” ordinary differential equations. Computer programming
is now routinely taught at the high school level. The-second edition includes an
expanded treatment of iterative convergence methods and of numerical integra-
tion agorithms for ordinary differential equations, including both explicit and
implicit methods.

The second edition presents some of the material in a dightly different
sequence.  Fifteen additiond years of teaching experience have convinced me tha
it is easier for the students to understand the time, Laplace, and frequency tech-
niques if both the dynamics and the control are presented together for each
domain. Therefore, openloop dynamics and closedloop control are both dis-
cussed in the time domain, then in the Laplace domain, and finaly in the fre-
quency domain. The z domain is discussed in Pat VII.

There has been a modest increase in the number of examples presented in
the book. The number of problems has been greatly increased. Fifteen years of
quizzes have yiedded amogt 100 new problems.

The new material presented in the second edition has come from many
sources. | would like to express my thanks for the many useful comments and
suggestions  provided by colleagues who reviewed this text during the course of its
devdopment, especidly to Danid H. Chen, Lamar Universty; T. S Jang, Uni-
versity of Illinois-Chicago; Richard Kerrnode, University of Kentucky; Steve
Melsheimer, Cignson University; James Peterson, Washington State University;
and R. Russell Rhinehart, Texas Tech University. Many stimulating and useful
discussions of multivariable control with Bjorn Tyreus of DuPont and Christos
Georgakis of Lehigh University have contributed significantly. The efforts and
suggestions of many dudents are gratefully acknowledged. The “ LACEY” group
(Luyben, Alatigi, Chiang, Elaahi, and Yu) developed and evaluated much of
the new material on multivariable control discussed in Part V1. Carol Biuckie
helped in the typing of the final manuscript. Lehigh undergraduate and graduate
classes have contributed to the book for over twenty years by their questions,
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youthful enthusiasm, and genuine interest in the subject. If the ultimate gift that

ateacher can be given is a group of good students, | have indeed been blessed.
Alhamdulillahi!

William L. Luyben
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CHAPTER

L

INTRODUCTION

This chapter is an introduction to process dynamics and control for those stu-
dents who have had little or no contact or experience with real chemical engi-
nearing proceses. The objective is to illustrate where process control fits into the
picture and to indicate its reldive importance in the operation, desgn, and deve-
opment of a chemicad enginesring plant.

This introductory chapter is, | am sure, unnecessary for those practicing
enginers who may be usng this book. They are wel aware of the importance of
considering the dynamics of a process and of the increasingly complex and
sophisticated control systems that are being used. They know that perhaps 80
percent of the time that one is “on the plant” is spent at the control panel,
watching recorders and controllers (or CRTs). The control room is the nerve
center of the plant.

1.1 EXAMPLES OF THE ROLE
OF PROCESS DYNAMICS AND CONTROL

Probably the best way to illustrate what we mean by process dynamics and
control is to take a few real examples. The first example describes a simple
process where dynamic response, the time-dependent behavior, is important. The
second example illustrates the use of a single feedback controller. The third
example discusses a smple but reasonably typicd chemicd engineering plant and
its conventiond control  sysem involving several  controllers

Example 1.1. Fgure 1.1 shows a tank into which an incompressble (constant-
density) liquid is pumped & a varigble rate F, (ft%/s). This inflow rate can vary with

!
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FIGURE 1.1
Gravity-flow tank.

time because of changes in operations upsream. The height of liquid in the verticd
cylindrical tank is h (ft). The flow rate out of the tank is F (ft3/s).

Now Fy , h, andf will dl vary with time and are therefore functions of time t.
Consequently we use the notation Fy,, hy,, and Fy, . Liquid leaves the base of the
tank via a long horizonta pipe and discharges into the top of another tank. Both
tanks are open to the atmosphere.

Let us look firg a the steadystate conditions. By steadystate we mean, in
mogt systems, the conditions when nothing is changing with time. Mahematicaly
this corresponds to having dl time derivatives equa to zero, or to dlowing time to
become very large, i.e, go to infinity. At steadysate the flow rate out of the tank
must equa the flow rate into the tank. In this book we will denote steadydate
values of varigbles by an overscore or bar above the varigbles. Therefore at steady-
date in our tank sysem Fo = F.

For a given F, the height of liquid in the tank a steedystate would dso be
some congtant h. The vaue of i would be that height that provides enough hydrau-
lic pressure head at the inlet of the pipe to overcome the frictional losses of liquid
flowing down the pipe. The higher the flow rate F, the higher h will be.

In the steadystate design of the tank, we would naturdly size the diameter of
the exit line and the height of the tank so that a the maximum flow rate expected
the tank would not overflow. And as any good, conservative design engineer knows,
we would include in the design a 20 to 30 percent safety factor on the tank height.

Actual  height. specified}

Maximuml design height

Maximum design
flow

FIGURE 12
Steadystate height versus flow.
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Since this is a book on control and insrumentation, we might adso mention that a
high-level darm and/or an interlock (a device to shut off the feed if the level gets too
high) should be ingdled to guarantee that the tank would not spill over. The tragic
accidents a& Three Mile Idand, Chernobyl, and Bhopd illustrate the need for well-
designed and well-indrumented plants.

The design of the system would involve an economic baance between the cost
of atdler tank and the cost of a bigger pipe, since the bigger the pipe diameter the
lower is the liquid height. Figure 1.2 shows the curve of h versus F for a specific
numerica case.

So far we have consdered just the traditiona steadystate design aspects of
this fluid flow system. Now let us think about what would happen dynamicdly if we
changed Fo. How will hy and F, vary with time? Obvioudy F eventudly hes to
end up at the new vaue of F,. We can eadly determine from the steadystate design
curve of Fig. 1.2 where h will go a the new steedystate. But what paths will g, and
F, take to get to their new steadystates?

Figure 1.3 sketches the problem. The question is which curves (1 or 2) rep-
resent the actua paths that F and h will follow. Curves 1 show gradud increases in
h and F to ther new steadystate vaues. However, the paths could follow curves 2
where the liquid height rises above its find deedydate vdue. This is cdled
“overshoot.” Clearly, if the pesk of the overshoot in h is above the top of the tank,
we would be in trouble.

Our dteadydate design cdculations tel us nothing about what the dynamic
response to the system will be. They tel us where we will sart and where we will
end up but not how we get there. This kind of information is what a sudy of the
dynamics of the system will reveal. We will return to this system later in the book to
derive a mathematicd mode of it and to determine its dynamic response quantita
tivdly by smulation.

Example 1.2. Consider the heat exchanger sketched in Fig. 1.4. An oil stream passes
through the tube side of a tube-in-shell heat exchanger and is heated by condensing
steam on the shell sde. The steam condensate leaves through a steam trap (a device
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that only permits liquid to pass through it, thus preventing “blow through” of the
seam vapor). We want to control the temperaiure of the oil leaving the heat
exchanger. To do this, a thermocouple is inserted in a thermowdl in the exit oil
pipe. The thermocouple wires are connected to a “temperature transmitter,” an dec-
tronic device tha converts the millivolt thermocouple output into a 4- to 20-
milliampere  “control  dgnd.” The current dgnd is sent into a temperature
controller, an electronic or digital or pneumatic device that compares the desired
temperature (the “setpoint”) with the actud temperature, and sends out a Sgnd to
a control vave. The temperature controller opens the steam vave more if the tem-
perature is too low or closes it alittle if the temperature is too high.

We will consder dl the components of this temperature control loop in more
detail later in this book. For now we need only gppreciate the fact that the auto-
matic control of some variagble in a process requires the ingdlation of a sensor, a
trangmitter, a controller, and a find control éement (usualy a control vave). Most
of this book is amed a learning how to decide what type of controller should be
used and how it should be “tuned,” i.e,, how should the adjustable tuning param-
eters in the contraller be set so that we do a good job of controlling temperature.

Example 1.3. Our third example illugtrates a typical control scheme for an entire
smple chemicd plant. Figure 1.5 gives a smple schemdtic sketch of the process
configuration and its control system. Two liquid feeds are pumped into a reactor in
which they react to form products. The reaction is exothermic, and therefore hest
must be removed from the reactor. This is accomplished by adding cooling water to
a jacket surrounding the reactor. Reector effluent is pumped through a prehester
into a didillation column that splits it into two product streams.

‘Traditional steadystate design procedures would be used to specify the
various pieces of eguipment in the plant:

Fluid mechanics. Pump heads, rates, and power; piping sizes, column tray
layout and Szing; heat-exchanger tube and shell sde baflling and Szing

Heat transfer. Reactor heat removal; prehester, reboiler, and condenser heat
transfer areas, temperature levels of steam and cooling water

Chemical kinetics. Reactor size and operating conditions (temperature, pres-
sure, catalyst, etc.)
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FC = flow control loop

TC = temperature control loop

PC = pressure control loop
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Thermodynamics and mass transfer. Operating pressure, number of plates and
reflux ratio in the didillaion column; temperature profile in the column; equi-
librium conditions in the reactor

But how do we decide how to control this plant? We will spend mogt of our time in
this book exploring this important design and operating problem. All our studies of
mathematicd modeling, smulation, and control theory are amed a understanding
the dynamics of processes and control systems so that we can develop and design
better, more easily controlled plants that operate more efficiently and more safely.
For now let us say merdly that the control sysem shown in Fg. 15 is a
typicd conventiona system. It is about the minimum that would be needed to run
this plant automatically without constant operator attention. Notice that even in
this smple plant with a minimum of ingrumentation the totad number of control
loops is 10. We will find that most chemica engineering processes are multivariable.

1.2 HISTORICAL BACKGROUND

Most chemical processing plants were run essentially manually prior to the
1940s. Only the most elementary types of controllers were used. Many operators
were needed to keep watch on the many variables in the plant. Large tanks were
employed to act as buffers or surge capacities between various units in the plant.
These tanks, although sometimes quite expensive, served the function of filtering
out some of the dynamic disturbances by isolating one part of the process from
upsats occurring in ancther part.

With increasing labor and equipment costs and with the development of
more severe, higher-capacity, higher-performance  equipment and  proceses in  the
1940s and early 1950s, it became uneconomical and often impossible to run
plants without automatic control devices At this stage feedback controllers were
added to the plants with little real consideration of or appreciation for the
dynamics of the process itsdf. Rule-of-thumb guides and experience were the only
desgn techniques.

In the 1960s chemica engineers began to apply dynamic analysis and
control theory to chemica engineering processes. Most of the techniques were
adapted from the work in the aerospace and electricd enginegring fidds. In  addi-
tion to designing better control systems, processes and plants were developed or
modified so that they were esder to control. The concept of examining the many
pats of a complex plant together as a single unit, with al the interactions
included, and devising ways to control the entire plant is called systems engineer-
ing. The current popular “buzz” words artificial intelligence and expert systems
ae being gpplied to these types of dudies.

The rapid rise in energy prices in the 1970s provided additional needs for
effective control systems. The design and redesign of many plants to reduce
energy consumption resulted in more complex, integrated plants that were much
more interacting. So the challenges to the process control engineer have contin-
ued to grow over the years. This makes the study of dynamics and control even
more vitd in the chemicd enginering curriculum than it was 30 years ago.
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13 PERSPECTIVE

Lest | be accused of overdaing the relative importance of process control to the
main dream of chemicd enginearing, let me make it pedfectly clear that the tools
of dynamic andyss are but one pat of the practicing engineer's bag of tools and
techniques, albeit an increasingly important one. Certainly a solid foundation in
the more traditional areas of thermodynamics, kinetics, unit operations, and
transport phenomena is essential. In fact, such a foundation is a prerequisite for
any study of process dynamics. The mathematical models that we derive are
realy nothing but extensions of the traditional chemical and physical laws to
include the time-dependent terms. Control engineers sometimes have a tendency
to get too wrapped up in the dynamics and to forget the steadystate aspects.
Keep in mind that if you cannot get the plant to work at steadystate you cannot
get it to work dynamicaly.

An even greater pitfall into which many young process control engineers
fall, particularly in recent years, is to get so involved in the fancy computer
control hardware that is now available that they lose sight of the process control
objectives. All the beautiful CRT displays and the blue smoke and mirrors that
computer control salespersons are notorious for using to sell hardware and soft-
ware can easily seduce the unsuspecting control engineer. Keep in mind your
main objective to come up with an effective control sysem. How you implement
it, in a sophisticated computer or in simple pneumatic instruments, is of much
less  importance.

You should also appreciate the fact that fighting your way through this
book will not in itsdf make you an expet in process control. You will find thet a
lot remains to be leaned, not so much on a higher theoreticd level as you might
expect, but more on a practical-experience level. A sharp engineer can learn a
tremendous amount about process dynamics and control that can never be put in
a book, no matter how practically oriented, by climbing around a plant, talking
with operators and instrument mechanics, tinkering in the instrument shop, and
kesping his or her eyes open in the control room.

You may question, as you go through this book, the degree to which the
dynamic analysis and controller design techniques discussed are redlly used in
industry. At the present time 70 to 80 percent of the control loopsin a plant are
usudly designed, ingdled, tuned, and operated quite successfully by simple rule-
of-thumb, experience-generated techniques. The other 20 to 30 percent of the
loops are those on which the control engineer makes his money. They require
more technical knowledge. Plant testing, computer simulation, and detailed con-
troller design or process redesign may be required to achieve the desired per-
formance. These criticd loops often make or bresk the operation of the plant.

| am confident that the techniques discussed in this book will receive wider
and wider applications as more young engineers with this training go to work in
chemicd plants. This book is an atempt by an old dog to pass dong some usdful
engineering tools to the next generation of pups. It represents over thirty years of
experience in this lively and ever-chdlenging area. Like anwy “expert,” I've learned
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from my successes, but probably more from my falures. | hope this book heps
you to have many of the former and not too many of the latter. Remember the
old saying: “If you are making mistakes, but they are new ones, you are getting
smarter.”

1.4 MOTIVATION FOR STUDYING
PROCESS CONTROL

Some of the motivationd reasons for gdudying the subjects presented in this book
are that they are of considerable practica importance, they are challenging, and
they are fun.

1 Importance. The control room is the mgor inteface with the plant. Automa
tion isincreasingly common in all degrees of sophistication, from single-loop
sysems to computer-control  systems.

2. Chdlenging. You will have to draw on your knowledge of dl aress of chemicd
engineering.  You will use mogt of the mathematicd tools avalable (differentia
equations, Laplace transforms, complex variables, numericd andyss, €c) to
wlve red problems.

3. Fun. | have found, and | hope you will too, that process dynamics is fun. You
will get the opportunity to use some ssmple as well as some fairly advanced
mathematics to solve red plant problems. There is nothing quite like the thrill
of working out a controller design on paper and then seeing it actually work
on the plant. You will get alot of satisfaction out of going into a plant that is
having major control problems, diagnosing what is causing the problem and
getting the whole plant lined out on gpecification. Sometimes the problem is in
the process, in besc desgn, or in equipment mdfunctioning. But sometimes it
is in the control system, in besic drategy, or in hardware madfunctioning. Just
your knowledge of wha a given control device should do can be invaueble,

1.5 GENERAL CONCEPTS

| have tried to present in this book a logical development. We will begin with
fundamentals and simple concepts and extend them as far as they can be gain-
fully extended. First we will learn to derive mathematica models of chemical
engineering systems. Then we will sudy some of the ways to solve the resulting
equations, usualy ordinary differential equations and nonlinear algebraic equa-
tions. Next we will explore their openloop (uncontrolled) dynamic behavior.
Findly we will learn to design controllers that will, if we are smat enough, make
the plant run astomaicdly the way we want it to run: eficiently and safely.

Before we go into detals in the subsequent chapters, it may be worthwhile
at this point to define some very broad and genera concepts and some of the
terminology used in dynamics and control.
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1. Dynamics. Time-dependent behavior of a process. The behavior with no con-
trollers in the sysem is cdled the openloop response. The dynamic behavior
with feedback controllers included with the process is cdled the closedloop
response.

2. Variables.

a.

b.

o

Manipulated oariables. Typicdly flow raes of streams entering or leaving a
process that we can change in order to control the plant.

Controlled variables. Flow raes, compostions, temperatures, levels, and
pressures in the process that we will try to control, ether trying to hold
them as condant as possble or trying to meake them follow some desred
time trgectory.

Uncontrolled variables. Variables in the process that are not controlled.
Load disturbances. Flow rates, temperatures, or compodtions of streams
entering (but sometimes leaving) the process. We are not free to manipulate
them. They are set by upstream or downstream parts of the plant. The
control system must be able to keep the plant under control despite the
effects of these disturbances.

Example 1.4. For the heat exchanger shown in Fig. 1.4, the load disturbances are ail
feed flow rate F and oil inlet temperature T,,. The steam flow rate F, is the manipu-
lated varidble. The controlled variable is the oil exit temperature T.

Example 1.5. For a binary didtillation column (see Fg. 1.6), load disturbance vari-
ables might include feed flow rate and feed compostion. Reflux, steam, cooling
water, didtillate, and bottoms flow rates might be the manipulated varigbles. Con-
trolled variables might be didtillate product composition, bottoms product composi-
tion, column pressure, base liquid leve, and reflux drum liquid levd. The
uncontrolled variables would include the compostions and temperatures on dl the
trays. Note that one physicd stream may be consdered to contain many variables:

Feed flow rate F Distillate composition Xp_
g 3N
Load
disturbances Feed composition Bottom composition x,
Level reflux drum Mg Controlled
variables
Z | Level base My .
Reflux flow rate R %
= |Pressure P
Reboiler heat Qg S o
)
Manipulated Distillate flow rate D g
variables $ Tray 15 temperature
Bottoms flow rate B
Tray 5 temperature Uncontrolled
L Cooling water flow rate F, . o variables

FIGURE 1.6
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FIGURE 1.7
Feacbeck  conrdl  loop.

its flow rate, its compogition, its temperature, €c., i.e, dl its intensve and extensve
properties.

3. Feedback control. The traditional way to control a process isto measure the
variable that is to be controlled, compare its value with the desired value (the
setpoint to the controller) and feed the difference (the error) into a feedback
controller that will change a manipulated variable to drive the controlled vari-
able back to the desired value. Information is thus “fed back” from the con-
trolled varigble to a manipulated variable, as sketched in Fg. 17.

4. Feedforward control. The basic ideais shown in Fig. 1.8. The disturbance is
detected as it enters the process and an appropriate change is made in the
manipulated variable such that the controlled variable is held constant. Thus
we begin to teke corrective action as soon as a disturbance entering the system
is detected instead of waiting (as we do with feedback control) for the dis-
turbance to propagate all the way through the process before a correction is
made.

5. Stability. A process is said to be unstable if its output becomes larger and
larger (either positively or negatively) as time increases. Examples are shown
in Fig. 1.9. No red system redly does this, of course, because some condraint
will be met; for example, a control vave will completely shut or completely
open, or a safety valve will “pop.” A linear process is right at the limit of

Disturbance

. i output
| Manipdated vaicdle | Process —|j—
M easurement
device
Feedforward

controller
FIGURE 1.8

Feedforward control.
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FIGURE 19
Stability.

dability if it oscillaes even when undisurbed, and the amplitude of the oscil-
lations does not decay.

Most processes are openloop stable, i.e, dable with no controllers on the
system. One important and very interesting exception that we will study in
some detail is the exothermic chemical reactor which can be openloop
unstable. All red proceses can be made closedloop unstable (unstable when a
feedback controller is in the system) if the controller gain is made large
enough. Thus dability is of vitd concern in feedback control systems.

The performance of a control system (its ability to control the process
tightly) usually increases as we increase the controller gain. However, we get
closer and closer to being closedloop undable. Therefore the robustness of the
control system (its tolerance to changes in process parameters) decreases. a
small change will make the system unstable. Thus there is always a trade-off
between robustness and performance in control  system design.

1.6 LAWS AND LANGUAGES
OF PROCESS CONTROL

1.6.1 Process Control Laws

There are several fundamental laws that have been developed in the process
control field as a result of many years of experience. Some of these may sound
dmilar to some of the laws atributed to Parkinson, but the process control laws
ae not intended to be humorous.

1) FIRST LAW. The smplest control system tha will do the job is the best.
Complex elegant control systems look great on paper but soon end up on

“manua” in an industrial environment. Bigger is definitely not better in control

sydem  design.

(2) SECOND LAW. You must understand the process before you can contral it.
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No degree of sophigtication in the control system (be it adaptive control,
Kaman filters, expert systems, etc.) will work if you do not know how your
process works. Many people have tried to use complex controllers to overcome
ignorance about the process fundamentals, and they have failed! Learn how the
process works before you sat designing its control  system.

1.6.2 Languages of Process Control

As you will see, severd different approaches are used in this book to andyze the
dynamics of systems. Direct solution of the differential equations to give func-
tions of time is a “time doman” technique Use of Laplace transforms to charac-
terize the dynamics of systems is a “Laplace domain” technique. Frequency
reponse  methods provide another goproach to the problem.

All of these methods are useful because each has its advantages and dis-
advantages. They yield exactly the same results when applied to the same
problem. These various approaches are similar to the use of different languages
by people around the world. A table in English is described by the word
“TABLE.” In Russian atable is described by the word “CTOJI.” In Chinese a
tableis “ & 3. In German it is “der Tisch.” But in any language a table is still
a table.

In the sudy of process dynamics and control we will use severd languages.

English = time domain (differential equations, yielding exponential time
function solutions)

Russan = Laplace doman (trandfer functions)

Chinese = frequency domain (frequency response Bode and Nyquist plots)

Cresk = dae vaiables (matrix methods applies to differentid equations)

Geman = z doman (sampled-data systems)

You will find the languages are not difficult to learn because the vocabulary tha
is required is quite small. Only 8 to 10 “words’ must be learned in each lan-
guage. Thus it is farly easy to trandate back and forth between the languages.

We will use “English’ to solve some smple problems. But we will find tha
more complex problems are easier to understand and solve using “Russian.” As
problems get even more complex and redidtic, the use of “Chined’ is required.
So we study in this book a number of very useful and practical process control
languages.

| have chosen the five languages listed above simply because | have had
ome exposure to dl of them over the years. Let me assure you that no politica
or nationalistic motives are involved. If you would prefer French, Spanish,
Itdlian, Japanese, and Swahili, please fed free to make the appropriate subdtitu-
tiond My purpose in usng the language metephor is to try to bresk some of the
psychological barriers that students have to such things as Laplace transforms
and frequency response. It is a pedagogical gimmick that | have used for over
two decades and have found it to be very efective with students.
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MATHEMATICAL
MODELS
OF

CHEMICAL
ENGINEERING
SYSTEMS

n the next two chapters we will develop dynamic mathematical models for
severa important chemical engineering systems. The examples should illus-
trate the basc approach to the problem of mahematicd modding.
Mathematical modeling is very much an art. It takes experience, practice,
and bran power to be a good mahemaicd modeer. You will se a few modds
developed in these chapters. You should be able to gpply the same agpproaches to
your own process when the need arises. Just remember to always go back to
bascs : mass energy, and momentum baances applied in their time-varying form.

13






CHAPTER

2

FUNDAMENTALS

2.1 INTRODUCTION
2.1.1 Uses of Mathematical Models

Without doubt, the most important result of developing a mahemaicd modd of
a chemica engineering system is the understanding that is gained of what realy
makes the process “tick.” This insight enables you to strip away from the
problem the many extraneous “confusion factors’ and to get to the core of the
system. You can see more clearly the cause-and-effect relationships between
the vaiables.
Mathematical models can be useful in all phases of chemica engineering,

from research and development to plant operations, and even in business and
economic ~ dudies.

1. Research and development: determining chemical kinetic mechanisms and
parameters from laboratory or pilot-plant reaction data; exploring the effects
of different operating conditions for optimization and control studies; aiding
in scdeup caculations.

2. Design: exploring the sizing and arrangement of processing equipment for
dynamic performance; studying the interactions of various parts of the
process, particularly when materia recycle or heat integration is used; evalu-
aing aternative process and control structures and strategies;, simulating
dat-up, shutdown, and emergency Stuaions and procedures.

15
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3. Plant operation: troubleshooting control and processing problems, aiding in
dart-up and operator traning; Sudying the effects of and the requirements for
expansion (bottleneck-removal) projects; optimizing plant operation. It is
usually much cheaper, safer, and faster to conduct the kinds of studies listed
above on a mathematical model than experimentally on an operating unit.
This is not to say that plant tesdts are not needed. As we will discuss later, they
ae a vitd pat of confirming the vaidity of the modd and of verifying impor-
tant idess and recommendations that evolve from the modd dudies.

2.1.2 Scope of Coverage

We will discuss in this book only determinisic sysems that can be described by
ordinary or patiad differentid eguations. Mogt of the emphass will be on lumped
systems (with one independent variable, time, described by ordinary differential
equations). Both English and S units will be used. You need to be familiar with
both.

2.1.3 Principles of Formulation

A. BASIS. The bases for mahematicd models are the fundamentad physca and
chemicd laws, such as the laws of consarvation of mass, energy, and momentum.
To study dynamics we will use them in their general form with time derivatives
included.

B. ASSUMPTIONS. Probably the mogt vitd role that the engineer plays in mod-
eling is in exercising his engineering judgment as to what assumptions can be
validly made. Obviously an extremely rigorous model that includes every phe-
nomenon down to microscopic detail would be so complex that it would take a
long time to develop and might be impractical to solve, even on the latest super-
computers. An engineering compromise between a rigorous description and
getting an answer that is good enough is always required. This has been caled
“optimum sloppiness.” It involves making as many simplifying assumptions as
ae reasonable without “throwing out the baby with the bath water.” In practice,
this optimum usually corresponds to a model which is as complex as the avail-
ale computing facilities will permit. More and more this is a persond computer.

The development of a model that incorporates the basic phenomena
occurring in the process requires a lot of skill, ingenuity, and practice. It is an
area where the creativity and innovativeness of the engineer is akey element in
the success of the process.

The assumptions that are made should be carefully considered and listed.
They impose limitations on the model that should aways be kept in mind when
evauding its predicted results.

C. MATHEMATICAL CONSISTENCY OF MODEL. Once dl the equations of the
mathematicd model have been written, it is usudly a good idea particulaly with
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big, complex systems of equations, to make sure that the number of variables
equas the number of equations. The so-cdled “degrees of freedom” of the system
must be zero in order to obtain a solution. If this is not true, the system is
underspecified or overspecified and something is wrong with the formulation of
the problem. This kind of consistency check may seem trivial, but | can testify
from sad experience that it can save many hours of frustration, confusion, and
wasted computer  time.

Checking to see that the units of al termsin al equations are consistent is
perhaps another trivial and obvious step, but one that is often forgotten. It is
essential to be particularly careful of the time units of parameters in dynamic
modds. Any units can be used (seconds, minutes, hours, etc.), but they cannot be
mixed. We will use “minutes’ in mogt of our examples, but it should be remem
bered that many parameters are commonly on other time bases and need to be
converted appropriately, e.g., overal heat transfer coefficientsin Btu/h °F ft* or
velocity in m/s. Dynamic simulation results are frequently in error because the
engineer has forgotten a factor of “60" somewhere in the equations.

D. SOLUTION OF THE MODEL EQUATIONS. We will concern oursalves in
detail with this aspect of the modd in Part 1. However, the available solution
techniques and tools must be kept in mind as a mathematicd modd is developed.
An equation without any way to solve it is not worth much.

E. VERIFICATION. An important but often neglected part of developing a math-
ematical modd is proving that the model describes the real-world situation. At
the design stage this sometimes cannot be done because the plant has not yet
been Dbuilt. However, even in this gtudion there are usudly dther smilar exiging
plants or a pilot plant from which some experimental dynamic data can be
obtained.

The design of experiments to test the validity of a dynamic model can
sometimes be areal challenge and should be carefully thought out. We will talk
about dynamic tesing techniques, such as pulse teding, in Chap. 14.

2.2 FUNDAMENTAL LAWS

In this section, some fundamentd laws of physcs and chemistry are reviewed in

their generd time-dependent form, and their application to some smple chemicd
sysems is illudrated.

2.2.1 Continuity Equations

A. TOTAL CONTINUITY EQUATION (MASS BALANCE). The principle of the
conservetion of mass when applied to a dynamic sysem says

Mass flow mass flow _ | time rate of change @1
into system out of system | | of mass inside system '
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The units of this equation are mass per time. Only one total continuity equation
can be written for one system.

The normal steadystate design equation that we are accustomed to using
sys that “wha goes in, comes out” The dynamic version of this says the same
thing with the addition of the world “eventudly.”

The right-hand dde of Eg. (21) will be either a patid derivative /0t or an
ordinary derivative d/dt of the mass inside the system with respect to the inde-
pendent variable t.

Example 21 Congder the tank of perfectly mixed liquid shown in Fig. 21 into
which flows a liquid stream a a volumetric rate of Fy (ft*/min or m*/min) and with
adendty of po (Iby/ft> or kg/m3). The volumetric holdup of liquid in the tank is v
(ft® or m%), and its dendgity is p. The volumetric flow rate from the tank is F, and the
density of the outflowing stream is the same as that of the tank’s contents.

The system for which we want to write a total continuity equation is al the
liquid phase in the tank. We cadll this a macroscopic system, as opposed to a micro-
scopic system, since it is of definite and finite size. The mass balance is around the
whole tank, not just a amal, differentiad eement indde the tank.

Fq po — Fp = time rate of change of p V 22)
The units of this equation are 1b,/min or kg/min,

( ft3 )(lbm> ft> \/1b,) _ ()b, /ft%)
min\f3 )~ (Eﬁ)(ft—’) T min
Since the liquid is perfectly mixed, the dendty is the same everywherein the tank; it
does not vary with radia or axial position; i.e., there are no spatia gradients in
density in the tank. This is why we can use a macroscopic system. It also means that
there is only one independent varigble, ¢,

Since p and V are functions only of ¢, an ordinary derivaive is used in Eq.
(2.2).

LD~ Fopo—F 3
Example 2.2. Fluid is flowing through a congtant-diameter cylindrical pipe sketched
in Fig. 22. The flow is turbulent and therefore we can assume plug-flow conditions,
i.e, each “dicg’ of liquid flows down the pipe as a unit. There are no radid gra
dients in velocity or any other properties. However, axia gradients can exist.

Dengty and velocity can change as the fluid flows dong the axia or z direc-
tion. There are now two independent varigbles: time ¢ and postion z. Density and

Fon __.‘
Po(n)
Viny

Fuy

pr——t-  P(1)

o) FIGURE 2.1
Perfectly mixed tank.
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dz

Ve, ) -—*%
e

z2=0 z z+dz z=1L

FIGURE 2.2
Flow through a pipe.

velocity are functions of both ¢ and z: p¢, , and v, ;. We want to apply the total
continuity equation [Eq. (2.1)] to a system that conadts of a smal dice. The sysem
is now a “microscopic’ one. The differentid element is located a an arbitrary spot
z down the pipe. It is dz thick and has an area equal to the cross-sectiond area of
the pipe A (ft2 or m2).

Timerate of change of mass inside system:

AAp d2)

ot 24)
A dz is the volume of the system; p is the dendty. The units of this equation are
Ib,,/min or kg/min.
Mass flowing into system through boundary a z
vAp 2.5
Notice that the units are il Tb,/min = (ft/min)ft?Xb,/ft3).
Mass flowing out of the system through boundary at z + dz
d(vAp)
vAp + oz dz (2.6)

The above expression for the flow a z + dz may be thought of as a Taylor series
expangon of a function f,, around z. The vaue of the function & a spot dz away

fromzis
of &\ (d2?
f;z+dz) —j;z) + (E)(z) dz + (azz © 2 + (27)

If the dz is small, the series can be truncated after the firgt derivative term. Letting
Si»y = vAp gives Eq. (2.6).
Subdtituting these terms into Eq. (2.1) gives

Apd A
it E‘l)'[ 2 _ vAp -~ [vAp + 6(t;zp) d21
Cancding out the dz terms and assuming A is condtant yield
Op  dvp) _
P 0 2.8)

B. COMPONENT CONTINUITY EQUATIONS (COMPONENT BALANCES).
Unlike mass, chemica components are not conserved. If a reaction occurs indde
a sydem, the number of moles of an individud component will increase if it is a
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product of the reaction or decrease if it is a reactant. Therefore the component
continuity equation of theth chemicd species of the system says

[Flow of moles ofjth flow of moles ofjth
component into system| | component out of wsteml

rate of formation of moles of jth
component from chemical reactionsl

_ [ time rate of change of moles of jth
~ { component inside system l

The units of this equation are moles of component j per unit time

The flows in and out can be both convective (due to bulk flow) and molecu-
lar (due to diffuson). We can write one component continuity eguation for each
component in the sysem. If there are NC components, there are NC component
continuity equations for any one system. However, the oe total mass balance
and these NC component balances are not al independent, since the sum of al
the moles times their regective molecular weights eguds the totd mass. There-
fore a given system has only NC independent continuity equations. We usualy
use the total mass balance and NC — 1 component balances. For example, in a
binary (two-component) sysem, there would be one totd mass bdance and one
component balance.

Example 2.3. Consder the same tank of perfectly mixed liquid that we used in
Example 2.1 except that a chemicd reaction takes place in the liquid in the tank.
The system is now a CSTR (continuous stirred-tank reactor) as shown in Fig. 2.3.
Component A reects irreversibly and a a specific reaction rae k to form product,
component B.

A ‘B
Let the concentration of component A in the inflowing feed stream be C,, (moles of
A per unit volume) and in the reactor C,. Assuming a smple first-order resction,
the rate of consumption of reactant A per unit volume will be directly proportiond

to the ingtantaneous concentration of A in the tank. Filling in the terms in Eq. (2.9)
for a component baance on reactant A,

How of A into sysem = F, C,q
How of A out of system = FC,
Rate of formation of A from reaction = — VkC,

Fo———‘
PO

Cao
CB0
14
P F
Ca p———tp
Cs ¢, FIGURE 23

¢y CSTR.
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The minus sgn comes from the fact that A is being consumed, not produced. The
units of al these terms must be the same moles of A per unit time. Therefore the
VkC, term must have these units, for example (ft*)¥min ™ 'Ymoles of A/ft). Thus
the units of k in this system are min~ !,

Time rate of change of A insde tank = L‘;tC_A_)

Combining dl of the above gives

% = FOCAO - FCA - VkCA (2.10)
We have used an ordinary derivative since t is the only independent varigble in this
lumped system. The units of this component continuity equation are moles of A per
unit time. The left-hand side of the equation is the dynamic term. The firgt two
terms on the right-hand side are the convective terms. The last term is the gener-
aion term.

Since the system is binary (components A and B), we could write another
component continuity eguation for component B. Let Cy be the concentration of B
in moles of B per unit volume.

é'(—lg = FO CBO -_ FCB + VkCA
Note the plus sgn before the generation term since B is being produced by the
reection. Alternatively we could use the totd continuity equation [Eq. (2.3)] snce
C,, Cy, and p are uniquely related by

M,Co+ MpgCp=p (211)
where M, and My, are the molecular weights of components A and B, respectively.

Example 2.4. Suppose we have the same macroscopic system as above except that
now consecutive reactions occur. Reactant A goes to B a a specific reaction rate k,,
but B can react at a specific reaction rate k, to form a third component C.

ky B ko c

A

Asauming firg-order reactions, the component continuity equations for com-
ponents A, B, and C are

d(‘;fA) = FOCAO - FCA - Vkl CA
d(I;tCB) = Fo CBO - FCB + Vkl CA - sz CB (212)
Avey

dt =F0CC°—FCC+ VkZCB
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The component concentrations are related to the density

it

M;C=p (213)

J

Three component balances could be used or we could use two of the component
balances and a total mass balance.

Example 2.5. Ingteed of fluid flowing down a pipe as in Example 2.2, suppose the
pipe is a tubular reactor in which the same reaction A % B of Example 2.3 takes
place. As a dice of materid moves down the length of the reactor the concentration
of reactant C, decreases as A is consumed. Density p, velocity », and concentration
C, can dl vay with time and axid postion z. We ill assume plug-flow conditions
<0 that there are no radiad gradients in velocity, density, or concentration.

The concentration of A fed to the inlet of the reactor a z = 0 is defined as

Cag. o™ Caoy (214
The concentration of A in the reactor effluent & z = L is defined as

Cae, = Carg (2.15)

We now want to gpply the component continuity equation for reectant A to a smdl
differenttid dice of width dz, as shown in Fig. 24. The inflow terms can be split into
two types: bulk flow and diffusion. Diffuson can occur because of the concentration
gradient in the axid direction. It is usudly much less important than bulk flow in
most practicd systems, but we include it here to see what it contributes to the
model. We will say thet the diffusive flux of A, N, (moles of A per unit time per unit
ared), is given by a Fick’s law type of reationship

N, = —‘:DAE (2.16)

where D, is a diffuson coefficient due to both diffusion and turbulence in the fluid
flow (so-cdled “eddy diffusvity”). D, hes units of length’ per unit time.

The terms in the generd component continuity eguetion [Eq. (2.9)] are:
Molar flow of A into boundary at z (bulk flow and diffusion)

=vAC, + AN,  (molesof AJs)

{ P (t,2)
Catnn
dz
Cao(ry — U(l,z)‘@ s CAL(})
z I+ dz z=1
z=0

FIGURE 2.4
Tubular reactor.
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Moler flow of A leaving system a boundary z + dz

0(vAC, + AN,)
174

= (vVAC, + AN,) + dz

Rate of formation of A indde sysem = —~kC, 4 dz

Time rate of change of A insde sysem :%
Subdtituting into Eq. (2.9) gives

oA dz C,)
ot

0(vAC, + AN) iz

= (vAC, + AN,) —(uACA + AN, + P

)— kC, Adz

2C,  Cp+ Ny +

= o kC,=0

Subdtituting Eq. (2.16) for N,

0C, 0(vC,) __6_( 0C,
ot + 0z +kCa= Da 0z

0z @1

The units of the equation are moles A per volume per time.

2.2.2 Energy Equation

The firg law of thermodynamics puts forward the principle of conservation of
energy. Written for a generd “open” system (where flow of materid in and out of
the system can occur) it is

Flow of internd, kinetic, and flow of internd, kinetic, and
potentid energy into sysem [ --| potential energy out of system
by convection or diffuson by convection or diffuson
heat added to system by work done by system on
+ | conduction, radiation, and | = [surroundings (shaft work and
reaction PV work)

time rate of change of internd, kinetic, (2.18)

and potentid energy insde system '
Example 2.6. The CSTR system of Example 2.3 will be considered again, this time
with a codling cail indde the tank that can remove the exothermic heat of reaction 4
(Btu/lb . mol of A reacted or cal/g- mol of A reacted). We use the norma convention
that 4 is negative for an exothermic reection and positive for an endothermic reac-
tion. The rate of heat generation (energy per time) due to reection is the rae of
consumption of A times 4.

Qc = —AVC,k (2.19)
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Fo
Cao l

p 0 qma SR R
Ty
V
Ca
P F

P FIGURE 25
T CSTR with heat removal.

The rate of heat remova from the reaction mass to the cooling cail is -Q (energy
per time). The temperature of the feed stream is T, and the temperaure in the
reactor isT (°R or K). Writing Eq. (2.18) for this system,

FopolUo + Ko + o) = Fp(U + K + @) + (Q¢ + Q)

-%W+FP—&P&:%HU+K+@W] (2.20)

where U = internd energy (energy per unit mass)
K = kindtic energy (energy per unit mass)
¢ = potentid energy (energy per unit mass)
W = shaft work done by system (energy per time)
P = pressure of system
Py = pressure of feed stream

Note that al the terms in Eq. (2.20) must have the same units (energy per time) so
the FP terms must use the appropriate conversion factor (778 ft- 1b,/Btu in English
engineering  units).

In the system shown in Fig. 2.5 there is no shaft work, so W = 0. If the inlet
and outlet flow velocities are not very high, the kinetic-energy term is negligible. If
the eevations of the inlet and outlet flows are about the same, the potentia-energy
term is small. Thus Eq. (2.20) reduces to

d(pV'U)

4 P
———=="FopoUs— FpU + Qg + Q@ — Fp = + Fy po—
dt p Po

= Fo po(Ug + Py Vo) = Fp(U + PP) + Qg + Q (221)

where ¥ is the spedific volume (ft*/b,, or m*/kg), the reciprocad of the densty.
Enthdpy, H or h, is defined:

Horh=U+ PV (2.22)

We will use h for the enthalpy of aliquid siream and H for the enthalpy of a vapor
stream. Thus, for the CSTR, Eq. (2.21) becomes

dpVU)
at
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For liquids the PV term is negligible compared to the U term, and we use the
time rate of change of the enthapy of the system ingtead of the internad energy of
the system.

dp Vh)
dt

The enthapies are functions of composition, temperature, and pressure, but
primarily temperature. From thermodynamics, the heat capacities at constant pres-
aure, C, , and a congtant volume, C,,, are

C—aH C'—a—U 2.25
aT), *\oT/, (229)

To illusrate that the energy is pnmily influenced by temperature, let us
samplify the problem by assuming that the liquid enthadpy can be expressed as a
product of absolute temperature and an average heat capecity C, (Btu/lb,°R or
cal/g K) that is congtant.

h=C,T

We will dso assume that the dengties of al the liquid streams are congtant. With
these smplifications Eq. (2.24) becomes

pC, i(VtT) = pCFo T, — FT) + Q — AVKC, (2.26)
Example 2.7. To show what form the energy equation takes for a two-phase system,
consder the CSTR process shown in Fig. 2.6. Both a liquid product stresm F and a
vapor product stream F, (volumetric flow) are withdrawn from the vessd. The pres-
sure in the reactor is P. Vapor and liquid volumes are ¥, and V. The densty and
temperature of the vapor phase are p, and T, . The mole fraction of A in the vapor is
y. If the phases are in thermd equilibrium, the vapor and liquid temperatures are
equa (T = T,). If the phases are in phase equilibrium, the liquid and vapor compos-
tions are relaed by Raoult's law, a reative voldility relaionship or some other
vapor-liquid equilibrium relationship (see Sec. 2.2.6). The enthapy of the vapor
phese H (Btu/lb, or cal/g) is a function of compostion y, temperature T,, and
pressure P. Neglecting kinetic-energy and potentid-energy terms and the work term,

FU
I TIJ
v, P e, T, y\ >
Py
\
Fo Vi Ca p T
Cho
T Ca
0
l -0 l P!
FIGURE 2.6

Two-phase CSTR with heat removal.
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and replacing interna energies with enthdpies in the time derivative, the energy
equation of the system (the vapor and liquid contents of the tank) becomes

dp, V,H + pV, h)

dt =F0p0h0_th—va9H+Q—A’VkCA (227)

In order to express this equation explicitly in terms of temperature, let us
again use avery smple form for h (h = C, T) and an equally smple form for H.
H=C,T+ 4, (2.28)

where 4, is an average hest of vaporization of the mixture. In a more rigorous
modd 2, could be a function of temperature T,, composition y, and pressure P.
Equation (2.27) becomes

dlp, VAC, T + ) + pV,
[P v(p +dt)+pLCpT]zFOPOCpTO_FpCpT

- F,,p,,(Cp T+4,)+Q=2AVkC, (2.29)

Example 2.8. To illugtrate the application of the energy equation to a microscopic
system, let us return to the plug-flow tubular reactor and now keep track of tem-
perature changes as the fluid flows down the pipe. We will again assume no radid
gradients in velocity, concentretion, or temperature (a very poor assumption in
some strongly exothermic systems if the pipe diameter is not kept smal). Suppose
that the reactor has a cooling jacket around it as shown in Fig. 2.7. Heat can be
transferred from the process fluid reactants and products at temperature. T;ito the
metad wall of the reactor a temperature T,,. The heet is subsequently transférred to
the cooling water. For a complete description of the system we would need energy
equations for the process fluid, the metd wal, and the cooling water. Here we will
concern oursaves only with the process energy eguation.

Looking a a little dice of the process fluid as our system, we can derive each
of the terms of Eq. (2.18). Potentid-energy and kinetic-energy terms are assumed
negligible, and there is no work term. The amplified forms of the internd energy
and enthdpy are assumed. Diffusve flow is assumed negligible compared to bulk
flow. We will indude the posshility for conduction of heat axidly dong the reactor
due to molecular or turbulent conduction.

T,

M -
2 L Water
Cao
o U1,2) e L G
To, Trn
T(I.z)
Aw )
Pu.oy
FIGURE 2.7

Jacketed tubular reactor.
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Flow of energy (enthapy) into boundary at z due to bulk flow :

ApC, T ith lish engineeri its of ft ft2 —7 1 _BlU
vApC, with English engineering uni et L) Ib,,,
Fow of energy (enthdpy) out of boundary a z + dz:

vApC, T + 6(_P_vApC L dz
dz

——— °R = Btu/min

Heat generated by chemica reaction = -A dz kC, 4
Heat tranderred to metal wal = —hy{nD dzXT — T,)

where hy = heat trander film coefficient, Btu/min ft? °R
D = diameter of pipe, ft

Hest conduction into boundary at z = ¢, A

where ¢, is a heat flux in the z direction due to conduction. We will use Fourier's
law to express g, in terms of a temperature driving force:

4, = —k; — or (2.30)
0z

where k; is an efective thermd conductivity with English engineering units of Btuy/ft
min “R.

A
Heat conduction out of boundary &t z + dz= ¢, A + 6(%,2 ) dz

dpAdz C, T)

Rate of change of internd energy (enthapy) of the sysem = o

Combining dl the above gives

pC, T) + HvpC, T) + WCH + 4h (T T)_a[k,(aT/az)] 231
at 0z 0z

2.2.3 Equations of Motion

As any high school sudent, knows, Newton's second law of motion says tha
force is equd to mass times accderation for a system with congant mess M.

where F

F=Ma (2.32)

g
force, lbr
M = mass, Ib,,,
a = acceleration, ft/s®
g. = converson condant needed when English enginesring units are used
to keep units consistent = 32.2 Ib,,, ft/lb; s>
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This is the basc reationship that is used in writing the equations of motion for a
sydem. In a dightly more generd form, where mass can vary with time,

1 dMv) X
PR (233)

where v; = velodity in the i direction, ft/s
F; =jthforce acting in the i direction

Equation (2.33) says that the time rate of change of momentum in the i direction
(mass times velocity in the i direction) is equal to the net sum of the forces
pushing in thei direction. It can be thought of as a dynamic force balance. Or
more doquently it is cdled the conservation ofmomentum.

In the real world there are three directions: x, y, and z. Thus, three force
baances can be written for any system. Therefore, each sysem has three equa
tions of motion (plus one total mass balance, one energy equation, and NC - 1
component balances).

Instead of writing three equations of motion, it is often more convenient
(and always more elegant) to write the three equations as one vector eguation.
We will not use the vector form in this book dnce al our examples will be smple
one-dimensond force baances. The fidd of fluid mechanics makes extensve use
of the conservation of momentum.

Example 2.9. The gravity-flow tank system described in Chap. 1 provides a smple
example of the application of the eguations of motion to a macroscopic system.
Referring to Fg. 1.1, let the length of the exit line be L (ft) and its cross-sectiona
areabe A, (ft?). The vertical, cylindrica tank has a cross-sectiond area of A, (ft?).

The part of this process that is described by a force baance is the liquid
flowing through the pipe. It will have a mass equd to the volume of the pipe (4, L)
times the dengity of the liquid p. This mass of liquid will have a velocity v (ft/s) equa
to the volumetric flow divided by the cross-sectiond area of the pipe. Remember we
have assumed plug-flow conditions and incompressble liquid, and therefore dl the
liquid is moving a the same velocity, more or less like a solid rod. If the flow is
turbulent, this is not a bad assumption.

M= A4,Lp
F (2.34)

p=—
AP

The amount of liquid in the pipe will not change with time, but if we want to change
the rate of outflow, the velocity of the liquid must be changed. And to change the
velocity or the momentum of the liquid we must exert a force on the liquid.

The direction of interest in this problem is the horizontal, since the pipe is
assumed to be horizontal. The force pushing on the liquid at the left end of the pipe
is the hydraulic pressure force of the liquid in the tank.

Hydraulic force = A, ph gi (2.35)

<
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The units of this force are (in English engineering units):

,1b, 2.2 fys?
5 Y oon, s
where g is the acceleration due to gravity and is 32.2 ft/s? if the tank is a sea leve.
The detic pressures in the tank and a the end of the pipe are the same, so we do
not have to include them.

The only force pushing in the oppodte direction from right to left and
opposing the flow is the frictiona force due to the viscodty of the liquid. If the flow
is turbulent, the frictiond force will be proportiona to the square of the velocity
and the length of the pipe.

Frictiond force = Ky Lv? (236)
Substituting these forces into Eq. (2.33), we get
_}M= Apphi— KFva
g dat ge
(2.37)
@= g h KFgc 2
dt L p4,

The dgn of the frictiond force is negative because it acts in the direction opposte
the flow. We have defined eft to right as the pogitive direction.

Example 2.10. Probably the best contemporary example of a variable-mass system
would be the equations of motion for a space rocket whose mass decreases as fud is
consumed. However, to stick with chemica engineering systems, let us consider the
problem sketched in Fig. 2.8. Petroleum pipelines are sometimes used for trans
ferring severd products from one locetion to another on a batch bess, i.e, one
product at atime. To reduce product contamination at the end of a batch transfer, a
legther ball or “pig” that just fits the pipe is inserted in one end of the line. Inert gas
is introduced behind the pig to push it through the line thus purging the line of
whaever liquid is in it.

To write a force baance on the liquid ill in the pipe as it is pushed out, we
mugt take into account the changing mass of materid. Assume the pig is weightless
and frictionless compared with the liquid in the line. Let z be the axid postion of
the pig a any time. The liquid is incompressble (dendty p) and flows in plug flow.
It exerts a frictiond force proportiona to the square of its velocity and to the length
of pipe dill containing liquid.

Frictiona force = @L - 2)p? (2.38)
Liquid
Pig 7UI
Inert
gas T Py Wv /
-z Pipeline
L

FIGURE 2.8
Pipeline and pig.
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The crosssectiond area of the pipe is A,. The mass of fluid in the pipe is
(L —2)4,p.

Th’é pressure P, (Ib/ft> gauge) of inet gas behind the pig is essentially con-
dant al the way down the pipdine. The tank into which the liquid dumps is a
atmospheric pressure. The pipeline is horizontd. A force baance in the horizontal z
direction yieds

SN
gl% [{;Ap AL — 2)] = PoA, — KAL — 2’ (239)

Subdtituting that v = dz/dt we get

i dz _Pogc chF dz 2
dt [(I‘ 2 dt]‘ p  pA -2z 240)

4

Example 2.11. As an example of a force baance for a microscopic system, let us
look at the classic problem of the laminar flow of an incompressble, newtonian
liquid in a cylindricd pipe. By “newtonian” we meen that its shear force (resstance
that adjacent layers of fluid exhibit to flowing past each other) is proportiond to the
shear rate or the velocity gradient.

u oy,
Ty —— o 241
go Or @4

where 1,, = shear rate (shear force per unit areg) acting in the z direction and per-
pendicular to the r axis, Ib,/ft?

v, = veocity in the z direction, ft/s

2
f = velocity gradient of o, in the r direction

@ = viscosty of fluid, Iby/ft s

In many industries viscodity is reported in centipoise or poise. The converson factor
is6.72 X 10™* (Ib,/ft s)/centipoise.

We will pick as our sysem a smdl, doughnut-shaped dement, haf of which is
shown in Fig. 2.9. Since the fluid is incompressible there is no radid flow of fluid, or
v, = 0. The sysem is symmetrical with respect to the angular coordinate (around
the circumference of the pipe), and therefore we need consder only the two dimen-
sons r and z. The forces in the z direction acting on the element are

Forces acting left to right:

Shear force on face at r = 1,,(2nr ) with units of lf% ft2 (242

Pressure force on face & z = (2nr dr)P (2.45)
Forces acting right to left :

0
Shear force on face at r + dr = 2ar dz 1, + > (2nr dz 7)) dr

Pressure force on face at z + dz= 2grdr P + ai (2nr dr P) dz
z
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dz

i TR
1)

& r=0
4
, e, R
FIGURE 2.9
Laminar flow in a pipe.
The rate of change of momeritum of the sysem is
148
g—c > (2nr dz dr pv)
Combining dl the aove gives
oo, 0 9P _
5. ot + e (rt,) +r Pl 0 2.44)

The 0P/dz term, or the pressure drop per foot of pipe, will be congtant if the fluid is
incompressible. Let us cdl it AP/L. Subdtituting it and Eq. (241) into Eq. (2.44)

gives
ov, 0 [ Ov, AP

2.2.4 Transport Equations

We have dready used in the examples most of the laws governing the trandfer of
energy, mass, and momentum. These transport laws all have the form of a flux
(rate of transfer per unit areq) bei%ﬁgroportional to adriving force (agradient in
temperature, concentration, or veliity). The proportionality constant is a physi-
cd propety of the sysem (like thermd conductivity, diffusvity, or viscosty).

For transport on a molecular }?vel, the laws bear the familiar names of
Fourier, Fick, and Newton. |

Trandfer reladionships of a more mgoscopic overdl form ae dso used; for
example, film coefficients and overall cogficients in heat transfer. Here the differ-
ence in the bulk properties between two locations is the driving force. The pro-
portiondlity condant is an overdl transfer goefficient. Table 2.1 summaizes some
to the vaious rdationships used in developing modes.
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TABLE 2.1
Transport laws

Quantity Heat Mass Momentum
Flux 4 N, ,,
Molecular transport
oT ocC, Ov
Driving force = — —2 —=
9 0z oz or
Law Fourier's Fick’s Newton's
Property Thermal Diffusivity Viscosity
conductivity
ky Dy I
Overall transport
Driving force AT AC, T AP

Relationship q=hy AT N, =k, Ac, b

t Driving forces in terms of partial pressures and mole fractions are also
commonly  used.

$ The most common problem, determining pressure drops through pipes,
uses friction factor correlations, f = (g, D AP/L)2pv*.
2.2.5 Equations of State

To write mathematical models we need equations that tell us how the physica
properties, primarily density and enthalpy, change with temperature, pressure,
and composition.

Liquid density = p, = fp. 1, s

Vapor density = py = fip, 1. 40
Liquid enthalpy = h = fp 1, 1y
Vapor enthalpy = H = f;. 1, ,»

Occasiondly these relaionships have to be farly complex to describe the system
accurately. But in many cases simplification can be made without sacrificing
much overdl accuracy. We have dreedy used some smple enthdpy equations in
the examples of energy baances.

(2.46)

h=C,T
H=C,T+1,
The next level of complexity would be to make the C,’s functions of temperature:

(2.47)

T
h =| C,pdT (2.48)
J;O p(T)

A polynomid in T is often used for C, .
Con- Ay AT (2.49)
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Then Eq. (248) becomes

T2 T A2 5 )
To
Of course, with mixtures of components the total enthalpy is needed. If heat-of-
mixing effects ae negligible, the pure-component enthdpies can be averaged:
NC
Y xihM;

W=l (251)

Y xM;
i=1
where x; = mole fraction ofjth component
M; = molecular weight of jth component
h; = pure-component enthalpy of jth component, energy per unit mass

The denominator of Eq. (251) is the average molecular weight of the mixture.

Liquid densities can be assumed constant in many systems unless large
changes in composition and temperature occur. Vapor densities usually cannot
be considered invariant and some sort of PVT relationship is amost aways
required. The smplet and most often used is the pefect-gas law :

PV = nRT (2.52)

where P = absolute pressure (Ib/ft? or kilopascals)
V = volume (ft* or m?)
n = number of moles (Ib + mal or kg- ma)
R = constant = 1545 Iby ft/Ib- mol °R or 8.314 kPa m>/kg - mol K
T = absolute temperature (°R or K)

Rearranging to get an equation for density p, (Ib,/ft* or kg/m?) of a perfect gas
with a molecular weight M, we get

nM M
v = (2.53)

3
~|o

p, =

2.2.6 Equilibrium

The second law of thermodynamics is the basis for the equations tha tel us the
conditions of a sysem when equilibrium conditions prevall.

A. CHEMICAL EQUILIBRIUM. Equilibrium occurs in a reacting system when
NC

Z viu; =0 (2.54)
j=1
where v; = stoichiometric coefficient of the jth component with reactants having
a negative dgn and products a podtive sign
#; = chemicd potentid of jth component
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The usua way to work with this equation is in terms of an equilibrium
constant for a reaction. For example, consider a reversible gas-phase reaction of
A to form B at a specific rate k, and B reacting back to A at a specific reaction
rate k,. The stoichiometry of the reaction is such that v, moles of A react to form
v, moles of B.

k1

VA ——v,B (2.55)
Equation (254) says equilibrium will occur when
Voip = Valla - 0 (2.56)
The chemica potentids for a perfect-gas mixture can be-writterm
=
#;= 4} +RT In %, (2.57)

where yj.’ = dandard chemicd potentid (or Gibbs free energy per mole) of the jth
component, which is a function of temperaure only
P; = patid pressure of the jth component
R = pefect-gas law constant
T = absolute temperature
Subdituting into Eq. (2.56),
vo(u§ + RT In Pg) = v,(ui + RTIn ) =0
RT In (#5)"® — RT In (R)" = v, — vs 113
i (T2 Yakh = vesis
P RT
The right-hand sde of this equation is a function of temperature only. The term

in parenthesis on the left-hand side is defined as the equilibrium constant K,
and it tdls us the equilibrium ratios of products and reectants.

Py
K,= P

(2.58)

(2.59)

B. PHASE EQUILIBRIUM. Equilibrium between two phases occurs when the
chemical potentid of each component is the same in the two phases

W= u (2.60)
where g = chemicd potentid of the jth component in phase |
4} = chemical potentia of the jth component in phase I

Since the vas mgority of chemicd engineering sysems involve liquid and
vapor phases, many vapor-liquid equilibrium relationships are used. They range
from the very simple to the very complex. Some of the most commonly used
relationships are listed below. More detailed treatments are presented in many
thermodynamics texts. Some of the basc concepts are introduced by Luyben and
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Wenzd in Chemical Process Analysis. Mass and Energy Balances, Chaps. 6 and 7,
PrenticeHdl, 1988

Basicdly we need a reationship that permits us to cdculate the vapor com-
position if we know the liquid composition, or vice versa. The most common
problem is a bubblepoint calculation: calculate the temperature T and vapor
composition y;, given the pressure P and the liquid composition x;. This usually
involves a trij -and-error, iterative solution because the equations can be solved
explicitly only in the sSmples cases Sometimes we have bubblepoint caculations
that start from known values of x; and T and want to find P and y;. This is
frequently easier than when pressure is known because the bubblepoint calcu-
lation is usudly noniterative.

Dewpoint cdculdions must be made when we know the compostion of the
vapor y; and P (or T) and want to find the liquid composition x; and T (or P).
Flash calculations must be made when we know neither x; nor y; and must
combine phase equilibrium relationships, component balance equations, and an
energy baance to solve for dl the unknowns.

We will assume ided vapor-phase behavior in our examples, i.e, the patid
pressure of the jth component in the vapor is equal to the total pressure P times
the mole fraction of the jth component in the vepor y; (Dalton's law):

#= Py, (261)

Corrections may be required a high pressures.
In the liquid phese severd approaches are widely used.

1. Reoult's law. Liguids that obey Raoult's are caled ideal.

NC

P=Y xP (2.62)
j=1
s
x. P3
y;= —’FL (2.63)

where P§ is the vepor pressure of pure component j. Vapor pressures are func-
tions of temperature only. This dependence is often described by

A
mﬁ=#+m (2.64)

2. Relative volatility. The relative volatility a;; of component i to component j is
defined :

o = Y%, (2.65)

Relaive voldilities are farly congant in a number of sysems They ae con
venient s0 they ae frequently used.
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Inabinary system the relative volatility a of the more volatile com-
ponent compared with the less volaile component is
. y/x
=1 -ya-x
Rearranging,
X
Y =T+ @=1x
3. K vaues. Equilibrium vaporization ratios or K values are widely used, partic-
ulaly in the petroleum industry.

(2.66)

K= (2.67)
Xj
The K's are functions of temperature and compostion, and to a lesser extent,
pressure.
4. Activity coefficients. For nonideal liquids, Raoult’s law must be modified to
account for the nonideality in the liquid phase. The “fudge factors’ used are
Ca“ed activity coefficients.

NC
P = ; x; P§y; (2.68)
j=

where y; is the activity coefficient for the jth component. The activity coeffi-
cient is equd to 1 if the component is ided. The y's ae functions of compos-
tion and temperature

2.2.7 Chemical Kinetics

We will be modeling many chemica reactors, and we must be familiar with the
basic relationships and terminology used in describing the kinetics (rate of
reaction) of chemica reactions. For more detals, consult one of the severa excd-
lent texts in this field.

A. ARRHENIUS TEMPERATURE DEPENDENCE. The effect of temperature on
the specific reaction rate k is usudly found to be exponentid :

k = oe F/RT (2.69)

where k = specific reaction rate
a = prexponentid factor
E = activation energy; shows the temperature dependence of the reaction
rate, i.e, the higger E, the fadter the increase in k with increasing tem-
perature (Btu/lb « mal or cal/g - mol)
T = absolute temperature
R = perfect-gas constant = 1.99 Btu/tb- mol °R or 199 cal/g- md K
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This exponentid temperature dependence represents one of the most severe non-
linearities in chemical engineering systems. Keep in mind that the “apparent”
temperature dependence of a reaction may not be exponential if the reaction is
masstransfer  limited, not chemicd-rae limited. If both zones are encountered in
the operation of the reactor, the mathematical model must obviously include
both reaction-rate and masstransfer  effects.

B. LAW OF MASS ACTION. Using the conventional notation, we will define an
overal reaction rate R as the rate of change of moles of any component per
volume due to chemical reaction divided by that component’s stoichiometric

coefficient.
1 [dn;
—— (%
R v,.V< dt)R (2.70)

The stoichiometric coefficients v; are positive for products of the reaction and
negative for reactants. Note tha R is an intensve propety and can be applied to
sysems of any size.

For example, assume we are dealing with an irreversible reaction in which
components A and B react to form components C and D.

v,A+v,B——v.C+v,D
Then

1 [dn, 1 dny 1 [dn 1 fdnp

3{ = _— = _— e _— — et _—
—v,V(dt )R —v,,V(dt )R ch<dt R VoV \dt /g @7
The law of mass action says that the overall reaction rate ® will vary with tem-

perature (since k is temperature-dependent) and with the concentration of reac-
tants raised to some powers.

R = ka(CaV(Co) 2.72)

where C, = concentration of component A
Cy = concentration of component B

The condants a and b ae not, in generd, equa to the soichibmetric coefficients
v, ad v, . The reaction is sad to be firg-order in A if ¢ = 1 It is second-order in
A if a= 2 The congtants a and b can be fractiond numbers.

As indicated earlier, the units of the specific reaction rate k depend on the
order of the reaction. This is because the overall reaction rate R always has the
same units (moles per unit time per unit volume). For a firg-order reaction of A
reacting to form B, the overall reaction rate &, written for component A, would
have units of moles of A/min ft3.

R = kC,

If C, has units of moles of A/ft*, k must have units of min~1.
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4
If the overall reaction rate for the system above is second-order in A,
R = kC3

& till has units of moles of A/min ft3. Therefore k must have units of ft3/min
mol A.

Consider thereaction A + B — C. If the overall reaction rate is first-order
in both A and B,

R= kCA CB

R till has units of moles of A/min ft3. Therefore k must have units of ft3/min
mol B.

PROBLEMS

2.1. Write the component continuity equations describing the CSTR of Example 2.3 with:
(8 Simultaneous reections (firgt-order, isotherma)

k1 k2

A B A - C

(b) Revershle (firgt-order, isothermal)

k1

A B

k2

2.2. Write the component continuity equations for a tubular resctor as in Example 2.5
with consecutive reections occurring:
A" B % ocC
2.3. Write the component continuity equations for a perfectly mixed bach reactor (no
inflow or outflow) with first-order isotherma reactions
(8 Consecutive
(b) Simultaneous
(c) Reversble

2.4. Write the energy equation for the CSTR of Example 2.6 in which consecutive first-
order reactions occur with exothermic heats of reaction 4, and 4,.

k1 k3
- B -

Ay Az

A C

25, Chalie Brown and Snoopy are dedding down a hill that is inclined 6 degrees from
horizontd. The tota weight of Charlie, Snoopy, and the dedis M The ded is essen-
tidly frictionless but the ar resstance of the dedders is proportiond to the square of
their velocity. Write the equations describing their position X, relative to the top of
the hill (x = 0). Charlie likes to “bely flop,” so their initid velocity at the top of the
hill isp,, .

What would happen if Snoopy jumped off the ded hafway down the hill
without changing the air resistance?

26. An automatic bale tosser on the back of a faamer's hay baer must throw a 60-pound
bae of hay 20 feet back into a wagon. If the bae leaves the tosser with a velocity v, in
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adirection § = 45" above the horizontd, what must v, be? If the tosser must accdler-
ate the bale from a dead start to v, in 6 feet, how much force must be exerted?
What vaue of § would minimize this acceeration force?

M=60

Bale X Bale tosser
initially
at rest

FIGURE P2.6

A mixture of two immiscible liquids is fed into a decanter. The heavier liquid a settles
to the bottom of the tank. The lighter liquid B forms a layer on the top. The two
interfaces are detected by floats and are controlled by manipulating the two flows F,
andFy .

Fd = Kaha
Fy= Kyih, + 1)

The controllers increase or decreese the flows as the levels rise or fdll.

The total feed rate is Fo . The weight fraction of liquid a in the feed is x,. The
two densities p, and p, are constant.

Write the equations describing the dynamic behavior of this system.

Decanter

Fa FIGURE P2.7
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3.1 INTRODUCTION

Even if you were only half awake when you read the preceding chapter, you
should have recognized that the equations developed in the examples congtituted
parts of mathematical models. This chapter is devoted to more complete exam-
ples. We will start with simple systems and progress to more redistic and
complex proceses. The most complex example will be a nonided, nonequimolal-
overflow, multicomponent didillation column with a very lage number of equa
tions needed for a rigorous description of the system.

It would be impossible to include in this book mathematical models for al
types of chemical engineering systems. The examples cover a number of very
commonly encountered pieces of equipment: tanks, reectors of severd types, and
digillation columns (both continuous and betch). | hope that these specific exam-
ples (or case studies) of mathematical moddling will give you a good grasp of

40
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strategies and procedures so that you can apply them to your specific problem.
Remember, just go back to basics when faced with a new situation. Use the
dynamic mass and energy baances that gpply to your system.

In each case we will st up dl the equations required to describe the system.
We will delay any discussion of solving these equations until Part II. Our
purpose at this stage is to trandate the important phenomena occurring in the
physcad process into quantitative, mathematicd  equations.

3.2 SERIES OF ISOTHERMAL,
CONSTANT-HOLDUP CSTRs

The system is sketched in Fig. 3.1 and is a simple extension of the CSTR con-
sidered in Example 2.3. Product B is produced and reactant A is consumed in
each of the three perfectly mixed reactors by afirst-order reaction occurring in
the liquid. For the moment let us assume that the temperatures and holdups
(volumes) of the three tanks can be different, but both temperatures and the
liquid volumes are assumed to be constant (isothermal and constant holdup).
Densty is assumed condant throughout the sysem, which is a binay mixture of
A and B.

With these assumptions in mind, we are ready to formulate our model. If
the volume and density of each tank are constant, the total massin each tank is
condant. Thus the totad continuity eguation for the fird reactor is

doVy) _

m pFy — pF, =0 (3.1
or F =F,.
Likewise totd mass baances on tanks 2 and 3 give
Fy=F,=F, =F,=F (3.2)

where F is defined as the throughput (m3/min).

We want to keep track of the amounts of reactant A and product B in each
tank, SO component continuity eguations ae needed. However, since the system
is binary and we know the total mass of material in each tank, only one com-
ponent continuity equation is required. Either B or A can be used. If we arbi-
trarily choose A, the equations describing the dynamic changes in the amounts of

e W] | S P |
Fy £ F £y
—_— Y “ ——
ky ! ky ky
Cao Ca1 Caz Cas
FIGURE 3.1

Saies of CSTRs
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reactant A in each tank are (with units of kg « mol of A/min)

dc
Vl d:l = F(CAO = C/u) - VlkICAl ,
V d(,d': 2 = F(Ca1 — Cp3) = V2 k3 Cas (33)

dcC
Va ﬁé = F(Cpz = Ca3) = V3 k3 Cyrs

The specific reaction rates k, are given by the Arrhenius equation
k,=oae ERTe =123 (3.4

If the temperatures in the reactors are different, the k's are different. The n refers
to the stage number.

The volumes ¥, can be pulled out of the time derivatives because they are
constant (see Sec. 3.3). The flows are all equal to F but can vary with time. An
energy  equation is not required because we have assumed isothermal  operation.
Any heat addition or heat removal required to keep the reactors at constant
temperatures could be calculated from a steadystate energy balance (zero time
derivatives of temperature).

The three fird-order nonlinear ordinary differentid  equations given in Egs.
(3.3) are the mathematical model of the system. The parameters that must be
known areV;, V2,V k,, k,, and k5 . The variables that must be specified before
these equations can be solved are F and C,,. “ Specified” does not mean that
they must be constant. They can be time-varying, but they must be known or
given functions of time They are the forcing functions.

The initid conditions of the three concentrations (their vaues a time equa
zero) must adso be known.

Let us now check the degrees of freedom of the system. There are three
equations and, with the parameters and forcing functions specified, there are only
three unknowns or dependent variables: C,,, C,;, and C,5. Consequently a
solution should be possble, as we will demondrae in Chap. 5.

We will use this simple system in many subsequent parts of this book.
When we use it for controller design and stability analysis, we will use an even
simpler version. If the throughput F is constant and the holdups and tem-
perdures are the same in dl three tanks, Egs. (3.3) become

dC 1 1
th‘ + (k + ;)CAI = ; CAO
!
ac 1 1
dC 1 1
—:i'tA_s + (k + ;)CA3 = ; CAZ
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where ¢ = VI/F with units of minutes
There is only one forcing function or input vaiable, C,q -

3.3 CSTRs WITH VARIABLE HOLDUPS

If the previous example is modified dightly to permit the volumes in each reactor
to vary with time, both total and component continuity equations are required
for each reactor. To show the effects of higher-order kinetics, assume the reaction
is now nth-order in reactant A.

Resctor 1.
dv;
'&Tl =F, - F,
d
E; (chm) =F, CAO - F1CA1 —'Vlkl(cAl) (3-6)
Reactor 2
dv.
d—tz = Fl - Fz
d ‘
:l—t (Vz CAZ) = FICAI - F;Cpy—~ Vz kZ(CAZ) (3.7
Reactor 3 :
av;
Eti =F,=F,
d
;i; (Vs CA3) - F, CAZ - F, CA3 ~V k3(CA3) (3'8)

Our mathematical model now contains six first-order nonlinear ordinary
differential equations. Parameters that must be known are k,, k,, k;, and n.
Initid conditions for dl the dependent varidbles that ae to be integrated must be
given: C,y, Caz, Ca3, V1, Vo, and V. The forcing functions C ¢, and F, must
dso be given.

Let us now check the degrees of freedom of this system. There are Sx equa
tions. But there are nine Unknowns: C,,, Caz, Ca3: V1, V2, W3, Fy, F,, and F;.
Clearly this system is not sufficiently specified and a solution could not be
obtained.

What have we missed in our modeling? A good plant operator could take
one look a the sysem and see what the problem is. We have not specified how
the flows out of the tanks are to be set. Physically there would probably be
control valves in the outlet lines to regulate the flows. How are these control
valves to be set? A common configuration is to have the level in the tank con-
trolled by the outflow, i.e., alevel controller opens the control valve on the exit
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line to increase the outflow if the levd in the tank increases. Thus there must be a
reationship between tank holdup and flow.

Fi=fy, Fy=fu Fy=fu, (3.9)

The f functions will describe the level controller and the control valve. These
three equations reduce the degrees of freedom to zero.

It might be worth noting that we could have considered the flow from the
third tankk F; as the forcing function. Then the level in tank 3 would probably be
mantained by the flow into the tank, F, . The level in tank 2 would be controlled
by Fy, and tak 1 levd by Fy . We would dill have three equations.

The reactors shown in Fig. 3.1 would operate at atmospheric pressure if
they were open to the atmosphere as sketched. If the reactors are not vented and
if no inet blanketing is assumed, they would run a the bubblepoint pressure for
the specified temperature and varying compostion. Therefore the pressures could
be different in each reactor, and they would vary with time, even though tem-
peratures are assumed congtant, as the C,’s change.

3.4 TWO HEATED TANKS

As our next fairly smple system let us consider a process in which two energy
baances are needed to modd the sysem. The flow rate F of oil passng through
two perfectly mixed tanks in series is condant a 90 ft*/min. The densty p of the
all is congtant & 40 Ib,/ft>, and its hest capacity C, is 0.6 Btu/lb,,’F. The volume
of the firg tank ¥, is congtant a 450 ft*, and the volume of the second tank ¥, is
constant at 90 ft*. The temperature of the oil entering the first tank is T, and is
150°F a the initid Seadystate The temperatures in the two tanks are T, and T,.
They are both equal to 250°F at the initial steadystate. A heating coil in the first
tank uses steam to heet the ail. Let Q, be the heat addition rate in the firg tank.

There is one energy balance for each tank, and each will be similar to Eq.
(2.26) except there is no reection involved in this process.

Energy baance for tank 1:
d(pC VT,
W) = o Fo T, - FiTy) + 3.10)
Energy baance for tank 2
d(pC, V, T.
W Bl _ peyr,T; - F, T (3.12)
Since the throughput is constant F, = F, = F, = F. Since volumes, densities,
and heat capacities are dl congtant, Egs. (3.10) and (3.11) can be smplified.
aT,

pcp Vl? =pCpF(TO _Tl) +Q1 (312)

dT.
pC, V3 7172 = pC, F(T, - T)) (3.13)
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Let's check the degress of freedom of this sysem. The parameter vaues that
are known are p, C,,, V3, V2, and F. The heat input to the first tank @, would be
st by the podtion of the control vave in the steam line. In later chapters we will
use this example and have a temperature controller send a signal to the steam
valve to position it. Thus we are left with two dependent variables, T, and T,,
and we have two eguations. So the system is correctly specified.

3.5 GAS-PHASE, PRESSURIZED CSTR

Suppose a mixture of gases is fed into the reactor sketched in Fig. 3.2. The
reactor is filled with reacting gases which are perfectly mixed. A reversble reac-
tion occurs :

1 k1
2A —_ B -

The forward reaction is 1.5th-order in A; the reverse reaction is first-order in B.
Note that the stoichiometric coefficient for A and the order of the reaction are
not the same. The mole fraction of reactant A in the reactor isy. The pressure
indde the vesd is P (absolute). Both P and y can vay with time. The volume of
the resctor V is congant.

We will assume an _isother so the temperature T is constant.
erfect gases are The_(ccd_sm:am_has.a—demﬁ-y'p‘“and“a“mw
fractio volumetrl w rate is Fy.

The flow out of the reactor passes through a restriction (control valve) ‘into
another vessel which is held a a congtant pressure P, (absolute). The outflow will
vay with the pressure and the compostion of the reactor. Flows through control
vaves are discussed in more detal in Pat Ill; here let us use the formula

F=C,,\/P_P" (3.14)
p

C, is the vaveszing coefficient. Dendty vaies with pressure and composition.

MP P
p=g7 = DMs+ (1 —pMg] orr (3.15)

where M = average molecular weight
M, = molecular weight of reactant A
My = molecular weight of product B

FIGURE 3.2
Gas-phase CSTR.
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The concentration of reactant in the reactor is
Py

Cp=—= 3.16

A= %r (3.16)

with units of moles of A per unit volume. The overal reaction rate for the
forward reaction is

1 [dn 1 {dn
_ s - (2} _ - (Z7B
Re = ka(CW) 2V ( dt )R 2 < dt )R
The overdl reaction rae for the reverse reaction is
L (dna) _ _ 1 (dng
‘R“‘kzc""w(d:)k_ V(dt)R

With these fundamental relationships pinned down, we are ready to write
the totd and component continuity equations.

Totd  continuity
dt
Component A continuity:
vV %’Eﬁ = FoCag = FCy = 2Vk(Co)"® + 2Vky Cy (3.18)

The 2 in the reaction terms comes from the stoichiometric coefficient of A.

There are five equations [Egs. (3.14) through (3.18)] tha make up the math-
emaicd mode of this sysem. The paameters that must be known ae V, C,, ki,
k,,R, M,, and My. The forcing functions (or inputs) could be Pp, pg, Fo, and
Cao. This leaves five unknowns (dependent variables): Co , p, P, F, and .

3.6 NONISOTHERMAL CSTR

In the reactors studied so far, we have shown the effects of variable holdups,
variable densities, and higher-order kinetics on the total and component conti-
nuity equations. Energy equations were not needed because we assumed isother-
mad operations. Let us now condder a sysem in which temperature can change
with time. An irreversble, exothermic reection is caried out in a sngle perfectly
mixed CSTR a shown in Fig. 33.

A B
The reaction is nth-order in reactant A and has a heat of reaction 4 (Btu/lb- mol
of A reacted). Negligible heat lossss and congtant densties are assumed.

To remove the heat of reaction, a cooling jacket surrounds the reactor.
Cooling water is added to the jacket at a volumetric flow rate F; and with an
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FO
CM—_j
T,
° M\M,J £y
T
T, , !
T
Vv, Ca
Fl
TJO F
Ca
T
FIGURE 3.3
A k B Nonisothermal  CSTR.

inlet temperature of Ty, . The volume of water in the jacket ¥ is constant. The
mass of the metal walls is assumed negligible so the “thermal inertia’ of the
metal need not be considered. This is often a fairly good assumption because

the heat capacity of steel is only about 0.1 Btu/ib,,°F, which is an order of mag-
nitude less than that of water.

A. PERFECTLY MIXED COOQLING JACKET. We assume that the temperature
everywhere in the jacket is T;. The heat transfer between the process at tem-
ﬁg—w? T and the cooling water at temperature T; is described by an qverall
heat transfer coefficient.

Q = UAy(T = Ty

where Q = heat transfer rate -
U = overdl hea transfer coefficient
y = heat transfer area

In general the heat transfer area could vary with the holdup in the reactor if
some area was not completely-d ‘With reaction mass liquid at al times. The
equations describing the sysem ae

Reactor total continuity:

(3.19)

Rz m

Reactor component A continuity
dvce,)
dt
Reactor energy  equation

d(Vh)

= Fy Cpo = FC, - VK(C,)

= p(Foho = Fh) ~ AVKC,)" = UAL(T ~T,) (3.20)
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Jacket energy equation
dh
PV 'd_tl = Fypfhso = hy) + UALT - Ty) (3:21)

where p; = dendty of cooling water
h = enthalpy of process liquid
h; = enthalpy of cooling water

The assumption of constant densities makes C, = C, and permits us to use en-
thapies in the time derivaives to replace internd energies,

A hydraulic- between reactor holdup and the flow out of the
reactor is dso needed. A levd controller is assumed to change the outflow as the
volume in the tank rises or falls: the higher the volume, the larger the outflow.
The outflow is shut off completely when the volume drops to a minimum vdue
Vmin '

F = KAV = Vi) (322

The level controller is a proportiond-only feedoack controller.
Finally, we need enthalpy data to relate the h's to compositions and tem-
peratures. Let us assume the smple forms

h=C, T and h=C,T, (3.23)

where C, = heat capacity of the process liquid
C, = heat capacity of the cooling water

Using Egs. (3.23) and the Arrhenius relationship for k, the five equations
that describe the process are

%‘E =F,—F (3.24)

d(I;tCA) =Fy Cpo = FC, = V(C,)'ae E/RT (3.25)

pC, # = pCFo Ty = FT) = AV(C Yae ERT _ UA(T — T)) (3.26)
dT;

ps V€, - FypsCTyo = T)) + UAY(T ~ T)) (3.27)

F= KV(V - Vmin) (3.28)

Checking the degrees of freedom, we see that there are five equations and
five unknowns: Vv, F, C,, T, and T,. We must have initial conditions for these
five dependent variables. The forcing functions are Ty, Fy , Cuo, ad F, .

The parameters that must be known are n, a, E,R, p, C,, U, A, p,;, V,,
C;, Tyo, Ky, and V,,, . If the heat transfer area varies with the reactor holdup it
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would be induded as ancther variable, but we would adso have another equation;
the relationship between area and holdup. If the reactor is a flat-bottomed verti-

cal cylinder with diameter D and if the jacket is only around the outside, not
around the bottom

4
Ay=—V 3.29
=] (3.29)

We have assumed the overal heat transfer coefficient U is condtant. It may be a
function of the coolant flow rate F, or the composition of the reaction mass,
giving one more vaidble but dso one more equaion.

B. PLUG FLOW COOLING JACKET. In the mode derived above, the cooling
water inside the jacket was assumed to be perfectly mixed. In many jacketed
vessals thisis not a particularly good assumption. If the water flow rate is high

enough so that the water temperature does not change much as it goes through

the jacket, the mixing patten makes little difference. However, if the water tem-
perature rise is dgnificant and if the flow is more like plug flow than a perfect mix

(this would certainly be the case if a cooling coil is used insde the reactor indtead
of a jacket), then an average jacket temperature T,, may be used.

TIA ) TJO +2 ’I.'Iexil
where T, IS the outlet cooling-water temperature.

The average temperature is used in the heat transfer equation and to rep-
resent the enthdpy of jacket materid. Equation (3.27) becomes

dT,
p;V;Cy _dtﬁ =F;p; Co(Tyo - TJexit) + UAH(T - TJA) (3.31)

(3.30)

Equation (3.31) is integrated to obtan 7,, & esch indant in time and Eq. (3.30)
is used to cdculate T, , A0 as a function of time.

C. LUMPED JACKET MODEL. Another alternative is to break up the jacket
volume into a number of perfectly mixed “lumps’ as shown in Fig. 34.

An energy equation is needed for&lump. Assuming four lumps of equal
volume and heat transfer area, we get four energy equations for the jacket:

dT,
71‘[’1 v, Cy _d',:_l - Fyp; CTyo=Ty) . %UAH(T -Ty)
1 dTJZ 1
Y] VJCJ_d't_ - Fip, CT, = T) . 2UART = Tpy)
(3.32)
dT,
30; VJCJ—'J'3 - FypyCT; = Tpy) . 2UART = Ty,)

t

dT,
05V Cy _(‘j‘f[& - FipsCiTy3=Tpy) . UART —Typ)
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Lumped jacket model.

D. SIGNIFICANT METAL WALL CAPACITANCE. In_ some rexctors, particulaly
m-pressure vessels or smaller-scale equipment, the mass of the mefal walls and
its effects on the thermal dynamics must be considered. To be rigorous, the
energy equation for the wall_should be a partial differential equation in time and
radial position. A less rinorous but frequently used approximation is to “lump”
the mass of the metal and assume the metal is al at one temperature Ty, This
assumption is afairly good one when the wall is not too thick and the thermal
conductivity of the Tmaad is lage
Then effective inside. and outside film coefficients h; and h, are used as

/hownln Hg. 35.

The three energy equations for the process are:

oC, ‘@ = pC{Fo Ty = FT) = AV(C\)'ue %7 — b A(T ~ T,,)

Ty

PuVu Cy “dt =hA(T —Ty) — h, Ao(T¥ -T) (3.33)

dT,
ps V; Cy—= a =F;0;CATyo—T)+ b ATy = T))

whereh, = indde heat transfer film coefficient

h, = outdde hest transfer film coefficient
¢

Metal

Process Jacket

‘ T Ty’ T,
Q:
% , F;  FIGURE 35

Tjo Lumped metal model.
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py = density of metal wall
C,, = heat capacity of metal wall
Vi = volume of metal wall

A; = inside heat transfer area
A, = outside heat transfer area

3.7 SINGLE-COMPONENT VAPORIZER

Boiling systems represent some of the most interesting and important operations
in chemicd engineering processng and ae among the mogt difficult to modd. To
describe these systems rigorously, conservation equations must be written for
both the vapor and liquid phasss. The basic problem is finding the rate of vapor-
ization of materia from the liquid phase into the vapor phase. The equations
used to dexcribe the boiling rate should be physicaly reasonable and mathemati-
cdly convenient for solution.

Condder the veporizer sketched in Fig. 36. Liquefied petrodleum gas (LPG)
is fed into a pressurized tank to hold the liquid level in the tank. We will assume
that LPG is a pure component: propane. Vaporization of mixtures of com-
ponents is discussed in Sec. 38.

The liquid in the tank is assumed perfectly mixed. Heat is added & a rate Q
to hold the desired pressure in the tank by vaporizing the liquid at a rate W,
(mass per time). Heat losses and the mass of the tank wals are assumed negligi-
ble. Gas is drawn off the top of the tank at a volumetric flow rate F,,. F, isthe
forcing function or load disturbance.

A. STEADYSTATE MODEL. The simplest model would neglect the dynamics of
both vapor and liquid phases and relate the gas rate F, to the heat input by
quv(Hu - hO) = Q (3.34)

where H, = enthalpy of vapor leaving tank (Btu/Ib,, or cal/g)
h, = enthalpy of liquid feed (Btu/lb,, Or cal/g)

Fl)
pU VU PU
F’*"’*’%"“"

Vi
T

Fy P Steam

Po 1)

Ty 4

— (o]
FIGURE 3.6

LPG vaporizer.
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B. LIQUID-PHASE DYNAMICS MODEL. A somewhat more redistic model is
obtained if we assume that the volume of the vapor phase is small enough to
make its dynamics negligible. If only a few moles of liquid have to be vaporized
to change the pressure in the vapor phase, we can assume that this pressure is
always equal to the vapor pressure of the liquid at any temperature (P = P, and
W, = p, F,). An energy equation for the liquid phase gives the temperature (as a
function of time), and the vapor-pressure relationship gives the pressure in the
vaporizer a that temperature.

A totd continuity egquation for the liquid phase is dso needed, plus the two
controller equations relating pressure to heat input and liquid level to feed flow
rae F, . These feedback controller relaionships will be expressed here smply as
functions. In later parts of this book we will discuss these functions in detail.

Q=fim Fo=loww (3.35)

An equation of date for the vapor is needed to be able to caculate dendty
p, from the pressure or temperature. Knowing any one propety (T, P, or p,) pins
down al the other properties since there is only one component, and two phases
ae present in the tank. The perfect-gas law is used.

The liquid is assumed incompressible so that C, = C, and its internal
energy is C, T. The enthdpy of the vepor leaving the vaporizer is assumed to be
of the ample fom: C, T + 1.

Totd continuity :
av,
p = =pPoFo—p.F, (3.36)
Energy :
dwv. T
Cpp WD = o€ Fo Ty — p, FUC, T+ 1)+ (337
State :
MP
P =T (3.38)
Vapor pressure :
A
InP= T +B (3.39

Equations (3.35) to (3.39) give us Sx equations. Unknowns are Q, Fo, P, Vi, p,,
and T.

C. LIQUID AND VAPOR DYNAMICS MODEL. If the dynamics of the vapor
phase canot be neglected (if we have a large volume of vapor), tota continuity
and energy equations must be written for the gas in the tank. The vapor leaving
the tank, p, Fu , is no longer equa, dynamicaly, to the rate of vaporization W, .
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The key problem now is to find a smple and reasonable expresson for the
boiling rate W,. | have found in a number of simulations that a * mass-transfer”
type of equation can be conveniently employed. This kind of relationship also
mekes physcd sense Liguid boils because a some temperature (and compos-
tion if more than one component is present), it exerts a vapor pressure P greater
than the pressure P, in the vapor phase above it. The driving force is this pres-
aure differentia

W, = KyrdP - P) (3.40)

where K,y is the pseudo mass transfer coefficient. Naturally at equilibrium (not
steadystate) P = P,. If we assume that the liquid and vapor are in equilibrium,
we are saying that K,y is very large. When the equations are solved on a com-
puter, several values of K, can be used to test the effects of nonequilibrium
conditions.

The equations describing the sysem are

Liquid phase
Total continuity:
av
P_df:POFo—'Wu (3.41)
Energy
dVv, U
LI poFoho— W, H, + 0 342
Vapor pressure :
P = ATt (3.43)
Vapor phase
Tota continuity:
M = m - vav (344)
dt
Energy :
d(V""l’: Y) _wH, - p,F,H, (3.45)
State :
MP,
- RT (3.46)

where U, = internal energy of liquid at temperature T
H,; = enthdpy of vapor boiling off liquid
U, = interna energy of vapor at temperature T,
H, = enthalpy of vapor phase
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Thermd-property data are needed to rdae the enthapies to temperatures.
We would then have 10 variables. Q, Fo, Vi, W,, T, V,, p,, T,, P, and P,.
Counting Egs. (3.35) and (3.40) to (3.46) we see there are only nine equations.
Something is missing. A moment’s reflection should generate the other relation-
ship, aphysical constraint: ¥, + ¥, = total volume of tank.

D. THERMAL EQUILIBRIUM MODEL. The previous case yields a modd that is
about as rigorous as one can reasonably expect. A final moddl, not quite as
rigorous but usualy cuite adequate, is one in which themd equilibrium between
liquid and vapor is assumed to hold at al times. More simply, the vapor and.
liquid temperatures are assumed equal to each other: T =T, . This eliminates the
need for an energy balance for the vapor phase. It probably works pretty well
because the sensible heat of the vapor is usualy smal compared with latent-heat
effects.
If the smple enthapy reationships can be used, Eq. (342) becomes

d(v, T)
Podt

The simpler models discussed above (such as cases A and B) are usually
good enough for continuousflow systems where the changes in liquid and vapor
holdups and temperatures are not very large. Batch systems may require the
more rigorous models (cases C and D) because of the big variations of most
variables.

3.8 MULTICOMPONENT FLASH DRUM

Let us look now at vapor-liquid systems with more than one component. A
liquid stream at high temperature and pressure is “flashed” into adrum, i.e,, its
pressure is reduced as it flows through a restriction (valve) at the inlet of the
drum. This sudden expansion is irrevershble and occurs a congant enthapy. If it
were a reversible expansion, entropy (not enthalpy) would be conserved. If the
drum pressure is lower than the bubblepoint pressure of the feed at the feed
temperature, some of the liquid feed will vaporize.

Gas is drawn off the top of the drum through a control valve whose stem
postion is st by a pressure controller (Fig. 3.7). Liquid comes off the bottom of
the tank on level control.

The pressure P, before the pressure letdown valve is high enough to
prevent any vaporization of feed a its temperature T, and composition x,; (mole
fraction jth component). The forcing functions in this system are the feed tem-
perature T, feed rate F, and feed compostion x,;. Adiabatic conditions (no heat
losses) are assumed. The dengty of the liquid in the tank, p,, is assumed to be a
known function of temperaure and compostion.

PL=Je 1 (3.48)
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FIGURE 3.7
Flash drum.

The density p,, of the vapor in the drum is a known function of temperature T,
compasition y; and pressure P. If the perfect-gas law can be used,

M>P
Pv="pT (3.49)
where M2 is the average molecular weight of the ges.
NC
M:" o jZIMJ yj (350)

where M; is the molecular weight of thejth component.

A. STEADYSTATE MODEL. The simplest model of this system is one that
neglects dynamics completely. Pressure is assumed constant, and the Steadydate
total and component continuity equations and a steadystate energy balance are
used. Vagoor and liquid phases are assumed to be in equilibrium.

Tota continuity:
poFo=p,F,+ pLF, (3.51)
Component  continuity:
PoFo p, F,  pF
M2 Xoj = M Yi+ Il“divL Xj
Vapor-liquid equilibrium :

(3.52)

Yj =S, 1. P) (3.53)
Energy equation :

hopo Fo= Hp, F, + hpy, Fy (3.54)
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Thermd  properties
ho = fixos. o) h =f(xj, T) H =f(y,~. T, P) (3.55)

The average molecular weights M* are calculated from the mole fractions
in the appropriate dtream [see Eqg. (3.50)]. The number of variables in the sysem
is 9+ 2(NC_ 1) Po> Fv’ Mﬁva Yis Vas . ... Ync-1: P> FLa M‘I‘,V, X1y X35, oy
Xyc-1, Ty b, @nd H. Pressure P and all the feed properties are given. There are
NC — 1 component baances [Eq. (3.52)].

There are atotal of NC equilibrium equations. We can say that there are
NC equetions like Eq. (353). This may bother some of you. Since the sum of the
y's has to add up to 1, you may fed that there ae only NC — 1 equations for the
y's. But even if you think about it this way, there is ill one more equation:
The sum of the patid pressures has to add up to the totd pressure. Thus, wha-
ever way you want to look a it, there ae NC phase equilibrium equations.

Number of
Equation equations
Tota continuity 3517 1 ,
Energy (3.54) |
Component continuity (3.52) “NC-1
Vapor-liquid equilibrium (3.53) NC
Densities of vapor and liquid (348) and (3.49) 2
Thermal properties for liquid and
vapor streams (3.55) 2
Average molecular  weights (3.50) 2
2NC +7

The sysem is specified by the agebraic equations liged above This is just a
traditional steadystate “equilibrium-flash” calculation.

B. RIGOROUS MODEL. Dynamics can be included in a number of ways, with
varying degrees of rigor, by using models similar to those in Sec. 3.7. Let us
merdy indicate how a rigorous modd, like case C of Sec. 3.7, could be developed.
Figure 38 shows the system schematicaly.

An equilibrium-flash calculation (using the same equations as in case A
above) is made at each point in time to find the vapor and liquid flow rates and
properties immediately after the pressure letdown valve (the variables with the
primes Fy,, F, yj, Xj,. .. shown in Fg. 38). Thee two sreams are then fed into
the vapor and liquid phases. The equations describing the two phases will be
smilar to Egs (340) to (3.42) and (344) to (3.46) with the addition of (1) a multi-
component vapor-liquid equilibrium equation to calculate P, and (2) NC - 1
component continuity equations for each phase. Controller equations relating ¥},
to F, and P, to F, complete the model.

FL =-f(VL) Fv =»f(Pu) (3.56)
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Dynamic flash  drum.

C. PRACTICAL MODEL. A more workable dynamic model can be developed if
we ignore the dynamics of the vapor phase (as we did in case B of Sec. 3.7). The
vapor is assumed to be aways in equilibrium with the liquid. The conservation
equations are written for the liquid phase only.

Totd continuity :
Lol _ 5o Fo—p,F,— i Fy (.57
Component continuity :
d(%) F o, F F
dtL = P;ISVO Xoj — I\U/Izvu Yi— pJCIzVL Xj (358)
Energy :
' W poFoho = p,F,H = p Fih (3.59)

The NC vepor-liquid equilibrium equations [Egs (3.53)], the three enthdpy
relationships [Eqs. (3.55)], the two densty equations [Egs (348) and (3.49)], the
two molecular-weight equations [Eg. (3.50)], and the feedback controller equa-
tions [Egs. (3.56)] are al needed. The total number of equations is 2NC + 9,
which equals the total number of variables: P,, V;, p,, F,, M3, vy, Vas . . -,
Inc-15 Py Fro ML, X, %5, - Xne- 1o T, h, anH- _ _ .

Keep in mind that all the feed properties, or forcing functions, are given:
Fo, ro ho, Xo;, and Mg, _

3.9 BATCH REACT&

Batch processes offer some of the most interesting and challenging problemsin
modeling and control because of their inherent dynamic nature. Although most
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Batch reactor.

large-scale chemical engineering processes have traditionally been operated in a
continuous fashion, many batch processes are still used in the production of
smaller-volume specidty chemicas and pharmaceuticals. The batch chemical
reactor has inherent kinetic advantages over continuous reactors for some reac-
tions (primarily those with slow rate constants). The wide use of digital process
control computers has permitted astomation and optimization of bach processss
and made them more efficient and less labor intensive

Let us consider the batch reactor sketched in Fig. 3.9. Reactant is charged
into the vessal. Steam is fed into the jacket to bring the reaction mass up to a
desred temperature. Then cooling water must be added to the jacket to remove
the exothermic heat of reaction and to make the reactor temperature follow the
prescribed  temperaturetime curve.  This temperature profile is fed into the tem-
perature controller as a setpoint signd. The setpoint vaies with time

Fird-order consecutive reactions take place in the reactor as time proceeds.

k1 k2

A » B — » C
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The product that we want to make is component B. If we let the reaction go on
too long, too much of B will react to form undesired C; that is, the yield will be
low. If we stop the reaction too early, too little A will have reacted; i.e., the
conversion and yidd will be low. Therefore there is an optimum batch time when
we should stop the reaction. This is often done by quenching it, i.e., cooling it
down quickly.

There may also be an optimum temperature profile. If the temperature-
dependences of the specific reaction rates k, and k, are the same (if their activa-
tion energies are equd), the reaction should be run at the highest possible
temperdture to minimize the batch time. This maximum temperature would be a
limit imposed by some constraint: maximum working temperature or pressure of
the equipment, further undesirable degradation or polymerization of products or
reactants a very high temperatures, efc.

If k, is more temperature-dependent than k,, we again want to run &t the
highest posshle temperature to favor the reaction to B. In both cases we must be
sure to stop the reaction at the right time so that the maximum amount of B is
recovered.

If k, is less temperature-dependent that k,, the optimum temperature
profile is one that starts off at a high temperature to get the first reaction going
but then drops to prevent the loss of too much B. Figure 3.10 sketches typical
optimum temperature and concentration profiles. Also shown in Fig. 310 as the
dashed line is an example of an actual temperature that could be achieved in a
real reactor. The reaction mass must be heated up to T,,.. We will use the
optimum temperaure profile as the setpoint Sgnd.

With this background, let us now derive a mathematical model for this
process. We will assume that the density of the reaction liquid is constant. The

Tmlx =
/
/ |
!
N
V Tactual(,)
[
'T,
L ot P
|
Ca !
|
G l:;(\
Ce, FIGURE 3.10

—» 1 Batch profiles.
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total continuity equation for the reaction mass, after the reactants have been
charged and the baich cycle begun, is

dipV)
—q =0-0 (3.60)

There is no inflow and no outflow. Since p is condant, dV/dt = 0. Therefore the
volume of liquid in the reector is condant.

Component continuity for A:
ac

14 d—t" = —Vk,C, (3.61)
Component  continuity for B :
dc
\% d_tB = Vk,C, — Vk, Cy (3.62)
Kinetic equations :
~E1/RT

kl = aye k2 = az e_EZ/RT (363)

Using alumped model for the reactor metal wall and the simple enthalpy equa-
tion h = C, T, the energy equations for the reaction liquid and the metal wall
are .

Energy eguation for process :

ar
PVC,, E = _Illech -_— iz Vk, CB — hi AI(T -_— TM) (364)
Energy equation for metd wal :
dT,
Pt Vae Cor 7 = o AT, = To) = by ATy = T) (3.65)

where 4, and 4, ae the exothermic heats of reaction for the two reactions.

Notice that when the reactor is heated with steam, T, is bigger than T;, and
T, is bigger than T. When cooling with water, the temperature differentials have
the opposte sign. Keep in mind &so that the outsde film coefficient h, is usudly
donificantly  different for condensng seam and flowing cooling water.

This switching from hedting to cooling is a pretty tricky operation, particu-
larly if oneistryingto heat uptoT,,, & fat as possble but canot permit any
overshoot. A commonly used sysem is shown in Fg. 39. The tempeaure con
troller keeps the steam valve (V-) open and the cooling water valve (V-2) shut
during the heat-up. This is accomplished by using split-ranged valves, discussed
later in Part 111. Also during the heat-up, the cooling-water outlet valve (V-3) is
kept closed and the condensate vave (V-4) is kept open.

When cooling is required, the temperature controller shuts the steam valve
and opens the cooling-water valve just enough to make the reactor temperature
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follow the setpoint. Vave V-3 mugt be opened and vave V-4 mugt be shut when-
ever cooling water is added.

We will study in detail the simulation and control of this system later in
this book. Here let us simply say that there is a known relationship between the
error signa E (or the temperature setpoint minus the reactor temperature) and
the volumetric flow rates of seam F, and cooling water F,, .

Fo=fiw F,=fup (3.66)

To describe what is going on in the jacket we may need two different sets of
equations, depending on the stage: heating or cooling. We may even need to
consider athird stage: filling the jacket with cooling water. If the cooling-water
flow rate is high and/or the jacket volume is smdl, the time to fill the jacket may
be neglected.

A. HEATING PHASE. During heating, a total continuity equation and an energy
equation for the steam vapor may be needed, plus an equation of state for the
steam.

Total continuity:

dp,

V,
Todt

= Fs ps— VVC (367)

where p, = dendty of steam vapor in the jacket
V; = volume of the jacket
p, = density of incoming steam
W, = rate of condensation of steam (mass per time)

The liquid condensate is assumed to be immediately drawn off through a steam
trap.

Energy equation for steam  vapor:

dU,p;)

"

=F,p H; — hyA(T; — Tyy) — W h, (3.68)
where U, = intemd energy of the steam in the jacket

H, = enthalpy of incoming steam

h, = enthalpy of liquid condensate

The internad energy changes (sensble-heat effects) can usudly be neglected com-
pared with the latent-heat effects. Thus a simple agebraic steadystate energy
equation can be used

_ ho Ao(rl - TM)

m Hs_hc

(3.69)
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The equations of date for dteam (or the steam tables) can be used to cacu-
late temperature T; and pressure P, from density p;. For example, if the perfect-
gas lawv and a smple vapor-pressure equation can be used,

=M exp(Z4 B 370
Pr= RTJ p T] w ( ' )
where M = molecular weight of steam = 18

A, and B,, = vapor-pressure constants for water

Equation (3.70) can be solved (iteretively) for T, if p, is known [from Eq. (3.67)].
Once T, is known, P, can be calculated from the vapor-pressure equation. It is
usudly necessary to know P, in order to caculate the flow rate of steam through
the inlet vave snce the rate depends on the pressure drop over the vave (unless
the flow through the vave is “criticd”).

If the mass of the metal surrounding the jacket is significant, an energy
equation is required for it. We will assume it negligible.

In mogt jacketed reactors or steam-hegted reboilers the volume occupied by
the steam is quite smal compared to the volumetric flow rate of the steam vapor.
Therefore the dynamic response of the jacket is usualy very fast, and simple
algebraic mass and energy balances can often be used. Steam flow rate is set
equd to condensate flow rate, which is caculated by iterdtively solving the heat-
transfer relationship (Q = UA AT) and the valve flow equation for the pressure
in the jacket and the condensate flow rate.

B. COOLING PHASE. During the period when cooling water is flowing through
the jacket, only one energy equation for the jacket is required if we assume the
jacket is perfectly mixed.

dT,
Py Vs Cy d_zj =F,CypfTo =T+ hy ATy = T)) @71

where T, = temperature of cooling water in jacket
p; = density of water
C, = heat capacity of water
T, = inlet cooling-water temperature

Checking the degrees of freedom of the system during the hesting dtage, we
have seven variables (C,,Cg, T, Ty, Tj , p 5, and W) and seven equations [Egs.
(3.61), (3.62), (3.64), (3.65), (3.67), (3.69), and (3.70)]. During the cooling stage we
use Eg. (3.71) instead of Egs. (3.67), (3.69), and (3.70), but we have only T; instead
of T;, p,,and W,.

3.10 REACTOR WITH MASS TRANSFER

Asindicated in our earlier discussions about kinetics in Chap. 2, chemical reac-
tors sometimes have mass-transfer limitations as well as chemical reaction-rate
limitations. Mass tranfer can become limiting when components must be moved
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Gas-liquid bubble reactor.

from one phase into another phase, before or after reaction. As an example of the
phenomenon, let us consder the gesliquid bubble reactor sketched in Fig. 311

Reactant A is fed as a gas through a distributor into the bottom of the
liquid-filled reactor. A chemica reaction occurs between A and B in the liquid
phese to form a liquid product C. Reactant A must dissolve into the liquid before
it can react.

k1

A+B C

If this rate of mass trandfer of the gas A to the liquid is dow, the concentration of
A intheliquid will be low since it is used up by the reaction as fast asit arrives.
Thus the reactor is masstransfer limited.

If the rate of mass transfer of the gas to the liquid is fast, the reactant A
concentration will build up to some value as dictated by the steadystate reaction
conditions and the equilibrium solubility of A in the liquid. The reactor is
chemical-rate limited.

Notice that in the mass-transfer-limited region increasing or reducing the
concentration of reactant B will make litle difference in the reaction rate (or the
reactor productivity) because the concentration of A in the liquid is so small.
Likewise, increasing the reactor temperature will not give an exponentid increase
in reaction rate. The reaction rate may actually decrease with increasing tem-
perature because of a decresse in the equilibrium solubility of A a the gasliquid
interface.
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Let us try to describe some of thee phenomena quantitatively. For simplic-
ity, we will assume isothemd, congtant-holdup, congtant-pressure, and  condant
density conditions and a perfectly mixed liquid phase. The gas feed bubbles are
assumed to be pure component A, which gives a condant equilibrium concentra
tion of A at the gas-liquid interface of C* (which would change if pressure and
temperature were not constant). The total mass-transfer area of the bubbles is
M7 and could depend on the gas feed rate F,. A condtant-mass-transfer  coeffi-
cient k; (with units of length per time) is used to give the flux of A into the liquid
through the liquid film as a function of the driving force

N, = k(C = C) (3.72)

Mass transfer is usualy limited by diffusion through the stagnant liquid film
because of the low liquid diffusvities

We will assume the vapor-phase dynamics are very fagt and tha any unre-
acted gas is vented off the top of the reactor.

F,= F, - M (3.73)
PA
Component continuity for A
dc
V‘_“A'_ﬁT NA'_FLCA_'VkCACB (374)
Component continuity for B:
d
14 % = FyCgo — F, Cy — VkC, Cy (3.795)
Totd continuity
dpV
_(‘fE‘):O:FBPB*’MANAAMT—FLP (3.76)

Equations (3.72) through (3.76) give us five equations. Variables are N,
Ca, Cp, Fy, and F, . Forcing functions are F, Fg , and Cy, .

3.11 IDEAL BINARY DISTILLATION COLUMN

Next to the ubiquitous CSTR, the distillation column is probably the most
popular and important process studied in the chemical engineering literature.
Ditillation is used in many chemical processes for separating feed streams and
for purification of find and intermediate product streams.

Most columns handle multicomponent feeds. But many can be approx-
imated by binary or pseudobinary mixtures. For this example, however, we will
make severa additional assumptions and idealizations that are sometimes vaid
but more frequently ae only crude approximations.
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The purpose of sudying this smplified case firs is to reduce the problem to
its most elementary form so that the basic structure of the equations can be
clealy seen. In the next example, a more redigic sysem will be modeled.

We will assume a binary system (two components) with constant relative
voldtility throughout the column and theoreticd (100 percent efficient) trays, i.e,
the vapor leaving the tray is in equilibrium with the liquid on the tray. This
means the smple vapor-liquid equilibrium reldionship can be usad

ox,

=T+ @-1x, (3.17)

where x, = liquid composition on the nth tray (mole fraction more volatile
component)
y, = vapor composition on the nth tray (mole fraction more volatile
component)
a = relative voldtility

A single feed stream is fed as saturated liquid (at its bubblepoint) onto the
feed tray N,. See Fig. 3.12. Feed flow rate is F (mol/min) and composition is z
(mole fraction more volatile component). The overhead vapor is totaly con-
densed in a condenser and flows into the reflux drum, whose holdup of liquid is
M, (moles). The contents of the drum is assumed to be perfectly mixed with
compoasition x,. The liquid in the drum is at its bubblepoint. Reflux is pumped
back to the top tray (N4) of the column & a rae R Overhead didillate product
is removed & a rate D.

We will neglect any dday time (deedtime) in the vapor line from the top of
the column to the reflux drum and in the reflux line back to the top tray (in
indudtrid-scde  columns this is usudly a good assumption, but not in smdl-scde
laboratory columns). Notice that yyr is not equal, dynamically, to x,. The two
ae equad only a Seadydate.

At the base of the column, liquid bottoms product is removed &t a rate B
and with a compogtion xz . Vapor boilup is generated in a thermosiphon reboiler
a a rae v, Liquid drculates from the bottom of the column through the tubes in
the vertical tube-in-shell reboiler because of the smaller density of the vapor-
liquid mixture in the reboiler tubes. We will assume that the liquids in the reboil-
e and in the base of the column ae perfectly mixed together and have the same
compostion xg and totd holdup My (moles). The circulation rates through well-
designed thermosiphon reboilers are quite high, so this assumption is usually a
good one. The composition of the vapor leaving the base of the column and
entering tray 1 is yg . It is in equilibrium with the liquid with compostion x, .

The column contains a total of N theoretical trays. The liquid holdup on
each tray including the downcomer is M, . The liquid on each tray is assumed to
be perfectly mixed with composition x,. The holdup of the vapor is assumed to
be negligible throughout the system. Although the vapor volume is large, the
number of moles is usualy small because the vapor density is so much smaller
than the liquid density. This assumption bresks down, of course in high-pressure
columns.
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A further assumption we will make is that of equimola overflow. If the
molar heats of vaporization of the two components are about the same, whenever
one mole of vapor condenses, it vaporizes a mole of liquid. Heat losses up the
column and temperature changes from tray to tray (sensible-heat effects) are
assumed negligible. These assumptions mean that the vapor and liquid rates
through the stripping and rectifying sections will be constant under steadystate
conditions. The “operating lines’ on the familiar McCabe-Thiele diagram are
draght lines.

However, we are interested here in dynamic conditions. The assumptions
above, including negligible vapor holdup, mean that the vapor rate through all
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FIGURE 3.12
Binary ditillation column.
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trays of the column is the same dynamicdly as well as a Seadydate.
V=Vi=V,=V;="=Vy

Remember these V's are not necessarily condtant with time. The vapor boilup can
be manipulated dynamically. The mathematical effect of assuming equimolal
overflow is that we do not need an energy equation for esch tray. This is quite a
significant simplification.

The liquid rates throughout the' column will not be the same dynamically.
They will depend on the fluid mechanics of the tray. Often a smple Francis weir
formula rlationship is used to relate the liquid holdup on the tray (M,) to the
liquid flow rate leaving the tray (L,).

F, = 3.33L(h,.)*> (3.78)

where Fy = liquid flow rate over weir (ft3/s)
L, = length of weir (ft)
h,,, = heght of liquid over wer (ft)

More rigorous relationships can be obtained from the detailed tray hydraulic
equations to include the effects of vapor rate, dengties, compostions, ec. We will
asume a dmple functiond rdationship between liquid holdup and liquid rae

M, =fu, (3.79)

Finaly, we will neglect the dynamics of the condenser and the reboailer. In
commercia-scale columns, the dynamic response of these heat exchangers is
usualy ‘much faster than the response of the column itself. In some systems,
however, the dynamics of this peripheral equipment are important and must be
induded in the modd.

With al these assumptions in mind, we are ready to write the equations
describing the system. Adopting the usud convention, our tota continuity egua
tions are written in terms of moles per unit time. This is kosher because no
chemicd reaction is assumed to occur in the column.

Condenser and Reflux Drum
Total continuity:

~V—-R-D (3.80)

Component continuity (more volatile component):

W: Vynr = (R + D)xp (3.81)
Top Tray (n = Ny)
Tota continuity:
dMyr _ R = Lyr (3.82)
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Component continuity :

dMyr Xy7)

dt = Rxp — Lyg Xyr + Vynr- 1 = Viar (3.83)

Next to Top Tray (n = Ny — 1)
Total continuity:

Myr_
é'_NT_l = LNT - LNT—I (384)
dt
Component continuity :
dMyr_§ Xy7-
(N+NT1)=LNTXN 1 = Lyp_1Xyr-1+ Vynroa=Vyyr-1 (3.85)
nth Tray
Total continuity:
M,
Mt 399
Component continuity:
Mnxn
i( dt ) = a+1%Xp+1 = Lnxn + Vyn—l - Vy,, (387)
Feed Tray (n = Np)
Total continuity:
IMur g ey = Lap + F (3.88)

dt
Component continuity :

dMyp Xyy)

at = Lypsy Xnp+1 = Lyp Xnp +VYyp -1 — Vynr + Fz (3.89)

First Tray (n = 1)

Totd continuity :
dM
_dt—l =L, L, (3.90)
Component continuity :
M'x—‘) = L2 x2 - lel + VyB - Vyl (3'91)

dt
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Reboiler and Column Base
Tota continuity:

M,
at

Component continuity :

d(Mpxp) _
dt

Lyxy = Vyg = BX,

(3.92)

(3.93)

Each tray and the column base have equilibrium equations [Eq. (3.77)].
Each tray dso has a hydraulic equation [Eg. (3.79)]. We aso need two equetions
representing the level controllers on the column base and reflux drum shown in

Fig. 312
D = fl(Mp)

B =f2(M5)

(3.94)

Let us now examine the degrees of freedom of the sysem. The feed rate F
and compostion z ae assumed to be given.

Number of variables :
Tray compositions (x, and y,)
Tray liquid flows (L,)
Tray liquid holdups (M,)
Reflux drum composition (x;)
Reflux drum flows (R and D)
Reflux drum holdup (M,)
Base compostions (xz and yp)
Base flows (V and B)
Base holdup (My)

Number of equations :

Tray component continuity

Tray total continuity

Equilibrium  (trays plus base)
Hydraulic

Level controllers

Reflux drum component continuity
Reflux drum total continuity
Base component continuity

Base total continuity

FEE
-3

w
HNND—\NI—\z

4N; +9

~

N A A
NN
+

o

4Ng + 7

alot

Equation
number

Therefore the system is underspecified by two equations. From a control
engineering viewpoint this means that there are only two variables that can be
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controlled (can be fixed). The two variables that must somehow be specified are
reflux flow R and vapor boilup ¥ (or heat input to the reboiler). They can be held
constant (an openloop System) or they can be changed by two controllers to try
to hold some other two variables constant. In a digital simulation of this column
in Pat 1l we will assume tha two feedback controllers adjust R and ¥ to control
overhead and bottoms compostions x, ad xp .

R=fian V=lom (3.95)

3.12 MULTICOMPONENT NONIDEAL
DISTILLATION COLUMN

As a more redidic didillation example, le us now develop a mahemaicd mode
for a multicomponent, nonideal column with NC components, noneguimolal
oveflow, and inefficient trays. The assumptions that we will make ae

1. Liguid on the tray is pefectly mixed and incompressible.

2. Tray vapor holdups ae negligible

3. Dynamics of the condenser and the reboiler will be neglected.

4. Vapor and liquid are in thermal equilibrium (same temperature) but not in
phase equilibrium. A Murphree vapor-phase efficiency will be used to describe
the depature from equilibrium.

_ Vai = V-1 (2,96
yai = Va-1.j
where y¥ = composition of vapor in phase equilibrium with liquid on nth tray
with composition x,;
Yaj = atud compostion of vepor leaving nth tray
yi_ . ; = atud compostion of vapor entering nth tray
E,; = Murphree vapor efficiency forjth component on nth tray

nj

Multiple feeds, both liquid and vapor, and Sdestream drawoffs, both liquid
and vapor, are permitted. A generd nth tray is sketched in Fg. 3.13. Nomencla
ture is summarized in Table 3.1 The equations describing this tray are

Totd continuity (one per tray):

dM

= Lyt FEt B+ Vo =V, = L,—SE=S, (9]
Component continuity equations (NC — 1 per tray):
dM, x,;
(*J)= LoviXns1,j+ fo:j + F:,—IYf—l,j + Vo1V,

- Vn ynj - Ln xnj_sﬁxnj "s:, ynj (398)
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FIGURE 3.13
nth tray of multicomponent column.

Energy equation (one per tray):
d(M, h,)
dt

Lysy ner+ FER CFY_\HY +V,_ (H,_,

-V,H,— L,h,— S h,— SYH, (399)
where the enthdpies have units of energy per mole.
Phase equilibrium (NC per tray):

Y:j = f(x..j, Pu, Tn) (3-100)

An appropriate vapor-liquid equilibrium relationship, as discussed in Sec. 2.2.6,
must be used to find y¥;. Then Eq. (3.96) can be used to cdculae the y,; for the
inefficient tray. The yI_ | ; would be cdculaed from the two vapors entering the
tray: FY_yand ¥, _,.

Additiond equations incdude physicd propety rdationships to get densties
and enthalpies, a vapor hydraulic equation to calculate vapor flow rates from
known tray pressure drops, and aliquid hydraulic relationship to get liquid flow

TABLE 3.1
Streams on nth tray

Number Flow rate Composition Temperature
1 Fy X5 Ty

2 F:’- 1 y{— 1,j Tv’:— 1

3 Laty Xn+1,] Ther

4 V;l Vaj T;

5 V-1 Yn-1.j T-1

6 Sk Xy T,

7 Ln xn}' ’I;n

8 s: ynj T;
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rates over the weirs from known tray holdups. We will defer any discussion of
the very red practica problems of solving this large number of equations until
Part II.

If we listed all the variables in this system and subtracted al the equations
describing it and all the parameters that are fixed (al feeds), we would find that
the degrees of freedom would be equal to the number of sidestreams plus two.
Thus if we have no sidestreams, there are only two degrees of freedom in this
multicomponent system. This is the same number that we found in the simple
binary column. Typicaly we would want to control the amount of heavy key
impurity in the distillate x; »zx and the amount of light key impurity in the
bottoms xp 1.

3.13 BATCH DISTILLATION WITH HOLDUP

Batch didtillation is frequently used for smdl-volume products. One column can
be used to separate a multicomponent mixture instead of requiring NC — 1 con-
tinuous columns. The energy consumption in batch distillation is usualy higher
than in continuous, but with small-volume, high-value products energy costs
sddom dominate the economics.

Figure 314 shows a typicd batch didillation column. Fresh feed is charged
into the still pot and heated until it begins to boil. The vapor works its way up
the column and is condensed in the condenser. The condensate liquid runs into

Mp

e
'xDi

FIGURE 3.14
Batch didtillation.

Xpy
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the reflux drum. When aliquid level has been established in the drum, reflux is
pumped back to the top tray in the column.

The column is run on total reflux until the overhead distillate composition
of the lightest component (component 1) x,, reaches its specification purity.
Then a distillate product, which is the lightest component, is withdrawn at some
rae. Eventudly the amount of component 1 in the dll pot gets very low and the
xp, purity of the distillate drops. There is a period of time when the distillate
contains too little of component 1 to be used for that product and also too little
of component 2 to be used for the next heavier product. Therefore a“slop” cut
must be withdrawn until x,, builds up to its specification. Then a second product
is withdrawn. Thus multiple products can be made from a single column.

The optimum design and operation of batch ditillation columns are very
interesting problems. The process can run at varying pressures and reflux ratios
during each of the product and slop cuts. Optimum design of the columns
(diameter and number of trays) and optimum operation can be important in
reducing batch times, which results in higher capacity and/or improved product
quaity (less time a high temperatures reduces therma degradation).

Theoretical trays, equimola overflow, and constant relative volatilities are
assumed. The total amount of material charged to the column is Mg, (moles).
This maerid can be fresh feed with composttion z; or a mixture of fresh feed and
the dop cuts. The composition in the still pot at the beginning of the batch is
Xgoj- The composition in the till pot at any point in time is xg;. The instanta-
neous holdup in the still pot is M. Tray liquid holdup and reflux drum holdup
are assumed constant. The vapor boilup rate is constant at ¥ (moles per hour).
The reflux drum, column trays and ill pot ae dl initidly filled with maerid of
composition  xp;.

The equations describing the batch distillation of a multicomponent
mixture are given below.

Still pot:
M,
— = — D
dt (3.101)
M, X
dl dntxsl] = Rxy; = Vyp; (3.102)
i Xp;
S (3103)
Y % Xp
k=1
Tray n:
dx,;
M, El = R[xp41, ;= Xpi] + VIVuo 15 = Vajd (3.104)
Y =yt (3.105)

NC
Z Ok Xk
k=1
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Tray Ny (top tray):

dxyr ;
Mz ::T‘ = Rxp; = Xyr, 4+ Vynr-1,5— 1. )} (3.106)
;X .
ey = (3.107)
Z Ok XNT, k
k=1
Reflux drum :

dxp;
M, gxf‘ =Vyyr. ; = [R + Dlxp; (3.108)
R=V-D (3.109)

3.14 pH SYSTEMS

The control of pH is a very important problem in many processes, paticulaly in
effluent wastewater treatment. The development and solution of mathematical

modds of these systems is, therefore, a vitd pat of chemicd engineering dynamic
modeling.

3.141 Equilibrium-Constant Models

The traditiond approach is to keep track of the amounts of the various chemicd
species in the system. At each point in time, the hydrogen ion concentration is
calculated by solving a set of simultaneous nonlinear agebraic equations that
result from the chemicd equilibrium rdationships for each dissociation reaction.

For example, suppose we have a typical wastewater pH control system.
Severd inlet feed dreams with different chemica species, titration curves, and pH
levels are fed into a perfectly mixed tank. If the feed streams are acidic, some
source of OH- ions is used to bring the pH up to the specification of seven. A
durry of CaCO, andlor caudic (NaOH) are usudly used.

The equilibrium-constant method uses a dynamic modd that keeps track of
dl chemicd gecies Suppose, for example, tha we have three dissociating acids
in the system. Let the concentration of acid HA at some point in time be C,.
This concentration includes the part that is dissociated, plus the part that is not
dissociated. The same quantity for acid HB is Cy and for acid C is Cc. These
three acids come into the system in the feed streams.

HA-H" +A”
HB-H*+B~
HC-H*+C~
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These dissociation reactions are reversble and have different forward and reverse
rate constants, The equilibrium relationships for these three reactions are
expressed in terms of the equilibrium condants K, , Kg , and Kc.

[H*IAT]

Ka="Fia] (3.110)
_[H*1B7]

Ko ="Fpr— (.111)
_[HT]IC]

Ke="mc (3.112)

To solve for the concentration of hydrogen ion [H’] at each point in time,
these three nonliner dgebrac equations must be solved sSimultaneoudy. Let

x = fraction of HA dissociated
y = fraction of HB dissociated
y4 fraction of HC dissociated

Then
Concentration of A~ = x
Concentration of B~ =y
Concentration of C™ =z
Concentration of undissociated HA = C, — x (3.113)
Concentration of undissociated HB = Cg — y
Concentration of undissociated HC = Cc — z
Concentrationof H* = x +y + z

These concentretions are subgtituted in Egs. (3.110) to (3.112), giving three highly
nonlinear dgebrac egquations in three unknowns. x, y, ad z

These nonlinear equations must be solved simultaneously at each point in
time. Usually an iterative method is used and sometimes convergence problems
occur. The complexity grows as the number of chemicd species increases.

This modding approach requires that the chemicad species must be known
and their equilibrium constants must be known. In many actual plant situations,
this data is not avalable

3.14.2 Titration-Curve Method

The information that is available in many chemical plantsis atitration curve for
each stream to be neutralized. The method outlined below can be used in this
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situation. It involves only a ssimple iterative calculation for one unknown at each
point in time

Let us assume that titration curves for the feed streams are known. These
can be the typical sharp curves for strong acids or the gradua curves for weak
acids, with or without buffering. The dynamic modd keeps track of the amount
of each stream that is in the tank at any point in time. Let C,, be the concentra-
tion of the nth dream in the tank, F, be the flow rae of that stream into the tank,
and F_, be the totd flow rate of materid leaving the tank.

If the volume of the liquid in the tank is congant, the outflow is the sum of
all the inflows. The flow rates of caustic and lime durry are usualy negligible.
For three feed dtreams

Fou= F{+ F3+ F, (3.114)
The dynamic component balance for the nth dream is
dC
2= F 1
V= =Fy=C,Fou (3.115)

where ¥ = volume of the tank.

The dynamic baance for the OH- ion in the sysem is

dCon
dt

where Con = concentration of OH- ions in the sysem
Foy = total flow rate of OH- ion into the system in the caustic and lime
durry  sreams
R4, = rate of OH- ion generation due to the dissolving of the solid
CaCO; paticles

v

= Foy + Rais = Fou Con (3.116)

The rate of dissolution can be related to the paticle sze and the OH- concentra-
tion.

ks — Con

Rys = ki X, (3.117)

where k,, k,, and ¢ are constants determined from the dissolution rate data for
olid CaCO; and X, is the solid CaCO, concentration a any point in time.
The seps in the ftitration-curve method ae

1 At each paint in time, dl the C,’s and Con are known.
2. Cuess a vaue for pH in the tank.

3. Use the titration curve for each stream to determine the amount of OH- ion
required for thet Sream to bring it up to the guess vaue of pH.

4, Check to see if the total amount of OH- actually present (from Con) is equal
to the totd amount required for dl <reams.

5. Reguess pH if step 4 does not baance.
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The method involves a simple iteration on only one variable, pH. Smple
interval-halving convergence (see Chap. 4) can be used very effectively. The ftitrar
tion curves can be easily converted into simple functions to include in the com-
puter program. For example, straight-line sections can be used to interpolate
between data points.

This method has been applied with good success to a number of pH pro-
cesses by Schnelle (Schnelle and Luyben, Proceedings of 1SA 88, Houston,
October  1988).

PROBLEMS

3.1 A fluid of congant density p is pumped into a cone-shaped tank of tota volume
HnR?/3. The flow out of the bottom of the tank is proportiond to the square root of
the height h of liquid in the tank. Derive the equations describing the system.

F

' {
T’ ' >
J,, T_
I F=K+vh FIGUREP3.1

3.2. A perfect gas with molecular weight M flows a a mass flow rate W, into a cylinder
through a redtriction. The flow rate is proportiond to the square root of the pressure

drop over the redriction:
Wy = Koo /Po— P

where P is the pressure in the cylinder and P is the constant upstream pressure. The
system is isothermd. Inside the cylinder, a piston is forced to the right as the pres-
sure P builds up. A spring resigts the movement of the piston with a force that is
proportiond to the axid displacement x of the piston.

F.= K.x

Piston wall

I

0 Pressure on the spring
— side of the piston is
atmospheric.

prldby

—

Restriction Spring //

FIGURE P3.2
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The pigon is initidly a x = O when the pressure in the cylinder is zero. The cross-
sectiond area of the cylinder is A. Assume the piston has negligible mass and fric-
tion.
(8) Derive the equetions describing the system.
b) What will the steadystate piston displacement be?

perfectly mixed, isotherma CSTR has an outlet weir. The flow rate over the weir
s proportiond to the height of liquid over the weir, h,,, to the 1.5 power. The weir
heght is h,, . The cross-sectiond area of the tank is A. Assume congtant density.

A firgt-order reaction takes place in the tank:

A B
Derive the equations describing the system.

-}" =y Kb, % f3s

FIGURE P3.3

34. In order to ensure an adequate supply for the upcoming sat-to with the Hatfields,
Grandpa McCoy has begun to process a new batch of his famous Liquid Lightning
moonshine. He begins by pumping the mash & a condtant rate F, into an empty
tank. In this tank the ethanol undergoes a firg-order reaction to form a product that
is the source of the high potency of McCoy's Liquid Lightning. Assuming that the
concentration of ethanal in the feed, C,, is condant and that the operation is iso-
thermal, derive the equations that describe how the concentration C of ethanol in
the tank and the volume V of liquid in the tank vary with time. Assume perfect
mixing and condant dengty.

35. A rotating-metal-drum hest exchanger is half submerged in a cool dream, with its
other hdf in a hot stream. The drum rotates & a congant angular velocity w

L / \ Rotation

Ty
Hot temp

N\

Q Cool temp T
FIGURE P35
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(radians per minute). Assume Ty and T are condant along their respective sections
of the circumference. The drum length is L, thickness d, and radius R. Hest transfer
coefficients in the heating and cooling zones are congtant (U and U,). Heat capac-
ity C, and density of the metd drum are constant. Neglect radia temperature gra-
dients and assume steedystate operation.
(8 Write the equations describing the system.
_—_(b) What are the appropriate boundary conditions?

onsder the system that has two stirred chemicd reactors separated by a plug-flow
déadtime of D seconds. Assume constant holdups (V; and V), congtant throughput
(F), congtant density, isothermal operation a temperatures T, and T,, and first-
order kinetics with Smultaneous resctions:

ki k2

A - B A - C

No reaction occurs in the plug-flow section.
Write the equations describing the system.

S e BV

s
T, - ‘\\[‘)Veath‘

im¢ T,

FIGURE P3.6

3.7. Consder the isotherma hydraulic syssem sketched below. A dightly compressible
polymer liquid is pumped by a constant-peed, postive displacement pump so that
the mass flow rate W, is constant. Liquid dengty is given by

p = PO + f(P = Pg)

where po , B, and P, are congtants, p is the density, and P is the pressure.

Liquid is pumped through three resistances where the pressure drop is pro-
portiondl to the square of the mass flow: AP = RW2. A surge tank of volume V is
located between R, and R, and is liquid full. The pressure downstreem of R, is
atmospheric.

(@ Derive the differentia equation that gives the pressure P in the tank as a func-
tion of time and W,.
(b) Find the steadystate vaue of tank pressure P.

AW R R
E@l Ry LZ 'v\/i/\, J\Ni/\, W,

Pump

FIGURE P3.7

38. Deveop the equations describing an “inverted” baich ditilletion column.  This
system has a large reflux drum into which the feed is charged. This materid is fed to
the top of the didtillation column (which acts like a stripper). Vapor is generated in a
reboiler in the base. Heavy materid is withdrawn from the bottom of the column.
Derive a methemeticd modd of this batch didillaion sysem for the case
where the tray holdups cannot be neglected.
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3.9. An ice cube is dropped into a hot, perfectly mixed, insulated cup of coffee. Develop

the equations describing the dynamics of the system. Ligt dl assumptions and define
all terms.

/3.10. 1 isothermal, irreversible reaction

k
A - B

‘/taks place in the liquid phase in a congant-volume reactor. The mixing is not
perfect. Observation of flow patterns indicates that a two-tank system with back
mixing, as shown in the sketch below, should gpproximate the imperfect mixing.

Asuming F and Fy are congtant, write the equations describing the system.

F+Fg

F 2 v F
Cao Car Caz Caz
Fp

FIGURE P3.10

T he liquid in a jacketed, nonisotherma CSTR is gtirred by an agitator whose mass is
ignificant compared with the reaction mass. The mass of the reactor wal and the

mass of the jacket wall are dso dgnificant. Write the energy equations for the

system. Neglect radia temperature gradients in the agitator, reactor wall, and jacket
wal.

@The reection 3A - 2B + C is caried out in an isotherma semibatch resctor.
-Z Product B is the desired product. Product C is a very volatile by-product that must
be vented off to prevent a pressure buildup in the reactor. Gaseous C is vented off
through a condenser to force any A and B back into the reactor to prevent loss of
reactant and product.
Assume F,, is pure C. The reaction is firg-order in C,. The redive voldilities
of Aand CtoB are a,5 = 1.2 and ae = 10. Assume perfect gases and constant
pressure. Write the equations describing the system. List dl assumptions.

FIGURE P3.12
3.13. Write the equations describing a smple version of the petroleum industry’s impor-
ant catalytic cracking operation. There are two vessdls as shown in Fig. P3.13.
Component A is fed to the reactor where it reacts to form product B while depos-
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iting component C on the solid fluidized catdys.
A-B+0.1C

Spent catalyst is circulated to the regenerator where air is added to burn off C.
C+0-P

Combustion products are vented overhead, and regenerated catdyst is returned to
the reactor. Hest is added to or removed from the regenerator at arate Q.

Your dynamic mathematicd modd should be based on the following assump-
tions:

(2) The perfect-gas law is obeyed in both vessds.

(2) Congant pressure is maintained in both vessds.

(3) Catdyst holdups in the reactor and in the regenerator are constant.

(4) Heat capacities of reactants and products are equal and constant in each vessel.
Catalyst hest capacity is dso constant.

(5) Complete mixing occurs in each vessd.

Product Stack gas

(FoT1ov) /quz,yz)

Reactor

Regenerator

Regenerated

catalyst catalyst
(w, x) (w, x,)
Feed
Blower —
_.__@ (Fg, Tos ¥o)
Air,
(Fou Ta yg)
) ky 1
Reactor reaction: A— B+ 16 C 1
Ky
Regenerator reaction: C +0-> P
FIGURE P3.13

Flooded condensers and flooded reboilers are sometimes used on didtillation
columns. In the sketch below, a liquid leve is held in the condenser, covering some
of the tubes. Thus a variable amount of heat trandfer area is available to condense
the vapor. Column pressure can be controlled by changing the didtillate (or reflux)
drawoff rate.

Write the equations describing the dynamics of the condenser.
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\‘T® # #
ey T
R Cooliing
Column water
on
1l
she I+ Liquid level
inside
tubes £
gy
&

FIGURE P3.14

When cooling jackets and internad cooling coils do not give enough hest transfer
areq, a circulating cooling system is sometimes used. Process fluid from the reector is
pumped through an externad heat exchanger and back into the reactor. Cooling
water is added to the shell side of the heat exchanger a arate F,, as st by the
temperature controller. The circulation rate through the heat exchanger is congtant.
Assume that the shell side of the exchanger can be represented by two perfectly
mixed “lumps’ in series and that the process fluid flows countercurrent to the water
flow, aso through two perfectly mixed stages.
The reection is irreversble and fig-order in reactant A:

A Y B

The contents of the tank are perfectly mixed. Neglect reactor and hest-exchanger

metd.
Derive a dynamic mathematicd modd of this system.

Fo 1 . @
i
WL

Ca

Reactor

Cooler | e
2 }

Cooling
wat
PN ater

FIGURE P3.15
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3.16. A semibatch reactor is run a congtant temperature by varying the rate of addition of
one of the reactants, A. The irreversible, exothermic reaction is first order in reac-
tants A and B.

A+ B'- C

The tark is initidly filled to its 40 percent level with pure reactant B & a
concentration Cgo . Maximum cooling-water flow is begun, and reactant A is dowly
added to the perfectly stirred vessd.

Write the eguations describing the system. Without solving the equations, try
to sketch the profiles of.F,, C,, and Cy with time during the batch cycle.

TN

e e
14
Fa é Ca Cooling
Cao Co water
.
FIGURE P3.16

3.17. Devdop a mathematicd modd for the three-column train of didillation columns
Sketched below. The feed to the first column is 400 kg - mol/h and contains four
components (1, 2, 3, and 4), eech a 25 mol %. Most of the lightest component is
removed in the didillate of the firg column, mogst of the next lightest in the second
column didtillate and the find column separates the find two heavy components.
Assume congant reletive voldilities throughout the system: «,, @,, and ay. The
condensers are total condensers and the reboilers are partial. Trays, column bases,
and reflux drums are perfectly mixed. Didtillate flow rates are set by reflux drum

Column 2
Column 3

FIGURE P3.17
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level controllers. Reflux flows are fixed. Steam flows to the reboilers are sat by
temperature controllers. Assume equimola overflow, negligible vapor holdup, and
negligible condenser and reboiler dynamics. Use a linear liquid hydraulic relation-
ship
" B

where [, and M, ae the initid Seadystate liquid rate and holdup and f is a con-
stant with units of seconds.
The rate of pulp lay-down F on a paper machine is controlled by controlling both
the pressure P and the height of durry h in a feeder drum with cross-sectiond area
A. F is proportiond to the square root of the pressure a the exit dit. The air vent
rate G is proportiona to the square root of the air pressure in the box P. Feedback
controllers set the inflow rates of air Gy and durry Fg to hold P and k. The system is
isothermdl.

Derive a dynamic mathematicdl model describing the system.

@ }-——gVent
Air Restriction

Gy

LC

P oly _E’_ﬁ\ Fsm
© ®

A wax filtration plant has sx filters that operate in padld, feeding from one
common feed tank. Each filter can handle 1000 gpm when running, but the filters
must be taken off-line every six hours for a cleaning procedure that takes ten
minutes. The operating schedule calls for one filter to be cleaned every hour.

How many gdlons a day can the plant handle? If the flow rate into the feed
tank is held congant &t this average flow rate, sketch how the liquid leve in the feed
tank varies over a typicd three-hour period.

Alkylation is used in many petroleum refineries to react unsaturated butylenes with
isohutane to form high octane iso-octane (alkylate). The reaction is carried out in a
two liquid-phase system: sulfuric acid/hydrocarbon.

The butylene feed dtream is Flit and fed into each of a series of perfectly
mixed tanks (usudly in one large vessd). This stepwise addition of butylene and the
large excess of isobutane that is used both help to prevent undesirable reaction of
butylene molecules with each other to form high-bailing, low octane polymers. Low
temperature (40°F) also favors the desired iC,/Cy reaction.

The reection is exothermic. One method of heat remova that is often used is
autorefrigeration: the heat of vaporization of the boiling hydrocarbon liquid soaks
up the heat of reaction.

FIGURE P3.18
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The two liquid phases are completely mixed in the agitated sections, but in the
last section the two phases are dlowed to separate so that the acid can be recycled
and the hydrocarbon phase sent off to a didtillation column for separation.

Derive a dynamic mathematicad modd of the reector.

Vapor to compressor

XD

iC,4 + alkylate

Ad 48

Acid recyclel

Isobutane
Butylenes

ki
iCy +C; —» iCy
ka
C: —= polymer

FIGURE P3.20

3.21. Benzene is nitrated in an isothermd CSTR in three sequentid irreversible reactions:

Benzene + HNO, —— nitrobenzene + H,0
Nitrobenzene + HNO, =, dinitrobenzene + H,0 }'

Dinitrobenzene + HNO, — . trinitrobenzene + H,0 ¥

Assuming each reection is linearily dependent on the concentrations of each reac
tant, derive a dynamic mahematicd modd of the system. There are two feed
streams, one pure benzene and one concentrated nitric acid (98 wt %). Assume con-

dant dengties and complete miscibility.






PART

COMPUTER
SIMULATION

I n the next two chapters we will study computer simulation techniques for
solving some of the sysems of equations we generated in the two preceding
chapters. A number of useful numericd methods are discussed in Chep. 4, indud
ing numericd integration of ordinary differential equations. Several examples
are given in Chap. 5, starting with some simple systems and evolving into more
realistic and complex processes to illustrate how to handle large numbers of
equations.

Only digitd smulation solutions for ordinay differentid equations ae pre-
snted. To present anything more than a very supeficid trestment of simulation
techniques for partia differential equations would require more space than is
avalable in this book. This subject is covered in severa texts. In many practica
problems, distributed systems are often broken up into a number of “lumps’
which can then be handled by ordinay differentid equations.

87
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Our discussions will be limited to only the most important and useful
aspects of simulation. The techniques presented will be quite simple and unso-
phisticated, but | have found them to work just as well for most real systems as
those that are more mahematicaly elegant. They aso have the added virtues of
being easy to understand and easy to program.

Some of the smple linear equations that we will smulate can, of course, be
solved analytically by the methods covered in Part 111 to obtain general solu-
tions. The nonlinear equations cannot, in general, be solved anayticaly, and
computer simulation is usualy required to get a solution. Keep in mind,
however, that you must give the computer specific numerical values for param-
eters, initia conditions, and forcing functions. And you will get out of the com-
puter specific numerical values for the solution. You cannot get a generd
solution in terms of arbitrary, unspecified inputs, parameters, €tc., as you can
with an andytic solution.

A working knowledge of FORTRAN 77 digital programming language is
assumed and all programs are written in FORTRAN. Those who prefer other
languages will find the conversion fairly easy since the programs are smple trans
lations of the equations into source code. All programs can be run on any type of
computer, personal computers or mainframes. The big multicomponent distilla
tion column dmulations require a lot of number crunching so ae usudly run on
amainframe. Most of the other programs can be conveniently run on personal
computers.




CHAPTER

4

NUVMERI CAL
VETHODS

4.1 INTRODUCTION

Digital smulation is a powerful tool for solving the equations describing chemi-
cd enginering sydems. The principd difficulties are two: (1) solution of sSmulta
neous nonlinear dgebraic equations (usudly done by some iterative method), and
(@ numerica integration of ordinay differentid  equations (using discrete  finite-
difference  equations to agpproximate continuous  differentid  equetions).

The accuracy and the numerical stability of these approximating equations
must be kept in mind. Both accuracy and stability are affected by the finite-
difference equation (or integration algorithm) employed, Many algorithms have
been proposed in the literature. Some work better (i.e., faster and therefore
cheaper for a specified degree of accuracy) on some problems then others. Unfor-
tunately there is no one agorithm that works best for al problems. However, as
we will discuss in more detal later, the smple firg-order explicit Euler dgorithm
is the best for a large number of engineering applications.

Over the years a number of digital simulation packages have been devel-
oped. In theory, these sSmulation languages relieve the engineer of knowing any-
thing about numerical integration. They automatically monitor errors and
dability and adjust the integration intervad or Sep Sze to day within some accu-
racy criterion. In theory, these packages make it esser for the enginer to st up
and solve problems.

In practice, however, these simulation languages have limited utility. In
their push for generdlity, they usually have become inefficient. The computer
execution time for a redidic enginegring problen when run on one of these simu-
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lation packages is usudly significantly longer than when run on a FORTRAN,
BASIC, or PASCAL progran written for the specific problem.

Proponents of these packages ague, however, that the setup and program-
ming time is reduced by using ssimulation languages. This may be true for the
engineer who doesn’t know any programming and uses the computer only very
occasionaly and only for dynamic simulations. But admost all high school and
certainly all engineering graduates know some computer programming language.
So using a smulation package requires the engineer to learn a new language and
a new sysem. Snce some language is dready known and since the sSmple, eesly
programmed numerica techniques work well, it has been my experience that it is
much better for the engineer to develop a specific program for the problem at
hand. Not only is it more computationally efficient, but it guarantees that the
engineer knows what is in the program and what the assumptions and techniques
ae This makes debugging when it doen't work and modifying it to handle new
dtuations much esser.

On the other hand, the use of specia subroutines for doing specific calcu-
lations is highly recommended. The book by Franks (Modeling and Simulation in
Chemical Engineering, John Wiley and Son, Inc., 1972) contains a number of
useful subroutines. And of course there are usually extensive libraries of sub-
routines available a most locations such as the IMSL subroutines. These can be
cdled very conveniently from a user’s program.

42 COMPUTER PROGRAMMING

A comprehensive discussion of computer programming is beyond the scope of
this book. | assume that you know some computer programming language. All
the examples will use FORTRAN since it is the most widely used by practicing
chemicad  enginears.

However, it might be useful to make a few comments and give you a few
tips about programming. Thee thoughts are not coming from a computer <cien-
tist who is interested in generating the most efficient and elegant code, but from
an engineer who is intereted in solving problems.

May people get dl excited about incduding extensve comment statements
in their code. Some go so far as to say that you should have two lines of com-
ments for every one line of code In my view this is ridiculoud If you use symbols
in your program that are the same as you use in the equations describing the
system, the code should be easy to follow. Some comment statements to point
out the various sections of the program are fine

For example, in distillation simulations the distillate and bottoms composi-
tion should be called “XD(J)” and “XB(J)” in the program. The tray composi-
tions should be caled “X(N,J),” where |V is the tray number starting from the
bottom and J is the component number. Many computer scientists put al
the compositions into one variable “X(N,J)” and index it so that the digtillate is
X(1,D), the top tray is X(2,J), etc. This gives a more compact program but
makes it much more difficult to undersand the code.
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Another important practical  problem is debugging. Almost dways, you will
have some mistake in your program, either in coding or in logic. Always, repeat
always, put loop counters in any iterative loops. Thisisillustrated in the bubble-
point calculation programs given later in this chapter. If the program is not
running, don’t just throw up your hands and quit. It takes a fair amount of
tenacity to get dl the kinks out of some smulaions. Maybe that's why the Dutch
ae pretty good a it.

When your program is not working correctly, the easiest thing to do is to
put into the program print statements at each step in the calculations so that you
can figure out what you have done wrong or where the coding or logic error is
located.

One of the most frustrating coding errors, and one that is the toughest to
find, is when you overfill an array. This usually just wipes out your program at
some spot where there is nothing wrong with the program, and many
FORTRAN compilers will not give a diagnosic waning of this problen. Be very
careful to check that all dimensioned variables have been adequately dimen-
sioned.

Subroutine arguments and COMMON statements can also be trouble-
some. Always make sure that the cdls to a subroutine use the correct sequence of
arguments and that all COMMON statements in all subroutines are exactly the
same'as that in the man program.

For the experienced programmer, the above comments are trivid, but they
may save the beginner hours of frudration. The fun pat of usng the computer is
getting useful results from the program once it is working correctly, not in coding
and debugging.

43 ITERATIVE CONVERGENCE METHODS

One of the mog common problems in digitd smuldion is the solution of smul-
taneous nonlinear algebraic equations. If these equations contain transcendental
functions, analytical solutions are impossible. Therefore, an iterative trial-and-
error procedure of some sort must be devised. If there is only one unknown, a
value for the solution is guessed. It is plugged into the equation or equations to
see if it satisfies them. If not, a new guess is made and the whole process is
repeated until the iteration converges (we hope) to the right value

The key problem is to find a method for making the new guess that con-
verges rapidly to the correct answer. There are a host of techniques. Unfor-
tunately there is no best method for al equations. Some methods that converge
vay rgpidly for some equations will diverge for other eguetions, i.e, the series of
new guesses will oscillate around the correct solution with ever-increasing devi-
dions This is one kind of numericd indability.

We will discuss only a few of the dmples and most ussful methods Fortu-
nately, in dynamic simulations, we start out from some converged initia steady-
dtate. At each instant in time, variables have changed very little from the values
they had a short time before. Thus we always are close to the correct solution.
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For this reason, the ssimple convergence methods are usualy quite adequate for
dynamic simulations.

The problem is best understood by considering an example. One of the
most common iterative calculations is a vapor-liquid equilibrium bubblepoint
calculation.

Example 4.1. We are given the pressure P and the liquid composition x. We want to
find the bubblepoint temperature and the vapor compostion as discussed in Sec.
2.2.6. For amplicity let us assume a binary system of components 1 and 2. Com-
ponent 1 is the more volatile, and the mole fraction of component 1 in the liquid is x
and in the vapor is y. Let us assume dso that the system is ided: Raoult's and
Dalton’s laws apply.

The patia pressures of the two components (f, and ®,) in the liquid and
vapor phases are :

In liquidk P, =xPy  P,=(1-x)P CNY
In vapor: Pi=yP  F,=(1~yP 42

where P; = vapor pressure of pure component j which is a function of only tem-
perature

A A
lnP‘1=?1+B, In 2=?2+B2 4.3)

Equating partia pressures in liquid and vapor phases gives

P=xP{+ (1 ~x)P; (4.4)
_xP
V=" (4.5)

Our convergence problem is to find the vaue of temperature T that will
satisfy Eq. (4.4). The procedure is as follows:

1. Guess a temperature T.
2. Cdculate the vapor pressures of components 1 and 2 from Eq. (4.3).
3. Cdculate atotal pressure P using Eq. (4.4).

P = xPyqy + (1 — X)Pyy (4.6)

4. Compare P**'* with the actud total pressure given, P. If it is sufficiently dose to
P (perhaps usng a reldive convergence criterion of 1079), the guess T is correct.
The vapor composition can then be caculated from Eqg. (4.5).

5.1f P s greater than P, the guessed temperature was too high and we must
make ancther guess of T that is lower. If peac js too low, we must guess a
higher T.

Now let us discuss several ways of making a new guess for the example
above.
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43.1 Interval Halving

This technique is quite simple and easy to visualize and program. It is not very

rapid in converging to the correct solution, but it is rock-bottom stable (it won't
blow up on you numerically). It works well in dynamic simulations because the
step size can be adjusted to correspond approximately to the rate at which the
vaiable is changing with time during the integration time step.

Figure 4.1 sketches the interval-halving procedure graphically. An initia
guess of temperature T, is made. P<#k¢ is calculated from Eq. (4.6). Then P2 is
compared to P. A fixed increment in temperature AT is added to or subtracted
from the temperature guess, depending on whether P2 is greater or less than P.

We kesp moving in the correct direction a this fixed sep Sze until there is
a change in the sign of the term (P — P<). This means we have crossed over the
correct value of T. Then we back up halfway, i.e., we halve the increment AT.
With each successive iteration we again halve AT, aways moving either up or
down in temperature.

Table 4.1 gives a little main program and a FORTRAN subroutine that
uss intevd having to peform this bubblepoint cdculation. Known vaues of x
and P and an initial guess of temperature (T,) are supplied as arguments of the
subroutine. When the subroutine returns to the main program it supplies the
correct value of T and the calculated vapor composition y. The vapor-pressure
constants (Al and B1 for component 1 and A2 and B2 for component 2) are
calculated in the main program and transferred into the subroutine through the
COMMON datement. The specific chemicd sysem used in the man program is
benzene-toluene a atmospheric pressure (P = 760 mmHg) with the mole fraction
of benzene in the liquid phese (x) set @ 0.50. Ided VLE is assumed.

The initial guess of T can be either above or below the correct value. The
program takes fixed steps DT equal to one degree until it crosses the correct
value of T. The logic variables “FLAGM” and “FLAGP” are used to tell us
when the solution has been crossed. Then interva hadving is begun.

T

N & [ ]
To T £

Pressure

Ts Ty

|
!
|
|
|
|
|
(
!

Correct value of T

Temperature

F'IGURE 4.1
Interval-halving convergence.
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TABLE 4.1
Example of iterative bubblepoint calculation using “interval-halving” algorithm

MAIN PROGRAM SETS DIFFERENT VALUES FOR
INITIAL GUESS OF TEMPERATURE
AND DIFFERENT INITIAL STEP SIZES

SPECIFIC CHEMICAL SYSTEM IS BENZENE/TOLUENE
AT 760 MM HG PRESSURE

PROGRAM MAIN

QOO0 N0

COMMON A1,B1,A2,B2
CALCULATION OF VAPOR PRESSURE CONSTANTS FOR
BENZENEANDTOLUENE
DATA GIVEN AT 100 AND 125 DEGREES CELCIUS
A1=L0G(2600./1360.)/((1./(125.4273.)) - (1./(100.4273.)))
B1=LOG(2600.) - A1/(125.4-273.)
A2=LOG(1140./550.)/((1./(125.+273.)) - (1./(100.4-273.)))
B2=LOG(1140.) - A2/(125.4273.)
C SET LIQUID COMPOSITION AND PRESSURE
X=0.5
P=760.
WRITE(6,3)X,P
3 FORMAT(’ X =',F8.5, P ="'F8.2,/)
T0=80.
DO 100 NT=1,3
DT0=2.
DO 50 NDT=1,4
WRITE(6,1) TO,DTO
1 FORMAT( INITIAL TEMP GUESS = ’F7.2, INITIAL DT = *F7.2)
T=T0
DT=DTO
CALL BUBPT(X,T,DT,P,Y,LOOP)
WRITE(6,2) T,Y,LOOP
2 FORMAT(’ = “F7.2, Y ="’F75’ LOOP = I3,/)
50 DTO=DT0*2.
100 T0=T0+20.
STOP
END

OO0

(@]

SUBROUTINE  BUBPT(X,T,DT,P,Y,LOOP)
COMMON A1,B1,A2,B2

LOOP=0
FLAGM=-1.
FLAGP=-1. /

C TEMPERATURE ITERATION LOOP
100 LOOP=LOOP+1
IF(LOOP.GT.100)THEN
WRITE(6,1)
1  FORMAT( LOOP IN BUBPT SUBROUTINE’)
STOP
ENDIF
PS1=EXP(A1/(T+273.) + B1)
PS2=EXP(A2/(T+273.) + B2)
PCALC=XsPS1 + (1.-X)xPS2



TABLE 4.1 (continued)
C TEST FOR CONVERGENCE

IF(ABS(P-PCALC). LT. P/10000.)GO TO 50

IF(P-PCALC) 20,20,30

C TEMPERATURE GUESS WAS TOO HIGH

20 IF(FLAGM.GT.0.)DT=DT/2.
T=T-DT
FLAGP=1,
GO TO 100

C TEMPERATURE GUESS WAS TOO LOW

30 IF(FLAGP.GT.0.)DT=DT/2.
T=T+DT
FLAGM=1.
GO TO 100
50 Y=XxPS1/P
RETURN
END

Results of bubblepoint calculations

X = 0.50000 P = 760.00

INITIAL TEMP GUESS = 80.00
T = 9220 Y = 0.71770

INITIAL TEMP GUESS = 80.00
T = 9220 Y = 0.71770

INITIAL TEMP GUESS = 80.00
T = 9220 Y = 0.71770

INITIAL TEMP GUESS = 80.00
T = 9220 Y = 0.71770

INITIAL TEMP GUESS = 100.00
T = 92.20 Y = 0.71770

INITIAL TEMP GUESS = 100.00
T = 9220 Y = 0.71770

INITIAL TEMP GUESS = 100.00
T = 9220 Y = 0.71770

INITIAL TEMP GUESS = 100.00
T = 9220 Y = 0.71770

INITIAL TEMP GUESS = 120.00
T = 9220 Y = 0.71770

INITIAL TEMP GUESS = 120.00
T = 9220 Y = 0.71770

INITIAL TEMP GUESS = 120.00
T = 9220 Y = 0.71770

INITIAL TEMP GUESS = 120.00
T = 9220 Y = 0.71770

INITIAL DT = 2.00

LOOP = 16

INITIAL DT = 4.00
LOOP = 14

INITIAL DT = 8.00
LOOP = 13

INITIAL DT = 16.00
LOOP = 13

INITIAL DT = 2.00
LOOP = 13

INITIAL DT = 4.00
LOOP = 12

INITIAL DT = 8.00
LOOP = 12

INITIAL DT = 16.00
LOOP = 13

INITIAL DT = 2.00
LOOP = 23

INITIAL DT = 4.00
LOOP = 17

INITIAL DT = 8.00
LOOP = 15

INITIAL DT = 16.00
LOOP = 14
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Clealy, the number of iterations to converge depends on how far the initid
guess is from the correct value and the size of the initial step. Table 4.1 gives
results for severa initid guesses of temperature (TO) and severd dep sizes (DTO).
The interval-halving algorithm takes 10 to 20 iterations to converge to the
correct  temperature.

Note the presence of aloop counter. LOOP is the number of times a new
guess has been made. If the iteration procedure diverges, the test for LOOP
gredter than 100 will dop the program with an appropriate explanaion of where
the problem is.

Interval halving can aso be used when more than one unknown must be
found. For example, suppose there are two unknowns. Two interval-halving
loops could be used, one inside the other. With a fixed value of the outside
variable, the inside loop is converged first to find the inside variable. Then the
outsde variable is changed, and the indde loop is reconverged. This procedure is
repeated until both unknown variables are found that satisfy all the required
equations.

Clearly this double-loop-iteration procedure can be very dow. However, for
ome smple problems it is quite effective.

4.3.2 Newton-Raphson Method

This method is probably the most popular convergence method. It is somewhat
more complicated Since it requires the evauation of a derivative It dso can lead
to stability problems if the initial guess is poor and if the function is highly
nonlinear.

Newton-Raphson amounts to using the slope of the function curve to
extrapolate to the correct value. Using the bubblepoint problem as a specific
example, let us define the function fizy:

S =Py ~P 4.7

We want to find the value of T that makes f, equd to zero; i.e, we want to find
the root of fir,. We guess a vaue of temperature T,. Then we eveuate the func-
tion at Ty, fr,. Next we evauate the sope of the function at Ty, fiz,) =
(dffdT)r,, . Then from the geometry shown in Fig. 42 we can see that

df) —fTo
T A = 20, 48
f(TO) (dT (To) Tl - To ( )
Solving for T, gives
ﬂ=%—%ﬁ (4.9)
(To)

T, in Eq. (4.9) is the new guess of temperature. If the curve fr, were a straight
line, we would converge to the correct solution in just one iteration.



NUMERICAL METHODS 97

FIGURE 4.2

Graphical representation of
T Newton-Raphson convergence.

Gengdizing Eq. (4.9), we get the recurdve iteration dgorithm :

T,

_p_ I 410
n=Th-% (4.10)

where T, +{ = new guess of temperature
T, = old guess of temperature
f,=vdueoff,, a T=T,
f = value of the derivative off, df/dT, at T = T,

The technique requires the evaluation off ’, the derivative of the function
Jiry With respect to temperature. In our bubblepoint example this can be
obtained analytically.

ﬁT) — P::;l)c —P=x e(Al/T+Bl) + (1 _ x) e(Az/T+Bz)

fr= Y xAr ayreny L= 0 rany
ar T? T?
_ —xA4, P —(1-x)4, P}
= T2
If the function were so complex that an analytical derivative could not be
obtained explicitly, an approximate derivative would have to be calculated

numerically: make a small change in temperature AT, evaluatefat T + AT and
use the approximation

(4.12)

f, =f!T+AT) f(T) (412)
AT
A digital computer program using Egs. (4.10) and (4.11) is given in Table
4.2. The problem is the same bubblepoint calculation for benzene-toluene per-
formed by interva-hdving in Table 41, and the same initid guessss are made of
temperature. The results given in Table 42 show tha the Newton-Raphson dgo-
rithm is much more effective in this problem than interval having: only 4to 5
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TABLE 4.2
Example of iterative bubblepoint calculation usng “ Newton-Raphson® algorithm

o
C MAIN PROGRAM SETS DIFFERENT VALUES FOR INITIAL
C GUESS OF TEMPERATURE
C SPECIFIC CHEMICAL SYSTEM IS BENZENE/TOLUENE
C AT 760 MM HG PRESSURE
Cc
PROGRAM MAIN
COMMON A1,B1,A2,B2
C CALCULATION OF VAPOR PRESSURE CONSTANTS
C FORBENZENEANDTOLUENE
Cc DATA GIVEN AT 100 AND 125 DEGREES CELCIUS
A1=LOG(2600./1360.)/((1./(125.4-273.)) - (1./(100.4+273.)))
B1=L0OG(2600.) - A1/(125.4273.)
A2=L0G(1140./550.)/((1./(125.4273.)) - (1./(100.4+273.)))
B2=L0G(1140.) - A2/(125.4273.)
C SET LIQUID COMPOSITION AND PRESSURE
X=0.5
P=760.
WRITE(6,3)X,P
3 FORMAT(* X =’,F8.5; P ='F8.2,/)
T0=80.
DO 100 NT=1,3
WRITE(6,1) TO
1 FORMAT(’ INITIAL TEMP GUESS = ',F7.2)
T=T0
CALL BUBPT(X,T,DT,P,Y,LOOP)
WRITE(6,2) T,Y,LOOP
2 FORMAT(’ T =F1.2 Y ='F15 LOOP = "]13,/)
100 T0=T0+420.
STOP
END

iterations are required with Newton-Raphson, compared to 10 to 20 with
interval-halving.

If the function is not as smooth and/or if the initial guessis not as close to
the solution, the Newton-Raphson method can diverge instead of converge.
Functions that are not monotonic are particularly troublesome, since the deriv-
ative approaching zero makes Eq. (4.10) blow up. Thus Newton-Raphson is a
vay efficient dgorithm but one that can give convergence problems. Sometimes
these difficulties can be overcome by condraining the sSze of the change permit-
ted to be made in the new guess.

Newton-Raphson can be farly eesly extended to iteration problems involv-
ing more than one variable. For example, suppose we have two functions fj,,,
and fy,, 5, that depend on two variables x, and x, . We want to find the values
of x; and x, tha sdidfy the two equations

fl(xl, x2) = 0 and fZ(xx. x2) = 0
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TABLE 4.2 (continued)

C
SUBROUTINE BUBPT(X,T,DT,P,Y,LOOP)
COMMON A1,B1,A2,B2
LOOP=0
C TEMPERATURE ITERATION LOOP
100 LOOP=LOOP+1
IF(LOOP.GT.100)THEN
WRITE(6,1)
1 FORMAT( LOOP IN BUBPT SUBROUTINE’)
STOP
ENDIF
PS1=EXP(A1/(T+273.) + B1)
PS2=EXP(A2/(T+273.) + B2)
PCALC=XxPS1 + (1.-X)*PS2
C TEST FOR CONVERGENCE
IF(ABS(P-PCALC). LT. P/10000.)GO TO 50
F=PCALC-P
DF= . (X+«PS1xAl + (1.-X)+PS2%A2)/(T+273.)*42
T=T-F/DF
GO TO 100
50 Y=X«PS1/P
RETURN
END

Results
X = 0.50000 P= 760.00

INITIAL TEMP GUESS = 80.00
T =9219 Y = 071765 LOOP = 4

INITIAL TEMP GUESS = 100.00
T =92.19 Y =0.71765 LOOP

il
=N

INITIAL TEMP GUESS = 120.00
T =9219 Y =0.71765 LOOP

]
(&)

Expanding each of these functions around the point (x,,, x,,) in a Taylor series
and truncating after the firg derivative terms give

R
fl(xx,nu,xz.nx) =fl(xu. xzm) T (K (xl,n+1 — X14)
1/ (x1n; x20)

o
¥ (;;;1),1", xh)(X2..+1 — X2,) (4.13)

%

fZ(xx..n,xz,nn) =f2(x1,.,x2,,) (3 > (xl.n+1 - xln)
+ \X1 J(xim 220

)
+ <£z)<x.,. (e2,ne 1= X24)  (4.14)

X2a)
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Setting f(xy,pe1, vz, p+ 1) 309 S2(xs,0s 1, x2.040) €QUA 10 Zero and solving for the new
guesses Xy 4 and X, .4 give

_ f2(af1/ax2) _fl(afZ/axZ)
Xt 1= Xn b e X0faJ0x) — (O JoxaNefoloxy) (419
f2(af1/axl) _fl(af2/axl) (4.16)

B SN CACIN AT R AN CTAEEN

All the patid derivatives and the functions are evaduated & x,, and x,,.
Equations (4.15) and (4.16) give the iteration algorithm for reguessing the
two new values each time through the loop. Four partial derivatives must be
cdculated, ether anayticaly or numericdly, a each iteration step.
Equations (4.13) and (4.14) can be written more compactly in matrix form.
We set the left sides of the equations equa to zero and call the changesin the
guessed varidbles AX = x4 1 — X, .

o9 W
0] _ f1:| 0x, 0x, [Axl:l 117
o) [fz+ﬁf£2[£Ax2 40
0x, 0x,

All the functions and the partial derivatives are evaluated a x,, and x,,. The
2 X 2 matrix of patid derivaives is cdled theacobian matrix.

9% A
0x, 2
(4.18)
. % 4
0x; 0x,g

All of the terms in this matrix are just constants that are calculated at each
iteration.

The Ax's can be cdculaed by solving the matrix equation

o] 12] 9

where J~ 1 is the inverse of the J matrix. We will discuss matrices in more detall
in Chap. 15, but this notation is presented here to indicate how easy it is to
extend the Newton-Rgphson method to more than one variable. If there are three
unknowns, the jacobian matrix contains nine partid devivative terms. If there are
N unknowns, the jacobian marix contans N? terms.

4.3.3 False Position

This convergence technique is a combination of Newton-Raphson and interval
having. Aninitial guess T, is made, and the function&,,, is evaluated. A step is
taken in the correct direction to a new temperature T, and fr,, is evaluated. If
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firy

FIGURE 43
T False-position convergence.

fir,) has the same sign as fr,,, the solution has not been crossed and another step
is taken (redefining T, as the old T;). Stepping is continued until some tem-
perature T, is reached where f,, differs in sign from f ;. As shown in Fig. 43, a

new guess for temperature T, can be found from the geometry. From similar
triangles

L-Th _5L-T

Jeo S
Rearranging,
T, - T,
T,=T, _f-(—J—}"i( L 7 o (4.20)
(T1) To)

Generalizing, we get the recursive algorithm:

T, =T, S =T .21

" ﬁTnl _ﬁT-— 1)

Equation (4.21) is similar to Eq. (4.10), the Newton-Raphson algorithm. The
derivative is approximated numerically in Eq. (4.21).

434 Explicit Convergence Methods

For some systems of equations it is possible to guess a value of a variable x .,
and then use one of the equations to solve explicitly for a new calculated value of
the same variable, x,.. Then the calculated value and the original guess are
compared and a new guess is made.

The new guess can be simply the calculated value (this is called successive
substitution). Convergence may be very slow because of (1) a very slow rate of
approach of x.y, tO Xgyep. O (2) an oscillation of x,,, back and forth around
Xguen - The loop can even diverge.

Therefore a convergence factor § can be used to speed up or slow down the
rate at which x_,,,, is permitted to change from iteration to iteration.

(xguess)new = (xgueu)old + ﬁ[xulu - (xguens)old] (422)



102  COMPUTER SIMULATION

Mate that letting § = 1 corresponds to successive substitution. This method is
itlustrated in the following example.

Example 4.2, A countercurrent heat exchanger is an important example of a system
described by equations that are usually solved iteratively. Figure 4.4 shows the
system. The problem is to find the steadystate outlet temperatures of the oil, Ty,
and cooling water, Tg,, and the heat transfer rate O, given the inlet temperatures,
flow rates, and heat transfer coefficient and area. The steadystate equations for heat
transfer are

Q = UAAT) 1 = (120879XAT) 0 (4.23)
@ = (T0,000)(0.5)250 — Tj,;) (4.24)

Q = (170.560X8.33T%5 — 80) (4.25)
(250 — Tpp} — (Tyy — 80)
250 — T,
n(F=)

We have four equations and four variables: @, (AT),,, ., Ty,, and T;. The iterative
procedure is:

ATy =

(4.26)

1. Guess a value for the oil outlet temperature T (which must be greater than
80°F, lor physical reasons). :

2. Calculate @, from Eq. (4.24).

3. Calculate T, from Eq. (4.25), using @, .

4, Calculate the log-mean-temperature driving force (AT, from Eq. (4.26).

5. Calculate a new heat transfer rate @, from Eq. (4.23).

6. Substitute the vaiue of @, into Eq. (4.24) and calculate & TS5,

7. Compare TEY and THY.

8. Reguess TH™ using Eq. (4.22).

Cooling water

1705 gom
' 80°F
Hot of Cooler .
.—& A=8791? i
1 U =120 Bru/h 112 °F
70,000 T
250°F

¢, = 0.5 Blufly, °F
TC}

FIGURE 44

Countercurrent heat exchanger.
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New guess
Actual 1
function 3
xf _
= I 457 line: x°ME = xEuss
k]
» -
| X1 | straight ling
|
| |
| |
| |
| i
|
0 | X1 1%2 FIGURE 45
0 xBuess Wegstein method.
I
435 Wegstein

An alternative to using the “proportional” correction factor discussed in the pre-
vious section is to use two sets of *guessed” and “calculated™ values to construct
a straight line relationship and extrapolate this line to the solution. Figure 4.5
shows the method graphically.

Two values of x8*** are made: x4 and x§. The corresponding two values of
x* are calculated: x§ and x5. The equation of a straight line joining these two
points is

X = mxEUet 4 b (4.27)
where
X = X
- 4.28
" x4 — xf ( )
W . |
b= x§ x5 — x1 x5 (4.29)

x§ - x§
Now, to calculate a new guess x§, we want to find where this straight line inter-
sects the 45° line (where x#° = x*"° = x4),
x§ =mx} +b
Solving for x§ gives
x§ x5 — xix4

= 4.30
R S (4.30)

4.3.6 Muller Method

The Newton-Raphson method uses a linear equation (straight line) to estimate
the solution. The Muller method uses a quadratic equation to estimate the solu-
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fix)k
Actual function
H
Quadratic
filF—————— \\/equalion
hY
\\
) IR JP S Y S,
- \
| \\gw=ao tayx +agx?
"'New BuEss = ,\‘4I \
- |
N L)
fi | |
| |
I |
i | i »-
X X Y3 X
FIGURE 4.6
Muller method.

tion. The idea is illustrated in Fig. 4.6. Three values of the unknown x variable
are guessed: x,, x;, and x,. The function is evaluated at these three values of x,
giving {1, f3, and f; . A quadratic curve is drawn through these three points.

Gy = Qo + Ay X + Gy X2 4.31)

Then the equation g, = 0 is solved for the two roots, and the appropriate one is
selected for the next guess of x {x,). In Fig. 4.6 the appropriate root is the one
between x, and x,. :

The Muller method converges more quickly than the Newton-Raphson
method when the functions have more curvature. However, it is more complex to
program and more susceptible to numerical divergence problems.

The iterative algorithm is (Wang and Henke, Hydro. Proc., Vol. 45, 1966,
page 155)

Xy = Xgoy + (Xnm1 — Xe-2) 4, (4.32)
forn=4,5,6,...until|f,,| <& where

dy = X3~ X2 (4.33)
Xz — X

—2fo-,(1 +d,_4)
d, =
b + ‘\/bz - 4fn—1 dn—l(l + dll—l)c

b=fo-slde ) —fom2(l +dp ) +f (1 +24d, ) (4.35)

c=f;u—3 du-l ‘_‘j;u—z{.1+du—l)+f;l—1 (4‘36)

(4.34)




NUMERICAL METHODS 103

44 NUMERICAL INTEGRATION
OF ORDINARY DIFFERENTIAL EQUATIONS

As discussed in the introduction to this chapter, the solution of ordinary differen-
tial equations (ODEs) on a digital computer involves numerical integration. We
will present several of the simplest and most popular numerical-integration algo-
rithms. In Sec. 4.4.1 we will discuss explicit methods and in Sec. 4.4.2 we will
briefly describe implicit algorithms. The differences between the two types and
their advantages and disadvantages will be discussed.

The problems of accuracy, numerical stability, and speed of any numerical
integration method must be kept in mind when solving ODEs. If the numerical
integration step size is not kept small enough, two things can happen: (1) the
calculated solution is not accurate enough, or (2) the calculations may “blow up,”
indicating numerical instability (values of variables swinging wildly from step to
step and variables calculated to have unreal values; ¢.g., mole fractions becoming
negative or greater than one). Of course as the step size is made smaller, the
computer time it takes to solve the problem increases. Computer time also
increases as the number of differential equations increases. For some algorithms
the increase is linear with the number (N) of ODEs. In other algorithms the
increase in computer time is proportional to a higher power of N. All of these
aspects must be balanced in selecting an algorithm.

Let me make my own personal preference clear from the outset. I
have solved literally hundreds of systems of ODEs for chemical engineet-
ing systems over my 30 years of experience, and I have found only one or
two situations where the plain old simple-minded first-order Euler algorithm
was not the best choice for the problem. We will show some comparisons
of different types of algorithms on different problems in this chapter and
the next.

We need to study the numerical integration of only first-order CDEs. Any
higher-order equations, say with Nth-order derivatives, can be reduced to N first-
order QDEs. For example, suppos¢ we have a third-order ODE:

d3x d®x dx

F+ﬂzﬁ+ala’+ﬂox=blm (4.37)
If we define the new variables
dx d*x
X=X Xy = @ X3 = s (4.38)

Eq. (4.37) becdmes

dx,
+ a3 Xy + a4y X, +ﬂox1 = blm

de
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Thus we have three first-order ODEs to solve:

dx

5o (4.39)
dx

= (4.40)
d

f= —83%3 — Gy X3 — @p X + by m (4.41)

44.1 Explicit Numerical Integration Algorithms

Explicit algorithms involve explicit calculation of derivatives and stepping out in
time, with no iteration. Two popular methods that are self-starting and easy to
use are described below: Euler and fourth-order Runge-Kutta. There are literally
hundreds of other algorithms. Many are quite complex, difficult to program and
debug and often quite incfficient for realistic practical chemical engineering prob-
lems.

A. EULER ALGORITHM. Thc simplest possible numerical-integration scheme
(and the most useful) is Euler (pronounced “oiler™), illustrated in Fig. 4.7. Assume
we wish to solve the ODE

dx
— = f(,_ Pt {4.42)
de

where fi, , is, in general, a nonlinear function. We need to know where we are
starting from, i.e., we need a known initial condition for x. Usually this is at time
equal zero,

Xy = X at t=90 {4.43)

Now if we move forward in time by a small step At to t = t; = At, we can get an
estimate of the new value of x at t = At, x,,, from a linear extrapolation using
the initial time rate of change of x (the derivative of x at t = ). The new value of
x (x,) is approximately equal to the old value of x (x;} plus the product of the

Initial step (n + l}st step

-

-

L

FIGURE 4.7

Graphical rapresentation of Euler method.
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derivative of x times the step size.

dx
Xean = Xyoy + (E) i At (4.44)
xl = xﬂ +j-(x0. W At (4.45)

If the step size (the integration interval) is small enough, this estimate of x, will
be very close to the correct value.
To step out another At to t = ¢, = 2 Az, we estimate x; ap = X from

dx
oo =X G ) (446
=5 .
Xy = X3 +ji-"1.ll) At
Generalizing to the (n + 1)st step in time,

dx

Xyp1 = Xp F fizp 19 AL =Xa + (-*) At (4.47)
4t / v 1)

fooy =1, + At (4.48)

Euler integration is extremely simple to program, as will be illustrated in
Example 4.3. This simplicity is retained, even as the number of ODEs increases
and as the derivative functions become more complex and nonlinear.

Tf we have two simultaneous, coupled ODEs to numerically integrate

% =fin1, 22,0 %_z_ = fate1, %21 (4.49)

the Euler integration algorithms would be
X1, n+1 = X1p + A1 (210, x20,10) (4.50)
Xz me1 = X2n + A f200 30000 (4.51)

Notice that only one derivative evaluation is required per ODE at each point in
time. If we had a set of N ordinary differential equations, we would have N
equations like Egs. (4.50) and {4.51).

Example 4.3. Suppose we have a system that is described by the ODE

=_ {4.52)
T == _— .

dr
with x = 0 at ¢ = 0. For the moment lct the parameter 7 {the time constant) be equal
to 1. A FORTRAN digital computer program using Euler is given in Table 4.3,
together with output results. An integration step size (DELTA) of 0.05 is used.
Figure 4.8 compares the computed values of x for different step sizes. The analytical
solution (s¢¢ Chap. 6) of Eg. (4.52) is also shown, to indicate the accuracy of the
method.

Xp=1—¢" @.53)
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TABLE 4.3
First-order explicit Enler integration

Qaaa

X=0.
T=0.

DELTA=0.05

ODE 1§
INITIAL CONDITIONS:

WRITE(8,1)
1 FORMAT(®
100-XDOT=1. - X
WRITE(6,2)T X, XDOT
2 FORMAT(3X,3F8.4)
X=X+XDOT+DELTA
T=T+DELTA
[F{T.LE.2.}GQ TO 100

STOP
END

TIME
0.0000
0.0500
0.1600
0.1500
0.2000
0.2500
0.3000
0.3500
0.4000
0.4500
0.5000
0.5500
0.6000
0.6500
0.7000
0.7500
0.8000
0.8500
0.9000
0.9500
1.0000

Fairly small steps must be taken (<0.1) if an accurate dynamic curve of Xy 18
desired. Fairly large steps can be taken, but the solution is not accurate. Howevet, if
the step size is made bigger than 2, the solution goes numerically unstable. The
physical system or process is not unstable. What is unstable is the numerical integra-
tion algorithm at this step size for the ODE given in Eq. (4.52). The Euler algorithm
has the property that if the steps are made small enough to achieve reasonable

X
0.000¢
0.0500
0.0975
0.1426
0.1855
0.2262
0.2649
0.3017
0.3366
0.3698
0.4013
0.4312
0.4596
0.4867
0.5123
0.5387
0.65599
0.5819
0.6028
0.6226
0.6415

XDOT =1-X

TIME

XpoT
1.0000
0.9500
0.9025
0.8574
0.8145
0.7738
(.7351
0.6983
0.6634
0.6302
0.5987
0.5688
0.5404
0.5133
0.4877
0.4633
0.4401
0.4181
0.3972
0.3774
0.3585

X

Results

XDOT")

TIME
1.0500
1.1000
1.1500
1.2000
1.2500
1.3000
1.3500
1.4000
1.4500
1.5000
1.5500
1,6000
1.6500
1.7000
1.7500
1.8000
1.8500
1.9000
1.9500
2.0000

X
0.6594
0.6765
0.6926
0.7080
0.7226
0.7365
0.7497
0.7622
0.7741
0.7854
0.7961
0.8063
0.8160
0.8252
0.8339
0.8422
0.8501
0.8576
0.8647
0.8715

X=0 AT T =0

XDoT
(.3406
0.3235
0.3074
0.2920
0.2774
0.2635
0.2503
0.2378
0.2259
0.2146
0.2039
0.1937
0.1840
0.1748
0.1661
0.1578
0.1499
0.1424
0.1353
0.1285

accuracy (four or five significant figures), the solution is stable,

These step sizes scale directly with the time constant ¢. If r were 10, we could
take steps that were 10 times bigger. So the maximum stable step size for the Euler

integration is twice the time constant.
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FIGURE 43
Effect of integration step size with Euler integration.

B. RUNGE-KUTTA (FOURTH-ORDER). The fourth-order Runge-Kutta algo-
rithm is widely used in chemical engineering. For the ODE given in Eq. (4.42) the

Runge-Kutta algorithm is
ky = At firo 10
ky = At f(x..+-}h. tn+ 4 AR
ky = At fix, + 4k, 0+ 4 A0)
ko = At fixy vz, tavan
Xpiy =Xy + $ky + 2k; + 2Ky + ko)
For numerically integrating two first-order ODEs

dx,

dt = fl{x;. 2.1

dx; _

dt fztn.xz.rl

(4.54)
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with fourth-order Runge-Kutta, four &'s are evaluated for each ODE.

kit = At £l xea. 0

k12 = Ath[xnl. 2, ta}

K2y = AL f1 (x4 4h11. 5a2 + $h12. tn+ 340
kyy = At frx., +4k11, xn2 + k12, tn+ LAY
k31 = At fien +4ka1, ¥a2+ 2h22. o+ 141)
ka2 = Al fog + ah21, 202+ 122,10+ 280
kd.l = Atfl{x..; +kai. xn2 +kaz, te+ A1)

Kz = AL fren +kat, sz +hoz, 80

Then the new values of x; and x, are calculated:
Xye1,1 = Xpy 4 $k7y + 2k3y + 2k30 + k) {4.55)
Xnw1,2 = Xpz + &lkys + 2kyp + 2k5; + k) - {4.56)

Table 4.4 gives a computer program and results for the ODE of Eq. (4.52) using
fourth-order Runge-Kutta with a step size of 0.2. Figure 4.9 shows the effcct of
the integration step size on the computed values of x. Three-significant-figure
accuracy is obtained for Ar = 0.8. The maximuin stable At is 2.7.

At = (18
S
e
. g e =
Analytical T T
solution T -'-"'-'—--.—.o
/O:" o —___‘-o-—"'-
"
P - o .—..--""'--—-
_-_——ﬂ'-‘.-"
(Athps = 2.7
g——-—————————--—o—-—————
-
H‘h
“'-
\\'"‘"--....
~
"‘\-‘- :
- | | | t 1 ?\‘\
1 2 k] 9 5 6 |
Time :

FIGURE 4%
Effect of integration step size with fourth-order Runge-Kutta integratian.
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TABLE 4.4
Runge-Kutta integration algorithm

c
C ODE 18 XpOT =1 - X
C INITIAL CONDITIONS: X=0 AT T=10
C
REAL K1,K2,K3,K4 .

C USE FUNCTION STATEMENT FOR DERIVATIVE EVALUATION -

DF(XX)=DELTA+(1.-XX)
DELTA=0.2
T=0,
X=={.
WRITE(6,1)
1 FORMAT{’ TIME X K1 K2 K3 K4m

C EVALUATE FOUR K VALUES

100 K1=DF(X)
K2=DF(X+K1/2.)
K3=DF({X+X2/2.)
K4=DF(X+K3)

WRITE(6,2) T,X,K1,K2,K3 K4
2 FORMAT(3X,6F8.4)

C INTEGRATE ALA RUNGE-KUTTA
X=X+{K1+2.«K2+2.+K3+KA}/6.
T=T+DELTA
IF(T.LE.2.01)GO TO 100
STOP
END

Resuliz

TIME X Kl K2 K3 K4
0.0000 0.0000 ©.2000 0.1800 0.1820 0.1636
0.2000 0.1313 0.1637 0.1474 0.1480 0.1339
0.4000 0.3297 0.1341 0.1207 9.1220 0.1087
0.6000 0.4512 0.1098 0.0588 0.0999 0.0898
0.8000 0.5507 0.0899 0.0809 0.0818 0.0735
1.0000 0.6321 0.0736 0.0662 0.0670 0.0602
1.2000 0.6988 0.0602 0.0542 0.0548 0.0493
1.4000 0.7534 0.0493 0.0444 0.0449 0.0403
1.6000 0.7981 0.0404 0.0383 0.0367 0.0330
1.8000 0.8347 0.0331 0.0298 0.0301 0.0270
2.0000 0.8647 0.0271 0.0244 0.0246 0.0221

m

Notice that four derivative evaluations are required per ODE at each time
step. Thus the computer time required to run Euler with a step size of 0.05
would be about the same as the time required to run Runge-Kutta with a step

size of 0.2.

We can draw some very important conclusions about the two algorithms

from the numerical results obtained in the sample example considered above:

1. If an accurate integration is required, the fourth-order Runge-Kutta is
superior to Euler. For the same computing time (with the step size used in
Runge-Kutta four times that used in Euler) the Runge-Kutta is more accurate.

2. If accuracy is not required for the particular ODE being integrated, Euler is
superior to Runge-Kutta. Euler is stable for step sizes that are almost as large



112 COMPUTER SIMULATION

as those for which Runge-Kutta is stable. Since Runge-Kutta requires four
derivative evaluations compared with only one for Euler, the Euler algorithm
will run almost four times as fast,

You may wonder why we would ever be satisfied with anything less than a
very accurate integration. The ODEs that make up the mathematical models of
most practical chemical engineering systems usually represent a mixture of fast
dynamics and slow dynamics. For example, in a distillation column the liguid
flow or hydraulic dynamic response occurs fairly rapidly, of the order of a few
seconds per tray. The composition dynamics, the rate of change of liquid mole
fractions on the trays, are usually much slower—minutes or even hours for
columns with many trays. Systems with this mixture of fast and slow ODEs are
catled stiff systems.

If accurate integration is specified for all the ODEs, the fast ones will
require a small step size, much smaller than would be required for the slow
ODEs. Therefore it is often quite acceptable to sacrifice accuracy on the fast
ODEs and run at a step size for which the fast ODEs are still stable and the
slow ODEs are quite accurate. This is illustrated in Fig. 4.10. Since the process
is often dominated by the slow ODEs, the inaccuracy of the rapidly changing
variables has little effect on the accuracy of the slowly changing variables.

Therefore my experience has been that, for most of the complex systems
that chemical engineers have to deal with, a simple Euler integration is just as
good as, if not better than, the more complex fourth-order Runge-Kutta,

One final practical tip about numerical integration. Many digital simulation
experts advocate the use of variable step-size¢ algorithms. The notion is that small
steps must be taken while the process is changing rapidly, but big steps can be
taken when variables are changing slowly. In terms of accuracy this is true. If,
however, the fastest ODE is running at its numerical stability limit, the step size
cannot be increased no matter how siowly other variables are changing. And of
course this constant checking and readjusting of step size chews up additional
computer time.

L] Integrating near stability
] limit for &r

xll'-

FIGURE 4.10
: Responses of fast and slow ODEs.
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Therefore my recommended technique is to start with a very small step sizc
to get the program debugged and running. Then make a few quick empirical tests
m which you keep doubling the step size. Check the accuracy of successive runs
and continue increasing the step size until you find the biggest At that gives
sufficiently accurate answers and is stable.

442 Implicit Methods

The explicit methods considered in the previous section involved derivative
evaluations, followed by cxplicit calculation of new values for variables at the
next point in time. As the name implies, implicit integration methods use algo-
rithms that result in implicit equations that must be solved for the new values at
the next time step. A single-ODE example illustrates the idea.

The first-order implicit Euler algorithm is

dx '
ey = = At 4.5
et .xﬂ * (dt)[xnﬂ.t-ﬂl . ( ?)

Compare this carefully with the explicit algorithm given in Eq. (4.47). The deriv-
ative is evaluated at the next step in time where we do nol know the variable
X,1y- Thus, the unknown x,,, appears on both sides of the equation. Consider
the simple ODE

dx
2 _o1-
dt *
The implicit Euler algorithm is
x,|+1 = x" + (d_x) AI
Ly . (4.58)

Xgr1 =X, t+ (1 - xn+1) At
Solving for the unknown x,, ; gives

x, + At

171 Ar (4.59)

Xnkl =

The main advantage of the implicit algorithms is that they do not become
numerically unstable. Very large step sizes can be taken without having to worry
about the instability problems that plague the explicit methods. Thus, the implicit
methods are very useful for stiff systems.

Equation (4.58) can be solved easily for the unknown x,.,,;. However,
suppose we have a large number (N} of ODEs (0 numerically integrate. In
general, all of the N derivatives depend on all the variables, so we end up with N
simultaneous (usually nonlinear) algebraic equations that must be solved at each
point in time for the N unknown values of the variables at the next time step.
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Consider the set of N linear ODEs

Xy 4y iz @13 1 iy || ¥

4 X5 @y Gy o || xy
= Xz | =| @ Xa 4.60
dt (4.60)
Xn . T L |
dx
= = Ax
FAil-

where x is a vector of variables and 4 is a square matrix of constants. Applying
the implicit Euler algorithm to these equations gives

Xpeg = Xy + [A'EIH—l At] (4.61)
Solving for x,, , gives

Yar1=[—-4 ﬂi‘]_ll‘?m (4.62)

where the —1 superscript on the term in brackets means “matrix inverse.” We
will deal with matrices and vectors in more detail in Chap. 15 when we study
multivariable systems. For the moment the point that I am trying to make is that
the use of implicit algorithms involves calculating the inverse of a matrix (usually
at each point in time because the QDEs are usually not linear). This calculation
can require a fair amount of computer time, particularly as the number of ODEs
increases. Many chemical engineering models contain hundreds of QDEs. This
means that the inverses of very large matrices must be calculated.

Thus the implicit methods become slower and slower as the number of
ODESs increases, despite the fact that large step sizes can be taken. Therefore
plain old explicit Euler turns out to run faster than the implicit methods on many
realistically large problems, unless the stiffness of the system is very, very severe.
We will talk more about this in Chap. 5.

The implicit methods are much more complicated to program and to
debug. Fortunately a number of faitly easy-to-use packages are available:
DGEAR, LSODE, etc. The review paper by Byrne and Hindmarsh (Journal of
Computational Physics, Vol. 70, No. 1, May 1987) gives a good summary of the
history and selection of stiff-system implicit integration algorithms.

PROBLEMS

4.1. Write a BUBPT subroutine that uses false-position convergence.

4.2. Compare convergence times, using interval halving, Newton-Raphson, and false posi-
tion, for an ideal, four-component, vapor-liquid eguilibrium system. The pure com-
ponent vapor pressures are:
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Vapar pressure of pure component P (psia)

Component st 150°F at 200°F
1 25 200

2 14.7 60

3 4 14.7

4 0.5 5

Calculate the correct temperature and vapor compositions for a liquid at 75
psia with a composition x, = 0.10, x; = 0.54, x, = 0.30,and x, = 0.06.

4.3, The design of ejectors requires trial and error to find the “motive™ pressure P, that,
with a fixed motive flow rate of gas W,,, will suck a design flow rate W, of suction gas
from a suction pressure of P, and discharge against a higher pressure P,,.

The motive gas is at 300°F and has a molecular weight of 60. Its flow rate is
5000 1b,./h. The suction gas is at 400°F and 150 psia and has a molecular weight of
50. A suction flow of 7000 lb,_ /h must be ejected into a discharge pressure of 160 psia.

Assume perfect gases and frictionless, reversible, adiabatic operation of the jet;
ie., the expansions and contractions into and out of the throat are isentropic. The
ratio of C, to C, for all gases is 1.2 and C, heat capacities are constant and equal to
0.6 Btu/lb,°R.

Find the motive pressure P,, required and the areas in the throat on the motive
and suction sides, 4, and A,.

44. Find the optimum liquid concentration of the propane-isobutane mixture in an auto-
refrigerated alkylation reactor. The exothermic heat @ (10° Btu/h) of the alkylation
reaction is removed by vaporization of the liquid in the reactor. The vapor is com-
pressed, condensed, and flashed back into the reactor through a pressure letdown
valve. The reactor must operate at 50°F, and the compressed vapors must be con-
densed at 110°F.

Find the liquid mole fraction x of propane that minimizes the compressor
horsepower requirements for a given Q5. Assume the compressor adiabatic efficiency
is 100 percent.



CHAPTER |

S

SIMULATION
EXAMPLES

Now that we understand some of the numerical-analysis tools, let us illustrate
their application to some chemical engineering systems. We will start with simple
examples and work our way up to more realistic systems that involve many
simultaneous ordinary differential and nonlinear algebraic equations.

In all the programs presented the emphasis is not on programming or com-
putational efficiency but on casy translation of the equations and the solution
logic into a workable and understandable FORTRAN program.

51 GRAVITY-FLOW TANK

The gravity-flow tank that we considered in Chap. | and later in Example 2.9
makes a nice simple system to start our simulation examples. The force balance
on the oullet line gave us the nonlinear ODE

do_g, Keg s

dt L PA,
To describe the system completely a total conlinuily cquation on the liquid in the
tank is also needed.

(5.1)

dh
ATE=F0_F {5.2)

We have to pick a specific numerical case to solve these two coupled ordinary
differential equations. Equation (5.1) is nonlinear because of the v? term. Physical
dimensions, parameter values, and steadystate flow rate and liquid height are
given in Table 5.1.

116
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TABLE 5.1
Gravity-flow tank data

Pipe:
ID=3ft Area=706ft* Length=23000"ft
Tank:
m=12f Area = 113 fi? Height = 7 ft
Steadystate values:
F =351 ft3/s (15,700 gpm)
=472 1t
=497 It
Parameters
Reynolds number = 1,380,000
Friction factor = 0.0123
K, =281 x 1072 IbAfts)* ft

Using the relationship F = vA4, and substituting the numerical values of
parameters into Egs. {(5.1) and (3.2) give

dv

= = 00107 — 0.002050 (5.3)
% = 0311 — 0.0624v (5.4)

Table 5.2 gives a FORTRAN program that numerically integrates the two
ODEs describing this system for two different initial conditions of fiow and liquid
level in the tank: (1) when the initial flow rate is 50 percent of the design rate, and
(2) when the initial flow rate is 67 percent of the design flow rate. At time equal
zero, the flow rate into the tank is increased to the maximum design flow rate of
35.1 ft3/s.

1 ! 1 1 T

Starting from 50% maximum flow

Starting from 67% maximum fow

= - — = — Height of tank

- ol

1 L 1 !
0 200 400 600 800 1000 1200 peURE s

Process time, s Gravity-flow 1ank,
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TABLE 5.2
Gravity-flow tank simalation

(TIME 1S IN SECONDS)

C
C .
C TWO CASES ARE RUN. AT TIME EQUAL ZERO THE FEED FLOW RATE IS
c INCRFASED TO 100% OF THE DESIGN FLOW RATE (15,700 GEM).
c CASE NO.1 STARTS FROM 87% OF DESIGN FLOW RATE
C CASE NO.2 STARTS FROM 50% OF DESIGN FLOW RATE
DATA V1,H1/3.40,2.05/
DATA V2,H2/2.50,1.2/
DO 200 N=1,2
IF(N.EQ.1)THEN
V=Vl
II=H1
ELSE
V=V2
H=H2
ENDIF
TIME=0.
DELTA=I.
TPRINT=0.
WRITE(8,1)V,H
1 FORMAT (’ INITIAL CONDITIONS: V = 'F8.3,' H =’ F8.3)

WRITE(6,2)

2 FORMAT(" TIME v H")
C
C EVALUATE DERIVATIVES
C

100 VDOT=0.0107+H-0.00205+V ++2
HDPOT=0.311-0.0624+V
IF{TIME.LT.TPRINT)GO TO 10
WRITE(6,3)TIME,V,H

3 FORMAT(3X,3F8.2)
TPRIN'[=TPRINT+20.
C
C INTEGRATE USING EULER

The explicit first-order Euler algorithm is used. The variables that we are
solving for as functions of time are ¥ and H. The right-hand sides of Egs. (5.3)
and (5.4) are the derivative functions. These are called VDOT and HDOT in the
program. At the nth step in time

(VDOT), = 0.0107(H), — 0.00205[(V),]? (5.5)
(HDOT), = 0.311 — 0.0624(1), (5.6)

The new values of H and ¥ at the (n + 1)st step are calculated from the Euler
algorithm with a step size of DELTA,

(H)+ 1 = (H), + DELTA(HDOT), (5.7)
(¥)as1 = (V)a + DELTA(VDOT), (5.8)

Results are plotted in Fig. 5.1. Notice that the tank can overflow if the
inflow rate is changed from 50 to 100 percent of design. So even though the level




TABLE 5.2 (continued)

o

10 V=V+VDOT+DELTA
H=H+HDOT+DELTA
TIME=TIME4+DELTA
IF{TIME.LE.200.}GO TO 100

200 CONTINUE
STOP
END

TIME v
0.0¢ 3.40
20,00 3.55
40.00 3.99
60.00 4.54
80.00 5.02
10000 5.33
120.00 5.46
140,00 5.44
180.00 5.33
180.00 5.19
200.00 5.05

Results
INITIAL CONDITIONS: V= 3400 H = 2.050

H
2.05
3.98
5.82
6.44
6.69
6.45
5.92
5.32
4.81
4.46
4.29
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Liquid level near top of tank.

INITIAL CONDITIONS: V = 2500 H= 1.200

TIME v

0.00 2.50
2000 2.79
40.00 3.54
60.00 4.43
80.00 5.19
100.00 5.64
120.00 5.79
140.00 5.72
160.00 5.51
180.00 5.27
20000 5.05

H
1.20
4.19
6.51
7.78
8.00
7.44
6.50
5.52
4.72
4.20
3.98

Liquid level exceeds tank height!

L]

in the tank at the design flow rate would be lower than the height of the tank
(7 ft), the dynamic change in the height exceeds 7 ft. This is due to the inertia of

the mass of liquid in the pipe.

52 THREE CSTRs IN SERIES
The equations describing the series of three isothermal CSTRs were developed in

Sec. 3.2,

dCy,
dt

dC,,
dt

dt

1

== (Cao — Car) — kCay (5.9)
1

=z (Car — Caz) — kCyy (5-10)
1

=7 (Caz — Cra) — kCay (5.11)
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TABLE 5.3
Three-isothermal CSTR (openloop)

DISTURBANCE 15 A STEF CHANGE IN FEED CONCENTRATION AT TIME
EQUAL ZERO FROM 0.8 TO 1.8 KG-MQLES OF A/CURIC METER.

TIME IS IN MINUTES.

REAL K

OO Oaoao

INITIAL CONDITIONS:
TIME=0.
CAl=04
CAZ2=0.2
CA3=0.1
CAD=1.58
¢ PARAMETER VALUES:
TAU=2.
K=0.5
DELTA=(.1
TPRINT=0.
WRITE(6,1)
1 FORMAT{" TIME €Al CA2 CA3Y)
¢ EVALUATE DERIVATIVES
100 CAIDOT={CAG-CA1}/TAU-KxCAl
CA2DOT={CA1-CAZ)/TAU-K~CA2
CASDOT=(CAZ-CA3)/TAU-K*+CA3
IF{TIME.LT.TPRINT)GO TQ 10
WRITE(6,2)TIME,CA1,CA2,CAl
2 FORMAT(3X,4F58.3)
TPRINT=TPRINT40.1
10 CA1=CA14+CAIDOTDELTA
CA2=CA24 CARDOT«DELTA
CA3=CA+CAIDOT+DELTA
TIME=TIME+DELTA
IF{TIME.LE.3.)GO TC 100
STOP
END

The initial conditions are Cyy¢) = 0.4 kg mol of component A/m?, C,5, = 0.2
kg-mol of component A/m?, and C,;, = 0.1 kg-mol of component A/m?. The
forcing function is €, 4. We will assume that at time zero C,, is set at 1.8 kg-mol
of A/m® and held constant. The parameter 7 is set equal to 2 min and the value of
kis0.5min !,

The right-hand sides of the ODEs [Eqgs. (5.9) to 5.11)] are the functions f;, ,
discussed in Sec. 4.4.1. Let us call these derivatives CAI1DOT, CA2DOT, and
CA3DOT. At the nth step in time,

1 .

(CAIDOT), = - [(Caohs — (Car)ud — K{(Ca)a (5.12)
1

(CAZDOT).. = ; [Caihn — (CAZ)n] - k(CAZ)n {3.13)
1

(CAIDOT), =~ [{Cazh — (Cash] — KCas (5.14)
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TABLE 5.3 (continued)

Reanlts
TIME Al CA2 CA3
0.000 0.400 0.200 0.100
0.100 0.450 0.200 0.100
0.200 0.495 0.203 0.100
0.300 0.536 0,207 0.100
0.400 0.572 0.213 0.100
0.500 0.605 0.220 0.1M
0.600 0.634 0.229 0.102
0.700 0.661 0,237 90.103
0.800 635 0.247 0,105
0.500 U704 (1L2R6  0.107
1.000 0.726 ©.266 0.109
1.160 0.743 0.276 0.111
1.200 D.759 0.285 0.114
1.300 0.778 ©0.295 0.117
1.400 0.786 0.304 0.120
1.500 0.767 0.313 (.123
1.600 0.807 0321 0326
1.700 0.817 0.330 0.130
1.800 0.825 0.337 0.133
1.000 0832 0345 06.137
2000 G.BE30 0352 0.140
2,100 0.845 0339 0144
2.200 0.85]1 0.365 0.147
2,300 0.856 0.371 0.151
2.400 0.860 0.377 90.154
2.500 0.864 0382 0,158
2.600 0.868 0337 0.161
2.700 0.871 £.392 0164
2,800 0.874 0.396 (.168
2,400 0.876 0400 Q171

Then to step to the next point in time, using Euler integration with a step size
DELTA,

(CA1),,, = (CAl), + DELTA(CAIDOT), {5.15)
(CA2),., = (CA2), + DELTA(CA2DOT), (5.16)
(CA3),., = (CA3), + DELTA(CA3DOT), (5.17)

Converting these equations into a FORTRAN program is simple, as shown in
Table 5.3. Results show that the concentrations in the system increase gradually
with time after the step increase in the inlet concentration Cyo.

Now let us make life a little more interesting. The system considered above
is an “openloop” system, i.e., no feedback control is used. If we add a feedback
controller, we have a “closedloop” system. The controller looks at the product
concentration leaving the third tank C,; and makes adjustments in the inlet
concentration to the first reactor C,, in order to keep C,; near its desired set-
point value C%}. The variable C,p is a disturbance concentration and the vari-
able C,, is a manipulated concentration that is changed by the controller. We
agssume that

Cao = Cam + Cap (5.18)
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(Dyoro, | Tank | At | Tank | a2 | Tank Cas
Chp ™o L 2
Cam
Feedback
corntraller
(u)
M Qutlet flow
Tnlet ] Drocess
flow
Feedback
controller
Reactant
rich stream ;f
Setpoint CY
{b}
FIGURE 5.2

Closedloop three-CSTR process. (a) Idealized system (b) actual system.

This is an idealization of the real physical system in which the control signal from
the controller would actually move the position of a control valve that would
bleed a stream with a high concentration of reactant A into the feed stream to the
process, See Fig, 5.2,

The feedback controller has proportional and integral action. Tt changes

Cau based on the magnitude of the error (the difference between the setpoint and
C 1) and the integral of this error.

Care =08 + K,(E + ti _[E(,, dt) (5.19)
i

where E = O35 — Cas
K, = feedback controller gain (dimensionless)
1, = feedback controller integral time constant or reset time (minutes)

The 0.8 term in Eq. (5.19) is the bias value of the controller, i.., the value of C,
at time equal zero, Numerical values of K, = 30 and 1; = 5 min are used in the 5
program given in Table 5.4. |

To simulate Eq. (5.19) we need to numerically integrate the error to get the
integral term.




TABLE 54
Three-isothermal CSTR (closedloop)

( WITH PROPORTIONAL FEEDBACK CONTROLLER)

DISTURBANCE {CAD) IS A STEF CHANGE AT TIME EQUAL ZERO
FROM 0 TO 0.2.
TIME IS IN MINUTES.

REAL K.KC

Hnaad

aa

INITIAL CONDITIONS:
TIME=0.
CAl—0.4
CA2=0.2
CAl3=0.1
CA3JSET=0.1
ERINT=0:
{ DISTURBANCE
CAD=0D.2
¢ PARAMETER VALUES:
TAU=2,
K=0.5
KC=30.
TAUI=b.
DELTA=0.01
TPRINT=0,
WRITE(8,1)
1 FORMAT(’ TIME CAl CAZ CA3 CAM?Y)
100 CONTINUE
C FEEDBACK CONTROLLER
E=CA3SET-CA3
CAM=084+KC*(E+ERINT/TAUI)
CAG=CAM4CAD
C EVALUATE DERIVATIVES
CAIDOT={CA0-CA1)/TAU.K+CA}
CAZDOT=({CAl-CA2)/TAU-K»CA2
CA3IDOT—(CA2-CA3)/TAU-K«CA3
I{TIME.LT.TPRINT)}GCO TO 10
WRITE(8,2) TIME,CA1,CA2,CA3,CAM
2 FORMAT(3X,5F8.4)
TPRINT=TPRINT+0.5
10 CAL=CA14+CAIDOT+DELTA
CA2=CA2+CADOTDELTA
CA3=CA3+CASDOT«DELTA
ERINT=ERINT+E+«DELTA
TIME=TIME+DELTA
IF{TIME.LE.10.)GO TO 100

STCP

- END
Resalts

TIME CAl CA2 CA3 CAM TIME CAl CA2 CA3 CAM
0.0000 D.4000 0.2000 0.1000 (.8000 4.5000 0.3652 0.1961 0.1012 0.6536
0.5100 0.4354 0.2046 0.1004 0.7388 5.0000 0.4112 0.1984 0.1001 0.6830
1.0100 0.4564 0.2127 0.1020 0.7373 5.5000 0.4235 0.2026 0.1002 0.6810
1.5100 0.4529 0.2188 0.1044 0.6549 8.0000 0.4275 0.2068 0.1011 0.6521
20100 0.4339 0.2200 0.1066 0.5728 6.3001 0©.4227 0.2092 0.1023 0.6110
25100 0.40%0 0.2182 0.1076 0.5208 7.0001 0.4119 0.2090 0.1032 0.5748
3.0100 0.3882 0.2093 0.1071 0.5134 75001 0.30099 (0.2065 0.1035 0.5566
35100 D.ATSE 0.2021 0.1053 0.5470 8.0001 0.3915 9.2029 0.1030 0.56065
4.0100 0.3823 0.1972 0.1031 0.6023 8.5001 0.3891 0.1997 0.1021 0.5818
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FIGURE 5.3

Plotted results for the three-CSTR example,

We define ERINT as the integral { E dt. The derivative of ERINT is just the

error E, since
J .

Therefore we have an additional ODE that comes from the ¢ontroller. This must
be solved at the same time as the three ODEs describing the process. Using BEuler
with a DELTA integration step gives

(ERINT), , = (ERINT), + DELTA(E), {5.21)

Figure 5.3 shows results for a step change in the disturbance C,,, of 0.2 at
time equal zero. An integration step size of 0.1 min is used. We will return to this
simple system later in this book to discuss the selection of values for K, and 1;,
that is, how we tune the controller. ™ N

1
i

53 NONISOTHERMAL CSTR

The jécicet’ed exéthermic CSTR discussed in Sec. 3.6 provides a good example of
the simulation of very nonlinear ODEs. Both flow rates and holdups will be
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variable. A proportional level controller manipulates the liquid leaving the tank,
F, as a linear function of the volume in the tank.

F =40 - 1048 — V) (5.22)

A second controller manipulates the flow rate of cooling water to the jacket, F;,
in direct proportion to the temperature in the reactor.

F; =499 - K.(600 - T) (5.23)

Constant holdup and perfect mixing are assumed in the cnghng_m Dis-
turbances in inlet feed flow rate F, and feed concentration C,g are step changes
at time equal zero.

The ODEs describing the system are

dv '

- Fo~F (3.29)
dVT) _AVKCx Udy ..

dTy FT—T) _UAg

&=~ v, TongT T (.27

The algebraic equations describing the system are Equations (5.22) and (5.23) and
the following:
k = ae” ERT - (5.28)

Table 5.5 gives values of parameters and steadystate conditions. The van-
ables with overscores or “bars” over them are steadystate values. Note that the
time basis used in this problem is hours. Table 5.6 gives 8 FORTRAN program
that simulates this system using Euler integration. The right-hand sides of the

TABLE 5.5
Nonisothermal CSTR parameter values
Steadystate values:
F = 40 ft*/h V=481t
&, = 0.50 th-mol Afft3 &, = 0245 1b-mal A/ft?
T = 600°R T, = 5946°R
F, =499 it*h T, = 53°R
Parameter values:
V, = 3.85ft? =708 x 101K}
E = 30,000 Btu/lb- mol R = 1.99 Bty/lt- mol °R
U = 150 Btw/h ft? °R Ay = 250 12
Tyo = 530 °R 4 = —30,000 Bu/1b- mol
C, = 0.75 Bu/lb,, °R C,; = 1.0 Bu/b_ °R
o = 50 Ib At3 py = 62.3 b /it®

K, =4 (t*/h)"R T = 600°R
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TABLE 56
Nonisothermal CSTR

C

C DISTURBANCE IS STEP CHANGE IN FEED COMPOSITION AT TIMF. ZERO

[ FROM 0.50 TO 0.55.
REAL K KC

C INITIAL CONDITIONS
CA=0.215
T=800.

TJ=594.59
V=48,
TIME=0.
VO=V=[A
VI=VsT

C PARAMETER VALUES

TI0=530.
FO=40.
TO=530.
CAD=05
KC=4.
DELTA—D0.01

TPRINT=0.

C DISTURRANCE
CA0=0.55
WRITE(6,1)

1 FORMATY{(* TIME CA T v F T FJ)
100 CONTINUE

C FEFEDNBACK CONTRQOLLERS
F1=49.9-KC«{600.-T)
F=40.-10.%{48.-V)

C REACTION RATE
K=T7.08E10+EXF({-30000./(1.99+T))
Q=1560.£250.%(T-TJ)

C EVALUATE ALL DERIVATIVES
VDOT=F0-F
VCDOT=F0+CA0-F+CA-VsK+(A
VTDOT=F0+TO-FaT+(30000.«V+K+CA-Q)/{0.75+50.)
TIDOT=FI«(TJ0-TJ1)/3.85 +Q /240,
IF{TIME.LT.TPRINT)GO TO 10
WRITE(6,2)TIME,CA, TV.F,TI,FJ

2 FORMAT(1X,7F8.3}
TPRINT=TFPRINT+0.2

10 V=¥+VDOT*DELTA
VC=VC+VCDOT+DELTA
VT=VT+VTDOT+DELTA
TI=TI4+TIDOT=DELTA
TIME=TIME+DELTA
CA=VC/V
T=VT/V
IF(TIME.LT .4.1)G0 TO 100
STOP
END

Results

TIME CA T v F T1 I
0.000 0.245 600.000 48.000 40.000 594.590 49.900
0.200 0.252 600.370 4R.000 40.000 594.822 51.379
0.410 0.256 801.138 48.000 40.000 595.222 54.453
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TABLE 5.6 {continued)

0.610 0.257 60L.R10 4R.000 40.000 595.572 57.139
0.810 0.258 602.267 48,000 40.000 595.810 58.967
1.010 0.257 602.499 48.000 40.000 595.932 59.896
1.210 0.256 602.565 48.000 40.000 595.968 60.161
1.410 0.258 602.542 4B8.000 40.000 595.957 60.070
1.610 0.256 602.450 48.000 40.000 585.830 59.B59
1.810 0.256 602.442 48.000 40.000 585.906 59.G63
2.010 0.256 602.411 48,000 40.000 595.889 59.544
2.210  0.256 602.397 48.000 40.000 595.882 59.488
2.410 0.258 602.334 45.000 40.000 5895.881 58.477
2.610 0.256 602.397 48.000 40.000 595.882 59.487
2.810 0.256 602.401 48.000 40.000 595.834 59.503
3.010 0.256 602.404 48.000 40.000 595.886 59.516
3.210 0.256 602.406 48.000 40.000 595.887 59.525
3.410 0.286 602.407 48.000 40.000 595.887 59.529
3.610 0.258 602,407 48.000 40.000 595.887 59.520
3.810 0.256 602.407 48.000 40.000 595.887 59.529
4.010 .256 602.407 48.000 40.000 555.887 59.529

i)
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FIGURE 54
Nonisothermal CSTR: +10% AC,,.
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ODEs are defined as VDOT, VCDQOT, VIDOT, and TIDOT. At each point in
time, integration gives values for V, VC, ¥T, and TJ. Then C, and T are found
by dividing VC and VT by V.

Figures 5.4 through 5.6 give results for disturbances in feed compaosition
and feed flow rate. Note that in Fig. 5.5 the controller gain has been decreased to
2.5 and a larger feed composition disturbance has been made. The response is
quite oscillatory. We will discuss the tuning of temperature controllers in this
type of system in much more detail later in this book.

54 BINARY DISTILLATION COLUMN

The digital simulation of a distillation column is fairly straightforward. The main
complication is the large number of ODEs and algcbraic equations that must be
solved. We will illustrate the procedure first with the simplified binary distillation
column for which we developed the equations in Chap. 3 (Sec. 3.11). Equimolal
overflow, constant relative volatility, and thcoretical plates have been assumed.
There are two ODEs per tray (a total continuity equation and a light component
continuity equation) and two algebraic equations per tray (a vapor-liquid phase
equilibrium relationship and a liquid-hydraulic relationship).

M,

7 =L,1— L, (5.29)
g%x_J =Lys1Xpsr + Var — Lyx, — ¥y, (5.30)
o
=t 531
ETY (o — )x, 5.31)
g=L+Eﬁ§5 (5.32)

Equation (5.32) is a simple linear relationship between the liquid holdup on a
tray, M., and the liquid flow rate leaving the tray, L,. The parameter § is the
hydraulic time constant, typically 3 to 6 seconds per tray.

Since there are many trays and most are described by Eqs. (5.29) through
(5.32), it is logical to use “dimensioned” variables and to gvalnate derivatives and
integrate using FORTRAN “DO” loops. It also makes sense to use a SUB-
ROUTINE or FUNCTION to find y,, given x,,, becaus¢ the same equation is
used over and over again.

At each instant in time we know all holdups M, and all liquid compositions
x, . Our simulation logic is:

1. Calculate vapor compositions on all trays from Eq. (5.31).
2. Calculate all liquid flow rates from Eq. (5.32).

3, Evaluate all derivatives. These are the right-hand sides of Egs. (5.29) and (5.30)
applied to all trays. These derivatives are called MDOT(N) and MXDOT(N)
in the program given in Table 5.7.

4. Integrate with Euler all ODEs and start again at step 1 above.
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TABLE &7
Binary distillation column dynamics

ASSUMPTIONS: CONSTANT RELATIVE VOLATILITY, EQUIMOLAL
OVERFLOW, THEORETICAL TRAYS, SIMPLE LIQUID TRAY
HYDRAULICS

DISTURBANCE I$ A FEED COMPOSITION CHANGE FROM 0.50 TO 0.55
AT TIME EQUAL ZERQ

aoaaaoad

DIMENSION X(20),Y(20),L(20),L0O(20),M(20)
DIMENSION MX(20),MDOT(20),MXDOT(20)
REAL L,LO,M,MD,MB,MX,MDOT,MXDOT,MDO,MO,MBO,KCD,KCB
C USE A FUNCTION STATEMENT FOR VLE
EQUIL{XX)=ALPHA+XX/(1.4+(ALPHA-1.)xXX)
C INITIAL CONDITIONS AND PARAMETER VALUES
DATA NT,NF,MDO,MBO,MO,RO,VO,F,BETA,ALPHA/20,10,100.,100.,
+ 10.,128.01,178.01,100.,0.1,2./
DATA XB,X,XD/.02,.035,.05719,.08885,.1318,.18622,.24051 ,
+ .31618,.37948,.43391,.47688,.51526,.56205,.61896,.68052,
+ .74245,.80319,.85603,.80095,.93458,.98079,.98/
DATA KCD,KCB,TAUD, TAUB,DELTA,TIME, TPRINT,ERINTD, ERINTB/
+ 1000.,1000.,5.,1.25, .005,4+0./
¢ DISTURBANCE
Z=0.55
WRITE(6,1) Z,F
1 FORMAT{7X,'Z = "F10.5, F = "F10.2)
¢ INITIAL CONDITIONS
DO 3 N=1,NT
M{N)=MO
MX(N)}=M(N)=X(N)
LO(N)=RO+F
IF(N.GT.NF) TLO(N)=RO
3 CONTINUE
WRITE(8,2)
2 FORMAT(6X, TIME XB X10 XD R \'#)
¢ TRAY LIQUID HYDRAUTICS AND VLE
100 DO 20 N=1,NT
Y(N)=EQUIL{X{N))
L{N)=LO{N)+(M(N)-MO)}/BETA
20 CONTINUE
YB=EQUIL(XR)
C TWO PI FEEDBACK CONTROLLERS
ERRB=.02-XB
ERRD=.98-XD
V=VO-KCBD #(ERRB4ERINTB/TAUB)
R=RO+KCD «(ERRD+ERINTD/TAUD)
C PERFECT LEVEL CONTROLLERS IN REFLUX DRUM AND COLUMN BASE
D=V-RK
B=L(1)-V
IF(R.LT.0.) GO TO 500
IF(V.LT.0.) GO TQ 500
IF{D.LT.0.) GO TO 500
IF{B.LT.0.) GO TO 500
¢ EVALUATE DERIVATIVES
XBDOT=(L{1)»X(1}-V+YE-B+XB)/MBO
MTOT(1)=L({2)-1{1)
MXDOT(1)=V+(YB-Y{1)}+ L{2)X(2)- L{1)*X(1)
DO 30 N=2,NF-1

FEEDBACK CONTROLLERS MANIPULATE R AND V TO CONTROL XD END XB
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TABLE 5.7 (continued)

MDOT{N)= L{N+1)- L(N)
80 MXDOT(N)=V*{¥Y(N-1)}-Y(N))+ L{N+1X(N+1)- L{N}=X(N)

C FEED PLATE
MDOT(NF)= L{NF+1)- L(NF)4F
MXDOT(NF)=V{Y(NF-1)-Y{NF))+ L(NF+1)¢X(NF+1)- L(NFpX{NF)+Fws
DO 40 N=NF+41,NT-1
MDOT(N)= L(N+1)- L(N)

40 MXDOT{M)=V+(Y{N-1}-Y(N)}+ L(N+1)}=X{N+1)- L{N)}+X{N}
MDOT(NT)=R-L(NT)
MXDOT(NT)=V=(Y(NT-1}-¥(NT}}+ReXD-L(NTpX(NT)
XDDOT=V+(Y{NT)-XI})/MNG
IF(TIME.LT.TPRINT) GO TO 50
WRITE(§,41)TIME,XB,X(10),XD,R.V

41 FORMAT(7X,F5.1,3F9.5,2F9.2)

TPRINT=TPRINT+.5
50 CONTINUE

C EVULER INTEGRATION
TIME=TIME+DELTA
XB=XB+DELTA«XBDOT
DO 60 N=1,NT
M{N)=M(N}+MDOT{N}*«DELTA
MX{N)=MX(N)+MXDOT(N)+DELTA
X(N)=MX(N)/M(N)
IF{X(N).LT.0.) GO TO 500
IF(X{N).GT.1.) GO TO 560

60 CONTINUE
XD=XD+XDNOT+DELTA
ERINTD=ERINTD+FRRD+DELTA
ERINTB=ERINTB+FRRB«DELTA
IP(TIME.LE.10.)GO TO 100
STOP

500 WRITE({8,501)
501 FORMAT{' LEVEL TQO LOW OR COMPOSITION UNREAL')

5TOP
END
Resnlts
Z= 045000 F= 100.00
TIME XB X1ig XD R v

0.0 0.02000 0.47688 0.98000 123.01 174.01
0.5 0.02014 0.51325 0.98000 128.01 173.16
1.0 002108 0.52434 0,98010 127.90 179.32
1.5 0.02218 0.53030 0.98035 127.64 181.08
2.0 002276 0.53220 0.98061 127.33 182.67
2.5 0.02268 0.53141 0.98076 127.11 183.69
3.0 0.02212 0.5287% 088077 127.02 184.10
3.5 0.02132 0.52560 0.88065 127.06 183.99
4.0 0.02051 0.52232 0.98048 127.18 183.55
4.5 0.01987 (.52108 0.98030 127.32 182.98
5.0 0.01950 0.52056 0.98019 127.41 13247
5.5 0.01939 052104 0.98014 127.44 182.13
6.0 0.01950 0.52207 0.98016 127.41 182.01
6.5 0.01972 0.52318 0.98022 127.33 1B2.07
7.0 0.00005 0.52309 0.98020 127.24 182.24
7.5 0.02012 6.52433 0.98034 127.15 18243
8.0 0.02019 0.52423 0.88036 127.09 132.56
8.5 0.02016 052382 098035 127.07 182.80
0.0 0.02007 0.52332 0.98032 127.06 182.57
9.5 0.01997 0.52290 0.98028 127.07 13247
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It is very important to note that all derivatives are evaluated using the
current values of all variables before integrating any of the ODEs. A fairly
commaon mistake is to evaluate one derivative and to integrate that ODE before
going on to the next ODE. This procedure is not correct and will lead to inaccu-
rate answers.

We will assumne constant holdups in the reflux drum M p and in the column
base Mp. Proportional-integral feedback controllers at both ends of the column
will change the reflux flow rate R and the vapor boilup ¥ to control overhead
composition xp and bottoms composition x, at setpoint values of 0.98 and 0.02
respeclively.

Table 5.7 gives the program, the initial conditions, and the printed output
results for a step change in feed composition from 0.50 to 0.55 at time equal zero.

55 MULTICOMPONENT
DISTILLATION COLUMN

The extension of the simple ideal binary system considered in the preceding
section to a nonideal multicomponent column is not difficult. The only changes
that have to be made to the basic structure of the solution algorithm are:

1. More ordinary differential equations must be added per tray. We need one per
component per tray. But this is easily programmed using doubly dimensioned
variables X(N, J), where N is the tray number and J is the component
number,

2. One energy balance per tray must be included if equimolal overflow cannot be
assumed,

3. An appropriate multicomponent bubblepoint subroutine must be used. This
may be a little more complex because of nonidealities, but as far as the main
program is concerned, the bubblepoint subroutine is provided with known
liquid compositions and a known pressure, and its job is to calculate the tem-
perature and vapor compositions.

The general model was developed in Sec. 3.12. Table 5.8 gives a faitly general
program for continuous multicomponent distiflation.

The specific column simulated is assumed to have the following equipment
configurations and conditions:

L. There is one feed plate onto which vapor feed and liquid feed are introduced.

2. Pressure is constant and known on each tray. It varies linearly up the column
from Py in the base to P, at the top (psia).

3. Coolant and steam dynamics are negligible in the condenser and reboiler.

4. Vapor and liquid products D, and D, are taken off the reflux drum and are in

equilibrium. Dynamics of the vapor space in the reflux drum and throughout
the column are negligible.
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TABLE 58
Multicomponent distillation dynamics

C

C INPUTS R, QR AND DV ARE FIXED

c
REAL MW.LO,MVBMVDMWAMV,LV,M,L,MB,MD
CHARACTER+6 NAME
COMMON NC,MW(5),DENS(5),C1(5),C2(5),C3(5),BPT(5),AVP(5),
+ BVP(5)
DIMENSION LV(50},L(50),P(50),XF(5),YF(5),DXD(5),YAV(S),
+ YY(5),HL(50),HV(50),V(50),DM(50),DXM(50,5),X M(50,5),DXB(5)
DIMENSION NAME(5),T(50),XB(5),X(50,5),Y(50,5),LO(50)
+ .XD(5),YB(5),YD(5),XX(5),MV(50),M(50)

READ COLUMN DATA
READ(5,1) NT,NF,NC,WHS,WHR,DS,DR,WLS,WLR,MVB,MVD
1 FORMAT (316,10F6.2) :
WRITE(8,300)
300 FORMAT(’ NT NF NC WHS WHR DS DR WLS WLR MVB MVD
4
WRITE(6,13) NT,NF,NC,WHS,WHR,DS,DR,WLS,WLR,MVB,MVD
13 FORMAT(1X,313,1X,8F6.2)
C READ PHYSICAL PROPERTY DATA
WRITF(6,301) _
301 FORMAT( NAME MW DENS HVAP BPT HCAPV HCAPL VP1
+ T1 VP2 T2)
DO 5 J=1,8C
READ(5,6) NAME(J),MW(3),DENS(J),HVAP,BPT(J),HCAPV HCAPL,VP1,T1,VP2
+,T2
6 FORMAT (A6,10F6.2)
WRITE(6,7) NAME(J),MW(J),DENS(J),HVAP,BPT(J),HCAPV,HCAPL,VP1,T1,
4 VP2,T2
7 FORMAT(1X,A6,dF7.2,2F7.3,4F7.1)
AVP(J)=(T1+460.)x(T2+460.)+ALOG(VP2/VP1)/{T1-T2)
BVP(J)=ALOG(VP2)-AVP(J)/(T2+460.)
C2(J) = HCAPV*MW(J)
C3(J) = HCAPL+MW(J)
5 CL(J)=HVAP«MW(1)+(C3(J)-C2(3))+BPT(J)
C READ FEED
READ(5,10) TFL,FL,(XF(J),J=1,NC)
READ{5,10) TFV FV,(YF(J),J=1,NC)
10 FORMAT (12F6.2)
WRITE(6,306)
306 FORMAT(4X,' FL TFL XF1  XF2  XF3  XF4
+  XF5)
WRITE(6,208) FL,TFL,(XF(J},J=1,NC)
308 FORMAT(1X,2F10.2,5F10.2)
WRITE(5,307)
. 307 FORMAT{4X, FV TPV  YFl  YF2  YF3  YF4
! +  YFE)
A WRITE(8,308) FV.TFV,(YF(1),J=1,NC}
é_ CALL ENTH(TFL,XF,YF,HLF,HVF)
8 FORMAT(1X,2¥8.2,10E10.2)

a0

C READ CONDITIONS
READ (5,10) PD,PB,QR,R,DV EFF
WRITE(6,304)




134 CcOMPUTER SIMULATION

TABLE 5.8 (continued)

304 FORMAT(6X,)PD PB QR R DY EFF)
WRITE(8,9}PD,PB,QR,R,DV,EFF
9 FORMAT(1X,10F8.2)
¢ READ INITIAL CONDITIONS
WRITF(6,305)
305 FORMAT(4X,'N TEMP L - X1 X2 X3
+ X5%)
READ(5,18)TB(XB(]),J=1,NC)
18 FORMAT(F10.2,6E10.3)
BLANK=0.
WRITE(Y,11)TB,BLANK,(XB(J),1=1,NC)
1l FORMAT(5X,2F8.2,5E10.3)
bO 15 N=1,NT
READ (4,17 YT(N},LO(N) (X(N,J},J=1,NC}
17 FORMAT(2F5.1,5E10.3)
15 WRITE(8,12}N, T(N),LO(N},{X(N,1),I=1,NC)
12 FORMAT(1X,I3,1X,2F8.2,5E10.3)
READ (5,18 YTD,(XD(1),]=1,NC)
WRITE(S,11 YTD,R,(XD{J),J=1,NC}
C  CALCULATE INJTIAL HOLDUPS.
CALL MWDENS(TB,XB,MWA NENSA)
MB = MVB+DENSA/MWA
DO 20 N=1,NF
DO 21 I=1,NC
21 XX(H) = X(N,J)
CALL MWDENS(T(N),XX,MWA,DENSA)
LVY(N) = LO(N) » MWA/DENSA
L(N) = LO{N)
HFOW = (LV(N)}/{999.«WLS))++.66667
MV(N) = (HFOW+WHS/12.}+3.1416+ DS« DS/(4.+144.)
20 M(N) = MV(N)}*DENSA/MWA
DO 25 N=NF+1,NT
DO 26 J=1,NC
26 XX(2) = X(NJ)
CALL MWDENS(T(N),XX,MWA,DENSA)
LV(N} = LO(N) » MWA/DENSA
L(N) = LO(N)
HFOW = (LV(N)/{999.+ WLR)}».66667
MV(N) = (HFOW+WHR/12.)x3.1416+DR+DR/{4.%144.)
25 M(N) = MV(N) » DENSA/MWA
DO 30 N=1,NT
DO 31 J=1,NC
XM({N,1} = M(N)*xX(N,J)
31 CONTINUE
30 CONTINUE
CALL MWDENS(TD,XD,MWA,DENSA)
MD=MVD+DENSA/MWA
€ CALCULATE PRESSURFE PROFILE
DO 35 N=1,NT
35 P(N)=(PB-(N+(PB-PD))/NT}
DELTA=.0601
WRITE(8,37)DELTA
47 FORMAT(1X,’ DELTA = "F&.5}
TIME = 0.
TPRINT = 0.

C INITIAL GUESS OF V(5) FOR FIRST EFFICIENCY CALC,

V{5)=822.

X4
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TABLE 5.8 (continued)

C MAIN LOOP FOR EACH TIME STEP
100 CONTINUE
CALL BUBPT (TB,XB,YB,PB)
CALL ENTH (TB,XB,YB,HLB,HVB)
DO 105 J=1,NC
108 XX(J)=X(1,J)
CALL BUBPT(T(1},XX,YY,P(1))
DO 106 J=1,NC
Y(1,J)=YB())+EFFs(YY{J)-YB(]))
106 YY(1)=Y(1,3)
CALL ENTH(T({1),XX,YY,HL{1),HV(1)}
DO 116 N = 2,NF
DO 111 § = 1,NC
111 XX(3)=X{N,I)
CALL BUBPT(T(N),XX,YY,P(N))
DO 112 ] = 1,NC
Y(N,J) =(YY(J) -Y(N-1,0)+EFF+Y(N-1,1)
112 YY{I)=Y(N,J)
CALL ENTH (T(N),XX,YY,HL(N),HV(N)}
110 CONTINUE
DO 113 J=1,NC
113 XX(1)=X(NF+1,J)
CALL BUBPT(T{NF+1),XX,YY ,P(NF+1))
DO 114 J=1,NC
YAV(D=(YF(I+FV+Y(NE,I)»V(NF))/(V(NF)+FV)
Y(NF+1,0)=(YY(I)-YAV(3)«EFF+YAV(J)
114 YY(J)=Y(NF+1,J)
CALL ENTH(T(NF+1},XX,YY, HL(NF+1),HV(NF+1})
DO 115 N=NF-+2,NT
DO 116 3=1,NC
116 XX(J)=X{N,])
CALL BUBPT(T(N)XX,YY,P(N))
DO 117 J=1,NC
Y(N,J) =(YY(J) -Y(N-1,J))}«EFF+Y(N-1,7)
117 YY(D)=Y(N,})
CALL ENTH (T(N),XX,YY,HL{N),HV(N))
115 CONTINUE
CALL BUBPT(TD XD,YD,PD)
CALL ENTH(TD,XD,YD,HLD,HVD)

""CALCU LATE VAPOR RATES

nano

VB = (QR+1000000.-L(1)»( HLB-HL(1)))/(HVB-HLB)
B = L(1}VB
IF (B .LT. 0.) STOP
V(1) = (HL(2)*L(2)+HVB«VB-HL(1)*L(1))/HV(1)
DO'120 N = 2,NF-1
V(N) = (HL{N4 1)«L{N+ 1)+ HV(N-1)+V(N-1)- HL{N}L{N})/HV(N)
120 CONTINUE
V{NF)} = (HL(NF+1)sL{NF+1)+HV(NF-1}»V(NF-1)-HL{NF)s L{NF}4+HLF+FL)/HV
+ (NF
VENF?I-I) = (HL{NF+42)+L(NF+2)4+ HV(NF)}»V(NF}+HVF«FV-HL{NF+1)sL{NF+1)
+ )/HV(NF+1)
DO 130 N = NF4+2,NT-1
130 V(N) = (HL(N+1)*L{N+1)+HV{N-1)#V(N-1}-HL{N)=*L(N))/HV(N)
V(NT) = (HLDsR+HV(NT 1)« V(NT-1)-HL{NT)+L(NT})/HV(NT)
DL=V(NT)-DV-R
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TABLE 538 (continued)

C  EVALUATE DERIVATIVES
DM(1) = L(2) 4+ VB-V(1}L(1)
DO 140 N = 2,NF-1
140 DM(N) = L(N+1) + V(N-1)-L{N)-V(N)
DM(NF) = L(NF+41) 4+ FL 4 V(NF-1) - L(NF) - V(NF)
DM(NF+1) = L(NF+2) + FV + V(NF) - L(NF+1) - V(NF11)
DO 150 N = NF+2,NT-1
150 DM(N) = L(N+1) + V(N-1}L(N)}-V(N)
DM(NT)= R + V(NT-1)- L(NT) - V(NT)
DO 160 J=1,NC
DXB(J) = (X(1,])+L(1)-YB{J)wVB-XB(1)xB}/MB
DXM(1,J) = X(2,))¢L{2)+ YB(I)«VB-X{1,0)«L(1)- Y{1,T)«V{(1}
DO 165 N=2,NF-1
165 DXM(N,J)=X(N+ 1J)xL{N-+1)+Y(N-1,I)+ V{N-1)-X(N,I L(N)-V(N)*¥(N,J}
DXM(NF,J)=X(NF+1,J)+L{NF+1)4 Y(NF-1,1)V(NF-1)-X(NF,J}4L{NF})-V(NF}
+ »Y(NF,J}+FL*XF(J)
DXM(NF+1,J) = X(NF42,1)+L(NF+2)4+ Y(NF,})xV(NF)-X(NF+1,]}+L(NF+1)
+ -V(NF+1)+Y(NF+1,1)4 FVaYF(J)
DO 170 N = NF42,NT-1
170 DXM(NJ) = X{N+1,3)sL{N+1)+Y(N-1,IV(N-1}-X(N,JpL(N}-V(N}»Y(N,J)
DXM(NT,J} = XD(I}»R4+Y(NT-1,1)+V(NT-1)-X(NT,] }«L{(NT)-Y(NT,J )+ V(NT)
DXD(J)=(V(NT}Y(NT,1)-DV+¥D(I) (R+DL}XD(J))/MD
160 CONTINUE
IF (TIME.GT..0011) GO TO 400°
IF (TIME .LT. TPRINT) GO TO 210
WRITE(6,201)
201 FORMAT (5X,TIME T X1 X2 X3 X4
1 X5 L)
WRITF(6,202) TIME,['B,{XB(J),d=1,NC),B.
202 FORMAT(1X,¥'5.4,3X,F7.2,5F10.6,F7.1)
DO 203 N=1,NT
203 WRITE(6,204) N,T(N),(X(N,J},J=1,NC).L{N)
204 FORMAT(3X,13,3X,F7.2,5F10.6,F7.1)
WRITE(8,205) T'D,{XD(3),J=1,NC},R
206 FORMAT (9X,F7.2,5F10.6,F7.1)
WRITE(6,206) (YD(J),1=1,NC),DL
206 FORMAT(18X ,6F10.8,F7.1)
TPRINT = TPRINT+.0005
C INTEGRATION ALA EULER.
210 TIME, = TIME + DELTA
DO 215 N = 1LNT
215 M(N)} = M{N) + DM(N)  DELTA
DO 220 J = 1,NC
XB(J) = XB{J} + DXB(J) + DELTA
IF (XB(1) .LT. 0.) XB(I) = 6.0
IF (XB(J) .GT. 1.) XB(J) = 1.
DO 226 N = 1,NT
XM(N,J) = XM(N,J) + DXM(N,J)}+DELTA
X(N,J} = XM(N,J)/M({N}
IF (X{N,I).GT.L.) X(N,J) = 1.
IF (X(NJ) .LT, 0.) X{N,]) = 0.0
225 CONTINUF.
XD(J)=XD{J)+DXD(I)+DELTA
IF(XD(1}.LT.0.) XD{J}=0.
TF(XD(3).GT.1.) XD{J}=1.
220 CONTINUE
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TABLE 5.8 (continued)

C CALC NEW LIQUID RATES
DO 270 N=1,NF
DO 271 J=1,NC
271 XX{)=X(N,I)
CALL HYDRAU(M(N),T{N},XX,L(N),WHS,WLS,DS)
270 CONTINUE
PO 273 N=NF+LNT
DO 275 J=1,NC
275 XX(I)=X(N,J}
CALL HYDRAU(M(N),T(N),XX,L{N),WHR,WLR.DR)
273 CONTINUE
GO TO 100
400 5TOP
END AN
C .
SUBROUTINE HYDRAU(M,T.X,L,WH,WL,DCOL)
REAL M,L. MW MWA
COMMON NC.MW(S),DENS(5),C1(5),CQ(5),C3(5),BPT{5),AVP(5),
+ BVP(5)
DIMENSION X(5)
CALL MWDENS(T,X,MWA,DENSA)
CONST=183.2+MxMWA /{DENSA+DCOL«DCOL)}-WH/12.
IF{CONST.LE.0.}) GO TO 10
L=DENSA+«WLx 999.*((183.21~M*MWA{(DENSA*DCOL—DCOL)—
WH/12.)%%1.5)/MWA
RETURN
10 L=0.
RETURN
END

SUBROUTINE ENTH(T,X,Y,HL,HV)
COMMON NC,MW(5),DENS(5),01(5),C2(5),C3(5),BET(5),AVP(5),
+ BVP(S)

DIMENSION X(5),Y(5)

HL=0.0

HV=0.0

Do 1 I=1,NC

HL=HL+X{J)*C3{I1T

AV=HV+Y(D(C1(1)}+C2(I)+T)
1 CONTINUE

RETURN

END

SUBROUTINE MWDENS(T,X,MWA,DENSA)
COMMON NC.MW(5),DENS(5),C1(5),C2(5),C3(5).BPT(5),AVP(5),
+ BVE(5)

DIMENSION X(5)

REAL MW MWA

DENSA=0.0

MWA=0.

DO 1 J=1,NC

MWA=X(1)sMW(I)+MWA
1 DENSA=X{J)}»DENS(J) + DENSA

RETURN

END

SUBROUTINE BUBPT(T,X,Y,P)
COMMON NC,MW(5),DENS(5),C1(5),C2(5),C3(5),BPT(5),AVP(5),
+ BVP(5)

137
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TABLE 5.8 (continued)

DIMENSION X(5),Y(5),PS(5)

LOOP=0

10 LOOP=LOOP+1
IF(LOOP.GT.50) GO TO 30
SUMY=0.0
DO 15 I=1,NC

PS(1)=EXP(BVP(J)+AVP(J)/(T4460.))

Y(J)=PS()*X(3) /P
15 SUMY=SUMY+Y(J)

IF{ABS(5UMY-1.).LT..000601YRETURN

F=SUMYxP.P
FSLOPE=D.
TSQ=(T+460.)xx2
DO 20 J=1,NC

20 FSLOPE=FSLOPE-AVP(I}»X(1)*PS(J)/TSQ

T=T-F/FSLOPE
GO TO 10
30 WRITE(8,21)

21 FORMAT(1X,;TEMF LOGF")

STOP
FEND

NT NF NC WHS WHR DS

Results

15 5 & 0956 1.26 72.00 72.00 48.00 48.00 10.00 10.00

NAME MW DENS HVAP

LK 50.00 49.00 Y0.00 9000 0.400 0.800

BPT IICAPYV HCAPL VP1
LLK 30.00 40.00 106.00 10.00 0.200 0.600 14.7

1.0 50.0
14.7 90.0 500.0 200.D

DR WLS WLR MVB MVD

Tl VP2
30.0

INTER 90.00 80.00 70.00 150.00 0.300 0.500¢ 14.7 150.0 150.0 200.0
K 130,00 70.00 80.00 210.00 0.300 0.400 14.7 210.0 150.0 300.0
HHK 300.00 90.00 80.00 360.00 0.300 0.400 14.7 360.0 150.0 420.0
FL TFL XF1 XF2 XF3
800,00 120,00 0.50E-01 0.60E400 0.10E-01 0.30E400 0.40E-01
Fv TEFV YF1 YF2 YF3
200.00 120.00 0.40E400 0.53E4+00 0.20E-01 0.50E-01 0.00E400

PN PB QR R

DV EFF

19.70 21.20 5.00 400.00 200.00 0.50

N TEMPF L X1
201.58 9.00 0.000E400
1 15490 740,10 0.999E-11
2 132.80 Bi4.40 0.156E-08
3 120020 892.00 D.182E-08
4 114.00 960.10 0.133E-04
& 108.40 986.00 0.760E-03
6 101.20 320.00 0.112E-02
7 9820 381.90 0.129E-02
& 8690 409.60 (L1IGE-02
9 96.20 423.70 0.140E-02
10 95.80 431.20 0.142E-02
i1 95.50 435.20 0.143E-02
12 9530 437.50 0.144E-02
13 95.10 438.70 0.144E-02
14 94.90 43050 0.145E-02
15 94.20 438.60 0.175E-02
77.26 400.00 0.174E-01
DELTA = 0.00010

X2
0.725E-02
0.110E400
0.286E40D
0.457E4-00
0.572E400
0.634E+00
0.818E+00
0.910E+00
0.953E+00
0.975E+00
0.986E+00
0.992E+00
0.995E+400
0.997E+00
0.998E4-00
0.998E+00
0.982E+00

XF4

YF4

X3
0.488E-01

XF5

¥F5

X4
0.836E400

0.240E400 0.60TEA-0D0
0.202E+00 0.473E+D0
0.131E+4+00 0.376E4-00

0.803E-01
0.496E-01
0.866E-01
0.446E-01
0.233F-1
0.128E-01
0.694E-02
0.374E-02
0.199E-02
0.104E-02
0.519E-03
0.236E-03
0.824E-04

(.314E40)
0.284E4-00
0.942E-01
0.440E-01
0.218F-0}
0.110E-01
0.563E-02
0.286E-02
1.145E-02
0.718E-03
0.342E-03
0.149E-03
0.483E-04

X5
0.108E400
0.433F-01
0.3G3E-0)
0.350E-01
0.333E-01
0.325E-01
0.1T4E-05
G.7T6E-06
0.37TLE-06
0.181E-06
0.893E-07
0.440E-07
0.216E-07
0.104E-07
0.484E-08
0.205E-08
0.659E-09

T2
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TABLE 58 (continued)

TIME T X1 X2 X3 X4 X5 L
0.000 201.58 0.000000 0.007254 0.048850 0.8336308 0.107600 298.1
1 154.92 0.000000 0.109600 ©.240300 0.808400 0.043260 7410.1
132.64 0.000000 0.285700 0.202100 0.472900 0.039310 314.4
3 120.23 0.000000 0.457000 ©.131300 0.375900 0.035890 §32.0
. 4 11406 0.000013 0.572100 0.080310 0.314200 0.033340 960.1
5§ 108.42 0.000760 0.633600 0.049550 0.283600 0.032460 086.0
6 101.18 0.001121 0.818000 0.086620 0.094240 0.000002 320.0
7 98.23 0.001288 0.910200 (.044560 0.043990 0.000001 381.9
8 96.91 0.001382 0.953000 0.023800 0.021340 0.000000 409.6
9 96.20 0.001399 0974700 0.012840 0.011050 0.000000 423.7
10 95.77 0.001419 0.986000 0.006940 0.005625 0.000000 431.2
11  95.49 0.001430 0.992000 (.003737 0.002863 0.000000 435.2
12 95,28 0.001436 0.995100 0.001991 0.001446 0.000000 437.5
13  95.10 0.001440 0.996800 0.001039 0.000718 0.000000 438.7
14  94.93 0.001450 0.887700 0.000519 0.000342 0.000000 43%.5
15  94.24 0.001749 0.997900 0.000236 0.00014% 0.000000 438.6
77.26 0.017450 0.982400 0.000082 0.00004% 0.000000 400.0
(.556223 0.443775 0.000001 0.000000 0.000000 500.8

TIME T X1 x2 X3 X4 X5 T

0.0005 201.61 0.000000 0.007233 0.048763 0.836398 0.107614 295.5
1 154.94 0.000000 0.109514 0.240196 0.607077 0.043266 738.4
2 132.65 0.000000 0.285653 0.202034 0.473022 0.030314 R812.7
3 120.23 0.000000 0.456987 0.131257 0.375962 0.035801 8’90.2
4 11405 0.000014 0.572098 0.080287 0.314233 0.033341 958.2
5 108.43 0.000756 0.633541 0.049565 0.283677 0.032468 584.2
8 101.18 0.001120 0.818013 0.D36583 0.094289 0.000002 318.7
T 98.24 0.001285 0.910208 0.044540 0.044002 0.600001 380.4
8 96.92 0.001356 0.953008 0.023790 0.021846 0.000000 408.1
9 96.21 0.001397 0974704 0.012835 0.011053 0.000060 422.1
10 95.7TR 0.001415 0.986008 0.006937 0.005627 0.006000 429.6
11 95.50 0.001425 0.092002 0.003735 0.002864 0.000000 433.6
12 95.28 0.001431 0995107 0.001990 0.001446 0.000000 4356.9
13 95.11 0.001436 0.996805 0.001035 0.000718 0.000000 437.1
14  94.94 0.001447 0.997704 0.000519 0.000342 0.000000 437.9
15  94.25 0.001745 0.997901 0.000236 0.000149% 0.000000 437.3
77.25 0.017462 0.982389 0.000082 0.000049 0.000000 400.0
0.556381 0.443620 0.000001 0.000000 0.000000 505.0

TIME T X1 X2 X3 X4 X5 L

0.001 201.64 0.000000 0.007221 0.048687 (.836477 0.107628 295.5
1 154.96 0.000000 0.109428 0.240103 0.607246 0.043272 T38.2
2 132.65 0.000000 0.285587 0.201986 0.473139 0.039318 B12.5
3 120.24 0.000000 0.456921 0.131229 0.376010 0.035892 890.1
4 114.06 0.000012 0.572070 0.080270 0.314280 0.033343 958.2
5 108.43 0.000768 0.833487 0.048547 0.283738 0.032475 984.3
6 101.18 0.001117 0.818018 (.086555 0.094297 0.600002 318.7
7 98.24 0.001286 0.910208 0.044525 0.044014 0.000001 380.4
8 96.92 0.001358 0.953008 0.023782 0.021852 0.000000 408.1
8 96.21 0.001395 0.974706 0.012831 0.011056 0.000000 422.1
10 95.78 0.001415 0.986011 0.006935 (.005828 0.000000 428.6
11 95.48 0.001426 0991998 0.003734 0.002363 0.000000 433.6
12 95.28 0.001433 0.995107 0.001930 0.001447 0.000000 435.9
13 95.11 0.001437 0.996806 0.001038 0.000718 0.000000 437.1
14 94.94 0.001448 0.997706 0.000519 0.000343 0.000000 438.0
15  94.25 0.001743 0.997900 0.000236 0.000149 0.000000 437.5
77.25 0.017456 0.982396 0.000082 0.000049 ©£.00000G 400.0
0.556307 0.443694 0.000001 0.000000 0.000000 504.9
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5.
6.

7.

8.

Liquid hydraulics are calculated from the Francis weir formula,

Yolumetric liquid holdups in the reflux drum and column base are held per-

fectly constant by changing the flow rates of bottoms product B and liquid
distillate product D, .

Dynamic changes in internal energies on the trays are much faster than the
composition or total holdup changes, so the energy equation on each tray
[Eq. (3.99] is just algebraic.

Reflux R and heat input to the reboiler Oy are the manipulated variables. In
the program given in Table 5.8, they are simply held constant, thus giving the
openloop response of the column. If the closedioop response is desired, the
program can be easily changed to use R to hold a temperature or a composi-
tion in the top of the column and to use @ to hold a temperature or a
composition in the bottom of the column. There are two degrees of freedom,
so two variables can be specified.

The program in Table 5.8 is very similar in structure to that for the simple

binary case. The steps taken are:

1.

Input data on the column size, components, physical properties, feeds, and
initial conditions (liquid compositions, liquid flow rates, and initial guesses of
temperatures on all trays).

2. Calcuiate initial tray holdups and the pressure profile.

3. Calculate the temperatures and vapor compositions from the vapor-liquid

equilibrium data, using the subroutine BUBPT. Raoult’s law is used in the
example, but nonideality can be included by adding activity coefficient equa-
tions. Newton-Raphson convergence is used.

4, Calculate liquid and vapor enthalpies, using subroutine ENTH.

10.

» Calculate vapor flow rates on all trays, starting in the column base, using the

algebraic form of the energy equations.

Evaluate all derivatives of the component continuity equations for all NC
components on all NT trays plus the reflux drum and the column base.

. Integrate all ODEs (using Euler, what else!).
. Calculate new total liquid holdups from the sum of the component holdups.

Then calculate the new liquid mole fractions from the component holdups
and the total holdups.

. Calculate new liquid flow rates from the new total holdups for all trays, using

subroutine HYDRAU.
Go back to step 3 and repeat for the next step in time.

Table 5.9 gives a list of terms for the input and output variables.
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TABLE 39

Nomenclature for multicomponent distillation program
NT Total number of trays

NF Feed tray (counting from the bottom)

NC Total number of components

. WHS,WLS.DS Weir height and length and column diameter in stripping section (in)
WHR,WLR,DR Weir height and fength and column diameter in rectifying section (in)

MVBMVD Volumetric holdup in column base and in reflux drum (ft?)

MW Molecular weight (Ib, /b - mol)

HVAP Heat of vaporization at normal boiling point (Btu/lb )

HCAPY Heat capacity of vapor (Btu/ib_, °F)

HCAPFL Heat capacity of liquid (Btu/lb,, °F}

VP1 Vapor pressure (psia) at temperature T, (°F)

YP2 Vapor pressure (psia) at temperature T (°F)

TFLFLXF Liquid feed temperature (°F), flow rate (Ib- mol/h) and composition {m.f)
TFV.FV.YF Vapor feed temperature (°F), flow rate (Ib- mol/h) and composition (m.f)
PD,PB Pressures in the top and base of the column {psia)

QR Reboiler heat input {10° Biu/h)

R Reflux flow rate {lb- mol/h}

DV.DL Vapor and liquid distillate product flow rates (ib - mol/h)

EFF Murphree vapor-phase tray efficiency

T,LOX, Initial conditions of temperature (°F), liquid flow rate (Ib- mol/h) and liquid

compositions for all trays and all components (mole fractions)
TD,TB.XD,XB Initial conditions of temperature and compositions in reflux drum and

column base
v Vapor flow rates {Ib- mol/h)
M Molar liquid holdup on tray {Ib- mol)
MV Volumetric liquid holdup on tray {ft*)

56 VARIABLE PRESSURE DISTILLATION

Pressures were assumed constant in the distillation column considered in Sec. 5.5.
In many distillation columns this is a good assumption. However, there are quite
a few columns in which this assumption is not valid. In vacuum columns, pres-
sure changes can be significant. This is also true in columns whose pressures can
vary greatly because of heat integration schemes (their pressures must rise or fall
to provide the changing temperature difference driving force in the condenser/
reboiler as throughputs and compositions vary).

There are several ways to account for variable pressures. If the total pres-
sure of the column changes but not the pressure drop through the trays {the
normal situation in heat-integrated columns, particularly with valve trays whose
pressure drops are fairly constant), an approximate variable-pressure model can
be used.

5.6.1 Approximate Variable-Pressure Model

A total molar balance is written for the entire vapor volume in the column, reflux
drum, and overhead piping (V,,). The molar fiow rates into this lumped vapor
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volume are the vapor boilup in the reboiler and any vapor in the feed stream,
The molar flow rates out of this volume are the rate of condensation in the
condenser and the vapor product from the reflux drum. An average temperature
for the entire column is used.

—Vﬁ-ﬁ—l’ Fp,—-D, — L 533
RT:“, dt_ B+ L o (' )

The condensation rate in the condenser L, changes as the pressure in the con-
denser P, varies since the condensing temperature depends on pressure. Thus L,
depends on column pressure, overhead vapor composition, and the temperature
of the coolant in the condenser. Equation (5.33) assumes ideal gas behavior,
which is usually adequate in these low-pressure columns where pressure changes
are significant,

This approximate approach is admittedly crude, but T have used it quite
effectively for several distillation simulations. At each point in time the pressure
Pp at the top of the column is calculated from Eq. (5.33), and new pressurcs on all
the trays are calculated using a constant pressure drop per tray.

5.6.2 Rigorous Variable-Pressure Model

For vacuum columns, where both absolute pressure and tray pressure drops vary
significantly, a rigorous vapor-hydraulic model may have to be used. The model-
ing and simulation are easy, The numerical integration is quite difficult. This is
because the ODEs become very, very stiff when vapor hydraulics are included in
the model.

Instead of using an algebraic form of the energy balance, the energy-balance
ODE is integrated along with the rest of the ODEs (component continuity
equations). As given in Chap. 3 [Eqs. (3.97) to {3.99)], integration of these ODEs
gives values for all the liquid compositions (x, ), the total liquid holdup (M,), and
the liquid enthalpy (1,) on each tray at each point in time.

Knowing x,; and k, we can go into the physical property data and calculate
the temperature T,. Note that this is the reverse of the normal procedure where
we calculate enthalpy from known temperature and known composition.

Now using temperature and liquid compositions, we can do a bubblepoint
calculation to determinc the pressure on the tray P, and the vapor composition
Y- Note that this bubblepoint calculation is usually not iterative since we know
the temperature.

Finally we can now calculate the vapor flow rate through the tray from the
pressure drop through the tray (P,_, — P,) and the liquid height on the tray,
which we can get from the weir height h, and the height of liquid over the weir
kg, - The total pressure drop is the sum of the “dry hole” pressure drop plus the
hydraulic pressure of the liquid.

Pn— 1= Pn = pL. n(hw.n + how, u) + KDH pV,n— 1(Ui|]2 (534)
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e r———————r—a

"[Am_'ﬁ‘ £ 10 3
Design parameters for variable-pressure toluene/o-xylene
column
Feed flow rate = 18 kg  mol/min

Feed composition = (.33 mole fraction toluene

Feed temperaturs = 95°C (liquid feed)

Distillate composition = 0.9955 mole fraction toluene
Distitlate flow rate = 5.94 kg mol/min

Bottoms composition = 0.001 mole fraction toluene
Bottoms flow rate = 12.06 kg mol/min

Pressure reflux drum =90 mmHg

Pressure drop (average} = 5 mmHg per tray

Reflux ratio =222

Temperature reflux drum = 49°C

Temperature base = 106°C

Number of trays =3

Feed tray {from bettom) =14

Reboiler heat input =10.15 x 10° kcal/min

Dviameter = 3.962 meter

Weir height = 00612 meter

Weir length = 1.78 meter

Dry hole pressure drop coefficient = 0.134 mmHg/(kg - mol/m %)/(m/s)*
Holdup in reflux drum = 65 kg mol

Holdup in base =90 kg mol

where p; . and py , = liquid and vapor densities on the nth tray
v, = vapor velocity

All the terms in Eq. (5.34) must have consistent units (psi, mmHg, Pascals, atmo-
spheres, or bar). '

To illustrate the use of a vapor-hydraulic model, let us consider a vacuum
distillation column in which we are separating a binary mixture of toluene and
o-xylene at 90 mmHg reflux drum pressure. The base pressure at design is 245
mmHg with a heat input of 150,000 kcal/min. Table 5.10 gives the parameter
values and steadystate operating conditions. The column has 30 trays and is 13
feet in diameter. Theoretical trays and ideal (Raoult’s law) VLE are assumed in
the program given in Table 5.11.

The BUBPT2 subroutine calculates pressure from given liquid composition
and temperature, The ENTH2 subroutine calculates the temperature from given
liquid enthalpy and composition.

The stiff-ODE, implicit numerical-integration-algorithm LSODE is used to
integrate the ODEs. The computer time to run out 60 minutes of process time
was 160 seconds on a Cyber 850 using LSODE. The computer time using first-
order explicit Euler for the same problem was 1400 seconds. Because of the
extremely stiff system of ODEs, a very small step size had to be taken in Euler
(0.00025 min}. This example illustrates that there are some chemical engineering
processes (but not many) where the implicit algorithm is better than Euler.
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TABLE 5.11
Variable-pressure column simulation

TOLUENE/O-XYLENE SEPARATION AT 90 MM HC
RIGORCOUS VAPOR-HYDRAULIC MODEL (VAPOR RATES
CALCULATED FROM PRESSURE DROP THROUGH TRAYS)
USING LSODE IMPLIGIT S$TIFF INTEGRATOR PROGRAM
ASSUMPTIONS:
INFAL VLE, THEORETICAL TRAYS
EXTERNAL FEX,JEX
COMMON A1,A2,B1,B2
COMMON F.P,PB,B,V,L,VB,Z HF NT PD,R,QR,YB.Y,YD,TB,T.,TD,B),MRBG
COMMON HLB,IIL,D
DIMENSION X(30),Y(30),T(30),P(30),XM(30),IIM(30),L(30),V(30)
+ M(30),MDOT(30), XMDOT{30), HMDOT(30),H L{30),HV(30), HTOT(30)
DIMENSION RWORK(2704),JWORK(114),YY(54),YYDOT(94)
REAL L,MB,M,MD,MDOT,MB0,MBDOT
¢ CALCULATE VAPOR PRESSURE CONSTANTS
A1=(278.4-51.0)4(273. +89.5)xALOG(400./100.)/(51.9-89.5)
B1=ALOG(400.)-A1/(273.459.5)
A2=(273.+81.3)%(273.+121.T)+ALOG(400./100.) /(81.5-121.7)
B2=ALOG(400.)-A2/(273.+121.7)
NT=30
NF=14
C FEED LIQUID ENTHALPY
F=18.
Z=0.33
TF=95.
CALL ENTH1(Z,2,TF,HF,DUM)
¢ CALCULATE INITIAL PRESSURE PROFILE AND INITIAL ENTHALFIES
PD=90.
READ(7,80)XB,X,XD,M,HLB HL,B0,D,MB0,MD,TB,T,TD,QR
REWIND 7
XMB=XR«MAO
MB=MB0
HLMB=HLB+MBO
DO 10 N=1,30
XM(N)=M(N)=X(N)
10 HM{N)=M(N)xHL(N)
12FORMATC TIME N X Y T PV
+L M’}
D=5.94
QR=150000.
WRITE(8,999)QR
999 FORMAT(’ QR = *,F10.1)
C SET PARAMETERS FOR LSODE
DO 20 1=1,114
20 IWORK(I)=0.
DO 21 1=1,9704
21 RWORK(I)=0.
NEGQ=94
TIME=0.
TOUT=1.
ITOL=1
RTOL=1.F.4
ATOL=1F-6
ITASK=1
ISTATE=1
I0PT=0

oo RoleRsRaNS!
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TABLE 5.11 (continued)

LRW=0704
LIW=114
MF=22

(e e bk kA R N R R Rk
C MAIN INTEGRATION LOOP
- c******ti****:l*K‘t*******t***"’**************l**t*****

100 CONTINUE
YY(1)=MB
YY(2)=XMR
YY(3)=HLMB
DO 33 N=1,30
YY(34N)=M(N}
YY{33+N)=XM(N}

33 YY(63+N)=HM(N)
YY(94)=XD
CALL LSODE(FEX,NEQ,YY,TIME,TOUT,ITOL,RTOL,ATOL,ITASK,ISTATE,
+ TOPT,RWORK,LRW IWORK LIW JEX ,MF)
MB=YY(1)
XMB=YY(2)
XB=XMB/MB
DO 40 N=1,30
M{N)=YY(N+3)
XM(N)=YY(N+33)

40 X({N)=XM(N)/M(N)
XD=YY(94)
NN=0
WRITE(6,12}

- WRITE(S,12)
WRITE(6,41)TTME,NN,XB,YB,TB,PB,VB,B,MR
WRITE(8,41)TIME,NN,XB,YB,TB,PB,VE,B,MB

41 FORMAT{(1X,F6.3,13,2X ,2F%.5,5F8.1)
DO 45 N=1,30
WRITE(8,46)N,X{N),Y{N),T(N),P(N),V(N),L{N),M(N)
45 WRITE(B4B)N,X(N),Y(N),T(N),P(N),V(N),L(N),M(N)
46 FORMA'I(7X 13,2X ,2F0.5,5F8.1)
WRITE(6,47)XD,YD,TD,PD,[},R,MD
WRITE(8,47)XD,YD,TD,PD,D,R.MD
47 FORMAT(12X,2F9.5,5F8.1)
IF(ISTATE.LT.0)GO TO 81
TOUT=TOUT+1.
IF(TOUT.LT.2.1}GO TO 100
80 FORMAT(6E12.5)
STOP
81 WRITE(6,82)
82 FORMAT( ISTATE ERROR IN SLODE")
STOP
END

SURROUTINE FEX{NEQ,TIME,YY,YYDOT)
COMMON Al1,A2,R1,B2
COMMON F.P PB.R,V,I.VR,ZHF,NT,PD,R,QR,YE,Y,YD,TB,T,TN,R0,MN0
COMMON HLB,HL,D
| DIMENSION X(30),Y(30),T(30),P(30),XM(30),HM{30),L(30),V(30)
; + ,M(30),MDOT{30),XMDOT{30), HMDOT(30),HL(30),HV(30),HTOT(30)
: DIMENSION RWORK(9704),IWORK(114),YY(94),YYDOT(94}
REAL L,MB,M MD,MDOT,MB0O,MBDOT
MB=YY(1)
XMB=YY(2)
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TABLE 5.11 (continued)

HLMB=YY(3)
DO 10 N=1,30
M(N)=YY(N+3)
XM(N)=YY(N+33)
10 HM(N)=Y Y(N+63)
XD=YY¥(54)
XB=XMB/MR
HLR=HLMB/MB
€ CALCULATE LIQUID FLOW RATES FROM HOLDUPS
DO 15 N=1,30
HL({N)=HM(N)/M({N)
X(N)=XM(N)/M(N)
15 CALL LIQHYD{M(N},X(N},L{N},IITOT(N})
C CALCULATE TEMPERATURE FROM ENTHALPY AND COMPOSITION
CALL ENTH2(XB,HLB,TR)
DO 70 N=1,30
70 CALL ENTH2(X(N),HL(N),T(N})}
C CALCULATE PRESSURE FROM TEMPRRATURE AND COMPOSITION
CALL BUBPT2(XB,TH,PR,YB)
DO 75 N=1,30
75 CALL BUBPT2(X(N),T(N),P(N),Y(N))
CALL BUBPTI(XD,PD,TD,YD)
C CALCULA'TE VAPOR FLOW RATES FROM PRESSURE DROPS
CALL VAPHYD(PB,P(1),X(1),TB,HTGT(1),VB)
DO 20 N=1,29
20 CALL VAPHYD(P(N),P(N+1),X(N+1),T(N),HTOT(N+1),V(N})
. V(30)=13xSQRT((P(30)-PD)/4.)
C CALCULATE VAPOR ENTHALPIES
CALL ENTH1{XB,YD,TB,DUM,HVB)
DO 85 N=1,30
85 CALL ENTH1(X(N),Y(N),T(N),DUM HV(N))
C CALCULATE REFLUX ENTHALPY
CALL ENTH1(XD,YD,TD,HLD,HVD)
C REFLUX DRUM AND BASE LEVEL CONTROLLERS
B=B0+MB;MB0
R=V(30)-D
I¥(B.LE.0.)B=0.
IF(R.LE.0.)R=0.
C EVALUATE DERIVATIVES
MBDOT=L{1)-B-VB
XMBDOT=L{1)¢X{1}-B«XB-VB+YB
HLMBD=L{1}+HL(1)+QR-B+HLB-VB+HVR
MDOT(1)=L(2)+ VR-L{1)-V(1)
XMDOT(1)=L{2)+X(2)+VBxYB-L{1}+X(1)-V(1)«Y(1)
HMDOT(1)=L(2)+HL(2)+VB+HVB-L(1)=HL{1)-V(1)}+HV(1)
DO 30 N=2,13
MDOT(N}=L{N+1)+V{N-1)-L(N)-V(N)
HMDOT(N)=L{N+1)xHL(N+1)+V(N-1)xHV(N-1)-L{N}HL(N)-V(N)«HV(N)
30 XMDOT(N)=L{N+1)+X{N41)+V(N-2)xY(N-1) L(N)X(N)-V(N)* Y(N)
MDOT(14)=L{15)+ V(1 3)+F-L(14)- V(14)
HMDOT(14)=L(15)+HL(15)+ V(13)«HV(13)+F+HF
4+ -L(14)+HL{14).-V(14)+V(14)
XMDOT(14)=L(15)X(15)+V(L3)#Y(18)+ Fxz-L(14)sX(14)-V(14)+ Y(14)
DO 40 N=15,29
MDOT(N)=L({N+1)4V(N-1)-L(N)}-V(N)
HMDOT(N)=L(N+1}+HL(N+1}4-V(N- 1) HV(N-1)-L{(N)}+HL{N}- V(N )+ HV(N)
40 XMDOT(N)=L(N+1)#X(N+1)+ V(N-1)x Y{N-1)-L(N )+ X(N)-V{N)+ Y(N)
MDOT{(30)=R+V(29)-L{30)- V{30)
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TABLE %.11 (continued)

HMDOT(30)=R+HLD+V{20)xHV(20)-L(30)+ HL(30)- V(30)»HV(30)
XMDOT(30)=R+XD+V(29)+Y(29)-L(30)xX(30)- V(30)xY(30)
XDDOT=V(30)«Y(30)-(R+D)+XD
YYDOT(1)=MBDOT
YYDOT(2)=XMBDOT
YYDOT(3)=HLMBD
DO 33 N=1,30
YYDOT(3+N)=MDOT(N)

YYDOT(23+N)=XMDOT(N)

33 YYDOT(63+N)=HMDOT(N)
YYDOT(84)=XDDOT

RETURN
END
c
SUBROUTINE JEX({NEQ,TIME,YY ,ML,MU,NRPD)
COMMON A1,A2 B1,R2
COMMON F,P,PB,B,V L.VB,ZHF,NT,PD,R.QR,YB,Y,YD,TB,T,TD,B0,MB0
COMMON HLB,HL.D
DIMENSION X(30),Y(30),T(30},P(30),XM({30),HM(30),L(30),V({30)
+ M{30},MDOT(30),XMDOT(30),IMDOT(30),HL(30),HV{30),HTOT(30)
DIMENSION RWORK(9704),IWORK(114),YY{94)},YYDOT(94)
REAL L.MBM MD MDOT MBO,MBDOT
RETURN
END
c
SUBROUTINE ENTH1(X,Y,T,HL,HV)
REAL M1 M2
DATA M1,M2,C1,02/92.1,106.2,0.5,0.5/
DATA DH1,DH2,BP1,BP2/86.8,82.9,110.8,144./
X1=X
X2=1-X
HL=X1xM1xC1#{T-BP1)+X2+M2+C2«(T-BP2)
Yi=Y
Y2=1.Y
HV=Y1e«M14{C1+(T-BP1)+DH1)+ Y2+ M2%{C2+(T-BP2)+DH2)
RETURN
END
C
SUBROUTINE ENTH2(X H,T)
REAL M1,M2
DATA M1,M2,C1,02/92.1,106.2,0.5,0.5/
DATA DH1,DH2,BP1,BP2/86.5,82.0,110.8,144./
X1=X
X2=1.-X
T=(H+X1+M1xCI1xBP1+X2s M2+ C2+BP2) /(X1 s M 1xC1+X2xM2+C2)
RETURN
END
C

SUBROUTINE BUBPTI(X,P,T.Y)
COMMON A1,A2,B1,B2
LOOP=0

1 LOOP=LOQOP+1
IF{LOOP.GT.50)THEN
WRITE(6,2)

2 FORMAT(’ BUBPT LOOP")
STOP
ENDIF
PS1=EXP(AL/(T+273.)+B1)
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TABLE &.11 (continued)

PS2=EXP(A2/(T+273.)+B2)
PCALC= X+PS1+(1,-X)+P52
IF{ARS{{PCALC-P)/P}.LT..00001) GO TO 10
F=PCALC-P
DF =(-A1xPS1xX-A2¢P52+(1.-X))/((273.+ T)x2)
T=T-F/DF
GOTO1

10 Y=PS§1+X/P
RETURN
END

SUBROUTINE BUBP1T2(X,T,P,Y)
COMMON Al1,A2,B1,B2
P51=EXP{A1/{T+273.)+Bl}
P52=EXP(A2/(T+273.)+B2)
P= X:+P514{1.-X)«P82
Y=PS1+X/P
RETURN
END
C
SUBRQUTINE LIQHYD(M,X,L,HIOT),
¢ DIMENSIONS ARE IN METERS, FLOW IS IN KG-MOLE/MIN
G HROLDUP 15 IN KG-MOLE
C FRANCIS WEIR FORMULA USED
REAL M,L,.M1,M2
DATA Ml,M'}.,SPGR,AREA{QE,1.106.2,(].85,1'3.33,:’
AVMW=X«M1+(1. X)xM2
VOL=M+AVMW/SPGR/L000.
HTOT=VOL/12.33
¢ 1.25 INCH WEIR HEIGHT
HOW=HTOT-0.0308
IF{HOW.LE.0.) THEN
L=0.
RETURN
ENDIF
L= 3.33*3.?8*3.281*60‘-28.32*SPGR,*((3,281*HOW]*11.5)/AVMW
RETURN
END

SUBROUTINE VAPHYD(PI,PZX,T,HTOT,V]
"KDH” 1S DRY-HOLE PRESSURE DROP COEFFICIENT; HOLE AREA = 1.233
PERFECT GAS CONSTANT 18 IN *MM BG CU.M/K KG-MOLE
PRESSURES ARE ALL IN "MM HG"
VELOCITY IS IN "M/SEC”
v IS IN "KG-MOQLE/MIN"
REAL KDH
DATA SPGR,KDIl/.85,.134/
DENVAP=P2/(62.36+(T+273.)}
DPLIQ=HTOT«+3PGR+73.06
DPVAP=P1.P2-DPLIQ
IF(DPVAP.LE.0.)THEN
V=0.
RETURN
ENDIF
VEL=SQRT{DPVAP/DENVAP/KDH)
V=VEL#60.+DENVAP«1.233
RETURN
END

anoaa 0
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TABLE 5.11 (continued)
Initial conditions

58379E-03 .11891E-02 .21718E-02 .37639E-02 .63341E-02 .10457E-01
AT7000E-01 .27200E-01 .42668E-01 .65139E-01 .95843E-01 .13443E400
\17812E+4+00 .22206E400 .26125E400 .26106E+00 ,26204E+00 .26541E-+-00
27368E4-00 .20164E400 .32778E+00 .39443E400 .50184E400 .64212E+00
.T8094E+400 .88386E-4+00 .94433E-400 .97492E400 .98917E+00 .99553E+00
JO9831E+400 .99950E+00 .T1894E401 .7T1850E401 .71306E+401 .71765E+01
JTIT2TE401 .71695E+01 .71674E401 .T1673E-+01 .71T01E+401 .71772E+01
T1B97E4H01 .72074E+01 .72279E+4+01 .T2479E401 .538TRE+401 .5390BE+401
53953E4+01 .54027E+01 54161E401 .54413E+01 .54878E+01 .5567BE+01
56837E+01 .58136E+01 .59223E+401 .58935E401 .60334E-401 .60548E+01
BO66OE+401 .60749E401 - 19939E+04 -,20286E+04 -.20645E+04 -.21016E+04
-.21404E+404 -.21814E404 -.22253E404 -.22720E+04 -.23250E+04 -.23814E104
_.24408E404 -,24%0TE+04 -.25544E404 -.26029E+04 - 26459E+04 -.26816E+04
_.2T183E+404 -.27558E4+04 -.2T938E+04 -.28300E4-04 -.28633E+404 -.28802E+404
_.28612E404 -.27018E+04 -.26947E+04 -.26197E+404 -.25002E+04 -.25087E+04
-D6306E 404 -.26760E+04 -.27295E404 .12179E-402 .59400E401 .89721E+402
.65000E402 .10643E+03 .10576E+03 .10505E+03 .10429E+403 .10347E403
10256E403 .10151E403 .10026E403 .98730E402 .96866E+4+02 .04643E402
H2120E402 .89477E+02 .86906E+402 .84590E+402 .B3899E40% .83146E+02
B2985E402 81226E+02 .79805E402 _T77T58E-+02 .74779E402 .T0791E+02
66318E402 .62296E-+02 509274E402 .57142E+02 .55541E402 .54183E-+02
.52001E402 51609E-+02 .49367E+402 .15000E406

Reynlts

TIME N X Y T P v L M
1000 ¢ .00058 .00162 106.4 245.5 168 121 B9.6
.00119 .00331 105.8 2403 169 200 T.2
.00217 .00605 105.0 2351 16.8 289 7.2
00377 01047 104.3 2208 168 289 7.2
00634 01759 103.5 2246 167 288 7.2
01046 .02891 1026 2194 166 288 7.2
.01701 .04662 101.5 214.1 16.3 287 T.2
02721 .07354 100.3 2089 184 2886 7.2
04268 11282 98.7 203.6 163 285 T2
06516 .16670 96.9 1984 162 284 7.2
10 .09587 .23467 946 1032 161 283 7.2
11 13446 31182 921 188.0 160 282 7.2
: 12 .17815 .38954 895 182.7 160 281 7.2
' 13 22208 .45800 869 177.56 159 280 7.2
. 14 26127 .51442 846 1723 173 280 7.2
15 26108 .51479 83.9 168.1 17.3 114 5.4
16 .26205 .51672 83.1 1838 17.3 114 54
17 .26543 .52184 82,3 15956 174 11.4 0.4
18 .27371 .53326 S1.2 1552 174 114 54
19 29167 55651 79.8 1508 174 11.5 5.4
20 32782 .59958 T7.B 1464 175 115 5.4
21 39449 66015 T4.8 1420 17.7 116 55
22 50191 .76054 70.8 1375 17.8 11.7 56
23 64219 .B519%9 66.3 133.0 183 120 5.7
24 .78099 .92078 62.3 1284 186 123 5.8
25 88380 96172 59.3 1236 188 127 59
26 .p4434 98261 57.1 1188 19.0 129 6.0
27 87493 99239 556 113.9 19.1 130 6.0
28 98917 99676 &64.2 1089 191 131 6.1
29 .00553 99868 529 1039 192 132 6.1
30 .99831 .0p9950 516 987 192 132 6.1
.5oB50 96986 494 500 59 13.2 650

000 =) & onoah DBy =




180 COMPUTER SIMULATION

TABLE 5.1t {continued)

TIME N X Y T P v L M
2.000 0 .00058 .00162 1064 2455 169 12.1 89.5
00119 00331 105.8 240.3 169 290 7.2
00217 .00605 105.0 235.1 168 280 7.2
00376 01047 104.3 2298 168 289 7.2
00633 .017590 103.5 224.6. 16.7 288 7.2
01046 02891 1026 2154 166 288 7.2
01760 04662 101.5 2141 18,5 28.7 7.2
02720 .07354 100.3 2089 164 2886 7.2
04267 11282 98.7 203.6 16.3 285 7.2
06514 16670 969 1984 162 284 7.2
10 09584 .23467 946 1932 161 283 1.2
11 13443 .31182 921 1880 16.0 282 7.2
12 .17812 .28954 89.5 182.7 16.0 28.1 7.2
13 22206 .45890 869 1775 159 280 7.2
14 28125 .51442 846 1723 17.3 280 7.2
15 .26106 .51479 83.9 168.1 17.3 114 5.4
16 26204 .51672 83.1 1638 17.3 114 5.4
17 26541 .52184 823 1595 174 11.4 5.4
18 27368 .53326 81.2 1552 17.4 114 5.4
19 29164 .55651 79.8 150.8 174 11.5 5.4
20 32778 50958 77.8 1464 17.5 115 5.4
21 39443 66915 748 142.0 177 118 5.5
22 50184 .76054 70.8 1375 179 117 4.8
23 64212 85199 663 133.0 183 12.0 5.7
24 78004 92073 62.3 1284 186 123 5.8
25 88386 96172 59.3 1236 188 127 59
26 .94433 98261 57.1 1188 190 129 6.0
27 97492 99239 555 1139 19.1 13.0 6.0
28 08017 .99676 54.2 1089 19.1 13.1 6.1
26 90553 09868 529 103.9 19.2 132 6.1
30 .05831 .99950 51.6 98.7 192 132 6.1
96950 98986 494 90.0 59 132 650

00 =] O N R LD RS

’\g? BATCH REACTOR

Let us consider the batch reactor modeled in Sec. 3.9 (Fig. 3.9). Steam is initiaily
fed into the jacket to heat up the system to temperatures at which the consecutive
reactions begin. Then cooling water must be used in the jacket to remove the
exothermic heats of the reactions.

The output signal of the temperature controller goes to two split-ranged
valves, a steam valve and a water valve. The instrumentation is all pneumatic, so
the controller output pressure P, goes from 3 to 15 psig. The valves will be
adjusted so that the steam valve is wide open when the controller output pressure
P, is at 15 psig and is closed at P, = 9 psig (i.c., half the full range of the control-
ler output). The water valve will be closed at P, = 2 psig and wide open at P,=3
psig. The reason for hooking up the valves in this manner is to have the correct
fail-safe action in the event of an instrument air failure. The steam valve takes air
pressure to open it and therefore it will fail closed. We call this an “air-to-open”
(AO) valve. On the other hand, the water valve takes air pressure to close it and

3
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therefore it will fail open. This is an “air-to-close” (AC) valve. If an emergency
occurs, we want to remove the source of heat (steam) and go to full cooling.

Controller output range (psig} 3 9 15
Steam valve fraction open X: 0 {closed) 1 (open)
Water valve fraction open X: 1 (open) 0 (closed)

The equations for the reaction liquid inside the tank and the vessel metal
are

dcC
A= ki Ca (5.35)
d& = kl CA - kz CB (5.36)
dt
ar _ s - 5.37
dt ~ pC, k1 Ca oC, k2 Cy VeC, (5:37)
Ou =hA(T - Ty) (5.38)
Ty Ou—@y
dt  puCuVu (5.39)

The equations for the jacket are different for the three phases of the batch cycle.

A. With steam in the jacket (35 psia supply pressure steam):

d

VJr % =W, — W, {540)
MP,
. . - 4
Ps = R(T; + 460) (541
4

P, =exp (1}_4-%56 + B,,,) (5.42)
w, = Cyp, X,/ 35— P, (5.43)
Q.I’ = _“hos AD.!‘(T} - TM) (544}
W= -2 (5.45)
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FIGURE 5.7

Batch reactor.

B. During filling with water (20 psig water header pressure):

A
A, == | 5.46
(P:l)lnhll ! ( )
dav,
—dx—" = Fyo (5.47)
dv; T} 0y
dt FWD 1}0 + Pr cJ (5'48)
Q.r = haw Ao(TM - J] (5-49)
Fyo=0C, X, /20 (5.50)
C. When the jacket is full of water:
dTJ’ FWO QJ
— =" _ .

The system is sketched in Fig. 5.7, and numerical values of parameters are
given in Table 5.12. The digital program is given in Table 5.13. Plotted results are
shown in Fig. 5.8.

The temperature transmitter has a range of 50 to 250°F, so its output pneu-
matic pressure signal goes from 3 psig at 50°F to 15 psig at 250°F.

Prp =3 +(T - 50) i% (5.52)
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Parameters for batch reactor
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oy 729,55 min ! ¥y 18.83 ft?
o, 6567.6 min ! Cy, 100 gpm/psi®®
E, 15,000 Biu/lb - mel Ty BOF
E, 20,000 Btu/b-mol A, 56.5 ft?
A, —B744.4°R A — 40,000 Btu/1b - mol
. 15,70 iy ~— 50,000 Btu/1b- mot
Cr, 080 Ib-mol AR €, 1Bu/b,°F
Ty §0°F V 425 13
K, 14 psi/psi p 50 b, /it
Cy, L£2 b, /min psi®* €y 012 Bw/ib,_ °F
h, 1000 Btu/h °F ft? vV, 942f
h,. 400 Btu/h °F fi? P 512 lb,,,,,-’ﬂ.3
h; 160 Btu/h °F ft? £ 62.3 Ib_/ft?
Ay 56.5 ft3 C, 1Bwb,"F
H,—h. 939 Btu/lb,
_-‘-—-\—-—__
Q5
* ol
[
Cy -
0 _,_..—-""---_-___
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FIGURE 53

Plotted results for batch reactor.
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TABLE 5.3
Baich reactor simulation

REAL K1,K2,KC
ALPHAI1=720.54R8
ALPHAZ=6HG7.587
C VAPOR PRESSURE CONSTANTS FOR STEAM
AVP=-8744.4
BYP=15.70036
C USE SMALL DELTA DURING STEAM PERIOD
DELTA=.002
KC=2.
TPRINT=1. .
C INITIAL CONDITIONS
CA_-0.8
CR=0.
TIME=0.
T=80.
TM=80.
TI=259.
P)=344
DENS=18.«PJx144. /{1545 +(TJ+460.))
PSET=1248
START=!.
FWO=0.
FULL=-1.
VI=0.
VITI=0.
TFLAG=0.
CAM=-1,
RAMP =005
WRITE(6,54)
54 FORMAT(' TIME CA CE X5 Xw T ™ T1
+ QJ QMY
C MAIN LOQOP FOR EACH STEP IN TIME
100 K1=ALPHA1+EXP{-15000./(1.99+(T +460.)))
K2=ALPHAZ+EXP{-20000./{{T+460.}%1.99)}
TRANSMITTER
PTT=3.4+{T-50.)%12./200.
> CONTROLLER
PC=7.4+KCx(PSET.PTT)
IP{PC.GT.15.) PT=15.
1IF{PC.LT.3.) PC=3.
C VALVES '
XS=(P(C-9.)/6.
XW={9.-PC)/5.
TP{X8.GT.1.) X8=1.
IF{XS.L'T.8.) X§=0.
IF(XW.GT.1.) XW=1.
IF{XW.LT.0.) XW=0.
C TEST FOR STEAM
IF{START.LT.0.) GO TO 20
IF{P1.GE.15.) GO TO 40
WS=XSx112.x8QRT(35. PI)
GO TO 41

40 W5=0,

41 CONTINUE
QJI=-1000.+56.5+({TI-TM) /0.
WC=-Q1/939.
DENDOT={W5-WC)/15.83
DENS=DENS+DELTA«DENTY3T

!

]

G ITERATIVE LOOP TO CALCULATE STEAM TEMPERATURE

FWO
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TABLE %.13 (contlnued)

C AND PRESSURE FROM KNOWN DENSITY USING
C INTERVAL HALVING

FLAGP=-1.
FLAGM=-1.
DTI=1.
LOOP=0

15 PI=EXP{RVP+AVP/(TI+460.))
LOOP=LO0OP+1
IF(LOQP.GT.50) GO TO 70
DCALC=18.+PJ»144./{1545.+(TJ1+460.)}
IF{ABS(DENS-DCALC).LT. .0011) GO TO 50
IF{DENS.GT.DCALC) GO TO 17
IF{(FLAGM.LT.0.) GO TG 16
DTI=DTJ}/2.

16 TI=TIJ}-DTJ
FLAGP=1.
GO TO 15

70 WRITE(8,71)

71 FORMAT(1X,’STEAM TEMF LOOP")
STOP

17 IR(FLAGP.LT.0.) GO TO 18
DT}=DTI/2.

18 TI=TI+DTJ]
FLAGM=1.
GO TGO 15

20 FWO=100.«SQRT(20.)»8.33+XW/62.3
WS=0,
WC=0.
DENS=0.
PI=0.
X5=0.

C TEST FOR JACKET FILLING
IF(FULL.GT.0.) GO TO 30
AO=V]*56.5/15.83
VI=VI+DELTA+FWO
IF{V].GE. 18.83) FULL=1.
QJ=400.«AOw{TM-TJ)/60.
VITI=VITI4+DELTA(FWO»80.+ Q)
IF(VI.LE.0.) GO TO 25
TI=VITI/VI
GO TO K0

25 TJ=80.
GO TO 50
C FULL JACKET
30 QI=400.+56.5+{TM-TJ)/60. '
TPRINT=2.

C USE BIGGER DELTA ONCE JACKET IS FULL OF WATER
DELTA=.05

¢ EVALUATE DERIVATIVES
TIDOT=FWO=(80.-TI1}/18.83+Q1/(18.83x82.3}
TI=TI4+DELTA«TJDOT

50 CADOT=-K1xCA
CBDOT=KI1+«CA-K2:+CB
QM=160.%56.5«( T-TM }/60.
TDOT:(KItCAt40000.+K2*CB*5UUUU‘)I50.-QM{{42.4t50.)
TMDOT=(QM~QJ){'{512.*.12*9.42)

C INTEGRATION
TIME=TIME+DELTA
CA=CA+4CADOT+DELTA
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TABLE 5,13 (continued)

CB=CB+CBDOT+DELTA
T=T+TDOT*DELTA
TM=TM+TMDOT+DELTA
IF{T.GT.300,) STOP
IF(T.GT.200.) START=-1.
IF(T.GT.200.) CAM=1.
IF{CAM.GT.0.) PSET=PSET-DELTA*RAMP
IF(TIME.GT.100.) GO TO 56
IF(TIME.LT.TFLAG) GO TO 100
WRITE(8,55)TIME,CA,CB, XS, XW,T,TM,TJ,FW0,QJ,QM

55 FORMAT(1X,F5,1,2F7.3,2F5.2,4F6.1,2E10.2)
TFLAG=TFLAGH+TPRINT
GO TO 100

56 STOP
END

Results

TIME CA CB XS XW T TM

0.0 0.800
1.0 0.799
2.0 0.799
3.0 0.798
4.0 0.797
5.0 0.796
6.0 0.794
7.0 0.792
8.0 0.78¢
9.0 0.787
10.0 0.783
11.0 0.779
12.0 0.775
13.0 0.789
14.0 0.763
15.0 0.756
17.0 0.741
19.0 0.724
21.0 0.707
23.0 0.691
25.0¢ 0.675
27.0 0.659
20.0 0.644
31.0 0.630
33.0 0818
35.0 0.603
37.0 0.591
39.0 D.6TH
41.0 0.568
43.0 0.558
45.0 0.549
47.0 0.540
49.0 0.531
51.0 (1523
53.0 0.516
55.0 0.509
37.0 0.503
59.0 0.496
61.0 0.490

0.000 1.00 0.00 80.0 80.6 251.0
0.001 1.00 0.00 86.3 211.9 265.0
0.001 1.0G 0.00 96.4 234.2 261.0
0.002 1.00 0.00 106.7 239.0 260.0
0.003 1.00 0.00 116.7 240.8 262.0
0.005 1.00 0.00 126.3 242.6 261.0
0.006 1.00 0.00 135.7 243.8 265.0
G.008 0.97 0.00 144.7 244.9 260.0
0.011 0.80 0.00 153.5 245.9 262.0
0.014 0.62 0.00 162.1 246.7 263.0
0.017 0.46 0,00 170.6 247.3 259.0
0.021 0.29 0,00 178.9 248.0 259.0
0.026 0.12 0.00 187.3 248.8 259.0
0.631 0.00 0.04 195.6 243.4 244.0
0.037 0.00 0.20 203.2 232.6 212.7

TI

FWO

QJ

0.0 -0.17E+06 0.00E400
0.0 -0.43E+05 -0.19E+05
0.0 -0.27E+05 -G.21E+05
0.0 -0.22E+05 -0.20E+05
0.0 -0.22E4-05 -0.19E405
0.0 -0.19E+05 -0.18E405
0.0 -0.21E405 -0.16E405
0.0 -0.16E405 -0.15E+05
0.0 -0.12E405 -0.14E+05
0.0 -0.11E4-05 -0.13E405
0.0 -0.12E405 -0.12E4-05
0.0 -0.10E405 -0.10E4-05
0.0 -0.96E4+04 -0.93E404

0.0 -0.54E+03 -

11.9

0.044 0.00 9.34 210.4 222.9 203.2 20.1

0.059 0.00 0.53 219.7 159.1 98.5
0.076 0.00 0.59 222.4 132.9 88.5
0.092 0.00 0.61 223.0 127.1 6.9
0.108 G.00 0.61 222.9 125.8 86.6
0.123 0.00 0.60 222.5 125.5 86.5
0.138 0.0G 0.59 221.8 125.3 88.6
0.152 0.00 0.58 220.9 125.1 86.7
0.166 0.0G 0.55 219.6 124.9 86,9
0.178 0.00 0.53 218.0 124.7 87.1
0.191 0.00 6.49 215.1 124.4 87.5
0.202 0.00 0.45 214.0 124.1 87.5
0.213 0.00 0.41 211.5 123.3 88.5
0,223 0.00 0.36 208.9 123.6 89.3
0.232 0.00 0.30 206.0 123.4 90.4
0.241 .00 0.25 203.0 123.5 91.9
0.249 0.00 0.19 199.9 123.9 94.0
0.257 0.00 0.13 196.8 124.9 97.2
0.264 0,00 0.07 193.9 126.8 101.9
0.270 0.00 0,03 191.3 130.2 109.1
0.277 0.00 0.00 189.3 135.8 119.6
0.282 0.00 0.00 188.3 142.5 129.0
0.288 0.00 D.00 188.1 148.5 137.0
0.294 0.00 0.00 188.7 153.9 143.9

31.8
35.3
36.2
36.3
36.0
35.4
34.5

33.2

0.17E+404
0.51E+4+04
0.23E+05
0.1TE405
0.15E405
0.15E+405
0.15E405
0.15E4-05
0.14E+05
0.14E+05
0.14E+05
0.14E405
G.14E405
0.13E405
0.13E405
0.12E405
0.12E+05
0.11E+05
0.10E+05
0.94E+04
0.830E+04
0.62E+04
0.51E+4-04
0.43E+404
0.38E404

0.72E404

-0.44E404
-0.20E4-04

0.89E+404
0.13E+05
0.14E+05
0.15E+05
0.15E+405
0.15E+05
0.14E405
0.14E405
0.14E40a
0.14E405
0.14E405
0.13E+05
0.13E4-05
0.12E4-05
0.12E4-05
0.11E405
0.11E485
0.10E4-05
0.92E+404
0.81E+0D4
0.69E+04
0.60E4-04
0.53E+404

QM
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TABLE %13 (continued)

63.0 0.483 0,300 0.00 0.01 189.9 158.6 148.9 0.7 0.36E+04 0.47E+4+04
65.0 0.477 0.305 0.00 0,05 191.4 159.1 143.9 2.8 0.5TE+4+04 0.48E+04
67.0 0.470 0.311 0.00 6.07 192.5 153.8 132,9 4.3 0.78E+4+04 0.58E+04
69.0 0.464 0.317 0.00 0.08 192.6 146.8 123.7 4.7 0.87E+04 0.69E+04
71.0 0.457 0.322 6.00 0.07 191.8 141.9 1194 3.9 0.85E+404 0.7T5E+04
73.0 0.451 0.328 0.00 0.04 180.5 140.1 119.9 2.5 0.7TE+4+04 0.78E+04
75.0 0.445 0.333 0.00 0.02 18¢.1 141.3 124.3 1.1 0.65E4+04 0.72E404
77.0 0.439 0.338 0.00 0.00 188.0 145.2 131.8 0.0 0.51E404 0.65E+04
79.0 0,434 0.343 0.00 0.00 187.7 150.4 139.5 0.0 0.41E+04 0.56E+404
B1.0 0.428 ©.348 0.00 0.00 188.0 155.4 145.7 0.3 0.36E404 0.49E+04
83.0 0.422 0.352 0.00 .02 188.8 158.1 146.3 1.5 0.44E4+04 0.486E+04
85.0 0.417 0.357 0.00 0.04 189.7 156.6 140.8 2.7 D.59E+04 0.50E+04
87.0 0.411 0.362 0.00 0.06 190.0 152.2 133.4 3.3 0.TIE4+04 0.5TE+04
89.0 0.406 0.366 0.00 0.05 189.6 147.8 128.3 3.1 0.73E4+04 0.63E+04
91.0 0.401 0.371 0.00 0.04 188.7 145.3 127.1 2.2 0.69E+04 0.65E+04
92.0 0.395 0.375 0.00 0.02 187.6 145.5 120.7 1.1 C.60E+404 0.64E+04
95.0 0.390 0.379 0.00 0.00 188.8 148.0 135.3 0.3 0.48E404 0.59E40(4
97.0 ©.385 0.383 0.00 0.00 186.4 152.3 142.2 0.0 0.38E+04 0.52E+04
99.0 0.381 0.387 0.00 0.01 186.6 156.6 147.2 0.4 0.35E404 0.45E-+04

A proportional feedback controller is used with its output biased at 7 psig
(i.e., its output pressure is 7 psig when there is zero error).

P, =7+ K(P* — Pyq) (5.53)

The setpoint signal P** comes from a pneumatic function generator. When the
process temperature gets up to 200°F the P* signal is ramped slowly downward
to prevent too much loss of component B, as discussed in Sec. 3.9.

Pt = 12 — RAMP(t — £500) (5.54)

where RAMP = rate of P** change with time, psi/min
t = batch time, min
t;00 = time when process temperature T reaches 200°F

58 TERNARY BATCH DISTILLATION
WITH HOLDUP

The model of a multicomponent batch distillation column was derived in Sec.
3.13. For a simulation example, let us consider a ternary mixture. Three products
will be produced and two “slop” cuts may also be produced. Constant relative
volatility, equimolal overflow, constant tray holdup, and ideal trays are assumed.

Table 5.14 gives a digital computer FORTRAN program for this three-
component batch distillation dynamic simulation. The specific example is a
column with 20 trays and relative volatilities of 9, 3, and 1. The vapor flow rate is
constant at 100 mol/h.

The column starts up on total reflux (no distillate is withdrawn) until the
distillate composition reaches the desired purity level. The time at total reflux is
called TE in the program. Then distillate is withdrawn at a fixed rate of 40 mol/h.
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TABLE 3.14
Ternary batch distillation with slop cuts

C AFTER TOTAL REFLUX STARTUP, DISTILLATE FLOW RATE IS FIXED
C ASSUMPTIONS: CONSTANT RELATIVE VOLATILITIES (TERNARY)

c EQUIMOLAL OVERFLOW, IDEAL TRAYS

[

DIMENSION X(100,3),Y(100.3),Z(S).ALPHA(3],IIBXB{3),XD(3),XB(3),
-+ YB(3),DX(10[],3),DHBXB(S),DXD(3),XK(3],YY(S),XSI[3),HXSI(3)
DIMENSTION XBO(3),X52(3),HXS52(3)
REAL KC
DATA XDI1SP,XD25P, XB35P,7,ALPHA/.95,.95,.95,.3,.3,.4,9.,3.,1./
DATA HBO,HD,HN,V,DELTA/400.,10.,1,,100.,.001/
DATA NT,DFIX/20,40./
WRITE(6,1) Z,ALPHA
1 FORMAT(//,’ FEED COMPOSITION = "3F8.5,/,' ALPHA = *3F8.3)
DO 5 =13
5 XBO(J)=2Z(I
WRITE(6,2)NT,HBO,DFIX
2 FORMAT(//, NT = 13 HBO = " F8.4, DFIX = ",F&.4)
C INITIAL CONDITIONS
HXDi=0.
HXD2=0.
HD1=0.
HD2-—=0.
XD1AV=1.
KD2AV=].
TP2=0.
HS52=0.
TPRINT=0.
TIME=0.
HB=HBO-HD-NT+HN
HS1=0.
DO 10 J=13
HXS1(1=0.
X82(=0.
HXS82({J)=0.
XB{J)=XBO(I)
HBXB(1}=HB+XBO(I)
PO 6 N=1,NT
6 X(N.J)=XBO(J)
10 XD(J)=XBO(1)
WRITE(6,19)
I9FORMAT('TIME D XBl XB2 XBi XDi XD2 XD3
+ XD1AV XD2AVY
FLAGTE=-1.
FLAGP1=-1.
FLAGP2=-1.
FLAGS1=-1.
20 CALL BUBPT{XB,YB,ALPHA)
DO 25 N=1,NT
DO 2431=13
24 XX())=X(N,J}
CALL BUBPT(XX,YY,ALPHA)
DO 26 1=1,3
26 Y{N,I)=YY{J}
25 CONTINUE
C TOTAL REFLUX UNTIL X¥1) REACHES XD1SP
D=DFIX
IF(FLAGTE.LT.0.) D=0.
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TABLE 5.14 (continrued)

R=VY-D
DIIB=-D
DO 40 J=1,3
DHBXB(J)=RsX(1,1)-V+YB(J)
DX(1,1)=(V*YB(J)+R*X(2,0}-V+Y(1,1)-R«X(1,J))/HN
DO 35 N=2,NT-1
35 DX(N,J)=(V«¥{N-1,0)+BaX(N+1,J)-V»¥(N,1)}-R+X(N,J))/HN
. DX(NT,=(V+Y(NT-1,J)+R+XD(1}-Va¥Y(NTJ)-RaX(NT,T}}/HN
40 DXD{D=V+(¥(NT,1)-XD(J))/HD
IF(TIME.LT.TPRINT} GO TO 50
WRITE(8,41)TTME,D,XB XD XDIAV XD2AV
41 FORMAT(F5.2,F8.1,8F8.5)
TPRINT=TPRINT+.1
50 TIME=TIME+DELTA
HB=HB+DHB+DELTA
IF(EB.LE.0.)THEN
WRITE(8,%) 'STILL POT EMPTY’
STOP
ENDIF
DO 60 J=1,3 :
HBXB(J)=HBXB(J}4+DHBXB(J)*DELTA
XB(J)=HBXB(J)/HB
DO 55 N=1,NT
55 X{N,J}=X(N,J)+DX(N,J)*»DELTA
60 XD(J)=XD(J)+DXD{I)}+DELTA
IF{XB(1}.LT..00001yTHEN
XB(1)=0.
XB{3)=1.-XB(2}
ENDIF
IF(FLAGTE.GT.0.}GO TO 65
C START P1 WITHDRAWAL; FLAGTE = 1 IF P1 PRODUCT 15 BEING REMOVED
IF(XD(1}.GE.XD1SP } THEN
FLAGTE=1.
TE=TIME
WRITF(6,61)TE
61 FORMAT(" TE = ',F8.4)
GO TO 20
ENTIF
86 CONTINUE
IF(FLAGP1.GT.0.)G0O TG 70
HD1=HD14D+DELTA
HXD1=HXD1+D+«XD(1)+DELTA
IF{D.GT.0.)XD1AV=HXD1/HD1
C START SLOP CUT NO. 1; FLAGP1 = 1 IF 5LOP NO. 1 IS BEING REMOVLD
IF(XD1AV.LT.XD15SP)THEN :
FLAGP1=1.
TP1=TIME
WRITE(8,66)TF1
66 FORMAT(® TP1 ="F8.4)
ENDIF
70 IRFLAGP1.LE.0.}GQ TO 20
IF(FLAGS1.GT.0.)GO TO 80
C START P2 WITHDRAWAL; FLAGSt =1 IF P2 PRODUCT IS BEING REMOVED
151=0.
DO 73 3=1,3
HXSL{N=HXS1(1)+D+XD{I}»DELTA
73 HS1=HS1+HXSI(])
DO 74 J=1,38
T4 X51{J)=HXS51(J)/HS1

159
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TABLE 5,14 (continued)

IF(XD{2).GE.XD2SP ) THEN
FLAGS1=1,
TSLOP1=TIME
WRITE(6,71)TSLOP1
71 FORMAT{® TSLOPI = *,F8.4)
ENDIF
80 IF(FLAGS1.LT.0.)GO TO 20
IF(FLAGP2.GT.0.)GO TO 80
HD2=HD2+D+DELTA
HXD2=HXD2+ DXD{2}»DELTA
IF(HD2.GT.0.) XDZAV=HXD2/HD2
IF(XD2AV.LE.XD2SP)THEN
FLAGP2=1.
TP2=TIME
WRITE(6,89)TP2
89 FORMAT(® TP2 = ",F8.4)
ENDIF
T START SLOP CUT NO. 2; FLAGP2 = | IF SLOP NQ. 2 I§ BEING REMOVED
90 IF(FLAGP2.LT.0.)GO TO 95

HXS2(J)=HX52(J)+D+XD(1)+DELTA
93 HS2=HS52+IIX52(J)
DO 94 I=1,3
94 XS2(})=HXS2())/HS2
95 SUM=0.
DO 91 K=1,NT
91 SUM=SUM+X(N 3)+HN
SUM=SUM+XB(3)«HB
XB3AV=8UM/(HB+NT+HN)
IF(XB3AV.GE.XB3SP)GO TO 99
GO TO 20
99 HS2TOT=HD{HS2
TF{FLAGP2.LT.0.yTHEN
HTEST=HD+HD2
XTEST2=(HXD2+HD+XD(2))/HTFST
IF(XTEST2.GT.XD2SPYTHEN
HD2=HD24HD
HS2TOT=0.
DO 96 1=1,3
96 X92(1)=0.
ENDIF
ENDIF
TF=TIME
HB=HB+NT+HN
CAP=(HD1+HB+HD2 )/(TF+.5)
WRITE(6,98)HD1,HD2,HB, TF,TP1,TSLOP1, TP2,TF,CAP
48 FORMAT( P1 ="F8.2" P2 =" F62"P3 =" Fé6.2,/,
4+’ TE = ",F5.2 TP1 = "F5.2, TSLOP1 = "F5.2, TP2 = *,F5.2,
+' TF = "F5.2, CAP = "F$.2)
WRITE(6,104)HS1,XS?
104 FORMAT(’ §1 = * F8.4," X51 = ",3F8.5)
IF(H52TOT.GT.0.)THEN

DO 106 ]=1,3
106 XS2(1)=( HS2«XS2(J)+ HD#XD}{J))/HS2TOT
ENDIF

WRITE(6,105)HS2TOT,X52
105 FORMAT(* §2 = *F8.4," X52 = ' AFA.5)




SIMULATION ExaMPLES 161

TABLE 5.14 (continued)

STOP
END
c*********************#*‘F!l*#'*’t*‘tt**ttt********
SUBROUTINE BUBPT(X,Y,ALPHA)
DIMENSION X(3),Y(3),ALPHA(3)
SUM=0,
DO 10 1=1,3
10 SUM=SUM+ALPHA(J)*X{J)
DO 20 J=1,3
20 Y(3)=ALPHA(J)*X{J}/SUM
RETURN
END

Results

FEED COMPOSITION = .30000 .30000 .40000
ALPHA = 95.000 3.000 1.000

NT = 20 HBO = 400.0000 DFIX = 40.0000
TIME D XBl1 XB2 XB3 XD1 XD2 XD3 XDIAV XD

.00 .0 .30000 .30000 .40000 .30000 .30000 .40000 1.00000 1.00
.10 .0 28982 .30201 .40817 59870 .21791 .18339 1.00000 1.00
.20 .0 27992 .30395 .41613 .78220 .13734 .08046 1.00000 1.00
30 .0 27025 .30631 .42343 .88711 .07884 .03406 1.0000G 1.00
40 .0 26153 .31013 42834 .94275 04312 .01413 1.00000 1.00

TE = .4220

50 40.0 .25291 31377 .43332 .9T014 .02393 .00593 96131 1.00
B0 40.0 24406 31719 .43874 98366 .01382 00252 97043 1.00
.70 40,0 23512 .32078 .44410 95086 .00S08 00108 .97663 1.00
80 40.0 (22616 .32446 .44938 .99477 .00479 .00045 .98097 1.00
90 40.0 21718 .32818 .45466 .09693 .00288 .00019 .98410 1.00
1.00 40.0 .20818 .33186 .45996 .99816 .00176 .00008 .98644 1.00
1.10 40.0 .19914 .33552 .46534 .99887 .00110 .00003 .98823 1.00
1.20 40.0 .19009 .33911 .47080 .89928 .00070 .000O1 .98962 1.00
1.30 40.0 .18093 .34263 .47644 .99953 .00047 00001 .99075 1.00
1.40 40.0 17186 .34509 48215 .99967 00033 .00000 .99165 1.0C
1.50 40.0 .16281 .34921 .48799 .59975 .00025 .0000G .99240 1.0G
1.60 40.0 .15380 .35224 .49396 .99980 .00020 .00000 .99303 1.00
1.70 40.0 .14486 ,35506 .50008 .99982 .00018 .00000 .99356 1.00
1.80 40.0 .13600 .35765 .50635 .99981 .00019 .00000 .99401 1.00
1.90 40.0 .12727 .35997 .512¥7 .99977 .00023 00000 .99440 1.00
2.00 40.0 .11867 .36198 .51935 .99968 .00032 .00000 .99474 1.00
2.10 40.0 .11025 .36366 .52609 .09947 .00053 .00000 .99503 1.00
220 40.0 .10203 .36496 .53301 .99898 00102 .00000 .99527 1.00
2.30 40.0 .05403 .36587 .54010 99767 .00233 .00000 .99543 1.00
2.40 40.0 .08636 .36634 .54730 .99366 .00634 .00000 .99546 1.00
2.50 40.0 .0T889 .36635 .554T76 .979¢95 .02005 .00000 .98511 1.00
2.60 40.0 .07172 .36586 .56242 93873 .06127 .00000 .99360 1.00
2.70 40.0 .06488 .36485 .5T027 .86334 .13666 .00000 .98961 1.00
2.80 40.0 .05838 .36328 .5T834 .780687 .21933 .00000 .98253 1.00
, 290 40.0 05225 .36114 .58662 .T0573 .29427 00000 .97282 1.00
i 3.00 40.0 .04649 .35839 .59512 .63939 .36081 .0000¢ .96114 1.00
4 TP1 = 3.0860 '

3.10 40.0 .04112 .35503 .60385 .58007 .41993 .00000 .94500 1.00
3.20 40.0 .03615 .35103 61282 .52624 47376 .00000 .94%90 1.00
3.30 40.0 .03157 .34639 .62204 47676 .52324 .00000 .94690 1.00
3.40 40.0 02740 .34110 .63150 .43082 .56918 .00000 .94990 1.00
3.50 40.0 02361 .33517 .64122 38790 .G1210 .00000 .94990 1.00
3.60 40.0 02020 .32860 .65121 .34772 .65228 .00000 .94990 1.00
3.70 40.0 .01715 .32139 .66145 .31010 .6899¢ .00000 .94990 1.00
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TABLE 5.14 (continued)

3.80 40.0 01446 .31367 .67197 .27498 .72501 .00000 .94990 1.00
3.90 40.0 .01209 .30516 .68275 .24236 .75764 .00000 .94990 1.00
4.00 40.0 .01002 20618 69380 .21222 78778 .00000 .94990 1.00
4.1¢ 40.0 .00824 .28667 .70509 .18457 .81543 .00000 94990 1.00
420 40.0 .00872 27666 .71662 .15037 84062 .00000 .94990 1.00
4.3¢ 40.0 .00543 .26622 .72835 .13661 .86339 00000 .94990 1.00
4.40 40.¢ .00434 25539 .74027 .1162! .BR379 .00000 .94990 1.00
4.50 40.0 .00344 .24425 .75232 .09808 .90192 00001 .94990 1.00
4.60 40.0 .00269 23285 .76445 .08210 91789 .00001 .94990 1.00
4.70 40.¢ 00209 .22128 .77663 .06618 .93183 .00D01 .94990 L.00
4.80 40.0 00160 .20961 .78879 .05609 .94389 .00002 .94990 1.00
TSLOP1 = 4.8580

4.90 40.0 00121 .19790 .80085 .04575 .95422 00003 .94990 .95
5.00 40.0 00091 .18621 .B1288 .03697 .96297 .00006 .94980 .95
5.10 400 00067 .17460 .82473 .02960 .97029 .00011 94990 .06
5.20 40.0 .00045 .18310 .B3641 .02346 .97620 .00025 .94990 .98
5.30 40.0 .00035 .15178 .84787 .01841 58090 .00089 04000 .96
540 40.0 00025 .14068 .B5008 .01430 .98344 .00226 .94990 .97
5.50 40.0 .00017 .12983 .87000 .01100 .9801¢ .00885 .94990 .97
5.60 40.0 .00012 .11920 .88O50 .00837 .95491 .03672 .34950 .97
570 40.0 00008 .10909 .89083 .0062% .58245 .11126 .94990 .06
5.80 40.0 .00005 .00828 .00087 .00465 .78864 .20667 .94990 .95
TP2 = 5.8130

5.90 40.0 .00003 .0BO88 .91008 .00342 .70398 .20260 .04950 .94
6.00 40.0 .00002 .08095 .91903 .00249 .63133 .36618 .94930 .54
6.10 40.0 .00001 .07250 .92740 .00179 .56837 42083 .04990 .94
6.20 400 00000 .06455 .93545 .00128 51278 48584 .94990 94
6.30 40.0 .00000 .05713 .94287 .00086 .46280 53633 .94990 .94
6.40 40.0 .00000 .05024 .94976 .00058 41717 .58225 .94990 .94
Pl = 106.56 P2 = 38.24 P3 = 149.84

TE = .42 TF1 = 3.09 TSLOPL == 4.86 TP2 = 5.81 TF = 6.43 CAP = 432,
51 = 70.9200 X51 = .25292 .74708 .00000

82 = 345600 X532 = .00154 .52131 47715

Three products (P1, P2, and P3) and two slop cuts (S1 and S2} are pro-
duced. The average composition of the products are 95 mole percent. The P1
product is mostly the lightest component (component 1). The P2 product is
mostly intermediate component (number 2) with some impurities of both the
light and the heavy components, The final product P3 is what is left in the still
pot and on the trays. The times to produce the various products and slop cuts
are given in the results shown in Table 5.14. The total time for the batch distilla-
tion in this example is 6.4 hours.

Note that the 70.92 moles of the first slop cut contain mostly light and
intermediate component (25/75 mol %), while the 34.5 moles of second slop cut
contain mostly intermediate and heavy components (52/48 mol %). Recycling
these slop cuts back to the next batch cycle makes little thermodynamic sense,
but that is the normal procedure in practice. '

PROBLEMS

5.1. Simulate the nonisothermal CSTR of Sec. 5.3, using Euler and fourth-order Runge-
Kutta, and compare maximum step sizes and computation times that give 0.1% accu-
racy.
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5.2. Simulate the ideal binary distillation column of Sec. 5.4, using Euler and fourth-order
Runge-Kutta and compare computation times.

5.3, The initial startup of an adiabatic, gas-phase packed tubular reactor makes a good
example of how a distributed system can be lumped into a series of CSTRs in order to
study the dynamic response. The reactor is a cylindrical vessel (3 feet ID by 20 feet
long) packed with a metal packing. The packing occupies 5 percent of the total
volume, provides 50 ft of arca per ft* of total volume, weighs 400 Ib,/ft’ and has a
heat capacity of 0.1 Btu/lb,, °F. The heat transfer coefficient between the packing and
the gas is 10 Btu/h ft2 °F.

_ The reaction occurring is first order:

A LN B
A dilute mixture of reactant A in product B is fed into the reactor at y, mole fraction
A and temperature T, = S00°F. The heat of reaction is —30,000 Btu/lb-mol A. The
specific reaction rate is given by

k=4 x 102 e” 15,000/RT

Assume perfect gases with molecular weights of 40 and heat capacities equal to 0.15
Btu/lb,, °F.

The pressure at the inlet of the reactor is 100 psia. The pressure drop over the
reactor is 5 psi at the design superficial velocity is 1 ft/s at inlet conditions.

Assume that this distributed system can be adequately modeled by a five-lump
model of equal lengths. Inside each lump the gas temperature and the composition
vary with time, as does the packing temperatute.

The packing and gas in each section are initially at 500°F with no reactant in
the system. At time zero, y, is raised to 0.10 mole fraction A. Simulate the system on a
digital computer and find the dynamic changes in temperatures and concentrations in
all the sections.

£4 A 6-inch ID pipe, 300 feet long, connects two process units. The liquid flows through
the pipe in essentially plug-flow conditions, so the pipe acts as a pure deadtime. This
deadtime varies with the flow rate through the pipe. From time equals zero, the flow
rate is 1000 gpm for 2 minutes. Then it dreps to 500 gpm and holds constant for 3
minutes. Then it jumps to 2000 gpm for 2 minutes and finally returns to 1000 gpm.
Liquid density is 50 1b/ft>.

While these flow rate changes are occurring, the temperature of the fluid enter-
ing the pipe varies sinusoidally:

Thaig = 100 + 10 sin (wi)

where T, = inlet temperature, °F
w = 30 radians per minute

Write a digital computer program that gives the dynamic changes in the tem-
perature of the liquid leaving the pipe, T, ., for this variable deadtime process.

Hint: The easiest way to handle deadtime in a digital simulation is to set up an
artay for the variable to be delayed. At each point in time you use the variable at the
bottom of the array as the delayed variable. Then each value is moved down one
position in the array and the current undelayed value is stuffed into the top of the
array. For fixed step sizes and fixed deadtimes, this is easy to program. For variable
step sizes and variable deadtimes, the programming is more complex.







PART

TIME-DOMAIN
DYNAMICS

AND
CONTROL

Il this section we will study the time-dependent behavior of some chemical
engineering systems, both openloop (without control) and closedloop (with
controllers included). Systems will be described by differential equations, and so-
lutions will be in terms of time-dependent functions. Thus, our language for this
part of the book will be “English.” In the next part we will learn a little
“Russian™ in order to work in the Laplace domain where the notation is more
simple than in “English.” Then in Part V we will study some “Chinese” because
of its ability to easily handle much more complex systems.

In the computer simulation studies of the two preceding chapters, the
systems and their deseribing equations could be quite complex and nonlinear. In
the remaining parts of this book only systems described by linear ordinary differ-
enfial equations will be considered (linearity is defined in Chap. 6). The reason we
are limited to linear systems is that practically all the analytical mathematical
techniques currently available are applicable only to linear equations.
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Since most chemical engineering systems are nonlinear, it might appear to
be a waste of time to study methods that are limited to linear systems. However,
linear techniques are of great practical importance, particularly for continuous
processes, because the nonlinear equations describing most systems can be linear-
ized around some steadystate operating condition. The resulting linear equations
adequately describe the dynamic response of the system in some region around
the steadystate conditions. The size of the region over which the linear model is
valid will vary with the degree of nonlinearity of the process and the magnitude
of the disturbances. In many processes the linear model can be successfully used
to study dynamics and, more importantly, to design controllers.

Complex systems can usually be broken down into a number of simple
clements. We must understand the dynamics of these simple systems before we
tackle the more complex. We will start out looking at some simple uncontrolled
processes in Chap. 6. We will examine the openloop dynamics or the response of
the system to a disturbance, starting from an initial condition and with no feed-
back controllers.

Then in Chaps. 7 and 8 we will look at closedlocep systems. Instrumentation
hardware, controller types and performance, controller tuning, and various types
of control systems structures will be discussed.



CHAPTER

6

TIME-DOMAIN
DYNAMICS

Studying the dynamics of systems in the time domain involves direct solutions of
differential equations. The computer simulation techniques of Part TI are very
general in the sense that they can give solutions to very complex nonlinear prob-
lems. However, they are also very specific in the sense that they provide a solu-
tion to only the particular numerical case fed into the computer.

The classical analytical techniques discussed in this chapter are limited to
linear ordinary differential equations. But they yield general analytical solutions
that apply for any values of parameters, initial conditions, and forcing functions.

We will start by briefly classifying and defining types of systems and types
of disturbances. Then we will learn how to linearize nonlinear equations. It is
assumed that you have had a course in differential equations, but we will review
some of the most nseful solution techniques for simple ordinary differential equa-
tions. Finally we will show how useful dynamic insights can sometimes be
obtained from steadystate equations alone,

6.1 CLASSIFICATION AND DEFINITION

Processes and their dynamics can be classified in several ways:

1. Number of independent variables

(@) Lumped if time is the only independent variable; described by ordinary
differential equations.
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{b) Distributed if time and spatial independent variables are required;
described by partial differential equations.

2. Linearity

(@) Linear if all functions in the equations are linear functions (see Sec. 6.2)
(b} Nonlinear if not linear.

3. Stability

(a) Stable if “self-regulatory” so that variables converge to some steadystate
when disturbed.
() Unstabie if variables go to infinity (mathematically).

Most processes are openloop stable. However, the exothermic irreversible
chemical reactor is a notable example of a process that can be openloop
unstable. All real processes can be made closedloop unstable (unstable with a
feedback controller in service) and therefore one of the principal objectives in
feedback controller design is to avoid closedloop instability.

4. Order

If a system is deseribed by one ordinary differential equation with derivatives
of order N, the system is called Nth-order.

d¥x d¥-1x dx '
aﬁw+aﬁ_;W+"'+alz+aox=ﬂ,] (6.1)

where q; are constants and f,, is the forcing function or disturbance. Two very
important special casesare for N =t and N = 2.
First-order:

a; % +apx =fy 6.2)
Second-order:

d*x dx
a; — i +a; — & +dgX =fiy (6.3}

The “standard ™ forms that we will usually employ for the above are

First-order:

dx '
T b x =y (64)
Second-order:
d2
i + 2z C — + X =fur (6.5)

where © = process time constant {either openloop or closedloop)
{ = damping coefficient (either openloop or closedloop)
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One of the most important parameters that we will use in the remaining sec-
tions of this book is the damping coefficient of the closedloop system. We
typically tune a controller to give a closedloop system that has a damping
coefficient of about 0.3.

Disturbances can also be classified and defined in several ways.

1. Shape (see Fig. 6.1)

(@)

ity

{c)

@)

(e}

Step. Step disturbances are functions that change instantaneously from one
level to another and are thereafter constant. If the size of the step is equal
to unity, the disturbance is called the unit step function u,, defined as

uy=1 fore>0 ©6)

The response of a system to a step disturbance is called the step response
or the transient response.
Pulse. A pulse is a function of arbitrary shape (but usually rectangular or
triangular) that begins and ends at the same level. A rectangular pulse is
simply the sum of one positive step function made at time zero and one
negative step function made D minutes later. D is the delay time or dead-
time, -

Rectangular pulse of height 1 and width D = ) — 4, _p, (6.7)

Impuise. The impulse is defined as the Dirac delta function, an infinitely
high pulse whose width is zero and whose area is unity. This kind of dis-
turbance is, of course, a pure mathematical fiction, but we will find it a
useful tool. ' _ :

Ramp. Ramp inputs are functions that change linearly with time,

Ramp function = Kt (6.8)

where K is a constant. The classical example is the change in the setpoint
to an antiaircraft gun as the airplane sweeps across the sky. Chemical
engineering examples include batch reactor temperature or pressure set-
point changes with time.

Sinusoidal. Pure periodic sine and cosine inputs seldom occur in real
chemical engineering systems. However, the response of systems to this
kind of forcing function (called the frequency response of the system) is of
great practical importance, as we will show in our “Chinese” lessons in
Part 'V and in muitivariable control applications in Part V1.

2. Location of disturbance in feedback loop

Let us now consider a process with a feedback controller in service. This

closedloop system can experience disturbances at two different spots in the
feedback loop: load disturbances and setpoint disturbances.
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1. Step f(r}
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] _______________
“Unit step function y,,
¢
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! ! R
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FIGURE &.1

Disturbance shapes.
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Most disturbances in chemical enginecring systems are load dis-
turbances, such as changes in throughput, feed composition, supply steam
pressure, cooling water temperature, etc. The feedback controller’s function
when a load disturbance occurs is to return the controlled variable to its set-
point by suitable changes in the manipulated variable. The closedloop
response to a load disturbance is called the regulator response or the closed-
loop load response.

Setpoint changes can also be made, particularly in batch processes or in
changing from one operating condition to another in a continuous process.
These setpoint changes also act as disturbances to the closedloop system. The
function of the feedback controller is to drive the controlled variable to match
the new setpoint. The closedloop response to a setpoint disturbance is called
the serve response (from the early applications of feedback control in mechani-
cal servomechanism tracking systems).

62 LINEARIZATION AND
PERTURBATION VARIABLES

6.2.1 Linearization

As mentioned earlier, we must convert the rigorous nonlinear differential equa-
tions describing the system into linear differential equations if we are to be able
to use the powerful linear mathematical techniques.

The first question to be answered is just what is a linear differential equa-
tion. Basically it is one that contains variables only to the first power in any one
term of the equation. If square roots, squares, exponentlals products of variables,
etc., appear in the equation, it is nonlinear:

Linear example

b _
ay — ot + agx = fi (6.9

where a, and a, are constants or functions of time only, not of dependent vari-
ables or their derivatives,

Nonlinear examples

dx
R (6.10)

dx
ay = + a5(x)* = fiy {6.11)

dx .
1 — + @g€" =f(,) (6.12)
dx

a d_: + ao X1y X200 =Jio (6.13)

where x, and x, are.both dependent variables.
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Mathematically, a linear differential equation is one for which the following
two properties hold:

1. If x,, is a solution, then ¢x, is also a solution, where ¢ is a constant.
2. If x is a solulion and x; is also a solution, then x, + x, is a solution. i

Linearization is quite straightforward. All we do is take the nonlinear func-
tions, expand them in Taylor series expansions around the steadystate operating
level, and neglect all terms after the first partial derivatives.

Let us assume we have a nonlinear function f of the process variables x,
and x;: fi;, ., For example, x, could be mole fraction or temperature or flow
rate. We will denote the steadystate values of these variables by using an over-
score:

x; = steadystate value of x,
X, = steadystate value of x;

Now we expand the function f, .,, around its steadystate value fz, x,).

af _
Jixt, 2y = Sz 30 + (axl)lil,fz](xl —Xy)
3f) - (azf) (x4 — 5‘1)2 :
+| = X2 — X} + 3 —+ - (6.19)
7 (axz (ia.i:l( 2 0%z zn 2! . _

iy

B Z"ix_. Linearization consists of truncating the series after the first partial derivatives.

£
“ .

- _ d , & _
. Joesxn = Sz e + (_f) (xg — %) + (a_f) (x; —%3)  (6.15)
_ (%1, %2) X2/ (x5 %)

FEa

&x,

We are approximating the real function by a linear function. The process is
sketched graphically in Fig. 6.2 for a function of a single variable, The method is
best illustrated in some common examples.

Example 6.1. Consider the square-toot dependence of flow out of a tank on the
liquid height in the tank. '

Fo=KJ/h (6.16)

Fiey 1]
oo 2],

i . Lincar approximation:

h ﬁf] -
— + - 7
fi= [ﬁ ) x—X)

FIGURE 6.2
x . . Linearization.
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The Taylor series expansion around the steadystate value of k, which is i in our
noménclature, is

. aF _ [(P*F\ (h-h?
fo="Fo+ (3")ci}(h —At (5’12)@ TR

x Py + KR Y)gih — h) y

K N
Fo K+ = (h—F) (6.17)

/ 2/k

Exzmple 6.2. The Arrhenius temperature dependence of the specific reaction rate k
is a highly nonlinear function that is linearized as follows:

kiny = e ™ HRT
- ( k _ 6.18)
ko = ke + (ﬁ)ﬂ']{]— =T}
- Ek "
kmy =k + g (T - T ' (6.19)

where k= kg /

Example 6.3. ‘The product of two dependent variables is a nonlinear function of the
two variables:

Jican=CaF (6.20)
Lincarizing:
af of _
o F - - —_— F-F 6.21
Jown =Jeann + (acﬁ)(Cg.F)(CA Ca) + (BF)(E,.,;?)( ) (6.21)
CMtJ F 0= CAF- + F {CA(rJ - CA) + CA(F n - F ) {6-22)

Notice that the linearization process converts the nonlinear function {the product of
two dependent yariables) into a linear function containing two terms.

Example 6.4. fConsider the nonlinear ordinary differential equation for the gravity-

flow tank of Example 2.9,
dv g K:g . :
— == = ' . 2
dt (L) ( pd, g o (623

v? =% + (28)fr — D) (6.24)

Linearizing the v term gives

Thus Eq. (6.23) becomes -

dl? a 2ﬁKF H. EZK.F g '
a_(gy, 2
- (Ep- (5% 629
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~

This ODE is now linear. The terms in the parentheses are constants, which depend,
of course, on the steadystate around which the system is linearized.

Example 6.5, The component continuity ‘equation for an irreversible nth-order,
nonisothermal reaction occurring in a constant-volume, variable-throughput

CSTR is
ch r - EiRT
5 = FoCao = FCo— V(CpYae™™ {6.26)
Linearization gives
dci\ ] 0 E = i
4 ‘RT = [f'o Cag + Fo(c.\o - Cm) + CAn(Fo - Fu}]

_[FCA+F(CA“C_'A)+CA(F_F_)]/ e .
_ V[EC:. +RkC N (Ca — C) {%_(T - T)] 627)

So far we have looked at examples where all the nonlinearity is in the
derivative terms, ie., the right-hand sides of the ODE. Quite often the model of a
system will give an ODE which contains nonlinear terms inside the time deriv-
ative itself. For example, suppose the model of a nonlinear system is

%3) =Kk (6.28)

The correct procedure for linearizing this type of equation is to rearrange it so

that all the nonlinear functions appear only on the right-hand side of the ODE -

and then linearize in the normal way. For the example given in Eq. (6.28), we
differentiate the A* term to get

" 3p2 % =Kk (6.29)
Then rearrangement gives '
dh K
-3 ()13 (6.30)
Now we are ready to linearize. |
dh K oo s, O(K oo A , |
i U s (3 (h) :m(h —h) (6.31)
@_E -1.5 —1.5K [y — 2.5 N -
=3 (h) + ( 3 (h) h— k) | (6.32)
d_h_g'w.s '___E v = 2.5 .
-6 (h) + ( 3 (h) h (6.33)

mnm._ T L
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FIGURE 6.3 )
+ Perturbation variables. d

This is a linear ODE with constant coefficients:

dh
B oot arh | (6.34)

6.2.2 Perturbation Variables

We will find it very useful in practically all the linear dynamics and control
studies in the rest of the book to look at the changes of variables away from
steadystate values instead of the absolute variables themselves. Why this is useful
will becomeé apparent in the discussion below.

Since the total variables are functions of time, X, their departures from the
steadystate values X will also be functions of time, as sketched in Fig. 6.3. These
departures from steadystate are called perturbations or perturbation variables. We
will use, for the present, the symbol xZ,. Thus the perturbation in x is defined:

Xfy = X — X (6.35)

The equations describing the linear system can now be expressed in terms
of these perturbation variables. When this is done, two very useful results occur:

1. The terms in the ordinary differential equation with just constants in them
drop out. .

2. The initial conditions for the perturbation variables are all equal to zero if the
starting. point is the steadystate operating condition around which the equa-
tions have been linearized.

Both of the above greatly simplify the linearized equations. For example, if
the perturbations in velocity and liquid height are used in Eq. (6.25), we get

d(® + vf) g\ 2WKrg. \, . o*Kp Qc)
T _ (2 | D Bacduls -3 | 2 AP
dt (L)(h @ ( P lp )(U vﬂ’) ( pA (636)

»

Since ¥ is a constant

) (9\,, zﬁxrgc) (gﬁ mpgc)
=(Z e, — | —F% e _—F= 6.
C?Jt (L)hm oA, b+ \ D~ pa, (6.37)
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Now consider Eq. (6.23) under steadystate conditions. At steadystate v will be
equal to 7, a constant, and h will be equal to h, another constant,

df) g\ - Krg - .

—_— = 0 = -_— - =L z ,

oo (2 (52)
Therefore the last term in Eq. (6.37) is equal to zero. We end up with a linear
ordinary differential equation with constant coefficients in terms of perturbation

variables.
i, (g 2K, g,
7;.1 = (E)hf,, - ( P A’ )vg, (6.39)
P
In a similar way Eq. (6.27) can be written in terms of perturbations in Ca.Cuo»

Fo,F,and T.

v dCy + C})
dt

= (Fo)CRo + (Cao)F5 — (F)CE — (C)F?

— (VrkCy)CK + (Vi%E)TP
+ [FoCuo— FC\ — VECE] (6.40)

Application of Eq. {6.26) under steadystate conditions shows that the last term in
Eq. (6.40) is just equal to zero. So we end up with a simple linear ODE in terms
of perturbation variables.

dCi - ~ =
V=g = FolCho + (CrolF§ — (AIC] — (COF”
_ (VmkCHCE + ( V";%E)Tﬂ (641)

Since we will be using perturbation variables most of the time, we will often
not bother to use the superscript p. It will be understood that whenever we write
the linearized equations for the system all variables will be perturbation vari-
ables. Thus Eqs. (6.39) and (6.41) can be written

v _(g), (2°Krs.
d:_(L)h ( pA, )v o
dCA = =] » h

V=2 = (Fo)Cao + (CaidFo — (FIC, — (CAF

R {6.43)

Note that the initial conditions of all these perturbation variables are zero
since all variables start at the initial steadystate values. This will prove to simplify
things significantly when we start using Laplace transforms in Part IV.

—(VakCy NG, + (ch1 E)T
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63 RESPONSES OF SIMPLE
LINEAR SYSTEMS

6.3.1 First-Order Linear Ordinary

Differential Equation
Consider the general firsi-order linear ODE
dx
2 FPox= Qo (6.44)

with a given value of x known at a fixed point in time: x,,, = X¢. Usually this is
an initial n where t, = 0.
Multiply both sides of Eq. (6.44) by the mtegratlng factor exp {§ P dt).

% exp (J P dt) + Pyx exp (J. P dr) =@, eXp (J.P dt)

Combining the two terms on the left-hand side of the equation aBove gives

% [x exp (J‘ P dt)] = Q) eXp (j P dt)
Integrating vields
X exp (j‘ P dt) = J[Qm exp (j P dt)] dr + ¢,

where c, is a constant of integration and can be evaluated by using the boundary
or initial condition. Therefore the general solution of Eq. (6.44) is

oo [rallf[eosn([ra)]are] oo

Example 66. An isothermal, constant-holdup, constant- throughput CSTR with a
first-order irreversible reaction is described by a component contintuity equation
that is a first-order linear ODE:

dCy (F F
% 24 (V k)C* = (F)C“‘ (6.46)

Let the concentrations C.o and C, be total values, not perturbations, for the
present. The reactant concentration in the tank is initially zero.

Initial condition
C A0} = 0

At time equal zero a step change in feed concentration is made from zero to a
constant value Cyp.

Forcing function

C,\o(:) = CAD .
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Comparing Eqs. (6.44) and (6.46),

FCu

F
x=Cp P=p4k Q="

exp (J. P dt) = gHFV)+ kN
I[Q(,, exp UP dt):l dt = J (F f’m) AFI R

_,FC“O 1 [(F{¥)+ k]t
‘( v )(F,:’V+k)e T

The solution to Eq. (6.46) is, according to Eq. (645),

FC 1
=g REMItkRII Z VAON | L F) R
O O Cre el

FC,
F+ kv

Therefore

+ cle—[[l’ﬂ’]*'kll

(647)

The initial condition is now used to find the value of c,.

FC
CA{U} = 0 = F +?:V + Cl(l)

Therefore the time-dependent response of C,, to the step disturbance in feed concen-
tration is

C
Can = g [1 = et (648)

where 7 = V/F and is the residence time of the vessel.

The response is sketched in Fig. 6.4 and is the classical first-order exponential rise to
the new steadystate, :

Cao

Asymptotic valus (—-C—“—'—)
1+k:

R ol

“Can FIGURE 64

Step response of a first-order
0 =1 agystem.
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The first thing you should always do when you get a solution is check to see¢ if

it is consistent with the initial conditions and if it is reasonable physically. At ¢t =0,
Eq. (6.48) becomes

Cao_ -

CA(!-D]= 1+ ke [l - 1] =0

so the initial condition is satisfied.

Does the solution make sense from a steadystate point of view? The new
steadystate value of C,, that is approached asymptotically by the exponential func-
tion can be found from either the solution [Eq. (6.48)], letting time ¢ go to infinity,
or from the original ODE [Eq. (6.46)], setting the time derivative dC,/dt equal to
zero. Either method predicts that at the final steadystate

{6.49)

CA{:-*m} = CA =

Is this reasonable? It says that the consumption of reactant will be greater (the ratio
of C, to C,, will be smaller) the bigger k and t are. This certainly makes good
chemical engineering sense. If k is zero (i.e., no reaction) the final steadystate value
of C, will be equal to the feed concentration C,,, as it should be. Note that Cy,
would not be dynamically equal to € .q; it would start at 0 and rise asymptotically
up to its final steadystate value. Thus the predictions of the solution seem to check
the real physical world.

The ratio of the change in the steadystate value of the output divided by the
magnitude of the step change made in the input is called the steadystate gain of the
process K.

_ 1

Ca
K, ==
? Cao 1 + kT

(6.50)

These steadystate gains will be extremely important in our dynamic studies and in
controller design. '

Does the solution make sense dynamically? The rate of rise will be deter-
mined by the magnitude'of the (k + 1/1) term in the exponential. The bigger this
term, the faster the exponential term will decay to zero as time increases. The
smaller this term, the slower the decay will be. Thercfore the dynamics are set by

k + /7).
: The reciprocal of this term is called the process openloop time constant and we
use the symbol t,. The bigger the time constant, the slower the dynamic response
will be. The solution [Eq. (6.48)] predicts that a small value of k or a big value of
will give a large process time constant. Again, this makes good physical sense. If
there is no reaction, the time constant is just equal to T = V/F, the residence time.

Before we leave this example let us put Eq. (6.46) in the standard form

dac,

t, —2+ Ca=K,Cpo (6.51)
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This will be the form in which we want to look at many systems of this type.
Dividing by the term (k + 1/7) does the trick.

1 dc, i 1

+Cy=—t—Cpg=——C 6.52
k+ 1/t dr A ke M kr4n A (6.52)

— = rooess time constant with units of time
Tk ax P

K = 1 _ process steadystate gain with units of concentration in
P kr+ 1 product stream divided by concentration in feed stream

Then the solution [Eq. (6.48)] becomes
Cary = Cao K [1 — &™) (6.53)

In this example we have used total variables. If we convert Eq. (6.46) into pertur-
bation variables, we get

dCy + CR) (V+k)CA+CA) (F)CA0+CA0}

dar
P (o (e (o o

The last term in the equation above is zero. Therefore Eqs. (6.54) and (6.46) are
identical, except one is in terms of total variables and the other is in terms of pertur-
bations. Whenever the original ODE is already linear, either total or perturbation
variables can be used. Initial conditions will, of course, differ by the steadystate
values of all variables.

Example 6.7. Suppose the feed concentration in the CSTR system considered above
is ramped up with time:

Caom = Kt (6.55)
where K is a constanl. C, is initially zero.

Rearranging Eq. (6.51) gives
A i—C,==2¢ " (6.56)

The solution, according to Eq. (6.45), is

e L[ ([

K, K
= e_"’"’(—_;L J‘te”"‘ dt + cl) {6.57)
r
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— Forving function
C“otn =K1

Stope ~ KK

FIGURE 6.5
Ramp response of a first-order system.

The integral in Eq. (6.57) can be looked up in mathematics tables or can be found

by integrating by parts.
Let

u=t and dv=edt
Then

du = dt and v =1,e""
Since

-[udv=uu—jvdu

Jire’*"* dt = 1t — Jt,e‘*"r dt
= 1, te" — (1,) e {6.58}
Therefore Eq. (6.57) becomes
Cry = K Kt — 1)+ cg™ (6.59)
Using the initial condition to find ¢,,
Cany =0=K,K(—-1) + ¢ : (6.60)
The final solution is

Caw =K, Kr,,(i -1+ e"f'-) (6.61)

L

The ramp response is sketched in Fig. 6.5.

It is frequently useful to be able to determine the time constant of a first-
order system from experimental step response data. This is easy to do. When time
is equal to 7, in Eq. (6.53), the term [1 — e ~*/**] becomes [1 — e~ 17 = 0.623. This
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means that the output variable has changed 62.3 percent of the total change that
it is going to make. Thus the time constant of a first-order system is simply the
time it takes the step response to reach 62.3 percent of its new final steadystate
value.

6.3.2 Second-Order Linear ODEs
With Constant Coefficients

The first-order system considered in the previous section yields well-behaved
exponential responses. Second-order systems can be much more exciting since
they can give an oscillatory or underdamped tesponse. .

The first-order linear equation [Eq. (6.44)] could have a time-variable coef-
ficient; that is, P, could be a function of time. We will consider only linear
second-order ODEs that have constant coefficients (7, and { are constants),

’)
2

X dx
Tp Pl + 2, x +Xx=my (6.62)

Analytical methods are available for linear ODEs with variable coefficients, but
their solutions are usually messy infinite series. We will not consider them here.

The solution of a second-order ODE can be deduced from the solution of a
first-order ODE. Equation (6.45) can be broken up into two parts:

arfom( )
+ {exp (_jp dt) j[g{,, exp ( '[ P d:)] dr} =x +x, (66)

The variable x, is called the complementary solution. It is the function that
satisfies the original ODE with the forcing function My, set equal to zero (called
the homogeneous differential equation):

dx
T +Pux=0 (6.64)

The variable x, is called the particular solution. It is the function that
satisfies the original ODE with a specified m,,. One of the most useful properties
of linear ODEs is that the total solution is the sum of the complementary solu-
tion and the particular solution,

Now we are ready to extend the above ideas to the second-order ODE of
Eq. (6.62). First we will obtain the complementary solution x, by solving the
homogeneous equation

d*x

d
53+ Ay, d—": +x=0 (6.65)
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Then we will solve for the particular solution x, and add the two to get the entire
solution.

A. COMPLEMENTARY SOLUTION. Since the complementary solution of the
first-order ODE is an exponential, it is reasonable to guess that the complemen-
tary solution of the second-order ODE will also be of exponential form. Let us
guess that

X, = ce® (6.66)
where ¢ and s are constants. Differentiating x, with respect to time twice gives

dx, , d?x
i cse’ and i

£ = csle”

Now we substitute the guessed solution and its derivatives into Eq. (6.65) to find
the values of s that will make the assumed form [Eq. (6.66)] satisfy it.

ti(cs’e™) + 2z, {cse™} + (ce™) = 0

1252+ 21,5 +1=0 (6.67)

The above equation is called the characteristic equation of the system. It is
the system’s most important dynamic feature. The values of s that satisfy Eq.
(6.67) are called the roots of the characteristic equation (they are also called the
eigenvalues of the system). Their values, as we will shortly show, will dictate if the
system is fast or slow, stable or unstable, overdamped or underdamped. Dynamic
analysis and controller design consists of finding out the values of the roots of the
characteristic equation of the system and changing their values to give the desired
response. The rest of this book is devoted to looking at roots of characteristic
equations, They are an extremely important concept that you should fully under-
stand.

Using the general solution for a quadratic equation, we can solve Eq. (6.67})
for its two roots

o Xt (2fr)? — 42

2
27,

2
_L + (-1 (6.68)
t.P

Tp

There are two values of s that satisfy Eq. (6.67). Therefore there are two exponen-
tials of the form given in Eq. (6.66) that are solutions of the original homoge-
neous ODE [Eq. (6.65)]. The sum of these sclutions is also a solution since the
ODE is linear. Therefore the complementary solution is (for s, # s;)

X, = ¢, + ¢, " (6.69)
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where ¢, and ¢, are constants. The two roots s, and s, are

z _ .
8= - £ + ¢ ! (6.70)
Tp Ty
2
5, = — £ - { ! (6.71)
T, 1,

The shape of the solution curve depends strongly on the values of the physi-
cal parameter {, the damping coeflicient. Let us now look at the various pos-
sibilities.

1. For { > 1 (overdamped system). If the damping cocfficient is greater than
unity, the quantity inside the square root is positive. Then s, and s, will both be
real numbers, and they will be different (called distinct roots).

Example 6.8. Consider the ODE

(7 7 Z(J)(zf) o

Its characteristic equation can be written in several forms: .
2 +55+6=0 (6.73)
5+ 3)s+2)=0 (6.74)

(ﬁ)’sz + 2(ﬁ)(5\5_/€)3 +1=0 679

All three are completely equivalent. The time constant and the damping cocfficient
for the systemn are

1 5

T, = m— =

SRVCIRV

The roots of the charactleristic equation are obvious from Eq. (6.74), but the use of

Eq. (6.68) gives
JE-1
PR PRV =-3z}
Tp TF
31=—2
32=—3

The two roots are real. The complementary solution is
X, =cpe ¥ 4 e {6.76)

2. For { = 1 (critically damped system). If the damping coefficient is equal to
unity, the term inside the square root of Eq. (6.68) is zero. There is only one value
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of s that satisfies the characteristic equation.

s= —— 6.77)

T

The two roots are the same and are called repeated roots. This is clearly seen if a
value of { = 1 is substituted into the characteristic equation [Eq. (6.67)]:

125 + 20,5+ 1 =0=(t,5 + I)(z,5 + 1) (6.78)
The complementary solution with a repeated root is
x, = (¢, + czt)e" = (c; + ¢ e ¥ (6.79)
This is f;asily proved by substitutfng it into Eq. (6.65) with { set equal to unity.

Example 6.9. If two CSTRs like the one considered in Example 6.6 are run in series,
two first-order ODEs describe the system:

dc,, (1 t
dt + (tl + kl)CAl. = (tl)CAO [680)
- dc
Caz (l + kz)Cu - (l)cM (6.81)
dt T3 T3

Differentiating the second equation with respect to time and eliminating C,, give a
second-order ODE:

a2C.y 1 1 dc,, 1 1 1
t R4 — — Con = — IC 6.82
di? T4 ks Ty _kz dt + 7, ky T, k2 JCaz 1,7, a0 (682)

If temperatures and holdups are the same in both tanks, the specific reaction rates k
and holdup times t will be the same:

ki=k,=k 1 m1,=1

The characterisiic equation is

2 1 1 :
50+ 2 ;+k 5 + ;+k =0

, , (6.83)
(s+ 5+ h)s+iea)mo
t T
The damping coefficient is unity and there is a real, repeated root:
1
s —(— + k)
T
The complementary solution is
(Cazde = (cy + cpt)e”* (6.84)

3. For { < 1 (underdamped system). Things begin to get interesting when the
damping coeflicient is less than unity, Now the term inside the square root in Eq.
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(6.68) is negative, giving an imaginary number in the roots.

P Cz_l=—£iiﬂ (6.85)

T T T tp

P P

The roots are now complex numbers with real and imaginary parts.

— »2
S GAPA 636

Ty Tp
1_ 2
S2=—f—;—ig (687

To be more specific, they are complex conjugates since they have the same real
parts and their imaginary parts differ only in sign. The complementary solution is

X, =0, + ¢, e .

SO SN = SN §

Ty Tp T

P P
= e-cmn{c‘ exp (+i 3@ t) + ¢, eXp (—:’ lr: ¢ r)} (6.88)
Now we use the relationships
e =cos x +isin x (6.89)
cos(—x)=cos x (6.90)
sin (—x) = —sin x (6.91)

Substituting into Eq. (6.88) gives

X, = e“"""(cl{cos (@ r) + i sin (E t)}

e R

_ e—cma{(cl +¢3) cos (@ :) +ile, — ;) sin (@ :)} (692)

P P

The complementary solution consists of oscillating sinusoidal terms muiti-
plied by an exponential. Thus the solution is oscillatory or underdamped for
{ < 1. Note that as long as the damping coefficient is positive ({ > 0), the expo-
nential term will decay to zero as time goes to infinity. Therefore the amplitude of
the oscillations will decrease to zero. This is sketched in Fig. 6.6.

Since the solution x, must be a real quantity, if we are describing a real
physical system, the terms with the constants in Eq. (6.92) must all be real. So the
term ¢, + ¢, and the term i{e; — ¢,) must both be real. This can be true only if ¢,
and ¢, are complex conjugates, as proved below,
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m— e [ ; .
~— . /Smusmdal tenl-n_s
&

FIGURE 66
Complementary solution for { < 1.

Let z be a complex number and Z be its complex conjugate.
z=-x+iy_l and z=x—1y
Now look at the sum and the difference:
z+z=(x+ip+(x—iyy=2x a real number
z—Z=(x+iy)—(x—iy)=2yi a pure imaginary number
iz —2)=—2y a real number

So we have shown that to get real numbers for both ¢, + ¢, and :{«:1 c;) the
numbers ¢; and ¢; must be a complex conjugate pair. Let ¢, = c® +ic’ and
¢; = ¢® — ic’. Then the complementary solution becomes

_r? 2
Xeg) = e"""{[Zc“} cos (g t) —{2¢") sin (g t)} (6.93)
P P
Example 6.10. Consider the ODE
P & i x=0
a? Ta T

Writing this in the standard form
(l)’ +2(l)(05)—+x==0
we sce that the time constant 1, = 1 and the damping coefficient { = 0.5. The char-

acteristic equation is
F4+5+1=0

s-,—'iii):l_‘:2

T T

Its roots are

r B

=3+ /TP =—%2i */- (6.94)

The complementary sclution is

oot ( L) wean(E)) e

2
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4. For { = 0 (undamped system). The complementary solution is the same as Eq.
(6.93) with the exponential term equal to unity. There is no decay of the sinc and
cosine terms and therefore the system will oscillate forever.

The result is obvious if we go back to Eq. (6.65)and set { = Q.

, &
T 42
You might remember from your physics that this is the differential equation that
describes a harmonic oscillator. The solution is a sine wave with a frequency of

1/t,. We will discuss these kinds of functions in detail in Part V when we begin
our “Chinese” lessons covering the frequency domain.

+x=0 (6.96)

5. For { < 0 (unstable system). If the damping coefficient is negative, the expo-
nential term increases without bound as time becomes large. Thus the system is
unstable.

This situation is extremely important. We have found the limit of stability
of a second-order system. The roots of the characteristic equation are

— 2
gm L /120
T Tp

If the real part of the root of the characteristic equation (—£/z,) is a positive
number, the system is unstable, So the stability requirement is:

A system is stable if the real parts of all the roots
of the characteristic equation are negative.

We will use this result extensively throughout the rest of the book. It is the
foundation on which almost all controller designs are based.

B. PARTICULAR SOLUTION. Up 1o this point we have found only the comple-
mentary solution of the homogeneous equation
d*x dx
T§F+2C1pz+x=0

This corresponds to the solution for the unforced or undisturbed system. Now we
must find the particular solutions for some specific forcing functions m,,. Then
the total solution will be the sum of the complementary and particular solutions.

There are several methods for finding particular solutions. Laplace trans-
form methods are probably the most convenient, and we will use them in Part
IV. Here we will present the method of undetermined coefficients. It consists of
assuming a particular solution that has the same form as the forcing function. It
is illustrated in the examples below.

Example 6.11. The overdamped system of Example 6.8 is forced with a unit step
function.
d*x dx

F+SE+6)C=1 (6.97)
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Initial conditions are

dx
Yo =0 an ( dt )(oa

The forcing function is a constant, so we assume that the particular solution is also
a constant: x, = ¢, . Substituting into Eq. (6.97) gives

0+ 5(0) + 6y =1 = ;=% (6.98)
Now the total sclution is [using the complementary solution given in Eq. (6.76)]

x=x,+x,=ce”¥+ce ¥+ ¢ {6.99)
The constants are evaluated from the initial conditions, using the total solution. A
common mistake is to evaluate them using only the complementary solution.
Xq=0=c te;+4
dx

(—) =0=(—2ce" - 3cse Myopy=—2¢;, — 3¢, =0
ar /o,

Therefore
eg==% and ¢ =1%
The final total solution for the constant forcing function is
xg=—%e ¥+ e+ } {6.100)

Example 6.12. A general underdamped second-order system is forced by a umil siep
function:

@x dx
_ 1§F+2czpz+x=1 (6.101)
Initial conditions are

dx
o =0 and (E)w; ¢

Since the forcing function is a constant, the particular solution is assumed to be a
constant, giving x, = 1. The total solution is the sum of the particular and comple-
mentary solutions {see Eq. (6.93)].

Xip = 1+ e‘-{rh.{(zckl cos (____Vlt"czt) _ {2‘,;} sin (7‘\"11:_Cz 1)} {6.102)

F r

Using the initial conditions to evaluate constants,
X =0=1+[2*(1) — 2¢'(0)]

EoL t’"""'{k“ cos (El S :) — 2¢" sin (El s r)}

dt T, T, Tp
+ e"“"'{—k“ Akls sin ( /1= t)
e T
' 7
-2 ‘/l —{ cos (‘/1 -r t)}
s s

/ a
(d—x) -0 - *f(zc'n (—2c' i)
Q)

dt L4 TP



190 TIME-DOMAIN DYNAMICS AND CONTROL
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Q 2 4 [ 8 1G
Time, t/1,
FIGURE 6.7

Step responses of a second-order uaderdamped system.

Solving for the constants gives
28 = -1 and 2t =

The total solution is

; 2 ; 2

xy=1- e'c“’"{cos ( 14 t) + ¢ sin ( 1-¢ t)} (6.103)
T J1=-0 T
This step response is sketched in Fig. 6.7 for several values of the damping coeffi-
cient. Note that the amount of overshoot of the final steadystate value increases as
the damping coefficient decreases, The system also becomes more oscillatory. In
Chap. 7 we will tune feedback controllers so that we get a reasonable amount of

overshoot by selecting a damping coefficient in the 0.3 to 0.5 range.

1t is frequently useful to be able to calculate damping coefficients and time
constants for second-order systems from experimental step response data.



P~

TIME-DOMAIN DYNaMIcs 191

Problem 6.11 gives some very useful relationships between these parameters
(damping coefficient and time constant) and the shape of the response curve.
There is a simple relationship between the “peak overshoot ratio” and the
damping coefficient. Then the time constant can be calculated from the “rise
time” and the damping coefficient. Refer to Prob. 6.11 for the definitions of these
terms.

Example 6.13. The overdamped system of Example 6.8 is now forced with a ramp
input:

d*x dx
—_— — = 6.104
¥ + 5 ” +b6x =1t (i )

Since the forcing function is the first term of a polynomial in t, we will assume that
the particular solution is also a polynomial in ¢,

Xp=bg + byt + byt +b3t* 4 {6.109)
where the b, are constants to be determined. Differentiating Eq. (6.105) twice gives
£iic2=b‘ +2byt + 3yt 4
dt
X 2by + byt + -

di? 2T
Substituting into Eq. (6.104) gives
(2by + 6byt + ) + S(by + 2byt + 3by 2 + )
+6{bg + byt + byt + bytP + ) =1
Now we rearrange the above to group together all terms with equal powers of ¢.
<o b t¥H6by + ) + 136y + 15b5 + - 7)
+ 0(6by + 10b, + 6b,) + (2b, + Shy + 6bo) =1

Equating like powers of ¢ on the left-hand and right-hand sides of this equation
gives the simultaneous equations

6by+ =0
6by + 153+ - =0
6by + 10b; + 6by =1
_ 2b, + 5b, + 6by =10
Solving simultaneously gives

bo=—3"'s bl=é bz=ba="'=0
The particular solution is

xp=—%5+ &t {6.106)
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The total solution is
Xg=—Tg+ i +ee Ftce¥ (6.107)

Il the initial conditions are

dx
X, =0  and (Z)(oa =0

the constanis ¢, and ¢, can be evaluated:

xoy=0=—s5+¢; +¢;

dx
—] =0=%-2¢, -3¢
(df)(m s : :

Solving simultaneously gives

€ =1 and ¢, =—4 (6.108)

And the final solution is

X =g+ gt +de ¥ -4 (6.109)

6.3.3 . Nth-Order Linear ODEs
With Constant Coefficients

The results obtained in the last two sections for simple first- and second-order
systems can now be generalized to higher-order systems. Consider the Nth-order
ODE

d"x ¥ 1x dx
aN;i—t-N-+aN_1W+"'+alE+aox=m(,, (6.110)

The solution of this equation is the sum of a particular solution x, and a comple-
mentary solution x,. The complementary solution is the sum of N exponential
terms. The characteristic equation is an Nth-order polynomial:

ays tay_ "'+ +as+a,=0 6.111)

There are N roots 5, of the characteristic equation, some of which may be repeat-
ed (twice or more). Factoring Eq. (6.111) gives

(S— s s — S s —83) (s — sy Ns—3x)=0 (6.112)
where the s, are the roots (or zeros) of the polynomial. The complementary solu-
tion is (for all distinct roots, i.e., no repeated roots)

Xen = €18 + ¢y + -+ + ey
And therefore the total solution is

N
x(‘] = xp(‘) + Z Ck e"" (6.113)
k=1
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The roots of the characteristic equation can be real or complex. But if they
are complex they must appear in complex conjugate pairs. The reason for this is
illustrated for a second-order system with the characteristic equation

s as+a,=0 (6.114)
Let the two roots be s, and s, .
(s—s505—5,)=0
SP (=5 ~ 55+ 5,85, =0 (6.115)
The coefficients g, and a, can then be expressed in terms of the roots.
@y = 513, and a; = —(s; + 83) (6.116)

If Eq. (6.114) is the characteristic equation for a real physical system, the coeffi-
cients a, and a, must be real numbers. These are the coefficient that multiply the
derivatives in the Nth-order differential equation. So they cannot be imaginary.

If the roots s, and s, are both real numbers, Eq. (6.116) shows that 4, and
a, are certainly both real. If the roots s; and s, are complex, the coefficients a,
and a, must still be real and must also satisfy Eq. (6.116). Complex conjugates
are the only complex numbers that give real numbers when they are multiplied
together and when added together. To illustrate this, let z be a complex number:
z = x + iy. Let Z be the complex conjugale of z: £ = x — {y. Now

2z =x% 4+ y*  (a real number)
z4+z2=2x (a real number)

Therefore the roots s, and s; must be a complex conjugate pair if they are
complex. This is exactly what we found in Eq. (6.85) in the previous section.

For a third-order system with three roots s,, s,, and s,, the roots could all
be real: 3, = «,, 5, = &,, and 53 = a3. Or there could be onc real root and two
complex conjugate roots: :

§, =ty (6.117)
Sy =03+l (6.118)
83 = a3 — jwz (6.119)

where @, = real part of s, = Re [s5,]
oy, = imaginary part of s, = Im [5;]

These are the only two possibilities. We cannot have three complex roots.
The complementary solution would be either (for distinct roots)

X, =1V + 038 + ¢y (6.120)
or

x, = ¢ ™ + &¥[(cy + ¢3) COs (W, 1) + H(c; — €3) sin (w3 1)] (6.121)
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where the constants c, and ¢, must also be complex conjugates in the latter
equation, as discussed in the previous section.

If some of the roots are repeated (not distinct) the complementary solution
will contain exponential terms that are multiplied by various powers of ¢. For
example, if «, is a repeated root of order 2, the characteristic equation would be

5—a)¥s—s3fs— ) (5—55)=0

and the resulting complementary solution is
N

X, =y + 1) + Y e 6.122)

k=3

If «, is a repeated root of order 3, the characteristic equation would be
s—a)’s—s) (s—s9=0

and the resulting complementary solution is
N
X, =(e, + eat + 3t + ¥ g 0™ {6.123)
k=4

The stability of the system is dictated by the values of the real parts a, of
the roots. The system is stable if the real parts of all roots are negative, since the
exponential terms go to zero as time goes to infinity. If the real part of any one of
the roots is positive, the system is unstable.

The roots of the characteristic equation can be very conveniently plotted in
a two-dimensional figure (Fig. 6.8) called the “s plane.” The ordinate is the imag-
inary part o of the root s, and the abscissa is the real part « of the root 5. The
roots of Egs. (6.117) to (6.119) are shown in Fig. 6.8. We will use these s-plane
plots extensively in Part TV,

w
Imis)
- Stable region Unstable region ———=
5 ™™ Stability limit
RV — +m2
Complex ||
conjugate — ! Recal
rocts I root
i ¥ Re (5)
+ ¥ - o
Laty o . .
I Real axis
I .
| Imaginary
I axis
R )
53 Ty
FIGURE 6.8

s-plane plot of the roots of the characteristic equation,
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The stability criterion for an Nth-order system is:

The system is stable if all the roots of its characteristic equation
lie in the left half of the s plane.

64 STEADYSTATE TECHNIQUES

Sometimes useful information and insight can be obtained about the dynamics of
a system from just the steadystate equations of the system. Van Heerden (Ind.
Eng. Chem. Vol. 45, 1953, p. 1242) proposed the application of the following
steadystate analysis to a continunous perfectly mixed chemical reactor. Consider a
nonisothermal CSTR described by the two nonlinear ODEs

d(vc
LE'Q = F(Cho — Cp) — VC,ae ERT (6.124)
d(vC,pT)
dt
Infiow and outflow rates have been assumed equal in these equations.
Under steadystate conditions these two equations become
0= F(Cpo— Co) — PCpae BRT {(6.126)
0= FpC (T, - T - AVC, we ERT L UAT - Ty) (6.127)
We want to find the steadystate value (or values) of temperature. Let us
pick a trial value of steadystate temperature T'. If it satisfies the two steadystate

equations above, it is a bona fide steadystate temperature T. Solving Eq. (6.126)
for C, gives

= FpCyTy — T) — AVCpae 58T _UAT —T))  (6.125)

C === _"FmmT
AT F + Voo 5T

(6.128)
If we assume a series of values of T, the above equation gives the corresponding
values of C,z,. At low temperatures €, will be essentially equal to C,, since the
reaction rate is very small. As temperature is increased, the reaction rate term
becomes larger and larger. This causes C, to approach zero. Most of the reactant
{component A) is consumed in the reaction and there is little of it left in the
reactor.

Now let us look at the second term on the right-hand side of Eq. (6.127).
This is defined as the “heat generation” term Q.

Qg = —AVCpae™ 5" 6.129)

It is the rate at which the\'rc_a_g:tion»f“s'*gencrating heat. Remember A is negative if
the reaction is exothermic. Figure 6.9a shows how O, varies with the assumed
temperature 1. Q, is low at low temperatures because the reaction rate is low.
0O, begins to increase as temperature increases. But as the “ae ™ ¥T” part of the
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Og

r FIGURE 694a

(a) Heul generation.

term continues to increase, the “C,” part is decreasing toward zero. The result is
that the Qg term flattens out at a maximum value. The rate of generation cannot
increasc beyond the value that corresponds to complete conversion of all the
reactant A in the feed stream. So the largest that Q; can become is — AFC,q.

Now let us group the other terms in Eq. (6.127) together into a “heat
removal™ term {note the change in signs).

Or = FpC (T — Ty) + UA(T — Ty) (6.130)

The first term is a sensible-heat term. If the feed temperature T, is lower than the
reactor temperature T, the feed stream tends 1o cool the reactor, The second term
is the rate of heat removal by heat transfer to the cooling jacket.

Figure 6.95 shows a plot of @y versus the assumed temperature T'. If U, A,
F,C,, T,,p, and T, are all constant, Qp is a linear function of temperature:

Or = (UA + FC,p)T — (UAT, + FC,pT)) (6.131)

Thus the slope of the straight line is UA + FC,p.
With these definitions, Eq. (6.127) becomes

Qg ~0z=0 (6.132)

Therefore a temperature at which the curves of Qg and Qg intersect is a steady-
state solution to Egs. (6.126} and (6.127). Figure 6.9¢ shows both curves plotted
together with one intersection at T

What can be concluded about the dynamics of the system from this steady-
state plot? Imagine that a small disturbance causes the temperature to increase
slightly above its steadystate value T. At the higher temperature the heat-

Cr

=3

FIGURE 695
€3} Heat removal.
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(e} Heat generation and heat removal.

removal rate is greater than the heat-generation rate, according to the curves
in Fig. 6.9¢c. Therefore, the temperature will tend to decrease toward the steady-
state T.

If the disturbance in temperature had been in the other direction, resulting
in a decrease ‘in temperature, the heat-gencration rate is now higher than the
heat-removal rate. So the temperature would tend to be driven back up again.
Thus the system is self-regulatory.

We can intuitively say that in order for a steadystate to be stable, the slope
of the Qp curve must be greater than the slope of the Qg curve.

(%) > (iQ—G) (6.133)
aT Jim dT Jim

This is a necessary but not sufficient condition for stability, as we will see in more
detail in Chap. 10.

Figure 6.9d shows the Qg and (5 for another reactor which has some very
interesting features. Now there are rhree intersections of the curves. This means
that there can be three different temperatures that are steadystates. For exactly
the same feed conditions and parameter values, the reactor could seitle out at
three different temperatures: T,, Ty, and T.. This phenomenon of multiple
steadystates may be hard to belicve, if you haven’t thought about it before. But it
is a real occurrence. It has been demonstrated experimentally in the laboratory.

FIGURE 684
Multiple steadystates.
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Modified

FIGURE 6.9¢
Qg curve modified to make 7y, a stable steudystate,

In a linear system, the phenomenon of multiple steadystates cannot ocour.
It is the nonlinearity of the process, the exponential temperature dependence of
the reaction rate, that can lead to more than one steadystate.

With multiple steadystates, the process outputs can be different with the
same process inputs. The reverse of this can also occur. This interesting possi-
bility, called input multiplicity, can occur in some nonlinear systems. In this situ-
ation we have the same process outputs, but with different process inputs. For
example, we could have the same reactor temperature and concentrauon, but
with different values of feed flow rate and cooling water flow rate.

The three steadystate temperatures shown in Fig. 6.94 correspond to three
different steadystate compositions with low, medium, or high conversions (high,
medium, or low concentrations of reactant),

The stability criterion [Eq. (6.133)] predicts that the steadystates at T, and
T would be stable but that the steadystate at T, would be unstable. Any little
temperature disturbance would cause the reaction to “quench” down to the low
temperature T, (with low conversion of reactant) or “run away” up to the high
temperature T, (with high conversion).

If we want to run the reactor at the steadystate temperature Ty, the heat-
removal curve must be modified by changing the parameters of the system (or by
adding a feedback controller, as we will show in the next part of this book) to
makc the Qp curve intersect the Q; curve at T, with a slope greater than
(dQ5/dT )z, as sketched in Fig. 6.9e.

PROBLEMS
6.1, Linearize the following nonlinear functions:
@ fo=Vu= iﬁ where « is a constant
(&) S, = Pl =eVT*®  where 4 and B are constants

(¢} fuy= Uy = K()"®  where K is a constant
d) fo =Ly =KM*  where K is a constant
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6.2. Linearize the ODE describing the conical tank modeled in Prob. 3.1 and convert to
perturbation variables,

6.3. Linearize the equations describing a variable-volume CSTR similar to the one con-
sidered in Sec. 3.3,

6.4, Solve thc ODEs:

d*x dx dx
il 2 4= —o (=} =t
(a) P + 3 i td4x=2 X0y (dt)m,

d*x dx dx
i = =1 = - =
b) % +2 n + 2x Xy 2,( ‘)(0] 0

6.5. Show that the linearized system describing the gravity-flow tank of Example 6.4 is a
second-order system. Solve for the damping coefficient and the time constant in
terms of the puramelers of the system.

6.6. Solve the second-order ODE describing the steadystale flow of an incompressible,
newtonian liquid through a pipe: :

d( db\_(APg\
ool [kt 3 N Boall 3
dr\ dr uL

What are the boundary conditions?

6.7. kind the responses of general fiest- and second-order systems given below to the'
following forcing functions:

tpd—x+x=m(,]
dt

ax d
:§?+2T,c£+x=mm 0<(<l

{a) my =6
(b} mgy = sin (o)
£.8. Solve for the unit step response of a general second-order system for:

@ (=1
(B) > 1

6.9. A feedback controller is added to the CSTR of Example 6.6. The inlet concentration
C.a is now changed by the controller to hold C, near its setpoint value C¥".

Cao=Cam + Cap

where C,p is a disturbance composition. The controller has proportional and inte-
gral action:

_ 1
Care =Can + K. (E+T—IEJ:)
I

where K, and 7, are constants
Cour = steadystate value of Cuy
E=C-C,
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Derive the second-order equation describing the closedloop process in terms of per-
turbation variables. Show that the damping coefficient is

I +kt + K,
2/K, 1/,

What value of K will give critical damping? At what vatue of K, will the system
become unstable?

Combine the three first-order ODEs describing the three-CSTR system of Sec. 3.2
into one third-order ODE in terms of C,,. Then solve for the response of C,; to a
unit step change in C,,, assuming all &’s and 7% are identical.

Consider the second-order underdamped system

C—_—

dz
’d=+2’5 -+-x K, mg,

where K, is the process steadystate gain and my, is the forcing function, The unit
step response of such a system can be characterized by rise time ¢z, peak time p,
settling time £y, and peak overshoot ratio POR. The values of 1, and t, are defined
in the sketch below. The value of ¢ is the time it takes the exponential portion of the
response to decay to a given fraction F of the final steadystate value of x, xg¢. The
POR is defined:

POR = xl[:} — Xz§
Xss

Show that

=ity { - [
@ 2012 sin( ol r+¢) where ¢ = cos™* {
Xss VA& s

g T~
&) 1,  sin¢

ts _ In [1/F sin ¢)]
() w= T wsd

(d) POR = e~nemé

.

FIGURE P#,11
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612 (a) Lincarize the two ODEs given below that describe a nonisothermal CSTR with
constant volume, The input variables are T, T;, Cao, and F.

dc
1% T:A = F{C,g — € — VEC,

dT
VoC, - = FC,plTo — T) ~ AWkC, — UAT = T))

where k = ae” 8T

(b} Convert to perturbation variables and arrange in the form

dC

d—tA =aCo+ a8, T +a:CaotaTotaysFtaeT;
T ' :

FTie ayCatagT+ayCupt oy To+ s F+a, T,

{¢) Combine the two linear ODEs above into one second-order ODE and tind the
rootls of the characteristic equation in terms of the g,; coefficients.

6.13. The flow rate F of a manipulated stream through a control valve with cqual-
percentage trim is given by the following equation:

F = Cva.t—l.

where F is the flow in gallons per minute and C, and « are constants set by the valve
size and type. The control-valve stem position x (fraction of wide open) is set by the
output signal CO of an analog electronic feedback controller whose signal range is 4
to 20 milliamperes. The valve cannot be moved instantaneously. Tt is approximately
a first-order system:

T L
¥t 16
The effect of the flow rate of the manipulated variable on the process temperature T
is given by
ar
=+ T =KF

Derive one linear ordinary differential equation that gives the dynamic dependence
of process temperature on controller output signal CO.

6.14. Solve the DDE derived in Prob. 3.4 to show thal the concentration € in Grandpa
McCoy's batch of Liguid Lightning is

Co{l —e™*)
<kt

Suicide Sam slipped his 2000 b, hot rod into neutral as he came over the crest of a
meuntain at 55 mph, In front of him the constant downgrade dropped 2000 feet in 5
miles, and the local acceleration of gravity was 31.0 ft/a%, ¢

Sam maintained a constant 55 mph speed by riding his brakes until they
heated up to 600°F and burned up. The brakes weighed 40 Ib, and had a heat
capacity of 0.1 Btu/lb,, °F. At the crest of the hill they were at 60°F.

Co=

6.15
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Heat was lost from the brakes to the air, as the brakes heated up, at a rate
proportional to the temperature difference between the brake temperature and the
air temperature. The proportivnality constant was 30 Btu/h °F.

Assume that the car was frictionless and encountered negligible air resistance.
(a) At what distance down the hill did Sam’s brakes burn up?

(h) What speed did his car attain by the time it reached the bottom of the hill?

A farmer fills his silo with chopped corn. The entire corn plant {leaves, stem, and ear)
is cut up into small pieces and blown into the top of the cylindrical silo at a rate Ws.
This is similar to a fed-batch chemical reaction system.

The diameter of the silo is D and its height is H. The density of the chopped
corn in the silo varics with the depth of the bed. The densily p at a point that has z
feet of material above it is

Py = po + Pz

where p, and f are constants.

(a) Wrilte the equations that describe the system and show how the height of the bed
hy,, varies as a function of time.

(b) What is the total weight of corn fodder that can be stored in the sito?

Silo

Bed of chopped corn

]

FIGURE P6.16

6.17. Two consecutive, first-order reactions take place in a petfectly mixed, isothermal

batch reactor.
k) k2

A—B- —C

Assuming constant density, solve analytically for the dynamic changes in the concen-
trations of components A and B in the situation where k, = k,. The initial concen-
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tration of A at the beginning of the batch cycle is C,o. There is initially no B or Cin
the reactor.

What is the maximum cencentration of component B that can be produced
and at what point in time does it occur?

The same reactions considered in Prob. 6.17 are now carried out in a single, petfectly
mixed, isothermal continuous reactot. Flow rates, volume and densities are constant.
(@) Derive a2 mathematical model describing the system.

() Solve for the dynamic change in the concentration of component A, C,, if the
concentration of A in the feed stream is constant at C,, and the initial concen-
trations of A, B, and C at time equal zero are Cp) = Cyo and Cregy = Coiy = 0.

{c) In the situation where k, = k,, find the value of holdup time (r = V/F) that
maximizes the steadystate ratio of Cg/C,,. Compare this ratio with the
maximum found in Prob. 6.17. ’

The same consecutive reactions considered in Prob. 6.18 are riow carried out in two

perfectly mixed continuous reactors. Flow rates and densities are constant. The

volumes of the two tanks (V) are the same and constant. The reactors operate at the

same constant temperature. S

(a) Derive a mathematical model describing the system.

() If k, =k,, find the value of the holdup time (r = V/F) that maximizes the
steadystate ratio of concentration of component B in the product to the concen-
tration of reactant A in the feed.

A vertical, cylindrical tank is filled with well water at 65°F. The tank is insulated at
the top and bottom but is exposed on its vertical sides to cold 10°F night air. The
diameter of the tank is 2 fest and its height is 3 feet. The overall heat transfer coeffi-
cient is 20 Btu/h °F fi2, Neglect the metal wall of the tank and assume that the water
in the tank is perfectly mixed.

{a) Calculate how many minutes it will be until the first crystal of ice is formed.

(b) How long will it take to completely [reeze the water in the tank? The heat of

fusion of water is 144 Btu/lib,,.

An isotherma), first-order, liquid-phase, reversible reaction is carried out in a
constant-volume, perfectly mixed continuous reactor.

k1

A B

kz

The concentration of product B is zerc in the feed and in the reactor is Cp. Feed rate

is F.

{@) Derive a mathematical mode] describing the dynamic behavior of the system.

(b) Derive the steadystate relationship between C, and C,o. Show that the conver-
sion of A and the yield of B decrease as k, increases.

(c) Assuming that the reactor is at this steadystate concentration and that a step
change is made in C,q t0 (Crp + AC,o), find the analytical solution that gives
the dynamic response of C,)-

An isothermal, first-order, liquid-phase, irreversible reaction is conducted in a con-
stant volume batch reactot.

A B
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The initial concentration of reactant A at the beginning of the batch is C,,. The
specific reaction rate k decreases with time because of catalyst degradation: k =
kye .

(a} Solve for Cy,.

(h) Show that in the limit as § — 0, C,,) = Coe ™"

{c) Show that in the limit as § ~ o0, Cyy = Cup

There are 3460 pounds of water in the jacket of a reactor that are initially at 145°F.

At time equal zero, 70°F cooling water is added to the jacket at a constant rate of

416 pounds per minute. The holdup of water in the jacket is constant since the jacket

is completely filled with water and excess water is removed from the system on

pressure control as cold water is added. Water in the jacket can be assumed to be
perfectly mixed.

{a) How many minutes does it take the jacket water to reach 99°F if no heat is
transferred into the jacket?

(b) Suppose a constant 362,000 Btu/h of heat is transferred into the jacket from the
reactor, starting at time equal zero when the jacket is at 145°F. How long will it
take the jacket water to reach 99°F if the cold water uddition rate is constant at
416 pounds per minute?

Hay dries, after being cut, at a rate which is proportional to the amount of moisture
it contains. During a hot (90°F) July summer day, this proportionality constant is
0.30 h™', Hay cannot be baled until it has dried down to no more than § wt %
moisture. Higher moisture levels will causc heating and mold formation, making it
unsuitable for horses. .

The effective drying hours are from 11:00 a.m. to 5:00 p.m. If huy cannot be
baled by 5:00 p.m. it must stay in the field overnight and picks up moisture from the
dew. It picks up 25 percent of the moisture that is lost during the previous day.

If the bay is cut at 11:00 a.m, Monday morning and contains 40 wt % mois-
ture al the moment of cutting, when can it be baled?

Praocess liquid is continuously fed into a perfectly mixed tank in which it is heated by
a steam coil. Feed rate F is 50,000 1b,/h of material with a constant density p of 50
Ib,,/1t> and heat capacity C, of 0.5 Btu/lb,, °F. Holdup in the tank ¥ is constant at
4000 1b,, . Inlet feed teraperature T;, is BOVF.

Steam is added at a rate § Ib,/h that heats the process liquid up to tem-
perature T. At the initial steadystate, T is 190°F. The latent heat of vaporization i,
of the steam is 900 Btu/lb,, .

(@) Derive u mathematical mode] of the system and prove that process temperature
is described dynamically by the QDE

dT

where 1 = V/F K, =1 K, =4/C,F
(b) Solve for the steadystate value of steam flow 5,
(¢) Suppese a proportional feedback controller is used to adjust steam flow rate,
§S=5+K(19-7)

Solve analytically for the dynamic change in T, for a step change inlet feed
temperature from 80°F down to 50°F. What will the final values of T and § be at
the new steadystate for a K, of 100 1b_/h/°F?




CHAPTER

7

CONVENTIONAL
CONTROL
SYSTEMS

~ AND
HARDWARE

In this chapter we will study control equipment, controller performance, control-
ler tuning, and general control-systems design concepts. Some of the questions
that we will explore are how do we decide whalt kind of control valve to use;
what type of sensor can be used and what are some of the pitfalls that you should
be aware of that can give faulty signals; what type of controller should we select
for a given application; and how do we “tune” the controller.

First we will look briefly at some of the control hardware that is currently
used in process control systems: transmitters, control valves, controllers, &tc.
Then we will discuss the performance of conventional controllers and present:
empirical tuning techniques. Finally we will talk about some important design
concepts and heuristics that are useful in specifying the structure of a control
system for a process.

7.1 CONTROL INSTRUMENTATION

Some familiarity with control hardware and software is required before we can
discuss selection and tuning. We are not concerned with the details of how the
various mechanical, pneumatic, hydraulic, electronic, and computing devices are
constructed. The nitty-gritty details can be obtained from the instrumenta-
tion and process-control-computer vendors. We nced to know only how they

205



200 TIMEDOMAIN DYNAMICS AND CONTROL

basically work and what they are supposed to do. Pictures of some typical hard-
ware arc given in the Appendix.

There has been a real rcvolution in instrumentation hardware in the last
several decades. Twenty years ago, most control hardware was mechanical and
pneumatic {using instrument air pressure to drive gadgets and for control
signals). Tubing had to be run back and forth between thc process equipment
and the control room. Signals were recorded on strip-chart paper recorders.

Today most new control systems use “distributed control” hardware:
microprocessors that serve several control loops simultaneousty, Tnformation is
displayed on CRTs (cathode ray tubes). Most signals are transmitted in analog
electronic form (usually current signals).

Despite all these changes in hardware, the basic concepts of control system
structure and control algorithms (types of controllers) remain essentially the same
as they were thirty years ago. It is now easier to implement control structures: we
just reprogram a computer. But the process control engineers job is the same:
come up with a control system that will give good, stable, robust control.

As we preliminarily discussed in Chap 1, the basic feedback control loop
consists of a sensor to detect the process variable; a transmitter to convert the
semsor signal into an equivalent “signal™ (an air-pressure signal in pneumatic
systems or a current signal in analog electronic systems); a controller that com-
pares this process signal with a desired setpoint value and produces an appropri-
ate controller output signal; and a final control element that changes the
manipulated variable. Usually the final control element is an air-operated control
valve that opens and closes to change the flow rate of the manipulated stream.
See Fig. 7.1,

The sensor, transmitter, and control valve are physically located on the
process equipment (“in the field”). The controller is usually located on a panel or
in a computer in a control room that is some distance from the process
cquipment. Wires connect the two locations, carrying current signals from trans-
mitters to the controller and from the controller to the final control element.

The control hardware used in chemical and petroleum plants is either
analog (pneumatic or electronic) or digital. The analog systems use air-pressure
signals (3 to 15 psig) or current/voltage signals (4 to 20 milliamperes, 10 to 50
milliamperes or 0 to 10 volts dc). They are powered by instrument air supplies (25
psig air) or 24 volt dc electrical power. Pneumatic systems send air-pressure
signals through small tubing, Analog electronic systems use wires.

Sincc most valves are still actuated by air pressure, current signals are
usually converted into an air pressure. An “J to P” transducer {current to
pressure) is used to convert 4 to 20 mA signals into 3 to 15 psig signals.

Also located in the control room is the manual-automatic switching hard-
ware (or software). During start-up or under abnormal conditions, the plant
operator may want to be able to set the position of the control valve himself
instead of having the controller position it. A switch is usually provided on the
control panel or in the computer system as sketched in Fig. 7.2. In the “manual™
position the operator can stroke the valve by changing a knob (a pressure regula-
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Feedback controt loap.

tor in a pneumatic system or a potentiometer in an analog electronic system). In
the “automatic” position the controller output goes directly to the valve.
Each controller must provide the following:

1. Indicate the value of the controlled variable: the signal from the transmitter.
2. Indicate the value of the signal being sent to the valve: the controller output.
3. Indicate the setpoint.

4. Have a manual/automatic switch.

5. Have a knob to set the 'setpoint when the controller is on automatic.

6. Have a knob to set the signal to the valve when the controtler iz on manual.

All controllers, be they 30-year-old pneumatic controllers or modern distributed
microprocessor-based controllers, have these features.

71.1 Sensors

Let’s start from the beginning of the control loop, at the sensor. Instruments
for on-line measurement of many properties have been developed. The most
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Manual/automatic switching.

important variables are flow rate, temperature, pressure, and level. Devices for
measuring other properties, such as pH, density, viscosity, infrared and ultra-
violct absorption, and refractive index are available. Direct measurement of
chemical composition by means of on-line gas chromatographs is quite wide-
spread. They pose interesting control problems because of their intermittent-
operation (a composition signal is gencrated only every few minutes). We will
study the analysis of these discontinuous, “sampled-data® systems in Part VII.

We will briefly discuss below some of the common sensing elements. Details
of their operation, construction, relative merits, and costs are given in several
handbooks: B. G. Liptak Instrument Engineers Handbook, Chilton, 1970: R. L.
Moore Measurement Fundamentals, Instrument Society of America, 1982).

A. FLOW, Orifice plates are by far the most common type of flow-rate sensor.
The pressure drop across the orifice varies with the square of the flow in turbu-
lent flow, so measuring the differential pressure gives a signal that can be reiated
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to flow rate. Normally orifice plates are designed to give pressure drops in the
range of 20 to 200 inches of water. Turbine meters are also widely used. They are
more expensive but give more accurate flow measurement. Other types of flow
meters include sonic flow meters, magnetic flow meters, rotameters, vortex-
shedding devices, and pitot tubes. In gas recycle systems where the pressure drop
through the flow meter can mean a significant amount of compressor work, low-
pressure drop flow meters are used, like the last two mentioned above.

When a flow sensor is installed for accurate accounting measurements of
the absclute flow rate, many precautions must be taken, such as providing a long
section of straight pipe before the orifice plate. For control purposes, however,
one may not need to know the absolute value of the flow but only the changes in
flow rate. Therefore pressure drops over pieces of equipment, around clbows or
over sections of pipe can sometimes be used to get a rough indication of flow rate
changes.

The signals from flow rate measurements are usvally noisy (fluctuate
around the actual value) because of the turbulent flow. These signals often need
to be filtered to smooth out the signal sent to the controller.

B. TEMPERATURE. Thermocouples are the mest commonly used temperature
sensing devices. The two dissimilar wires produce a millivolt signal that varies
with the “hot-junction” temperature. lron-constantan thermocouples are com-
monly used over the 0 to 1300°F temperature range.

Filled-bulb temperature sensors are also widely used. An inert gas is
enclosed in a constant-volume system. Changes in process temperature cause the
pressure exerted by the gas to change. Resistance thermometers are used where
accurate temperature or differential-temperature measurement is required. They
use the principle that the electrical resistance of wire changes with temperaturc.

The dynamic response of most sensors is usually much faster than the
dynamics of the process itself. Temperature sensors are a notable and sometimes
troublesome exception. The time constant of a thermocouple and a heavy ther-
mowell can be 30 seconds or more. If the thermowell is coated with polymer or
other goo, the response time can be several minutes. This can significantly
degrade control performance. -

C. PRESSURE AND DIFFERENTIAL PRESSURE. Bourdon tubes, bellows, and
diaphragms are used to sense pressure and differential pressure. For example, in a
mechamical system the process pressure force is balanced by the movement of a
spring. The position of the spring can be related 1o the process pressure.

D. LEVEL. Liquid levels are detected in a variety of ways. The three most
commaon are

1. Following the position of a float that is lighter than the fluid (as in a
bathroom toilet).
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FIGURE 1.3
Differential-pressure level measurement.

2. Measiring the apparent weight of a heavy cylinder as it is buoyed up more or
less by the liquid (these are called displacement meters). :

3. Measuring the difference in static pressure between two fixed elevations, one in
the vapor above the liquid and the other under the liquid surface. As sketched
in Fig. 7.3, the differential pressure between the two level taps is directly
related to the liquid level in the vessel.

In the last scheme the process liquid and vapor are normally piped directly
to the differential-pressure measuring device (AP transmitier). Some care has to
be taken to account for or to prevent condensation of vapor in the connecting
line (calied “impulse line”) from the top level tap. If the line fills up with liquid,
the differential pressure will be zero even though the liquid level is all the way up
to the top level tap. You will think that the level is low, but the level is actually at
or above the top level tap. If safety problems can occur because of a high level, a
second level sensor should be used to independently detect high level. Keeping the
vapor impulse line hot or purging it with a small vapor flow can sometimes keep
it from filling with liquid. Purging it with a small liquid flow works, too, because
you know that the line is always filled with liquid, so the “zero” (the AP at which
the transmitter puts out its 4 mA signal) can be adjusted appropriately to indi-
cate the correct level.

Because of plugging or corrosion problems, it is sometimes necessary to
keep the process fluid out of the AP transmitter. This is accomplished by me-
chanical diaphragm seals or by purges (introducing a small amount of liquid or
gas into the connecting lines which flows back into the process).

If it is difficult to provide a level tap in the base of the vessel {for mechanical
design reasons, for example in a glass-lined vessel); a bubble tube can be sus-
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pended from the top of the vessel down under the liguid surface, as shown in Fig.
7.3. A small gas purge through the tube gives a pressure on the high-pressure side
of the AP transmitter that is the same as the static pressure at the base of the
bubble tube. This type of level measurement can give incorrect level readings
when the pressure in the vessel is increasing rapidly because the liquid can back
up in the dip-tube if the gas purge flow rate is not large enough to compensate
for the pressure increase.

For very hard-to-handle process fluids nuclear radiation gauges are used to
detect interfaces and levels.

As you can tell from the above discussion, it is very casy to be fooled by a
differential pressure measurement of level. As one who has been bitten many
times by these problems, I highly recommend redundant sensors and judicious
skeptism about the validity of instrument readings.

7.1.2 Transmitters

The transmitter is the interface between the process and its control system. The
job of the transmitter is to convert the sensor signal (millivolts, mechanical move-
ment, pressure differential, etc.) into a control signal (4 to 20 mA, for example).

Consider the pressure transmitter shown in Fig. 7.4a. Let us assume that
this particular transmitter is set up so that its output current signal varies from 4
to 20 mA as the process pressure in the vessel varies from 100 to 1000 kPa gauge.
This is called the range of the transmitter. The span of the transmitter is 900 kPa.
The zero of the transmitter is 100 kPa gauge. The transmitter has two adjustment
knobs in it somewhere that can be changed to modify the span and/or the zero,
Thus, if we shifted the zero up to 200 kPa gauge, the range of the transmitter
would now be 200 to 1100 kPa gauge. Its span is still 900 kPa.

The dynamic response of most transmitters is usually much faster than the
process and the control valves. Consequently we can normally consider the trans-
mitter as a simple “gain™ (a step change in the input to the transmitter gives an
instantaneous step change in the output). The gain of the pressure transmitter
considered above would be

20mA-~-4mA  16mA
1000 kPa — 100 kPa ~ 900 kPa

(7.1

Thus the transmitter is just a “transducer™ that converts the process vari-
able into an equivalent control signal.

Figure 7.4b shows a temperature transmitter which accepts thermocouple
input signais and is set up so that its current cutput goes from 4 to 20 mA as the
process temperature varies from 50 to 250°F. The range of the temperature trans-
mitter is 50 to 250°F, its span is 200°F, and its zero is 50°F. The gain of the
ternperature transmitter is

20mA-4mA _ 16mA
250°F — 50°F  200°F

(12)
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As noted in the previous section, the dynamics of the thermowell-thermocouple
sensor are often not negligible and should be included in the dynamic analysis.

Figure 7.4¢ shows a AP transmitter used with an orifice- plate as a flow
transmitter. The pressure drop over the orifice plate (the sensor) is converted into
a control signal. Suppose the orifice plate is sized to give a pressure drop of 100
in H,O at a process flow rate of 2000 kg/h. The AP transmitter converts inches of
H,O into milliamperes, and its gain is 16 mA/100 in H,O. However, we really
want flow rate, not orifice-plate pressure drop. Since AP is proportional to the
squaré of the flow rate, there is a nonlinear relationship between flow rate F and
the transmitter output signai:

F 2
PM =4+ lﬁ(m) (1.3)

where PM = transmitter output signal, mA
F = flow rate in kg/h

Dropping the flow by a factor of two cuts the AP signal by a factor of four. For
system analysis we usually linearize Eq. (7.3) around the steadystate value of flow
rate, F.
32F
PM=——F .
Fo? 7
where PM and F = perturbations from steadystate
F = steadystate flow rate, kg/h
F_,, = maximum full-scale flow rate = 2000 kg/h in this example

7.1.3 Control Valves

The interface with the process at the other end of the control loop is made by the
final control element. In a vast majority of chemical engineering processes the
final control element is an automatic control valve which throttles the flow of a
manipulated variable. Most control valves consist of a plug on the end of a stem
that opens ot closes an orifice opening as the stem is raised or lowered. As
sketched in Fig. 7.5, the stem is attached to a diaphragm that is driven by chang-
ing air pressure above the diaphragm. The force of the air pressure is opposed by
a spring.

Thete are several aspects of control valves: their action, characteristics, and
SLZE.

A. ACTION OF THE VALVE, Valves are designed to either fail in the wide-open
position or completely shut. Which action is appropriate depends on the effect of
the manipulated variable on the process. For example, if the valve is handling
steam or fuel, you would want the flow to be cut off in an emergency, ie., you
want the valve to fail shut. If the valve is handling cocling water to a reactor, you
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want the flow to go to 4 maximum in an emergency, i.¢., you want the valve to
fail wide open.

The valve shown in Fig. 7.5 is closed when the stem is completely down and
wide open when the stem is at the top of its stroke. Since increasing air pressure
closes the valve, this valve is an “air-to-close” {AC) valve, If the air-pressure
signal dropped to zero because of some failure {for example, suppose the
instrument-air supply line was cut), this valve would fail wide open since the
spring would push the valve open. The valve can be made “air-to-open” (AQ) by
reversing the action of the plug to close the opening in the up position or by
reversing the locations of the spring and air pressure (put the air pressure under
the diaphragm).

Thus we use cither AQ or AC valves, and the decision as to which to use
depends on whether we want the valve to fail shut or wide open,

B. SIZE. Sizing of control valves is one of the more controversial subjects in
process control. The fiow rate through a control valve depends on the size of the
valve, the pressure drop over the valve, the stem position, and the fluid proper-
ties. The design equation for liquids (nonflashing) is

F=C,lwm & (1.5
sp gr
where F = flow rate, gpm
C, = valve size coeflicient
x = valve stem position (fraction of wide open)

J(x) = fraction of the total flow area of the valve. (The curve of ., versus x is
called the “inherent characteristics” of the valve. We will discuss this
later.)

sp gr = specific gravity (relative to water)
AP, = pressure drop over the valve, psi

More detailed equations are available in publications of the control-valve manu-
facturers (for example, the Masoniclan Handbook for Control Valve Sizing,
Dresser Industries, 6th edition, 1977) that handle flows of gases, flashing liquids,
and critical flows with either English or SI units.

The sizing of control valves is a good example of the engineering trade-off
that must be made in designing a plant. Consider the process sketched in Fig. 7.6.
Suppose the flow rate at design conditions is 100 gpm, the pressure in the feed
tank is atmospheric, the pressure drop over the heat exchanger (APy) at the
design flow rate is 40 psi, and the pressure in the final tank, P,, is 150 psig. Let
us assume that we will have the control valve half open (., = 0.5) at the design
flow. The specific gravity of the liquid is 1.

The process engineer's job is to size both the centrifugal pump and the
confrol valve, The bigger the control valve, the less pressure drop it will take.
This means a lower-head pump can be used and energy costs will be lower
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FIGURE 7.5
Typical air-opetated control valve.

because the power consumed by the motor driving the pump will be less. So the
process engineer, knowing little about control, wants to design a system that has
a low pressure drop across the control valve. From a steadystate standpoint, this
makes perfect sense. :

However, the process engineer goes to talk with the control engineer, and
the control engineer wants to take a lot of pressure drop over the valve. Why?
Basically it is a qucstion of “rangeability”: the larger the pressure drop, the
larger the size of the changes that can be made in the flow rate (in both direc-
tions: increase and decrease). Let’s examine two different designs to show why it
is desirable from a dynamic point of view to take morc pressure drop over the
control valve.

In case 1 we will size the valve so that it takes 20 psi pressure drop at
design flow when it is half open. This means that the pump must produce a

]

.'

AP ap,
- L
£
Control
Heat valve
exchanger

Pump
FIGURE 76
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differential head of 150 + 40 + 20 = 210 psi at design. In case 2 we will size the
valve so that it takes 80 psi pressure drop at design. Now a higher-head pump
will be needed: 150 + 40 + 80 = 270 psi.

Using Eq. (7.5), both control valves can be sized.

Case 1;

. [AP,
BT

100=C,, (0.5 .,/20 = C,, =4472

when the design valve pressure drop is 20 psi
Case 2;

100=C,, (0.5 ./80 = C,=2236

when the design valve pressure drop is 80 psi

Naturally the control valve in case 2 is smaller than that in case 1.

Now let’s see what happens in the two cases when we open the control
valve all the way: fi,, = |. Certainly the flow rate will increase, but how much?
From a control point of view, we may want to be able to increase the flow
substantially, Let’s call this unknown flow F__, .

The higher flow rate will increase the pressure drop over the heat exchanger
as the square of the flow rate,

Fon Y _ 4of Frne )
apy = o ) - s o) "o

The higher flow rate might also reduce the head that the centrifugal pump pro-
duces if we are out on the pump curve where head is dropping rapidly with
throughput. For simplicity, let us assume that the pump curve is flat. This means
that the total pressure drop across the heat exchanger and the control valve is
constant. Therefore, the pressure drop over the control valve must decrease as the
the pressure drop over the heat exchanger increases.

AP, = AP, — APy, 2.7
Plugging in the numbers for the two cases yields the following results.
Case 1 (20 psi design):
APrau=60psi  C, =44.72
F 2
Frs = (44.72) (10) {60 — 40 (ﬁ) 78)

This equation can be solved for F,,_: 115 gpm. So the maximum flow through
the valve is only 15 percent more than design if a 20 psi pressure drop over the
valve is used at design flow rate.
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Case 2 (80 psi design):
APry=120psi C,=2236

F 2
7.
(2336}{10}\/120 40(100) (7.9)

Solving for F,, yields 141 gpm. So the maximum flow through this valve, which
has been designed for a higher pressure drop, is over 40 percent more than
design.

We can see from the results above that the valve that has been designed tor
the larger pressure drop can produce more of an increase in the flow rate at its
maximum capacity.

Now let’s see what happens when we want to reduce the flow. Control
valves don’t work too well when they are less than about 10 percent open. They
can become mechanically unstable, shutting off completely and then popping
partially open. The resulting fluctuations in flow are undesirable. Therefore, we
want to design for a minimum valve opening of 10 percent. Let’s see what the
minimum flow rates will be in the two cases considered above when the two
valves are pinched down so that f,, = 0.1.

In this case the lower flow rate will mean a decrease in the pressure drop
over the heat exchanger and therefore an increase in the pressure drop over the
control valve.

3

Case 1 (20 psi design):

2
Foo = (0.1) (44.72) /60 — 40 ( 1&‘;‘) (7.10)
Solving gives F,;,, = 33.3 gpm.
Case 2 (80 psi design):
Frin = (0.1) (22.36) \/ 120 — 40 (F “‘*“)2 ‘ (7.11)
100
This F_;, is 24.2 gpm. .

These results show that the minimum flow rate is lower for the valve that
was designed for a larger pressure drop. So not only can we increase the flow
more, but we also can reduce it more. Thus the turndown (the ratio of F,,, to
F_..) of the big AP valve is larger.

115
Turndown ratio for 20-psi design valve = 33 346
. . 141
Turndown ratio for 80-psi design valve = — = 5.83

242
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We have demonstrated why the control engineer wants more pressure drop over
the valve.

So how do we resolve this conflict between the process engineer wanting
low pressure drop and the control engineer wanting large pressure drop?

A commonly used heuristic recommends that the pressure drop over the
control valve al design should be 50 percent of the total pressure drop through
the system, Although widely used, this procedure makes little sense to me. A
more logical design procedure is outlined below.

In some situations it is very important to be able to increase the fiow rate
above the design conditions (for example, the cooling water to an exothermic
reactor may have to be doubled or tripled to handle dynamic upsets). In other
cases this is not as important (for example, the feed flow rate to a unit). Therefore
it is logical to base the design of the control valve and the pump on having a
process that can attain both the maximum and the minimum flow conditions.
The design flow conditions are only used to get the pressure drop over the heat
exchanger (or fixed resistance part of the process).

The designer must specify the maximum flow rate that is required under the
worst conditions and the minimum flow rate that is required, Then the valve flow
equations for (he maximum and minimum conditions give two equations and
two unknowns: the pressure head of the centrifugal pump AP, and the control
valve size C,,.

Example 7.1. Suppose we want to design a control valve for admitting cooling
water to a cooling coil in an exothermic chemical reactor. The normal flow rate is
50 gpm. To prevent reactor runaways, the valve must be able to provide three times
the design flow rate. Because the sales forecast could be overly optimistic, a
minimum flow rate of 50 percent of the design flow rate must be achievable. The
pressure drop through the cooling ceil is 10 psi at the design flow rate of 50 gpm.
The cooling water is to be pumped from an atmospheric tank. The water leaving the
coil runs into a pipe in which the pressure is constant at 2 psig. Size the control
valve and the pump.

The pressure drop through the coil depends on the flow rate F:

z
AP, = 10(5—";) (7.12)

The pressure drop over the control valve is the total pressure drop available (which
we don't know yet} minus the pressure drop over the coil.

F ]

AP, = AP, — 10| — 7.13

o T (50) ( )
Now we write one equation for the maximum flow conditions and one for the

minimum.

At the maximum conditions:

2
150 = C, (1.0} AP —10 %Q) (7.14)
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At the minimum conditions:
25\
25=C, (0.1} AP~ 10 (%) (7.15)

Solving simultaneously for the two unknowns yields the control valve size (C, =
21.3) and the pump head (AP, = AP; +2=1392+2 = 141.2 psi).

At the design condmons (50 gpm), the valve fraction open {f,,,) will be given
by

50=213f, J1392—-10 =  f,, =0206 (7.16)

The control valve/pump sizing procedure proposed above is not without
its limitations. The two design equations for the maximum and minimum condi-
tions in general terms are:

Foonx \ |

Frmx = €, \/ AP — (APy)acs (F"P—) (747
. -

Frin =Jain Co \/ APy — (AP aes (F'""’) (7.18)

where AP, = total pressure drop through the system at design flow rates
(AP )4, = pressure drop through the fixed resistances in the system at design
flow
fuin = minimum valve opening
F,,, = flow rate at design

A flat pump curve is assumed in the above derivation. Solving these two equa-
tions for AP gives:
(qux.)z - (‘F‘rrlin}2
AP T _ (F del)2

(APH)des - 1 — min max)
F

(7.19)

It is clear from Eq. (7.19) that as the second term in the denominator approaches
unity, the required pressure drop goes to infinity! So there is a limit to the
achievable rangeability of a system.

Let us define this term as the rangeability index of the system, R.

- f min F max
R= o (7.20)
The parameters on the right side of Eq. (7.20) must be chosen such that R is less
than unity.

This can be illustrated, using the numbers from Example 7.1. If the
minimum flow rate is reduced from 50 percent of design (where AP, was 1392
psi) to 40 percent, the new AP becomes 202 psi. If F, is reduced further to 35
percent of design, AP is 335 psi. In the limit as F,,, goes to 30 percent of design,

min
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the rangeability index becomes

P __fmin Fl!lmt _ {0'1)(150) _
B B F min B 15 B I
and the total pressure drop available goes to infinity.

The value of f,,;, can be reduced below 0.1 if a large turndown ratio is
required. This is accomplished by using two control valves in parallel, one large
and one small, in a split-range configuration. The small valve opens first and then
the large valve opens as the signal 1o the two valves changes over its full range.

Characteristics. By changing the shape of the plug and the seat in the valve,
difterent relationships between stem position and flow area can be attained. The
common flow characteristics used are linear trim valves and equal-percentage trim
valves as shown in Fig. 7.7. The term “equal percentage” comes from the slope of
the f., curve being a constant fraction of /.

If constant pressure drop over the valve is assumed and if the stem position
15 50 percent open, a linear-trim valve gives 50 percent of the maximum flow and
an equal-percentage-trim valve gives only 15 percent of the maximum flow, The
equations for these valves are;

Linear:
Jn = (7.21)
Equal percentage:
fog=a" 1 (7.22)
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where « is a constant (20 to 50) that depends on the valve design. A value of 50 is
used in Fig. 7.7.

The basic reason for using different control-valve trims is to keep the stabil-
ity of the control loop fairly constant over a wide range of flows. Linear-trim
valves are used, for example, when the pressure drop over the control valve is
fairly constant and a linear relationship exists between the controlled variable
and the flow rate of the manipulated variable. Consider the flow of steam from a
constant-pressure supply header. The steam flows into the shell side of a heat
exchanger. A process liquid stream flows through the tube side and is heated by
the stecam. There is a linear relationship between the process outlet temperature
and steam flow (with constant process flow rate and inlet temperature) since
every pound of steam provides a certain amount of heat.

Equal-percentage valves are often used when the pressure drop available
over the control valve is not constant. This occurs when there are other pieces of
equipment in the system that act as fixed resistances. The pressure drops over
these parts of the process vary as the square of the flow rate. We saw this in the
examples discussing control valve sizing.

At tow flow rates, most of the pressure drop is taken over the control valve
since the pressure drop over the rest of the process equipment is low. At high
flow rates, the pressure drop over the control valve is low. In this situation the
equal-percentage trim tends to give a more linear relationship between flow and
control-valve position than does linear trim. Figure 7.8 shows the installed char-
acteristics of linear and equal-percentage valves for different ratios of the pressure
drop over the fixed resistance (APy for the heat exchanger example) over the
pressure drop over the valve at design conditions. The larger this ratio, the more
nonlinear are the installed characteristics of a linear valve.

The inherent characteristics are those that relate flow to valve position in
the situation where the pressure drop over the control valve is constant. These
are the (AP/AP,) = 0 curves in Fig. 7.8. Installed characteristics are those that
result from the variation in the pressure drop over the valve.

Linear trim Equal percentage trim
1 -
E
: 2
‘v g
g ]
E 2 ) E s
Ee Increasing =2
8 =
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s Iatio EF E AP
R- v dusign [* ratio ( H)
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Stem position x Stem position ¥
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FIGURE 78

Control-valve performance in a system (“installed characteristics™).
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In conventional valves the air-pressure signal to the diaphragm comes from
an I/P transducer in analog electronic systems. “Valve positioners™ are often
used to improve control, particularly for large valves and with dirty or gooky
fluids which can make the valve stick. A sticky valve can cause a control loop to
oscillate; the controller output signal changes but the valve position docsn’t do
anything until the pressure force gets high enough to move the vaive. Then, of
course, the valve moves too far and the controller must reverse the direction of
change of its output, and the same thing occurs in the other direction. So the
loop will fluctuate around its setpoint even with no other disturbances.

Valve positioners are little feedback controllers that sense the actual posi-
tion of the stem, compare it with the desired position as given by the signal from
the controller and adjust the air pressure on the diaphragm to drive the stem to
its correct position. Valve positioners can also be used to make valves open and
close over various ranges (split-range valves).

Control valves are usually fairly fast compared with the process. With large
valves (greater than 4 inches} it may take 20 to 40 seconds for the valve to move
full stroke.

7.14 Analog and Digital Controllers

The part of the control loop that we will spend most of our time with in this
book is the controller. The job of the controller is to compare the process signal
from the transmitter with the setpoint signal and to send out an appropriate
signal to the control valve. We will go into more detail about the performance of
the controller in Sec. 7.2. In this section we will describe what kind of action
standard commercial controllers take when they see an crror.

Analog controllers use continuous electronic or pneumatic signals. The con-
trollers see transmitter signals continuously, and control valves are changed con-
tinuously,

Digital computer controllers are discontinuous in operation, looking at a
number of loops sequentially. Each individual loop is only looked at every sam-
pling period. The analog signals from transmitters must be sent through analog-
to-digital {A/D} converters to get the information into the computer in a form
that it can use. After the computer performs its calculations {control algorithm) it
sends out a signal which must pass through a digital-to-analog (D/A) converter
and a “hold” that sends a continuous signal to the control valve, We will study
these sampled-data systems in detail in Chaps. 18 through 20,

There are three basic types of controllers that are commonly used for con-
tinuous feedback control. The details of construction of the analog devices and
the programming of the digital devices vary from one manufacturer to the next,
but their basic functions are essentially the same.

A. PROPORTIONAL ACTION. A proportional-only feedback controller changes
its output signal, CO, in direct proportion to the error signal, E, which is the
difference between the setpoint, SP, and the process measurement signal, PM,
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Action of a feedback controller. (a) Proportional ; (b} integral; (c) ideal derivative.

coming from the transmitter.
CO = bias + K (SP — PM) (7.23)

The bias signal is a constant and is the value of the controller output when there
is no error. The “K,” is called the controller gain. The larger the gain, the more
the controller output will change for a given error. For example, if the gain is 1,
an error of 10 percent of scale (1.6 mA in an analog electronic 4 to 20 mA system)
will change the controller output by 10 percent of scale. Figure 7.9a sketches the
action of a proportional controller for given error signals, E.

Many instrument manufacturers use an alternative term, proportional hand

{PB), instead of gain. The two are related by
100
PB= K. (7.24)
The higher or “wider” the proportional band, the lower the gain and vice versa.
The term proportional band refers to the range over which the error must change
to drive the controller output over its full range. Thus a wide PB is a low gain,
and a narrow PB is a high gain.

The gain on the controller can be made either positive or negative by
setting a switch in an analog controtler or specifying the desired sign in a digital
controller. A positive gain results in the controller output decreasing when the
process measurement increases. This “increase-decrease™ action is called a
reverse-acting coniroller. For a negative gain the controller output increases
when the process measurement increases, and this is called a direct-acting con-
troller. The correct sign depends on the action of the transmitter (which is usnally
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direct), the action of the valve (air-to-open to air-to-close), and the effect of the
manipulated variable on the controlled variable.

For example, suppose we are controlling the process outlet temperature of a
heat exchanger as sketched in Fig. 7.10. A control valve on the steam to the shell
side of the heat exchanger is positioned by a temperature controller. To decide
what action the controller should have we first look at the valve. Since this valve
puts steam into the process, we would want it to fail shut. Therefore we choose
an air-to-open (AQO} control valve.

Next we look at the temperature transmitter. It is direct acting (when the
process temperature goes up, the transmitter output signal, PM, goes up). Now if
PM increases, we want to have less steam. This means that the controller output
must decrease since the valve is AQ, Thus the controller must be reverse-acting
and have a positive gain. '

If we were cooling instead of heating, we would want the coolant flow to
increase when the temperature increased. But the controller action would still be
reverse because the control valve would be an air-to-close valve, since we want it
to fail wide open.
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As a final example, suppose we are controlling the base level in a distillation
column with the bottoms product flow rate. The valve would be AO because we
want it to fail shut (we don’t want to lose base level in an emergency). The level
transmitter signal increases if the level increases. If the level goes up, we want the
bottoms flow rate to increase. Therefore the base level controller should be
“increase-increase” (direct acting).

One of the most important items to check in setting up a feedback control
loop on the plant is that the action of the controller is correct.

B. INTEGRAL ACTION (RESET). Proportional action moves the control valve in
direct proportion to the magnitude of the error. Tntegral action moves the control
valve based on the time integral of the error, as sketched in Fig. 7.9b.

CO = bias +Tl JE(,, dt (7.25)
I

where 7, is the integral time or the reset time with units of minutcs.

If there is no error, the controller output does not move. As the error goes
positive or negative, the integral of the error drives the controller output either
up or down, depending on the action {reverse or direct) of the controller.

Most controliers are calibrated in minutes (or minutes/repeat, a term that
comes from the test of putting into the controller a fixed error and seeing how
long it takes the integral action to ramp up the controller output to produce the
same change that a proportional controller would make when its gain is 1; the
integral repeats the action of the proportional controller).

The basic purpose of integral action is to drive the process back to its
setpoint when it has been disturbed. A proportional controller will not vsually
return the controlled variable to the setpoint when a load or setpoint disturbance
occurs. This permanent error (SP — PM) is calied steadystate error or offset, Inte-
gral action reduces the offset to zero.

Integral action degrades the dynamic response of a control loop. We will
demonstrate this quantitatively in Chap. 10. It makes the control loop more
oscillatory and moves it toward instability. But integral action is usually needed
if it is desirable lo have zero offset. This is another cxample of an cngineering
trade-off that must be made between dynamic performance and steadystate per-
formance.

C. DERIVATIVE ACTION. The purpose of derivative action (also called rate or
preact) is to anticipate where the process is heading by looking at the time rate of
change of the controlled variabie (its derivative). If we were able to take the
derivative of the error signal (which we cannot do perfectly, as we will explain
more fully in Chap. 10), we would have ideal derivative action.

dE
CO = bias + 15— (7.26)

where 1p, is the denivative time {minutes).
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In theory, derivative action should always improve dynamic response, and
it does in many loops. In others, however, the problem of noisy signals
(fluctnating process-measurement signals) makes the use of derivative action
undesirable.

D. COMMERCIAL CONTROLLERS, The three actions described above are used
individually or combined in commercial controliers. Probably 60 percent of all
controllers are Pl (proportional-integral), 20 percent are PID (proportional-
integral-derivative) and 20 percent are P-only (proportional). We will discuss the
reasons for selecting one type over another in Sec. 7.2,

7.1.5. Computing and Logic Devices

A host of gadgets and software are available Lo perform a variety of computa-
tions and logical operations with control signals. For example, adders, multi-
phiers, dividers, low selectors, high selectors, high limiters, low limiters, and
square-root extractors can all be implemented in both analog and computer
systems. They are widely used in ratio control, in computed variable control, in
feedforward control, and in override control. These will be discussed in the next
chapter.

in addition to the basic control loops, all processes have instrumentation
that (1) sounds alarms to alert the operator to any abnormal or unsafe condition,
and (2) shuts down the process if unsafe conditions are detected or equipment
fails. For example, if a compressor motor overloads and the electrical control
system on the motor shuts down the motor, the rest of the process will usually
have to be shut down immediately. This type of instrumentation is called an
“interlock.” It cither shuts a control valve completely or drives the control valve
wide open. Other examples of conditions that can “interlock® a process down
include failure of a feed or reflux pump, detection of high pressure or temperature
in a vessel, and indication of high or low liquid level in a tank or column base,
Interlocks are usually achieved by pressure, mechanical, or electrical switches.
They can be included in the computer software in a computer control system, but
they are usually “hard-wired ™ for retiability and redundancy.

7.2 PERFORMANCE OF FEEDBACK CONTROLLERS
7.2.1 Specifications for Closedloop Response

There are a number of criteria by which the desired performance of a closedloop
system can be specified in the time domain. For example, we could specify that
the closedloop system be critically damped so that there is no overshoot or oscil-
lation. We musl then select the type of controller and set its tuning constants so
that it will give, when coupled with the process, the desired closedloop response.
Naturally the control specification must be physically attainable. We cannot
make a Boeing 747 jumbo jet airplane behave like an F-15 fighter, We cannot
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violate constraints on the manipulated variable {the control valve can only go
wide open or completely shut), and we cannot require a physically uarealizable
controller {more about the mathematics of this in Chap. 10).

There are a number of time-domain specifications. A few of the most fre-
quently used dynamic specifications are listed below (see also Prob. 6.11). The
traditional test input signal is a step change in setpoint.

1. Closedioop damping coefficient (as discussed in Chap. 6)

2. Overshoot: the magnitude by which the controlled variable swings past the
setpoint

3. Rise time (speed of response): the time it takes the process to come up to the
new setpoint

4, Decay ratio: the ratio of maximum amplitudes of successive oscillations

8. Settling time: the time it takes the amplitude of the oscillations to decay to
some fraction (0.05) of the change in setpoint

6. Integral of the squared error:
ISE = 'f (E)? dt
o

Notice that the first five of these assume an underdamped closedloop system, ie.,
one that has some oscillatory nature.

- My personal preference is to design for a closedloep damping coefficient of
0.3 to 0.5. As we will see throughout the rest of this book, this criterion is easy to
use and reliable. Criterion like ISE can be used for any type of disturbance,
setpoint, or load. Some “experts” (remember an “expert” is one who is seldom in
doubt, but often in error) recommend different tuning parameters for the two
types of disturbances. This makes little sense to me. What you want is a reason-
able compromise between performance (tight control; small closedloop time
constants) and robustness (not too sensitive to changes in process parameters).
This compromise is achieved by using a closedloop damping coefficient of 0.3 to
0.5 since it keeps the real parts of the roots of the closedloop characteristic equa-
tion a reasonable distance from the imaginary axis, the point where the system
becomes unstable (see Chap. 6). The closedloop damping coefficient specification
is independent of the type of input disturbance.

The steadystate error is another time-domain specification. It is not a
dynamic specification, but it is an important performance criterion. In many
loops (but not all) a steadystate error of zero is desired, ic., the valuc of the
controlled variable should eventually level out at the setpoint.

7.2.2 Load Performance

The job of most control loops in a chemical process is one of regulation or load
rejection, ie., holding the controlled variable at its setpoint in the face of load
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disturbances. Let us look at the effects of load changes when the standard types
of controllers are used,

We will use a simple heat-exchanger process (Fig. 7.10) in which an oil
stream is heated with steam. The process outlet temperature T is controlled by
manipulating steam flow rate F, to the shell side of the heat exchanger. The oil
flow rate F and the inlet oil temperature T, are load disturbances. The signal
from the temperature transmitter (TT) is the process measurement signal, PM.
The sctpoint signal is SP. The output signal, CO, from the temperature controller
(TC) goes through an I/P transducer to the steam control valve. The valve is AQ
because we want it to fail closed.

A. ON-OFF CONTROL. The simplest controller would be an on-off controller
like the thermostat in your home heating system. The manipulated variable is
either at maximum flow or at zero flow. The on-off controller is a proportional
controller with a very high gain and gives “bang-bang” control action. This type
of control is seldom used in a continuous process because of the cycling nature of
the responsc, surging flows, and wear on control valves.

In the heat-exchanger example the controlled variable T cycles as shown in
Fig. 7.11a. When a load disturbance in inlet temperature (a step decreasc in T)
occurs, both the period and the average value of the controlled variable T
change. You have observed this in your heating system. When the outside tem-
perature is colder, the furnace runs longer and more frequently, and the room
temperature is lower on average. This is one of the reasons why you feel colder
inside on a cold day than on a warm day for the same setting of the thermostat.

The system is really unstable in the classic linear sense, The nonlinear
bounds or constraints on the manipulated variable (control-valve position) keep
it in a “limit cycle.”

B. PROPORTIONAL CONTROLLER. The output of a proportional controller
changes only if the error signal changes. Since a load change requires a new
control-valve position, the controller must end up with a new error signal. This
means that a proportional controlicr usually gives a steadystate error or offset.
This is an inherent limitation of P controllers and why integral action is usually
added.

As shown in Fig. 7.11b for the heat-exchanger example, a decrease in
process inlet temperature T, requires more steam. Therefore the error must
incrcase to open the steam valve more. The magnitude of the offset depends on
the size of the load disturbance and on the controiler gain. The bigger the gain,
the smaller the offset. As the gain is made bigger, however, the process becomes
underdamped and eventually, at still higher gains, the loop will go unstable,
acting like an on-off controller,

Steadystate error is not always undesirable. In many level control loops the
absolute level is unimportant as long as the tank does not run dry or overflow.
Thus a proportional controller is often the best type for level control, We will
discuss this in more detail in Sec. 7.3.
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C. PROPORTIONAL-INTEGRAL (PI) CONTROLLER. Most control lcops use P1
controllers. The integral action eliminates steadystate error in T {see Fig. 7.11c).
The smaller the integral time t,, the faster the error is reduced. But the system
becomes more underdamped as 7, is reduced. If it is made too small, lhc loop
becomes unstable.

D. PROPORTIONAL-INTEGRAL-DERIVATIVE (PID) CONTROLLER. PII) con-
trollers are used in loops where signals are not noisy and where tight dynamic
response is important. The derivative action helps to compensate for lags in the



CONYENTIONAL CONTROL SYSTEMS AND HARDWARE 231

loop. Temperature controllers in reactors are usually PID. The controller senses
the rate of movement away from the setpoint and starts moving the control valve
earlier than with only PT action (see Fig. 7.11d).

Derivative action can be used on cither the error signal (SP — PM) or just
the process measurement (PM). If it is on the error signal, step changes in set-
point will produce large bumps in the control valve. Therefore, in most process
control applications, the derivative action is applied only to the PM signal as it
enters the controller. The P and [ action is then applied to the difference between
the setpoint and the output signal from the derivative unit (see Fig. 7.12).

7.3 CONTROLLER TUNING

There are a variety of feedback controller tuning methods. Probably 80 percent
of all loops are tuned experimentally by an instrument mechanic, and 75 percent
of the time the mechanic can guess approximately what the settings will be by
drawing on experience with similar loops. We will discuss a few of the time-
domain methods below. In subsequent chapters we will present other techniques
for finding controller constants in the Laplace and frequency domains.

7.3.1 Rules of Thumb

The common types of control loops are level, flow, temperature, and pressure.
The type of controller and the settings used for any one type are sometimes
pretty much the same from one application to another. For example, most flow
control loops use PI controllers with wide proportional band and fast integral
action.

Some heuristics are given below. They are not Lo be taken as gospel. They
merely indicate common practice and they work in most applications.

A. FLOW LOOPS. PI controllers are used in most flow loops. A wide pro-
portional band setting (PB = 150} or low gain is used to reduce the effect of the
noisy flow signal due to flow turbulence. A low value of integral or reset time
(t;, = 0.1 minute per repeat) is used to get fast, snappy setpoint tracking.

The dynamics of the process are usually very fast. The sensor sees the
change in flow almost immediately. The control valve dynamics are the slowest
element in the loop. So a small reset time can be used.

There is one notable exception to fast PI flow control: flow control of
condensate-throttled reboilers. As sketched in Fig. 7.13, the flow rate of vapor to
a reboiler is sometimes controlled by manipulating the liquid condensate valve.
Since the vapor flow depends on the rate of condensation, vapor flow can only be
varied by changing the area for heat transfer in the reboiler. This is accomplished
by raising or lowering the liquid level in this “flooded” reboiler. Changing the
liquid level takes some time. Typical time constants are 3 to 6 minutes. Therefore,
this flow control loop would have much different controller tuning constants
than suggested in the rule-of-thumb cited above. Some derivative action may
even be used in the loop to give faster flow control.
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Condensate-throttling flow control.

B. LEVEL LOOPS. Most liquid leveis represent material inventory used as surge
capacity. In these cases it is relatively unimportant where the level is, as long as it
is between some maximum and minimum levels. Therefore, proportional control-
lers arc often used on level loops to give smooth changes in flow rates and to
filter out fluctuations in flow rates to dewnstream units.

One of the most common crrors in laying out a controf structure for a plant
with multiple units in series is the use of PI level controllers. If P controllers are
used, the process flows rise or fall slowly down the train of units with no over-
shoot of flow rates. Liquid levels rise if flows increase and fall if flows decrease.
Levels are not maintained at setpoints, See Fig. 7.14.

If PT level controllers are used, the integral action forces the level back to its
setpoint. In fact if the level controller is doing a “perfect” job, the level is held
right at its setpoint. This means that any change in the flow rate into the surge
tank will immediately change the flow rate out of the tank. We might as well not
even use a tank: just run the inlet pipe right into the outlet pipe! Thus, this is an
example of where tight control is rot desirable. We want the flow rate out of the
tank to increase gradually when the inflow increases so as to not upset the down-
stream units,

Suppose the flow rate F, increases to the first tank in Fig. 7.14. The level h,
in the first tank will start to increase. The level controller will start to increase F,.
When F; has increased to the point that it is equal to F,,. the level will stop
changing since the tank is just an integrator. Now, if we use a P level controller,
nothing eise will happen. The level will remain at the higher level and the enter-
ing and exiting flows will be equal.

If, however, we use a PI level controller, the controller will continue to
increase the outflow beyond the value of the inflow in order to drive the level
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back down to its setpoint. So an inherent problem with PI level controllers is
that they amplify flow rate changes of this type. The change in the flow rate out
of the tank is actually larger (for a period of time) than the change in the flow
rate into the tank. This amplification gets worse as it works its way down
through the series of units. What started out at the beginning as a small dis-
turbance can result in large fluctuations by the time it reaches the last unit in the
train.

There are, of course, many situations where it is desired to control level
tightly, for example, in a reactor where control of residence time is important.

The tuning of proportional level controllers is a trivial job. For cxample, we
could set the bias value at 50 percent of full scale, the setpoint at 50 percent of
full scale, and the proportional band at 50. This means that the control valve will
be half open when the tank is half full, wide open when the tank is 75 percent full,
and completely shut when the tank is 25 percent full. Changing the proportional
band to 100 would mean that the tank would be completely full to have the valve
wide open and completely empty to have the valve shut.

C. PRESSURE LOOPS. Pressure loops vary from very tight, fast loops (almost
like flow control) to slow averaging loops {almost like level control). An example
of a fast pressure loop is the case of a valve throttling the flow of vapor from a
vessel, as shown in Fig. 7.15a. The valve has a direct handle on pressure, and
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tight control can be achicved. An example of a slower pressure loop is shown in
Fig. 7.15b. Pressure is held by throttling the water flow to a condenser. The water
changes the AT driving force for condensation in the condenser. Therefore, the
heat transfer dynamics and the lag of the water flowing through the shell side of
the condenser are introduced into the pressure control loop.

D. TEMPERATURE LOOPS. Temperature control loops are usually moderately
slow because of the sensor lags and the process heat transfer lags. PID controllers
are often used. Proportional band settings are fairly low, depending on tem-
perature transmitter spans and control-valve sizes. The reset time is of the same
order as the process time constant; ic., the faster the process, the smaller 1, can
be set. Derivative time is set something like one-fourth the process time constant,
depending on the noise in the transmitter signal. We will quantify these tuning
numbers later in the book,

7.3.2 On-Line Trial and Error

To tune a controlier on line, a good instrument mechanic follows a procedure
something like the following;:

1. With the controller on manual, take all the integral and derivative action out
of the controller, ie., set 1, al maximum minutes per repeat and 7, at
minimum minutes,

2. Set the PB at a high value, perhaps 200.

3. Put the controller on automatic.
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4. Make a small setpoint or load change and observe the response of the con-
trolled variable. The gain is low so the response will be sluggish.

8. Reduce the PB by a factor of 2 (double the gain) and make another small
change in setpoint or load.

6. Keep reducing PB, repeating step 5, until the loop becomes very under-
damped and oscillatory. The gain at which this occurs is called the ultimate
gain.

7. Back-off on the PB to twice this ultimate value.

8. Now start bringing in integral action by reducing 7, by factors of 2, making
small disturbances at each value of 7, to see the effect.

9. Find the value of 7, that makes the loop very underdamped and set 7, at
twice this value,

10. Start bringing in derivative action by increasing 1,. Load changes should be
used to disturb the system and the derivative should act on the process mea-
surement signal. Find the value of 7, that gives the tightest control without
amplifying the noise in the process measurement signal.

11. Reduce the PB again by steps of 10 percent until the desired specification on
damping coefficient or overshoot is satisfied.

It should be noted that there are some loops where these procedures do not
work. Systems that exhibit “conditional stability” are the classic example. These
processes are unstable at high values of controller gain and are also unstable at
low values of controller gain, but are stable over some intermediate range of
gains, We will discuss some of these in Chap. 10.

733 Ziegler-Nichols Method

The Ziegler-Nichols (ZN) controller settings (J. G. Ziegler and N. B. Nichols,
Trans. ASME, Vol. 64, 1942, p. 759) are pseudostandards in the control field.
They are easy to find and to usc and give reasonable performance on some loops.
The ZN settings are benchmarks against which the performance of other con-
troller settings are compared in many studies. They give reasonable first guesses
of settings. There are many loops where the ZN settings are not very good. They -
tend to be too underdamped for most process control applications. Some on-line
tuning can improve control significantly. But the ZN settings are useful as a place
to start. :

The ZN method consists of first finding the ultimate gain K, the value of
gain at which the loop is at the limit of stability with a proportional-only feed-
back controlier. The period of the resulting oscillation is called the ultimate
period, P, (minutes per cycle). The ZN settings are then calculated from K, and
P, by the formulas given in Table 7.1 for the three types of controllers. Notice
that a lower gain is used when integration is included in the controller (PI) and
that the addition of derivative permits a higher gain and faster reset.
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TABLE 7.1
Ziegler-Nichols settings

P PI PID
K, K KK
2 2.2 1.7
7; (minutes) P, P,
1.2 2
p (minules) £, -
8

The isothermal three-CSTR process of Sec 5.2 has, as we will prove in
Chap. 10, an ultimate gain of 64 and an ultimate period of 3.63 minutes. The ZN
settings for this system are given in Table 7.2. The response of the closedlogp
system to a step load disturbance in C,; is shown in Fig. 7.16 with P, PI, and
PID contrellers and the ZN settings,

These results show several interesting things:

1. There is a steadystate crror in the controlled variable C,; when a P controller
is used. This offset results because there is no integral term to drive the error
to zero.

2. The ZN settings for all the controllers result in a fairly underdamped system:
the responses show significant oscillation. The closedloop damping coefficient
of this system is about 0.1 to 0.2. By way of contrast, the curve marked
“PI,," (which will be explained in Chap. 13) gives a closedloop damping
coefficient of about 0.5. The control is less tight {more deviation in the con-
trolled variable) but there is a more gradual change in the manipulated vari-
able and the response is not as oscillatory.

In many process control applications, this kind of response is more desir-
able than snappy response that calls for rapid and large changes in the manip-
ulated variable. For example, in the control of a tray temperature in a
distillation column we want tight temperature control, but we do not want
rapid or large changes in the heat input to the reboiler because the column
may flood during one of the transients. If the surge in vapor rate is too rapid,
we could even mechanically damage the trays in the column. So we must

TABLE 72
ZN settings for 3-CSTR process
P PI PID
K. 2 81 N6
t{minutes) . 103 1.82

5 (minutes) e e 0.453
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Three-CSTR example with Ziegler-Nichols settings.

sacrifice some performance (tight control) for smoother and less violent
changes in the manipulated variable. The tuning procedure that gives the PI .,
curve achieves this looser control. .

3. Control is improved when the PID controlier is used. There is less deviation in
the controlled variable because the manipulated variable C,, changes more
quickly. As discussed above, if rapid and large changes in the manipulated
variable cannot be tolerated, derivative action cannot be used to improve the
control performance.

There are many other tuning methods. One of the most simple uses the step
response of the process to determine steadystate gain, time constant, and dead-
time (see Chap. 14 for more details). Then controller tuning constants can be
calculated from these values. Smith and Corripio (Principles and Practice of Auto-
matic Process Control, 1985, p. 216, John Wiley & Sons, New York) give a clear
discussion of this method. I prefer the ultimate gain and ultimate frequency

_,approach because of the very significant problem of nonlinearity that exists in
most chemical engineering systems. Step testing drives the process away from its
initial steadystate and is, therefore, much more sensitive to nonlinearity than is
the closedloop ultimate-gain method in which the process is held in a region near
the initial steadystate. We will discuss this more in Chap. 14.
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PROBLEMS

7.1. (a) Culculate the gain of an orifice plate and differential-pressure transmitter for flow
rates from 10 to 90 percent of [ull scale,
(b) Calculate the gain of linear and equai-percentage valves over the same range,
assuming constant pressure drop over the valve,
{c) Calculate the total loop gain of the valve and the sensor-transmitter system over
this range.

7.2. The temperature of u CSTR is controlled by an electronic {4 to 20 mA) feedback
control system containing (1) a 100 to 200°F temperature transmitter, (2} a PI con-
troller with integral time set at 3 minutes and proportional band at 25, and (3) a
contepl valve with linear trim, air-to-open action, and a C, = 4 through which
cooling water flows. The pressure drop across the valve is a constant 25 psi. If the
steadystate controller output is 12 mA, how much cooling water is going through
the valve? If a sudden disturbance increases reactor temperaturc by 5°F, what will
be the immediate effect on the contreller output signal and the water flow rate? .

7.3, Simulate the three-CSTR system on a digital computer with an on-off feedback con-
trolier. Assume the manipulated variable C,,, is limited to +1 mol of A/lt® around
the steadystate value. Find the period of oscillation and the average value of C,, for
values of the load variable C, 5 of 0.6 and 1.

wo ways to control the outlet temperature of a heat-exchanger cooler are sketched
bglow. Comment on the relative merits of these two systems from the standpoints of
both control and heal-exchanger design.

Water

Process
inlet
Cooler
Process
outlet
Throttle coolant system
A F—t TC
Process bypass @ l L
m— ;4'
Water —-—‘ A
Cooler -
Process Procass
inlet outlet

Bypass process system

FIGURE P74
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1.8, Specify the following items for the bypass cooler system of Prob. 7.4:

7.6,

7.7

7.8.

(@) The action of the valves (AO or AC) and kind of trim.
(b)) The action and type of controller.

Assume that the bypass cooling system of Prob. 7.4 is designed so that the total
process flow of 50,000 Ib/h (heat capacity of 0.5 Btu/lb, °F) is split under normal
conditions, 25 percent going around the bypass and 75 percent going through the
cooler. Process inlet and outlet temperatures under these conditions are 250 and
150°F. Inlet and outlet water temperatures are 80 and 120°F. Process side pressure
drop through the exchanger is 10 psi. The control valves have linear trim and are
designed to be hall open at design rates with a 10 psi drop over the valve in series
with the cooler. Liquid density is constant at 62.3 1o /ft*.

What will the valve positions be if the total process flow is reduced to 25
percent of design and the process outlet temperature is held at 150°F?

A liquid (sp gr = 1) is pumped through a heal exchanger and a control valve at a
design rate of 200 gpm. The exchanger pressure drop is 30 psi at design throughput,
Make plots of gow rate versus valve position x for linear and equal-percentage
(@ = 50) control valves. Both valves arc set al f,) = 0.5 at design ratc. The total
pressure drop over the entire system is constant. The pressure drop over the control
valve at design rate is:

{a) 10 psi

(b) 30 psi

(¢} 120 psi

Process designers sometimes like to use “dephlegmators™ or partial condensers
mounted directly in the top of the distillation column when the overhead product is
taken off as a vapor. They are particularly popular for corrosive, toxic, or hard-to-
handle chemicals since they eliminate a separate condenser shell, a reflux drum, and
4 reflux pump. Comment on the relative controllability of the two process systems

sketched below,
Vapar
proeduct
| ;£ Vapor
product 38
w55,
IR
TN
” Water i1 - Tube-in-shell
IRERIRE
Reflux i | condenser
’ﬁ Ll LL L
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Conventional Dephlegmator

FIGURE P78
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79. Compare quantitatively by digital simulation the dynamic performance of the three
coolers sketched below with countercurrent flow, cocurrent flow, and circulating
waler systems. Assume the tube and shell sides can each be represented by four

perfectly mixed lumps.

Process design conditions are:
Flow rate = 50,000 Ib_/h
Inlet temperature = 250°F
Outlet temperature = 130°F
Heat capacity = 0.5 Btu/lb °F

Process
——— e e——{
L]
Water

Countetrcurrent

Process
7 >
Water
Cocurrent
Process

i |

FIGURE P79
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Cooling-water design conditions are:

A. Countercurrent
Tnlet temperature = §0°F
Outlet temperature = 130°F
B. Cocurrent
Inkt temperature = 80°F
Qutlet temperature = 125°F
C. Circulating system
Inlet temperature to cooler = 120°F
Qutlet temperature from cooler = 125°F
Makeup waler temperature to system = 80°F

»

Negleel the tube and shell metal. Tune P1 controllers experimentally for each system.
Find the outlet temperature deviations for a 25 percent step increase in process flow
rate.

7.10. The overhead vapor from a depropanizer distillation column is totally condensed in
a water-cooled condenser at 120°F and 227 psig. The vapor is 95 mol % propane
and 5 mol % isobutane. Its design flow rate is 25,500 |b,/h and average latent heat
of vaporization is 125 Btufib,, .

Cooling water inlet and outlet temperatures are 80 and 105°F, respectively.
The condenser heat transfer area is 1000 ft>. The cooling water pressure drop
through the condenser at design rate is 5 psi. A linear-trim control valve is installed
in the cooling water line. The pressure drop over the valve is 30 psi at design with
the valve half open.

The process pressure is measured by an electronic {4-20 mA) pressure trans-
milter whose range is 100-300 psig. An analog clectronic proportional controller
with a gain of 3 is used to control process pressure by manipulating cooling water
flow. The electronic signal from the controller (CO} is converted into a pneumatic
signal in the I/P transducet.

(@) Calculate the cooling water flow rate (gpm) at design conditions.

(b} Calculate the size coefficient (C,) of the control valve.

(¢} Specify the action of the control valve and the controller.

{d) What are the values of the signals PM, CO, 8P, and PV at design conditions?

Vapor
Control
vilve
Co0lif @ mmmmmmmieed Condenser
waler
PV
P
3
PT » PC 00
e PM ' :
Reflux drum sP

FIGURE P10
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11

(e) Suppose the process pressure jumps 10 psi. How much will the cooling water
fiow rate increase? Give values for PM, CO, and PV at this higher pressure.
Assume that the total pressure drop over the condenser and control valve is
constant,

A circulating chilled-water system is used to cool an oil stream from 90 to 70°F in a

tube-in-shell heat exchanger. The temperature of the chilled water entering the

process heat exchanger is maintained constant at 50°F by pumping the chilled water
through a refrigerated cooler located upstream of the process heat exchanger. _

The design chilled-water rate for normal conditions is 1000 gpm, with chilled
water leaving the process heat exchanger at 60°F. Chilled-water pressure drop
through the process heat exchanger is 15 psi at 1000 gpm. Chilled-water pressure
drop through the refrigerated cooler is 15 psi at 1000 gpm. The heat transfer area of
the process heat exchanger is 1143 ft2,

The temperature transmitter on the process oil stream leaving the heat
exchanger has a range of 50-150°F. The range of the orifice-differential pressure flow
transmitter on the chilled water is 0-1500 gpm. All instrumentation is electronic {4 t&
20 mA). Assume the chilled-water pump is centrifugal with a flat pump curve.

(@) Design the chilled-water control valve so that it is 25 percent open at the 1000
gpm design rate and can pass a maximum flow of 1500 gpm. Assume linear trim
is used.

(b) Give values of the signals from the temperature transmitter, temperature control-
ler, and chilled-water flow transmitter when the chilled-water flow is 1000 gpm.

{c) What is the pressure drop over the chilled-water valve when it is wide open?

(d) What are the pressure drop and fraction open of the chilled-water control valve
when the chilled-water flow rate is reduced to 500 gpm? What is the chilled-
water flow transmitter output at this rate?

Tank at atmoespheric

Elevation 20 pressure

Circulating chilled water

Elevation /5" -—————— -+

TC
90°F Ed
e
Hot oil

5 7
3
o 2
8 3]
=B

Refrigerant Couuled oil
4 70°F

Elevation Q' . .. .. _g-_ Cooler S0°F

FIGURE P11
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(e) H electric power costs 2.5 cents per kilowatthour, what are the annual pumping
costs for the chilled-water pump at the design 1000 gpm rate? What horsepower
motor is required to drive the chilled-water pump? (1 hp = 350 ft-1b,/s = 746
watts).

7.12. Tray 4 temperature on the Lehigh distillation column is controlled by a pneumatic
P! controller with a 2-mipute reset time and a 50 percent proportional band. Tem-
perature controller output (CO,) adjusts the setpoint of a steam flow controller
(reset time 0.1 min and proportional band 100 percent). Column base level is con-
trolled by a pneumatic proportional-only controller setting bottoms product with-

drawal rate.

Transmitter ranges are:
Temperature tray 4 60-120°C

Steam flow 0-4.2 Ib,,/min (orifice/AP transmitter)
Bottoms fow 0-1 gpm (orifice/AP transmitter)
Base level 0-20 in H,O

Steadystate operating conditions are:
Tray 4 temperature = 83°C
Base level = 55% full
Steam flow = 3.5 b /min
Bottom flow = 0.6 gpm

Pressure drop over the control valve on the bottoms product is a constant at
30 psi. This control valve has linear trim and a C, of 0.5. The formula for steam flow
through a control valve (when the upstream pressure P, in psia is greater than twice
the downstream pressure) is

3C
w="22prX
2 3

where W = steam Aow rate (b /h)

C,=4

X = valve fraction open (linear trim)

TT e | T(C —=SP

0, T
(K4
F F{C 4+| PM;
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*—ﬁ‘— LT L Fl
i 5 P
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LC % steam
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FIGURE F7.12
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(1) Calculate the control signals from the base level transmitter, temperature trans-
mitter, steam flow transmitter, bottoms flow transmitter, temperature controller,
steamn flow controller, and base level controller. )

{#) What is the instantaneous effect of & + 5°C step change in tray 4 temperature on
the control signals and flow rates?

A reactor is cooled by a circulating jacket water system. A double cascade reactdr
temperature control to jacket temperature control to makeup cooling water flow
control is employed.

Instrumentation details are given below (electronic, 4 20 mA):
Reactor temperature transmitter range: 30-23°F
Circulating jacket water temperature transmitter range: 50-150"F
Makeup cooling water flow transmitter range: 0-250 gpm (orifice
plate + differential pressure transmitter) .
Control valve; linear trim, constant 35 psi pressure drop
Normal operating conditions are:
Reactor temperature = 140°F
Circulating water temperature = 106°
Maukeup water flow rate = 63 gpm
Control valve is 25 percent open

{a} Specify the action and size of the makeup cooling water control valve,

{b) Calculate the milliampere control signals from all transmitters and controllers at
normal operating conditions.

ic) Specify whether each controller is reverse- or direct-acting.

(d) Calculate the instantaneous values of all control signals if reactor temperature
increases suddenly 10°F,

Proportional band settings of the reactor temperature controller, circulating jacket

water temperature controller, and cooling water flow controller are 20, 67, and 200,

respectively.
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7.14. Three vertical cylindrical tanks (10 feet high, 10 feet diameter) are used in a process.
Two tanks are process tanks and are level controlled by manipulating outflows using
proportional-only level controllers {PB = 100). Level transmitter spans are 10 feet.
Control valves are linear, 50 percent open at the normal liquid rate of 1000 gpm,
air-to-open, constant pressure drop. These two process tanks are 50 percent full at
the normal liquid rate of 1000 gpm.

The third tank is a surge tank whose level is uncontrolled. Liquid is pumped
from this tank to the first process vessel, on to second tank in series, and then back
to the surge tank. If the surge tank is half full when 1000 gpm of liquid is circulated,
how full will the surge tank be, at the new steadystate, when circulating rate around
the system is cut to 500 gpm?

I'rocess Process
vessel 1 vessel 2

Surge
tank

1T

FC

FIGURE P7.14

7.15. Liquid (sp gr = 1) is pumped from a tank at atmospheric pressure through a heat
exchanger and a control valve into a process vessel held at 100 psig pressure. The
system is designed for a maximum flow rate of 400 gpm. At this maximum flow rate
the pressure drop across the heat exchanger is S0 psi.

A centrifugal pump is used with a performance curve that can be approx-
imated by the relationship

AP, = 19833 — 1458 x 107*F?

where AP, = pump head in psi
F = flow rate in gpm

The control valve has linear trim.
(a) Calculate the fraction that the control valve is open when the throughput is
reduced to 200 gpm by pinching down on the control valve.
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(b} An orifice-plate/differential pressure transmitter is used for flow measurement. If
the maximum full-scale flow reading is 400 gpm, what will the output signal from
the electronic flow transmitter be when the flow rate is reduced to 150 gpm?

7.16. Design liquid level control systems for the base of a distillation column and for the

717

vaporizer shown below. Steam flow to the vaporizer is held constant and cannot be
used to control level. Liquid feed to the vaporizer can come from the column and/or
from the surge tank. Liquid from the column can go to the vaporizer and/or to the
surge tank.

Since the liquid must be cooled if it is sent to the surge tank and then reheated
in the vaporizer, there is an emergy cost penalty associated with sending more
material to the surge tank than is absolutely necessary. Your level control system
should therefore hold both levels and also minimize the amount of material sent fo
the surge tank. (Hint; One way to accomplish this is to make sure that the valves in
the lines to and from the surge tank cannot be opened simultaneously.)

Vaupuar
3

Cﬂ Vupuarizer

]

Liquid
T feed

Surpe Link

FIGURE P7.16

A chemical reactor is cooled by a circulating oil system as sketched in Fig. P7.17. Oil
is circulated through a water-cooled heat exchanger and through control valve V. A
portion of the oil stream can be bypassed around the heat exchanger through
contral valve ¥,. The system is to be designed so that at design conditions:

» The oil flow rate through the heat exchanger is 50 gpm {(sp gr = 1) with a 10 psi
pressure drop across the heat exchanger and with the ¥, control valve 25 percent
opern.

e The oil flow rate through the bypass is 100 ;pm with the V, control valve 50
percent open.

Both control valves have linear trim. The circulating pump has a flat pump curve. A
maximum oil flow rate through the heat exchanger of 100 gpm is required.
{a} Specify the action of the two control valves and the two temperature controllers,
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{b) Calculate the size (C,'s) of the two control valves and the design pressure drops
over the two valves. .

(¢} How much oil will circulate through the bypass valve if it s wide open and the
valve in the heat exchanger loop is shut?

Heat
exchange:

‘[g Circulating oil

FIGURE P7.17

7.18. The formula for the flow of saturated steam through a control valve is
W = 21C, fuye/(Py + PXPL = P))

where W = b /h steum
P, = upstream pressure, psia
P, = downstream pressure, psia

The temperature of the steam-cooled reactor shown below is 285°F. The heat
that must be transferred from the reactor into he steam generation system is
25 x 10% Btu/h. The overall heat transfer coefficient for the cooling coils is 300 Btu/h
fi? °F, The steam discharges into a 25-psia steam header. The enthalpy difterence

Tia slere
header

Reactar

Steam
drum

o

Condensate
Cooling C__

Fued coils

Prduct
FIGURE P7.18
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between saturated steam and liquid condensate is 1000 Btu/lb,, . The vapor pressure
of water can be approximated over this range of pressure by a straight line,

T (°F) = 195 + L.8F (psia)

Design two systems, one where the steam drum pressure is 40 psia at design
and another where it is 30 psia.
(¢) Calculate the area of the cooling coils for each case.
(b) Calculate the C, value for the steam valve in each case, assuming that the valve is
half open at design conditions: f,, = 0.5,

L]
(e) What is the maximum heat removal capacity of the system for cach case?

Cooling water is pumped through the jacket of a reactor. The pump and the control
valve must be designed so that:
(a) The normal cooling water low rate is 250 gpm.
{(b) The maximum emergency rate is 500 gpm.
{c) The valve cannot be less than 10 percent open when the flow rate is 100 gpm.
Pressure drop through the jacket is 10 psi at design, The pump curve has a linear
slope of —0.1 psi/gpm.

Calculate the C, value of the control valve, the pump head at design rate, the
size of the motor required to drive the pump, the fraction that the valve is open at
design, and the pressure drop over the valve at design rate.
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720. A C, splitter column uses vapor recompression. Because of the Jow temperature
required to stay below the critical temperatures of ethylene and ethane, the auxiliary
condenser must be cooled by a propane refrigeration system.

(¢) Specify the action of all control valves.
(b) Sketch a control concept diagram which accomplishes the following objectives:

(i Level in the propane vaporizer is controlled by the liquid propane flow from
the refrigeration surge drum.

(i) Column pressure is controlled by adjusting the speed of the column com-
pressor through a steam»ﬁow-control—speed-control—pressure-contro] cas-
cade system.

(i) Reflux is flow controlled. Reflux drum level sets distillate flow. Base level sets
bottoms flow.

(iv) Column tray 10 temperature is controlled by adjusting the pressure in the
propane vaporizer, which is controlied by refrigeration compressor speed.

(v) High column pressure opens the valve to the flare.

(c) How effective do you think the column temperature control will be? Suggest an
improved control system which still achieves minimum energy consumption in
the two compressors.

4.21. Hot oil from the base of a distillation column is used to reboil two other distillation

columns that operate at lower temperatures. The design flow rates through reboilers
1 and 2 are 100 and 150 gpm, respectively. At these flow rates, the pressure drops
through the reboilers are 20 and 30 psi. The hot oil pump has a flat pump curve.

Size the two control valves and the pump so that:
(a) Maximum flow rates through each reboiler can be at least twice design.
{) At minimum turndown rates where only half the design flow rates are required,

the control valves are no less than 10 percent open.
‘What is the fraction of valve opening for each valve at design rates?

Reboiler 1

Reboiler 2

FIGURE P7.21
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7.22. A reactor is cooled by circulating liquid through a heat exchanger that produces
low-pressure (10 psig) steam. This steam is then split between a compressor and a
turbine. The portion that goes through the turbine drives the compressor. The
portion that gees through the compressor is used by 50 psig steam users. 100 psig
steam can aiso be used in the turbine to provide power required beyond that avail-
able in the 10 psig steam.

Sketch a control concept diagram that includes all valve actions and the fol-

lowing control strategies:

(a)
b

{c)
@

50 psig —
steam G%

USErs

Reactor temperature is controlled by changing the setpoint of the turbine speed
controller.

Turbine speed is controlled by two split-range valves, one on the 10 psig inlet to
the turbine and the other on the 100 psig steam that can also be used to drive
the turbine. Your instrumentation system should be designed so that the valve
on the 10 psig steam is wide open before any 100 psig steam is used.

Liquid circulation from the reactor to the heat exchanger is flow-controlled.
Condensate level in the condensate drum is controlled by manipulating BFW
(boiler feed water),

——r—q 10 psig steam @ Vent
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exchanger

Spill back - 1

<D

STEAM TURBINE
COMPRESSOR,

Condenser

"

Condensate
drum

100 psig
steam
makeup

FIGURE P7.22
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(¢) Condensate makeup to the steam drum is ratioed to the 10 psig steam flow rate
from the steam drum. This ratio is then reset by the steam drum level controller.

(f) Pressure in the 50 psig steam header is controlled by adding 100 psig steam.

(§) A high-pressure controller opens the vent valve on the 10 psig header when the
pressure in the 10 psig header is too high.

(#) Compressor surge is prevented by using a low flow controller that opens the
valve in the spill-back line from compressor discharge to compressor suction.

Water is pumped from an atmospheric tank, through a heat exchanger.and a control
valve, into a pressurized vessel. The operating pressure in the vessel can vary from
200 to 300 psig, but is 250 psig at design. Design flow rate is 100 gpm with a 20 psi
pressure drop through the heat exchanger. Maximum flow rate is 150 gpm.
Minimum flow rate is 25 gpm. A centrifugal pump is used which has a straight-line
pump curve with a slope of —0.1 psi/gpm.

Design the control valve and pump so that both the maximum and minimum
flow rates can be handled with the valve never less than 10 percent open.

Reactant liquid is pumped into a batch reactor at a variable rate. The reactor pres-
sure also varies during the batch cycle. Specify the control valve size and the cen-
trifugal pump head required. Assume a flat pump curve.

The initial flow rate into the reactor is 20 gpm (sp gr = 1). It is decreased
linearly with time down to 5 gpm at 5 hours into the batch cycle. The initial reactor
pressure is 50 psig. It increases linearly with time up to 350 psig at 5 hours. The
reactant liquid comes from a tank at atmospheric pressure.

7.25. Water is pumped from an atmospheric tank into a vessel at 50 psig through a heat

exchanger. There is a bypass around the heat exchanger. The pump has a flat curve.
The heat exchanger pressure drop is 30 psi with 200 gpm of flow through it.
Size the pump and the two controi valves so that:
(@) 200 gpm can be bypassed.
{#) Flow through the heat exchanger can be varied from 75 to 300 gpm.

Bypass

Heat
exchanger-

Pump
FIGURE P28

7.26. An engineer from Catastrophic Chemical Company has designed a system in which

a positive-displacement pump is used to pump water from an atmospheric tank into
a pressurized tank operating at 150 psig. A control valve is installed between the
pump discharge and the pressurized tank.

With the pump running at a constant speed and stroke length, 350 gpm of
water is pumped when the control valve is wide open and the pump discharge pres-
sure is 200 psig. :

If the control valve is pinched back to 50 percent open, what will be the flow
rate of water and the pump discharge pressure?
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”

7.27. Hot oil from a tank at 400°F is pumped through a heat exchanger to vaporize a

7.18.

liquid boiling at 200°F. A control valve is used to set the flow rate of oil through the
loop. Assume the pump has a flat pump curve. The pressure drop over the control
valve is 30 psi and the pressure drop over the heat exchanger is 35 psi under the
normal design conditions given below:.

Heat transferred in heat exchanger = 17 x 10¢ Btu/h

Hot oil inlet temperatore = 400°F

Hot oil exit temperature = 350°F

Fraction valve open = (L8
The hot oil gives off sensible heat only (heat capacity = 0.5 Btu/lb,, °F, den-
sity = 4.5% Ib_/gal). The heat transfer area in the exchanger is 652 ft2. Assume the
temperature on the tube side of the heat exchanger stays constant at 200°F and the
inlet hot oil temperature stays constant at 400°F. A log mean temperuature difference
must be used.

Assuming the heat transler coefficient does not change with flow rate, what
will the valve opening be when the heat transfer rate in the heat exchanger is half the
normal design value?

200°F

%

400" F

FIGURE P1.27

A control valve/pump system proposed by Connell (Chemical Engineering, Septem-
ber 28, 1987, p. 123) consists of a centrifugal pump, several heat exchangers, a
furnace, an orifice, and a control valve. Liquid is pumped through this circuit and up
into a column that operates at 20 psig. Because the line running up the column is full
of hiquid, there is a hydraulic pressure differential between the base of the column
and the point of entry into the column of 15 psi, '

The pamp suction pressure is constant at 10 psig. The design flow rate is 500
gpm. At this flow rate the pressure drop over the flow orifice is 2 psi, through the
piping is 30 psi, over three heat exchangers is 32 psi, and over the furnace is 60 psi.
Assume a flat pump curve and a specific gravity of 1.

Connell recommends that a control valve be used that takes a 76 psi pressure
drop at design flow rate. The system should be abie to increase flow to 120 percent
of design.

(a}) Calculate the pressure drop over the valve at the maximum flow rate.

{b) Calculate pump discharge pressure and the control valve C, .

{¢) Calculale the fraction that the valve is open at design.

(d) If turndown is limited to a valve opening of 10 percent, what is the minimum
flow rate?
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ADVANCED
CONTROL
SYSTEMS

In the previous chapter we discussed the elements of a conventional single-input—
single-output (SISO) feedback control loop. This configuration forms Lhe back-
bone of almost all process control structures.

However, over the years a number of slightly more complex structures have
been developed that can, in some cases, significantly improve the performance of
a controt system. These structures include ratio control, cascade control, override
control, etc. We will devote much of this chapter to these subjects.

Also covered in this chapter will be some guidelines for developing an
appropriate control system structure for a single unit and for a group of units
that form a plant. Several realistic examples will be presented.

Finally, a brief discussion is given of a new type of control algorithm called
dynamic matrix control. This is a time-domain method that uses a model of the
process to calculate future changes in the manipulated variable such that an
objective function is minimized. It is basically a least-squares solution,

8.1 RATIO CONTROL

As the name implies, ratio control involves keeping constant the ratio of two or
more flow rates. The flow rate of the “wild” or uncontrolled stream is mecasured
and the flow rate of the manipulated stream is changed to keep the two streams
at a constant ratio with each other. Common examples include (1) holding a
constant reflux ratio on a distillation column, (2) keeping stoichiometric amounts
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of two reactants being fed into a reactor, and (3) purging off a fixed percentage of
the feed stream to a unit.

Ratio control is achieved by two alternative schemes, shown in F ig. 8.1. In
the scheme shown at the top of the figure, the two flow rates are measured and
their ratio is computed (by the divider). This computed ratio signal is fed into a
conventional PI controller as the process measurement signal. The setpoint of the
ratio controller is the desired ratio. The output of the controller goes to the valve
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on the manipulated variable stream that changes its flow rate in the correct direc-
tion to hold the ratio of the two flows constant. This computed ratio signal can
also be used to trigger an alarm or an interlock.

In the scheme shown at the bottom of Fig. 8.1, the wild flow is measured
and this flow signal is multiplied by a constant, which is the desired ratio. The
output of the multiplier is the setpoint of a remote-set flow controller on the
manipulated variable.

If orifice plates are used as flow sensors, the signals from the differential-
pressure transmitters are really the squares of the flow rates. Some instrument
engineers prefer to put in square-root extractors and convert everything to linear
flow signals.

Ratio control is often part of a feedforward control structure that we will
discuss in Sec. 8.6,

8.2 CASCADE CONTROL

One of the most useful concepts in advanced control is cascade control. A
cascade control structure has two feedback controllers with the output of the
primary (or master) controller changing the setpoint of the secondary (or slave)
controller. The output of the secondary goes to the valve, as shown in Fig. 8.2a.

There are two purposes for cascade control: (1) to eliminate the effects of
some disturbances, and (2) to improve the dynamic performance of the control
loop.

To illustrate the disturbance rejection effect, consider the distillation
column reboiler shown in Fig, 8.2a. Suppose the steam supply pressure increases.
The pressure drop over the control valve will be larger, so the steam flow rate
will increase. With the single-loop temperature controller, no correction will be
made until the higher steam flow rate increases the vapor boilup and the higher
vapor rate begins to raise the temperature on tray 5. Thus the whole system is
disturbed by a supply-steam pressure change.

With the cascade control system, the steam flow controller will immediately
see the increase in steam flow and will pinch back on the steam valve to return
the steam flow rate to its setpoint. Thus the reboiler and the column are only
slightly affected by the steam supply-pressure disturbance.

Figure 8.2b shows another common system where cascade control is used.
The reactor temperature controller is the primary controller; the jacket tem-
perature controller is the secondary controller. The reactor lemperature control
is isolated by the cascade system from disturbances in cooling-water inlet tem-
perature and supply pressure.

This system also is a good illustration of the improvement in dynamic per-
formance that cascade control can provide in some systems. As we will show
quantitatively in Chap. 11, the closedloop time constant of the reactor tem-
perature will be smaller when the cascade system is used than when reactor tem-
perature sets the cooling water makeup valve directly. Therefore performance has
been improved by using cascade control.
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Conventional versus cascade control. {a) Distillation-column-rebailer temperature controf; b CSTR
temperature control.

We will also talk in Chap. 11 about the two types of cascade control; series
cascade and parallel cascade. The two examples discussed above are both series
cascade systems because the manipulated variable affects the secondary con-
trolled variable, which then affects the primary variable. In a parallel cascade
system the manipulated variable affects both the primary and the secondary con-
trolled variables directly. Thus the two processes are basically different and resuit
in different dynamic characteristics. We will quantify these ideas later.
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8.3 COMPUTED VARIABLE CONTROL

One of the most logical and earliest extensions of conventional control was the
idea of controlling the variable that was of real interest by computing its value
from other measurements.

For example, suppose we want to control the mass flow rate of a gas. Con-
trolling the pressure drop over the orifice plate gives only an approximate mass
flow rate because gas density varies with temperature and pressure in the line. By
measuring temperature, pressure, and orifice-plate pressure drop, and feeding
these signals into a mass-flow-rate computer, the mass flow rate can be controlled
as sketched in Fig. 8.3a.

Another example is sketched in Fig. 8.3b. A hot oil stream is used to reboil
a distillation column. Controlling the flow rate of the hot oil does not guarantee
a fixed heat input because the inlet oil temperature can vary and the AT require-
ments in the reboiler can change. The heat input @ can be computed from the
flow rate and the inlet and outlet temperatures, and this @ can then be controlled.

As a final example, consider the problem of controlling the temperature in 2
distillation column where significant pressure changes occur. We really want to
measure and control composition, but temperature is used to infer composition
because temperature measurements are much more reliable and inexpensive than
composition measurements.

In- a binary system, composition depends only on pressure and tem-
perature:

x=fr, p 8.1)
Thus changes in composition depend on changes in temperature and pressure.
ox x
Ax=1|-—=}| AP — 1 AT 8.2
* (aP)T * (aT)p 2

where x = mole fraction of the more volatile component in the liquid.

The partial derivatives are usually assumed to be constants that are evalu-
ated at the steadystate operating level from the vapor-liquid equilibrium data.
Thus, pressure and temperature on a tray can be measured, as shown in Fig. 8.3c,
and a composition signal or pressure-compensated temperature signal generated
and controlled.

AT =K, AP - K, AT (8.3)

where T7C = pressure-compensated temperature signal
K, and K, = constants

Thirty years ago these computed variables were calculated using pneumatic
devices. Today they are much more casily done in the digital control computer.
Much more complex types of computed variables can now be calculated. Several
variables of a process can be measured and all the other variables can be calcu-
lated from a rigorous model of the process. For example, the nearness to flooding
in distillation columns can be calculated from heat input, feed flow rate, and
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temperature and pressure data. Another application is the calculation of product
purities in a distillation column from measurements of several tray temperatures
and flow rates by the use of mass and energy balances, physical property data,
and vapor-liquid equilibrium information.

The computer makes these “rigorous estimators™ feasible. It opens up a
number of new possibilities in the control field. The limitation in applying these
more powerful methods is the searcity of engineers who understand both control
and chemical engineering processes well enough to apply them effectively. Hope-
fully, this book will help a little to ease this shortage.

84 OVERRIDE CONTROL

There are situations where the control loop should be aware of more than just
one controlled variable. This is particularly true in highly automated plants
where the operator cannot be expected to make all the decisions that must be
made under abnormal conditions. This includes the startup and shutdown of the
process. .

Override control {or “selective control” as it is sometimes called) is a form
of multivariable control in which a manipulated variable can be set at any point
in time by one of a number of different controlled variables.

8.4.1 Basic System

The idea is best explained with an example. Suppose the base level in a distilla-
tion column is normally held by bottoms product withdrawal as shown in Fig.
8.4a. A temperature in the stripping section is held by steam to the reboiler.
Situations can arise where the base level continues to drop even with the bottoms
flow at zero (vapor boilup is greater than the liquid rate from tray 1). if no
corrective action is taken, the reboiler may boil dry (which could foul the tubes)
and the bottoms pump could lose suction.

If an operator saw this problem developing, he would switch the tem-
perature loop into “manual” and cut back on the steam flow. The control system
in Fig. 8.4a will perform this “override” control automatically. The low selector
(LS} sends to the steam valve the lower of the two signals. If the steam valve is
air-to-open, the valve will be pinched back by cither high temperature (through
the reverse-acting temperature controller) or by low base level (through the low-
base-level override controller).

In level control applications, this override controller can be a simple fixed-
gain relay which acts like a proportional coniroller. The gain of the controller
shown in Fig. 8.4a is five. It would be “zeroed” so that as the Ievel transmitter
dropped from 20 to 0 percent of full scale, the output of the relay would drop
from 100 to O percent of scale. This means that under normal conditions when
the fevel is above 20 percent, the output of the relay will be at 100 percent. This
will be higher than the signal from the temperature controller, so the low selector
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will pass the temperature controller output signal to the valve. However, when
the base level drops below 20 percent and continues to fall toward 0 percent, the
signal from the relay will drop and at some point it will become lower than the
temperature controfler output. At this point the temperature controller is over-
ridden by the low-base-level override controller,

There may be other variables that might also take over control of the steam
valve. If the pressure in the column gets too high, we might want to pinch the
steam valve. If the temperature in the base gets too high, we might want to do the
same. So there could be a2 number of inputs to the low selector from various
override controllers. The lowest sign