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PREFACE

The object of the present book is to provide an introduction to the
principles and applications of thermodynamics for students of chemistry
and chemical engineering. All too often it appears that such students
tend to regard the subject as an academic and burdensome discipline, only
to discover at a later date that it is a highly important tool of great prac-
tical value. The writer’s purpose has been to explain the general structure
of thermodynamics, and to give some indication of how it may be used to
yield results having a direct bearing on the work of the chemist.

More than one hundred illustrative numerical problems are worked out
in the text, and a total of about three hundred and sixty exercises of a
variety of types have been included for solution by the reader. In the
hope of imparting the whole subject with an aspect of reality, much of
the material for this purpose has been taken from the chemical literature,
to which references are given. In order to economize ‘space, and at the
same time to test the reader’s grasp of thermodynamics, the derivations of
a number of interesting results have been set as exercises. To this extent,
at least, the exercises are to be considered as part of the text, although
their solution should in any event be regarded as essential to any adequate
course in chemical thermodynamics.

In treating the various topics in this book the particular method em-
ployed has been determined in each case by considerations of simplicity,
usefulness and logical development. In some instances the classical, his-
torical approach has been preferred, but in others the discussion follows
more modern lines. Whenever feasible the generalized procedures, involv-
ing reduced temperatures and pressures, which have been evolved in recent
years chiefly by chemical engineers, are introduced. As regards statistical
methods, the author feels that the time has come for them tc take their
place as an essential part of chemical thermodynamics. Consequently,
the applications of partition functions to the determination of heat capaci-
ties, entropies, free energies, equilibrium constants, etc., have been intro-
duced into the text in the appropriate places where it is hoped their value
will be appreciated.

The symbols and nomenclature are essentially those which have been
widely adopted in the American chemical literature; however, for reasons
given in the text, and in accordance with a modern trend, the Gibbs symbol
u and the shorter term ‘‘chemical potential’’ are employed for ithe partial
molar free energy. Because atmospheric pressure is postulated for the
conventional standard state of a liquid, some confusion has resulted from
the use of the same symbol for the standard state as for the liquid at an
arbitrary pressure. Hence, the former state is indicated in the text in
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vi PREFACE

the usual manner, by a zero (or circle), but the latter is distinguished by a
small square as superscript.

The writer would like to take this opportunity to acknowledge his in-
debtedness to certain books, namely, F. H. Macdougall, “Thermodynamics
and Chemistry”; L. E. Steiner, “Introduction to Chemical Thermody-
namics”’; B. F. Dodge, “Chemical Engineering Thermodynamics’’; and, in
particular, G. N. Lewis and M. Randall, “Thermodynamics and the Free
Energy of Chemical Substances.”” He is also sincerely grateful to Dr.
Allen E. Stearn, University of Missouri, and Dr. Roy F. Newton, Purdue
University, for reading the manuseript of this book and for making numerous
suggestions which have helped materially to clarify and improve the treat-
ment. Finally, the author wishes to express his thanks to his wife for
reading the proofs, and for her continued aid and encouragement.

SAMUEL GLASSTONE

BERKELEY, CALIF.
November 1946
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CHAPTER I
HEAT, WORK AND ENERGY

1. INTRODUCTION

la. Scope and Limitations of Thermodynamics.—The subject matter of
thermodynamics is based essentially on two fundamental postulates (or laws)
which summarize actual experience with regard to the interconversion of
different forms of energy. These are called the first and second laws of
thermodynamics. There is also another postulate dealing with certain as-
pects of the second of these laws; it is often referred to as the third law of
thermodynamics, but its use is more restricted than is that of the other laws.
By the application of relatively simple and well established mathematical
procedures to the two basic laws, it has been possible to derive results which
have proved of fundamental importance to chemistry, physics and engineer-
ing. For example, equations have been deveioped giving the variation with
temperature and pressure of certain physical prcperties of substances. Of
more direct interest to the chemist, however, is the derivation of the exact
conditions for spontaneous chemical reaction and for chemical equilibrium.

Although the great practical value of thermodynamics is undeniable, as
will be shown in the subsequent pages, there are certain limitations that
must be borne in mind. The methods of thermodynamics are independent.
of atomic and molecular structure, and also of reaction mechanism. Conse-
quently, the results throw no direct light on problems related to these sub-
jects. The conclusions of thermodynamics may be correlated with those
of the kinetic theory of matter, for example, but the distinction between the
two approaches to the study of physical problems must be clearly under-
stood. Thus, the observable thermodynamic property of a body known as
its “temperature” may be regarded as being determined by the average
kinetic energy of the molecules. However, the concept of temperature as
used in thermodynamics is independent of any theories concerning the exist-
ence of molecules. As will be seen shortly, temperature, like other thermo-
dynamic variables of state, is based on experimental, macroscopic observa-
tion of the body as a whole.

One aspect of thermodynamics is the prediction of relationships between
various quantities that are directly observable or which can be derived from
observable properties, but thermodynamics alone cannot give any indication
of the actual values of these quantities. In order to obtain the information
it is possible to invoke certain procedures, such as the kinetic theory of
matter, statistical mechanics and the Debye-Hiickel theory, which really

1P, W. Bridgman, “The Nature of Thermodynamics,” 1941,
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lie outside the scope of thermodynamics. Nevertheless, because such
methods and theories provide a means for the calculation of thermodynamic
properties, they may be regarded as complementary to thermodynamics.
They are, however, not essential, for the observable quantities under con-
sideration can usually be obtained by experimental methods without recourse
to theory.

As far as chemical reactions are concerned, thermodynamics can indicate
whether a particular process is possible or not, under a given set of circum-
stances, e.g., temperature and concentrations of reactants and products
However, no information can be obtained from pure thermodynamics as to
the rate at which the reaction will take place. For example, it can be shown
by means of thermodynamics that hydrogen and oxygen gases should com-
bine to form liquid water at ordinary temperatures and pressures, but it is
not possible to state whether the reaction will be fast or slow. Actually, in
the absence of a catalyst, the combination is so slow as to be undetectable
in many years. In effect, thermodynamics deals quantitatively with equi-
librium conditions, that is, conditions whicl: do not change with time, and
it does not take into account the rate of approach to the equilibrium state.?

2. TEMPERATURE

2a. The Concept of Temperature.—Since the laws of thermodynamics
deal with the interconversion of energy, it is necessary to consider the sig-
nificance of energy, and of the related quantities, heat and work. Before
doing so, however, it is desirable to examine the concept of temperature.
The ability to distinguish broadly between hot and cold is a familiar faculty
of the human senses. A substance which ts hot ts said to have a higher tem-
perature than one which is cold. If a hot body, such as a piece of metal, is
placed in contact with a similar but colder body, then after a short time the
senses show that one is neither hotter nor colder than the other. That is to
say, the two bodies have attained a state of thermal (or temperature) equi-
librium, and they are both said to be at the same temperature. The body
which was originally hot will now feel colder to the touch, whereas the colder
one will now feel hotter. The temperature of the hot body has consequently
decreased while that of the cold body has been raised until at equilibrium the
two temperatures are the same. It would appear, therefore, that something
—actually energy—is transferred from the hotter to the colder body until
the two bodies have equal temperatures; that which is apparently transferred
in this manner is called “heat.”” Thus, heat may be defined as that which
passes from one body to another solely as the result of a difference in temperature.
The quantity of heat transferred in this manner depends, in the first place,
on the change of temperature of each body. Another factor, namely the
heat capacity, will be considered later.

Although the human senses can detect temperature differences to some
extent, they are obviously not adequate for precise measurement; neither

2 8. Glasstone, K. J. Laidler and H. Eyring, “The Theory of Rate Processes,” 1941,



2b TEMPERATURE 3

can they be used to associate a definite number with each temperature.
For these purposes it is necessary to have an instrument or device known as
a “thermometer.”” The principle of the thermometer is based on the fact
that certain properties, such as volume or electrical resistance, vary with
temperature. In the ordinary mercury thermometer, for example, use is
made of the change in volume of mercury with temperature; in this case,
however, the volume changes are observed by the alteration in length of the
column of mercury in a narrow glass tube. Suppose such a thermometer is
placed in contact with a body until thermal equilibrium is attained; the
position of the mercury in the glass tube is then said to represent an arbi-
trary temperature of ¢ degrees (¢°). It has been found experimentally, in
agreement with expectation, that if two bodies are each in thermal equilibrium
with a third, they are in thermal equilibrium with one another. This fact
renders possible the use of the thermometer as an indicator of temperature.
It means that whenever the mercury reaches a certain point the temperature
of any body is always t°, provided thermal equilibrium is attained between
the body and the thermometer.

2b. Thermometric Scales: The Centigrade Scale.—In order to use a
thermometer for the quantitative expression of temperature and of tempera-
ture differences, two things are necessary. First, a zero point of the tem-
perature scale must be chosen, absolutely or arbitrarily, and second, the
size of the unit, i.e., the degree, must be defined. On the centigrade tem-
perature scale the zero is taken as the “ice point,” that is, the freezing point
of water in contact with air at standard atmospheric pressure (76.00 cm. of
mercury).* The size of the degree is then defined by postulating that the
“steam point,” that is, the boiling point of water at standard atmospheric
pressure, shall be taken as exactly 100°.

If X represents any physical property which varies with temperature,
X, and X100 are the values at 0° and 100°, respectively, on the centigrade
scale; the degree is then represented by the change t35(X100 — Xo) in the
given property. If X is the value of the property at any temperature t the
magnitude of that temperature is then ¢°, as given by

X-X,
t e (Xm — X0) @1

In the common mercury thermometer X is the length of a mercury column in
a glass tube, and the distance between the positions representing X, and
X100 is divided into one hundred equal parts, in order to facilitate evaluation
of the temperature in accordance with equation (2.1).

* It should be noted that 0° C is taken as the freezing point of water in equilibrium,
and hence saturated, with air at 1 atm. pressure, and not that of pure water; the freezing
point of the latter is 4- 0.0023° C.

T By the expression ‘““the value of the property at any temperature” is implied the value
of the property of the thermometric substance when it is in thermal equilibrium with a body
at the given temperature.
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Since the property X of different thermometric substances, or the differ-
ent thermometric properties of a given substance, do not vary in an identical
manner with temperature, various thermometers, all of which have been
standardized at 0° and 100° C, may indicate different temperatures when in
thermal equilibrium with the same body at an intermediate point. A
mercury thermometer and a toluene thermometer, for example, which agree
at 0° and 100° C, would differ by several degrees in the vicinity of 50° C.
Even mercury thermometers in tubes made of various types of glass indicate
slightly different, temperatures.?

2c. The Absolute ldeal Gas Scale.—Gases have frequently been used as
thermometric substances; thus X may represent the volume of a given mass
of gas at constant pressure, or the pressure at constant volume. However,
here again, the variation with temperature of the volume (or pressure) of a
gas depends somewhat on the nature of the gas. For gases, such as hydro-
gen and helium, which do not depart greatly from ideal behavior (§ 5¢c)
under ordinary conditions, the temperatures recorded do not differ very
appreciably, and the differences become less marked as the pressure of the
gases is decreased. It appears, from experimental observation, that at
sufficiently low pressures or, better, if the results are extrapolated to zero
pressure, the temperature of a given body as recorded by a gas thermometer
would always be the same irrespective of the nature of the gas.

It follows, therefore, that when gases approximate to ideal behavior, i.e.,
at very low pressures, the differences in their thermometric properties dis-
appear. This fact presents the possibility of devising a temperature scale
which shall be independent of the thermometric substance, the latter being
a hypothetical “ideal gas.”” Such a scale is the so-called ““absolute ideal gas
scale,” in which the (absolute) temperature is taken as directly proportional to
the volume of a definite mass of an ideal gas at constant pressure, or to the pres-
sure at constant volume. For convenience, the magnitude of the degree on
the absolute scale is usually taken to be the same as on the centigrade scale
(§ 2b), so that the absolute temperature T on the ideal gas scale is given by

|4
T T (Toe = Vo’ (2.2)

where V is the volume of the ideal gas at this temperature, and V100 and
Vo are the corresponding volumes at the steam point and ice point, respec-
tively, all the volumes being determined at the same pressure.

The value of the ice pecint T', on the absolute scale may be determined by
setting V equal to V, in equation (2.2), so that

Vo .
5 Vieo — Vo)
By making measurements on various gases, at constant pressures, and

3 International Critical Tables, Vol I, p. 55.
4Cf , Wensel, J. Res. Nat. Bur. Stand., 22, 375 (1939).

To (2.3)
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extrapolating the results to zero pressure, it has been found that the ice
point T, as given by equation (2.3), is 273.16°. Temperatures on the abso-
lute ideal gas scale are thus obtained by adding 273.16° to the temperature
of the ideal gas thermometer on the ordinary centigrade scale, i.e., with the
ice point taken as 0° C [equation (2.1)]. It will be noted from equation
(2.2) that on the absolute scale the volume of an ideal gas should become
zero at a temperature of zero degrees. This hypothetical point, which
should be — 273.16° C, is known as the absolute zero of temperature; it
presumably represents the lowest conceivable temperature. There are rea-
sons for believing that the absolute zero is unattainable (§ 18j), although
temperatures within less than 0.005° of it have been realized.

It will be seen in Chapter VII (§ 18k) that it is possible to develop an
absolute temperature scale, also independent of the nature of the thermo-
metric substance, based on the second law of thermodynamics. This is
sometimes called the Kelvin scale, in honor of its originator, Lord Kelvin
(William Thomson). Actually, the thermodynamic scale can be shown to
be identical with the absolute ideal gas scale, as defined above; hence, tem-
peratures on the latter, as well as the former, scale are represented by the
symbol ° K. The ice point is consequently 273.16° K. It may be noted,
incidentally, that the thermodynamic derivation of the absolute temperature
scale provides a more definite interpretation of the absolute zero, i.e., the
lowest limit of temperature, than is possible by means of the ideal gas
thermometer.*

2d. Practical Temperature Scale.—For practical purposes gas thermom-
eters are not satisfactory; consequently a number of fixed points have been
chosen by international agreement which can be used for the determination
of experimental temperatures on the centigrade scale. The addition of
273.16 then gives the corresponding absolute temperatures. The following
temperatures are taken as primary standards: boiling point of oxygen,
— 182.97° C; ice point, 0.00° C; steam point, 100.00° C; boiling point of
sulfur, 444.60° C; melting point of silver, 960.5° C; and melting point of gold,
1063° C, all at standard atmospheric pressure. A number of subsidiary fixed
points, some of which extend the scale to 3400° C, and others of which
determine various intermediate temperatures, have also been proposed.s

3. Work, ENERGY AND HuaT

3a. Work and Energy.—Mechanical work is done whenever the point of
application of a force vs displaced in the direction of the force. If F is the
magnitude of the force and [ is the displacement of its point of application,
in the direction in which the force acts, then the mechanical work done is
equal to the product F X [, expressed in appropriate units. In addition to

* Engineers frequently express temperatures on the Rankine (absolute) scale, uging the
Fahrenheit degree; the temperature is then given by t°(F) + 459.69° R.

5 Burgess, J. Res. Nat. Bur. Stand., 1, 635 (1928); Roeser and Wensel, ibid., 14, 247
(1935).
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mechanical work, other forms of work are possible, e.g., electrical work, but
in each case the work done is equal to the product of a generalized force,
sometimes referred to as the intensity facfor, and a generalized displacemert,
the capacity factor. In electrical work, for example, the generalized force
is the so-called electromotive force, i.e., the E.M.F., and the generalized dis-
placement is the quantity of electricity. The work done is thus equal to
the product of the applied E.M.F. and the quantity of electricity which
is passed.

Energy is defined as any property which can be produced from or converted
into work, including, of course, work itself. There are thus various mani-
festations of energy, as represented by the different forms of work, but each
can be expressed as the product of an intensity factor and a capacity factor.
Further, because of the connection between work and energy, all forms of
the latter can be expressed in work units. The derivation of the concept of
energy through those of force and work, as given above, follows historical
tradition. However, because heat, which is a form of energy, cannot be
completely converted into work, some writers prefer to describe energy as
that which can be transformed into heat, as defined in § 2a, including heat itself.
Although this approach to the subject of energy has some advantages, the
one used here is somewhat simpler when the problems of dimensions and
units of energy come up for consideration.

3b. Dimensions and Units of Energy.—By Newton’s laws of motion, me-
chanical force is equal to the product of mass and acceleration; hence force has
the dimensions of mass X length/(time)?, i.e., mit~2. Since work is equal to force
multiplied by length, as stated above, the dimensions of work are mi*~2, and all
forms of energy must consequently have these dimensions. The units of mass,
length and time usually employed in scientific work are the gram (g.), centimeter
(cm.) and second (sec.), respectively, constituting what is known as the c.g.s.
system. The meter, or 100.000 cm., was originally defined as 10~7 times the length
of the earth’s quadrant, from north pole to equator, passing through Paris. The
standard meter is, however, the distance between two marks on a bar at 0° C, kept
at Sévres, near Paris. 'The standard kilogram, i.e., 1000.00 grams, is taken as the
mass of a lump of platinum, also at Sévres.* It was intended to be equal to the
weight of exactly 1000 cc. of pure water at its temperature of maximum density,
i.e., 4° C, but there is actually a small difference. The liter is the volume occupied
by 1 kilogram of water at 4° C and 1 atm. pressure; it was meant to be 1000 cc.,
but is actually 1000.028 cc. Because of this discrepancy it is becoming the prac-
tice to express volumes of liquids and gases in terms of the milliliter (ml.), which
is exactly one-thousandth part of a liter. For most purposes, however, the differ-
ence between the ml. and the cc. is not significant. The second is defined as
1/86,400 part of a mean solar day, the latter being the average interval between
successive transits of the sun across the meridian at any given place.

The unit of energy in the c.g.s. system is the erg; it is the work done when a
force of 1 dyne acts through a distance of 1 cm., the dyne being the force which
acting for 1 sec. on a mass of 1 g. produces in it a velocity of motion of 1 em. per

* Exact duplicates of the standard meter and kilogram are kept at the National Lureau
of Standards, Washington, D. C.
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sec. Since the erg is so small, a subsidiary unit, the joule, is defined as 107 ergs.
Unfortunately, confusion has arisen because of the necessity for distinguishing
between the absolute joule as thus defined, and the international joule, based on
electrical measurements. The latter is the work done when 1 (international)
coulomb, i.e., 1 ampere-second, of electricity flows under the influence of a poten-
tial, i.e., E.M.F., of 1 (international) volt. The (international) coulomb is the
quantity of electricity which will cause the deposition of 1.11800 milligrams of
silver in the electrolysis of a solution of silver nitrate under certain specified condi-
tions. The (international) volt is defined in terms of the E.M.F. of the Weston
standard cell, which is taken to be exactly 1.0183 (international) volts at 20° C.
On this basis, the international joule is apparently equal to 1.0002 absolute joules.®

Problem: A quantity of 26.45 coulombs of electricity flows through a conductor
under the influence of a fall of potential of 2.432 volts. Calculate the energy
expenditure in (a) international joules, (b) ergs.

The electrical work done, i.e., the energy expended, is equal to the product of
the quantity of electricity and the applied potential difference. Since the former
is given in int. coulombs and the latter in int. volts, the result will be in int. joules;
thus,

Energy expenditure = 26.45 X 2.432 = 64.33 int. joules.
The int. joule is equal to 1.0002 abs. joules, and hence to 1.0002 X 107 ergs, so that
Energy expenditure = 64.33 X 1.0002 X 107 = 64.34 X 107 ergs,

to four significant figures.

3c. Heat and Energy.—In view of the definitions of energy given above,
heat must be regarded as a form of energy, since most forms of work can be
readily converted into heat, and heat can be, at least partially, converted
into work. Heat is produced from mechanical work, for instance, by means
of friction, and electrical work is transformed into heat by the passage of
electricity through a resistance. On the other hand, by means of a suitable
machine, viz., a heat engine, a certain amount of heat can be converted into
work. From the standpoint of thermodynamics, heat s energy in transit, it
is the form in which energy is transferred from one body to another, either
by direct contact or by means of radiation, as the result of a difference of
temperature. In evaluating the quantity of heat energy that has passed to
a given body, the intensily factor is the change of temperature, and the
capacity factor is the heat capacity (§ 3d); the product of these two quan-
tities, which can be stated in ergs if required (§ 3e), is a measure of the heat
energy transferred.

3d. Heat Capacity.—As a general rule, heat is expressed in terms of a
unit known as the (15°) calorie, which is defined as the quantity of heat
required to raise the temperature of 1 gram of water by 1° in the vicinity
of 15° C. The actual temperature is specified because the quantity of heat
that must be supplied to raise the temperature of a given amount of water,
or of any other,substance for that matter, by 1° depends to some extent on
the temperature itself.

¢ Birge, Rev. Mod. Phys., 13, 233 (1941Y: Curtis, J. Res. Nat. Bur. Stand., 33, 235 (1944).



8 HEAT, WORK AND ENERGY ad

The heat capacity of a body is the property which multiplied by the
temperature change gives the quantity of energy which has entered or left
the body as heat when it is brought into contact with another body having
a different temperature. Thus, if the temperature of the body is raised
from T, to T'; by the passage to it of an amount of heat @, the heat capacity
C of the body is given by

Q=C(T:—T). (3.1)
According to this cquation,
Q
C T T 3.2)
so that the heat capacity is sometimes defined as the quantity of heat re-
quired to raise the temperature of a body by 1°.  From the definition of the
calorie given above, it is evident that the heat capacity of 1 gram of water,
in the vicinity of 15° C, is equal to 1 (15°) calorie.

The heat capacity is a property which is proportional to the quantity of
matter present, and this must consequently be stated. Two particular
quantities are commonly employed. The heat -capacity is frequently re-
ferred to 1 gram of material; it is then called the specific heat. Thus, the
specific heat of water is exactly 1 calorie per degree per gram in the region
of 15° C. From the standpoint of the chemist, a more useful form of the
heat capacity is that referred to 1 mole, i.e., the molecular (or formnla)
weight in grams.* The quantity of heat is then known as the molar heat
capacity.

As already indicated, the heat capacity of a body or substance usually
varies with the temperature. The heat capacity as defined by equation
(3.2) is thus the mean value for the temperature range from 7; to 7. In
order to define the heat capacity at a given temperature it is necessary to
make the temperature interval as small as possible; thus, if the temperature
increase T — T, is represented by AT, the true heat capacity is given by
the expression

. Q
¢ lel—?;‘l AT (3.3)
Since the quantity of heat @ is usually stated in calories and AT in degrees,
it is evident that the dimensions of heat capacity are calories/degrees for the
given amount of material, e.g., cal. deg.”* g.7! or cal. deg.”! molc™, that is,
calories per degree per gram (or per mole).

It will be seen later (§ 9b) that the heat capacity of a substance can have
a definite value only under certain specified conditions. The two most im-
portant are constant pressure and constant volume. It is necessary to indi-
cate, therefore, the particular conditions under which heat is transferred to
or from the given substance.

* Unless otherwise stated, the term “mole” will refer to the simple formula weight in

grams; thus, the mole of acetic acid is 60.05 g., in spite of the fact that a large proportion of
(C.H,03): molecules may be present.
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3e. The Measurement of Heat: The Defined Calorie.—Heat quantities are
usually measured by means of a calorimeter. In its simplest form this consists
of a vessel, which is insulated as well as possible in order to prevent loss or gain
of heat, and which contains a calorimetric liquid, usually water. The heat ca-
pacity of the calorimeter and its contents is determined by placing an electrical
conductor of known resistance in the liquid, and passing a definite current for a
specified time. The accompanying increase of temperature of the calorimeter is
then determined by means of a thermometer placed in the liquid. From the
resistance, current and time the amount of electrical energy expended can be
calculated in terms of int. joules. If it is assumed that this cnergy is completely
transferred from the conductor to the calorimetric liquid in the form of heat, the
heat capacity of the calorimeter can be determined in int. joules per degree.

Problem: A current of 0.565 amp. is passed for 3 min. 5 sec. through a coil of
resistance 15.43 ohms contained in a calorimeter. The rise of temperature is ob-
served to be 0.544° C. Assuming that no heat is lost to the surroundings, calculate
the heat capacity of the calorimeter.

By Ohm’s law, the fall of potential (or E.M.F.) across the resistance coil is equal
to I X R, where I is the current and R the resistance. The electrical work is
equal to the product of the E.M.F. and the quantity of electricity, and since the
latter is given by I X ¢, where ¢ is the time for which the current is passed, it
follows that

Electrical Work = I X R X t.

1f I is in int. amps., B in int. ohms * and ¢ in sec., the work will be given in int.
joules. In the present case, therefore, taking the heat generated as equal to the
electrical work, it is seen that

Heat generated = (0.565) X 15.43 X 185 int. joules.
Since the rise of temperature of the calorimeter is 0.544° C, it follows that

Heat capacity = (0.565)2 X 15.43 X 185/0.544
= 1675 int. joules deg.™*.

Once the heat capacity of the calorimeter is known, the value of any quantity
of heat transferred to it, as the result of a chemical reaction, for example, can be
readily determined by equation (3.1). Similarly, the heat capacity of any sub-
stance can be found from the amount of heat it transfers to a calorimeter; the
change in temperature of the substance must also be known. In actual prac-
tice various devices are used to improve the accuracy of the results, but the
foregoing description indicates the fundamental prineiple involved in modern
calorimetric work.

In order to convert, the results obtained by the electrical heating method into
calories, it is necessary to know the relationship between joules and calories. That
there is such an exact connection is really an aspect of the first law of thermody-
namics (§ 6a), which will be tacitly assumed for the present. Because of a slight
uncertainty, of about two parts in 10,000, concerning the relationship between the
standard (15°) calorie, as defined in § 3d, and theint. joule (§ 3b), a defined calorie,

* An int. ampere is the current which flowing for 1 seec. gives 1 int. coulomb of elec-
tricity, and an int. ohm is the resistance of a conductor through which passes 1 int. ampere
when 1 int. volt is applied.
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equivalent to 4.1833 int. joules has been proposed.” This differs to a very small
extent. from the standard calorie, and is equal to the specific heat of water at
about 17° C.

Problem: A chemical reaction was allowed to take place in a calorimeter and
the rise of temperature was observed. In order to obtain the same increase of
temperature it was necessary to pass a current of 0.565 amp. for 185 sec. through
a heating coil of resistance 15.43 ohms. Calculate the heat in defined calories

evolved in the reaction.

The heat produced in the reaction is here exactly equal to that obtained from
the electric current. Hence, from the preceding problem it follows that

Heat evolved in the reaction = 1675 int. joules
= 1675/4.183 = 400.4 calories.

3f. Heat and Work.—It will be seen in Chapter VII that heat differs
from all other forms of energy in one highly significant respect. Whereas
all other forms of energy are completely convertible into work, at least in
principle, heat cannot be completely transformed into work without leaving
some change in the system or its surroundings. In the continuous conver-
sion of heat into work, by means of a heat engine, for example, part of the
heat taken up at a particular temperature is converted into work, and the
remainder is given out at a lower temperature (see Chapter VII). For this
reason, it is convenient in the thermodynamic treatment to distinguish be-
tween the energy that enters or leaves a body as heat, i.e., due to a tempera-
ture difference, and energy that is transferred in other ways. The latter i«
usually considered under the general description of “work,” of which various
types, e.g., mechanical, electrical, surface, etc., are possible. The gain or
loss in energy of a body may thus be defined in terms of the
heat transferred to or from t, and the work done upon or
by 1dt.
3g. Work of Expansion.—In most processes of in-
terest to the chemist, the only work involved is that due
to a change of volume against an external pressure, e.g.,
that of the atmosphere. This is frequently referred to
as work of expansion. Consider any substance, which
may be gaseous, liquid or solid, contained in a cylinder
of cross-sectional area a (Fig. 1), fitted with a piston *
CD upon whick is exerted a constant pressure P; the total
force acting on the piston is then the product of the pres-
sure and the area, i.e., P X a. Suppose the substance in
the cylinder expands, and as a result the piston is raised
through a distance h. The work done against the external pressure, that
is, the work of expansion, is equal to the force P X a multiplied by the

? Rossini, J. Res. Nat. Bur. Stand., 22, 407 (1939); Mueller and Rossini, Am. J. Phys.,
12, 1 (1944).

* It is assumed that the piston is weightless and moves without friction, so that no
work is lost in the actual motion of the piston itself.

Fra. 1. Work of
expansion
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displacement A of its point of application in the direction of the force (§ 3a),
i.e., P X a X h. The quantity a X h represents the increase in volume in
the expansion process, and this may be replaced by V2 — V,, where V, is
the initial volume and V. is the final volume. It follows, therefore, that

Work of expansion = P(V, — V)) (3.4)
= PAV, (3.5)

where AV, equal to V. — V), is the increase of volume against the external
pressure P, which is supposed to remain constant throughout the expansion.

The units employed for expressing pressure and volume determine the
units in which the work of expansion is obtained from equation (3.4) or (3.5).
If P is given in dynes per 8q. cm. and V is in cc., the work will be obtained
in ergs, and this can be readily converted into abs. joules, i.e., 107 ergs, and
calories, if required. For some purposes, it is convenient to express the
pressure P in atmospheres, and the volume change AV in liters; the work is
then in liter-atm.

Problem: A substance expands by 1 liter against a constant pressure of 1 atm.
Calculate the work done in (a) liter-atm. units, (b) ergs, (c) int. joules, (d) defined
calories.

(a) In this case Pis 1 atm. and AV is 1 liter, so that the work of expansion is
1 liter-atm.

(b) To obtain the value in ergs, the pressure must be expressed in dynes cm.?
and the volume in em.?, so that the product is in dynes em., i.e., ergs. A pressure
of 1 atm. is equivalent to exactly 76 cm. of mercury, the density of which is 13.595
at 0° C; hence,

1 atm. = 76.000 X 13.595 X 980.66 dynes cm.™?

1.01325 X 10¢ dynes ¢m.™2,

]

where the factor 980.66 cm. sec.”? is the acceleration due to gravity, at sea level
and a latitude of 45°.

Since 1 liter is equal to 1000.028 cc. (§ 3b), the work of expansion is given by
equation (3.5) as 1.0132; X 108 X 1.000028 X 103 i.e., 1.0133 X 10° ergs, to five
significant figures.

(¢) The int. joule is equal to 1.0002 abs. joules (§ 3b), and hence to 1.0002 X 107
ergs. The 1.0133 X 10? ergs is thus equivalent to 1.0131 X 102 int. joules.

(d) The defined calorie is 4.1833 int. joules, and so the work of expansion is
1.0131 X 10%2/4.1833 = 24.218 defined cal.

The results may be summarized: 1 liter-atm. = 1.0133 X 10° ergs = 1.0131
X 10% int. joules = 24.218 def. cal.

3h. Conversion Factors.—Because quantities having the same dimen-
sions, e.g., energy, are frequently expressed in various units, confusion is
liable to ensue unless all quantities are labelled correctly and completely by
the appropriate units. One way of diminishing the risk of error is to express
all quantities in c.g.s. units (§ 3b) before undertaking any calculations, but
this procedure is sometimes unnecessarily tedious. The treatment can often
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be considerably simplified by employing conversion factors, such as those
derived in the problem in § 3g, and by utilizing the fact that various units
can be multiplied and divided, and that sirhilar units cancel one another if
they appear in the numerator and denominator of a fraction. A number of
conversion factors which will be required from time to time are collected in
Table 1 of the Appendix at the end of the book.

In applying these factors, a useful device which avoids the possibility of
error in the less simple cases, is to convert them into a dimensionless form.
For example, as seen above, 1 liter-atm. is equivalent to 24.218 cal.; hence,
24.218 cal./liter-atm., i.e., 24.218 cal. liter~! atm.™}, is equal to unity, without
dimensions. It is then permissible to multiply one side of an expression by
unity and the other side by 24.218 cal. liter atm.”l. The subsequent
cancellation of identical units with opposite exponents makes conversion
from one set of units to another a relatively simple matter. The application
of the foregoing ideas will be illustrated in subsequent portions of the book.8

EXERCISES

1. A mercury-in-glass thermometer is standardized at 0° and 100° C. The
change of volume of mercury between these temperatures is represented by

v = vo(1l + 1.8146 X 10~% 4 9.205 X 10~%),

where v, is the volume at the correct centigrade temperature ¢°. Neglecting
the expansion of the glass, what temperature will the thermometer read at
exactly 50° C?

2. A current of 1.243 amp. is passed for 15 min. 45 sec. through a resistance
of 20.18 ohms. Calculate the heat generated in (i) joules, (ii) ergs.

3. The heat generated in the preceding exercise is liberated in a calorimeter,
and the temperature rises by 0.287° C. Evaluate the heat capacity of the
calorimeter in (defined) cal. deg.™!.

4. When an electric current was passed through a heating coil of resistance
16.49 ohms, the fall of potential across the coil was 3.954 volts. Neglecting
loss of heat by radiation, etc., determine the rate of increase of temperature, in
deg. sec.™, of a calorimeter. with a heat capacity of 125.4 (defined) cal. deg.™!.

5. The heat capacity of a calorimeter was found to be 218.4 cal. deg.™ at
23° C. When a piece of metal weighing 19.46 g., previously heated to 100.00° C,
was dropped into the calorimeter, the temperature of the latter was found to rise
from 22.45° to 23.50° C. What is the mean heat capacity of the metal in cal.
deg.”! g.”1?

6. A quantity of 2.500 g. of a metal of mean heat capacity 0.0591 (defined)
cal. deg.”* g.7! is cooled from the steam point to the ice point. Determine the
total heat evolved in (i) ergs, (ii) abs. joules.

7. The volume of a gas, corrected to ideal behavior, is 442.6 ml. at the ice point.
At a certain temperature the volume has increased by 22.42 ml., at constant
pressure. What is the temperature on the centigrade scale?

8. Justify the statement in the text that if the degree is taken as that on the
Fahrenheit scale, absolute temperatures on the Rankine scale are equal to
t°F + 459.69°.

3 R. F. Newton, private communication.
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9. The specific volume of Jiquid acetic acid exceeds that of the solid at the
melting point by 0.1695 cc. g.”* at 1 atm. pressure. Determine the work of ex-
pansion, in defined cal., accompanying the fusion of 1 mole of acetic acid at
atmospheric pressure.

10. Calculate the work done against a constant pressure of 740.0 mm. when 1
mole of water evaporates completely at 100° C; the specific volume of water is
approximately 1 cc. g.7 and that of the vapor is 1720 cc. g.”!. Express the results
in (i) ergs, (ii) liter-atm., (iii) abs. joules, (iv) int. joules, (v) defined cal.

11. The density of mercury at 0° C and 1 atm. pressure is 13.595 g. ce.™.
Using the expression in Exercise 1, determine the work of expansion in ergs when
the temperature of 100 g. of mercury is raised from 0° to 100° C at 1 atm. pressure.
Given that the mean specific heat in this range is 0.0330 cal. deg.”* g.”?, what
proportion of the total amount of heat supplied to the mercury is the work of
expansion?

12. The faraday is usually given as 96,500 coulombs per g. equiv.; show that
it is also equal to 23,070 cal. volt™ g. equiv.~!, and that the quantity 23,070 cal.
volt™ g. equiv.™? faraday™! is dimensionless and equal to unity.



CHAPTER II
PROPERTIES OF THERMODYNAMIC SYSTEMS

4. THERMODYNAMIC SYSTEMS

4a. Types of System.—In order to develop the consequences of -the laws
of thermodynamics, which will be considered shortly, it is necessary to define
the terms of reference. The portion of the universe which is chosen for
thermodynamic consideration is called a system; it usually consists of a
definite amount (or amounts) of a specific substance (or substances). A
system may be homogeneous, that is, completely uniform throughout, such
as a gas or a mixture of gases, or a pure liquid or solid, or a liquid or solid
solution. When a system is not uniform throughout it is said to be hetero-
geneous; it then consists of two or more phases which are separated from
one another by definite bounding surfaces. A system consisting of a liquid
and its vapor, or of two immiscible (or partially miscible) liquids, or of two
or more solids, which are not a homogeneous solid solution, are examples of
heterogeneous systems. There are, of course, numerous other kinds of
heterogeneous systems, as is well known to students of chemical equilibrium
and the phase rule.! )

A system may be separated from its surroundings, which consist, in
effcet, of the remainder of the universe,* by a real or imaginary boundary
through which energy may pass, either as heat or as some form of work.
The combination of a system and its surroundings is sometimes referred to as
an isolated system.

4b. State of a System.—The thermodynamic or macroscopic state or,
in brief, the state, of a system can be defined completely by four observable
properties or ‘‘variables of state’”; these are the composition, pressure, vol-
ume and temperature.f If the system is homogeneous and consists of a
single substance, the composition is, of course, fixed, and hence the state of
the system depends on the pressure, volume and temperature only. If these
properties are specified, all other physical properties, such as mass, density,
viscosity, refractive index, dielectric constant, etc., are thereby definitely
fixed. The thermodynamic properties thus serve to define a system completely.

In actual practice it is not necessary to state the pressure, the volume
and the temperature, for experiment has shown that these three properties
of a simple homogeneous system of definite mass are related to one another.

18, Glasstone, “Textbook of Physical Chemistry,” 2nd ed., 1946, Chapters V, X and XI.

* For thermodynamic purposes the “surroundings’” are usually restricted to a limited
portion of the universe, e.g., a thermostat.

t Electrical, magnetic, surface, gravitational and similar effects are neglected.

14
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The value of any one of these properties thus depends on the values of the
other two. The relationship between them is called an equation of state,
but its precise form lies, strictly speaking, outside the province of pure
thermodynamics; an equation of state must be derived from molecular
(kinetic) theory or from direct experiments on the system under considera-
tion. For example, the equation of state for an ideal gas, namely PV = RT,
where P is the gas pressure, V is the volume of 1 mole, T is the absolute
temperature, and R is a constant, is based partly on the kinetic theory of
gases and partly on experiment. The van der Waals equation represents
a modification of the ideal gas equation, derived by means of molecular
theory. Other equations of state, particularly those involving several em-
pirical constants, are determined from experimental data, although their
general form may have a theoretical basis. The derivation of such equa-
tions is not possible by means of thermodynamics, but the results of thermo-
dynamics may be applied to them with interesting consequences, as will be
evident in the subsequent discussion. In any event, it may be accepted
that, in general, the pressure, volume and temperature of a system are not
independent variables, and consequently the thermodynamic state of a simple,
homogeneous system may be completely defined by specifying two of these
properties.

4c. Thermodynamic Equilibrium.—The results stated above, namely
that only two of the three properties of a system, viz., pressure, volume and
temperature, are independently variable, and that a homogeneous system of
definite mass and composition is completely defined by these two properties,
are based on the tacit assumption that the nbservable properties of the system
are not undergoing any change with time. Such a system is said to be in
thermodynamic equilibrium. Actually this term implies three different
types of equilibrium which must exist simultaneously. First, there must be
thermal equilibrium, so that the temperature is the same throughout the
whole system. Second, if the system consists of more than one substance
there must also be chemical equilibrium, so that the composition does not
Vary with time. Finally, the system must be in a state of mechanical
equilibrium; in other words, there must be no macroscopic movements
within the system itself, or of the system with respect to its surroundings.
Disregarding the effect of gravity, mechanical equilibrium implies a uni-
formity of temperature and pressure throughout the system; if this were not
the case, it would, of course, be impossible to describe the system in terms
of the pressure, volume and temperature.

Systems in which diffusion or chemical reaction is taking place at an appre-
ciable rate are not in thermodynamic equilibrium, and consequently their state
cannot be completely specified in a simple manner. Certain systems which are
not in true equilibrium may nevertheless be treated by thermodynamic methods,
provided the approach to equilibrium is so slow as to be undetectable over a con-
sideravle period of time. An instance of this type is represented by a mixture of
hydrogen and oxygen gases under normul conditions of temperature and pressure.
As mentioned earlier, reaction should take place with the formation of liquid water,



18 PROPERTIES OF THERMODYNAMIC SYSTEMS 4d

so that the system is not really in chemical equilibrium. Howevcr, the reaction
is 8o slow that in the absence of a catalyst it behaves as if it were in thermodynamic
equilibrium, provided, of course, that thermal and mechanical equilibria are
established. The conditions of chemical equiiibrium will, naturally, not apply to
such a syster.

4d. Properties of a System.—The physical properties of a system may
be divided into two main types. There are first, the extensive properties
which depend on the quantity of matter specified in the system. Mass and
volume are two simpie examples of extensive properties. The total value
of an extensive property is equal to the sum of the values for the separate
parts into which the system may, for convenience, be divided. It will be
seen Jater that several properties of thermodynamic interest, such as the
energy of a system, are extensive in nature.

The other group of properties are the intensive properties; these are
characteristic of the substance (or substances) present, and are independent,
of its (or their) amount. Temperature and pressure are intensive proper-
ties, and so also are refractive index, viscosity, density, surface tension, etc.
It is because pressure and temperature are intensive properties, independent
of the quantity of matter in the system, that they are frequently used as
variables to describe the thermodynamic state of the system. It is of
interest to note that an extensive property may become an intensive prop-
erty by specifying unit amount of the substance concerned. Thus, mass
and volume are extensive, but density and specific volume, that is, the mass
per unit volume and volume per unit mass, respectively, are intensive proper-
ties of the substance or system. Similarly, heat capacity is an extensive
property, but specitic heat is intensive.

The properties of a system in thermodynamic equilibrium depend only
on the state, ip the sense defined in § 4¢, and not on the previous history of
the system. If this were not the case, the properties would have no sig-
nificance, for they would be determined not cnly by the actual temperature
and pressure, but also by the temperature and pressure the system may have
had in the past. This is clearly not the case. It follows, therefore, as a
consequence that the change in any property due to a change in the thermo-
dynamic (equilibrium) stute depends only on the initial and final states of the
system, and not on the path foliowed in the course of the change.

4e. Thermodynamic Properties and Complete Differentials.—If any
quantity @, such as a thermodynamie property, is a single-valued function
of certain variables z, y, 2, ..., which completely determine the value of G,
that is,

QG =f(z,y,z2 .., (4.1)

then the change in G resulting from a change in the variables from x4, ¥4,
24, . . ., 10 the initial state, to x5, ¥s, 25, . . ., in the final state, is given by

AG =G — G4 = f(.ln, YB, 2R, . . ) —-f(xA.\yA, 2Ay . . ) (42)
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As a mathematical consequence, it is possible to write for a small increase
d@ in the property G,

= (e +(F)an+(F)aer - e

where the partial differential symbol, e.g., (8G/dx),.. ... represents the
rate of change of G with the variable z, while all the other variables, y,
2, . . ., remain constant. Any differential dG, defined by equation (4.3),
of a function @, represented by (4.1), is called a complete differential, or an
exact differential, of that function.

As seen above, a thermodynamic property of a homogeneous system of
constant composition is completely determined by the three thermodynamic
variables, pressure, volume and temperature. Since only two of these three
variables are independent, it is possible to write

=Jf, 1),

where G may be the energy, volume, or other property to be considered more
fully later. This expression is equivalent to equation (4.1), and hence it

follows from (4.3) that

dG = (gg) P + (gg) drT. (4.4)

The physical significance of this result can be understood from the
following considerafions. 'When the pressure and temperature of the system
are P and T, respectively, the value of the thermodynamic property under
consideration is G, but when the variables are changed to P + dP and
T -+ dT, it becomes G + dG. Since the value of the property is completely
determined by the pressure and temperature, the change dG will be inde-
pendent of the path between the initial and final states. Hexce, any con-
venient method for carrying out the change from P and T to P + dP and
T -+ dT may be chosen for the purpose of calculating d@. Suppose the
change is carried out in two stages: (i) in which the temperature remains
constant at T while the pressure is changed from P to P + dP, and (ii) in
which the pressure is held constant at P + dP and the temperature is
changed from 7 to 7' + dT. In stage (i) the rute of change of G with pres-
sure, at the constant temperature T, is (dG/dP)r, and since the actual pres-
sure change is dP, the change in G for this stage is equal to (dG/dP)r X dP;
this is seen to be identical with the first term on the right-hand side of equa-
tion (4.4). Iun stage (ii), the rate of change of G with temperature at the
constant pressure P + dP, which is very close to P, may be written as
(0@/0T)p. Since the actual temperature change is d7, the change in G
for this stage is (8G/9T)p X dT, which corresponds to the second term on
the right-hand side of equation (4.4). The sum of the two terms just de-
rived gives the total change dG for the given process, in accordance with (4.4).

In the foregoing discussion, G has been treated as a single-valued function
of the pressure and temperature. It is equally permissible to choose as
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variables any two of the three thermodynamic properties, pressure, volume
and temperature. In some cases it is convenient to take pressure and vol-
ume as the independent variables; the complete differential of a thermo-
dynamic property G may then be written as

G aGq

dG@ = (31_’)1/ dP + (57);' dv. (4.5)

Alternatively, if the volume and temperature are chosen as the variables,
oG G

dG = (31-,)? v + (ﬁ)v dr. (46)

Various forms of equations (4.4), (4.5) and (4.6) will be utilized in the treat-
ment of thermodynamic properties.

Another important result, which will be required later, may be derived
from the equations given above. Since the volume of a homogeneous system
of constant composition is a single-valued function of the pressure and
temperature, it is possible to write

1% v
={[ — P _— " .

v (6P)rd +(3T)Pd7 @7
If this value of dV is substituted in equation (4.6), the result is

= (). [(5F), 2+ (& )or | + (&),
- (5), G8)oee + [(59). (57), + (57),Jor- - e

For a given infinitesimal change of thermodynamic state, dG¢ must have a
definite value, no matter how it is calculated; the coefficients of dP and d7,
respectively, in equations (4.4) and (4.8) must therefore be identical.

Hence,
(). - (). (), @9

(7).-(7).Go).+ (), wor

5. EQUATIONS OF STATE

5a. The Ideal Gas Equation.—The practical value of the results of
thermodynamics is frequently greatly enhanced when an equation of state,
relating the pressure, volume and temperature of the system, is available.

* Some writers derive equation (4.10) directly from (4.6) by “dividing through by dT,”
and then imposing the constant pressure condition; this procedure is, however, open to
criticism on mathematical grounds.

and
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No satisfactory relationship of this type is known for liquids and solids, but
for gaseous systems certain moderately simple equations of state have been
proposed. All gases actually differ in their behavior, and so the problem is
approached by postulating the properties of an ideal gas, and then consider-
ing deviations from ideal behavior.

An ideal gas is one which satisfies the equation

PV = RT 5.1)

for 1 mole at all temperatures and pressures; P and T are the pressure and
the absolute temperature, respectively, V is the molar volume, and R is the
molar (ideal) gas constant. It will be observed that at constant pressure,
the volume of an ideal gas is directly propourtional to its absolute tempera-
ture, in agreement with the postulate in § 2c. Attention may also be called
to the fact that equation (5.1) implies that Boyle’s law and Gay-Lussac’s
(or Charles’s) law are both applicable to an ideal gas.

At a given temperature and pressure, the volume of any gas, ideal or not,
will be proportional to its mass, or to the number of moles, contained in the
system. Since equation (5.1) applies to 1 mole of an ideal gas, it follows
that for n moles,

PV = nRT, (5.2)

where V is now the total volume occupied by the gas; R is, however, still the
molar gas constant.

The gas constant R is frequently encountered in thermodynamics, and
so its value will be determined. Use is made of the fact, derived by ex-
trapolating experimental data for a number of gases to zero pressure, that 1
mole of an ideal gas occupies 22.414 liters at 1 atm. pressure and a tempera-
ture of 273.16° K. It follows, therefore, that in equation (5.1), P is 1 atm.,
V is 22.414 liters mole~! and T is 273.16° K; hence,

PV — 1 X 22.414
T 273.16
= 0.082054 liter-atm. deg.~' mole™.

It will be observed that since the product PV has the dimensions of energy,
R must be expressed in energy per degree; since the value of R is invariably
given for 1 mole of ideal gas, it is stated in terms of energy deg.~! mole!.
In the present case the energy is in liter-atm.

Since 1 liter contains 1000.028 cc., it follows that

R = 82.057 cc.-atm. deg.”! mole'.

By utilizing the conversion factors in Table 1 (Appendix), the value of R
can also be expressed in ergs deg.~! mole™! and in cal. deg.7! mole~!. Thus,
since 1 liter-atm. is equivalent to 1.0133 X 10° ergs, it is seen that

R = 0.082054 X 1.0133 X 10°
8.3141 X 107 ergs deg.”* mole™.
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Finally, 1 liter-atm. is equivalent to 24.218 (defined) cal., so that

R = 0.082054 X 24.218
= 1.9872 cal. deg.”* mole—*.

5b. Mixture of Ideal Gases.—In a mixture of ideal gases, it is to be
expected that each gas will behave independently of the others. If the
partial pressure p; of any ideal gas in a mixture is defined as the pressure
this particular gas would exert if it alone occupied the whole available vol-
ume V, then by equation (5.2)
p,-V = n,-RT, (5-3)
where n; is the number of moles of the gas present in the system. Since
each gas in the mixture will exert its pressure independently of the others,

it follows that the total pressure P is equal to the sum of the partial pressures
of the constituent gases; thus,

P=pi+p2+---+pit+ - (5.4)
Upon introducing the values of pi, ps, ..., eic., as given by equation (5.3),
it can be readily derived from (5.4) that
PV = (nl+n2+ PR +n|+ ...\RT
— nRT, ' (5.5)

where n is the total number of moles of all the ideal gases present in the
mixture. By combining equations (5.3) and (5.5), it is seen that

po=2P. (5.6)
n
The fraction n;/n, that is, the ratio of the number of moles (or molecules)
of any constituent of a homogeneous mixture-—gaseous, liquid or solid—to
the total number of moles (or molecules) is called the mole fraction of that
constituent; it is represented by the symbol N;, so that

Mole Fraction n; = e =1 5.7
mtn+ o +n+ e on (3.7)
Utilizing the definition of the mole fraction in conjunction with equation
(5.6), it foilows that the partial pressure p; of any ideal gas in a mixture is

related to the total pressure by
pi = NlP' (5‘8)

Another expression for the partial pressure can be derived from equation
(5.3), based on the fact that n;/V represents the molar concentration, i.e.,
moles per unit volume, of the particular gas in the mixture. It this concen-
tration is represented by c;, equation (5.3) gives

pi = C.RT (59)

for an ideal gas.
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Sc. Real Gases.—According to equation (5.1) or (5.2) the product PV
for a given mass of an ideal gas, at constant temperature, should be constant
at all pressures. Actual gases, however, exhibit considerable deviations
from ideal behavior. At low temperatures the value of PV, instead of re-
maining constant, at first decreases as the pressure is increased; it then
passes through a minimum and then increases. As the temperature is in-
creased, the minimum becomes less marked, and at sufficiently high tem-
peratures the value of PV, increases continuously with increasing pressure.

2.6

2.2

1.8
PV
RT
1.4
1.0
0.6 1 | 1 1
200 400 600 800 1000
Pressure in Atm,

F16. 2. Compressibility of nitrogen gas

The general nature of the experimental results can be seen from the curves
in Fig. 2, which show the variation with pressure of PV/RT for nitrogen at
a number of temperatures. For an ideal gas, all the curves would fall on
the same horizontal line. The actual temperature at which the minimum
in the curve disappears varies with the nature of the gas. For the gases
which are difficult to liquefy, e.g., hydrogen and helium, there is no sign of
the minimum at ordinary temperatures, but for nitrogen it is observed up
to about 50° C. For a readily liquefiable gas, such as carbon dioxide, the
minimum in the PV curve persists up to temperatures in the region of
400° C. The equation of state for a real gas must evidently account for the
variations of PV with pressure and temperature, as described above, and
also for the different behavior of different gases.?

1 8. Glasstone, ref. 1, Chapter IIT; see also Beattie and Stockmayer, Rep. Prog. Phys.
(Phys. Soc. London), 7, 195 (1940).
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5d. The van der Waals Equation.—One of the earliest successful at-
tempts to modify the ideal gas equation so as to make it applicable to real
gases is that of J. D. van der Waals (1873), who proposed the equation

(p + 1‘;) (V —b) = RT (5.10)

for 1 mole, where a and b are constants for a given gas. The constant a is
determined by the attractive forces between the molecules, while b is de-
pendent on their effective volume, which represents a balance between at-
tractive and repulsive forces. By choosing appropriate values for a and b,
the van der Waals equation (5.10) is found to represent moderately well the
actual behavior of real gases. There is, however, an important weakness:
if the equation is assumed to be exact, a and b are found to vary with the
temperature. In spite of its approximate nature, the van der Waals equa-
tion is frequently employed, for it lends itself readily to mathematical treat-
ment, and even if the results obtained from
it are not exact, they are at least qualita-
tively correct.

By multiplying out, it can be readily
seen that the van der Waals equation is a
cubicin V, so that there are, under suitable
conditions, three values of V for each pres-
sure, at a given temperature (Fig. 3, curves
Iand II). The region in which this occurs
corresponds to that in which liquefaction
of the gas is possible. At higher vempera-
tures, e.g., curve IV, two of the roots are
always imaginary, only one being real. At
a certain intermediate temperature (curve
III), which should correspond to the

\ %4 critical temperature, the three values of V'
Fic.3. Van der Waals should become identical, at the point X.
isothermal curves At this point the P-V curve will exhibit a

horizontal inflection, so that both the first
and second derivatives of the pressure with respect to the volume, at con-
stant temperature, will be equal to zero. Thus, writing the van der Waals
equation (5.10), for 1 mole of gas, in the form

RT a
it is found that
d RT 2a
(O_l;)r = ——-——(V —oF + 7 (5.12)

and

o*r 2RT Ga
( )1' U O &1
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At the critical point X both these expressions are equal to zero; hence,
writing V., and T, to represent the molar critical volume and temperature,
respectively, it follows that

RT. 2a 2RT, 6a

e 420 d &2 _ 28,
7 7 A e T Rl
From these two equations, and (5.11), it is readily found that
. : e _ 8a | __a
i) V.= 3b, Gg) T.= 27Rb (i) P, 77 (5.14)

If the values of a and b which make the van der Waals equation represent
the P-V relationship of a gas at a particular temperature are inserted in
equation (5.14), the critical pressure, volume and temperature obtained are
only in moderate agreement with the experimental results. This is not
unexpected for, as already pointed out, a and b are not strictly constant, if
the van der Waals equation is assumed to hold. If the P-V data from which
a and b are derived are obtained at a temperature that is some distance from
the critical, they will clearly not prove satisfactory for the evaluation of
critical constants. In actual practice the procedure adopted is to calculate
a and b from the observed critical data * by means of the equations (5.14).
A number of the results obtained in this manner are given in Table I; if the
pressure P of the gas is in atm. and the molar volume V in liter mole™, a
will be in liter? atm. mole~? since a/V? must have the same dimensions as P,
and b will be in liter mole™}, since this has the dimensions of V.

TABLE I. VAN DER WAALS CONSTANTS

a b a b
liter? atm. liter liter? atm. liter
Gas mole~? mole™? Gas mole—2 mole™?
Acetylene 4.40 5.15 X 1072 Hydrogen chloride 3.68 4.09 X 10~
Ammonia 4.17 3.72 Hydrogen cyanide 10.8 8.25
Argon 1.35 3.23 Hydrogen iodide 7.72 531
Benzene 18.0 11.5 Hydrogen sulfide 4.43 4.30
n-Butane 14.5 12.3 Methane 2.26 4.30
Carbon dioxide 3.60 4.28 Methanol 9.54 6.71
Carbon monoxide 1.49 4.00 Methyl chloride 7.47 6.51
Chlorine 6.50 5.64 Nitric oxide 1.34 280
Cyanogen 7.68 6.93 Nitrogen 139 3.92
Ethane 5.46 6.47 Nitrous oxide 3.79 443
Ethy! ether 17.4 13.5 Oxygen 1.36 3.19
Ethylene 4.47 5.73 Propane 8.66 8.47
Helium 0.034 2.38 Propylene 8.38 8.30
Hydrogen 0.245 2.67 Sulfur dioxide 6.72 5.65
Hydrogen bromide 4.46 4.44 Water 546 3.30

The values of a and b recorded in Table I may be used to calculate the
pressure or volume of a gas, at a specified volume or pressure, respectively,

* For critical temperatures and pressures of a number of substances, see Table 2 at the
end of the book.
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to a moderate degree of accuracy. The results are by no means exact, but
they serve as an approximation when no other information is available,

especially at high pressures.

Problem: Compare the pressures given by the ideal gas and van der Waals
equations for 1 mole of carbon dioxide vccupying a volume of 0.381 liter at 40° C.

The ideal gas equation gives, for 1 mole, P = RT/V; taking V as 0.381 liter,
R as 0.0820 liter-atm. deg.”™ mole™!, and T as 273 + 40 = 313° K, it is found that

0.0820 X 313
P = W = 67.4 atm.
Utilizing the van der Waals equation in the form of (5.11), with ¢ = 3.60 and
= 4.28 X 102 (Table I),

_ 00820 X313 _ 3.60
(0381 — 0.043) __ (0.381)

The experimental value is 50 atm.

Problem: Compare the volumes given by the ideal gas and van der Waals
equctions for 1 mole of nitrogen at 400 atm. pressure and 0° C.

According to the ideal gas equaticn V = RT/P for 1 mole; R is 0.0820 liter-
atm. deg.”! mole~?, P is 400 atm., T is 273° K, ard hence

_ BT _ 0.0820 X 273
P 400

In order to determaine the volume from the van der Waals equation it is neces-
sary to solve a cubic equation, and this is most simply done by the method of trial.
Neglecting a/ V2 in comparison with P, equation (5.10) reduces to P(V — b) = RT,
so that

P = §].1 atm.

14 = 0.0560 liter mole—!.

v=ET 4.

P —
From Table I, b for nitrogen is 0.0392, and for 400 atm. V is 0.0952 liter mole".
If this is inserted in equation (5.11), with a equal to 1.39, P is found to be 247
atm. Similarly, if V is taken as 0.0560 liter mole™?, P is found, to be 891 atm.
Since the.molar volume of 0.0560 liter corresponds to a van der Waals pressure of
891 atm., and 9.0952 liter corresponds to 247 atm., it is evident that the correct
volume, for 400 atm., is about 0.075 liter. By a series of approximations, the
volume is found to be 0.G732 liter. (The experimental value is 0.0703 liter.
Although the van der Waals result is not correct, it is very much better than the
ideal gas value.)

Se. Reduced Equation of State.—If the pressure, molar volume and tem-
perature of a gas are expressed in terms of the critical pressure, volume and
temperature, respectively, i.e.,

P = xP,, V.= ¢V, and T = 0T., (5.15)
and these expressions are introduced into the van der Waals equation (5.10),
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the result for 1 mole of gas is
(wP, -}- ¢’V”) (¢V. — b) = ROT..

Upon insertion of the values of P., V. and T. given by the equations (5.14),
it is found that

(1r + g) 3¢ — 1) = 8. (5.16)

The quantities =, ¢ and 6, which are equal to P/P,, V/V,and T/T., respec-
tively, are called the reduced pressure, volume and temperature, and (5.16)
is a reduced equation of state. The interesting fact about this equation is
that it is completely general, for it does not involve a and b, and hence con-
tains no reference to any specific substance. Consequently, if equimolar
amounts of any two gases, whose P-V-T behavior may be represented by an
expression of the form of the van der Waals equation, are at the same re-
duced pressure «, and have the same reduced volume ¢, then they inust be
at the same reduced temperature 6. The two gases are then said to be in
corresponding states, and equation (5.16) is taken as an expression of the
law of corresponding states.

Experimental studies have shown that the principle of corresponding
states derived above is, at least approximately, a valid one, although equa-
tion (5.16) does not give the correct quantitative relationship between =,
¢ and 6. It should be pointed out, however, that any equation of state con-
taining two arbitrary constants, such as a and b, in addition to R, can be
converted into a relationship involving the reduced quantities », ¢ and 6, in
agreement with the law of corresponding states. Because the law is not
exact, however, it would appear that more than three empirical constants
are necessary to obtain an exact equation of state.

5f. The Berthelot Equation.—Although it is not employed in connection with
P-V-T relationships, the equation of state proposed by D. Berthelot has found a
number of applications in thermodynamics. The van der Waals equation is first
modified by changing the a/V? term to a/TV?; thus,

(P+TV,)(V-b)=

Uporn multiplying out, this becomes

o
T Vv  Tvy?
Neglecting the last term, since it contains the product of two small quantities,

and replacing V in a/TV, as a first approximation, by the ideal gas value RT/P,
equation (5.17) becomes

PV = RT + Pb —

PV = RT 4+ Pb — + (5.17)

aP
RT*

' aP
=RT<1+RT R,T;,) (5.18)
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The factors a, b and R are now replaced by expressions involving the critical
constants, based upon experimental results; these are

a=3P,VT, b=3V, and R=32.0 “'
Consequently, equation (5.18) becomes
PT, .
PV—-RT[ +128 P,T(l —6-7—,5)] (5.19)

which is the Berthelot equation.

5g. The Beattie-Bridgeman Equation.—Another modification of the van der
Waals equation, having a partial theoretical basis, is that proposed by J. A.
Beattie and O. C. Bridgeman (1927). It takes the form

P=HCOw+p-%, (5.20)

Vv
where :
b ¢

a
A=Ao(l+-‘;), B=B°<1—V) and C=V—T;,

Ag, By, a, b and ¢ being arbitrary constants. The chief application of the Beattie-
Bridgeman equation lies in its use to represent the experimental P-V-T relation-
ships of gases, the five constants being derived from actual observations. The
values of these constants have been obtained for a number of gases and are re-
corded in the literature.? The results are useful for interpolation of P-V-T data,
within the limits of applicability of the constants, and also for a number of
thermodynamic purposes.

Sh. General Equation of State.—Although numerous equations of state have
been proposed from time to time, few of these have been used in thermodynamic
studies. Mention may, however, be made of a purely empirical equation which
takes the form of a power series in the pressure; thus,

PV = RT + aP + bP? + cP?* + dP*. (5.21)

The factors a, b, ¢ and & are dependent upon the temperature, and the variations
have been expressed by the relationships

a=a + aT'+ a;T‘*,

b= blT—" + sz—‘ + baT"',
¢ =T+ caT4 + T,
d = diT™! 4 dsT* + dsT5.

The equation thus involves twelve empirical constants, but these can be derived
from the experimental P-V-T data without difficulty. Once they are known
various uses can be made of equation (5.21), which is capable of relatively easy
mathematical manipulation.*

3 Beattie and Bridgeman, J. Am. Chem. Soc., 49, 1665 (1927); 50, 3133 (1928); Proc.
Am. Acad. Arts Sci., 63, 229 (1928); Z. Physik, 62, 95 (1930); Beattie, et al., J. Am. Chem.
Soc., 32, 6 (1930); 59 1587 1589 (1937); 61, 26 (1939),64, 548 (1942); J. Chem, Phys., 3,
93 (1935), see dso Demmg and Shupe, J. Am Chem. Soc., 52, 1382 (1930); 53, 843 (1931),
Mﬂonund'l‘urn‘bull Ind. Eng. Chem., 33, 408 (1941).

4 See, for enmplé, Maron and Tumbull, Ind. Eng. Chem., 34, 544 (1042).
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5i. Compressibility Factors.—Although such analytical expressions as
the Beattie-Bridgeman equation and, to a less precise extent, the van der
Waals equation are useful for solving problems relating to the pressure,
volume and temperature of gases, much labor could be saved if complete
compressibility diagrams, such as Fig. 2, were available for all gases. The
necessity for a separate diagram for each gas would be a complicating factor,
and so it is fortunate that the law of corresponding states has permitted
the development of a single generalized compressibility diagram which is
(approximately) applicable to all gases. Except for readily liquefiable gases,
results can be obtained from this diagram which agree with the observed
data within a few per cent.

The compressibility factor « of a gas is defined by

PV
RT’
where P is the pressure of the gas, V is its molar volume and T is the absolute
temperature. For an ideal gas x would obviously be unity under all circum-
stances, but for a real gas it may be less or greater than unity, as may be
seen from Fig. 2, which is really a plot of the compressibility factor against

the pressure of nitrogen at several temperatures. It follows, therefore, from
equation (5.22) that for 1 mole of gas

PV = «kRT, (5.23)

where « is the compressibility factor in the given state of the gas. For n
moles of gas, the volume would, of course, be increased n-fold.

If the pressure, volume and temperature in equation (5.22) are replaced
by their respective reduced properties, i.e., P is replaced by »P., V by ¢V,
and 7T by 07T, it follows that

(5.22)

K =

PV, 74,
RT, @

It will be seen from the three relationships of equation (5.14) that P,V./RT,
should be constant, equal to §, for all van der Waals gases. Experimental
observation has shown that for many substances P,V./RT. has, in fact,
almost the same constant value, although it is more nearly & than . Since
this quantity is constant, however, it follows from equation (5.24) tha' for
all gases, as a first approxxmatlon

x=c?, (5.25)
where ¢ is a universal constant. According to the law of corresponding
states (§ 5e), if the reduced pressure » and the reduced temperature 8 have
the same value for different gases, their reduced molar volumes ¢ must be
equal. It follows, therefore, from equation (5.25), that their compressi-
bility factors x must then also be the same, irrespective of the nature of the
gas. In other words, if the compressibility factor is plotted against the

(5.24)

K =
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reduced pressure, for a given reduced temperature, the results for all gases
will fall on the same curve.*

The conclusion just reached forms the basis of the generalized, or re-
duced, compressibility curves (Fig. 4).° From actual experiments on a
number of gases, the mean observed compressibility factors at various tem-
peratures and pressures have been derived, and the values of x are plotted
against the corresponding reduced pressures, with the reduced temperature
as parameter. From these curves it is possible to derive, with a fair degree
of accuracy, the value of either the pressure, volume or temperature of any
gas, if the other two variables are given. The determination of the volume
can be achieved directly from Fig. 4, but the evaluation of either pressure
or temperature is not quite as simple.t

Problem: Utilize Fig. 4 to determine the volume of 1 mole of nitrogen at 400
atm. pressure and 0° C (cf. second problem in § 5d).

The critical pressure of nitrogen is 33.5 atm. and the critical temperature is

126° K; hence the reduced pressure and temperature are given by
400 273
=g = 11.9; 0=E€ 2.17.
From Fig. 4 it is found directly that for these values of » and 6, the tompressi-
bility factor «x is about 1.27. Utilizing equation (5.23), with P = 400 atm.,
R = 0.0820 liter-atm. deg.™ mole™ and T = 273°, it is found that
RT  1.27 X 0.0820 X 273

= _— = = 1 —1
V=x P 200 0.071 liter mole™.

(The experimental value is 0.0703 liter mole!.)

Problem: Utilize Fig. 4 to determine the pressure of carbon dioxide gas when
1 mole occupies 0.381 liter at 40° C (cf. first problem in § 5d).

Substituting the value of V = 0.381 liter mole™!, T = 273 + 40 = 313° K,
and R into equation (5.23), it follows that
RT 0.0820 X 313

P=x< =03

The critical pressure of carbon dioxide is 72.9 atm., so that

P 67.4
T =P " 729 k = 0.925«.

* For hydrogen and helium better results are obtained by adding 8 to the critical
pressure and temperature when calculating the reduced values; thus, for these gases,
x=P/(P;+ 8)and 0 = T/(T. + 8).

§ Cope, Lewis and Weber, Ind. Eng. Chem., 23, 887 (1931); Brown, Souders and Smith,
ibid., 24, 513 (1932); Dodge, <bid., 24, 1353 (1932); Lewis and Luke, #bid., 25, 725 (1933);
Lewis, tbid., 28, 257 (1936); Kay, ibid., 28, 1014 (1936); Maron and Turnbull, tbid., 34, 544
(1942); for a convenient nomograph applicable below the critical point, see Thomson,
ibid., 35, 895 (1943).

t Generalized (reduced) compressibility diagrams are often referred to in the literature
a8 “p~charts,” the symbol u being used for the compressibility factor. Since u is employed
later for another purpose, it has been replaced by « here.

= 67.4«.
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The expression x = 0.925« is the equation for a straight line passing through the
origin of Fig. 4. The point representing the system under consideration is that
at which this line intersects the curve in Fig. 4 for the prescribed reduced tempera-
ture. The critical temperature of carbon dioxide is 304.1° K, and so the reduced
temperature @ corresponding to 40° C, i.e., 313° K, is 313/304 = 1.03. The value
of x at which the line » = 0.925« intersects the curve for § = 1.03 is found to be
0.7 from Fig. 4. Since P, is 72.9, it follows that P is 0.7 X 72.9 = 51 atm. (The
experimental value is 50 atm.)

5j. Mixtures of Real Gases: Additive Pressure Law.—The rule that the
total pressure of a mixture of gases is equal to the sum of the pressures
exerted by each gas if it alone occupied the whole of the available volume
(§ 5b) does not apply to real gases. The total pressure is thus not equal to
the sum of the partial pressures defined in the usual manner. However,
for some purposes it is convenient to define the partial pressure of a gas in a
mixture by means of equation (5.8), i.e., p; = N;P, where p; is the partial
pressure and N; is the mole fraction of any constituent of the mixture of
gases of total pressure P.

A simple modification of the law of partial pressures as applied to ideal gases
has been proposed for mixtures of real gases (E. P. Bartlett, 1928).¢ If P; is the
pressure which would be exerted by a constituent of a gas mixture when its molar
volume is the same as that of the mixture, then it is suggested that the total
pressure P is given by

P=mNP,+ NP+ o + NPl A . (5.26)

This rule has been found to give results in fair agreement with experiment.
If compressibility data for the individual gases are not available, the values of
P}, P;, ete., can be obtained with the aid of Fig. 4, provided the molar composition
of the gas, its volume and temperature are known.

Problem: A mixture of $ mole nitrogen and 4 mole hydrogen occupies 0.0832
liter at 50° C. Calculate the total pressure.

The molar volume of the mixture is 0.0832 liter; by using Fig. 4 in conjunction
with the known critical temperature and pressure of nitrogen and hydrogen (see
footnote, p. 29), the pressure of nitrogep gas at 50° C for this molar volume is
found to be 404 atm. and that for hydrogen is 390 atm. The calculation is iden-
tical with that in the second problem of § 5i. By equation (5.26), the total
pressure is given by

P = (1 X 404) + (1 X 390) = 394 atm.

(The experimental value is 400 atm. The agreement is partly ‘fortuitous, because
Fig. 4 cannot be read to this degree of accuracy.)

5k. Additive Volume Law.—The additive pressure law, as given by equation
(5.26), is useful for the calculation of the approximate pressure exerted by each
gas, and the total pressure, in a mixture of real gases, when the volume is known.
If the total pressure is given, however, the evaluation of the volume is somewhat
more complicated, involving a series of trial solutions. An alternative approxi-

¢ Bartlett, Cupples and Tremearne, J. Am. Chem. Soc., 50, 1275 (1928).
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mate method is available which makes use of the law of additive volumes (E. H.
Amagat, 1893; A. Leduc, 1898).7 It can be readily shown that for a mixture of
ideal gases, the total volume should be equal to the sum of the volumes which the
constitutent gases would occupy at the total pressure of the mixture, at the same
temperature. This rule has been found to hold, with a fair degree of accuracy,
for mixtures of real gases. If complete experimental P-V-T data for the individual
gases in the mixture are available, it is a simple matter to make use of the additive
volume law. For approximate purposes the generalized compressibility diagram
(Fig. 4) may be utilized.

Problem: Calculate the volume of a mixture of 1 mole nitrogen and # mole
hydrogen at 400 atm. pressure and 50° C. (This is the reverse of the problem
in § 5j.)

It is found from Fig. 4 that at 400 atm. and 50° C, 1 mole of nitrogen would
occupy 0.083 liter; under the same conditions, the volume of 1 mole of hydrogen
would be 0.081 liter. The method of calculation is, in each case, identical with
that used in the first problem in § 5i. By the Amagat law of additive volumes,
the volume of the given mixture would be

(3 X 0.083) + (# X 0.081) = 0.082 liter.
(The experimental value is 0.0832 liter.)

EXERCISES

1. A liquid mixture consists of equal parts by weight of water and sulfuric acid,
what is the mole fraction of each constituent?

2. The composition of dry air by weight is as follows: nitrogen 75.58%,, oxygen
23.08%, argon 1.28%,, carbon dioxide 0.06%, with negligible traces of other gases.
Calculate the partial pressure of each of these four gases in air at exactly 1 atm.
pressure, assuming ideal behavior.

3. Suppose 10.0 liters of gas 4, measured at 0.50 atm., and 5.0 liters of gas B,
at 1.0 atm., are passed into a vessel whose capacity is 15.0 liters. What is the
resulting total pressure, if the gases behave ideally and the temperature remains
constant?

4. A gas collected over water at 25° C becomes saturated with water vapor,
its partial pressure being 23.8 mm. The measured volume of the moist gas is
5.44 liters, at a total pressure of 752.0 mm. Calculate the volume the dry gas
would occupy at a pressure of 760 mm., assuming ideal behavior of the gas and
of the water vapor.

5. Prove that for a mixture of ideal gases the total volume is equal to the sum
of the volumes which the constituent gases would occupy at the total pressure of
the mixture at the same temperature (Amagat’s rule).

6. At 0° C and 400 atm. pressure a mixture containing 0.75 mole fraction of
nitrogen and 0.25 mole fraction of hydrogen was found to occupy a volume of
71.5 ml. mole!. Utilizing the generalized compressibility diagram, determine
whether Amagat’s volume rule or Bartlett’s partial pressure rule is in better agree-
ment with experiment.

7 Cf., Leduc, Ann. chim. phys., 15, 5 (1898); see also, Masson, et al., Proc. Roy. Soc.,
A103, 524 (1923); A122, 283 (1929); A126, 248 (1930).

/7
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7. Show that at moderate and low pressures the van der Waals equation may

be written in the form PV = RT(1 — BP), where B = ITI-' (RT b ) . (Mul-

tiply out the van der Waals equation, neglect the term ab/V?, which is small if
the pressure is not large, and replace V in a/V by RT/P.)

Express B in terms of T, and P., and compare the result with that given by
the Berthelot equation (5.19) for hydrogen and oxygen at 25° C. (The experi-
mental values are — 5.9 X 10~ and 6.8 X 10~ atm.™1.)

8. A cylinder, of capacity 100.0 liters, contains methane gas originally at 200
atm. and 25° C. Determine by means of the compressibility chart the weight of
gas used up when the pressure in the cylinder has fallen to 50.0 atm. Compare
the result with that for (i) an ideal gas, (ii) a van der Waals gas.

9. The critical temperature and pressure of ethane are 305.2° K and 48.8 atm.,
respectively. Taking R as 0.08205 liter-atm. deg.”! mole™!, determine the van
der Waals constants. What would be the approximate molar volume at the
critical point?

10. Compare the pressures given by (i) the ideal gas equation, (ii) the van der
Waals equation, (iii) the compressibility diagram, for 1 mole of ethylene occupying
a volume of 0.279 liter at 40.0° C.

11. Compare the volumes given by (i) the ideal gas equation, (ii) the van der
Waals equation, (iii) the compressibility diagram, for 1 mole of hydrogen at 50(
atm. and 0° C.

12. Assuming Bartlett’s rule and using the compressibility diagram, determine
the total pressure of a mixture consisting of 23.0 g. of oxygen and 77.0 g. of nitrogen
occupying 155 ml. at 0°°C. What would be the pressure if the gases behaved
ideally?

13. By means of Amagat’s rule and the compressibility chart, calculate the
volume occupied by the mixture in Exercise 12 at a total pressure of 500 atm. at
0° C. Compare the result with that which would be found if the gases were ideal.

14. It has been suggested [Kay, Ind. Eng. Chem., 28, 1014 (1936)] that the
compresgibility factor of a mixture of gases may be determined by treating the
mixture as a single gas with a critical temperature equal to N1T.1 + N2To2 + - -,
and a critical pressure of NiP. + N:P.2 + ---, where N;, N3, - -+ are the mole
fractions of the various gases in the mixture, and T, T, - - - are the critical tem-
peratures and P.;, P.s, --- the critical pressures. Apply this rule to Exercises
12 and 13.

15. If G is a function of P, V and T, prove that

19) - (29) (%), + (%
P )r \0V /p\OP/r orP /)y’
and derive an analogous expression for (3G/9T)y.
16. Verify the units of the van der Waals a and b given in Table I.



CHAPTER III
THE FIRST LAW OF THERMODYNAMICS

6. THR CONSERVATION OF ENERGY

6a. The Equivalence of Work and Heat.—The relationship between me-
chanical work and heat was first clearly seen by Count Rumford (Benjamin
Thompson) in 1798. As a result of his observations made on the heat de-
veloped during the boring of & cannon, he concluded that the heat produced
was related to the mechanical work expended in the boring process. Some
experiments carried out by H. Davy (1799) appeared to indicate the con-
nection between work and heat, but the most important results were those
obtained by J. P. Joule in an extended series of observations, commenced
about 1840 and lasting for nearly forty years. In a number of carefully
planned and executed experiments, Joule converted known amounts of work
into heat, and measured the amount of heat thus produced by determining
the rise in temperature of a calorimeter of known heat capacity. Among the
methods used for converting work into heat, mention may be made of the
following: stirring water or mercury by a paddle wheel, compression or ex-
pansion of air, forcing water through capillary tubes, passage of an electric
current through wires of known resistance, and passage of induced current
through a coil of wire rotated in a magnetic field.

As a result of his studies, Joule came to the highly significant conclusion
that the expenditure of a given amount of work, no matter what its origin, always
produced the same quantity of heat. This fact is the basis of the concept of a
definite mechanical equivalent of heat, that is, of a definite and constant
ratio between the number of ergs of mechanical work done and the number
of calories produced by the conversion of this work into heat. According to
the most recent experiments, one standard (15°) calorie is equivalent to
4.1858 X 107 ergs, i.e., 4.1858 abs. joules, of work, irrespective of the source
or nature of this work. Assuming that 1 int. joule is equivalent to 1.0002
abs. joules (§ 3b), it follows that a standard calorie is equivalent to 4.1850
int. joules. However, because heat quantities are usually determined at the
present time by comparison with the heat produced by electrical work, the
value of which is known in int. joules, it has become the practice by chemists
to adopt the relationship between work and heat given in § 3e. Thus, a
defined calorie is equivalent to 4.1833 int. joules. The difference between
this value and the one given above, i.e., 4.1850 int. joules, is, at least partly,
due to the difference between the standard and defined calories.

6b. The Mechanical Equivalent from Heat Capacities.—It is of interest
to mention that while Joule’s experiments were in progress, J. R. Mayer
(1842) calculated, from the specific heats of air at constant pressure and
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constant volume (§ 9b), the heat change accompanying the expansion of air,
and compared the result with the work done against the external pressure.
The mechanical equivalent of heat derived in this manner was close to that
obtained by Joule in an entirely different manner. If modern specific heat
data are used, the results of Mayer’s calculation are in excellent agreement
with the accepted value of the relationship between ergs and calories.

Problem: The difference between the heat capacities of 1 g. of air at constant
pressure (1 atm.) and constant volume is 0.0687 cal. deg.~ at 0° C. The volume
of 1 g. of air at 0° C and 1 atm. is 773.4 cc. Assuming the difference in the heat
capacities to be entirely due to the work done in the expansion of the air at con-
stant pressure, which is not strictly true, calculate the relationship between the
erg and the calorie.

By Gay-Lussac’s law of the expansion of a gas at constant pressure [cf. equa-
tion (2.2)], the volume of a gas expands by 1/273.16 of its volume at 0° C for every
1° rise of temperature. In the present case, therefore, the increase in volume of
1 g. of air is 773.4/273.16 cc. for 1° increase of temperature. According to equa-
tion (3.5), the work done in the expansion against the constant pressure of the
atmosphere is equal to the product of the pressure, i.e., 1 atm. or 1.013 X 10¢
dynes cm.™® (§ 3f), and the increase of volume. If the pressure is in dynes cm.™?
and the volume in cc., the work will be expressed in ergs; thus,

773.4
273.16
This work should be equivalent to the difference between the heat required to raise

the temperature of 1 g. of air by 1° at constant pressure (1 atm.) and constant
volume, in the vicinity of 0° C. This difference is given as 0.0687 cal.; hence,

0.0687 cal. = 2.87 X 10° ergs,
1 cal. = 4.18 X 107 ergs.

Work of expansion = 1.013 X 10¢ X = 2.87 X 10° ergs.

6¢c. The Conservation of Energy: The First Law of Thermodynamics.—
The belief that “perpetual motion of the first kind,”’ * that is, the production
of energy of a particular type without the disappearance of an equivalent
amount of energy of another form, was not possible has long been accepted
by scientists. No success had attended the many attempts to construct a
machine which would produce mechanical work continuously without draw-
ing upon energy from an outside source, and without itself undergoing any
change. The fundamental significance of this accepted view was not widely
realized until 1847 when H. von Helmholtz showed that the failure to achieve
perpetual motion and the equivalence of work and heat, described above,
were aspects of a wide generalization which has become known as the law of
conservation of energy. This law has been stated in various forms, but its
fundamental implication is that although energy may be converted from one
form to another, it cannot be created or destroyed; in other words, whenever a
quantity of one kind of energy 18 produced, an exactly equivalent amount of
another kind (or kinds) must be used up.

* For an explanation of “perpetual motion of the second kind,” see § 18d.
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It should be clearly understood that the law of conservation of energy is
purely the result of experience, for example, the failure to construct a per-
petual motion machine and the constancy of the mechanical equivalent of
heat. It is upon the assumption that such experience is universal that the
first law of thermodynamics is based. This law is, in fact, identical with
the principle of conservation of energy, and can consequently be stated in
either of the forms given above; other ways of stating the law will be men-
tioned later. It may be pointed out that the first law of thermodynamics
can be regarded as valid as long as perpetual motion of the first kind is
found not to be possible, as is apparently the case in the universe of which
the earth is a part. If, in another universe or under other circumstances,
the creation of energy were proved to be feasible, the laws of thermodynamics
would not be applicable. However, this contingency appears to be so re-
mote, as far as human observation is concerned, that it may be completely
disregarded.

Following historical precedent, the validity of the first law of thermo-
dynamics has here been associated with the impossibility of perpetual motion
of the first kind and the constancy of the mechanical equivalent. The law
has nevertheless a much firmer basis, for it leads to a wide variety of con-
clusions, as will be seen in this and later chapters, which have been found to
be in complete agreement with actual experience.

6d. Isolated Systems and the First Law.—It was stated in § 4a that a
combination of a system and its surroundings may be referred to as an
isolated system. The first law of thermodynamics requires that the total
energy of an isolated system must remain constant, although there may be changes
Jrom one form of energy to another. This means that any loss or gain of
energy by a system must be exactly equivalent to the gain or loss, respec-
tively, of energy by the surroundings. The forms of energy are not neces-
sarily the same, but if there is to be a net conservation of energy the amounts
must be equivalent. The conclusion derived from the first law, that the
energy change in a system must be exactly compensated by that of its sur-
roundings, is of great importance, and it will be applied in later developments.

6e. Energy and Mass.—Brief reference may be made here to circumstances
under which the principle of the conservation of energy appears to fail; the failure
is apparent, however, rather than real. According to the theory of relativity there
18 an equivalence of mass and energy; the loss or gain of energy by a body must be
accompanied by a corresponding change of mass. The change of energy AE is
related to the change of mass Am by the relationship

AE = ¢Am, (6.1)

where c is the velocity of light. In certain reactions between atomic nuclei there
is a liberation of large amounts of energy without the apparent disappearance of
an equivalent quantity of energy of another kind. However, a study of the
masses of the nuclei concerned shows that there is a loss of mass which corresponds
exactly to the energy set free, as required by equation (6.1). The energy liberated
ultimately becomes associated with some form of matter, and there is a gain of
mass of the latter identical with the loss suffered by the nuclei. The equivalence
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of mass and energy means that the laws of conservation of mass and energy can
both be true, but each is a mere corollary of the other. Since nuclear reactions are
not considered in chemical thermodynamics, however, the problems associated
with the relationship between mass and energy will not arise.

7. ENErRGY AND HeaT CHANGES

7a. The Energy Content.—The energy possessed by a system, that is to
say, its energy content, may be regarded as falling into two main categories.
There is first, the energy which is a characteristic property of the system
itself; this may include the translational energy of the moving molecules,
the energy of vibration and rotation of the molecules, as well as the energy
of the electrons and nuclei. On the other hand, there is the energy which
is determined by the position of the system in a force field, e.g., magnetic,
electric or gravitational, and by the motion of the system as a whole, e.g.,
through space. In thermodynamics the energy in this second category is
usually ignored, and it is only that in the first which is taken into considera-
tion. The latter is sometimes called the internal energy, to distinguish it
from the energy due to external factors, but for present purposes it may be
referred to simply as the energy or the energy content of the system. The
term internal energy can then be used when it is desired to describe the
cnergy associated with the motions, e.g., vibration, rotation, etc., within
the molecule, as distinct from thé‘ranslational
energy resulting from the motion of the mole-
cule as a whole.*

The energy content of a system must depend
on its thermodynamic state. An increase of
temperature at constant volume, for example,
brought about by the transfer of heat to the
11 system from the surroundings, must result in
an increase of its energy. It will now be shown,
by utilizing the first law of thermodynamics,
B that the energy content is a property of the
system of the kind that is determined only by

Volume the state of the system, and not by the manner

Fro. 5. Energy changesin il Which it reached that state. In other words,

direct and reverse paths it will be proved that the energy is a single-

valued function of the thermodynamsic variables of

the system. It is consequently a property to which the results obtained in
§ 4e may be applied.

Consider any system represented by the state A in Fig. 5, in which the
coordinates are the observable properties, e.g., pressure and volume, that
determine the energy content. Suppose the conditions are now altered,
along the path I, so that the state of the system is represented by the

A

Pressure

* This motion of the molecule is, of course, not to be confused with the motion of the
system as a whole, which, as stated above, is not included in the thermodynamic encrgy
content.
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point B; the system is then returned to its exact original state by a series
of changes indicated by the path II.* It is then a direct consequence of the
first law of thermodynamics that the total energy change of the system in
path I must be identical in magnitude, but opposite in sign, to that in
path 1I, provided the surroundings remain unchanged; if this were not so a
perpetual motion machine would be possible. Imagine, for example, that
the increase of energy in path I were greater than the decrease in returning
by II; then by carrying out the change A — B by path I and the reverse
change B — A by path I, the system would be brought back to its original
state, but there would be a residuum of energy if the surroundings were
unchanged. In other words, energy would have been created, without the
disappearance of an equivalent amount of another kind. Since this is con-
trary to the first law of thermodynamics, it must
be concluded that the energy change in the pro- A
cess A — B, by path I, must be numerically equal
to that involved in the reverse process B — 4,
by path II.

It is possible to proceed from A to B by
various paths, I, I’, 1”7, etc. (Fig. 6), returning
in each case by path II. From the preceding
argument, it is evident that the energy changes
in I, I’, 1", etc., must each be numerically equal
to that in II. It follows, therefore, that the
energy changes in the different paths I, I, I”,
etc., between the two given states A and B, must Volume
all be equal to each other. The conclusion to be . i .
drawn, therefore, is that the ckange in energy of ! ll(:ldgpcn]d::r?:go); ;T{‘nlg(

a system, associated with the passage from one

thermodynamic state to another, depends only on the initial and final states, and
is independent of the path followed. This statement may be regarded as a
form of the first law of thermodynamics.

It is clear from these considerations that the energy of a system is a
“property”’ of the system in the sense described in § 4e. It is, therefore,
possible to ascribe a definite value E to the energy or energy content of a
particular system in a given s.ate; this value will depend only on the state,
and not on the previous history, of the system. If E4 represents the energy
in the thermodynamic state A, and Ey that in the state B, then the incrcase
of energy AEt in passing from A to B is given by

AE = IEp — Eg4, (7.1)
and is independent of the path taken in the change of state 4 — B.

* In thermodynamics the word “change” is frequently used to imply “change in thermo-
dynamie state”; the terms “path’”” or “process’” then refer to the means whereby the given
change in state is accomplished.  As will be seen below, a particular change may be achieved
by following varions different paths, i.e., by different processes.

 The symbol A as applied to a change in a thermodynamic property accompanying a
given process represents the algebraic increase in the property. It is always equal to the

1I

Pressure
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Since the energy content of a system obviously depends on the quantity
of material contained in the system, it is apparent that the energy E is an
extensive property, as defined in § 4d. If the mass of the system is altered,
the energy content will be affected in the same proportion. Similarly, the
value of AE for any process depends upon the amount of material contained
in the system which undergoes the change.

7b. Work, Heat and Energy Changes.—The energy change accompany-
ing the change in thermodynamic state of a system may be due to the per-
formance of work on or by the system, and also to the transfer of energy to
or from the system in the form of heat. The term “work” is used here in
the general sense referred to in § 3a, and may include work of expansion or
any other form of mechanical work, as well as electrical work, etc. If W
is the magnitude of the work done, then by convention W is positive if work
is done by the system. In other words, by the convention W is taken as
positive when the system loses energy as the result of doing some form of
work. On the other hand, W is negative if work is done on the system, so
that it gains energy.

The amount of heat transferred is represented by @, and this is regarded
as positive, by convention, if energy is transferred to, that is, taken up by,
the system in the form of heat; thus, @ is positive when the system gains
energy as heat. Similarly, if heat is transferred from, that is, is given up by,
the system, so that there is a corresponding decrease of energy, @ is negative.
It should be noted that the conventions for W and @ given above are those
which are widely adopted in the study of chemical thermodynamics. There
is no particular reason why these, or any other, conventions should be used,
but once the conventions have been decided upon they must be adhered to
throughout and never changed, if confusion is to be avoided.

Since the system loses energy W, because of work done, and gains energy
Q, by the transfer of heat, the net gain of energy is Q — W. By the first
law ‘of thermodynamics, this must be identical with the increase AE in the
energy content of the system; thus,

AE =Q - W. (7.2)

This equation may be regarded as a form of the first law of thermodynamics
or, alternatively, it may be used as a means of defining the energy content E.
Thus, the difference between the heat absorbed by a system and the total work
done by the system may be defined as equal to the increase in a property of the
system called its energy content.

7c. Energy Change in Cyclic Process.—If, as a result of a series of
processes, a system returns to its exact original state, its energy content will
be unchanged so that AE must be zero. In this event, it follows from equa-

value in the final state minus that in the initial state of the process. If AQ defined in this
manner is positive, the property @ has a larger value in the final than in the initial state; on
the other hand, if AG is found to be negative, @ is larger in the initial state. The significance
of — AG is, of course, the reverse of that of AG.
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tion (7.2), that the work done by the system is equal to the heat absorbed in
the process, i.e.,
Q=W. (7.3)

This equation is an expression of the impossibility of ‘“perpetual motion of
the first kind,” as stated in § 6c. Provided the system does not undergo
any net change, i.e., AE is zero, it is impossible to produce work without
drawing upon energy, namely heat, from an outside source. A process, or
series of processes, as a resull of which the system returns exactly to its original
thermodynamic state, is referred to as a cyclic process or cycle. In any cycle
AE is zero, and the heat absorbed Q is equal to W the work done by the
gystem, in accordance with equation (7.3).

7d. Dependence of Heat and Work on the Path.—The heat and work
terms involved in any change of thermodynamic state differ from the total
change of the energy content in one highly important respect. As seen
above, the quantity AE for a given change has a definite value depending only
on the initial and final states of the system, and independent of the path
taken in the process. This is, however, not the case for Q and W ; the values
of the heat and work terms vary with the path followed tn proceeding from the
intiial to the final state. That this is the case may be shown in a number
of ways.

It was seen in § 3g that when a system expands the work done is equal
to the product of the external pressure and the increase of volume of the
system. Obviously, the work done for a given volume change will thus de-
pend on the external pressure, the magnitude of which may vary according
to circumstances. The value of W will consequently not be determined
solely by the initial and final states of the system; it will also depend on the
manner in which the change is carried out. According to the first law of
thermodynamics, the increase AE in the energy content depends only on
the initial and final states, but since AE is equal to @ — W by equation
(7.2), and W varies with the path, Q, the heat absorbed in the process, must
vary similarly. Incidentally, it should be borne in mind that although @
and W depend on the path, the difference @ — W, which is equal to AE,
does not vary with the path taken, for it is determined only by the initial
and final states of the system. It is seen, therefore, that even though @
and W are both variable, they are not independent, for their difference must
have a definite value for a given change of thermodynamic state.

The variability of heat and work terms will be evident from other con-
siderations. For example, a certain mass of hydrocarbon may be completely
burnt in air, at constant volume, as in a combustion bomb (§ 12g). All the
energy lost by the system appears in the form of heat, no work being done.
On the other hand, in an internal combustion engine a large proportion of
the energy of the hydrocarbon-air system is converted into mechanical work,
and the remainder into heat. Another instance of a similar type is provided
by a system consisting of zinc and dilute sulfuric acid. These substances
may be made to react with one another in a calorimeter, so that the energy
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decrease resulting from their conversion into zine sulfate and hydrogen is
accounted for almost cntirely by the heat evolved. However, by combining
the zinc with an incrt metal, such as copper or platinum, a galvanic cell
can be formed with the sulfuric acid as electrolyte. Electrical energy is
then produced, and this may be used to drive a machine, thus doing me-
chanical work. The inert metal is unaffected in the process, and so the
energy, appearing partly as work and partly as heat, is that associated with
the reaction between zinc and sulfuric acid to form zine sulfate and hydrogen.

It should be understood that although the heat and work changes are
variable quantities, for a given change in thermodynamic state, the values
of @ and W for any specified path are quite definite. It will be seen later
that an adequate specification of the path can often be given in a simple
manner, e.g., constant pressure or constant volume. The results obtained
are then useful for thermodynamic purposes.

7e. Heat and Work Not Properties of a System.—The conclusion to be
drawn from the preceding discussion is that unlike the energy content, heat
and work are not thermodynamic properties of a system. They merely repre-
sent different ways in which energy can enter or leave the system, the re-
spective amounts varying with the method whereby the change from the
initial to the final state is carried out. In other words, the performance of
work and the flow of heat represent ways in which the energy of a system
can be changed, but the energy content cannot be regarded as consisting of
definite “work’’ and ‘‘heat’’ portions.!

A process involving an appreciable change in the thermodynamic state
of a system is often conveniently considered as made up of a series of in-
finitesimal stages. For each of these stages, equation (7.2) is sometimes

written in the form
dE = dQ — dW, . (7.4)

but this equation is liable to be misleading. The energy E is a thermo-
dynamic property of the system, in the sense of § 4d, and dFE is a complete
differential, which may be treated in the manner described in § 4e. The
integral of dE between the limits of the initial (A) and final (B) states of a
process has the definite value £z — E4 or AE [cf. equation (7.1)7]. This is,
however, not true for the quantities dQ and dW in equation (7.4); these
quantities are not complete differentials, for Q and W are not properties of
the thermodynamic state of the system. In order to avoid the misunder-
standings which may arise from the use of such symbols as dQ and dW, they
will not be employed in this book. Instead, equation (7.4) will be written as

dE = q — w, . (7.5)

where dE is the increase in the energy content of the system accompanying
an infinitesimal stage of an appreciable thermodynamic process; g is the
quantity of heat absorbed and w is the work done by the system at the same

1 For discussions of this and related topics, see Tuncll, J. Phys. Chem., 36,‘1744 (1932);
Brgnsted, bid., 44, 699 (1940); MacDougall, tbid., 44, 713 (1940).
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time. In other words, ¢ may be taken as the energy entering the system as
heat, and w is the amount leaving it as work done during an infinitesimal
stage of a process. The algebraic sums of the ¢ and w terms for all these
infinitesimal stages will give the total heat and work changes, @ and W,
respectively, to which equation (7.2) is applicable.

8. REVERSIBLE THERMODYNAMIC PROCESSES

8a. Thermodynamic Reversibility.—A particular type of path between
two thermodynamic states is of special interest. This is the kind of path
for which it is postulated that all changes occurring in any part of the process
are exactly reversed when 1t is carried out in the oppostte direction. Further,
when the given process has been performed and then reversed, both the
system and its surroundings must be restored exactly to their original stale.
A process of this kind is said to be thermodynamically reversible. In
general, in order to follow a reversible path, it is necessary that the system
should always be in a state of virtual equilibrium, and this requires that the
process be carried out infinitestmally slowly.

A simple illustration of a reversible process is provided by isothermal
evaporation carried out in the following manner. Imagine a liquid in equi-
librium with its vapor in a cylinder closed by a frictionless piston, and placed
in a constant temperature bath, i.e., a large thermostat. If the external
pressure on the piston is increased by an infinitesimally small amount, the
vapor will condense, but the condensation will occur so slowly that the heat
evolved, i.e., the latent heat, will be taken up by the thermostat. The
temperature of the system will not rise, and the pressure above the liquid
will remain constant. Although condensation of the vapor is taking place,
the system at every instant is in a state of virtual thermodynamic equi-
librium. Similarly, if the external pressure is made just smaller than the
vapor pressure, the liquid will vaporize extremely slowly, and again the
temperature and pressure will remain constant. The system is changing,
since vaporization is taking place, but the process may be regarded as a
series of thermodynamic equilibrium states. Rapid evaporation or con-
densation, by the sudden decrease or increase of the external pressure, will
lead to temperature and pressure gradients within the system, and thermo-
dynamic equilibrium will be disturbed. Processes of this kind are not
thermodynamically reversible.

The isothermal expansion of a gas can be carried out reversibly by placing
the cylinder of gas in a thermostat, as described above, and adjusting the
external pressure so as to be less than the pressure of the gas by an in-
finitesimally small amount. As the gas expands, however, its own pressure
decreases, since the temperature is maintained constant. Hence, if the
process is to be thermodynamically reversible, it must be supposed that the
external pressure is continuously adjusted so as to be always infinitesimally
less than the pressure of the gas. The expansion will then take place ex-
tremely slowly, so that the system is always in virtual thermodynamic equi-
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librium. The heat required by the gas, to balance the energy expended in
the form of work against the external pressure, is taken up from the thermo-
stat, but since the process is carried out extremely slowly the absorption of
energy as heat keeps pace with the loss as work and the temperature of the
system remains constant. If at any instant during the expansion the ex-
ternal pressure is adjusted so that it is maintained just infinitesimally greater
than the gas pressure, the process will be reversed, and the gas will be com-
pressed. At every stage in the compression the system and surroundings
will be, apart from infinitesimal differences, in exactly the same thermody-
namic state as they were at the corresponding point in the expansion.

If the expansion were carried out rapidly, e.g., by suddenly releasing the
pressure on the piston, or the compression were rapid, e.g., by a sudden and
large increase of the external pressure, the processes would not be reversible.
The changes would not involve a continuous succession of equilibrium states
of the system, and hence they could not be reversible. There would be
both temperature and pressure gradients which would be different in the
expansion and compression; the conditions for a thermodynamically re-
versible process would thus not be applicable.

The discussion given above has referred in particular to isothermal
changes, but reversible processes are not necessarily restricted to those taking
place at constant temperature. A reversible path may involve a change of
temperature, as well as of pressure and volume. It is necessary, however,
that the process should take place in such a manner that the system is always
in virtual thermodynamic equilibrium. If the system is homogeneous and has
a constant composition,* two thermodynamic variables, e.g., pressure and vol-
ume, will completely describe its state at any point in a reversible process.

8b. Reversible Work of Expansion.—A general expression for the work of
expansion accompanying a reversible process may be readily derived, and
its complete solution is possible in certain cases. If P is the pressure within
a system undergoing a reversible process, then from what has been stated in
§ 8a it follows that the external pressure must be P — dP, where dP is a
very small quantity. The work w done by the system when it increases its
volume by an infinitesimal amount dV is equal to the product of the external
pressure and the volume change (§ 3f); thus,

w = (P — dP)dV.
Neglecting the very small, second order, product dPdV, it follows that
" w = PdV. (8.1)
The total work W done in the process will then be equal to the sum of a
continuous series of PdV terms, as the volume changes from its value in the
initial state (V1) to that in the final state (V2). Since P and V are definite

properties of the system, which is always in a virtual state of thermodynamic
equilibrium, dV is a complete differential. The sum of the PdV terms may

* Such a system will sometimes be referred to as a ‘“‘simple system” (cf. § 4b).
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thus be replaced by the definite integral between the limits of V, and V,,
so that

Vs
W = PdV. (8.2)

vy

As may be expected from the discussion in § 8a, the value of the integral
in equation (8.2) depends on the path between V, and V,. This may be
seen more explicitly in another manner. Since the state of a simple system
at any point of a reversible process can be described completely by the
pressure and volume, the path of the process can be represented by a curve
on a P-V diagram, such as Fig. 5 or Fig. 6. According to equation (8.2)
the work done in such a path is equal to the area enclosed by the curve and
the two ordinates at the initial and final volumes. Since various paths,
such as I, I’, I/, etc., in Fig. 6, between the initial and final state are possible,
the work of expansion will clearly be a variable quantity.

By specifying the reversible path it is possible to determine the actual
value of the work of expansion from equation (8.2). Two simple cases may
be considered. In the zsothermal vaporization of a liquid, the pressure, which
is equal to the vapor pressure at the specified constant temperature, remains
constant throughout. The equation (8.2) for the work of expansion, then
becomes

vV
W="pP | dV =PV,— V)
Vi
= PAV, (8.3)

where V, — V, is equal to AV, the increase in volume of the system, and P
is the vapor pressure.

Another case of interest is that in which the system consists of an ideal
gas. For n moles, the equation of state is PV = nRT, so that P = nRT/V.
For an isothermal expansion involving n moles of an ideal gas, this value of
P may be substituted in equation (8.2); since T and R are constant,

\4

- TV _ Ve,
W = nRT j; " =R (8.4)

An alternative form of this result is often convenient. For an ideal gas
P,V is equal to P,V at constant temperature, and so V,/V; is equal to
P;/P,; hence equation (8.4) can also be written as

W = nRT In %!, (8.5)

for the isothermal, reversible expansion of n moles of an ideal gas.

The results just derived were based on the supposition that the change
was one involving an increase of volume, i.e., expansion; nevertheless, the
equations (8.4) and (8.5) are applicable to both expansion and compression.
All that is necessary is to take V; and P, as representing the system in the
initial state of the process, while V; and P, represent the final state. If
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there is an expansion, V; is greater than V,, and hence W, the work done by
the system, is positive. On the other hand, if a compression occurs, V, is
less than V,, and W is seen to be negative by equation (8.4); this is to be
expected, for work is now done on the system. Although the volume change
in a process may result in expansion or compression, the work done, given
by equation (8.4) or (8.5), is always referred to as ‘‘work of expansion.” It
is seen to be positive when there is an increase of voiume, and negative when
the volume decreases.

Problem: Calculate the work of expansion in ergs when the pressure of 1 mole
of an ideal gas is changed reversibly from 1.00 atm. to 5.00 atm. at a constant
temperature of 25.0° C.

The energy units of W in equations (8.4) and (8.5) are determined by those
of R; since the work of expansion is required in ergs, the value of R to be used is
8.314 X 107 ergs deg.* mole™. The absolute temperature T is 273.2 + 25 =
298.2° K, the initial pressure P, is 1.00 and the final pressure P:is 5.00 atm.; the
pressure units are immaterial, since the work depends on the ratio of the pressures.
Substituting these data in equation (8.5), the work of expansion for 1 mole of gas
is given by

W = RTIn o = 8.314 X 107 X 298.2 X 2.303 log }
= — 3.99 X 10 ergs mole~.

Since W is negative, the work is done on the gas; this is to be expected, for the
pressure of the gas increases in the process, and hence the volume is decreased.

In the two special cases of isothermal, reversible expansion considered
above, the work done, as given by equations (8.3) and (8.4) or (8.5), is
evidently a definite quantity depending only on the initial and final states,
e.g., pressure or volume, at a constant temperature. Since there is always
an exact relationship between P and V, it follows from equation (8.2) that
the work done in any isothermal, reversible expansion must have a definite
value, irrespective of the nature of the system. For an isothermal, re-
versible process in which the work performed is exclusively work of expan-
sion, it is apparent, therefore, from equation (7.2), that both W and @ will
be determined by the initial and final states of the system only, and hence
they will represent definite quantities. Actually, this conclusion is appli-
cable to any zsothermal, reversible change (cf. § 25a), even if work other than
that of expansion is involved.

8c. Maximum Work in Isothermal Reversible Processes.—A notable
fact concerning an isothermal, reversible expansion is that the work done is
the maximum possible for the given increase of volume. If the external
pressure were made appreciably less, instead of infinitesimally less, than the
gas pressure, the work done by the expanding gas would clearly be less than
the value given by equation (8.2). The only possible way of increasing the
work would be to make the external pressure greater than in the reversible,
isothermal expansion. If this were dene, however, the external pressure
would be either equal to or greater than the gas pressure and hence expansion
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would be impossible. It follows, therefore, that the reversible work of iso-
thermal expansion is the maximum work of this type possible for the given
change in thermodynamic state. The work of isothermal expansion done
by a system in an irreversible process is thus always less than for the same
increase of volume when the change is carried out reversibly. In the case
of an isothermal compression, the reversible work of expansion is (numer-
ically) equal to the minimum amount of work which must be done by the
surroundings on the system in order to bring about the specified change in
volume (or pressure).

In general, the work that can be obtained in an isothermal change is a
maximum when the process is performed in a reversible manner. This is
true, for example, in the production of electrical work by means of a voltaic
cell. Cells of this type can be made to operate isothermally and reversibly
by withdrawing current extremely slowly (§ 331); the E.M.F. of a given cell
then has virtually its maximum value. On the other hand, if large currents
are taken from the cell, so that it functions in an irreversible manner, the
E.M.F. is less. Since the electrical work done by the cell is equal to the
product of the E.M.F. and the quantity of electricity passing, it is clear that
the same extent of chemical reaction in the cell will yield more work in the
reversible than in the irreversible operation.

As reversible processes must take place infinitesimally slowly, it fol-
lows that infinite time would be required for their completion. Such proe-
esses are, therefore, not practicable, and must be regarded as ideal. Never-
theless, in spite of their impracticability, the study of reversible processes
by the methods of thermodynamics is of great value, even in engineering,
because the results indicate the maximum efficiency obtainable in any given
change. In this way, the ideal to be aimed at is known. In chemistry, too,
the state of equilibrinm is important, for it shows to what extent a particular
reaction can proceed; hence, thermodynamics provides information of con-
siderable chemical significance, as will appear in later sections. It will be
seen that the results derived from a study of reversible processes can be
applied to reactions as a whole, even if they are actually carried out in an
irreversible manner.

EXERCISES

1. In the combustion of 1 mole of sucrose (Ci2Hz2On), approximately 1.35 X 10¢
cal. are liberated. Should the accompanying loss of mass of the system be
detectable?

2. Evaluate the energy, in calories, set free in the formation of 1 g. atom of
helium nuclei, of mass 4.0028, from two protons, each of mass 1.0076, and two
neutrons, each of mass 1.0090.

3. Determine the maximum work that can be done in the expansion of 5 moles
of an ideal gas against an external pressure of 1 atm. when its temperature is
increased by ¢° C. Express the result in (i) ergs, (i) defined cal.

4. Assuming ideal behavior, what is the minimum amount of work in ergs
required to compress 1 kg. of air, consisting of 219, by volume of nxygen and 799,
of nitrogen, from 1 atm. to 200 atm. at 0° C?
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5. A vessel containing 1 liter of hydrogen at 1 atm. pressure is to be evacuated
at 25° C to a pressure of (i) 0.01 atm., (ii) 0.001 atm. Compare the minimum
amount of work required in each case, assuming ideal behavior.

6. An ideal gas is compressed isothermally and reversibly from 10 liters to 1.5
liters at 25° C. The work done by the surroundings is 2,250 cal. How many
moles of gas are present in the system?

7. The vapor pressure of water at 25° Cis 23.76 mm. Calculate the reversible
work of expansion in (i) liter-atm., (ii) defined cal., when the pressure of 100 g. of
water vapor is decreased isothermally to 0.001 a.tm., assuming ideal behavior.

8. Show that for a van der Waals gas, the isothermal, reversible work of ex-
pansion for 1 mole is given by

Ve—10 1 1
W = RTan;—b a(ﬁ—_ﬁ_,)’

where V, is the initial and V; the final volume.

9. Determine the reversible work, in liter-atm., required to expand 1 mole
of carbon dioxide isothermally from an initial pressure of 200 atm. to a final pres-
sure of 1 atm. at 50° C, assuming van der Waals behavior. (Instead of solving
the cubic equation to obtain the initial and final volumes, they may be obtained
more simply by means of the generalized compressibility diagram.) Compare the
result with that to be expected for an ideal gas.

10. Explain how the compressibility diagram alone could be used to determine
Ehe isothermal, reversible work of expansion of any gas. Apply the method to

xercise 9.




CHAPTER IV
HEAT CHANGES AND HEAT CAPACITIES

9. Tas Hear CONTENT

9a. Heat Changes at Constant Volume and Constant Pressure.—Al-
though the heat change is, in general, an indefinite quantity, there are certain
simple processes, apart from isothermal, reversible changes, for which the
paths are precisely defined. For such processes the heat changes will have
definite values, dependent only on the initial and final states of the system.
Writing the first law equation (7.2) in the form

Q=AE+ W, (9.1)

it will be supposed, as is the case in most thermodynamic processes which do
not involve the performance of electrical work, that the work W is only
mechantcal work due to a change of volume, i.e., work of expansion. For a
process occurring at constant volume, there is no expansion or contraction,
and hence W will be zero; it follows then from equation (9.1), using the
subscript ¥V to indicate a constant volume process, that

Qv = ALy, (9-2)

so that the heat absorbed at constant volume, i.e., Qy, is equal to the energy
increase AEy accompanying the process. Since the latter quantity depends
only on the initial and final states of the system, the same must be true for
the heat change at constant volume. The work term will also be definite,
for it is equal to zero.

At constant pressure P, the work of expansion W may be replaced by
PAV, where AV is the increase of volume; representing constant pressure
conditions by the subscript P, equation (9.1) takes the form

Qr = AEp + PAV. (9.3

The increase AEp in the energy content is equal to Es — E,, where E; and
E, are the values for the initial and final states, respectively; similarly, the
accompanying increase of volume AV may be represented by Vi — V3, 80
that equation (9.3) becomes

Qr = (Ey — E)) + P(Va— V)
= (Es + PV3) — (E1 + PV)). (9.4)
Since P and V are properties of the state of the system, it follows that the
quantity E 4 PV, like the energy E, is dependent only on the thermo-
dynamic state, and not on its previous history. The extensive, thermo-
47
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dynamic property E 4+ PV is called the heat content,* and is represented
by the symbol H, : e., by definition,

H =FE 4+ PV. (9.5)
Consequently, equation (9.4) can be put in the form
Q{) = 1{2 hand 111 = AHP, (96)

where H; and H; are the values of the heat content in the initial and final
states, respectively, and AH p i3 the increase in the heat content of the system
at constant pressure. The value of AHp is seen by equation (9.6) to be
equal to @p, the heat absorbed under these conditions; since the former
quantity depends only on the initial and final states of the system, and not
on the path taken, the same will be true for the heat term Qp. For a process
at constant pressure, therefore, the heat absorbed has a definite value.

The work W done in the constant pressure process, which is equal to
PAYV, is also definite, since the pressure P is constant, and the volume change
AV, equal to V, — V,, is independent of the path. Aside from this argu-
ment, it is obvious, since AE and Qp are here determined by the initial and
final states, that W must now also have a definite value.

9b. Heat Capacities at Constant Volume and Constant Pressure.—As
seen in § 3d, the heat capacity C may be defined as the ratio of the heat Q@
absorbed by a system to the resulting increase of temperature 7', — T,
i.e., AT. Since the heat capacity usually varies with the actual temperature,
it is preferable to define it in terms of the limiting value as 7T'; approaches 7'y,
that is, as AT is made very small; thus [cf. equation (3.3)],

- m Q@ _ 2
€= Jim 7~ ar’ 07

where ¢ is the quantity of heat absorbed for a small increase dT in the tem-
perature of the system from T to 7' + dT. Since the heat absorbed is rot,
in general, a definite quantity depending on the initial and final states of
the system, the unusual notation ¢/dT is used to define the heat capacity
at the temperature 7. In view of the dependence of ¢ on the path taken, it
is evident that the heat capacity will also be uncertain, unless conditions
are specified, such as constant volume or constant pressure, which define
the path.
At constant volume, for example, equation (9.7) may be written as

Cy =2 9.8

| 4 dT ] ( )
where gv, and hence the heat capacity Cy, has a definite value. According
to equation (9.2), the heat Qv absorbed in an appreciable process at constant

* Engineers and physicists usually refer to it as the enthalpy. The use of the term
“‘heat content,” however, must not be interpreted as implying that the system possesses a
definite amount of heat energy.



9c THE HEAT CONTENT 49

volume is equal to the increase AEy of the energy content in that process.
For an infinitesimal stage in a constant volume process gy is equal to dEv,
and so the heat capacity at constant volume, as defined by equation (9.8),
becomes

The partial differential notation is used because E is a function of the volume
(or pressure) as well as the temperature; the subscript V as applied to the
partial derivative in equation (9.9) indicates that in this case the volume is
maintained constant. The heat capacity of a system at constant volume s
therefore equal to the rate of increase of the energy content with temperature at

constant volume.
At constant pressure, equation (9.7) takes the form

= 9r
Cr 4T’ (9.10)
and since qp is definite, the heat capacity Cp at constant pressure is also
definite. Making use of the fact that according to equation (9.6), @p, the
heat absorbed in an appreciable process at constant pressure, is equal to
AH p, the increase of heat content in the process, it can be shown in a manner
exactly similar to that used in deriving (9.9), that

= (22 . .
Cr= (6T)P (0.11)

The heat capacity of a system at constant pressure is consequently equal to the
rate of the increase of heat content with temperature at constant pressure.

It should be mentioned that the important equations (9.9) and (9.11),
defining heat capacities at constant volume and constant pressure, respec-
tively, are applicable to any homogeneous system of constant composition.
The (simple) system may be gaseous, liquid or solid, and it may consist of
a single substance or of a solution whose composition does not vary. As
already seen, it is for such systems that the energy is dependent upon only
two thermodynamic variables of state, e.g., pressure and temperature or
volume and temperature.

9c. Heat Capacity Relationships.—From the results already given, it is possible
to derive general equations connecting the heat capacity of a system at constant
volume with that at constant pressure. Since the energy E of a homogeneous
system of definite composition is a single-valued function of the volume and
temperature, d& is a complete differential which can be represented by

oF . [OE
dE = <5F>le + (ﬁ>yd7’ (9.12)
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[cf. equation (4.6)], and hence, by equation (4.10),

(g—?>r - (%)T(g—;)p + (%)V | (9.13)

According to equation (9.9), (E/dT)v is equal to Cy, the heat capacity of the
system at constant volume, so that

JdE oF av
(ﬁ>p=<ﬁ)r<ﬁ>,,+cv- (9.14)

By definition [equation (9.5)], H = E + PV, and since Cp is equal to
(H/9T)p, it follows that

C —(‘?_1_1) _[QQ_LPY_)
P=\oT )~ aT P

oE av
= (5_T->p+P<6_T)p' (9.15)
Combination of this result with equation (9.14) yields immediately
oF av
Cp~Cy = [P+(3i;>r]<5—7—')p (9.16)
By starting with the relationship

oH oH

dH = (Ep)rdl’+ <ﬁ)PdT, (9.17)

which is permissible since the heat content of a simple homogeneous system, like
the energy content, is dependent only on two thermodynamic variables, e.g., the
pressure and the temperature, it is possible to derive the equation

) cp-cv=[V—<‘;ilf>T]<:—:iT))v, (9.18)

by a procedure analogous to that used in obtaining equation (9.16).

As already indicated, the foregoing results will apply to any homogeneous
system of constant composition. In certain cases, however, some simplification
is possible, and this is especially true when an equation of state, relating pressure,
volume and temperature, is available, as will be seen below. A particularly simple
system is that involving an ideal gas, and this type of system will now be considered.

9d. Energy Content of Ideal Gas.—In the experiments made by J. L.
Gay-Lussac (1807) and J. P. Joule (1844) it was found that when a gas was
allowed to expand into a vacuum, there was no gain or loss of heat. Two
similar copper globes, one containing air under pressure and the other evacu-
ated, were connected by a wide tube with a stopcock. When the latter was
opened the temperature of the globe which originally contained the air fell,
but that of the other globe rose by an equal amount. It appeared, therefore,
that there was no net heat change, i.e., the value of Q was zero, when the
volume of the gas was increased in the manner described. Subsequent ex-
periments, carried out along somewhat different lines by J. P. Joule and
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W. Thomson (Lord Kelvin), between 1852 and 1862, showed that a tem-
perature difference, indicating a value other than zero for Q, should have
been observed. However, it appears that the more closely the gas approxi-
mates to ideal behavior the smaller is the heat effect, and so it is probable
that for an ¢deal gas the value of @ in the free expansion described above
would be actually zero.

Since the gas expands into a vacuum, that is, against no external pressure,
the work of expansion W is also zero. It follows, therefore, from equation
(7.2), that AE must be zero in the process; in other words, there ts no change
in the energy content of an tdeal gas as a result of free expansion, i.e., a volume
increase in which no external work is done. The energy of the gas depends
on two variables, e.g., volume and temperature; hence, the conclusion just
reached may be represented mathematically in the form

oE
(5), -0 (0.19)
the energy content being independent of the volume, at any constant temperature.
The result expressed by equation (9.19) is taken as one of the criteria of an
ideal gas. It will be shown later (§ 20d), by utilizing the second law of
thermodynamics, that (9.19) is a necessity for a gas obeying the PV = RT
relationship at all temperatures and pressures.

There is an important consequence of the fact that the energy content
of an ideal gas, at constant temperature, is independent of the volume.
When an ideal gas expands against an appreciable external pressure, W has
a finite value, but AE is zero; it follows, therefore, from equation (7.2) that
for the isothermal expansion of an ideal gas,

Q=W, (920)

the heat absorbed by the system being equal to the work done by it. If the
expansion is carried out reversibly, the work done is given by equation (8.4)
or (8.5), and hence the heat @ absorbed in the isothermal, reversible expan-
sion of n moles of an ideal gas is determined by the same expression, viz.,
Vs P,
Q =nRTIn V. nRT In P (9.21)
9e. Effect of Pressure and Temperature on Heat Capacity of Ideal Gas.
——Since the energy content of an ideal gas, at constant temperature, is
independent of its volume, it must also be independent of the pressure. The
energy of a given quantity of the gas thus varies only with the temperature;
it is consequently possible to write equation (9.9) in the form

_ 9k
ar’

so that the heat capacity at constant volume of an ideal gas is independent of

the volume, or pressure, of the gas. The same can be shown to be true for

Cy (9.22)
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the heat capacity at constant pressure. Thus, if equation (9.5), i.e.,
H = E + PV, is differentiated with respect to volume, at constant tem-
perature, the result is

(), - (25), +[5),
aV)r avV Jr oV |r

For an ideal gas, (3E/aV)r is zero, as seen above, and [d(PV)/dV ]r is also
zero, since PV is equal to RT and hence is constant. It follows, therefore,
that the heat content of an ideal gas ts dependent only on the temperature, and
18 independent of its volume or pressure. The heat capacity at constant
pressure can then be represented by equation (9.11) in the form

- 8
dT’

indicating that Cp for an ideal gas does not vary with the volume or pressure.
For a real gas, the energy and heat contents are known to vary with the
pressure, and hence equations (9.22) and (9.23) cannot be employed. Some
expressions for the variation of Cp and Cy with pressure or volume will be
derived in later sections (§§ 11e, 21d, 21e).

It must be realized that the conclusion that the heat capacities of an ideal gas
are independent of pressure is not based on thermodynamics alone. It has been
necessary to introduce the result that (0E/dV)r is zero, which may be regarded
either as based on experiment or on the postulated equation of state PV = RT
for anideal gas. Similar considerations are applicable to the problem of the varia-
tion of heat capacity of an ideal gas with temperature; thermodynamics alone
cannot supply the answer, and it is necessary to introduce other information.
According to the kinetic theory of gases, the heat capacity of an ideal gas, wnose
molecules possess translational energy only, should be independent of temperature
(§ 15b). Gases which might be expected to approximate to ideal behavior in this
respect are those containing only one atom in the molecule. Experimental ob-
servations have shown that the heat capacities of some monatomic gases, e.g.,
helium and argon, are almost constant over a very considerable range of tempera-
ture. In general, however, all gases do not behave in the same manne: in respect
to the effect of temperature on heat capacity as ideal behavior is approached,
i.e., at low pressures, and so it is inadvisable to make a general postulate in this
connection.

Cr (9.23)

of. Heat Capacity-Temperature Relationships.—For reasons which will
be made clear in Chapter VI, the heat capacities of all gases containing two
or more atoms in the molecule must vary with temperature. The form of
the expression which represents this variation cannot be predicted by means
of thermodynamics, and so purely empirical formulae are used. One of
these, which has been widely employed, is a power series of the form

Cp=a+ BT + yT* + 7% - -, (9.24)

where «, 8, v, 8, etc., are constants, which must be derived from the experi-
mentally determined heat capacities over a range of temperatures, and T is
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the absolute temperature. The values of these constants for a number of
common gases are recorded in Table II !; when inserted in equation (9.24)
they give the heat capacities of the respective gases, usually within 1 per
cent or less, in the temperature range from 273° to about 1500°K. The
constants in Table (II cannot be safely used for extrapolation outside this
range.

TABLE IL.* HEAT CAPACITIES OF GASES (Cp) AT 1 ATM. PRESSURE
IN CAL. DEG.”! MOLE™!

Gas a B X 10¢ ¥ X 108 6 X 10°
H, 6.947 — 0.200 0.4808 —
D, 6.830 0.210 0.468
0: 6.095 3.253 — 1017 —_
N, 6.449 1.413 — 0.0807 -_
Cls 7.676 2.424 — 0.965 —
Br: 8.423 0.974 — 0.3555 —
(00) 6.342 1.836 — 0.2801 —
HCl 6.732 0.4325 0.3697 —
HBr 6.578 0.955 0.1581 —
H,0 7.219 2.374 0.267 —_
CO: 6.396 10.100 — 3.405 —
HS 6.385 5.704 - 1.210 —
HCN 5.974 10.208 — 4317 —
N0 6.529 10.515 — 3.571 —
S0, 6.147 13.84 — 9.103 2.057
S0, 6.077 23.5637 — 9.687 —
NH, 6.189 7.787 — 0.728 —_

* For more accurate values and data for other gases, see Table 3 at end of book.

Because of the variation of heat capacity with temperature, it is some-
times convenient to use the mean value of the heat capacity over a range of
temperatures; this value is then taken as constant for purposes of calculation.
The mean heat capacity Cp in the temperature range from 7T to T is

given by
f "™ Crar
— Tl
p=T

Tz—Tl !

and if the value of Cp from equation (9.24) is introduced, it is found upon
integration that

c

Cr = g Lo = 1) + 48(13 = T + dy(T% — T + -]

=a+ 3T+ T + 3T+ T Ta+ TH + ---. (9.23)
It is then possible to calculate the mean heat capacity of any gas, using the
constants in Table II.

1 Spencer, et al., J. Am. Chem. Soc., 56, 2311 (1934); 64, 250 (1942); 67, 1859 (1945);
see also, Bryant, Ind. Eng. Chem., 25, 820, 1022 (1933).
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It appears that in certain cases the variation of heat capacity with temperature
is better represented by a function containing a term in 7% in place of T in
equation (9.24); thus,?

Cp=a+ T — yT3, (9.26)
the constants «, 8 and v being quite different from those in Table II. Since
neither equation (9.24) nor (9.26) can be regarded as representing exactly the
dependence of heat capacity on temperature, the simple power series equation
(9.24) will be used whenever possible, because of its more straightforward nature.
In some instances, however, it will be found necessary to employ a function of the
type of equation (9.26).

The heat required to raise the temperature of a system from 7, to T,
at constant pressure, i.e., the increase of heat content, is obtained by the
integration of equation (9.11), using (9.24) to express Cp as a function of T';
the result is

H.-H,=f”cpdT= ™ @+ BT 4+ 4T + - )dT
T

1 T,
=a(Ts —T)) + 38(T3 — T3) + (T3 - T + -+, (9:27)

constant pressure being understood. The same result can, of course, be
obtained upon multiplying the mean heat capacity Cp, as given by equation
(9.25), by the increase of temperature.

Problem: How much heat is required to raise the temperature of 1 mole of
oxygen gas from 27° C to 127° C at 1 atm. pressure?

From Table II,

Cp = 6.095 4 3.253 X 10T — 1.017 X 10—¢T" cal. deg.”* mole™?,

and since Ty is 273 4+ 27 = 300° K, and T.is 273 + 127 = 400° K, it follows that

Ho — Hypo = (6.095 + 3.253 X 10T — 1.017 X 10~¢T%)dT
300
= 6.095(400 — 300) 4+ % X 3.253 X 1072[(400)* — (300)2]
— 4 X 1.017 X 107°[(400)* — (300)*]
= 710 cal mole™.

9g. Difference of Molar Heat Capacities.—Since (0E/dV)r is zero for an
ideal gas, equation (9.16) takes the simple form

avy |
aT Je

The quantity (3V/dT)p represents the rate of increase of volume with tem-
perature, at constant pressure, and hence the right-hand side of equation
(9.28) may be taken as equal to the work of expansion when the temperature
of the ideal gas is raised by 1° at constant pressure. The difference in the

2 Maier and Kelley, J. Am. Chem. Soc., 54, 8243 (1932); Kelley, U. S. Bur. Mines Bull.,
371 (1934); see also, Chipman and Fontana, J. Am. Chem. Soc., 57, 48 (1935).

Cp—Cy = P( (9.28)
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heat capacities of an ideal gas at constant pressure and constant volume
may thus be attributed to the work of expansion, as a result of the increase
of volume at ccastant pressure; at constant volume there is, of course, no
work of expansion. It will be understood that this condition can hold only
if (E/aV)r is zero, i.e., for an ideal gas. For real gases the difference
between Cp and Cy must include an allowance for the change in energy
content due to the increase of volume, in addition to that due to the work
of expansion. Actually this is quite small for most gases under ordinary
conditions as is apparent from the value of the mechanical equivalent of
heat derived in the problem in § 6b; this calculation is based on the tacit
assumption that (dE/dV)r is zero for air at 0° C.

Since for 1 mole of an ideal gas PV = RT, it is seen that (0V/dT)p is
equal to B/P, and hence

av
p(2), -
so that from equation (9.27) )
Cp— Cy =R, (9.29)

where Cp and Cy are now the molar heat capacities of the ideal gas. The
values for constant pressure and constant volume, respectively, thus differ
by a constant amount, equal to the molar gas econstant, i.e., 1.987 cal. deg.”*
mole~!. For real gases Cp — Cy will not be quite equal to R, although the
discrepancy should not be large, except perhaps at high pressures and low
temperatures when departure from ideal behavior is considerable. Further
theoretical consideration of this subject will be given in Chapter VIII.

10. ApiaBaTic PROCESSES

10a. Reversible Adiabatic Expansion and Compression.—An adiabatic
process is defined as one in which no heat enters or leaves the system, at any
stage. For every infinitesimal stage of the process ¢ is zero, and hence, by
equation (7.5), dE is equal to — w. If the work s restricted to work of ex-
pansion, w is given by PdV, so that

dE = — PdV.

In this equation, P represents, strictly speaking, the external pressure.
However, if the adiabatic process is carried out reversibly, the actual pressure
of the system is virtually identical with the external pressure (§ 8a), so that
under these conditions P is the pressure of the system. For an ideal gas,
dE may be replaced by CydT, as shown by equation (9.22), since the energy
content is independent of the volume, so that

CydT = — PdV. (10.1)

It will be observed from this result that in a reversible, adiabatic process the
signs of dV and dT are opposite; thus, if the volume of the gas is increased,
in such an adiabatic expansion, the temperature must fall, whereas if the
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volume is decreased, in a compression, the temperature will rise. This is to
be expected from general considerations: a gas does work when it expands,
and as no heat enters or leaves the system, the energy content of the gas
must decrease. Since the energy is independent of the volume at constant
temperature, this decrease of energy is accompanied by a fall of temperature.

10b. Temperature Changes in Reversible Adiabatic Processes.—The re-
lationship between the pressure (or volume) and the temperature of an zdeal
gas in a reversible, adiabatic expansion or compression may be derived in the
following manner. If 1 mole of the gas is considered, PV is equal to RT,
so that substitution for P in equation (10.1) gives

CvdT = — RTQVV ,
aT av
Cy -+ = R“I-;' ,
that is
CvdinT =— RdIn V, (10.2)

where Cy is the molar heat capacity of the ideal gas at constant volume. If
Cy is assumed to be independent of temperature, it is possible to integrate
equation (10.2), the limits being 7"y and 7', the initial and final temperatures,
and V; and V,, the corresponding volumes; the result is
T _ Va 4%

Cyln T, — Rln+ V.= Rln V. (10.3)
For 1 mole of an ideal gas, R is equal to Cp — Cy, by (9.29), so that, after
making this substitution and converting the logarithms, equation (10.3)

becomes
P
log ( c, ) log = V

=(r-1 log%, (10.4)

where the symbol ¥ is used to represent Cp/Cy, the ratio of the heat ca-
pacities at constant pressure and constant volume. The equation (10.4),

or its equivalent,
T Vi V. \&/Cv
7= (V:) - (Vl) (105

TVr1 = TVRICv = constant,

can be utilized to determine the temperature change in a reversible, adiabatic
process with an ideal gas.
Problem: A quantity of air at 25° C is compressed adiabatically and reversibly

from a volume of 10 liters to 1 liter. Assuming ideal behavior, and taking Cy for
air as 5 cal. deg.~* mole, calculate the (approximate) final temperature of the air.

or
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Utilizing equation (10.5), T1is 273 + 25 = 298° K; V, is 10 liters, Vsis 1 liter,
Cv is 5.0 cal. deg.”* mole™?, and R may be taken as 2, 0 cal. deg.”* mole! with
sufficient accuracy (note that Cv and R must be expressed in the same units);

hence,
T2 _ (10"
208 \1 ’
T, =298 X 10?5 = 749° K,
The final temperature is thus 749 — 273 = 476° C.

For many purposes it is more useful to develop an expression relating
the temperature to the pressure in a reversible, adiabatic change. Since an
ideal gas is under consideration, it follows that P,V, = RT;and P,V; = RT,;
if these equations are combined with (10.5) so as to eliminate V; and V.,

it is found that
T, P, \(+V1v P, \RIcr
T, = (P,) = (Fl) (10.6)

T
PGy = prICE

or

= constant.

The results of equations (10.5) and (10.6) may be summarized in the

convenient form
1iogTa_ L og P 1 v, !
R T Cr 8P, " Cy BV,

Problem: A quantity of air at 25° C is allowed to expand adiabatically and
reversibly from 200 atm. to 20 atm. Assuming ideal behavior, calculate the
(approximate) final temperature.

In this case T', is 273 + 25 = 298° K, P, is 200 atm., and P, is 20 atm. Since
Cv was given above as 5.0 cal. deg.”* mole~, and assuming Cp — Cy = R, as for
an ideal gas, Cp is 7.0 cal. deg.”* mole~!. Hence, by equation (10.6),

T2 _ (20 \*7
298 200
T2 = 298 X (F%)¥" = 154° K.
The final temperature is thus 154 — 273 = — 119° C.

The marked fall of temperature accompanying adiabatic, or a.pproxx-
mately adiabatic, expansion is used to some extent for cooling purposes in
connection with the liquefaction of gases.

10c. Pressure-Volume Relationship in Reversible Adiabatic Process.—
By combining equations (10.5) and (10.6) so as to eliminate 7, and T, it
is found that

P,\Vi = PP, V} or P VEricv = P,VgriCy, (10.7)
or
PVr = PY¢ri€v = constant.
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The relationship between the pressure and volume at any instant in a re-
versible, adiabatic process with a given mass of an ideal gas * is thus repre-
sented by PV = constant, which may be compared with the constancy of
the simple product PV for an isothermal process. Since Cp is always greater
than Cy, the ratio Cp/Cy, i.e., v, is greater than unity; hence, the increase
of volume for a given decrease of pressure will be
less in an adiabatic than in an isothermal ex-
pansion. That is to say, the plot of the pressure
against the volume, i.e., the pressure-volume
curve (Fig. 7), will be steeper for an adiabatic
than for an isothermal process, starting at the
% same point. The reason for the smaller volume
A increase in an adiabatic expansion is to be at-
tributed to the accompanying fall of tempera-
ture, as explained above, which will tend to
diminish the volume. In the isothermal pro-
cess, the temperature is, of course, constant.
Volume 10d. Work of Expansion in Reversible Adia-
N batic Process.—The work of expansion w in an
ingé&mbmd infinitesimal stage of a reversible, adiabatic pro-
cess, i.e.,, PdV, is given by equation (10.1) as
equal to — CydT; hence, for an appreciable process the total work of expan-
sion W, derived from equation (8.2), is

) Va T2
W = f Pav =— [ cudT.
1 4

1 Vil

If Cy may be taken as constant, it follows that
=— Cy(Ts — T1) = Cy(T1 — T»). (10.8)

The negative sign means that work is done on the gas when 7'; > T, that is,
in an adiabatic compression. Equation (10.8) may be combined with
equations (10.4) or (10.6), so as to eliminate T'; and T'; and obtain expressions
for the work of expansion in terms of the volumes or pressures, respectively.

Problem: Calculate the work of expansion in ergs when the pressure of 1 mole
of an ideal gas at 25° C is changed adiabatically and reversibly from 1.0 atm. to
5.0atm. The molar heat capacxtxes may be taken as equal to those of air. (Com-
pare the problem in § 8b, wlnch is for an isothermal expansion between the same
pressure limits.)

This problem may be solved by calculating T'; as in the second problem in § 10b,
and then substituting the result in (10.8), T: being known. Alternatively, by
combining equation (10.6) with (10.8) it is readily found that

W = CyT, [ 1- (%)m'] : (10.9)

¢ The assumption made in the integration of equation (10 2), namely, that the heat
capacity is independent of the temperature, should be borne in mind.
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from which W can be derived directly by means of the available data. The
energy unit of W will be that of the factor Cy; this is 5.0 cal. deg.”* mole™?, or
5.0 X 4.18 X 107 ergs deg.”* mole~!. In the exponent the units of B and Cy are
immaterial as long as they are consistent; hence, B may be taken as 2.0 and Cp as
7.0 cal. deg.~! mole~!. Substituting these values in equation (10.9), with T, = 273
+ 256 = 298° K, P, = 1.0 and P; = 5.0 atm., the result is

5.0 2/7
W = 5.0 X 4.18 X 101x298[1—(1_6) ]
— 3.64 X 10 ergs mole™1.

The work required for the adiabatic process is seen to be somewhat less numerically
than for the isothermal expansion, because of the smaller volume change.

10e. Ratio of Heat Capacities.—The results obtained in the preceding sections
have been applied in determining the value of v, the ratio of the heat capacities
of a gas. In the method of F. Clément and C. B. Desormes (1812), the gas at a
pressure greater than atmospheric is placed in a large vessel provided with a stop-
cock and a manometer for indicating the pressure. The initial pressure P, is
observed, and the stopcock is opened to allow the pressure to fall to that of the
atmosphere P,; the stopcock is then immediately closed. During the expansion,
which is virtually adiabatic, the gas is cooled from the initial temperature T, to
the lower value T';, and as it warms up to its original temperature, the pressure
rises to P;. If V,is the volume of 1 mole of an ideal gas at pressure P,, and V.
is the volume after the adiabatic expansion when the pressure is P,, then by equa-
tion (10.7), P,VY = P.V]. When the original temperature 7', is restored, after
the adiabatic expansion, the pressure of the gas is P;, and since 1 mole still occupies
the volume V5, because the vessel was closed after the expansion, it follows that

P17y = PV, (10.10)

where the left-hand side refers to the initial state and the right-hand side to the
final state, at the same temperature. Eliminating V; and V. from equations
(10.7) and (10.10), the result is

log P, — log P»
¥ log P, — log P; (10.11)
From the three pressure measurements, therefore, the ratio of the heat capacities
can be calculated.

In a modification of the foregoing procedure (O. Lummer and E. Pringsheim,
1891), the stopcock is allowed to remain open after the adiabatic expansion, and
the temperatures before (7') and immediately after (T'2) expansion are measured
by a sensitive thermometer. Since the corresponding pressures P, and P; are
known, vy can be obtained from equation (10.6) in the form

log P, — log P,
log (Py/Ps) — log (T'y/1'%)
It will be recalled that equations (10.11) and (10.12) are both based on the as-

sumption that the gas behaves ideally; for actual gases, however, the results must
be corrected to ideal behavior by the use of a suitable equation of state.

% (10.12)
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For an ideal gas, the value of v should be constant, but for real gases,
other than monatomic, it varies appreciably with pressure and temperature,
as shown by the results for air, given in Table III.* In general, the ratio

TABLE III. VARIATION OF RATIO Cp/Cy FOR AIR WITH
TEMPERATURE AND PRESSURE

Temperature Pressure
1 50 100 200 atm.
- 79°C 1.41 1.77 2.20 2.33
0° 1.403 1.53 1.65. 1.83
100° 1.401 1.45 1.50 1.60

of the heat capacities decreases with increasing temperature. As the pres-
sure is increased v increases, passing through a maximum and then decreas-
ing (cf. § 21d); for air at — 79° C the maximum was observed at 150 atm.,
but at 0° and 100° C it occurs at higher pressures than are given in the table.

When actual data are not available, a useful approximate rule for ordi-
nary temperalures and pressures, is to take y as 1.67 for monatomic gases,
1.40 for diatomic gases, 1.30 for simple polyatomic gases, such as water,
carbon dioxide, ammonia and methane. It may be noted that the heat
capacity ratio for hydrogen gas increases at low temperatures toward the
value for a monatomic gas. This matter will be explained in Chapter VI.

11. THE JourLe-THOMSON EFrrECT

11a. Expansion Through a Throttle.—In the experiments of Joule and
Thomson, referred to in § 9d, a gas was allowed to stream from a higher
to a lower pressure through a tube con-
taining a ‘““throttle,” consisting of a porous
plug of silk or cotton (Fig. 8). By the use
of the throttle the expansion took place
slowly, and the pressure on each side of the
plug was maintained virtually constant.
The tube was made of a material having a low heat conductance, e.g.,
boxwood, and the conditions were made as nearly adiabatic as possible.

Suppose P, is the constant pressure of the gas before passing through the
throttle, and P, ig the constant pressure after the passage; the corresponding
temperatures are T; and 7;. The volume of 1 mole of the gas at P, and
T is V1, whereas at P, and 7'; the molar volume is V,. The work done W
by 1 mole of the gas as it streams through the plug is equal to P,V, — P,V,,
for the volume is increased by V. at the pressure P, while decreasing by
the volume V, at the pressure P;. Since the whole process is assumed to
be adiabatic, so that @ is zero, it follows that the loss of energy from the
system in the form of work, i.e., W, must be equal to the decrease — AE
in the energy content, by equation (7.2). If E, and E are the energy con-

3 Data mainly from International Critical Tables, Vol. V, pp. 81-82.

Fia. 8. Throttled expansion of a gas
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tents of 1 mole of the gas in the initial and final states, i.e., before and after
passage through the throttle, then

~ (E: — E\) = P,V, — P\V,, (11.1)

the left-hand side representing the decrease of the energy content, and the
right-hand side the work done. By rearrangement of equation (11.1), it is
seen that

E]_ + P1V1 = Ez + Psz, (11.2)

and since, by definition, the heat content H is equal to E + PV, it follows
from (11.2) that H, = H,, so that ¢n the throttled expansion process the heat
content of the system remains constant.

11b. The Joule-Thomson Coefficient.—As seen in § 9a, the heat content
of a system is determined precisely by the thermodynamic state of the sys-
tem, so that dH is a complete differential; thus, taking pressure and tem-
perature as the variables,

_ (oH oH
dH = (-6_5) dP+(aT) dT. (11.3)

For a process in which the heat content is constant, equation (11.3) may be
equated to zero, so that, inserting the subscript H to indicate constant heat

content,
oH oH
(aTa)T‘”’" + (?ﬁ) dTn =0

(g_g)” - (%%)T/(%%)P' (11.4)

The quantity (87/3P)x is called the Joule-Thomson coefficient, and is
represented by the symbol u;.1.; it is equal to the rate of change of tempera-
ture with the pressure in a streaming process through a plug or throttle.
According to equation (9.11), (6H/dT)r is the heat capacity of the gas at
constant pressure, i.e., Cp, so that (11.4) is equivalent to

oH
MI.T. = 'C',;(ﬁ)r (11.5)

Utilizing the relationship H = E 4 PV, this expression takes the form

we =g (G8). + (557,

and since L is a function of P, V and T', which are not independent, it follows
from equation (4.9) that

R (EXEIRCN

or
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Equation (11.6) is quite general and should apply to any gas,* for its
derivation is based entirely on the first lawy of thermodynamics without as-
suming any specific properties of the system. However, for an ideal gas,
(0E/3V)r is zero, as seen earlier, and since PV = RT, it follows that
[8(PV)/dP]r is also zero; hence, since Cp is finite, it is seen from equation
(11.6) that for an ideal gas u;.r. must be zero.t The Joule-Thomson coeffi-
cient of an ideal gas should thus be zero, so that there should be no change
of temperature when such a gas expands through a throttle.}

11c. Sign and Magnitude of the Joule-Thomson Effect.—The quantity
(8E/3V)r has the dimensions of energy/volume, which is equivalent to
force/area and hence to pressure; it is, therefore, frequently referred to as
the internal pressure, especially in connection with liquids. Physically, it
may be regarded as a measure of the pressure in the interior of a fluid, i.e.,
gas or liquid, resulting from the attractions and repulsions of the molecules;
it has, in fact, been identified approximately with the a/V? term of the van
der Waals equation (cf. § 20d). It is because the energy content of a real
gas, unlike that of an ideal gas, is not independent of the volume, that it is
necessary to introduce the a/V?, or analogous, term in the equation of state
for the real gas.

There are several methods for obtaining an indication of the magnitude
of the internal pressure, and these all show that (3E/dV)r is usually positive
for real gases. Further, since it is approximately equal to a/V?, it increases
with increasing pressure. The factor (dV/dP)r in equation (11.6), on the
other hand, is always negative, since increasing pressure, at constant tem-
perature, is invariably accompanied by a decrease of volume. It can be
readily seen from an examination of the pressure-volume isotherm of a gas
that the numerical value of the slope (8V/3P)r is large at low pressures, and
diminishes as the pressure is increased. Hence, it follows that the first term
in the bracket on the right-hand side of equation (11.6) is usually negative,
its numerical value being approximately independent of the pressure.

Turning to the term [d(PV)/dP]r, it is seen that this is the slope of the
plot of PV against P, as in Fig. 2. At ordinary temperatures, this is nega-
tive for all gases, except hydrogen and helium, at low pressures, but it be-
comes positive at high pressures. At low and moderate pressures, therefore,
both terms in the bracket of equation (11.6) are negative, and since the heat
capacity Cp is always positive, it follows that the Joule-Thomson coefficient
ug.r. will have a positive value. In other words, since p;.7. is equal to
(0T /3P)y, most gases experience a decrease of temperature as the result of
a Joule-Thomson (throttled) expansion, at moderate and low pressures and

* The foregoing equations are really applicable to any fluid, i.e., liquid or gas, but they
are usually employed for gases.
1 The same conclusion may be reached directly from equation (11.4) or (11.5), since
(0H /9P)r is zero for an ideal gas (cf., § 9e).
1 It may be noted that for real gases uj. 1. does not necessarily approach zero at very
l(o;v g)ress;lres, in spite of the fact that (9E/dV)r approaches zero and PV approaches RT
cf. § 22a).
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ordinary temperatures. As the gas pressure is increased, the numerical
value of the first term in the bracket remains approximately constant; at the
same time the second term decreases numerically, and eventually becomes
positive. This means that the Joule-Thomson coefficient should decrease
with increasing pressure, passing through a zero value, and finally changing
sign. At sufficiently high pressures, therefore, a reversal of the Joule-
Thomson effect should be observed, the coefficient p;.r. becoming negative;
under these conditions a throttled expansion will be accompanied by an
increase of temperature.

At lower temperatures not only is the numerical value of [3(PV)/6P]r
larger at low pressures, but higher pressures must be attained before it
changessign. It follows, therefore, that at low pressures the Joule-Thomson
coefficient py.r. should increase as the temperature is diminished, and higher
pressures will be required before a reversal occurs. The temperature at
which the Joule-Thomson effect changes sign, at a given pressure, is called
the inversion temperature; at this temperature p;.r. is, of course, zero.
From what has just been stated,the inversion temperature for any gas should
increase with the pressure.

The foregoing conclusions, derived from the purely thermodynamic
equation (11.6) in conjunction with experimental data on the compressi-
bility of gases, are in complete agreement with direct observations of the
Joule-Thomson effect, as may be seen from the data for nitrogen recorded
in Table IV.¢ At 200 atm. pressure, there is evidently an inversion tem-

TABLE IV. JOULE-THOMSON COEFFICIENT FOR NITROGEN IN DEG. ATM.™!

Temperature Pressure
1 20 60 100 200 atm.

200° C 0.0540 0.0460 0.0365 0.0260 0.0075
100° 0.125 0.114 0.0955 0.0760 0.0415

50° 0.179 0.166 0.141 0.115 0.066

25° 0.214 0.200 0.169 0.138 0.078

0° 0.257 0.242 0.204 0.166 0.090

- 50° 0.384 0.362 0.299 0.231 0.094

- 100° 0.628 0.578 0.443 0.281 0.062
— 150° 1.225 1.097 0.062 0.0215 — 0.0255

perature between — 100° and — 150° C, actually about — 126° C, but it de-
creases with decreasing pressure. It will be observed, especially at the
higher pressures, that the value of the Joule-Thomson coefficient passes
through a maximum as the temperature is changed. A high-temperature
inversion point, e.g., just above 200° C at 200 atm., is thus to be expected;
such inversion points have actually been observed. This subject will be
consydered more fully from another standpoint in § 22b.

4 Roebuck and Osterberg, Phys. Rev., 48, 450 (1935); for other determinations of the
Joule-Thomson effect see Roebuck, et al., Proc. Am. Acad. Arts Sct., 60, 537 (1925); 64, 287
(1930); Plys. Rev., 43, 60 (1933); 45, 322 (1934); 46, 785 (1934); 55, 240 (1939); J. Chem,
Phys.. 8, 627 (1940%; J Am Chem. Soc., 64, 400 (1942); Sage, Lacey, et al., Ind. Eng. Chem.,
28, 601, 718 (19306); 31, 369 (1939).
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For hydrogen and helium the value of PV increases with pressure at all
pressures, at ordinary temperatures; thus, [8(PV)/0P]r is positive at all
pressures, and consequently the Joule-Thomson coefficient is negative under
these conditions. This means that the (upper) inversion temperature for
hydrogen and helium is below the ordinary atmospheric temperature at all
pressures. The difference in behavior exhibited by these gases, as compared
with that of other gases at normal temperatures, can thus be accounted for.
At sufficiently low temperatures, hydrogen and helium behave like other
gases, having a positive value for the Joule-Thomson coefficient at moderate
and low pressures; it decreases and eventually changes sign as the pressure
is increased.

11d. Cooling by the Joule-Thomson Effect.—The fall of temperature that
occurs when a gas undergoes throttled expansion, at suitable temperatures and
pressures, hag been utilized in the industrial liquefaction of gases. As seen above,
the Joule-Thomson coefficient has the largest positive values, and hence the cooling
accompanying the expansion will be most marked, at low temperatures, and pre-
ferably at low pressures. In order to obtain the maximum efficiency, therefore,
the temperature of the gas to be liquefied is first reduced either by the performance
of work in a gas engine, where it undergoes something approaching adiabatic
expansion (§ 10d), or by utilizing the cooling effect of another portion of the gas
which has been passed through a throttle.

Because of the variation of the Joule-Thomson coefficient with both tempera-
ture and pressure it is not easy to calculate the change of temperature resulting
from a given throttled expansion, even when such data as in Table IV are available.
This can be done, however, by a series of approximations. By estimating a rough
average for the Joule-Thomson coefficient, some indication of the fall of tempera-
ture can be obtained.

Problem: Estimate the final temperature accompanying the throttled expan-
sion of nitrogen, initially at 25° C, from 200 atm. to 1 atm. pressure.

An examination of Table IV shows that at 25° C, the mean value of uj.r. in
the range from 200 atm. to 1 atm. is about 0.14° atm.™?, so that the decrease of
pressure by 199 (approx. 200 atm.) means a fall of temperature of 28°. As a first
approximation, therefore, the final temperature is seen to be — 3.0° C. It is now
possible to estimate a more accurate value of pj.1. in the pressure range of 200
atm. to 1 atm. and temperatures of 25° to — 3.0° C. This is seen to be about
0.155° atm.™, so that the fall of temperature is 31°, leading to a final temperature
of — 6°C.

11e. Effect of Pressure on Heat Capacity.—Since Cpis equal to (0H/dT)p,
it follows that the variation of the heat capacity with pressure, at constant

temperature, is given by
aCp ol
=f = — 11.7
( oP )T oToP " ( )
The heat content of a simple system is a single-valued function of the thermo-

dynamic state, e.g., of the temperature and pressure, and hence the order of
differentiation on the right-hand side of equation (11.7) is immaterial. Utilizing
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equation (11.5), therefore, it follows that

(__"CP) - i(ﬁ) _ _[2wrcn)
oP /r oT \ 9P /r |p aT P
_ aCr\ _ Ops.T.
= — uy.T, (_OT )P CP( oT )P, ) (11.8)

giving a relationship for the variation of heat capacity with pressure which is
applicable to all fluids. For an ideal gas u;.t. and (Ou;.1./9T)p are both zero, so
that the heat capacity does not vary with pressure; this conclusion is in agreement
with that reached in § 9e.

From data on the variation of the Joule-Thomson coefficient and heat capacity
with temperature it is thus possible to determine the variation of the heat capacity
of a fluid with pressure. This procedure has been utilized in certain instances.

Problem: From the data in Tables II and IV estimate the variation of the
molar heat capacity of nitrogen with pressure, at ordinary temperatures and
pressures.

From Table II, for nitrogen

Cp = 6.45 + 141 X 103T — 0.81 X 10~7T2 cal. deg.”! mole™?,

(5)
aT /p

At about 300° K, therefore,
Cp

(57)
oT /p
From Table IV, u;.r. at ordinary temperatures and pressures is seen to be

about 0.21° atm.™! and (duy.1./0T)p is approximately — 1.5 X 1073 atm.™?; if
these results are inserted into equation (11.8), it is seen that

1.41 X 1072 — 2 X 0.81 X 10777 cal. deg.”? mole™.

6.87 cal. deg.™ mole™},

1.36 X 1073 cal. deg.™2 mole™.

<8_g£> = — 0.21 X 1.36 X 10~% 4- 6.87 X 1.5 X 1073
oP /o

= 1.0 X 1072 cal. deg.”* mole™* atm. .

The heat capacity of nitrogen should thus increase by approximately 1.0 X 10-2
cal. deg.”* mole™ for an increase of 1 atm. in the pressure, at ordinary temperatures
and pressures.

The subject of the influence of pressure on heat capacity will be con-
sidered from another thermodynamic point of view in § 21d.

EXERCISES

1. Give the complete derivation of equation (9.18).

2. By combining equations (10.5) and (10.8) derive an expression for the work
of reversible, adiabatic expansion of an ideal gas in terms of the initial and final
volumes. Determine the work done in liter-atm. when 1 mole of a diatomic gas
at 0° C expands from 10 ml. to 1 liter.



66 HEAT CHANGES AND HEAT CAPACITIES

3. Determine the values of AH and AE in calories when 1 mole of liquid water
8 heated from 25° to 100° C at 1 atm. pressure. The mean heat capacity of water
may be taken as 1.001 cal. deg.~! g.~2 and the mean coefficient of cubical expansion
as 4.0 X 10~ deg.™!; the density of water at 25° C is 0.9971 g. cc.”%

4. Calculate the molar heat capacity at 1 atm. pressure of nitrogen at 0°, 500°
and 1000° C. Compare the results with the mean heat capacity in the range
from 0° to 1000° C.

5. Evaluate the amount of heat in ergs which must be supplied to an ideal gas
in the isothermal, reversible expansion from a pressure of 1.00 atm. to 25.0 atm.
at 25° C.

6. How much heat, in calories, must be supplied to 100 g. of carbon dioxide in
order to raise the temperature from 27° C to 727° C at 1 atm. pressure?

7. In the treatment of adiabatic processes in the text, the heat capacity has
been assumed to be independent of temperature. How could allowance be made
for the variation of Cp with temperature in equation (10.6)? (The gas may be
assumed to be ideal in other respects.) Use this method to estimate the work done,
in calories, and the final temperature in the reversible, adiabatic compression of 1
mole of oxygen from 10 liters to 1 liter, the initial temperature being 25° C. What
would be the result if C» were taken as having the constant (mean) value of 7 cal.
deg.”! mole™'? .

8. A diatomic gas is to be compressed adiabatically from 1 atm. to 25 atm.,
the initial temperature being 25° C. The compression may be carried out in one
stage or it may be performed in two stages, from 1 atm. to 5 atm., and then from
5 atm. to 25 atm., the gas being allowed to regain its original temperature between
the two stages. Which process can be carried out with the smaller expenditure
of energy?

9. When a gas is compressed adiabatically t0 half its initial volume, its tem-
perature is observed to increase from 25° to 200° C. Estimate the (approximate)
mean molar heat capacity of the gas at constant pressure.

10. Compare the values of AH and AE for the vaporization of 1 mole of water
at 100° C and 1 atm. pressure. The heat of vaporization of water is 539 cal. g.!
at the normal boiling point; the specific volume of the vapor is then 1675 cec. g.”?,
and that of the liquid is approximately unity. Suggest why the value of AF in
this case is sometimes called the ‘“internal heat of vaporization.”

11. Assuming (0E/dV)r for a van der Waals gas to be equal to a/V3, show
that the increase of the energy content in the isothermal expansion of 1 mole of
the gas, under such conditions that no work is done, is given by

1 1
AE—-G(T,-I'—.—V—;)'

Correlate this result with the analogous term in the expression for W in Exercise 8,
Chapter III.

12, Calculate the (approximate) increase of internal energy in calories when
1 mole of carbon dioxide is expanded isothermally from 1 liter to 10 liters, assuming
van der Waals behavior.

13. With the aid of equation (9.16) and the result derived in Exercise 11, show
qualitatively that the value of Cp — Cy for a gas such as nitrogen should pass
through a maximum as the pressure is increased (cf. § 21a). (Note from Fig. 2
that (0V/9T)p is larger at low pressures and smaller at higher pressures than for
an ideal gas.)
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14. If a is independent of temperature, show that Cy for a van der Waals gas
should be independent of the pressure (or volume) at constant temperature, and
that both Cp and Cr/Cy should pass through a maximum with increasing pressure,
as in Table III (cf. § 21e). Use the results of Exercises 11 and 13.

15. Combine equations (9.18) and (11.5) to derive an expression for Cp — Cp
at the Joule-Thomson inversion point. What is the value for a van der Waals gas?

16. By utilizing a relationship of the form of equation (4.9), together with the
result of Exercise 11, and the van der Waals equation in the low-pressure form
obtained in Exercise 7, Chapter II, show that

9E\ _ _ e a(PV) -8
(aP>,‘ gt o [ oP ]r b= g7
By introducing H = E + PV, show that
AR
aP /r RT’
and hence derive the result
1/ 2a

MHI.T. = C—p<ﬁ - b)

for the Joule-Thomson coefficient of a van der Waals gas at moderate pressures
(cf. § 22a). Show that for a real gas, the Joule-Thomson coefficient is not neces-

sarily zero even at zero pressure.
17. The variation of the Joule-Thomson coefficient of air with the absolute

temperature T at 1 atm. pressure is given by

138.3 319.0
3T, = — 0.1975 + T b —ﬁ—

[Hoxton, Phys. Rev., 13, 438 (1919)]. The dependence of Cp on temperature at
1 atm. is given approximately by

Cp = 6.50 4+ 0.00107T cal. deg.™ mole™.

Determine the rate of change of Cp for air with pressure in cal. deg.”* atm.~! mole
in the region of 27° C and 1 atm. pressure.
18. At 25° C, the variation of Cp for carbon dioxide with pressure is repre-

sented by

deg. atm.™!

Cp = 8.90 + 0.0343P + 0.0123 P2,

with P in atm., and the variation with temperature, at 1 atm. pressure, is given

(approximately) by
Cp = 6.80 4 0.0072T.

In the vicinity of 1 atm. pressure, the Joule-Thomson coefficient of the gas is 1.08°
atm.”!. Determine the rate of change of u;. 1. with temperature at ordinary pres-
sures. (The experimental value is about — 0.010 atm.™).

19. Show that for a van der Waals gas (0E/dV)r is proportional to P* (cf.
Exercise 11), and (0V/9P)r is approximately proportional to 1/P% at not too
high pressures; hence, justify the statement in § 11¢ that the first term in the
bracket on the right-hand side of equation (11.6) is approximately independent
of pressure.



CHAPTER V
THERMOCHEMISTRY

12. HEaT CHANGES IN CHEMICAL REACTIONS

12a. Heat of Reaction.—The science of thermochemistry is concerned
with the heat changes associated with chemical reactions; in other words, it
deals essentially with the conversion of chemical energy into heat energy,
and vice versa. Thermochemistry is, therefore, to be regarded as a branch
of thermodynamics, especially since, as will be seen shortly, the subject is
based largely on the first law. Further, the data obtained in thermochemical
studies are utilized in the evaluation of properties of thermodynamic interest.

The heat change associated with a chemical reaction, like that for any
other process, is an indefinite quantity depending on the path taken. How-
ever, as seen in § 9a, if the process is carried out at constant pressure or
constant volume, the heat change has a definite value, determined only by
the initial and final states of the system. It is for this reason that heat
changes of chemical reactions are measured under constant pressure or con-
stant volume conditions; processes involving liquids and gases are usually
studied at constant (atmospheric) pressure, whereas combustion reactions
are carried out at constant volume, e.g., in an explosion bomb. For the
purpose of recording and tabulating the results, the data are quoted directly
a8, or are converted into, those for constant pressure, generally 1 atm. Al-
though the reactants and products of a chemical reaction might well be at
different temperatures, the situation is considerably simplified by determin-
ing heat changes for the condition in which all the substances concerned are
at the same temperature. This practice is invariably adopted in making
thermochemical measurements.

Since Qp, the heat absorbed in any process at constant pressure, is equal
to AH p, the increase of heat content at constant pressure (§ 9a), the heat
change accompanying a chemical reaction under these conditions is equal to
the difference between the total heat content of the products and that of
the reactants, at constant temperature and pressure. This is the quantity
usually referred to as the heat of reaction; thus,

Heat of reaction = Heat content of products — Heat content of reactants,

or
Qp = AHp = Y_H(products) — X H(reactants), (12.1)
where the H, i.e., heat content, values all refer to a specified temperature,
e.g., 25° C, and pressure, e.g., 1 atm. The summation signs imply that the
total heat contents, allowing for the different numbers of molecules that
68
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may be involved, of all the products or of all the reactants, respectively, are
to be included. It may be remarked that in evaluating the heat of reaction
it is assumed that the reactants are completely converted into the products.
In other words, it is postulated that the reaction, as represented by the
appropriate chemical equation, proceeds to completion. If this condition
is not realized experimentally, the observed heat change is adjusted so as
to give the result that would have been obtained for the complete reaction.

12b. Symbols and Units.—The heat change accompanying a reaction,
for example, that between solid carbon (graphite) and hydrogen gas to form
liquid benzene, is represented in the form of a thermochemical equation, viz.,

60(3) + 3H2(g) = CoHe(l), AH 395.16 = 11.7 kca.l.,

where the symbols g, I and s indicate gaseous, liquid and solid state, respec-
tively. It is the common practice in thermochemical work to express heat
changes in kilocalories, abbreviated to kcal., where 1 kecal. = 1000 cal.,
because the statement of the result in calories would suggest a greater degree
of accuracy than has actually been attained. The equation given above
implies that the formation of 1 mole of liquid benzene from 6 gram-atoms of
solid carbon (graphite) and 3 moles of hydrogen gas results in the absorption
of 11.7 keal,, i.e., about 11,700 cal., at 25° C or 298.16° K, and 1 atm. pres-
sure. The heat content of 1 mole of liquid benzene is thus 11.7 kcal. greater
than that of the carbon (solid) and hydrogen (gas) of which it may be re-
garded as composed; that is,

AH = H(Ce¢He, ) — [H(6C, s) + H(BH,, ¢g)] = 11.7 keal. at 25° C.

It may be noted, in general, that if the heat content of the products exceeds
that of the reactants, i.e., AH is positive, the reaction is accompanied by an
absorption of heat. On the other hand, if the reverse is the case, so that
AH is negative, heat is evolved when the reaction takes place.

If all gases behaved ideally, the value of AH would be independent of
the pressure (§ 9¢), but as this is not the case it is necessary, strictly speak-
ing, to specify the pressure in connection with any reaction involving gases.
Unless otherwise stated, the pressure is usually 1 atm., although for certain
purposes it is desirable to express the data for the condition in which the gas
behaves ideally, i.e., at very low pressures. In the great majority of cases,
however, the difference between the observed value of AH at 1 atm. pressure
and that corrected for departure of the gases from ideal behavior is consider-
ably less than the experimental error, and so may be ignored (cf. § 20e).

For a reaction taking place in solution, it is necessary to specify the con-~
centrations of the various reactants and products. If the solutions are so
dilute that the addition of further solvent, e.g., water, results in no appre-
ciable change in the heat of reaction, i.e., the heat of dilution is zero, the
symbol aq is employed; thus,

HCl(ag) + NaOH(agq) = NaCl(ag) + H;O,  AHass = — 13.50 keal.,
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for the reaction between hydrochloric acid and sodium hydroxide in dilute
aqueous solution. The subjects of heat of solution and heat of dilution will
be treated below (see also Chapter XVIII).
12¢c. Heat Changes at Constant Pressure and Constant Volume.—The
heat change Qv at constant volume is equal to AEy the increase of the energy
content at constant volume (§ 9a). For a reaction involving ideal, or ap-
proximately ideal, gases, AE would be independent of the volume, at con-
stant temperature; for such a reaction, therefore, it is possible to identify
Qv with AE at the given temperature, without specifying constant volume
conditions for the latter. Although this is strictly true only if the gases
involved are ideal, it can be taken as being approximately true for all reac-
tions The change in the energy content due exclusively to a volume change,
apart from the work of expansion, is invariably so small, particularly in
comparison with the values of AFE involved in chemical reactions, that it may
be ignored. It will be assumed, therefore, that the value of AE, which is
equal to Qv, depends only on the temperature, and not on the actual volume
or pressuve. Bearing in mind these arguments, equation (9.3) can be
written as
Qp = AE + P AV
=~ Qy + PAV, (12.2)

which gives the relationship between the heat changes of a reaction at con-
stant pressure &nd constant volume. The difference between these quanti-
ties is thus equal to PAV, which is the work of expansion when the process
is carried out at constant pressure.

For a reaction in which gases take part, the volume change AV may be
appreciable, and its value can be determined with sufficient accuracy by
assuming idenl behavior of the gases concerned. If n, is the number of
moles of gaseous reactants, and n; is the number of moles of gaseous products
of the reaction, the process is accompanied by an increase of n; — n; = An
moles of gas. If V is the volume of 1 mole of any (ideal) gas at the experi-
mental temperature and pressure, then the increase of volume AV in the
reaction will be equal to VAn. For ideal gases, PV is equal to RT, so that

PAV = PVAn = RTAn,
and substitution in equation (12.2) gives
Qr ~ Qv + RTAn. (12.3)

From this expression the value of the heat of reaction at constant pressure
can be calculated if that at constant volume is known, or vice versa. An
important use of equation (12.3) is in the determination of the AH values
for combustion reactions, since ihe actual thermochemical measurements are
made in an “‘explosion bomb”’ at constant volume.

If the reaction involves solids and liquids only, and no gases, the volume
change AV is usually so small that the PAV term in (12.2) may be neglected.
In cases of this kind the heats of reaction at constant pressure and constant
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volume may be taken as identical, within the limits of experimental error.
Since the volume changes due to solids and liquids are negligible, the value
of AV for a reaction, in which gases as well as solids or liquids take part,
applies to the gases only. The factor An in equation (12.3) then refers to
the gaseous molecules only. For any reaction in which the same total number
of gaseous molecules occurs on both sides cf the chemical equation An is zero,
and hence Qp and Qv are equal.

Problem: When 1 mole of solid naphthalene was burnt in oxygen gas to yield
carbon dioxide gas at constant volume, at 25° C, the heat absorbed (Qy) was found
to be — 1,227.0 kcal. Calculate AH for this reaction, assuming it to be independ-
ent of pressure.

The reaction is
CioHs(s) + 1202(g) = 10CO2(g) + 4H.0(),

so that the number of molecules of gaseous reactants (n,) is 12, and the number of
molecules of gaseous products (nz) is 10; hence, An = ny — n, = — 2. The tem-
perature is 25° C, i.e., 298° K, and R may be taken as 2 cal. or 2 X 102 kcal.
deg.~! mole~!; hence, by equation (12.3),

Qr =— 1,227.0 + (2 X 10~ X 298 X — 2)
=—1,227.0 — 1.2 = — 1,228.2 keal.

The value of AH for the reaction may thus be taken as — 1,228.2 kcal. at 25° C.

12d. Thermochemical Laws.—Two important laws of thermochemistry
are based on the principle of conservation of energy. According to A. L.
Lavoisier and P. S. Laplace (1780), the quantity of heat which must be supplied
to decompose a compound into its elements is equal to the heat evolved when the
compound is formed from its elements. This experimental result is, of course,
in direct agreement with the first law of thermodynamics, for otherwise it
would be possible to create heat energy by making a compound from its
elements, and then decomposing it, or vice versa. The law of Lavoisier and
Laplace may be extended into the general form that the heat change accom-
panying a chemical reaction in one direction is exactly equal in magnitude, but
oppocite in sign, to that associated with the same reaction in the reverse direction.
This conclusion follows directly from the fact, derived from the first law of
thermodynamics, that the heat content of a substance, or system, has a
definite value at a given temperature and pressure (§ 9a). The total heat
content of the reacting substances must, therefore, differ from that of the
products by a precise amount; there is thus a definite increase AH in one
direction, and a numerically equal decrease — AH in the opposite direction
of the chemical reaction [ecf. equation (12.1)]. As a consequence of the
foregoing conclusion, thermochemical equations can be reversed, provided
the sign of AH is changed; thus,

CH.(g9) + 20:(g) = COa(g) + 2H,0(1), AH 293 = — 212.80 keal.
COs(g) + 2H.O(l) = CH.(g) + 20:(g), AH s = 212.80 kcal.
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Another important law of thermochemistry was discovered empirically
by G. H. Hess (1840); it is known as the law of constant heat summation.
This law states that the resultant heat change, at constant pressure or constant
volume, tn a given chemical reaction 78 the same whether it takes place in one
or in several stages. This means that the net heat of reaction depends only
on the initial and final states, and not on the intermediate states through
which the system may have passed. The law of Hess thus also follows from
the first law of thermodynamics for, as already seen, it lcads to the conclusion
that AH (or AE) depends only on the initial and final states of the system
and is independent of the path connecting them. One result of Hess’s law
is that thermochemical equations can be added and subtracted, just like algebraic
equations. The physical significance of these operations is that the heat
contents of the various elements and compounds concerned are definite
(extensive) quantities, and the addition or removal of a substance (or sub-
stances) from a system means that the heat content is increased or decreased,
respectively, by a specific amount (or amounts). A useful practical applica-
tion of this result is in the calculation of heat changes for reactions which
cannot be studied directly.

Problem: Given the following heats of reaction at 25° C:

() CiHi(g) + 30:(9) = 2C0x(g) + 2H:0(l), AH = — 337.3 keal.
(i) Ha(g) + 30:(9) = H0(), AH =— 683
(iii) CsHe(g) + 330:(g) = 2C0s(g) + 3H.0(), AH =— 3728

determine the heat change of the reaction C.H4(g) + H2(g) = Ca:He(g) at 25° C.

The required result can be obtained very simply by adding (i) and (ii) and
subtracting (iii), so that

C:Hu(g) + Ha(g) = C:Hd(g), AH s = — 32.8 kcal.

12e. Heat of Formation.—The heat of formation of a compound is the
tncrease of heat content AH when 1 mole of the substance is formed from its
elements at a given temperature and pressure. The value of AH depends on
the physical state and condition of the substances involved (ef. § 12i), and
80 it is generally postulated that the elements are in their so-called standard
states. For liquids and solids, the standard states are usually taken as the
stable forms at the atmospheric temperature and a pressure of 1 atm. For
gases, the standard state is chosen as 1 atm., although in certain cases the
ideal gas is postulated; as indicated earlier, the difference between these two
states does not have any considerable effect on the AH value. Where ac-
curate thermochemical data are available, however, the distinction between
the two states is significant (§ 20e). When all the substances concerned in a
reaction are in their respective standard states, the change of heat content
is indicated by the symbol AHP.

As an example of the standard heat of formation, reference may be made
to the reaction

C(s) + O:(g) = COs(g), - AH%9s = — 94.05 keal.
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Here the carbon is in the form of graphite, for this is the stable form, i.e.,
the standard state, at 25° C and 1 atm. ; the gases, oxygen and carbon dioxide,
are both at 1 atm. pressure. The standard heat of formation of carbon
dioxide at 25° C is then said to be — 94.05 kcal. mole™*. The heat content
of 1 mole of carbon dioxide is thus less than that of 1 g. atom of graphite
and 1 mole of oxygen by 94.05 kcal. at a temperature of 25° C and a pressure
of 1 atm.

The standard heats of formation of a number of compounds at 25° C
are recorded in Table V.1

TABLE V.* BTANDARD HEATS OF FORMATION AT 25°C IN KCAL. PER MOLE

Inorganic Compounds

Substance AH Substance AH Substance AH
HF(g) — 64.5 N.O(g) 19.7 HgO(s) —21.6
HCl(g) — 22.06 NO(g) 21.6 FeO(s) — 64.3
HBr(g) — 86 NO.(g) 8.0 Fe.0i(s) — 195
HI(g) 5.9 H.S0.() — 194 Al;04(s) — 380
H.0() — 68.32 HNO,(l) — 42 NaCl(s) — 983
H3(g) — 5.3 Na.O(s) — 99 KCl(s) — 104.3
NH,(g) - 11.03 K.0(s) — 86 AgCl(s) — 30.3
80.(g) - 70.9 NaOH(s) — 102 Hg:Cls(s) — 62
80,(g) — 944 KOH(s) — 102 NaS0.(s) — 330
CO(g) — 26.42 CuO(s) — 385 K:80.4(s) — 343
COs(g) — 94.05 Ags0(s) - 70 PbSO(s) — 219

Organic Compounds
Substance AH Substance Al

Methane (g), CH, — 17.89 Methanol (g), CH,OH — 481

Ethane (g), C.H, — 20.24 Methanol (1), CH;OH - 57.0

Propane (g), CaHs — 24.82 Ethanol (g), C.H:OH — 56.3

Ethylene (g), C2H. 12.56 Ethanol (1) C.:H;OH — 66.4

Propylene (g), CsHe 4.96 Phenol (s), CcH;OH — 384

Acetylene (g), Csz 54.23 Aniline (l), CgHsNHz 7.3

Benzene (1), CeHs 11.7 Urea (s), CO(NHy). — 794

Cyclohexane (1), CeHe - 148 Benzoic acid (s), CeH;COOH — 93.2

Naphthalene (s), CioHs 144 Sucrose (s), Ci12H2:011 - 533.4

* For further data, sce Table 5 at end of book.

12f. Heat Content and Heat of Formation.—There is a useful conncction
between the heat of a reaction, in general, and the heats of formation of the
compounds involved. It will be evident that in thermochemical studies no

1 Data mainly adapted from F. R. Bichowsky and F. D. Rossini, “The Thermochemis-
try of the Chemical Substances,” 1936; Landolt-Bérnstein, Physikalisch-Chemische Ta~
bellen, 1923-1936; sec also, Thacker, Folkins and Miller, Ind. Eng. Chem., 33, 684 (1941);
Wagman, Kilpatrick, Taylor, Pitzer and Rossini, J. Res. Nat. Bur. Stand., 34, 143 (1945);
Prosen and Rossini, tbid., 34, 263 (1945); Prosen, Pitzer and Rossini, ¢bid., 34, 403 (1945);
Wagman, Kilpatrick, Pitzer and Rossini, ibid., 35, 467 (1945); Kilpatrick, Prosen, Pitzer
and Rossini, ibid., 36, 559 (1946). For reviews of experimental methods, etc., see Rossini,
Chem. Rev., 18, 233 (1936), 27, 1 (1940); Roth, Z. Elek., 38, 94 (1932); 45, 335 (1939).
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information is obtained concerning the actual or absolute heat contents of
substances, but only with regard to the differences of their heat contents.
For this reason it is permissible to choose any arbitrary scale of reference
for heat content; that is, a zero of heat content may be chosen by convention,
just as the zero of the centigrade temperature scale is arbitrarily chosen as
the ice point. Differences of temperature are the same, irrespective of
whether the actual temperatures are recorded on the absolute or centigrade
scales, provided they are expressed in the same units. A similar situation
exists in connection with the heat content; the AH value will be the same,
irrespective of whether the heat contents H are expressed on an absolute
scale or an arbitrary, conventional scale. The convention usually employed
in thermochemistry is arbitrarily to take the heat contents of all elements as
zero in their standard states at all temperatures.* The heat of formation of
a compound is the difference between the heat content of the compound and
that of its elements, and since the latter are taken as zero, by convention,
it follows that on the basis of this convention the heat content of a compound
18 equal to its heat of formation.

Utilizing the heat contents derived in this manner, the standard heat
change of a reaction can be readily calculated from the known standard
heat contents, i.e., the standard heats of formation, of the substances con-
cerned. Consider, for example, the reaction, at 25° C,

CHi(g9) + 20:(g9) = CO.(9) + 2H.0(Q),
— 17.89 0 — 94.05 — 2 X 68.32

and writing the standard heat of formation at 25° C of each species below
the formula, it is seen that the total heat content of the products is — 94.05
+ (— 2 X 68.32) whereas that of the reactants is — 17.89 4 0. The
standard increase AH® of heat content in the reaction is thus given by the
difference of these two quantities, viz.,

AH%s = [— 94.05 — (2 X 68.32)] — (— 17.89 + 0) = — 212.80 keal.

Instead of using the heats of formation to calculate the heat of reaction,
the procedure may be reversed, and the heat of formation of a compound
derived from the heat of reaction, provided the heats of formation of all the
other substances involved are known.

Problem: From the result of the problem in § 12¢, determine the heat of forma-
tion of 1 mole of solid naphthalene from graphite and hydrogen gas at 1 atm.
pressure at 25° C.

In this case,
CiocHs(s) + 120.(g) = 10CO.(g) <+ 4H,0(Q), AHY), = — 1,228.2 keal.,
z 0 — 10 X 94.05 — 4 X 68.32

* For certain problems dealing with changes of a physical nature, which are based on
variations of the heat content of a system with temperature, the convention is to take the
heat content of the system, element or compound, to be zero at 0° C.
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the standard heat of formation of each species being written below its formula,
z being that of the naphthalene, which is required. Since AH®is — 1,228.2 keal.,
it follows that

— 12282 = [~ (10 X 94.05) — (4 X 68.32)] — (z + 0),
z = 14.4 kcal.

The standard heat of formation AH® of naphthalene at 25° C is thus 14.4 keal.
(The result is not particularly accurate in this instance, because it represents the
difference between two large numbers.)

12g. Heat of Combustion.—Organic compounds containing carbon and
hydrogen alone, or together with oxygen, can be burnt in oxygen gas to yield
carbon dioxide and (liquid) water as the sole products. The heat change
accompanying the complete combustion of 1 mole of a compound, at a given
temperature and 1 atm. pressure, is called the heat of combustion. From
the data in the preceding section, it is seen, for example, that the heat of
combustion of methane at 25° Cis — 212.80 kcal. The heats of combustion
of solids and liquids are usually measured at constant volume in a ‘“bomb
calorimeter’’; the results can then be used to calculate AH, as explained
above. The standard heats of combustion of a number of familiar organic
compounds are given in Table VI.2 The data may be used to calculate

TABLE VI. HEATS OF COMBUSTION AT 25° C IN KCAL. PER MOLE

Substance AH Substance AH
Methane (g), CH, — 2128 Benzene (1), CeH, — 781.0
Ethane (g), C:H, — 372.8 Toluene (1), C;H, — 934.5
Propane (g), C;Hs — 530.6 Xylene (1), CsH1o — 1,088
n-Butane (g), CHio — 688.0 Benzoic acid (s8), C;HiCOOH - 7714
n-Pentane (I), C:Hi2 — 838.7 Phenol (s), CeHsOH — 7320
n-Hexane (1), CeH 14 — 995.0 Naphthalene (s), C10Hs - 1,228.2
Ethylene (g), C.H, — 3373 Sucrose (s), CquzOu - 1,348.9
1,3-Butadiene (g), CH; — 607.9 Urea (s), CO(NH,): — 161.6
Methanol (1), CH,OH — 173.6 Ethyl acetate (1), CH;COOC,H; — 538.0
Ethanol (I), C.H:OH — 326.7 Aniline (l), C(HsNH, — 811.9

heats of reaction and of formation which cannot be determined directly.
Examples of such calculations are provided by the problems in §§ 12d, 12f.

12h. Heat of Hydrogenation.—The change of heat content accompany-
ing the hydrogenation of 1 mole of an unsaturated compound has been de-
termined in a number of instances. The results are of interest for certain
theoretical purposes, but they can also be utilized for the derivation of heats
of formation and heats of combustion.

Problem: The standard heat of hydrogenation of gaseous propylene to propane
is — 29.6 kcal., and the heat of combustion of propane is — 530.6 kcal. at 25° C.
(Unless otherwise stated, constant pressure is to be understood.) TUtilizing the

3 See ref. 1, also Rossini, Ind. Eng. Chem., 29, 1424 (1937); Prosen and Rossini, J. Res.
Nat. Bur. Stand., 27, 289 (1941); 33, 255 (1944); 36, 269 (1946); Prosen, Johnson and
Rossini, tbid., 35, 141 (1945); 36, 455, 463 (1946).
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known heats of formation of carbon dioxide (— 94.0 kcal.) and of liquid water
(— 68.3 keal.), determine the heat of combustion and the standard heat of forma-
tion of propylene.

The data are as follows:

(i) CsHes(g) + Ha(g) = CsHs(g), AH® = — 29.6 kea?
(ii) CsHas(g) + 502(9) = 3CO2(g) + 4H.0(l), AH° =— 530.6
(iif) C(s) + O1(g) = COq(y), AH® = — 94.0

(iv) H.(g) + 30:(g) = H.O0(), - AH® = — 68.3

To obtain the standard heat of formation of propylene, add equations (i) and (ii),
and then subtract the sum from three times equation (iii) and four times (iv);
the result is

3C(s) 4+ 3H:(g) = C3He(g), AH® = 5.0 keal.

The heat of combustion can either be obtained from this result by reversing it and
adding three times equations (iii) and (iv), or it may be derived by utilizing (i),
(ii) and (iv); in any event, it is found that

CsHe(g) + 4302:(g) = 3CO:(g) + 3H0(D), AH® = — 491.9 kcal.

12i. Phase Changes.—A phase change, such as vaporization of a liquid,
fusion or sublimation of a solid, and transition from one crystalline modifica-
tion to another, is invariably associated with a change of heat content.
Such heat changes are often referred to as the “latent heat’’ of vaporization,
fusion, etc., although the tendency at the present time is toward the omission
of the term “latent.” These quantities represent the difference in the heat
contents of 1 gram, or 1 mole, of the two phases under consideration at the
temperature and pressure at which the phase change takes place. Thus,
the heat content of 1 gram of steam (water vapor) is 539.4 cal. greater than
that of the same weight of liquid water at 100° C and 1 atm. pressure. The
heat of vaporization of water at 100° C is thus 539.4 cal. g.~! and this quan-
tity of heat must be supplied to 1 g. of liquid water at 100° C to convert it
into vapor at the same temperature and 1 atm. pressure. Like other heat
changes, latent heats of various types vary with the temperature; thus at
25° C, the heat of vaporization of water is 583.6 cal. g.~!, the pressure being
23.76 mm., or 0.0313 atm. Molar heats of vaporization and fusion are
frequently employed in thermodynamics, and these are the changes of heat
content associated with the vaporization or fusion of 1 mole of the substance
under consideration, at the given temperature and pressure. The results
may be expressed in the form of equations similar to the thermochemical
equations represented above; thus,

H,0(s) = H.0Q), AH 3
HgO(l) = IIzO(g, 1 atm.), A[Ian

Heats of vaporization and fusion are utilized in the treatment of phase
changes (Chapter XI), but for the present they will be employed in connec-
tion with thermochemical problems. For example, it is sometimes required
to know the heat of a particular reaction when one (or more) of the sub-

1.438 keal.
9.717 keal.

o
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stances taking part is in a different physical state than usual; the necessary
adjustment can be readily made, as the following instance will show. The
standard heat of formation of liquid water at 25° C is — 68.32 kcal. per
mole, i.e.,

Ha(g) + 30:(9) = HO(l),  AH%s = — 68.32 keal.

Suppose the standard heat of formation of water vapor at 25° C is required;;
use is made of the heat of vaporization of water, which is 583.6 X 18.016
cal. or 10.514 kcal. mole, i.e.,

H.0() = H:0(g, 0.0313 atm.), AH 55 = 10.514 keal.

For the present purpose it is necessary to know the value of AH for this
process with water vapor at 1 atm. pressure. If the vapor behaved as an
ideal gas, the result would be the same as that given above, since AH would
be independent of the pressure (§ 9e¢). Although water vapor is not ideal,
the difference in the heat content at 1 atm. pressure from that at 0.0313 atm.
has been calculated (cf. § 20e) as only 0.005 keal. at 25° C, i.e.,

H,0(g, 0.0313 atm.) = H,0(g, 1 atm.),  AHjes = 0.005 keal.
Combination with the preceding equation gives

H,0@1) = H;0(g, 1 atm.), AH 95 = 10.52 keal.,,
and hence

Ha(g) + 30:(9) = H.0(g),  AH%s = — 57.80 keal.

with each substance in its standard gaseous state.

When there is change in the crystalline form of any substance involved
in a reaction there is a change in the heat content. If the data for a given
reaction with two separate forms of a particular substance are available, the
heat of transition of one form to the other can be evaluated. For example,
the heats of combustion of the two allotropic forms of carbon, viz., diamond
and graphite, are known to be — 94.50 and — 94.05 kecal. g. atom™, re-
spectively, at 25° C, i.e.,

C(diamond) + O,(g) = CO:(g), AH 95 = — 94.50 keal.
C(graphite) 4+ O:(g) = COq(g), AH gz = — 94.05

By subtracting these two thermochemical equations, it is immediately seen
that
C(diamond) = C(graphite), AH 293 = — 0.45 kcal.

The transition of 1 g. atom of carbon as diamond to the stable form, i.e.,
graphite, at 25° C is associated with a decrease of 0.45 kcal. in the heat
content.

12j. Effect of Temperature on Heat of Reaction: The Kirchhoff Equa-
tion.—An expression for the variation of the heat of reaction with tempera-
ture can be derived in a simple manner. If H, is the total heat content of
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the reactants and Hp is that of the products, at the same temperature and
pressure, then, as indicated in § 12a [ef. equation (12.1)7], AH is given by

AH = Hy — Ha, (12.4)

all the quantities referring to the same pressure. If this equation is differ-
entiated with respect to temperature, it is seen that

dAH) _ (9Hs\ _ (9H.) .
["_“a:r ],. ( aT ),, ( T )p (12
According to equation (9.11), (0H/dT)p is equal to Cp, and hence
[262] =~ s - 12

where (Cp)4 and (Cp)p are the total heat capacities, at the given (constant)
pressure, of the reactants and the products, respectively. The right-hand
side of equation (12.6) is the increase in the heat capacity of the system
accompanying the chemical reaction, and so it may be represented by ACp;
thus, (12.6) takes the form

[‘3%,’?2 ]P = AC», (12.7)

which is the expression of what is generally know as the Kirchhoff equation
(G. R. Kirchhoff, 1858), although a similar result was obtained earlier by
C. C. Person (1851). The rate of vartation of the heat of reaction with tempera-
ture, at constant pressure, 1s thus equal to the increase in the heat capacily
accompanying the reaction.

The heat capacity is an extensive property, and so the heat capacity of
the system in its initial state is the sum of the heat capacities of the reactants,
and that in the final state is the sum of the heat capacities of the products
of the reaction. For the general chemical reaction

aA+bB+ - =IlL4+mM+ -+,
the increase of heat capacity ACp is thus given by
ACp = [UCp)L + m(CP) + -+-] — [a(Cp)a + b(CpP)s + ---], (12.8)

where the Cp terms are here the molar heat capacities of the species indi-
cated. The expression in the first set of brackets in equation (12.8) gives
the total L.eat capacity of the products, and that in the second brackets is
for the reactants, so that the difference is equal to the increase of heat
capacity for the reaction. An alternative form of (12.8) is

ACp = 2.(nCp)s — 2(nCp)s (12.9)

where n is the number of moles of each substance taking part in the reaction
and Cp is its molar heat capacity. The subscripts z and f refer to the initial
state (reactants) and final state (products), respectively, so that the first
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term on the right-hand side of equation (12.9) is the sum of all the nCp terms
for the products, whereas the second term is the corresponding sum for the
reactants.

The Kirchhoff equation as derived above should be applicable to both
chemical and physical processes, but one highly important limitation must
be borne in mind. For a chemical reaction there is no difficulty concerning
(0AH /3T)p, i.e., the variation of AH with temperature, at constant pressure,
since the reaction can be carried out at two or more temperatures and AH
determined at the same pressure, e.g., 1 atm., in each case. For a phase
change, such as fusion or vaporization, however, the ordinary latent heat
of fusion or vaporization (AH) is the value under equilibrium conditions,
when a change of temperature is accompanied by a change of pressure. If
equation (12.7) is to be applied to a phase change the AH’s must refer to
the same pressure at different temperatures; these are consequently not the
ordinary latent heats. If the variation of the equilibrium heat of fusion,
vaporization or transition with temperature is required, equation (12.7)
must be modified, as will be seen in § 271.

12k. Application of the Kirchhoff Equation.—The application of the
Kirchhoff equation to determine the heat of reaction at one temperature if
that at another is known involves the integration of equation (12.7); thus,
between the temperature limits of 7', and T, the result is

T
AH, — AH, = f * ACPT, (12.10)
T:

where AH, and AH, are the heats of reaction at the two temperatures. If,
in the simplest case, ACr may be taken as constant and independent of
temperature over a small range or, better, if ACp is taken as the mean value
ACp in the temperature range from T, to T, it follows from equation
(12.10) that

AH, — AH, = ACp(T; — T)). (12.11)

Problem: The mean molar heat capacities, at constant pressure, of hydrogen,
oxygen and water vapor in the temperature range from 25° C to 100° C are as
follows: Ha(g), 6.92; O2(g), 7.04; H.O(g), 8.03 cal. deg.”* mole™!. Utilizing the
heat of reaction at 25° C obtained in § 12i, calculate the standard heat of formation
of water vapor at 100° C.

The reaction is
Ha(g) + 30a1(g) = H:0(g),

ACp = Cp(H:0, g) — [Cr(H,, g) + $Cr(04,9)]
= 8.03 — (6.92 4+ 3.52) = — 2.41 cal. deg.”*

In this case, T';is 25° C and T»is 100° C, so that 7; — T',is 75°; AH, isknown from
§ 12i to be — 57.80 keal. It is required to find AH; by using equation (12.11),
and for this purpose the same heat units, e.g., kcal., must be used for the AH’s
and ACp; hence,

so that,

AH, + 57.80 = — 2.41 X 10~ X 75,
AH3 = — 57.98 kcal. mole™.
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In the general case, integration of (12.10) is possible if ACp is known as
a function of temperature. Since the variation of the heat capacity of many
substances can be expressed by means of equation (9.24), it follows that

ACp = Aa + ABT + AYT? + - - -, (12.12)
where, for the general reaction given in § 12j,

Aa = (lag, + man + - ++) — (aca + bes + )
AB = (IBL+mBum + ---) — (aBr + bB + --+) (12.13)
Ay = (byp +mym + - -+) — (ava + by + -+ 1),

and so on. Inserting equation (12.12) into (12.10), and carrying out the
integration, it is found that

AHy — AHy = Aa(T: — T)) + 3A8(TE — TY)
+3Ay(T3 - TH + -+, (12.14)

so that the change of heat content at one temperature can be calculated if
that at another temperature is known, and the «, 8, v, ..., values for all
the substances concerned are available from Table II.

Problem: Calculate the standard heat of formation of water vapor at 100° C
allowing for the variation with temperature of the heat capacitics of the reactants
and the product, and taking AH® as — 57.80 kecal. mole™! at 25° C.

From Table 1I,
Cp(H:0, g) = 7.219 4 2.374 X 1073T + 0.2670 X 10-87

Cp(H,, g) = 6.947 — 0.200 X 10-3T + 0.4808 X 10-5T2
Cp(0s, g) = 6.095 + 3.253 X 10-3T — 1.0170 X 10-°72,

so that

ACP = CP(H20) g) - [CP(I{2) (7) + %CP(Ozx g)]
=— 2776 + 0.947 X 1073T 4 0.295 X 10~¢T2 cal. deg.™?

Hence,
Aa = — 2.776, AB = 0.947 X 1073, Ay = 0.295 X 1078,

and by equation (12.14), since T';is 25° C, i.e., 298° K, and T'»is 100° C, i.e., 373° K,

AHs — AH, = — 2.776(373 — 298) + } X 0.947 X 107°[(373)? — (298)%]
+ % X 0.295 X 107°[(373)* — (298)*] cal.
=— 208.2 + 23.8 + 2.5 = — 182 cal.

Since AH, is — 57.80 keal., and AH; — AH,is — 0.182 keal., it follows that AH,
is — 57.98 kcal. mole™, as obtained in the preceding problem.

In some connections it is useful to derive a general expression which will
give the heat content change at any temperature; this may be done by the
general integration of equation (12.7), which yields

AH = AH, + f AC»dT, (12.15)
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where the integration constant AH, may be regarded as the difference in
the heat contents of products and reactants if the substances could exist at
the absolute zero, and if the expression for ACp were valid down to that
temperature. Upon inserting the general equation (12.12) into (12.15) and
carrying out the integration, the result is

AH = AH, + AaT + 308T? + 3A¢T3 + - - -. (12.16)

The values of Aa, AB, Ay, etc., are presumed to be known from heat
capacity data, and so a knowledge of AH at any one temperature will permit
the integration constant AH, to be calculated. Insertion of the results in
(12.16) then gives an equation for the heat of reaction as a power series
function of temperature. The result will be applicable over the same
temperature range only as are the empirical heat capacity constants «,
8, v, ete.

Problem: The standard heat of formation AH? of ammonia gas is — 11.03

keal. mole™! at 25° C; utilizing the data in Table II, derive a general expression
for the heat of formation applicable in the temperature range from 273° to 1500° K.

The reaction is
1N.(9) + $H.(g) = NHa(p),

and hence,
ACp = Cp(NHs, g) — [3Crp(N2, g) + §Cp(Hy, g)].
Cp(NH,;) = 6.189 4 7.787 X 10-3T — 0.728 X 1077
3$Cp(N,) = 3.225 + 0.707 X 10T — 0.0404 X 107"
3$Cp(H,y) = 10.421 — 0.300 X 10737 + 0.7212 X 107%7?,
ACp = — 7.457 4+ 7.38 X 103T — 1.409 X 107372 cal. deg.™!

AH® = AH) — 7.457T 4 % X 7.38 X 107372 — } X 1.41 X 107°T" cal.
= AH} — 7.46 X 10737 4 3.69 X 107872 — 0.47 X 10~°T? kecal. mole™1,

At 25° C, i.e., 298° K, the value of AH? is — 11.03 kcal., and hence it is found
from this equation that AH{ is — 9.13 kcal., so that

AH = — 9.13 — 7.46 X 10737 + 3.69 X 107872 — 0.47 X 10772 kcal. molet.

Although the examples given above have referred to reactions involving
only gases, the equations derived, e.g., (12.7), (12.14), (12.15), etc., can be
applied to any chemical reaction. In the evaluation of ACp by equation
(12.8) or (12.9), the appropriate nCp term must be included for every react-
ant and product, irrespective of its form. If the variation of the heat ca-
pacity with temperature of the solids or liquids concerned can be represented
by an expression of the form of (9.24), then equations such as (12.14) and
(12.16) can still be employed. Otherwise, the appropriate equations can be
derived without difficulty.

Problem: The variation with temperature of the heat capacity of carbon
(graphite), between 273° and 1373° K, is given by

Cp = 2,673 + 2.52 x 1072T + 1.17 X 10°T~2 cal. deg.”? g. atom™,
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Utilizing data already available derive a general expression for the heat of the
reaction

C(s) 4+ H:0(g) = CO(g) + Ha(g)

as a function of the temperature, in the range specified above.
From Table II and the expression given above for the heat capacity of carbon,

ACp = [Cr(CO, g) + Cp(Hs, 9)] — [Cr(C, 5) + Cp(H:0, g)]
= 3.397 — 3.36 X 10T — 0.066 X 10772 — 1.17 X 10°T2 cal. deg.™

Hence, by equation (12.15), after converting ACp into kcal. deg.™,

AH = AH, + fAdeT

= AH, + 3.397 X 10T — 1.68 X 1072 — 0.022 X 10—°7T*
+ 1.17 X 10271 keal.

The (standard) heats of formation of H,O(g) and CO(g) at 25° C are — 57.80 and
— 26.42 keal. mole™, respectively, so that AH for the given reaction is 31.38 keal.
at 25° C, i.e., 298° K. Inserting these values in the result just obtained, AH, is
found to be 30.13 kcal., and hence AH can now be calculated at any temperature

in the specified range.

121. Heat Changes of Reactions in Solution.—When a reaction takes
place in solution, or when one or more of the reactants or products are in
solution instead of the pure state, the heat change is affected just as for a
phase change. This is because the formation of a solution is almost in-
variably accompanied by a change of heat content, that is, heat is evolved
or absorbed. The heat change per mole of solute dissolved, referred to as
the heat of solution, is not a constant quantity, however, for it depends upon
the amount of solvent. In other words, the heat of solution at a given tempera-
ture varies with the concentration of the solution. When a solute, e.g., a solid,
gradually dissolves in a particular solvent, the composition of the solution
changes from pure solvent to the final solution. The heat of solution per
mole at any instant thus varies during the course of the solution process;
this quantity, known as the ‘“differential heat of solution’ will be considered
more fully later (Chapter XVIII).

At the present time, the matter of interest is the total heat change per
mole of solute when solution is complete; this is the integral heat of solution.
Thus, if AH is the total change of heat content when m moles of solute are
dissolved in a definite quantity, e.g., 1,000 grams, of solvent, the integral
heat of solution is equal to AH/m. The integral heats of solution for various
solutions of hydrochloric acid, of different molalities, at 25° C, are given
below.

Molality (m) 0.139 0.278 0.555 .11

Moles H.O/Moles HCI 400 200 100 50
AH/m - 1770 —-17.63 — 1754 — 17.40 keal.
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If the heat changes are extrapolated to infinite dilution the integral heat
of dilution is found to be — 17.88 kcal. per mole; thus, when 1 mole of
hydrogen chloride is dissolved in a large quantity of water, so as to form an
extremely dilute solution, the total heat evolved is 17.88 keal. at 25° C.
Results analogous to those quoted above have been obtained with other
solutes of various kinds, not necessarily gaseous in nature. Because of the
interaction between hydrogen chloride and water, however, the heats of
solution are unusually large. Further, as for gases in general, AH/m is
negative in this case. For solids which do not interact with the solvent, as
is the case with most hydrated salts in water, the integral heat of solution is
usually positive.*

One consequence of the variation of the heat of solution with the compo-
gition of the solution is that dilution of a solution from one concentration to
another is also accompanied by a heat change. Consideration of the change
of heat content per mole at any instant in the course of the dilution process,
known as the ‘“differential heat of dilution,” will be left to a subsequent
chapter. The net change per mole of solute associated with the dilution of a
solution from one concentration to another is the integral heat of dilution.
For example, using the data for hydrochloric acid given above, it is possible
to write

HCI(g) + 400H,O(!) = HCI(400H,0), AH = — 17.70 keal.
HCl(g) + 50H,0(l) = HCI(50H,0), AH =— 17.40

so that by subtraction,
HCI(50H,0) + 350H,0(!) = HCI(400H,0), AH = — 0.30 kcal.

The dilution of the HCI(50H,0), i.e., 1.11 molal, to the HC1(400H,0), i.e.,
0.139 molal, solution is thus accompanied by the evolution of a total amount
of 0.30 kcal. per mole of hydrogen chloride, at 25° C. By utilizing the ex-
trapolated heat of solution at infinite dilution, the integral heat of dilution
of any solution to infinite dilution can be calculated in an analogous manner.
Thus,
HCl(g) + 50H,0(l) = HCI(50H0) AH = — 17.40 keal.
HCl(g) + ag = HCl(ag) AH =— 17.88
so that,
HCI(50H,0) + ag = HCl(ag) AH = — 0.48 keal.

As indicated in § 12b, the symbol aq implies a large amount of water, so that
HCl(aq) refers to an infinitely dilute solution of hydrochloric acid.

The consequence of heats of solution in connection with the heat changes
in chemical reactions may be illustrated by reference to the reaction between
ammonia and hydrogen chloride. If the gaseous reactants are employed and
the product is solid ammonium chloride, the change may be represented by

NHi(g) + HCl(g) = NH,CI(s) AH = — 41.9 keal.
* A number of values of heats of solution are given in Table 6 at the end of the book.
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If the ammonium chloride eventually occurs in an aqueous solution contain-
ing 1 mole of the salt to 200 moles of water, then use is made of the known
integral heat of solution, viz.,

NHCI(s) 4+ 200H,0(!) = NH(CI(200H,0) AH = 3.9 kcal.,
so that by addition
NHa(g) + HCl(g) + 200H,O(l) = NH,CI(200H,0) AH = — 38.0 koal.

Since the integral heat of solution varies to some extent with the concen-
tration of the ammonium chloride solution, this result is applicable in par-
ticular to the composition of solution specified.

If the reaction takes place between aqueous solutions of ammonia and
hydrochloric acid, the thermochemical equations are as follows:

NHi(g) + 100H,O(l) = NH;(100H.0) AH = — 8.5 keal.
HCl(g) + 100H,O({) = HCI(100H,0) =— 175

which, combined with the result obtained above, gives
NH,(100H,0) + HCI(100H,0) = NH,CI(200H,0) AH = — 12.0 keal.

Direct experimental measurement of the heat change of the reaction between
aqueous solutions of ammomnia and hydrochloric acid has confirmed the
calculated result.

When applying the Kirchhoff equation, in order to determine the varia-
tiou with temperature of the heat content change accompanying a reaction
in solution, the heat capacity to be employed is a special quantity, called
the “partial molar heat capacity.” This quantity will be described in
Chapter XVIII, in connection with a general discussion of the properties
of substances in solution.

13. FLamE AND ExPrLOSION TEMPERATURES

13a. Maximum Reaction Temperatures: Flame Temperatures.—In the
foregoing treatment of thermochemical changes it has been supposed that
the reaction takes place at constant temperature, and that the heat liberated
(or absorbed) is removed (or supplied) by the surroundings. It is this
quantity of heat which is recorded as the heat of reaction. It is possible,
however, to conceive the reaction taking place under adiabatic conditions,
so that no heat enters or leaves the system. For a constant pressure process,
as is usually postulated, this means that AH will be zero. In a reaction
performed adiabatically the temperature of the system will change, so that
the products will be at a different temperature from that of the reactants.
If AH at constant temperature is positive, i.e., heat is absorbed, the tem-
perature of the adiabatic system will fall, but if AH is negative, the tempera-
ture will rise during the course of the reaction. From a knowledge of heats
of reaction and of the variation with temperature of the heat capacities of
the reactants and products, it is possible to calculate the final temperature
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of the system. This temperature is of particular interest in connection with
the combustion of gaseous hydrocarbons in oxygen or air. In such cases it
gives the maximum flame temperature, the actual temperature being some-
what lower because of various disturbing factors.

Several different procedures, all based on the same fundamental prin-
ciples, are available for calculating the maximum temperature attainable in
a given reaction. The simplest is to imagine the reaction taking place at
ordinary temperature (25° C), assuming this to be the initial temperature
of the reactants, and then to find to what temperature the products can be
raised by means of the heat evolved in the reaction.

Problem: The heat of combustion of methane is — 212.80 keal. at 25° C; the
difference in the heat contents of liquid water and vapor at 1 atm. pressure at
25° Cis 10.52 keal. Using the data in Table II calculate the maximum tempera-
ture of the flame when methane is burnt in the theoretical amount of air (10, to
4N,) at 25° C and constant pressure, assuming combustion to be complete.

Since the water will ultimately be in the form of vapor, at the high tempera-
ture, the value of AH at ordinary temperatures is required with water vapor as
the product; thus,

CH.(g) + 204(g) = CO4(g) + 2H.O(1), AH g3 = — 212.80 keal.
2H,0(l) = 2H,0(g), AHggs = 2 X 10.52
8o that

CHu(g) + 20:(g) = COa(g) + 2H:0(g),  AHzs = — 191.76 keal.

It may now be supposed that this quantity of heat is utilized to raise the tempera-
ture of the products, consisting of 1 mole CO,, 2 moles H.O and 8 moles of Ny,
which were associated in the air with the 2 moles of O; used in the combustion of
1 mole of CHy. If 7':is the maximum temperature attained in the combustion,
then the heat required to raise the temperature of the products from 25° C, i.e.,
298° K, to T, must be equal in magnitude to the heat of reaction, but opposite in
sign. The sum of AH for the temperature increase and AH for the reaction must
be zero, so that AH for the whole (adiabatic) process is zero, as postulated above.
If Z(nCp), is the total heat capacity of the products, then the heat required to
raise the temperature from 298° K to T, i.e., AH (heating), is given by

AH (heating) = — AHs(reaction) = f TZZ(nCp),dT. (13.1}
In the present case, o

T (nCp); = Cp(CO:) + 2 X Cp(H:0, g) + 8 X Cr(N»),
and from Table II,

Cp(CO,) = 6.396 + 10.100 X 1037 — 3.405 X 10~°7*
2 X Cp(H:0, g) = 14.438 + 4.748 X 10T + 0.534 X 107"
8 X Cp(N,) = 51.592 4+ 11.300 X 1073T — 0.646 X 10~°T?,

so that
> (nCp); = 72.43 + 26.15 X 10737 — 3.517 X 107¢T* cal. deg.™?
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Upon inserting this result into equation (13.1), with AH(heating) equal to
— AHps(reaction), i.e., 191.76 keal. or 191,760 cal., it follows that

101,760 = [72.43T + } X 26.15 X 103T* — § X 3.517 X 10~T*]7%,
= 72.43(T; — 298) + 13.08 X 10—[T? — (298)*]
— 1.172 X 10~[T? — (208)*],
214,470 = 72.43T: + 13.08 X 10—T? — 1.172 X 10~°T%.

Solving by the method of successive approximations, it is found that T, is about
2250° K or 1980° C.

13b. Calculated and Actual Flame Temperatures.—The calculated maximum
flame temperature for the combustion of methane in the theoretical amount of
air is seen to be nearly 2000° C. Similar results, approximately 2000° C, have
been estimated for several hydrocarbons, and also for carbon monoxide and
hydrogen. Actual flame temperatures have been determined in a number of cases,
the values being about 100° below those calculated.?

There are several reasons why the results obtained in the manner described
are higher than the experimental flame temperatures. In the first place, it is
unlikely that the reaction can be carried out under such conditions that the process
is adiabatic, and no heat is lost to the surroundings. Further, it is improbable
that the theoretical quantity of air will be sufficient to cause complete combustion
of the hydrocarbon. In practice, excess air must be used, and since the tempera-
ture of the additional oxygen, as well as that of the large amount of accompanying
nitrogen, must be raised by the heat of the reaction, the temperature attained will
be lower than if combustion were complete in the theoretical amount of air. The
effect of any “‘inert”” gas not utilized in the reaction can be readily seen by per-
forming the calculation in the problem given above on the basis of the assumption
that the methane is completely burnt in the theoretical amount of pure oxygen.
The maximum temperature is found to be over 4000° K, so that the presence of
nitrogen in the air lowers the theoretical maximum by nearly 2000°. By the same
procedure it is also possible to calculate the maximum flame temperature when a
hydrocarbon is burnt in excess of air; the “products’ will then include the oxygen
remaining when the combustion is complete, in addition to the nitrogen and the
actual reaction products. The value for methane, for example, will be found to
be less than 2250° K.

Another reason why observed flame temperatures are lower than the calculated
values is that at the high temperature attained in a burning hydrocarbon, dissocia-
tion of the water vapor into hydrogen and oxygen, or hydrogen and hydroxyl, and,
especially, of the carbon dioxide into carbon monoxide and oxygen is very appreci-
able. These reactions involve the absorption of considerable amounts of heat,
allowance for which should be included in the calculation. From a knowledge of
the equilibrium constants of the dissociation reactions and their variation with
temperature it is possible, by a series of approximations, to obtain a more accurate
estimate of the flame temperature. For most common hydrocarbons the results
derived in this manner, for combustion in air, are of the order of 100° lower than
those which neglect dissociation. For combustion in oxygen, when the tempera-
tures are much higher, the discrepancy is greater.

Finally, it may be mentioned that the combustion of a hydrocarbon is not the
relatively simple process represented by the usual chemical equation. Various

3 Jones, Lewis, Friauf and Perrott, J. Am. Chem. Soc., 53, 869 (1931).
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compounds other than carbon dioxide and water are frequently formed, and so
the heat of reaction is not equal to the value determined from measurements in an
explosion bomb, in the presence of a large excess of oxygen, at ordinary temperatures.

13c. Influence of Preheating Reacting Gases.—Apart from the use of oxygen,
the temperature of a hydrocarbon flame may be increased by preheating the
reacting gases. In the calculation of the maximum temperature it is necessary to
obtain, first, the value of, or an expression for, AH for the reaction at the tempera-
ture to which the gases are heated; the method described above may then be used.
An alternative procedure is, however, as follows. The heat of reaction at any
temperature T, is given by equation (12.15), i.e.,

Ty
AH (reaction) = AH(reaction) + f ACpdT. (13.2)
1]

The increase in the heat capacity ACp may be represented by
ACp = X (nCp); — 2 (nCp);, (13.3)
as in equation (12.9), so that (13.2) becomes

T Ty
AH(reaction) = AH,(reaction) + f > (nCp) AT — f 2 (nCp):dT. (13.4)

On the other hand, the expression for AH for the heating of the products, from the
initial temperature T, to the final (maximum) temperature T, is

AH (heating) = f T’Z(nCp)/dT. (13.5)

T

Since the sum of the two AH values given by equations (13.4) and (13.5) must be
zero, it follows that

T2 Ty
AH(reaction) + f > (nCp)dT — f > (nCp)idT = 0. (13.6)

The value of AH(reaction) and the heat capacities of the reactants and products
may be presumed to be known, and so it is possible to calculate the maximum
temperature T'; for any given initial temperature T'; of the reactants.

An alternative treatment makes direct use of AHr(reaction) at any tempera-
ture T, e.g., 25° C, thus avoiding the necessity of first calculating AH(reaction);
in this case equation (13.4) takes the form

T T
AHr(reaction) = AH(reaction) + f > (nCp)dT — f > (nCp)dT,

and combination with (13.6) gives

AHr(reaction) + T’Z(nCp),dT - f TlZ(nCp).dT = 0, (13.7)
T

T

where, as before, T'; is the temperature to which the resctants are preheated, and
T, is the maximum temperature attainable in the reaction under adiabatic condi-
tions at constant pressure. It is of interest to note that if T, is made identical
with T, so that the heat of reaction AHy is given at the initial temperature of the
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reacting gases, equation (13.7) becomes identical with (13.1). Further, if T is
taken as 0° K, AHr becomes equivalent to AH, and then equation (13.7) reduces
to (13.6). Hence, equation (13.7) may be taken as the general expression, ap-
plicable to all cases, which may be modified according to circumstances.

13d. Maximum Explosion Temperatures and Pressures.—The methods de-
scribed in the preceding section, e.g., equation (13.7), may be used to calculate the
maximum temperature, often referred to as the explosion temperature, attained in
a combustion reaction at constant volume, instead of at constant pressure. The
only changes necessary are (a) the replacement of the AH value at constant pres-
sure by AF at constant volume, and (b) the use of the heat capacities at constant
volume, i.e., C'y, instead of those for constant pressure. The conversion of AHp
to AEy, i.e., of Qp to Qv, can be made with sufficient accuracy by means of equa-
tion (12.3), and failing other information the heat capacity Cv of a gas may be
taken as 2 cal. deg.”* mole™ less than the value of Cp at the same temperature
(cf., however, § 21a). The explosion temperatures calculated in this manner repre-
sent maximum values, for the reasons given in connection with flame temperatures.

From the maximum temperature, the pressure attained in an explosion at
constant volume can be estimated, utilizing the approximation that the gas laws
are applicable. The additional information required is either the original pressure
or the volume of the vessel and the quantities of the gasesinvolved. The pressures
calculated in this manner are, of course, maximum values, and are based on the
supposition that the system is in a state of thermodynamic equilibrium when the
rapid combustion is completed. This condition is unlikely to be satisfied by the
system; nevertheless, the results give a good indication of the maximum pressure
accompanying an explosive reaction.

Problem: A mixture of hydrogen gas and the theoretical amount of air, at
25° C and a total pressure of 1 atm., is exploded in a closed vessel. Estimate the
maximum explosion temperature and pressure, assuming adiabatic conditions. In
order to simplify the calculation, the mean heat capacities C » of nitrogen (8.3 cal.
deg.”! mole™?) and of water vapor (11.3 cal. deg.”* mole™?), for the temperature
range from 25° to 3000° C, may be used; they may be regarded as independent
of the (moderate) pressure.

The value of AH for the reaction
Ha(g) + 302(9) = H.O(g),

is known to be — 57.8 kecal. at 25° C, and since An is here — 4, it follows from
equation (12.3) that Qy(or AE) is — 57,500 cal., since RTAn is equal to — 300 cal.
For the present purpose, equation (13.7) or (13.1) takes the form

T2
AE + | S (nCy)dT =0,
98

2
and since the mean heat capacities are to be used,

AE + ¥ (nCv)(T: — 298) = 0.

In the present case 3_(nCv); is equal to Cy(H.0, g) + 2 X Cy(N3), since 2 moles
of nitrogen, associated with the 4 mole of oxygen employed in the combustion of
the mole of hydrogen, are included in the “products.” Assuming Cy to be less
than C» by 2 cal. deg.~! mole™}, it follows from the data, that 3 (nCy),is 9.3 + 2
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X 6.3 = 21.9 cal. deg.”*. Hence,

- 57,600 + 21.9(T; ~ 298) = 0,
T, = 2920° K.

The maximum explosion temperature is thus about 2800° K, which is considerably
higher than the corresponding flame temperature; the latter is found to be about
2400° K.

The maximum pressure is derived from the ideal gas equation. The original
gas, at 1 atm. and 298° K, consisted of 1H,, 40:and 2N, whereas the final gas at
2920° K consists of 1H,0 and 2N.. Since PV = nRT, with V and R constant,
it is easily shown that the maximum explosion pressure is

3 2920
=35 X 208

In the foregoing treatment the calculation of the maximum pressure involves
a knowledge of the heat capacities of the products. This procedure has been
reversed in a method for determining heat capacities, first used by R. Bunsen
(1850) and improved by M. Pier (1908). A known amount of a mixture of two
volumes of hydrogen and one of oxygen and a definite quantity of the gas whose
heat capacity is to be measured, are placed in a steel bomb. The gases are then
exploded by a spark, and the maximum pressure attained is measured. From this
the corresponding temperature can be calculated by using the ideal gaslaw. Since
the heat capacity of the water vapor is known, the mean heat capacity of the
experimental gas, which must be inert in character, can be calculated. Data
extending to very high temperatures have been obtained in this manner.

P, = 8.4 atm.

14. CarcuraTioN oF Hear oF REAcCTION

14a. Heats of Combustion.—A number of methods have been proposed
for the calculation of heats of formation and combustion from a knowledge of
the formula of the substance concerned. Although the results obtained are
not always accurate, they are useful when experimental data are not avail-
able. An examination of the heats of combustion of organic compounds
shows that isomeric substances have almost the same values, and that in any
homologous series there is a change of 150 to 160 keal. per mole for each CH,
group. These results suggest that each carbon and hydrogen atom that is
burnt to carbon dioxide and water, respectively, contributes a more or less
definite amount to the heat of combustion. There is a possibility, therefore,
of developing approximate rules relating the composition of the given sub-
stance to its heat of combustion.

One such rule (W. M. Thornton, 1917) ¢ is that the heat of combustion
is about — 52.5n kcal. per mole, where n is the number of atoms of oxygen
required to burn a molecule of the compound. Heats of combustion calcu-
lated in this manner are in satisfactory agreement with observation for
hydrocarbons, e.g., octane (CsHis): calculated, — 1312 kecal., observed,

¢ Thornton, Phil. Mag., 33, 196 (1917); for more exact rules applicable to paraffin
hydrocarbons, seq Rossini, Ind. Eng. Chem., 29, 1424 (1937); Ewell, ibid., 32, 778 (1940);
Prosen and Roessini, J. Res. Nat. Bur. Stand., 34, 263 (1945).
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— 1307 kcal.; benzene (C¢Hs): calculated, — 787 kcal., observed, — 782
keal., but are less satisfactory for compounds containing oxygen, e.g., suc-
cinic acid (CHeO0,4): calculated, — 367 kcal., observed, — 356 kcal.; sucrose
(C12H34011): calculated, — 1260 kcal., observed, — 1350 kcal. Although
the results were meant to apply to heats of combustion at constant volume,
i.e., AE, they are certainly not sufficiently accurate to permit of a distinction
between AE and AH. Further, no allowance is made for the state, e.g.,
solid, liquid or gaseous, of the compound under consideration, for the errors
are probably greater than the latent heats.

In its simplest form, the method proposed by M. S. Kharasch (1929) *
is virtually the same as that just described. The molar heat of combustion
of a liquid compound at constant pressure is equal to — 26.05z kcal., where
z is the number of valence electrons of carbon not shared with oxygen in the
original substance, but which are shared with oxygen, i.e., in carbon dioxide,
when combustion is complete. In general, z is equal to twice the number
n of oxygen atoms utilized in the combustion of a molecule, so that this rule
is equivalent to stating that the heat of combustion is — 52.1n keal. per mole.
However, Kharasch has realized the necessity for including allowances for
various types of structure in the compound, and by the use of these correc-
tion factors results have been obtained which are within one per cent, or less,
of the experimental heats of combustion.

It is perhaps unnecessary to mention that from a knowledge of the heat
of combustion, the heat of formation of the compound from its elements can
be calculated (§ 12g). The results will not be very accurate for, as indicated
earlier, they usually involve the difference between two relatively large
numbers, one of which, namely the estimated heat of combustion, may be
appreciably in error.

14b. Bond Energies and Heat of Reaction.—A more fundamental ap-
proach to the problem of calculating heats of formation and reaction is by
the use of bond energies. By the bond energy is meant the average amount
of energy, per mole, required to break a particular bond in a molecule and
separate the resulting atoms or radicals from one another. Thus, the C—H
bond energy is one-fourth of the amount of energy required to break up a
mole of methane molecules into separate, i.e., gaseous, carbon atoms and
hydrogen atoms. There are good reasons for believing that different ener-
gies are required to remove the successive hydrogen atoms, one at a time,
from a methane molecule, but the so-called bond energy is the mean value.
From a knowledge of heats of dissociation of various molecules into atoms
and of the standard heats of formation of others, it has been possible to
derive the mean energies of a number of different bonds. Some of these
values, as calculated by L. Pauling (1940), are given in Table VII; ¢ they
are based on 125 kcal. per g. atom as the heat of vaporization of carbon.
For the C=0 and C==N bonds the energies vary to some extent with the
nature of the compounds; thus for C==0, it is 142 kcal. in formaldehyde,

$ Kharasch, J. Res. Nat. Bur. Stand., 2, 359 (1920).
¢ L. Pauling, “The Nature of the Chemical Bond,” 2nd ed., 1840, pp. 53, 131.
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149 kcal. in other aldehydes, and 152 kcal. in ketones, acids and esters. The
energy of the C=N bond is 150 kcal. in most cyanides, but 144 keal. in
hydrogen cyanide.

TABLE VII. BOND ENERGIES IN KCAL. PER MOLE

Bond Energy Bond Energy
H—H 103.4 keal. H—I 71.4 kcal.
c—C 58.6 C—N 48.6
Cl—Cl1 57.8 c—0 70.0
Br—Br 46.1 C—Cl 66.5
I—I 36.2 C—Br 54.0
C—H 87.3 C—1 45.5
N—H 83.7 0=0 118
O0—H 110.2 N=N 170
H—Cl 102.7 C=C 100
H—Br 87.3 C=C 123

For C=0 and C=N, see text.

By the use of the bond energies in Table VII it is possible to derive satis-
factory heats of formation and reaction in many cases, provided the sub-
stances involved do not contain certain double-bonded compounds. When-
ever wave-mechanical resonance is possible, the energy required to dissociate
the molecule, as calculated from the results given above, is too small. It is
necessary in such instances to make allowance for the ‘‘resonance energy.” 7
Although this varies from one compound to another, its value is approxi-
mately 38 keal. mole~! for benzene and its simple derivatives, 75 kcal. mole™!
for naphthalene compounds, 28 keal. per mole for carboxylic acids, and 24
kecal. mole~! for esters.

Suppose it is required to determine the standard heat of formation of

‘ethane, that is, the heat of the reaction

2C(s) + 3H:(g) = C.Hae(y).

This may be regarded as equivalent to the vaporization of 2 g. atoms of
solid carbon, requiring 2 X 125 kcal., the breaking of 3 moles of H—H
bonds, requiring 3 X 103.4 kecal., the resulting atoms are then combined to
form one C—C bond, yielding 58.6 kcal.,, and six C—H bonds, yielding
6 X 87.3 kcal. in ethane. The gain in energy, which may be taken as AH,
accompanying the formation of ethane at ordinary temperatures is thus
given by

AH = [(2 X 125) + (3 X 103.4)] — [58.6 + (6 X 87.3)] = — 22.2 keal.

The value determined experimentally from the heat of combustion is -~ 20.24
kcal. at 25° C. From the heat of formation, it is possible to calculate the
heat of combustion, using the known heats of formation of carbon dioxide
and water. Theoretically, it should be possible to evaluate the heat of

7 See, for example, L. Pauling, “The Nature of the Chemical Bond,” 2nd ed., 1940,
Chap. IV; 8. Glasstone, “Theoretical Chemistry,” 1944, Chap. IIL
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combustion directly, but in doing so allowance should be made for the
resonance energy of carbon dioxide, 33 kcal. per mole.

Problem: Utilize bond and resonance energies to evaluate the heat of com-
bustion of benzoic acid.

The reaction is
Ce¢H;COOH + 730:; = 7CO; + 3H:0,

and the bond energies are as follows:

Reactants Products
Bonds: Bonds:
4C—C 234.4 kcal. 14C=0 2128 keal.
3C=C 300 60—H 661
5C—H 436.5 Resonance:
C=0 152 7CO. 231
c—O0 70 ——
O0—H 110.2 3020 keal.
730=0 885
Resonance:
Benzene ring 38
Carboxyl 28
2254 kcal.

The increase of heat content for the combustion is thus 2254 — 3020 = — 766 kcal.
(The experimental value is — 771 keal. at 25° C.)

The bond energies recorded in Table VII are based on data for substances
in the gaseous state; strictly, therefore, they should be used for reactions
involving gases only. However, molar heats of fusion and vaporization are
usually of the order of 1 to 10 kcal.; hence, provided equal numbers of
molecules of solids and liquids appear on both sides of the chemical equation,
the conventional bond energies may be employed to yield results of a fair
degree of accuracy.

EXERCISES *

1. The heat of hydrogenation of ethylene (C:H,) to ethane (C:Hs) is — 32.6
keal at 25° C. Utilizing the heat of combustion data in Table VI, determine the
change of heat content accompanying the cracking reaction n-butane (C,Hy) —
2C,H, + H, at 25° C.

2. The heats of combustion of n-butane and isobutane are — 688.0 and
— 686.3 kcal., respectively, at 25° C. Calculate the heat of formation of each
of these isomers from its elements, and also the heat of isomerisation, i.e.,
n-butane — isobutane, at 25° C.

3. Calculate AHp and AEy at 25° C for the reactions

CeHo(g) + 730, = 3H,0(l) + 6CO4
CeH(l) + 740; = 3H,0(g) + 6CO;,

* Unless otherwise specified, heat capacity and heat content data will be found in
Tables II and V, respectively, or at the end of the book.
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using heat of formation data. The heat of vaporization of benzene is 103 cal. g.—!
and that of water is 583.6 cal. g.~! at 25° C.

4. Calculate the change in heat content for the reaction occurring in the lead
storage battery, vis.,

Pb + PbO; 4 2H.S0, (in 20%, aq. soln.) = 2Pb80O, + 2H.0 (in 20% H.S0,soln.),

assuming the volume of solution to be so large that its concentration does not
change appreciably. The integral heat of solution (AH) of sulfuric acid in water
to form a 209%, solution is — 17.3 keal. mole™ at 25° C. The heat of formation of
water in the acid solution may be taken as the same as for pure water.

5. The change of heat content for the reaction

80s(ag) + Cli(g) + 2H.0(l) = H,804(aq) + 2HCl(ag)

is — 74.1 keal. at 25° C. The integral heats of solution (AH) at infinite dilution
of sulfur dioxide, sulfuric acid and hydrochloric acid are — 8.5, — 23.5and — 17.9
kcal., respectively. Determine the heat of formation of pure sulfuric acid from
its elements.

6. Taking the mean molar heat capacities of gaseous hydrogen, iodine and
hydrogen iodide as 6.95, 8.02 and 7.14 cal. deg.”?, respectively, calculate the heat
of formation of hydrogen iodide from the gaseous elements at 225° C. The heat
of sublimation of solid iodine is 58.5 cal. g.7* at 25° C.

7. The heat of solution of zinc in very dilute hydrochloric acid solution is
— 36.17 keal. per g. atom, but in a solution consisting of HCL.100H,0, the heat
of solution is — 36.19 kcal. The integral heat of solution of 1 mole zinc chloride
in 200 moles water is — 15.30 kcal.,, and in an infinite amount of water it is
— 16.00 kcal. What is the integral heat of infinite dilution of the HC1.100H.O
solution per mole of HCI?

8. Derive a general expression for the variation with temperature of the change
of heat content for the reaction

H:S(g) + 1301(g) = H:0(g) -+ SO2(g).

Calculate the value of AH at 800° K.
9. Derive a general expression for the variation with temperature of the
standard heat change of the reaction

Zn0(s) + C(s) = Zn(s) + CO(yg).

Calculate the value of AH° at 600° K.

10. Determine the maximum flame temperature when methane is burnt with
the theoretical amount of air (105 t0 4N} at 25° C and constant pressure, assuming
combustion to be 809, complete. Dissociation of the prcducts at high tempera-
tures may be neglected.

11. Carbon monoxide is mixed with 25% more than the ainount of air (10; to
4N,) required theoretically for complete combustion, and the mixture is preheated
to 500° C. Determine the maximum flame temperature, assuming the carbon
monoxide to be completely converted into the dioxide.

12. A small quantity of liquid ethanol is placed in an explosion bomb together
with twice the theoretical amount of oxygen at 25° C and 1 atm. pressure. Taking
the heat of vaporization of the alcohol as 9.5 kcal. mole™ at 25° C, calculate the
maximum explosion temperature and the maximum explosion pressure, assuming
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adiabatic conditions and ideal behavior. The combustion of the ethanol is to be
taken as complete, with water vapor and carbon dioxide as the sole products.

13. Compare the maximum flame temperatures for the complete combustion
of (i) acetylene, (ii) hydrogen gas containing 2%, by weight of atomic hydrogen,
in the theoretical amount of oxygen, originally at 25° C, at 1 atm. pressure. For
the reaction 2H = H,, the value of AH is ~ 103.4 kcal. at 25° C; the heat capacity
of atomic hydrogen may be taken as independent of temperature, with Cp equal
to 5.0 cal. deg.”! mole™.

14. A mixture of equimolecular amounts of hydrogen and carbon monoxide,
together with the theoretical quantity of air (10, to 4N;) for the combustion, at
a total pressure of 5 atm. at 25° C, is exploded in a closed vessel. Estimate the
maximum temperature and pressure that could be attained, assuming combustion
to be complete. The heat capacity data in Table II may be regarded as being
applicable in the required pressure range, and the gases may be treated as behaving
ideally.

15. Sulfur dioxide at 550° C is mixed with the theoretical amount of air,
assumed to consist of 21 moles O; to 79 moles N, at 25° C, and the mixture is
passed into a converter in which the gases react at 450° C. Assuming virtually
complete conversion, how much over-all heat is liberated for each mole of sulfur
trioxide formed?

16. Steam at a temperature of 150° C is passed over coke at 1000° C, so that
the reaction C(s) + H.O(g) = CO(g) + Ha(g) takes place with an efficiency of
80%, i.e., 20% of the steam remains unreacted; the gases emerge at 700° C.
Calculate the amount of heat which must be supplied per kg. of steam passing over
the coke; the heat capacity of the latter may be taken as equal to that of graphite.

17. The reaction C(s) + 40:(g) = CO(g) is exothermic, whereas C(s) + H,0(g)
= CO(g) + Ha(g) is endothermic; theoretically, therefore, it should be possible to
pass a mixture of steam and air (10, to 4N;) over heated coke so that its tempera-
ture remains constant. Assuming virtually complete reaction in each case, esti-
mate the proportion of steam to air, both preheated to 100° C, which should
maintain the temperature of the coke at 1000° K.

18. According to Prosen and Rossini (see ref. 4), the heat of formation of a
gaseous normal paraffin containing more than five carbon atoms at 25° C is given
by — 10.408 — 4.926n kcal. mole™?, where n is the number of carbon atoms in
the molecule. Calculate the heat of formation of gaseous n-hexane (C¢H;,) and
compare the result with those given by the rules of Thornton and of Kharasch,
and with the experimental value derived from the heat of combustion.

19. Estimate from the bond energies the approximate heat changes for the
following gaseous reactions: (i) H; 4+ 40, = H,0, (ii) C,H + Br; = C;HBr,,
(iii) CHsI + H.O = CH;OH + HI, (iv) 3CH;COCH; (acetone) = C¢H;3;(CHj)s
(mesitylene) + 3H,0.

20. Determine AH for the reaction

CH,;COCH;()) + 204(g) = CHsCOOH() + COa(g) + H:O(g),

taking the heats of combustion of liquid acetone and acetic acid as — 427 and
— 209 kcal., respectively. Compare the result with that derived from bond
energies allowing for the resonance energy in carbon dioxide and acetic acid.



CHAPTER VI
CALCULATION OF ENERGY AND HEAT CAPACITY

15. CrassicaL THEORY

15a. The Kinetic Theory of Gases.—The treatment of heat capacities
given in the preceding chapters has been based partly on the use of thermo-
dynamic relationships, and partly on experimental data relating to the actual
heat capacities and their variation with temperature. The results and con-
clusions are, therefore, independent of any theories concerning the existence
and behavior of molecules. However, by means of such theories valuable
information has been obtained of a practical character, having a definite
bearing on thermodynamic problems. For this reason, consideration will
be given to certain theories of heat capacity, especially as some of the prin-
ciples involved will be required in another connection at a later stage.

If it is postulated that an ideal gas consists of rapidly moving, perfectly
elastic particles, i.e., the molecules, which do not attract each other, and
which have dimensions negligible in comparison with the total volume of
the gas, it is possible by the application of the laws of classical mechanics
to derive an expression for the gas pressure. This approach to the study of
gases, known as the kinetic theory of gases, leads to the result

PV = }Nma, (15.1)

where P is the pressure of the gas, V is the volume containing N molecules
of mass m, and ¢ is the mean square of the velocities of the molecules at the
experimental temperature. If this result is combined with the equation of
state for 1 mole of an ideal gas, viz., PV = RT, is found that

iNmc® = RT,
INm& = 3RT, (15.2)

where N is now the Avogadro number, i.e., the number of individual mole-
cules in one mole. Since the mean kinetic energy of translation per molecule
is §mc?, it follows that $Nmc is equal to the total translational energy of the
mole of gas; if this is 1epresented by E..., equation (15.2) gives

E.. = $RT. (15.3)

15b. Kinetic Theory and Heat Capacity of Monatomic Gases.—If the
energy of a molecule is supposed to be entirely translational,* then E,.. as
* Monatomic molecules undoubtedly possess other forms of energy, e.g., electronic and

nuclear, but these may be regarded as being independent of temperature. It will be seen
from equations (9.9) and (9.11) that only energy which varies with temperature can affect

95



96 CALCULATION OF ENERGY AND HEAT CAPACITY 15¢

given by equation (15.3) may be identified with the energy content E of 1
mole of gas, so that by equation (9.9) the molar heat capacity at constant
volume is *

Cy = (g—;‘)v = iR. (15.4)

The molar heat capacity of an ideal gas, whose energy is that of translational
motion only, should thus have a constant value, independent of temperature
as well as of pressure (§ 9e), namely §R. Since R is 1.987 cal. deg.”! mole™,
it follows that

Cy = 2.980 cal. deg.”! mole™.

It was seen in § 9g that for an ideal gas Cr — Cy = R, so that for the gas
under consideration,
Cp=Cv+R=%R
= 4,967 cal. deg.”! mole™!. (15.5)

The ratio of the heat capacities of the gas at constant pressure and volume,
respectively, is given by equations (15.4) and (15.5) as

Cr _ 5 = 1.667. (15.6)
Cv
For certain monatomic gases, such as helium, neon, argon, and mercury
and sodium vapors, the ratio of the heat capacities at moderate temperatures
has been found to be very close to 1.67, as required by equation (15.6). The
values of the individual heat capacities at constant pressure and constant
volume are 5.0 and 3.0 cal. deg.”! mole™?, respectively, in agreement with
equations (15.5) and (15.4). It appears, therefore, that for a number of
monatomic gases the energy of the molecules, at least that part which varies
with temperature and so affects the heat capacity, is entirely, or almost
entirely, translational in character (see, however, § 16f).
15c. Polyatomic Molecules: Rotational and Vibrational Energy.—For
gases consisting of molecules containing two or more atoms, the ratio of the
heat capacities is less than 1.67, under ordinary conditions, and the values
of Cp and Cy are larger than those given above. The only exceptions are
the diatomic molecules hydrogen and deuterium, for which equations (15.4)
and (15.5) have been found to apply at very low temperatures, about 50° K.
However, the values are not constant, as they often are for monatomic
molecules, and at ordinary temperatures Cp and Cy have increased to ap-
proximately 6.9 and 4.9 cal. deg.”! mole™!, respectively; the ratio is then
about 1.4, as it is for most other diatomic gases, e.g., nitrogen, oxygen,
carbon monoxide, hydrogen chloride, etc., (§ 10e). In each case, further

the heat capacity, and so these other forms of energy can be neglected for the present.
Polyatomic molecules also possess rotational and vibrational energy; these vary with tem-
perature and so contribute to the heat capacity (§ 15¢).

* Since FE.,. is independent of the volume, the partial differential notation in equation
(15.4) is unnecessary, but it is retained here and subsequently for the sake of consistency.
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rise of temperature causes the heat capacities to increase, although the differ-
ence between Cr and Cy always remains equal to about 2 cal. deg.~! mole-!,
provided the pressure is not greatly in excess of atmospheric.

The reason why the heat capacities of polyatomic molecules are larger
than the values given by equations (16.4) and (15.5) is that molecules of this
type possess rotational energy and vibrational energy, in addition to the
energy of translation. The rotational energy of a polyatomic molecule is
due to the rotation of the molecule as a whole about three (or two) axes at
right angles to one another, and vibrational energy is associated with the
oscillations of the atoms within the molecule. The inclusion of these ener-
gies in the energy content of the molecule, and their increase with rising
temperature, accounts for the discrepancy between the actual behavior of
polyatomic molecules and the theoretical behavior described in § 15b. At
sufficiently low temperatures the effect of the rotational energy and, espe-
cially, of the vibrational energy becomes inappreciable; this explains why
hydrogen and deuterium behave like monatomic gases in the vicinity of
50° K, i.e., — 220° C. Other polyatomic gases would, no doubt, exhibit a
similar behavior, but they liquefy before the rotational energy contribution
to the heat capacity has become negligible. The decrease of Cp and Cy to
5 and 3 cal. deg.”! mole™, respectively, although theoretically possible, can
thus not be observed.

15d. Principle of Equipartition of Energy.—The contributions of the
vibrational and rotational motions to the energy and heat capacity of a
molecule can be calculated by classical methods, and although the results
are not correct, except at sufficiently high temperatures, for reasons to be
explained later, the procedure is, nevertheless, instructive. According to
the principle of the equipartition of energy,! each kind of energy of a molecule
that can be expressed in the general form ax?, referred to as a “square term”’
or “quadratic term,” where x is a coordinate or a momentum, contributes
an amount 4R7T to the average energy of 1 mole. The translational (kinetic)
energy of a molecule is equal to $m(i* 4+ 3* + %), where %, y and 2 represent
the components of its velocity in three directions at right angles. The
momentum p., for example, is equal to m#, and so the energy is given by
(p? + py + p:)/2m, thus consisting of three quadratic terms. By the prin-
ciple of the equipartition of energy, therefore, the translational energy should
be 3 X 3RT, i.e., 3RT, in agreement with equation (15.3).

The rotational energy of a molecule, assumed to be of constant dimen-
sions, is proportional to the square of the angular momentum, so that each
type of rotation is represented by one square term, and thus should con-
tribute 4R T per mole to the energy content. A diatomic molecule, or any
linear molecule, exhibits rotation about two axes perpendicular to the line
joining the nuclei. The rotational energy of a diatomic, or any linear,

1R. C. Tolman, “The Principles of Statistical Mechanics,” 1938, pp. 93 e seg.; R. H.
Fowler and E. A. Guggenheim, ‘“‘Statistical Thermodynamics,” 1939, pp. 121 et seg.; J. E.
Mayer and M..G. Mayer, “Statistical Mechanics,” 1940, pp. 144 et seg.; 8. Glasstone,
“Theoretical Chemistry,” 1944, pp. 300 et seq.
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molecule should thusbe 2 X }RT,i.c., RT, per mole. A nonlinear molecule,
on the other hand, can rotate about three axes, so that the rotation should
contribute 3 X 4RT, i.e., $RT, per mole to the energy of the system.

The energy of a harmonic oscillator is given by the sum of two quadratic
terms, one representing the kinetic energy and the other the potential energy
of the vibration. By the equipartition principle, the energy is thus expected
to be 2 X 3RT, i.e.,, RT, per mole for each possible mode of vibration. In
general, a nonlinear molecule containing n atoms possesses 3n — 6 modes of
vibration, so that the vibrational energy contribution should be (3n — 6)RT
permole. Diatomic and linear molecules, however, have 3n — 5 vibrational
modes, and the vibrational energy is expected to be (3n — 5)RT per mole.

15e. Classical Calculation of Heat Capacities.—For a diatomic molecule
two types of rotation are possible, as seen above, contributing RT per mole
to the energy. Since there are two atoms in the molecule, i.e., n is 2, there
is only one mode of vibration, and the vibrational energy should be BT per
mole. If the diatomic molecules rotate, but the atoms do not vibrate, the
total energy content E will be the sum of the translational and rotational
energies, i.e., 3BT + RT = §RT, per mole; hence,

—_ aE - 5
Cy(tr. + rot.) (6T)y 3R,
so that the heat capacity at constant volume should be about 5 cal. deg.!
mole~!. The same result would be obtained if there is vibration of the
atoms in the diatomic molecule, but no rotational motion. If, however, the
molecule rotates and the atoms also vibrate, the energy content should be
3RT + RT + RT i.e., $RT, per mole; then

oE

Cy(tr. + rot. + vib.) = (__)

a7 ), = ¥

v
that is, about 7 cal. deg.~ mole™.

The heat capacities of the diatomic gases, hydrogen, oxygen, carbon
monoxide and hydrogen chloride, are all very close to 5 cal. deg.”! mole!
at ordinary temperatures. It appears, therefore, that in these diatomic
molecules there is either vibration or rotation, but not both, the rotational
motion being the more probable. According to the classical equipartition
principle, the value of Cy should remain at 5 cal. deg.~ mole* with increas-
ing temperature, until the other type of energy, i.e., rotation or vibration,
respectively, becomes excited; the heat capacity at constant volume should
then increase sharply to 7 cal. deg.”! mole~!. This is, however, quite con-
trary to experience: the heat capacity increases gradually, and not suddenly,
as the temperature is raised. Even at 2000° C, the heat capacities Cy of
hydrogen, nitrogen, oxygen and carbon monoxide are only 6.3, although that
of hydrogen chloride is 6.9 cal. deg.”? mole~l. For chlorine gas the value of
Cy is already 6.0 at ordinary temperatures, and becomes equal to 7.0 cal.
deg ~! mole™ at about 500° C; it then increases, very slowly, to 7.2 cal. deg.~*
mole™! at 2000° C.
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16. QuanTuM STATISTICAL THEORY OF HEAT CAPACITY

16a. Quantum Theory of Energy.—It is clear that as far as diatomic
molecules are concerned the experimental heat capacities and their variation
with temperature are not entirely consistent with the equipartition principle;
the same is found to be true for other polyatomic molecules. In every case,
however, the theoretical heat capacity is approached, or slightly exceeded,
as the temperatureis raised. Nevertheless, the approach is gradual, whereas
the classical treatment would imply a sudden change from one value to
another. An attempt to overcome this discrepancy was made by suggesting
that the development of a new type of motion, with increasing temperature,
did not occur with all the molecules at the same time. Thus, at any tem-
perature a gas might consist of a mixture of molecules, some of which were
rotating and not vibrating, but others were rotating as well as vibrating.
However, no adequate theoretical treatment could be developed to account
quantitatively for the experimental facts.

A much more satisfactory and complete interpretation of the observa-
tions is provided by the quantum theory, according to which a molecule
acquires its energy in the form of definite amounts or quanta. As far as trans-
lational energy is concerned, the quanta are so small that the energy is taken
up in a virtually continuous manner. As a result, the behavior corresponds
to that required by the classical theory. Rotational quanta are also small,
although considerably larger than those of translational energy; hence, at
ordinary temperatures nearly all the molecules possess appreciable amounts
(quanta) of rotational energy. The energy contribution is again in good
agreement with that required by the equipartition principle, i.e., RT per
mole, for each type of rotation.

The vibrational quanta, on the other hand, are much larger, and at
ordinary temperatures the vibrational energy of most molecules is that of
the lowest quantum level. In this event, the vibrational energy does not
affect the heat capacity, as is the case for the majority of diatomic molecules.
As the temperature is raised the molecules acquire increasing numbers of
quanta of vibrational energy, with the result that the contribution to the
heat capacity increases toward the classical value of R, i.e., about 2 cal.
deg.”! mole™, for each mode of vibration. This accounts for the steady
increase of the heat capacities at constant volume of several diatomic mole-
cules from 5 at ordinary temperatures to 7 cal. deg.”! mole™! as the tempera-
ture is raised. With chlorine, the vibrational energy quanta are not too
large, because the binding energy of two chlorine atoms is smaller than that
for most other diatomic molecules (cf. Table VII). Consequently, the num-
ber of molecules possessing one or more quanta of vibrational energy in-
creases with temperature, even at normal temperatures; hence, the molar
heat capacity Cv of chlorine already exceeds §R at 0° C, and reaches {R at
about 500° C. The quantum theory thus permits of a qualitative explana-
tion of the heat capacity observations for diatomic molecules, and also of
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other molecules. It will now be shown that a quantitative interpretation
is also possible.

16b. The Partition Function.—The molecules of a gas do not all have the
same energy; in fact any value of the energy, consistent with the requirement
that it shall be made up of whole numbers of the various quanta, e.g., of
translational, rotational and vibrational energy, is possible. However, it
can be shown by the methods of statistical mechanics that at each tempera-
ture there is a particular distribution of the total energy of a gas among
its constituent molecules which is much more probable than any other
distribution.?

Consider a system, such as an ideal gas, consisting of a total number of
N molecules which do not atiract or repel each other. According to the quan-
tum theory, the energy of each molecule at any instant must have a definite
value involving a specific number of quanta. Let ¢; represent the energy,
in excess of the lowest possible value, of one of these permitted states of the
molecules. It has been shown by the methods of wave mechanics that even
at the absolute zero a molecule would still possess a definite amount of
energy, particularly vibrational energy; this quantity, referred to as the
zero-point energy of the molecule, is the lowest value which acts as the refer-
ence level postulated above. Suppose N, is the number of molecules in this
lowest energy state, and N; is the number in the level in which the energy is
&. 'The most probable energy distribution among the molecules, contained
in & vessel of constant volume, at the absolute temperature 7, is then given

by statistical mechanics as
N; = N o/}, (16.1)

where k, known as the Boltzmann constant, is equal to the molar gas constant
R divided by the Avogadro number.* The foregoing result is an expression
of the Maxwell-Boltzmann law of the distribution of energy. Although the
law was derived from classical mechanics, it has been found that, at all tem-
peratures above the lowest, quantum considerations lead to a result which
is almost identical with that given by equation (16.1). One modification is,
however, necessary: this is the introduction of a statistical weight factor g,
representing the number of possible quantum states having the same, or
almost the same, energy e;. The appropriate form of the energy distribution

law is then

Ni = Mo ggmannr, (16.2)

do

where g, is the statistical weight of the lowest energy level.
If the various energy values, represented by the general term ¢;, are ¢,
€, €, etc., and the numbers of molecules possessing these energies are Ny,

2 For a fuller treatment of this subject and of other matters considered in this chapter,
see the works mentioned in ref. 1.

* The Boltzmann constant k is usually expressed in ergs deg.~!; thus R is 8.814 X 10’
ergs deg.~! mole™! and the Avogadro number is 6.023 X 10* mole™}, so that k is 8,314 X 107/
6.023 X 10 = 1.380; X 107 erg deg.™.
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N,, N,, ete., or N, in general, then the total number of molecules N is equal
to the sum of these individual numbers; that is,

N=No+Ni+ N2+ -+ +N;+ .-

= %‘.’ (goe—0/*T + gre=1/*T 4 ... 4 ge—wlAT 4 ...)
(]

where go, g1, g2, etc., are the statistical weights of the respective levels. This
result may be put in the form

N =05 geuin, (16.3)
o i=0

where the summation is taken over all integral values of ¢, from zero to
infinity, corresponding to all possible energy states of the molecules. The
summation term in equation (16.3) is known as the partition function of the
molecule, and is represented by the symbol Q *; thus,

Q = goe—-tolhT + gle—quT + gze—czlkT e + g'.e-—u‘/kT + .o

= i gie—eiIRT, (16.4)

=0

It follows, therefore, from equations (16.3) and (16.4) that N,/go = N/Q;
substituting this result in (16.2) it is seen that the distribution law may be
written in the form

N; = —gg;e“"/”. (16.5)

16c. Energy, Heat Capacity and the Partition Function.—Since, in
general, N; molecules each possess energy e;, the total energy content, in
excess of the zero-level value, of the molecules in the 7th level is Ne;; the
total energy, in excess of the zero level, of the whole system of N molecules
is then given by the sum of all such terms. If E is the actual energy content
of the N molecules and E, is the total energy when they are all in the lowest
possible level, then

E—'E0=No€o+N161+N2€2+"‘+Nf€.'+"', (166)
and hence, by equation (16.5)

E - E, = g(goeoe‘“’”‘" + grere™VET oo 4 gieeme T L L) (16.7)
Upon differentiating equation (16.4), which defines the partition func-

tion, with respect to temperature, the volume being constant, as postulated
above, and multiplying the result by k7%, it is found that

oT
* This should not be confused with the heat quantity for which the same symbol is used.

kT? (@) = goeoe"“/"" + glﬂe—ulkT + --- + g;e.e““”"' + .-
| 4
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It is evident, therefore, that equation (16.7) may be written as

— 5= V(90 _ e (220 .
E—-E, = Q(aTv NkT(aT ,

If the system under consideration consists of 1 mole of gas, N is the Avogadro
number and Nk is equal to R, the molar gas constant; the expression for the
energy content per mole is then

dlnQ
E - E,=RT?*|{ —=< ) - 16.
- (t59),
Finally, differentiation of equation (16.8) with respect to temperature, at
constant volume, remembering that E, is constant, gives

- (2E) _ |2 ,91In Q@
Cv = (aT v [aT(RT aT )]v’ (16.9)

for the molar heat capacity of an ideal gas system at constant volume. The
value of Cp can then be obtained by the addition of R, in accordance with
equation (9.29). The result expressed by equation (16.9) is applicable to any
gas, provided the forces between the molecules are small, that is to say, pro-
vided the gas is almost ideal. Corrections for deviations from ideal behavior
can be made if necessary (§ 21d).

In order to simplify the computation of heat capacities from partition
functions it is often convenient to utilize the fact thaé equation (16.9) can
be converted into the form

b5 o

Q; = — Z %g.e’"’”‘" and QII = Z (f]é)z g‘e—ﬁ/kT.

By means of the equations derived above it should be possible to calcu-
late the heat capacity of a gas at any temperature provided information
concerning the partition function is available. The problem is thus reduced
to a study of the evaluation of this property of a molecular species.

16d. Separation of Energy Contributions.—The energy values €, €5, . . .,
€, ..., used in the definition of the partition function [equation (16.4)]
refer to the total energy of a single molecule, including the translational,
rotational and vibrational contributions; allowance must also frequently be
made for the electronic energy because the molecules are not necessarily all
in a single electronic energy level. This is the case, for example, for a
number of monatomic substances, such as atomic oxygen and the halogens,
which have multiplet electronic levels at ordinary temperatures, and excited
electronic states for which allowance must be made at higher temperatures.

* It should be noted that @' = 9Q/a(1/T') and Q" = 3*Q/o(1/T).

where
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For most common polyatomic molecules, with the exception of oxygen and
nitric oxide, the electronic contribution to the partition function is virtually
a factor of unity at ordinary temperatures, so that it can be ignored. At
high temperatures, however, it becomes important and must be taken into
consideration. There is also a nuclear effect on the partition function, but
this may be neglected for the present (cf., § 24j).

If the various forms of energy of a molecule may be regarded as com-
pletely separable from one another, which is probably justifiable, at least as
far as electronic, translational and combined rotational and vibrational
energies are concerned, it is possible to write

e=e¢t+eatete
or
e—c/lcT —_— e—ulkT X e—u/kT X e—er/kT X e_!v/kT, (16.11)

where ¢ is the total energy per molecule, and e., ¢, ¢ and ¢, represent the
separate electronic, translational, rotational and vibrational contributions,
respectively. It is evident from equation (16.11) that each exponential
term in (16.4), which defines the partition function, may be taken as the
product of a number of terms of the same type, one for each kind of energy.
Further, the statistical weight factor g is equal also to the product of the
separate factors for the various forms of energy. As a result, the complete
partition function @ may be divided into a number of factors,* viz.,

Q@ =Q: X QX Q XQy (16.12)

where Q., Q:, Q- and Q, are called the electronic, translational, rotational
and vibrational partition functions, respectively. Each of these is defined
by an expression identical in form with equation (16.4), but in which g and
erefer to the particular type of energy under consideration. The subdivision
of the total partition function into a number of products, each characteristic
of one type of energy, greatly simplifies its evaluation.

It will be observed from equations (16.8) and (16.9) that the energy and
heat capacity of a gas depend on the logarithm of the complete partition
function. Since the latter is equal to the product of the factors for the
several forms of energy, the total energy content and heat capacity of the
molecules will he equal to the sum of the contributions obtained by inserting
the appropriate partition functions in the aforementioned equations. Thus,
from equation (16.12),

InQ=mnQ.4+mQ + ---,
so that
dlnQ _ dln Q. +6an,
aT oT aT
* This result follows from the mathematical fact that the product of sums is equal to
the sum of the products.

+ ...,
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Consequently, by equation (16.8),

—E = ,9_15_@) x(M)
E - E, RT( o), TR ()

and similarly for the heat capacity. This result is the basis of the procedure
which will now be adopted for the derivation of expressions for the energy
and heat capacity of various types of molecules. It may be mentioned, in
anticipation, that the only partition function factor which is dependent on
the volume is the translational contribution; hence, in all other cases the
partial differential notation, with the constant volume restriction, need not
be used.
16e. Translational Partition Function.—Since all molecules, monatomic
or polyatomic, possess translational energy, the corresponding contribution
to the partition function will be considered first. This is determined by
utilizing the expression
n2h?
€n = oot

for the component in one direction of the translational energy of a molecule,
derived by means of wave mechanics; n is a quantum number which may
have any integral (or zero) value, m is the mass of the molecule which is
confined in a box of length [ in the direction parallel to the given energy com-
ponent, and & is the Planck (quantum theory) constant, i.e., 6.624 X 10—%
erg sec. The statistical weight of each translational level is unity, and so
the partition function for translational motion in one direction is given by
equation (16.4), after inserting the energy expression from (16.13), as

(16.13)

Qt(l) = Z e e kT — i e—n’h’/Sml’kT’ (1614)

n=0

the summation being carried over all values of the quantum numbers from
zero to infinity. Since translational levels are very closely spaced,* the
variation of energy may be regarded as being virtually continuous, instead
of stepwise, as it actually is. The summation in equation (16.14) may thus
be replaced by integration, so that

*n
o242 mi2
Q) :j e~ SmIET gp
0

- ( 2emkT)
h

* This can be shown by inserting the value for m, for any molecular species, in equation
(16.13), together with the Planck constant; taking ! as 1 cm., for example, the energy
separation of successive quantum levels can then be found by setting n = 1, 2, etc. The
result may thus be compared with 34T, the average translational energy of a single molecule
in one direction. The latter will be found to be of the order of 10'? times the former, at
ordinary temperatures, showing that the t{ranslational quantum levels must be closely
spaced.

1z
— . (16.15)




16f QUANTUM STATISTICAL THEORY OF HEAT CAPACITY 105

The contribution of each of the components of the translational energy,
in three directions at right angles, is represented by equation (16.15), and
the complete translational partition function is obtained by multiplication
of the three identical expressions; thus,

Q = (—2”%71)"—2 v, (16.16)

where * has been replaced by V, the volume of the gas.

Problem: Calculate the translational partition function for 1 mole of oxygen
at 1 atm. pressure at 25° C, assuming the gas to behave ideally.

Since the pressure is given, it is convenient to replace V in equation (16.16)

by RT/P, so that
0, = (2xmkT)¥* RT
- h P

It can be readily shown that Q. is dimensionless, so that all that is necessary is to
see that numerator and denominator are expressed in the same units. In this
case, m, k and h are known in c.g.s. units, P is 1 atm., so that R should be in
cc.-atm. deg.”! mole~. The mass m of the oxygen molecule is equal to the mo-
lecular weight 32.00 divided by the Avogadro number, i.e., 5.313 X 1072 g. The
temperature T is 298.2°; hence,

(2 X 3.1416 X 5.313 X 1072 X 1.380 X 107'¢ X 298.2)¥2 82.06 X 298.2
(6.624 X 107?7)? 1.000

Q=

4.28 X 10%,

If the expression for the translational partition function is inserted into
equation (16.8), it is readily found, since =, m, k, h and V are all constant,
that the translational contribution E, to the energy, in excess of the zero-
point value, is equal to $RT per mole, which is precisely the classical value.
The corresponding molar heat capacity at constant volume is thus $R. As
stated earlier, therefore, translational energy may be treated as essentially
classical in behavior, since the quantum theory leads to the same results as
does the classical treatment. Nevertheless, the partition function derived
above [equation (16.16)] is of the greatest importance in connection with
other thermodynamic properties, as will be seen in Chapter IX.

16f. Electronic States: Monatomic Gases.—Many monatomic substances,
as well as a few polyatomic molecules, e.g., oxygen, nitric oxide and nitrogen
dioxide, have multiplet electronic ground states. That is to say, in their normal
states there are two or more different electronic levels with energies so close to-
gether that they may be considered as a single level with a statistical weight factor
greater than unity. Inaddition to this possibility, there may be excited electronic
states, whose energy is appreciably greater than that of the normal (ground) states.
Such excited states become increasingly occupied as the temperature is raised.
In cases of this kind the electronic partition function is greater than unity and
varies with temperature; its value must be determined for the calculation of
energies and heat capacities.
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The statistical weight factor of each electronic level, normal or excited, is
equal to 2j + 1, where j is the so-called “‘resultant’”’ quantum number of the atom
in the given state. The expression for the electronic factor in the partition func-

tion is then given by
Qo = (2 + 1)e/*T, (16.17)

where ¢, is the energy of the electronic state in excess of the lowest state, i.e., the
ground state. In the ground state, the energy e, is zero, so that the exponential
factor e*/*T is unity. The contribution of this state to the electronic partition
function is thus 2j 4+ 1. For helium, neon, etc., and mercury, the value of j in
the lowest energy state is found to be zero, from the spectra of these atoms; hence,
2j + 1 is unity, and since no higher (excited) level need be considered, the elec-
tronic partition function factor is also unity, and so can be disregarded. Even if
27 + 1 were not unity, the effect on the energy and heat capacity would still be
zero, for these quantities are dependent on derivatives of the logarithm of the
partition function with respect to temperature [ef. equations (16.8) and (16.9)].
Provided the ground state of the atom is the only state which need be considered,
Q. is 2j + 1, where j refers to the ground state, and hence it is an integer which
is independent of temperature; the contribution to £ and Cy will consequently
be zero.

It appears from spectroscopic studies that helium, neon, argon and mercury
atoms are almost exclusively in a single (ground) state and that higher (excited)
electronic energy states are not occupied to any appreciable extent, except at very
high temperatures. These gases, therefore, behave in the manner required by the
classical treatment. The heat capacities of these monatomic substances are thus
equal to the translational value, i.e., 3R, at all reasonable temperatures. If ac-
curate observations could be made at high temperatures, however, a small in-
crease would be observed, because of the ozcupation of higher electronic levels.

For some atoms one or more electronic states above the ground state are ap-
preciably occupied even at moderate temperatures, and hence the appropriate
terms must be included in the partition function. For example, in the lowest state
of the chlorine atom, i.e., when e, is zero, the value of j is §; not very far above
this is another state in which 7 is 3. The electronic partition function for atomic
chlorine at ordinary temperatures is therefore given by equation (16.17) as

Qo = (2 X § + 1)e T 4 (2 X } + 1)e~*T
= 4 + 2T, (16.18)

where ¢, is the electronic energy of the upper level, in excess of the value in the
ground state. At higher temperatures other terms would have to be included for
electronic states of higher energy, but these may be neglected here. The value of
the energy ¢, is found from the spectrum of atomic chlorine; it is derived from the
separation of two lines whose frequencies, in wave numbers,* differ by 881 em.™1.
According to the quantum theory, the energy e corresponding to a frequency of

v cm.™! is represented by
€ = vhe, (16.19)

where % is the Planck constant and c is the velocity of light. Upon inserting the
values of h, ¢ and &k (see Table 1, Appendix), it is found that hc/k is 1.4385 cm.

* The frequency in “wave numbers,” or cm.™! units, is equal to the frequency expressed
in vibrations per second, i.e., sec.™® units, divided by the velocity of light, 2.9977 X 10w
cm, sec.™?,
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so that from equations (16.18) and (16.19) the electronic partition function for
atomic chlorine is found to be

Q. = 4 + 28T = 4 | Qg u0NT, (16.20)

Hence the electronic contribution to the energy content and the heat capacity at
any (moderate) temperature can be determined by means of equations (16.8) and
(16.9), respectively.

Problem: Calculate the electronic contribution to the heat capacity of atomic
chlorine at (i) 300° K, (ii) 500° K.

The calculation is most conveniently made by means of equation (16.10).

(i) At 300° K,

Q. = 4 + 2¢71268/300 = 4 (29,
., as defined in connection with equation (16.10), contains one term only, since

¢/k is zero for the lowest level; hence,

Q. = — 1268 X 27126530 = _ 37,02,

since ¢/k is 1268 for the higher level, as seen in equation (16.20). Q" also consists

of one term; thus,
QY = (1268)2 X 2¢71268/300 = 4,695 X 104,

Hence, by equation (16.10),
C. = R 4.695 X 10¢  (37.02\*
* T (300)2 4.029 4.029
= 0.128R = 0.254 cal. deg.”* g. atom™™..

(i) At 500° K,
Qe = 4 + 28—1268/500 = 4_158
Q. = — 1268 X 2¢71268/600 = — 20(.8
Q" = (1268)2 X 2¢™1268/500 = 2 546 X 108
C. = R [2.546 X 108 200.8 )2
* (500)2 4.158 <4.158
= 0.236R = 0.469 cal. deg.”! g. atom™,

The normai heat capacity of atomic chlorine, due to translational energy only, is
2R, i.e., 2.98 cal. deg.”! g. atom™), and so the electronic contribution would be

appreciable even at 300° K.

In general, an energy level, electronic or otherwise, can contribute to
the partition function if the exponential term ¢~**T has an appreciable
magnitude. As a very rough rule, it may be stated that if for any level ¢/k
is greater than about 57, then the contribution of that particular level may
be neglected at the temperature 7. As seen above, ¢/k is 1268 deg. for the
first excited level of atomic chlorine, and so this will affect the energy and
heat capacity at temperatures exceeding 1268/5, i.e., about 250° K. The
results in the problem given above show that at 300° K the electronic con-
tribution to the molar heat capacity of atomic chlorine is 0.128R, which is
quite appreciable. Since e~**T increases rapidly with increasing tempera-
ture, the effect- on the energy and heat capacity also becomes much more
apparent.
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The foregoing calculations show how the classical treatment, which does
not take into account the possibility of electronic states, would fail if applied
to atomic chlorine at temperatures exceeding about 250° K. The higher
the temperature the greater the discrepancy. It was perhaps fortunate that
the original prediction, based on the kinetic theory, that the molar heat
capacity of a monatomic gas should be $R at constant volume, independent
of the temperature, was confirmed first by measurements with mercury
vapor (A. Kundt and E. Warburg, 1876), and later with sodium vapor and
the inert gases of the atmosphere. Spectroscopic measurements indicate
that for the atoms of all these elements the energy difference between the
lowest and next electronic level is so great that temperatures of several
thousand degrees would be required for the second level to make an ap-
preciable contribution to the energy and heat capacity. If, like atomic
chlorine and, more particularly, atomic oxygen, the aforementioned sub-
stances had possessed low-lying electronic levels, discrepancies would have
been observed which would have proved inexplicable until the modern
development of the quantum theory.

16g. Diatomic Molecules: Electronic Partition Function.—In general,
for diatomic molecules the effect of electronic levels above the ground state
can be neglected, since the energy of the next state is usually so high as to
be of little practical interest. The energy separation between the lowest
and the next (excited) electronic level of the oxygen molecule is probably one
of the smallest for any diatomic substance, yet this excited level begins to
make a detectable contribution only at temperatures exceeding 2000° K.
For other molecules, therefore, still higher temperatures are necessary before
electronic states above the ground level have any noticeable effect on the
partition function. Consequently, it is evident that, for all ordinary pur-
poses, it is not necessary to consider any state other than the ground state
of a diatomic molecule. Nearly all such stable molecules, with the notable
exceptions of oxygen and nitric oxide, occur in a single electronic level, i.e.,
in a singlet state, and so the electronic partition function at all reasonable
temperatures is unity. In molecular oxygen, however, there are three very
closely spaced levels, i.e., a triplet state, and the electronic partition function
is 3.0. Similarly, nitric oxide has two such levels, i.e., a doublet state, and
so the electronic factor is virtually 2.0.* In neither case, however, is there
any detectable variation with temperature in the vicinity of 300° K, because
the energies of the excited electronic levels are so much higher than that of
the normal state. Hence, at temperatures below at least 2000° K the elec-
tronic contribution to the energy content or heat capacity is negligible for all
diatomic molecules. As mentioned earlier, the actual value of the electronic
partition function is important in another thermodynamic connection to be
discussed in a subsequent chapter.

* In nitric oxide, which is an exception among stable diatomic molecules, each level

has a multiplicity of two (A-type doubling), so that the electronic partition function is
actually 4.0.
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16h. Diatomic Molecules: Rotational Partition Function.—The value of
the energy of a molecule in any rotational level can be expressed in terms of
an integral (or zero) quantum number J, so that the rotational energy of
the Jth level may be represented by e;. The corresponding statistical
weight is 2J + 1, and the rotational factor in the partition function, apart
from nuclear spin effects, is given by

Qr = X (2 + 1)e/I*T, (16.21)

The rotational energies ¢; can be derived from a study of the spectrum of the
molecule, and the value of each (2J + 1)e—*//*T term can be calculated as J
takes on a series of integral values. It may seem, at first sight, that it would
be necessary to include a very large number of terms in the summation of
equation (16.21). However, this is not the case, for as J increases e; also
increases, and hence the exponential factor e~*//*T decreases even more
rapidly. The number of terms which contribute appreciably to the summa-
tion is therefore not so large as would at first appear.

For a diatomic molecule having two different nuclei, e.g., NO, HCI, OH,
ICl, and even HD, where the nuclei are of different isotopes, the rotational
quantum number J in equation (16.21) can have the successive values of
0, 1, 2, 3, etc., but for molecules possessing two identical atomic nuclei, e.g.,
H,, D;, O; and Cl,, this is not strictly true. In principle, all molecules of
the latter type can exist in “‘ortho” and “para’ states, the statistical weights,
(t + 1)(2¢ + 1) and (22 4 1), respectively, depending on the spin quantum
number % of the nucleus. If this quantum number is zero, the para states
have a statistical weight of zero, and hence have no actual existence; such
is the case, for example, with the most abundant isotopic form of molecular
oxygen, in which both nuclei have a mass number of 16. In one of the states,
either ortho or para, depending on various circumstances, the rotational
quantum number J can have even values only, i.e., 0, 2, 4, etc., and in the
other state it can be odd only, i.e., 1, 3, 5, etc. In order to obtain the com-
plete rotational partition function, it is necessary, therefore, to use the cor-
rect nuclear spin statistical weight and the proper rotational quantum num-
bers for each state when making the summation indicated in equation
(16.21). It may be pointed out that a nuclear spin factor should also be
included for molecules with dissimilar nuclei, but this has the same value for
all rotational levels, viz., (2¢ + 1)(2¢' + 1), where 7 and ¢’ are the spin
quantum numbers of the two nuclei.

For all diatomic molecules, with the exception of hydrogen below 300° K
and of deuterium below 200° K, a considerable simplification is possible for
temperatures above the very lowest. In the first place, the nuclear spin
factor may be ignored for the present (see, however, § 24j), since it is inde-
pendent of temperature and makes no contribution to the heat capacity.
The consequence of the nuclei being identical is then allowed for by intro-
ducing a symmetry number o, giving the number of equivalent spatial orienta-
tions that a molecule can occupy as a result of simple rotation. The value of
¢ is 2 for symmetrical diatomic molecules, and for unsymmetrical molecules
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it is unity. The rotational partition function is then given by

Q, = 1 i (2J + 1)e~es/*7, (16.22)

O J=0,1,23,

where J can have all integral values from zero to infinity. Since the sym-
metry number is constant for any given molecule, it does not actually affect
the heat capacity, but it is inserted here for the sake of completeness (see,
however, § 24k).

At temperatures at which the modification described above is permissible,
a further simplification is possible. The rotational energy of a rigid diatomic
molecule, i.e., one of fixed length, in any level of quantum number J, is
given by the expression

h?

e =JT +1) g5, (16.23)
where h is Planck’s constant, and 7 is the moment of inertia * of the molecule.
In the lowest energy level J is zero, so that e is zero; hence es as given by
equation (16.23) represents the rotational energy, in the Jth level, in excess
of the lowest, i.e., zero-point, value. This is the quantity, therefore, which
is to be used in the determination of the partition function. Inserting the
expression for e given by equation (16.23) in (16.22), it is seen that

Q. = _1_ i (2J + 1)e—J (R8T

O J=0,1,2,

Provided the moment of inertia is moderately large and the temperature
not too low, i.e., for diatomic molecules, other than hydrogen and deuterium,
virtually all temperatures at which they are gaseous, the summation may
be replaced by integration and, after neglecting certain small quantities, it
is found that

8= IkT
Q ="~ (16.24)
oh?
TABLE VIII. MOMENTS OF INERTIA OF DIATOMIC MOLECULES
Molecule Ig. cm? Molecule Ig cm?

H. 0.459 X 10~% N. 13.9 X 10~¢
HD 0.612 CO 14.5
D, 0.920 NO 16.4
HF 1.34 O, 19.3
OH 1.48 Cl, 114.6
HCl 2.66 IC1 245
HBr 3.31 Br, 345
HI 431 ) 743

* The moment of inertia of a diatomic molecule AB, consisting of two atoms whose
actual masses are ma and mp, is given by [mamp/(ma + mp)J?, where r is the distance
between the centers of the atoms.
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The moment of inertia can be derived from spectroscopic data or it can be
calculated from the dimensions of the molecule, so that the rotational par-
tition function can be determined. The values of the moments of inertia
of a number of diatomic molecules in their ground states are given in
Table VIII.®

Problem: Calculate the rotational partition function of (i) hydrogen gas,
(ii) iodine chloride gas, at 300° K.

(i) From Table VIII, the moment of inertia of molecular hydrogen is 0.459
X 104 g, cm.2, and its symmetry number o is 2; hence utilizing the known values
of k and A, it is seen from equation (16.24) that at 300° K,

0, = 8 X (3.14)2 X 0.459 X 10—° X 1.38 X 107'¢ X 300
r= 2 X (6.624 X 10-%7)

1.71.

(ii) For iodine chloride, I is 245 X 107 g. em.?, and since the symmetry
number is unity,

I

8 X (3.14)? X 245 X 10 X 1.38 X 1071¢ X 300
(6.624 X 10727)2

Q.
1820.

A consideration of the units will show that @, is dimensionless.

For the present purpose, it is not necessary to know the actual partition
function, but only its variation with temperature. For a rigid molecule 1
is constant, and since =, k and h are also constant, it is readily seen from
equation (16.24), using equations (16.8) and (16.9), that

r=RT2%=RT

oE,\ _
C. = ( aT )V =R
These results are identical with those obtained from the equipartition prin-
ciple (§ 15d), so that, as a good approximation, classical methods can be
used for the evaluation of the rotational energy and heat capacity of diatomic

gases, except hydrogen and deuterium, at all temperatures above the very
lowest.

and

16i. Rotational Heat Capacity of Molecular Hydrogen.—The spin quantum
number of the hydrogen (H) nucleus is 4, and at ordinary (and higher) tempera-
tures molecular hydrogen, in which the ortho and para forms have attained equi-
librium, consists of (¢ + 1)(2¢ + 1), i.e., three, parts of the former to #(2¢ + 1),
i.e., one, part of the latter. If the gas is cooled in the absence of a catalyst, the
relative amounts of ortho and para molecules remain unchanged. The so-called

3 Data mainly-adapted from G. Herzberg, ‘Molecular Spectra and Molecular Structure:
Diatomic Molecules,” 1939.
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“normal” hydrogen, which is the gas commonly used in experimental work, may
thus be regarded as consisting of a mixture of three parts of orthohydrogen and
one part of parahydrogen.* In order to determine the heat capacity of this gas
at any temperature it is necessary to evaluate the separate partition functions of
the ortho and para forms, and then to calculate the corresponding heat capacities;
the rotational heat capacity of “normal” hydrogen is then 3C,(ortho) + 1C,(para),
for the given temperature. The rotational partition function of orthohydrogen is

Q.(ortho) = (v 4+ 1)(2¢ + 1) i (2J + 1)e—wI*T,

J=1,8,6,¢¢¢

since only odd values of the rotational quantum number are associated with the
ortho states, and that of the para form is

Q-(para) = (21 + 1) i (2J + 1)e—e//*T,

J=0,2,4,¢

even values only of the rotational quantum number being permitted; the nuclear
spin factor has been included in each case.

It can be seen from equation (16.23) that the energy separation between suc-
cessive rotational levels is related in an inverse manner to the moment of inertia
of the molecule. For all gases, except H,, D, and HD, the rotational energy
separations are small enough for a large proportion of the molecules to occupy the
higher levels even at low temperatures. The behavior in respect to rotational
energy is therefore virtually classical under all reasonable conditions. With
hydrogen, however, the moment of inertia is so small (Table VIII), and the
separation between successive rotational energy levels so large, that a temperature
of about 300° K has to be reached before the gas can be treated in a classical
manner. In the vicinity of 50° K virtually all the molecules of hydrogen are in
their lowest possible rotational states; the quantum number J is then unity for
the ortho and zero for the para molecules. The respective partition functions

are now
Q.(ortho) = (¢ + 1)(2¢ + 1)e~ /4= IkT and Q-(para) = (2t + 1),

using the values of ¢s given by equation (16.23). It is evident from the appropri-
ate form of equation (16.9) that C,(ortho) and C,(para) will both be zero, and
hence the rotational heat capacity of “normal” hydrogen will also be zero at
temperatures of 50° K and below. As the temperature is raised additional terms
contribute to the rotational partition function, and the heat capacity increases.
By utilizing the e values derived from the spectrum of molecular hydrogen, the
rotational partition functions of the ortho and para forms have been determined
at & number of temperatures by summing the appropriate ge—“*7 terms in each
case. From these results the heat capacities of “normal’” hydrogen have been
calculated, and the values have been found to be in good agreement with measure-
ments made from 80° to 300° K. In fact, the heat capacities obtained from the
partition functions, after making allowance for departure from ideal behavior, are
probably more accurate than those derived from experiments at low temperatures.

* If ortho-para equilibrium is attained at every temperature, the proportion of the para
form will increase as the temperature is lowered from about 300° K. The system is then
known as “equilibrium” hydrogen. At 20°K it consists of almost 100 per cent para-

hydrogen.
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At temperatures of about 300° K and above, a sufficient number of
rotational energy levels contribute to the partition functions for the hydro-
gen gas to be treated in a classical manner. The rotational partition func-
tion will then be given by equation (16.24), and the corresponding heat
capacity will thus be R, as for other diatomic gases. Since deuterium has
a higher moment of inertia than ordinary hydrogen, a somewhat lower tem-
perature, namely, about 200° X, is sufficient for virtually classical behavior
to be attained.*

16j. Diatomic Molecules: Vibrational Partition Function.—The vibra-
tional factor in the partition function may be evaluated by using vibrational
energy values ¢, derived from spectroscopic measurements. The statistical
weight of each vibrational level is unity, and so the partition function is
merely equal to the sum of the e~*/*T terms. Except at high temperatures
the number of such terms having appreciable magnitudes is not large, and
the summation can be made without difficulty, if required. However, for
most purposes a simpler procedure is possible. The values of the energy
in the various quantum levels of a harmonic oscillator are given by the
&xpression

& = (v + }hew, (16.25)

where v is the vibrational quantum number which can be zero or integral;
h and c are, as usual, the Planck constant and the velocity of light, respec-
tively, and w em.™! is the vibration frequency, in wave numbers, of the given
oscillator. In the lowest energy level v is zero, and the vibrational energy,
i.e., the zero-point energy, is then given by equation (16.25) as 3hcw. The
vibrational energy of any level referred to the lowest energy state, which is
the value required for the partition function, is thus

& = (0 + Hhew — Lhew = vhew. (16.26)
The vibrational partition function is then determined by
Q= T eliT = 3 gmvheuliT, (16.27)
v=(0
The exponential factor is of the form ¢=*%, where x is hew/kT, so that

sz ic-ﬂu:1+e—z+e~—2z+e—3t+.,,

v=0

(1 — e, (16.28)

where

hew w
T = T 1.439T , (16.29)
and consequently,
Q. = (1 — e hwlFT)—1 = (] — g 1.48%/T)—1, (16.30)

¢ Dennison, Proc. Roy. Soc., A115, 483 (1927); Giauque, J. Am. Chem. Soc., 52, 4816
(1930); Davis and Johnston, ibid., 56, 1045 (1934); A. Farkas, ‘Orthohydrogen, Para-
hydrogen, etc.,”” 1935.
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This expression may be used for the vibrational partition function of a
diatomic molecule at all temperatures; the only approximation involved is
that the oscillations are supposed to be harmonic in nature. The anhar-
monicity correction must be made for precision calculations, but its effect
is not large. The only property of the molecule required for the evaluation
of Q, by equation (16.30) is the vibration frequency, which can be obtained
from a study of its spectrum. The values of this frequency for a number
of diatomic molecules are given in Table IX.5

TABLE IX. VIBRATION FREQUENCIES OF DIATOMIC MOLECULES

Molecule wcm.? Molecule w c¢m,™1
H, 4405 N, 2360
HD 3817 (0] 2168
D, 3119 NO 1907
HF 4141 02 1580
OH 3728 Cl; 565
HCI 2089 ICl1 384
HBr 2650 Br, 323
HI 2309 ) Y 214

Problem: Calculate the vibrational partition function of (i) molecular hy-
drogen, (ii) molecular chlorine, at 300° K, assuming them to be harmonic oscillators.

(i) For hydrogen, w is 4405 cm.™, and since hcw/kT is equal to 1.439w/7,
it follows that

Q.

(1 —_— e—l 439)(“05/300) 1
(1 — e 2-13)~1 = 1,000 (to several significant figures).

(ii) For chlorine, w is 565 cm.™1, and hence
Q. (1 — e~1-439X565/300)—1
(1 — e2T0)"1 = 1,072,

The vibrational contribution E, to the energy content, in excess of the
zero-level value, is obtained by inserting @, as represented by equation
(16.30) into (16.8); the result, omitting the partial differential notation
which is here unnecessary (§ 16d), is

dlnQ,
= 2
E, = RT a7
RT hew x
= FeT — 1 kT = RT prasant (16.31)

where, as defined by (16.29), x is equal to hcw/kT. Differentiation »f
equation (16.31) with respect to temperature then gives the vibrational
heat capacity; thus,*
ehewlkT hew \? ezx?
C, = R——————(em/” — ) ﬁ-) =R @ =1 N (16.32)

§ See ref. 3.
* The symbol C, for the vibrational contribution to the heat capacity should not be
confused with Cy which is the total heat capacity at constant volume.



16j QUANTUM BSTATISTICAL THEORY OF HEAT CAPACITY 115

The evaluation of the quantities in equations (16.31) and (16.32), referred
to as Einstein functions (cf. § 17b), is simplified by tables which give E,
and C, directly from z, i.e., from hcw/kT.®

At moderate temperatures hcw/kT is relatively large for many diatomic
molecules; the vibrational partition function is then close to unity, and E,
and C, are very small. This means that virtually all the molecules are in
their lowest, i.e., v = 0, vibrational level, and the vibrational contribution
to the energy and heat capacity will be zero. Such is found to be the case
for hydrogen, oxygen, nitrogen and carbon monoxide up to about 370° K,
as indicated earlier (§ 15e¢). As the temperature is raised hcw/kT decreases,
and the partition function increases accordingly. This means that increas-
ing numbers of molecules now occupy the higher, i.e., v = 1, 2, ete., vibra-
tional energy levels. The vibrational contributions to the energy and heat
capacity of the gas increase at the same time. At sufficiently high tempera-
tures hcw/kT becomes small enough for e*/*T — 1 to be virtually equal to
hcw/kT.* TUpon making this substitution in equation (16.31) it is seen that

E, = RT,
and hence
C, =R. (16.33)

The energy and heat capacity at high temperatures should consequently be
identical, as a first approximation, with the values given by the classical
equipartition principle.

The temperature at which hcw/kT becomes small enough for the behavior
to be classical depends on the vibration frequency w, which varies from one
molecular species to another (Table IX). There is, of course, no exact
temperature at which this condition arises, for the approach to classical
behavior, i.e.,, the transition from equation (16.32) to (16.33), must be
gradual. However, there is a rough temperature at which the vibrational
contributions to the energy and heat capacity become equal to the classical
values to a certain degree of accuracy, e.g., three significant figures. For
molecular hydrogen, w is large, viz., 4405 cm.™, and the vibrational heat
capacity does not attain the classical value of R per mole until a temperature
of about 3500° K. The vibration frequencies of nitrogen, oxygen and car-
bon monoxide are somewhat less than for hydrogen, but their behavior is
nevertheless not completely classical below 3000° K. With molecular chlor-
ine, on the other hand, the situation is changed, for the vibration frequency
is only 565 c¢m."%, and the vibrational contribution to the heat capacity
becomes R per mole at about 1000° K;; it is, in fact, quite considerable, more
than 1 cal. deg.”! mole™?, even at 300° K, thus accounting for the heat
capacity of chlorine being greater than for other diatomic molecules (§ 15e).

¢ Sherman and Ewell, J. Phys. Chem., 46, 641 (1942); see also, Wilson, Chem. Rev., 27,
17 (1940); Stull and Mayfield, Ind. Eng. Chem., 35, 639 (1943); H. S. Taylor and S. Glasstone,
“Treatise on Physical Chemistry,” 3rd ed., 1942, Chapter IV (J. G. Aston), Appendix 1.

* In the expopential expansion ¢* = 1 + = + 2*/2! + - -+, all terms beyond the second
may be neglected when 2 is small, so that ¢* = 1 4 z, and hence e* — 1 =~ z.



116 CALCULATION OF ENERGY AND HEAT CAPACITY 16k

Problem: Calculate the vibrational contribution to the molar heat capacity of
chlorine gas at 300° K, taking the vibration frequency as 565 cm.~!. Estimate
the total Cy for chlorine gas at 300° K.

In this case, since kc/k is 1.439 cm. deg.,

hew  1.439 X 565

¥ 300 2.71.

Either by insertion of this value in equation (16.32), or by the use of the tables of
Einstein functions, it is found that

C, = 0.56R = 1.12 cal. deg.”* mole™.

At 300° K, the translational and rotational contributions to the heat capacity will
be classical, i.e., R and R, respectively, making a total of §R or 4.97 cal. deg.™?
mole~!. If the vibrational contribution 1.12 is added, the total is 6.09 cal. deg.™?
mole™. (The experimental value which is not very accurate, is close to this
result; some difference is to be expected, in any case, because the calculations given
above are based on ideal behavior of the gas. The necessary corrections can be
made by means of a suitable equation of state, § 21d.)

16k. Diatomic Molecules: Combined Partition Functions.—The treat-
ment of the preceding sections has béen based on the assumption that vibra-
tional and rotational energies are independent; in other words, the approxi-
mation has been made of taking the molecules to be rigid, in spite of the
fact that the atoms vibrate. In addition, the vibration has been treated
as perfectly harmonic in nature. For the accurate evaluation of partition
functions, especially at moderate and high temperatures, it is necessary to
take into account the interaction of the vibrational and rotational motions
of the molecule, and to allow for the anharmonicity of the atomic oscilla-
tions. It is sufficient to state here that the information required for this
purpose can be obtained from spectroscopic measurements, although the
treatment of the data is not simple. Nevertheless, the calculations have
been carried out in a number of cases and the results are recorded in the
literature.

161. Polyatomic Molecules.—The general principles involved in the
evaluation of the partition function, and hence the energy and heat capacity,
of a molecule containing more than two atoms are quite similar to those
described for diatomic molecules. Unless there is definite evidence to the
contrary, as there is for nitrogen dioxide, which has an odd number of elec-
trons, it is supposed that the ground state of the molecule consists of a single
electronic level, and that excited states make no contribution to the total
partition function. The electronic contribution to the energy in excess of
the lowest level, and to the heat capacity may thus be taken as zero. Fur-
ther, a8 with monatomic and diatomic molecules, the translational energy
may be treated as classical at all feasible temperatures, so that the transla-
tional motion contributes §RT per mole to the energy content and 3R per
mole to the heat capacity.
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At all reasonable temperatures the rotational levels of a molecule con-
taining more than two atoms, like those of diatomic molecules, are occupied
sufficiently for the behavior to be virtually classical in character. Assuming
that the molecule can be represented as a rigid rotator, the rotational parti-
tion function, excluding the nuclear spin factor, for a nonlinear molecule is
given by
_ 8x%(8x*ABC)\*(kT)3?

ah3 ’

where A, B and C are the moments of inertia of the molecule with respect
to three perpendicular axes, and ¢ is the symmetry number (§ 16h). For
some molecules, e.g., NH;, PCl;, CHCl; and CH;Cl, two of the three mo-
ments of inertia, e.g., 4 and B, are equal, so that the product of inertia ABC
becomes A2C. For spherically symmetrical molecules, such as CH; and
CCly, A, B and C are equal, so that the product is A% If the nonlinear
molecule is planar, e.g., benzene and water, the sum of two of the moments
of inertia is equal to the third,i.e., 4 + B = C. The symmetry numbers of
some polyatomic molecules are as follows: CO,;, H,O, SO,(2); NH3(3); CH,,
CsHe(12). For HCN, N,O (i.e.,, NNO), COS, etc., ¢ is unity.

A linear molecule containing more than two atoms is analogous to a
diatomic molecule. It has two identical moments of inertia, and the rota-
tional partition function is given by the same equation (16.24) as for a
diatomic molecule.

The moments of inertia of a molecule can be derived from spectroscopic
data, or they may be calculated from the interatomic distances obtained by
electron diffraction methods. The values for a number of simple molecules
are given in Table X.7

Q- (16.34)

TABLE X. MOMENTS OF INERTIA OF POLYATOMIC MOLECULES

Molecule Moment of Inertia Molecule Moments of Inertia
HCN* 18.9 X 107% g, cm.? H,0 1.02, 1.92, 2.94 X 10~%
N,O* 66.9 H,S 2.68, 3.08, 5.76
CO,* 719 SO, 123, 73.2, 85.5
C.H,* 23.8 NH, 2,78, 2.78, 4.33
CH.t 5.27 CH,C1 5.46, 61.4, 61.4
CCLt 520 CH,Br 5.36, 85.3, 85.3

* Linear molecules.

t Spherically symmetrical molecules.

By differentiation with respect to temperature of @,, as given by equation
(16.34), remembering that all the quantities except T are constant, it is
readily found that E, is 3RT and C, is $R. These are the results to be ex-
pected from the equipartition principle for energy expressible in three square
terms, as would be the case for a nonlinear molecule containing more than

" Data mainly adapted from Landolt-Bornstein, Physikalisch-Chemische Tabellen,

5th ed., 3rd Supplement; G. Herzberz. “Infra-Red and Raman Spectra of Polyatomic
Molecules,” 1945,
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two atoms. Just as with diatomic molecules, excepting hydrogen and
deuterium, the rotational contributions to the energy and heat capacity may
be taken as the classical values at all temperatures.

As seen in § 15d, a molecule containing n atoms has 3n — 6 modes of
vibration if nonlinear, and 3n — 5 modes if linear. Each of these modes of
vibration contributes a factor of exactly the same form as equation (16.30)
to the over-all vibrational partition function; the latter is thus the product
of 3n — 6 (or 3n — 5) factors, each of the form (1 — e~*«/¥T)-1, The values
of the 3n — 6 (or 3n — 5) vibration frequencies are obtained from a study
of the various spectra of the molecule or by a comparison with the results
for related compounds. The vibration frequencies of some familiar mole-
cules containing more than two atoms are recorded in Table XI. On ac-
count of molecular symmetry, two or more vibrations may have the same
frequency; this is indicated by the numbers in parentheses in Table XI.8

TABLE XI. VIBRATION FREQUENCIES OF POLYATOMIC MOLECULES

Molecule Frequencies (cm."?) Molecule Frequencies (cm.™1)
HCN 720(2), 2001, 3451 H.0 1654, 3825, 39035
N0 596(2), 1300, 2276 HS 1290, 2611, 2684
CO, 667(2), 1340, 2349 S0, 519, 1151, 1361
C.H, 612(2), 729(2), 1974, NH, 950, 1627(2), 3334,

3287, 3374 3414(2)
CH, 1358(3), 1390(2), CH,C1 732, 1020(2), 1355,
3030, 3157(3) 1460(2), 2900, 3047(2)
CCL 218(2), 314(3), CH,Br 610, 957(2), 1305,
461, 776(3) 1450(2), 2900, 3061(2)

For the determination of the vibrational contribution to the energy
content or heat capacity it is not necessary actually to evaluate the product
of the 3n — 6 (or 3n — 5) factors in the partition function. The expressions
for the energy and heat content [equations (16.8) and (16.9)] involve the
logarithm of the partition function, which is equal to the sum of the log-
arithms of the component factors. Thus, it is usually simpler to determine
the contributions of each of the 3n — 6 (or 3n — 5) modes of vibration
separately by means of equations (16.31) and (16.32), and then to add the
results to obtain the total value for the molecule.

Problem: Calculate the heat capacity Cy of water vapor at (i) 500° K, (ii)
1000° K, assuming ideal behavior.

The translational and rotational contributions may be taken as classical, each
being 3R, so that the total is 3B per mole, i.e., 5.96 cal. deg.™* mole™?, at each
temperature.

(i) At 500° K, the values of hcw/kT corresponding to the frequencies of (a)
1654, (b) 3825, (c) 3935 cm.™* are 4.77, 11.0 and 11.35, respectively. Setting
these values of z into equation (16.32), the results for C, are

(a) 0.392, (b) 0.004, and (c) 0.003 cal. deg.~! mole™1,
8 See ref. 7.
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the total vibrational contribution being the sum of these quantities, viz., 0.399
= 0.40 cal. The total heat capacity at constant volume is thus 5.96 4- 0.40 = 6.36
cal. deg.”* mole™.

(ii) At 1000° K, the values of hcw/kT are 2.38, 5.50 and 5.67 respectively, so
that the contributions to C, are

(a) 1.265, (b) 0.247, and (c) 0.225 cal. deg.”1 mole™,

the sum being 1.74 cal. The total heat capacity of water vapor at constant
volume at 1000° K should thus be 5.96 + 1.74 = 7.70 cal. deg.” mole™.

The increase of the heat capacity of water vapor with temperature is in
agreement with experiment.

The procedure described above, as for diatomic molecules, is based on
the approximation that rotational and vibrational energies are separable,
and that the oscillations are simple harmonic in character. The allowance
for interaction, etc., has been made in a number of cases by utilizing actual
energy levels derived from spectroscopic measurements. The results are,
however, not greatly different from those obtained by the approximate
method that has been given here.

16m. Internal Rotation.—There are certain molecules for which the foregoing
procedure for calculating partition functions, and related properties, is not com-
pletely satisfactory; these are molecules containing groups which are apparently
capable of free rotation about a single bond. One of the simplest examples is
ethane, in which the two —CH; groups might be expected to rotate with respect
to each other. Most aliphatic hydrocarbons and alkyl derivatives of benzene,
water, hydrogen sulfide, ammonia and formaldehyde fall into the same category.
For every type of internal rotation of a group within the molecule, the molecule
as a whole possesses one less vibrational mode; the total number of internal rota-
tions and vibrations is thus 3n — 6 for a nonlinear molecule. If the internal rota-
tion is completely unrestricted and classical in behavior, the energy can be repre-
sented by one quadratic term, so that the corresponding contributions to the energy
content and heat capacity are 4RT and 3R per mole, respectively. Provided the
vibration frequencies of the molecule are available from spectroscovic measure-
ments, the evaluation of the energy content and the heat capacity would not be
a difficult matter.

A comparison of thermodynamic properties obtained experimentally with those
derived from the partition functions has revealed the fact that in many molecules,
such as those mentioned above, in which free internal rotation might have been
expected, the rotation is actually restricted. The contributions to the energy
content, etc., are then appreciably different from those calculated on the assump-
tion of free internal rotation. The results indicate that before one group can rotate
freely past another, as in ethane, the molecules must acquire a certain amount of
the appropriate energy. If this amount were very small, the internal rotation
would be virtually free and unrestricted, but such appears not to be the case.
Various lines of evidence show that the necessary energy is appreciable, and this
results in a restriction of the rotation. If the magnitude of the required energy
were known it would be possible to calculate, with a fair degree of accuracy, the
contribution of the restricted internal rotation to the partition function and the
properties derived from it. However, no satisfactory independent method is yet
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available, and the procedure adopted is to estimate the value of the energy by
utilizing an accurate experimental thermodynamic quantity. Once this restricting
energy is known, other properties can be calculated by making appropriate allow-
ances. The details of the treatment are not simple, and as they lie outside the
scope of this book it is not necessary to consider them further.?

17. HEaT CAPACITY OF SOLIDS

17a. Atomic Heat Capacity: Classical Theory.—An ideal elementary
solid may be regarded as consisting of a space lattice of independent atoms
vibrating about their respective equilibrium positions, but not interacting
with each other in any way. If the vibrations are simple harmonic in
character, the energy can be expressed as the sum of two quadratic terms;
hence, according to the principle of the equipartition of energy, the contri-
bution to the energy content will be RT per g. atom for each vibrational
mode. Since the atoms would be free to oscillate in all directions in space,
each atom may be supposed to have three independent modes of vibration.
The energy content E of the ideal solid element should thus be 3RT per g.
atom, and hence the heat capacity at constant volume should be 3R, i.e.,
5.96 cal. deg.”! g. atom™'. This theoretical conclusion is in general agree-
ment with the familiar empirical rule of Dulong and Petit, which states that
the atomic heat capacities of most solid elements, with the exception of
carbon, boron, beryllium and silicon, measured at atmospheric pressure is
about 6.4 cal. deg.~! at ordinary temperatures. The theoretical atomic heat
capacity of 3R should apply to constant volume conditions, and by correcting
the observed, i.e., constant pressure, measurements by means of equation
(21.9), G. N. Lewis (1907) obtained the results given in Table XII.1° It is

TABLE XII. HEAT CAPACITIES OF ELEMENTS AT CONSTANT VOLUME
IN CAL. DEG.”! G. ATOM™?

Element Cy Element Cy Element Cy
Aluminum 5.7 Iodine 6.0 Platinum 5.9
Antimony 5.9 Iron 5.9 Silver 5.8
Cadmium 59 Lead 5.9 Thallium 6.1
Copper 5.6 Nickel 5.9 Tin 6.1
Gold 5.9 Palladium 5.9 Zinc 5.6

seen that at ordinary temperatures (about 20° C) the values of Cy are
approximately constant, the mean being 5.9, with a variation of + 0.2, cal.
deg.~! g. atom™.

? For empirical and semiempirical rules for calculating the heat capacities of hydro-
carbons and other organic compounds, see Bennewitz and Rossner, Z. phys. Chem., B39, 126
(1938); Fugassi and Rudy, Ind. Eng. Chem., 30, 1029 (1938); Edmister, ibid., 30, 352 (1938);
Dobratz, ibid., 33, 759 (1841); Glockler and Edgell, ¢bid., 34, 682 (1942) ; Stull and Mayfield,
tbid., Eas, 6:')39, 1303 (1943); Pitzer, J. Am. Chem. Soc., 63, 2413 (1941); Spencer, bid., 67,
1859 (1945).

;) Lewis, J. Am. Chem. Soc., 29, 1165, 1516 (1907); Lewis and Gibeon, tbid., 39, 2564
(1917).
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In spite of the apparent agreement between the experimental data and
the theoretical prediction based on the equipartition principle, there are
nevertheless significant discrepancies. In the first place, the heat capacity
of carbon, e.g., diamond, is only 1.45 cal. deg.”* g. atom—! at 293°K, and it
increases with increasing temperature, attaining a value of 5.14 cal. deg.—!
g. atom™ at 1080° K. Somewhat similar results have been obtained with
boron, beryllium and silicon. Further, although the atomic heat capacities of
most solid elements are about 6 cal. deg.™ g. atom™! at ordinary temperatures,
and do not increase markedly as the temperature is raised, a striking decrease
is always observed at sufficiently low temperatures. In fact, it appears that
the heat capacities of all solids approach zero at 0° K. Such a variation of
the heat capacity of a solid with temperature is not compatible with the
simple equipartition principle, and so other interpretations have been
proposed.!!

17b. The Einstein Heat Capacity Equation.—The first step in the im-
provement of the theory of the heat capacity of solid elements was made by
A. Einstein (1907), who applied the quantum theory in place of the classical
equipartition principle to calculate the energy of the atomic oscillators.
The expression obtained for the atomic heat capacity of a solid at constant
volume may be written in the form

ehew/kT heow \2

where w is the oscillation frequency, in wave numbers, of the atoms in the
crystal lattice. Comparison of this result with the contribution made by a
single oscillator to the heat capacity, as given by equation (16.32), shows
that the former differs from the latter by a factor of three, as is to be expected.

According to equation (17.1), the atomic heat capacity of a solid element
should approach zero at very low temperatures, but at high temperatures,
when hew/kET is small in comparison with unity, the expression reduces to
3R, in agreement with the result of the classical treatment. This is in
general accord with the experimental behavior. The physical significance
of the variation of the heat capacity of a solid with temperature is then
similar to that given in connection with the vibrational contribution to the
heat capacity of a gas (§ 16j). At very low temperatures, all the atoms in
the solid are in the lowest vibrational level, and they then contribute nothing
to the heat capacity. With increasing temperature the energy of the crystal
increases and the higher levels are increasingly occupied; hence the heat
capacity becomes appreciable. At sufficiently high temperatures a con-
siderable number of atoms possess fairly large numbers of quanta of vibra-
tional energy, and the behavior can then be expressed with reasonable ac-
curacy by the classical treatment. In spite of the fact that the Einstein
equation represents qualitatively, at least, the variation of heat capacities
with temperature, it does not completely solve the problem of the heat

11 See the wotks mentioned in ref. 1.
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capacities of solid elements, for at low temperatures the calculated values
fall off more rapidly than do the experimental heat capacities.

17c. The Debye Heat Capacity Equation.—There is little doubt that in
its essentials the Einstein theory of the heat capacity of solid elements is
correct, but it requires some modification in detail. Owing to the proximity
of the atoms in a crystal, it is very improbable that they will act as inde-
pendent units oscillating with a uniform frequency. As a result of interac-
tions, the stoms will execu e complex motions, but these may be regarded
as being made up of a series of ~imple harmonic vibrations with various
frequencies. A solid containing N atoms will thus behave as a system of
3N coupled oscillators, and there will be a total of 3N independent fre-
quencies. The lowest frequency will be zero, but there is a definite limit
to the highest frequency; this maximum, designated by wwm, arises when the
wave length of the oscillations is of the same order as the interatomic dis-
tances. In order to determine the distribution of frequencies, P. Debye
(1912) disregarded the atomic structure of the solid, and treated it as a
homogeneous, elastic medium. The vibrations of the atoms could then be
considered as equivalent to elastic waves, similar to sound waves, propagated
through this continuous medium. In this way an expression for Cy contain-
ing a complicated integral was obtained; the integral can, however, be
evaluated in two special cases, (a) moderate and high temperatures, and
(b) very low temperatures. In the former case, the atomic heat capacity
equation becomes

1/6\ 1 f6)\*
Cv=3R[1—5—0(?,) +'5'070(T) —] (17.2)
where 8, known as the characteristic temperature of the element, is defined by
6 = "—‘,‘c"—"' = 1439w deg. (17.3)*

At sufficiently high temperatures 6/ T becomes small enough for all the terms
in the brackets of equation (17.2), other than the first, to be neglected;
Cv then becomes equal to the classical value 3R.

It will be seen from the Debye equation (17.2) that Cv is a function of
8/T only, and hence the plot of Cy against 7'/8 (or log 7'/6) should yield a
curve that is the same for all solid elements.tf The nature of the curve is
shown in Fig. 9, and it is an experimental fact that the heat capacities of
many elements, and even of a few simple compounds, e.g., ionic crystals such

* Since hcwn has the dimensions of energy and k is energy per degree, 8 has the

dimensions of a temperature.
1 The same is true for the Einstein equation (17.1) which may be written as

Gﬁ:lT BE, 2
Cv = 3R iy 1):(7) .

The Einstein characteristic temperature 6g, equal to hcw/k, where w is the mean frequency,
is smaller than the Debye @ which involves the maximum frequency.
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as sodium and potassium chlorides, which crystallize in the cubic system,
have been found to fall on or very close to this universal curve. The slight
discrepancies that have been observed are probably to be attributed to the
approximation of treating a crystalline solid as a continuous medium in the
determination of the distribution of
the vibration frequencies.

It is evident from Fig. 9 that the

heat capacity of an element attains
its classical value of 3R when T/0 is
approximately unity (see problem
given below). If the characteristic
temperature of an element is rela-
tively small, e.g., less than about 300,
the value of 7'/8 will be equal to unity
at temperatures below 300° K. For NS SRS DU SRS S S—
such elements the law of Dulong and 0.2 0.4 0.6 g;/so 1.0 1.2 14
Petit will evidently hold at ordinary
temperatures. This is the case for Fic. 9. Debye atomic hcat capacity curve
the majority of the solid elements.
On the other hand, if @ is large, as it is for carbon and some other light
elements, a temperature of 300° K will coincide with the rising portion
of the Debye curve. The atomic heat capacity will thus be well below
3R, and it will increase rapidly with temperature, the limiting value being
reached only at high temperatures. By giving 8 a value of 1860, the
variation of the heat capacity of diamond with temperature can be ex-
pressed with considerable accuracy by the Debye heat capacity equation.
According to equation (17.3) the characteristic temperature 6 will be large
if the frequency w., is large; this frequency is a rough measure of the binding
energy between the atoms in the crystal. The internal structures and high
melting points of carbon, boron and silicon are compatible with exception-
ally high values of the binding energy, and hence with the large values of
the characteristic temperature of these elements.

() y(cal. deg. 13. atom™!
b N W x>
! 1

Problem: Calculate the value of Cy for any element when its temperature is
equal to the Debye characteristic temperature 6.

For such a temperature /7T is unity, and hence by equation (17.2)
1 1

20 * 560
= 5.68 cal. deg.”* g. atom™.

Cv=3R[1— —----]=2.856R

Hence, when the temperature is equal to the characteristic temperature, i.e., when
T/0 is unity, the heat capacity is just less than the classical value 3R.

If the characteristic temperature of any solid element is known, the
complete variation of the heat capacity at all moderate and reasonably high
temperatures can be obtained from the Debye equation (17.2) or the equiva-
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lent curve (Fig. 9). The value of 8 can be derived from a single experimental
determination of the heat capacity, preferably made somewhere just above
the middle of the rising part of the curve, that is, when Cy is about 3 cal.
deg.”! g. atom™. The measurement should not be made in the region where
Cv approaches 3R, because of the flatness of the curve, nor at too low tem-
peratures, for then equation (17.2) does not hold. Some values of the char-
acteristic temperatures of a number of elements are quoted in Table XIII.!2

TABLE XIII. DEBYE CHARACTERISTIC TEMPERATURES OF ELEMENTS

Element 0 Element [} Element [}
Aluminum 390 Copper 315 Nickel 375
Antimony 140 Gold 170 Potassium 100
Bismuth 104 Iron 450 Platinum 225
Calcium 225 Lead 20 Sodium 150
Carbon (Diamond) 1860 Magnesium 290 Silver 212
Cobalt 385 Manganese 350 Zinc 210

Problem: Calculate the heat capacity of diamond at 1080° K.
From Table XIII, the characteristic temperature 8 is 1860; hence, by equa-

tion (17.2),
1 /1860 \2 1 1860 \*
Cv = 3R [1 _%<1080> +5’6?)<1080) - ]
= 3R X 0.8673 = 5.17 cal. deg.”! g. atom™.

(The experimental value, given earlier, is 5.14 cal. deg.™ g. atom™..)

It may be mentioned that the Debye characteristic temperature can be
derived from other properties of the element, particularly from the compressi-
bility and Poisson’s (elasticity) ratio. Where such data are available it is
thus possible to obtain reasonably accurate heat capacities, at moderate and
high temperatures, from elasticity measurements.

17d. The Debye Equation at Low Temperatures.—At low temperatures
the solution of the complete Debye equation leads to the result

Cv=3R[§1r‘(—;‘{—1)3— ]

= 464.4 (%)3 — «--cal. deg.”! g. atom™. (17.4)

The important conclusions, therefore, to be drawn from the Debye theory
are that at low temperatures the atomic heat capacity of an element should
be proportional to T, and that it should become zero at the absolute zero
of temperature. In order for equation (17.4) to hold, it is necessary that
the temperature should be less than about 6/10; this means that for most

2 Data adapted from various sources, e.g.,, R. H. Fowler and E. A. Guggenheim,
‘‘Statistical Thermodynamics,” 1939; F. Seitz, “The Modern Theory of Solids,” 1940;
J. C. Slater, “Introduction to Chemical Physics,” 1939.
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substances the temperature must be below 30° K. Heat capacity measure-
ments made at sufficiently low temperatures have served to confirm the
reliability of the T2 relationship for a number of elements, and even for some
simple compounds. The proportionality of heat capacity to the third power
of the absolute temperature has been found to be of great value for the
purpose of extrapolating heat capacities to the absolute zero. Such ex-
trapolations are necessary in connection with the determination of an im-
portant thermodynamic property (Chapter 1X).

Since Cv is equal to 464.4 (7/6)® at very low temperatures, one heat
capacity value under these conditions can be used to derive the characteristic
temperature. With this known, the variation of Cy with temperature at
higher temperatures can be obtained from equation (17.2). Alternatively,
if 8 is found, as described in § 17¢, from heat capacity measurements at
moderate temperatures, the values at low temperatures, i.e., less than /10,
can be estimated from equation (17.4). However, where the characteristic
temperature 6 has been determined by two methods, that is, from low tem-
perature and high temperature measurements, the agreement is not exact,
showing, as is to be expected, that the Debye theory is not perfect.

Problem: The atomic heat capacity of copper is 0.1155 cal. deg.™ at 20.20° K;
calculate the value at 223° K

From equation (17.4)
0.1155 = 464.4 (20 2)

0
0 = 321.
Upon inserting this value into equation (17.2) it is found that at 223° K,
1 /3212 1 /321\*
Cv = 33[1 '%(ﬁé) +5—s‘6(‘273> - ]

3R X 0.904 = 5.39 cal. deg.™ g. atom™1,

(The experimental result is about 5.5.)

17e. Heat Capacities at High Temperatures.—Although the theoretical treat-
ment of heat capacities requires the limiting high temperature value to be 3R,
i.e., 5.96 cal. deg.”* g. atom™!, experimental determinations have shown that with
increasing temperature C'y increases still further. The increase is, however,
gradual; for example, the heat capacity of silver is 5.85 cal. deg.”! g. atom™ at
300° K and about 6.5 cal. deg.”* g. atom™! at 1300° K. This increase is attributed
mainly to the relatively free electrons of the metal behaving as an ‘‘electron gas.”
By the use of the special form of quantum statistics, viz., Fermi-Dirac statistics,
applicable to electrons, the relationship

Ce[, = aT,

where a is a constant for each element, has been derived for the contribution of the
electron gas to the heat capacity. For most metals a lies between 10~* and
2.5 X 107 in_calorie units, and so the electron heat capacity is 0.03 to 0.075 at
300° K and 0.13 to 0.32 cal. deg.™! g. atom= at 1300° K. The influence of the free
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electrons is thus not large, although it hecomes appieciable as the temperature
is raised.* )

17f. Heat Capacities of Compounds.—As indicated above, the Debyo
equation represents the variation with temperature of the heat capacities,
at constant volume, of a number of simple compounds. In these cases
equation (17.2) gives the heat capacity per gram atom, so that it must be
multiplied by the number of atoms in the molecule to obtain the molar heat
capacity. The compounds are, in general, substances crystallizing in the
cubic system, to which the Debye treatment is particularly applicable.
Among these, mention may be made of sodium and potassium chloride,
potassium bromide, calcium fluoride and magnesium oxide. For certain
other compounds, especially metallic halides, and also for some elements
which do not form cubic crystals, e.g., rhombic sulfur, graphite and iodine,
the heat capacity per g. atom is given by a Debye function, as in equation
(17.2), but with (7'/6)" in place of T'/6. The value of n is usually less than
unity, and it must be determined empirically; thus the heat capacitics must
be known at two temperatures in order that  and n may be obtained. Once
these are available, the variation of heat capacity over a range of tempera-
tures can be represented.!?

If the Debye function in some form were applicable to all compounds it
would mean that at sufficiently high temperatures the molar heat capacity
at constant volume would be equal to 3R X n, where n is the number of
atoms in the molecule; thus Cy should be approximately 6n cal. deg.~* mole!.
This conclusion is analogous to the rule proposed by H. Kopp (1865), who
suggested that the molar heat capacity of a compound is approximately
equal to the sum of the atomic heat capacities of its constituent elements.
For most elements, particularly those of higher atomic weight, the heat
capacity at ordinary temperatures may be taken as about 6 cal. deg.™?, but
for the lighter elements Kopp suggested somewhat smaller values, as follows:
carbon (1.8), hydrogen (2.3), boron (2.7), silicon (3.8), oxygen (4.0), fluorine
(5.0), phosphorus (5.4), and sulfur (5.4). The results given by Kopp’s rule
are very approximate, but they may be useful when experimental data are
not available.

EXERCISES

1. Assuming classical behavior, and no internal rotation, what would be the
maximum value of Cp for (i) a linear molecule, (ii) a nonlinear molecule, containing
n atoms?

2. Show that the partition function for 1 mole must be a dimensionless quan-
tity. Verify by reference to the expressions for the translational and rotational
(diatomic) partition functions.

3. Show that the translational partition function for 1 mole of an ideal gas is
given by @, = 1.879 X 102°M*27%2V  where M is the molecular (or atomic)
weight and V is the molar (or atomic) volume in ce.

* The cffeet deseribed here is quite distinet from that due to the occupation of the

higher electronic levels (§ 16f); the contribution of the clectron gas will apply cven if all the

atoms are in their lowest electronic states.
8 Lewis and Gibson, J. Am. Chem. Soc., 39, 2554 (1917).
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4, Calculate the translational partition function for 1 mole of oxygen at 1 atm.
pressure and 25° C, assuming ideal behavior.

5. The normal state of atomic oxygen is an “inverted triplet’’ consisting of
three levels with j values of 2, 1 and 0. The frequency separation between the
J = 2 (lowest) and the j = 1 (second) levels is 157.4 cm.~! and that between the
j = 2 and the j = 0 (third) levels is 226 cm.~1. Calculate the electronic partition
function of atomic oxygen at 300° K and the corresponding contribution to the
atomic heat capacity.

6. The frequency separation of the first excited electronic level of atomic
oxygen from the lowest level is 15807 cm.™1; at what temperature might the excited
level be expected to affect the heat capacity?

7. Derive the value of the universal constant a in the expression Q, = aoc™IT
for the rotational partition function of any diatomic (or any linear) molecule; I is
the moment of inertia in c.g.s. units and 7' is the absolute temperature. Calculate
the rotational partition function of carbon dioxide (a linear symmetrical molecule)
at 25° C.

8. Evaluate the universal constant b in the expression @, = bo~1(4 BC)'27T3/2
for the rotational partition of a nonlinear polyatomic molecule; A, B and C are
the three moments of inertia of the molecule in c.g.s. units. Determine the
rotational partition function of the water molecule at 25° C.

9. Calculate the value of e~**T when e/k is equal to 5T. Justify the state-
ment in the text that if for any energy level ¢/k > 5T, the contribution of that
level to the partition function, and consequently to the heat capacity, is negligible.

10. Determine the vibrational partition function of carbon dioxide at 25° C.

11. Calculate the molar heat capacity at constant pressure of carbon dioxide
at (i) 300° K, (ii) 500° K, (iii) 1000° K, assuming ideal behavior.

12. Calculate the molar heat capacity at constant pressure of methane at
(i) 300° K, (ii) 500° K, (iii) 1000° K, assuming ideal behavior.

13. Plot the Debye curve, according to equation (17.2), for Cy against 7'/,
using values of 0.2, 0.4, 0.6, - - -, 1.2 for the latter.

14. Using the Debye curve obtained in the preceding exercise, and the values
of Cy for aluminum given below, determine the (mean) Debye characteristic
temperature for this element.

T 84.0° 112.4° 141.0° K
Cy 2.45 3.50 4.18 cal. deg.™! g. atom™.

Calculate the value of Cy at 25° C.

15. Plot the following values of C'y for aluminum, obtained at low tempera-
tures, against 7% and hence determine the (mean) Debye temperature; compare
the result with that obtuined in Exercise 14.

T 19.1° 23.6° 27.2° 32.4° 35.1° K
Cy 0.066 0.110 0.162 0.301 0.330 cal. deg.”! g. atom™.

16. The Debye characteristic temperature of silver is 212. Calculate the
atomic heat capacity Cy of this metal at 20.0° K and 300° K.

17. For the heat capacities of gaseous paraffins and olefins, with more than
three carbon atoms, Edmister (see ref. 9) suggested the empirical formula

Cp = 256 + 0.51n + 1073T(1.3n* + 4.4n — 0.65mn
+ 4.95m — 5.7) cal. deg.”* mole™},
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where n is the number of carbon atoms and m the number of hydrogen atoms in
the hydrocarbon molecule; T is the absolute temperature.
For paraffins, Pitzer (see ref. 9) proposed the formula

Cp = 5.65n — 0.62 + 107%(1.11n + 1.58) cal. deg.”* mole™},

where n is the number of carbon atoms; ¢ is the centigrade temperature. Compare
the molar heat capacities of n-butane gas (C,Ho) at 500° K, as given by the two
expressions. According to Spencer [J. Am. Chem. Soc., 67, 1859 (1945)], the
heat capacity of this gas is given by
Cp =— 0.012 + 92.506 X 10737 — 47.998 X 10~¢T?

+ 9.706 X 10~°T% cal. deg.”* mole™.
Calculate the value at 500° K.



CHAPTER VII
THE SECOND LAW OF THERMODYNAMICS

18. CoNvERSION OF HEAT INTO WORK

18a. Scope of First and Second Laws.—To the chemist the essential
interest of the second law of thermodynamics lies in the fact that it provides
a means of predicting whether a particular reaction can occur under specified
conditions. The first law of thermodynamics merely indicates that in any
process there is an exact equivalence between the various forms of energy
involved, but it provides no information concerning the feasibility of the
process. In general, however, the second law supplies an answer to the
question of whether a specified thermodynamic process is or is not possible.
For example, the first law does not indicate whether water can spontaneously
run uphill or not; all it states is that if water does run uphill, unless heat is
supplied from outside, there will be a fall of temperature, the resulting
decrease of energy content being equivalent to the work done against gravity.
Similarly, there is nothing in the first law of thermodynamics to indicate
whether a bar of metal of uniform temperature can spontaneously become
warmer at one end and cooler at the other. All that the law can state is
that #f this process occurred, the heat energy gained by one end would be
exactly equal to that lost by the other. It is the second law of the thermo-
dynamics which provides the criterion as to the possibility, or rather the
probability, of various processes.

Another important aspect of the second law, which is really fundamental
to the problem enunciated above, deals with the conversion into work of
energy absorbed as heat. The first law states that when heat is converted
into work, the work obtained is equivalent to the heat absorbed, but it
gives no information concerning the conditions under which the conversion
is possible. It will be seen shortly that the heat absorbed at any one tem-
perature cannot be completely transformed into work without leaving some
change in the system or its surroundings; this fact is embodied in the second
law of thermodynamics, and its consequences are of great significance.

18b. Spontaneous and Irreversible Processes.—In order to understand
something of the conditions which determine whether a particular process
will occur or not, it is of interest to examine certain processes which are
known to be spontaneous, that is, processes which take place without ex-
ternal intervention of any kind. The expansion of a gas into an evacuated
space, or from any region of higher into one of lower pressure, takes place
spontaneously, until the pressure distribution is uniform throughout.
Similarly, one_gas will diffuse spontaneously into another until the mixing is
complete and the system has the same composition in all parts. Diffusion
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of a solute from a concentrated solution into pure solvent, or into a dilute
solution, will similarly take place without external intervention. Finally,
reference may be made to the spontaneous conduction of heat along a bar
of metal which is hot at one end and cold at the other, and to the spontaneous
transfer of heat by radiation from a hotter to a colder body. These proc-
esses will continue until the temperature of the bar is uniform, in the former
case, and until the two bodies attain the same temperature, in the latter
instance. It will be observed that in every case the spontaneous process
represents a tendency for the system to approach a state of thermodynamic
equilibrium (§ 4c).

A fundamental characteristic of the processes described, and in fact of
all spontaneous processes, is that they have never been observed to reverse
themselves without the intervention of an external agency. A system which
is in equilibrium under a given set of conditions will undergo no detectable
change if the conditions are not altered. In other words, spontaneous
processes are not thermodynamically reversible (cf. § 8a).* This fact, founded
upon experience, is the basis of the second law of thermodynamics. Such
processes as the spontaneous concentration of a gas at one end of a vessel,
leaving a lower pressure at the other end, the spontaneous unmixing of a
uniform gas mixture, or a bar of metal becoming spontaneously hot at one
end and cold at the other end, have never been observed. It may be re-
marked, incidentally, that it is not altogether justifiable to say that these
processes are impossible. It is possible for a gas to concentrate spontane-
ously in one part of a vessel, but the probability of this occurring, to judge
from actual experience, is extremely small.

18c. Reversal of Spontaneous Processes.—By the use of an external
agency, it is possible to bring about the reversal of a spontaneous process.
For example, by introducing a piston into the vessel, the gas which has ex-
panded into a vacuum could be restored to its original volume by compres-
sion. Work would have to be done on the gas, and at the same time an
equivalent amount of heat would be produced, and the temperature of the
gas would rise. If this heat could be completely reconverted into work by
means of a hypothetical machine, then the original state of the gas would
have been restored, and there would be no change in external bodies. It is
a fundamental fact of experience, however, that the complete conversion of
heat tnto work s tmpossible, without leaving some effect elsewhere. This result
is in accord with the statement made above that spontaneous processes are
not reversible in the thermodynamic sense.

Before stating the second law, other attempts to reverse spontaneous
processes will be considered. When a bar of metal, which was originally
hotter at one end, has attained a uniform temperature, the initial state

* In order to avoid the possibility of misunderstanding, it may be pointed out here that
many changes which occur spontaneously in nature, e g., expansion of a gas, evaporation
of & liquid and even chemical reactions, can be carried out reversibly, at least in principle,
as described in §8a However, when they do occur spontaneously, without external
intervention. they are thermodynamically irreversible.
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might conceivably be restored in the following manner. Heat is withdrawn
from one end of the bar, completely converted into work, and then the work
could be utilized to heat the other end of the bar, e.g., electrically or by
friction. Actually, it is impossible to carry out this series of processes with-
out leaving some changes for, as already stated, the complete conversion of
heat into work without such changes is impossible.

It is evident that certain spontaneous physical processes could be re-
versed if the complete conversion of heat into work could be achieved; it will
now be shown that similar considerations apply to chemical reactions. A
piece of zine, for example, will dissolve spontaneously in an aqueous solution
of copper sulfate, according to the equation

Zn 4 CuSO4 = ZnS0, + Cu,

with the evolution of a definite amount of heat. This reaction could be
reversed by passing an electric current between the metallic copper and the
solution of zinc sulfate in an appropriate manner, thus regenerating metallic
zine and copper sulfate. In order that the reversal might not leave changes
elsewhere, it would be necessary for the heat evolved in the original reaction
to be completely converted into electrical work. Once again, experience
shows that a complete conversion of this kind, without producing other
changes, is not possible. It is seen, therefore, that the spontaneous chemical
process, like the physical changes considered above, is not thermodynamic-
ally reversible.

18d. The Second Law of Thermodynamics.—The second law of thermo-
dynamics has been stated in various forms, one of which, concerning the
irreversibility of spontaneous processes, has been already given. For subse-
quent purposes, however, a more useful form is that based on the inability
to convert heat completely into work; thus, # 7s impossible to construct a
machine, operaling in cycles, which will produce no effect other than the absorp-
tion of heat from a reservoir and its conversion inlo an equivalent amount of
work. The term ‘“‘operating in cycles” is introduced to indicate that the
machine must return to its initial state at regular stages (cf. § 7c), so that
it can function continuously.

It will be recalled from the statements in § 9d that in an isothermal, re-
versible expansion of an ideal gas the work done is exactly equal to the
heat absorbed by the system. In other words, in this process the heat is
completely converted into work. However, it is important to observe that
this conversion is accompanied by an increase in the volume of the gas, so
that the system has undergone a change. If the gas is to be restored to its
original volume by reversible compression, work will have to be done on the
system, and an equivalent amount of heat will be liberated. The work and
heat quantities involved in the process are exactly the same as those con-
cerned in the original expansion. Hence, the net result of the isothermal
expansion and compression is that the system is restored to its original state,
but there is no net absorption of heat and no work is done. The foregoing
is an illustration of the universal experience, that ¢t 13 not possible to converi
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heat into work by means of an tsothermal, i.e., constant temperature, cycle.
This may be regarded as another aspect of the second law of thermodynamics.

A consequence of the impossibility of converting heat isothermally into
work in a continuous manner is the impracticability of what is called ‘“per-
petual motion of the second kind,” that is, the utilization of the vast stores
of energy in the ocean and in the earth. There is nothing contrary to the
first law of thermodynamics in this concept, but the fact that it has not
been found feasible provides support for the second law. The ocean, for
example, may be regarded as a heat reservoir of constant temperature,* and
the law states that it is not possible to convert the heat continuously into
work without producing changes elsewhere.

18e. Macroscopic Nature of the Second Law.—An insight into the
fundamental basis of the second law of thermodynamics may be obtained by
utilizing the concepts of the kinetic theory of matter. According to this
theory an increase of temperature, resulting from the absorption of heat by
a body, represents an increase in the kinetic energy of the random motion
of the molecules. Hence, when the energy of a moving body is converted
into heat by friction, the directed motion of the body as a whole is trans-
formed into the chaotic motion of individual molecules. The reversal of
the process, that is, the spontaneous conversion of heat into work, would
require that all the molecules should spontaneously acquire a component of
motion in one preferred direction. The probability of this occurring in a
system consisting of a large number of molecules is very small. Asindicated
earlier, it cannot be stated that it is impossible for a spontaneous process
to reverse itself spontaneously; there is merely a very great probability
against it.

If it were possible to deal with systems involving only a few molecules,
spontaneous processes could be reversed. Imagine a system consisting of
five molecules possessing random motion. It is not improbable that at some
instant all five molecules will have a preferred component of motion in one
direction. The system as a whole will then have directed motion at that
instant. The chaotic movement of the molecules, i.e., heat, will thus have
been converted into directed motion, i.e., work.

Similarly, if a vessel contained only five or six molecules uniformly dis-
tributed, there would be a considerable probability that at some instant
there will be a larger number of molecules at one end of the vessel than at
the other. That is to say, a pressure difference would arise spontaneously
within the vessel, provided it is permissible to speak of pressures when a few
molecules are concerned. If the vessel contained a large number of mole-
cules, it is highly improbable that any appreciable unequal distribution
would arise spontaneously (cf. § 24a). The second law of thermodynamics
is then to be regarded as applicable to macroscopic systems, and since it is

* Where there are temperature differences in the ocean, e.g., at different levels, the
(partial) conversion of the heat of the ocean into work is possible; this is not contrary to the
second law of thermodynamics, A
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systems of this type which are the basis of human observation and experi-
ence, no exception to the law has yet been observed.

It has long been realized that the impossibility, or rather the improb-
ability, of reversing spontaneous processes is based on the inability to deal
with individual molecules or small groups of molecules. If a device were
available which could distinguish between fast- (“hot’’) and slow-moving
(“cold”) molecules, it would be possible to produce spontaneously a tem-
perature gradient in a gas. Similarly, if a device could discriminate between
two different types of gas molecules, a partial unmixing, which is the reverse
of diffusion, could be achieved. However, the fact that no such devices
are known is in accordance with the second law of thermodynamies.

18f. Conversion of Heat into Work.—In order for any form of energy to
be available for the performance of work, it must be associated with a
difference of potential or, in other words, with a directive influence. The
work that can be done by falling water, for example, is due to the difference
in potential energy at the upper and lower levels; similarly, electrical work
is associated with a difference of electrical potential, generally known as an
electromotive force. In a heat reservoir at constant temperature there is
no directive influence, but two such reservoirs, at different temperatures, pro-
vide the difference of energy potential that is necessary for the conversion
of heat into work. In order to carry out this conversion, heat is absorbed
from the reservoir at the higher temperature, often referred to as the
“source’’; part of this heat is converted into work, and the remainder is
returned to the heat reservoir at the lower temperature, referred to as the
“sink”. It is seen, therefore, that a portion only of the heat taken in from the
reservotr al the higher temperature can be converted into work. The fraction of
the heat absorbed by a machine that it can transform into work is called
the efficiency of the machine; thus, if heat @ is taken up from the source,
and W is the work done, the efficiency is equal to W/Q. Experience shows,
in agreement with the statement of the second law of thermodynamics, that
W is invariably less than @ in a continuous conversion process. The effi-
ciency of a machine for the continuous conversion of heat into work is thus
always less than unity. It will be understood, of course, that the first law
of thermodynamics will still be applicable, for the energy differcnce between
@ and W is returned to the lower temperature reservoir.

18g. The Carnot Theorem.—A highly important discovery in connection
with the problem of the efficiency of heat engines, i.e.,, machines for the
conversion of heat into work, was made by S. Carnot (1824). The principle
he enunciated, which is derived from the second law of thermodynamics,
say be stated in the following form: All reversible heat engines operating
Setween two given temperatures have the same efficiency. In other words, pro-
vided the machines function in a thermodynamically reversible manner, the
efficiency is independent of the working substance, or substances, or mode
of operation; it depends only on the temperatures of the source and sink.
Incidentally, it will be shown that this particular efficiency, namely that of a
reversible engine, is the maximum possible for the given temperatures.
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In order to prove the Carnot theorem, it will be assumed {hat there exist
two reversible heat engines I and II, working between the same two tem-
peratures, but having different efficiencies. Suppose that in each cycle the
machine I takes in heat Q. from the source at T, converts an amount W
into work, and gives up the remainder Q; — W = @, to thesink at T',. The
machine II, on the other hand, is supposed to convert a smaller amount W’
of the heat @, taken in at T'; into work, returning a quantity @, — W’ = Qj,
which is greater than @Q,, to the sink at 7';. Let the machines be coupled
together so that I operatesin a direct
manner, i.e., taking up heat at T,,
doing work and giving up the re-

! mainder at 7', whereas II functions
in the reverse manner, i.e., taking in
heat at T, having work done upon

w it and giving up heat at T».* This
is permissible since the machines
are assumed to be reversible. The
various heat and work changes in

each complete cycle of the combined

I machines are then as indicated in

Cold Reservoir T, Fig. 10 and represented below. In

F1a. 10. Proof of the Carnot theorem  accordance with the convention

earlier (§ 7b), heat absorbed by the

system is taken as positive and heat liberated as negative; similarly, work
done by the system is positive and that done on the system is negative.

Hot Reservoir T2

I 1I
Heat transfer at T; = Qz Heat transfer at T, = — Q,
Work done = ‘Work done =—W
Heat transfer at Ty = — Ql Heat transfer at T, = Q.

The net result of the complete cycle by the two reversible engines,
bringing them both back to their initial states, without producing any
external changes, is given by

Heat transfer at T = Q1 — Q,
Work done w - Ww.

Since @, is equal to Q: — W, and Qi is equal to Q. — W’ it follows that
Q) — Qiisequal to W — W/, so that the heat absorbed at T is equal to the
work done by the engine. That is to say, the combined hypothetical, re-
versible machine, functioning in cycles, is able to convert completely into
work the whole of the heat taken up from a reservoir at the temperature T',,
without leaving changes elsewhere. This is contrary to the second law of
thermodynamics, and so it must be concluded that the two reversible ma-
chines I and II cannot kave different efficiencies. The Carnot principle

i

* In other words, machine II functions as a refrigerator (see § 18j).
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of the equality of efficiency for all reversible cycles working between the
same two temperatures is thus a direct consequence of the second law of
thermodynamics.

18h. The Carnot Cycle.—Since all reversible heat engines operating be-
tween the same two temperatures have equal efficiencies, it is sufficient to
consider any convenient machine of this type, for all others will have the
same efficiency. The one which lends itself to simple thermodynamic treat-
ment makes use of the cycle described by S. Carnot (1824). In this hypo-
thetical heat engine the working substance is 1 mole of an ideal gas; it is
contained in a cylinder fitted with a weightless and frictionless piston, thus
permitting reversible processes to be performed. It is supposed that there
are available two large heat reservoirs which remain at constant tempera-
tures, viz., T2 (upper) and T': (lower), respectively. Further, it is assumed
that completely adiabatic processes can be
carried out when required, by surrounding A
the cylinder with a perfect nonconducting
jacket so that no heat enters or leaves the
system (§ 10a). The Carnot cycle consists
of four stages which can be represented on a
pressure-volume diagram, sometimes referred
to as an “indicator diagram,” as in Fig. 11.

I. The cylinder containing the mole of
ideal gas, occupying a volume V,, is placed in
the heat reservoir at the higher tempera-
ture. The external pressure is adjusted so
that it is always infinitesimally less than the Volume
gas pressure, and the temperature of the gas Fro. 11. Pressure-volume
is infinitesimally less than that of the reser- changes in Carnot cycle
voir. In this manner, the gas is expanded
isothermally and reversibly until its volume has increased to Vs. The path
of the process is represented by the isothermal curve AB in Fig. 11. Since
the gas is ideal, the work done Wi is given by equation (8.4); thus, for 1
mole of gas,

Pressure

. Vs
Wi = RT. lnv- (18.1)
The heat Q. taken up from the reservoir must be equal to the work done
(cf. § 9d), and hence by equation (9.21),

)
Q: = RT, 1n -“-,-'f (18.2)

II. The cylinder of gas is removed from the reservoir at T» and is sur-
rounded by the nonconducting jacket, so that the gas can be expanded
reversibly, i.e., infinitesimally slowly, and adiabatically. Work is done in
the expansion, but since no heat enters or leaves the system, the temperature
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must fall (§ 10a). The reversible expansion is continued until the tempera-
ture has fallen to T';, which is that of the lower temperature heat reservoir.
The path is indicated by the adiabatic curve BC, the final volume being V..
The work done is given by equation (10.8); thus,

Wi =— Cy(T, — Tb)
= Cy(T, — T)), (18.3)

where Cy is the heat capacity of the ideal gas, assumed constant in the given
temperature range. If the heat capacity were not constant, Cy would
represent the mean value.

III. The nonconducting jacket is now removed and the cylinder is placed
in the heat reservoir at T.. The gas is compressed isothermally and re-
versibly, the external pressure being maintained infinitesimally greater than
the gas pressure, and the temperature of the gas infinitesimally greater than
that of the reservoir. The process is represented by the isothermal path CD
in Fig. 11, the final volume being Vi, The work done is given by

Va

W = RT:1n 7. (18.4)

Since V, is greater than V;, the value of Wi will be negative; this is, of
course, because work is done on the gas in the compression. At the same
time the quantity of heat Q,, exactly equivalent to Wiy, will be returned to
the heat reservoir at 71

IV. The cylinder is removed from the heat reservoir and the non-
conducting jacket is replaced. The gas is then compressed adiabatically
and reversibly along DA until the initial state A is regained, the temperature
of the gas rising from T, to T2. The state D in stage III is deliberately
chosen so that it lies on the same adiabatic as A. The work done is given by

Wiy = Cv(Ty, — T), (18.5)

where Cv has the same value as in equation (18.3), since for an ideal gas it
must be independent of the volume or pressure.

As a result of the four stages just described the system has returned to
its original state, so that a reversible cycle has been completed. The total
work done W is the sum of the four work terms Wi, Wi, Wi and Wiy, but
since Wi and Wiv are seen, by equations (18.3) and (18.5), to be equal but
of opposite sign, it follows that

W = Wi+ W = RTaln 22 + RT, 1In V2. (18.6)
Va V.
Since A and D lie in one adiabati¢ curve, while C and B lie on another, it
follows from equation (10.5) that

A JACE)
(V.,) =7, ond (V;) =T,
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and consequently
YVa _ Ve o ©_7Y

Ve Ve % V.U V.
Upon substitution of this result into equation (18.6) it is found that

W = RTzln% i RT1 Il-l.‘;:
~ R(Ts = T2 In * (18.7)

By definition, the efficiency of a heat engine is equal to the ratio of the
total work W done in the cycle to the heat Q. taken in at the upper tempera-
ture; hence, by equations (18.2) and (18.7), the efficiency of the hypothetical
Carnot engine is

o T, (18.8)

In accordance with the Carnot theorem (§ 18¢g), this expression gives the
efficiency of any reversible heat engine operating between the temperatures T,
and T;. As is to be expected, the efficiency is determined only by the tem-
peratures of the two heat reservoirs acting as source (7's) and sink (T,), and
is independent of the nature of the working substance. The lower the tem-
perature of the sink, for a given temperature of the source, the greater will
be the efficiency of the machine. Similarly, for a given temperature of the
sink, the efficiency will be increased by using a high temperature source. In
practice it is not convenient for the sink to be below atmospheric tempera-
ture, and so it is desirable that the upper temperature should be high. This
fact underlies the use of high pressure steam or of mercury in boilers for
power production.

Problem: The boiling point of water at a pressure of 50 atm. is 265° C. Com-
pare the theoretical efficiencies of a steam engine operating hetween the boiling
point of water at (i) 1 atm., (ii) 50 atm., assuming the temperature of the sink to
be 35° C in each case.

(i) At 1 atm. pressure, the boiling point of water is 100° C, i.e., 373° K, and
this represents the upper temperature T'.; the lower temperature 7'y is 35° C,
i.e., 308° K, so that

T, — T, 373 — 308

Efficiency = T, = 373 = 0.174.

| (ii) At 50 atm. pressure, T'; is 265° C, i.e., 538° K, and 7"; is 308° K as in (i);
ience

Efficiency = s ; I 53 5—3_8308 = 0.428.
2

The possible increase of efficiency is very marked,
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Two special cases of equation (18.8) are of interest. First, if the effi-
ciency of the reversible heat engine is to be unity, 7, must be zero. Hence,
the whole of the heat taken in at the higher temperature can be converted
into work in a cycle, only if the lower temperature is the absolute zero. The
second case is that in which T'; and T'. are equal, that is to say, the cycle is
an isothermal one; in this event equation (18.8) shows the efficiency to be
zero. This is in agreement with the conclusion reached earlier (§ 18d) that
there can be no conversion of heat into work in an isothermal cycle.

18i. Maximum Efficiency of Heat Engine.—One of the essential proper-
ties of a reversible cycle is that it has the mazimum efficiency of any cycle
operating between the same two temperatures. That this is the case may be
understood from a consideration of the Carnot engine in § 18h. Since the
work terms in the adiabatic stages II and IV cancel one another, the work
done in the cycle is that involved in the isothermal stages. It was seen
earlier (§ 8c) that in a given isothermal expansion the work done by the
system is & maximum when the expansion is carried out reversibly; similarly,
the work done on the system in an isothermal compression is a minimum
when performed reversibly. It follows, therefore, that in the Carnot re-
versible cycle the work done by the system at T', is the maximum possible
for given expansion from 4 to B (Fig. 11), whereas the work done on the
system at T’ is & minimum for the compression from C to D. Tt is evident,
therefore, that the total work done by the system is the maximum for the
specified conditions. Since all reversible engines have the same efficiency
as the Carnot cycle, it follows that the efficiency of a reversible heat engine
operating between two given temperatures is the maximum possible for those
temperatures.

18j. Refrigeration Engine.—In the foregoing treatment the Carnot cycle has
been used as a heat engine, taking up heat at a higher temperature, giving some
out at a lower temperature, and doing work in the process. Since the cycle is
reversible, it is possible to operate it in the reverse direction, so that by doing
work on the machine it can be made to take in heat at the lower temperature and
give out heat at the upper temperature. In other words, the machine is function-
ing as a refrigeration engine, for by continually absorbing heat from the vessel at
the lower temperature its temperature can be maintained at this low level, or
lowered further. The work done on the refrigeration engine, using a Carnot cycle,
must be equal, but of opposite sign, to the work done by the heat engine. The
work done on the refrigeration engine is given by equation (18.7) with the sign
reversed, and this may be written in the form

~ W = R(T: — T In3’ = R(Ts ~ T1) In 3 (18.9)
a d
The heat @, taken in at the lower temperature 7', is equal, but opposite in sign,

to that involved in stage III of the Carnot engine; hence, by equation (18.4),

Q =— RT:ln %‘f = RT\In Y. (18.10)
] Vd
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The ratio of the work done on the machine to the heat absorbed at the lower
temperature, that is, the coeficient of performance of the refrigeration engine,
is given by

W T,—T
o T (18.11)
and consequently,
T:—T
-W="5"q. (18.12)
1

Just as the Carnot (reversible) cycle gives the maximum proportion of work which
can be obtained by a machine operating between two given temperatures, so
equation (18.12) represents the minimum amount of work necessary for removing
a quantity of heat @, from a reservoir at T’y and transferring it to a reservoir at
the higher temperature T». If any stage of a refrigeration cycle were irreversible,
more work than that represented by equation (18.12) would have to be done to
transfer the given amount of heat between the same two temperatures.

Problem: Calculate the minimum amount of work in ergs required to freeze
1 g. of water at 0° C by means of a refrigeration engine which operates in surround-
ings at 25° C. How much heat, in calories, is given up to the surroundings?

The heat of fusion of ice is 79.8 cal. g.”! at 0° C, and so this quantity of heat
must be transferred from 0° C, i.e., 273° K (= Th), to 25° C, i.e., 298° K (= T3);
hence, by equation (18.12),

298 — 273
- W = —-—277—3———— X 79.8 = 7.30 cal.
To convert into ergs it is necessary to multiply by 4.18 X 107, so that the work

required is
7.30 X 4.18 X 107 = 3.05 X 108 ergs.

The heat given up at the higher temperature is the sum of the heat absorbed
at the lower temperature, i.e., 79.8 cal., and of the work done on the engine, i.e.,
7.30 cal.; the total is 87.1 cal.

The maximum work obtainable from a heat engine increases as the lower tem-
perature is decreased, or the upper increased; similarly, it can be seen from equa-
tion (18.12) that the minimum amount of work which must be done in a given
refrigeration process increases as the refrigeration temperature 7; is lowered.
Since 7'; — T')increases at the same time as T is decreased, the ratio (72 — T,)/Th,
in equation (18.12), increases rapidly as the temperature 7', is diminished. If the
latter temperature were to be the absolute zero, it is evident from equation (18.12)
that an infinite amount of work would be necessary to transfer heat to an upper
temperature even if this is only very slightly above 0° K. It follows, therefore,
that as the temperature of a system is lowered the amount of work required to lower
the temperature furiher increases rapidly, and approaches infinity as the absolute
zero 18 attained. This fact has sometimes been expressed in the phrase ‘“the
unattainability of the absolute zero of temperature”.

18k. The Thermodynamic (Kelvin) Temperature Scale.—The possibility
of utilizing the efficiency of a reversible engine as the basis of a temperature
scale was suggested by William Thomson (Lord Kelvin) in 1848. Suppose
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a reversible machine operates between two given temperature reservoirs;
the temperature of each reservoir on the thermodynamic (Kelvin) scale is
then defined as proportional to the quantity of heat transferred to or from it in
a reversible cycle. Disregarding for the moment the signs of the heat quan-
tities, if Q; is the heat transfer for the reservoir at the higher temperature
and @, is the amount of heat transferred at the lower temperature, then the
respective temperatures on the thermodynamic (Kelvin) scale are 6; and 6,,
given by
6. Q.
5. Q. (18.13)
In this way the ratio of the two temperatures is defined in a manner inde-
pendent of any particular thermometric substance (cf. § 2b).
By inverting each side of equation (18.13) and subtracting the result from
unity, it follows that
Q:— Qi _ 6 — 0,
= . 18.14
@ o (18.14)
When referred to a heat engine, Q. is the heat taken up at the higher tem-
perature and @, is the amount returned at the lower temperature; hence
Q. — Q. is the quantity of heat converted into work, i.e., W, so that equation
(18.14) may be written as

W _ 6, — 6,
—_—= 18.15
Q2 0, ( )
This expression defines the efficicncy of the reversible heat engine in terms
of the Kelvin temperatures.
The condition for the zero of the Kelvin scale may be derived by setting
6 in equation (18.15) equal to zero, the result is seen to be

W —

Q:
so that the zero of the thermodynamic scale is the lower temperature of a
reversible cycle with an efficiency of unity, that is, one capable of converting
heat completely into work. As seen in § 18h, this result is only possible if
the lower temperature is the absolute zero on the ideal gas scale of tempera-
ture. From this fact, and the identity of equations (18.15) and (18.8), it
follows that the Kelvin scale and the ideal gas scale are really the same. In
order that temperatures on the two scales may coincide exactly it is only
necessary to define the size of the degree so as to be the same on both scales,
that is, one hundredth part of the range between the ice point and the steam
point at 1 atm. pressure (§ 2b). Inview of the identity of the ideal gas scale
and the thermodynamic scale defined in this manner, temperatures on the
former scale, like those on the latter, may be regarded as absolute, and inde-
pendent of the thermometric substance. This is the justification for the
use of the symbol ““° K’ (degrees Kelvin) for the so-called absolute tempera-
tures based on the hypothetical ideal gas thermometer (§ 2c).

1 (for 6, = 0),
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19. ENTROPY

19a. Combination of Carnot Cycles.—Although in § 18k, for convenience
in deriving the Kelvin scale of temperature, the numerical values only of
Q: and @, were considered, it should be recalled that by convention (§ 7b)
Q is the heat taken up by the system. In a Carnot cycle, therefore, the total
heat absorbed is @2 + @1, where @; has a positive value and @, has 2 negative
value, since the former is taken up at the higher temperature and the latter
is given out at the lower. The work W done in the cycle must be equal to
the total heat absorbed (§ 7¢), so that

W = @:+ Q..
If this expression for W is substituted in equation (18.8), it is seen that
Q.+ Q, _ T, - T,

% T, (19.1)
and consequently,

Q& _

A 0. (19.2)

Any reversible cycle may be regarded as being made up of a number of
Carnot cycles. Consider, for example, the cycle represented in Fig. 12 by
the closed curve A BA; imagine a series of isothermal and adiabatic curves
drawn across the diagram, so that a
number of Carnot cycles are indicated.
Starting from A, and following all the
cycles down successively to B, and back
again to A, it can be seen that all the
paths inside the area enclosed by the
curves ABA cancel each other, leaving
only the path indicated by the zigzag
outline. The larger the number of
cycles taken in this manner the closer
will the resultant path correspond to
ABA, which represents the reversible
cycle under consideration. The latter
may thus be regarded as equivalent to B
the contribution of an infinite number Volume
of small Carnot cycles. For each of py 12 Cyclic process as succession
these cycles equation (19.2) shows that of Carnot cycles
the sum of the two @/T terms involved
is zero; hence, for all the Carnot cycles equivalent to the general revers-
ible eycle ABA, it follows that

A

Pressure

Qrov. _
I =0, (19.3)
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where the summation includes two terms for each of the individual Carnot
cycles. Since an infinite number of small Carnot cycles are required to
duplicate the process ABA, it is convenient to write equation (19.3) in
the form
Qrev. —
cyzc:lo T 0, (194)

where grv. represents the infinitesimally small quantity of heat absorbed at
the temperature T in each of the small isothermal, reversible changes which
make up the reversible cycle ABA.*

19b. Definition of Entropy.—The summation in equation (19.4), appli-
cable to the complete (reversible) cycle ABA, may be divided into two parts,
one for the path from A to B, and the other back from B to A4; thus,

Jrev. q_rg_v_ Qrev. -

cyzc:le T AgB T + Bg,l T O. (19.5)
It may be possible to go from A to B by a number of different reversible
paths, always returning to A by the same reversible path BA. In every
case the result represented by equation (19.5) must hold, and since the second
summation on the right of this equation will always be the same, since the
path B — A is the same, it follows that the value of the first summation
must be independent of the path from A to B, provided only that it is
reversible. In general, therefore, it can be seen that the summation of the
grev./T terms between A and B, or of the corresponding summation from
B to A, must be independent of the reversible path. The values of these
summations are thus determined by the states A and B, that is, by the
pressure, volume and temperature, and are independent of the manner in
which the system was brought to these states. It is thus possible to express
the value of each summation in terms of a function S, which depends only
on the state of the system; thus,

¥ e 2§, — 84 = AS, (19.6)
A—-B T
where S, is the value of the function in the state A, and Sp in the state B.
The increase of the function S accompanying the change in state from
A to B is AS, and its value, as seen by equation (19.6), is given by the sum
of the grev./T terms between A and B, where ¢r.v. is the heat absorbed by
the system in an infinitesimal, reversible, isothermal stage occurring at the
temperature 7. For each of these small stages it is therefore possible to
write

_ Grev.
as = &=, (19.7)

where dS represents the accompanying increase of the function S. This
function or property of the system is called its entropy (Greek: change) in

* Since the paths within the area ABA c;a,ncel, the grev. values are effectively those for
the isothermal stages of the path ABA itself.
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the given state; the entropy is not easily defined directly, and so it is best
described in terms of the entropy increase accompanying a particular process.
In an infinitesimal stage of an appreciable process the entropy increase dS
is given by equation (19.7) as the heat ¢.... taken up isothermally and re-
versibly divided by the absolute temperature T at which it i3 absorbed, i.e., grov./T.
For an appreciable change the entropy increase is defined by equation (19.6)
as the (algebraic) sum of all the ¢,.,./T terms between the initial and final
states of the system. The only condition applicable to the path is that it
shall be reversible.

Since the entropy in any state depends only on that state, it may be
regarded as a thermodynamic property in the sense considered in § 4d.
Hence, the increase of entropy of the system accompanying the change from
state A to state B has the definite value Sg — S,, and this quantity is
completely independent of the path from A to B; it may be reversible or
irreversible. However, it is important to remember that if a system changes
from A to B in an irreversible manner, the increase of entropy is given by
the summation of the grev./T terms between A and B, where the ¢.ev.’s refer
to the succession of isothermal changes when the process is performed re-
versibly. The sum of the ¢/T terms for an irreversible process is an indefi-
nite quantity, depending on the path taken from A to B, and having no
special thermodynamic significance as far as the system is concerned.

Because the entropy, like the energy, is a single-valued function of the
state of the system, dS, like dE, is a complete differential. This fact adds
considerably to the thermodynamic usefulness of the entropy function.
The entropy of a system, like the energy, is an extensive property, de-
pendent upon the amount of matter in the system. For example, if the
amount of matter is doubled, the heat quantities required for the same
change of state will also be doubled, and the entropy will clearly increase in
the same proportion. Another consequence of the entropy being an ex-
tensive property is that when a system consists of several parts, the total
entropy change is the sum of the entropy changes of the individual portions.

19c. Entropy Change and Unavailable Heat.—There is a simple relationship
between entropy change and the heat which is rejected at the lower temperature
in a heat engine that is of practical significance. It can be readily seen from equa-
tion (19.2) that for a reversible cycle

-7 9
- =T T,' (19.8)

where — Q, is the heat returned to the reservoir at the lower temperature T,
and hence is not available for conversion into work. Since the heat is taken up
reversibly, @,/ T is the increase of entropy of the system in the heat absorption
stage, i.e.,, AS,. It follows, therefore, from equation (19.8) that

— Q1 = T\AS.. (19.9)

Incidentally, since — Q,/T is equal to Qs/T';, by equation (19.2) or (19.8), the
entropy decrease — AS, at the lower temperature is cqual to ASs, so that Q; may
equally be represented by 7:AS;. Either of these relationships gives the quantity
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of heat that is returned to the reservoir at the lower temperature in a reversible
cycle in terms of the entropy change. For a nonreversible cycle the proportion
of heat that is unavailable for work is, of course, greater since the efficiency is less.

In actual practice, the heat absorbed by the working substance, e.g., water,
is not all taken up at the one temperature 7; but over a range of temperatures,
e.g., from T; to T;; the appropriate form of equation (19.2) is then

Qrev. Ql
Jreve 4 X1 _ 0
1',;1'; T + T, '
the heat @, being rejected at the (approximately) constant temperature 7,. In

this case,

-Q=T, % q% = T\AS,, (19.10)
T,—T3
where AS: is now the increase of entropy accompanying the reversible absorption
of heat in the temperature range from 7T, to T;, instead of at T': alone, as in
equation (19.9). Incidentally, provided 7T, is constant, the alternative form
Q. = T\AS, could be used, as in the previous case.

19d. Entropy Change in Reversible Process.—In a complete cycle the
total entropy change of a system must be zero, since it has returned exactly
to its original thermodynamic state; hence, as expressed by equation (19.4),

Qrev.
=0
2T

for the system. This result refers only to the substance or substances in-
cluded in the system, sometimes called the ‘“working substance,” and it is
necessary now to consider the “surroundings.” In a reversible process, the
heat quantity g..v. taken up by the system at any stage is supplied reversibly
by the heat reservoir, i.e., the surroundings, the temperature of which differs
only infinitesimally from that of the system. Hence, at every stage, the
change in entropy of the surroundings will be equal to the entropy change
of the system, but of opposite sign, since the latter takes in heat when the
former gives it out, and vice versa. In every reversible process, therefore,
the sum of the entropy changes of the system and its surroundings will be
zero. In a complete reversible cycle, therefore, neither will undergo any
resultant change of entropy.

19e. Entropy Change in Irreversible Process.—It has been shown in
§ 18i that the efficiency of a reversible engine is a maximum for the given
working temperatures. Hence, the efficiency of a cycle involving an irre-
versible stage must be less than that of a Carnot cycle. Suppose, for ex-
ample, that the higher temperature (T':) stage, in which the heat Q:ir.) is
absorbed, takes place in an irreversible manner. The remainder of the cycle
may be supposed to be the same as for a Carnot cycle, the heat @;ev.) being
given out reversibly. The work done is given by Q:urr.) + Qicrev.), and
since the efficiency is less than for a completely reversible cycle, it follows
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that [cf. equation (19.1)]

Qsiirry + Qirev.y T, — T,
< 19.11
Q2(irr.) T2 ( )
and hence,
Q2(irr-) Ql(rov.)
T, + T, < 0. (19.12)

In general, therefore, for a cycle which is not completely reversible, the sum,
over the whole cycle, of all the @/T terms, or the ¢/T terms for a series of
infinitesimal stages, would be less than zero.

Consider a perfectly general cycle ABA made up of a path A — B, which
involves one or more irreversible stages, and the completely reversible path
B — A; according to the arguments presented above, therefore,

qirr. (]n-v.
Tt — = < 0. 19.13
ErtE T (19.13)
Since the heat is absorbed in an irreversible manner, the first summation in
cquation (19.13) will not be definite, but will depend on the particular path
taken. By the definition of the entropy change of the system [cf. equation
(19.6)], it is seen that

qre:r. = AgA _ SB,
B—A 7

where ¢r.v. is taken up reversibly, and hence equation (19.13) becomes

> L L9, Sy <0,

A—B T
or, reversing the signs throughout,
Sp— S8y — X L 5 . (19.14)

A—B T
In an irreversible process A — B, therefore, the summationt of the gir./T
terms is actually less than the increase of entropy of the system.

The entropy change of the surroundings in the irreversible stage A — B
must now be considered. This can best be ascertained from the change of
entropy when the surroundings are restored to their original state; the re-
quired entropy change must then be equal in magnitude to this quantity
but of opposite sign. The initial state of the surroundings can be restored
by adding the various amounts of heat involved in the g¢i.. terms at the
appropriate temperatures. In order to obtain the entropy change, these
heat quantities are added reversibly (cf. § 19b), irrespective of the fact that
they were not supplied reversibly to the system during the stage A — B.
The increase .of entropy when the surroundings are brought back to their
original state, after the process 4 — B, is the sum of the gi.r./T terms, and
hence the entropy change during this process is equal to — 3 qirr./T.

A—-B
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The total entropy change of the system and its surroundings in the
irreversible process A — B may thus be summarized as follows:

Increase of entropy of system =8p — 84
Increase of entropy of surroundings = — ﬂ%‘;
A—B

Net increase of entropy of system

and surroundings (ASpet) = Sp — Sa4 — 2 Qicr.
A-B T

As seen by equation (19.14), this quantity is greater than zero, and hence
it follows that in any irreversible process there is a net gain of entropy of the
system and its surroundings. 1f the cycle ABA is completed hy the re-
versible path B — A, as suggested above, the net entropy change in this
process is zero, and hence the whole cycle must be accompanied by a gain of
entropy. It follows, therefore, that an trreversible process, or a cycle of which
any part 18 trreversible, is accompanied by a gain of entropy of the combined
system and tts surroundings.

Since natural, or spontaneously occurring, processes are irreversible
(§ 18b), it must be concluded that all such processes are associated with a
net increase of entropy.* From some points of view this is one of the most
important consequences of the second law of thermodynamics; the law may
in fact be stated in the form that all processes occurring in nature are associated
with a gain of entropy of the system and its surroundings.t

It should be remembered that the net gain of entropy accompanying an
irreversible process refers to the combination of the system and its surround-
ings, that is to say, to an vsolated system of constant energy (cf. § 6d). It will
be seen later that if the energy (and volume) of the system remained constant
in an irreversible process, its entropy would increase, quite apart from that
of its surroundings. It often happens that the entropy of the system, i.e.,
the working substance, actually decreases in a spontaneous, irreversible
process because of the associated energy change, e.g., in the solidification of
a supercooled liquid, but the entropy of the surroundings simultaneously
increases by a greater amount, so that there is a net increase of entropy, as
required by the second law of thermodynamics.

19f. Irreversible Processes and Degradation of Energy.—In a complete cycle,
reversible or irreversible, the system returns to its original state, and hence it
undergoes no resultant change of entropy. Any net increase in the entropy of the
system and its surroundings, as in an irreversible cycle, will then be an increase

* Many changes which are naturally spontaneous ,e.g., expansion of a gas, solution of
zinc in copper sulfate, etc., can be carried out, actually or in principle, in a reversible manner.
It should be clearly understood that in the latter event the total entropy of the system
and its surroundings remains unchanged. There is an increase of entropy only when the
change occurs spontaneously and hence irreversibly.

t It is sometimes stated that the entropy of the ‘“universe” is increasing; this, however,
implies a knowledge of processes occurring outside the earth and so cannot be justified.
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in the entropy of the surroundings; thus, in a complcte cycle,
ASpy = Asmrr.-

For a reversible cycle, ASpet, and hence ASgyr., is zero (§ 19d), whereas for an
irreversible process it is positive, as seen above. It follows, therefore, that in an
irreversible cycle an amount of heat Q.x. has been returned to the surroundings in
excess of that which is transferred in a reversible cycle, where Q.x. is defined by

Q;"‘. = ASsurr. = ASnet,

that is,
Qex. = TASnety (1915)

the temperature T being that of the surroundings, i.e., the sink. This result gives
a fundamental significance to the net entropy increase ASy. of the constant energy
system: the product of AS,e: and the temperature at which heat is rejected is equal
to the quantity of heat that is ‘“wasted” or “degraded’” in an irreversible cycle.
It represents heat taken in at the higher temperature which would have been
available for work if the process had been carried out reversibly. As a result of
the irreversible nature of the process, however, it has been transferred or ‘‘de-
graded” to a lower temperature where its availability for work is diminished. If,
in any reversible cycle, a quantity of heat @, is taken into the system at the tem-
perature T, and @, is rejected at the lower temperature T, then in an irreversible
cycle the heat rejected, for the same quantity Q. of heat absorbed at 7', is equal
to @ + T:ASht. For a given absorption of heat, therefore, the work done in
the irreversible cycle is T1AS,.¢ less than that done in a reversible cycle operating
between the same temperatures. This result gives something of a physical sig-
nificance to the net entropy increase as a measure of the irreversibility of any

process.t

19g. Temperature-Entropy Diagrams.—A convenient form of diagram
for representing thermodynamic changes in state, often used in engineering
problems, is one in which the two axes indi-

cate the temperature and entropy, respec- I

tively. Onsuch a diagram an isothermal of 4 > B
path is obviously a straight line parallet to } T,

the S-axis. Further, since in an adiabatic g wA Y1
process no heat enters or leaves the system, &

the entropy change accompanying any such 8 T
reversible process must be zero. A reversible, &l b < C
adiabatic change is, therefore, represented by I

a straight line parallel to the T-axis. It is Entropy

because of the constancy of the entropy in
a reversible, adiabatic process, the entropy
change being zero, that the term isentropic
(Greek: same entropy) is often used when referring to a process of this
nature.

1 Cf. B. F. Dodge, “Chemical Engincering Thermodynamics,” 1944, p. 71.

Fic. 13. Temperature-entropy
diagram of Carnot cycle
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A Carnot cycle is very simply represented by a rectangle on a tem-
perature-entropy diagram, as in Fig. 13; the isothermal stages at T; and T',
are indicated by I and III, respectively, and the adiabatic paths are II and
1V. The stages I, II, IIT and IV correspond exactly to those described in
§ 18h. It is at once obvious from the diagram that the entropy change
Q:/T. in stage I, where Q: is the heat transferred reversibly at the tempera-
ture T, is exactly equal to the entropy change — @./T,, in stage I1I, where
— @, is the heat transferred at T,; thus,

Qg = — 9..1. or QE + Ql‘

Tz T)_ Tz Tl ’

as found earlier [cf. equation (19.2)]. From this result the efficiency of the
Carnot cyele can be readily derived, since the work done is equal to Q. + Q1.
It can be seen, therefore, that if entropy had been arbitrarily defined as
Q:ov./T, or as the sum of the grev./T terms, it would be a simple matter to
derive the efficiency of a Carnot cycle. This procedure is sometimes
adopted, but it has not been used here because in the treatment of §§ 19a, 19b
the quantity Qrov./T, or gwv./T, appears as a logical development of the
second law of thermodynamics, instead of being an apparently arbitrary
function.

. Dsh. Entropy Change and Phase Change.—In this and the following
section the entropy changes accompanying certain simple processes will be
evaluated. One case of interest for which the calculation can be made very
readily is the increase of entropy associated with a phase change, e.g., solid
to liquid (fusion), liquid to vapor (vaporization), or transition from one
crystalline form to another. These changes can be carried out reversibly
at a definite temperature, the system remaining in equilibrium throughout
(cf. § 8a). The heat supplied under these conditions is the so-called ‘“latent
heat’” accompanying the phase change. In the case of fusion, for example,
Qrv. is equivalent to AH/, the heat of fusion, and if the process has been
carried out at the temperature T, the entropy increase, referred to as the
entropy of fusion, is simply AH,/T. The entropy of vaporization can
be determined in a similar manner. For example, the heat of vaporiza-
tion of 1 mole of water at 25° C, in equilibrium with its vapor at a pres-
sure of 0.0313 atm., is 10,514 cal. mole~!. Since the temperature is
273.16 + 25.0 = 298.16° K, the entropy of wvaporization of water at
25° Cis 10,514/298.16 = 35.26 cal. deg.~! mole~!. It will be seen that the
dimensions of entropy are heat/temperature, and hence it is usually ex-
pressed in terms of calories per degree, i.e., cal. deg.”:. However, since the
entropy is an extensive property the quantity of material constituting the
system under consideration must be stated; consequently, the entropy of
vaporization determined above was given as 35.26 cal. deg.”! mole™.
>A9i. Entropy Changes of Ideal Gas.—For an infinitesimal, isothermal
process, the urst law equation (7.5) may be written as

¢ = dE + w. (19.16)



101 ENTROPY 149

If the process is reversible, and the work is restricted to work of expansion, as
is almost invariably the case for processes considered in chemical thermo-
dynamics, w may be replaced by PdV, where P is the pressure of the system,

8o that
Qrev. = dE + PdV. (19.17)

Further, since the quantity of heat grev. is transferred reversibly, at a con-
stant temperature T, it follows that grev./T is equal to the entropy change
dS accompanying the given infinitesimal change in state; hence, from equa-~
tion (19.17), it is evident that

_dE + PdV
T

For the special case of 1 mole of an ideal gas, dE may be replaced by
CvdT [cf. equation (9.22)7], where Cv is the molar heat capacity at constant
volume, and P may be replaced by RT/V; equation (19.18) thus becomes

av,
Vv
Making the assumption that Cy is independent of temperature (cf. § 9e),

general integration of equation (19.19) gives an expression for the entropy
of 1 mole of an ideal gas; thus,

S=C/InT+RInV + s, (19.20)

where s is the integration constant. The value of this constant cannot be
derived by purely thermodynamic methods, although it is possible to deter-
mine it by means of statistical mechanics, as will be explained in Chapter IX.
For an appreciable change with 1 mole of an ideal gas, between an initial
thermodynamic state, indicated by the subscript 1, and the final state,
indicated by the subscript 2, it follows from equation (19.20) that

\£3
Vi
From this expression the entropy increase accompanying any given change
in state of an ideal gas may be calculated.

An alternative form of (19.20) may be obtained by replacing ¥V by RT/P,

and utilizing the fact that for 1 mole of an ideal gas C» — Cv is equal to R;
it is readily found that

S=CpInT — RInP + s, (19.22)

where s5 is equal to sy + RIn R. For a change in thermodynamic state,
therefore,

das (19.18)

s = Cy ‘-i,:pq—’ +R (19.19)

AS =8, — 8 = Cyln %’,2 + Rl (19.21)
1

AS =8 —8 =Crln - RmE?, (19.23)
T, P,

which is analogous to equation (19.21).
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For a change of temperature al constant volume, the entropy increase of
an ideal gas is seen from equation (19.21) to be

ASr = Cyln L2, (19.24)
T,

whereas, for the same temperature change at constant pressure, (19.23) gives

ASp = Cpln 12. (19.25)
T,

It should be noted that although the foregoing equations are ultimately
based on (19.18), which applies to a reversible process, the results are appli-
cable to any change in thermodynamic state, irrespective of whether it is carried
out reversibly or not. This is because the entropy change depends only on
the initial and final states, and not on the path between them.

For an 7sothermal process, T, and T, are identical, so that equations
(19.21) and (19.23) reduce to

ASr = Rlni2 = B (19.26)
Vi pr, )

The same result could have been derived directly from equation (9.21), which
gives the heat absorbed in an isothermal, reversible process. 1f this quan-
tity is divided by the constant temperature T', an expression for the entropy
change, identical with equation (19.26), is obtained. It must not be for-
gotten, however, that this equation, like the others for entropy change de-
rived in this section, is independent of the manner in which the process is
carried out.

In the isothermal expansion of a gas, the final volume V', is greater than
the initial volume V', and, consequently, by equation (19.26), AS is positive;
that is to say, the expansion is accompanied by an increase of entropy of the
system. Incidentally, when an ideal gas expands (irreversibly) into a
vacuum, no heat is taken up from the surroundings (§ 9d), and so the entropy
of the latter remains unchanged. In this case the net entropy increase is
equal to the increase in entropy of the system, i.e., of the gas, alone.

In a reversible, adiabatie, i.e., isentropic, process, the entropy remains
constant, and hence AS should be zero; the condition for a reversible, adiabatic
process can thus be obtained by setting equation (19.21) equal to zero. The
result is
Tz ‘/2
T, Rln V.

which is identical with equation (10.3). The characteristic equations for a re-
versible, adiabatic process, e.g., (10.5), (10.6) and (10.7), can thus be derived
from entropy considerations.

Cv In

19j. Entropy of Mixing.—Consider a number of ideal gases, incapable of inter-
acting with one another in any way, placed in a vessel in which they are separated
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by partitions. If n; is, in general, the number of moles of any gas, and v; is the
volume it occupies, the total entropy 8, of the system, which is the sum of the
entropies of the gases in the separate compartments, is given by equation (19.20) as

S =Yn(CvyIn T+ Rlnwv + &), (19.27)
the temperature being the same throughout. Suppose that all the partitions are

removed, so that the gases become mixed. Each gas now occupies the total
volume V of the system, and the entropy S; is then represented by

Se=2n(CvInT+ RlnV + s). (19.28)

If the separate gases were each at the same pressure before mixing,* the ratio of
the initial volume »; of any gas to the total volume V is equal to n;/n, where n;
is the number of moles of that gas and n is the total number of moles in the

gystem; thus,
Vs ng
-‘7 = —1; = Ny, (19.29)

where N; is the mole fraction (§ 5b) of the given gas in the mixture. Replacing
v in (19.27) by N;V, in accordance with equation (19.29), the result is

Si=YXn(CynT+RlnN; + RInV + ). (19.30)

The increase of entropy resulting from the removal of the partitions and the mixing
of the gases,known as the entropy of mixing AS,, is equal to S; — S;; hence, by
equations (19.28) and (19.30),

ASm =— R X n;ilnn,. (19.31)

The entropy of mixing for a total of 1 mole of the mixture of ideal gases is obtained
upon dividing equation (19.31) by the total number of moles n; the result is

A&=—RZ%Mm=—Rmem, (19.32)

assuming no change of temperature or total volume upon mixing.

It is of interest to note that since the mole fraction N; of any gas in a
mixture must be less than unity, its logarithm is negative; hence AS,. as
defined by equation (19.32) is always positive. In other words, the mixing
of two or more gases, e.g., by diffusion, is accompanied by an increase of
entropy. Although equation (19.32) has been derived here for a mixture of
ideal gases, it can be shown that it applies equally to an ideal mixture of
liquids or an ideal solid solution.

Problem: Molecular hydrogen normally consists of three parts of orthohydro-
gen and one part of parahydrogen; at low temperatures the molecules of the former
occupy nine closely spaced rotational levels, while the latter occupy only one.
Calculate the entropy of mixing of the ten different kinds of hydrogen molecules.

There are nine kinds of ortho molecules, and since the total constitutes three-
fourths of the hydrogen, each kind is present to the extent of § X § = 5. The
mole fraction of each of the nine forms of orthohydrogen is thus yl3. Since there

* Under these conditions, the total pressure of the mixture of ideal gases will be the
same as that of the individual gases before mixing.
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is only one kind of parahydrogen, its mole fraction is just . The entropy of
mixing is obtained from equation (19.32), there being ten terms in the summation;
for the nine identical ortho terms the mole fraction is &, and for the one para

term it is 4, viz.,
AS, =— R[9(¥In ;) + 1 1n 1]
= 2.208R = 4.39 cal. deg.”? mole~1,

This result will be utilized in § 24n.

19k. Entropy and Disorder.—Before closing this chapter, it is appropriate
to refer to an interesting aspect of entropy which throws some light on the
physical significance of this apparently theoretical property. The subject
will be taken up in greater detail, from a somewhat different point of view,
in Chapter IX, but a general indication may be given here. An examination
of the various processes which take place spontaneously, and which are
accompanied by a net increase of entropy, shows that they are associated
with an increased randomness of distribution. For example, the diffusion
of one gas into another means that the molecules of the two gases, which
were initially separated, have become mixed in a random manner. Simi-
larly, the spontancous conduction of heat along a bar of metal means a more
random distribution of the kinetic energies of the molecules. The conver-
sion of mechanical work into heat, as seen earlier (§ 18e¢), is associated with
the change from ordered motion of a body as a whole to the disordered or
random motion of the molecules. It seems reasonable, therefore, to postu-
late a relationship between the entropy of a system and the randomness or
degree of disorder in the given state. -

The concept of entropy as a measure of randomness, or vice versa, is one
of great value in many cases. Apart from its quantitative aspect, which
will be considered later, it is also useful from the qualitative standpoint, for
it is frequently possible to estimate whether a given process is accompanied
by an increase or decrease of entropy from a consideration of the randomness
or disorder in the initial and final states. Similarly, a knowledge of the
entropy change often provides information concerning structural changes
accompanying a given process. A simple illustration is provided by the
melting of asolid. There is obviously an increase of disorder in passing from
the solid to the liquid state, and hence an increase of entropy upon fusion is
to be expected. As seen in § 19h, this is equal to the heat of fusion divided
by the temperature at which melting occurs. In general, the greater the
increase of disorder accompanying fusion, the greater will be the entropy
increase. Thus, the molar entropy of fusion of ice at 0° C is 5.26 cal. deg.~!
mole™!, while that of benzene is 8.27 cal. deg.~* mole—* at 5.4° C; because of
the relatively large extent of order still present in liquid water above its
melting point the entropy increase is smaller in the former than in the
latter case.

EXERCISES

1. The use of biphenyl (m.p. 70°, b.p. 254° C) alone, or mixed with biphenylene
oxide (m.p. 87°, b.p. 288° C), has been suggested as the working substance in a
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heat engine. Consider the advantages and disadvantages with respect to the use
of (i) water, (ii) mercury (b.p. 357° C), for the same purpose.

2. A reversible Joule cycle consists of the following stages: (i) an expansion at
the constant pressure P, (ii) an adiabatic expansion to a lower pressure P, (iii) a
compression at the constant pressure P,, (iv) an adiabatic compression which
restores the system to its initial state. Draw the indicator (P-V) diagram for the
cycle, and prove that with an ideal gas as the working substance the efficiency is

given by
w < P, )lwp—c'v)/cm

=12
Q P,

where Q is the heat taken up in stage (i) of the cycle. Show that it is possible to
calculate the temperature at the end of each stage.

3. A Carnot cycle, in which the initial system consists of 1 mole of an ideal
gas of volume V, is carried out as follows: (i) isothermal expansion at 100° C to
volume 3V, (ii) adiabatic expansion to volume 6V, (iii) isothermal compression,
(iv) adiabatic compression to the initial state. Determine the work done in each
isothermal stage and the efficiency of the cycle.

4. It has been suggested that a building could be heated by a refrigeration
engine operating in a reversed Carnot cycle. Suppose the engine, takes up heat
from the outside at 2° C, work is done upon it, and then heat is given up to the
building at 22° C. Assuming reversible behavior, how much work in ergs would
have to be done for every kcal. of heat liberated in the building?

5. Mercury vapor at 357° C and 1 atm. pressure is heated to 550° C and its
pressure is increased to 5 atm. Calculate the entropy change in the conventional
units, the vapor being treated as an ideal monatomic gas.

6. An ideal gas undergoes throttled expansion (§ 11a), the pressure being 200
atm. on one side and 20 atm. on the other side of the throttle. The process is
irreversible, and so the entropy change must be calculated by imagining the same
change in thermodynamic state to be carried out reversibly. Determine the net
change in entropy of the system and its surroundings. Is the sign in accordance
with expectation?

7. Justify the statement that the solidification of a supercooled liquid is ac-
companied by a decrease in the entropy of the liquid but a greater increase in the
entropy of the surroundings. Suggest how the change from supercooled water at
— 10° C to ice at the same temperature and pressure could be carried out re-
versibly, so that the entropy change of the system could be evaluated.

8. Show that the entropy of mixing of a number of ideal gases, each at pres-
sure p, to form a mixture at the total pressure p, at constant temperature, is
— R 3 N; In N; per mole of mixture. [Use equation (19.22).]

9. If air, consisting of 21 mole %, oxygen and 79 mole %, nitrogen, at 1 atm.
pressure, could be separated into its pure constituent gases, each at 1 atm. pressure,
at the same temperature, what would be the entropy change per mole of air?
Ideal behavior may be postulated.

10. Show that equations (19.21) and (19.23) lead to the various conditions
for an adiabatic change derived in § 10b.

11. The entropy of liquid ethanol is 38.4 cal. deg.”* mole~! at 25° C. At this
temperature the vapor pressure is §9.0 mm. and the heat of vaporizationis + 10.19
kcal. mole~?, Assuming the vapor to behave ideally, calculate the entropy of
ethanol vapor at 1 atm. pressure at 25° C.



CHAPTER VIII
ENTROPY RELATIONSHIPS AND APPLICATIONS

20. TEMPERATURE AND PRESSURE RELATIONSHIPS
e 20a. Variation of Entropy with Temperature.—The equation (19.18), i.c.,

_dE + PdV
T
is of general applicability, provided only that the work involved is work of

expansion. For an infinitesimal change at constant volume, when dV is
zero, this becomes dSy = dEy/T, or

(gg-)v - (20.2)

By the general rules of partial differentiation [cf. ‘equation (4.9)], both S
and E being functions of T and V,

i), - (32)./ (57)

oE )v aT )v/ \aT )}y’
and since (0E/dT)v is equal to Cv, the heat capacity at constant volume,
it follows from equation (20.2) that

(%)V - O (20.3)

If constant volume conditions are understood, the result may be stated in
the form

ds (20.1)

Sy = gq-tde - CydInT,
and integration consequently gives
T CV T
(S — So)y = f Srar = f Cvdln T, (20.4)
0 0

where 8 is the entropy of the system at the temperature T, and S, is the
hypothetical value at the absolute zero, the volume being the same in each
case. For the entropy increase accompanying a change in temperature
from T, to T, at constant volume, it is seen that

T CV Ts
(S — Sy = f “ar= (Tcdnr. (20.5)
T

T
154
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If Cy is independent of temperature this expression becomes identical with
equation (19.24).

Since the heat content H is equal to E 4+ PV by definition [equation
(9.5)], it follows that at constant pressure

dHp = dEp + PdV,
and hence from (20.1), it is evident that dHp is equal to TdSp, or

(g_ir)p _ }T (20.6)

By means of arguments exactly similar to those used in deriving equation
(20.3), and utilizing the fact that (0H/dT)p is equal to Cp, the heat capacity
at constant pressure, it is found that

S c
(ET’)P = 7,’3 (20.7)
Hence, for temperature changes at constant pressure,
TC0p T
(S — So)p = f Srar = f CrdIn T, (20.8)
0 0
end
T2 (p T2
(S: — Sp)p = f Crar = f CrdIn T. (20.9)
Ty Ty

As before, if Cp is independent of temperature, equation (20.9) becomes
identical with (19.25).

An important use of equation (20.9) is to determine the increase of
entropy of a system for a specified change of temperature at constant pres-
sure. Two procedures are possible, viz., graphical and analytical. In the
former, the values of Cp/T are plotted against T, or Cp is plotted against
In T, and the area under the curve between the ordinates representing T’
and T'; is measured. This gives the value of the integral in equation (20.9),
and hence the increase of entropy for the change of temperature from T';
to T,. Alternatively, if Cp can be expressed as a function of the tempera~
ture, for example, by means of equation (9.24), the required integration can
be carried out readily.

Problem: The heat capacity at 1 atm. pressure of solid magnesium, in the
temperature range from 0° to 560° C, is given by the expression

Cp = 6.20 4 1.33 X 1073T + 6.78 X 10*T"2 cal. deg.™* g. atom™.
Determine the increase of entropy, per g. atom, for an increase of temperature
from 300° K.to 800° K at 1 atm. pressure.

Dividing through the expression for Cp by T, it is found that

—Ci-f = 6—;9 + 1.33 X 10~ + 6.78 X 10473,
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and hence, by equation (20.9),

800 6_20
(Ss00 — Sa0)p = f (—T— 4+ 1.33 X 10~ + 6.78 X 10‘T—8) dar
300
800 _
= 6.20[n§m+ 1.33 X 10~ X (800 — 300) — } X 6.78 X 10¢
X [(800)~2 — (300)~2]
= 6.083 + 0.665 + 0.324 = 7.07 cal. deg.”! g. atom™!.

The entropy increase is thus 7.07 cal. deg.™* g. atom™.

Attention should be called to the fact that the equations derived in this
section are quite general in the respect that they are not restricted to gaseous
systems. They are applicable to liquids and solids, as well as to gases. How-
ever, it should be noted that equations (20.4) and (20.5), at constant volume,
and (20.8) and (20.9), at constant pressure, in particular, require modifica-
tion if there is a phase change, e.g., fusion, vaporization or change of crystal-
line form, within the given temperature range. In cases of this kind, the
increase of entropy accompanying the phase change, as derived in § 19h,
must be added to the values given by the foregoing equations. Some illus-
trations of this type will be considered in § 23b.

- 20b. Variation of Entropy with Pressure and Volume.—Upon rearrange-
ment of equation (20.1), it is seen that

PdV = TdS — dE,

and by applying the condition of constant temperature, this equation may
be expressed in the form

as oE
r=1(37), - (). (2010
Upon differentiation with respect to temperature, at constant volume, the
result is
oP %8 oS *E
Y —r 22 @y 9. .
(aT)v aveT T (aV)T avaT (20.11)

Bearing in mind that Cy is equal to (dE/3T)yv, it is readily found, by differ-
entiation of equation (20.3) with respect to volume, that
8 _ 1 OF
dTdV T aTaV
For complete differentials, such as dS and dE, the order of differentiation
is immaterial, so that 928/9TAV is identical with 42S/dVaT and 62E/aVeT
with 82E/dT3V; combination of the result §ust obtained with equation

(20.11) thus leads to
asS aP
(a—V)T - (_OT)VY’ . (20.12)
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#o that the variation of the entropy with volume at constant temperature
can be derived from the easily accessible quantity (6P/dT)y. For an ideal
gas, for example, the latter is equal to R/V, so that

a8 _E
(5%).-7
This is identical with the form taken by equation (19.19) at constant
temperature.
General differentiation of the relationship H = E + PV, which defines
the heat content, gives
dH = dE + PdV + VdP,

and if this is combined with equation (20.1), the result is

dH = TdS + VdP. (20.13)

At constant temperature this takes the form, analogous to equation (20.10),
aS dH

V_-—T(E? T+(HD)T, (20.14)

and differentiation with respect to temperature at constant pressure gives

W) - B (55) 4 2B

aT Je aPaT oP Jr = 9PoT
From equation (20.7), recalling that Cp is equal to (dH/3T)p, it is found
upon differentiating with respect to pressure that

#S _1 o&H
dTaP T 94ToP’

and comparison with the preceding equation leads to the result

(gg)T — (%)P. (20.15)

Since (3V/3T)p can be obtained either from P-V-T data, or from a suitable
equation of state, it is possible to determine the variation of entropy with
pressure at constant temperature. Upon rearrangement of equation (20.15)
and integration between the pressure limits of P; and P,, at constant tem-
perature, the result is

7 (oY
s-s=- [7(57),ar, 16
2 1 . \oT )» (20.16)

and hence the entropy change S — S; may be obtained by plotting the
values of (8V/dT)p at various pressures against the pressure, and thus
evaluating the integral graphically. Alternatively, an expression for
(0V/aT)p may be obtained as a function of the pressure by means of a suit-
able equation of state, and then equation (20.16) can be solved analytically.
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20c. Entropy Corrections for Deviation from Ideal Behavior.—One of
the most useful applications of equation (20.16) is to determine the correc-
tion which must be made to entropy values obtained for real gases to allow
for departure from ideal behavior. As will be explained in Chapter IX
it is possible to determine the entropy of a gas at 1 atm. pressure, but it is
desirable to express the result in terms of an ideal gas at the same pressure;
this is referred to as the standard entropy of the gas. The correction is
obtained in the following manner.

The increase of entropy of the actual gas from 1 atm. pressure to a very
low pressure P*, where it behaves ideally, is given by equation (20.16) as

P oV
S(P* atm.) — S(1 atm.) = — — ) dP,
1 aT Jp

constant temperature being understood. For an ideal gas, it is evideat from
the equation of state PV = RT that (dV/dT)p is equal to R/P, and hence
the entropy increase from the very low pressure P* to 1 atm. is given by *
1
S*(1 atm.) — S*(P* atm.) = — f %dP.

iad

Since the actual gas may be regarded as behaving ideally at the low pressure
P*, the quantities S(P* atm.) and S*(P* atm.) may be tuken as identical;
the required entropy correction to be added to the observed entropy value
S(1 atm.) is then obtained by adding the two equations given above, viz.,

. t{faV R
S*(1 atm.) — S(1 atm.) = S° — S = f [(—~) — —] dP, (20.17)

P* a T P P
where S°, the usual symbol for the standard entropy, has been written in
place of S*(1 atm.), and S is the observed entropy of the actual gas at

1 atm. pressure.

The integral in equation (20.17) could be evaluated graphically, but in
practice it is more convenient to use an equation of state, and in this connec-
tion the Berthelot equation (§ 5f) has been employed. From this equation

it is found that
(), -5(+2.20
T J» P 32 P.T*)’

and hence equation (20.17) becomes

27 RT
SD_S:ﬁ-ﬁf dP,
¢ P*
3
S°=S+;‘2;“;'11>M:;i=' (20.18)

* An asterisk is used, in general, to represent a system in the postulated ideal state.
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the very small pressure P* being neglected in comparison with unity. The
second term on the right-hand side thus gives the correction which must be
added to the observed entropy S of the gas at 1 atm. pressure in order to
obtain the standard entropy S° for the gas behaving ideally at the same
pressure.

Problem: What is the correction to be added to the observed entropy of 1
mole of nitrogen gas at 77.32° K and 1 atm. pressure to allow for departure from
ideal behavior?

For nitrogen, T. is 126.0° K and P, is 33.5 atm. The value of P, must be
expressed in atm. since this unit has been used in the derivation of equation
(20.18). When 7 is 77.32° K, this equation gives

27 R X (126.0)°
0 — L. Ne
§ S+ 32 33.5 X (77.32)°
Since the entropy is usually expressed in cal. deg.”! mole™, the value of R is 1.987

in the same units, so that the correction term 0.109R is equal to 0.217 cal. deg.™!
mole~!. This result will be employed in § 23c.

= S + 0.109R.

20d.. Thermodynamic Equations of State.—By combining equations
(20.10) and (20.12), there is obtained what is called a thermodynamic equa-

tion of state, viz.,
oP oE
r=1(5), - (5%), (20.19)

for it gives a relationship between pressure, volume and temperature which
is applicable to all substances, solid, liquid or gaseous. An interesting
consequence of this equation arises in connection with the ideal gas law
PV = RT; for an ideal gas, it is seen that

3_13) =B
aT)y ~ V'

and introduction of this result into equation (20.19) gives

oK
(5),-°

The constancy of the energy content of an ideal gas, irrespective of the vol-
ume, at constant temperature, which was postulated earlier (§ 9d), is thus
a direct consequence of the application of the second law of thermodynamics
to the equation of state for an ideal gas.

For a van der Waals gas, (3P/3T)v is equal to R/(V — b), and hence it
follows from equation (20.19) that

(i@’ -8,

av)r V2

This result gives a physical significance to the pressure correction term in
the van der Waals equation (cf. § 11c, also Chapter IV, Exercise 11).
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Another thermodynamic equation of state is obtained by the combina-
tion of equations (20.14) and (20.15); thus,

V= T(%;)ﬂ’(%)r' (20.20)

For an ideal gas, (0H/9P)r, like (3E/3V)r, can be readily shown to be zero,
so that the heat content is independent of the pressure, as stated earlier.
For real gases, however, this is not the case, and equation (20.20) may be
used, in conjunction with a conventional equation of state, or actual P-V-T
data, to determine the change of heat content accompanying a given pres-
sure change. This is of special value in connection with heats of reaction,
when the changes of heat content are determined for actual gases at 1 atm.,
or other, pressure, but the data are required for ideal behavior, i.c., at very
low pressures.!

20e. Variation of Heat Content with Pressure.—By rearrangement of equation
(20.20) and integration between the pressure limits of P, and P, at constant
temperature, it is found that

Hy—H, = fp'[v —-T (%;,)P] dP, (20.21)

P

where H; and H. are the heat contents of the given substance at the temperature
T, and pressures P, and P,, respectively. The integral in this equation may be
solved graphically from P-V-T data, if available, but for gases an equation of state
may be employed. Here again, as in § 20c, the Berthelot equation is useful
for gaseous substances; if the values of V, derived from equation (5.19), and of
(0V/8T)p, given in a preceding section, are inserted in (20.21) it can be shown
without difficulty that

9 RT. ™ P3
Hz—Hl—'i"zg' P, (l—lgﬁ)j; aP

9 RT, ™
55 P, (1-—-—18 5—,2-) Py — Py). (20.22)

]

The change of heat content for a given pressure change can thus be evaluated from
;he critical constants. If heat content data are to be corrected for departure from
deal behavior, P, is set equal to zero; H, is then the heat content of the gas at this
oressure when it behaves ideally. Since the heat content of an ideal gas is inde-
sendent of the pressure, H, gives the required corrected value.

Problem: Calculate the difference in the heat content of 1 mole of oxygen gas
1t 1 atm. pressure and the same gas when behaving ideally at 25° C.

For oxygen, T, is 154.3° K and P, is 49.7 atm.; the pressures P, and P; must
se expressed in the same units as P,, i.e., in atm. In the present case P; is set
squal to zero, and H, is then replaced by H*, the ideal gas value; P, is 1 atm., and
I is 25° C, i.e., 2908.16° (or 298.2°) K. Hence, by equation (20.22), taking R as

1 See, for example, Rossini, J. Res. Nat. Bur. Stand., 22, 407 (1939).
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1.987 cal. deg.”* mole™!, the result is obtained in cal. mole™!; thus,

9 X 1.987 X 154.3 (154.3)2
H* - Hi = — 58~ 407 (1 _lsx(298.2)2> X (-1
= 1.66 cal. mole™.

This difference is small in comparison with the experimental errors in measure-
ments of heat of reaction: it can, therefore, be neglected in most cases, as stated
in § 12b.

Because of the approximate nature of the Berthelot equation of state, it is
probable that equation (20.22) is not very reliable when the pressure difference
P, — P, is large. In connection with the study of high-pressure gas reactions,
however, it is sometimes required to know the difference between the heat content
of a gas at high pressure and at zero pressure. If P-V-T data are available, equa-
tion (20.21) may be used directly, but if they are lacking, or if approximate results
are adequate, a generalized treatment, involving the use of reduced quantities and
the compressibility factor (§ 5i), is simple and convenient.

Utilizing the definition of the compressibility factor «, that is, PV = «RT, it

is readily found that
av RT? [ 9k
V=7 (5), == F (3.
and hence, by equation (20.21), at constant temperature,

P2
H, — H =— RT2f (-;9—;,);%) (20.23)
Py

Dividing both sides by T, and replacing 7 on the right-hand side by 67, and P
by wP., where @ and 7 are the reduced temperature and pressure (cf. § 5e), re-
spectively, equation (20.23) becomes

IIQ"“H| _ 2 aK d1r
o = RoL (ao),? (20.24)

The values of (dx/36), can be derived from the generalized compressibility chart
(Fig. 4) and hence the integral can be evaluated graphically. If the pressure P,
i.e., ms, is taken as zero, H, may be replaced by the ideal gas value H*, so that
equation (20.24) becomes

H* — H * /ok\ dr
= = Ro fo (5{;)’—”—- (20.25)

As seen in § 5i, « is, as a first approximation, a universal function of & and =; it
is evident, therefore, that for a definite reduced temperature and reduced pressure,
the right-hand side of equation (20.25) has the same value for all gases. It is
consequently, possible to construct a generalized diagram giving the (approximate)
value of (H* — H)/T for any gas with the reduced pressure as coordinate and the
reduced temperature as parameter. Such a diagram is represented in Fig. 14.2

2 Watson and Nelson, Ind. Eng. Chem., 25, 880 (1933). For experimental study of the
variation of heat content with pressure, see Gilliland and Lukes, tbid., 32, 957 (1940).
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It may be remarked that a reduced form of equation (20.16) or (20.17) and
a corresponding generalized diagram have been developed. As they are not widely
used, however, they will not be given here.?
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20f. Adiabatic Relationships.—Two relationships, analogous to (20.12)
and (20.15), which are applicable to constant entropy, i.e., reversible adi-
abatic, processes can be derived in a similar manner. Writing equation
(20.1) in the form

dE = TdS — PdV,

it is evident that at constant volume, i.e., when dV is zero,

oE
—_ =T .
( as )‘V ’ (20.26)
whereas at constant entropy, i.e., when dS is zero,
o0E
— ) =-P. .
( oV ) s (20.27)

If equation (20.26) is differentiated with respect to volume, at constant
entropy, and (20.27) with respect to entropy, at constant volume, and the

3 Cf. Edmister, Ind. Eng. Chem., 28, 1112 (1936); York, ibid., 32, 54 (1940); Robinson
and Bliss, ibid., 32, 396 (1940); Maron and Turnbull, ibid., 34, 544 (1942)
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results equated, it is found that

(7).~ ().

From equation (20.13), that is,
dH = TdS + VdP,

the restrictions of constant pressure and constant entropy, respectively,

lead to .
oH dH
(EE)P =T and ('a?)s -V (20.20)

Upon differentiating with respect to pressure, at constant entropy, in the
first case, and with respect to entropy, at constant pressure, in the second
case, and equating the results, it is seen that

aT av

(aP )s (35 )p (20.30)
20g. General Applicability of Results.—The four equations (20.12),
(20.15), (20.28) and (20.30) are frequently referred to as the Maxwell
relations. It is important to note that these results, as well as the gencral
equations of state (20.19) and (20.20), are applicable to systems of all types,
homogeneous or heterogeneous. Two conditions, however, must be borne
in mind. The mass of the system is assumed to be constant, so that there
is no loss or gain of matter in the course of any thermodynamic change.
Systems of this kind, which may consist of one or more phases, are known
as closed systems. The second condition is based on the postulate that
the work done is work of expansion only, and that it is equal to PdV, where
P is the pressure of the system (cf. §§ 19i, 20a). This means that the system
must always remain in equilibrium with the external pressure;in other words,
the pressure inside the system must either be equal to, or differ only by an
infinitesimal amount from, the external pressure. An important application

of equation (20.12) to heterogeneous systems will be given in § 27b.

21. ENTROPY AND HEAT CAPACITY RELATIONSHIPS

21a. Difference of Heat Capacities.—It was shown in § 9c that the
difference between the heat capacities at constant pressure and constant
volume, of any homogeneous system of constant composition, is given by

cr- o= +(2), 16):

and hence, utilizing equation (20.19),

P 14
C'p - CY - T(ﬁ)r(ﬁ P' (21.1)
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This result is applicable to any single substance, either solid, liquid or
gaseous, or to a homogeneous system containing definite amounts of two
or more substances.

For 1 mole of an ideal gas, (3P/9T)v is equal to R/V, i.e,, P/T, and
(0V/9T)p is R/P; hence by equation (21.1),

Cp — Cv =R,

in agreement with equation (9.29). For a real gas, the values of (6P/dT)v
and of (3V/dT)p can be obtained from P-V-T data, and hence Cp — Cy can
be determined. Even without these data, however, a qualitative indication
of the results to be expected may be derived from an equation of state.

For a van der Waals gas, for example,

RT _a
P=v—3 ~ %
and hence,
P RT a
T(E‘T)v“m‘P’LVs' @12)

In order to evaluate (8V/0T)p in a convenient form, the van der Waals equation
is multiplied out to give

PV = RT—-—+bP+V,,

and, dividing through by P, the result is

RT a

V=% - +b+PV’

As a first approximation, V may be replaced by RT/P in the correction terms
a/PV and ab/PV?, so that

RT abP

V=7~ RT+b+R2T3

Differentiation of this expression with respect to temperature, at constant pressure,
yields

Vv R a 2abP
(Ei)p =PtRp RD (21.3)

It is readily found by arrangement of the previous equation that
R V-b a abP

PT T TRRBD
and combination with (21.3) gives

V\ _V—b 2 _ 3abP
3T /»

Introducing this result together with equation (21.2) into (21.1), and omitting
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some of the smaller terms, it is secn that,

a v 2a 3abP
Cp~Cy = (P+—‘;-,>(-————-) +P(RT’ R’T’)
R+ 28 p_ 3ab .,
=R + RT2P R’T’I . (21.4)
Except at low temperatures and high pressures, the last term may be neglected,
so that

Cr 0V~R+RT2

(1 + ) (21.5)

It is evident, therefore, that for a real gas the yalue of Cp — Cy is greater than R;
the difference increases, as a first approximation, in a linear manner with the
pressure, and is most marked at lower temperatures. The difference between
Cp — Cy and R is evidently greater for easily liquefiable gases, for these have, in
general, higher a values.

Problem: Calculate Cp — Cy for nitrogen at 25° C and 200 atm. pressure, the
van der Waals a being 1.39 liter? atm. mole™2,

Since a is given in liter? atm. mole™2, P should be in atm., and R in liter-atm.
deg.”? mole™, i.e., 0.0820; hence, equation (21.5) gives

2 X 1.39 X 200
(0.082)% X (298)2

CP—CV?"«R[I-F

~ 1.93R.
(The actual value is approximately 1.9R.)

At low temperatures and high pressures the value of C» — Cv can become
very much larger than for an ideal gas. However, the difference between
Cpr — Cv and R does not increase continuously with the pressure, as implied
by equation (21.5). The reason for this is the — 3abP?/R?T? term in equa-
tion (21.4). As the pressure is increased this becomes of increasing impor-
tance, and it is evident that at sufficiently high pressures Cr — Cy should
attain a maximum, and subsequently decrease with increasing pressure.
The results obtained directly from actual P-V-T data are in qualitative
agreement with this conclusion. At 20° C, the maximum, equal approxi-
mately to 2R, is attained with nitrogen gas at about 300 atm. pressure.

Without going into details, it may be noted that a similar treatment based on
the Berthelot equation of state gives the result

Cr—Cr~R(1+20. 2 p), 21.6
P v = 16 P.I (21.6)
applicable over a limited range of pressures.

Problem: Compare the value of Cp — Cy for nitrogen at 25° C and 200 atm.
pressure given by equation (21.6) with that obtained above from (21.5).
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For nitrogen P, is 33.5 atm. and T, is 126.0° K; hence when T is 25° C, i.e.,
298.2° K, and P is 200 atm., equation (21.6) gives
27 X (126.0)* X 200
16 X 33.5 X (298.2)°

Cp—-—Cvy=R [1 +
~ 1.76R,

which may be compared with 1.93R from equation (21.5).

The thermodynamic equation (21.1) may also be expressed in terms of the
reduced temperature, pressure and volume, and the compressibility factor. It is
then possible to construct a generalized diagram for Cp — Cy applicable to all
gases (cf. § 20e).4

21b. Difference of Heat Capacities: Alternative Expression.—An alter-
native form of equation (21.1) has been used to determine the difference in
the heat capacities of solids, liquids and gases. For a homogeneous system
of constant mass the volume V is a single valued function of the temperature
and pressure, and so it is possible to write

v v
v = (b"f')p T + (313), dP. @1.7)

For a process occurring at constant volume dV is zero, and hence equation

(21.7) becomes
av v
(57), 47 == (55), @

(7). == (57)./ (55).

Upon introducing this result into equation (21.1) it follows that

e () /()

This equation has been utilized in connection with P-V-T data, either in
graphical or analytical form, to determine Cr» — Cy values for a number of
gases over a considerable range of temperature and pressure.®

For solids and liquids another form of equation (21.8) is convenient.

or

The quantity —117( 3——;’,) is equal to the coefficient of (cubical) thermal ex-
P
pansion « of the substance constituting the system, and — —‘17(%‘1—2) is the
T

4 Schulze, Z. phys. Chem., 88, 490 (1914); Ldmister, ref. 3; Ind. Eng. Chem., 32, 373
(1940).

s Deming and Shupe, Phys. Rev., 37, 638 (1931), 38, 2245 (1931), 40, 848 (1932); Roper-.
J. Phys. Chem., 45, 321 (1941).
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compressibility coefficient 8; hence,
a"’TV'
8

This equation has been found especially useful for the conversion of heat
capacities of solids, in particular, measured at constant (atmospheric)
pressure to the values at constant volume (§ 17a).

Cp—Cy =

(21.9)

Problem: For metallic copper at 25° C, the coefficient of expansion « is
49.2 X 1076 deg.”, and the compressibility coefficient 8 is 0.785 X 10~¢ atm.™;
the density is 8.93 g. cc.”? and atomic weight 63.57. Calculate the difference in
the atomic heat capacities at constant pressure and constant volume.

In the present case V in equation (21.9) is the atomic volume, i.c., the atomic
weight divided by the density; if this is expressed in ce. g. atom™, i.e., 63.57/8.93,
it can be readily seen from equation (21.9) that using the values given for a and 8,
Cp — Cy will be in cc.-atm. deg.™ g. atom™. Since 1 cc.-atm. is equivalent to
0.0242 cal. (Table 1, Appendix), it follows that at 25° C, i.e., 298.2° K,

Co — ¢ = (492 X 1079 X 208.2 X 63.57 X 0.0242
P 0.785 X 10-¢ X 8.93
= 0.159 cal. deg.”! g. atom™L.

21c. Determination of Heat Capacity.—For a simple system, e.g., a single
substance or a homogeneous mixture of constant composition, the entropy is de-
pendent on two thermodynamic variables, e.g., temperature and pressure, only,

so that
AL as\ .,
a5 = (57),97 + (55, 20

and hence, by the method used in § 21b, it follows that

(57 )a == (38)./ (55).

Utilizing equation (20.15) for (dS/dP)r, and (20.7) for (3S/3T)p, it is found upon

rearrangement that
v arT
Cp = T<—6—7—,>P/(b—l;>s' (21.10)

This equation has been used for the determination of the heat capacities at con-
stant pressure of both liquids and gases. The quantity (8V/aT)p is the rate
of thermal expansion and this can be measured without difficulty. The other
factor, (87/8P)s, is called the adiabatic temperature coefficient, since it applies to
constant entropy, i.e., adiabatic, conditions. It can be determined by allowing
the fluid to expand suddenly, and hence adiabatically, over & known pressure range,
and observing the temperature change.®

¢ Joule, Phil. Mag., 17, 364 (1859); Lummer and Pringsheim, Ann. Physik, 64, 555
(1898) ; Eucken and Miicke, Z. phys. Chem., B18, 167 (1932); Dixon and Rodebush, J. Am.
Chem. Soc., 49, 1162 (1927); Richards and Wallace, #bid., 54, 2705 (1932); Burlew, tbid., 62,
681, 690, 696 (1940).
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21d. Variation of Heat Capacity at Constant Pressure with Pressure.—
It is a simple matter to derive an expression for the influence of pressure on
heat capacity. Upon differentiating equation (20.7), i.e.,

(2§) = Cr
aT ), T’

with respect to pressure, at constant temperature, and equation (20.15), i.e.,

(7). == (32).

with respect to temperature, at constant pressure, and equating the results,
it is found that
8 1 (@_Q) _ (aﬁV)
dToP T\ oP )r T )p’
acCr v
( < )T - (ar-)p (21.11)
This equation holds for any homogeneous substance, but it is usually applied
to gases. For an ideal gas, it is evident from the equation PV = RT that
(8*V/aT*p is zero, and hence the heat capacity skould be independent of
the pressure {(cf. § 9¢). Real gases, however, exhibit marked variations of
heat capacity with pressure, especially at low temperatures; at — 70° C,
for example, the value of Cp for nitrogen increases from 6.8 at low pressures
to 12.1 cal. deg.™* mole™ at 200 atm. At ordinary temperatures, however,
the heat capacity increases by about 2 cal. deg.~* mole™! for the same increase
of pressure.

The actual change of heat capacity with pressure is given by an expres-
sion obtained by the integration of equation (21.11). At a sufficiently low
pressure, represented by P*, where the gas behaves ideally, the heat capacity
C? may be regarded as virtually independent of pressure; this pressure may
be taken as the lower limit of integration, and if the upper limit is any
pressure P at which the heat capacity at constant pressure is Cp, then

P (3*V

— O* = — i >
Cp — C T P*(W)Pdl, (21.12)

at a constant temperature 7. The values of (6?V/8T?)p for a given gas at
various pressures can be derived from P-V-T measurements, if available;
by graphical integration Cp — C} can then be determined for any desired
pressure.’

If the constants in a ratisfactory equation of state, e.g., the Beattie-Bridgeman
equation, were known, (82V/972)p could be expressed analytically as a function
of the pressure, and then integrated in accordance with equation (21.12). The
treatment may be illustrated in a simple manner by utilizing the van der Waals

7 See ref. 5; also, Hoxton, Phys. Rev., 36, 1091 (1930).
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equation. It was seen in § 21a that for a van der Waals gas [cf. equation (21.3)]

v\ R a 2abP
(aT)p"P"'ﬁv"lT:F’
and hence
#V\ _  2a , 6abP
(sﬁ),,-‘ﬁﬁ““zz—rﬁ'

so that from equation (21.12)

P [ 2a 6abP
Cr = ?”=f,, (75— e ) o

Assuming a and b to be independent of the pressure, and taking P* as zero, it
follows that

2a 3ab

Cr—Ct =gl ~@r

P, (21.13)

At moderate temperatures and pressures the second term on the right-hand side
of equation (21.13) may be neglected; the value of Cp should thus increase in a
linear manner with the pressure. The rate of increase should be less the higher
the temperature. With increasing pressure the effect of the second term will
become appreciable, especially at low temperatures, and at sufficiently high pres-
sures Cp should reach a maximum and then decrease. These qualitative expecta-
tions are in agreement with the results obtained by the application of P-V-T data
to equation (21.12), and also with the limited experimental determinations of heat
capacities at high pressures.?

From the Berthelot equation of state in conjunction with (21.12) it is found that

81 RT?

CP - C; =~ 3—2 ﬁ . (21.14)

This result, as might be expected, is reliable at moderate temperatures and pres-
sures, when Cp — C} is a linear function of the pressure.

Problem: Calculate the change of Cp for nitrogen when the pressure is in-
creased to 100 atm. at 25° C, using (i) the van der Waals equation (ii) the Berthelot
equation.

(i) For nitiogen, a is 1.39 and b is 3.92 X 1072 in liter, atm. and mole units;
R must therefore be in liter-atm. deg.™ mole™, and P in atm., i.e., 100 atm.;
equation (21.13) then gives, with T = 298° K,

Co — % n 2.X 1.39 X 100
P P 70.082 X (298):
== 0,038 liter-atm. deg.”* mole™,

the second term being negligible. Since 1 liter-atm. is equivalent to 24.2 cal.,
the change in heat capacity should be 0.93 cal. deg.”* mole™.

8 Worthing, Phys. Rev. 33, 217 (1911); Mackey and Krase, Ind. Eng. Chem., 22, 1060
(1930).
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(ii) Taking T. as 126.0° K and P, as 33.5 atm., equation (21.14) gives

81 X 0.082 X (126)* X 100
— %
Cr = CF ~ =35 % 33.5 X (208)°

= 0.047 liter-atm. deg.™ mole™!.

This is equivalent to 1.1 cal. deg.”! mole™!. (The experimental value is about
1.0 cal. deg.”® mole™.)

As in the case of other thermodynamic properties, it is possible to derive a
general relationship for Cp — C} involving the reduced temperature and pressure.
The simplest method of approach to this problem is to utilize the familiar definition
of Cp as (0H/3T)p; hence,

oH oH* o(H — II*
CP—C;=(ﬁ>p—<6T >p= [-(.TT_-—)-]P' (21.15)

where, as before, H and H* refer to the heat contents at an appreciable pressure P
and at a very low pressure, respectively. Upon introducing the mathematical
result

dl(H — H*)/T] _ .4l — H*)/T] _d(l — H*) H — H*

T

dlnT aT aT T
equation (21.15) gives
o — H* oL(H — H*)/T]}
-— % = + .
Cr—C? T { dlnT P (21.16)

The temperature T may be expressed as 07, where 8 is the reduced temperature;
hence dln 7' is equal to dln @, since T. is constant, and equation (21.16) may

consequently be written as
A[(H — H*)/T] }
— * = -
Cr = C? 7+t { dlnd

It was seen earlier (§ 20e) that (H — H*)/T is a function of the reduced tempera-
ture and pressure of a form applicable to all gases [cf. equation (20.25)], at least
as a first approximation; hence the same must be true for Cp — C%, in accordance
with equation (21.17).1 The first term on the right-hand side is obtained from
equation (20.25) or its equivalent (Fig. 14), and the second term from the slope
of the plot of (H — H*)/T against 6 (or In ), all the values being at the reduced
pressure corresponding to the pressure P at which Cp» — C} is required.®

H - HO*

(21.17)

2le. Variation of Heat Capacity at Constant Volume with Volume.—By
means of equations (20.3) and (20.12), a relationship analogous to (21.11)
can be obtained for the variation of C'y with volume, which is related to the
variation with pressure, at constant temperature; this is

aCv\ _ P
(59).=7(5%), @L18)

1 8Since a good approximation for a function does not, on differentiation, necessarily
give a good approximation for the derivative of the function, this conclusion may be open
to some objection.

® Dodge, Ind. Eng. Chem., 24, 1353 (1932); Watson and Nelson, zbid., 25, 880 (1933);
see also, ref. 3
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which, upon integration, gives

cv—cs =1 [ (ZE) av
v = vV = " 5—1‘:& Vd ’ (21.19)

where C¥ is the constant heat capacity at low pressure, i.e., large volume V*.
The chief application of these equations, like (21.11) and (21.12), is to gases.
For an ideal gas, it can be readily seen that since (92P/9T?)y is zero, Cy is
independent of the volume (or pressure), as is to be expected, but for a real
gas this is not necessarily the case. The values of (82P/3T?)y can be derived
from P-V-T measurements, and hence Cy — C%.can be obtained by graphical
integration; alternatively, an analytical method, similar to that described
above, may be used.

It is of interest to note that (92P/dT?)y is zero for a van der Waals gas, as well
as for anideal gas; hence, Cy should also be independent of the volume (or pressure)
in the former case. In this event, the effect of pressure on Cr is equal to the varia-
tion of Cp — Cy with pressure. Comparison of equations (21.4) and (21.13), both
of which are based on the van der Waals equation, shows this to be true. For a
gas obeying the Berthelot equation or the Beattie-Bridgeman equation (82P/0T?)y
would not be zero, and hence some variation «f Cy with pressure is to be expected.
It is probable, however, that this variation is small, and so for most purposes the
heat capacity of any gas at constant volume may be regarded as being independent
of the volume or pressure. The maximum in the ratio v of the heat capacities at
constant pressure and volume, respectively, i.e., Cp/Cy, referred to earlier (§ 10e),
should thus occur at about the same pressure as that for Cp, at any temperature.

22. THE JouLE-THOMsON EFrFEcT

22a. The Joule-Thomson Coefficient.—Although the subject matter of
this section has no direct connection with entropy, it may be considered here
because the results are based on one of the thermodynamic equations of
state derived in § 20d; to this extent the material may be regarded as a
consequence of the entropy concept. In equation (20.20), viz.,

2% oH
v=7(5r),+ (%),
(0H/dP)r may be replaced by — u;.1.Cp, as given by equation (11.5), where

py.1. is the Joule-Thomson cocfficient, i.e., (87 /dP)u; hence, for a fluid, i.e.,
liquid or gas, it is possible to write

V = T(%;—/,)P — wi.n.Cp (22.1)
or .
1 1%
= — — ) -V 22.2
K31 C’p[T ( 6T)p ] (22.2)

This expression is based upon thermodynamic considerations only, and
hence is exact; the Joule-Thomson coefficient, at any temperature, may thus
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be determined by inserting experimental results for (9V/aT)p, V and Cr
under the given conditions. The values derived in this manner have been
found to agree closely with those obtained by direct experiment.!

Problem: At 20° C, the value of the dimensionless quantity (T/V)(@V/0T)p
for nitrogen was found to be 1.199 at 100 atm.; the specific volume was then 8.64
ml. g.7! and Cp was 8.21 cal. deg.™ mole™. Calculate the Joule-Thomson coeffi-
cient of nitrogen under these conditions.

Equation (22.2) may be put in the form

_YVIZfovN _,
wer = ool T\ 3T /s )
and if Cp is the molar heat capacity, V must be the molar volume. Since yj.T.
is usually expressed in deg. atm.™!, it will be convenient to have V in liter mole™!
and Cp in liter-atm. deg.” mole™; the equation is then seen to be dimensionally

correct. The molecular weight of nitrogen is 28.0, and the molar volume is
8.64 X 28.0 X 1072 liter; Cp is 8.21 X 0.0413 liter-atm. deg.”* mole™, and hence

_ 8.64 X 28.0 X 10~
AT = T8 91 X 0.0413

(1.199 — 1) = 0.142° atm.™*

(The direct experimental value is 0.143° atm.™.)

For an ideal gas, satisfying the equation PV = RT under all conditions,
@V /aT)p is equal to V/T; it follows, therefore, from equation (22.2), that
the Joule-Thomson coefficient is always zero. For a real gas, however, this
coefficient is usually not zero even at very low pressures, when ideal behavior
is approached in other respects. That this is the case may be seen by making
use of an equation of state for a real gas.

For a van der Waals gas, for example, it is seen from the results in § 21a

that
1% 2a 3abP
T(b—T)p" V=b+ 2T~ ape

oV 2a 3abP
T(ﬁ)p_v"ﬁ‘b"zem'

The equation (22.2) for the Joule-Thomson coefficient thus becomes

1 (2 3abP
HI.T. —‘C"‘;(ﬁ —b—W). (22.3)

At very low, or zero, pressure, the last term in the parentheses is negligible

and hence

10 Deming and Shupe, Phys. Rev., 37, 638 (1931), 48, 448 (1935); sce also, Perry and
Herrman, J. Phys. Chem., 41, 1189 (1935); Edmister, Ind. Eng. Chem., 28, 1112 (1936);
Benedict, J. Am. Chem. Soc.. 59. 1189 (1937); Maron and Turnbull, Ind. Eng. Chem., 34,
544 (1942).



22b THE JOULE-THOMSON EFFECT 173

and then

o128 .\
Mz =53 ( BT b ) (22.4)
Except in the special circumstances when 2a/RT is equal to b, the Joule-
Thomson coefficient at low pressures, as given by equation (22.4), is not zero.

If the van der Waals a and b are known it is possible to obtain an indica-
tion of the value of the Joule-Thomson coefficient at any given temperature
and pressure by means of equation (22.3). The results are approximate
only, since a and b vary with temperature and pressure, the values generally
employed (Table I) being based on critical data.

Problem: Calculate the Joule-Thomson coefficient of nitrogen gas at 20° C
and 100 atm. pressure, taking Cp as 8.21 cal. deg.” mole™t.

Since a and b are usually given in liter, atm. and mole units, viz., 1.39 and
3.92 X 1072, R is 0.082 liter-atm. deg.”! mole™ and Cp is 8.21 X 0.0413 liter-atm.
deg.”! mole™; hence at 20° C (293° K), equation (22.3) gives, with P equal to
100 atm.,

1
H.T- = 831 X 0.0413
2 X 1.39 ) . 3 X139 X 3.92 X 10* X 100
X [0.082 x 293 ~ 392X 10 (0.082)* X (293)? ]
= (0.142° atm.™.

(This is in fortuitously good agreement with the experimental value of 0.143°
atm.”!. If equation (22.4) is employed, the result is 0.22° atm.™1.)

22b. The Joule-Thomson Inversion Temperature.—The condition for
the Joule-Thomson inversion temperature, where the Joule-Thomson co-
efficient changes sign from positive to negative or vice versa (§ 11¢), can be
obtained by setting us.r. equal to zero. For a van der Waals gas, equation
(22.3) gives the condition as

2a 3abP
T, P "m0 (22.5)
2a 3aP
TP - Ti+ 5 = O (22.6)

TABLE XIV. JOULE-THOMSON INVERSION TEMPERATURES FOR NITROGEN

Inversion Temperature

Press. Upper Lower
1 atm. 348°C —_

20 330.0° — 167.0°C

60 299.6° — 162.4°
100 277.2° - 156.56°
180 235.0° — 134.7°
220 212.5° - 117.2°
300 158.7° — 68.7°

376 X 40°
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This equation is a quadratic, and hence there will be, in general, two values
of the inversion temperature 7'; for every pressure, as stated in § 11c. The
experimental values obtained for nitrogen gas are recorded in Table XIV,
and are plotted (full line) in Fig. 15.11  For all temperatures within the curve

8 g
Z
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—
3,

Inversion Temperature (°C)
N
3,

o

A
8

20 60 100 200 300 Atm.
Pressure

Fig. 15. Joule-Thomson inversion curve for nitrogen
the Joule-Thomson coefficient is positive, a throttled expansion being ac-
companied by a fall of temperature; outside the curve the coefficient is
negative.
A generalized expression for the Joule-Thomson inversion temperature may

be obtained by the use of a reduced equation of state. By setting equation (22.2)
equal to zero, the condition for the inversion temperature 7 is then seen to be

av
T (ﬁ)p -V =0, (22.7)

since Cp i8 not zero. If the pressure, volume and temperature are expressed in
terms of the corresponding reduced quantities r, ¢ and 8, equation (22.7) becomes

0; (g—g)' -—¢=0 (22.8)

1t Roebuck and Osterberg, Phys. Rev., 48, 450 (1935).
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From the reduced form of the van der Waals equation (5.16), i.e.,

¢2

it follows upon differentiation, at constant reduced pressure, that

(1r + i) (3¢ — 1) = 86, (22.9)

) Lo

30 /., 3w¢*— 9% + 6

If this result is introduced into equation (22.8), and = is eliminated by means of
(22.9), it is found that

3(3¢ — 1)2
0; = T ap (22.10)

and substitution of this value for 6 in (22.9) gives for the corresponding reduced
pressure,
™= %q;,—l)' (22.11)

By combining equations (22.10) and (22.11), it is possible to eliminate ¢ and thus
obtain a general relationship between the reduced inversion temperature and
pressure applicable to all gases. Provided = is less than 9, solution of equation
(22.11) gives two real values of ¢ for each value of =;; insertion of these two ¢’s
in equation (22.10) then gives the two reduced inversion temperatures 8; for the
particular reduced pressure ;. By choosing various values of the latter from 0
to 9, the data can be obtained for a generalized, reduced inversion temperature-
pressure curve, which should be applicable to any gas. The curve derived from
equations (22.10) and (22.11) is shown by the broken line in Fig. 15.22

Comparison of the two curves in Fig. 15 indicates that the reduced equation
for a van der Waals gas is qualitatively correct, but is not quantitatively accurate.
This fact is brought out more clearly by considering some actual results. Accord-
ing to equation (22.11), or Fig. 15, the maximum value of the reduced pressure
for which inversion is possible is 9; ¢ is then unity, and 6: should be 3, by equation
(22.10). For nitrogen, T, is 126.0° K and P, is 33.5 atm., 8o that the maximum
pressure for the observation of a Joule-Thomson inversion should be 9P,, i.e.,
9 X 33.5 or 301.5 atm., the temperature should then be 3T, i.e., 3 X 126.0 or
378° K. The experimental values are 376 atm. and 313° K. Further, at very
low, e.g., zero, pressure, ¢ can be either 0.5 or infinity, by equation (22.11); in-
sertion of these values in (22.10) gives the two values of the reduced inversion
temperature as 0.75 and 6.75, so that the actual (absolute) temperatures should
be 0.75T, and 6.75T,. For nitrogen, these would be 94.5° K and 850° K, compared
with the (extrapolated) experimental values of about 103° K and 623° K.

Although equations (22.10) and (22.11) yield results that are not exact, they
are, nevertheless, useful when direct measurements have not been made; they
provide an indication of the range within which cooling of a given gas by the Joule-
Thomson effect is possible. Such information would be of value in connection
with the liquefaction of the particular gas.

1 Porter, Phil. ‘Mag., 11, 554 (1906); 19, 888 (1910).
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EXERCISES

1. Give the complete derivation of equation (20.7).

2. Give the complete derivation of equation (20.20), and show that the heat
content of a gas which satisfies the equation PV = RT at all temperatures and
pressures is independent of pressure.

3. Derive an expression for S° — S for a van der Waals gas, where S° is the
standard entropy and S is the experimental entropy at 1 atm. at the same tem-
perature, using equations (20.17) and (21.3). Calculate the value of S° — 8 for
nitrogen gas at 77.32° K (cf. problem in § 20c).

4. By means of the expression based on the Berthelot equation, determine the
correction for the deviation from ideal behavior of the entropy of chlorine gas
measured at its boiling point (239.0° K) at 1 atm.

5. Determine the increase in entropy of nitrogen gas when it is heated from
27° C to 1227° C at 1 atm. pressure. (Use Cp data in Table II.)

6. The heat capacity of solid iodine at any temperature ¢° C, from 25° C to
the melting point (113.6° C), at 1 atm. pressure, is given by

Cp = 13.07 + 3.21 X 10™4(¢ — 25) cal. deg.”* mole™!

[Frederick and Hildebrand, J. Am. Chem. Soc., 60, 1436 (1938)]. The heat of
fusion at the melting point is 3,740 cal. mole™. The heat capacity of the liquid
is approximately constant at 19.5 cal. deg.” mole™, and the heat of vaporization
at the normal boiling point (184° C) is 6,100 cal. mole~!. Determine the increase
of entropy accompanying the change of 1 mole of iodine from solid at 25° C to
vapor at 184° C, at 1 atm. pressure.

7. Taking Cp for ice and water as 9.0 and 18.0 cal. deg.™* mole™, respectively,
and the heat of fusion as 79.8 cal. g.”! at 0° C, determine the change of entropy
accompanying the spontaneous solidification of supercooled water at — 10° C at
1 atm. pressure (cf. Exercise 7, Chapter VII).

8. Show that, in general, for any thermodynamic change in state, the corre-
sponding entropy change is given by

T
b5 =51 [t [ () o
T Py

Suggest a method for determining AS for a gas.

9. Show that by the use of the compresmblllty factor «, defined by PV = «kRT,
it is possible to express equation (20.16) in the reduced form applicable to any gas.
Describe the construction of a generalized chart for determining the (approximate)
change of entropy of any gas with pressure at constant temperature.

10. Derive an expression for H; — H, for a van der Waals gas, where H; and
H, are the heat contents at pressures P, and P,, respectively, at the same tempera-
ture, using equation (20.21) and the results in § 21a. Calculate the difference in
the heat content, in cal. per mole of oxygen, at 1 atm. and 100 atm. at 25° C.

11. By means of Fig. 14 estimate the change of heat content, in cal., accom-
panying the compression of 1 mole of ethane at 50° C from 30 atm. to 300 atm.
pressure. What other information would be required to calculate the change of
heat content if the temperature were changed, as well as the pressure?

12. Utilize Fig. 14 to determine the change in AH for the reaction 3Ns(g)
+ $Hi(g) = NHy(g) as a result of increasing the pressure from a low value,
virtually zero, to 200 atm. at 450° K.
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13. Estimate the difference between AH for the reaction Hai(g) + 30:(g)
= H,0(g) for the actual gases each at 1 atm. and 25° C, and the value that would
be expected if the gases behaved ideally.

14. The coefficient of cubical expansion a of sodium at 20° C is 21.3 X 10-5
deg.”! and the compressibility coefficient 8 is 15.6 X 10~® megabar~! (1 megabar
= 10® bar = 10°® dynes cm.™?); the density is 0.97 g. cc.”! [Eastman, et al., J. Am.
Chem. Soc., 46, 1184 (1924)7]. Calculate Cp — Cy per g. atom of solid sodium at
20° C, and determine Cp at this temperature by using the Debye heat capacity
equation.

15. Show that equation (21.5) can be derived directly from the simplified
van der Waals equation applicable at moderate pressures (Exercise 7, Chapter II).

16. Verify equation (21.6).

17. Give the complete derivation of equation (21.18).

18. The simplified form of the van der Waals equation (Exercise 7, Chapter II)
can also be written as PV = RT +4 AP, where A is a function of the temperature.
Show that under these conditions (dCp/dP)r = — T(324/8T?)p and hence derive
an expression for Cp — Cp in terms of the van der Waals constants.

19. By means of equation (21.4), derive an expression for the pressure at
which Cp — Cy for a van der Waals gas has a maximum value at any given tem-
perature. Determine the pressure at which Cp — Cy is & maximum for nitrogen
gas at 25° C. What is the value of Cp — C at this pressure? (The experimental
pressure is about 300 atm. and Cp ~ Cy is then approximately 4 cal. deg.~ mole—!,)

20. Utilize equation (21.13) to find the pressure at which C'p is a maximum for
a van der Waals gas. Why is this identical with the pressure at which Cp — Cy
is & maximum? If C% for nitrogen is 6.96 cal. deg.~! mole~1, calculate the maxi-
mum value of Cp/Cy for this gas at 25° C, making use of the result obtained in
the preceding exercise.

21. Prove Reech’s theorem, that for any homogeneous system,

Cp/Cy = (0P/3V)s/(0P/0V)r.

Show that this is essentially the basis of the Clément and Desormes method for
determining v for gases [equation (10.11)7].

22. By means of equation (21.8) explain how a generalized (reduced) chart for
Cp — Cy could be constructed.

23. Calculate the Joule-Thomson coefficient of carbon monoxide at 25° C and
400 atm. pressure, given that (T/V)(dV/9dT)p is 0.984, the molar volume is 76.25
cc. mole~* and Cp is 8.91 cal. deg.” mole™* [Deming and Shupe, Phys. Rev., 38,
2245 (1931)].

24. Determine the value of the Joule-Thomson coefficient for the conditions
in the preceding exercise, assuming the carbon monoxide to behave as a van der
Waals gas.

25. By using equation (22.2) in conjunction with the compressibility factor
(x), derive a simple condition for the Joule-Thomson inversion temperature of a
gas at any (reduced) pressure in terms of the variation of x with the (reduced)
temperature.



CHAPTER IX
ENTROPY: DETERMINATION AND SIGNIFICANCE

23. Tue THIRD LAwW OF THERMODYNAMICS

23a. Entropy at the Absolute Zero.—It was seen in § 20a that the entropy
of any substance at the temperature T, and a given pressure, could be ex-
pressed by means of the relationship [cf. equation (20.8)]

S—So=frg17"dT= fTdelnT, (23.1)
[1] 0

where S, is the hypothetical entropy at the absolute zero. If the value of
So were known it would be possible to derive the entropy at any required
temperature from heat capacity data. Following the development of the
“heat theorem’’ of W. Nernst (1906), now chiefly of historical interest, M.
Planck (1912) made a suggestion concerning the value of S, which has be-
come known as the third law of thermodynamics. The first and second laws
have led to the development of the concepts of energy content and entropy,
respectively. The so-called third law differs, however, from these in the
respect that it leads to no new concepts; it merely places a limitation upon
the value of the entropy. For this reason, some writers hesitate to refer to
it as a law of thermodynamics. Nevertheless, it is a generalization which
leads to conclusions in agreement with experience, and hence is a “law” in
the scientific sense of the term. In its broadest form the law may be stated
as follows: Every substance has a finite positive entropy, but at the absolute zero
of temperature the entropy may become zero, and does so become tn the case of a
perfectly crystalline substance. The exact significance of a “perfectly crystal-
line substance” will be more clearly understood later (§ 24m), but for the
present it should be taken to represent substances in the pure solid state, to
the exclusion of solid solutions and amorphous substances, such as glasses.!

23b. Experimental Determination of Entropy.—According to the third
law of thermodynamics the entropy of a pure solid may be taken as zero at
0° K; hence S, in equation (23.1) is zero for a pure solid substance. The
problem of evaluating the entropy of such a solid therefore resolves itself
into the determination of the heat capacity at a series of temperatures right
down to the absolute zero. The values of Cp/T are then plotted against T,
or Cp is plotted against In T, i.e., 2.303 log T, for the whole range of tempera-

1 Lewis and Gibeon, J. Am. Chem. Soc., 39, 25654 (1917); 42, 1529 (1920); Gibson, Parks
and Latimer, ibid., 42, 1533, 15642 (1920); Gibson and Giauque, ibid., 45, 93 (1923); Pauling
and Tolman, ibid., 47, 2148 (1925); Eastman, Chem. Rev., 18, 257 (1936); Eastman and
Milner, J. Chem Phys., 1, 445 (1933); see also, Cross and Eckstrom, ibid., 10, 287 (1942).
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ture; since S, is zero, the area under the curve from 0° K to any temperature
T then gives the entropy of the solid at this temperature, and at the constant
pressure, e.g., 1 atm., at which the heat capacities were measured. Since
the heat capacity determinations cannot be made right down to the absolute
zero, the observations are carried to as low a temperature as possible, e.g.,
10° or 15° K; the results are then extrapolated to 0° K. In many cases the
data can be represented by a Debye function (§ 17¢) and the characteristic
temperature 6 can be calculated; the values of Cy down to 0° K can then be
obtained by equation (17.4) which is applicable at low temperatures. It
will be noted that the Debye equation gives Cy whereas Cp is required for
the evaluation of the entropy by equation (23.1). However, the difference
between these two quantities is so small at temperatures from 0° to 10° or
15° K as to be quite negligible. This may be seen from equation (21.1), for
example, since both 7 and (0V/3T)p, as will be shown below (§ 23d), ap-
proach zero as the temperature becomes smaller. All the information is now
available for the determination of the entropy of the solid at any temperature
up to which the heat capacity is known.

If the solid undergoes a polymorphic change (or changes), as is frequently
the case, the heat capacity curve for the solid will consist of two (or more)
portions, one for each crystalline form. In cases of this type the entropy
of transition AH,/T:, where AH, is the molar heat of transition and 7T'; is the
transition temperature (§ 19h), must be included in the entropy calculations.

TABLE XV.* ENTROPIES OF SOLIDS AND LIQUIDS IN THEIR STANDARD STATES AT
25° ¢ IN CALORIES PER DEGREE PER G. ATOM (OR PER MOLE)

Elements Compounds
C (diamond) 0.58 Fe(s) 6.5 NaF(s) 13.1 AgCl(s) 23.0
C (graphite) 1.36 Zn(s) 9.95 NaCl(s) 17.3 Agl(s) 27.6
Na(s) 12.2 Bro(l) 36.7 NaBr(s) 20.1 Hg.Cly(s) 47.0
Mg(s) 7.77 Ag(s) 102 KCl(s) 19.8 PbCly(s) 32.6
Al(s) 6.75 I(s) 279 KBr(s) 22.6 MgO(s)  6.55
K(s) 15.2 Hg() 18.5 Ki(s)  24.1 ALOy(s) 125
Cu(s) 7.97 Pb(s) 15.5 HO@) 16.75 ZnO(s) 104

* For further data, see Table 5 at end of book.

If the substance whose entropy is to be determined is a liquid at ordinary
temperatures, it is first necessary to make measurements on the solid form
up to its melting point; the entropy of the solid at this temperature is then
obtained by the procedure described above. To obtain the entropy of the
liquid at the melting point it is necessary to add the entropy of fusion, which
is equal to AH;/T,, where AH; is the molar heat of fusion and T,, is the
melting point. The entropy of the liquid at any higher temperature may
now be obtained by plotting Cp/T against T, or Cp against In T, for the
liquid; the area under the curve between the melting point and any par-
ticular temperature, up to the boiling point, then gives the corresponding
entropy increaSe which must be added to the value at the melting point.
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Some actual experimental data will be quoted below (see Table XVI),
but for the present sufficient indication has been given of the procedure used
for determining the entropies of substances which are solid or liquid at ordi-
nary temperatures. For such substances the standard states are the pure
solid or pure liquid at 1 atm. pressure (cf. § 12¢), and the standard entropies,
per g. atom (for elements) or per mole (for compounds), at 25° C, derived
from heat capacity measurements are recorded in Table XV.2 As stated
earlier (§ 19h), entropies are usually expressed in terms of calories per degree,
and the quantity 1 cal. deg.™!, the temperature being on the usual absolute
scale, in terms of the centigrade degree, is often referred to as an entropy unit
and abbreviated to E.U.

23c. Entropies of Gases.—For substances which are normally gaseous,
it is necessary to follow the procedire outlined above for the solid and the
liquid states up to the boiling point of the latter. The entropy of vaporiza-
tion AH,/T,, where AH, is the heat of vaporization and T is the boiling
point, at 1 atm. pressure, is then added to the entropy of the liquid to give
that of the gas at the normal boiling point. The method may be illustrated
by the experimental results obtained for nitrogen. The Debye character-
istic temperature 6 was found to be 68 from low temperature heat capacity

TABLE XVI. THE ENTROPY OF NITROGEN GAS AT ITS BOILING POINT

Process E.U. mole™?
0° to 10° K from Debye equation 0.458
10° to 35.61° K (transition point) by graphical integration 6.034
Transition, 54.71 cal. mole™/35.61° 1.536
35.61° to 63.14° K (melting point) by graphical integration 5.589
Fusion, 172.3 cal. mole™/63.14° 2.729
63.14° to 77.32° K (boiling point) by graphical integration 2.728
Vaporization, 1332.9 cal. mole™/77.32° 17.239
Total 36.31

measurements on solid nitrogen, and this was utilized to determine the en-
tropy of the latter at 10° K. At 35.61° K the solid undergoes a change of
crystalline form, the heat of transition being 54.71 cal. mole™; the entropy
of transition is thus 54.71/35.61, i.e., 1.536 E.U. mole™!. The melting point
of the higher temperature crystalline form of nitrogen is 63.14° K, and the
heat of fusion is 172.3 cal. mole™, giving an entropy of fusion of 172.3/63.14,
e, 2.729 .u. mole~!. The boiling point of liquid nitrogen is 77.32° K, and
the heat of vaporization is 1,332.9 cal. mole™, so that the entropy of vapor-
ization is 1,332.9/77.32, i.e., 17.239 E.U. mole~!. These values for the en-
tropies of the phase changes are added to the entropy contributions of the
two solid states and the liquid obtained by graphical integration of the ex-
perimental Cp/T values against 1' in the usual manner. The complete

2 For entropies of inorganic substances, sce Kelley, U. 8. Bur. Mines Bull., 304 (1936),
434 (1941), also 350 (1932); W. M. Latimer, “The Oxidation States of the Elements, etc.,”
1938; for organic substances, see G. S. Parks and H. M. Huffman, “The Free Energies of
Some Organic Compounds,” 1932, and numerous papers in the J. Am. Chem. Soc., etc.
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results are recorded in Table XVI 3; it is seen that the entropy of gaseous
nitrogen at its boiling point at 1 atm. pressure is 36.31 B.u. mole-.

If precise heat capacity data were available for the gas, it would be
possible to evaluate the increase in entropy between the boiling point and
the standard temperature, e.g., 298.16° K, in the usual manner (§ 20a) by
graphical integration over this temperature range. If T, is the normal boil-
ing point and 7T'; represents the standard temperature, the contribution of
the gaseous state to the total entropy, at constant (atmospheric) pressure,
is given by equation (20.9), viz.,

Qq —_— T2 CP — T2 rjv
Dz—Sx = '——dT— delnl. (23.2)
Ty T

T1

However, sufficiently accurate measurements of gaseous heat capacities down
to the boiling point have usually not been made, and so the entropy con-
tribution of the gaseous state, assuming ideal behavior, is derived from heat
capacities obtained from partition functions as described in Chapter VI.
If the heat capacity can be expressed as a function of the temperature over
the required range, the entropy change can be derived analytically, as
described in § 20a.

For reasons which will become clear later, it is the practice to record
the entropy of a gaseous substance in terms of an ideal gas at 1 atm. pressure;
this is the standard state of the gas. The correction to be applied to the
observed entropy at 1 atm. pressure to give the value for an ideal gas at the
same pressure was calculated in § 20c. As seen in that section, the correc-
tion for nitrogen gas at its boiling point was found to be 0.217 cal. deg.~!
mole~!. Addition of this quantity to the observed entropy, i.e., 36.31 E.U.,
gives 36.53 E.U. mole~! for the standard entropy of nitrogen gas at its boiling
point. The additional entropy of nitrogen, as an ideal gas, from the boiling
point to 298.16° K, i.e., 25°C, at 1 atm. pressure is found by statistical
methods to be 9.36 E.u., so that the standard entropy of nitrogen gas at
298.16° K is 36.53 + 9.36, i.e., 45.89 E.U. mole™.

The standard entropy values of a number of gases will be given later,
after the calculation of entropies by statistical methods, using partition
functions, has been described.

23d. Tests of the Third Law of Thermodynamics.—The ultimate test of
the postulate that the entropy of a perfect solid is zero at 0° K is that it
leads to entropy values, such as those in Table XV, which, when combined
with other data, such as heats of reaction, yield results, particularly equi-
libriam constants, which are in agreement with experiment. This aspect
of the subject will be taken up later in the book (Chapter XIII). In the
meantime other verifications of the third law of thermodynamics will be
mentioned. One important fact is that entropies calculated on the basis
of the third law, in the manner described above, are usually in complete
agreement with those derived from statistical considerations. A few ap-

3 Giauque and Clayton, J. Am. Chem. Soc., 55, 4875 (1933).
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parent discrepancies have been observed, but these are readily explained
by the “imperfect’’ nature of the solid (§ 24m).

An interesting test of the third law is possible when a solid is capable of
existing in two or more modifications, i.e., enantiotropic forms, with a
definite transition point. The entropy of the high temperature form («)
at some temperature above the transition point may, in some cases, be
obtained in two independent ways. First, heat capacity measurements can
be made on the form () stable below the transition point, and the entropy
at this temperature may then be determined in the usual manner. To this
is then added the entropy of transition, thus giving the entropy of the a-form
at the transition point (cf. first three lines of Table XVI). The entropy
contribution of the o-form from the transition temperature to the chosen
temperature is then obtained from heat capacity measurements on the
a-form. The second procedure is to cool the a-form rapidly below the
transition point so that it remains in a metastable state. Its heat capacity
can then be determined from very low temperatures up to temperatures
above the normal transition point, and the entropy of the a-form is then
obtained directly from these data. Measurements of this kind have been
made with a number of substances, e.g., sulfur, tin, cyclohexanol and phos-
phine, and the entropies obtained by the two methods have been found to
be in close agreement.*

The results with phosphine are particularly striking, for this substance
exists in a high temperature («) form, with two low temperature modifica-
tions (8 and v), both of which change into the a-form at the transition points
of 49.43° and 30.29° K, respectively. The entropy of the a-form at 49.43° K
has been obtained in two ways based on the third law of thermodynamics, a
summary of the results being given in Table XVII.5 In the first method (I),

TABLE XVII. THE ENTROPY OF SOLID PHOSPHINE AT 49.43° x

I E.U. mole™? II E.U. mole™!
0° to 15° K, g-form (Debye) 0.338 0° to 15° K, y-form (Debye) 0.495
15° to 49.43° K (graphical) 4.041 15° to 30.29° K (graphical) 2.185
Transition 8 — a at 49.43° K 3.757 Transition ¥ — o« at 30.29° K 0.647
—_— 30.29° to 49.43° K (graphical) 4.800
Total 8.136 —_—
Total 8.127

heat capacity measurements were made on the S-form up to the g — «
transition point (49.43° K); to the entropy obtained from these results was
then added the entropy of the transition to the a-form, thus giving the
entropy of the latter at 49.43° K. In the second method (II), measure-
ments were made on the y-form up to the y — « transition point (30.29° K);
to this was added the entropy of the transition, so as to give the entropy of
the e-form at 30.29° K. The increase of entropy of the latter from 30.29°

¢ Kelley, J. Am. Chem. Soc., 51, 1400 (1929); Eastman and McGavock, bid., 59, 14§

(1937); Stephenson and Giauque, J. Chem. Phya., 5, 149 (1937).
§ Stephenson and Giauque, ref. 4.
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to 49.43° K was then derived, in the usual manner, from heat capacity
measurements on the a-form in this temperature range. It is evident from
the data in Table X VII that the agreement between the entropies obtained
by the two methods is excellent. Strictly speaking, this agreement proves
only that the two crystalline modifications (8 and ) of the solid have the
same entropy at 0° K. The value is not necessarily zero, as assumed in
Table XVII, but in view of the fact that similar behavior has been observed
with a variety of substances, both elements and compounds, it is probable
that the entropy of each solid is actually zero at 0° K.

According to the third law of thermodynamics, the entropy of a perfect
crystal should be zero at 0° K at all pressures; hence, it follows that

a8
(sﬁ)m =0.

By equation (20.15), (8S/dP)r is equal to — (8V/0T)p, and consequently

av
(57,)},——0 (for T = 0),

so that the rate of expansion of a solid with temperature should become
zero at 0° K. Experimental observations have shown that the values of
(aV/aT)p for a number of solids, e.g., copper, silver, aluminum, diamond,
sodium chloride, silica, calcium fluoride and iron disulfide, do, in fact, ap-
proach zero as the temperature is lowered.® Incidentally, this provides the
justification for the statement made earlier (§ 23b) that the difference be-
tween values of Cp and Cy for a solid becomes negligible at low tempera-~
tures. It should be pointed out that what has been proved above is that
(88/8P)r approaches zero at the absolute zero; in other words, the entropy
of a solid becomes independent of the pressure. This does not prove that
the entropy is actually zero, but it is probable that such is the case.

24. StaTISTICAL TREATMENT OF ENTROPY

24a. Entropy and Probability.—It was seen in § 19k that a correlation
was possible between the entropy of a system and the extent of order or
disorder. An analogous relationship, which permits of quantitative de-
velopment, will now be considered between the entropy and the “prob-
ability” of a system. Suppose, as in the experiments of Gay-Lussac and
Joule (§ 9d), there are two similar globes, separated by a stopcock; one globe
contains a gas, whereas the other is evacuated. If the stopcock is opened,
then, according to the second law of thermodynamics, there is a very strong
probability, amounting almost to a certainty, that provided there are present
a large number of molecules, the gas will distribute itself uniformly through
the globes. Some light may be shed on this matter by means of the theory
of probability. Suppose that the whole system consists of a single molecule

¢ Buffington and Latimer, J. Am. Chem. Soc., 48, 2305 (1926).
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only; therc is an equal probability that it will be found in either of the two
globes, assuming them to have equal volumes. The probability that the
molecule will be found in one particular globe at any instant is thus §; that
is to say, there is one chance in two of this condition being realized. If there
are two similar molecules in the system, it can be readily shown that there
is one chance in four that both will be in a given globe at the same time;
thus, the probability of this distribution is § or (3)%. In general, for a sys-
tem containing N molecules the probability that all the molecules will remain
in the original globe is (3)¥. For a globe having a volume of one liter the
value of N is about 102 at ordinary temperature and pressure; even at such
low pressures as 10—% atm., it would still be of the order of 10'¢. The prob-
ability that the molecules will remain in the original globe after the stopcock
is opened is thus extremely small. This is also the probability that the
molecules will return spontaneously to the one globe after having been
distributed uniformly throughout the two globes.

Of course, the foregoing calculations deal with an extreme case of non-
uniform distribution. Nevertheless, it is possible to show by means of the
theory of probability that the chances of any appreciable spontaneous
fluctuation from a uniform distribution of the gas throughout the whole
available space is so extremely small that it is unlikely to be observed in
millions of years, provided the system contains an appreciable number of
molecules. It is possible to state, therefore, that the probability of the
virtually uniform distribution of a considerable number of molecules in the
space available is very large.

To sum up the situation, it may be concluded that the probability that
all the molecules of a gas will remain in one part of the space available to
them is extremely small under ordinary conditions. On the other hand,
the probability of a virtually uniform distribution of the gas is large. The
spontaneous process in which a gas, at constant temperature, fills uniformly
the whole of the available volume is thus associated with a large increase in
the probability of the system. In general, all spontaneous processes repre-
sent changes from a less probable to a more probable state, and since such proc-
esses are accompanied by an increase of entropy, it is to be expected that
there may be a connection between the entropy of a system in a given state
and the probability of that state.

24b. The Boltzmann-Planck Equation.—If S is the entropy and W is the
probability of a particular state, then it should be possible to represent S
as a function of W, i.e., S = f(W). To ascertain the nature of this function,
consider two systems having entropies S4 and Sp, and probabilities W4
and W, respectively. If the systems are combined the probability of the
resulting system is the product W, X Wz, whereas the entropy, being
additive (§ 19b), is the sum S4 + Sjz; hence,

Sap = Sa+ Sp = f(Wa X Whs).
Since S, is equal to f(W,) and Sp is f(W3s), it follows that
J(Wa) + f(Ws) = f(Wa X Wp).
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To satisfy this condition it is obvious that the function must be logarithmic,
so that it is possible to write

S = kIn W + constant, (24.1)

where k is a constant which must have the same dimensions as entropy,
i.e., energy (heat) X deg.~l. It will be seen shortly that k is, in fact, the
Boltzmann constant, that is, the gas constant per single molecule, equal
to R/N, where N is the Avogadro number. The value of the constant term
in equation (24.1) is not obvious, but the considerations presented by L.
Boltzmann (1890) and M. Planck (1912) have shown that it may be taken
as zero, so that the Boltzmann-Planck equation takes the form

S=klnW. (24.2)

There is no complete proof of this expression, and consequently it is to be
regarded as being in the nature of a reasonable postulate relating the entropy
of a system to its probability.

24c. Significance of Thermodynamic Probability.—The problem that
now arises is that of ascribing a precise significance to the ‘“probability of a
system In a given state,” so that its value may be determined. This
quantity, sometimes called the ‘“thermodynamic probability,” may be de-
fined as the total number of different ways in which the given system, in the
specified thermodynamic state, may be realized.* The complete calculation of
this probability can be carried out by the methods of statistical mechanics,
to be described shortly, but in the meantime some general aspects of the
subject will be considered. In a system consisting of a perfect solid at the
absolute zero, all the molecules are in their lowest energy state, and they are
arranged in a definite manner in the crystal. It would appear, therefore,
that under such conditions there is only one way in which the system may
be realized; thus Wis umty, and hence by equation (24.2) the entropy should
be zero. Thls conclusion is in agreement with the third law of thermo-
dynamics. It will be seen later that there are certain solids in which the
molecules may be arranged in different ways in the crystal in the vicinity
of the absolute zero. Such solids are not perfect crystals in the sense of the
third law of thermodynamics, and their entropies are not zero at 0° K.
Similar considerations apply to solid solutions and to glasses.

24d. Entropy of Expansion of Ideal Gas.—A simple application of equation
(24.2) in connection with the interpretation of thermodynamic probability, is to
calculate the entropy of isothermal expansion of an ideal gas. For such a gas the
energy content, at constant temperature, is independent of the volume, and so the
thermodynamic probability of the system is determined by the number of ways,
consistent with the given energy, in which the molecules can occur in the volume
occupied by the gas.

Consider a single molecule contained in a vessel which can be divided into two
equal parts by means of a shutter. If at any instant the shutter is closed, the

*It may be noted that ‘“thermodynamic probability” is not a probability in the ordinary
sense, but is proportional to the latter.
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chances of the molecule being present in one part is one-half that of it being in the
whole vessel. In general, the prohability of a single molecule being found in any
volume is proportional to that volume, at constant temperature and energy. If a
is the thermodynamic probability, i.e., the number of ways in which a single mole-
cule can occur, in unit volume, the probability for a volume V is then aV. Since
the same probability is applicable to any one of the N molecules present in the
given volume, the total probability of, or the number of ways of realizing, the
system is (aV)V.

Suppose an isothermal expansion is carried out in which the volume of the
ideal gas is changed from V, to V,. If the corresponding entropies are S; and S,
and the probabilities are W, and W,, it follows from equation (24.2) that the
entropy change accompanying the process is given by

Sg""Sl = kln-g—f-

For the isothermal expansion of the ideal gas the probabilities ure seen to he pro-

portional to V¥, so that .
8y — S)r = kln ("—’)
Vi
= kN1 Vs, 24.3
= n Vl ( .. )
It the system consists of 1 mole of gas, N is the Avogadro number, and, assuming
k to be the Boltzmann constant, as indicated above, it follows from equation
(24.3) that
ASr = (S: — S)r = Rln o2,
Vi

for the isothermal volume change of an ideal gas. This result is seen to be
identical with equation (19.26). The identification of k in equation (24.2) with
the gas constant per single molecule, and the general form of the Boltzmann-Planck
equation can thus be justified.

24e. Statistical Mechanics.—The evaluation of the total probability of
a system can be carried out by the methods of statistical mechanics. The
details of the arguments are somewhat involved, but it is sufficient to present
them in general outline here.” The state of any single molecule can be
completely described by specifying the values of f positional coordinates
and f momenta, where f is the number of “degrees of freedom” of the mole-
cule, equal to three times the number of atoms it contains. If a hypothetical
space, known as phase space, having 2f axes could be imagined, the exact
state of the molecule could be represented by a point in this imaginary phase
space. For all molecules with external and internal configurations and
energies which are virtually equal, within certain very narrow limits, the
representative points will be found within a particular small volume, called
a unit cell, in the phase space. By specifying the numbers of molecules

7 For further discussion, see R. C. Tolman, “The Principles of Statistical Mechanics,”
1938; R. H. Fowler and E. A. Guggenheim, ‘“Statistical Thermodynamics,’”” 1939; J. E.
Mayer and G. M. Mayer, “Statistical Mechanics,” 1940; 8. Glasstone, ‘Theoretical
Chemistry,” 1944.
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whose representative points are to be found in the different unit cells in the
phase space, the condition of every molecule in the system is defined. This
determines the macroscopic state of the system, as indicated by its ob-
servable properties, such as pressure, energy, etc.

For a system of identical molecules, an exchange of molecules between
different unit cells will not affect the macroscopic state, i.e., the observable
properties, of the system. Each distribution of the molecules among the
permissible unit cells corresponding to the same macroscopic state of the
system is known as a microscopic state. The total number of microscopic
states then represents the number of different ways in which the given system can
be realized, and this is its thermodynamic probability, in the sense defined
above. If the different possible cells are indicated by the numerals 1,
2,...,1%, ..., the numbers of representative points in each of these cells are
Ny Ng, ..., N, ..., their sum being equal to N, the total number of mole-
cules in the system. In classical statistics, the molecules, although identical,
are treated as distinguishable, and so the total number of microscopic states,
which is eéqual to the probability of the system, is given by the number of
possible ways of arranging a total of N distinguishable articles in a number
of groups, so that there are N in the first, N; in the second, and so on, with,
in general, N; in the 7th group. The evaluation of the number of ways of
realizing this arrangement is a relatively simple mathematical problem; the
result is

N!
NJIN,U .. NJ ..

The development of quantum statistics has shown that this expression
requires modification in two respects. The first arises because there are
frequently a number of states whose energies are so close together that they
behave classically as a single state. However, when determining the total
number of ways a particular state can be realized, this multiplicity must
be taken into account. Thus, to each energy level, or unit cell, there must
be ascribed a statistical weight, as stated in § 16b. If g, is, in general, the
statistical weight corresponding to the 7th cell, there will be a choice of g;
states for each of the N; molecules, for every possible arrangement of the
other molecules in this cell; the number of different microscopic states in the
cell is thus increased by a factor of g¥:. Applying this correction to each
of the cells, equation (24.4) for the probability becomes

W

. (24.4)

N1 N2 Ng
wW=N19 .92 . 9 24.
NN NN (24.5)
The second change necessary in equation (24.4) is due to the fact that
the classical concept of distinguishability of the molecules is found to be
inconsistent with quantum mechanics. In order to correct for this, it is
necessary to divide equation (24.5) by N, so that the result is

ot g g .
W=y w N (24.6)
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This expression may be regarded as a consequence of the classical treat-
ment modified by the requirements of quantum statistics. However, two
different forms of quantum statistics, namely the Bose-Einstein statistics,
which are applicable to photons and to atoms and molecules containing an
even number of elementary particles, i.e., electrons, protons and neutrons,
and the Fermi-Dirac statistics, which apply to electrons and to atoms and
molecules containing an odd number of elementary particles, have been
developed. These give somewhat different results for the total number of
ways in which a given state can be realized, but it is important to note that
at all temperatures and pressures of chemical interest the final expressions
may be reduced to a form equivalent to equation (24.6). The value of W
given by the latter may thus be taken as representing the probability of a
given state of a system of N molecules.

24f. Statistical Calculation of Entropy.—Since the evaluation of the en-
tropy by equation (24.2) requires a knowledge of In W, this quantity will
now be considered. Upon taking logarithms of equation (24.6), the result is

InW= (Nilng, + NsInga+ --- + Nilngi+ ---)
— (nN{!+InN!'4:---4+InN;+:-:) =3N;lng; — > InN,;! (24.7)

If the system consists of a very large number of molecules, as is the case
under normal conditions, the various numbers Ny, N, ..., N, ..., are also
very large. It is then possible to make use of the Stirling approximation
for the factorials of large numbers; thus,

Ian! = NllllNl"‘N1
lnNg = NzlnNz Nz

1nN' N, lnN

Upon adding these quantities, and recalling that Ny + Ng +---+ N; +- -
is equal to the total number N of the molecules in the system, it is seen that

SInN!=3YN;InN;—N.
This expression may be substituted in equation (24.7), so that
InW=3Nilng; — >N;InN; + N. (24.8)
It was seen in § 16b that in an ideal gas the number of molecules N;
possessing energy e; at the temperature T' was given by equation (16.5) as
N = g gie v T, (24.9)*

* It is of interest to note that this equation can itself be derived from equations (24.4),
(24.5) or (24.6), so that the treatment does not involve any arguments other than those
developed here and in the preceding section.
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where Q is the partition function of the given molecular species. If this
result is inserted for the second N, in the term — N; In N, the latter becomes

- N.-lnN.- = - Niln (gg‘g—-.‘/u')

=N.In% N
=Nilng kT’

and by combining this result with equation (24.8) it is seen that

- N;lng¢+

- Q@ XN«
an—NlnN+ T + N.

The summation Y_N.e; is given by equation (16.6); thus,
ZN.f.' = Noéo + N161 ++ le-' +"'= E — Eo,
and hence, utilizing equation (16.8),
YNei. E—E, _ RTz(aan) .
14

kT kT — kT \ aT
It follows, therefore, that
_NmQ  ET(3nQ
an—-NlnN+ k( 3T )V+N. (24.10)

The value for In W from equation (24.10) may be substituted in the
Boltzmann-Planck equation, so that the general expression for the entropy
of an ideal gaseous system is found to be

_ . Q dlnQ
S-khW-LNmN+RT(aT)V+ML

If N is the Avogadro number, kN is equal to the molar gas constant R, and
then 8 is the molar entropy; hence,

dlnQ

S=Rmn% RT(___

ny tET\ =7

For certain later purposes, it is convenient to write this equation in a some-
what different form by utilizing the Stirling approximation

InN!=NInN — N,

) +R. (24.11)
\ 4

so that
kInN!=kNInN — kN
= RInN — R.
Since

Rh%=RhQ—RhM
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it can be readily shown that equation (24.11) hecomes

Q dlnQ
S=tn® +RT( =9), (24.12)

It is seen from the foregoing results, c.g., equations (24.11) and (24.12),
that by combining statistical mechanics with the Boltzmann-Planck equa-
tion it is possible to derive a relationship between the molar entropy of any
gas, assuming it 1o behave ideally, and the partition function of the given
species. Since the partition function and its temperature coefficient may
be regarded as known, from the discussion in Chapter VI, the problem of
calculating entropies may be regarded as solved, in principle. In order to
illustrate the procedure a number of cases will be considered.

24g. Entropy of Monatomic Molecules: The Sackur-Tetrode Equation.—
A monatomic molecule has no vibrational or rotational energy, and so the
only contributions to the partition functions are those for translational
energy and for possible electronic states. The translational partition func-
tion is given by equation (16.16), and if the electronic factor is ., it follows
that for a monatomic gas
(21rka)"’"

h?

where V is the volume occupied. Assuming Q. to be independent of tem-
perature, as will be the case for the majority of substances at not too high

temperature (§ 16f), then
) 0lnQ 3
mv( - )V = iR,

and hence the molar cntropy of an ideal monatomic gas is given by equation
(24.11) as

Q=Q—7->—-7,

(2xmkT) 2
Nk

where V is now the molar volume. Since the gas is ideal, V may be replaced
by RT/P, so that another form of equation (24.13) is

S=RlIn [Q, (CLUCZ R RT] +3R. (24.14)

S=RIn [Q, ] + 3R, (24.13)

N3

These are alternative expressions of what is known as the Sackur-Tetrode
equation, derived in a somewhat different manner by O. Sackur (1911-13)
and H. Tetrode (1912).8

If the universal constants R, x, k, h and N are scparated from m, T,
P and Q., which are characteristic of the system, equation (24.14) becomes

S=R[mm+$InT —InP + InQ, + In R(2xk/k)¥2/N + §].

*Sackur, Ann. Physik, 40, 67 (1913); Tetrode, sbid., 38, 434 (1912); 39, 265 (1913);
Stern, Physik. Z., 14, 629 (1913).
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The treatment of units is here the same as that employed in connection with
the translational partition function in the problem in § 16e; m, k and A are
in c.g.s. units, and if P is in atm., R in the In R term should conveniently
be in cc.-atm. deg.”! mole™. The actual weight m of the molecule may be
replaced by M/N, where M is the ordinary molecular weight. Making
these substitutions and converting the logarithms, it is found that

S = 2.303R(3 log M + §log T — log P + log Q, — 0.5055), (24.15)

for the molar entropy, where P is the pressure in atm. It is of interest to
compare equation (24.15) with (19.22), derived earlier for an ideal gas; since
Cp for an ideal gas is equal to §R these two expressions are identical in form,
the constant sy, which cannot be derived from purely thermodynamic con-
siderations, involving the molecular weight of the gas, its electronic multi-
plicity and a numerical constant.

If the pressure P in equation (24.15) is taken as 1 atm., the entropy is
that of the particular substance behaving as an ideal gas at this pressure,
and hence represents the standard entropy S° (§20c). By taking R as
1.987 cal. deg.”! mole™}, equation (24.15) then gives the standard molar
entropy of the gas in these same units; thus,

S° = 4.576(3 log M + §log T + log Q. — 0.5055), (24.16)*

in cal. deg.”! mole™, i.e., B.U. mole™!. It is thus a very simple matter to
determine the standard entropy of a monatomic gas at reasonable tempera-
tures. It should be noted that the electronic factor Q. is always included
in the expression for the entropy, but it was usually omitted from the corre-
sponding equations in Chapter VI in which the partition function was related
to the energy and the heat capacity. The reason for this is that the latter
involve (8 In @/8T)v only, and if @, is constant, as it usually is, it makes no
contribution to the energy or heat capacity. It will be seen from equation
(24.11), however, that the entropy depends on In Q, as well as on the tem-
perature coefficient; the actual value of Q., or rather of In Q., must conse-
quently be included, even if it is constant.

Problem: Calculate the standard entropy of atomic chlorine at 25° C.

The atomic or molecular weight, actually the mean isotopic weight, is 35.46;
this gives the value of M; T is 298.2° K, and @, may be taken as 4.03, as calculated
in the problem in § 16f, the temperature variation being neglected. Hence, by
equation (24.16),

S° = 4.576(3 log 35.46 + § log 298.2 + log 4.03 — 0.5055)
= 39.4 cal. deg.”! g. atom™1.

The calculated standard entropies for a number of monatomic gases at
25° C are recorded in Table XVIII, together with the entropies obtained

* The factor 4.576, which is frequently encountered in thermodynamic calculations,
is equal to 2.303 X 1.987, where 2.303 is the factor for converting ordinary to natural
logarithms, i.e., In z = 2.303 log z, and 1.987 is the value of R in cal. deg.™ mole™.
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from heat capacity measurements, as described earlier in this chapter.® I'or
these particular elements the ground states are all singlet levels, so that
Q. is unity in each case.

TABLE XVIII. CALCULATED AND EXPERIMENTAL ENTROPIES OF
MONATOMIC GASES AT 25°C

Gas Cale. Exp.
Helium 30.1 E.u. mole™? 29.2 k.U. mole™!
Argon 37.0 36.4
Cadmium 40.1 10.0
Zinc 38.5 38.4
Mercury 41.8 413
Lead 41.9 41.8

24h. Polyatomic Molecules.—Since the partition function appears only
in the form of its logarithm in the general equation (24.11) or (24.12) for
the entropy, it is permissible, as with the energy and heat capacity, to
consider the total entropy as the sum of the contributions associated with
the various forms of energy. As stated in § 16d, this procedure is approxi-
mate, although very little error can be involved in the separation of the
translational contribution and also the electronic contribution if the mole-
cules are almost entirely in the ground state, e.g., at normal temperatures.
In this event, equation (24.14), (24.15) or (24.16) gives the sum of the trans-
lational and electronic entropies for any type of molecule, monatomic or
polyatomic.

The complete partition function of a polyatomic molecule may now
be represented by the product @: X @:, where Q; is the translational, in-
cluding the electronic, factor, as derived above, and Q; is the combined
rotational and vibrational, i.e., internal, factor. Since In @ is then equal to
In Q; + In @., equation (24.12) may be written in the form

— - Ql aant d]llQ,‘
S_S,+S._(k1n +k1nQ,)+RT[( it )V+ L ]

QY d1In Q, ~ dln Q.)
[kln +RT( o )V] (kl n QY + RT LS ) (24.17)

The expression in the square brackets in equation (24.17), which is of the
same form as (24.12), gives the combined translational and electronic en-
tropies, and that in the parentheses is the internal contribution. The con-
dition of constant volume has been omitted, since the rotational and vibra-
tional partition functions are independent of the volume of the system (cf.
§§ 16h, 16j, ete.). It will be noted that the N! has been included in the
translational term. As far as the final result is concerned, it is immaterial
which term contains the N'!, but there are theoretical reasons, which need
not be considered here, for including it in the expression for the translational
entropy. Since k In @Y is equivalent to R In @y, because kN is equal to R,

?* Lewis, Gibson and Latimer, J. Am. Chem, Sor., 44, 1008 (1922); Rodebush and Dixon,
ibid., 47, 1036 (1925).
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it follows that the total rotational and vibrational contribution to the
entropy is given by
din Q,‘ .
daT

For accurate results, @; should be the combined rotational and vibra-
tional partition function derived from the actual energy levels of the mole-
cule as obtained from spectroscopic measurements (§ 16k). For most pur-
poses, at ordinary temperatures, very little error results from the separation
of Q; into the product of two independent factors, viz., @- and @., represent-
ing the rotational and vibrational partition functions, respectively. Be-
cause equation (24.18) involves Q: in logarithmic terms only, it follows that
an expression of the same form can be used to give the separate rotational
and vibrational entropies. Thus, if Q: is replaced by Q,, the result is S,,
the rotational contribution to the entropy, and similarly the vibrational
contribution S, is obtained by using @, for Q: in equation (24.18). The sum
of S, and S, derived in this manner represents S;, which added to S, as given
by equation (24.14), etc., yields the total entropy.

24i. The Vibrational Entropy.—It was seen in § 16l that the contribution
to the partition function of each mode of vibration of frequency w cm.™ is
given by a factor (1 — ¢~2)~!, where z is equal to hew/kT = 1.439w/T.
The vibrational entropy is represented by the appropriate form of equation
(24.18) as

Si=RInQ: + RT (24.18)

dln Q,
daT ’

and hence it is not a difficult matter to show that the contribution to the
molar entropy of each mode of vibration is

R "z
S, P RIn(1 — ). (24.19)
The terms in equation (24.19) can be readily obtained for any value of z,
i.e., hcw/kT, by means of the tables of Einstein functions mentioned
earlier (§ 16;).

If z is relatively large, as is the case at moderate temperatures for many
stable diatomic molecules, which have large vibrational frequencies, ¢* be-
comes very large and ¢~ is very small. It is seen from equation (24.19) that
in this event S, is almost zero. This is true for hydrogen, deuterium,
oxygen, nitrogen, carbon monoxide and hydrogen chloride, for example, at
temperatures up to about 370° K. For these molecules, it has already been
seen (§ 16j) that the vibrational contribution to the energy and heat capacity
is also negligible at such temperatures. If the vibration frequency w is
relatively small, or the temperature fairly high, the value of S, as given by
equation (24.19) is not negligible; this is the case, for example, with chlorine
even at ordinary temperatures. Molecules containing more than two atoms
invariably have at least one vibration with a low frequency which makes an
appreciable contribution to the entropy at all reasonable temperatures.

Sv"—'Ranu""RT
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24j. Nuclear Spin Entropy.—Before considering the contribution to the
entropy of a molecule associated with its rotational motion, it is necessary
to refer to the subject of nuclear spin and its effect on entropy. When dis-
cussing the evaluation of energies and heat capacities from the partition
function in Chapter VI, the nuclear spin was deliberately neglected. This
procedure is justified by the fact that the nuclear spin contribution to the
partition function is a constant factor, independent of temperature, except
possibly in the vicinity of the absolute zero. However, as emphasized
earlier in another connection, the expression for the entropy involves In Q
itself, in addition to its temperature coefficient, and consequently the nuclear
spin factor must be included. For each atomic nucleus having a spin
quantum number 7, the contribution to the partition function is a factor
2¢ 4+ 1 at all reasonable temperatures. It follows, therefore, from equation
(24.18) that the nuclear spin entropy is R In (2¢ + 1) for every nucleus in
the molecule. To obtain the total entropy of a molecule the appropriate
R1n (2¢ 4+ 1) terms must be added to the contribution of translation, vibra-
tion, rotation, etc.

Since atoms retain their nuclear spins unaltered in all processes except
those involving ortho-para conversions, there is no change in the nuclear
spin entropy. It is consequently the common practice to omit the nuclear
spin contribution, leaving what is called the practical entropy or virtual
entropy.*

It is of importance to note that, except for hydrogen and deuterium
molecules, the entropy derived from heat capacity measurements, i.e., the
thermal entropy, as it is frequently called, is equivalent to the practical
entropy; in other words, the nuclear spin contribution is not included in
the former. The reason for this is that, down to the lowest temperatures at
which measurements have been made, the nuclear spin does not affect the
experimental values of the heat capacity used in the determination of en-
tropy by the procedure based on the third law of thermodynamics (§ 23b).
Presumably if heat capacities could be measured right down to the absolute
zero, & temperature would be reached at which the nuclear spin energy began
to change and thus made a contribution to the heat capacity. The en-
tropy derived from such data would presumably include the nuclear spin
contribution of RIn (2 4+ 1) for each atom. Special circumstances arise
with molecular hydrogen and deuterium to which reference will be made
below (§ 24n).

24k. The Rotational Entropy.—At all temperatures above the lowest, the
rotational partition function @, of a diatomic molecule, or of any linear
molecule, is given to a good approximation by equation (16.24), i.e.,

2 IkT
Q. = =, (24.20)
aht
* It may be noted, incidentally, that the practical or virtual entropy also does not
include the entropy of mixing of different isotopic forms of a given molecular species. This
quantity is virtually unchanged in a chemical roaction, and so the entropy change of the
process is unaffected by its complete omission.
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where I is the moment of inertia of the molecule and ¢ is its symmetry num-
ber (§§ 16h, 16l). Insertion of this result in equation (24.18) gives the
rotational contribution to the molar entropy of a linear molecule,

2
S, =Rln %%Z +R, (24.21)

since d In @,/dT is equal to 1/T. If the recognized values are inserted for
the universal constants w, k and h, in c.g.s. units, and if R is taken as 1.987
cal. deg.~! mole™, it is found, after converting the logarithms, that

S, = 4.576(log I + log T — log o + 38.82) cal. deg.~* mole,” (24.22)

the moment of inertia being still in c.g.s. units., i.e., g. cm.2. This expression
gives the molar rotational entropy in conventional E.u. mole™! for any
diatomic or linear molecule.

Problem: Calculate the total standard entropy of nitrogen gas at 25° C, using
data in Tables VIII and IX.
Since the ground state of molecular nitrogen is a singlet level, Q, is unity, and

the molecular weight M being 28.00, the combined standard translational and
electronic entropy, the latter being actually zero, is given by equation (24.16) as

8% = 4.576(3 log 28.00 + §log 298.2 — 0.5055)
= 35.9 E.Uu. mole™,

The vibrational frequency is 2360 cm.™ (Table IX), and hence z, i.e., 1.439w/T,
is 11.4. Insertion of this result into equation (24.19) gives a value for S, that is
negligibly small. The vibrational contribution to the entropy of molecular
nitrogen at 25° C may thus be taken as zero.

The moment of inertia is 13.9 X 107 g. ¢cm.? (Table VIII), and o is 2, since
the nitrogen molecule is symmetrical; hence, by equation (24.22),

S, = 4.576[log (13.9 X 10749) 4 log 298.2 — log 2 4 38.82]
= 9.8 E.U. mole™1,

The total entropy of nitrogen gas in its standard state at 25° C is thus the sum of
35.9 and 9.8 E.U., i.e., 45.7 E.U. mole~!, which may be compared with the thermal,
i.e., third law, value of 45.89 E.u. mole~! given in § 23c.

For a nonlinear molecule, the rotational partition function [cf. equation
(16.34)] may be taken with sufficient accuracy as

Q = 8x2(8x3ABC)\2(kT)3? ) (24.23)
ohs
and since d In Q,/dT is /T, it follows from equation (24.18) that
/ /
8. =Rl 8"(8"“?’?’ T | 3R, (24.24)

where A, B and C are the moments of inertia of the molecule. Extracting
the constants and converting the logarithms, in the usual manner, it is
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found that
S, = 4.576(4 log ABC + 3 log T — log o + 58.51), (24.25)

for the molar rotational entropy in cal. deg.~! mole™1.

Problem: Calculate the rotational contribution to the molar entropy of am-
monia at 25° C.

From Table X, the three moments of inertia are 2.78 X 10—, 2.78 X 10—
and 4.33 X 10~% g. cm.2, o is 3 and T is 298.2° K, so that by equation (24.25),

8, = 4.576[} log (2.78 X 2.78 X 4.33 X 10-129) + § log 298.2 — log 3 + 58.51]
= 11.5 cal. deg.”! mole™.

It is seen that the rotational contribution to the entropy is quite appre-
ciable, the amount increasing, in general, with the size of the molecule and
the masses of the atoms, since these cause the moments of inertia to be
relatively large.

241. Comparison of Third Law and Statistical Entropies.—If the vibration fre-
quencies and moments of inertia of a molecule, which are often available from
spectroscopic measurements, are known, the standard entropy of any gaseous sub-
stance can be evaluated with a fair degree of accuracy. By the use of combined
rotational and vibrational partition functions, derived directly from the energies
in the various levels (§ 16k), more precise entropy values are obtainable. In the
great majority of cases the entropies obtained by the statistical method, based on
the Boltzmann-Planck equation, are in complete agreement with those derived
from heat capacity measurements, utilizing the third law postulate of zero entropy
for the perfect solid at 0° K. There are a few cases, however, where some dis-
crepancy has been observed ; these are carbon monoxide, nitric oxide, nitrous oxide,
hydrogen, deuterium, water and organic compounds, such as ethane, in which the
internal rotation is restricted (§ 16m). The various types of discrepant behavior
will now be considered.

24m. Random Orientation in the Solid.—For carbon monoxide, nitric oxide
and nitrous oxide, the thermal entropy, based on the third law of thermodynamics,
is found in each case to be about 1.1 cal. deg.~! mole™ less than the value given by
the statistical method. This result suggests that the entropies of the respective
solids are not zero at 0° K, as required by the third law, but that they are actually
about 1.1 E.u. mole!. A possible explanation of this fact is to be found in the
similarity between the two ends of the respective molecules, so that the alternative
arrangements

Cco oC NO ON NNO ONN

can occur in the crystal lattices. Instead of all the molecules being oriented in
one direction in the crystal, two alternative arrangements are equally probable.
The crystal is, therefore, not ‘‘perfect” in the sense required by the third law, and
hence it is not correct to take the entropy as zero at 0° K. If the distribution of
molecules between the two possible orientations were completely random, the
probability of the state, as defined in § 24¢, would be two, and the entropy should
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be R In 2, i.e., 1.38 cal. deg.”® mole™, instead of zero for the perfect crystal. The
observed discrepancy of 1.1 E.u. mole™ indicates that the arrangement of the two
alternative orientations in the solid is not completely random at the low tempera-
tures at which heat capacity measurements were made. In the three instances
under consideration, the correct entropies are those obtained from the partition
functions, for these are based on the properties of the gas, and do not involve
extrapolation, through the liquid and solid states, down to the absolute zero as is
necessary for the evaluation of thermal entropies.

Somewhat analogous considerations apply to the entropy of water vapor. The
result derived from heat capacity measurements is again lower than the statistical
value, and this can be accounted for by random orientation of the water molecules
in the solid. The situation is complicated, however, by the distribution of hydro-
gen bonds in the ice crystal, and by other factors. In this instance, also, the
crystal is not perfect, and so the entropy would not be zero at 0° K. The statistical
value of the entropy is therefore the correct one to be used in thermodynamic
calculations.

24n. Entropy of Hydrogen and Deuterium.—An entirely different phenomenon
is responsible for the discrepancy between the third law and statistical entropies
of hydrogen and deuterium. The thermal value for hydrogen is 29.64 cal. deg.™*
mole™! at 25° C and 1 atm. pressure, corrected to ideal behavior, but statistical
calculations give 33.96 cal. deg.”* mole™, including the nuclear spin contribution.
The latter is R In (27 ++ 1)2, since the molecule consists of two atoms each with a
nuclear spin ¢; for the hydrogen nucleus 7 is 4, and so the nuclear spin entropy is
Rln 4, ie., 2.75 cal. deg.”* mole™. If this is subtracted from 33.96 cal. deg.”!
mole™?, the result still differs from the thermal value. The responsible factor in
this instance is the existence of hydrogen in ortho and para states. The statistical
calculations are based on the assumption that ortho-para equilibrium is attained
at all temperatures, but this condition is not realized in the hydrogen used for heat
capacity measurements (cf. § 16i).

Because solid hydrogen at low temperatures still contains the ortho and para
forms in the normal proportions of three to one, the entropy cannot become zero
at 0° K. The actual value is equal to the entropy of mixing, as calculated in the
problem in § 19j, viz., 4.39 £.u. mole™. « If this is added to the apparent third law
value of 29.64, the result is 34.03 cal. deg.™ mole™*, which is in good agreement with
the statistical entropy, 33.96 cal. deg.™ mole~!. For use in connection with the
entropies of other substances, when there are no changes in the ortho-para hydro-
gen ratio, the appropriate value of the practical entropy is obtained by subtracting
the nuclear spin contribution of 2.75, given above, from the statistical value of
33.96 cal. deg.”! mole™; the entropy of molecular hydrogen is thus taken as 31.21
E.u. mole™!. The data for molecular deuterium must be treated in an analogous
manner.

240. Restricted Internal Rotation.—When there is restriction to internal rota-
tion of two parts of a moleculc with respect to one another, as in ethane and other
paraffin hydrocarbons, and in alcohols, amines, etc., the calculation of the entropy
from the partition functions requires a knowledge of the energy which restricts
rotation. As stated in § 16m, this can be obtained from a comparison of an ex-
perimentally determined thermodynamic property with that derived by means of
partition functions. Actually, however, when there is a possibility of restricted
rotation the entropy is usually obtained from heat capacity measurements.
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Nevertheless, where the necessary data are not available, it is possible to make a
very satisfactory estimate by the statistical method, the restricting energy being
assumed to be equal to that in a related compound for which the value is known.!?

24p. Standard Entropies of Gases.—The standard entropies for a num-
ber of gases, that is, corrected to ideal behavior at 1 atm. pressure, at 25° C
are recorded in Table XIX.1* They are based partly on statistical calcula~

TABLE XIX.* STANDARD ENTROPIES OF GASES AT 25°C IN
CAL. PER DEGREE PER MOLE

H, 31.21 HCl1 44.66 CO; 51.08
D, 34.62 HBr 47.48 N.O 52.58
N, 45.77 HI 49.36 SO, 59.24
0, 49.00 CO 47.30 NH, 46.03
Cly 53.31 NO 50.34 CH, 44.50
Bri(g) 58.63 H:0(g) 45.11 C.H, 54.66
L(p 62.29 H.S 49.15 C.H, 52.48

* For further data see Table 5 at end of book.

tions and partly on thermal data, depending on which are considered more
reliable in each case. The values are all practical entropies which may be
used in conjunction with those given for solids and liquids in Table XV to
calculate the entropy change in a chemical reaction. These entropy changes
will be utilized for important thermodynamic purposes in Chapter XIII.
Special problems associated with the determination of the entropies of ions
in solution will be taken up in Chapter XIX.

Problem: Calculate the standard entropy change for the reaction

C(s) + H,0(1) = CO(g) + Ha(g)
at 25° C.

From Table XIX, the total entropy of the products is 47.30 (for CO) + 31.21
(for Hy), i.e., 78.51 e.u. From Table XV, the entropy of the reactants is 1.36(C)
+ 16.75(H.0, I), i.e., 18.11 8.u. The standard entropy change AS° for the reac-
tion is thus 78.51 — 18.11 = 60.40 cal. deg.”! at 25° C.

EXERCISES

1. Since the atoms or molecules in a solid occupy fixed positions they may be
treated as distinguishable; there is consequently only one way of realizing a perfect

19 For reviews, see Pitzer, Chem. Rev., 27, 39 (1940); Aston, tbid., 27, 59 (1940); Wilson,
thid., 27, 17 (1940); also, H. S. Taylor and S. Glasstone, “Treatise on Physical Chemistry,”
3rd ed., 1942, Chap. IV (J. G. Aston); for empirical methods of treating molecules with
_restricted internal rotation, see Pitzer, J. Chem. Phys., 8, 711 (1940); Chem. Rev., 27, 39
(1940); Pitzer and Scott, J. Am. Chem. Soc., 63, 2419 (1941); Ewell, Ind. Eng. Chem., 32,
778 (1940).

11 8ee Kelley, ref. 2, Latimer, ref. 2; see also, Thacker, Folkins and Miller, Ind. Eng.
Chem., 33, 584 (1941), Wagman, Kilpatrick, Taylor, Pitzer and Rossini, J. Res. Nat. Bur.
Stand., 34, 143 (1945); Wagman, Kilpatrick, Pitzer and Rossini, ibid., 35, 467 (1945);
Kifl‘patrick, Prosen, Pitzer and Roesini, ibid., 36, 559 (1946); for references, see Wilson,
ref. 10.
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solid, i.e., its thermodynamic probability is unity. In a solid solution consisting
of N, molecules of one substance (or form) and N, molecules of another, the system
can be realized in N1/N,IN;! different ways, where N is equal to N; + Ni. (Note
that for a substance in the pure state this reduces to unity.) Show that the en-
tropy of formation of 1 mole of a soiid solution from its pure solid constituents,
i.e., the entropy of mixing, is — R(N;In N; + N;In N:), where N; and N; are the
respective mole fractions [cf. equation (19.32)].

2. By assuming a solid solution of silver chloride (n; = 0.272) and silver
bromide (N; = 0.728) to have an entropy of zero at 0° K, the thermal entropy at
25° C was found to be equal to the sum of the entropies of the pure constituents.
Other measurements, not based on the third law, however, indicated that the
entropy of the solid solution was greater than that of the constituents by about 1.1
cal. deg.”* mole™! (Eastman and Milner, ref. 1). Account quantitatively for the
discrepancy.

3. The heat of vaporization of mercury at its normal boiling point (357° C)
is 13,600 cal. g. atom™!, and the mean heat capacity of the liquid is 6.5 cal.
deg.”! g. atom™., Assuming the vapor to be an ideal monatomic gas and the
atoms to be in a singlet electronic state, calculate the entropy of (i) gaseous,
(ii) liquid, mercury at 25° C. (The actual values are 41.8 and 18.5 E.U. g. atom™.)

4. Use the tables of entropy data to determine the entropy changes accom-
panying the following reactions: (i) Na(s) 4 KCl(s) = NaCl(s) + K(s); (ii)
AgCl(s) + 4H.(g) = HCl(g) + Ag(s); (iii) Hg(!) + 0:(g) = HgO(s).

5. From the following data, evaluate the third law molar entropy of hydrogen
chloride as an ideal gas at 1 atm. pressure and 25° C. The entropy of the solid
at 98.36° K is 7.36 E.U. mole™; at this temperature transition to another solid
form occurs, the heat of transition being 284.3 cal. mole™. The increase of
entropy accompanying the heating of the second solid modification from 98.36° to
158.91° K, the melting point, is 5.05 .u. The heat of fusion of the solid is 476.0
cal. mole~, From the melting point to the normal boiling point (188.07° K), the
increase of entropy is 2.36 E.u. and the heat of vaporization is 3860 cal. mole!.
The mean heat capacity of hydrogen chloride gas from the boiling point to 25° C
may be taken as 6.98 cal. deg.”* mole™® at 1 atm. pressure.

6. Use the moment of inertia and vibration frequency given in Chapter VI to
calculate the standard (practical) entropy of hydrogen chloride at 25° C. Com-
pare the result with that obtained in the preceding problem.

7. Calculate the standard (practical) entropy of hydrogen sulfide at 25° C,
using data in Chapter VI.

8. Show that if the Debye heat capacity equation were applicable, the entropy
of a perfect solid at very low temperatures should be equal to 4Cp, where Cp is
the heat capacity at the given temperature. What would be the value in terms
of the Debye characteristic temperature?

9. By means of the following data for cyclohexanol [Kelley, J. Am. Chem. Soc.,
51, 1400 (1929)7], which exists in two crystalline modifications, test the third law
of thermodynamics. For form I, the Debye characteristic temperature is 112;
the increase in entropy of the solid, from Cp measurements, from 13.5° to 263.5° K
is 33.55 B.u. At 263.5° K there is a transition to form II, the heat change being
1,960 cal. mole. The entropy change from 263.5° to the melting point (297.0° K)
is 5.02 E.u., the heat of fusion is 406 cal. mole™. For form II, the Debye tem-
perature is 84, and the entropy increase from 13.5° to 297.0° K, the melting point,
is 45.34 E.U. mole™.
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10. The following heat capacities in cal. deg.”! mole~? have been recorded for
solid chlorine [Giauque and Powell, J. Am. Chem. Soc., 61, 1970 (1939)7]:

T Cp T Cpe T Cp T Cp
14.05° K 0.810 33.904°K 4.804 79.71°K 9.201 134.06° K 11.47
17.40 1.331 42.37 6.018 98.06 10.03 145.19 11.92
19.81 1.842 58.59 7.879 112.99 10.57 155.45 1241
26.37 3.192 70.50 8.720 123.53 11.00 164.99 12.93

Determine the entropy of solid chlorine at its melting point, 172.12° K. The
entropy contribution at temperatures below 14° K should be obtained by assuming
the Debye equation to be applicable.

11. The thermal entropy of normal deuterium was found to be 33.90 E.v.
mole~!. Normal deuterium consists of two parts of ortho- to one part of para-
molecules; at low temperatures the former occupy six and the latter nine closely
spaced levels. The spin of each deuterium nucleus is 1 unit. Show that the
practical standard entropy of deuterium gas at 25° C is 34.62 E.u. mole~.. (Add
the entropy of mixing to the thermal entropy and subtract the nuclear spin con-
tribution.) Compare the result with the value which would be obtained from
statistical calculations, using moment of inertia, etc. in Chapter VI.

12. Show that equations (19.25) and (19.26) for the entropy change of ah ideal
monatomic gas at constant pressure and constant temperature, respectively, follow
from the Sackur-Tetrode equation (24.13) or (24.14).



CHAPTER X
FREE ENERGY

25. THE FREE ENERGY AND WoRK FuUNcCTIONS

/25a. The Work Function.—Although the entropy concept is the funda-
mental consequence of the second law of thermodynanrics, there are two
other functions, which utilize the entropy in their derivation, that are more
convenient for use in many instances. One of these, the free energy, will
be employed extensively in subsequent portions of this book in connection
with the study of equilibria, both chemical and physical, and the direction
of chemical change.

The work function, represented by the symbol 4, is defined by

A=E— TS, (25.1)

where F is the energy content of the system, T is its temperature, and S
its entropy. Since E, T and S are characteristic properties of the system,
depending only on its thermodynamic state and not on its previous history,
it is evident that the same considerations must apply to the work function.
Hence A is to be regarded as a single-valued function of the state of the system,
and dA can be treated as a complete differential (§ 4¢). Further, since E
and S are both extensive properties, A will also be extensive in character,
its value being proportional to the quantity of matter constituting the
system under consideration.

In order to obtain some understanding of the physical significance of the
work function, consider an isothermal change from the initial state indicated
by the subscript 1 to the final state indicated by 2; thus,

A1 = E] il TS1 and Az = Ez - TSz,

so that A4 7, the increase in the work function accompanying the process
at constant temperature, is given by

Aa - A1 bl (Ez - El) - T(S: - Sl)
or
AAr = AEr — TAS. (25.2)

If AS in equation (25.2) is replaced by Qrev./T, Where Q:v. is the heat taken
up when the given change is carried out in a reversible manner, then

AAT = AET - Qruv.- (253)

According to the first law of thermodynamics [equation (7.2)7], assuming a
201



202 FREE ENERGY 25b

reversible, isothermal process,

- W“v. == AET - Qm.- (25.4)
Comparison of equations (25.3) and (25.4) shows that
— AAr = Wiev,, (25.5)

so that the decrease in the A function in any process at constant temperature
is equal to the reversible work done by the system. Since the reversible
work is, under these conditions, the maximum work that can be obtained
from the given thermodynamic change in state, it follows that in an iso-
thermal process the decrease of the work function is a measure of the maxi-
mum work obtainable from that change in state. It is this fact which
justifies the use of the term ‘““work function’” for the quantity defined by
equation (25.1), although it was at one time called the “free energy’”’ (H. von
Helmholtz). It should be noted that any given process, isothermal or
otherwise, is accompanied by a definite change in the value of the work
function A, but it is only for an isothermal process that this change is a
measure of the maximum work available. ’

Since AAr and AEr are completely defined by the initial and final states
of the system, the results obtained above, e.g., equations (25.3) and (25.5),
provide proof of the statement made earlier (§ 8b), that in any isothermal,
reversible process the values of W and @ are definite, depending only on the
initial and final states. The work term W here includes all the forms of
work performed on or by the system. .

125b. The Free Energy.—The second, and more generally useful, function
derived from the entropy is called the free energy, and is defined by

F = E — TS + PV, (25.6)
where P and V refer, as usual, to the pressure and volume of the system.

This definition may be written in two alternative forms which are frequently
employed. First, by equation (25.1), A is equal to E — T'S; hence,

F =A 4 PV. (25.7)
Second, since by equation (9.5), H is equivalent to E + PV, it follows that
F=H-TS. (25.8)

Like the work function, the free energy F is seen to be a single-valued function
of the thermodynamic state of the system, so that dF is a complete differential.
In addition, the free energy, like A, S, E and H, is an extensive property.
Comparison of equations (25.1) and (25.8) reveals an interesting fact of
general applicability: A is related to F in the same manner as E is to H.
It will be seen later that there are many relationships involving 4 and E,
with similar expressions relating F and H.
For a.process taking place at constant pressure, it is evident from equation
(25.7) that
AFp = AAp + PAV. (25.9)
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If, in addition, the change is an 7sothermal one, i.e., the temperature is
constant, A4 is equal to — W...., as seen above, so that equation (25.9) gives

— AFp,r = Wiew. — PAV. (25.10)

The quantity W,... represents the total reversible work obtainable in the
given change; this may include other forms of work, e.g., electrical or surface
work, in addition to work of expansion. The latter is equal to PAV (§ 3g),
and so Wyv. — PAV represents the reversible work, exclusive of work of
expansion, that can be obtained from a given change in state. This quan-
tity is sometimes referred to as the net work, and is represented by W/, ,
so that by equation (25.10),

— AFpp = Wi,. (25.11)

The decrease of free energy accompanying a process taking place at con-
stant temperature and pressure is thus equal to the reversible, i.e., maximum,
work other than work of expansion, i.e., the maximum net work, obtainable
from the process. It is because the change in F is a measure of the “useful”’
work that F has been called the free energy.! It has also been referred to
as the ‘“thermodynamic potential” (J. W. Gibbs), and as the “available
energy’”’ (Lord Kelvin). As mentioned in connection with the work func-
tion, the value of AF for any change is quite definite, no matter under what
conditions the process is performed, but only when the temperature and pres-
sure are constant 1s the free energy change equal to the mazimum net work
available for the given change in state.
™~ 25c. Work Function and Free Energy Relationships.—It was seen in
§ 19i, for an infinitesimal stage of an isothermal, reversible process, in which
the work done 13 restricted to work of expansion, that [cf. equation (19.18)7,

ds = ‘fﬁfTﬂ’l’, (25.12)
and hence,
TdS = dE + PdV. (25.13)

By differentiation of equation (25.1), i.e., A = E — TS, which defines the
work function,

dA = dE — TdS — SdT, (25.14)
so that from (25.13) and (25.14), it follows that
dA = — PdV — SdT. (25.15)
At constant volume, therefore, dAy = — SdTv, or
A
(ﬁ)v =-38, (25.16)

1 Lowis, Proc. Am. Acad. Arts Sci., 35, 3 (1899); Z. phys. Chem., 32, 364 (1900); see also,
G. N. Lew:s and M. Randall, “Thermodynamics and the Free Energy of Chemical Sub-
stances,” 1923. °
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and at constant temperature, dAr = — PdVr, or
94
(W)T -—_ P (25.17)

These relationships give the variation of the work function with temperature

and volume, respectively
Differentiation of equation (25.6), i.e., F = E — TS + PV, yields

dF = dE — TdS — SdT + PdV + VdP, (25.18)

and for an infinitesimal stage in a reversible process involving only work of
expansion, use of equation (25.13) reduces this to

dF = VdP — SdT. (25.19)
Hence, at constant pressure, dFp = — SdTp, or
oF
— ) =-—8 .
(), s
and at constant temperature, dFr = VdPr, or
aF
) = 5.2
( 2 P)T v, (25.21)

giving the variation of the free energy with temperature and pressure.

Comparison of equation (25.16) with (25.20) and of (25.17) with (25.21)
brings to light another useful generalization: A is related to V in the same
manner as F is related to P. 1t is found that by exchanging A for F and
V for P, equations involving A and V may be converted into analogous
expressions relating F and P; however, since an increase of pressure corre-
sponds to a decrease of volume, the change of variable from V to P, or
vice versa, is accompanied by a change of sign [cf. equations (25.17) and
(25.21)].

It must be emphasized that the results derived above, like those obtained
in § 20b, et seq., are applicable only to closed systems, as stated in § 20g.
Such systems may be homogeneous or heterogeneous, and may consist of
solid, liquid or gas, but the total mass must remain unchanged. It will be
scen later that in some cases a system consists of several phases, and al-
though the mass of the whole system is constant, changes may take place
among the phases. In these circumstances the equations apply to the
system as a whole but not to the individual phases. Since it has been
postulated that the work done in a change in state is only work of expansion,
equal to PdV, the second condition stated in § 20g, that the system is always
in equilibrium with the external pressure, must also be operative.

25d. Isothermal Changes in the Work Function and Free Energy.—For
an isothermal change dT is zero, and hecnce, as noted above, equation
(25.15) becomes

dAr =— PdV. (25.22)
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For an appreciable isothermal process the-increase AA in the work function
can be obtained by integration of equation (25.22) between the limits of
the initial state 1 and the final state 2; thus,

/‘"2
AAT = (Ag - AI)T = - PdV. (25.23)

Vi

Comparison of this result with-equattdhi (8.2) shows it to be?agreement
with the relationship derived in § 25a, between the change in the work
function in an isothermal process and the reversible work obtainable.

The corresponding expressions involving the free energy could be written
down by changing P for V, and altering the signs where necessary, but they
may be derived in a simple manner. At constant temperature, equation
(25.19) gives

dFr = VdP, (25.24)

and hence for any appreciable isothermal process,

P
AFpr = (F; — Fy)r = VdP.

Py

In the special case of the system being 1 mole of an ideal gas, V may be
replaced by RT/P, so that
FrdP P,

AFT=RTf — = RT In
P

= P (25.25)

1

Since, for an ideal gas, P./P, is equal to V1/V; at constant temperature, it
follows that AFr is equal to AAr, as may be seen by replacing P in equation
(25.23) by RT/V and integrating. It is important to point out, however,
that this equality applies only to an isothermal process with an ideal gas,
but it is not true generally. Considerable confusion was caused in the
earlier development of chemical thermodynamics because of the failure to
realize this limitation.

> 25e. The Gibbs-Helmholtz Equations.—If the value of S given by equa-
tion (25.20) is substituted in (25.8) the result is

aF
F=H+T (ﬁ)p' (25.26)
and, similarly, combination of equation (25.16) with (25.1) gives
A
A=E+ T(ﬁ,)v (25.27)

These two expressions are forms of the equation derived by J. W. Gibbs
(1875) and H. von Helmholtz (1882), and usually referred to as the Gibbs-
Helmholtz equation. Upon dividing equation (25.26) by T? and rearrang-
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ing, it is readily found that an alternative form is

a(F/T) H
[—ﬁ_ , = - —T—" (25.28)

The analogous expression [d(A/T)/8T v = — E/T? can be derived from
equation (25.27), but this is rarely used by chemists.

There are other forms of the Gibbs-Helmholtz equation which are more
frequently employed; these deal with changes in the free energy, heat con-
tent, etc., accompanying an appreciable process. The process may be
chemical or physical in nature; the only restriction is that it takes place in
a closed system, i.e., one of constant mass, which is in equilibrium with the
external pressure. For the initial and final states, indicated by the sub-
scripts 1 and 2, respectively, of an isothermal process, equation (25.8)
becomes

=H1_TS;| and F1=H3—TS2,

so that by subtraction,
Fa - F, = (Hz - Hx) - T(Sz - Sl),
AF = AH — TAS, (25.29)

where AF, AH and AS represent the increase of free energy, heat content
and entropy, respectively, for the given isothermal process.* Further,

from equation (25.20),
OF ; oF,
—AS=—(S;:—S)={—) —(—
S == 6= 5 ( ) (aT),,

aT
P
If this result is inserted int3d equation (25.29) there is obtained
AF = AH 4T ["(AF)] , (25.31)
P

a very useful form of the Gibbs-Helmholtz equation.
Similarly, by means of equations (25.1) and (25.16) it is possible to
derive the analogous expression

AA = AE+ T ["_(6‘37_“}_2]?. (25.32)

8till another form of the Gibbs-Helmholtz equation may be developed
from (25.31) by utilizing the same procedure as was employed in converting
equation (25.26) into (25.28); thus, dividing through equation (25.31) by

* Subsecripts 7' might have been included to indicate that constant temperature is
implied, but this condition is usually understood.
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T? and rearranging, the resulting expression may be put in the form

[a_(;a“%')_]" -— AFH (25.33)

This equation represents the variation of AF, or rather of AF/T, with tem-
perature at constant pressure. If AH is expressed as a function of the tem-
perature (§ 12k), it is thus possible, upon integration, to derive an expression
for AF in terms of the temperature. This matter, as well as other applica-
tions of the various forms of the Gibbs-Helmholtz equation, will be taken
up in later sections.

Attention may be drawn to the fact that although certain restrictions
were mentioned in the course of the foregoing deductions, the final results
are of general applicability. The Gibbs-Helmholtz equations (25.31),
(25.32) and (25.33), for example, will hold for any change in a closed system,
irrespective of whether it is carried out reversibly or not. This is because
the values of AF and AH (or AA and AE) are quite definite for a given change,
and do not depend upon the path followed. The only condition that need
be applied is the obvious one that the system must be in thermodynamic
equilibrium in the initial and final states of the process, for only in these
circumstances can the various thermodynamic functions have definite
values (§ 4d).

+25f. Conditions of Equilibrium.—An important use of the free energy
and, to some extent, of the work function, is to obtain simple criteria of
spontaneous processes and of thermodynamic equilibrium which lend them-
selves very readily to practical application. The result derived in § 19e,
that for a spontaneous (irreversible) process there is a net increase of entropy
of the system and its surroundings, is based on equation (19.14); in other
words, the essential fact is that in an irreversible process A — B, the sum
of the ¢/T terms for all the isothermal stages is less than the increase in
entropy of the system. Hence, in an infinitesimal stage of an irreversible
process ¢/ T is less than dS, i.e.,

dsS > -;I—, (irreversible process),

where dS refers to the system alone, and not to the net entropy of the system
and surroundings. For a reversible change, on the other hand, dS, by
definition, is equal to q/T, so that

dS = % (reversible process).
It is, therefore, possible to combine these two results in the general expression

s> 1, (25.34)

e
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where the “greater than’ sign refers to an irreversible process, while the
“equal to” sign applies to a reversible process which, as seen in § 8a, is a
succession of equilibrium states.

By the first law of thermodynamics, ¢ = dE + w [cf. equation (7.5)],
so that (25.34) may be written in the form

dE+w.

S 2
d/ T

(25.35)

If, in any process, the energy content remains constant and no work is done
against an external force, dE and w are both zero; hence,

dsS 2 0, if dE =0 and w=0. (25.36)

In the event that the external pressure is the only ‘“force,”” the work is
entirely work of expansion, i.e., PdV; the condition that w is zero is then
satisfied when dV is zero, i.e., the volume is constant. In these circum-
stances, equation (25.36) becomes

dSzv > 0, (25.37)

where the subscripts E and V indicate constancy of these properties. Con-
sequently, when the energy and volume are maintained constant, the entropy
of a system increases in a spontaneous process, but remains unaltered for a
small change in the system when it is in a state of thermodynamic equi-
librium.* In other words, the entropy of a system at equilibrium ¢s a maximum
at constant energy and volume, since a spontaneous process always represents
a closer approach to the equilibrium state under the given conditions.
By combining equation (25.14) with (25.35) it follows that

14 £ — w — 84T,

vhere the ‘less than” sign now refers to the spontaneous (irreversible)
rrocess. If the temperature is maintained constant and no work is done,
so that dT and w are zero,

dA <0, if dT =0 and w = 0.

Again, when the work is solely work of expansion, the result may be written
in the form
dAryv < 0. (25.38)

This means that in a state of thermadynamic equilibrium, at constant tempera-
ture and volume, the work function is a minimum; under the same conditions
a spontaneous process is accompanied by a decrease in the work function.

* Since dS in equations (25. 34) to (26.37) refers to the gain in entropy of the system
alone, it depends on the initial and final states only and not on the path between them; hence,
8x,v will increase in any change that is potentially spontaneous, even if it is actually carried
out in a reversible manner, provided E and V are constant. Compare in this connection the
first footnote in § 19e, which refers to the entropy of the system and its surroundings.
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When the work is only work of expansion, and the system is always in
equilibrium with the external pressure, w in equation (25.35) may be re-
placed by PdV, where P is the pressure of the system; thus,

as > 9 ,+TPdV’

TdS 2 dE + PdV.
If this result is combined with equation (25.18), it is seen that
AF < VdP — SdT,

and hence at constant temperature and pressure,
(/Fq', r S 0, . (2539)

where the “less than’ sign refers to a spontaneous process. Since most
chemical reactions and many physical changes are carried out under condi-
tions of constant temperature and pressure, equation (25.39) is almost in-
variably used, rather than (25.37) or (25.38), to give the conditions of a
spontaneous process or of thermodynamic equilibrium. Since dF 7, pis either
less than or equal to zero, according as the system changes spontaneously
or is in equilibrium, it follows that for a system in equilibrium, at a given
temperature and pressure, the free energy must be a minimum. Further, ail
spontaneous processes taking place al constant temperature and pressure are
accompanied by a decrease of free energy. 'This conclusion is of fundamental
significance, for it provides a very simple and convenient test of whether a
given process is possible or not. For an appreciable process, such as a
chemical reaction, carried out at constant temperature and pressure, equa-
tion (25.39) may be written as

AF p £ 0, (25.40)

a form in which the condition for a spontaneous process or for equilibrium
is frequently employed (Chapter XIII).

25g. Work Function and Free Energy from Partition Functions.—For

1 mole of a gas which behaves ideally, PV is equal to RT, and so equation
(25.6), which defines the free energy, may be written

F=E - TS+ RT. (25.41)

Utilizing equations (16.8) and (24.11), for E and S respectively, in terms of
the partition functions, it follows that for 1 mole of an ideal gas,

F=Ey —RTIn %,
F—Hy=—RTIn 1% (25.42)*

* It should be noted that in this section Q refers to the partition function,
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It is seen from equation (25.41) that at 0° K, when T is zero, F and E are
identical, and hence equation (25.42) may also be expressed in the form

F—Fo=—RTIn 91?' (25.43)
These equations permit the calculation of the molar free energy of an ideal
gas, with reference to the value in the lowest energy state, i.e., at 0° K; they
will be used in Chapter XIII in connection with the determination of equi-
librium constants and the free energy changes accompanying chemical
reactions.

Since the work content A is equal to F — PV [equation (25.7)], and
hence to F — RT for 1 mole of an ideal gas, it is seen from equation (25.42)
that

A —Eo=—RTln%—RT,

and this may be written in the equivalent form

A — Ay =— RT ln% — RT, (25.44)

since A and E are equal at the absolute zero.

25h. Thermodynamic Formulae.—It is of interest at this point to refer to
certain general procedures which may be used for the derivation of thermodynamic
relationships. One of these, which has been already employed from time to time,
is the following. If x is a single-valued function of the variables y and 2, e.g., a
thermodynamic property of a closed system, it is possible to write for the complete

(exact) differential dz,
dz = Mdy + Ndz, (25.45)

where M and N are also functions of the variables. If z is constant, so that dz
is zero, then equation (25.45) yields the result

oz
(6—y )' =M, (25.46)
whereas if y is maintained constant, so that dy is zero,
oz
(:‘)_z ), = N. (25.47)

If equation (25.46) is differentiated with respect to 2, with y constant, and (25.47)
with respect to y, with z constant, the results must be identical, so that

oM oN
(%), (&) @549
This result, sometimes referred to as the Euler criterion, or the reciprocity relation-
ship, will now be used to derive some thermodynamic expressions.
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An cxamination of the present and preceding chapters will reveal four analogous
equations which are of the form of (25.45); these are
(i) dE = TdS — P4V
(ii) dH = TdS + VdP
(ili) d4A = — SdT — PdV
(iv) dF = — SdT + VdP

[cf. equations (20.1) or (25.13), (20.13), (25.15) and (25.19), respectively]. By
the use of equation (25.48), there follow immediately the four Maxwell relation-

ships, viz.,
aT P N
(W) - (———)V from (i)

a8
(%) (gg) from (ii) v
( g—f, ) < g;’ ) from (iii) <~

a8 av .
<ﬁ>r =— (ﬁ>P from (1v)‘./

If X and Y are functions of the variables z, y and z, such that

dX = Ldy + zdz
dY = Ldy + 2dz,

then by equation (25.46) or (25.47),

I = 2.4 ary\

! 3y 9y
By applying this result to the expressions (i), (ii), (iii) and (iv), a new set of
relationships can be derived as follows:

(%), -
(7). - (&
(5 ), (

( )V ( , from (iii) and (iv).

By the use of equations analogous to (4.9) and (4.10), and the familiar mathe-
matical relationship of the form

(5).=- G).(5).

(cf. § 21b), numerous thermodynamic equations can be derived.

( 3?) from (i) and (ii)

>T from (i) and (iii)

SRS

) from (ii) and (iv)
T

v @
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Since there are cight common thermodynamie variables, viz.,, P, V, T, E, I,
S, A and F, there are possible 8 X 7 X 6, i.e., 336, first (partial) derivatives, and
a large number of relationships among them exist. P. W. Bridgman (1914) has
devised a system which permits the derivation of an expression for any of these
first derivatives in terms of three quantities which are, in general, capable of
experimental determination, viz., (V/dT)p, (dV/0P)r and (dH/dT)p, i.e., Cp.
The procedure adopted is to write in a purely formal manner

( B ) _ (a),
oy /. By’

where z, y and 2 represent any of the eight variables, and then to make use of the
Bridgman formulae to obtain the appropriate values of (dz). and (dy),. There

are actually fifty-six such formulae, but since (dz). is equal to — (9z). the number
is effectively reduced to the twenty-eight results given below.

(0T)p =— (8P)r =1

(0V)p =— (@P)y = (dV/0T)p

(08)p = — (8P)s = Cp/T

(0E)p = — (@P)g = Cp — P(OV/3T)p
(0H)p = — (OP)n = Cp

(0F)p = — (@P)F =— 8

(0A)p =— (OP)a =— 8 — P(AV/dT)p
@V)r =— (8T)y =— (8V/0P)r

(88)r = — (8T)s = (8V/3T)p

T(V/3T)p + P(AV/3P)r

(0F)r =— (dT)x
-V + T(@V/oT)p
14

(0H)r = — (87w
(8F)r =— (8T)r
(04)r = — (8T)a = P(OV/3P)r .

(88)y =— (8V)sg = Cp(@V/3T)p/T + (3V/dT)}

(OE)y =— (0V)g = Cp(0V/0P)r + T(V/3T)}

(8H)y = — (8V)n = Cp(8V/0P)r + T(3V/dT); — V(dV/3T)p
(@F)y =— (3V)e = — V(3V/3T)p — S(AV/3P)r

[/

(84)y =— (8V)a = — S(3V/dP)r
(0E)s = — (88)g = PCp(dV/3dT)r/T + P(3V/3T)}
(0H)s = — (88)y = — VCp/T

— VCp/T + S(@V/3T)p
PCp(dV/3P)p/T + P(AV/3T): + 83V /dT)p

— V[Cp — P(3V/0T)p] — P[Cp(8V/dP)r + T3V /dT)}]
(0F)g = — (0E)r = — V[Cp — P(3V/3T)p] + SLT(8V/3T)p + P(dV/3P)r]
(0A)g = — (0E)a = P[Cp(3V/3P)r + T(3V/3T)}]

(0F)y = — (0H)p =— V(Cp + 8S) + TS(dV/dT)p

(0A)y =— (0H)a = — [S + P(@V/aT)pI[V — T(8V/8T)r] + P(3V/3P)r
(0A)r = — (0F)4 = — S[V + P(@V/dP)r] — PV(dV/3T)».

The use of the Bridgman formulae may be illustrated by employing them to
derive an expression for (87/dP)y, which is the Joule-Thomson coefficient (§ 11b).
The required results are

@)y =— OH)r =V — T(0V/aT)e
(0P)g = — (dH)p = — Cp,

(0F)s = — (3S)r
(04)s = — (88)a
(0H)g = — (0E)n



26a CHEMICAL POTENTIAL 213

(), -2 (30), -]

go that

as in equation (22.2).2
26. CHEMICAL POTENTIAL

" 26a. Partial Molar Properties.—Although the concept of partial molar
quantities is employed in connection with thermodynamic properties other
than the free energy (see Chapter XIX), the partial molar free energy will
be used so frequently that the opportunity may be taken to introduce some
of the general ideas here. It has been mentioned, from time to time, that
the results obtained so far are based on the supposition that the system
under consideration is a closed one, that is, one of constant mass. The
change of any thermodynamic property is then due to a change in the state
of the system, and not to the addition or removal of matter. In the study
of systems consisting of two or more substances, i.e., solutions, and of
heterogeneous systems containing two or more phases, it is necessary to
consider open systems, where composition and mass may vary. In this
connection the concept of partial molar properties, as developed by G. N.
Lewis (1907), is of great value.?

Consider any thermodynamic extensive property, such as volume, free
energy, entropy, energy content, etc., the value of which, for a homogeneous
system, is completely determined by the state of the system, e.g., the tem-
perature, pressure, and the amounts of the various constituents present;
thus, G is a function represented by

G = f(T, P, ny, nay ..., ns, ...), (26.1)

where ny, ny, ..., Ny, ..., are the numbers of moles of the respective con-
stituents, 1, 2, ..., 7, ..., of the system. If there is a small change in the
temperature and pressure of the system, as well as in the amounts of its
constituents, the change in the property G is given by

dG = (ﬁ)dT + (ﬁ)dp

8T /p,nyns--- OP )1 nyng .-
oG G
(55 ) mt o () m o 202)

The derivative (8G/dn:)r, p, =, ... is called the partial molar property for the
constituent ¢, and it is represented by writing a bar over the symbol for

2 Bridgman, Phys. Rev., 2, 3, 273 (1914); see also, P. W. Bridgman, “Condensed Collec-
tion of Thermodynamic Formulas,” 1925; for other generalized treatments, see Shaw,
Phil. Trans. Roy. Soc., A234, 299 (1935), or summary in Margenau and Murphy, “The
Mathematics of Physics and Chemistry,” 1943, p. 18; Lerman, J. Chem. Phys., S, 792 (1937);
Tobolsky, tbid., 10, 644 (1942).

3 Lewis, Proc. Am. Acad. Arts Sci., 43, 259 (1907); Z. physik. Chem., 61, 129 (1907);
see also, G. N. Lewis and M. Randall, ref. 1; J. Am. Chem. Soc., 43, 233 (1921).
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the particular property, i.e., G, so that

(E)T'P"""" o B Gl’ (R)T.P.nl.n.. aee G’, etc. (26'3)

It is thus possible to write equation (26.2) in the form

E1e;
a6 = (BT)pdf.’,f (aP)ff,.,...
+ Gudny + Gudng + - -+ Gdni + ---.  (26.4)

If the temperature and pressure of the system are maintained constant,
dT and dP are zero, so that

dGr.p = Gdny + Gudng + -+ Gdni + - -+, (26.5)
which gives, upon integration, for a system of definite composmon, repre-
sented by the numbers of moles ny, na, ..., Ny, ...,*

Grex =G+ mG + --- + G+ ---. (26.6)

By general differentiation of equation (26.6), at constant temperature
and pressure but varying composition, it is seen that

dGr,p = (mdG + Gidn)) + (0dGs + Gedma) + - -
+ (n.dG + Gudni) + -
= (mdCG + ndG + -+ +ndG: + )
+ (Gidny + Gadna + -+ + Gdni + ---). (26.7)

Comparing this result with equation (26.5), it follows that at a given tem-
perature and pressure

ndGi + nedGs + -+ + ndGi + -+ =0, (26.8)

which must obviously apply to a system of definite composition. This
simple relationship is the basis of the important Gibbs-Duhem equation
(§ 26¢), first derived by J. W. Gibbs (1875) and later, independently, by
P. Duhem (1886).
" 26b. Physical Significance of Partial Molar Property.—The physical sig-
nificance of any partial molar property, such as the partial molar volume,
partial molar free energy, etc., of a particular constituent of a mizture may
now be considered. According to equation (26.3), it is the increase in the
property G of the system resulting from the addition, at constant temperature
and pressure, of 1 mole of that substance to such a large quantity of the
system that its composition remains virtually unchanged. However, a more
icture is obtained from equation (26.6): this states that the sum of
the mé, terms for all the constituents is equal to the total value G for the
system of given composition at constant temperature and pressure. Hence,
the partial molar property G: of any comstituent may be regarded as the

* In general, constant composition wi'i be indicated by the subscript N, as in Gz, p,x.
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contribution of 1 mole of that constituent to the total value of the property
¢ of the system under the specified conditions. Upon first consideration
it might be imagined, in view of this interpretation, that the partial molar
property G; was equal to the value of G; for 1 mole of the constituent ¢ in
the pure state. It will be seen later that this is only true in certain limited
circumstances. In general, G, in a solution is not equal to G; for the pure
substance, and further, the value of G; varies as the composition of the
system is changed.*

It may be pointed out, in view of equation (26.6), that the partial molar
property G is an intensive property (§ 4d), and not an extensive one; that
is to say, its value does not depend on the amount of material constituting
the system, but only on the composition, at the given temperature and
pressure. Allowance for the quantity of each constituent is made by the
appropriate values of n;, ns, ..., n;, ..., in equation (26.6), so that n,G,,
MGy, ..., nGs, ..., are the contributions to the total value of the property
G. This same conclusion can be reached by precise mathematical argu-
ments based on the use of Euler’s theorem on homogeneous functions. At
constant temperature and pressure the property @ is a homogeneous func-
tion of the numbers of moles (n;) of degree unity; hence, the derivative of G
with respect to n; i.e., G, in general, will be a homogeneous function of
degree zero. In other words, the partial molar property is independent of
the n’s and hence of the amounts of material in the system. It should be
remembered, however, that G, is not independent of the composition of the
system, that is, of the ratio of the various n’s to one another.

.—- 26¢. Partial Molar Free Energy: The Chemical Potential.—Although
the partial molar quantities of various thermodynamic properties will be
considered in the course of this book, the discussion at present will be re-
stricted mainly to a consideration of the partial molar free energy, that is,
F'; for the ith constituent. This quantity is, for present purposes, identical
with the function described by J. W. Gibbs, known as the molar chemical
potential or, in brief, the chemical potential, and which is represented by
the symbol u. Hence, by the definition given above, the partial molar free
energy or chemical potential of a constituent of a mixture is

an.-

It is thus possible to rewrite equation (26.4), replacing G by F, and using
w’s for the partial molar quantities, to give

= () ar + (2£) ar
+ wmdn, + pdne + -+ - + pdni + ---. (26.10)

* For a system consisting of a single (pure) substance, the partial molar property &; has
only a formal significance, for it is then identical with the molar property G:.
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In the special case when there is no change in the numbers of moles of
the various substances present, that is to say, when the system is a closed
one, dn,, dns, etc., are all zero, so that equation (26.10) becomes

oF
dF = (aT)dT+ aP)dP

It has been shown previously (§ 25¢) that for an infinitesimal change in a
closed system, in equilibrium with the external pressure,

dF = VdP — SdT,

so that, equating coefficients,

oF
(_aT)p,N —— &, (26.11)
and
oF
(51—))” =V. (26.12)

These equations are identical, as of course they should be, with equations
(25.20) and (25.21) which are applicable to a closed system. If these results
are now substituted in equation (26.10), it follows that for the open system

dF =— SdT + VdP + wdny + pedna + -+ + pdn; + ---.  (26.13)
At constant temperature and pressure this becomes
dFr.p = mdny + pdnz + --- + pdni + - -+, (26.14)

which is of the same form as equation (26.5).
When the partial molar property G; is the partial molar free energy ui,
equation (26.8) becomes

ndpy + nodps + -+ - +ndus + -0 =0, (26.15)

which is one form of the Gibbs-Duhem equation, applicable to a system at
constant temperature and pressure. This equation has many applications,
especially in connection with the study of liquid-vapor equilibria, such as
are involved in distillation.

/' 26d. Equilibrium in Heterogeneous System.—The coudition represented
by equation (25.39) for a system at equilibrium, viz.,

dFr.p =0,

is applicable to a closed system. As indicated earlier, it is possible for a
system consisting of several phases to be closed; nevertheless, one or more of
the constituent phases may be open, in the sense that there may be exchanges
of matter between them. In a case of this kind, the change of free energy
of each phase (open system) for a small change at constant temperature
and pressure is given by equation (26.14), and for the system as a whole
(closed system) dF'r, p is given by the sum of the changes for the individual
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phases. If the whole system is in equilibrium, at a given temperature and
pressure, dFr, p is zero, as seen above, and hence, by equation (26.14),

Sudn; = 0, (26.16)

where the summation includes all the udn terms for all the phases constituting
the system. This result forms the basis of the well known ‘“phase rule’’, as
will be seen in § 28a.

26e. Alternative Definitions of Chemical Potential.—Although the definition
of the chemical potential as the partial molar free energy is the one which is most
generally useful in chemical thermodynamics, it is of interest to show that it can
be defined in other ways. This justifies the use of the general term ‘“chemical
potential”’, indicating that the property has a wider significance than the partial
molar free energy.

The energy content of a system, like the free energy, may be expressed as a
function of the thermodynamic coordinates and masses of the constituents; for
the present purpose it is convenient to choose as the coordinates the entropy and
the volume. Hence, it is possible to write

OF O
dE = (as) ds + (av) av + (am)sd';?‘nj'.- -t <6n )Sd?"n:t-.-. - 261D

By utilizing equation (19.18) or (25.13), it is readily seen that (0E/dS)y,n and
(@E/dV)s N, which refer to constant values of the n’s and hence are effectively
applicable to a closed system, are equal to T and — P, respectively. Conse-
quently, it follows that

dE = TdS — PdV + <8E>dn1 + -+ <6E> dn; + ---. (26.18)
o /3, v,n,, - o /s, v,ny,---

From the definitionof Fas E — TS + PV [equation (25.6) 7], there is obtained
upon differentiation equation (25.18), viz.,

dF = dE — TdS — 8dT + PdV + VdP,
and hence at constant temperature and pressure, i.e., dT and dP are zero,
dFr,p = dE — TdS 4 PdV.
Combination of this result with equation (26.18) then gives
oF oE oE
dFrp =+ )d d dn; + ---. (26.19
ne <8n1 )s,g,ln.._-*-- <3nz>s ﬁzn:*- o <6n. )s 1-:- ,.:*' ( )

Since the values of dn,, dn;, etc., are independent of one another, it follows from a
comparison of equations (26.19) and (26.14), that

= (-a—g) = (iE-') etc
= o /s v.ng,... ta s /s vn... N

which are alternative definitions of the chemical potentials. It should be under-
stood that (0E/dn1)s,v,n,, ... etc., are not partial molar energies, for they refer to
constant entropy and volume, and not to constant temperature and pressure. The
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partial molar energy content would be defined by (0E/dm)r, p,n,, ..., and this is,
of course, not equal to the chemical potential.

By means of arguments similar to those employed above, it can be shown that
the chemical potential may also be defined in other ways, viz.,

oH 94 as
= —_— = —_— =—T( — . .
i < anl )S.P.ng. cee ( anl )7’. | 2% VRPN ( anl )E. V.ng ... (26 20)

_/ 26f. Variation of Chemical Potential with Temperature and Pressure.—
The variation of the chemical potential of any constituent of a system with
temperature may be derived by differentiating equation (26.9) with respect
to temperature, and equation (26.11) with respect to n;; the results are

F (s
noT (aT),,'N (26.21)
and
o*F ER
aTon: (a—n—-‘)r.p,nl, =T 8, (26.22)

the latter being equal to the partial molar entropy, by definition. Since
dF is a complete differential, the order of differentiation is immaterial, and
hence equations (26.21) and (26.22) are equivalent, so that

Ou,
( 3T )on S.. (26.23)
This result is analogous to equation (25.20) which is applicable in particular
to a pure substance.

By equation (25.8), F = H — TS, and differentiation with respect to n;,
the temperature, pressure and the numbers of moles of the other constituents
remaining constant, gives

() (@) -1(2)
on; Jr.pn,... on, Jr,pn, ... on;Jr poa,...

or, in alternative symbols,
M = F,'= E,'— TS.

If the expression for the partial molar entropy given by equation (26.23)
is introduced, it is seen that

wi—T (%)p.u -, (26.24)

which is a form of the Gibbs-Helmholtz equation (§ 25¢). Upon dividing
through both sides of equation (26.24) by 772, the result, analogous to

(25.28), is a
3(us/T)
[__aT ]P'N -2 (26.25)
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This equation is particularly useful for expressing the variation of the
chemical potential with temperature, at constant pressure and composition,
of any constituent of a gaseous, liquid or solid solution.

The effect of pressure on chemical potential may be derived by differ-
entiating equation (26.9) with respect to pressure and (26.12) with respect
to n,; it is seen that

or (o
nIP oP Jrn

_OF _ (3V -7
3Pon, n; Jr,p.ay ... N
so that
O - 1.
(aP)m -7, (26.26)

which may be compared with the analogous equation (25.21) for a closed
system, e.g., a pure substance. The rate of change of chemical potential
with pressure of a particular constituent of a system, at constant tempera-
ture, is thus equal to the partial molar volume of that constituent.

For a system of ideal gases, a further development of equation (26.26)
is possible. The total number of moles, n;, in the equation of state
PV = nRT may be replaced by the sum of the number of moles of each
constituent present in the mixture; hence,

RT
V=@0+n+. - +n+ )%

The partial molar volume is then given by differentiating with respect to n;,
all the other n’s remaining unchanged, at constant temperature and pres-

sure; thus,
7= (aV) =ET. (26.27)
T.P,ny, e

an; P

If this result is substituted in equation (26.26), it is found that for any
constituent of an ideal gas mixture,

s RT
_RT 2
(aP)” P (26.28)

This result will be employed in connection with the thermodynamics of
mixtures of gases in Chapter XII.

26g. Free Energy Change in Any Process.—A useful application of the
chemical potential is to determine the free energy change accompanying any
process. In a completely general case, which may refer to a chemical or a
physical change, the system may consist initially of n,, 7, etc., moles of
constituents with respective chemical potentials u, us, etc. The total free
energy of the system is then given by equation (26.6) as nyu <+ naps + - - -
If, in the final state, the system consists of n}, n3, etc., moles of substances




220 FREE ENERGY 26g

whose chemical potentials are ui, w3, etc., the total free energy in the final
state is nmiuy + nauz + ---. The free energy change accompanying the
process is thus

AF = (ni}‘i + "4#5 + -- ) — (a1 + Nape + - - ) (26-29)

A number of applications of this result will be found in later sections.

EXERCISES

1. Derive expressions for (i) the free energy change, (ii) the work function
change, accompanying the appreciable isothermal expansion of a van der Waals
gas. (Use the expression for V in terms of P derived in § 21a.)

2. Explain how the generalized compressibility diagram (Fig. 4) could be used
to determine (i) the free energy change, (ii) the work function change, for any gas
at constant temperature.

3. Utilize the expression for the partition function derived in Chapter VI to
develop an equation for the free energy of an ideal, monatomic gas referred to the
value Fo in the lowest energy state.

4. The variation of the volume of a liquid with pressure is given approximately
by V = V(1 — BP) where 8 is the compressibility coefficient and Vis the volume
at low (virtually zero) pressure. Derive an expression for the change of free
energy accompanying the isothermal change of a liquid from pressure P; to P;.
For water at 25° C, B is 49 X 106 atm.™! at moderate pressures. Calculate the
change of free energy in cal. accompanying the compression of 1 mole of water
from 1 atm. to 10 atm. at 25° C. The specific volume of water at 1 atm. and 25° C
is 1.00294 cc. g.”. Would there be any appreciable difference in the result if
the water were taken to be incompressible, i.e., with 8 = 0?

5. For the reaction 2H,S(g) + SO0:(g) = 2H,0(l) + 3S(s) at 25° C and 1 atm.
pressure of each gas, the change of heat content and the entropy change can be
obtained from data in preceding chapters. What is the corresponding free ener; ,
change in calories? Is the reaction likely to occut spontaneously, with the sub
stances in their standard states, under the given conditions?

6. Without the use of tables, prove that

oF oP
(éﬂv == S8+V (ﬁ)y

which is equal to — S + R for 1 mole of an ideal gas. Show that the same re-
sult can be obtained from the Bridgman table.

7. Show that for a given process the rate of variation of the free energy change
AF with temperature at constant pressure is given by [d(AF)/dT]p = — AS.
Estimate the value of AF in Exercise 5 at a temperature of 30° C, assuming the
rate of change of AF with temperature to remain constant between 25° and 30° C.

8. Show that the relationships [0(AF)/8T]p = — ASand [8(AF)/0P]r = AV,
which are applicable to any physical or chemical change, constitute the basis of
the Le Chatelier principle of mobile equilibrium. [Make use of equation (25.40).]

9. Using the fact that at equilibrium AFr p = 0, what conclusion can be
drawn concerning the free energy change accompanying the transfer of water from
liquid at 25° C to vapor at 23.76 mm., which is the equilibrium vapor pressure, at
the same temperature? Hence, determine the free energy change in cal. for the
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transfer of 1 mole of liquid water to vapor at 1 atm. and 26° C. The vapor may
be regarded as an ideal gas.

10. The equilibrium vapor pressure of ice at — 10° C is 1.950 mm. and that
of supercooled water at the same temperature is 2.149 mm. Calculate the free
energy change in cal. accompanying the change of 1 mole of supercooled water to
ice at — 10° C, and the same total (atmospheric) pressure. Is the sign in agree-
ment with expectation?

11. Combine the result of the preceding exercise with that obtained in Exer-
cise 7, Chapter VIII to evaluate the change in heat content for the process
H,0(l) = H,O(s) at — 10° C and 1 atm.

12. Utilize the Bridgman table to verify the relationships

oP)s = \aP/)r 2" aT J» ~ \oT )y "
13. Derive an expression for (0F/dH)g by means of the Bridgman table.
14. Show that equation (25.20) can be used to derive the expression

S=Emn2 +RT(aan)P

N T

for the entropy of a gas in terms of its partition function.
15. Prove the relationships in equation (26.20).



CHAPTER XI
PHASE EQUILIBRIA

27. SysTeEMS oF ONE COMPONENT

~" 27a. Equilibrium Between Phases of One Component.—Most of the dis-
cussion hitherto has been devoted to laying the foundations of thermo-
dynamic theory; the time is now opportune to consider some applications
of the results already derived to problems of physical and chemical im-
portance. In the present chapter a number of subjects will be discussed
which have a bearing on equilibria between two or more phases, e.g., liquid
and vapor, solid and vapor, etc., of one or more constituents. Such systems
remain of constant mass, as a whole, no matter what changes occur within
them, and so they can be treated as closed.

Consider any system consisting of two phases, e.g., liquid and vapor,
of a single substance in equilibrium at constant temperature and pressure.
Suppose that a small amount of one phase is transferred to the other; it
follows, therefore, from equation (25.39) or (25.40), that the corresponding
free energy change is zero. As long as both phases are present, an appreci-
able transfer, e.g., of 1 mole, from one phase to the other, will not disturb
the equilibrium at constant temperature and pressure. For example, if
liquid water and its vapor are in equilibrium, a large amount of water can
be transferred from one phase to the other, at constant temperature and
pressure, without affecting the state of equilibrium. It is, therefore, possible
to utilize equation (25.40), viz.,

AF =0, (27.1)

where AF is the free energy change accompanying the process under con-
sideration. If F, is the molar free energy of the substance in one phase,
e.g., liquid, and Fp is that in the other, e.g., vapor, the transfer of 1 mole
of liquid to the vapor state is accompanied by an increase Fz and a decrease
F 4 in the free energy; thus,

AF = Fg — F,.

Since this is zero, by equation (27.1), when the system is in equilibrium,
it follows that
F, = Fp. (27.2)

In other words, whenever two phases of the same single substance are in equi-
librium, at a given temperature and pressure, the molar free energy 18 the same
in each phase. This conclusion can be extended to three phases, which is
the maximum number that can coexist in equilibrium for a system of one
component.

222
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It must be remembered that the treatment has been limited to a system
of one component. If there are two or more components present, it will be
seen later (§ 28a) that the chemical potential, in place of the molar free
energy, of each component is the same in every phase when the system is
at equilibrium.

.~27b. The Clapeyron Equation.—Since the molar free energy of a given
substance is the same in two phases A and B of a one-component system
at equilibrium, it follows that if the temperature and pressure are altered
infinitesimally, the system remaining in equilibrium under the new condi-
tions, the change in the free energy must be the same in each phase, i.e.,

dF, = dFp.

In a phase change there is no work done other than work of expansion, and
so it is permissible to use equation (25.19), namely,

dF, = V4dP — 84dT and dFp = VgdP — SgdT.
Since dF 4 is equal to dFs,
VadP — S4dT = VdP — SzdT,

apP _ a8 (27.3)

The term AS is the entropy increase for the transfer of a specified quantity,
e.g., 1 mole, of substance from phase A to phase B, and hence it is equal to
AH/T, where AH is here the molar latent heat of the phase change taking
place at the temperature 7'; making this substitution, equation (27.3)
becomes

dP _ AH

dT ~ TAV’ (27‘4?
where AV is the difference of the molar volumes in the two phases. This
expression is a form of the equation first derived by B. P. E. Clapeyron

(1834); it gives the variation of the equilibrium pressure w1th tempera,ture
for any two phases of a given substance.
An alternative derivation of the Clapeyron equation makes use of the

Maxwell equation (20.12), viz.,
aS
=== 27.
(55). (27.5)

(57),

which is applicable to any closed system, homogeneous or heterogeneous, in
equilibrium with the external pressure. For a system consisting of two
phases of the same substance and, in fact, for any univaiiant system of
more than one component, the equilibrium pressure, e.g., the vapor pressure,
is dependent on the temperature only, and is independent of the volume.
It is thus possible, for a univariant system, to replace (3P/dT)y by dP/dT
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without the constant volume restriction.* If AS is the entropy change
when any given quantity of the substance is transferred from one phase to
the other, at constant temperature, and AV is the accompanying increase
of volume, then AS/AV will be constant at a given temperature, for both
AS and AV are extensive properties which are proportional to the quantity
of material transferred. Thus, (8S/8V)r may be replaced by AS/AV at
the given temperature, so that equation (27.5) becomes

dP _ AS AH

dT = AV _ TAvV’

utilizing the fact that AS is equal to AH/T, where AH is the latent heat of
the phase change. The result obtained in this manner is identical with
equation (27.4). The quantities AH and AV must refer to the same amount
of the substance under consideration; this is usually either 1 gram or 1 mole.
27¢. Solid-Liquid (Fusion) Equilibria.—Solid and liquid phases of a given

substance are in equilibrium at the melting (or freezing) point; hence, in
the Clapeyron equation (27.4), T is the melting point when P is the external
pressure exerted on the system. By writing equation (27.4) in the in-
verted form

dT _ TAV

dP AH'’
an expression is obtained which gives the variation of the melting point 7'
with the external pressure P. If V, is the molar volume of the solid phase
and V; is that of the liquid at the temperature T and pressure P, then AV
may be taken as V; — V,, representing the increase of volume in transferring
1 mole from solid to liquid phase. The corresponding value of AH, i.e.,
the heat absorbed, in the same phase change is the molar heat of fusion, and
this may be represented by AH/, so that equation (27.6) becomes

dT _ T(V: V).
dP AH,

Alternatively, V; and V, may be taken as the respective specific volumes;
AH, is then the heat of fusion per gram.

From a knowledge of the volumes (or densities) of the liquid and solid
phases, and of the heat of fusion, it is possible to determine quantitatively
the variation of the melting point of the substance with pressure. Quali-
tatively, it may be observed that if V; is greater than V,, that is, the liquid
has a smaller density than the solid, at the melting point, then d7/dP will
be positive, and the melting point will increase with the applied pressure.
This is the case for the majority of solids. However, if V; is smaller than V,,
the liquid having the greater density, increase of pressure will cause the
melting point to decrease. Very few substances, notably ice, bismuth and
antimony, exhibit this type of behavior.

(27.6)

(27.7)

* It should be understood that a system containing an inert gas, in addition to a pure
liquid (or solid) and its vapor, is not univariant.
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Problem: The specific volume of liquid water is 1.0001 cc. g.”! and that of
ice is 1.0807 cc. g.~t at 0° C; the heat of fusion of ice at this temperature is 79.8
cal. g.7t. Calculate the rate of change of melting point of ice with pressure in
deg. atm.™?,

If the values of V;, V, and AH, given above are inserted in equation (27.7),
it is readily seen that d7'/dP will then be in deg. cc. cal.”. In order to convert
this into deg. atm.™!, use may be made of the fact that 0.0242 cal. cc.”! atm.™ is
equal to unity (cf. § 3h); hence, multiplication of the result obtained above by
this figure will give dT/dP in deg. atm.™!. Thus, since 7 is 273.2° K,

dT _ 273.2 X (1.0001 — 1.0907) X 0.0242
aP 79.8

= — 0.0075° atm.™.

Since dT'/dP is small, it may be assumed to remain constant over an appreciable
pressure range, 8o that the melting point of ice (or the freezing point of water)
decreases by 0.0075° C for 1 atm. increase of the external pressure. It is because
the specific volume of ice is greater than that of water at 0° C, that increase of
pressure is accompanied by a decrease in the melting point.

Instead of utilizing the Clapeyron equation (27.7) to determine the
variation of the melting point with pressure, it may be applied to calculate
the heat of fusion from a knowledge of dT'/dP, or rather of AT /AP, which
is assumed to be constant; the specific volumes, or densities, of the solid
and liquid phases must, of course, be known.

27d. Equilibrium Between Two Crystalline Forms.—The variation with
pressure of the transition point at which two crystalline forms of a solid are
in equilibrium is given by an equation of the same form as (27.7). Thus,
if B represents the form stable below the transition point, and « the form
stable above the transition point, then

dT _ T(Va — V)

dP AH, ’ (27.8)

where dT'/dP is the rate of change of the transition temperature T’ with the
external pressure P; V, and V; are the molar (or specific) volumes of the
indicated forms, and AH, is the molar (or specific) heat of transition, all
determined at the temperature 7. It is unnecessary to enter into a detailed
consideration of equation (27.8), for the comments made in connection with
(27.7) can be readily adapted to the present case.

Problem: The specific volume of monoclinic sulfur (stable above the transition
point) is greater than that of rhombic sulfur by 0.0126 cc. g.”*. The transition
point at 1 atm. pressure is 95.5° C, and it increases at the rate of 0.035° atm.™t.
Calculate the heat of transition in cal. g.72.

If the values given for AT/AP and V. — Vj are inserted directly into equa-
tion (27.8), it is readily found that AH, will be ubtained in cc. atm.” g.71. Since
the result is required in cal. g.”%, all that is necessary is to multiply by the con-
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version factor 0.0242 cal. ce.”! atm.™!, which is equal to unity. Hence, at
273.2 + 95.56 = 368.7° K,

A, = T(Va = Vo) _ 3687 X 0.0126 X 0.0242
‘T T (AT/AP) 0.035

= 3.2 cal. g.7L.

_ 27e. Liquid-Vapor (Vaporization) Equilibria.—As applied to the equi-
librium between a liquid and its vapor at a given temperature and pressure,
the Clapeyron equation is used in the forms of both equations (27.4) and
(27.6). The increase of volume AV accompanying the transfer of 1 mole
(or 1 gram) of liquid to the vapor state is equal to V, — Vi, where V, and
¥, are the molar (or specific) volumes of the vapor and liquid, respectively; *
AH, is the molar (or specific) heat of vaporization, so that equation (27.6)
becomes

ar _ 1T, —-Vy).

dP AH,

The boiling point of a liquid is the temperature at which the pressure of
the vapor in equilibrium with it is equal to the external pressure; hence,
in the form of (27.9), the Clapeyron equation gives the variation of the
boiling point T of a liquid with the external pressure P.

On the other hand, if the equation is inverted, it gives the rate of change
of vapor pressure 1 of the liquid with the temperature; thus,

dp _ ___AH,
aT ~ T(V, - V)

These equations may be utilized for various purposes; for example, if the
variation of boiling point with pressure or, what is the same thing, the
variation of vapor pressure with temperature, is known, it is possible to
calculate the heat of vaporization. Alternatively, if the latter is available,
it is possible to determine d7'/dP or dp/dT, for the rate of change of boiling
point or of vapor pressure, respectively.

(27.9)

(27.10)

Problem: Assuming the heat of vaporization of water to be constant at 539
cal. g.71, calculate the temperature at which water will boil under a pressure of
77.0 cm., the boiling point being 100.00° C at 76.0 cm. The specific volume of
water vapor at 100° C and 76.5 cm. pressure is 1664 cc. g.”* and that of liquid
water is (approximately) 1 ce. g.™%

Since AH,, V., and V; should be mean values, assumed constant over a range
of temperature, dT/dP in equation (27.9) may be replaced by AT/AP. This
quantity is required in deg. cin.”! (of mercury), but it is convenient to obtain the
result first in deg. atm.”’. The procedure is similar to that described in the

* The volumes V, and V; measured at the same temperature and pressure, i.e., the
vapor pressure, are sometimes called the “orthobaric volumes.”

t The symbol p will be used for vapor pressure (and for partial pressure), and P for
external (atmospheric) or total pressure.
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problem in § 27¢; the use of V,, V; and AH, given above yields AT/AP in deg.
cc. cal.”!, and multiplication by 0.0242 cal. cc.”! atm.™? converts this into deg.
atm.”!. Thus, by equation (27.9), taking T as 100.0° C, i.e., 373.2° K,

AT _373.2 X (1664 — 1) X 0.0242
AP ~ 539

= 27.9° atm.™?.

If this is divided by 76.0, the number of cm. of mercury equivalent to 1 atm. pres-
sure, the result is 0.37° ¢cm.~, so that an increase of 1.0 cm. in the external pres-
sure, in the vicinity of 76 cm., causes the boiling point to rise by 0.37° C. Hence
the required boiling point at 77.0 cm. pressure is 100.37° C.

[/ 27f. The Clausius-Clapeyron Equation.—If W
near the critical point, the volume of the liquid, i.e., V;, is small in com-
parison with that of the vapor, ie., V5, at the same temperature and pres-
sure; hence, V, — V; may be replaced by V., and then-equation (27.10)

may be written as

dp _ AH v,

ar TV,
Further, in regions well below the critical point, the vapor pressure is rela-
tively small, so that the ideal gas law may be assumed to be applicable, i.e.,
pV, = RT, where V, is the molar volume of the vapor and p is its pressure
at the temperature T. Substituting RT/p for V, in equation (27.11), this
becomes

(27.11)

1dp _ AH,
p dT  RT*’
dl AH,
=T (27.12)

This expression is sometimes referred to as the Clausius-Clapeyron equation,
for it was first derived by R. Clausius (1850), in the course of a compre-
hensive discussion of the Clapeyron equation. Although the Clausius-
Clapeyron equation is approximate, for it neglects the volume of the liquid
and supposes ideal behavior of the vapor, it has the advantage of great
simplicity. In the calculation of dp/dT (or dT/dP) from a knowledge of
the heat of vaporization,* or vice versa, it is not necessary to use the volumes
of the liquid and vapor, as is the case in connection with equations (27.9)
and (27.10). However, as may be expected, the results are less accurate
than those derived from the latter expressions.

27g. Integration of the Clausius-Clapeyron Equation.—A particular ad-
vantage of the Clausius-Clapeyron equation is the readiness with which it
can be integrated; thus, if the heat of vaporization is assumed to be inde-
pendent of temperature, integration of equation (27.12) between the tem-
perature limits of T, and T and the corresponding vapor pressures p; and

* For the heats of vaporization of a number of common liquids, see Table 2 at end of book.
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p: _ _ AH, _I__L)=_A&(5’_'=:ﬂ).
lnpl % ( - 2\ 7, (27.13)

If AH, is expressed in cal. mole~!, then R will be 1.987 cal. deg.~! mole™!,
and hence, after converting the logarithms, equation (27.13) becomes

p: _ AH, (T: — T,
log 4.576( T\T, ) (27.14)

recalling that 4.576 arises from the product of the logarithm conversion
factor (2.303) and the value of R, i.e., 1.987, in cal. deg.”! mole!. This
equation may be used to calculate the heat of vaporization if the vapor
pressures of the liquid at two adjacent temperatures are known. Because
AH, is not really independent of temperature, as was assumed in the integra-
tion of equation (27.12), the value obtained is actually a mean for the given
temperature range. Alternatively, if a mean heat of vaporization is avail-
able, the vapor pressure at one temperature (or boiling point at a given
pressure) can be calculated (approximately) if that at another is known.

D3, gives

Problem: The mean heat of vaporization of water in the temperature range
between 80° and 100° C is 542 cal. g.”1. Calculate the vapor pressure of water at
90.0° C, the value at 100.0° C being 76.0 cm.

In equation (27.14), AH, is the molar heat of vaporization of water in cal.;
since the molecular weight is 18.02, AH, is 542 X 18.02 cal. mole™!. At 100.0° C,
i.e., 373.2° K, which will be taken as T';, the value of p;is 76.0 cm.; it is required to
find p; at T, equal to 90° C or 363.2° K. Hence, by equation (27.14),

76.0 _ 542 X 18.02 (3732 — 3632
& 4.576 363.2 X 3732

Since p2 has been expressed in cm., p; will be in the same units; therefore,

lo

p1 = 52.9 cm.
(The experimental value is 52.6 cm.).

27h. Vapor Pressure-Temperature Relationships.—General integration
of the Clausius-Clapeyron equation (27.12), assuming AH, to be constant,
gives
AH,
Inp =— BT -+ constant, (27.15)
or, converting the logarithms and expressing R in cal. deg.~! mole™!, so that
AH, is the heat of vaporization in cal. mole—!, this becomes

AH,
logp =— 576 +C, (27.16)

where C is a constant. It follows, therefore, that the plot of the logarithm
of the vapor pressure, i.e,, log p, against the reciprocal of the absolute tem-
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perature, i.c., 1/T, should be a straight line of slope — AH,/4.576. Thus,
the slope of this plot can be used to obtain an approximate indication of the
mean molar heat of vaporization over a specified temperature range.

Because AH, is not constant, equation (27.16) is applicable over a rc-
stricted range of temperature; in order to extend the range, allowance should
be made for the variation of the heat of vaporization with temperature.
Thus, AH, may probably be expressed as a power series function of the
absolute temperature, viz.,

AH, = AHy + oT + BT* + - - -, (27.17)

where AH,, a, B, etc., are constants for the given liquid. As a first ap-
proximation all terms beyond the linear one may be neglected, so that

AH, ~ AH, + T, (27.18)

and if this result is substituted in equation (27.12), integration gives

AH, + ZIn T + constant. (27.19)

P =—%r kR

This expression, which is of the form

logp = % + Blog T + C, (27.20)

where A, B and C are constants, is similar to the equation proposed em-
pirically by G. R. Kirchhoff (1858) and others. It is seen, therefore, that
over an appreciable temperature range the plot of log p against 1/7 should
not be exactly linear, in agreement with observation on a number of liquids.

Several other vapor pressure-temperature relationships of a more com-
plicated character have been proposed from time to time, but as these have
no obvious thermodynamic basis or significance they will not be considered
here. It may be mentioned, however, that if the experimental vapor pres-
sure data can be expressed with some accuracy as an empirical function of
the temperature, for example of the form

logp=%+B+CT+DT’+---, (27.21)

it is possible by differentiation to derive an expression for d In p/dT in terms
of the temperature. By the use of the Clausius-Clapeyron equation, the
heat of vaporization at any temperature can then be calculated. This
procedure, however, assumes the applicability of the ideal gas law to the
vapor. To avoid the error introduced by this approximation, dp/dT, which
is equal to p X dIn p/dT is determined from (27.21), and the Clapeyron
equation (27.10) is used; the orthobaric volumes V, and V; of vapor and
liquid must then be known.
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Problem: The vapor pressure of liquid chlorine, in em. of mercury, can be
represented by the expression

log p = — 5’-11-,‘3:‘5 + 9.91635 — 1.208 X 10T + 1.34 X 10-5T,

The specific volume of chlorine gas at its boiling point is 269.1 cc. g.” and that
of the liquid is (approximately) 0.7 cc. g.”!. Calculate the heat of vaporization
of liquid chlorine in cal. g.7? at its boiling point, 239.05° K.

Differentiation of the equation for log p with respect to temperature gives

dlogp 14148

aT - 1.206 X 1072 4 2.68 X 10757\

Further, since
dlogp _ 1 dlnp 1 dp
ar 2303 dT  2.303p dT’

it is readily found that at the boiling point, 239.05° K, when p is 76.0 cm.,

S—ET = 3.343 cm. (of mercury) deg.™?
3.343
= —— = -1
76.0 0.04398 atm. deg.”.

By equation (27.10),

AH, = T(V. - V) 2,
and if V, and V;are 269.1 and 0.7 cc. g.71, respectively, and dp/dT is 0.04398 atm.
deg.”, AH, will be in cc.-atm. g.”!; to convert this to cal. g.”?, it is necessary to
multiply by 0.0242 cal. cc.™ atm.™, which is equal to unity. Thus, at 239.05° K,

AH, = 239.05 X 268.4 X 0.04398 X 0.0242
= 68.3 cal. g.”%.

27i. The Ramsay-Young and Diihring Rules.—If the B log T term in equation
(27.20) is neglected, that is to say, if the heat of vaporization is taken as constant,
the vapor pressure variation with temperature of two liquids A and B can be

represented by
log pa = % + Ca and log ps = %—? + Cs. (27.22)

If these substances have the same vapor pressure p at the temperatures T and
Ts, respectively, then

Ar , , _ As
'T‘;‘*‘CA—'TB'*‘CB,

so that,

Ta _Ta o, _ 4a,

T—B = AB (CA CB) + AB (27'23)
Suppose that at the temperatures T, and T', respectively, the two- liquids have
the same vapor pressure p’; hence,

T, _ T, _ Aa

T’B AB (CA CB) + AB (27.24)
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Subtraction of equation (27.24) from (27.23) then gives
T, T,
Ts Tj
where C, is a constant. This result was obtained empirically by W. Ramsay and

S. Young (1885), who found that C; was small; in fact, if the substances A and B
are related chemically C, is almost zero, so that equation (27.25) becomes

Ta _ Th,
Ts _ T4

It is to be expected, therefore, that for any two liquids which are related chem-
ically, the ratio of the temperatures at which they have the same vapor pressure should
be constant. The same result can be stated in another way: the ratio of the boiling
potnts of two similar liquids should have the same value al all pressures.

The extent to which the Ramsay-Young rule, represented by equation (27.26),
is applicable may be illustrated by reference to water and ethanol. The vapor
pressure of water is 12.2 mm. of mercury at 287.5° K, and ethanol has the same
vapor pressure at 273.2° K; the ratio of these temperatures is 287.5/273.2, i.e.,
1.052. Since the normal boiling points are 373.2° K for water and 351.5° K for
ethanol, these are the temperatures at which both have the same vapor pressure
of 1 atm.; the ratio of these temperatures is 373.2/351.5, i.e., 1.062. The two
ratios thus agree to within about one per cent.

Problem: The vapor pressures of molten silver and sodium are both 1 mm. of
mercury at 1218° C and 441° C, respectively. The normal boiling point of sodium
is 882° C, estimate that of silver.

Let A represent silver, and B sodium; T is 1218 + 273 = 1491° K, and Ts
is 441 4 273 = 714° K; Ty is 882 + 273 = 1155° K, and consequently by equa-
tion (27.26),

= C(Tx — T)), (27.25)

(27.26)

1491 T,
714  1155°
T, = 2412° K.

The boiling point of silver is thus calculated to be 2412 — 273 = 2139° C. (The
experimental value is 1950° C; in view of the extrapolation from 1 mm. to 760 mm.
involved in this calculation, the agreement is quite reasonable.)

By rearrangement of equation (27.26) it is found that
T, —Tx T Z‘_,’_\

To — Ts Ts Th
or
T\ — Ta

Th — Ts

the constant being independent of pressure; this constant should, in fact, be equal
to the ratio of the normal boiling points, e.g., T)/Tg, of the two liquids. This
result is an expression of the rule discovered by U. Dithring (1878). Like the
Ramsay-Young equation (27.26), the Dithring equation (27.27) is particularly
applicable to pairs of similar liquids, although it has been found to hold with a

= constant, (27.27)
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moderate degree of accuracy for substances of different types, provided both are
associated, e.g., hydroxylic compounds, or both are nonassociated.

Provided the vapor pressures of a reference liquid are known over a range of
temperatures, it is possible, by means of the Ramsay-Young or Dithring rules, to
establish the complete vapor pressure-temperature variation of another substance
from one datum for the latter. It should be noted that the results obtained cannot
be very precise, for the equations (27.26) and (27.27) can be exact only if the
vapor pressures are represented by the linear equations (27.15), and if the constant
C, in equation (27.25) is zero.!

27j. Trouton’s Rule and Vapor Pressure Relationship.—It has been found
experimentally that for a number of substances the molar entropy of vaporization
AS, at the normal boiling point has approximately the same value of 21 cal. deg.m*
mole~. Thus, if AH, is the molar heat of vaporization at the normal boiling
point T, i.e., at 1 atm. pressure, then

AH,
AS, = T,

which is a statement of the generalization known as Trouton’s rule (F. Trouton,
1884). This rule holds for many familiar compounds with molecular weights in
the region of 100, provided they are not associated in the liquid state. Various
attempts have been made to modify the Trouton rule, so as to make it more widely
applicable. According to J. H. Hildebrand (1915) the entropy of vaporization
is more nearly constant if it is measured at the same concentration of the vapor
in each case, instead of at the same pressure of the vapor, as in Trouton’s rule.

Although these empirical rules, strictly speaking, lie outside the realm of
thermodynamics, they have been mentioned because of their practical value in
certain cases. At the normal boiling point the vapor pressure of a liquid is equal
to 1 atm.; hence, equation (27.16) can be written as

_ _AH,
4.576T,

As seen above, however, AH,/T: may be taken as equal to 21 for many non-
associated substances; hence, for such substances C should have a constant

value, viz.,

== 21 cal. deg.”* mole™},

logl = + C.

_ 210 _
T 4.576

The expression for the vapor pressure p, in atm., of any substance to which
Trouton’s law is applicable thus becomes

C 4.59.

All,

~ 45767 + 4.59. (27.28)

log p(atm.) =

As a first approx‘imation, the molar heat of vaporization at the boiling point may
be used for AH,; an expression for the variation of the vapor pressure with tem-
perature is thus obtained from the one datum. Alternatively, if the vapor pres-

! Ramsay and Young, Phil. Mag., 20, 515 (1885); 21, 33 (1886); 22, 32, 37 (1887);
Diihring, Ann. Physik, 11, 163 (1880); Leslie and Carr, Ind. Eng. Chem., 17, 810 (1925):
Perry and Smith, bid., 25, 195 (1933); Carr and Murphy, J. Am. Chem. Soc., 51, 116 (1929);
Lamb and Roper, ibid., 62, 806 (1940).
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sure is known at one temperature, AIl, may be evaluated from equation (27.28)
and the result may then be assumed to apply at other temperatures. Another
possibility, which is equivalent to the use of Trouton’s law, is to choose the known
vapor pressure as 1 atm. at the boiling point in order to determine AH,; this value
can then be inserted in equation (27.28).2

Problem: The normal boiling point of benzene is 80.1° C; estimate its vapor
pressure at 40° C.

Since T'»is 80.1 + 273.2 = 353.3° K, then by Trouton’s law, AH,is 21 X 353.3
= 7419 cal. mole™!; hence by equation (27.28),

7419
log p(atm.) = — 15767 + 4.59.
At 40° C, the value of T is 40.0 + 273.2 = 313.2° K, so that
7419
log p(atm.) = — 1576 X 313.2 + 4.59 = — 0.587,
p = 0.259 atm.

= 0.259 X 76.0 = 19.6 cm.

(The experimental value is 18.1 cm. The agreement is not too good, but the
calculation may be used to give an approximate indication of the vapor pressure
when experimental data are lacking.)

It is of interest to note that equation (27.28) is essentially equivalent to the
Ramsay-Young rule. In the first place, it is based on equation (27.16), and in
the second place, it supposes that the constant C has the same value for all liquids;
if this were the case, Cao — Cp in equation (27.24) and hence C| in equation (27.25)
would have to be zero. Hence, (27.28) would lead directly to the Ramsay-
Young equation.

27k. Solid-Vapor (Sublimation) Equilibria.—An equation of exactly the
same form as (27.10) is applicable to solid-vapor equilibria; thus,

dp _ _aH,
aT  T(V,—V)’

where AH, is the molar (or specific) heat of sublimation, and V, and V, are
the molar (or specific) volumes of vapor and solid, respectively, at the equi-
librium temperature and pressure. This equation gives the variation of the
vapor (sublimation) pressure of the solid. The Clausius modification in
which V, is neglected and V, is taken as equal to RT'/p, as for an ideal gas,
is permissible, and hence an equation similar to (27.12) can be used for the
vapor pressure of the solid. By means of this equation, or by the integrated
form (27.14), the various calculations referred to in connection with liquid-
vapor systems can be made. Since the procedure is obvious it is not
necessary to enter into details.

1 For estimation of heats of vaporization, see Watson, Ind. Eng. Chem., 23, 360 (1931);
Meissner, ibid., 33, 1440 (1941); Othmer, ibid., 34, 1072 (1942). For vapor pressure charts,
see Germann and Knight, ibid., 26, 1226 (1934); Cox, ibid., 28, 613 (1936); Killefer, bid.,
30, 477, 565 (1938); Davis, bid., 32, 226 (1940); 33, 401 (1941).

(27.29)
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It is well known that the vapor pressure curves of the solid and liquid
phases of a given substance meet at the triple point; thus, in Fig. 16 the
curve AO represents solid-vapor equilibria, OB is for liquid-vapor, and OC
for solid-liquid equilibria. The three curves meet at the triple point O
where solid, liquid and vapor can coexist in equilibrium. It will be observed
that near the triple point, at least, the slope of the curve AO on the pressure-
temperature diagram is greater than that of OB; in other words, near the
point O, the value of dp/dT is greater
along AO than along OB. That this
c B must be the case can be readily shown
‘ by means of the Clausius-Clapeyron

equation. For the solid-vapor system,
this can be written in the form

dp, _ . AH,
dT "' RT*’
E whereas, for the liquid-vapor system,
dp; _ AH,
0 ar ~ P'RT

At the triple point p, and p, the vapor
pressures of solid and liquid, respec-
tively, are equal, and so also are the

4 temperatures T'; the relative values of
Temperature the slopes dp,/dT and dp,;/dT are thus

Fie. 16. Pressure-temperature determined by the heats of sublima-
equilibrium diagram tion (AH,) and of vaporization (AH,),

respectively. By the first law of
thermodynamics, the change of heat content in the transition solid — vapor,
at a given temperature, must be the same whether it is carried out directly
or through the intermediate form of liquid. Hence, AH, must be equal to
AH, + AHy, at the same temperature, so that AH, is greater than AH,;
the slope dp,/dT of the curve AO is thus greater than dp;/dT of the curve
OB, in the vicinity of the triple point.

271. Variation of Equilibrium Latent Heat with Temperature.—If a given sub-
stance can occur in two phases, A and B, one of which changes into the other as
the temperature is raised, then the value of the accompanying latent heat and its
variation with temperature depend on whether the pressure is maintained con-
stant, e.g., 1 atm., or whether it is the equilibrium value. In the former case the
Kirchhoff equation (12.7) will apply, as stated in § 12j, but if equilibrium condi-
tions are postulated allowance must be made for the change of pressure with
temperature.

For any process, the change of AH with temperature and pressure can be
represented by the general equation

d(AH) = ["———(:1’,’)]?41' + [————a(:lf’)]rdp,
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and hence,
d(AH) _ [8(AH)] + [a(AH) dpP
dT T |p 0P |rdT
_ d(AH)] dpP
= ACp + [ 3P ]TdT' (27.30)

It can be seen from equation (20.20) that

aam] d(AV)
[ P ]T‘AV_T[ T ]p’

and according to the Clapeyron equation (27.4), dP/dT = AH/TAV for a phase
change; insertion of these results into equation (27.30) then leads to

d(AH) AH T [ a(AV)
W—AC?‘*"‘T—{I—A—V:[W]P} (27.31)

for the variation of the equilitbrium latent heat AH with temperature. In this
expression ACp is equal to (Cp)s — (Cp)a, where the constant pressure is the
equilibrium pressure of the system at the temperature 7.

For the liquid-vapor change the value of d(AH,)/dT is not greatly different
from ACPp, as may be seen from the following considerations. As shown in § 27f,
AV may be taken as equal to V,, the volume of the liquid being neglected in com-
parison with that of the vapor, and this may be replaced by RT/p, the vapor being
assumed to behave as an ideal gas. In this event,

26N _E_AV
aT |p " p T !

and hence the quantity in the braces in equation (27.31) is equal to zero. It
follows, therefore, that provided the temperature is not too near the critical point,
and the foregoing approximations may be made with some justification, equation
(27.31) becomes

d(AH,)

7 = ACr = (Cr), — (Cr) (27.32)

where (Cp), and (Cp): are the heat capacities of vapor and liquid, respectively,
at constant pressure equal to the vapor pressure at the given temperature.

In connection with the variation of the equilibrium heat of fusion with tem-
perature, this simplification is not permissible. However, [d(AV)/3T]p is usually
small for the solid-liquid phase change, and so equation (27.31) reduces to

d(AH)) AH, AH,
dT T T

=~ ACp + = (Cp)1 — (Cp)s + (27.33)

27m. Dependence of Vapor Pressure on Total Pressure.—When a liquid
or a solid vaporizes into a vacuum and a state of equilibrium is reached,
the same pressure, i.e., the vapor pressure, is exerted on the two phases in
equilibrium. If by some means, e.g., by introducing an insoluble, inert
gas in the free space above it, the pressure on the liquid (or solid) is changed,
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the pressure of the vapor will be affected. The problem is treated helow
in a general manner, without restriction as to the nature of the two phases
or the method of applying the pressure.

Consider any two phases A and B of a given substance in equilibrium
at a specified temperature; the pressures on the respective phases are then
P, and Pp. Since the phases are in equilibrium, the molar free cnergies
must be the same in each phase (§ 27a); hence, if a small change were made
in the system in such a manner that the equilibrium was not disturbed, the
free energy increase dF . of one phase would be equal to the increase dF  of
the other phase. Suppose the pressure on the phase A is altered by an
arbitrary amount dP,; let the accompanying change in the pressure on B,
which is required to maintain equilibrium, be dPg. The molar free energy
changes of the two phases are given by equation (25.24) as

dFA = VAdPA a.nd dFB = VBdPB,

where V4 and Vg are the molar volumes of the phases A and B, respectively,
under the equilibrium conditions. As seen above, dF, must be equal to
dF g, so that

VAdP A= VBdP B-

Hence, the criterion of equilibrium, at constant temperature, is given by

dP, oP, Vo
2.4 =2 34
dPp (aPB)T VA’ (273 )

which is a generalized form of the equation first derived by J. H. Poynting
(1881). For equilibrium to be retained, the pressure changes on the two
phases must evidently be inversely proportional to the respective molar
(or specific) volumes.

In the special case in which A is a liquid and B a vapor, the Poynting
equation is

o _V:
aP "~ V.’

where P is the total pressure on the liquid and p is the vapor pressure. As-
suming the vapor to behave as an ideal gas, V, is equal to RT/p, so that

dp _pV,

2P = BT (27.35)
The effect of external (total) pressure on the vapor pressure of a liquid is
small, so that dp/dP may be replaced by Ap/AP, where Ap is the increase
of vapor pressure resulting from an appreciable increase AP in the total

pressure exerted on the liquid. Hence, equation (27.35) may be written
in the form

9152 - % AP, (27.36)
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from which the effect on the vapor pressure resulting from an increase of
the external pressure, e.g., by introducing an inert gas, can be readily
evaluated.

Problem: The true vapor pressure of water is 23.76 mm. at 25° C. Calculate
the vapor pressure when water vaporizes into a space already containing an
insoluble gas at 1 atm. pressure, assuming ideal behavior.

In using equation (27.36), it will be seen that Ap and p must be in the same
units, the exact nature of which is immaterial; further, the units of X are deter-
mined by those of V;and AP. Thus, if V; is expressed in liters and AP in atm.,
R will be 0.082 liter-atm. deg.™ mole™. The specific volume of water may be
taken, with sufficient accuracy, as 1.0, so that V; is about 18 ml. or 0.018 liter
mole™t.

When the water vaporizes into a vacuum, the vapor pressure p is equal to the
total pressure, i.e., 23.76 mm. at 25° C or 298° K; the external pressure is increased
by approximately 1 atm., assuming the vapor pressure not to alter greatly, so
that AP is 1.0. Hence, by equation (27.36),

Ap  0.018 X 1.0
23.76  0.082 X 298

A, - 0:018 X 23.76
P = 70.082 x 298

The vapor pressure is thus 23.76 4 0.018 = 27.78 mm.

= 0.0175 mm.

The effect of external pressure on the vapor pressure of a liquid is seen
to be relatively small; nevertheless, the subject has some significance in
connection with the theory of osmotic pressure.?

28. SYsTEMS oF MoRE THAN ONE COMPONENT

28a. Conditions of Equilibrium.—If a system of several phases consists of
more than one component, then the equilibrium condition .of equal molar
free energies in each phase requires some modification. Because each phase
may contain two or more components in different proportions, it is necessary
to introduce partial molar free energies, in place of the molar free energies.
Consider a closed system of P phases, indicated by the letters a, b, ..., P,
containing a total of C components, designated by 1, 2, . . ., C, in equilibrium
at constant temperature and pressure which are the same for all the phases.
The chemical potentials, or partial molar free energies (§ 26c), of the various
components in the P phases may be represented by ui), pa@, --., Bcw;
B1G) HM3G); --+) HC®); ---; MiP), M), «-., HC®). Suppose various small
amounts dn moles of the components are transferred from one phase to
another, the temperature and pressure remaining constant; the whole closed
system is in equilibrium, and so according to equation (26.16) the sum of all

3 See, for example, S. Glasstone, “Textbook of Physical Chemistry,” 2nd ed., 1946,
Chap. IX.
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the udn terms for all the phases will be zero. It follows, therefore, that

pi@dnrie + mednie + -+ e dnae)
+ m@dnie + wamdnae + -0 + paednae)

+ socw@dncw + sewmdnce + ¢+ + wemdner = 0. (28.1)

At equilibrium, the total mass of each component will be constant, since
the whole system is a closed one; hence,

dniay + dnigy + -+ dnyey) = 0
dnay) + dnae) + - - dnaey) = 0

dnc@) + dncey + -+ - dneey = 0. (28.2)

If the expression in equation (28.1) is to remain zero for all possible var-
iations dn in the numbers of moles of the components, subject only to the re-
strictions represented by the equations (28.2), it is essential that

Ki@) = K1) = °*° = BR1(P»
H2(a) = H20) = *°° = M2(P)
BC@) = HCe) = *** = Hc(p)- (28.3)

It is seen, therefore, that when a system consisting of a number of phases
containing several components is in complete equilibrium, at a definite tem-
perature and pressure which are uniform throughout, the chemical potential
of each component is the same in all the phases. It may be noted that in the
special case of a single component, the partial molar free energy (or chemical
potential) is equal to the molar free energy (see footnote, § 26b), and the
equations (28.3) become identical with (27.2).

If the phases of a system are not in equilibrium, the chemical potentials
of the components will not be the same in each phase. There will then be
a tendency for each component, for which such a difference exists, to pass
spontaneously from the phase in which its chemical potential is higher to
that in which it is lower, until the values become identical in the two phases.
In other words, matter tends to flow spontaneously from a region of higher
to one of lower chemical potential. There is thus seen to be an analogy
between chemical potential and other forms of potential, e.g., electrical
potential, energy potential, etc.

28b. The Phase Rule.—By means of the conclusion reached in the pre-
ceding section, it is possible to derive the familiar phase rule which gives
the relationship between the number of components and phases in equi-
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librium in a system, and the number of variables, i.e., the degrees of freedom,
which must be specified in order to define the system completely. The
composition of a phase containing C components is given by C — 1 concen-
tration terms, for if the concentrations of all but one of the components are
known, that of the last component must be equal to the remainder. Hence,
for the compositions of P phases to be defined it is necessary to state P(C — 1)
concentration terms. The total number of concentration variables of the
system is thus P(C — 1). In addition to the composition, the uniform
temperature and pressure of the system must be specified, and assuming that
no other factors, such as surface or electrical effects, influence the equi-
librium, it follows that

Total number of variables = P(C — 1) + 2.

The fact of the closed system being in equilibrium, at a given temperature
and pressure, leads to the result represented in the equations (28.3): this is
equivalent to a set of C(P — 1) independent equations which automatically
fix C(P — 1) of the possible variables. The number of variables remaining
undetermined is then [P(C—1)4+2]—CP —-1)=C—-P+2 In
order to define the system completely, therefore, this number of variables
must be arbitrarily fixed, and hence must be equal to the number of degrees
of freedom (F'), or variance, of the system; hence,

F=C-—P+2 (28.4)

which is the phase rule derived by J. W. Gibbs (1875).

It may be noted that if a particular component is absent from any phase,
the number of composition variables is reduced correspondingly. At the
same time there will be a similar decrease in the number of independent
equations determined by the equality of the chemical potentials, i.e., equa-
tions (28.3). The net effect will thus be to leave unchanged the number of
degrees of freedom, as given by equation (28.4). The phase rule in its
familiar form will then hold for the system even if all the components are
not present in every phase

28c. Univariant System of Several Components.—It was indicated in § 27b
that an equation of the form of (27.4) is applicable to any univariant system,
although its derivation was restricted to a system of one component. It is of
interest to show, by a more detailed procedure, that the same result can be ob-
tained if the univariant system consists of several components. However, to
avoid too great a complication of symbols, etc., the discussion will be restricted
to a system of two components. According to the phase rule, if such a system is
to be univariant, i.e., F = 1, with C = 2, the value of P will be 3, so that there
must be three phases in equilibrium.

A simple example of such a system would be a saturated solution of a non-
volatile solid in equilibrium with vapor of the solvent; the three phases would
then be (1) the solid component 1, e.g., a salt, (ii) a saturated solution of this
substance in the liquid component 2 e.g., water, and (iii) the vapor of the latter.
Suppose a small change is made in the system, which is maintained in equilibrium,
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involving changes of temperature dT and pressure dP and transfer of dn, moles
of component 1 from the solid to the solution. The accompanying change in the
partial molar free energy (chemical potential) of the substance in the solution is

then given by
duy = (2 4T + a“‘) aP + a“‘) dn, (28.5)*
aT apP on: /1.8 '

whereas the corresponding change in the chemical potential of the pure solid,
which is equivalent to the change in its molar free energy, is

dui = ar; = (9) v+ (8) ar, (28.6)

the primes being used to indicate the solid phase. Since the molar free energy
of the solid is independent of the amount, there is no term involving dn, in equa-
tion (28.6). By utilizing equations (26.23) and (26.26), i.e., (Qu:/3T)p,n = — 8,
and (du:/dP)r,n = V:, equation (28.5) can be written as

du, = — 8dT + VdP + (6;:) dr;l (28.7)
1
Similarly, by means of equations (25.20) and (25.21), i.e., (0F/3T)p = — S, and
(0F/dP)r = V, equation (28.6) can be transformed into

du! = — SidT + V.dP. (28.8)

Since the system has remained in equilibrium, the chemical potential of the given
component must be the same in both phases, i.e., solid and solution; hence, the
change of chemical potential in one phase must be equal to the accompanying
change in the other phase. In other words, du, and du{, as given by equations
(28.7) and (28.8), must be identical; it follows, therefore, by subtraction, that

— (8 — 8)dT + (¥, — V))dP + (a“‘) dn; = 0. (28.9)

Suppose that when the dn, moles of solid (solute) are transferred from the solid
phase to the solution, as described above, it is necessary to transfer dn: moles of
the component 2 (solvent) from the vapor to the solution in order to maintain the
equilibrium. By proceeding in a manner precisely similar to that used in deriving
equation (28.9), it is found that

— (8 — 8NdT + (V. — VdP + (a“:) dny = 0, (28.10)

where S} and V3 refer to the molar entropy and volume of component 2 in the
(pure) vapor phase.

If equation (28.9) is multipliea by 7, the number of moles of constituent 1
in the solution, and (28.10) is multiplied by n,, the number of moles of the sub-
stance 2, and the results added, it is possible to eliminate the last term in each
equation. The reason is that

op1 Ous
™ <3nl)dn' +n,(an )1"1?1’

* As in §26a, the subscript N is used to represent constant compoesition.
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is equivalent to m,du; + n.du, for the solution at constant temperature and pres-
sure, and by the Gibbs-Duhem equation (26.15) this is zero. Hence, it follows that

- (nlsl - nlSI + nzsz - nzs;')dT + (anI - ’IhV{ + nng b ‘nzV';)dP =0. (2811)

The expression in the first parentheses, which may be rearranged to take the form
(1181 + na82) — (nuS] + n2S7), is equal to the increase of entropy accompanying
the formation of a saturated solution from 7n; moles of solid 1 and n: moles of
vapor 2, since 1,8 + 7282 represents the entropy of the solution [cf. equation
(26.6)], n1S| is that of n, moles of the pure solid 1, and n,S7 that of the n, moles of
pure vapor 2. This quantity may be represented by AS, and the quantity in the
second parentheses may similarly be replaced by AV, the corresponding increase
of volume. It follows, therefore, that equation (28.11) may be written as

— ASdT + AVdP = 0,

dP _ AS
aT ~— AV’
and since AS may be replaced by AH/T, this becomes
dP AH
aT = TAV’ (28.12)

which is identical in form with equation (27.4).

It is thus seen that an equation analogous to that of Clapeyron has been
derived for a univariant system of two components, and a similar result
could be secured for any number of components. As obtained above, equa-
tion (28.12) gives the variation with temperature of the vapor pressure of a
saturated solution; AH is the change of heat content accompanying the
formation of the given solution from the solid solute and the vapor of the
solvent, and AV is the corresponding volume change. The same equation,
when inverted, will give the influence of pressure on the eutectic temperature
at which two pure solids 1 and 2 are in equilibrium with saturated solution.
In this case AH and AV are the heat content and volume changes, respec-
tively, for the formation of the equilibrium solution from the appropriate
amounts of the two constituents in the solid state.

28d. Properties of the Surface Phase.—In the thermodynamic treatment
of systems in equilibrium it has been postulated, up to the present, that the
only force acting upon the system is that due to the external pressure. The
work done is then only work of expansion, represented by PdV. It is
possible, however, that other forces may have to be taken into consideration.
For example, thermodynamic systems are invariably subject to gravita-
tional and surface forces, but in most instances their influence is so small as
to be negligible. Electrical and magnetic forces may also be operative in
special circumstances. Of particular physicochemical interest are surface
forces, the effect of which becomes apparent when the quantity of matter
contained in the surface is relatively large in comparison with that of the
system as a whole.
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Consider a heterogeneous system, of one or more components, consisting
of two phases; there will then be a surface of separation between the phases.
The transition from one phase to the other, across the bounding surface, is
probably a gradual one, so that the surface of separation is not to be regarded
as sharp, but as a region of more or less definite thickness. For the present
purpose, the exact thickness of the region is immaterial, provided it contains
all the parts of the system which are within the influence of the surface
forces. Thus the two bulk phases, e.g., two liquids or a liquid and vapor,
may be thought of as being separated by a surface phase. It may be
remarked that the so-called surface phase is not a true phase in the usual
physical sense, but the description is convenient.

In order to derive the thermodynamic properties of the surface phase,
consider a hypothetical state involving an exact geometrical surface placed
between the two bulk phases. A suitable position for this imaginary surface
will be proposed later. The surface excess, which may be positive or nega-
tive, of any constituent of the system is then defined as the excess of that con-
stituent in the actual surface phase over the amount there would have been if both
bulk phases remained homogeneous right up to the geometrical surface. Thus
if m, is the total number of moles of the constituent 7 in the system, c; and cf
are the numbers of moles per unit volume, i.e., the concentrations, in the
interior of the two bulk phases, and V' and V'’ are the respective volumes
of these phases right up to the imaginary geometrical surface, then the
number of moles n; of surface excess of the constituent ¢ is given by

ni = iV’ + V" + ni. (28.13)

The actual values ni, n3, ..., for the surface excesses of the various com-
ponents of the system depend on the location postulated for the hypothetical
surface. For the general treatment which follows, its exact position need
not be specified, but subsequently this will be defined in a particularly
convenient manner.
The surface free energy F* may be expressed by a relationship similar to
equation (28.13), viz.,
F=F +F" + F, (28.14)

where F is the total free energy of the system, consisting of the two bulk
phases and the surface phase; F’ and F" are the free energies of the bulk
phases calculated on the assumption that they both remain homogeneous
right up to the hypothetical, geometrical surface. The free energy F* may
thus be regarded as the contribution to the system made by the “surface
excess’’ amounts of the various constituents or, in other words, of the surface
phase. Other thermodynamic properties of the surface phase are defined in
a manner exactly analogous to equation (28.14), but the surface chemical
potential (partial molar free energy) u*, and the surface entropy S* only will
be employed here.

28e. Equilibrium of Surface Phase.—Consider a small change in the
system described above. The free energy change dF is then equal to
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dF' + dF" + dF*. The first two terms, which refer to the homogeneous
bulk phases, are given by equation (26.13) as

dF' = — S'dT + V'dP' + pidn} + uhdny + - - - (28.15)
and
dF" = — 8"dT + V"dP" + uldn] + uhdns + - - -. (28.16)

In evaluating dF* for the surface phase, it is necessary to tuke into account
the free energy change accompanying a change in the surface area. The
work required to increase the area of the surface by an infinitesimal amount
ds, at constant temperature, pressure and composition, is equal to vds,
where v is the quantity usually referred to as the surface tension. The
latter is a measure of the reversible work which must be done for unit in-
crease in the surface area under the given conditions. Since the surface
work does not involve work of expansion against the external pressure, it
may be identified with the net work and hence with the free energy change
(§ 25b). The expression for dF* for a small change in the system should
thus include the term yds. On the other hand, since the surface contribu-
tion to the volume may be ignored, the quantity corresponding to VdP may
be omitted. It follows, therefore, that

dF* = — ST + vds + pidni + pidns + ---, (28.17)

where ui, u3, ..., are the surface chemical potentials of the various con-
stituents of the system. It is consequently seen from equations (28.15),
(28.16) and (28.17), that dF, obtained by summing dF’, dF’’ and dF®, is

dF =— SdT + V'dP’' + V"dP" + ~ds
+ Tuidni + Spidn] + Tuidni, (28.18)

where S is the total entropy of the system, i.e., 8" + 8" 4 S°.

For a system in which the only force acting is that due to the external
pressure, the condition of equilibrium is given by equation (25.39) as
dFr,p = 0. When surface forces are significant, however, it is not difficult to
show that this result must be modified by stipulating constant surface area,
in addition to constant temperature and pressure, so that for equilibrium

dFz.p. = 0. (28.19)
Upon applying this conclusion to equation (28.18), it is seen that
Suidnt + Yuidni + S pldni =0 (28.20)

at equilibrium. If there is no restriction concerning the passage of matter
between the two bulk phases and the surface phase, the variations dnt, dnf
and dng are independent, provided the sum for each component is equal to
zero, since no matter passes in or out of the system as a whole. It follows,
therefore, from equation (28.20) that for each constituent

Bt o= pi = pi. (28.21)
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This result is an extcnsion of equation (28.3); the surface chemical potential
of any constituent of a system is thus equal to its chemical potential in the bulk
phases at equilibrium.

28f. The Gibbs Adsorption Equation.—The surface free energy F* is the
sum of the contributions of the various constituents, i.e., njui + njuz + - - -,
[cf. equation (26.6)7, and of a quantity depending upon the area of the
surface. The latter is equal to vs, where s is the total surface area; hence,

F* = vs + niuil + ndpz + -+ -, (28.22)

where nf, n3, ..., are as defined by equation (28.13). Since F* is a definite
property of the surface, depending only upon the thermodynamic state of
the system, dF* is a complete differential, and hence differentiation of equa-
tion (28.22) gives

dF* = vyds + sdy + nidui + nidpz + - - - + pidni + pidni + - - -
= vyds + sdy + Lnidui + Xuidn;. (28.23)

Upon comparison with equation (28.17), it is seen that
SdT + sdy + Ynidui = 0,
and at constant temperature this becomes [cf. equation (26.15)]
sdy + Tnidui = 0, (28.24)

thus providing a relationship between the change in surface tension and the
corresponding changes in the surface chemical potentials. Dividing through
by s, the surface area, the result is

ni s n3 s
d‘Y+';‘dM1 +-;d#2+ cee =0,
or, replacing ni/s by I'y, n3/s by TI's, and so on, !
dy + I'dpi + Tedpz + -+ =0, (28.25)
where Ty, T's, ..., are the excess surface ‘‘concentrations’” of the various

constituents of the system; these ‘‘concentrations’” are really the excess
amounts per unit area of surface. For a system of two components, e.g.,
a solution of a single solute, equation (28.25) becomes

dy + T1dui + Teodui = 0. (28.26)

at constant temperature.

If the system is in equilibrium, at constant temperature, pressure and
surface area, the surface chemical potential of any constituent must always
be equal to its chemical potential in the bulk phase, i.e., the solution, by
equation (28.21). It is thus permissible to write equation (28.26) in the
form

dy + I'iduy + Tedus = 0, (28.27)



28g SYSTEMS OF MORE THAN ONE COMPONENT 245

where u; and u. refer to the chemical potentials in the solution. It will be
recalled (§ 28d) that ni and nZ, and hence I'; and I'y, depend upon the arbi-
trary position chosen for the geometrical surface. In connection with the
study of dilute solutions it is convenient to choose the surface so as to
make T'; zero; that is to say, the surface excess of constituent 1, the solvent,
is made equal to zero. In these circumstances equation (28.27) becomes

d’y + 1‘2dy.2 = 0
Iy = — (31) - (28.28)
T

Qs

It will be seen later [equation (31.2)] that the chemical potential u. of
any constituent of a solution, e.g., the solute, may be represented by
u#° + RT In a,, where u° is a constant for the substance at constant tempera-
ture, and a is called the ‘“‘activity’’ of the solute, the activity being an
idealized concentration for free energy changes. Upon making the substitu-
tion for us, equation (28.28) becomes

o= 1 (97
? RT\dlnasz/Jr

—_ G (07 |

For dilute solutions, a; may be replaced by c, the concentration of the solute,
so that
c

~— S (%) .
Iy ~ RT(ac )T (28.30)

The equations (28.28), (28.29) and (28.30) are forms of the Gibbs
adsorption equation, first derived by J. Willard Gibbs (1878); it relates the
surface excess of the solute to the variation of the surface tension of the
solution with the concentration (or activity). If an increase in the concen-
tration of the solute causes the surface tension of the solution to decrease,
i.e., (3v/adc)r, is negative, I's will be positive, by equation (28.30), so that
there is an actual excess of solute in the surface; in other words, adsorption
of the solute occurs under these conditions. If (dv/dc)r is positive, T'; is
negative and there is a deficiency of the solute in the surface; this phenom-
enon is referred to as negative adsorption.

28g. Vapor Pressure and Solubility of Small Particles.—Another effect of
surface forces relates to the change in certain physical properties, e.g., vapor
pressure and solubility, resulting from the difference in size of the particles of a
solid or drops of a liquid. Consider, on the one hand, a spherical drop or particle
of a pure substance, of radius r, in equilibrium with vapor at a pressure p. On
the other hand, consider a flat surface of the same substance, the vapor pressure
po differing from that of the small particles. The free energy change dF for the
transfer of dn moles of substance from the flat surface to the spheres is equivalent
to the transfer of this quantity from pressure p, to pressure p, at constant tem-
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perature. If the vapor behaves as an ideal gas, then by equation (25.25)
dF = dnRT 1n£- (28.31)
(]

The increase of free energy for the process under consideration is to be attributed
to the fact that the addition of material to the small drops causes an appreciable
increase in the surface area, whereas for the flat surface the accompanying decrease
is negligible. The increase of free energy for a change ds in the surface area is
equal to yds, where v is the surface tension; hence it is possible to write equation
(28.31) as

dnRT 1n£ = vds. (28.32)
L]

If V is the molar volume of the substance under consideration, and the spher-
ical drop of radius r contains » moles, then

nV = §nrd,
and upon differentiation it is found that
dn =47 4. (28.33)
|4
The surface area s of the drop is equal to 4772, and hence
ds = 8xrdr. (28.34)
Consequently, by combining equations (28.32), (28.33) and (28.34), it is seen that
RTm P -2V, (28.35)
Po r

The vapor pressure of the spherical drops or particles is thus greater than that of the
Jlat surface, the proportion increasing as the radius of the particles decreases.
The higher vapor pressure of small drops or particles accounts for their tendency
to disappear by ‘‘distillation” on to larger particles. Large drops or particles
thus tend to grow at the expense of smaller ones. If the vapor does not behave
ideally, equation (28.35) is not exact; as will be evident from the next chapter, the
correct form is obtained by using the “fugacity’’ in place of the vapor pressure.

Problem: The vapor pressure of a large (flat) body of water is 23.76 mm. at
25° C. Calculate the vapor pressure of drops of 10~% c¢m. radius. The surface
tension of water may be taken as 72.0 dynes cm.™ and its molar volume is 18.0
cc. mole™t,

If v is in dynes cm.™, V in cc. mole™ and r in cm., the right-hand side of
equation (28.35) would be in ergs mole™; hence, it is convenient to express
R as 8.314 X 107 ergs deg.”* mole~t. Consequently, at 298.2° K,

P _2X720X180
3.76 10-¢
p = 24,01 mm.,

For particles in equilibrium with a saturated solution, the free energy of
transfer from a flat surface, also in contact with its saturated solution, can be

8.314 X 10" X 2.303 X 298.2 log 3
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expressed in terms of the concentrations of the solutions, at least for dilute soly-
tions (cf. Chapter XV). In this case, equation (28.35) takes the form

RTIm S =2Y, (28.36)

Co r

where ¢ and ¢, represent the concentrations of saturated solutions in contact with
small particles and a flat surface, e.g., large crystals, respectively. In this case
-+ is the tension at the interface between the solid (or liquid) solute and the solu-
tion. It is evident that fine particles can have an appreciably larger solubility
than large crystals of the same substance. Strictly speaking, the activity of the
solute should be used instead of the concentration in equation (28.36), but this
refinement may be ignored for the present.

EXERCISES
1. The vapor pressures of carbon tetrachloride at several temperatures are
as follows:
t° 25° 35° 45° 55° C
P 113.8 174.4 258.9 373.6 mm.

Plot log p against 1/T and from the slope evaluate the mean heat of vaporization
of carbon tetrachloride in the given range.

2. From the results of the preceding exercise determine (approximately) the
constant C in equation (27.16), and see how close the result is to that expected
from Trouton’s law. Using the values of AH, and C just obtained estimate the
normal boiling point of carbon tetrachloride. (The actual value is 76.8° C.)

3. At its normal boiling point (77.15° C) the orthobaric densities of ethyl
acetate are 0.828 (liquid) and 0.00323 (vapor) g. cc.”l. The rate of change of
vapor pressure with temperature in the vicinity of the boiling point is 23.0 mm.
deg.”?. Calculate the heat of vaporization by (i) the Clapeyron equation, (ii) the
Clapeyron-Clausius equation.

4. Below its boiling point the variation of the vapor pressure of benzene with
temperature is given by

log p(mm.) = 7.2621 — 1402.46  51387.5

T T*

[Mathews, J. Am. Chem. Soc., 48, 562 (1926)] from which the boiling point is
found to be 80.20° C. The specific volume of benzene vapor at its boiling point at
1 atm. is 356 cc. g.7! and that of the liquid is 1.2 cc. g.7t. Calculate the heat of
vaporization of benzene at this temperature and estimate the boiling point at
77.0 cm. pressure.

5. Use the equation for log p as a function of temperature in the preceding
exercise to derive an expression for the variation of the heat of vaporization of
benzene with temperature. (The vapor may be supposed to behave ideally.)

6. Show that if 74 and T are the temperatures at which two liquids have the
same vapor pressure, then by the Ramsay-Young rule, log 7s = log Ts + const.;
the plot of lag T'a against log T's should thus be linear.

The vapor pressures of mesitylene at various temperatures are as follows:

t° 60° 80° 100° 120° C
P 87.35 150.8 247.25 381.1 mm.




248 PHASE EQUILIBRIA

By means of these data and those given for carbon tetrachloride in Exercise 1,
determine how closely the Ramsay-Young rule is obeyed. (Plot the vapor pres-
sure as a function of temperature in each case, and determine the temperatures at
which the two liquids have the vapor pressures 120, 240 and 360 mm., and then
plot log T's against log T's.)

7. At 110° C, dp/dT for water is 36.14 mm. deg.”!; the orthobaric specific
volumes are 1209 (vapor) and 1.05 (liquid) ce. g.”1. Calculate the heat of vapor-
ization of water in cal. g.7! at 110° C.

8. The mean heat capacity of water vapor in the range from 100° to 120° C
is 0.479 cal. g.”%, and for liquid water it is 1.009 cal. g.7. Taking the heat of
vaporization of water as 539 cal. g.”! at 100° C, determine the approximate value
at 110°C, and compare the result with that obtained in the preceding exercise.

9. The melting point of benzene is found to increase from 5.50° to 5.78° C
when the external pressure is increased by 100 atm. The heat of fusion of benzene
is 30.48 cal. g.71. What is the change of volume per gram accompanying the
fusion of benzene?

10. A liquid (mercury) normally boils at 357° C and its heat of vaporization is
68 cal. g.71. It is required to distil the liquid at 100° C; estimate the approximate
pressure that would be used.

11. The variation of the vapor pressure of solid iodine is given by

log p(atm.) = — 351;'83 — 2013 log T + 13.374

[Giauque, J. Am. Chem. Soc., 53, 507 (1931)]. The heat of sublimation at 25° C
is 58.6 cal. g.71, and the specific volume of the solid is 0.22 cc. g™!. Estimate the
molar volume of the vapor at its equilibrium pressure at 25° C, and compare with
the ideal gas value.

12. The heat of vaporization of chlorobenzene at its boiling point (132.0° C)
is 73.4 cal. g.71. [Estimate the (approximate) pressure in em. of mercury under
which the liquid will boil at 130° C. Recalculate the result, taking V, — V; as
277.5 cc. g.7! at the normal boiling point.

13. The true vapor pressure of ethyl acetate at 35° C is 59.0 mm. and its
density is 0.788 g. cc.”l. Determine the change of vapor pressure resulting from
the introduction of an inert gas at 2 atm. pressure.

14. A hydrocarbon (n-heptane) is known to have a vapor pressure of 92 mm.
at 40° C. Estimate its normal boiling point. (The experimental value is 98.5° C.)

15. The normal boiling point of n-hexane is 69.0° C. Estimate its vapor
pressure at 30° C. (The experimental value is 185 mm.)

16. Diihring’s rule has been found to apply to unsaturated solutions of a given
solute, pure water being the reference liquid. An unsaturated solution of calcium
chloride (30 g. per 100 g. solution) has a vapor pressure of 240 mm. at 75.7° C;
pure water has this vapor pressure at 70.6° C. At what temperature will the
given solution boil at 1 atm. pressure?

17. Ramsay and Young (1886) found that in the vicinity of the boiling point
the quantity 7(dp/dT) is approximately constant for many liquids. Show that
this is a consequence of the Ramsay-Young rule, and that it leads to the relation-
ship AT = ¢TAP, where AT is the increase of boiling point for an increase AP in
the external pressure; for liquids obeying Trouton’s rule, ¢ should be approxi-
mately constant and equal to 1.2 X 10~*if AP is in mm. (Craft’s rule). Estimate
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the boiling point of benzene at 77.0 cm. and compare the result with that obtained
in Exercise 4.

18. The vapor pressures of (a) solid, (b) liquid, hydrogen cyanide are given by
[Perry and Porter, J. Am. Chem. Soc., 48, 299 (1926)]:

(a) log p(mm.) = 9.33902 — 1864.8/T (from 243.7° to 258° K)
(b) log p(mm.) = 7.74460 — 1453.06/T (from 265° to 300.4° K).

Calculate (i) the heat of sublimation, (ii) the heat of vaporization, (iii) the heat
of fusion, (iv) the triple point temperature and pressure, (v) the normal boiling
point. (Note that the latent heats are approximately constant in the given
temperature ranges.)

19. Calculate the difference in slope, in mm. deg.~%, between the vapor pressure
curves of solid and liquid hydrogen cyanide at the triple point, using the data in
the preceding exercise.

20. Show that if the vapor behaves ideally,

where p, and p; are the vapor pressures of solid and supercooled liquid, respec-
tively, at the same temperature T'; AH, is the (mean) molar heat of fusion and
T is the melting point of the solid. Use the data in Exercise 10, Chapter X to
calculate the mean heat of fusion of ice in the range from 0° to — 10° C.

21. Give the complete derivation of equation (28.10).

22. Give in full the derivation of an expression for the variation of a binary
eutectic temperature, i.e., for a two-component system, with pressure.

23. Prove the condition of equilibrium given by equation (28.19) which is
used when surface forces must be taken into consideration.

24. At appreciable concentrations, the variation of the surface tension vy with
concentration ¢ of aqueous solutions of the lower fatty acids is given by
v = A + B log ¢, where A is a constant for each acid and B is approximately the
same for all the acids. Show that the extent of adsorption of a fatty acid at the
surface of its aqueous solution is then roughly independent of the concentration
of the solution and of the nature of the acid. Suggest a physical interpretation
of this result.



CHAPTER XII
FUGACITY AND ACTIVITY

29. Fugacity oF A SINGLE Gas

29a. Definition of Fugacity.—By utilizing the free energy function, G. N.
Lewis (1901) introduced the concept of “fugacity,” which has proved of
great value for representing the actual behavior of real gases, as distinct
from the postulated behavior of ideal gases. It has been applied especially,
as will be seen in § 32¢, in the study of chemical equilibria involving gases
at high pressures. The fugacity is chiefly employed in connection with gas
mixtures, but the introductory treatment will be restricted to pure gases;
at a later stage (§ 30b) it will be extended to systems consisting of more than
one component.?

According to equation (25.24), for an infinitesimal, reversible stage of an
isothermal change involving work of expansion only,

dF = VdP. (29.1)

1f the system consists of 1 mole of an ideal gas, V may be replaced by RT/P,

s0 that

dF = RT% = RTdIn P, (29.2)
where P is the pressure of the gas. For a gas which does not behave ideally,
equation (29.2) will not hold, but a function f, known as the fugacity, may
be (partially) defined in such a manner that the relationship

dF = RTdInf (29.3)

is always satisfied, irrespective of whether the gas is ideal or not. Integra-
tion of (29.3) at constant temperature gives

F=RTInf+C, (29.4)

where F is the molar free energy of the gas and f is its fugacity; the integra-
tion constant C is dependent upon the temperature and the nature of the gas.

Actually, equation (29.4) defines the ratio of the fugacities at two differ-
ent pressures, i.e., the relative fugacity, at a given temperature. This may
be seen by considering the definite integral of equation (29.3), viz.,

Fo— Fy = RTln}f!, (29.5)
1
! Lewis, Proc. Am. Acad. Arts Sct., 37, 49 (1901); Z. phys. Chem., 38, 205 (1801); G. N.
Icwis and M. Randall, “Thermodynamics and the Free Energy of Chemical Substances,”
1923, Chap. XVIL.
250
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where F,; and F; are the molar free energies of the gas in two states, i.e.,
pressures, at the same temperature, and f, and f; are the corresponding
fugacities. The experimentally determinable quantity is the free energy
difference F» — F, (or AF), and this is seen by equation (29.5) to give the
ratio of the fugacities f2/fi. In order to express the fugacity in any state,
it is necessary therefore to assign it a specific value in a particular reference
state.

For an 1deal gas the difference of molar free energy in two states at the
same temperature is given by equation (25.25), which may be written as

Fz - I”]_ = RTID-—,

and comparison of this result with equation (29.5) shows that for an ideal
gas the fugacity is proportional to the pressure. It is convenient to take
the proportionality constant as unity, so that for an ideal gas f/P = 1, and
the fugacity is always equal to the pressure. For a real gas, the fugacity
and pressure are, in general, not proportional to one another, and f/P is not
constant. As the pressure of the gas is decreased, however, the behavior
approaches that for an ideal gas, and so the gas at very low pressure is chosen
as the reference state and it is postulated that the ratio f/P of the fugacity
to the pressure then approaches unity; thus,

or

=1 as P—0.

It will be seen shortly that this postulate, which makes the fugacity of a real
gas equal to its pressure at very low pressure, permits the evaluation of actual
fugacities at various pressures. It may be mentioned that since gas pres-
sures are usually expressed in atm., fugacities are recorded in the same units.

29b. Determination of Fugacity: Graphical Method.—For an ideal gas
the fugacity is equal to the pressure at all pressures, but for a real gas this
is only the case at very low pressures when it behavesideally. To determine
the fugacity of a gas at any pressure where it deviates from ideal behavior,
the following procedure has been used. By combining equations (29.1)
and (29.3), both of which apply to any gas, it follows that at constant
temperature

RTdInf = VdP (29.6)
or

dlns\. _ V.

( aP )r RT’ (28.7)

where V is the actual molar volume of the gas at the temperature 7' and
pressure P. For an ideal gas the volume of 1 mole is RT'/P, and for a real
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gas the quantity «, which is a function of the temperature and pressure,
may be defined by

a = —-F - V. (29.8)
Hence from equation (29.6),

RTdInf = RTd—;-) — adP,
. a
dlnf =din P — 2 dP,

S __ «
dlnP RTdP.

If this result is integrated between a low, virtudlly zero, pressure and a given
pressure P, at constant temperature, the

2 \ result is
N 1 P
0 ml=—L (7 aap
5_2 i P RTJ), “
2 or
x =4 1 " .
& 6l Inf=InP — -—f adP, (29.9)
g RT J,
-8}
—10k since, as postulated above, f/P becomes
. . L equal to unity, and hence In (f/P) be-
200 400 600 800Atm. comes zero, at zero pressure.? To calcu-
Pressure (P) late the fugacity, therefore, it is necessary
Fia. 17. Determination of fugacity t© Plot o, derived from experimentally
of nitrogen gas determined molar volumes of the gas at

various pressures, against the pressure;
the area under the curve between the pressures of zero and P gives the value
of the integral in equation (29.9).

Problem: Utilize the following data to calculate the fugacities of nitrogen gas
at the various pressures at 0° C.

P 50 100 200 400 800 1,000 atm.
PV/RT  0.9846 0.9846 1.0365 1.2557 1.7959 2.0641

It can be readily seen from equation (29.8), which defines «, that

o _(; _BV\L
RT — RT /P
Since the PV/RT values for various P’s are given above, it is possible to derive

? Tunell, J. Phys. Chem., 35, 2885 (1931), has suggested that it would be preferable to
define the fugacity by means of equation (29.9); the conditions f/P — 1 and f—+0as P — 0
then follow automatically.
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the corresponding a/RT values; these may he plotted against P (Fig. 17),* and
hence the integral of a/RT between zero and any pressure P may be evaluated
graphically. By equation (29.9) this is equal to — In (f/P), and hence f/P and f
can be determined; the results are given helow.

P a/RT Integral f/r I
50 atm. 3.08 X 10~ atm.™* 0.0206 0.979 48.95 atm.
100 1.54 0.0320 0.967 96.7
200 — 1.82 0.0288 0.971 194.2
400 — 6.39 — 0.0596 1.061 424.4
800 — 9.95 — 0.3980 1.489 1191
1,000 — 10.64 — 0.6060 1.834 1834

29¢c. Determination of Fugacity from Equation of State.—If f is the
fugacity of a gas at pressure P, and f* is the value at a low pressure P*, then
integration of equation (29.6) or (29.7) gives

ml-1 f * yap. (29.10)
* = RTJ..

The variable of the integrand in equation (29.10) is now changed by inte-
grating by parts; thus,

P \ 4 v
f VdP = PV] - f PAV
P* | 4 v*

\ 4
= PV — P*V* — Pav,
V*
where V* is the molar volume corresponding to the low pressure P*. Since

the gas then behaves almost ideally, it is permissible to replace P*V* by RT,
and upon substituting the result in equation (29.10), it is seen that

ml = L(PV — RT — VPdV)
.f* RT v* )

Utilizing the postulate that f/P approaches unity at low pressure, i.e., f*/P*
is virtually unity, it follows that In (f/f*) may be replaced by In (f/P*),
that is, by In f — In P*; hence,

Inf =InP* + L(PV — RT - f" PdV). (29.11)
RT o

By means of an equation of state, it is possible to express P as a function of
V, at constant temperature, and hence the integral in (29.11) can be
evaluated analytically.

* The shape of the curve at low pressures has been adjusted to the fact that a then
tends to an appfoximately constant value (cf. § 29d).
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v

The procedure may be illustrated by reference to a van der Waals gas, for
which the equation of state is

P RT a

V—b V2

where @ and b may be regarded as constants, independent of the pressure, that
have been derived from experimental P-V data at the given temperature. By

equation (29.12),
PdV = (._R_T__ - _“_> av,

(29.12)

V-b V2
and hence
v v v
f PdV=f ET v - [T &av
v V,,,V—-b V,,l
V-0 a a
-—RTln'V—‘-:z"i‘V—‘i‘,‘,'

Since V* is very large, V* — b may be replaced by V*, which is equal to RT/P*,
and a/V* can be neglected; thus,

v V-5 a
V-—-2b
RT

It can be readily shown from the van der Waals equation (29.12) that

RTb _a
V-b V’
and combination of this result with equations (29.11) and (29.13) gives

RT + b 2
-b V-—-b RTV
Consequently, the fugacity of a van der Waals gas at any pressure can be calcu-
lated from the volume at that pressure, at the specified constant temperature,
provided the van der Waals constants for the given gas are known. The values
of a and b to be used here are those which have been derived from actual P-V
measurements at the required temperature. Because of the incomplete quanti-
tative nature of the van der Waals equation (cf. Chapter II), these will differ
from one temperature to another; in any event they will not be identical with the
tabulated a and b values, for the latter are usually based on the critical data (§ 5d).
It is only when other information is lacking that these may be used to obtain an

approximate indication of the fugacity.

RTIn

+ RT In P* + % (29.13)

PV — RT =

Inf=1Ing (29.14)

The fugacities of oxygen at a number of pressures at 0° C have been
calculated by G. N. Lewis and M. Randall ? using equation (29.14); a was
taken as 1.009 liter? atm. mole~? and b as 2.64 X 102 liter mole~.* The

3 Lewis a.n;.i Randall, ref. 1, p. 196.
* The conventional values of @ and b for oxygen, derived from critical data, are 1.32
and 3.12 X 1072, respectively (sce Table I).
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results are recorded in Table XX; the figures given under the heading P;q.
are the pressures which an ideal gas would exert if it occupied the same
volume as the actual gas at the given temperature.

TABLE XX. FUGACITY OF OXYGEN AT 0°cC

P J Py J/P P[P,

50 atm. 48.0 52.0 0.960 0.961

100 92.6 108 0.925 0.929
200 . 174 220 0.87 0.91
400 338 381 0.85 1.05
600 540 465 0.90 1.29

Even though a and b are derived from actual P-V-T data, the fugacitics
obtained from equation (29.14) may not be too reliable over a range of
pressures because of the approximate nature of the van der Waals equation.
By using a more exact equation of state, such as the Beattie-Bridgeman
equation, better values for the fugacities can be obtained, but since this
equation involves five empirical constants, in addition to R, the treatment
is somewhat more complicated than that given above.4

29d. Approximate Calculation of Fugacity.—It is an experimental fact,
with which the van der Waals equation is in agreement (cf. Chapter 11,
Exercise 7), that at not too high pressures the value of PV for any gas is a
linear function of its pressure at constant temperature; thus,

PV = RT — AP,
where A may be taken as constant at a given temperature. From this
equation it is seen that o, defined by equation (29.8), is given by

a=-—7)—-—V=A,

so that a is (approximately) constant over a range of pressures, provided
they are not too high. Utilizing this result, equation (29.9) becomes

Inf=In~P - 7—2%
or
n{; =— %’%- (29.15)

At moderate pressures f/P is not very different from unity (cf. Table XX),
and so it is possible to make use of the fact that In z is approximately equal
to  — 1 when z approaches unity; hence, equation (29.15) becomes

b aP

P RT

¢ Maron and Turnbull,