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PREFACE

The object of the present book is to provide an introduction to the

principles and applications of thermodynamics for students of chemistry
and chemical engineering. All too often it appears that such students

tend to regard the subject as an academic and burdensome discipline, only
to discover at a later date that it is a highly important tool of great prac-
tical value. The writer's purpose has been to explain the general structure

of thermodynamics, and to give some indication of how it may be used to

yield results having a direct bearing on the work of the chemist.

More than one hundred illustrative numerical problems are worked out

in the text, and a total of about three hundred and sixty exercises of a

variety of types have been included for solution by the reader. In the

hope of imparting the whole subject with an aspect of reality, much of

the material for this purpose has been taken from the chemical literature,

to which references are given. In order to economize 'space, and at the

same time to test the reader's grasp of thermodynamics, the derivations of

a number of interesting results have been set as exercises. To this extent,
at least, the exercises are to be considered as part of the text, although
their solution should in any event be regarded as essential to any adequate
course in chemical thermodynamics.

In treating the various topics in this book the particular method em-

ployed has been determined in each case by considerations of simplicity,
usefulness and logical development. In some instances the classical, his-

torical approach has been preferred, but in others the discussion follows

more modern lines. Whenever feasible the generalized procedures, involv-

ing reduced temperatures and pressures, which have been evolved in recent

years chiefly by chemical engineers, are introduced. As regards statistical

methods, the author feels that the time has come for them to take their

place as an essential part of chemical thermodynamics. Consequently,
the applications of partition functions to the determination of heat capaci-

ties, entropies, free energies, equilibrium constants, etc., have been intro-

duced into the text in the appropriate places where it is hoped their value
will be appreciated.

The symbols and nomenclature are essentially those which have been

widely adopted in the American chemical literature; however, for reasons

given in the text, and in accordance with a modern trend, the Gibbs symbol
M and the shorter term "chemical potential" are employed for the partial
molar free energy. Because atmospheric pressure is postulated for the
conventional standard state of a liquid, some confusion has resulted from
the use of the same symbol for the standard state as for the liquid at an

arbitrary pressure. Hence, the former state is indicated in the text in
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the usual manner, by a zero (or circle), but the latter is distinguished by a
small square as superscript.

The writer would like to take this opportunity to acknowledge his in-

debtedness to certain books, namely, F. H. Macdougall, "Thermodynamics
and Chemistry"; L. E. Steiner, "Introduction to Chemical Thermody-
namics"; B. F. Dodge, "Chemical Engineering Thermodynamics"; and, in

particular, G. N. Lewis and M. Randall, "Thermodynamics and the Free

Energy of Chemical Substances." He is also sincerely grateful to Dr.
Allen E. Steam, University of Missouri, and Dr. Roy F. Newton, Purdue
I diversity, for reading the manuscript of this book and for making numerous
suggestions which have helped materially to clarify and improve the treat-

ment. Finally, the author wishes to express his thanks to his wife for

reading the proofs, and for her continued aid and encouragement.
SAMUEL GLASSTONE

BERKELEY, CALJF.
November 1946
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CHAPTER I

HEAT, WORK AND ENERGY

1. INTRODUCTION

la. Scope and Limitations of Thermodynamics. 1 The subject matter of

thermodynamics is based essentially on two fundamental postulates (or laws)
which summarize actual experience with regard to the interconversion of

different forms of energy. These are called the first and second laws of

thermodynamics. There is also another postulate dealing with certain as-

pects of the second of these laws; it is often referred to as the third law of

thermodynamics, but its use is more restricted than is that of the other laws.

By the application of relatively simple and well established mathematical

procedures to the two basic laws, it has been possible to derive results which
have proved of fundamental importance to chemistry, physics and engineer-

ing. For example, equations have been developed giving the variation with

temperature and pressure of certain physical properties of substances. Of
more direct interest to the chemist, however, is the derivation of the exact

conditions for spontaneous chemical reaction and for chemical equilibrium.

Although the great practical value of thermodynamics is undeniable, as

will be shown in the subsequent pages, there are certain limitations that

must be borne in mind. The methods of thermodynamics are independent
of atomic and molecular structure, and also of reaction mechanism. Conse-

quently, the results throw no direct light on problems related to these sub-

jects. The conclusions of thermodynamics may be correlated with those

of the kinetic theory of matter, for example, but the distinction between the

two approaches to the study of physical problems must be clearly under-

stood. Thus, the observable thermodynamic property of a body known as

its "temperature"
'

may be regarded as being determined by the average
kinetic energy of the molecules. However, the concept of temperature as

used in thermodynamics is independent of any theories concerning the exist-

ence of molecules. As will be seen shortly, temperature, like other thermo-

dynamic variables of state, is based oil experimental, macroscopic observa-

tion of the body as a whole.

One aspect of thermodynamics is the prediction of relationships between
various quantities that are directly observable or which can be derived from
observable properties, but thermodynamics alone cannot give any indication

of the actual values of these quantities. In order to obtain the information

it is possible to invoke certain procedures, such as the kinetic theory of

matter, statistical mechanics and the Debye-Hlickel theory, which really

1 P. W. Bridgman, "The Nature of Thermodynamics/' 1911.
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lie outside the scope of thermodynamics. Nevertheless, because such

methods and theories provide a means for the calculation of thermodynamic
properties, they may be regarded as complementary to thermodynamics.
They are, however, not essential, for the observable quantities under con-

sideration can usually be obtained by experimental methods without recourse

to theory.
As far as chemical reactions are concerned, thermodynamics can indicate

whether a particular process is possible or not, under a given set of circum-

stances, e.g., temperature and concentrations of reactants and products

However, no information can be obtained from pure thermodynamics as to

the rate at which the reaction will take place. For example, it can be shown

by means of thermodynamics that hydrogen and oxygen gases should com-
bine to form liquid water at ordinary temperatures and pressures, but it is

not possible to state whether the reaction will be fast or slow. Actually, in

the absence of a catalyst, the combination is so slow as to be undetectable

in many years. In effect, thermodynamics deals quantitatively with equi-
librium conditions, that is, conditions which do not change with time, and
it does not take into account the rate of approach to the equilibrium state.2

2. TEMPERATURE

2a. The Concept of Temperature. Since the laws of thermodynamics
deal with the interconversion of energy, it is necessary to consider the sig-

nificance of energy, and of the related quantities, heat and work. Before

doing so, however, it is desirable to examine the concept of temperature.
The ability to distinguish broadly between hot and cold is a familiar faculty
of the human senses. A substance which is hot is said to have a higher tem-

perature than one which is cold. If a hot body, such as a piece of metal, is

placed in contact with a similar but colder body, then after a short time the

senses show that one is neither hotter nor colder than the other. That is to

say, the two bodies have attained a state of thermal (or temperature) equi-

librium, and they are both said to be at the same temperature. The body
which was originally hot will now feel colder to the touch, whereas the colder

one will now feel hotter. The temperature of the hot body has consequently
decreased while that of the cold body has been raised until at equilibrium the

two temperatures are the same. It would appear, therefore, that something
actually energy is transferred from the hotter to the colder body until

the two bodies have equal temperatures; that which is apparently transferred

in this manner is called "heat." Thus, heat may be defined as that which

passesfrom one body to another solely as the result of a difference in temperature.

The quantity of heat transferred in this manner depends, in the first place,

on the change of temperature of each body. Another factor, namely the

heat capacity, will be considered later.

Although the human senses can detect temperature differences to some

extent, they are obviously not adequate for precise measurement; neither

1 8. Glaustone, K. J. Laidler and H. Eyring, "The Theory of Rate Processes," 1941.
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can they be used to associate a definite number with each temperature.
For these purposes it is necessary to have an instrument or device known as

a "thermometer. " The principle of the thermometer is based on the fact

that certain properties, such as volume or electrical resistance, vary with

temperature. In the ordinary mercury thermometer, for example, use is

made of the change in volume of mercury with temperature; in this case,

however, the volume changes are observed by the alteration in length of the

column of mercury in a narrow glass tube. Suppose such a thermometer is

placed in contact with a body until thermal equilibrium is attained; the

position of the mercury in the glass tube is then said to represent an arbi-

trary temperature of t degrees (t). It has been found experimentally, in

agreement with expectation, that if two bodies are each in thermal equilibrium
with a third, they are in thermal equilibrium with one another. This fact

renders possible the use of the thermometer as an indicator of temperature.
It means that whenever the mercury reaches a certain point the temperature
of any body is always t, provided thermal equilibrium is attained between
the body and the thermometer.

2b. Thermometric Scales: The Centigrade Scale. In order to use a
thermometer for the quantitative expression of temperature and of tempera-
ture differences, two things are necessary. First, a zero point of the tem-

perature scale must be chosen, absolutely or arbitrarily, and second, the

size of the unit, i.e., the degree, must be defined. On the centigrade tem-

perature scale the zero is taken as the "ice point/' that is, the freezing point
of water in contact with air at standard atmospheric pressure (76.00 cm. of

mercury).* The size of the degree is then defined by postulating that the

"steam point," that is, the boiling point of water at standard atmospheric

pressure, shall be taken as exactly 100.
If X represents any physical property which varies with temperature,

XQ and XIQO are the values at and 100, respectively, on the centigrade

scale; the degree is then represented by the change rJir(^ioo -X"o) in the

given property. If X is the value of the property at any temperature f the

magnitude of that temperature is then t, as given by

In the common mercury thermometer X is the length of a mercury column in

a glass tube, and the distance between the positions representing XQ and
Xioo is divided into one hundred equal parts, in order to facilitate evaluation

of the temperature in accordance with equation (2.1).

* It should be noted that C is taken as the freezing point of water in equilibrium,

and hence saturated, with air at 1 atm. pressure, and not that of pure water; the freezing

point of the latter is + 0.0023 C.

t By the expression "the value of the property at any temperature" is implied the value

of the property of the thermometfic substance when it is in thermal equilibrium with a body
at the given temperature.
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Since the property X of different thermometric substances, or the differ-

ent fchermoirietric properties of a given substance, do not vary in an identical

manner with temperature, various thermometers, all of which have been
standardized at and 100 C, may indicate different temperatures when in

thermal equilibrium with the same body at an intermediate point. A
mercury thermometer and a toluene thermometer, for example, which agree
at and 100 C, would differ by several degrees in the vicinity of 50 C.

Even mercury thermometers in tubes made of various types of glass indicate

slightly different temperatures.
3

2c. The Absolute Ideal Gas Scale. Gases have frequently been used as

thermometric substances; thus X may represent the volume of a given mass
of gas at constant pressure, or the pressure at constant volume. However,
here again, the variation with temperature of the volume (or pressure) of a

gas depends somewhat on the nature of the gas. For gases, such as hydro-

gen and helium, which do not depart greatly from ideal behavior ( 5c)
under ordinary conditions, the temperatures recorded do not differ very

appreciably, and the differences become less marked as the pressure of the

gases is decreased. It appears, from experimental observation, that at

sufficiently low pressures or, better, if the results are extrapolated to zero

pressure, the temperature of a given body as recorded by a gas thermometer
would always be the same irrespective of the nature of the gas.

4

It follows, therefore, that when gases approximate to ideal behavior, i.e.,

at very low pressures, the differences in their thermometric properties dis-

appear. This fact presents the possibility of devising a temperature scale

which shall be independent of the thermometric substance, the latter being
a hypothetical "ideal gas." Such a scale is the so-called "absolute ideal gas
scale," in which the (absolute) temperature is taken as directly proportional to

the volume of a definite mass of an ideal gas at constant pressure, or to the pres-
sure at constant volume. For convenience, the magnitude of the degree on
the absolute scale is usually taken to be the same as on the centigrade scale

( 2b), so that the absolute temperature T on the ideal gas scale is given by

r-
,

v
, (2.2)

Fo)

where V is the volume of the ideal gas at this temperature, and Fioo and
Fo are the corresponding volumes at the steam point and ice point, respec-

tively, all the volumes being determined at the same pressure.
The value of the ice point To on the absolute scale may be determined by

setting F equal to Fo in equation (2.2), so that

O
-

(2-3)

By making measurements on various gases, at constant pressures, and

8 International Critical Tables, VoL I, p. 55.
4a , Wensel, /. Res. Nat. Bur. Stand., 22, 375 (1039).
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extrapolating the results to zero pressure, it has been found that the ice

point 5P
,
as given by equation (2.3), is 273.16. Temperatures on the abso-

lute ideal gas scale are thus obtained by adding 273.16 to the temperature
of the ideal gas thermometer on the ordinary centigrade scale, i.e., with the
ice point taken as C [equation (2,1)]. It will be noted from equation
(2.2) that on the absolute scale the volume of an ideal gas should become
zero at a temperature of zero degrees. This hypothetical point, which
should be 273.16 C, is known as the absolute zero of temperature; it

presumably represents the lowest conceivable temperature. There are rea-

sons for believing that the absolute zero is unattainable ( 18j), although
temperatures within less than 0.005 of it have been realized.

It will be seen in Chapter VII ( 18k) that it is possible to develop an
absolute temperature scale, also independent of the nature of the thermo-
metric substance, based on the second law of thermodynamics. This is

sometimes called the Kelvin scale, in honor of its originator, Lord Kelvin

(William Thomson). Actually, the thermodynamic scale can be shown to

be identical with the absolute ideal gas scale, as defined above; hence, tem-

peratures on the latter, as well as the former, scale are represented by the

symbol K. The ice point is consequently 273.16 K. It may be noted,

incidentally, that the thermodynamic derivation of the absolute temperature
scale provides a more definite interpretation of the absolute zero, i.e., the
lowest limit of temperature, than is possible by means of the ideal gas
thermometer.*

2d. Practical Temperature Scale. For practical purposes gas thermom-
eters are not satisfactory; consequently a number of fixed points have been
chosen by international agreement which can be used for the determination

of experimental temperatures on the centigrade scale. The addition of

273.16 then gives the corresponding absolute temperatures. The following

temperatures are taken as primary standards: boiling point of oxygen,- 182.97 C; ice point, 0.00 C; steam point, 100.00 C; boiling point of

sulfur, 444.60 C; melting point of silver, 960.5 C; and melting point of gold,
1063 C, all at standard atmospheric pressure. A number of subsidiary fixed

points, some of which extend the scale to 3400 C, and others of which
determine various intermediate temperatures, have also been proposed.

6

3. WORK, ENERGY AND HEAT

3a. Work and Energy. Mechanical work is done whenever the point of

application of a force is displaced in tJie direction of the force. If F is the

magnitude of the force and I is the displacement of its point of application,
in the direction in which the force acts, then the mechanical work done is

equal to the product F X I, expressed in appropriate units. In addition to

*
Engineers frequently express temperatures on the Rankine (absolute) scale, using the

Fahrenheit degree; the temperature is then given by J(F) + 459.69 R.
6
Burgess, J. Res. Nat. Bur. Stand., 1, 635 (1928); Roeser and Wensel, ibid.. 14, 247

(1935).
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mechanical work, other forms of work are possible, e.g., electrical work, but
in each case the work done is equal to the product of a generalized force,

sometimes referred to as the intensity factor, and a generalized displacemert,
the capacity factor. In electrical work, for example, the generalized force

is the so-called electromotive force, i.e., the E.M.F., and the generalized dis-

placement is the quantity of electricity. The work done is thus equal to

the product of the applied E.M.F. and the quantity of electricity which
is passed.

Energy is defined as any property which can be produced from or converted

into work, including, of course, work itself. There are thus various mani-
festations of energy, as represented by the different forms of work, but each
can be expressed as the product of an intensity factor and a capacity factor.

Further, because of the connection between work and energy, all forms of

the latter can be expressed in work units. The derivation of the concept of

energy through those of force and work, as given above, follows historical

tradition. However, because heat, which is a form of energy, cannot be

completely converted into work, some writers prefer to describe energy as

that which can be transformed into heat, as defined in 2a, including heat itself.

Although this approach to the subject of energy has some advantages, the

one used here is somewhat simpler when the problems of dimensions and
units of energy come up for consideration.

3b. Dimensions and Units of Energy. By Newton's laws of motion, me-
chanical force is equal to the product of mass and acceleration; hence force has
the dimensions of mass X length/(time)

2
, i.e., mlt~2

. Since work is equal to force

multiplied by length, as stated above, the dimensiona of work are ml2t~2
,
and all

forms of energy must consequently have these dimensions. The units of mass,

length and time usually employed in scientific work are the gram (g.), centimeter

(cm.) and second (sec.), respectively, constituting what is known as the c.g.s.

system. The meter, or 100.000 cm., was originally defined as 10~7 times the length
of the earth's quadrant, from north pole to equator, passing through Paris. The
standard meter is, however, the distance between two marks on a bar at C, kept
at Sevres, near Paris. The standard kilogram, i.e., 1000.00 grams, is taken as the

mass of a lump of platinum, also at Sevres.* It was intended to be equal to the

weight of exactly 1000 cc. of pure water at its temperature of maximum density,

i.e., 4 C, but there is actually a small difference. The liter is the volume occupied

by 1 kilogram of water at 4 C and 1 atm. pressure; it was meant to be 1000 cc.,

but is actually 1000.028 cc. Because of this discrepancy it is becoming the prac-
tice to express volumes of liquids and gases in terms of the milliliter (ml.), which
is exactly one-thousandth part of a liter. For most purposes, however, the differ-

ence between the ml. and the cc. is not significant. The second is defined as

1/86,400 part of a mean solar day, the latter being the average interval between
successive transits of the sun across the meridian at any given place.

The unit of energy in the c.g.s. system is the erg; it is the work done when a

force of 1 dyne acts through a distance of 1 cm., the dyne being the force which

acting for 1 sec. on a mass of 1 g. produces in it a velocity of motion of 1 cm. per

* Exact duplicates of the standard meter and kilogram are kept at the National Eureau
of Standards, Washington, D. C.
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sec. Since the erg is so small, a subsidiary unit, the joule, is defined as 107
ergs.

Unfortunately, confusion has arisen because of the necessity for distinguishing
between the absolute joule as thus defined, and the international joule, based on
electrical measurements. The latter is the work done when 1 (international)

coulomb, i.e., 1 ampere-second, of electricity flows under the influence of a poten-

tial, i.e., E.M.F., of 1 (international) volt. The (international) coulomb is the

quantity of electricity which will cause the deposition of 1.11800 milligrams of

silver in the electrolysis of a solution of silver nitrate under certain specified condi-

tions. The (international) volt is defined in terms of the E.M.P. of the Weston
standard cell, which is taken to be exactly 1.0183 (international) volts at 20 C.

On this basis, the international joule is apparently equal to 1.0002 absolute joules.
6

Problem: A quantity of 26.45 coulombs of electricity flows through a conductor
under the influence of a fall of potential of 2.432 volts. Calculate the energy
expenditure in (a) international joules, (b) ergs.

The electrical work done, i.e., the energy expended, is equal to the product of

the quantity of electricity and the applied potential difference. Since the former
is given in int. coulombs and the latter in int. volts, the result will be in int. joules;

thus,

Energy expenditure - 26.45 X 2.432 = 64.33 int. joules.

The int. joule is equal to 1.0002 abs. joules, and hence to 1.0002 X 107
ergs, so that

Energy expenditure = 64.33 X 1.0002 X 107 = 64.34 X 107
ergs,

to four significant figures.

3c. Heat and Energy. In view of the definitions of energy given above,
heat must be regarded as a form of energy, since most forms of work can be

readily converted into heat, and heat can be, at least partially, converted

into work. Heat is produced from mechanical work, for instance, by means
of friction, and electrical work is transformed into heat by the passage of

electricity through a resistance. On the other hand, by means of a suitable

machine, viz., a heat engine, a certain amount of heat can be converted into

work. From the standpoint of thermodynamics, heat is energy in transit; it

is the form in which energy is transferred from one body to another, either

by direct contact or by means of radiation, as the result of a difference of

temperature. In evaluating the quantity of heat energy that has passed to

a given body, the intensity factor is the change of temperature, and the

capacity factor is the heat capacity ( 3d); the product of these two quan-

tities, which can be stated in ergs if required ( 3e), is a measure of the heat

energy transferred.

3d. Heat Capacity. As a general rule, heat is expressed in terms of a

unit known as the (15) calorie, which is defined as the quantity of heat

required to raise the temperature of 1 gram of water by 1 in the vicinity

of 15 C. The actual temperature is specified because the quantity of heat

that must be supplied to raise the temperature of a given amount of warter,

or of any other, substance for that matter, by 1 depends to some extent on
the temperature itself.

6
Birge, Rev. Mod. Phys., 13, 233 U941>: Curtis, /. Res. Nat. Bur. Stand., 33, 235 (1944).
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The heat capacity of a body is the property which multiplied by the

temperature change gives the quantity of energy which has entered or left

the body as heat when it is brought jnto contact with another body having
a different temperature. Thus, if the temperature of the body is raised

from TI to 7*2 by the passage to it of an amount of heat Q, the heat capacity
C of the body is given by

Q = C(2',
- TO. (3.1)

According to this equation,

C = --> (3-2)

so that the heat capacity is sometimes defined as the quantity of heat re-

quired to raise the temperature of a body by 1. From the definition of the

calorie given above, it is evident that the heat capacity of 1 gram of water,
in the vicinity of 15 C, is equal to 1 (15) caloric.

The heat capacity is a property which is proportional to the quantity of

matter present, and this must consequently be stated. Two particular

quantities are commonly employed. The heat capacity is frequently re-

ferred to 1 gram of material; it is then called the specific heat. Thus, the

specific heat of water is exactly 1 calorie per degree per gram in the region
of 15 C. From the standpoint of the chemist, a more useful form of the

heat capacity is that referred to 1 mole, i.e., the molecular (or formula)

weight in grams.* The quantity of heat is then known as the molar heat

capacity.
As already indicated, the heat capacity of a body or substance usually

varies with the temperature. The heat capacity as defined by equation

(3.2) is thus the mean value for the temperature range from T\ to TV In

order to define the heat capacity at a given temperature it is necessary to

make the temperature interval as small as possible; thus, if the temperature
increase !T2 T\ is represented by AT7

,
the true heat capacity is given by

the expression

C= Hm-^-. (3.3)
T 2->Tl &T

Since the quantity of heat Q is usually stated in calories and AT7
in degrees,

it is evident that the dimensions of heat capacity are calorics/degrees for the

given amount of material, e.g., cal. deg.~
l

g."
1 or cal. deg.""

1 mole~l

,
that is,

calories per degree per gram (or per mole).
It will be seen later ( 9b) that the heat capacity of a substance can have

a definite value only under certain specified conditions. The two most im-

portant are constant pressure and constant volume. It is necessary to indi-

cate, therefore, the particular conditions under which heat is transferred to

or from the given substance.

* Unless otherwise stated, the term "mole" will refer to the simple formula weight in

grams; thus, the mole of acetic acid is 60.05 g., in spite of the fact that a large proportion of

s)* molecules may be present.
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3e. The Measurement of Heat: The Defined Calorie. Heat quantities are

usually measured by means of a calorimeter. In its simplest form this consists

of a vessel, which is insulated as well as possible in order to prevent loss or gain
of heat, and which contains a calorimetric liquid, usually water. The heat ca-

pacity of the calorimeter and its contents is determined by placing an electrical

conductor of known resistance in the liquid, and passing a definite current for a

specified time. The accompanying increase of temperature of the calorimeter is

then determined by means of a thermometer placed in the liquid. From the

resistance, current and time the amount of electrical energy expended can be
calculated in terms of int. joules. If it is assumed that this energy is completely
transferred from the conductor to the calorimetric liquid in the form of heat, the

heat capacity of the calorimeter can be determined in int. joules per degree.

Problem: A current of 0.565 amp. is passed for 3 min. 5 sec. through a coil of

resistance 15.43 ohms contained in a calorimeter. The rise of temperature is ob-
served to be 0.544 C. Assuming that no heat is lost to the surroundings, calculate

the heat capacity of the calorimeter.

By Ohm's law, the fall of potential (or E.M.P.) across the resistance coil is equal
to / X R, where / is the current and R the resistance. The electrical work is

equal to the product of the E.M.F. and the quantity of electricity, and since the
latter is given by / X t, where t is the time for which the current is passed, it

follows that

Electrical Work = 72 X R X t.

If / is in int. amps., R in int. ohms * and t in sec., the work will be given in int.

joules. In the present case, therefore, taking the heat generated as equal to the

electrical work, it is seen that

Heat generated = (0.565)
2 X 15.43 X 185 int. joules.

Since the rise of temperature of the calorimeter is 0.544 C, it follows that

Heat capacity = (0.565)
2 X 15.43 X 185/0.544

1675 int. joules deg."
1
.

Once the heat capacity of the calorimeter is known, the value of any quantity
of heat transferred to it, as the result of a chemical reaction, for example, can be

readily determined by equation (3.1). Similarly, the heat capacity of any sub-

stance can be found from the amount of heat it transfers to a calorimeter; the

change in temperature of the substance must also be known. In actual prac-
tice various devices are used to improve the accuracy of the results, but the

foregoing description indicates the fundamental principle involved in modern
calorimetric work.

In order to convert the results obtained by the electrical heating method into

calories, it is necessary to know the relationship between joules and calories. That
there is such an exact connection is really an aspect of the first law of thermody-
namics ( 6a), which will be tacitly assumed for the present. Because of a slight

uncertainty, of about t\vo parts in 10,000, concerning the relationship between the

standard (15) calorie, as defined in 3d, and the int. joule ( 3b), a defined calorie,

* An int. ampere is the current which flawing for 1 sec. gives 1 int. coulomb of elec-

tricity, and an int. ohm is the resistance of a conductor through which passes 1 int. ampere
when 1 int. volt is applied.
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equivalent to 4.1833 int. joules has been proposed.
7 This differs to a very small

extent from the standard calorie, and is equal to the specific heat of water at

about 17 C.

Problem: A chemical reaction was allowed to take place in a calorimeter and
the rise of temperature was observed. In order to obtain the same increase of

temperature it was necessary to pass a current of 0.565 amp. for 185 sec. through
a heating coil of resistance 15.43 ohms. Calculate the heat in defined calories

evolved in the reaction.

The heat produced in the reaction is here exactly equal to that obtained from
the electric current. Hence, from the preceding problem it follows that

Heat evolved in the reaction = 1675 int. joules
= 1675/4.183 = 400.4 calories.

3f. Heat and Work. It will be seen in Chapter VII that heat differs

from all other forms of energy in one highly significant respect. Whereas
all other forms of energy are completely convertible into work, at least in

principle, heat cannot be completely transformed into work without leaving
some change in the system or its surroundings. In the continuous conver-

sion of heat into work, by means of a heat engine, for example, part of the

heat taken up at a particular temperature is converted into work, and the

remainder is given out at a lower temperature (see Chapter VII). For this

reason, it is convenient in the thermodynamic treatment to distinguish be-

tween the energy that enters or leaves a body as heat, i.e., due to a tempera-
ture difference, and energy that is transferred in other ways. The latter i^

usually considered under the general description of "work," of which various

types, e.g., mechanical, electrical, surface, etc., are possible. The gain or

loss in energy of a body may thus be defined in terms of the

heat transferred to or from it, and the work done upon or

.-..
i 3g. Work of Expansion* In most processes of in-

i terest to the chemist, the only work involved is that due
" -* to a change of volume against an external pressure, e.g.,

that of the atmosphere. This is frequently referred to

as work of expansion. Consider any substance, which

may be gaseous, liquid or solid, contained in a ^cylinder

of cross-sectional area a (Fig. 1), fitted with a piston
*

upon which is exerted a constant pressure P; the total

FIG i Work of
force acting on the piston is then the product of the pres-

expansion sure and the area, i.e., P X a. Suppose the substance in

the cylinder expands, and as a result the piston is raised

through a distance h. The work done against the external pressure, that

is, the work of expansion, is equal to the force P X a multiplied by the

7
Rossini, /. Res. Nat. tiur. Stand., 22, 407 (1939); Mueller and Rossini, Am. J. Phys.,

12, I (1944).
*
It is assumed that the piston is weightless and moves without friction, so that no

work is lost in the actual motion of the piston, itself.
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displacement h of its point of application in the direction of the force ( 3a),

i.e., P X a X h. The quantity a X h represents the increase in volume in

the expansion process, and this may be replaced by F2 Fi, where V\ is

the initial volume and F2 is the final volume. It follows, therefore, that

Work of expansion = P(F2
-

Fi) (3.4)

= PAF, (3.5)

where AF, equal to F2 Fi, is the increase of volume against the external

pressure P, which is supposed to remain constant throughout the expansion.
The units employed for expressing pressure and volume determine the

units in which the work of expansion is obtained from equation (3.4) or (3.5).

If P is given in dynes per sq. cm. and F is in cc., the work will be obtained

in ergs, and this can be readily converted into abs. joules, i.e., 107
ergs, and

calories, if required. For some purposes, it is convenient to express the

pressure P in atmospheres, and the volume change AF in liters; the work is

then in liter-atm.

Problem: A substance expands by 1 liter against a constant pressure of 1 atm.

Calculate the work done in (a) liter-atm. units, (b) ergs, (c) int. joules, (d) defined

calories.

(a) In this case P is 1 atm. and AF is 1 litar, so that the work of expansion is

1 liter-atm.

(6) To obtain the value in ergs, the pressure must be expressed in dynes cm."2

and the volume in cm.3
,
so that the product is in dynes cm., i.e., ergs. A pressure

of 1 atm. is equivalent to exactly 76 cm. of mercury, the density of which is 13.595

at C; hence,

1 atm. = 76.000 X 13.595 X 980.66 dynes cm.~2

= 1.0132 5 X 10 6
dynes cm.-2

,

where the factor 980.66 cm. sec."2 is the acceleration due to gravity, at sea level

and a latitude of 45.
Since ] liter is equal to 1000.028 cc. ( 3b), the work of expansion is given by

equation (3.5) as 1.0132 6 X 106 X 1.000028 X 103
, i.e., 1.0133 X 10 ergs, to five

significant figures.

(c) The int. joule is equal to 1 .0002 abs. joules ( 3b), and hence to 1.0002 X 107

ergs. The 1.0133 X 10* ergs is thus equivalent to 1.0131 X 102 int. joules.

(d) The defined calorie is 4.1833 int. joules, and so the work of expansion is

1.0131 X 102
/4.1833 = 24.218 defined cal.

The results may be summarized: 1 liter-atm. = 1.0133 X 109
ergs = 1.0131

X 102 int. joules = 24.218 def. cal.

3h. Conversion Factors. Because quantities having the same dimen-

sions, e.g., energy, are frequently expressed in various units, confusion is

liable to ensue unless all quantities are labelled correctly and completely by
the appropriate units. One way of diminishing the risk of error is to express
all quantities in c.g.s. units ( 3b) before undertaking any calculations, but

this procedure is sometimes unnecessarily tedious. The treatment can often
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be considerably simplified by employing conversion factors, such as those

derived in the problem in 3g, and by utilizing the fact that various units

can be multiplied and divided, and that similar units cancel one another if

they appear in the numerator and denominator of a fraction. A number of

conversion factors which will be required from time to time are collected in

Table 1 of the Appendix at the end of the book.

In applying these factors, a useful device which avoids the possibility of

error in the less simple cases, is to convert them into a dimensionless form.

For example, as seen above, 1 liter-atm. is equivalent to 24.218 cal.; hence,
24.218 cal./liter-atm., i.e., 24.218 cal. liter"1 atm."1

,
is equal to unity, without

dimensions. It is then permissible to multiply one side of an expression by
unity and the other side by 24.218 cal. liter"1 atm.""1

. The subsequent
cancellation of identical units with opposite exponents makes conversion

from one set of units to another a relatively simple matter. The application
of the foregoing ideas will be illustrated in subsequent portions of the book. 8

EXERCISES

1. A mercury-in-glass thermometer is standardized at and 100 C. The
change of volume of mercury between these temperatures is represented by

v t
= t; (l + 1.8146 X 10-<* + 9.205 X 10~*2

),

where v* is the volume at the correct centigrade temperature t. Neglecting
the expansion of the glass, what temperature will the thermometer read at

exactly 50 C?
2. A current of 1.243 amp. is passed for 15 min. 45 sec. through a resistance

of 20.18 ohms. Calculate the heat generated in (i) joules, (ii) ergs.
3. The heat generated in the preceding exercise is liberated in a calorimeter,

and the temperature rises by 0.287 C. Evaluate the heat capacity of the

calorimeter in (defined) cal. deg.-
1

.

4. When an electric current was passed through a heating coil of resistance

16.49 ohms, the fall of potential across the coil was 3.954 volts. Neglecting
loss of heat by radiation, etc., determine the rate of increase of temperature, in

deg. sec."1
,
of a calorimeter- with a heat capacity of 125.4 (defined) cal. deg."

1
.

5. The heat capacity of a calorimeter was found to be 218.4 cal. deg.-* at

23 C. When a piece of metal weighing 19.46 g., previously heated to 100.00 C,
was dropped into the calorimeter, the temperature of the latter was found to rise

from 22.45 to 23.50 C. What is the mean heat capacity of the metal in cal.

deg.-
1
g.-

1?

6. A quantity of 2.500 g. of a metal of mean heat capacity 0.0591 (defined)
cal. deg.'

1
g.""

1 is cooled from the steam point to the ice point. Determine the

total heat evolved in (i) ergs, (ii) abs. joules.

7. The volume of a gas, corrected to ideal behavior, is 442.6 ml. at the ice point.
At a certain temperature the volume has increased by 22.42 ml., at constant

pressure. What is the temperature on the centigrade scale?

8. Justify the statement in the text that if the degree is taken as that on the

Fahrenheit scale, absolute temperatures on the Rankine scale are equal to

t F + 459.69.

1 R. F. Newton, private communication.
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9. The specific volume of liquid acetic acid exceeds that of the solid at the

melting point by 0.1595 cc. g."
1 at 1 atm. pressure. Determine the work of ex-

pansion, in defined cal., accompanying the fusion of 1 mole of acetic acid at

atmospheric pressure.
10: Calculate the work done against a constant pressure of 740.0 mm. when 1

mole of water evaporates completely at 100 C; the specific volume of water is

approximately 1 cc. g."
1 and that of the vapor is 1720 cc. g."

1
. Express the results

in (i) ergs, (ii) liter-atm., (iii) abs. joules, (iv) int. joules, (v) defined cal.

11. The density of mercury at C and 1 atm. pressure is 13.595 g. cc.""1 .

Using the expression in Exercise 1, determine the work of expansion in ergs when
the temperature of 100 g. of mercury is raised from to 100 C at 1 atm. pressure.
Given that the mean specific heat in this range is 0.0330 cal. deg."

1
g.""

1
, what

proportion of the total amount of heat supplied to the mercury is the work of

expansion?
12. The faraday is usually given as 96,500 coulombs per g. equiv.; show that

it is also equal to 23,070 cal. volt"1 g. equiv."
1
,
and that the quantity 23,070 cal.

volt"1 g. equiv."
1
faraday"

1 is dimensionless and equal to unity.



CHAPTER II

PROPERTIES OF THERMODYNAMIC SYSTEMS

4. THERMODYNAMIC SYSTEMS

4a. Types of System. In order to develop the consequences of the laws

of thermodynamics, which will be considered shortly, it is necessary to define

the terms of reference. The portion of the universe which is chosen for

thermodynamic consideration is called a system; it usually consists of a
definite amount (or amounts) of a specific substance (or substances). A
system may be homogeneous, that is, completely uniform throughout, such
as a gas or a mixture of gases, or a pure liquid or solid, or a liquid or solid

solution. When a system is not uniform throughout it is said to be hetero-

geneous; it then consists of two or more phases which are separated from
one another by definite bounding surfaces. A system consisting of a liquid
and its vapor, or of two immiscible (or partially miscible) liquids, or of two
or more solids, which are not a homogeneous solid solution, are examples of

heterogeneous systems. There are, of course, numerous other kinds of

heterogeneous systems, as is well known to students of chemical equilibrium
and the phase rule. 1

A system may be separated from its surroundings, which consist, in

effect, of the remainder of the universe,* by a real or imaginary boundary
through which energy may pass, either as heat or as some form of work.
The combination of a system and its surroundings is sometimes referred to as

an isolated system.
4b. State of a System. The thermodynamic or macroscopic state or,

in brief, the state, of a system can be defined completely by four observable

properties or "variables of state"; these are the composition, pressure, vol-

ume and temperature.! If the system is homogeneous and consists of a

single substance, the composition is, of course, fixed, and hence the state of

the system depends on the pressure, volume and temperature only. If these

properties are specified, all other physical properties, such as mass, density,

viscosity, refractive index, dielectric constant, etc., are thereby definitely
fixed. The thermodynamic properties thus serve to define a system completely.

In actual practice it is not necessary to state the pressure, the volume
and the temperature, for experiment has shown that these three properties
of a simple homogeneous system of definite mass are related to one another.

1 S. Glasstone, "Textbook of Physical Chemistry," 2nd cd., 1946, Chapters V, X and XI.
* For thermodynamic purposes the "surroundings" are usually restricted to a limited

portion of the universe, e.g., a thermostat.

f Electrical, magnetic, surface, gravitational and similar effects are neglected.

14
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The value of any one of these properties thus depends on the values of the

other two. The relationship between them is called an equation of state,

but its precise form lies, strictly speaking, outside the province of pure

thermodynamics; an equation of state must be derived from molecular

(kinetic) theory or from direct experiments on the system under considera-

tion. For example, the equation of state for an ideal gas, namely PV = RT,
where P is the gas pressure, V is the volume of 1 mole, T is the absolute

temperature, and R is a constant, is based partly on the kinetic theory of

gases and partly on experiment. The van der Waals equation represents
a modification of the ideal gas equation, derived by means of molecular

theory. Other equations of state, particularly those involving several em-

pirical constants, are determined from experimental data, although their

general form may have a theoretical basis. The derivation of such equa-
tions is not possible by means of thermodynamics, but the results of thermo-

dynamics may be applied to them with interesting consequences, as will be
evident in the subsequent discussion. In any event, it may be accepted

that, in general, the pressure, volume and temperature of a system are not

independent variables, and consequently the thermodynamic state of a simple,

homogeneous system may be completely defined by specifying two of these

properties.
4r,. Thermodynamic Equilibrium. The results stated above, namely

that only two of the three properties of a system, viz., pressure, volume and

temperature, are independently variable, and that a homogeneous system of

definite mass and composition is completely defined by these two properties,
are based on the tacit assumption that the observable properties of the system
are not undergoing any change with time. Such a system is said to be in

thermodynamic equilibrium. Actually this term implies three different

types of equilibrium which must exist simultaneously. First, there must be
thermal equilibrium, so that the temperature is the same throughout the

whole system. Second, if the system consists of more than one substance

there must also be chemical equilibrium, so that the composition does not

vary with time. Finally, the system must be in a state of mechanical

equilibrium; in other words, there must be no macroscopic movements
within the system itself, or of the system with respect to its surroundings.

Disregarding the effect of gravity, mechanical equilibrium implies a uni-

formity of temperature and pressure throughout the system; if this were not

the case, it would, of course, be impossible to describe the system in terms
of the pressure, volume and temperature.

Systems in which diffusion or chemical reaction is taking place at an appre-
ciable rate are not in thermodynamic equilibrium, and consequently their state

cannot be completely specified in a simple manner. Certain systems which are

not in true equilibrium may nevertheless be treated by thermodynamic methods,
provided the approach to equilibrium is so slow as to be undetectable over a con-

siderable period of time. An instance of this type is represented by a mixture of

hydrogen and oxygen gases under normal conditions of temperature and pressure.
As mentioned earlier, reaction should take place with the formation of liquid water.
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so that, the system is not really in chemical equilibrium. However, the reaction

is so slow that in the absence of a catalyst it behaves as if it were in thermodynamic
equilibrium, provided, of course, that thermal and mechanical equilibria are
established. The conditions of chemical equilibrium will, naturally, not apply to

such a system.

4d. Properties of a System. The physical properties of a system may
be divided into two main types. There are first, the extensive properties
which depend on the quantity of matter specified in the system. Mass and
volume are two simple examples of extensive properties. The total value
of an extensive property is equal to the sum of the values for the separate

parts into which the system may, for convenience, be divided. It will be
seen later that several properties of thermodynamic interest, such as the

energy of a system, are extensive in nature.

The other group of properties are the intensive properties; these are

characteristic of the substance (or substances) present, and are independent
of its (or their) amount. Temperature and pressure are intensive proper-

ties, and so also are refractive index, viscosity, density, surface tension, etc.

It is because pressure and temperature are intensive properties, independent
of the quantity of matter in the system, that they are frequently used as

variables to describe the thermodynamic state of the system. It is of

interest to note that an extensive property may become an intensive prop-

erty by specifying unit amount of the substance concerned. Thus, mass
and volume are extensive, but density and specific volume, that is, the mass

per unit volume and volume per unit mass, respectively, are intensive proper-
ties of the substance or system. Similarly, heat capacity is an extensive

property, but specific heat is intensive.

The properties of a system in thermodynamic equilibrium depend only
on the state, in the sense defined in 4c, and not on the previous history of

the system. If this were not the case, the properties would have no sig-

nificance, for they would be determined not only by the actual temperature
and pressure, but also by the temperature and pressure the system may havo
had in the past. This is clearly not the case. It follows, therefore, as a

consequence that the change in any property due to a change in the thermo-

dynamic (equilibrium) state depends only on the initial and final states of the

system, and not on the path followed in the course of the change.

4e. Thermodynamic Properties and Complete Differentials. If any
quantity G, such as a thermodynamic property, is a single-valued function

of certain variables x
y y,z, . . .

,
which completely determine the value of (7,

that is,

<?=/(*, t/, z, . . .), (4.1)

then the change in G resulting from a change in the variables from a-/, ?//,

ZA, . . ., in the initial state, to #/?, ?//*, 2/?, . . .,
in the final state, is given by

A<? = GK - GA = J(XB, y, ZB, . . .)
-

f(xA . yA, ZA, . . .) (4.2)
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As a mathematical consequence, it is possible to write for a small increase

dO in the property (?,

XtV..

where the partial differential symbol, e.g., (dG/dx) v. ,. . . . represents the

rate of change of G with the variable x, while all the other variables, y,

z
y

. . ., remain constant. Any differential dG
y
defined by equation (4.3),

of a function G, represented by (4.1), is called a complete differential, or an
exact differential, of that function.

As seen above, a thermodynamic property of a homogeneous system of

constant composition is completely determined by the three thermodynamic
variables, pressure, volume and temperature. Since only two of these three

variables are independent, it is possible to write

where G may be the energy, volume, or other property to be considered more

fully later. This expression is equivalent to equation (4.1), and hence it

follows from (4.3) that

*- *- 1
- * (4 -4)

The physical significance of this result can be understood from the

following considerations. When the pressure and temperature of the system
are P and T, respectively, the value of the thermodynamic property under
consideration is G, but when the variables are changed to P -f- dP and
T + dT, it becomes G + dG. Since the value of the property is completely
determined by the pressure and temperature, the change dG will be inde-

pendent of the path between the initial and final states. Hence, any con-

venient method for carrying out the change from P and T to P + dP and
T + dT may be chosen for the purpose of calculating dG. Suppose the

change is carried out in two stages: (i) in which the temperature remains

constant at T while the pressure is changed from P to P + dP, and (ii) in

which the pressure is held constant at P + dP and the temperature is

changed from T to T + dT. In stage (i) the rute of change of G with pres-

sure, at the constant temperature T, is (dG/dP)T, and since the actual pres-

sure change is dP, the change in G for this stage is equal to (dG/dP} T X dP\
this is seen to be identical with the first term on the right-hand side of equa-
tion (4.4). In stage (ii), the rate of change of G with temperature at the

constant pressure P + dP, which is very close to P, may be written as

(6G/dT) P . Since the actual temperature change is dT, the change in G
for this stage is (dG/dT)P X dT, which corresponds to the second term on
the right-hand side of equation (4.4). The sum of the two terms just de-

rived gives the total change dG for the given process, in accordance with (4.4).

In the foregoing discussion, G has been treated as a single-valued function

of the pressure and temperature. It is equally permissible to choose as
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variables any two of the three thermodynamic properties, pressure, volume

and temperature. In some cases it is convenient to take pressure and vol-

ume as the independent variables; the complete differential of a thermo-

dynamic property G may then be written as

Alternatively, if the volume and temperature are chosen as the variables,

"- (4 - 6)

Various forms of equations (4.4), (4.5) and (4.6) will be utilized in the treat-

ment of thermodynamic properties.

Another important result, which will be required later, may be derived

from the equations given above. Since the volume of a homogeneous system
of constant composition is a single-valued function of the pressure and

temperature, it is possible to write

''-

If this value of dV is substituted in equation (4.6), the result is

For a given infinitesimal change of thermodynamic state, dG must have a

definite value, no matter how it is calculated; the coefficients of dP and dT7

,

respectively, in equations (4.4) and (4.8) must therefore be identical.

Hence,

(4.9)
\ Of J T \V /T \ Of / T

and
x i/^f \ / i /t \ / ^ T/ \ / zn \

(4.10)"

5. EQUATIONS OF STATE

Sa. The Ideal Gas Equation. The practical value of the results of

thermodynamics is frequently greatly enhanced when an equation of state,

relating the pressure, volume and temperature of the system, is available.

* Some writers derive equation (4.10) directly from (4.6) by "dividing through by dT,"

and then imposing the constant pressure condition; this procedure is, however, open to

criticism on mathematical grounds.
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No satisfactory relationship of this type is known for liquids and solids, but
for gaseous systems certain moderately simple equations of state have been

proposed. All gases actually differ in their behavior, and so the problem is

approached by postulating the properties of an ideal gas, and then consider-

ing deviations from ideal behavior.

An ideal gas is one which satisfies the equation

PV = RT (5.1)

for 1 mole at all temperatures and pressures; P and T are the pressure and
the absolute temperature, respectively, V is the molar volume, and R is the

molar (ideal) gas constant. It will be observed that at constant pressure,
the volume of an ideal gas is directly proportional to its absolute tempera-
ture, in agreement with the postulate in 2c. Attention may also be called

to the fact that equation (5.1) implies that Boyle's law and Gay-Lussac's
(or Charles's) law are both applicable to an ideal gas.

At a given temperature and pressure, the volume of any gas, ideal or not,
will be proportional to its mass, or to the number of moles, contained in the

system. Since equation (5.1) applies to 1 mole of an ideal gas, it follows

that for n moles,
PV = nRT, (5.2)

where V is now the total volume occupied by the gas; R is, however, still the
molar gas constant.

The gas constant R is frequently encountered in thermodynamics, and
so its value will be determined. Use is made of the fact, derived by ex-

trapolating experimental data for a number of gases to zero pressure, that 1

mole of an ideal gas occupies 22.414 liters at 1 atm. pressure and a tempera-
ture of 273.16 K. It follows, therefore, that in equation (5.1), P is 1 atm.,
V is 22.414 liters mole- 1 and T is 273.16 K; hence,

= 1 X 22.414

T
"

273.16

0.082054 liter-atm. deg."
1 mole-1

.

It will be observed that since the product PV has the dimensions of energy,
R must be expressed in energy per degree; since the value of R is invariably

given for 1 mole of ideal gas, it is stated in terms of energy deg.""
1 mole-1

.

In the present case the energy is in liter-atm.

Since 1 liter contains 1000.028 cc., it follows that

R = 82.057 cc.-atm. deg.-
1 mole" 1

.

By utilizing the conversion factors in Table 1 (Appendix), the value of R
can also be expressed in ergs deg.~

l mole- 1 and in cul. deg.~
l mole""1

. Thus,
since 1 liter-atm. is equivalent to 1.0133 X H)9 ergs, it is seen that

R = 0.082054 X 1.0133 X 109

= 8.3144 X 107
ergs deg.-

1 mole- 1
.
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Finally, 1 liter-aim, is equivalent to 24.218 (defined) cal., so that

R - 0.082054 X 24318
1.9872 cal. deg."

1 mole"1
.

5b. Mixture of Ideal Gases. In a mixture of ideal gases, it is to be

expected that each gas will behave independently of the others. If the

partial pressure pi of any ideal gas in a mixture is defined as the pressure
this particular gas would exert if it alone occupied the whole available vol-

ume V, then by equation (5.2)

PiV = ruRT, (5.3)

where n is the number of moles of the gas present in the system. Since

each gas in the mixture will exert its pressure independently of the others,
it follows that the total pressure P is equal to the sum of the partial pressures
of the constituent gases; thus,

P = PI + PZ+ +p*+ (5.4)

Upon introducing the values of p\, p 2 ,
. . .

, etc., as given by equation (5.3),

it can be readily derived from (5.4) that

PV = (m + n, + + n t + - - -}RT
= nRT,

where n is the total number of moles of all the ideal gases present in the

mixture. By combining equations (5.3) and (5.5), it is seen that

P*
= -P. (5.6)

n

The fraction n,/n, that is, the ratio of the number of moles (or molecules)
of any constituent of a homogeneous mixture gaseous, liquid or solid to

the total number of moles (or molecules) is called the mole fraction of that

constituent; it is represented by the symbol N t ,
so that

Mole Fraction N< = - = -'
. (5.7)

tti + ^2 + + n t + n

Utilizing the definition of the mole fraction in conjunction with equation

(5.6), it follows that the partial pressure p of any ideal gas in a mixture is

related to the total pressure by
Pi = N tP. (5.8)

Another expression for the partial pressure can be derived from equation

(5.3), based on the fact that Ui/V represents the molar concentration, i.e.,

moles per unit volume, of the particular gas in the mixture. If this concen-

tration is represented by ct , equation (5.3) gives

Pi = c tRT (5.9)

for an ideal gas.
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Sc. Real Gases. According to equation (5.1) or (5.2) the product PV
for a given mass of an ideal gas, at constant temperature, should be constant

at all pressures. Actual gases, however, exhibit considerable deviations

from ideal behavior. At low temperatures the value of PV, instead of re-

maining constant, at first decreases as the pressure is increased; it then

passes through a minimum and then increases. As the temperature is in-

creased, the minimum becomes less marked, and at sufficiently high tem-

peratures the value of PV, increases continuously with increasing pressure.

2.6

2.2

1.8

PV
RT

1.4

1.0

0.6
200 400 600

Pressure in Atm.
800 1000

FIG. 2. Compressibility of nitrogen gas

The general nature of the experimental results can be seen from the curves
in Fig. 2, which show the variation with pressure of PV/RT for nitrogen at

a number of temperatures. For an ideal gas, all the curves would fall on
the same horizontal line. The actual temperature at which the minimum
in the curve disappears varies with the nature of the gas. For the gases
which are difficult to liquefy, e.g., hydrogen and helium, there is no sign of

the minimum at ordinary temperatures, but for nitrogen it is observed up
to about 50 C. For a readily liquefiable gas, such as carbon dioxide, the
minimum in the PV curve persists up to temperatures in the region of

400 C. The equation of state for a real gas must evidently account for the
variations of PV with pressure and temperature, as described above, and
also for the different behavior of different gases.

2

J S. Glasstone, ref. 1, Chapter III; see also Beattie and Stoekmayer, Rep. Prog. Phys.
(Phys. Soc. London), 7, 105 (1940).
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5d. The van der Waals Equation. One of the earliest successful at-

tempts to modify the ideal gas equation so as to make it applicable to real

gases is that of J. D. van der Waals (1873), who proposed the equation

- 6) - RT (5.10)

for 1 mole, where a and 6 are constants for a given gas. The constant a is

determined by the attractive forces between the molecules, while b is de-

pendent on their effective volume, which represents a balance between at-

tractive and repulsive forces. By choosing appropriate values for a and 6,

the van der Waals equation (5.10) is found to represent moderately well the

actual behavior of real gases. There is, however, an important weakness:

if the equation is assumed to be exact, a and b are found to vary with the

temperature. In spite of its approximate nature, the van der Waals equa-
tion is frequently employed, for it lends itself readily to mathematical treat-

ment, and even if the results obtained from
it are not exact, they are at least qualita-

tively correct.

By multiplying out, it can be readily
seen that the van der Waals equation is a
cubic in F, so that there are, under suitable

conditions, three values of V for each pres-

sure, at a given temperature (Fig. 3, curves

I and II). The region in which this occurs

corresponds to that in which liquefaction
of the gas is possible. At higher tempera-
tures, e.g., curve IV, two of the roots are

always imaginary, only one being real. At
a certain intermediate temperature (curve

III), which should correspond to the

critical temperature, the three values of V
should become identical, at the point X.
At this point the P-V curve will exhibit a
horizontal inflection, so that both the first

and second derivatives of the pressure with respect to the volume, at con-

stant temperature, will be equal to zero. Thus, writing the van der Waals

equation (5.10), for 1 mole of gas, in the form

FIG. 3. Van der Waals
isothermal curves

RT
V - b

a

it is found that

and

dP \ _ RT + 2*

)r (V - b)- V*

2RT 6a

(7 - 6) F4

(5.11)

(5.12)

(5.13)
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At the critical point X both these expressions are equal to zero; hence,

writing Ve and T, to represent the molar critical volume and temperature,

respectively, it follows that

and
2RTe

F?(V.
-

6)'
'

VI
" ~~

(V. - 6)'

From these two equations, and (5.11), it is readily found that

80 ..... a
(i) Ve

= 36; (ii) Te
27Rb'

(Hi) (5.14)

If the values of a and b which make the van der Waals equation represent
the P-V relationship of a gas at a particular temperature are inserted in

equation (5.14), the critical pressure, volume and temperature obtained are

only in moderate agreement with the experimental results. This is not

unexpected for, as already pointed out, a and b are not strictly constant, if

the van der Waals equation is assumed to hold. If the P-V data from which
a and b are derived are obtained at a temperature that is some distance from
the critical, they will clearly not prove satisfactory for the evaluation of

critical constants. In actual practice the procedure adopted is to calculate

a and b from the observed critical data *
by means of the equations (5.14).

A number of the results obtained in this manner are given in Table I; if the

pressure P of the gas is in atm. and the molar volume V in liter mole""1
,
a

will be in liter2 atm. mole~2 since a/V2 must have the same dimensions as P,
and b will be in liter mole"1

,
since this has the dimensions of V.

TABLE I. VAN DER WAALS CONSTANTS
a b

liter1 atm. liter

Gas mole"* mole"1 Gas

Hydrogen chloride

Hydrogen cyanide
Hydrogen iodide

Hydrogen sulfide

Methane
Methanol

Methyl chloride

Nitric oxide

Nitrogen
Nitrous oxide

Oxygen
Propane
Propylene
Sulfur dioxide

Water

The values of a and b recorded in Table I may be used to calculate the

pressure or volume of a gas, at a specified volume or pressure, respectively,

* For critical temperatures and pressures of a number of substances, see Table 2 at the

end of the book.
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to a moderate degree of accuracy. The results are by no means exact, but

they serve as an approximation when no other information is available,

especially at high pressures.

Problem: Compare the pressures given by the ideal gas and van der Waals

equations for 1 mole of carbon dioxide occupying a volume of 0.381 liter at 40 C.

The ideal gas equation gives, for 1 mole, P - RT/V ; taking V as 0.381 liter,

R as 0.0820 liter-atm. deg.~
J mole"1

, and T as 273 + 40 - 313 K, it is found that

Utilizing the van der Waals equation in the form of (5.11), with a = 3.60 and
b - 4.28 X 10-* (Table I),

0.0820 X 313 3.60
1 t

.

J.l atm.
(0.381

-
0.043) (0.381)'

The experimental value is 50 atm.

Problem: Compare the volumes given by the ideal gas and van der Waals

equations for 1 mole of nitrogen at 400 atm. pressure and C.

According to the ideal gas equation V = RT/P for 1 mole; R is 0.0820 liter-

atm. deg.
-1 mole"-1

, P is 400 atm., T is 273 K, and hence

T/
RT 0.0820 X 273 AAKAA1 .,

,
,V -^- TTTT

= 0.0560 liter mole^1
.r 4w

In order to determine the volume from the van der Waals equation it is neces-

sary to solve a cubic equation, and this is most simply done by the method of trial.

Neglecting a/V* in comparison with P, equation (5.10) reduces to P(V 6) = RT,
so that

From Table I, 6 for nitrogen is 0.0392, and for 400 atm. V is 0.0952 liter mole"1

.

If this is inserted in equation (5.11), with a equal to 1.39, P is found to be 247

atm. Similarly, if V is taken as 0.0560 liter mole"1

,
P is found, to be 891 atm.

Since themolar volume of 0.0560 liter corresponds to a van der Waals pressure of

891 atm., and 0.0952 liter corresponds to 247 atm., it is evident that the correct

volume, for 400 atm., is about 0.075 liter. By a series of approximations, the

volume is found to be 0.0732 liter. (The experimental value is 0.0703 liter.

Although the van der Waals result is not correct, it is very much better than the

ideal gas value.)

5e. Reduced Equation of State. If the pressure, molar volume and tem-

perature of a gas are expressed in terms of the critical pressure, volume and

temperature, respectively, i.e.,

P . Tpe . V. = ^Ve and T - BTe , (5.15)

and these expressions are introduced into the van der Waals equation (5.10),
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the result for 1 mole of gas is

Upon insertion of the values of Pc,
Ve and Tc given by the equations (5.14),

it is found that

1) =80. (5.1G)

The quantities TT, and 0, which are equal to P/PC, V/Ve and T/TC , respec-

tively, are called the reduced pressure, volume and temperature, and (5.16)

is a reduced equation of state. The interesting fact about this equation is

that it is completely general, for it does not involve a and 6, and hence con-

tains no reference to any specific substance. Consequently, if equimolar
amounts of any two gases, whose P-F-T behavior may be represented by an

expression of the form of the van der Waals equation, are at the same re-

duced pressure TT, and have the same reduced volume 0, then they must be
at the same reduced temperature 6. The two gases are then said to be in

corresponding states, and equation (5.16) is taken as an expression of the

law of corresponding states.

Experimental studies have shown that the principle of corresponding
states derived above is, at least approximately, a valid one, although equa-
tion (5.16) does not give the correct quantitative relationship between ?r,

<t> and 0. It should be pointed out, however, that any equation of state con-

taining two arbitrary constants, such as a and 6, in addition to R, can be
converted into a relationship involving the reduced quantities IF, <t> and 6, in

agreement with the law of corresponding states. Because the law is not

exact, however, it would appear that more than three empirical constants

are necessary to obtain an exact equation of state.

5f. The Berthelot Equation. Although it is not employed in connection with

P-V-T relationships, the equation of state proposed by D. Berthelot has found a
number of applications in thermodynamics. The van der Waals equation is first

modified by changing the a/V2 term to a/TV 2
', thus,

Upoa multiplying out, this becomes

PV = RT + Pb- + -- (5.17)

Neglecting the last term, since it contains the product of two small quantities,
and replacing V in a/TV, as a first approximation, by the ideal gas value RT/P,
equation (5.17) becomes

PV - RT + Pb -
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The factors a, 6 and R are now replaced by expressions involving the critical

constants, based upon experimental results; these are

and R
*

Consequently, equation (5.18) becomes

which is the Berthelot equation.

5g. The Beattie-Bridgeman Equation. Another modification of the van der
Waals equation, having a partial theoretical basis, is that proposed by J. A.
Beattie and O. C. Bridgeman (1927). It takes the form

P - RTQ ~ O (V . R. A^ (
. 2mr -

y^
( V -t- >)

y^
, (5.ZV)

where

A-Ao/"l + ~V B = B*(l-} and C =

A 9, JBo a, b and c being arbitrary constants. The chief application of the Beattie-

Bridgeman equation lies in its use to represent the experimental P-V-T relation-

ships of gases, the five constants being derived from actual observations. The
values of these constants have been obtained for a number of gases and are re-

corded in the literature.8 The results are useful for interpolation of P-V-T data,
within the limits of applicability of the constants, and also for a number of

thermodynamic purposes.
5h. General Equation of State* Although numerous equations of state have

been proposed from time to time, few of these have been used in thermodynamic
studies. Mention may, however, be made of a purely empirical equation which
takes the form of a power series in the pressure; thus,

PV - RT + aP + bP* + cP8 + dP*. (5.21)

The factors a, 6, c and d are dependent upon the temperature, and the variations

have been expressed by the relationships

a -
0,1 + a2T-1 + a8!F-

8
,

b - &ir-1 + bzT~* +
c - ciT-* + c*T-' +
d - diT-i

The equation thus involves twelve empirical constants, but these can be derived

from the experimental P-V-T data without difficulty. Once they are known
various uses can be made of equation (5.21), which is capable of relatively easy
mathematical manipulation.

4

Beattie and Bridgeman, J. Am. Chem. Soc., 49, 1665 (1927); 50, 3133 (1028); Proc.

Am. Aoad. Arts Sd., 63, 229 (1928); Z. Phytik, 62, 95 (1930); Beattie, el oZ., /. Am. Chem.

Soc., 52, 6 (1930); 59, 1587, 1589 (1937); 61, 26 (1939); 64, 548 (1942); /. Ohem. Phys., 3,

93 (1935); see also, Deming and Shupe, /. Am. Chem. Soc., 52, 1382 (1930); 53, 843 (1931);

Maron and Tun&ull, Ind. Eng. Chem., 33, 408 (1941).
4
See, for example, Maron and Turabull, Ind. Eng. Chem., 34, 544 (1942).
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Si. Compressibility Factors. Although such analytical expressions as

the Beattie-Bridgeman equation and, to a less precise extent, the van der

Waals equation are useful for solving problems relating to the pressure,
volume and temperature of gases, much labor could be saved if complete
compressibility diagrams, such as Fig. 2, were available for all gases. The
necessity for a separate diagram for each gas would be a complicating factor,

and so it is fortunate that the law of corresponding states has permitted
the development of a single generalized compressibility diagram which is

(approximately) applicable to all gases. Except for readily liquefiable gases.

results can be obtained from this diagram which agree with the observed

data within a few per cent.

The compressibility factor K of a gas is defined by

PV
-jj?' <

where P is the pressure of the gas, V is its molar volume and T is the absolute

temperature. For an ideal gas K would obviously be unity under all circum-

stances, but for a real gas it may be less or greater than unity, as may be
seen from Fig. 2, which is really a plot of the compressibility factor against
the pressure of nitrogen at several temperatures. It follows, therefore, from

equation (5.22) that for 1 mole of gas

PV = uRT, (5.23)

where K is the compressibility factor in the given state of the gas. For n
moles of gas, the volume would, of course, be increased n-fold.

If the pressure, volume and temperature in equation (5.22) are replaced

by their respective reduced properties, i.e., P is replaced by irP
,
V by $V*

and T by OTC, it follows that

It will be seen from the three relationships of equation (5.14) that PcVe/RT,
should be constant, equal to f, for all van der Waals gases. Experimental
observation has shown that for many substances P V /RTe has, in fact,
almost the same constant value, although it is more nearly^ than f . Since

this quantity is constant, however, it follows from equation (5.24) tha' for

all gases, as a first approximation,

-?, (5.25)
V

where c is a universal constant. According to the law of corresponding
states ( 5e), if the reduced pressure * and the reduced temperature 6 have
the same value for different gases, their reduced molar volumes </> must be

equal. It follows, therefore, from equation (5.25), that their compressi-

bility factors ic must then also be the same, irrespective of the nature of the

gas. In other words, 'if the compressibility factor is plotted against the
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reduced pressure, for a given reduced temperature, the results for all gases
will fall on the same curve.*

The conclusion just reached forms the basis of the generalized, or re-

duced, compressibility curves (Fig. 4).* From actual experiments on a
number of gases, the mean observed compressibility factors at various tern-

peratures and pressures have been derived, and the values of * are plotted

against the corresponding reduced pressures, with the reduced temperature
as parameter. From these curves it is possible to derive, with a fair degree
of accuracy, the value of either the pressure, volume or temperature of any
gas, if the other two variables are given. The determination of the volume
can be achieved directly from Fig. 4, but the evaluation of either pressure
or temperature is not quite as simple.f

Problem: Utilize Fig. 4 to determine the volume of 1 mole of nitrogen at 400
atm. pressure and C (cf. second problem in 5d).

The critical pressure of nitrogen is 33.5 atm. and the critical temperature is

126 K; hence the reduced pressure and temperature are given by

From Fig. 4 it is found directly that for these values of TT and 0, the Compressi-

bility factor K is about 1.27. Utilizing equation (5.23), with P = 400 atm.,
R = 0.0820 liter-atm. deg.-

1 mole-1 and T 273, it is found that

RT 1.27 X 0.0820 X 273 A/V71 ... .
tV = ic -=- =- - = 0.071 liter mole"1
.

x 4UU

(The experimental value is 0.0703 liter mole"1
.)

Problem: Utilize Fig. 4 to determine the pressure of carbon dioxide gas when
1 mole occupies 0.381 liter at 40 C (cf. first problem in 5d).

Substituting the value of V = 0.381 liter mole"1
,
T = 273 + 40 = 313 K,

and R into equation (5.23), it follows that

_ RT 0.0820 X 313 MAP = K
~V-

= K
381

==67 '4 *'

*

The critical pressure of carbon dioxide is 72.9 atm., so that

* - =
it

=
-925 *-

* For hydrogen and helium better results are obtained by adding 8 to the critical

pressure and temperature when calculating the reduced values; thus, for these gases,
IT - P/(Pe + 8) and - T/(Te + 8).

Cope, Lewis and Weber, Ind. Eng. Chem., 23, 887 (1931); Brown, Souders and Smith,
ibid., 24, 513 (1932); Dodge, ibid., 24, 1353 (1932); Lewis and Luke, ibid., 25, 725 (1933);

Lewis, ibid., 28, 257 (1936); Kay, ibid., 28, 1014 (1936); Maron and Turnbull, ibid., 34, 544

(1942); for a convenient nomograph applicable below the critical point, see Thomson,
ibid., 35, 895 (1943).

t Generalized (reduced) compressibility diagrams are often referred to in the literature

as 'Vcharts," the symbol M being used for the compressibility factor. Since /* is employed
later for another purpose, it has been replaced by K here.
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The expression * = 0.925* is the equation for a straight line passing through the

origin of Fig. 4. The point representing the system under consideration is that

at which this line intersects the curve in Fig. 4 for the prescribed reduced tempera-
ture. The critical temperature of carbon dioxide is 304.1 K, and so the reduced

temperature 8 corresponding to 40 C, i.e., 313 K, is 313/304 - 1.03. The value

of T at which the line * = 0.925* intersects the curve for = 1.03 is found to be

0.7 from Fig. 4. Since Pe is 72.9, it follows that P is 0.7 X 72.9 = 51 atm. (The
experimental value is 50 atm.)

Sj. Mixtures of Real Gases: Additive Pressure Law. The rule that the

total pressure of a mixture of gases is equal to the sum of the pressures
exerted by each gas if it alone occupied the whole of the available volume

( 5b) does not apply to real gases. The total pressure is thus not equal to

the sum of the partial pressures defined in the usual manner. However,
for some purposes it is convenient to define the partial pressure of a gas in a

mixture by means of equation (5.8), i.e., p t
= NP, where p is the partial

pressure and N is the mole fraction of any constituent of the mixture of

gases of total pressure P.

A simple modification of the law of partial pressures as applied to ideal gases
has been proposed for mixtures of real gases (E. P. Bartlett, 1928).

6 If P< is the

pressure which would be exerted by a constituent of a gas mixture when its molar
volume is the same as that of the mixture, then it is suggested that the total

pressure P is given by

P = N^' + N2P; + + N.P; + - - -. (5.26)

This rule has been found to give results in fair agreement with experiment.
If compressibility data for the individual gases are not available, the values of

PI, P, etc., can be obtained with the aid of Fig. 4, provided the molar composition
of the gas, its volume and temperature are known.

Problem: A mixture of i mole nitrogen and J mole hydrogen occupies 0.0832
liter at 50 C. Calculate the total pressure.

The molar volume of the mixture is 0.0832 liter; by using Fig. 4 in conjunction
with the known critical temperature and pressure of nitrogen and hydrogen (see

footnote, p. 29), the pressure of nitrogep gas at 50 C for this molar volume is

found to be 404 atm. and that for hydrogen is 390 atm. The calculation is iden-

tical with that in the second problem of 5i. By equation (5.26), the total

pressure is given by

P = (i X 404) + (J X 390) - 394 atm.

(The experimental value is 400 atm. The agreement is partly fortuitous, because

Fig. 4 cannot be read to this degree of accuracy.)

5k. Additive Volume Law. The additive pressure law, as given by equation
(5.26), is useful for the calculation of the approximate pressure exerted by each

gas, and the total pressure, in a mixture of real gases, when the volume is known.
If the total pressure is given, however, the evaluation of the volume is somewhat
more complicated, involving a series of trial solutions. An alternative approxi-

Bartlett, Cuppk and Tremearne, /. Am. Chem. Soc., 50, 1276 (1928).
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mate method is available which makes use of the law of additive volumes (. H.
Amagat, 1893; A. Leduc, 1898).

7 It can be readily shown that for a mixture of
ideal gases, the total volume should be equal to the sum of the volumes which the
constitutent gases would occupy at the total pressure of the mixture, at the same
temperature. This rule has been found to hold, with a fair degree of accuracy,
for mixtures of real gases. If complete experimental P-V-T data for the individual

gases in the mixture are available, it is a simple matter to make use of the additive
volume law. For approximate purposes the generalized compressibility diagram
(Fig. 4) may be utilized.

Problem: Calculate the volume of a mixture of 1 mole nitrogen and } mole
hydrogen at 400 atm. pressure and 50 C. (This is the reverse of the problem
in 5j .)

It is found from Fig. 4 that at 400 atm. and 50 C, 1 mole of nitrogen would
occupy 0.083 liter; under the same conditions, the volume of 1 mole of hydrogen
would be 0.081 liter. The method of calculation is, in each case, identical with
that used in the first problem in 5i. By the Amagat law of additive volumes,
the volume of the given mixture would be

(i X 0.083) + (J X 0.081) = 0.082 liter.

(The experimental value is 0.0832 liter.)

EXERCISES

1. A liquid mixture consists of equal parts by weight of water and sulfuric acid,

what is the mole fraction of each constituent?

2. The composition of dry air by weight is as follows: nitrogen 75.58%, oxygen
23.08%, argon 1.28%, carbon dioxide 0.06%, with negligible traces of other gases.

Calculate the partial pressure of each of these four gases in air at exactly 1 atm.

pressure, assuming ideal behavior.

3. Suppose 10.0 liters of gas A, measured at 0.50 atm., and 5.0 liters of gas B,
at 1.0 atm., are passed into a vessel whose capacity is 15.0 liters. What is the

resulting total pressure, if the gases behave ideally and the temperature remains
constant?

4. A gas collected over water at 25 C becomes saturated with water vapor,
its partial pressure being 23.8 mm. The measured volume of the moist gas is

5.44 liters, at a total pressure of 752.0 mm. Calculate the volume the dry gas
would occupy at a pressure of 760 mm., assuming ideal behavior of the gas and
of the water vapor.

5. Prove that for a mixture of ideal gases the total volume is equal to the sum
of the volumes which the constituent gases would occupy at the total pressure of

the mixture at the same temperature (Amagat's rule).

6. At C and 400 atm. pressure a mixture containing 0.75 mole fraction of

nitrogen and 0.25 mole fraction of hydrogen was found to occupy a volume of

71.5 ml. mole'1
. Utilizing the generalized compressibility diagram, determine

whether Amagat's volume rule or Bartlett's partial pressure rule is in better agree*
ment with experiment.

7
Cf., Leduc, Ann. chim. phya., 15, 5 (1898); see also, Masson, et aL t Proc. Roy. oc.,

A103, 524 (1923); A122, 283 (1929); A126, 248 (1930).
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7. Show that at moderate and low pressures the van der Waals equation may

be written in the form PV - RT(l - BP), where B tt(w~ b - <Mul-

tiply out the van der Waals equation, neglect the term ab/V*, which is small if

the pressure is not large, and replace V in a/V by RT/P.)
Express B in terms of Te and PC) and compare the result with that given by

the Berthelot equation (5.19) for hydrogen and oxygen at 25 C. (The experi-
mental values are - 5.9 X lO"4 and 6.8 X 10~ atm.-1

.)

8. A cylinder, of capacity 100.0 liters, contains methane gas originally at 200
atm. and 25 C. Determine by means of the compressibility chart the weight of

gas used up when the pressure in the cylinder has fallen to 50.0 atm. Compare
the result with that for (i) an ideal gas, (ii) a van der Waals gas.

9. The critical temperature and pressure of ethane are 305.2" K and 48.8 atm.,

respectively. Taking R as 0.08205 liter-atm. deg."
1 mole"1

,
determine the van

der Waals constants. What would be the approximate molar volume at the

critical point?
10. Compare the pressures given by (i) the ideal gas equation, (ii) the van der

Waals equation, (iii) the compressibility diagram, for 1 mole of ethylene occupying
a volume of 0.279 liter at 40.0 C.

11. Compare the volumes given by (i) the ideal gas equation, (ii) the van dei

Waals equation, (iii) the compressibility diagram, for 1 mole of hydrogen at 50C

atm. and C,

12. Assuming Bartlett's rule and using the compressibility diagram, determine
the total pressure of a mixture consisting of 23.0 g. of oxygen and 77.0 g. of nitrogen

occupying 155 ml. at C. What would be the pressure if the gases behaved

ideally?
13. By means of Amagat's rule and the compressibility chart, calculate the

volume occupied by the mixture in Exercise 12 at a total pressure of 500 atm. at

C. Compare the result with that which would be found if the gases were ideal.

14. It has been suggested [Kay, Ind. Eng. Chem., 28, 1014 (1936)] that the

compressibility factor of a mixture of gases may be determined by treating the
mixture as a single gas with a critical temperature equal to NiTe i + x*Tet + ,

and a critical pressure of NiPei + N 2Pct + ,
where NI, N 2,

are the mole
fractions of the various gases in the mixture, and Tcl ,

7
?

C 2, are the critical tem-

peratures and P.i, Pc2, the critical pressures. Apply this rule to Exercises

12 and 13.

15. If G is a function of P, V and T, prove that

\fdO\ fdO\ /dV\ ,fdO
\dPj T \dV/P VdP/r \dPjv

and derive an analogous expression for (dG/dT)v-
16. Verify the units of the van der Waals a and b given in Table I.



CHAPTER III

THE FIRST LAW OF THERMODYNAMICS

6. THH CONSERVATION OF ENERGY

6a. The Equivalence of Work and Heat. The relationship between me-
chanical work and heat was first clearly seen by Count Rumford (Benjamin
Thompson) in 1798. As a result of his observations made on the heat de-

veloped during the boring of a cannon, he concluded that the heat produced
was related to the mechanical work expended in the boring process. Some
experiments carried out by H. Davy (1799) appeared to indicate the con-

nection between work and heat, but the most important results were those

obtained by J. P. Joule in an extended series of observations, commenced
about 1840 and lasting for nearly forty years. In a number of carefully

planned and executed experiments, Joule converted known amounts of work
into heat, and measured the amount of heat thus produced by determining
the rise in temperature of a calorimeter of known heat capacity. Among the

methods used for converting work into heat, mention may be made of the

following: stirring water or mercury by a paddle wheel, compression or ex-

pansion of air, forcing water through capillary tubes, passage of an electric

current through wires of known resistance, and passage of induced current

through a coil of wire rotated in a magnetic field,

As a result of his studies, Joule came to the highly significant conclusion

that the expenditure of a given amount of work, no matter what its origin, always

produced the same quantity of heat. This fact is the basis of the concept of a
definite mechanical equivalent of heat, that is, of a definite and constant
ratio between the number of ergs of mechanical work done and the number
of calories produced by the conversion of this work into heat. According to

the most recent experiments, one standard (15) calorie is equivalent to

4.1858 X 107
ergs, i.e., 4.1858 abs. joules, of work, irrespective of the source

or nature of this work. Assuming that 1 int. joule is equivalent to 1.0002

abs. joules ( 3b), it follows that a standard calorie is equivalent to 4.1850
int. joules. However, because heat quantities are usually determined at the

present time by comparison with the heat produced by electrical work, the
value of which is known in int. joules, it has become the practice by chemists
to adopt the relationship between work and heat given in 3e. Thus, a
defined calorie is equivalent to 4.1833 int. joules. The difference between
this value and the one given above, i.e., 4.1850 int. joules, is, at least partly,
due to the difference between the standard and defined calories.

6b. The Mechanical Equivalent from Heat Capacities. It is of interest

to mention that while Joule's experiments were in progress, J. R. Mayer
(1842) calculated, from the specifia heats of air at constant pressure and
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constant volume ( 9b), the heat change accompanying the expansion of air,

and compared the result with the work done against the external pressure.
The mechanical equivalent of heat derived in this manner was close to that

obtained by Joule in an entirely different manner. If modern specific heat
data are used, the results of Mayer's calculation are in excellent agreement
with the accepted value of the relationship between ergs and calories.

Problem: The difference between the heat capacities of 1 g. of air at constant

pressure (1 atm.) and constant volume is 0.0687 cal. deg."
1 at C. The volume

of 1 g. of air at C and 1 atm. is 773.4 cc. Assuming the difference in the heat

capacities to be entirely due to the work done in the expansion of the air at con-

stant pressure, which is not strictly true, calculate the relationship between the

erg and the calorie.

By Gay-Lussac's law of the expansion of a gas at constant pressure [cf. equa-
tion (2.2)], the volume of a gas expands by 1/273.16 of its volume at C for every
1 rise of temperature. In the present case, therefore, the increase in volume of

1 g. of air is 773.4/273.16 cc. for 1 increase of temperature. According to equa-
tion (3.5), the work done in the expansion against the constant pressure of the

atmosphere is equal to the product of the pressure, i.e., 1 atm. or 1.013 X 10*

dynes cm."4 ( 3f), and the increase of volume. If the pressure is in dynes cm.~*
and the volume in cc., the work will be expressed in ergs; thus,

*7*7Q A.

Work of expansion = 1.013 X 106 X z^TZ = 2.87 X 10* ergs.
^27o.lO

This work should be equivalent to the difference between the heat required to raise

the temperature of 1 g. of air by 1 at constant pressure (1 atm.) and constant

volume, in the vicinity of C. This difference is given as 0.0687 cal.; hence,

0.0687 cai. = 2.87 X 10 ergs,
1 cal. = 4.18 X 107

ergs.

6c. The Conservation of Energy: The First Law of Thermodynamics.
The belief that "perpetual motion of the first kind,"

* that is, the production
of energy of a particular type without the disappearance of an equivalent
amount of energy of another form, was not possible has long been accepted

by scientists. No success had attended the many attempts to construct a

machine which would produce mechanical work continuously without draw-

ing upon energy from an outside source, and without itself undergoing any
change. The fundamental significance of this accepted view was not widely
realized until 1847 when H. von Helmholtz showed that the failure to achieve

perpetual motion and the equivalence of work and heat, described above,
were aspects of a wide generalization which has become known as the law of

conservation of energy. This law has been stated in various forms, but its

fundamental implication is that although energy may be converted from one

form to another, it cannot be created or destroyed; in other words, whenever a

quantity of one kind of energy is produced, an exactly equivalent amount of
another kind (or kinds) must be used up.

* For an explanation of "perpetual motion of the second kind," see 18d.
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It should be clearly understood that the law of conservation of energy is

purely the result of experience, for example, the failure to construct a per-

petual motion machine and the constancy of the mechanical equivalent of

heat. It is upon the assumption that such experience is universal that the
first law of thermodynamics is based. This law is, in fact, identical with
the principle of conservation of energy, and can consequently be stated in

either of the forms given above; other ways of stating the law will be men-
tioned later. It may be pointed out that the first law of thermodynamics
can be regarded as valid as long as perpetual motion of the first kind is

found not to be possible, as is apparently the case in the universe of which
the earth is a part. If, in another universe or under other circumstances,
the creation of energy were proved to be feasible, the laws of thermodynamics
would not be applicable. However, this contingency appears to be so re-

mote, as far as human observation is concerned, that it may be completely
disregarded.

Following historical precedent, the validity of the first law of thermo-

dynamics has here been associated with the impossibility of perpetual motion
of the first kind and the constancy of the mechanical equivalent. The law
has nevertheless a much firmer basis, for it leads to a wide variety of con-

clusions, as will be seen in this and later chapters, which have been found to

be in complete agreement with actual experience.
6d. Isolated Systems and the First Law. It was stated in 4a that a

combination of a system and its surroundings may be referred to as an
isolated system. The first law of thermodynamics requires that the total

energy ofan isolated system must remain constant, although there may be changes

from one form of energy to another. This means that any loss or gain of

energy by a system must be exactly equivalent to the gain,or loss, respec-

tively, of energy by the surroundings. The forms of energy are not neces-

sarily the same, but if there is to be a net conservation of energy the amounts
must be equivalent. The conclusion derived from the first law, that the

energy change in a system must be exactly compensated by that of its sur-

roundings, is of great importance, and it will be applied in later developments.

6e. Energy and Mass. Brief reference may be made here to circumstances

under which the principle of the conservation of energy appears to fail; the failure

is apparent, however, rather than real. According to the theory of relativity there

is an equivalence of mass and energy; the loss or gain of energy by a body must be

accompanied by a corresponding change of mass. The change of energy AE is

related to the change of mass Aw by the relationship

A# - c'Am, (6.1)

where c is the velocity of light. In certain reactions between atomic nuclei there

is a liberation of large amounts of energy without the apparent disappearance of

an equivalent quantity of energy of another kind. However, a study of the

masses of the nuclei concerned shows that there is a loss of mass which corresponds

exactly to the energy set free, as required by equation (6.1). The energy liberated

ultimately becomes associated with some form of matter, and there is a gain of

mass of the latter identical with the loss suffered by the nuclei. The equivalence
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of mass and energy means that the laws of conservation of mass and energy can
both be true, but each is a mere corollary of the other. Since nuclear reactions are

not considered in chemical thermodynamics, however, the problems associated

with the relationship between mass and energy will not arise.

7. ENERGY AND HEAT CHANGES

7a. The Energy Content. The energy possessed by a system, that is to

say, its energy content, may be regarded as falling into two main categories.

There is first, the energy which is a characteristic property of the system

itself; this may include the translational energy of the moving molecules,
the energy of vibration and rotation of the molecules, as well as the energy
of the electrons and nuclei. On the other hand, there is the energy which
is determined by the position of the system in a force field, e.g., magnetic,
electric or gravitational, and by the motion of the system as a whole, e.g.,

through space. In thermodynamics the energy in this second category is

usually ignored, and it is only that in the first which is taken into considera-

tion. The latter is sometimes called the internal energy, to distinguish it

from the energy due to external factors, but for present purposes it may be
referred to simply as the energy or the energy content of the system. The
term internal energy can then be used when it is desired to describe the

energy associated with the motions, e.g., vibration, rotation, etc., within

the molecule, as distinct from th%*anslational

energy resulting from the motion of the mole-

cule as a whole.
5"

The energy content of a system must depend
on its thermodynamic state. An increase of

temperature at constant volume, for example,
brought about by the transfer of heat to the

system from the surroundings, must result in

an increase of its energy. It will now be shown,
by utilizing the first law of thermodynamics,
that the energy content is a property of the

system of the kind that is determined only by
the state of the system, and not by the manner
in which it reached that state. In other words,
it will be proved that the energy is a single-

valued function of the thermodynamic variables of
(he system. It is consequently a property to which the results obtained in

4e may be applied.
Consider any system represented by the state A in Fig. 5, in which the

coordinates are the observable properties, e.g., pressure and volume, that

determine the energy content. Suppose the conditions are now altered,

along the path I, so that the state of the system is represented by the

* This motion of the molecule is, of course, not to be confused with the motion of the

system as a whole, which, as stated above, is not included in the thermodynamic energy
content.

H

Volume

FIG. 5. Energy changes in

direct and reverse paths
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point B\ the system is then returned to its exact original state by a series

of changes indicated by the path II.* It is then a direct consequence of the

first law of thermodynamics that the total energy change of the system in

path I must be identical in magnitude, but opposite in sign, to that in

path II, provided the surroundings remain unchanged; if this were not so a

perpetual motion machine would be possible. Imagine, for example, that

the increase of energy in path I were greater than the decrease in returning

by II; then by carrying out the change A > B by path I and the reverse

change B A by path II, the system would be brought back to its original

state, but there would be a residuum of energy if the surroundings were

unchanged. In other words, energy would have been created, without the

disappearance of an equivalent amount of another kind. Since this is con-

trary to the first law of thermodynamics, it must
be concluded that the energy change in the pro-

cessA B, by path I, must be numerically equal
to that involved in the reverse process B > A,

by path II.

It is possible to proceed from A to B by
various paths, I, I', I", etc. (Fig. 6), returning

in each case by path II. From the preceding

argument, it is evident that the energy changes
in I, I', J", etc., must each be numerically equal
to that in II. It follows, therefore, that the

energy changes in the different paths I, I
7

, I",

etc., between the two given states A and /?, must

all be equal to each other. The conclusion to be

drawn, therefore, is that the change in energy of

a system, associated with the passage from one

thermodynamic state to another, depends only on the initial and final states, and

is independent of the path followed. This statement may be regarded as a

form of the first law of thermodynamics.
It is clear from these considerations that the energy of a system is a

"property" of the system in the sense described in 4e. It is, therefore,

possible to ascribe a definite value R to the energy or energy content of a

particular system in a given sLatc; this value will depend only on the state,

and not on the previous history, of the system. If EA represents the energy
in the thermodynamic state A, and EB that in the state B, then the increase

of energy AE"\ in passing from A to B is given by
= En - EA , (7.1)

Volume

FIG. 6. Energy change

independent of path

and is independent of the path taken in the change of state A > B.

* In thermodynamics the word "change" is frequently used to imply "change in thermo-

dynamic state"; the terms "path" or "process" then refer to the means whereby the given

change in state is accomplished. As will be seen below, a particular change may be achieved

by following various different paths, i.e., by different processes.

t The symbol A as applied to a change in a thermodynamic property accompanying a

given process represents the algebraic increase in the property. It is always equal to the
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Since the energy content of a system obviously depends on the quantity
of material contained in the system, it is apparent that the energy E is an
extensive property, as defined in 4d. If {he mass of the system is altered,
the energy content will be affected in the same proportion. Similarly, the

value of &E for any process depends upon the amount of material contained

in the system which undergoes the change.
7b. Work, Heat and Energy Changes. The energy change accompany-

ing the change in thermodynamic state of a system may be due to the per-
formance of work on or by the system, and also to the transfer of energy to

or from the system in the form of heat. The term "work" is used here in

the general sense referred to in 3a, and may include work of expansion or

any other form of mechanical work, as well as electrical work, etc. If W
is the magnitude of the work done, then by convention W is positive if work
is done by the system. In other words, by the convention W is taken as

positive when the system loses energy as the result of doing some form of

work. On the other hand, W is negative if work is done on the system, so

that it gains energy.
The amount of heat transferred is represented by Q, and this is regarded

as positive, by convention, if energy is transferred to, that is, taken up by,
the system in the form of heat; thus, Q is positive when the system gains

energy as heat. Similarly, if heat is transferred from, that is, is given up by,
the system, so that there is a corresponding decrease of energy, Q is negative.
It should be noted that the conventions for W and Q given above are those

which are widely adopted in the study of chemical thermodynamics. There
is no particular reason why these, or any other, conventions should be used,
but once the conventions have been decided upon they must be adhered to

throughout and never changed, if confusion is to be avoided.

Since the system loses energy W, because of work done, and gains energy

Q, by the transfer of heat, the net gain of energy is Q W. By the first

law of thermodynamics, this must be identical with the increase AE in the

energy content of the system; thus,

A# = Q - W. (7.2)

This equation may be regarded as a form of the first law of thermodynamics
or, alternatively, it may be used as a means of defining the energy content E.

Thus, the difference between the heat absorbed by a system and the total work
done by the system may be defined as equal to the increase in a property of the

system catted its energy content.

7c. Energy Change in Cyclic Process. If, as a result of a series of

processes, a system returns to its exact original state, its energy content will

be unchanged so that AS must be zero. In this event, it follows from equa-

value in the final state minus that in the initial state of the process. If A<7 defined in this

manner is positive, the property O has a larger value in the final than in the initial state; on
the other hand, if A(? is found to be negative, Q is larger in the initial state. The significance
of A(7 is, of course, the reverse of that of A0.
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tion (7.2), that the work done by the system is equal to the heat absorbed in

the process, i.e.,

Q - W. (7.3)

This equation is an expression of the impossibility of "perpetual motion of

the first kind," as stated in 6c. Provided the system does not undergo
any net change, i.e., AE is zero, it is impossible to produce work without

drawing upon energy, namely heat, from an outside source. A process, or

series of processes, as a result of which the system returns exactly to its original

thermodynamic state, is referred to as a cyclic process or cycle. In any cycle
A? is zero, and the heat absorbed Q is equal to W the work done by tke

system, in accordance with equation (7.3).

7d. Dependence of Heat and Work on the Path. The heat and work
terms involved in any change of thermodynamic state differ from the total

change of the energy content in one highly important respect. As seen

abpve, the quantity A2? for a given change has a definite value depending only
on the initial and final states of the system, and independent of the path
taken in the process. This is, however, not the case for Q and W', the values

of the heat and work terms vary with the path followed in proceeding from the

initial to the final state. That this is the case may be shown in a number
of ways.

It was seen in 3g that when a system expands the work done is equal
to the product of the external pressure and the increase of volume of the

system. Obviously, the work done for a given volume change will thus de-

pend on the external pressure, the magnitude of which may vary according
to circumstances. The value of W will consequently not be determined

solely by the initial and final states of the system; it will also depend on the

manner in which the change is carried out. According to the first law of

thermodynamics, the increase AJS in the energy content depends only on
the initial and final states, but since AZ? is equal to Q W by equation

(7.2), and W varies with the path, Q, the heat absorbed in the process, must
vary similarly. Incidentally, it should be borne in mind that although Q
and W depend on the path, the difference Q W, which is equal to AB,
does not vary with the path taken, for it is determined only by the initial

and final states of the system. It is seen, therefore, that even though Q
and W are both variable, they are not independent, for their difference must
have a definite value for a given change of thermodynamic state.

The variability of heat and work terms will be evident from other con-

siderations. For example, a certain mass of hydrocarbon may be completely
burnt in air, at constant volume, as in a combustion bomb ( 12g). All the

energy lost by the system appears in the form of heat, no work being done.

On the other hand, in an internal combustion engine a large proportion of

the energy of the hydrocarbon-air system is converted into mechanical work,
and the remainder into heat. Another instance of a similar type is provided
by a system consisting of zinc and dilute sulfuric acid. These substances

may be made to react with one another in a calorimeter, so that the energy
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decrease resulting from their conversion into zinc sulfate and hydrogen is

accounted for almost entirely by the heat evolved. However, by combining
the zinc with an inert metal, such as copper or platinum, a galvanic cell

can be formed with the sulfuric acid as electrolyte. Electrical energy is

then produced, and this may be used to drive a machine, thus doing me-
chanical work. The inert metal is unaffected in the process, and so the

energy, appearing partly as work and partly as heat, is that associated with

the reaction between zinc and sulfuric acid to form zinc sulfate and hydrogen.
It should be understood that although the heat and work changes are

variable quantities, for a given change in thermodynamic state, the values

of Q and W for any specified path are quite definite. It will be seen later

that an adequate specification of the path can often be given in a simple

manner, e.g., constant pressure or constant volume. The results obtained

are then useful for thermodynamic purposes.
7e. Heat and Work Not Properties of a System. The conclusion to be

drawn from the preceding discussion is that unlike the energy content, heat

and work are not thermodynamic properties of a system. They merely repre-
sent different ways in which energy can enter or leave the system, the re-

spective amounts varying with the method whereby the change from the

initial to the final state is carried out. In other words, the performance of

work and the flow of heat represent ways in which the energy of a system
can be changed, but the energy content cannot be regarded as consisting of

definite "work" and "heat" portions.
1

A process involving an appreciable change in the thermodynamic state

of a system is often conveniently considered as made up of a series of in-

finitesimal stages. For each of these stages, equation (7.2) is sometimes
written in the form

dE = dQ - dW, (7.4)

but this equation is liable to be misleading. The energy E is a thermo-

dynamic property of the system, in the sense of 4d, and dE is a complete
differential, which may be treated in the manner described in 4e. The
integral of dE between the limits of the initial (A) and final (B) states of a

process has the definite value EB EA or AJE [cf. equation (7.1)]. This is,

however, not true for the quantities dQ and dW in equation (7.4); these

quantities are not complete differentials, for Q and W are not properties of

the thermodynamic state of the system. In order to avoid the misunder-

standings which may arise from the use of such symbols as dQ and dW, they
will not be employed in this book. Instead, equation (7.4) will be written as

dE = q
-

w, , (7.5)

where dE is the increase in the energy content of the system accompanying
an infinitesimal stage of an appreciable thermodynamic process; q is the

quantity of heat absorbed and w is the work done by the system at the same

1 For discussions of this and related topics, see Tuncll, J. Phys. Chem., 36, 1744 (1932);

Br0nsted, ibid., 44, 699 (1940); MacDougall, ibid., 44, 713 (1940).



8a REVERSIBLE THERMODYNAMIC PROCESSES 41

time. In other words, q may be taken as the energy entering the system as

heat, and w is the amount leaving it as work done during an infinitesimal

stage of a process. The algebraic sums of the q and w terms for all these

infinitesimal stages will give the total heat and work changes, Q and W,
respectively, to which equation (7.2) is applicable.

8. REVERSIBLE THERMODYNAMIC PROCESSES

8a. Thennodynamic Reversibility. A particular type of path between
two thermodynamic states is of special interest. This is the kind of path
for which it is postulated that all changes occurring in any part of the process
are exactly reversed when it is carried out in the opposite direction. Further,
when the given process has been performed and then reversed, both the

system and its surroundings must be restored exactly to their original state.

A process of this kind is said to be thermodynamically reversible. In

general, in order to follow a reversible path, it is necessary that the system
should always be in a state of virtual equilibrium, and this requires that the

process be carried out infinitesimally slowly.

A simple illustration of a reversible process is provided by isothermal

evaporation carried out in the following manner. Imagine a liquid in equi-
librium with its vapor in a cylinder closed by a frictionless piston, and placed
in a constant temperature bath, i.e., a large thermostat. If the external

pressure on the piston is increased by an infinitesimally small amount, the

vapor will condense, but the condensation will occur so slowly that the heat

evolved, i.e., the latent heat, will be taken up by the thermostat. The
temperature of the system will not rise, and the pressure above the liquid
will remain constant. Although condensation of the vapor is taking place,
the system at every instant is in a state of virtual thermodynamic equi-
librium. Similarly, if the external pressure is made just smaller than the

vapor pressure, the liquid will vaporize extremely slowly, and again the

temperature and pressure will remain constant. The system is changing,
since vaporization is taking place, but the process may be regarded as a
series of thermodynamic equilibrium states. Rapid evaporation or con-

densation, by the sudden decrease or increase of the external pressure, will

lead to temperature and pressure gradients within the system, and thermo-

dynamic equilibrium will be disturbed. Processes of this kind are not

thermodynamically reversible.

The isothermal expansion of a gas can be carried out reversibly by placing
the cylinder of gas in a thermostat, as described above, and adjusting the

external pressure so as to be less than the pressure of the gas by an in-

finitesimally small amount. As the gas expands, however, its own pressure

decreases, since the temperature is maintained constant. Hence, if the

process is to be thermodynamically reversible, it must be supposed that the

external pressure is continuously adjusted so as to be always infinitesimally
less than the pressure of the gas. The expansion will then take place ex-

tremely slowly, so that the system is always in virtual thermodynamic equi-
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librium. The heat required by the gas, to balance the energy expended in

the form of work against the external pressure, is taken up from the thermo-

stat, but since the process is carried out extremely slowly the absorption of

energy as heat keeps pace with the loss as work and the temperature of the

system remains constant. If at any instant during the expansion the ex-

ternal pressure is adjusted so that it is maintained just infinitesimally greater
than the gas pressure, the process will be reversed, and the gas will be com-

pressed. At every stage in the compression the system and surroundings
will be, apart from infinitesimal differences, in exactly the same thermody-
namic state as they were at the corresponding point in the expansion.

If the expansion were carried out rapidly, e.g., by suddenly releasing the

pressure on the piston, or the compression were rapid, e.g., by a sudden and

large increase of the external pressure, the processes would not be reversible.

The changes would not involve a continuous succession of equilibrium states

of the system, and hence they could not be reversible. There would be
both temperature and pressure gradients which would be different in the

expansion and compression; the conditions for a thermodynamically re-

versible process would thus not be applicable.
The discussion given above has referred in particular to isothermal

changes, but reversible processes are not necessarily restricted to those taking

place at constant temperature. A reversible path may involve a change of

temperature, as well as of pressure and volume. It is necessary, however,
that the process should take place in such a manner that the system is always
in virtual thermodynamic equilibrium. // the system is homogeneous and has

a constant composition,* two thermodynamic variables, e.g., pressure and vol-

ume, will completely describe its state at any point in a reversible process.
8b. Reversible Work of Expansion. A general expression for the work of

expansion accompanying a reversible process may be readily derived, and
its complete solution is possible in certain cases. If P is the pressure within

a system undergoing a reversible process, then from what has been stated in

8a it follows that the external pressure must be P dP, where dP is a

very small quantity. The work w done by the system when it increases its

volume by an infinitesimal amount dV is equal to the product of the external

pressure and the volume change ( 3f) ; thus,

w - (P - dP)dV.

Neglecting the very small, second order, product dPdV, it follows that

w = PdV. (8.1)

The total work W done in the process will then be equal to the sum of a
continuous series of PdV terms, as the volume changes from its value in the

initial state (Vi) to that in the final state (72). Since P and V are definite

properties of the system, which is always in a virtual state of thermodynamic
equilibrium, dV is a complete differential. The sum of the PdV terms may

t

* Such a system will sometimes be referred to as a "simple system" (cf. 4b).
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thus be replaced by the definite integral between the limits of Vi and F2,

so that

W - C
V*

PdV. (8.2)XVt
PdV.

.,

As may be expected from the discussion in 8a, the value of the integral
in equation (8.2) depends on the path between V\ and F2 . This may be
seen more explicitly in another manner. Since the state of a simple system
at any point of a reversible process can be described completely by the

pressure and volume, the path of the process can be represented by a curve
on a P-F diagram, such as Fig. 5 or Fig. 6. According to equation (8.2)

the work done in such a path is equal to the area enclosed by the curve and
the two ordinates at the initial and final volumes. Since various paths,
such as I, I', I", etc., in Fig. 6, between the initial and final state are possible,
the work of expansion will clearly be a variable quantity.

By specifying the reversible path it is possible to determine the actual

value of the work of expansion from equation (8.2). Two simple cases may
be considered. In the isothermal vaporization of a liquid, the pressure, which
is equal to the vapor pressure at the specified constant temperature, remains
constant throughout. The equation (8.2) for the work of expansion, then
becomes

W = P f
V*

dV = P(F2
- 70

Jv,
= PAF, (8.3)

where F2 V\ is equal to AF, the increase in volume of the system, and P
is the vapor pressure.

Another case of interest is that in which the system consists of an ideal

gas. For n moles, the equation of state is PV nRT, so that P = nRT/V.
For an isothermal expansion involving n moles of an ideal gas, this value of

P may be substituted in equation (8.2) ;
since T and R are constant,

X^
dV Fo^ = nRT\n^- (8.4)

.
y Fi

. l

An alternative form of this result is often convenient. For an ideal gas
PiFi is equal to P2F2 , at constant temperature, and so F2/Fi is equal to

Pi/Pz', hence equation (8.4) can also be written as

TF = nffrin^, (8.5)
*2

for the isothermal, reversible expansion of n moles of an ideal gas.
The results just derived were based on the supposition that the change

was one involving an increase of volume, i.e., expansion; nevertheless, the

equations (8.4) and (8.5) are applicable to both expansion and compression.
All that is necessary is to take Fi and PI as representing the system in the

initial state of the process, while V* and Pj represent the final state. If
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there is an expansion, F2 is greater than Vi, and hence W, the work done by
the system, is positive. On the other hand, if a compression occurs, V* is

less than Fi, and W is seen to be negative by equation (8.4); this is to be

expected, for work is now done on the system. Although the volume change
in a process may result in expansion or compression, the work done, given
by equation (8.4) or (8.5), is always referred to as "work of expansion," It

is seen to be positive when there is an increase of volume, and negative when
the volume decreases.

Problem: Calculate the work of expansion in ergs when the pressure of 1 mole
of an ideal gas is changed reversibly from 1.00 atm. to 5.00 atm. at a constant

temperature of 25.0 C.

The energy units of W in equations (8.4) and (8.5) are determined by those

of R; since the work of expansion is required in ergs, the value of R to be used is

8.314 X 107
ergs deg.-

1 mole-1
. The absolute temperature T is 273.2 + 25 =

298.2 K, the initial pressure Pi is 1.00 and the final pressure P2 is 5.00 atm.; the

pressure units are immaterial, since the work depends on the ratio of the pressures.

Substituting these data in equation (8.5), the work of expansion for 1 mole of gas
is given by

W = RT In ^ = 8.314 X 107 X 298.2 X 2.303 log J
-T2

= - 3.99 X 1010 ergs mole-1
.

Since W is negative, the work is done on the gas; this is to be expected, for the

pressure of the gas increases in the process, and hence the volume is decreased.

In the two special cases of isothermal, reversible expansion considered

above, the work done, as given by equations (8.3) and (8.4) or (8.5), is

evidently a definite quantity depending only on the initial and final states,

e.g., pressure or volume, at a constant temperature. Since there is always
an exact relationship between P and F, it follows from equation (8.2) that

the work done in any isothermal, reversible expansion must have a definite

value, irrespective of the nature of the system. For an isothermal, re-

versible process in which the work performed is exclusively work of expan-

sion, it is apparent, therefore, from equation (7.2), that both W and Q will

be determined by the initial and final states of the system only, and hence

they will represent definite quantities. Actually, this conclusion is appli-
cable to any isothermal, reversible change (cf. 25a), even if work other than

that of expansion is involved.

8c. Maximum Work in Isothermal Reversible Processes. A notable

fact concerning an isothermal, reversible expansion is that the work done is

the maximum possible for the given increase of volume. If the external

pressure were made appreciably less, instead of infinitesimally less, than the

gas pressure, the work done by the expanding gas would clearly be less than
the value given by equation (8.2). The only possible way of increasing the

work would be to make the external pressure greater than in the reversible,

isothermal expansion. If this were done, however, the external pressure
would be either equal to or greater than the gas pressure and hence expansion
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would be impossible. It follows, therefore, that the reversible work of iso-

thermal expansion is the maximum work of this type possible for the given
change in thermodynamic state. The work of isothermal expansion done

by a system in an irreversible process is thus always less than for the same
increase of volume when the change is carried out reversibly. In the case

of an isothermal compression, the reversible work of expansion is (numer-
ically) equal to the minimum amount of work which must be done by the

surroundings on the system in order to bring about the specified change in

volume (or pressure).
In general, the work that can be obtained in an isothermal change is a

maximum when the process is performed in a reversible manner. This is

true, for example, in the production of electrical work by means of a voltaic

cell. Cells of this type can be made to operate isothermally and reversibly

by withdrawing current extremely slowly ( 331) ; the E.M.F. of a given cell

then has virtually its maximum value. On the other hand, if large currents

are taken from the cell, so that it functions in an irreversible manner, the

E.M.F. is less. Since the electrical work done by the cell is equal to the

product of the E.M.F. and the quantity of electricity passing, it is clear that

the same extent of chemical reaction in the cell will yield more work in the

reversible than in the irreversible operation.
As reversible processes must take place infinitesimally slowly, it fol-

lows that infinite time would be required for their completion. Such proc-
esses are, therefore, not practicable, and must be regarded as ideal. Never-

theless, in spite of their impracticability, the study of reversible processes

by the methods of thermodynamics is of great value, even in engineering,
because the results indicate the maximum efficiency obtainable in any given

change. In this way, the ideal to be aimed at is known. In chemistry, too,

the state of equilibrium is important, for it shows to what extent a particular
reaction can proceed; hence, thermodynamics provides information of con-

siderable chemical significance, as will appear in later sections. It will be

seen that the results derived from a study of reversible processes can be

applied to reactions as a whole, even if they are actually carried out in an
irreversible manner.

EXERCISES

1. In the combustion of 1 mole of sucrose (CwEtaOn), approximately 1.35 X 106

cal. are liberated. Should the accompanying loss of mass of the system be

detectable?

2. Evaluate the energy, in calories, set free in the formation of 1 g. atom of

helium nuclei, of mass 4.0028, from two protons, each of mass 1.0076, and two

neutrons, each of mass 1.0090.

3. Determine the maximum work that can be done in the expansion of 5 moles

of an ideal gas against an external pressure of 1 atm. when its temperature is

increased by t C. Express the result in (i) ergs, (ii) defined cal.

4. Assuming ideal behavior, what is the minimum amount of work in ergs

required to compress 1 kg. of air, consisting of 21% by volume of oxygen and 79%
of nitrogen, from 1 atm. to 200 atm. At C?
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5* A vessel containing 1 liter of hydrogen at 1 atm. pressure is to be evacuated
at 26 C to a pressure of (i) 0.01 atm., (ii) 0.001 atm. Compare the minimum
amount of work required in each case, assuming ideal behavior.

6. An ideal gas is compressed isothermally and reversibly from 10 liters to 1.5

liters at 25 C. The work done by the surroundings is 2,250 caL How many
moles of gas are present in the system?

7. The vapor pressure of water at 25 C is 23.76 mm. Calculate the reversible

work of expansion in (i) Iiter-atm., (ii) defined cal., when the pressure of 100 g. of

water vapor is decreased isothennally to 0.001 atm., assuming ideal behavior.

8. Show that for a van der Waals gas, the isothermal, reversible work of ex-

pansion for 1 mole is given by

where V\ is the initial and Fi .the final volume.
9. Determine the reversible work, in Iiter-atm., required to expand 1 mole

of carbon dioxide isothermally from an initial pressure of 200 atm. to a final pres-
sure of 1 atm. at 50 C, assuming van der Waals behavior. (Instead of solving
the cubic equation to obtain the initial and final volumes, they may be obtained

more simply by means of the generalized compressibility diagram.) Compare the

result with that to be expected for an ideal gas.
10. Explain how the compressibility diagram alone could be used to determine

the isothermal, reversible work of expansion of any gas. Apply the method to

Exercise 9.



CHAPTER IV

HEAT CHANGES AND HEAT CAPACITIES

9. THE HEAT CONTENT

9a. Heat Changes at Constant Volume and Constant Pressure, Al-

though the heat change is, in general, an indefinite quantity, there are certain

simple processes, apart from isothermal, reversible changes, for which the

paths are precisely defined. For such processes the heat changes will have
definite values, dependent only on the initial and final states of the system.

Writing the first law equation (7.2) in the form

Q - AE + W, (9.1)

it will be supposed, as is the case in most thermodynamic processes which do
not involve the performance of electrical work, that the work W is only
mechanical work due to a change of volume, i.e., work of expansion. For a

process occurring at constant volume, there is no expansion or contraction,
and hence W will be zero; it follows then from equation (9.1), using the

subscript V to indicate a constant volume process, that

Qv - A#F, (9.2)

so that the heat absorbed at constant volume, i.e., Qv, is equal to the energy
increase AV accompanying the process. Since the latter quantity depends
only on the initial and final states of the system, the same must be true for

the heat change at constant volume. The work term will also be definite,

for it is equal to zero.

At constant pressure P, the work of expansion W may be replaced by
PAF, where AF is the increase of volume; representing constant pressure
conditions by the subscript P, equation (9.1) takes the form

QP - A#P + PAF. (9.3)

The increase AJSp in the energy content is equal to Et Ei, where EI and

#i.are the values for the initial and final states, respectively; similarly, the

accompanying increase of volume AF may be represented by Ft Fi, so

that equation (9.3) becomes

Qp = (E* - El) + P(F, - Fi)

= (Et + PF,) - (Bi + PFi). (9.4)

Since P and F are properties of the state of the system, it follows that the

quantity E + PF, like the energy Ey
is dependent only on the thermo-

dynamic state, and not on its previous history. The extensive, thenno-

47
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dynamic property E + PV is called the heat content,* and is represented

by the symbol H, 1 e., by definition,

// = # + PV. (9.5)

Consequently, equation (9.4) can be put in the form

QP = #2
- //! = A#P, (9.6)

where H i and H 2 are the values of the heat content in the initial and final

states, respectively, and A//P is the increase in the heat content of the system
at constant pressure. The value of Aflp is seen by equation (9.6) to be

equal to Qp, the heat absorbed under these conditions; since the former

quantity depends only on the initial and final states of the system, and not

on the path taken, the same will be true for the heat term Qp. For a process
at constant pressure, therefore, the heat absorbed has a definite value.

The work W done in the constant pressure process, which is equal to

PAF, is also definite, since the pressure P is constant, and the volume change

AF, equal to F2 Fi, is independent of the path. Aside from this argu-

ment, it is obvious, since AE and Qp are here determined by the initial and
final states, that W must now also have a definite value.

9b. Heat Capacities at Constant Volume and Constant Pressure. As
seen in 3d, the heat capacity C may be defined as the ratio of the heat Q
absorbed by a system to the resulting increase of temperature T2 Ti,

i.e., AT. Since the heat capacity usually varies with the actual temperature,
it is preferable to define it in terms of the limiting value as T2 approaches 2\,
that is, as AT is made very small; thus [cf. equation (3.3)],

C = lim -% - ^ , (9.7)
al

where q is the quantity of heat absorbed for a small increase dT in the tem-

perature of the system from T to T + dT. Since the heat absorbed is rot,
in general, a definite quantity depending on the initial and final states of

the system, the unusual notation q/dT is used to define the heat capacity
at the temperature T. In view of the dependence of q on the path taken, it

is evident that the heat capacity will also be uncertain, unless conditions

are specified, such as constant volume or constant pressure, which define

the path.
At constant volume, for example, equation (9.7) may be written as

CV-g, (9.8)

where qv t and hence the heat capacity CV, has a definite value. According
to equation (9.2), the heat Qv absorbed in an appreciable process at constant

*
Engineers and physicists usually refer to it as the enthalpy. The use of the term

"heat content/
1

however, must not be interpreted as implying that the system possesses a

definite amount of heat energy.
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volume is equal to the increase &EV of the energy content in that process.

For an infinitesimal stage in a constant volume process qv is equal to dEv ,

and so the heat capacity at constant volume, as defined by equation (9.8),

becomes

-

*T,r
<9'9'

The partial differential notation is used because E is a function of the volume

(or pressure) as well as the temperature; the subscript V as applied to the

partial derivative in equation (9.9) indicates that in this case the volume is

maintained constant. The heat capacity of a system at constant volume is

therefore equal to the rate of increase of the energy content with temperature at

constant volume.

At constant pressure^ equation (9.7) takes the form

Cp =
g, (9.10)

and since qp is definite, the heat capacity CP at constant pressure is also

definite. Making use of the fact that according to equation (9.6), Qp, the

heat absorbed in an appreciable process at constant pressure, is equal to

A//P, the increase of heat content in the process, it can be shown in a manner
exactly similar to that used in deriving (9.9), that

I)/ (9 -n)

The heat capacity of a system at constant pressure is consequently equal to the

rate of the increase of heat content with temperature at constant pressure.
It should be mentioned that the important equations (9.9) and (9.11),

defining heat capacities at constant volume and constant pressure, respec-

tively, are applicable to any homogeneous system of constant composition.
The (simple) system may be gaseous, liquid or solid, and it may consist of

a single substance or of a solution whose composition does not vary. As
already seen, it is for such systems that the energy is dependent upon only
two thermodynamic variables of state, e.g., pressure and temperature or

volume and temperature.

9c. Heat Capacity Relationships. From the results already given, it is possible
to derive general equations connecting the heat capacity of a system at constant

volume with that at constant pressure. Since the energy E of a homogeneous
system of definite composition is a single-valued function of the volume and

temperature, dE is a complete differential which can be represented by
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[of. equation (4.6)1 *nd hence, by equation (4.10),

According to equation (9.9), (dE/dT)v is equal to Cv, the heat capacity of the

system at constant volume, so that

By definition [equation (9.5)], H = E + PV, and since CP is equal to

(dH/dT)P,
it follows that

Combination of this result with equation (9.14) yields immediately

S),](S?)/
By starting with the relationship

which is permissible since the heat content of a simple homogeneous system, like

the energy content, is dependent only on two thermodynamic variables, e.g., the

pressure and the temperature, it is possible to derive the equation

-

by a procedure analogous to that used in obtaining equation (9.16).

As already indicated, the foregoing results will apply to any homogeneous
system of constant composition. In certain cases, however, some simplification
is possible, and this is especially true when an equation of state, relating pressure,
volume and temperature, is available, as will be seen below. A particularly simple

system is that involving an ideal gas, and this type of system will now be considered.

9<L Energy Content of Ideal Gas. In the experiments made by J. L.

Gay-Lussac (1807) and J. P. Joule (1844) it was found that when a gas was
allowed to expand into a vacuum, there was no gain or loss of heat. Two
similar copper globes, one containing air under pressure and the other evacu-

ated, were connected by a wide tube with a stopcock. When the latter was

opened the temperature of the globe which originally contained the air fell,

but that of the other globe rose by an equal amount. It appeared, therefore,

that there was no net heat change, i.e., the value of Q was zero, when the

volume of the gas was increased in the manner described. Subsequent ex-

periments, carried out along somewhat different lines by J. P. Joule and
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W. Thomson (Lord Kelvin), between 1852 and 1862, showed that a tem-

perature difference, indicating a value other than zero for Q, should have
been observed. However, it appears that the more closely the gas approxi-
mates to ideal behavior the smaller is the heat effect, and so it is probable
that for an ideal gas the value of Q in the free expansion described above
would be actually zero.

Since the gas expands into a vacuum, that is, against no external pressure,
the work of expansion W is also zero. It follows, therefore, from equation

(7.2), that AE must be zero in the process; in other words, there is no change
in the energy content of an ideal gas as a result offree expansion, i.e., a volume
increase in which no external work is done. The energy of the gas depends
on two variables, e.g., volume and temperature; hence, the conclusion just
reached may be represented mathematically in the form

ifx
-

the energy content being independent of the volume, at any constant temperature.
The result expressed by equation (9.19) is taken as one of the criteria of an
ideal gas. It will be shown later ( 20d), by utilizing the second law of

thermodynamics, that (9.19) is a necessity for a gas obeying the PV = RT
relationship at all temperatures and pressures.

There is an important consequence of the fact that the energy content

of an ideal gas, at constant temperature, is independent of the volume.
When an ideal gas expands against an appreciable external pressure, W has
a finite value, but AE is zero; it follows, therefore, from equation (7.2) that

for the isothermal expansion of an ideal gas,

Q = W, (9.20)

the heat absorbed by the system being equal to the work done by it. If the

expansion is carried out reversibly, the work done is given by equation (8.4)

or (8.5), and hence the heat Q absorbed in the isothermal, reversible expan-
sion of n moles of an ideal gas is determined by the same expression, viz.,

Q = nRT In ^ = nRT In ^i- (9.21)
Kl /2

9e. Effect of Pressure and Temperature on Heat Capacity of Ideal Gas.
Since the energy content of an ideal gas, at constant temperature, is

independent of its volume, it must also be independent of the pressure. The
energy of a given quantity of the gas thus varies only with the temperature;
it is consequently possible to write equation (9.9) in the form

Cr =
, (9.22)

so that the heat capacity at constant volume of an ideal gas is independent of
the volume, or pressure, of the gas. The same can be shown to be true for
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the heat capacity at constant pressure. Thus, if equation (9.5), i.e.,

H E + PV, is differentiated with respect to volume, at constant tem-

perature, the result is

dVr \dVr I dV T

For an ideal gas, (dE/dV)r is zero, as seen above, and [d(PV)/dV]T is also

zero, since PV is equal to RT and hence is constant. It follows, therefore,
that the heat content of an ideal gas is dependent only on the temperature, and
is independent of its volume or pressure. The heat capacity at constant

pressure can then be represented by equation (9.11) in the form

(9-23)

indicating that CP for an ideal gas does not vary with the volume or pressure.
For a real gas, the energy and heat contents are known to vary with the

pressure, and hence equations (9.22) and (9.23) cannot be employed. Some
expressions for the variation of CP and CV with pressure or volume will be
derived in later sections ( lie, 21d, 21e).

It must be realized that the conclusion that the heat capacities of an ideal gas
are independent of pressure is not based on thermodynamics alone. It has been

necessary to introduce the result that (dE/dV)r is zero, which may be regarded
either as based on experiment or on the postulated equation of state PV = RT
for an ideal gas. Similar considerations are applicable to the problem of the varia-

tion of heat capacity of an ideal gas with temperature; thermodynamics alone

cannot supply the answer, and it is necessary to introduce other information.

According to the kinetic theory of gases, the heat capacity of an ideal gas, wnose
molecules possess translational energy only, should be independent of temperature
( 15b). Gases which might be expected to approximate to ideal behavior in this

respect are those containing only one atom in the molecule. Experimental ob-

servations have shown that the heat capacities of some monatomic gases, e.g.,

helium and argon, are almost constant over a very considerable range of tempera-
ture. In general, however, all gases do not behave in the same manner in respect
to the effect of temperature on heat capacity as ideal behavior is approached,
i.e., at low pressures, and so it is inadvisable to make a general postulate in this

connection.

9f. Heat Capacity-Temperature Relationships. For reasons which will

be made clear in Chapter VI, the heat capacities of all gases containing two
or more atoms in the molecule must vary with temperature. The form of

the expression which represents this variation cannot be predicted by means
of thermodynamics, and so purely empirical formulae are used. One of

these, which has been widely employed, is a power series of the form

CP a + 0T + yT* + ST78 - -

-, (9.24)

where a, 0, 7, 5, etc., are constants, which must be derived from the experi-

mentally determined heat capacities over a range of temperatures, and T is
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the absolute temperature. The values of these constants for a number of

common gases are recorded in Table II *; when inserted in equation (9.24)

they give the heat capacities of the respective gases, usually within 1 per
cent or less, in the temperature range from 273 to about 1500K. The
constants in Table /II cannot be safely used for extrapolation outside this

range.

TABLE II.* HEAT CAPACITIES OP GASES (Cp) AT 1 ATM. PRESSURE
IN CAL. DEO."1 MOLE-1

Gas ft X 10* y X 10 a X 10

H, 6.947 - 0.200 0.4808

D$ 6.830 0.210 0.468

O2 6.096 3.253 - 1.017

Nj 6.449 1.413 -0.0807

Clj 7.576 2.424 - 0.965

Br, 8.423 0.974 -0.3555
CO 6.342 1.836 -0.2801
HC1 6.732 0.4325 0.3697

HBr 6.578 0.955 0.1581

H8O 7.219 2.374 0.267

CO* 6.396 10.100 -3.405

H,S 6.385 5.704 - 1.210

HCN 5.974 10.208 -4.317
NaO 6.529 10.515 - 3.571

SO 6.147 13.84 - 9.103 2.057

SOS 6.077 23.537 - 9.687

NH, 6.189 7.787 -0.728

* For more accurate values and data for other gases, see Table 3 at end of book.

Because of the variation of heat capacity with temperature, it is some-

times convenient to use the mean value of the heat capacity over a range of

temperatures; this value is then taken as constant for purposes of calculation.

The mean heat capacity Cp in the temperature range from Ti to Tt is

given by

Xr
2

_,

CpdT

^r --
Tf, 7p >

L 2 1 i

and if the value of CP from equation (9.24) is introduced, it is found upon
integration that

CP = -r [a(r2
-

Tl)

a T,) + tr(T! + ^jT2 + H) + . (9.25)

It is then possible to calculate the mean heat capacity of any gas, using the

constants in Table II.

i
Spencer, ei al., J. Am. Chem. Soc., 56, 2311 (1934); (54, 250 (1942); 67, 1859 (1945);

see also, Bryant, Ind. Eng. Chem., 25, 820, 1022 (1933).
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It appears that in certain cases the variation of heat capacity with temperature
is better represented by a function containing a term in T~* in place of T* in

equation (9.24); thus,'

CP - a + &T - yT~*> (9.26)

the constants a, ft and y being quite different from those in Table II. Since
neither equation (9.24) nor (9.26) can be regarded as representing exactly the

dependence of heat capacity on temperature, the simple power series equation
(9.24) will be used whenever possible, because of its more straightforward nature.
In some instances, however, it will be found necessary to employ a function of the

type of equation (9.26).

The heat required to raise the temperature of a system from TI to T,
at constant pressure, i.e., the increase of heat content, is obtained by the

integration of equation (9.11), using (9.24) to express CP as a function of T\
the result is

-)dT

-
T?) + -, (9.27)

constant pressure being understood. The same result can, of course, be
obtained upon multiplying the mean heat capacity Cp9

as given by equation

(9.25), by the increase of temperature.

Problem: How much heat is required to raise the temperature of 1 mole of

oxygen gas from 27 C to 127 C at 1 atm. pressure?

From Table II,

CP = 6.095 + 3.253 X lO"3^ - 1.017 X lO"6^ cal. deg.-
1 mole-1

,

and since Ti is 273 + 27 - 300 K, and T2 is 273 + 127 - 400 K, it follows that

#400 - ffwo - (6.095 + 3.253 X 10"8
!T - 1.017 X

t/300

- 6.095(400 - 300) + i X 3.253 X 10~3
[(400)

a -
(300)

8
]-

i X 1.017 X 10-<t(400)
-

(300)']
710 cal mole"1

.

9g. Difference of Molar Heat Capacities. Since (3E/dV) T is zero for an

ideal gas, equation (9.16) takes the simple form

'

(9-28)

The quantity (dV/dT)p represents the rate of increase of volume with tem-

perature, at constant pressure, and hence the right-hand side of equation

(9.28) may be taken as equal to the work of expansion when the temperature
of the ideal gas is raised by 1 at constant pressure. The difference in the

* Maier and Kelley, /. Am. Chtm. Sac., 54, 8243 (1932); Keiley, U. 8. Bur. Mines Bull.,

371 (1934); see also, Chipman and Fontana, /. Am. Chem. Soc., 57, 48 (1935).
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heat capacities of an ideal gas at constant pressure and constant volume

may thus be attributed to the work of expansion, as a result of the increase

of volume at constant pressure; at constant volume there is, of course, no
work of expansion. It will be understood that this condition can hold only
if (dE/dV)r is zero, i.e., for an ideal gas. For real gases the difference

between CP and CV must include an allowance for the change in energy
content due to the increase of volume, in addition to that due to the work
of expansion. Actually this is quite small for most gases Under ordinary
conditions as is apparent from the value of the mechanical equivalent of

heat derived in the problem in 6b; this calculation is based on the tacit

assumption that (dE/dV)r is zero for air at C.

Since for 1 mole of an ideal gas PV = RT, it is seen that (dV/dT)P is

equal to R/P, and hence

so that from equation (9.27) ;

CP - Cv - B, (9.29)

where CP and Cv are now the molar heat capacities of the ideal gas. The
values for constant pressure and constant volume, respectively, thus differ

by a constant amount, equal to the molar gas constant, i.e., 1.987 cal. deg.~*
mole""1

. For real gases CP Cv will not be quite equal to R, although the

discrepancy should not be large, except perhaps at high pressures and low

temperatures when departure from ideal behavior is considerable. Further
theoretical consideration of this subject will be given in Chapter VIII.

10. ADIABATIC PROCESSES

lOa. Reversible Adiabatic Expansion and Compression. An adiabatic

process is defined as one in which no heat enters or leaves the system, at any
stage. For every infinitesimal stage of the process q is zero, and hence, by
equation (7.5), dE is equal to w. If the work is restricted to work of ex-

pansion, w is given by PdV, so that

dE - - PdV.

In this equation, P represents, strictly speaking, the external pressure.

However, if the adiabatic process is carried out reversibly, the actual pressure
of the system is virtually identical with the external pressure ( 8a), so that
under these conditions P is the pressure of the system. For an ideal gas,
dE may be replaced by CvdT, as shown by equation (9.22), since the energy
content is independent of the volume, so that

CvdT - - PdV. (10.1)

It will be observed from this result that in a reversible, adiabatic process the

signs of dV and dT are opposite; thus, if the volume of the gas is increased,
in such an^adiabatic expansion, the temperature must fall, whereas if the
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volume is decreased, in a compression, the temperature will rise. This is to

be expected from general considerations: a gas does work when it expands,
and as no heat enters or leaves the system, the energy content of the gas
must decrease. Since the energy is independent of the volume at constant

temperature, this decrease of energy is accompanied by a fall of temperature.
lOb. Temperature Changes in Reversible Adiabatic Processes. The re-

lationship between the pressure (or volume) and the temperature of an ideal

gas in a reversible, adiabatic expansion or compression may be derived in the

following manner. If 1 mole of the gas is considered, PV is equal to RT,
so that substitution for P in equation (10.1) gives

dV
CvdT =-RT~>

dT^^dV
that is

Cvd In T = - Rd In 7, (10.2)

where CV is the molar heat capacity of the ideal gas at constant volume. If

Cv is assumed to be independent of temperature, it is possible to integrate

equation (10.2), the limits being T\ and T%, the initial and final temperatures,
and Vi and V*, the corresponding volumes; the result is

CVln ~? - R In^ - R In (10.3)
Jtl Kl K 2

For 1 mole of an ideal gas, R is equal to CP CV, by (9.29), so that, after

making this substitution and converting the logarithms, equation (10.3)

becomes
'Cp

= (7
-
l)log^, (10.4)

where the symbol 7 is used to represent Cp/Cv> the ratio of the heat ca-

pacities at constant pressure and constant volume. The equation (10.4),

or its equivalent, ' * '

\RICv
(10.5)

or

TV~l = TVRICv = constant,

can be utilized to determine the temperature change in a reversible, adiabatic

process with an ideal gas.

Problem: A quantity of air at 25 C is compressed adiabaticaliy and reversibiy

from a volume of 10 liters to 1 liter. Assuming ideal behavior, and taking Cv for

air as 5 cai. deg.~
x mole"-1, calculate the (approximate) final temperature of the air.
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Utilizing equation (10,5), T l is 273 + 25 - 298 K; Vi is 10 liters, F, is 1 liter,

Cv is 5.0 cai. deg."
1 mole^1

,
and R may be taken as 2.0 cal. deg."

1 mole*"1 with
sufficient accuracy (note that Cv and R must be expressed in the same units);

hence,
T* _ / 10\ 2/ft

298 VT /
'

T2 = 298 X 102/6 = 749 K.

The final temperature is thus 749 - 273 = 476 C.

For many purposes it is more useful to develop an expression relating
the temperature to the pressure in a reversible, adiabatic change. Since an
ideal gas is under consideration, it follows that P\Vi = RT\ and P2Vz =

if these equations are combined with (10.5) so as to eliminate Vi and
it is found that

iRICp

or

T T = constant.

The results of equations (10.5) and (10.6) may be summarized in the

convenient form ,

1
,

r2 1 . P2 1
,

Vi *

p log^r
= TT log = log-K 1 1 Lp 1 i CK V 2

Problem: A quantity of air at 25 C is allowed to expand adiabatically and

reversibly from 200 atm. to 20 atm. Assuming ideal behavior, calculate the

(approximate) final temperature.

In this case 1\ is 273 + 25 = 298 K, Pi is 200 atm., and P 2 is 20 atm. Since

Cv was given above as 5.0 cal. deg.~
l mole"1

,
and assuming CP Cv = #i as for

an ideal gas, Cp is 7.0 cal. deg.""
1 mole"1

. Hence, by equation (10.6),

jr2 = / 20

298
""

\ 200

7
T

2
- 298 X (A) 2/7 = 154 K.

The final temperature is thus 154 - 273 ~ 119 C.

The marked fall of temperature accompanying adiabatic, or approxi-

mately adiabatic, expansion is used to some extent for cooling purposes in

connection with the liquefaction of gases.
lOc. Pressure-Volume Relationship in Reversible Adiabatic Process.

By combining equations (10.5) and (10.6) so as to eliminate T\ and 7^, it

is found that

P 1V\ = l\Vl or PiFFr/C|r = P*VSflCv
, (10.7)

or

pycpicv = constant.
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The relationship between the pressure and volume at any instant in a re-

versible, adiabatic process with a given mass of an ideal gas
*
is thus repre-

sented by PVt constant, which may be compared with the constancy of

the simple productPV for an isothermal process. Since CP is always greater
than CF, the ratio Cp/Cr, i.e., y, is greater than unity; hence, the increase

of volume for a given decrease of pressure will be
less in an adiabatic than in an isothermal ex-

pansion. That is to say, the plot of the pressure

against the volume, i.e., the pressure-volume
curve (Fig. 7), will be steeper for an adiabatic

than for an isothermal process, starting at the
same point. The reason for the smaller volume
increase in an adiabatic expansion is to be at-

tributed to the accompanying fall of tempera-
ture, as explained above, which will tend to

diminish the volume. In the isothermal pro-

cess, the temperature is, of course, constant.

lOd. Work of Expansion in Reversible Adia-
batic Process. The work of expansion w in an
infinitesimal stage of a reversible, adiabatic pro-

cess, i.e., PdV, is given by equation (10.1) as

Volume

FIG. 7. Adiabatic and
isothermal processes

equal to CydT; hence, for an appreciable process the total work of expan-
sion W, derived from equation (8.2), is

/Kt /r
W - I PdV = - 1 CvdT.

JY JT\

If Cy may be taken as constant, it follows that

w - - cv(T* - ro - cv(T l
-

(10.8)

The negative sign means that work is done on the gas when T* > Ti, that is,

in an adiabatic compression. Equation (10.8) may be combined with

equations (10.4) or (10.6), so as to eliminate Ti and T2 and obtain expressions
for the work of expansion in terms of the volumes or pressures, respectively.

Problem: Calculate the work of expansion in ergs when the pressure of 1 mole
of an ideal gas at 25 C is changed adiabatically and reversibiy from 1.0 atm. to

5.0 atm. The molar heat capacities may be taken as equal to those of air. (Com-
pare the problem in 8b, which is for an isothermal expansion between the same

pressure limits.)

This problem may be solved by calculating T2 as in the second problem in lOb,

and then substituting the result in (10.8), TI being known. Alternatively, by
combining equation (10.6) with (10.8) it is readily found that

(10.9)[/Pi\*
/Cjp l

'-(K) J>
* The anumption made in the integration of equation (10.2), namely, that the heat

capacity ia independent of the temperature, should be borne in mind.
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from which W can be derived directly by means of the available data. The
energy unit of W will be that of the factor CV; this is 5.0 cal. deg.~

l mole"1
,
or

5.0 X 4.18 X 107
ergs deg.-

1 mole'1
. In the exponent the units of R and Cv are

immaterial as long as they are consistent; hence, R may be taken as 2.0 and CP as

7.0 cal. deg.~
l mole'1

. Substituting these values in equation (10.9), with TI = 273

+ 25 298 K, Pi - 1.0 and Pa - 5.0 atm., the result is

[/
5 \ 2'7 1

1 - (
j^j

- - 3.64 X 1010
ergs mole"1

.

The work required for the adiabatic process is seen to be somewhat less numerically
than for the isothermal expansion, because of the smaller volume change.

lOe. Ratio of Heat Capacities. The results obtained in the preceding sections

have been applied in determining the value of % the ratio of the heat capacities
of a gas. In the method of F. Clement and C. B. Desormes (1812), the gas at a

pressure greater than atmospheric is placed in a large vessel provided with a stop-
cock and a manometer for indicating the pressure. The initial pressure Pi is

observed, and the stopcock is opened to allow the pressure to fall to that of the

atmosphere P*; the stopcock is then immediately closed. During the expansion,
which is virtually adiabatic, the gas is cooled from the initial temperature T\ to

the lower value T2,
and as it warms up to its original temperature, the pressure

rises to PJ. If V\ is the volume of 1 mole of an ideal gas at pressure Pi, and F2

is the volume after the adiabatic expansion when the pressure is P 2, then by equa-
tion (10.7), P\V1 = PjVJ. When the original temperature T\ is restored, after

the adiabatic expansion, the pressure of the gas is P(, and since 1 mole still occupies
the volume V2,

because the vessel was closed after the expansion, it follows that

Pin = p;n, (10.10;

where the left-hand side refers to the initial state and the right-hand side to the

final state, at the same temperature. Eliminating V\ and V* from equations
(10.7) and (10.10), the result is

log P!- log P..7
log P t

-
log PI

U 'U '

From the three pressure measurements, therefore, the ratio of the heat capacities
can be calculated.

In a modification of the foregoing procedure (0. Lummer and E. Pringsheim,
1891), the stopcock is allowed to remain open after the adiabatic expansion, and
the temperatures before (T\) and immediately after (7^) expansion are measured

by a sensitive thermometer. Since the corresponding pressures PI and P% are

known, y can be obtained from equation (10.6) in the form

log ft -log P.

log (Pi/p) -
log

It will be recalled that equations (10.11) and (10.12) are both based on the as-

sumption that the gas behaves ideally; for actual gases, however, the results must
be corrected to ideal behavior by the use of a suitable equation of state.
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For an ideal gas, the value of y should be constant, but for real gases,

other than monatomic, it varies appreciably with pressure and temperature,
as shown by the results for air, given in Table III. 9 In general, the ratio

TABLE III. VARIATION OP RATIO Cp/Cv FOR AIR WITH
TEMPERATURE AND PRESSURE

Temperature Pressure

1 50 100 200 atm.
- 79 C 1.41 1.77 2.20 2.33

1.403 1.53 1.65. 1.83

100 1.401 1.45 1.50 1.60

of the heat capacities decreases with increasing temperature. As the pres-
sure is increased y increases, passing through a maximum and then decreas-

^8 (cf- 21d); for air at 79 C the maximum was observed at 150 atm.,
but at Oc and 100 C it occurs at higher pressures than are given in the table.

When actual data are not available, a useful approximate rule for ordi-

nary temperatures and pressures, is to take y as 1.67 for monatomic gases,
1.40 for diatomic gases, 1.30 for simple polyatomic gases, such as water,
carbon dioxide, ammonia and methane. It may be noted that the heat

capacity ratio for hydrogen gas increases at low temperatures toward the

value for a monatomic gas. This matter will be explained in Chapter VI.

11. THE JOULE-THOMSON EFFECT

lla. Expansion Through a Throttle. In the experiments of Joule and

Thomson, referred to in 9d, a gas was allowed to stream from a higher
to a lower pressure through a tube con-

taining a "throttle/' consisting of a porous

plug of silk or cotton (Fig. 8). By the use

T2 of the throttle the expansion took place

Fro. 8. Throttled expansion of a gas
slow1^ and the pressure on each side of the

plug was maintained virtually constant.

The tube was made of a material having a low heat conductance, e.g.,

boxwood, and the conditions were made as nearly adiabatic as possible.

Suppose PI is the constant pressure of the gas before passing through the

throttle, and P2 ^ the constant pressure after the passage; the corresponding

temperatures are T\ and 7V The volume of 1 mole of the gas at PI and
Ti is Fi, whereas at P2 and T2 the molar volume is F2 . The work done W
by 1 mole of the gas as it streams through the plug is equal to P^Vi PiFi,
for the volume is increased by F2 at the pressure P2 while decreasing by
the volume V\ at the pressure PI. Since the whole process is assumed to

be adiabatic, so that Q is zero, it follows that the loss of energy from the

system in the form of work, i.e., W, must be equal to the decrease AZ?

in the energy content, by equation (7.2). If EI and E* are the energy con-

1 Data mainly from International Critical Tables, Vol. V, pp. 81-82.
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tents of 1 mole of the gas in the initial and final states, i.e., before and after

passage through the throttle, then

-
(E, - EJ - P272

-
Ptfi, (11.1)

the left-hand side representing the decrease of the energy content, and the

right-hand side the work done. By rearrangement of equation (11.1), it is

seen that

Ei + PiVi - E* + P2F2 , (11.2)

and since, by definition, the heat content H is equal to E + PV, it follows

from (11.2) that Hi = H*, so that in the throttled expansion process the heat

content of the system remains constant.

lib. The Joule-Thomson Coefficient. As seen in 9a, the heat content
of a system is determined precisely by the thermodynamic state of the sys-

tem, so that dH is a complete differential; thus, taking pressure and tem-

perature as the variables,

For a process in which the heat content is constant, equation (11.3) may be

equated to zero, so that, inserting the subscript H to indicate constant heat

content,

or

()--(),/(),
The quantity (dT/dP)a is called the Joule-Thomson coefficient, and is

represented by the symbol MJ.T.; it is equal to the rate of change of tempera-
ture with the pressure in a streaming process through a plug or throttle.

According to equation (9.11), (3H/dT)P is the heat capacity of the gas at

constant pressure, i.e., Cp, so that (11.4) is equivalent to

,11 KN'

(1L5)

Utilizing the relationship H = E + PV, this expression takes the form

and since E is a function of P, V and T
9
which are not independent, it follows

from equation (4.9) that

W\ _, /d(PF)
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Equation (11.6) is quite general and should apply to any gas,* for its

derivation is based entirely on the first la\y of thermodynamics without as-

suming any specific properties of the system. However, for an ideal gas,

(dE/dV)r is zero, as seen earlier, and since PV = RT, it follows that

td(PV)/dP^r is also zero; hence, since CP is finite, it is seen from equation

(11.6) that for an ideal gas MJ.T. must be zero.f The Joule-Thomson coeffi-

cient of an ideal gas should thus be zero, so that there should be no change
of temperature when such a gas expands through a throttle, t

lie. Sign and Magnitude of the Joule-Thomson Effect. The quantity

(dE/dV)r has the dimensions of energy/volume, which is equivalent to

force/area and hence to pressure; it is, therefore, frequently referred to as

the internal pressure, especially in connection with liquids. Physically, it

may be regarded as a measure of the pressure in the interior of a fluid, i.e.,

gas or liquid, resulting from the attractions and repulsions of the molecules;
it has, in fact, been identified approximately with the a/F2 term of the van
der Waals equation (cf. 20d). It is because the energy content of a real

gas, unlike that of an ideal gas, is not independent of the volume, that it is

necessary to introduce the a/F2
,
or analogous, term in the equation of state

for the real gas.

There are several methods for obtaining an indication of the magnitude
of the internal pressure, and these all show that (dE/dV)r is usually positive
for real gases. Further, since it is approximately equal to a/F2

,
it increases

with increasing pressure. The factor (dV/dP)r in equation (11.6), on the

other hand, is always negative, since increasing pressure, at constant tem-

perature, is invariably accompanied by a decrease of volume. It can be

readily seen from an examination of the pressure-volume isotherm of a gas
that the numerical value of the slope (dV/dP^T is large at low pressures, and
diminishes as the pressure is increased. Hence, it follows that the first term
in the bracket on the right-hand side of equation (11.6) is usually negative,
its numerical value being approximately independent of the pressure.

Turning to the term [dCPF)/dP]r, it is seen that this is the slope of the

plot of PV against P, as in Fig. 2. At ordinary temperatures, this is nega-
tive for all gases, except hydrogen and helium, at low pressures, but it be-

comes positive at high pressures. At low and moderate pressures, therefore,

both terms in the bracket of equation (11.6) are negative, and since the heat

capacity Cp is always positive, it follows that the Joule-Thomson coefficient

MJ.T. will have a positive value. In other words, since MJ.T. is equal to

(dT/dP)n, most gases experience a decrease of temperature as the result of

a Joule-Thomson (throttled) expansion, at moderate and low pressures and

* The foregoing equations are really applicable to any fluid, i.e., liquid or gas, but they
are usually employed for gases.

fThe same conclusion may be reached directly from equation (11.4) or (11.5), since

(dH/dP)T is zero for an ideal gas (cf., 9e).

t It may be noted that for real gases MJ.T. does not necessarily approach zero at very
low pressures, in spite of the fact that (OE/dV)r approaches zero and PV approaches RT
(cf. 22a).
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ordinary temperatures. As the gas pressure is increased, the numerical
value of the first term in the bracket remains approximately constant; at the
same time the second term decreases numerically, and eventually becomes

positive. This means that the Joule-Thomson coefficient should decrease
with increasing pressure, passing through a zero value, and finally changing
sign. At sufficiently high pressures, therefore, a reversal of the Joule-

Thomson effect should be observed, the coefficient MJ.T. becoming negative;
under these conditions a throttled expansion will be accompanied by an
increase of temperature.

At lower temperatures not only is the numerical value of [jd(PV)/dP~]T
larger at low pressures, but higher pressures must be attained before it

changes sign. It follows, therefore, that at low pressures the Joule-Thomson
coefficient MJ.T. should increase as the temperature is diminished, and higher
pressures will be required before a reversal occurs. The temperature at

which the Joule-Thomson effect changes sign, at a given pressure, is called

the inversion temperature; at this temperature MJ.T. is, of course, zero.

From what has just been stated^the inversion temperature for any gas should
increase with the pressure.

The foregoing conclusions, derived from the purely thermodynamic
equation (11.6) in conjunction with experimental data on the compressi-

bility of gases, are in complete agreement with direct observations of the

Joule-Thomson effect, as may be seen from the data for nitrogen recorded
in Table IV. 4 At 200 atm. pressure, there is evidently an inversion tern-

perature between 100 and 150 C, actually about 126 C, but it de-

creases with decreasing pressure. It will be observed, especially at the

higher pressures, that the value of the Joule-Thomson coefficient passes

through a maximum as the temperature is changed. A high-temperature
inversion point, e.g., just above 200 C at 200 atm., is thus to be expected;
such inversion points have actually been observed. This subject will be
considered more fully from another standpoint in 22b.

4 Roebuck and Ostqrberg, Phys. Rev., 48, 450 (1935); for other determinations of the

Joule-Thomson effect see Roebuck, et a/., Proc. Am. Acad. Arts Sci., 60, 537 (1925); 64, 287

(1930); PA.v. Rev., 43, 60 (1933); 45, 322 (1934); 46, 785 (1934); 55, 240 (1939); J. Chtm.

Phys.. 8, 627 (1940^ ; J A tn Chcm. Soc., 64, 400 (1942); Sage, Lacey, et aL, Ind. Eng. Chtm.,

28, GOi, 715 (1936); 31, 369 (1939).
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For hydrogen and helium the value of PV increases with pressure at all

pressures, at ordinary temperatures; thus, [d(PF)/dP]r is positive at all

pressures, and consequently the Joule-Thomson coefficient is negative under
these conditions. This means that the (upper) inversion temperature for

hydrogen and helium is below the ordinary atmospheric temperature at all

pressures. The difference in behavior exhibited by these gases, as compared
with that of other gases at normal temperatures, can thus be accounted for.

At sufficiently low temperatures, hydrogen and helium behave like other

gases, having a positive value for the Joule-Thomson coefficient at moderate
and low pressures; it decreases and eventually changes sign as the pressure
is increased.

lid. Cooling by the Joule-Thomson Effect. The fall of temperature that

occurs when a gas undergoes throttled expansion, at suitable temperatures and

pressures, hajs been utilized in the industrial liquefaction of gases. As seen above,
the Joule-Thomson coefficient has the largest positive values, and hence the cooling

accompanying the expansion will be most marked, at low temperatures, and pre-

ferably at low pressures. In order to obtain the maximum efficiency, therefore,
the temperature of the gas to be liquefied is first reduced either by the performance
of work in a gas engine, where it undergoes something approaching adiabatic

expansion ( lOd), or by utilizing the cooling effect of another portion of the gas
which has been passed through a throttle.

Because of the variation of the Joule-Thomson coefficient with both tempera-
ture and pressure it is not easy to calculate the change of temperature resulting
from a given throttled expansion, even when such data as in Table IV are available.

This can be done, however, by a series of approximations. By estimating a rough
average for the Joule-Thomson coefficient, some indication of the fail of tempera-
ture can be obtained.

Problem: Estimate the final temperature accompanying the throttled expan-
sion of nitrogen, initially at 25 C, from 200 atm. to 1 atm. pressure.

An examination of Table IV shows that at 25 C, the mean value of /XJ.T. in

the range from 200 atm. to 1 atm. is about 0.14 atm.~l
,
so that the decrease of

pressure by 199 (approx. 200 atm.) means a fall of temperature of 28. As a first

approximation, therefore, the final temperature is seen to be 3.0 C. It is now
possible to estimate a more accurate value of MJ.T. in the pressure range of 200
atm. to 1 atm. and temperatures of 25 to 3.0 C. This is seen to be about

0.155 atm.~J

,
so that the fall of temperature is 31, leading to a final temperature

of - 6 C.

lie. Effect of Pressure on Heat Capacity. Since Cp is equal to (dH/dT)P,

it follows that the variation of the heat capacity with pressure, at constant

temperature, is given by

(dC,\ _ ffg
.

\dP ) T
~
BTdP ( '

The heat content of a simple system is a single-valued function of the thermo-

dynamic state, e.g., of the temperature and pressure, and hence the order o*

differentiation on the right-hand side of equation (11.7) is immaterial. Utilizing
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equation (11.5), therefore, it follows that

(dCP \ \JL(*!i
\dP / T

=

giving a relationship for the variation of heat capacity with pressure which is

applicable to all fluids. For an ideal gas /XJ.T. and (dnj.T./dT)p are both zero, so

that the heat capacity does not vary with pressure; this conclusion is in agreement
with that reached in 9e.

From data on the variation of the Joule-Thomson coefficient and heat capacity
with temperature it is thus possible to determine the variation of the heat capacity
of a fluid with pressure. This procedure has been utilized in certain instances.

Problem: From the data in Tables II and IV estimate the variation of the
molar heat capacity of nitrogen with pressure, at ordinary temperatures and

pressures.

From Table II, for nitrogen

CP = 6.45 + 1.41 X 10~3 !F - 0.81 X 10-7 !T2 cal. deg.-
1 mole-1

,

~ 1.41 X 10~3 - 2 X 0.81 X lO-'T
7
cal. deg.-

2 mole-1
.

P

At about 300 K, therefore,

CP = 6.87 cal. deg."
1 mole"1

,

(^ )
1.36 x 10~3 cal. deg.-

2 mole-1
.

\ d* IP

From Table IV, MJ.T. at ordinary temperatures and pressures is seen to be
about 0.21 atm.-1 and (dm.t./dT)p is approximately - 1.5 X 10~8 atm.-1

;
if

these results are inserted into equation (11.8), it is seen that

= ~
-21 x L36 x 10

~8 + 6 -87 x 1.5 x io-
T

= 1.0 X 10~2 cal. deg.-
1 mole-1 atm.-1

.

The heat capacity of nitrogen should thus increase by approximately 1.0 X 10""2

cal. deg.-
1 mole"1 for an increase of 1 atm. in the pressure, at ordinary temperatures

and pressures.

The subject of the influence of pressure on heat capacity will be con-

sidered from another thermodynamic point of view in 21d.

EXERCISES

1. Give the complete derivation of equation (9.18).

2. By combining equations (10.5) and (10.8) derive an expression for the work
of reversible, adiabatic expansion of an ideal gas in terms of the initial and final

volumes. Determine the work done in liter-atm. when 1 mole of a diatomic gas
at C expands from 10 ml. to 1 liter.
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3. Determine the values of AT and &E in calories when 1 mole of liquid water

ja heated from 25 to 100 C at 1 aim. pressure. The mean heat capacity of water

may be taken as 1.001 cal. deg.~* g.~* and the mean coefficient of cubical expansion
as 4.0 X 10~< deg.-*; the density of water at 25 C is 0.9971 g. cc.~l.

4. Calculate the molar heat capacity at 1 atm. pressure of nitrogen at 0, 500
and 1000 C. Compare the results with the mean heat capacity in the range
from to 1000 C.

5. Evaluate the amount of heat in ergs which must be supplied to an ideal gas
in the isothermal, reversible expansion from a pressure of 1.00 atm. to 25.0 atm.

at 25 C.

6. How much heat, in calories, must be supplied to 100 g. of carbon dioxide in

order to raise the temperature from 27 C to 727 C at 1 atm. pressure?
7. In the treatment of adiabatic processes in the text, the heat capacity has

been assumed to be independent of temperature. How could allowance be made
for the variation of CP with temperature in equation (10.6)? (The gas may be

assumed to be ideal in other respects.) Use this method to estimate the work done,
in calories, and the final temperature in the reversible, adiabatic compression of 1

mole of oxygen from 10 liters to 1 liter, the initial temperature being 25 C. What
would be the result if Cp were taken as having the constant (mean) value of 7 cal.

deg.~* mole""1?

8. A diatomic gas is to be compressed adiabatically from 1 atm. to 25 atm.,
the initial temperature being 25 C. The compression may be carried out in one

stage or it may be performed in two stages, from 1 atm. to 5 atm., and then from
5 atm. to 25 atm., the gas being allowed to regain its original temperature between
the two stages. Which process can be carried out with the smaller expenditure
of energy?

9. When a gas is compressed adiabatically to half its initial volume, its tem-

perature is observed to increase from 25 to 200 C. Estimate the (approximate)
mean molar heat capacity of the gas at constant pressure.

10. Compare the values of AH and AJ57 for the vaporization of 1 mole of water
at 100 C and 1 atm. pressure. The heat of vaporization of water is 539 cal. g.~

x

at the normal boiling point; the specific volume of the vapor is then 1675 cc. g."
1
,

and that of the liquid is approximately unity. Suggest why the value of &E in

this case is sometimes called the "internal heat of vaporization." ,

11. Assuming (dE/dV)T for a van der Waals gas to be equal to a/7*, show
that the increase of the energy content in the isothermal expansion of 1 mole of

the gas, under such conditions that no work is done, is given by

Correlate this result with the analogous term in the expression for W in Exercise 8,

Chapter III.

12. Calculate the (approximate) increase of internal energy in calories when
1 mole of carbon dioxide is expanded isothermally from 1 liter to 10 liters, assuming
van der Waals behavior.

13. With the aid of equation (9.16) and the result derived in Exercise 11, show
qualitatively that the value of CP Cv for a gas such as nitrogen should pass

through a maximum as the pressure is increased (cf. 21a). (Note from Fig. 2
that (dV/dT)p is larger at low pressures and smaller at higher pressures than for

an ideal gas.)
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14. If a is independent of temperature, show that Cy for a van der Waals gas
should be independent of the pressure (or volume) at constant temperature, and
that both CP and Cp/Cv should pass through a maximum with increasing pressure,
as in Table III (cf. 21e). Use the results of Exercises 11 and 13.

15. Combine equations (0.18) and (11.5) to derive an expression for CP CV
at the Joule-Thomson inversion point. What is the value for a van der Waals gas?

16. By utilizing a relationship of the form of equation (4.9), together with the
result of Exercise 11, and the van der Waals equation in the low-pressure form
obtained in Exercise 7, Chapter II, show that

-__ anddPT~ RT
and

dP r RT

By introducing H = E + PV, show that

(dH\ _ 2a

\dPJT~ RT'
and hence derive the result

1 / 2a= - ~ b

for the Joule-Thomson coefficient of a van der Waals gas at moderate pressures

(cf. 22a). Show that for a real gas, the Joule-Thomson coefficient is not neces-

sarily zero even at zero pressure.
17. The variation of the Joule-Thomson coefficient of air with the absolute

temperature T at 1 atm. pressure is given by

ninT* i
138 '3 319.0 , . .

MJ.T.
- 0.1975 + y

---
^~ deg. atm.~l

CHoxton, Phys. Rev., 13, 438 (1919)]. The dependence of CP on temperature at

1 atm. is given approximately by

CP 6.50 + 0.00107
1
cal. deg.~

l mole-1
.

Determine the rate of change of CP for air with pressure in cal. deg.~
l atm."1 mole"1

in the region of 27 C and 1 atm. pressure.
18. At 25 C, the variation of Cp for carbon dioxide with pressure is repre-

sented by
CP - 8.90 + 0.0343P + 0.0123P*,

with P in atm., and the variation with temperature, at 1 atm. pressure, is given

(approximately) by
CP = 6.80 + 0.0072IT.

In the vicinity of 1 atm. pressure, the Joule-Thomson coefficient of the gas is 1.08

atm.""1
. Determine the rate of change of MJ.T. with temperature at ordinary pres-

sures. (The experimental value is about 0.010 atm.""1
).

19. Show that for a van der Waals gas (dE/dV)r is proportional to P1
(cf.

Exercise 11), and (dV/dP)r is approximately proportional to 1/P1
,
at not too

high pressures; hence, justify the statement in lie that the first term in the

bracket on the right-hand side of equation (11.6) is approximately independent
of pressure.



CHAPTER V

THERMOCHEMISTRY

12. HEAT CHANGES IN CHEMICAL REACTIONS

12a. Heat of Reaction. The science of thermochemistry is concerned
with the heat changes associated with chemical reactions; in other words, it

deals essentially with the conversion of chemical energy into heat energy,
and vice versa. Thermochemistry is, therefore, to be regarded as a branch
of thermodynamics, especially since, as will be seen shortly, the subject is

based largely on the first law. Further, the data obtained in thennochemical
studies are utilized in the evaluation of properties of thermodynamic interest.

The heat change associated with a chemical reaction, like that for any
other process, is an indefinite quantity depending on the path taken. How-
ever, as seen in 9a, if the process is carried out at constant pressure or

constant volume, the heat change has a definite value, determined only by
the initial and final states of the system. It is for this reason that heat

changes of chemical reactions are measured under constant pressure or con-

stant volume conditions; processes involving liquids and gases are usually
studied at constant (atmospheric) pressure, whereas combustion reactions

are carried out at constant volume, e.g., in an explosion bomb. For the

purpose of recording and tabulating the results, the data are quoted directly

as, or are converted into, those for constant pressure, generally 1 atm. Al-

though the reactants and products of a chemical reaction might well be at

different temperatures, the situation is considerably simplified by determin-

ing heat changes for the condition in which all the substances concerned are

at the same temperature. This practice is invariably adopted in making
thermochemical measurements.

Since Qp, the heat absorbed in any process at constant pressure, is equal
to Afl>, the increase of heat content at constant pressure ( 9a), the heat

change accompanying a chemical reaction under these conditions is equal to

the difference between the total heat content of the products and that of

the reactants, at constant temperature and pressure. This is the quantity
usually referred to as the heat of reaction; thus,

Heat of reaction = Heat content of products Heat content of reactants,

or

QP = Affp = ff(products)
-

#(reactants), (12.1)

where the H9 i.e., heat content, values all refer to a specified temperature,
e.g., 25 C, and pressure, e.g., 1 atm. The summation signs imply that the

total heat contents, allowing for the different numbers of molecules that

68
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may be involved, of all the products or of all the reactants, respectively, are

to be included. It may be remarked that in evaluating the heat of reaction

it is assumed that the reactants are completely converted into the products.
In other words, it is postulated that the reaction, as represented by the

appropriate chemical equation, proceeds to completion. If this condition
is not realized experimentally, the observed heat change is adjusted so as

to give the result that would have been obtained for the complete reaction.

12b. Symbols and Units. The heat change accompanying a reaction,
for example, that between solid carbon (graphite) and hydrogen gas to form

liquid benzene, is represented in the form of a thermochemical equation, viz.,

8C() + 3H2 (0r)
= CJffe, A#298 . lft

- 11.7 kcal.,

where the symbols g, I and s indicate gaseous, liquid and solid state, respec-

tively. It is the common practice in thermochemical work to express heat

changes in kilocalories, abbreviated to kcal., where 1 kcal. = 1000 cal.,

because the statement of the result in calories would suggest a greater degree
of accuracy than has actually been attained. The equation given above

implies that the formation of 1 mole of liquid benzene from 6 gram-atoms of

solid carbon (graphite) and 3 moles of hydrogen gas results in the absorption
of 11.7 kcaL, i.e., about 11,700 cal., at 25 C or 298.16 K, and 1 atm. pres-
sure. The heat content of 1 mole of liquid benzene is thus 11.7 kcal. greater
than that of the carbon (solid) and hydrogen (gas) of which it may be re-

garded as composed; that is,

AH - tf(C 6H6,

- [#(6C, s) + #(3H2 , 0)] = 1L7 kcal. at 25 C.

It may be noted, in general, that if the heat content of the products exceeds

that of the reactants, i.e., AH is positive, the reaction is accompanied by an

absorption of heat. On the other hand, if the reverse is the case, so that

AH is negative, heat is evolved when the reaction takes place.

If all gases behaved ideally, the value of AH would be independent of

the pressure ( 9e), but as this is not the case it is necessary, strictly speak-

ing, to specify the pressure in connection with any reaction involving gases.

Unless otherwise stated, the pressure is usually 1 atm., although for certain

purposes it is desirable to express the data for the condition in which the gas
behaves ideally, i.e., at very low pressures. In the great majority of cases,

however, the difference between the observed value of AH at 1 atm. pressure
and that corrected for departure of the gases from ideal behavior is consider-

ably less than the experimental error, and so may be ignored (cf. 20e).

For a reaction taking place in solution, it is necessary to specify the con-

centrations of the various reactants and products. If the solutions are so

dilute that the addition of further solvent, e.g., water, results in no appre-
ciable change in the heat of reaction, i.e., the heat of dilution is zero, the

symbol aq is employed; thus,

+ NaOH(ag) - NaCl(og) + H2O, Atf298 = - 13.50 kcal.,
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for the reaction between hydrochloric acid and sodium hydroxide in dilute

aqueous solution. The subjects of heat of solution and heat of dilution will

be treated below (see also Chapter XVIII}.
12c. Heat Changes at Constant Pressure and Constant Volume. The

heat change Qv at constant volume is equal to &EV the increase of the energy
content at constant volume ( 9a). For a reaction involving ideal, or ap-

proximately ideal, gases, AS would be independent of the volume, at con-

stant temperature; for such a reaction, therefore, it is possible to identify

Qv with AE at the given temperature, without specifying constant volume
conditions for the latter. Although this is strictly true only if the gases
involved are ideal, it can be taken as being approximately true for all reac-

tions The change in the energy content due exclusively to a volume change,

apart from the work of expansion, is invariably so small, particularly in

comparison with the values of &E involved in chemical reactions, that it may
be ignored. It will be assumed, therefore, that the value of AS, which is

equal to Qv, depends only on the temperature, and not on the actual volume
or pressure. Bearing in mind these arguments, equation (9.3) can be
written as

QP AS + PAF
~ Qv + PAY, (12.2)

which gives the relationship between the heat changes of a reaction at con-

stant pressure and constant volume. The difference between these quanti-
ties is thus equal to PAF, which is the work of expansion when the process
is carried out at constant pressure.

For a reaction in which gases take part, the volume change AF may be

appreciable, and it* value can be determined with sufficient accuracy by
assuming ideal behavior of the gases concerned. If n\ is the number of

moles of gaseous reactants, and n2 is the number of moles of gaseous products
of the reaction, the process is accompanied by an increase of n% n\ = An
moles of gas. If V is the volume of 1 mole of any (ideal) gas at the experi-
mental temperature and pressure, then the increase of volume AF in the

reaction will be equal to FAn. For ideal gases, PV is equal to RT, so that

PAF = PFAn = RTAn,

and substitution in equation (12.2) gives

Qp Qv + RTAn. (12.3)

From this expression the value of the heat of reaction at constant pressure
can be calculated if that at constant volume is known, or vice versa. An
important use of equation (12.3) is in the determination of the Aff values
for combustion reactions, since Lhe actual thermochemical measurements are

made in an "explosion bomb" at constant volume.
If the reaction involves solids and liquids only, and no gases, the volume

change AF is usually so small that the PAF term in (12.2) may be neglected.
In cases of this kind the heats of reaction at constant pressure and constant
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volume may be taken as identical, within the limits of experimental error.

Since the volume changes due to solids and liquids are negligible, the value
of AF for a reaction, in which gases as well as solids or liquids take part,

applies to the gases only. The factor An in equation (12.3) then refers to

the gaseous molecules only. For any reaction in which the same total number
of gaseous molecules occurs on both sides cf the chemical equation An is zero,

and hence QP and Qv are equal.

Problem: When 1 mole of solid naphthalene was burnt in oxygen gas to yield
carbon dioxide gas at constant volume, at 25 C, the heat absorbed (Qv) was found
to be 1,227.0 kcal. Calculate A// for this reaction, assuming it to be independ-
ent of pressure.

The reaction is

CioH.() + 120 2(0)
= 10C0 2(0) + 4H 20(0,

so that the number of molecules of gaseous reactants (HI) is 12, and the number of

molecules of gaseous products (n 2) is 10; hence, An = n2 HI = 2. The tem-

perature is 25 C, i.e., 298 K, and R may be taken as 2 cal. or 2 X 10~8 kcal.

deg."* mole"1
; hence, by equation (12.3),

QP = - 1,227.0 + (2 X 10~3 X 298 X -
2)

= - 1,227.0
- 1.2 = - 1,228.2 kcal.

The value of A// for the reaction may thus be taken as 1,228.2 kcal. at 25 C.

12d. Thermochemical Laws. Two important laws of thermochemistry
are based on the principle of conservation of energy. According to A. L.

Lavoisier and P. S. Laplace (1780), the quantity of heat which must be supplied
to decompose a compound into its elements is equal to the heat evolved when the

compound is formedfrom its elements. This experimental result is, of course,
in direct agreement with the first law of thermodynamics, for otherwise it

would be possible to create heat energy by making a compound from its

elements, and then decomposing it, or vice versa. The law of Lavoisier and

Laplace may be extended into the general form that the heat change accom-

panying a chemical reaction in one direction is exactly equal in magnitude, but

opposite in sign, to that associated with the same reaction in the reverse direction.

This conclusion follows directly from the fact, derived from the first law of

thermodynamics, that the heat content of a substance, or system, has a
definite value at a given temperature and pressure ( 9a). The total heat
content of the reacting substances must, therefore, differ from that of the

products by a precise amount; there is thus a definite increase Aff in one

direction, and a numerically equal decrease A/f in the opposite direction

of the chemical reaction []cf. equation (12.1)]. As a consequence of the

foregoing conclusion, thermochemical equations can be reversed, provided
the sign of A/7 is changed; thus,

+ 2O2(0)
- CO2(0) + 2H2O(Z), Ajff298 - - 212.80 kcal.

2H20(Z) - CH4(0) + 20,fo), Aff298 - 212.80 kcal.
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Another important law of thermochemistry was discovered empirically

by G. H. Hess (1840); it is known as the law of constant heat summation.
This law states that the resultant heat change, at constant pressure or constant

volume, in a given chemical reaction is the same whether it takes place in one

or in several stages. This means that the net heat of reaction depends only
on the initial and final states, and not on the intermediate states through
which the system may have passed. The law of Hess thus also follows from
the first law of thermodynamics for, as already seen, it leads to the conclusion

that AH (or AE) depends only on the initial and final states of the system
and is independent of the path connecting them. One result of Hess's law
is that thermochemical equations can be added and subtracted, just like algebraic

equations. The physical significance of these operations is that the heat

contents of the various elements and compounds concerned are definite

(extensive) quantities, and the addition or removal of a substance (or sub-

stances) from a system means that the heat content is increased or decreased,

respectively, by a specific amount (or amounts). A useful practical applica-
tion of this result is in the calculation of heat changes for reactions which
cannot be studied directly.

Problem: Given the following heats of reaction at 25 C:

(i) C 2H4(0) + 30 2(0) - 2C0 2(0) + 2H20(Z), AH = - 337.3 kcal.

(ii) H 2(0) + 10fo) - H20(Q, AH - - 68.3

(iii) C2H 6(0) + 3JO 2(0)
- 2CO 2(0) + 3H20(0, AH - - 372.8

determine the heat change of the reaction C 2H4(0) -f H 2(00
= C 2H 6 ((7) at 25 C.

The required result can be obtained very simply by adding (i) and (ii) and

subtracting (iii), so that

C 2H4 (0) -K H,fo) - CJEUfo), Atf298 - - 32.8 kcal.

12e. Heat of Formation. The heat of formation of a compound is the

increase of heat content AH when 1 mole of the substance is formed from its

elements at a given temperature and pressure. The value of AH depends on
the physical state and condition of the substances involved (cf. 12i), and
so it is generally postulated that the elements are in their so-called standard
states. For liquids and solids, the standard states are usually taken as the
stable forms at the atmospheric temperature and a pressure of 1 atm. For

gases, the standard state is chosen as 1 atm., although in certain cases the
ideal gas is postulated; as indicated earlier, the difference between these two
states does not have any considerable effect on the AH value. Where ac-

curate thermochemical data are available, however, the distinction between
the two states is significant ( 20e). When all the substances concerned in a
reaction are in their respective standard states, the change of heat content
is indicated by the symbol AHQ

.

As an example of the standard heat of formation, reference may be made
to the reaction

C() + Otto) = COsfr),
' A#g98 = - 94.05 kcal.
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Here the carbon is in the form of graphite, for this is the stable form, i.e.,

the standard state, at 25 C and 1 atm.
; the gases, oxygen and carbon dioxide,

are both at 1 atm. pressure. The standard heat of formation of carbon

dioxide at 25 C is then said to be 94.05 kcal. mole""1
. The heat content

of 1 mole of carbon dioxide is thus less than that of 1 g. atom of graphite
and 1 mole of oxygen by 94.05 kcal. at a temperature of 25 C and a pressure
of 1 atm.

The standard heats of formation of a number of compounds at 25 C
are recorded in Table V. 1

TABLE V.* STANDARD HEATS OP FORMATION AT 25 C IN KCAL. PER MOLE

Substance A//

-64.5

HC1(0) - 22.06

HBr(0) - 8.6

5.9

-68.32
-5.3

NHtfo) - 11.03

SO2(0) 70.9

SO(0) 94.4

CO(g) - 26.42

CO(0) - 94.05

Substance

Methane (g), CH4

Ethane (g), C2H6

Propane (g), C 8H8

Ethylene (g), C 2H4

Propylene (g), C 3H6

Acetylene (00, C 2H 2

Benzene (/), C 6H
Cyclohexane (/), C0H] 2

Naphthalene (s), CioH 8

Inorganic Compounds

Substance A/f Substance

HgOM
FeO()
Fe20,(s)
Al2 8(s)

NaCl(s)
KCl(s)
AgCl(s)

Hg2Cl2(s)

PbSO4 (s)

Organic Compounds
A//

- 17.89
- 20.24
- 24.82

12.56

4.96

54.23

11.7
- 14.8

14.4

Substance

Methanol (g), CH 8OH
Methanol (/), CH 8OH
Ethanol (g), C 2H6OH
Ethanol (I) C2H6OH
Phenol (s), C 6H6QH
Aniline (/), C6H8NH 2

Urea (s), CO(NH 2) 2

Benzoic acid (s), C 6H6COOH
Sucrose (s), Ci 2H 22Oii

Aff

-21.6
-64.3
- 195

-380
-98.3
- 104.3

-30.3
-62
-330
-343
- 219

A//

-48.1
-57.0
-56.3
-66.4
- 38.4

7.3
- 79.4

-93.2
- 533.4

* For further data, sec Table 5 at end of book.

12f. Heat Content and Heat of Formation. There is a useful connection

between the heat of a reaction, in general, and the heats of formation of the

compounds involved. It will be evident that in thermochemical studies no

1 Data mainly adapted from F. R. Bichowsky and F. D. Rossini, "The Thermochemis-

try of the Chemical Substances," 1936; Landolt-Bornstein, Physikalisch-Chemische Ta-

beilen, 1923-1936; sec also, Thacker, Folkins and Miller, Ind. Eng. Chem., 33, 684 (1941);

Wagman, Kilpatrick, Taylor, Pitzer and Rossini, J. Res. Nat. Bur. Stand., 34, 143 (1945);

Prosen and Rossini, ibid., 34, 263 (1945); Prosen, Pitzer and Rossini, ibid., 34, 403 (1945);

Wagman, Kilpatrick, Pitzer and Rossini, ibid., 35, 467 (1945); Kilpatrick, Prosen, Pitzer

and Rossini, ibid., 36, 559 (1946). For reviews of experimental methods, etc., see Rossini,

Chem. Rev., 18, 233 (1936), 27, 1 (1940); Roth, Z. Elek., 38, 94 (1932); 45
;
335 (1939).
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information is obtained concerning the actual or absolute heat contents of

substances, but only with regard to the differences of their heat contents.

For this reason it is permissible to choose any arbitrary scale of reference

for heat content; that is, a zero of heat content may be chosen by convention,

just as the zero of the centigrade temperature scale is arbitrarily chosen as

the ice point. Differences of temperature are the same, irrespective of

whether the actual temperatures are recorded on the absolute or centigrade

scales, provided they are expressed in the same units. A similar situation

exists in connection with the heat content; the A// value will be the same,

irrespective of whether the heat contents H are expressed on an absolute

scale or an arbitrary, conventional scale. The convention usually employed
in thermochemistry is arbitrarily to take the heat contents of all elements as

zero in their standard states at all temperatures* The heat of formation of

a compound is the difference between the heat content of the compound and
that of its elements, and since the latter are taken as zero, by convention,
it follows that on the basis of this convention the heat content of a compound
is equal to its heat of formation.

Utilizing the heat contents derived in this manner, the standard heat

change of a reaction can be readily calculated from the known standard
heat contents, i.e., the standard heats of formation, of the substances con-

cerned. Consider, for example, the reaction, at 25 C,

CH4 (<7) + 20*07) = C0,fo) + 2H,0(0,- 17.89 - 94.05 - 2 X 68.32

and writing the standard heat of formation at 25 C of each species below
the formula, it is seen that the total heat content of the products is 94.05

-f (- 2 X 68.32) whereas that of the reactants is - 17.89 + 0. The
standard increase Aff of heat content in the reaction is thus given by the

difference of these two quantities, viz.,

A#S 8 = [- 94.05 - (2 X 68.32)]
- (- 17.89 + 0) = - 212.80 kcal.

Instead of using the heats of formation to calculate the heat of reaction,
the procedure may be reversed, and the heat of formation of a compound
derived from the heat of reaction, provided the heats of formation of all the

other substances involved are known.

Problem: From the result of the problem in 12c, determine the heat of forma-
tion of 1 mole of solid naphthalene from graphite and hydrogen gas at 1 atra.

pressure at 25 C.

In this case,

CioH8() + 12O 2fo) = 10CO 2(0) + 4H 20(0, A//J98
- - 1,228.2 kcal.,

x - 10 X 94.05 - 4 X 68.32

* For certain problems dealing with changes of a physical nature, which are based on
variations of the heat content of a system with temperature, the convention is to take the

heat content of the system, element or compound, to be zero at C.
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the standard heat of formation of each species being written below its formula,
x being that of the naphthalene, which is required. Since A// is 1,228.2 kcal.,
it follows that

- 1228.2 - [- (10 X 94.05)
-

(4 X 68.32)] - (x + 0),

x = 14.4 kcal.

The standard heat of formation AH of naphthalene at 25 C is thus 14.4 kcal.

(The result is not particularly accurate in this instance, because it represents the
difference between two large numbers.)

12g. Heat of Combustion. Organic compounds containing carbon and

hydrogen alone, or together with oxygen, can be burnt in oxygen gas to yield
carbon dioxide and (liquid) water as the sole products. The heat change
accompanying the complete combustion of 1 mole of a compound, at a given

temperature and 1 atm. pressure, is called the heat of combustion. From
the data in the preceding section, it is seen, for example, that the heat of

combustion of methane at 25 C is 212.80 kcal. The heats of combustion
of solids and liquids are usually measured at constant volume in a "bomb
calorimeter"; the results can then be used to calculate Aff, as explained
above. The standard heats of combustion of a number of familiar organic

compounds are given in Table VI.2 The data may be used to calculate

TABLE VI. HEATS OP COMBUSTION AT 25 C IN KCAL. PER MOLE

Substance A#
Methane (g), CH 4

- 212.8

Ethane (g), C2H - 372.8

Propane (g), C|H8
- 530.6

n-Butane (g), C4H, - 688.0

w-Pentane (0, C6Hi2
- 838.7

n-Hexane (0, CH, 4
- 995.0

Ethylene (ff), C 2H 4
- 337.3

1,3-Butadiene (g), C 4H8
- 607.9

Methanol (0, CH,OH - 173.6

Ethanoi (0, C2H5OH - 326.7

Substance

Benzene (0, C 6H6

Toluene (0, C7H 8

Xylene (0, C8Hi
Benzole acid (s) f C flH6COOH
Phenol (), CH6OH
Naphthalene (s), CioPIg
Sucrose (s), Ci 2H22On
Urea (), CO(NH 2) 2

Ethyl acetate (0, CH 3COOC2H6

Aniline (0, CeH6NH 2

AH
- 781.0

-934.5
- 1,088
-771.4
- 732.0

-
1,228.2-
1,348.9
- 151.5

-538.0
- 811.9

heats of reaction and of formation which cannot be determined directly.

Examples of such calculations are provided by the problems in 12d, 12f.

12h. Heat of Hydrogenation. The change of heat content accompany-
ing the hydrogenation of 1 mole of an unsaturated compound has been de-

termined in a number of instances. The results are of interest for certain

theoretical purposes, but they can also be utilized for the derivation of heats

of formation and heats of combustion.

Problem: The standard heat of hydrogenation of gaseous propylene to propane
is 29.6 kcal., and the heat of combustion of propane is 530.6 kcal. at 25 C.

(Unless otherwise stated, constant pressure is to be understood.) Utilizing the

8 See ref. 1, also Rossini, Ind. Eng. Chem., 29, 1424 (1937); Proeen and Rossini, /. Res.

Nat. Bur. Stand., 27, 289 (1941); 33, 255 (1944); 36, 269 (1946); Prosen, Johnson and

Rossini, ibid., 35, 141 (1945); 36, 455, 463 (1946).
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known heats of formation of carbon dioxide ( 94.0 kcal.) and of liquid water

( 68.3 kcal.), determine the heat of combustion and the standard heat of forma-
tion of propylene.

The data are as follows:

(i) C,H6(0) + H a(0)
- C 8H8(0), A# - - 29.6 kca?

(ii) C8H8(0) + 5O 2(0)
- 3CO 2(0) + 4H 20(Z), Atf - - 530.6

(iii) C() + 0to) - C0 2 (<7), A# = - 94.0

(iv) Hfo) + JOtto) = H0(l), A// - - 68.3

To obtain the standard heat of formation of propylene, add equations (i) and (ii),

and then subtract the sum from three times equation (iii) and four times (iv);

the result is

3C(s) + 3H2(0)
= C 3H6(0), A// = 5.0 kcai.

The heat of combustion can either be obtained from this result by reversing it and

adding three times equations (iii) and (iv), or it may be derived by utilizing (i),

(ii) and (iv) ;
in any event, it is found that

CaHeto) + 4K>2(fiO = 3CO 2(0) + 3H 2O(0, A# == - 491.9 kcai.

12L Phase Changes. A phase change, such as vaporization of a liquid,

fusion or sublimation of a solid, and transition from one crystalline modifica-

tion to another, is invariably associated with a change of heat content.

Such heat changes are often referred to as the "latent heat" of vaporization,

fusion, etc., although the tendency at the present time is toward the omission

of the term "latent." These quantities represent the difference in the heat

contents of 1 gram, or 1 mole, of the two phases under consideration at the

temperature and pressure at which the phase change takes place. Thus,
the heat content of 1 gram of steam (water vapor) is 539.4 cal. greater than
that of the same weight of liquid water at 100 C and 1 atm. pressure. The
heat of vaporization of water at 100 C is thus 539.4 cal. g."

1 and this quan-
tity of heat must be supplied to 1 g. of liquid water at 100 C to convert it

into vapor at the same temperature and 1 atm. pressure. Like other heat

changes, latent heats of various types vary with the temperature; thus at

25 C, the heat of vaporization of water is 583.6 cal. g."
1

,
the pressure being

23.76 mm., or 0.0313 atm. Molar heats of vaporization and fusion are

frequently employed in thermodynamics, and these are the changes of heat
content associated with the vaporization or fusion of 1 mole of the substance

under consideration, at the given temperature and pressure. The results

may be expressed in the form of equations similar to the thermochemical

equations represented above; thus,

H,O() = H 20(0, A7/W3
- 1.438 kcal.

HiO(i) = H 2O(0, 1 atm.), A//373
= 9.717 kcal.

Heats of vaporization and fusion are utilized in the treatment of phase

changes (Chapter XI), but for the present they will be employed in connec-

tion with thermochemical problems. For example, it is sometimes required
to know the heat of a particular reaction when one (or more) of the sub-
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stances taking part is in a different physical state than usual; the necessary

adjustment can be readily made, as the following instance will show. The
standard heat of formation of liquid water at 25 C is 68.32 kcal. per
mole, i.e.,

Htfo) + *0,(flf)
- H20(Z), A#208 - - 68.32 kcal.

Suppose the standard heat of formation of water vapor at 25 C is required;
use is made of the heat of vaporization of water, which is 583.6 X 18.016

cal. or 10.514 kcal. mole""1
, i.e.,

H2O(Z) = H 2O(0r, 0.0313 atm.), A#298 = 10.514 kcal.

For the present purpose it is necessary to know the value of AH for this

process with water vapor at 1 atm. pressure. If the vapor behaved as an
ideal gas, the result would be the same as that given above, since AT would
be independent of the pressure ( 9e). Although water vapor is not ideal,

the difference in the heat content at 1 atm. pressure from that at 0.0313 atm.
has been calculated (cf. 20e) as only 0.005 kcal. at 25 C, i.e.,

H2O($r, 0.0313 atm.) = H2O(0, 1 atm.), Aff298 = 0.005 kcal.

Combination with the preceding equation gives

H2O(Z) = H 2O(<7, 1 atm.), A#298 = 10.52 kcal.,
and hence

H,fo) + i0 2 (0)
= H 20(<7), A#S98 = - 57.80 kcal.

with each substance in its standard gaseous state.

When there is change in the crystalline form of any substance involved
in a reaction there is a change in the heat content. If the data for a given
reaction with two separate forms of a particular substance are available, the

heat of transition of one form to the other can be evaluated. For example,
the heats of combustion of the two allotropic forms of carbon, viz., diamond
and graphite, are known to be 94.50 and 94.05 kcal. g. atom"1

,
re-

spectively, at 25 C, i.e.,

C(diamond) + O 2(0)
== CO2 (0), Aff298 = - 94.50 kcal.

C(graphite) + O,fo) = CO.(0), A#298 = - 94.05

By subtracting these two thermochemical equations, it is immediately seen

that

C(diamond) = C (graphite), Aff298 = 0.45 kcal.

The transition of 1 g. atom of carbon as diamond to the stable form, i.e.,

graphite, at 25 C is associated with a decrease of 0.45 kcal. in the heat

content.

12j. Effect of Temperature on Heat of Reaction: The Kirchhoff Equa-
tion. An expression for the variation of the heat of reaction with tempera-
ture can be derived in a simple manner. If HA is the total heat content of
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the reactants and HB is that of the products, at the same temperature and
pressure, then, as indicated in I2a [cf. equation (12.1)], AH is given by

AH *= HB- HA , (12.4)

all the quantities referring to the same pressure. If this equation is differ-

entiated with respect to temperature, it is seen that

According to equation (9.11), (6H/dT)p is equal to CP, and hence

where (Cp)A and (CP)B are the total heat capacities, at the given (constant)

pressure, of the reactants and the products, respectively. The right-hand
side of equation (12.6) is the increase in the heat capacity of the system
accompanying the chemical reaction, and so it may be represented by ACp;
thus, (12.6) takes the form

which is the expression of what is generally know as the Kirchhoff equation

(G. R. Kirchhoff, 1858), although a similar result was obtained earlier by
C. C. Person (1851). The rate of variation of the heat of reaction with tempera-

ture, at constant pressure, is thus equal to the increase in the heat capacity

accompanying the reaction.

The heat capacity is an extensive property, and so the heat capacity of

the system in its initial state is the sum of the heat capacities of the reactants,
and that in the final state is the sum of the heat capacities of the products
of the reaction. For the general chemical reaction

aA + 6B + - IL + mM + ,

the increase of heat capacity ACp is thus given by

[Z(Cp) L + m(Cp)M+]- [(Cp)A + 6(Cp)B +], (12.8)

where the Cp terms are here the molar heat capacities of the species indi-

cated. Ttye expression in the first set of brackets in equation (12.8) gives
the total beat capacity of the products, and that in the second brackets is

for the reactants, so that the difference is equal to the increase of heat

capacity for the reaction. An alternative form of (12.8) is

ACp - E(nCp)/ - LfaCp),, (12.9)

where n is the number of moles of each substance taking part in the reaction

and CP is its molar heat capacity. The subscripts i and/ refer to the initial

state (reactants) and final state (products), respectively, so that the first
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term on the right-hand side of equation (12.9) is the sum of all the nCP terms
for the products, whereas the second term is the corresponding sum for the

reactants.

The Kirchhoff equation as derived above should be applicable to both
chemical and physical processes, but one highly important limitation must
be borne in mind. For a chemical reaction there is no difficulty concerning

(dAH/dT)p, i.e., the variation of AH with temperature, at constant pressure,

since the reaction can be carried out at two or more temperatures and AH
determined at the same pressure, e.g., 1 atm., in each case. For a phase
change, such as fusion or vaporization, however, the ordinary latent heat

of fusion or vaporization (AH) is the value under equilibrium conditions,
when a change of temperature is accompanied by a change of pressure. If

equation (12.7) is to be applied to a phase change the AH's must refer to

the same pressure at different temperatures; these are consequently not the

ordinary latent heats. If the variation of the equilibrium heat of fusion,

vaporization or transition with temperature is required, equation (12.7)

must be modified, as will be seen in 271.

12k. Application of the Kirchhoff Equation. The application of the

Kirchhoff equation to determine the heat of reaction at one temperature if

that at another is known involves the integration of equation (12.7) ; thus,
between the temperature limits of TI and T* the result is

AH* - Aff i
= f

Tf

ACpdT, (12.10)

/Tl

JTl

where AH i and AH* are the heats of reaction at the two temperatures. If,

in the simplest case, ACp may be taken as constant and independent of

temperature over a small range or, better, if ACp is taken as the mean value

ACp in the temperature range from T\ to T2 ,
it follows from equation

(12.10) that
AH2

- AH 1 ACP(T2
-

Ti). (12.11)

Problem: The mean molar heat capacities, at constant pressure, of hydrogen,

oxygen and water vapor in the temperature range from 25 C to 100 C are as

follows: Ha(flr), 6.92; O 2(0), 7.04; H20(0), 8.03 cal. deg."
1 mole'1

. Utilizing the

heat of reaction at 25 C obtained in 1 2i, calculate the standard heat of formation
of water vapor at 100 C.

The reaction is

so that,

AP - p(H 20, g)
-

[
8.03 - (6.92 + 3.52)

- 2.41 cal. deg."
1

In this case, TI is 25 C and T2 is 100 C, so that JTi
- TI is 75; AHi is known from

12i to be 57.80 kcal. It is required to find AH* by using equation (12.11),

and for this purpose the same heat units, e.g., kcal., must be used for the AH's
and ACp; hence,

+ 57.80 - - 2.41 X 10~ X 75,

AH* - 57.98 kcal. mole-*.
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In the general case, integration of (12.10) is possible if ACP is known as
a function of temperature. Since the variation of the heat capacity of many
substances can be expressed by means of equation (9.24), it follows that

ACP - Aa + A0T + A7T2 + -, (12.12)

where, for the general reaction given in 12j,

6/3B + ) (12.13)
A? = (ZTL + WTM +) (TA + &7B + ),

and so oil. Inserting equation (12.12) into (12.10), and carrying out the

integration, it is found that

-
T,)

+ *A7(rS- 71) + , (12.14)

so that the change of heat content at one temperature can be calculated if

that at another temperature is known, and the a, ft, y, . . .
,
values for all

the substances concerned are available from Table II.

Problem: Calculate the standard heat of formation of water vapor at 100 C
allowing for the variation with temperature of the heat capacities of the reactants
and the product, and taking AH as 57.80 kcal. mole~l at 25 C.

From Table II,

CP(H 20, g) = 7.219 + 2.374 X 1Q~*T + 0.2670 X 10r*T*

Cp(H 2 , g)
= 6.947 - 0.200 X lO'3 ?

7 + 0.4808 X lO^T72

Cp(0*, g}
= 6.095 + 3.253 X 10"3T - 1.0170 X lO' 6?12

,

so that

- Cp(H 20, g}
- [Cp(H 2 , g) + $

= - 2.776 + 0.947 X 10~3r + 0.295 X 10~GT2 cal. cleg."
1

Hence,

Aa = - 2.776, A/3 = 0.947 X 10~3
, AY = 0.295 X 10~6

,

and by equation (12.14), since Tl is 25 C, i.e., 298 K, and T2 is 100 C, i.e., 373 K,

A#i - AHi = - 2.776(373 - 298) + J X 0.947 X 10~3
[(373)

2 -
(298)

2
]

+ J X 0.295 X 10-6[(373)
3 -

(298)
3
] cal.

- 208.2 + 23.8 + 2.5 = - 182 cal.

Since A#i is - 57.80 kcal., and A#2
- A#i is - 0.182 kcal., it follows that A#2

is 57.98 kcal. mole~l
, as obtained in the preceding problem.

In some connections it is useful to derive a general expression which will

give the heat content change at any temperature; this may be done by the

general integration of equation (12.7), which yields

AH - Atfo + TACWT, (12.15)
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where the integration constant A# may be regarded as the difference in

the heat contents of products and reactants if the substances could exist at

the absolute zero, and if the expression for ACp were valid down to that

temperature. Upon inserting the general equation (12.12) into (12.15) and

carrying out the integration, the result is

A# = Affo + AaT7 + ^A^T
72 + \&yT* + -. (12.16)

The values of Aa, A, AY, etc., are presumed to be known from heat

capacity data, and so a knowledge of AH at any one temperature will permit
the integration constant A# to be calculated. Insertion of the results in

(12.16) then gives an equation for the heat of reaction as a power series

function of temperature. The result will be applicable over the same

temperature range only as are the empirical heat capacity constants a,

0, 7, etc.

Problem: The standard heat of formation A# of ammonia gas is 11.03

kcal. mole"1 at 25 C; utilizing the data in Table II, derive a general expression
for the heat of formation applicable in the temperature range from 273 to 1500 K.

The reaction is

and hence,

ACp = Cp(NH8 , g)
- [iCp(N, g) + $CP(H 2 ,

Cp(NHs) 6.189 + 7.787 X lO-'T
7 - 0.728 X

iCp(Ni) = 3.225 + 0.707 X 10-3 !T - 0.0404 X W~*T*

|Cp(H 2)
= 10.421 - 0.300 X W~3T + 0.7212 X 10-6 !T2

,

ACp = - 7.457 + 7.38 X 10~3 !T - 1.409 X IQ-T* cal. deg.-
1

Aff - A#S - 7.457!T + X 7.38 X W~*T* - J X 1.41 X 10~6 !T3 cal.

= AH? - 7.46 X 10-3 !T + 3.69 X lO^T2 - 0.47 X 10~9 !T3 kcal. mole-1
.

At 25 C, i.e., 298 K, the value of A# is - 11.03 kcal., and hence it is found
from this equation that A# is 9.13 kcal., so that

_ 9 13 _ 7 46 x 10-sy + 3>69 x iQ-er* - 0.47 X 10-!T3 kcai. mole-1
.

Although the examples given above have referred to reactions involving

only gases, the equations derived, e.g., (12.7), (12.14), (12.15), etc., can be

applied to any chemical reaction. In the evaluation of ACp by equation

(12.8) or (12.9), the appropriate nCp term must be included for every react-

ant and product, irrespective of its form. If the variation of the heat ca-

pacity with temperature of the solids or liquids concerned can be represented

by an expression of the form of (9.24), then equations such as (12.14) and

(12.16) can still be employed. Otherwise, the appropriate equations can be

derived without difficulty.

Problem: The variation with temperature of the heat capacity of carbon

(graphite), between 273 and 1373 K, is given by

CP = 2.673 -f- 2.C2 A 1Q~*T + 1.17 X 106 !T~2 cal. deg.~
l
g. atom-

1
.
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Utilizing data already available derive a general expression for the heat of the

reaction

C + H20fo) - COfo) + H,to)

as a function of the temperature, in the range specified above.

From Table II and the expression given above for the heat capacity of carbon,

>, 0) + CP(H Z , 0)]
- [Cp(C, s) + Cp(H 2O, 0)]

= 3.397 - 3.36 X 10~3T - 0.066 X 1Q-6T2 - 1.17 X lO6!
7-2 cal. deg.~

l

Hence, by equation (12.15), after converting ACp into kcal. deg.~
l
,

A// - A//o +
= A//o + 3.397 X 10-T - 1.68 X 10~r- - 0.022 X 10"+ T*

+ 1.17 X 102r~l kcal.

The (standard) heats of formation of H 2O(0) and CO(g) at 25 C are 57.80 and
26.42 kcal. mole~l

, respectively, so that A// for the given reaction is 31.38 kcai.

at 25 C, i.e., 298 K. Inserting these values in the result just obtained, A// is

found to be 30.13 kcal., and hence A# can now be calculated at any temperature
in the specified range.

121. Heat Changes of Reactions in Solution. When a reaction takes

place in solution, or when one or more of the reactants or products are in

solution instead of the pure state, the heat change is affected just as for a

phase change. This is because the formation of a solution is almost in-

variably accompanied by a change of heat content, that is, heat is evolved

or absorbed. The heat change per mole of solute dissolved, referred to as

the heat of solution, is not a constant quantity, however, for it depends upon
the amount of solvent. In other words, the heat of solution at a given tempera-
ture varies with the concentration of the solution. When a solute, e.g., a solid,

gradually dissolves in a particular solvent, the composition of the solution

changes from pure solvent to the final solution. The heat of solution per
mole at any instant thus varies during the course of the solution process;
this quantity, known as the "differential heat of solution" will be considered

more fully later (Chapter XVIII).
At the present time, the matter of interest is the total heat change per

mole of solute when solution is complete; this is the integral heat of solution.

Thus, if AJET is the total change of heat content when m moles of solute are

dissolved in a definite quantity, e.g., 1,000 grams, of solvent, the integral
heat of solution is equal to Aff/ra. The integral heats of solution for various

solutions of hydrochloric acid, of different molalities, at 25 C, are given
below.

Molality (m) 0.130 0.278 0.555 LI I

Moles H 2O/Moles HC1 400 200 100 50

-17.70 -17.03 -17.54 -17.40 kcal.
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If the heat changes are extrapolated to infinite dilution the integral heat
of dilution is found to be 17.88 kcal. per mole; thus, when 1 mole of

hydrogen chloride is dissolved in a large quantity of water, so as to form an

extremely dilute solution, the total heat evolved is 17.88 kcal. at 25 C.

Results analogous to those quoted above have been obtained with other

solutes of various kinds, not necessarily gaseous in nature. Because of the
interaction between hydrogen chloride and water, however, the heats of

solution are unusually large. Further, as for gases in general, AH/m is

negative in this case. For solids which do not interact with the solvent, as

is the case with most hydrated salts in water, the integral heat of solution is

usually positive.*
One consequence of the variation of the heat of solution with the compo-

sition of the solution is that dilution of a solution from one concentration to

another is also accompanied by a heat change. Consideration of the change
of heat content per mole at any instant in the course of the dilution process,
known as the "differential heat of dilution/' will be left to a subsequent
chapter. The net change per mole of solute associated with the dilution of a
solution from one concentration to another is the integral heat of dilution.

For example, using the data for hydrochloric acid given above, it is possible
to write

HC%) + 400H 2O(Z) = HC1(400H 2O), AH = - 17.70 kcal.

HC%) + 50H 2O(Z) - HC1(50H2O), AH = - 17.40

so that by subtraction,

HC1(60H 2O) + 350H2O(Z) = HC1(400H2O), Aff = - 0.30 kcaL

The dilution of the HC1(50H 20), i.e., 1.11 molal, to the HC1(400H20), i.e.,

0.139 molal, solution is thus accompanied by the evolution of a total amount
of 0.30 kcal. per mole of hydrogen chloride, at 25 C. By utilizing the ex-

trapolated heat of solution at infinite dilution, the integral heat of dilution

of any solution to infinite dilution can be calculated in an analogous manner.

Thus,

HC%) + 50H 2O(Z) = HC1(50H 20) AH = - 17.40 kcal.

HC%) + aq = HCl(og) AH = - 17.88

so that,

HC1(50H20) + aq = HCl(o^) AH = - 0.48 kcal.

As indicated in 12b, the symbol aq implies a large amount of water, so that

HCl(ag) refers to an infinitely dilute solution of hydrochloric acid.

The consequence of heats of solution in connection with the heat changes
in chemical reactions may be illustrated by reference to the reaction between
ammonia and hydrogen chloride. If the gaseous reactants are employed and
the product is solid ammonium chloride, the change may be represented by

) + HClfo) = NH4C1() A# = - 41.9 kcal.

A number of values of heats of solution are given in Table 6 at the end of the book,
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If the ammonium chloride eventually occurs in an aqueous solution contain-

ing 1 mole of the salt to 200 moles of water, then use is made of the known
integral heat of solution, viz.,

NH4C1() + 200H,O(i) - NH4C1(200H,O) Aff - 3.9 kcal.,

so that by addition

NHafo) + HClfo) + 200H 20(0 = NH4C1(200H2O) Aff - - 38.0 kcal.

Since the integral heat of solution varies to some extent with the concen-
tration of the ammonium chloride solution, this result is applicable in par-
ticular to the composition of solution specified.

If the reaction takes place between aqueous solutions of ammonia and

hydrochloric acid, the thermochemical equations are as follows:

) + 100H2O(Z) _ NH8(100H20) Atf - 8.5 kcal.

HC%) + 100H2O(0 - HC1(100H2O) Aff - 17.5

which, combined with the result obtained above, gives

NH,(100H,0) + HC1(100H2O) - NH4C1(200H2O) A# - - 12.0 kcal.

Direct experimental measurement, of the heat change of the reaction between

aqueous solutions of ammonia and hydrochloric acid has confirmed the
calculated result.

When applying the Eirchhoff equation, in order to determine the varia-

tion with temperature of the heat content change accompanying a reaction
in solution, the heat capacity to be employed is a special quantity, called

the "partial molar heat capacity." This quantity will be described in

Chapter XVIII, in connection with a general discussion of the properties
of substances in solution.

13. FLAME AND EXPLOSION TEMPERATURES

Ida. Maximum Reaction Temperatures: Flame Temperatures. In the

foregoing treatment of thermochemical changes it has been supposed that

the reaction takes place at constant temperature, and that the heat liberated

(or absorbed) is removed (or supplied) by the surroundings. It is this

quantity of heat which is recorded as the heat of reaction. It is possible,

however, to conceive the reaction taking place under adiabatic conditions,
so that no heat enters or leaves the system. For a constant pressure process,
as is usually postulated, this means that AH will be zero. In a reaction

performed adiabatically the temperature of the system will change, so that

the products will be at a different temperature from that of the reactants.

If Aff at constant temperature is positive, i.e., heat is absorbed, the tem-

perature of the adiabatic system will fall, but if A# is negative, the tempera-
ture will rise during the course of the reaction. From a knowledge of heats

of reaction and of the variation with temperature of the heat capacities of

the reactants and products, it is possible to calculate the final temperature
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of the system. This temperature is of particular interest in connection with
the combustion of gaseous hydrocarbons in oxygen or air. In such cases it

gives the maximum flame temperature, the actual temperature being some-
what lower because of various disturbing factors.

Several different procedures, all based on the same fundamental prin-

ciples, are available for calculating the maximum temperature attainable in

a given reaction. The simplest is to imagine the reaction taking place at

ordinary temperature (25 C), assuming this to be the initial temperature
of the reactants, and then to find to what temperature the products can be
raised by means of the heat evolved in the reaction.

Problem: The heat of combustion of methane is 212.80 kcal. at 25 C; the

difference in the heat contents of liquid water and vapor at 1 atm. pressure at

25 C is 10.52 kcal. Using the data in Table II calculate the maximum tempera-
ture of the flame when methane is burnt in the theoretical amount of air (1O* to

4N2) at 25 C and constant pressure, assuming combustion to be complete.

Since the water will ultimately be in the form of vapor, at the high tempera-
ture, the value of A# at ordinary temperatures is required with water vapor as

the product; thus,

CH4(0) + 20 2(0)
- CO 2(0) -t 2H20(0, A#29* * - 212.80 kcal.

2H20(/) = 2H 2O(0), A#2M = 2 X 10.52

so that

CH4 (0) + 20 2(0)
- C0 2(0) + 2H20(0), A#298 - - 191.76 kcal.

It may now be supposed that this quantity of heat is utilized to raise the tempera-
ture of the products, consisting of 1 mole CO 2 ,

2 moles H 2 and 8 moles of Nt,
which were associated in the air with the 2 moles of O 2 used in the combustion of

1 mole of CHU. If Tz is the maximum temperature attained in the combustion,
then the heat required to raise the temperature of the products from 25 C, i.e.,

298 K, to T* must be equal in magnitude to the heat of reaction, but opposite in

sign. The sum of A// for the temperature increase and Aff for the reaction must
be zero, so that A# for the whole (adiabatic) process is zero, as postulated above.
If S(n(7p)/ is the total heat capacity of the products, then the heat required to

raise the temperature from 298 K to T2, i.e., A//"(heating), is given by

/rt
Afl (heating) = - A# 298(reaction) = I ^(nCP)fdT. (13.1}

^298

In the present case,

E(nCp), - Cp(CO) + 2 X Cp(H 20, g) + 8 X CP(N 2),

and from Table II,

Cp(CO 2)
- 6.396 + 10.100 X W~*T - 3.405 X

2 X Cp(H 2O, g)
= 14.438 + 4.748 X lO"3?

7 + 0.534 X 10~*T*

8 X Cp(N 2)
- 51.592 + 11.300 X lQr*T - 0.646 X

so that

72.43 + 26.15 X 10~3T - 3.517 X lO^P cal. deg.~
l
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Upon inserting this result into equation (13.1), with A#(heating) equal to
- Atflf,(reaction), i.e., 191.76 kcal. or 191,760 cal., it follows that

191,760 - [72.43!T + * X 26.15 X 10r*T* - J X 3.517 X
- 72.43(7',

- 298) + 13.08 X 10^C!Z1 - (298)']
- 1.172 X 10-*[!F;

-
(298)'],

214,470 - 72.43T, + 13.08 X lO-TJ - 1.172 X

Solving by the method of successive approximations, it is found that T> is about
2250 K or 1980 C.

13b. Calculated and Actual Flame Temperatures. The calculated maximum
flame temperature for the combustion of methane in the theoretical amount of

air is seen to be nearly 2000 C. Similar results, approximately 2000 C, have
been estimated for several hydrocarbons, and also for carbon monoxide and

hydrogen. Actual flame temperatures have been determined in a number of cases,

the values being about 100 below those calculated.1

There are several reasons why the results obtained in the manner described

are higher than the experimental flame temperatures. In the first place, it is

unlikely that the reaction can be carried out under such conditions that the process
is adiabatic, and no heat is lost to the surroundings. Further, it is improbable
that the theoretical quantity of air will be sufficient to cause complete combustion
of the hydrocarbon. In practice, excess air must be used, and since the tempera-
ture of the additional oxygen, as well as that of the large amount of accompanying
nitrogen, must be raised by the heat of the reaction, the temperature attained will

be lower than if combustion were complete in the theoretical amount of air. The
effect of any "inert" gas not utilized in the reaction can be readily seen by per-

forming the calculation in the problem given above on the basis of the assumption
that the methane is completely burnt in the theoretical amount of pure oxygen.
The maximum temperature is found to be over 4000 K, so that the presence of

nitrogen in the air lowers the theoretical maximum by nearly 2000. By the same
procedure it is also possible to calculate the maximum flame temperature when a

hydrocarbon is burnt in excess of air; the "products" will then include the oxygen
remaining when the combustion is complete, in addition to the nitrogen and the

actual reaction products. The value for methane, for example, will be found to

be less than 2250 K.
Another reason why observed flame temperatures are lower than the calculated

values is that at the high temperature attained in a burning hydrocarbon, dissocia-

tion of the water vapor into hydrogen and oxygen, or hydrogen and hydroxyl, and,
especially, of the carbon dioxide \.nto carbon monoxide and oxygen is very appreci-
able. These reactions involve the absorption of considerable amounts of heat,
allowance for which should be included in the calculation. From a knowledge of

the equilibrium constants of the dissociation reactions and their variation with

temperature it is possible, by a series of approximations, to obtain a more accurate
estimate of the flame temperature. For most common hydrocarbons the results

derived in this manner, for combustion in air, are of the order of 100 lower than
those which neglect dissociation. For combustion in oxygen, when the tempera-
tures are much higher, the discrepancy is greater.

Finally, it may be mentioned that the combustion of a hydrocarbon is not the

relatively simple process represented by the usual chemical equation. Various

*
Jones, Lewis, Friauf and Perrott, /. Am. Chem. Soc., 53, 869 (1931).
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compounds other than carbon dioxide and water are frequently formed, and so

the heat of reaction is not equal to the value determined from measurements in an

explosion bomb, in the presence of a large excess of oxygen, at ordinary temperatures.
13c. Influence of Preheating Reacting Gases. Apart from the use of oxygen,

the temperature of a hydrocarbon flame may be increased by preheating the

reacting gases. In the calculation of the maximum temperature it is necessary to

obtain, first, the value of, or an expression for, AH for the reaction at the tempera-
ture to which the gases are heated; the method described above may then be used.

An alternative procedure is, however, as follows. The heat of reaction at any
temperature Ti is given by equation (12.15), i.e.,

AH(reaction) = A# (reaction) + I ACpdT. (13.2)

The increase in the heat capacity ACp may be represented by

ACp - E(nCr), - (nC/>)i, (13.3)

as in equation (12.9), so that (13.2) becomes

Atf(reaction) = A# (reaction) + (nCp^/dT - (nCp^dT. (13.4)
Jo Jo

On the other hand, the expression for AH for the heating of the products, from the
initial temperature T\ to the final (maximum) temperature T2 is

AH(heating) = f
*

(nCp^r. (13.5)
JT\

Since the sum of the two AH values given by equations (13.4) and (13.5) must be

zero, it follows that

Atfo(reaction) + f
%

J^(nCP)jdT - f *(n(7p)<dr - 0. (13.6)
Jo Jo

The value of AHo(reaction) and the heat capacities of the reactants and products
may be presumed to be known, and so it is possible to calculate the maximum
temperature T2 for any given initial temperature T\ of the reactants.

An alternative treatment makes direct use of AHr (reaction) at any tempera-
ture T, e.g., 25 C, thus avoiding the necessity of first calculating A/7 (reaction) ;

in this case equation (13.4) takes the form

AflV(reaction) - A# (reaction) + f ^(nCP)fdT - f LfaCp^dT,
Jo Jo

and combination with (13.6) gives

Affr(reaction) + f
*

*L(*Cp)jdT - f
l

^(nCp)idT -
0, (13.7)

JT JT

where, as before, T\ is the temperature to which the reactants are preheated, and
TI is the maximum temperature attainable in the reaction under adiabatic condi-
tions at constant pressure. It is of interest to note that if TI is made identical

with jT, so that the heat of reaction AHr is given at the initial temperature of the
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reacting gases, equation (13.7) becomes identical with (13.1). Further, if T is

taken as E, AHT becomes equivalent to AHQ and then equation (13.7) reduces

to (13.6). Hence, equation (13.7) may be taken as the general expression, ap-

plicable to all cases, which may be modified according to circumstances.

13d. Maximum Explosion Temperatures and Pressures. The methods de-

scribed in the preceding section, e.g., equation (13.7), may be used to calculate the

maximum temperature, often referred to as the explosion temperature, attained in

a combustion reaction at constant volume, instead of at constant pressure. The
only changes necessary are (a) the replacement of the AH value at constant pres-
sure by AE at constant volume, and (b) the use of the heat capacities at constant

volume, i.e., CV, instead of those for constant pressure. The conversion of AHp
to AEvt i.e., of Qp to Qv, can be made with sufficient accuracy by means of equa-
tion (12.3), and failing other information the heat capacity CV of a gas may be
taken as 2 cal. deg."

1 mole"1 less than the value of Cp at the same temperature
(cf., however, 21a) . The explosion temperatures calculated in this manner repre-
sent maximum values, for the reasons given in connection with flame temperatures.

From the maximum temperature, the pressure attained in an explosion at

constant volume can be estimated, utilizing the approximation that the gas laws

are applicable. The additional information required is either the original pressure
or the volume of the vessel and the quantities of the gases involved. The pressures
calculated in this manner are, of course, maximum values, and are based on the

supposition that the system is in a state of thennodynamic equilibrium when the

rapid combustion is completed. This condition is unlikely to be satisfied by the

system; nevertheless, the results give a good indication of the maximum pressure

accompanying an explosive reaction.

Problem: A mixture of hydrogen gas and the theoretical amount of air, at

25 C and a total pressure of 1 atm., is exploded in a closed vessel. Estimate the

maximum explosion temperature and pressure, assuming adiabatic conditions. In

order to simplify the calculation, the mean heat capacities Cp of nitrogen (8.3 cal.

deg.~
l mole"1

) and of water vapor (11.3 cal. deg.~~
l mole~l

), for the temperature
range from 25 to 3000 C, may be used; they may be regarded as independent
of the (moderate) pressure.

The value of AH for the reaction

H 2(0) + i0 2(0)
= H2O(0),

is known to be 57.8 kcal. at 25 C, and since An is here
,
it follows from

equation (12.3) that Qv(or AE) is 57,500 cal., since RTAn is equal to 300 cal.

For the present purpose, equation (13.7) or (13.1) takes the form

AS+ Pl>cv),dr =
o,

7298

and since the mean heat capacities are to be used,

AE + XXntfvMT, - 298) -= 0.

In the present case 23(nvO/ is equal to Cv(H.tO, g) +2 X v(N 2), since 2 moles
of nitrogen, associated with the J mole of oxygen employed in the combustion of

the mole of hydrogen, are included in the "products." Assuming Cv to be less

than CP by 2 cal. deg.~
l mole"1

, it follows from the data, that (7i("V)/ is 0.3 + 2
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X 6.3 21.9 oal. deg.~
l
. Hence,

- 57,600 + 21.9(2**
- 298) =

0,

!Ta - 2920 K.

The maximum explosion temperature is thus about 2900 K, which is considerably

higher than the corresponding flame temperature; the latter is found to be about
2400 K.

The maximum pressure is derived from the ideal gas equation. The original

gas, at 1 atm. and 298 K, consisted of 1EU, 62 and 2N 2,
whereas the final gas at

2920 K consists of 1H 2 and 2N 2 . Since PV = nRT, with V and R constant,
it is easily shown that the maximum explosion pressure is

In the foregoing treatment the calculation of the maximum pressure involves

a knowledge of the heat capacities of the products. This procedure has been
reversed in a method for determining heat capacities, first used by R. Bunsen

(1850) and improved by M. Pier (1908). A known amount of a mixture of two
volumes of hydrogen and one of oxygen and a definite quantity of the gas whose
heat capacity is to be measured, are placed in a steel bomb. The gases are then

exploded by a spark, and the maximum pressure attained is measured. From this

the corresponding temperature can be calculated by using the ideal gas law. Since

the heat capacity of the water vapor is known, the mean heat capacity of the

experimental gas, which must be inert in character, can be calculated. Data

extending to very high temperatures have been obtained in this manner.

14. CALCULATION OF HEAT OF REACTION

14ft. Heats of Combustion. A number of methods have been proposed
for the calculation of heats of formation and combustion from a knowledge of

the formula of the substance concerned. Although the results obtained are

not always accurate, they are useful when experimental data are not avail-

able. An examination of the heats of combustion of organic compounds
shows that isomeric substances have almost the same values, and that in any
homologous series there is a change of 150 to 160 kcal. per mole for each CH2

group. These results suggest that each carbon and hydrogen atom that is

burnt to carbon dioxide and water, respectively, contributes a more or less

definite amount to the heat of combustion. There is a possibility, therefore,
of developing approximate rules relating the composition of the given sub-

stance to its heat of combustion.

One such rule (W. M. Thornton, 1917)
4 is that the heat of combustion

is about 52.5n kcal. per mole, where n is the number of atoms of oxygen
required to burn a molecule of the compound. Heats of combustion calcu-

lated in this manner are in satisfactory agreement with observation for

hydrocarbons, e.g., octane (CgHi*): calculated, 1312 kcal., observed,

4
Thornton, Phil Mag., 33, 196 (1917); for more exact rules applicable to paraffin

hydrocarbons, seo Roeaini, Ind. Eng. CAem., 29, 1424 (1937); Ewell, ibid., 32, 778 (1940);
Proeen and Roemni, /. Res. Not. Bur. Stand., 34, 263 (1945).
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1307 kcal.; benzene (C 6H): calculated, 787 kcal., observed, - 782

kcal., but are less satisfactory for compounds containing oxygen, e.g., suc-

cinic acid (CJIeO^: calculated, 367 kcal., observed, 356 kcal.; sucrose

(CuH2aOii): calculated,
- 1260 kcal., observed,

- 1350 kcal. Although
the results were meant to apply to heats of combustion at constant volume,
i.e., AJS?, they are certainly not sufficiently accurate to permit of a distinction

between AB and A/f. Further, no allowance is made for the state, e.g.,

solid, liquid or gaseous, of the compound under consideration, for the errors

are probably greater than the latent heats.

In its simplest form, the method proposed by M. S. Kharasch (1929)
5

is virtually the same as that just described. The molar heat of combustion
of a liquid compound at constant pressure is equal to 26.05x kcal., where
x is the number of valence electrons of carbon not shared with oxygen in the

original substance, but which are shared with oxygen, i.e., in carbon dioxide,
when combustion is complete. In general, x is equal to twice the number
n of oxygen atoms utilized in the combustion of a molecule, so that this rule

is equivalent to stating that the heat of combustion is 52.In kcal. per mole.

However, Kharasch has realized the necessity for including allowances for

various types of structure in the compound, and by the use of these correc-

tion factors results have been obtained which are within one per cent, or less,

of the experimental heats of combustion.

It is perhaps unnecessary to mention that from a knowledge of the heat

of combustion, the heat of formation of the compound from its elements can

be calculated ( 12g). The results will not be very accurate for, as indicated

earlier, they usually involve the difference between two relatively large

numbers, one of which, namely the estimated heat of combustion, may be

appreciably in error.

14b. Bond Energies and Heat of Reaction. A more fundamental ap-

proach to the problem of calculating heats of formation and reaction is by
the use of bond energies. By the bond energy is meant the average amount
of energy, per mole, required to break a particular bond in a molecule and

separate the resulting atoms or radicals from one another. Thus, the C H
bond energy is one-fourth of the amount of energy required to break up a
mole of methane molecules into separate, i.e., gaseous, carbon atoms and

hydrogen atoms. There are good reasons for believing that different ener-

gies are required to remove the successive hydrogen atoms, one at a time,
from a methane molecule, but the so-called bond energy is the mean value.

From a knowledge of heats of dissociation of various molecules into atoms
and of the standard heats of formation of others, it has been possible to

derive the mean energies of a number of different bonds. Some of these

values, as calculated by L. Pauling (1940), are given in Table VII;
6
they

are based on 125 kcal. per g. atom as the heat of vaporization of carbon.

For the C=O and CssN bonds the energies vary to some extent with the

nature of the compounds; thus for C=O, it is 142 kcal. in formaldehyde,
'
Kharasch, /. Res. Nat. Bur. Stand., 2, 359 (1929).

6 L. Pauling, "The Nature of the Chemical Bond," 2nd ed., 1940, pp. 63, 131.
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149 kcal. in other aldehydes, and 152 kcal. in ketones, acids and esters. The
energy of the CsN bond is 150 kcal. in most cyanides, but 144 kcal. in

hydrogen cyanide.

TABLE VII. BOND ENERGIES IN KCAL. PER MOLE

Bond
H H
C C
Cl Ci
Br Br
I I

C H
N H
O H
H Cl
H Br

Energy
103.4 kcal.

58.6

57.8

46.1

36.2

87.3

83.7

110.2

102.7

87.3

Bond
H I

C N
C O
C Cl
C Br
C I

c=c

Energy
71.4 kcaL
48.6

70.0

66.5

54.0

45.5

118
170
100
123

For C=O and C=N, see text.

By the use of the bond energies in Table VII it is possible to derive satis-

factory heats of formation and reaction in many cases, provided the sub-

stances involved do not contain certain double-bonded compounds. When-
ever wave-mechanical resonance is possible, the energy required to dissociate

the molecule, as calculated from the results given above, is too small. It is

necessary in such instances to make allowance for the i 'resonance energy."
7

Although this varies from one compound to another, its value is approxi-

mately 38 kcal. mole"1 for benzene and its simple derivatives, 75 kcal. mole~l

for naphthalene compounds, 28 kcal. per mole for carboxylic acids, and 24
kcal. mole""1 for esters.

Suppose it is required to determine the standard heat of formation of
'

ethane, that is, the heat of the reaction

2C(s) CHe (flO.

This may be regarded as equivalent to the vaporization of 2 g. atoms of

solid carbon, requiring 2 X 125 kcal., the breaking of 3 moles of H H
bonds, requiring 3 X 103.4 kcal., the resulting atoms are then combined to

form one C C bond, yielding 58.6 kcal., and six C H bonds, yielding
6 X 87.3 kcal. in ethane. The gain in energy, which may be taken as A#,
accompanying the formation of ethane at ordinary temperatures is thus

given by

Aff - [(2 X 125) + (3 X 103.4)]
-

[58.6 + (6 X 87.3)] = - 22.2 kcal.

The value determined experimentally from the heat of combustion is 20.24

kcal. at 25 C. From the heat of formation, it is possible to calculate the

heat of combustion, using the known heats of formation of carbon dioxide

and water. Theoretically, it should be possible to evaluate the heat of

7
See, for example, L. Pauling, "The Nature of the Chemical Bond/' 2nd ed., 1940,

Chap. IV; S. Glasstone, "Theoretical Chemistry/' 1944, Chap. III.
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combustion directly, but in doing so allowance should be made for the

resonance energy of carbon dioxide, 33 kcal. per mole.

Problem: Utilize bond and resonance energies to evaluate the heat of com-
bustion of benzole acid.

The reaction is

CHfiCOOH + 7K>2 = 7CO2 + 3H2O,

and the bond energies are as follows:

Reactants Products
Bonds:

14O=O 2128 kcal.

60 H 661
Resonance:

7CO2 231

3020 kcal.

2254 kcal.

The increase of heat content for the combustion is thus 2254 3020 = 766 kcal.

(The experimental value is 771 kcal. at 25 C.)

The bond energies recorded in Table VII are based on data for substances

in the gaseous state; strictly, therefore, they should be used for reactions

involving gases only. However, molar heats of fusion and vaporization are

usually of the order of 1 to 10 kcal.; hence, provided equal numbers of

molecules of solids and liquids appear on both sides of the chemical equation,
the conventional bond energies may be employed to yield results of a fair

degree of accuracy.

EXERCISES *

1. The heat of hydrogenation of ethylene (CaHO to ethane (CjH$) is 32.6

kcal at 25 O. Utilizing the heat of combustion data in Table VI, determine the

change of heat content accompanying the cracking reaction n-butane (C4Hio) *

2C,H4 + H, at 25 C.
2. The heats of combustion of n-butane and isobutane are 688.0 and
686.3 kcal., respectively, at 25 C. Calculate the heat of formation of each

of these isomers from its elements, and also the heat of isomeriaation, i.e.,

n-butane > isobutane, at 25 C.

3. Calculate &HP and Ai?r at 25 C for the reactions

+ 7JO, - 3H,O(J) 4- 6CO,
+ 7*0, - 3H,0(g) + 6CO,,

* Unless otherwise specified, heat capacity and heat content data will be found in

Tables II and V, respectively, or at the end of the book.
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using heat of formation data. The heat of vaporization of benzene is 103 cal. g.~
l

and that of water is 583.6 cal. g.~
l at 25 C.

4. Calculate the change in heat content for the reaction occurring in the lead

storage battery, via.,

Pb + PbOj + 2HtS04 (in20%aq.soln.) 2PbS04 + 2H2O (in20% H*SO4 soln.),

assuming the volume of solution to be so large that its concentration does not

change appreciably. The integral heat of solution (A//) of sulfuric acid in water
to form a 20% solution is 17.3 kcal. mole"*1 at 25 C. The heat of formation of

water in the acid solution may be taken as the same as for pure water.

5. The change of heat content for the reaction

Cl 2to) + 2H20(J) - HS04(aq) + 2HCl(a$)

is 74.1 kcal. at 25 C. The integral heats of solution (Aff) at infinite dilution

of sulfur dioxide, sulfuric acid and hydrochloric acid are 8.5, 23.5 and 17.9

kcal., respectively. Determine the heat of formation of pure sulfuric acid from
its elements.

6. Taking the mean molar heat capacities of gaseous hydrogen, iodine and
hydrogen iodide as 6.95, 8.02 and 7.14 cal. deg.~

l
, respectively, calculate the heat

of formation of hydrogen iodide from the gaseous elements at 225 C. The heat
of sublimation of solid iodine is 58.5 cal. g.~

l at 25 C.

7. The heat of solution of zinc in very dilute hydrochloric acid solution is

36.17 kcal. per g. atom, but in a solution consisting of HCl.lOOHsO, the heat
of solution is 36.19 kcal. The integral heat of solution of 1 mole zinc chloride

in 200 moles water is 15.30 kcal., and in an infinite amount of water it is

- 16.00 kcal. What is the integral heat of infinite dilution of the HCl.lOOHsO
solution per mole of HC1?

8. Derive a general expression for the variation with temperature of the change
of heat content for the reaction

H,Sto) + U0,to) = H0to) + S0to).

Calculate the value of A// at 800 K.
9. Derive a general expression for the variation with temperature of the

standard heat change of the reaction

ZnOW + C() - Zn() + CO to).

Calculate the value of A# at 600 K.
10. Determine the maximum flame temperature when methane is burnt with

the theoretical amount of air (10 2 to 4N 2) at 25 C and constant pressure, assuming
combustion to be 80% complete. Dissociation of the products at high tempera-
tures may be neglected.

11. Carbon monoxide is mixed with 25% more than the amount of air (1O 2 to

4N 2) required theoretically for complete combustion, and the mixture is preheated
to 500 C. Determine the maximum flame temperature, assuming the carbon
monoxide to be completely converted into the dioxide.

12. A small quantity of liquid ethanol is placed in an explosion bomb together
with twice the theoretical amount of oxygen at 25 C and 1 atm. pressure. Taking
the heat of vaporization of the alcohol as 9.5 kcal. mole"1 at 25 C, calculate the

maximum explosion temperature and the maximum explosion pressure, assuming
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adiabatic conditions and ideal behavior. The combustion of the ethanol is to be

taken as complete, with water vapor and carbon dioxide as the sole products.
13. Compare the maximum flame temperatures for the complete combustion

of (i) acetylene, (ii) hydrogen gas containing 2% by weight of atomic hydrogen,
in the theoretical amount of oxygen, originally at 25 C, at 1 atm. pressure. For
the reaction 2H = H 2,

the value ofA# is - 103.4 kcal. at 25 C; the heat capacity
of atomic hydrogen may be taken as independent of temperature, with Cp equal
to 5.0 cal. deg."

1 mole"1
.

14. A mixture of equimolecular amounts of hydrogen and carbon monoxide,

together with the theoretical quantity of air (10 2 to 4N 2) for the combustion, at

a total pressure of 5 atm. at 25 C, is exploded in a closed vessel. Estimate the

maximum temperature and pressure that could be attained, assuming combustion

to be complete. The heat capacity data in Table II may be regarded as being

applicable in the required pressure range, and the gases may be treated as behaving

ideally.

15. Sulfur dioxide at 550 C is mixed with the theoretical amount of air,

assumed to consist of 21 moles 02 to 79 moles N2,
at 25 C, and the mixture is

passed into a converter in which the gases react at 450 C. Assuming virtually

complete conversion, how mucn over-all heat is liberated for each mole of sulfur

trioxide formed?
16. Steam at a temperature of 150 C is passed over coke at 1000 C, so that

the reaction C(s) + H 20(0) = C0(0) + H2(0) takes place with an efficiency of

80%, i.e., 20% of the steam remains unreacted; the gases emerge at 700 C.

Calculate the amount of heat which must be supplied per kg. of steam passing over

the coke; the heat capacity of the latter may be taken as equal to that of graphite.
17. The reaction C() + J02(0)

= C0(g) is exothermic, whereas C() + H 20(0)
= C0(0) + H2(0) is endothermic; theoretically, therefore, it should be possible to

pass a mixture of steam and air (10 2 to 4N2) over heated coke so that its tempera-
ture remains constant. Assuming virtually complete reaction in each case, esti-

mate the proportion of steam to air, both preheated to 100 C, which should

maintain the temperature of the coke at 1000 K.

18. According to Prosen and Rossini (see ref. 4), the heat of formation of a

gaseous normal paraffin containing more than five carbon atoms at 25 C is given

by 10.408 4.926n kcal. mole"1
,
where n is the number of carbon atoms in

the molecule. Calculate the heat of formation of gaseous n-hexane (C6HiO and

compare the result with those given by the rules of Thornton and of Kharasch,
and with the experimental value derived from the heat of combustion.

19. Estimate from the bond energies the approximate heat changes for the

following gaseous reactions: (i) H2 + $O 2
= H 20, (ii) C 2H4 + Br 2

= C 2H4Br2,

(iii) CH3I + H S
= CH 3OH + HI, (iv) 3CH 3COCH3 (acetone) = C6H3(CH3) 3

(mesitylerie) + 3H 20.

20. Determine A// for the reaction

CH3COCH 3 (Z) + 20 2(0)
= CH 3COOH(0 + C0 2fo) + H20(0),

taking the heats of combustion of liquid acetone and acetic acid as 427 and
209 kcal., respectively. Compare the result with that derived from bond

energies allowing for the resonance energy in carbon dioxide and acetic acid.
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CALCULATION OF ENERGY AND HEAT CAPACITY

15. CLASSICAL THEORY

15a. The Kinetic Theory of Gases. The treatment of heat capacities

given in the preceding chapters has been based partly on the use of thermo-

dynamic relationships, and partly on experimental data relating to the actual

heat capacities and their variation with temperature. The results and con-

clusions are, therefore, independent of any theories concerning the existence

and behavior of molecules. However, by means of such theories valuable

information has been obtained of a practical character, having a definite

bearing on thermodynamic problems. For this reason, consideration will

be given to certain theories of heat capacity, especially as some of the prin-

ciples involved will be required in another connection at a later stage.

If it is postulated that an ideal gas consists of rapidly moving, perfectly
elastic particles, i.e., the molecules, which do not attract each other, and
which have dimensions negligible in comparison with the total volume of

the gas, it is possible by the application of the laws of classical mechanics
to derive an expression for the gas pressure. This approach to the study of

gases, known as the kinetic theory of gases, leads to the result

PV = \Nmc\ (15.1)

where P is the pressure of the gas, V is the volume containing JV molecules

of mass m, and <? is the mean square of the velocities of the molecules at the

experimental temperature. If this result is combined with the equation of

state for 1 mole of an ideal gas, viz., PV = RT, is found that

%Nmc? = RT,
%Nmc* = %RT, (15.2)

where N is now the Avogadro number, i.e., the number of individual mole-

cules in one mole. Since the mean kinetic energy of translation per molecule

is Jme?, it follows that %Nmc? is equal to the total translational energy of the
mole of gas; if this is xepresented by Etr., equation (15.2) gives

tr.
= fflr. (15.3)

15b. Kinetic Theory and Heat Capacity of Monatomic Gases. If the

energy of a molecule is supposed to be entirely translational,* then Eir. as

* Monatomic molecules undoubtedly possess other forms of energy, e.g., electronic and
nuclear, but these may be regarded as being independent of temperature. It will be seen
from equations (9.0) and (9.11) that only energy which varies with temperature can affect

95
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given by equation (15.3) may be identified with the energy content E of 1

mole of gas, so that by equation (9.9) the molar heat capacity at constant

volume is *

Cr-(l

The molar heat capacity of an ideal gas, whose energy is that of translational

motion only, should thus have a constant value, independent of temperature
as well as of pressure ( 9e), namely f/J. Since R is 1.987 cal. deg.-

1 mole-1

,

it follows that

Cv = 2.980 cal. deg.-
1 mole-1

.

It was seen in 9g that for an ideal gas Cp Cv = R, so that for the gas
under consideration,

CP = Cv + R = fR
= 4.967 cal. deg.-

1 mole- 1
. (15.5)

The ratio of the heat capacities of the gas at constant pressure and volume,
respectively, is given by equations (15.4) and (15.5) as

^ = I 1.667." (15.6)
Ly

For certain monatomic gases, such as helium, neon, argon, and mercury
and sodium vapors, the ratio of the heat capacities at moderate temperatures
has been found to be very close to 1.67, as required by equation (15.6). The
values of the individual heat capacities at constant pressure and constant

volume are 5.0 and 3.0 cal. deg.~
l mole""1

, respectively, in agreement with

equations (15.5) and (15.4). It appears, therefore, that for a number of

monatomic gases the energy of the molecules, at least that part which varies

with temperature and so affects the heat capacity, is entirely, or almost

entirely, translational in character (see, however, 16f).

15c. Polyatomic Molecules: Rotational and Vibrational Energy. For

gases consisting of molecules containing two or more atoms, the ratio of the

heat capacities is less than 1.67, under ordinary conditions, and the values

of CP and Cv are larger than those given above. The only exceptions are

the diatomic molecules hydrogen and deuterium, for which equations (15.4)
and (15.5) have been found to apply at very low temperatures, about 50 K.

However, the values are not constant, as they often are for monatomic

molecules, and at ordinary temperatures Cp and Cv have increased to ap-

proximately 6.9 and 4.9 cal. deg.~
l mole"1

, respectively; the ratio is then

about 1.4, as it is for most other diatomic gases, e.g., nitrogen, oxygen,
carbon monoxide, hydrogen chloride, etc., ( lOe). In each case, further

the heat capacity, and so these other forms of energy can be neglected for the present.

Polyatomic molecules also possess rotational and vibrational energy; these vary with tem-

perature and so contribute to the heat capacity ( 15c).
* Since E^. is independent of the volume, the partial differential notation in equation

(15.4) is unnecessary, but it is retained here and subsequently for the sake of consistency.
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rise of temperature causes the heat capacities to increase, although the differ-

ence between CP and Cv always remains equal to about 2 cal. deg.-
1 mole"1

,

provided the pressure is not greatly in excess of atmospheric.
The reason why the heat capacities of polyatomic molecules are larger

than the values given by equations (15.4) and (15.5) is that molecules of this

type possess rotational energy and vibrational energy, in addition to the

energy of translation. The rotational energy of a polyatomic molecule is

due to the rotation of the molecule as a whole about three (or two) axes at

right angles to one another, and vibrational energy is associated with the
oscillations of the atoms within the molecule. The inclusion of these ener-

gies in the energy content of the molecule, and their increase with rising

temperature, accounts for the discrepancy between the actual behavior of

polyatomic molecules and the theoretical behavior described in 15b. At
sufficiently low temperatures the effect of the rotational energy and, espe-

cially, of the vibrational energy becomes inappreciable; this explains why
hydrogen and deuterium behave like monatomic gases in the vicinity of

50 K, i.e., 220 C. Other polyatomic gases would, no doubt, exhibit a
similar behavior, but they liquefy before the rotational energy contribution

to the heat capacity has become negligible. The decrease of CP and Cv to

5 and 3 cal. deg."
1 mole""1

, respectively, although theoretically possible, can
thus not be observed.

15d. Principle of Equipartition of Energy. The contributions of the

vibrational and rotational motions to the energy and heat capacity of a
molecule can be calculated by classical methods, and although the results

are not correct, except at sufficiently high temperatures, for reasons to be

explained later, the procedure is, nevertheless, instructive. According to

the principle of the equipartition of energy,
1 each kind of energy of a molecule

that can be expressed in the general form ax*> referred to as a "square term"
or "quadratic term," where x is a coordinate or a momentum, contributes

an amount \RT to the average energy of 1 mole. The translational (kinetic)

energy of a molecule is equal to Jm(x
2 + y

2 + 22), where x, y and z represent
the components of its velocity in three directions at right angles. The
momentum px,

for example, is equal to mx, and so the energy is given by
(pl + Pv + P*)/2ra, thus consisting of three quadratic terms. By the prin-

ciple of the equipartition of energy, therefore, the translational energy should

be 3 X !#T, i.e., fRT, in agreement with equation (15.3).

The rotational energy of a molecule, assumed to be of constant dimen-

sions, is proportional to the square of the angular momentum, so that each

type of rotation is represented by one square term, and thus should con-

tribute \RT per mole to the energy content. A diatomic molecule, or any
linear molecule, exhibits rotation about two axes perpendicular to the line

joining the nuclei. The rotational energy of a diatomic, or any linear,

1 R. C. Tolman, "The Principles of Statistical Mechanics/' 1938, pp. 93 et seq.; R. H.
Fowler and E. A. Guggenheim, "Statistical Thermodynamics/' 1939, pp. 121 ei seq.; J. E.

Mayer and M..G. Mayer, "Statistical Mechanics," 1940, pp. 144 et *g.; 8. Glasstone,
"Theoretical Chemistry/

9

1944, pp. 300 et teq.
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molecule should thus be 2 X \RT, i.e., RT, per mole. A nonlinear molecule,
on the other hand, can rotate about three axes, so that the rotation should

contribute 3 X $RT, i.e., fflT, per mole to the energy of the system.
The energy of a harmonic oscillator is given by the sum of two quadratic

terms, one representing the kinetic energy and the other the potential energy
of the vibration. By the equipartition principle, the energy is thus expected
to be 2 X i/23P, i.e., RT9 per mole for each possible mode of vibration. In

general, a nonlinear molecule containing n atoms possesses 3n 6 modes of

vibration, so that the vibrational energy contribution should be (3n 6)RT
per mole. Diatomic and linear molecules, however, have 3n 5 vibrational

modes, and the vibrational energy is expected to be (3n 5>)RT per mole.

15e. Classical Calculation of Heat Capacities. For a diatomic molecule

two types of rotation are possible, as seen above, contributing RT per mole
to the energy. Since there are two atoms in the molecule, i.e., n is 2, there

is only one mode of vibration, and the vibrational energy should be RT per
mole. If the diatomic molecules rotate, but the atoms do not vibrate, the

total energy content E will be the sum of the translational and rotational

energies, i.e., fRT + RT = fRT, per mole; hence,

CV(tr. + rot.) = (?} &
*fl,

so that the heat capacity at constant volume should be about 5 cal. deg.-
1

mole-1
. The same result would be obtained if there is vibration of the

atoms in the diatomic molecule, but no rotational motion. If, however, the

molecule rotates and the atoms also vibrate, the energy content should be

f#T + RT + RT i.e., %RT, per mole; then

CV(tr. + rot. + vib.) =

that is, about 7 cal. deg.-
1 mole"1

.

The heat capacities of the diatomic gases, hydrogen, oxygen, carbon
monoxide and hydrogen chloride, are all very close to 5 cal. deg.-

1 mole"1

at ordinary temperatures. It appears, therefore, that in these diatomic

molecules there is either vibration or rotation, but not both, the rotational

motion being the more probable. According to the classical equipartition

principle, the value of Cv should remain at 5 cal. deg.-
1 mole-1 with increas-

ing temperature, until the other type of energy, i.e., rotation or vibration,

respectively, becomes excited; the heat capacity at constant volume should
then increase sharply to 7 cal. deg.-

1 mole"1
. This is, however, quite con-

trary to experience: the heat capacity increases gradually, and not suddenly,
as the temperature is raised. Even at 2000 C, the heat capacities Cv of

hydrogen, nitrogen, oxygen and carbon monoxide are only 6.3, although that

.of hydrogen chloride is 6.9 cal. deg.-
1 mole-1

. For chlorine gas the value of

Cv is already 6.0 at ordinary temperatures, and becomes equal to 7.0 cal.

deg
-1 mole-1 at about 500 C; it then increases, very slowly, to 7.2 cal. deg.-

1

mole-1 at 2000 C.



16a QUANTUM STATISTICAL THEORY OP HEAT CAPACITY 99

16. QUANTUM STATISTICAL THEORY OF HEAT CAPACITY

16a. Quantum Theory of Energy. It is clear that as far as diatomic

molecules are concerned the experimental heat capacities and their variation

with temperature are not entirely consistent with the equipartition principle;
the same is found to be true for other polyatomic molecules. In every case,

however, the theoretical heat capacity is approached, or slightly exceeded,
as the temperature is raised. Nevertheless, the approach is gradual, whereas
the classical treatment would imply a sudden change from one value to

another. An attempt to overcome this discrepancy was made by suggesting
that the development of a new type of motion, with increasing temperature,
did not occur with all the molecules at the same time. Thus, at any tem-

perature a gas might consist of a mixture of molecules, some of which were

rotating and not vibrating, but others were rotating as well as vibrating.

However, no adequate theoretical treatment could be developed to account

quantitatively for the experimental facts.

A much more satisfactory and complete interpretation of the observa-

tions is provided by the quantum theory, according to which a molecule

acquires its energy in the form of definite amounts or quanta. As far as trans-

lational energy is concerned, the quanta are so small that the energy is taken

up in a virtually continuous manner. As a result, the behavior corresponds
to that required by the classical theory. Rotational quanta are also small,

although considerably larger than those of translational energy; hence, at

ordinary temperatures nearly all the molecules possess appreciable amounts

(quanta) of rotational energy. The energy contribution is again in good
agreement with that required by the equipartition principle, i.e., %RT per

mole, for each type of rotation.

The vibrational quanta, on the other hand, are much larger, and at

ordinary temperatures the vibrational energy of most molecules is that of

the lowest quantum level. In this event, the vibrational energy does not

affect the heat capacity, as is the case for the majority of diatomic molecules.

As the temperature is raised the molecules acquire increasing numbers of

quanta of vibrational energy, with the result that the contribution to the
heat capacity increases toward the classical value of R, i.e., about 2 cal.

deg."
1 mole""1

,
for each mode of vibration. This accounts for the steady

increase of the heat capacities at constant volume of several diatomic mole-
cules from 5 at ordinary temperatures to 7 cal. deg.~

J mole""1 as the tempera-
ture is raised. With chlorine, the vibrational energy quanta are not too

large, because the binding energy of two chlorine atoms is smaller than that

for most other diatomic molecules (cf. Table VTI). Consequently, the num-
ber of molecules possessing one or more quanta of vibrational energy in-

creases with temperature, even at normal temperatures; hence, the molar
heat capacity CV of chlorine already exceeds fR at C, and reaches }/2 at

about 500 C. The quantum theory thus permits of a qualitative explana-
tion of the heat capacity observations for diatomic molecules, and also of
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other molecules. It will now be shown that a quantitative interpretation
is also possible.

16b. The Partition Function. The molecules of a gas do not all have the
same energy ;

in fact any value of the energy, consistent with the requirement
that it shall be made up of whole numbers of the various quanta, e.g., of

translational, rotational and vibrational energy, is possible. However, it

can be shown by the methods of statistical mechanics that at each tempera-
ture there is a particular distribution of the total energy of a gas among
its constituent molecules which is much more probable than any other
distribution.9

Consider a system, such as an ideal gas, consisting of a total number of

N molecules which do not attract or repd each other. According to the quan-
tum theory, the energy of each molecule at any instant must have a definite

value involving a specific number of quanta. Let * represent the energy,
in excess of the lowest possible value, of one of these permitted states of the

molecules. It has been shown by the methods of wave mechanics that even
at the absolute zero a molecule would still possess a definite amount of

energy, particularly vibrational energy; this quantity, referred to as the

zero-point energy of the molecule, is the lowest value which acts as the refer-

ence level postulated above. Suppose 7V is the number of molecules in this

lowest energy state, and AT is the number in the level in which the energy is

. The most probable energy distribution among the molecules, contained

in a vessel of constant volume, at the absolute temperature T, is then given

by statistical mechanics as

(16.1)

where fc, known as the Boltzmann constant, is equal to the molar gas constant
R divided by the Avogadro number.* The foregoing result is an expression
of the Maxwell-Boltzmann law of the distribution of energy. Although the

law was derived from classical mechanics, it has been found that, at all tem-

peratures above the lowest, quantum considerations lead to a result which
is almost identical with that given by equation (16.1). One modification is,

however, necessary: this is the introduction of a statistical weight factor 0*

representing the number of possible quantum states having the same, or

almost the same, energy e*. The appropriate form of the energy distribution

law is then
1

(16.2)

where 0o is the statistical weight of the lowest energy level.

If the various energy values, represented by the general term
, are <o,

i, j, etc., and the numbers of molecules possessing these energies are

1 For a fuller treatment of this subject and of other matters considered in this chapter,
flee the works mentioned in ref. 1.

* The Boltcmann constant k is usually expressed in ergs deg.~
l
; thus R is 8.814 X 10T

ergs deg.~
l mole"1 and the Avogadro number is 6.023 X HP mole"1

,
so that k is 8.314 X 10V

6.028 X 10* - 1.380! X KT" erg deg.~*.
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etc., or Ni, in general, then the total number of molecules N is equal
to the sum of these individual numbers; that is,

N - No + Ni + JNT2 + - + Ni + - -

-
9*

where ?o> g\9 0*, etc., are the statistical weights of the respective levels. This
result may be put in the form

N = - g#-*tkr , (16.3)
go t-o

where the summation is taken over all integral values of i, from zero to

infinity, corresponding to all possible energy states of the molecules. The
summation term in equation (16.3) is known as the partition function of the

molecule, and is represented by the symbol Q *; thus,

Q

- Z g*e-'
ilkT

. (16.4)
-o

It follows, therefore, from equations (16.3) and (16.4) that No/gQ = N/Q',

substituting this result in (16.2) it is seen that the distribution law may be
written in the form

Ni =
^gie-*i

kT
. (16.5)

16c. Energy, Heat Capacity and the Partition Function. Since, in

general, Ni molecules each possess energy et ,
the total energy content, in

excess of the zero-level value, of the molecules in the ith level is .; the

total energy, in excess of the zero level, of the whole system of N molecules

is then given by the sum of all such terms. If E is the actual energy content
of the N molecules and EQ is the total energy when they are all in the lowest

possible level, then

E - Eo = #o + JViei + N** + + N#t + -, (16.6)

and hence, by equation (16.5)

E - Eo - ~
(<7o*oe-"*

r + <7iie-"'*
r + + <7;e;e-<

/fcr+) (16.7)

Upon differentiating equation (16.4), which defines the partition func-

tion, with respect to temperature, the volume being constant, as postulated

above, and multiplying the result by kT*, it is found that

(H)
=

* This should not be confused with the heat quantity for which the same symbol is used.
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It is evident, therefore, that equation (16.7) may be written as

If the system under consideration consists of 1 mole of gas, N is the Avogadro
number and Nk is equal to R, the molar gas constant; the expression for the

energy content per mole is then

(16.8)

Finally, differentiation of equation (16.8) with respect to temperature, at

constant volume, remembering that EQ is constant, gives

for the molar heat capacity of an ideal gas system at constant volume. The
value of CP can then be obtained by the addition of R, in accordance with

equation (9.29). The result expressed by equation (16.9) is applicable to any
gas, provided the forces between the molecules are small, that is to say, pro-
vided the gas is almost ideal. Corrections for deviations from ideal behavior

can be made if necessary ( 21d).
In order to simplify the computation of heat capacities from partition

functions it is often convenient to utilize the fact that equation (16.9) can
be converted into the form

[- (!)']
where

Q' - -
| gjr**T and Q" = ^

( |
Y gjr".

By means of the equations derived above it should be possible to calcu-

late the heat capacity of a gas at any temperature provided information

concerning the partition function is available. The problem is thus reduced
to a study of the evaluation of this property of a molecular species.

16d. Separation of Energy Contributions. The energy values c
, 1, . . .

,

<=,-,
. . . t used in the definition of the partition function [equation (16.4)]

refer to the total energy of a single molecule, including the translational,
rotational and vibrational contributions; allowance must also frequently be
made for the electronic energy because the molecules are not necessarily all

in a single electronic energy level. This is the case, for example, for a

number of monatomic substances, such as atomic oxygen and the halogens,
which have multiplet electronic levels at ordinary temperatures, and excited

electronic states for which allowance must be made at higher temperatures.
* It should be noted that Q' - dQ/d(l/T) and Q" - dQ/d(l/!T).
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For most common polyatomic molecules, with the exception of oxygen and
nitric oxide, the electronic contribution to the partition function is virtually
a factor of unity at ordinary temperatures, so that it can be ignored. At
high temperatures, however, it becomes important and must be taken into

consideration. There is also a nuclear effect on the partition function, but
this may be neglected for the present (cf., 24j).

If the various forms of energy of a molecule may be regarded as com-

pletely separable from one another, which is probably justifiable, at least as

far as electronic, translational and combined rotational and vibrational

energies are concerned, it is possible to write

=
c + C t + r + v

or

e-</kT = e-*,fkT x cr-.ii
*T x e-*rikT x e-*lkT

, (16.11)

where is the total energy per molecule, and ej c<, er and represent the

separate electronic, translational, rotational and vibrational contributions,

respectively. It is evident from equation (16.11) that each exponential
term in (16.4), which defines the partition function, may be taken as the

product of a number of terms of the same type, one for each kind of energy.

Further, the statistical weight factor g is equal also to the product of the

separate factors for the various forms of energy. As a result, the complete
partition function Q may be divided into a number of factors,* viz.,

Q = Qe X Qt X Qr X Qv , (16.12)

where Qe, Qt, Qr and Qv are called the electronic, translational, rotational

and vibrational partition functions, respectively. Each of these is defined

by an expression identical in form with equation (16.4), but in which g and
refer to the particular type of energy under consideration. The subdivision

of the total partition function into a number of products, each characteristic

of one type of energy, greatly simplifies its evaluation.

It will be observed from equations (16.8) and (16.9) that the energy and
heat capacity of a gas depend on the logarithm of the complete partition
function. Since the latter is equal to the product of the factors for the

several forms of energy, the total energy content and heat capacity of the

molecules will be equal to the sum of the contributions obtained by inserting
the appropriate partition functions in the aforementioned equations. Thus,
from equation (16.12),

InQ = InQe + lnQt + -,

so that

e d\nQ t

dT dT dT
* This result follows from the mathematical fact that the product of sums is equal to

the sum of the products.
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Consequently, by equation (16.8),

and similarly for the heat capacity. This result is the basis of the procedure
which will now be adopted for the derivation of expressions for the energy
and heat capacity of various types of molecules. It may be mentioned, in

anticipation, that the only partition function factor which is dependent on
the volume is the translations! contribution; hence, in all other cases the

partial differential notation, with the constant volume restriction, need not

be used.

16e. Translational Partition Function. Since all molecules, monatomic
or polyatomic, possess translations! energy, the corresponding contribution

to the partition function will be considered first. This is determined by
utilizing the expression

(1(U3)

for the component in one direction of the translational energy of a molecule,
derived by means of wave mechanics; n is a quantum number which may
have any integral (or zero) value, ra is the mass of the molecule which is

confined in a box of length I in the direction parallel to the given energy com-

ponent, and h is the Planck (quantum theory) constant, i.e., 6.624 X 10~27

erg sec. The statistical weight of each translational level is unity, and so

the partition function for translational motion in one direction is given by
equation (16.4), after inserting the energy expression from (16.13), as

Qci) = L <r'* r = E e-1*1 ' 8- 11**
(16.14)

n-O

the summation being carried over all values of the quantum numbers from
zero to infinity. Since translational levels are very closely spaced,* the

variation of energy may be regarded as being virtually continuous, instead

of stepwise, as it actually is. The summation in equation (16.14) may thus
be replaced by integration, so that

- r
jn

f
(16,15)

* This can bo shown by inserting the value for m, for any molecular species, in equation
(16.13), together with the Planck constant; taking I as 1 cm., for example, the energy
separation of successive quantum levels can then be found by setting n 1, 2, etc. The
result may thus be compared with $kT, the average translational energy of a single molecule
in one direction. The latter will be found to be of the order of 1017 times the former, at

ordinary temperatures, showing that the translational quantum levels must be closely

spaced.
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The contribution of each of the components of the translations! energy,
in three directions at right angles, is represented by equation (16.15), and
the complete translational partition function is obtained by multiplication
of the three identical expressions; thus,

<'*

V, (16.16)

where J
1 has been replaced by V, the volume of the gas.

Problem: Calculate the translational partition function for 1 mole of oxygen
at 1 atm. pressure at 25 C, assuming the gas to behave ideally.

Since the pressure is given, it is convenient to replace V in equation (16.16)

by RT/P, so that
- (2irmkT)*'* RT
Qi --

3? T"
It can be readily shown that Qt is dimensionless, so that all that is necessary is to

see that numerator and denominator are expressed in the same units. In this

case, m, k and h are known in c.gjs. units, P is 1 atm., so that R should be in

cc.-atm. deg."
1 mole""1

. The mass m of the oxygen molecule is equal to the mo-
lecular weight 32.00 divided by the Avogadro number, i.e., 5.313 X 10~28

g. The

temperature T is 298.2; hence,

_ (2 X 3.1416 X 5.313 X 1Q-*3 X 1.380 X IP"16 X 298.2)
3/ 82.06 X 298.2

Qt ~
(6.624 X 10-* 7

)
3

'

1.000

- 4.28 X 1030
.

If the expression for the translational partition function is inserted into

equation (16.8), it is readily found, since TT, m, k, h and V are all constant,

that the translational contribution Et to the energy, in excess of the zero-

point value, is equal to fRT per mole, which is precisely the classical value.

The corresponding molar heat capacity at constant volume is thus fR. As

stated earlier, therefore, translational energy may be treated as essentially

classical in behavior, since the quantum theory leads to the s'ame results as

does the classical treatment. Nevertheless, the partition function derived

above [equation (16.16)] is of the greatest importance in connection with

other thermodynamic properties, as will be seen in Chapter IX.

16f. Electronic States: Monatomic Gases. Many monatomic substances,

as well as a few polyatomic molecules, e.g., oxygen, nitric oxide and nitrogen

dioxide, have multiplet electronic ground states. That is to say, in their normal

states there are two or more different electronic levels with energies so close to-

gether that they may be considered as a single level with a statistical weight factor

greater than unity. In addition to this possibility, there may be excited electronic

states, whose energy is appreciably greater than that of the normal (ground) states.

Such excited states become increasingly occupied as the temperature is raised.

In cases of this kind the electronic partition function is greater than unity and

varies with temperature; its value must be determined for the calculation of

energies and heat capacities.
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The statistical weight factor of each electronic level, normal or excited, is

equal to 2j + 1, where j is the so-called "resultant" quantum number of the atom
in the given state. The expression for the electronic factor in the partition func-

tion is then given by
Q. - E7 + I)*-***, (16.17)

where c, is the energy of the electronic state in excess of the lowest state, i.e., the

ground state. In the ground state, the energy e, is zero, so that the exponential
factor e~**lkT is unity. The contribution of this state to the electronic partition
function is thus 2j + 1. For helium, neon, etc., and mercury, the value of j in

the lowest energy state is found to be zero, from the spectra of these atoms; hence,

2j + 1 is unity, and since no higher (excited) level need be considered, the elec-

tronic partition function factor is also unity, and so can be disregarded. Even if

2j + 1 were not unity, the effect on the energy and heat capacity would still be

zero, for these quantities are dependent on derivatives of the logarithm of the

partition function with respect to temperature Ccf. equations (16.8) and (16.9)].

Provided the ground state of the atom is the only state which need be considered,

Qi is 2/ + 1, where j refers to the ground state, and hence it is an integer which
is independent of temperature; the contribution to E and Cy will consequently
be zero.

It appears from spectroscopic studies that helium, neon, argon and mercury
atoms are almost exclusively in a single (ground) state and that higher (excited)
electronic energy states are not occupied to any appreciable extent, except at very
high temperatures. These gases, therefore, behave in the manner required by the

classical treatment. The heat capacities of these monatomic substances are thus

equal to the translational value, i.e., \R, at all reasonable temperatures. If ac-

curate observations could be made at high temperatures, however, a small in-

crease would be observed, because of the occupation of higher electronic levels.

For some atoms one or more electronic states above the ground state are ap-

preciably occupied even at moderate temperatures, and hence the appropriate
terms must be included in the partition function. For example, in the lowest state

of the chlorine atom, i.e., when e is zero, the value of j is f ;
not very far above

this is another state in which j is . The electronic partition function for atomic
chlorine at ordinary temperatures is therefore given by equation (16.17) as

Q. = (2 X f + l)<r'*
r + (2 X * + l)e-<

- 4 + 2e- fkT
, (16.18)

where \ is the electronic energy of the upper level, in excess of the value in the

ground state. At higher temperatures other terms would have to be included for

electronic states of higher energy, but these may be neglected here. The value of

the energy 1 is found from the spectrum of atomic chlorine; it is derived from the

separation of two lines whose frequencies, in wave numbers,* differ by 881 cm.~l
.

According to the quantum theory, the energy c corresponding to a frequency of

v cm.^1 is represented by
=

vhc, (16.19)

where h is the Planck constant and c is the velocity of light. Upon inserting the

values of h, c and k (see Table 1, Appendix), it is found that hc/k is 1.438s cm.

* The frequency in "wave numbers," or cm.""1
units, is equal to the frequency expressed

in vibrations per second, i.e., sec."1
units, divided by the velocity of light, 2.9977 X 10"

cm. sec.""1.
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so that from equations (16.18) and (16.19) the electronic partition function for

atomic chlorine is found to be

Q. = 4 + 2e-8WAc/*r = 4 + 2e-1268/r. (16.20)

Hence the electronic contribution to the energy content and the heat capacity at

any (moderate) temperature can be determined by means of equations (16.8) and
(16.9), respectively.

Problem: Calculate the electronic contribution to the heat capacity of atomic
chlorine at (i) 300 K, (ii) 500 K.

The calculation is most conveniently made by means of equation (16.10).

(i) At 300 K,
Q, 4 + 2e-1268'300 = 4.029.

Q'tJ as defined in connection with equation (16.10), contains one term only, since

e/k is zero for the lowest level; hence,

Q; = - 1268 X 2e-1268/300 = -
37.02,

since t/k is 1268 for the higher level, as seen in equation (16.20). Q"e also consists

of one term; thus,

Q"9 = (1268)
2 X 2<r1268 '300 = 4.695 X 104

.

Hence, by equation (16.10),

R
["

4.695 X 104 / 37.02 \ 2

]
(300)

2
[ 4.029 \ 4.029 / J

= 0.128.K = 0.254 cal. deg.~
l
g. atom-1

.

(ii) At 500 K,
Qf

- 4 + 2e-1268/60 = 4.158

#1 = - 1268 X 2<rl268/500 = - 200.8

Q".
= (1268)

2 X 2e-1268 > 500 = 2.546 X 10 5

R r 2.546 X 10 s / 200.8 \ 2

]'
"

(500)
2
[ 4.158 \ 4.158 / J

= 0.236JK = 0.469 cal. deg.~
l
g. atom"1

.

The normal heat capacity of atomic chlorine, due to translational energy only, is

fR, i.e., 2.98 cal. deg."
1
g. atom"1

,
and so the electronic contribution would be

appreciable even at 300 K.

In general, an energy level, electronic or otherwise, can contribute to

the partition function if the exponential term e~*lkT has an appreciable

magnitude. As a very rough rule, it may be stated that if for any level e/k
is greater than about 5T, then the contribution of that particular level may
be neglected at the temperature T. As seen above, /fc is 1268 deg. for the

first excited level of atomic chlorine, and so this will affect the energy and
heat capacity at temperatures exceeding 1268/5, i.e., about 250 K. The
results in the problem given above show that at 300 K the electronic con-

tribution to the molar heat capacity of atomic chlorine is 0.128/2, which is

quite appreciable. Since e~*lkT increases rapidly with increasing tempera-
ture, the effect, on the energy and heat capacity also becomes much more

apparent.
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The foregoing calculations show how the classical treatment, which does

not take into account the possibility of electronic states, would fail if applied
to atomic chlorine at temperatures exceeding about 260 K. The higher
the temperature the greater the discrepancy. It was perhaps fortunate that

the original prediction, based on the kinetic theory, that the molar heat

capacity of a monatomic gas should be }/2 at constant volume, independent
of the temperature, was confirmed first by measurements with mercury
vapor (A. Kundt and E. Warburg, 1876), and later with sodium vapor and
the inert gases of the atmosphere. Spectroscopic measurements indicate

that for the atoms of all these elements the energy difference between the

lowest and next electronic level is so great that temperatures of several

thousand degrees would be required for the second level to make an ap-

preciable contribution to the energy and heat capacity. If, like atomic
chlorine and, more particularly, atomic oxygen, the aforementioned sub-

stances had possessed low-lying electronic levels, discrepancies would have
been observed which would have proved inexplicable until the modern

development of the quantum theory.

16g. Diatomic Molecules: Electronic Partition Function. In general,

for diatomic molecules the effect of electronic levels above the ground state

can be neglected, since the energy of the next state is usually so high as to

be of little practical interest. The energy separation between the lowest

and the next (excited) electronic level of the oxygen molecule is probably one

of the smallest for any diatomic substance, yet this excited level begins to

make a detectable contribution only at temperatures exceeding 2000 K.
For other molecules, therefore, still higher temperatures are necessary before

electronic states above the ground level have any noticeable effect on the

partition function. Consequently, it is evident that, for all ordinary pur-

poses, it is not necessary to consider any state other than the ground state

of a diatomic molecule. Nearly all such stable molecules, with the notable

exceptions of oxygen and nitric oxide, occur in a single electronic level, i.e.,

in a singlet state, and so the electronic partition function at all reasonable

temperatures is unity. In molecular oxygen, however, there are three very

closely spaced levels, i.e., a triplet state, and the electronic partition function

is 3.0. Similarly, nitric oxide has two such levels, i.e., a doublet state, and
so the electronic factor is virtually 2.0.

* In neither case, however, is there

any detectable variation with temperature in the vicinity of 300 K, because

the energies of the excited electronic levels are so much higher than that of

the normal state. Hence, at temperatures below at least 2000 K the elec-

tronic contribution to the energy content or heat capacity is negligible for all

diatomic molecules. As mentioned earlier, the actual value of the electronic

partition function is important in another thermodynamic connection to be

discussed in a subsequent chapter.

* In nitric oxide, which is an exception among stable diatomic molecules, each level

has a multiplicity of two (A-type doubling), so that the electronic partition function is

actually 4.0.
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16h. Diatomic Molecules: Rotational Partition Function. The value of

the energy of a molecule in any rotational level can be expressed in terms of

an integral (or zero) quantum number J, so that the rotational energy of

the Jth level may be represented by /. The corresponding statistical

weight is 2J + 1, and the rotational factor in the partition function, apart
from nuclear spin effects, is given by

Qr - E (a/ + I)*-"**. (16.21)

The rotational energies j can be derived from a study of the spectrum of the

molecule, and the value of each (2J + V)e~'
JlkT term can be calculated as /

takes on a series of integral values. It may seem, at first sight, that it would
be necessary to include a very large number of terms in the summation of

equation (16.21). However, this is not the case, for as J increases e/ also

increases, and hence the exponential factor e~*JtkT decreases even more
rapidly. The number of terms which contribute appreciably to the summa-
tion is therefore not so large as would at first appear.

For a diatomic molecule having two different nuclei, e.g., NO, HC1, OH,
IC1, and even HD, where the nuclei are of different isotopes, the rotational

quantum number J in equation (16.21) can have the successive values of

0, 1, 2, 3, etc., but for molecules possessing two identical atomic nuclei, e.g.,

H2 , Dj, O2 and C12 ,
this is not strictly true. In principle, all molecules of

the latter type can exist in "ortho" and "para" states, the statistical weights,

(i + l)(2i + 1) and i(2i + 1), respectively, depending on the spin quantum
number i of the nucleus. If this quantum number is zero, the para states

have a statistical weight of zero, and hence have no actual existence; such

is the case, for example, with the most abundant isotopic form of molecular

oxygen, in which both nuclei have a mass number of 16. In one of the states,

either ortho or para, depending on various circumstances, the rotational

quantum number J can have even values only, i.e., 0, 2, 4, etc., and in the

other state it can be odd only, i.e., 1, 3, 5, etc. In order to obtain the com-

plete rotational partition function, it is necessary, therefore, to use the cor-

rect nuclear spin statistical weight and the proper rotational quantum num-
bers for each state when making the summation indicated in equation

(16.21). It may be pointed out that a nuclear spin factor should also be
included for molecules with dissimilar nuclei, but this has the same value for

all rotational levels, viz., (2i + l)(2i' + 1), where i and i' are the spin

quantum numbers of the two nuclei.

For all diatomic molecules, with the exception of hydrogen below 300 K
and of deuterium below 200 K, a considerable simplification is possible for

temperatures above the very lowest. In the first place, the nuclear spin
factor may be ignored for the present (see, however, 24j), since it is inde-

pendent of temperature and makes no contribution to the heat capacity.

The consequence of the nuclei being identical is then allowed for by intro-

ducing a symmetry number <r, giving the number of equivalent spatial orienta-

tions thai a molecule can occupy as a result of simple rotation. The value of

9 is 2 for symmetrical diatomic molecules, and for unsymmetrical molecules
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it is unity. The rotational partition function is then given by

Qr - i (2J + l)e-"'
T

, (16.22)
ff J-O.1,2,3,

where J can have all integral values from zero to infinity. Since the sym-
metry number is constant for any given molecule, it does not actually affect

the heat capacity, but it is inserted here for the sake of completeness (see,

however, 24k).
At temperatures at which the modification described above is permissible,

a further simplification is possible. The rotational energy of a rigid diatomic

molecule, i.e., one of fixed length, in any level of quantum number J y
is

given by the expression

e, J(/ + l)
JL

, (16.23)

where h is Planck's constant, and / is the moment of inertia * of the molecule.

In the lowest energy level J is zero, so that c/ is zero; hence cj as given by
equation (16.23) represents the rotational energy, in the Jth level, in excess

of the lowest, i.e., zero-point, value. This is the quantity, therefore, which
is to be used in the determination of the partition function. Inserting the

expression for tj given by equation (16.23) in (16.22), it is seen that

Qr - (2J + i)e-
J"+w***lkT

.

0" /-0.1.2.-"

Provided the moment of inertia is moderately large and the temperature
not too low, i.e., for diatomic molecules, other than hydrogen and deuterium,
virtually all temperatures at which they are gaseous, the summation may
be replaced by integration and, after neglecting certain small quantities, it

is found that

(16.24)

TABLE VIII. MOMENTS OP INEBTIA OF DIATOMIC MOLECULES

Molecule / g. cm.* Molecule / g. cm.2

H 0.459 X 10-* N 2 13.9 X H)-*

HD 0.612 CO 14.5

D* 0.920 NO 16.4

HF 1.34 O2 19.3

OH 1.48 C12 114.6

HC1 2.66 ICl 245
HBr 3.31 Bra 345
HI 4.31 I, 743

* The moment of inertia of a diatomic molecule AB, consisting of two atoms whose
actual masses are m\ and ms, is given by \jn/jn^/(m\ + WB)]T*, where r is the distance
between the centers of the atoms.
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The moment of inertia can be derived from spectroscopic data or it can be
calculated from the dimensions of the molecule, so that the rotational par-
tition function can be determined. The values of the moments of inertia

of a number of diatomic molecules in their ground states are given in

Table VIII.8

Problem: Calculate the rotational partition function of (i) hydrogen gas,

(ii) iodine chloride gas, at 300 K.

(i) From Table VIII, the moment of inertia of molecular hydrogen is 0.459

X lO^40 g. cm.2
,
and its symmetry number a is 2; hence utilizing the known values

of k and A, it is seen from equation (16.24) that at 300 K,

8 X (3.14)
2 X 0.459 X IP"40 X 1.38 X IP"16 X 300

Qr "
2 X (6.624 X 10~27)

2

= 1.71.

(ii) For iodine chloride, / is 245 X 10~"40 g. cm.2
, and since the symmetry

number is unity,

^ 8 X (3.14)
2 X 245 X IP"40 X 1.38 X 1Q-" X 300

^r

(6.624 X 10~27)
2

= 1820.

A consideration of the units will show that Qr is dimensionless.

For the present purpose, it is not necessary to know the actual partition

function, but only its variation with temperature. For a rigid molecule /
is constant, and since TT, k and h are also constant, it is readily seen from

equation (16.24), using equations (16.8) and (16.9), that

n,
dT

and

These results are identical with those obtained from the equipartition prin-

ciple ( 15d), so that, as a good approximation, classical methods can be
used for the evaluation of the rotational energy and heat capacity of diatomic

gases, except hydrogen and deuterium, at all temperatures above the very
lowest.

16L Rotational Heat Capacity of Molecular Hydrogen. The spin quantum
number of the hydrogen (H) nucleus is

,
and at ordinary (and higher) tempera-

tures molecular hydrogen, in which the ortho and para forms have attained equi-

librium, consists of (t + l)(2i -h 1), i.e., three, parts of the former to i(2i + 1),

i.e., one, part of the latter. If the gas is cooled in the absence of a catalyst, the

relative amounts of ortho and para molecules remain unchanged. The so-called

s Data mainly-adapted from G. Herzberg, "Molecular Spectra and Molecular Structure:

Diatomic Molecules/' 1039.
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"normal11

hydrogen, which is the gas commonly used in experimental work, may
thus be regarded as consisting of a mixture of three parts of orthohydrogen and
one part of parahydrogen.* In order to determine the heat capacity of this gas
at any temperature it is necessary to evaluate the separate partition functions of
the ortho and para forms, and then to calculate the corresponding heat capacities;
the rotational heat capacity of "normal" hydrogen is then |(7r(ortho) + iCV(para),
for the given temperature. The rotational partition function of orthohydrogen is

<?r(ortho) -
(t + l)(2i + 1) E (2J + l)e-"kT,

/-1,3,6,---

since only odd values of the rotational quantum number are associated with the
ortho states, and that of the para form is

Qr (Para) - i(2i + 1) E (2J + l)e~^kTf

/-0,2,4,'"

even values only of the rotational quantum number being permitted; the nuclear

spin factor has been included in each case.

It can be seen from equation (16.23) that the energy separation between suc-
cessive rotational levels is related in an inverse manner to the moment of inertia

of the molecule. For all gases, except H2, D 2 and HD, the rotational energy
separations are small enough for a large proportion of the molecules to occupy the

higher levels even at low temperatures. The behavior in respect to rotational

energy is therefore virtually classical under all reasonable conditions. With
hydrogen, however, the moment of inertia is so small (Table VIII), and the

separation between successive rotational energy levels so large, that a temperature
of about 300 K has to be reached before the gas can be treated in a classical

manner. In the vicinity of 50 K virtually all the molecules of hydrogen are in
their lowest possible rotational states; the quantum number J is then unity for
the ortho and zero for the para molecules. The respective partition functions
are now

Qr(ortho) - -f l)(2i + i)*-*
1
'4*'7** and Qr(para) = i(2i + 1),

using the values of ej given by equation (16.23). It is evident from the appropri-
ate form of equation (16.9) that Cr(ortho) and Cr(para) will both be zero, and
hence the rotational heat capacity of "normal" hydrogen will also be zero at

temperatures of 50 K and below. As the temperature is raised additional terms
contribute to the rotational partition function, and the heat capacity increases.

By utilizing the j values derived from the spectrum of molecular hydrogen, the
rotational partition functions of the ortho and para forms have been determined
at a number of temperatures by summing the appropriate ge~'

lkT terms in each
case. From these results the heat capacities of "normal" hydrogen have been
calculated, and the values have been found to be in good agreement with measure-
ments made from 80 to 300 K. In fact, the heat capacities obtained from the

partition functions, after making allowance for departure from ideal behavior, are

probably more accurate than those derived from experiments at low temperatures.
*
If ortho-para equilibrium is attained at every temperature, the proportion of the para

form will increase as the temperature is lowered from about 900 K. The system is then
known as "equilibrium" hydrogen. At 20 K it consists of almost 100 per cent para-
hydrogen.
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At temperatures of about 300 K and above, a sufficient number of

rotational energy levels contribute to the partition functions for the hydro-
gen gas to be treated in a classical manner. The rotational partition func-

tion will then be given by equation (16.24), and the corresponding heat

capacity will thus be R, as for other diatomic gases. Since deuterium has
a higher moment of inertia than ordinary hydrogen, a somewhat lower tem-

perature, namely, about 200 K, is sufficient for virtually classical behavior
to be attained. 4

16j. Diatomic Molecules: Vibrational Partition Function. The vibra-

tional factor in the partition function may be evaluated by using vibrational

energy values cv derived from spectroscopic measurements. The statistical

weight of each vibrational level is unity, and so the partition function is

merely equal to the sum of the e-'v/kT terms. Except at high temperatures
the number of such terms having appreciable magnitudes is not large, and
the summation can be made without difficulty, if required. However, for

most purposes a simpler procedure is possible. The values of the energy
in the various quantum levels of a harmonic oscillator are given by the

Expression
cw = (v + $)hcu, (16.25)

wjiere v is the vibrational quantum number which can be zero or integral;
h and c are, as usual, the Planck constant and the velocity of light, respec-

tively, and a) cm.""1 is the vibration frequency, in wave numbers, of the given
oscillator. In the lowest energy level v is zero, and the vibrational energy,

i.e., the zero-point energy, is then given by equation (16.25) as ^fecoj. The
vibrational energy of any level referred to the lowest energy state, which is

the value required for the partition function, is thus

vhcw. (16.26)

The vibrational partition function is then determined by

Q v
= e- f 'kT = e-*h *ikT

. (16.27)
i?=0

The exponential factor is of the form <?-"*, where x is hcu/kT, so that

=
(1
-

6-*)-
1

, (16.28)

where

*-- 1.439
, (16.29)

and consequently,

Q. - (1
-

e-*-/*r)-i - (1
- e-1 - 4*"")-1

. (16.30)

4
Dennison, Proc. Roy. Soc., A115, 483 (1927); Giauque, J. Am. Chem. Soc., 52, 4816

(1030); Davis and Johnston, tirid., 56, 1045 (1934); A. Farkas, "Orthohydrogen, Para-

hydrogen, etc.," 1935.
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This expression may be used for the vibrational partition function of a
diatomic molecule at all temperatures; the only approximation involved is

that the oscillations are supposed to be harmonic in nature. The anhar-

monicity correction must be made for precision calculations, but its effect

is not large. The only property of the molecule required for the evaluation

of Q9 by equation (16.30) is the vibration frequency, which can be obtained

from a study of its spectrum. The values of this frequency for a number
of diatomic molecules are given in Table IX. 5

TABLE IX. VIBRATION FREQUENCIES OP DIATOMIC MOLECULES

Molecule cm.~l Molecule cm.^1

H, 4405 Nt 2360
HD 3817 CO 2168
D, 3119 NO 1907
HF 4141 Oj 1580
OH 3728 Cl 565
HC1 2989 IC1 384
HBr 2650 Br2 323
HI 2309 I, 214

Problem: Calculate the vibrational partition function of (i) molecular hy-
drogen, (ii) molecular chlorine, at 300 K, assuming them to be harmonic oscillators.

(i) For hydrogen, cj is 4405 cm."1
,
and since hcu/kT is equal to 1.439co/jP,

it follows that

Qv (1
__ e-1.43X4405/300)-l

=
(i
- -)-! = 1.000 (to several significant figures),

(ii) For chlorine, w is 565 cm.~l
,
and hence

Qv = (1
- C-l.439X565/300)-l

=
(1
- e-2 - 710

)-
1 = 1.072.

The vibrational contribution Ev to the energy content, in excess of the

zero-level value, is obtained by inserting Qv as represented by equation
(16.30) into (16.8); the result, omitting the partial differential notation
which is here unnecessary ( 16d), is

dT
RT hcu

(16.31)

where, as defined by (16.29), x is equal to haa/kT. Differentiation :>f

equation (16.31) with respect to temperature then gives the vibrational

heat capacity; thus,*
hc I

r (16'32)

Seeref.3,
* The symbol C, for the vibrational contribution to the heat capacity should not be

confused with Cv which is the total heat capacity at constant volume.
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The evaluation of the quantities in equations (16.31) and (16.32), referred

to as Einstein functions (cf. 17b), is simplified by tables which give Ev

and Cv directly from x, i.e., from hcw/kT.*
At moderate temperatures hcco/kT is relatively large for many diatomic

molecules; the vibrational partition function is then close to unity, and Ev

and Cv are very small. This means that virtually all the molecules are in

their lowest, i.e., v = 0, vibrational level, and the vibrational contribution

to the energy and heat capacity will be zero. Such is found to be the case

for hydrogen, oxygen, nitrogen and carbon monoxide up to about 370 K,
as indicated earlier ( 15e). As the temperature is raised hcu/kT decreases,
and the partition function increases accordingly. This means that increas-

ing numbers of molecules now occupy the higher, i.e., v = 1, 2, etc., vibra-

tional energy levels. The vibrational contributions to the energy and heat

capacity of the gas increase at the same time. At sufficiently high tempera-
tures hew/kT becomes small enough for ehculkT 1 to be virtually equal to

hcw/kT.* Upon making this substitution in equation (16.31) it is seen that

Ev = RT,
and hence

Cv = R. (16.33)

The energy and heat capacity at high temperatures should consequently be

identical, as a first approximation, with the values given by the classical

equipartition principle.

The temperature at which hcco/kT becomes small enough for the behavior

to be classical depends on the vibration frequency co, which varies from one
molecular species to another (Table IX). There is, of course, no exact

temperature at which this condition arises, for the approach to classical

behavior, i.e., the transition from equation (16.32) to (16.33), must be

gradual. However, there is a rough temperature at which the vibrational

contributions to the energy and heat capacity become equal to the classical

values to a certain degree of accuracy, e.g., three significant figures. For
molecular hydrogen, w is large, viz., 4405 cm.^1

, and the vibrational heat

capacity does not attain the classical value of R per mole until a temperature
of about 3500 K. The vibration frequencies of nitrogen, oxygen and car-

bon monoxide are somewhat less than for hydrogen, but their behavior is

nevertheless not completely classical below 3000 K. With molecular chlor-

ine, on the other hand, the situation is changed, for the vibration frequency
is only 565 cm."1

,
and the vibrational contribution to the heat capacity

becomes R per mole at about 1000 K; it is, in fact, quite considerable, more
than 1 cal. deg.""

1 mole""1

,
even at 300 K, thus accounting for the heat

capacity of chlorine being greater than for other diatomic molecules ( 15e).

Sherman and Ewell, /. Phys. Chem., 46, 641 (1942); see also, Wilson, Chem. Rev., 27,

17 (1940) ; Stull and Mayfield, Ind. Eng. Chem., 35, 639 (1943) ;
H. S. Taylor and S. Glasstone,

-'Treatise on Physical Chemistry," 3rd ed., 1942, Chapter IV (J. G. Aston), Appendix I.

* In the exponential expansion e* 1 + # + W2I + ,
all terms beyond the second

may be neglected when x is small, so that c* 1 + x, and hence e* 1 x.
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Problem: Calculate the vibrational contribution to the molar heat capacity of

chlorine gas at 300 K, taking the vibration frequency as 565 cm."1
. Estimate

the total Cv for chlorine gas at 300 K.

In this case, since hc/k is 1.439 cm. deg.,

hca) 1.439X565 _ _W =
300

2JL

Either by insertion of this value in equation (16.32), or by the use of the tables of

Einstein functions, it is found that

Cv
= 0.56# * 1.12 cal. deg.-

1 mole"1
.

At 300 K, the translational and rotational contributions to the heat capacity will

be classical, i.e., fR and R, respectively, making a total of $R or 4.97 cal. degr1

mole"1
. If the vibrational contribution 1.12 is added, the total is 6.09 cal. deg.*

1

mole"1
. (The experimental value which is not very accurate, is close to this

result; some difference is to be expected, in any case, because the calculations given
above are based on ideal behavior of the gas. The necessary corrections can be

made by means of a suitable equation of state, 21 d.)

16k. Diatomic Molecules: Combined Partition Functions. The treat-

ment of the preceding sections has been based on the assumption that vibra-

tional and rotational energies are independent; in other words, the approxi-
mation has been made of taking the molecules to be rigid, in spite of the

fact that the atoms vibrate. In addition, the vibration has been treated

as perfectly harmonic in nature. For the accurate evaluation of partition

functions, especially at moderate and high temperatures, it is necessary to

take into account the interaction of the vibrational and rotational motions
of the molecule, and to allow for the anharmonicity of the atomic oscilla-

tions. It is sufficient to state here that the information required for this

purpose can be obtained from spectroscopic measurements, although the

treatment of the data is not simple. Nevertheless, the calculations have
been carried out in a number of cases and the results are recorded in the

literature.

161. Polyatomic Molecules. The general principles involved in the

evaluation of the partition function, and hence the energy and heat capacity,
of a molecule containing more than two atoms are quite similar to those

described for diatomic molecules. Unless there is definite evidence to the

contrary, as there is for nitrogen dioxide, which has an odd number of elec-

trons, it is supposed that the ground state of the molecule consists of a single
electronic level, and that excited states make no contribution to the total

partition function. The electronic contribution to the energy in excess of

the lowest level, and to the heat capacity may thus be taken as zero. Fur-

ther, as with monatomic and diatomic molecules, the translational energy

may be treated as classical at all feasible temperatures, so that the transla-

tional motion contributes %RT per mole to the energy content and %R per
mole to the heat capacity.
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At all reasonable temperatures the rotational levels of a molecule con-

taining more than two atoms, like those of diatomic molecules, are occupied
sufficiently for the behavior to be virtually classical in character. Assuming
that the molecule can be represented as a rigid rotator, the rotational parti-
tion function, excluding the nuclear spin factor, for a nonlinear molecule is

given by

where A, B and C are the moments of inertia of the molecule with respect
to three perpendicular axes, and <r is the symmetry number ( 16h). For
some molecules, e.g., NH8, PCU, CHC13 and CH3C1, two of the three mo-
ments of inertia, e.g., A and B, are equal, so that the product of inertia ABC
becomes A2C. For spherically symmetrical molecules, such as CHi and

CCU, A
,
B and C are equal, so that the product is A*. If the nonlinear

molecule is planar, e.g., benzene and water, the sum of two of the moments
of inertia is equal to the third, i.e., A + B = C. The symmetry numbers of

some polyatomic molecules are as follows: CO2,
H2O, SC>2(2) ;

NH3(3) ; CH4,

C6H6(12). For HCN, N2O (i.e., NNO), COS, etc., <r is unity.
A linear molecule containing more than two atoms is analogous to a

diatomic molecule. It has two identical moments of inertia, and the rota-

tional partition function is given by the same equation (16.24) as for a
diatomic molecule.

The moments of inertia of a molecule can be derived from spectroscopic

data, or they may be calculated from the interatomic distances obtained by
electron diffraction methods. The values for a number of simple molecules

are given in Table X. 7

Molecule

HCN*
NjO*
CO,*
C,H,*
CH4f

ccut

TABLE X. MOMENTS OP INERTIA OF POLYATOMIC MOLECULES

Moment of Inertia Molecule Moments of Inertia

18.9 X 10-* g. cm.
66.9

71.9

23.8

5.27

520

HO 1.02, 1.92, 2.94 X 10"40

H,S 2.68, 3.08, 5.76

SOi 12.3, 73.2, 85.5

NH, 2.78, 2.78, 4.33

CH,C1 5.46,61.4, 61.4

CH,Br 5.36,85.3, 85.3

* Linear molecules.

f Spherically (symmetrical molecules.

By differentiation with respect to temperature of Qr,
as given by equation

(16.34), remembering that all the quantities except T are constant, it is

readily found that Er is fRT and Cr is fR. These are the results to be ex-

pected from the equipartition principle for energy expressible in three square

terms, as would be the case for a nonlinear molecule containing more than

'Data main]y adapted from Landolt-BSrnstein, Physikalisch-Chemische Tabellen,

5th ed., 3rd Supplement; G. Henbenc, "Infra-Red and Raman Spectra of Polyatomic

Molecules/' 1045.
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two atoms. Just as with diatomic molecules, excepting hydrogen and

deuterium, the rotational contributions to the energy and heat capacity may
be taken as the classical values at all temperatures.

As seen in 15d, a molecule containing n atoms has 3n 6 modes of

vibration if nonlinear, and 3ra 5 modes if linear. Each of these modes of

vibration contributes a factor of exactly the same form as equation (16.30)

to the over-all vibrational partition function; the latter is thus the product
of 3n 6 (or 3n - 5) factors, each of the form (1

- e
~h *lkT)-

1
. The values

of the 3n 6 (or 3n 5) vibration frequencies are obtained from a study
of the various spectra of the molecule or by a comparison with the results

for related compounds. The vibration frequencies of some familiar mole-

cules containing more than two atoms are recorded in Table XI. On ac-

count of molecular symmetry, two or more vibrations may have the same

frequency; this is indicated by the numbers in parentheses in Table XI. 8

TABLE XI. VIBRATION FREQUENCIES OF POLYATOMIC MOLECULES

Molecule Frequencies (cm.~
l
) Molecule Frequencies (cm.~

l
)

HCN 729(2), 2001, 3451 H2O 1654, 3825, 3935
N2O 596(2), 1300, 2276 HaS 1290, 2611, 2684
CO2 667(2), 1340, 2349 SO2 519, 1151, 1361

C2H* 612(2), 729(2), 1974, NH, 950, 1627(2), 3334,

3287, 3374 3414(2)
CH 4 1358(3), 1390(2), CH,C1 732, 1020(2), 1355,

3030, 3157(3) 1460(2), 2900, 3047(2;
CCU 218(2), 314(3), CHsBr 610, 957(2), 1305,

461, 776(3) 1450(2), 2900, 3061(2)

For the determination of the vibrational contribution to the energy
content or heat capacity it is not necessary actually to evaluate the product
of the 3n 6 (or 3n 5) factors in the partition function. The expressions
for the energy and heat content [equations (16.8) and (16.9)] involve the

logarithm of the partition function, which is equal to the sum of the log-
arithms of the component factors. Thus, it is usually simpler to determine
the contributions of each of the 3n 6 (or 3n 5) modes of vibration

separately by means of equations (16.31) and (16.32), and then to add the

results to obtain the total value for the molecule.

Problem: Calculate the heat capacity Cy of water vapor at (i) 500 K, (ii)

1000 K, assuming ideal behavior.

The translational and rotational contributions may be taken as classical, each

being fJR, so that the total is 3/J per mole, i.e., 5.96 cal. deg.~* mole"1
, at each

temperature.
(i) At 600 K, the values of hcw/kT corresponding to the frequencies of (a)

1654, (b) 3825, (c) 3935 cm.-* are 4.77, 11.0 and 11.35, respectively. Setting
these values of x into equation (16.32), the results for C, are

(a) 0.392, (6) 0.004, and (c) 0.003 cal. deg.-' mole-*,

See ref. 7.
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the total vibrational contribution being the sum of these quantities, viz., 0.399
0.40 cal. The total heat capacity at constant volume is thus 5.96 -f 0.40 = 6.36

cal. deg.~
l mole~l

.

(ii) At 1000 K, the values of hcw/kT are 2.38, 5.60 and 5.67 respectively, so
that the contributions to Cv are

(a) 1.265, (6) 0.247, and (c) 0.225 cal. deg.~
l mole-1

,

the sum being 1.74 cal. The total heat capacity of water vapor at constant
volume at 1000 K should thus be 5.96 + 1.74 = 7.70 cal. deg.~

l mole-"1.

The increase of the heat capacity of water vapor with temperature is in

agreement with experiment.

The procedure described above, as for diatomic molecules, is based on
the approximation that rotational and vibrational energies are separable,
and that the oscillations are simple harmonic in character. The allowance
for interaction, etc., has been made in a number of cases by utilizing actual

energy levels derived from spectroscopic measurements. The results are,

however, not greatly different from those obtained by the approximate
method that has been given here.

16m. Internal Rotation. There are certain molecules for which the foregoing

procedure for calculating partition functions, and related properties, is not com-
pletely satisfactory; these are molecules containing groups which are apparently
capable of free rotation about a single bond. One of the simplest examples is

ethane, in which the two CHa groups might be expected to rotate with respect
to each other. Most aliphatic hydrocarbons and alkyl derivatives of benzene,
water, hydrogen sulfide, ammonia and formaldehyde fall into the same category.
For every type of internal rotation of a group within the molecule, the molecule
as a whole possesses one less vibrational mode; the total number of internal rota-

tions and vibrations is thus 3n 6 for a nonlinear molecule. If the internal rota-

tion is completely unrestricted and classical in behavior, the energy can be repre-
sented by one quadratic term, so that the corresponding contributions to the energy
content and heat capacity are %RT and $R per mole, respectively. Provided the

vibration frequencies of the molecule are available from spectroscopic measure-

ments, the evaluation of the energy content and the heat capacity would not be
a difficult matter.

A comparison of thermodynamic properties obtained experimentally with those

derived from the partition functions has revealed the fact that in many molecules,
such as those mentioned above, in which free internal rotation might have been

expected, the rotation is actually restricted. The contributions to the energy
content, etc., are then appreciably different from those calculated on the assump-
tion of free internal rotation. The results indicate that before one group can rotate

freely past another, as in ethane, the molecules must acquire a certain amount of

the appropriate energy. If this amount were very small, the internal rotation

would be virtually free and unrestricted, but such appears not to be the case.

Various lines of evidence show that the necessary energy is appreciable, and this

results in a restriction of the rotation. If the magnitude of the required energy
were known it would be possible to calculate, with a fair degree of accuracy, the

contribution of tjie restricted internal rotation to the partition function and the

properties derived from it. However, no satisfactory independent method is yet
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available! and the procedure adopted is to estimate the value of the energy by
utilizing an accurate experimental thermodynamic quantity. Once this restricting

energy is known, other properties can be calculated by making appropriate allow-

ances. The details of the treatment are not simple, and as they lie outside the

scope of this book it is not necessary to consider them further.9

17. HEAT CAPACITY OF SOLIDS

17a. Atomic Heat Capacity: Classical Theory. An ideal elementary
solid may be regarded as consisting of a space lattice of independent atoms

vibrating about their respective equilibrium positions, but not interacting
with each other in any way. If the vibrations are simple harmonic in

character, the energy can be expressed as the sum of two quadratic terms;

hence, according to the principle of the equipartition of energy, the contri-

bution to the energy content will be RT per g. atom for each vibrational

mode. Since the atoms would be free to oscillate in all directions in space,
each atom may be supposed to have three independent modes of vibration.

The energy content E of the ideal solid element should thus be 3RT per g.

atom, and hence the heat capacity at constant volume should be 3fl, i.e.,

5.96 cal. deg.""
1
g. atomr1

. This theoretical conclusion is in general agree-
ment with the familiar empirical rule of Dulong and Petit, which states that

the atomic heat capacities of most solid elements, with the exception of

carbon, boron, beryllium and silicon, measured at atmospheric pressure is

about 6.4 cal. deg.""
1 at ordinary temperatures. The theoretical atomic heat

capacity of 3R should apply to constant volume conditions, and by correcting
the observed, i.e., constant pressure, measurements by means of equation

(21.9), G. N. Lewis (1907) obtained the results given in Table XII. 10 It is

TABLE XII. HEAT CAPACITIES OF ELEMENTS AT CONSTANT VOLUME
IN CAL. DBG."1 Q. ATOM"1

Element CV Element CV Element Cv
Aluminum 5.7 Iodine 6.0 Platinum 5.9

Antimony 5.9 Iron 5.9 Silver 5.8

Cadmium 5.9 Lead 5.9 Thallium 6.1

Copper 5.6 Nickel 5.9 Tin 6.1

Gold 5.9 Palladium 5.9 Zinc 5.6

seen that at ordinary temperatures (about 20 C) the values of Cv are

approximately constant, the mean being 5.9, with a variation of =t 0.2, cal.

deg.~* g. atom""1
.

1 For empirical and semiempirical rules for calculating the heat capacities of hydro-
carbons and other organic compounds, see Bennewitz and Rossner, Z. phys. Chem., B39, 126

(1938); Fugassi and Rudy, Ind. Eng. Chcm., 30, 1029 (1938); Edmister, ibid., 30, 352 (1038);

Dobrate, ibid., 33, 759 (1941) ; Glockler and Edgell, ibid., 34, 582 (1942) ; Stull and Mayfield,

ibid., 35, 639, 1303 (1943); Pitzer, /. Am. Chm. Soc., 63. 2413 (1941); Spencer, ibid., 67,

1859 (1945).

Lewis, J. Am. Chm. Soc., 29, 1165, 1516 (1907); Lewis and Gibson, ibid., 39, 2554

(1917).
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In spite of the apparent agreement between the experimental data and
the theoretical prediction based on the equipartition principle, there are

nevertheless significant discrepancies. In the first place, the heat capacity
of carbon, e.g., diamond, is only 1.45 cal. deg.-

1
g. atom""1 at 293K, and it

increases with increasing temperature, attaining a value of 5.14 cal. deg."
1

g. atonor1 at 1080 K. Somewhat similar results have been obtained with

boron, beryllium and silicon. Further, although the atomic heat capacities of

most solid elements are about 6 cal. deg.""
1
g. atom""

1 at ordinary temperatures,
and do not increase markedly as the temperature is raised, a striking decrease

is always observed at sufficiently low temperatures. In fact, it appears that

the heat capacities of all solids approach zero at K. Such a variation of

the heat capacity of a solid with temperature is not compatible with the

simple equipartition principle, and so other interpretations have been

proposed.
11

17b. The Einstein Heat Capacity Equation. The first step in the im-

provement of the theory of the heat capacity of solid elements was made by
A. Einstein (1907), who applied the quantum theory in place of the classical

equipartition principle to calculate the energy of the atomic oscillators.

The expression obtained for the atomic heat capacity of a solid at constant

volume may be written in the form

where w is the oscillation frequency, in wave numbers, of the atoms in the

crystal lattice. Comparison of this result with the contribution made by a

single oscillator to the heat capacity, as given by equation (16.32), shows
that the former differs from the latter by a factor of three, as is to be expected.

According to equation (17.1), the atomic heat capacity of a solid element
should approach zero at very low temperatures, but at high temperatures,
when hco)/kT is small in comparison with unity, the expression reduces to

3R, in agreement with the result of the classical treatment. This is in

general accord with the experimental behavior. The physical significance
of the variation of the heat capacity of a solid with temperature is then

similar to that given in connection with the vibrational contribution to the

heat capacity of a gas ( 16j). At very low temperatures, all the atoms in

the solid are in the lowest vibrational level, and they then contribute nothing
to the heat capacity. With increasing temperature the energy of the crystal
increases and the higher levels are increasingly occupied; hence the heat

capacity becomes appreciable. At sufficiently high temperatures a con-

siderable number of atoms possess fairly large numbers of quanta of vibra-

tional energy, and the behavior can then be expressed with reasonable ac-

curacy by the classical treatment. In spite of the fact that the Einstein

equation represents qualitatively, at least, the variation of heat capacities
with temperature, it does not completely solve the problem of the heat

11 See the wofks mentioned in ref. 1.
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capacities of solid elements, for at low temperatures the calculated values

fall off more rapidly than do the experimental heat capacities.

17c. The Debye Heat Capacity Equation. There is little doubt that iu

its essentials the Einstein theory of the heat capacity of solid elements is

correct, but it requires some modification in detail. Owing to the proximity
of the atoms in a crystal, it is very improbable that they will act as inde-

pendent units oscillating with a uniform frequency. As a result of interac-

tions, the atoms will execu e complex motions, but these may be regarded
as being made up of a series of ample harmonic vibrations with various

frequencies. A solid containing N atoms will thus behave as a system of

3JV coupled oscillators, and there will be a total of 3JV independent fre-

quencies. The lowest frequency will be zero, but there is a definite limit

to the highest frequency; this maximum, designated by com, arises when the

wave length of the oscillations is of the same order as the interatomic dis-

tances. In order to determine the distribution of frequencies, P. Debye
(1912) disregarded the atomic structure of the solid, and treated it as a

homogeneous, elastic medium. The vibrations of the atoms could then be
considered as equivalent to elastic waves, similar to sound waves, propagated
through this continuous medium. In this way an expression for CV contain-

ing a complicated integral was obtained; the integral can, however, be

evaluated in two special cases, (a) moderate and high temperatures, and

(fe) very low temperatures. In the former case, the atomic heat capacity

equation becomes

where 8, known as the characteristic temperature of the element, is defined by

. deg. (17.3)
*

At sufficiently high temperatures 6/T becomes small enough for all the terms
in the brackets of equation (17.2), other than the first, to be neglected;

Cv then becomes equal to the classical value SR.
It will be seen from the Debye equation (17.2) that CV is a function of

B/T only, and hence the plot of Cv against T/0 (or log T/0) should yield a

curve that is the same for all solid elements,f The nature of the curve is

shown in Fig. 9, and it is an experimental fact that the heat capacities of

many elements, and even of a few simple compounds, e.g., ionic crystals such

* Since hcum has the dimensions of energy and k is energy per degree, has the

dimensions of a temperature.

f The same is true for the Einstein equation (17.1) which may be written as

' - 1)* \ T
The Einstein characteristic temperature 0E, equal to hcu/k, where o> is the mean frequency,
is smaller than the Debye which involves the maximum frequency.
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0.2 0.4 0.6 0.8 1.0

T/0
1.2 1.4

as sodium and potassium chlorides, which crystallize in the cubic system,
have been found to fall on or very close to this universal curve. The slight

discrepancies that have been observed are probably to be attributed to the

approximation of treating a crystalline solid as a continuous medium in the

determination of the distribution of

the vibration frequencies. ^
It is evident from Fig. 9 that the 7

heat capacity of an element attains Jj

its classical value of 3R when T/B is J
approximately unity (see problem 7^
given below). If the characteristic

temperature of an element is rela- ^
tively small, e.g., less than about 300,

~
the value of T/8 will be equal to unity ^
at temperatures below 300 K. For

such elements the law of Dulong and
Petit will evidently hold at ordinary

temperatures. This is the case for FIG. 9. Dcbyc atomic heat capacity curve

the majority of the solid elements.

On the other hand, if is large, as it is for carbon and some other light

elements, a temperature of 300 K will coincide with the rising portion

of the Debye curve. The atomic heat capacity will thus be well below

3R, and it will increase rapidly with temperature, the limiting value being

reached only at high temperatures. By giving a value of 1860, the

variation of the heat capacity of diamond with temperature can be ex-

pressed with considerable accuracy by the Debye heat capacity equation.

According to equation (17.3) the characteristic temperature 6 will be large

if the frequency *> is large; this frequency is a rough measure of the binding

energy between the atoms in the crystal. The internal structures and high

melting points of carbon, boron and silicon are compatible with exception-

ally high values of the binding energy, and hence with the large values of

the characteristic temperature of these elements.

Problem: Calculate the value of Cv for any element when its temperature is

equal to the Debye characteristic temperature 0.

For such a temperature B/T is unity, and hence by equation (17.2)

- ~ + -^ = 2.856/2

= 5.68 cal. deg.~~
l
g. atom"1

.

Hence, when the temperature is equal to the characteristic temperature, i.e., when

T/0 is unity, the heat capacity is just less than the classical value 3R.

If the characteristic temperature of any solid element is known, the

complete variation of the heat capacity at all moderate and reasonably high

temperatures can be obtained from the Debye equation (17.2) or the equiva-
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lent curve (Fig. 9) . The value of 6 can be derived from a single experimental
determination of the heat capacity, preferably made somewhere just above
the middle of the rising part of the curve, that is, when Cv is about 3 cal.

deg.""
1
g. atom""1

. The measurement should not be made in the region where
Cv approaches 3/2, because of the flatness of the curve, nor at too low tem-

peratures, for then equation (17.2) does not hold. Some values of the char-

acteristic temperatures of a number of elements are quoted in Table XIII. 12

TABLE XIII. DEBYE CHARACTERISTIC TEMPERATURES OP ELEMENTS

Element Element Element $

Aluminum 390 Copper 315 Nickel 375

Antimony 140 Gold 170 Potassium 100
Bismuth 104 Iron 450 Platinum 225
Calcium 225 Lead 90 Sodium 150
Carbon (Diamond) 1860 Magnesium 290 Silver 212
Cobalt 385 Manganese 350 Zinc 210

Problem: Calculate the heat capacity of diamond at 1080 K.

From Table XIII, the characteristic temperature 6 is 1860; hence, by equa-
tion (17.2),

l
* /1860V ,

1 /i860Y_ 1

^1 ~20^ 1080>|
+

560^i080/ '"J
= 3R X 0.8673 = 5.17 cal. deg.-

1
g. atom-1

.

(The experimental value, given earlier, is 5.14 cal. deg.-
1
g. atom"1

.)

It may be mentioned that the Debye characteristic temperature can be
derived from other properties of the element, particularly from the compressi-

bility and Poisson's (elasticity) ratio. Where such data are available it is

thus possible to obtain reasonably accurate heat capacities, at moderate and

high temperatures, from elasticity measurements.
17d. The Debye Equation at Low Temperatures. At low temperatures

the solution of the complete Debye equation leads to the result

.4 (-Y
-464.4 - - - - - cal. dcg.-

1

g. atom-1
. (17.4)

The important conclusions, therefore, to be drawn from the Debye theory
are that at low temperatures the atomic heat capacity of an element should

be proportional to I78
,
and that it should become zero at the absolute zero

of temperature. In order for equation (17.4) to hold, it is necessary that
the temperature should be less than about 0/10; this means that for most

12 Data adapted from various sources, e.g., R. H. Fowler and E. A. Guggenheim,
"Statistical Thermodynamics," 1939; F. Seitz, "The Modern Theory of Solids," 1940;
J. C. Sister, "Introduction to Chemical Physics," 1939.
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substances the temperature must be below 30 K. Heat capacity measure-
ments made at sufficiently low temperatures have served to confirm the

reliability of the T* relationship for a number of elements, and even for some
simple compounds. The proportionality of heat capacity to the third power
of the absolute temperature has been found to be of great value for the

purpose of extrapolating heat capacities to the absolute zero. Such ex-

trapolations are necessary in connection with the determination of an im-

portant thermodynamic property (Chapter IX).
Since Cv is equal to 464.4 (T/0)

3 at very low temperatures, one heat

capacity value under these conditions can be used to derive the characteristic

temperature. With this known, the variation of Cv with temperature at

higher temperatures can be obtained from equation (17.2). Alternatively,
if 6 is found, as described in 17c, from heat capacity measurements at

moderate temperatures, the values at low temperatures, i.e., less than 0/10,
can be estimated from equation (17.4). However, where the characteristic

temperature 6 has been determined by two methods, that is, from low tem-

perature and high temperature measurements, the agreement is not exact,

showing, as is to be expected, that the Debye theory is not perfect.

Problem: The atomic heat capacity of copper is 0.1155 cal. deg.~
l at 20.20 K;

calculate the value at 223 K.

From equation (17.4)

0.1155 = 464.4
(-

6 = 321.

Upon inserting this value into equation (17.2) it is found that at 223 K,

1 /321V ! / 32i\4
-j

20\223 ) +560V223/
" ' ' *

J

= 3R X 0.904 = 5.39 cal. deg.~
l
g. atom'1

.

(The experimental result is about 5.5.)

I7e. Heat Capacities at High Temperatures. Although the theoretical treat-

ment of heat capacities requires the limiting high temperature value to be 3R,
i.e., 5.96 cal. deg.~

l
g. atom"1

, experimental determinations have shown that with

increasing temperature Cv increases still further. The increase is, however,
gradual; for example, tne heat capacity of silver is 5.85 cal. deg.~

l
g. atom"1 at

300 K and about 6.5 cal. deg."
1
g. atom~l at 1300 K. This increase is attributed

mainly to the relatively free electrons of the metal behaving as an "electron gas."

By the use of the special form of quantum statistics, viz., Fermi-Dirac statistics,

applicable to electrons, the relationship

Cei. = aT7

,

where a is a constant for each element, has been derived for the contribution of the
electron gas to the heat capacity. For most metals a lies between 10~4 and
2.5 X 10~4 in calorie units, and so the electron heat capacity is 0.03 to 0.075 at

300 K and 0.13 to 0.32 cal. deg.~
l
g. atom-1 at 1300 K. The influence of the free
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electrons is thus not largo, although it heroines nppiecisiblc as the temperature
is raised.*

17f. Heat Capacities of Compounds. AvS indicated above, the Debyo
equation represents the variation with temperature of the heat capacities,

at constant volume, of a number of simple compounds. In these cases

equation (17.2) gives the heat capacity per gram atom, so thut it must be

multiplied by the number of atoms in the molecule to obtain the molar heat

capacity. The compounds are, in general, substances crystallizing in the

cubic system, to which the Debye treatment is particularly applicable.

Among these, mention may be made of sodium and potassium chloride,

potassium bromide, calcium fluoride and magnesium oxide. For certain

other compounds, especially metallic halides, and also for some elements

which do not form cubic crystals, e.g., rhombic sulfur, graphite and iodine,

the heat capacity per g. atom is given by a Debye function, as in equation

(17.2), but with (T/ey in place of T/6. The value of n is usually less than

unity, and it must be determined empirically; thus the heat capacities must
be known at two temperatures in order that and n may be obtained. Once
these are available, the variation of heat capacity over a range of tempera-
tures can be represented.

13

If the Debye function in some form were applicable to all compounds it

would mean that at sufficiently high temperatures the molar heat capacity
at constant volume would be equal to 3/2 X n, where n is the number of

atoms in the molecule; thus CV should be approximately 6n cal. deg."
1 mole"1

.

This conclusion is analogous to the rule proposed by H. Kopp (1865), who
suggested that the molar heat capacity of a compound is approximately
equal to the sum of the atomic heat capacities of its constituent elements.

For most elements, particularly those of higher atomic weight, the heat

capacity at ordinary temperatures may be taken as about 6 cal. deg.~*, but
for the lighter elements Kopp suggested somewhat smaller values, as follows:

carbon (1.8), hydrogen (2.3), boron (2.7), silicon (3.8), oxygen (4.0), fluorine

(5.0), phosphorus (5.4), and sulfur (5.4). The results given by Kopp's rule

are very approximate, but they may be useful when experimental data are

not available.

EXERCISES

1. Assuming classical behavior, and no internal rotation, what would be the
maximum value of Cp for (i) a linear molecule, (ii) a nonlinear molecule, containing
n atoms?

2. Show that the partition function for 1 mole must be a dimensionless quan-
tity. Verify by reference to the expressions for the translational and rotational

(diatomic) partition functions.

3. Show that the translational partition function for 1 mole of an ideal gas is

given by Q t
= 1.879 X 1020M :i/2T3

'n', where M is the molecular (or atomic)
weight and V is the molar (or atomic) volume in cc.

* The effect described hero is quite distinct from that duo to the occupation of tho

higher electronic levels ( 16f); the contribution of the electron gas will apply even if all tin-

atoms are in their lowest electronic; states.

Lewis and Gibson, J. Am. Chem. Soc., 39, 2554 (1917).
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4. Calculate the transiational partition function for 1 mole of oxygen at 1 atm.

pressure and 25 C, assuming ideal behavior.

5. The normal state of atomic oxygen is an "inverted triplet" consisting of

three levels with j values of 2, 1 and 0. The frequency separation between the

j 2 (lowest) and the j 1 (second) levels is 157.4 cm.~l and that between the

j = 2 and the j = (third) levels is 226 cm."1
. Calculate the electronic partition

function of atomic oxygen at 300 K and the corresponding contribution to the

atomic heat capacity.
6. The frequency separation of the first excited electronic level of atomic

oxygen from the lowest level is 15807 cm.""1
;
at what temperature might the excited

level be expected to affect the heat capacity?
7. Derive the value of the universal constant a in the expression Qr a<r~lIT

for the rotational partition function of any diatomic (or any linear) molecule; / is

the moment of inertia in c.g.s. units and T is the absolute temperature. Calculate
the rotational partition function of carbon dioxide (a linear symmetrical molecule)
at 25 C.

8. Evaluate the universal constant b in the expression Qr = b(r~l(ABC)mT312

for the rotational partition of a nonlinear polyatomic molecule; A, B and C are

the three moments of inertia of the molecule in c.g.s. units. Determine the
rotational partition function of the water molecule at 25 C.

9. Calculate the value of e~~ tlkT when e/k is equal to 5jP. Justify the state-

ment in the text that if for any energy level c/A; > 5T, the contribution of that
level to the partition function, and consequently to the heat capacity, is negligible.

10. Determine the vibrational partition function of carbon dioxide at 25 C.
11. Calculate the molar heat capacity at constant pressure of carbon dioxide

at (i) 300 K, (ii) 500 K, (iii) 1000 K, assuming ideal behavior.

12. Calculate the molar heat capacity at constant pressure of methane at

(i) 300 K, (ii) 500 K, (iii) 1000 K, assuming ideal behavior.

13. Plot the Debye curve, according to equation (17.2), for Cv against T/6 t

using values of 0.2, 0.4, 0.6, , 1.2 for the latter.

14. Using the Debye curve obtained in the preceding exercise, and the values

of Cv for aluminum given below, determine the (mean) Debye characteristic

temperature for this element.

T 84.0 112.4 141.0 K
Cv 2.45 3.50 4.18 cal. deg

~l
g. atom"1

.

Calculate the value of Cv at 25 C.

15. Plot the following values of Cv for aluminum, obtained at low tempera-
tures, against !F

3
,
and hence determine the (mean) Debye temperature; compare

the result with that obtained in Exercise 14.

T 19.1 23.6 27.2 32.4 35.1 K
Cv 0.066 0.110 0.162 0.301 0.330 cal. deg.

1
g. atom"1

.

16. The Debye characteristic temperature of silver is 212. Calculate the

atomic heat capacity CV of this metal at 20.0 K and 300 K.
17. For the heat capacities of gaseous paraffins and olefins, with more than

three carbon atoms, Edmister (see ref. 9) suggested the empirical formula

CP = 2.56 + 0.51n + 10-3
7Xl.3n

2 + 4.4n - 0.65mn
+ 4.95m 5.7) cal. deg.~

l mole~l
,
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where n is the number of carbon atoms and m the number of hydrogen atoms in

the hydrocarbon molecule; T is the absolute temperature.
For paraffins, Pitzer (see ref . 9) proposed the formula

CP 5.65n - 0.62 + 10^(l.lln + 1.58) cai. deg.-
1 mole"1

,

where n is the number of carbon atoms; t is the centigrade temperature. Compare
the molar heat capacities of n-butane gas (C4Hio) at 500 K, as given by the two

expressions. According to Spencer [J. Am, Chem. Soc., 67, 1859 (1945)], the

heat capacity of this gas is given by

CP ** - 0.012 + 92.506 X lO'8?
7 - 47.998 X lO"6^

+ 9.706 X 10-'!T3 cal. deg.~
l mole- 1

.

Calculate the value at 500 K.



CHAPTER VII

THE SECOND LAW OF THERMODYNAMICS

18. CONVERSION OF HEAT INTO WORK

18a. Scope of First and Second Laws. To the chemist the essential

interest of the second law of thermodynamics lies in the fact that it provides
a means of predicting whether a particular reaction can occur under specified
conditions. The first law of thermodynamics merely indicates that in any
process there is an exact equivalence between the various forms of energy
involved, but it provides no information concerning the feasibility of the

process. In general, however, the second law supplies an answer to the

question of whether a specified thennodynamic process is or is not possible.
For example, the first law does not indicate whether water can spontaneously
run uphill or not; all it states is that if water does run uphill, unless heat is

supplied from outside, there will be a fall of temperature, the resulting
decrease of energy content being equivalent to the work done against gravity.

Similarly, there is nothing in the first law of thermodynamics to indicate

whether a bar of metal of uniform temperature can spontaneously become
warmer at one end and cooler at the other. All that the law can state is

that if this process occurred, the heat energy gained by one end would be

exactly equal to that lost by the other. It is the second law of the thermo-

dynamics which provides the criterion as to the possibility, or rather the

probability, of various processes.
Another important aspect of the second law, which is really fundamental

to the problem enunciated above, deals with the conversion into work of

energy absorbed as heat. The first law states that when heat is converted

into work, the work obtained is equivalent to the heat absorbed, but it

gives no information concerning the conditions under which the conversion

is possible. It will be seen shortly that the heat absorbed at any one tem-

perature cannot be completely transformed into work without leaving some

change in the system or its surroundings; this fact is embodied in the second
law of thermodynamics, and its consequences are of great significance.

18b. Spontaneous and Irreversible Processes. In order to understand

something of the conditions which determine whether a particular process
will occur or not, it is of interest to examine certain processes which are

known to be spontaneous, that is, processes which take place without ex-

ternal intervention of any kind. The expansion of a gas into an evacuated

space, or from any region of higher into one of lower pressure, takes place

spontaneously, until the pressure distribution is uniform throughout.

Similarly; oneugas will diffuse spontaneously into another until the mixing is

complete and the system has the same composition in all parts. Diffusion

129
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of a solute from a concentrated solution into pure solvent, or into a dilute

solution, will similarly take place without external intervention. Finally,
reference may be made to the spontaneous conduction of heat along a bar
of metal which is hot at one end and cold at the other, and to the spontaneous
transfer of heat by radiation from a hotter to a colder body. These proc-
esses will continue until the temperature of the bar is uniform, in the former

case, and until the two bodies attain the same temperature, in the latter

instance. It will be observed that in every case the spontaneous process

represents a tendency for the system to approach a state of thermodynamic
equilibrium ( 4c).

A fundamental characteristic of the processes described, and in fact of

all spontaneous processes, is that they have never been observed to reverse

themselves without the intervention of an external agency. A system which
is in equilibrium under a given set of conditions will undergo no detectable

change if the conditions are not altered. In other words, spontaneous

processes are not thermodynamically reversible (cf. 8a).* This fact, founded

upon experience, is the basis of the second law of thermodynamics. Such

processes as the spontaneous concentration of a gas at one end of a vessel,

leaving a lower pressure at the other end, the spontaneous unmixing of a

uniform gas mixture, or a bar of metal becoming spontaneously hot at one
end and cold at the other end, have never been observed. It may be re-

marked, incidentally, that it is not altogether justifiable to say that these

processes are impossible. It is possible for a gas to concentrate spontane-

ously in one part of a vessel, but the probability of this occurring, to judge
from actual experience, is extremely small.

18c. Reversal of Spontaneous Processes. By the use of an external

agency, it is possible to bring about the reversal of a spontaneous process.
For example, by introducing a piston into the vessel, the gas which has ex-

panded into a vacuum could be restored to its original volume by compres-
sion. Work would have to be done on the gas, and at the same time an

equivalent amount of heat would be produced, and the temperature of the

gas would rise. If this heat could be completely reconverted into work by
means of a hypothetical machine, then the original state of the gas would
have been restored, and there would be no change in external bodies. It is

a fundamental fact of experience, however, that the complete conversion of
heat into work is impossible, without leaving some effect elsewhere. This result

is in accord with the statement made above that spontaneous processes are

not reversible in the thermodynamic sense.

Before stating the second law, other attempts to reverse spontaneous

processes will be considered. When a bar of metal, which was originally
hotter at one end, has attained a uniform temperature, the initial state

* In order to avoid the possibility of misunderstanding, it may be pointed out here that

many changes which occur spontaneously in nature, e g., expansion of a gas, evaporation
of a liquid and even chemical reactions, can be carried out reversibly, at least in principle,
as described in 8a However, when they do occur spontaneously, without external

intervention, they are thermodynamically irreversible.
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might conceivably be restored in the following manner. Heat is withdrawn
from one end of the bar, completely converted into work, and then the work
could be utilized to heat the other end of the bar, e.g., electrically or by
friction. Actually, it is impossible to carry out this series of processes with-
out leaving some changes for, as already stated, the complete conversion of

heat into work without such changes is impossible.
It is evident that certain spontaneous physical processes could be re-

versed if the complete conversion of heat into work could be achieved; it will

now be shown that similar considerations apply to chemical reactions. A
piece of zinc, for example, will dissolve spontaneously in an aqueous solution

of copper sulfate, according to the equation

Zn + CuS0 4
= ZnS0 4 + Cu,

with the evolution of a definite amount of heat. This reaction could be
reversed by passing an electric current between the metallic copper and the
solution of zinc sulfate in an appropriate manner, thus regenerating metallic

zinc and copper sulfate. In order that the reversal might not leave changes
elsewhere, it would be necessary for the heat evolved in the original reaction

to be completely converted into electrical work. Once again, experience
shows that a complete conversion of this kind, without producing other

changes, is not possible. It is seen, therefore, that the spontaneous chemical

process, like the physical changes considered above, is not thermodynamic-
ally reversible.

18d. The Second Law of Thermodynamics. The second law of thermo-

dynamics has been stated in various forms, one of which, concerning the

irreversibility of spontaneous processes, has been already given. For subse-

quent purposes, however, a more useful form is that based on the inability
to convert heat completely into work; thus, it is impossible to construct a

machine, operating in cycles, which will produce no effect other than the absorp-
tion of heat from a reservoir and its conversion into an equivalent amount of
work. The term "operating in cycles'

'
is introduced to indicate that the

machine must return to its initial state at regular stages (cf. 7c), so that

it can function continuously.
It will be recalled from the statements in 9d that in an isothermal, re-

versible expansion of an ideal gas the work done is exactly equal to the

heat absorbed by the system. In other words, in this process the heat is

completely converted into work. However, it is important to observe that

this conversion is accompanied by an increase in the volume of the gas, so

that the system has undergone a change. If the gas is to be restored to its

original volume by reversible compression, work will have to be done on the

system, and an equivalent amount of heat will be liberated. The work and
heat quantities involved in the process are exactly the same as those con-

cerned in the original expansion. Hence, the net result of the isothermal

expansion and compression is that the system is restored to its original state,

but there is no net absorption of heat and no work is done. The foregoing
is an illustration of the universal experience, that it is not possible to convert
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heat into work by means of an isothermal, i.e., constant temperature, cycle.

This may be regarded as another aspect of the second law of thermodynamics.
A consequence of the impossibility of converting heat isothermally into

work in a continuous manner is the impracticability of what is called "per-

petual motion of the second kind," that is, the utilization of the vast stores

of energy in the ocean and in the earth. There is nothing contrary to the

first law of thermodynamics in this concept, but the fact that it has not

been found feasible provides support for the second law. The ocean, for

example, may be regarded as a heat reservoir of constant temperature,* and
the law states that it is not possible to convert the heat continuously into

work without producing changes elsewhere.

18e. Macroscopic Nature of the Second Law. An insight into the

fundamental basis of the second law of thermodynamics may be obtained by
utilizing the concepts of the kinetic theory of matter. According to this

theory an increase of temperature, resulting from the absorption of heat by
a body, represents an increase in the kinetic energy of the random motion
of the molecules. Hence, when the energy of a moving body is converted

into heat by friction, the directed motion of the body as a whole is trans-

formed into the chaotic motion of individual molecules. The reversal of

the process, that is, the spontaneous conversion of heat into work, would

require that all the molecules should spontaneously acquire a component of

motion in one preferred direction. The probability of this occurring in a

system consisting of a large number of molecules is very small. As indicated

earlier, it cannot be stated that it is impossible for a spontaneous process
to reverse itself spontaneously; there is merely a very great probability

against it.

If it were possible to deal with systems involving only a few molecules,

spontaneous processes could be reversed. Imagine a system consisting of

five molecules possessing random motion. It is not improbable that at some
instant all five molecules will have a preferred component of motion in one
direction. The system as a whole will then have directed motion at that

instant. The chaotic movement of the molecules, i.e., heat, will thus have
been converted into directed motion, i.e., work.

Similarly, if a vessel contained only five or six molecules uniformly dis-

tributed, there would be a considerable probability that at some instant

there will be a larger number of molecules at one end of the vessel than at

the other. That is to say, a pressure difference would arise spontaneously
within the vessel, provided it is permissible to speak of pressures when a few
molecules are concerned. If the vessel contained a large number of mole-

cules, it is highly improbable that any appreciable unequal distribution

would arise spontaneously (cf. 24a). The second law of thermodynamics
is then to be regarded as applicable to macroscopic systems, and since it is

* Where there are temperature differences in the ocean, e.g., at different levels, the

(partial) conversion of the heat of the ocean into work is possible; this is not contrary to the
second law of thermodynamics.
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systems of this type which are the basis of human observation and experi-
ence, no exception to the law has yet been observed.

It has long been realized that the impossibility, or rather the improb-
ability, of reversing spontaneous processes is based on the inability to deal

with individual molecules or small groups of molecules. If a device were
available which could distinguish between fast- ("hot") and slow-moving
("cold") molecules, it would be possible to produce spontaneously a tem-

perature gradient in a gas. Similarly, if a device could discriminate between
two different types of gas molecules, a partial unmixing, which is the reverse
of diffusion, could be achieved. However, the fact that no such devices
are known is in accordance with the second law of thermodynamics.

18f. Conversion of Heat into Work. In order for any form of energy to
be available for the performance of work, it must be associated with a
difference of potential or, in other words, with a directive influence. The
work that can be done by falling water, for example, is due to the difference

in potential energy at the upper and lower levels; similarly, electrical work
is associated with a difference of electrical potential, generally known as an
electromotive force. In a heat reservoir at constant temperature there is

no directive influence, but two such reservoirs, at different temperatures, pro-
vide the difference of energy potential that is necessary for the conversion
of heat into work. In order to carry out this conversion, heat is absorbed
from the reservoir at the higher temperature, often referred to as the

"source"; part of this heat is converted into work, and the remainder is

returned to the heat reservoir at the lower temperature, referred to as the
"sink". It is seen, therefore, that a portion only of the heat taken in from the

reservoir at the higher temperature can be converted into work. The fraction of

the heat absorbed by a machine that it can transform into work is called

the efficiency of the machine; thus, if heat Q is taken up from the source,
and W is the work done, the efficiency is equal to W/Q. Experience shows,
in agreement with the statement of the second law of thermodynamics, that

W is invariably less than Q in a continuous conversion process. The effi-

ciency of a machine for the continuous conversion of heat into work is thus

always less than unity. It will be understood, of course, that the first law
of thermodynamics will still be applicable, for the energy difference between

Q and W is returned to the lower temperature reservoir.

18g. The Carnot Theorem. A highly important discovery in connection

with the problem of the efficiency of heat engines, i.e., machines for the

conversion of heat into work, was made by S. Carnot (1824). The principle
he enunciated, which is derived from the second law of thermodynamics,
aay be stated in the following form: All reversible heat engines operating
between two given temperatures have the same efficiency. In other words, pro-
vided the machines function in a thermodynamically reversible manner, the

efficiency is independent of the working substance, or substances, or mode
of operation; it depends only on the temperatures of the source and sink.

Incidentally, it will be shown that this particular efficiency, namely that of a
reversible engine, is the maximum possible for the given temperatures.
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Hot Reservoir T,

In order to prove the Carnot theorem, it will be assumed thai there exist

two reversible heat engines I and II, working between the same two tem-

peratures, but having different efficiencies. Suppose that in each cycle the

machine I takes in heat Q2 from the source at T^ converts an amount W
into work, and gives up the remainder Q 2 W = Q\ to the sink at TV The
machine II, on the other hand, is supposed to convert a smaller amount W
of the heat Q* taken in at T* into work, returning a quantity Q2 W = Qi,
which is greater than Qi, to the sink at T\. Let the machines be coupled

together so that I operates in a direct

manner, i.e., taking up heat at 7
7

2 ,

doing work and giving up the re-

mainder at Ti, whereas II functions

in the reverse manner, i.e., taking in

heat at TI, having work done upon
it, and giving up heat at TV* This
is permissible since the machines
are assumed to be reversible. The
various heat and work changes in

each complete cycle of the combined
machines are then as indicated in

Fig. 10 and represented below. In
accordance with the convention
earlier ( 7b), heat absorbed by the

system is taken as positive and heat liberated as negative; similarly, work
done by the system is positive and that done on the system is negative.

Cold Reservoir Tl

FIG. 10. Proof of the Carnot theorem

I

Heat transfer at T2
= Qz

Work done = W
Heat transfer at T\ = Q\

II

Heat transfer at

Work done
Heat transfer at

- W

The net result of the complete cycle by the two reversible engines,

bringing them both back to their initial states, without producing any
external changes, is given by

Heat transfer at

Work done

= Q{ Qi
- W - W'.

Since Qi is equal to Q2 W9
and Q{ is equal to Q 2 W it follows that

Qi Qi is equal to W W, so that the heat absorbed at TI is equal to the

work done by the engine. That is to say, the combined hypothetical, re-

versible machine, functioning in cycles, is able to convert completely into

work the whole of the heat taken up from a reservoir at the temperature TI,

without leaving changes elsewhere. This is contrary to the second law of

thermodynamics, and so it must be concluded that the two reversible mar
chines I and II cannot have different efficiencies. The Carnot principle

* In other words, machine II functions as a refrigerator (see 18j).
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of the equality of efficiency for all reversible cycles working between the

same two temperatures is thus a direct consequence of the second law of

thermodynamics.
18h. The Carnot Cycle. Since all reversible heat engines operating be-

tween the same two temperatures have equal efficiencies, it is sufficient to

consider any convenient machine of this type, for all others will have the

same efficiency. The one which lends itself to simple thermodynamic treat-

ment makes use of the cycle described by S. Carnot (1824). In this hypo-
thetical heat engine the working substance is 1 mole of an ideal gas; it is

contained in a cylinder fitted with a weightless and frictionless piston, thus

permitting reversible processes to be performed. It is supposed that there

are available two large heat reservoirs which remain at constant tempera-

tures, viz., T% (upper) and TI (lower), respectively. Further, it is assumed
that completely adiabatic processes can be

carried out when required, by surrounding
the cylinder with a perfect nonconducting

jacket so that no heat enters or leaves the

system ( lOa). The Carnot cycle consists

of four stages which can be represented on a

pressure-volume diagram, sometimes referred

to as an "indicator diagram/' as in Fig. 11.

I. The cylinder containing the mole of

ideal gas, occupying a volume Va ,
is placed in

the/heat reservoir at the higher tempera-
The external pressure is adjusted soture.

II

v.

Volume

FIG. 11. Pressure-volume

changes in Carnot cycle

that it is always infinitesimally less than the

gas pressure, and the temperature of the gas
is infinitesimally less than that of the reser-

voir. In this manner, the gas is expanded
isothermally and reversibly until its volume has increased to Vb. The path
of the process is represented by the isothermal curve AB in Fig. 11. Since

the gas is ideal, the work done Wi is given by equation (8.4) ; thus, for 1

mole of gas,

Wi = #r2 ln-^- (18.1)
*
a

The heat Q2 taken up from the reservoir must be equal to the work done

(cf . 9d), and hence by equation (9.21),

In : (18.2)

II. The cylinder of gas is removed from the reservoir at T and is sur-

rounded by the nonconducting jacket, so that the gas can be expanded

reversibly, i.e., infinitesimally slowly, and adiabatically. Work is done in

the expansion, but since no heat enters or leaves the system, the temperature
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must fall ( lOa). The reversible expansion is continued until the tempera-
ture has fallen to Ti, which is that of the lower temperature heat reservoir.

The path is indicated by the adiabatic curve BC, the final volume being Vc.

The work done is given by equation (10.8); thus,

Wu - - cv(Ti - ro
- CV(r, - TO, (18.3)

where Cv is the heat capacity of the ideal gas, assumed constant in the given

temperature range. If the heat capacity were not constant, Cv would

represent the mean value.

III. The nonconducting jacket is now removed and the cylinder is placed
in the heat reservoir at Ti. The gas is compressed isothermally and re-

versibly, the external pressure being maintained infinitesimally greater than
the gas pressure, and the temperature of the gas infinitesimally greater than
that of the reservoir. The process is represented by the isothermal path CD
in Fig. 11, the final volume being V* The work done is given by

Wm-RTiln^. (18.4)
y c

Since Vc is greater than Vd, the value of Win will be negative; this is, of

course, because work is done on the gas in the compression. At the same
time the quantity of heat Qi, exactly equivalent to Win, will be returned to

the heat reservoir at T\.

IV. The cylinder is removed from the heat reservoir and the non-

conducting jacket is replaced. The gas is then compressed adiabatically
and reversibly along DA until the initial state A is regained, the temperature
of the gas rising from T\ to T2. The state D in stage III is deliberately
chosen so that it lies on the same adiabatic as A. The work done is given by

Wrr = Cv(Ti - !T2), (18.5)

where Cv has the same value as in equation (18.3), since for an ideal gas it

must be independent of the volume or pressure.
As a result of the four stages just described the system has returned to

its original state, so that a reversible cycle has been completed. The total

work done W is the sum of the four work terms Wi, TFn, Wm and Wiv, but
since TFn and Wrr are seen, by equations (18.3) and (18.5), to be equal but
of opposite sign, it follows that

W - Wi + Win - RT* InQ + RTl In^ (18.6)
y a y c

Since A and D lie in one adiabatic curve, while C and B lie on another, it

follows from equation (10.5) that

v*y-i TI *- and
v
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and consequently
Fd = Vc V,, = V.

Fa Vb Va Vd

'

Upon substitution of this result into equation (18.6) it is found that

W = RT,In^
- RTl\^V a V a

-B(T,-Ti)lnJi. (18.7)
V a

By definition, the efficiency of a heat engine is equal to the ratio of the

total work W done in the cycle to the heat $2 taken in at the upper tempera-
ture; hence, by equations (18.2) and (18.7), the efficiency of the hypothetical
Carnot engine is -1.

(18.8)

In accordance with the Carnot theorem ( 18g), this expression gives the

efficiency of any reversible heat engine operating between the temperatures T\
and TV As is to be expected, the efficiency is determined only by the tem-

peratures of the two heat reservoirs acting as source (jP2) and sink (T\), and
is independent of the nature of the working substance. The lower the tem-

perature of the sink, for a given temperature of the source, the greater will

be the efficiency of the machine. Similarly, for a given temperature of the

sink, the efficiency will be increased by using a high temperature source. In

practice it is not convenient for the sink to be below atmospheric tempera-
ture, and so it is desirable that the upper temperature should be high. This
fact underlies the use of high pressure steam or of mercury in boilers for

power production.

Problem: The boiling point of water at a pressure of 50 atm. is 265 C. Com-
pare the theoretical efficiencies of a steam engine operating between the boiling

point of water at (i) 1 atm., (ii) 50 atm., assuming the temperature of the sink to

be 35 C in each case.

(i) At 1 atm. pressure, the boiling point of water is 100 C, i.e., 373 K, and
this represents the upper temperature Tz] the lower temperature TI is 35 C,
i.e., 308 K, so that

. T2
- Ti 373 - 308 _

Efficiency = -- = - = 0.174.

(ii) At 50 atm. pressure, T* is 265 C, i.e., 538 K, and Tl is 308 K as in (i);

hence

. Ti - Ti 538 - 308 ,AO
Efficiency ^

- - - - 0.428.

The possible increase of efficiency is very marked,
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Two special cases of equation (18.8) are of interest. First, if the effi-

ciency of the reversible heat engine is to be unity, T\ must be zero. Hence,
the whole of the heat taken in at the higher temperature can be converted

into work in a cycle, only if the lower temperature is the absolute zero. The
second case is that in which T\ and 7

7

2 are equal, that is to say, the cycle is

an isothermal one; in this event equation (18.8) shows the efficiency to be
zero. This is in agreement with the conclusion reached earlier ( 18d) that

there can be no conversion of heat into work in an isothermal cycle.

18L Maximum Efficiency of Heat Engine. One of the essential proper-
ties of a reversible cycle is that it has the maximum efficiency of any cycle

operating between the same two temperatures. That this is the case may be
understood from a consideration of the Carnot engine in 18h. Since the

work terms in the adiabatic stages II and IV cancel one another, the work
done in the cycle is that involved in the isothermal stages. It was seen

earlier ( 8c) that in a given isothermal expansion the work done by the

system is a maximum when the expansion is carried out reversibly ; similarly,

the work done on the system in an isothermal compression is a minimum
when performed reversibly. It follows, therefore, that in the Carnot re-

versible cycle the work done by the system at T2 is the maximum possible
for given expansion from A to B (Fig. 11), whereas the work done on the

system at Ti is a minimum for the compression from C to D. It is evident,

therefore, that the total work done by the system is the maximum for the

specified conditions. Since all reversible engines have the same efficiency
as the Carnot cycle, it follows that the efficiency of a reversible heat engine

operating between two given temperatures is the maximum possible for those

temperatures.

18j. Refrigeration Engine. In the foregoing treatment the Carnot cycle has
been used as a heat engine, taking up heat at a higher temperature, giving some
out at a lower temperature, and doing work in the process. Since the cycle is

reversible, it is possible to operate it in the reverse direction, so that by doing
work on the machine it can be made to take in heat at the lower temperature and

give out heat at the upper temperature. In other words, the machine is function-

ing as a refrigeration engine, for by continually absorbing heat from the vessel at

the lower temperature its temperature can be maintained at this low level, or

lowered further. The work done on the refrigeration engine, using a Carnot cycle,
must be equal, but of opposite sign, to the work done by the heat engine. The
work done on the refrigeration engine is given by equation (18.7) with the sign

reversed, and this may be written in the form

- W - R(T* - TO In^ - R(T, -
Ti) In ^- (18.9)

y a v d

The heat Qi taken in at the lower temperature T\ is equal, but opposite in sign,
to that involved in stage III of the Carnot engine; hence, by equation (18.4),

Q! - - RTi In - RT, In -

(18.10)
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The ratio of the work done on the machine to the heat absorbed at the lower

temperature, that is, the coefficient of performance of the refrigeration engine,
is given by

W Tt -Tt

Q, T,
' (18-U)

and consequently,

_ W = T*~ Tl
Q,. (18.12)

1 1

Just as the Carnot (reversible) cycle gives the maximum proportion of work which
can be obtained by a machine operating between two given temperatures, so

equation (18.12) represents the minimum amount of work necessary for removing
a quantity of heat Q\ from a reservoir at T\ and transferring it to a reservoir at
the higher temperature T*. If any stage of a refrigeration cycle were irreversible,
more work than that represented by equation (18.12) would have to be done to
transfer the given amount of heat between the same two temperatures.

Problem: Calculate the minimum amount of work in ergs required to freeze

1 g. of water at C by means of a refrigeration engine which operates in surround-

ings at 25 C. How much heat, in calories, is given up to the surroundings?

The heat of fusion of ice is 79.8 cal. g.~
x at C, and so this quantity of heat

must be transferred from C, i.e., 273 K (
= Ti), to 25 C, i.e., 298 K (

= T$\
hence, by equation (18.12),

~ W =

To convert into ergs it is necessary to multiply by 4.18 X 107
, so that the work

required is

7.30 X 4.18 X 107 3.05 X 108
ergs.

The heat given up at the higher temperature is the sum of the heat absorbed
at the lower temperature, i.e., 79.8 cal., and of the work done on the engine, i.e.,

7.30 cal.; the total is 87.1 cal.

The maximum work obtainable from a heat engine increases as the lower tem-

perature is decreased, or the upper increased; similarly, it can be seen from equa-
tion (18.12) that the minimum amount of work which must be done in a given

refrigeration process increases as the refrigeration temperature T\ is lowered.

Since T2 T\ increases at the same time as TI is decreased, the ratio (T* Ti)/Ti,
in equation (18.12), increases rapidly as the temperature TI is diminished. If the

latter temperature were to be the absolute zero, it is evident from equation (18.12)
that an infinite amount of work would be necessary to transfer heat to an upper
temperature even if this is only very slightly above K. It follows, therefore,
that as the temperature of a system is lowered the amount of work required to lower

the temperature further increases rapidly, and approaches infinity as the absolute

zero is attained. This fact has sometimes been expressed in the phrase "the

unattainability of the absolute zero of temperature".

18k. The Thermodynamic (Kelvin) Temperature Scale. The possibility
of utilizing the efficiency of a reversible engine as the basis of a temperature
scale was suggested by William Thomson (Lord Kelvin) in 1848. Suppose
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a reversible machine operates between two given temperature reservoirs;

the temperature of each reservoir on the thermodynamic (Kelvin) scale is

then defined as proportional to the quantity of heat transferred to or from it in

a reversible cycle. Disregarding for the moment the signs of the heat quan-
tities, if Qt is the heat transfer for the reservoir at the higher temperature
and Qi is the amount of heat transferred at the lower temperature, then the

respective temperatures on the thermodynamic (Kelvin) scale are 2 and 0i,

given by

s
-
1'

(18- 13)

In this way the ratio of the two temperatures is defined in a manner inde-

pendent of any particular thermometric substance (cf. 2b).

By inverting each side of equation (18.13) and subtracting the result from

unity, it follows that

%^ = ?L=Jl.
(18.14)

Q'2 #2

When referred to a heat engine, Q2 is the heat taken up at the higher tem-

perature and Qi is the amount returned at the lower temperature; hence

Qz Qi is the quantity of heat converted into work, i.e., W, so that equation
(18.14) may be written as

This expression defines the efficiency of the reversible heat engine in terms
of the Kelvin temperatures.

The condition for the zero of the Kelvin scale may be derived by setting
61 in equation (18.15) equal to zero, the result is seen to be

^=1 (fortfi-0),
V2

so that the zero of the thermodynamic scale is the lower temperature of a

reversible cycle with an efficiency of unity, that is, one capable of converting
heat completely into work. As seen in 18h, this result is only possible if

the lower temperature is the absolute zero on the ideal gas scale of tempera-
ture. From this fact, and the identity of equations (18.15) and (18.8), it

follows that the Kelvin scale and the ideal gas scale are really the same. In
order that temperatures on the two scales may coincide exactly it is only
necessary to define the size of the degree so as to be the same on both scales,
that Ls, one hundredth part of the range between the ice point and the steam

point at 1 atm. pressure ( 2b). In view of the identity of the ideal gas scale

and the thermodynamic scale defined in this manner, temperatures on the
former scale, like those on the latter, may be regarded as absolute, and inde-

pendent of the thermometric substance. This is the justification for the
use of the symbol

" K" (degrees Kelvin) for the so-called absolute tempera-
tures based on the hypothetical ideal gas thermometer ( 2c).
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19. ENTROPY

19a. Combination of Carnot Cycles. Although in 18k, for convenience
in deriving the Kelvin scale of temperature, the numerical values only of

Qi and Q 2 were considered, it should be recalled that by convention ( 7b)
Q is the heat taken up by the system. In a Carnot cycle, therefore, the total

heat absorbed is Q 2 + Qi, where Q 2 has a positive value and Qi has a negative
value, since the former is taken up at the higher temperature and the latter

is given out at the lower. The work W done in the cycle must be equal to
the total heat absorbed ( 7c), so that

W = Q2 + Qi.

If this expression for W is substituted in equation (18.8), it is seen that

and consequently,

(19.1)

(19.2)

Any reversible cycle may be regarded as being made up of a number of

Carnot cycles. Consider, for example, the cycle represented in Fig. 12 by
the closed curve ABA

; imagine a series of isothermal and adiabatic curves
drawn across the diagram, so that a
number of Carnot cycles are indicated.

Starting from A, and following all the

cycles down successively to J5, and back

again to A, it can be seen that all the

paths inside the area enclosed by the

carves A BA cancel each other, leaving

only the path indicated by the zigzag
outline. The larger the number of

cycles taken in this manner the closer

will the resultant path correspond to

ABA, which represents the reversible

cycle under consideration. The latter

may thus be regarded as equivalent to

the contribution of an infinite number
of small Carnot cycles. For each of

these cycles equation (19.2) shows that

the sum of the two Q/T terms involved

is zero; hence, for all the Carnot cycles equivalent to the general revers-

ible cycle ABA, it follows that

Volume

Fia. 12. Cyclic process as succession

of Carnot cycles

cycle

o, (19.3)
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where the summation includes two terms for each of the individual Carnot

cycles. Since an infinite number of small Carnot cycles are required to

duplicate the process ABA, it is convenient to write equation (19.3) in

the form

L ^r - 0, (19.4)
cycle

where <?,*. represents the infinitesimally small quantity of heat absorbed at

the temperature T in each of the small isothermal, reversible changes which
make up the reversible cycle ABA.*

19b. Definition of Entropy. The summation in equation (19.4), appli-
cable to the complete (reversible) cycle ABA, may be divided into two parts,

one for the path from A to B, and the other back from B to A ; thus,

E^-Z^+S^-O. (19.5)
cycle * A->B * B-+A 1

It may be possible to go from A to B by a number of different reversible

paths, always returning to A by the same reversible path BA. In every
case the result represented by equation (19.5) must hold, and since the second

summation on the right of this equation will always be the same, since the

path B > A is the same, it follows that the value of the first summation
must be independent of the path from A to B, provided only that it is

reversible. In general, therefore, it can be seen that the summation of the

qnv./T terms between A and B, or of the corresponding summation from
B to A, must be independent of the reversible path. The values of these

summations are thus determined by the states A and B, that is, by the

pressure, volume and temperature, and are independent of the manner in

which the system was brought to these states. It is thus possible to express
the value of each summation in terms of a function S, which depends only
on the state of the system; thus,

A-*B
SB - SA = AS, (19.6)

where SA is the value of the function in the state A, and SB in the state B.
The increase of the function S accompanying the change in state from

A to B is AS, and its value, as seen by equation (19.6), is given by the sum
of the qnv./T terms between A and B, where qrev. is the heat absorbed by
the system in an infinitesimal, reversible, isothermal stage occurring at the

temperature T. For each of these small stages it is therefore possible to

write

dS = 2=:
, (19.7)

where dS represents the accompanying increase of the function S. This
function or property of the system is called its entropy (Greek: change) in

* Since the paths within the area ABA cancel, the g^y. values are effectively those for

the isothermal stages of the path ABA itself.
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tlie given state; the entropy is not easily defined directly, and so it is best

described in terms of the entropy increase accompanying a particular process.
In an infinitesimal stage of an appreciable process the entropy increase dS
is given by equation (19.7) as the heat gw. taken up isothermally and re-

versibly divided by the absolute temperature T at which it is absorbed, i.e., qnv./T.
For an appreciable change the entropy increase is defined by equation (19.6)
as the (algebraic) sum of all the q^./T terms between the initial and final

states of the system. The only condition applicable to the path is that it

shall be reversible.

Since the entropy in any state depends only on that state, it may be

regarded as a thermodynamic property in the sense considered in 4d.

Hence, the increase of entropy of the system accompanying the change from
state A to state B has the definite value SB SA, and this quantity is

completely independent of the path from A to B; it may be reversible or

irreversible. However, it is important to remember that if a system changes
from A to B in an irreversible manner, the increase of entropy is given by
the summation of the q^JT terms between A and B, where the gw/s refer

to the succession of isothermal changes when the process is performed re-

versibly. The sum of the q/T terms for an irreversible process is an indefi-

nite quantity, depending on the path taken from A to B, and having no

special thermodynamic significance as far as the system is concerned.

Because the entropy, like the energy, is a single-valued function of the

state of the system, dS, like dE, is a complete differential. This fact adds

considerably to the thermodynamic usefulness of the entropy function.

The entropy of a system, like the energy, is an extensive property, de-

pendent upon the amount of matter in the system. For example, if the

amount of matter is doubled, the heat quantities required for the same
change of state will also be doubled, and the entropy will clearly increase in

the same proportion. Another consequence of the entropy being an ex-

tensive property is that when a system consists of several parts, the total

entropy change is the sum of the entropy changes of the individual portions.

19c. Entropy Change and Unavailable Heat. There is a simple relationship
between entropy change and the heat which is rejected at the lower temperature
in a heat engine that is of practical significance. It can be readily seen from equa-
tion (19.2) that for a reversible cycle

-Qi=r,|j, (19.8)

where Q\ is the heat returned to the reservoir at the lower temperature T\,

and hence is not available for conversion into work. Since the heat is taken up
reversibly, Q*/Tt is the increase of entropy of the system in the heat absorption

stage, i.e., A$2. It follows, therefore, from equation (19.8) that

-Qi - riAS* (19.9)

Incidentally, since - Qi/Ti is equal to Qi/Ti, by equation (19.2) or (19.8), the

entropy decrease A/Si at the lower temperature is equal to Aj, so that Q\ may
equally be represented by TiA&i. Either of these relationships gives the quantity
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of heat that is returned to the reservoir at the lower temperature in a reversible

cycle in terms of the entropy change. For a nonreversible cycle the proportion
of heat that is unavailable for work is, of course, greater since the efficiency is less.

In actual practice, the heat absorbed by the working substance, e.g., water,
is not all taken up at the one temperature T2 but over a range of temperatures,

e.g., from T* to T f

^\ the appropriate form of equation (19.2) is then

V .

grcv *

4- ^ _ n
L* ^ r m~ u

i

r,-*r
* 1 i

the heat Qi being rejected at the (approximately) constant temperature T\. In
this case,

(19.10)

where ASz is now the increase of entropy accompanying the reversible absorption
of heat in the temperature range from 7

7

2 to T'21 instead of at T* alone, as in

equation (19.9). Incidentally, provided T\ is constant, the alternative form

Qi = TiASi could be used, as in the previous case.

19d. Entropy Change in Reversible Process. In a complete cycle the

total entropy change of a system must be zero, since it has returned exactly
to its original thermodynamic state; hence, as expressed by equation (19.4),

cycle *

for the system. This result refers only to the substance or substances in-

cluded in the system, sometimes called the "working substance," and it is

necessary now to consider the "surroundings." In a reversible process, the

heat quantity gwv. taken up by the system at any stage is supplied reversibly

by the heat reservoir, i.e., the surroundings, the temperature of which differs

only infinitesimally from that of the system. Hence, at every stage, the

change in entropy of the surroundings will be equal to the entropy change
of the system, but of opposite sign, since the latter takes in heat when the

former gives it out, and vice versa. In every reversible process, therefore,
the sum of the entropy changes of the system and its surroundings will be
zero. In a complete reversible cycle, therefore, neither will undergo any
resultant change of entropy.

IQe. Entropy Change in Irreversible Process. It has been shown in

18i that the efficiency of a reversible engine is a maximum for the given

working temperatures. Hence, the efficiency of a cycle involving an irre-

versible stage must be less than that of a Carnot cycle. Suppose, for ex-

ample, that the higher temperature (T%) stage, in which the heat Qwn.) is

absorbed, takes place in an irreversible manner. The remainder of the cycle

may be supposed to be the same as for a Carnot cycle, the heat Qi(rev.) being
given out reversibly. The work done is given by Q2(irr.> + <?i<wv.), and
since the efficiency is less than for a completely reversible cycle, it follows
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that [cf. equation (19.1)]

Q2(irr.) + Ql(rev.) . T\ T\ . .

and hence,

y"'*
+ y^ < 0- (19.12)

In general, therefore, for a cycle which is not completely reversible, the sum,
over the whole cycle, of all the Q/T terms, or the q/T terms for a series of

infinitesimal stages, would be less than zero.

Consider a perfectly general cycle ABA made up of a path A > B, which
involves one or more irreversible stages, and the completely reversible path
B A

; according to the arguments presented above, therefore,

z + z -;- < o. (19.13)
A->B JL B-+A *

Since the heat is absorbed in an irreversible manner, the first summation in

equation (19.13) will not be definite, but will depend on the particular path
taken. By the definition of the entropy change of the system [cf. equation
(19.6)], it is seen that

B-+A -I

where gw. is taken up reversibly, and hence equation (19.13) becomes

EQirr. QT nr ^ r\

~^r + &A o* < 0,
A-+B 1

or, reversing the signs throughout,

SB - SA - D ^~ > 0. (19.14)

In an irreversible process A > J5, therefore, the summation of the q\rr./T
terms is actually less than the increase of entropy of the system.

The entropy change of the surroundings in the irreversible stage A B
must now be considered. This can best be ascertained from the change of

entropy when the surroundings are restored to their original state; the re-

quired entropy change must then be equal in magnitude to this quantity
but of opposite sign. The initial state of the surroundings can be restored

by adding the various amounts of heat involved in the qiTT . terms at the

appropriate temperatures. In order to obtain the entropy change, these

heat quantities are added reversibly (cf. 19b), irrespective of the fact that

they were not supplied reversibly to the system during the stage A > B.

The increase of entropy when the surroundings are brought back to their

original state, after the process A B, is the sum of the qin./T terms, and
hence the entropy change during this process is equal to Z qw./T.

A-*B
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The total entropy change of the system and its surroundings in the
irreversible process A * B may thus be summarized as follows:

Increase of entropy of system = SB SA

Increase of entropy of surroundings = ^
A^B T

Net increase of entropy of system

and surroundings (ASnet) * SB SA - L %r'
A-*B T

As seen by equation (19.14), this quantity is greater than zero, and hence
it follows that in any irreversible process there is a net gain of entropy of the

system and its surroundings. If the cycle ABA is completed by the re-

versible path jB >A, as suggested above, the net entropy change in this

process is zero, and hence the whole cycle must be accompanied by a gain of

entropy. It follows, therefore, that an irreversible process, or a cycle of which

any part is irreversible, is accompanied by a gain of entropy of the combined

system and its surroundings.
Since natural, or spontaneously occurring, processes are irreversible

( 18b), it must be concluded that all such processes are associated with a
net increase of entropy.* From some points of view this is one of the most

important consequences of the second law of thermodynamics; the law may
in fact be stated in the form that all processes occurri'ng in nature are associated

with a gain of entropy of the system and its surroundings.^
It should be remembered that the net gain of entropy accompanying an

irreversible process refers to the combination of the system and its surround-

ings, that is to say, to an isolated system of constant energy (cf . 6d). It will

be seen later that if the energy (and volume) of the system remained constant

in an irreversible process, its entropy would increase, quite apart from that

of its surroundings. It often happens that the entropy of the system, i.e.,

the working substance, actually decreases in a spontaneous, irreversible

process because of the associated energy change, e.g., in the solidification of

a supercooled liquid, but the entropy of the surroundings simultaneously
increases by a greater amount, so that there is a net increase of entropy, as

required by the second law of thermodynamics.

19f. Irreversible Processes and Degradation of Energy. In a complete cycle,

reversible or irreversible, the system returns to its original state, and hence it

undergoes no resultant change of entropy. Any net increase in the entropy of the

system and its surroundings, as in an irreversible cycle, will then be an increase

* Many changes which are naturally spontaneous ,e.g., expansion of a gas, solution of

zinc in copper sulfate, etc., can be carried out, actually or in principle, in a reversible manner.
It should be clearly understood that in the latter event the total entropy of the system
and its surroundings remains unchanged. There is an increase of entropy only when the

change occurs spontaneously and hence irreversibly.

t It is sometimes stated that the entropy of the "universe" is increasing; this, however,

implies a knowledge of processes occurring outside the earth and so cannot be justified.
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in the entropy of the surroundings; thus, in a complete cycle,

For a reversible cycle, ASnrt, and hence AS8urr., is zero ( 19d), whereas for an
irreversible process it is positive, as seen above. It follows, therefore, that in an
irreversible cycle an amount of heat Qe . has been returned to the surroundings in

excess of that which is transferred in a reversible cycle, where QCx. is defined by

j~ = AjSBUrr. = ASneti

that is,

<?. - TASnet, (19.15)

the temperature T being that of the surroundings, i.e., the sink. This result gives
a fundamental significance to the net entropy increase A net of the constant energy
system: the product of ASnet and the temperature at which heat is rejected is equal
to the quantity of heat that is "wasted" or "degraded" in an irreversible cycle.
It represents heat taken in at the higher temperature which would have been
available for work if the process had been carried out reversibly. As a result of

the irreversible nature of the process, however, it has been transferred or "de-

graded" to a lower temperature where its availability for work is diminished. If,

in any reversible cycle, a quantity of heat Q 2 is taken into the system at the tem-

perature Tz ,
and Q\ is rejected at the lower temperature Ti 9

then in an irreversible

cycle the heat rejected, for the same quantity Q% of heat absorbed at 7
T

2,
is equal

to Qi + jPiASnct. For a given absorption of heat, therefore, the work done in

the irreversible cycle is TiASnet less than that done in a reversible cycle operating
between the same temperatures. This result gives something of a physical sig-

nificance to the net entropy increase as a measure of the irreversibility of any
process.

1

19g. Temperature-Entropy Diagrams. A convenient form of diagram
for representing thermodynamic changes in state, often used in engineering

problems, is one in which the two axes indi-

cate the temperature and entropy, respec-

IV

B

II

III

tively. On such a diagram an isothermal

path is obviously a straight line parallel to

the S-axis. Further, since in an adiabatic

process no heat enters or leaves the system,
the entropy change accompanying any such

reversible process must be zero. A reversible,

adiabatic change is, therefore, represented by
a straight line parallel to the T-axis. It is

'

Entropy
because of the constancy of the entropy in

a
reverse,

adiabatic process, the entropy

change being zero, that the term isentropic

(Greek: same entropy) is often used when referring to a process of this

nature.

1 Cf. B. F. Dodge, "Chemical Engineering Thermodynamics," 1944, p. 71.
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A Carnot cycle is very simply represented by a rectangle on a tem-

perature-entropy diagram, as in Fig. 13; the isothermal stages at T2 and T\

are indicated by I and III, respectively, and the adiabatic paths are II and
IV. The stages I, II, III and IV correspond exactly to those described in

18h. It is at once obvious from the diagram that the entropy change

Qz/Tz in stage I, where $2 is the heat transferred reversibly at the tempera-
ture Ti, is exactly equal to the entropy change Qi/Ti, in stage III, where

Qi is the heat transferred at T\; thus,

Ql=-Ql or ^ + ^ =
T2 T, r, Ti

'

as found earlier [cf. equation (19.2)]]. From this result the efficiency of the

Carnot cycle can be readily derived, since the work done is equal to Q2 + Gi-

lt can be seen, therefore, that if entropy had been arbitrarily defined as

Qm./T, or as the sum of the qt*v./T terms, it would be a simple matter to

derive the efficiency of a Carnot cycle. This procedure is sometimes

adopted, but it has not been used here because in the treatment of 19a, 19b

the quantity Qrov./T, or qrev./T, appears as a logical development of the

second law of thermodynamics, instead of being an apparently arbitrary

function.

]p5ljti. Entropy Change and Phase Change. In this and the following
section the entropy changes accompanying certain simple processes will be
evaluated. One case of interest for which the calculation can be made very
readily is the increase of entropy associated with a phase change, e.g., solid

to liquid (fusion), liquid to vapor (vaporization), or transition from one

crystalline form to another. These changes can be carried out reversibly
at a definite temperature, the system remaining in equilibrium throughout
(cf. 8a). The heat supplied under these conditions is the so-called "latent

heat" accompanying the phase change. In the case of fusion, for example,
Qrev. is equivalent to AHf, the heat of fusion, and if the process has been
carried out at the temperature T

9 the entropy increase, referred to as the

entropy of fusion, is simply AH//T. The entropy of vaporization can

be determined in a similar manner. For example, the heat of vaporiza-
tion of 1 mole of water at 25 C, in equilibrium with its vapor at a pres-
sure of 0.0313 atm., is 10,514 cal. mole" 1

. Since the temperature is

273.16 + 25.0 = 298. 16 K, the entropy of vaporization of water at

25 C is 10,514/298.16 = 35.26 cal. deg.-
1 mole- 1

. It will be seen that the

dimensions of entropy are heat/temperature, and hence it is usually ex-

pressed in terms of calories per degree, i.e., cal. deg.""
1
. However, since the

entropy is an extensive property the quantity of material constituting the

system under consideration must be stated; consequently, the entropy of

vaporization determined above was given as 35.26 cal. deg.-
1 mole- 1

.

><f9i. Entropy Changes of Ideal Gas. For an infinitesimal, isothermal

process, the urst law equation (7.5) may be written as

q = dE + w. (19.16)
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If the process is reversible, and the work is restricted to work of expansion, as

is almost invariably the case for processes considered in chemical thermo-

dynamics, w may be replaced by PdV, where P is the pressure of the system,
so that

qny .
= dE + PdV. (19.17)

Further, since the quantity of heat <?rer . is transferred reversibly, at a con-

stant temperature T, it follows that qr*v./T is equal to the entropy change
dS accompanying the given infinitesimal change in state; hence, from equar
tion (19.17), it is evident that

ds _ a

For the special case of 1 mole of an ideal gas, dE may be replaced by
CydT Qcf. equation (9.22)], where CV is the molar heat capacity at constant

volume, and P may be replaced by RT/V; equation (19.18) thus becomes

dS^Cv^f + R^- (19.19)

Making the assumption that CV is independent of temperature (cf. 9e),

general integration of equation (19.19) gives an expression for the entropy
of 1 mole of an ideal gas; thus,

S = Cv In T + R In V + * , (19.20)

where s is the integration constant. The value of this constant cannot be
derived by purely thermodynamic methods, although it is possible to deter-

mine it by means of statistical mechanics, as will be explained in Chapter IX.
For an appreciable change with 1 mole of an ideal gas, between an initial

thermodynamic state, indicated by the subscript 1, and the final state,

indicated by the subscript 2, it follows from equation (19.20) that

AS - S2
- Si = Cv In ^ + R In (19.21)

li Vi

From this expression the entropy increase accompanying any given change
in state of an ideal gas may be calculated.

An alternative form of (19.20) may be obtained by replacing V by RT/P,
and utilizing the fact that for 1 mole of an ideal gas Cp Cv is equal to JK;

it is readily found that

S - CP In T - R In P + s'
, (19.22)

where SQ is equal to s + R In R. For a change in thermodynamic state,

therefore,

AS = S2 -Sl
- (7pln^- RlnJ-

2

, (19.23)
* i ^i

which is analogous to equation (19.21).
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For a change of temperature at constant volume, the entropy increase of

an ideal gas is seen from equation (19.21) to be

ASr - CVln J-
2

, (19.24)
7 i

whereas, for the same temperature change at constant pressure, (19.23) gives

ASP - CplnJ^- (19.25)
J i

It should be noted that although the foregoing equations are ultimately
based on (19.18), which applies to a reversible process, the results are appli-
cable to any change in thermodynamic state, irrespective of whether it is carried

out reversibly or not. This is because the entropy change depends only on
the initial and final states, and not on the path between them.

For an isothermal process, TI and T* are identical, so that equations

(19.21) and (19.23) reduce to

ASr - R In^ R In
p- (19.26)

The same result could have been derived directly from equation (9.21), which

gives the heat absorbed in an isothermal, reversible process. If this quan-
tity is divided by the constant temperature T, an expression for the entropy
change, identical with equation (19.26), is obtained. It must not be for-

gotten, however, that this equation, like the others for entropy change de-

rived in this section, is independent of the manner in which the process is

carried out.

In the isothermal expansion of a gas, the final volume F2 is greater than
the initial volume V\ and, consequently, by equation (19.26), A/S is positive;
that is to say, the expansion is accompanied by an increase of entropy of the

system. Incidentally, when an ideal gas expands (irreversibly) into a

vacuum, no heat is taken up from the surroundings ( 9d), and so the entropy
of the latter remains unchanged. In this case the net entropy increase is

equal to the increase in entropy of the system, i.e., of the gas, alone.

In a reversible, adiabatic, i.e., isentropic, process, the entropy remains

constant, and hence AS should be zero; the condition for a reversible, adiabatic

process can thus be obtained by setting equation (19.21) equal to zero. The
result is

which is identical with equation (10.3). The characteristic equations for a re-

versible, adiabatic process, e.g., (10.5), (10.6) and (10.7), can thus be derived

from entropy considerations.

19j. Entropy of Mixing. Consider a number of ideal gases, incapable of inter-

acting with one another in any way, placed in a vessel in which they are separated
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by partitions. If nt is, in general, the number of moles of any gas, and is the
volume it occupies, the total entropy Si of the system, which is the sum of the

entropies of the gases in the separate compartments, is given by equation (19.20) as

Si - n*(CV In T + R In v, + ), (19.27)

the temperature being the same throughout. Suppose that all the partitions are

removed, so that the gases become mixed. Each gas now occupies the total

volume V of the system, and the entropy S* is then represented by

2 - 2>(CV In T + R In V + ). (19.28)

If the separate gases were each at the same pressure before mixing,
41 the ratio of

the initial volume t>< of any gas to the total volume V is equal to n,-/n, where n<
is the number of moles of that gas and n is the total number of moles in the

system; thus,

?
- * - *. (19-29)

where N is the mole fraction ( 5b) of the given gas in the mixture. Replacing
Vi in (19.27) by NF, in accordance with equation (19.29), the result is

St - XX(CV In T + R In N,, + R In V + ,) (19.30)

The increase of entropy resulting from the removal of the partitions and the mixing
of the gases,known as the entropy of miring A m ,

is equal to /S2 S\; hence, by
equations (19.28) and (19.30),

= - R XX- In it*. (19.31)

The entropy of mixing for a total of 1 mole of the mixture of ideal gases is obtained

upon dividing equation (19.31) by the total number of moles n; the result is

ASm = - R - In N< = - R N< In N,, (19.32)n

assuming no change of temperature or total volume upon mixing.

It is of interest to note that since the mole fraction Nt
- of any gas in a

mixture must be less than unity, its logarithm is negative; hence ASm as

defined by equation (19.32) is always positive. In other words, the mixing
of two or more gases, e.g., by diffusion, is accompanied by an increase of

entropy. Although equation (19.32) has been derived here for a mixture of

ideal gases, it can be shown that it applies equally to an ideal mixture of

liquids or an ideal solid solution.

Problem: Molecular hydrogen normally consists of three parts of orthohydro-

gen and one part of parahydrogen; at low temperatures the molecules of the former

occupy nine closely spaced rotational levels, while the latter occupy only one.

Calculate the entropy of mixing of the ten different kinds of hydrogen molecules,

There are nine kinds of ortho molecules, and since the total constitutes three-

fourths of the hydrogen, each kind is present to the extent of J X f -j^. The
mole fraction of each of the nine forms of orthohydrogen is thus -fa. Since there

* Under these .conditions, the total pressure of the mixture of ideal gases will he the

same as that of the individual gases before mixing.
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is only one kind of parahydrogen, its mole fraction is just J. The entropy of

mixing is obtained from equation (19.32), there being ten terms in the summation;
for the nine identical ortho terms the mole fraction is -j^, and for the one para
term it is J, viz.,

ASm - - #[9^ In A) + i In J]
= 2.208/2 4.39 cai. deg.-

1 mole- 1
.

This result will be utilized in 24n.

19k, Entropy and Disorder. Before closing this chapter, it is appropriate
to refer to an interesting aspect of entropy which throws some light on the

physical significance of this apparently theoretical property. The subject
will be taken up in greater detail, from a somewhat different point of view,
in Chapter IX, but a general indication may be given here. An examination

of the various processes which take place spontaneously, and which are

accompanied by a net increase of entropy, shows that they are associated

with an increased randomness of distribution. For example, the diffusion

of one gas into another means that the molecules of the two gases, which
were initially separated, have become mixed in a random manner. Simi-

larly, the spontaneous conduction of heat along a bar of metal means a more
random distribution of the kinetic energies of the molecules. The conver-

sion of mechanical work into heat, as seen earlier ( 18e), is associated with
the change from ordered motion of a body as a whole to the disordered or

random motion of the molecules. It seems reasonable, therefore, to postu-
late a relationship between the entropy of a system and the randomness or

degree of disorder in the given state.

The concept of entropy as a measure of randomness, or vice versa, is one
of great value in many cases. Apart from its quantitative aspect, which
will be considered later, it is also useful from the qualitative standpoint, for

it is frequently possible to estimate whether a given process is accompanied
by an increase or decrease of entropy from a consideration of the randomness
or disorder in the initial and final states. Similarly, a knowledge of the

entropy change often provides information concerning structural changes
accompanying a given process. A simple illustration is provided by the

melting of a solid. There is obviously an increase of disorder in passing from
the solid to the liquid state, and hence an increase of entropy upon fusion is

to be expected. As seen in 19h, this is equal to the heat of fusion divided

by the temperature at which melting occurs. In general, the greater the

increase of disorder accompanying fusion, the greater will be the entropy
increase. Thus, the molar entropy of fusion of ice at C is 5.26 cal. deg.-

1

mole" 1
,
while that of benzene is 8.27 cal. deg.-

1 mole""1 at 5.4 C; because of

the relatively large extent of order still present in liquid water above its

melting point the entropy increase is smaller in the former than in the

latter case.

EXERCISES

1. The use of biphenyl (m.p. 70, b.p. 254 C) alone, or mixed with biphenylene
oxide (m.p. 87, b.p. 288 C), has been suggested as the working substance in a
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heat engine. Consider the advantages and disadvantages with respect to the use

of (i) water, (ii) mercury (b.p. 357 C), for the same purpose.
2. A reversible Joule cycle consists of the following stages: (i) an expansion at

the constant pressure Pz, (ii) an adiabatic expansion to a lower pressure Pi, (iii) a

compression at the constant pressure Pi, (iv) an adiabatic compression which
restores the system to its initial state. Draw the indicator (P-V) diagram for the

cycle, and prove that with an ideal gas as the working substance the efficiency is

given by
W
Q
=1

where Q is the heat taken up in stage (i) of the cycle. Show that it is possible to

calculate the temperature at the end of each stage.

3. A Carnot cycle, in which the initial system consists of 1 mole of an ideal

gas of volume 7, is carried out as follows: (i) isothermal expansion at 100 C to

volume 37, (ii) adiabatic expansion to volume 67, (iii) isothermal compression,

(iv) adiabatic compression to the initial state. Determine the work done in each

isothermal stage and the efficiency of the cycle.

4. It has been suggested that a building could be heated by a refrigeration

engine operating in a reversed Carnot cycle. Suppose the engine, takes up heat
from the outside at 2 C, work is done upon it, and then heat is given up to the

building at 22 C. Assuming reversible behavior, how much work in ergs would
have to be done for every kcal. of heat liberated in the building?

5. Mercury vapor at 357 C and 1 atm. pressure is heated to 550 C and its

pressure is increased to 5 atm. Calculate the entropy change in the conventional

units, the vapor being treated as an ideal monatomic gas.

6. An ideal gas undergoes throttled expansion ( lla), the pressure being 200
atm. on one side and 20 atm. on the other side of the throttle. The process is

irreversible, and so the entropy change must be calculated by imagining the same

change in thermodynamic state to be carried out reversibly. Determine the net

change in entropy of the system and its surroundings. Is the sign in accordance
with expectation?

7. Justify the statement that the solidification of a supercooled liquid is ac-

companied by a decrease in the entropy of the liquid but a greater increase in the

entropy of the surroundings. Suggest how the change from supercooled water at

10 C to ice at the same temperature and pressure could be carried out re-

versibly, so that the entropy change of the system could be evaluated.

8. Show that the entropy of mixing of a number of ideal gases, each at pres-
sure p, to form a mixture at the total pressure p, at constant temperature, is

RSN ln N Per mole of mixture. [TJse equation (19.22).]
9. If air, consisting of 21 mole % oxygen and 79 mole % nitrogen, at 1 atm.

pressure, could be separated into its pure constituent gases, each at 1 atm. pressure,
at the same temperature, what would be the entropy change per mole of air?

Ideal behavior may be postulated.
10. Show that equations (19.21) and (19.23) lead to the various conditions

for an adiabatic change derived in lOb.

11. The entropy of liquid ethanol is 38.4 cal. deg."
1 mole-"1 at 25 C. At this

temperature the vapor pressure is 59.0 mm. and the heat of vaporization is + 10.19

kcal. mole'1
. Assuming the vapor to behave ideally, calculate the entropy of

ethanol vapor at 1 atm. pressure at 25 C.



CHAPTER VIII

ENTROPY RELATIONSHIPS AND APPLICATIONS

20. TEMPERATURE AND PRESSURE RELATIONSHIPS

' Variation of Entropy with Temperature. The equation (19.18), i.e.,

dS = '

(20.1)

is of general applicability, provided only that the work involved is work of

expansion. For an infinitesimal change at constant volume, when dV i$

zero, this becomes dSv = dEy/T}
or

dS

By the general rules of partial differentiation [cf. equation (4.9)], both S
and E being functions of T and 7,

*s\ /(^.\
dT)y/ \dTjy'dE

and since (dE/dT)v is equal to Cv, the heat capacity at constant volume,
it follows from equation (20.2) that

dS ^ Cr
(20.3)

If constant volume conditions are understood, the result may be stated in

the form

dSv = ^ dT = Cvd In T,

and integration consequently gives

(S - S ) v = C
T
<dT=

T

Cvd In T, (20.4)

where S is the entropy of the system at the temperature T, and So is the

hypothetical value at the absolute zero, the volume being the same in each

case. For the entropy increase accompanying a change in temperature
from Ti to T2 at constant volume, it is seen that

C
/ri

. (20.5)
ri

164
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If Cv is independent of temperature this expression becomes identical with

equation (19.24).

Since the heat content H is equal to E + PV by definition [^equation

(9.5)], it follows that at constant pressure

dHP = dEP + PdV,

and hence from (20.1), it is evident that dHj> is equal to TdSp, or

'dS

By means of arguments exactly similar to those used in deriving equation
(20.3), and utilizing the fact that (dH/dT)P is equal to Cp, the heat capacity
at constant pressure, it is found that

/on 7 ^(20J)

Hence, for temperature changes at constant pressure,

nT, (20.8)

and
T2 T*T. (20.9)

As before, if Cp is independent of temperature, equation (20.9) becomes
identical with (19.25).

An important use of equation (20.9) is to determine the increase of

entropy of a system for a specified change of temperature at constant pres-
sure. Two procedures are possible, viz., graphical and analytical. In the

former, the values of Cp/T are plotted against T, or Cp is plotted against
In T, and the area under the curve between the ordinates representing T\
and T2 is measured. This gives the value of the integral in equation (20.9),

and hence the increase of entropy for the change of temperature from TI
to TV Alternatively, if Cp can be expressed as a function of the tempera-
ture, for example, by means of equation (9.24), the required integration can

be carried out readily.

Problem: The heat capacity at 1 atm. pressure of solid magnesium, in the

temperature range from to 560 C, is given by the expression

CP = 6.20 + 1.33 X IQr+T + 6.78 X 10* I
7-2 cal. deg.~

l
g. atom"1

.

Determine the increase of entropy, per g. atom, for an increase of temperature
from 300 K to 800 K at 1 atm. pressure.

Dividing through the expression for Cp by T, it is found that

~ + 1-33 X 10- + 6.78 X
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and hence, by equation (20.9),

00 / 20 \

(
-~r + 1.33 X 10-* + 6.78 X lO4!

7

-')
dT

_ ^ '

6.20 In + 1.33 X 10^ X (800 - 300) - J X 6.78 X 104

X [(800)
-2 -

(300)~
2
]

= 6.083 + 0.665 + 0.324 = 7.07 cal. deg.~
l
g. atom'1

.

The entropy increase is thus 7.07 cal. deg.~
l
g. atom""1

.

Attention should be called to the fact that the equations derived in this

section are quite general in the respect that they are not restricted to gaseous

systems. They are applicable to liquids and solids, as well as to gases. How-
ever, it should be noted that equations (20.4) and (20.5), at constant volume,
and (20.8) and (20.9), at constant pressure, in particular, require modifica-

tion if there is a phase change, e.g., fusion, vaporization or change of crystal-
line form, within the given temperature range. In cases of this kind, the

increase of entropy accompanying the phase change, as derived in 19h,
must be added to the values given by the foregoing equations. Some illus-

trations of this type will be considered in 23b.
-" 20b* Variation of Entropy with Pressure and Volume. Upon rearrange-
ment of equation (20.1), it is seen that

PdV - TdS -
dE,

and by applying the condition of constant temperature, this equation may
be expressed in the form

Upon differentiation with respect to temperature, at constant volume, the

result is

(2011)^ }

dTjv dVdT \dV

Bearing in mind that CV is equal to (dE/dT) v ,
it is readily found, by differ-

entiation of equation (20.3) with respect to volume, that

dTdV T dTdV

For complete differentials, such as dS and dE, the order of differentiation

is immaterial, so that 32
S/dTflV is identical with d*S/dVdT and d*E/dVdT

with d*E/dTdV; combination of the result "just obtained with equation

(20.11) thus leads to
/ ict \ /ir\

,
- (20.12)
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^<> that the variation of the entropy with volume at constant temperature
can be derived from the easily accessible quantity (dP/dT)v For an ideal

gas, for example, the latter is equal to R/V, so that

dV) T

*
V*

This is identical with the form taken by equation (19.19) at constant

temperature.
General differentiation of the relationship H = E + PV, which defines

the heat content, gives

dH = dE + PdV + VdP
9

and if this is combined with equation (20.1), the result is

dH = TdS + VdP. (20.13)

At constant temperature this takes the form, analogous to equation (20.10),

V=-T(~) + (~) , (20.14)
\ OJr t *p \ CfIT i v

and differentiation with respect to temperature at constant pressure gives

/\
\dPj

.

dTjp dPdT \dP T dPdT

From equation (20.7), recalling that Cp is equal to (dH/dT)p, it is found

upon differentiating with respect to pressure that

dTdP T dTdP'

and comparison with the preceding equation leads to the result

Since (dV/dT}P can be obtained either from P-V-T data, or from a suitable

equation of state, it is possible to determine the variation of entropy with

pressure at constant temperature. Upon rearrangement of equation (20.15)
and integration between the pressure limits of Pi and Pz, at constant tem-

perature, the result is

and hence the entropy change S2 Si may be obtained by plotting the

values of (dV/dT)p at various pressures against the pressure, and thus

evaluating the integral graphically. Alternatively, an expression for

(SV/dT)p may be obtained as a function of the pressure by means of a suit-

able equation of state, and then equation (20.16) can be solved analytically.
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20c. Entropy Corrections for Deviation from Ideal Behavior. One of

the most useful applications of equation (20.16) is to determine the correc-

tion which must be made to entropy values obtained for real gases to allow

for departure from ideal behavior. As will be explained in Chapter IX
it is possible to determine the entropy of a gas at 1 atm. pressure, but it is

desirable to express the result in terms of an ideal gas at the same pressure;
this is referred to as the standard entropy of the gas. The correction is

obtained in the following manner.
The increase of entropy of the actual gas from 1 atm. pressure to a very

low pressure P*, where it behaves ideally, is given by equation (20.16) as

/
constant temperature being understood. For an ideal gas, it is evident from
the equation of state PV = RT that (dV/dT)P is equal to R/P, and hence
the entropy increase from the very low pressure P* to 1 atm. is given by

*

S*(l atm.)
- S*(P* atm.) = -

Since the actual gas may be regarded as behaving ideally at the low pressure

P*, the quantities S(P* atm.) and *S*(P* atm.) may be taken as identical;
the required entropy correction to be added to the observed entropy value

/S(l atm.) is then obtained by adding the two equations given above, viz.,

S*(l atm.)
- S(l atm.) - 5 - 8 =

where 5, the usual symbol for the standard entropy, has been written in

place of S*(l atm.), and S is the observed entropy of the actual gas at

1 atm. pressure.
The integral in equation (20.17) could be evaluated graphically, but in

practice it is more convenient to use an equation of state, and in this connec-

tion the Berthelot equation ( 5f) has been employed. From this equation
it is found that

** I -i i_

dT '
~~ ~ l

and hence equation (20.17) becomes

27
"~ ~

32

s = s-\

27 PT*\
32 PtT*)'

An asterisk is used, in general, to represent a system in the postulated ideal state.
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the very small pressure P* being neglected in comparison with unity. The
second term on the right-hand side thus gives the correction which must be
added to the observed entropy S of the gas at 1 atm. pressure in order to

obtain the standard entropy $, for the gas behaving ideally at the same
pressure.

Problem: What is the correction to be added to the observed entropy of 1

mole of nitrogen gas at 77.32 K and 1 atm. pressure to allow for departure from
ideal behavior?

For nitrogen, Te is 126.0 K and Pe is 33.5 atm. The value of Pc must be

expressed in atm. since this unit has been used in the derivation of equation
(20.18). When T is 77.32 K, this equation gives

27 ft X (126.0)* _S ~~ S +
82-88.5 X (77.32)3

- S + 0.109*.

Since the entropy is usually expressed in cal. deg."
1 mole"1

,
the value of R is 1.987

in the same units, so that the correction term 0.109/Z is equal to 0.217 cal. deg.~*
mole""1

. This result will be employed in 23c.

20d. Thermodynamic Equations of State. By combining equations

(20.10) and (20.12), there is obtained what is called a thermodynamic equa-
tion of state, viz.,

/ nr> \ / -\77 \

(20.19)

for it gives a relationship between pressure, volume and temperature which
is applicable to all substances, solid, liquid or gaseous. An interesting

consequence of this equation arises in connection with the ideal gas law
PV = RT\ for an ideal gas, it is seen that

dP\ = R
dTjv V

and introduction of this result into equation (20.19) gives

(**\ =0
\dVjr

The constancy of the energy content of an ideal gas, irrespective of the vol-

ume, at constant temperature, which was postulated earlier ( 9d), is thus
a direct consequence of the application of the second law of thermodynamics
to the equation of state for an ideal gas.

For a van der Waals gas, (dP/dT)v is equal to R/(V 6), and hence it

follows from equation (20.19) that

dE\ ^ a^

dV) T y'

This result gives a physical significance to the pressure correction term in

the van der Waals equation (cf. lie, also Chapter IV, Exercise 11).
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Another thermodynamic equation of state is obtained by the combina-

tion of equations (20.14) and (20.15); thus,

iTT \

(20.20)

For an ideal gas, (dH/dP)r, like (6E/dV)T, can be readily shown to be zero,

so that the heat content is independent of the pressure, as stated earlier.

For real gases, however, this is not the case, and equation (20.20) may be

used, in conjunction with a conventional equation of state, or actual P-V-T
data, to determine the change of heat content accompanying a given pres-
sure change. This is of special value in connection with heats of reaction,

when the changes of heat content are determined for actual gases at 1 atm.,
or other, pressure, but the data are required for ideal behavior, i.e., at very
low pressures.

1

20e. Variation of Heat Content with Pressure. By rearrangement of equation
(20.20) and integration between the pressure limits of Pi and P2| at constant

temperature, it is found that

IT, - *i = V - T dP, (20.21)

where H\ and Hz are the heat contents of the given substance at the temperature
I
7

,
and pressures Pi and P2, respectively. The integral in this equation may be

solved graphically from P-V-T data, if available, but for gases an equation of state

may be employed. Here again, as in 20c, the Berthelot equation is useful

For gaseous substances; if the values of Y, derived from equation (5.19), and of

(3V/dT)p, given in a preceding section, are inserted in (20.21) it can be shown
without difficulty that

9 RT. TJ\ dp

p2 - /J ' ) - (20 -22)

The change of heat content for a given pressure change can thus be evaluated from
;he critical constants. If heat content data are to be corrected for departure from
deal behavior, P2 is set equal to zero; H* is then the heat content of the gas at this

pressure when it behaves ideally. Since the heat content of an ideal gas is inde-

pendent of the pressure, H2 gives the required corrected value.

Problem: Calculate the difference in the heat content of 1 mole of oxygen gas
it 1 atm. pressure and the same gas when behaving ideally at 25 C.

For oxygen, Te is 154.3 K and P is 49.7 atm.; the pressures PI and P3 must
>e expressed in the same units as Pc, i.e., in atm. In the present case P2 is set

jqual to zero, and H2 is then replaced by H*, the ideal gas value; Pi is 1 atm., and
T is 25 C, i.e., 298.16 (or 298.2) K. Hence, by equation (20.22), taking R as

1
See, for example, Rossini, J. Res. Nat. Bur. Stand., 22, 407 (1939).
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1.987 cal. deg.~
l moie~l

, the result is obtained in cal. mole"1
; thus,

m 9 X 1.987 Xn Hi sss

128X49.7 \
~

(298.2)
a

= 1.66 cal. mole"1
.

This difference is small in comparison with the experimental errors in measure-
ments of heat of reaction; it can, therefore, be neglected in most cases, as stated

in 12b.

Because of the approximate nature of the Berthelot equation of state, it is

probable that equation (20.22) is not very reliable when the pressure difference

P2 Pi is large. In connection with the study of high-pressure gas reactions,

however, it is sometimes required to know the difference between the heat content

of a gas at high pressure and at zero pressure. If P-V-T data are available, equa-
tion (20.21) may be used directly, but if they are lacking, or if approximate results

are adequate, a generalized treatment, involving the use of reduced quantities and
the compressibility factor ( 5i), is simple and convenient.

Utilizing the definition of the compressibility factor K, that is, PV = KRT, it

is readily found that

V- T = _
\dT/P P \dT)f

'

and hence, by equation (20.21), at constant temperature,

'

(20 -23)

Dividing both sides by T, and replacing T on the right-hand side by 8Te and P
by 7rPc , where 6 and IT are the reduced temperature and pressure (cf. 5e), re-

spectively, equation (20.23) becomes

//2
- #, M f ,

_
i

(2Q 24)

The values of (d*/d0)r can be derived from the generalized compressibility chart

(Fig. 4) and hence the integral can be evaluated graphically. If the pressure p2,

i.e., 7T2, is taken as zero, H2 may be replaced by the ideal gas value H*9 so that

equation (20.24) becomes

As seen in 5i, K is, as a first approximation, a universal function of and TT; it

is evident, therefore, that for a definite reduced temperature and reduced pressure,
the right-hand side of equation (20.25) has the same value for all gases. It is

consequently, possible to construct a generalized diagram giving the (approximate)
value of (H* H)/T for any gas with the reduced pressure as coordinate and the

reduced temperature as parameter. Such a diagram id represented in Fig. 14.s

1 Watson and Nelson, Ind. Eng. Chem., 25, 880 (1933). For experimental study of the
variation of heat content with pressure, see Gilliland and Lukes, ibid., 32, 957 (1940).
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It may be remarked that a reduced form of equation (20.16) or (20.17) and
a corresponding generalized diagram have been developed. As they are not widely

used, however, they will not be given here.*

1.0

L 1.06

\

1.1

1.2

0.1 0.2 0.3 0.4 0.6 0.8 1 2 34 6 8 10 15 20 30 40

Reduced Pressure (*)

FIG. 14. Generalized (H* - H)/T curves

20f. Adiabatic Relationships. Two relationships, analogous to (20.12)

and (20.15), which are applicable to constant entropy, i.e., reversible adi-

abatic, processes can be derived in a similar manner. Writing equation

(20.1) in the form
dE = TdS - PdV,

it is evident that at constant volume, i.e., when dV is zero,

(20.26)

(20.27)

dS/v

whereas at constant entropy, i.e., when dS is zero,

a

T)
-p.

/ S

If equation (20.26) is differentiated with respect to volume, at constant

entropy, and (20.27) with respect to entropy, at constant volume, and the

' Cf. Edmiater, Ind. Eng. Chem., 28, 1112 (1936); York, Md., 32, 64 (1940); Robiawn
and Bliss, ibid., 32, 396 (1940); Maron and Turnbull, ibid., 34, 544 (1942)
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results equated, it is found that

-

From equation (20.13), that, is,

dH - TdS + VdP,

the restrictions of constant pressure and constant entropy, respectively,
lead to

f A JJ \ / AH\dH ^ T and (?!) -F. (20.29)
(dH
(asdS

Upon differentiating with respect to pressure, at constant entropy, in the
first case, and with respect to entropy, at constant pressure, in the second

case, and equating the results, it is seen that

(20.30)

20g. General Applicability of Results. The four equations (20.12),

(20.15), (20.28) and (20.30) are frequently referred to as the Maxwell
relations. It is important to note that these results, as well as the general

equations of state (20.19) and (20.20), are applicable to systems of all types,

homogeneous or heterogeneous. Two conditions, however, must be borne
in mind. The mass of the system is assumed to be constant, so that there

is no loss or gain of matter in the course of any thermodynamic change.

Systems of this kind, which may consist of one or more phases, are known
as closed systems. The second condition is based on the postulate that

the work done is work of expansion only, and that it is equal to PdV, where
P is the pressure of the system (cf . 19i, 20a). This means that the system
must always remain in equilibrium with the external pressure; in other words,
the pressure inside the system must either be equal to, or differ only by an
infinitesimal amount from, the external pressure. An important application
of equation (20.12) to heterogeneous systems will be given in 27b.

21. ENTROPY AND HEAT CAPACITY RELATIONSHIPS

2 la. Difference of Heat Capacities. It was shown in 9c that the

difference between the heat capacities at constant pressure and constant

volume, of any homogeneous system of constant composition, is given by

and hence, utilizing equation (20.19),
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This result is applicable to any single substance, either solid, liquid or

gaseous, or to a homogeneous system containing definite amounts of two
or more substances.

For 1 mole of an ideal gas, (dP/dT)v is equal to R/V^ i-e., P/T, and

(dV/dT)P is JR/P; hence by equation (21.1),

Cp Cv =s Rj

in agreement with equation (9.29). For a real gas, the values of (dP/dT)v
and of (dV/dT)P can be obtained from P-y-JP data, and hence Cp Cv can
be determined. Even without these data, however, a qualitative indication

of the results to be expected may be derived from an equation of state.

For a van der Wools gas, for example,

RT
V - 6 V*

'

and hence,
J) D \ J? 'T' n

\
- ^^ - P 4. A . f01 0\

ar/y -y~6-^ + y2 ^21 -2>

In order to evaluate (3V/dT)p in a convenient form, the van der Waals equation
is multiplied out to give

PV

and, dividing through by P, the result is

V^ZT^^ri
p PV ^

"
f
"

py

As a first approximation, V may be replaced by RT/P in the correction terms

a/PV and ab/PV*, so that

v - *?_ JL abP
p

Differentiation of this expression with respect to temperature, at constant pressure,

yields
2abP/dV\ _R a

\ dT)P
"
P + R&

"

It is readily found by arrangement of the previous equation that

R = V - b a _ dbP

p T
-

and combination with (21.3) gives

dV\ V - 6 2a 3abP
T RT*

Introducing this result together with equation (21.2) into (21.1), and omitting
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some of the smaller terms, it is seen that

Except at low temperatures and high pressures, the last term may be neglected,
so that

It is evident, therefore, that for a real gas the value of CP Cv is greater than R;
the difference increases, as a first approximation, in a linear manner with the

pressure, and is most marked at lower temperatures. The difference between
Cp Cv and R is evidently greater for easily liquefiable gases, for these have, in

general, higher a values.

Problem: Calculate CP Cv for nitrogen at 25 C and 200 atm. pressure, the

van der Waals a being 1.39 liter2 atm. mole"2
.

Since a is given in liter2 atm. mole~2
, P should be in atm., and R in liter-atm.

deg.""
1 mole""1

, i.e., 0.0820; hence, equation (21.5) gives

,

2 X 1.39 X 200

1.937?.

(The actual value is approximately 1.9/2.)

At low temperatures and high pressures the value of Cp Cv can become

very much larger than for an ideal gas. However, the difference between
Cp Cv and R does not increase continuously with the pressure, as implied

by equation (21.5). The reason for this is the 3abP'2/RzT* term in equa-
tion (21.4). As the pressure is increased this becomes of increasing impor-
tance, and it is evident that at sufficiently high pressures Cp Cv should

attain a maximum, and subsequently decrease with increasing pressure.
The results obtained directly from actual P-V-T data are in qualitative

agreement with this conclusion. At 20 C, the maximum, equal approxi-

mately to 2JS, is attained with nitrogen gas at about 300 atm. pressure.

Without going into details, it may be noted that a similar treatment based on
the Berthelot equation of state gives the result

(27
T3

1 +
i5'Kf5

applicable over a limited range of pressures.

Problem ^Compare the value of Cp Cv for nitrogen at 25 C and 200 atm.

pressure given by equation (21.6) with that obtained above from (21.5).
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For nitrogen Pc is 33.5 atm. and Te is 126.0 K; hence when T is 25 C, i.e.,

298.2 K, and P is 200 atm., equation (21.6) gives

p I 27 X Q.26.0)
3 X 200 1

[ "M6 X33.5 X (298.2)
3
J

CP - Cv

1.76/2,

which may be compared with 1.93/2 from equation (21.5).

The thermodynamic equation (21.1) may also be expressed in terms of the

reduced temperature, pressure and volume, and the compressibility factor. It is

then possible to construct a generalized diagram for Cp Cv applicable to all

gases (cf. 20e).
4

21b. Difference of Heat Capacities: Alternative Expression. An alter-

native form of equation (21.1) has been used to determine the difference in

the heat capacities of solids, liquids and gases. For a homogeneous system
of constant mass the volume V is a single valued function of the temperature
and pressure, and so it is possible to write

"
For a process occurring at constant volume dV is zero, and hence equation
(21.7) becomes

or

dTjv \dTjp \dPr

Upon introducing this result into equation (21.1) it follows that

This equation has been utilized in connection with P-V-T data, either in

graphical or analytical form, to determine Cp Cv values for a number of

gases over a considerable range of temperature and pressure.
6

For solids and liquids another form of equation (21.8) is convenient.

The quantity ( )
is equal to the coefficient of (cubical) thermal ex-

V \dl /P

pansion a of the substance constituting the system, and ( == ) is the
V \dF JT

4
Schulze, Z. phys. Chem., 88, 490 (1914); Edmister, rcf. 3; Ind. Eng. Chem., 32, 373

(1940).
6 Deming and Shupe, Phys. Rev., 37, 638 (1931), 38, 2245 (1931), 40, 848 (1932); Roper.

J. Phys. Chem., 45, 321 (1941).
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compressibility coefficient j8; hence,

orTV
Cr-Cv- --

(21.9)

This equation has been found especially useful for the conversion of heat

capacities of solids, in particular, measured at constant (atmospheric)

pressure to the values at constant volume ( 17a).

Problem: For metallic copper at 25 C, the coefficient of expansion a is

49.2 X 10~6
deg.~

l
,
and the compressibility coefficient /3 is 0.785 X 10~6 atm.~l

;

the density is 8.93 g. cc."1 and atomic weight 63.57. Calculate the difference in

the atomic heat capacities at constant pressure and constant volume.

In the present case V in equation (21 .9) is the atomic volume, i.e., the atomic

weight divided by the density; if this is expressed in cc. g. atom"1
, i.e., 63.57/8.93,

it can be readily seen from equation (21 .9) that using the values given for a and /?,

Cp Cv will be in cc.-atm. deg."
1
g. atom" 1

. Since 1 cc.-atm. is equivalent to

0.0242 cal. (Table 1, Appendix), it follows that at 25 C, i.e., 298.2 K,

_ C (49.2 X IP"6
)
2 X 298.2 X 63.57 X 0.0242

P V
0.785 X l(FrX 8.93

= 0.159 cal. deg.~
l
g. atom" 1

.

21c. Determination of Heat Capacity. For a simple system, e.g., a single
substance or a homogeneous mixture of constant composition, the entropy is de-

pendent on two thermodynamic variables, e.g., temperature and pressure, only,
so that

and hence, by the method used in 21 b, it follows that

dP

Utilizing equation (20.15) for (dS/dP)T,
and (20.7) for (dS/dT)P,

it is found upon
rearrangement that

*-'(),/(?).
This equation has been used for the determination of the heat capacities at con-

stant pressure of both liquids and gases. The quantity (dV/dT)p is the rate

of thermal expansion and this can be measured without difficulty. The other

factor, (3T/dP)s, is called the adiabatic temperature coefficient, since it applies to

constant entropy, i.e., adiabatic, conditions. It can be determined by allowing
the fluid to expand suddenly, and hence adiabatically, over a known pressure range,
and observing the temperature change,

6

Joule, Phil. Mag., 17, 364 (1859); Lummer and Pringsheim, Ann. Phyrik, 64, 655

(1898); Eucken and Mticke, Z. phys. Chem., B18, 167 (1932); Dixon and Rodebush, /. Am.
Chem. Soc., 49, 1162 (1927); Richards and Wallace, ibid., 54

;
2705 (1932); Burlew, ibid., 62,

681, 690, 696 (1940).
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2 Id. Variation of Heat Capacity at Constant Pressure with Pressure.

It is a simple matter to derive an expression for the influence of pressure on
heat capacity. Upon differentiating equation (20.7), i.e..

/ dS\ ^Cp
\dTJp T 9

with respect to pressure, at constant temperature, and equation (20.15), i.e.,

dS\ = _ / dV\
P)T

~
\d!F/p'

with respect to temperature, at constant pressure, and equating the results,

it is found that

dTdP T\dP)T

-

This equation holds for any homogeneous substance, but it is usually applied
to gases. For an ideal gas, it is evident from the equation PV = RT that

(d~V/dT*)p is zero, and hence the heat capacity should be independent of

the pressure (cf. 9e). Real gases, however, exhibit marked variations of

heat capacity with pressure, especially at low temperatures; at 70 C,
for example, the value of Cp for nitrogen increases from 6.8 at low pressures
to 12.1 cal. deg.-

1 mole"*1 at 200 atm. At ordinary temperatures, however,
the heat capacity increases by about 2 cal. deg.^

1 mole"1 for the same increase

of pressure.
The actual change of heat capacity with pressure is given by an expres-

sion obtained by the integration of equation (21.11). At a sufficiently low

pressure, represented by P*, where the gas behaves ideally, the heat capacity
Cp may be regarded as virtually independent of pressure; this pressure may
be taken as the lower limit of integration, and if the upper limit is any
pressure P at which the heat capacity at constant pressure is Cp, then

- CJ rl>, (21.12)

at a constant temperature T. The values of (d*V/dT
2
)P for a given gas at

various pressures can be derived from P-V-T measurements, if available;

by graphical integration CP Cp can then be determined for any desired

pressure.
7

If the constants in a patisfactory equation of state, e.g., the Beattie-Bridgeman
equation, were known, (d

2V/dTz
) P could be expressed analytically as a function

of the pressure, and then integrated in accordance with equation (21.12). The
treatment may be illustrated in a simple manner by utilizing the van der Waals

7 See ref. 5; also, Hoxton, Phys. Rev., 36, 1091 (1930).
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equation. It was seen in 21a that for a van der Waals gas cf. equation (21.3)3

= - -. _ 2abP

dT
~

and hence

(d*V\ 2a QabP

\dT*)p ****'

so that from equation (21.12)

Assuming a and 6 to be independent of the pressure, and taking P* as zero, it

follows that

At moderate temperatures and pressures the second term on the right-hand side

of equation (21.13) may be neglected; the value of Cp should thus increase in a

linear manner with the pressure. The rate of increase should be less the higher
the temperature. With increasing pressure the effect of the second term will

become appreciable, especially at low temperatures, and at sufficiently high pres-
sures Cp should reach a maximum and then decrease. These qualitative expecta-
tions are in agreement with the results obtained by the application of P-V-T data
to equation (21.12), and also with the limited experimental determinations of heat

capacities at high pressures.
8

From the Berthelot equation of state in conjunction with (21.12) it is found that

This result, as might be expected, is reliable at moderate temperatures and pres-

sures, when Cp Cp is a linear function of the pressure.

Problem: Calculate the change of CP for nitrogen when the pressure is in-

creased to 100 atm. at 25 C, using (i) the van der Waais equation (ii) the Berthelot

equation.

(i) For nitiogen, a is 1.39 and b is 3.92 X 10~~2 in liter, atm. and mole units;
R must therefore be in liter-atm. deg.""

1 mole"1
,
and P in atm., i.e., 100 atm.;

equation (21.13) then gives, with T = 298 K,

* 2 X 1.39 X 100
(7p CP-F P

0.082 X (298)
2

0.038 liter-atm. deg.""
1 mole""1

,

the second term being negligible. Since 1 liter-atm. is equivalent to 24.2 cal.,

the change in heat capacity should be 0.93 cal. deg."""
1 mole""1

.

Worthing, Phys. Rev. 33, 217 (1911); Mackey and Krase, Ind. Eng. Chem., 22, 1060

(1930).



170 ENTROPY RELATIONSHIPS AND APPLICATIONS 21e

(ii) Taking Tc as 126.0 K and JP as 33.5 attn., equation (21.14) gives

C _ r*
81 X 0.082 X (126)

8 X 100
P p ~

32 X 33.5 X (298)'
0.047 liter-atm. deg.~

J mole-1
.

This is equivalent to 1.1 cal. deg.""
1 mole"*1

. (The experimental value is about
1.0 cal. deg.""

1 mole"1
.)

As in the case of other thermodynamic properties, it is possible to derive a

general relationship for Cp Cp involving the reduced temperature and pressure.
The simplest method of approach to this problem is to utilize the familiar definition

of CP as (dH/dT)P ; hence,

dTjp \dTjp I dT

where, as before, H and H* refer to the heat contents at an appreciable pressure P
and at a very low pressure, respectively. Upon introducing the mathematical
result

dl(H - H*)/T1 dl(U - H*)/T-] = d(H -
//*) // - H*

d In T dT dT T

equation (21.15) gives

Cp-cp- ^=~ +
{ ^"afrV"-

1

}p
-

(2i.i6)

The temperature T may be expressed as QTC ,
where ^ is the reduced temperature;

hence din T is equal to din 0, since Tc is constant, and equation (21. 1C) may
consequently be written as

It was seen earlier ( 20e) that (H H*)/T is a function of the reduced tempera-
ture and pressure of a form applicable to all gases [cf. equation (20.25)], at least

as a first approximation; hence the same must be true for Cp Cp, in accordance
with equation (21.17).f The first term on the right-hand side is obtained from

equation (20.25) or its equivalent (Fig. 14), and the second term from the slope

of the plot of (H H*)/T against 6 (or In ^), ail the values being at the reduced

pressure corresponding to the pressure P at which Cp Cp is required.
9

21e. Variation of Heat Capacity at Constant Volume with Volume. By
means of equations (20.3) and (20.12), a relationship analogous to (21.11)

can be obtained for the variation of Cv with volume, which is related to the

variation with pressure, at constant temperature; this is

t Since a good approximation for a function docs not, on differentiation, necessarily

give a good approximation for the derivative of the function, this conclusion may be open
to some objection.

9 Dodge, Ind. Eng. Chem., 24, 1353 (1932); Watson and Nelson, ibid., 25, 880 (1933):

see also, ref. 3
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which, upon integration, gives

c- - c* - T

where C* is the constant heat capacity at low pressure, i.e., large volume V*.

The chief application of these equations, like (21.11) and (21.12), is to gases.
For an ideal gas, it can be readily seen that since (d^P/dT^v is zero, Cv is

independent of the volume (or pressure), as is to be expected, but for a real

gas this is not necessarily the case. The values of (d*P/dT*) v can be derived

from P-V-T measurements, and hence Cv C*-can be obtained by graphical

integration; alternatively, an analytical method, similar to that described

above, may be used.

It is of interest to note that (d*P/8T2
)v is zero for a van der Waals gas, as well

as for an ideal gas; hence, Cv should also be independent of the volume (or pressure)
in the former case. In this event, the effect of pressure on CP is equal to the varia-

tion of CP Cv with pressure. Comparison of equations (21.4) and (21.13), both
of which are based on the van der Waals equation, shows this to be true. For a

gas obeying the Berthelot equation or the Beattie-Bridgeman equation (d*P/dT*)v
would not be zero, and hence some variation c f Cv with pressure is to be expected.
It is probable, however, that this variation is small, and so for most purposes the

heat capacity of any gas at constant volume may be regarded as being independent
of the volume or pressure. The maximum in the ratio 7 of the heat capacities at

constant pressure and volume, respectively, i.e., Cp/Cv, referred to earlier ( lOe),

should thus occur at about the same pressure as that for CP, at any temperature.

22. THE JOULE-THOMSON EFFECT

22a. The Joule-Thomson Coefficient. Although the subject matter of

this section has no direct connection with entropy, it may be considered here

because the results are based on one of the thermodynamic equations of

state derived in 20d; to this extent the material may be regarded as a

consequence of the entropy concept. In equation (20.20), viz.,

(dH/dP)r may be replaced by MJ.T.CP, as given by equation (11.5), where

MJ.T. is the Joule-Thomson coefficient, i.e., (dT/dJP)//; hence, for a fluid, i.e.,

liquid or gas, it is possible to write

or

(22.2)

This expression is based upon thermodynamic considerations only, and
hence is exact; the Joule-Thomson coefficient, at any temperature, may thus
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be determined by inserting experimental results for (dVfdT)r, V and CV
under the given conditions. The values derived in this manner have been
found to agree closely with those obtained by direct experiment.

10

Problem: At 20 C, the value of the dimensionless quantity (T/V)(dV/dT)P
for nitrogen was found to be 1.199 at 100 atm.; the specific volume was then 8.64

ml. g.~
l and Cp was 8.21 cal. deg.~

l mole"1
. Calculate the Joule-Thomson coeffi-

cient of nitrogen under these conditions.

Equation (22.2) may be put in the form

and if Cp is the molar heat capacity, V must be the molar volume. Since /UJ.T.

is usually expressed in deg. atm.~l
, it will be convenient to have V in liter mole"1

and CP in liter-atm. deg.~
l mole"1

; the equation is then seen to be dimensionally
correct. The molecular weight of nitrogen is 28.0, and the molar volume is

8.64 X 28.0 X 10~3
liter; CP is 8.21 X 0.0413 liter-atm. deg.-

1 mole-1
,
and hence

(The direct experimental value is 0.143 atmr1 .)

For an ideal gas, satisfying the equation PV = RT under all conditions,

(dV/dT)P is equal to V/T; it follows, therefore, from equation (22.2), that

the Joule-Thomson coefficient is always zero. For a real gas, however, this

coefficient is usually not zero even at very low pressures, when ideal behavior

is approached in other respects. That this is the case may be seen by making
use of an equation of state for a real gas.

For a van der Waals gas, for example, it is seen from the results in 21a

that

T (**) =F-6+*L- 3a6P

\dTjp
^ RT

and hence

T(*?-\ _v_.?a
\dTJp RT

3abP

/g'T

The equation (22.2) for the Joule-Thomson coefficient thus becomes

2a . .

( >

At very low, or zero, pressure, the last term in the parentheses is negligible

10 Doming and Shupe, Phys. Rev., 37, 638 (1931), 48, 448 (1935); see also, Perry and

Hen-man, J. Phys. Chem., 41, 1189 (1935); Edmister, Ind. Eng. Chem., 28, 1112 (1936);

Benedict, /. Am. Chem. Soc.. 59. 1189 (1937); Maron and Turnbull, Ind. Eng. Chem., 34,

544 (1942).
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and then

(22'4)

Except in the special circumstances when 2a/RT is equal to 6, the Joule-

Thomson coefficient at low pressures, as given by equation (22.4), is not zero.

If the van der Waals a and b are known it is possible to obtain an indica-

tion of the value of the Joule-Thomson coefficient at any given temperature
and pressure by means of equation (22.3). The results are approximate
only, since a and b vary with temperature and pressure, the values generally

employed (Table I) being based on critical data.

Problem: Calculate the Joule-Thomson coefficient of nitrogen gas at 20 C
and 100 atm. pressure, taking CP as 8.21 cal. deg.~l mole~l

.

Since a and b are usually given in liter, atm. and mole units, viz., 1.39 and
3.92 X 10~2

,
R is 0.082 liter-atm. deg.-

1 mole~l and CP is 8.21 X 0.0413 liter-atm.

deg.-
1 mole'1

;
hence at 20 C (293 K), equation (22.3) gives, with P equal to

100 atm.,

1

MJ.T.
8.21 X 0.0413

2 X 1.39
ft
_ 3 X 1.39 X 3.92 X 10~2 X 100
x iu

3.082 X 293
~

(0.082)
2 X (293)

2
J

= 0.142 atm.- 1
.

(This is in fortuitously good agreement with the experimental value of 0.143

atm."1
. If equation (22.4) is employed, the result is 0.22 atm."1

.)

22b. The Joule-Thomson Inversion Temperature. The condition for

the Joule-Thomson inversion temperature, where the Joule-Thomson co-

efficient changes sign from positive to negative or vice versa ( lie), can be
obtained by setting /ZJ.T. equal to zero. For a van der Waals gas, equation
(22.3) gives the condition as

20 ' 3a6F
-

(22.5)

- (22.6)
rib JK*

TABLE XIV. JOULE-THOMSON INVERSION TEMPERATURES FOR NITROGEN

Inversion Temperature
Press. Upper Lower

1 atm. 348 C
20 330.0 - 167.0 C
60 299.6 - 162.4

100 277.2 - 156.5

180 235.0 - 134.7

220 212.5 - 117.2

300 158.7 - 68.7

376 40
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This equation is a quadratic, and hence there will be, in general, two values

of the inversion temperature T, for every pressure, as stated in lie. The
experimental values obtained for nitrogen gas are recorded in Table XIV,
and are plotted (full line) in Fig. 15. 11 For all temperatures within the curve

600

1*200

20 60 100 200 300 Atm.
Pressure

FIG. 15. Joule-Thomson inversion curve for nitrogen

the Joule-Thomson coefficient is positive, a throttled expansion being ac-

companied by a fall of temperature; outside the curve the coefficient is

negative.

A generalized expression for the Joule-Thomson inversion temperature may
be obtained by the use of a reduced equation of state. By setting equation (22.2)

equal to zero, the condition for the inversion temperature T is then seen to be

^ -F-0, (22.7)

since C/> is not zero. If the pressure, volume and temperature are expressed in

terms of the corresponding reduced quantities , 4> and 0, equation (22.7) becomes

*().-*-*
Roebuck and Osterberg, Phya. Reo., 48, 450 (1935).

(22.8)
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From the reduced form of the van der Waals equation (5.16), i.e.,

34-l)-80, (22.9)

it follows upon differentiation, at constant reduced pressure, that

dO /* 3ir<
3 ~ 9* + 6

If this result is introduced into equation (22.8), and ir is eliminated by means of

(22.9), it is found that

and substitution of this value for 6 in (22.9) gives for the corresponding reduced

pressure,

'

(22.11)

By combining equations (22.10) and (22.11), it is possible to eliminate and thus
obtain a general relationship between the reduced inversion temperature and

pressure applicable to all gases. Provided w is less than 9, solution of equation
(22.11) gives two real values of <f> for each value of in; insertion of these two ^'s
in equation (22.10) then gives the two reduced inversion temperatures fa for the

particular reduced pressure *-. By choosing various values of the latter from
to 9, the data can be obtained for a generalized, reduced inversion temperature-

pressure curve, which should be applicable to any gas. The curve derived from

equations (22.10) and (22.11) is shown by the broken line in Fig. 15."

Comparison of the two curves in Fig. 15 indicates that the reduced equation
for a van der Wools gas is qualitatively correct, but is not quantitatively accurate.

This fact is brought out more clearly by considering some actual results. Accord-

ing to equation (22.11), or Fig. 15, the maximum value of the reduced pressure
for which inversion is possible is 9; ^ is then unity, and should be 3, by equation

(22.10). For nitrogen, T is 126.0 K and Pe is 33.5 atm., so that the maximum
pressure for the observation of a Joule-Thomson inversion should be 9Pe, i.e.,

9 X 33.5 or 301.5 atm., the temperature should then be 3TC, i.e., 3 X 126.0 or

378 K. The experimental values are 376 atm. and 313 K. Further, at very
low, e.g., zero, pressure, <f> can be either 0.5 or infinity, by equation (22.11); in-

sertion of these values in (22.10) gives the two values of the reduced inversion

temperature as 0.75 and 6.75, so that the actual (absolute) temperatures should

be 0.75T, and 6.75Tc . For nitrogen, these would be 94.5 K and 850 K, compared
with the (extrapolated) experimental values of about 103 K and 623 K.

Although equations (22.10) and (22.11) yield results that are not exact, they
are, nevertheless, useful when direct measurements have not been made; they
provide an indication of the range within which cooling of a given gas by the Joule-

Thomson effect is possible. Such, information would be of value in connection

with the liquefaction of the particular gas.

"Porter, PhilSMag., 11, 554 (1906); 19, 888 (1910).
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EXERCISES

1. Give the complete derivation of equation (20.7).

2. Give the complete derivation of equation (20.20), and show that the heat
content of a gas which satisfies the equation PV RT at all temperatures and
pressures is independent of pressure.

3. Derive an expression for S9 S for a van der Waals gas, where 8 is the

standard entropy and S is the experimental entropy at 1 atm. at the same tem-

perature, using equations (20.17) and (21.3). Calculate the value of S9 S for

nitrogen gas at 77.32 K (cf. problem in 20c).
4. By means of the expression based on the Berthelot equation, determine the

correction for the deviation from ideal behavior of the entropy of chlorine gas
measured at its boiling point (239.0 K) at 1 atm.

5. Determine the increase in entropy of nitrogen gas when it is heated from
27 C to 1227 C at 1 atm. pressure. (Use CP data in Table II.)

6. The heat capacity of solid iodine at any temperature t C, from 25 C to

the melting point (113.6 C), at 1 atm. pressure, is given by

CP = 13.07 + 3.21 X 10~4
(*
-

25) cal. deg.~
l mole-1

[Frederick and Hildebrand, /. Am. Chem. Soc., 60, 1436 (1938)]. The heat of

fusion at the melting point is 3,740 cal. mole""1
. The heat capacity of the liquid

is approximately constant at 19.5 cal. deg.~
l mole"1

, and the heat of vaporization
at the normal boiling point (184 C) is 6,100 cai. mole"1

. Determine the increase

of entropy accompanying the change of 1 mole of iodine from solid at 25 C to

vapor at 184 C, at 1 atm. pressure.
7. Taking CP for ice and water as 9.0 and 18.0 cai. deg.~

l mole"1
, respectively,

and the heat of fusion as 79.8 cal. g."
1 at C, determine the change of entropy

accompanying the spontaneous solidification of supercooled water at 10 C at

1 atm. pressure (cf. Exercise 7, Chapter VII).
8. Show that, in general, for any thermodynamic change in state, the corre-

sponding entropy change is given by

Suggest a method for determining AS for a gas.

9. Show that by the use of the compressibility factor K, defined by PV = xRT,
it is possible to express equation (20.16) in the reduced form applicable to any gas.
Describe the construction of a generalized chart for determining the (approximate)

change of entropy of any gas with pressure at constant temperature.
10. Derive an expression for H2 H\ for a van der Waals gas, where H\ and

#1 are the heat contents at pressures P\ and P*, respectively, at the same tempera-
ture, using equation (20.21) and the results in 21a. Calculate the difference in

the heat content, in cal. per mole of oxygen, at 1 atm. and 100 atm. at 25 C.

11. By means of Fig. 14 estimate the change of heat content, in cal., accom-

panying the compression of 1 mole of ethane at 50 C from 30 atm. to 300 atm.

pressure. What other information would be required to calculate the change of

heat content if the temperature were changed, as well as the pressure?
12. Utilize Fig. 14 to determine the change in A// for the reaction )Nt(0)

+ $Hj(0) NHi(0) as a result of increasing the pressure from a low value,

virtually zero, to 200 atm. at 450 K.
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13. Estimate the difference between A# for the reaction H 2(0) + iO 2(0)
= H 2O(0) for the actual gases each at 1 atm. and 25 C, and the value that would
be expected if the gases behaved ideally.

14. The coefficient of cubical expansion a of sodium at 20 C is 21.3 X 10" 6

deg."
1 and the compressibility coefficient is 15.6 X 10~6 megabar"1

(1 megabar
= 106 bar = 106 dynes cm."1) ;

the density is 0.97 g. cc."1 [Eastman, et al., J. Am.
Chem. Soc., 46, 1184 (1924)]. Calculate CP Cv per g. atom of solid sodium at

20 C, and determine Cp at this temperature by using the Debye heat capacity

equation.
15. Show that equation (21.5) can be derived directly from the simplified

van der Waals equation applicable at moderate pressures (Exercise 7, Chapter II).

16. Verify equation (21.6).

17. Give the complete derivation of equation (21.18).

18. The simplified form of the van der Waals equation (Exercise 7, Chapter II)
can also be written as PF = RT -f AP t

where A is a function of the temperature.
Show that under these conditions (dC/>/dP)r = T(d^

LA/dTi)p and hence derive

an expression for CP CP in terms of the van der Waals constants.

19. By means of equation (21.4), derive an expression for the pressure at

which Cp Cv for a van der Waals gas has a maximum value at any given tem-

perature. Determine the pressure at which Cp Cv is a maximum for nitrogen

gas at 25 C. What is the value of CP Cv at this pressure? (The experimental

pressure is about 300 atm. and CP Cv is then approximately 4 cal. deg.""
1 mole"1

.)

20. Utilize equation (21.13) to find the pressure at which CP is a maximum for

a van der Waals gas. Why is this identical with the pressure at which Cp Cv
is a maximum? If CP for nitrogen is 6.96 cal. deg."

1 mole"1
, calculate the maxi-

mum value of Cp/Cv for this gas at 25 C, making use of the result obtained in

the preceding exercise.

21. Prove Reech's theorem, that for any homogeneous system,

Cp/Cv - (dP/dV) s/(dP/dV) T .

Show that this is essentially the basis of the Clement and Desormes method for

determining 7 for gases [equation (10.11)].
22. By means of equation (21.8) explain how a generalized (reduced) chart for

Cp Cv could be constructed.

23. Calculate the Joule-Thomson coefficient of carbon monoxide at 25 C and
400 atm. pressure, given that (T/V)(dV/dT)P is 0.984, the molar volume is 76.25
cc. mole"1 and Cp is 8.91 cal. deg."

1 mole"1 [Deming and Shupe, Phys. Rev., 38,
2245 (1931)].

24. Determine the value of the Joule-Thomson coefficient for the conditions
in the preceding exercise, assuming the carbon monoxide to behave as a van der
Waals gas.

25. By using equation (22.2) in conjunction with the compressibility factor

(K), derive a simple condition for the Joule-Thomson inversion temperature of a

gas at any (reduced) pressure in terms of the variation of K with the (reduced)
temperature.



CHAPTER IX

ENTROPY: DETERMINATION AND SIGNIFICANCE

23. THE THIRD LAW OP THERMODYNAMICS

23a. Entropy at the Absolute Zero. It was seen in 20a that the entropy
of any substance at the temperature T, and a given pressure, could be ex-

pressed by means of the relationship fcf. equation (20.8)]

, (23.1)
t/

where So is the hypothetical entropy at the absolute zero. If the value of

So were known it would be possible to derive the entropy at any required

temperature from heat capacity data. Following the development of the

"heat theorem" of W. Nernst (1906), now chiefly of historical interest, M.
Planck (1912) made a suggestion concerning the value of SQ which has be-

come known as the third law of thermodynamics. The first and second laws

have led to the development of the concepts of energy content and entropy,

respectively. The so-called third law differs, however, from these in the

respect that it leads to no new concepts; it merely places a limitation upon
the value of the entropy. For this reason, some writers hesitate to refer to

it as a law of thermodynamics. Nevertheless, it is a generalization which
leads to conclusions in agreement with experience, and hence is a "law" in

the scientific sense of the term. In its broadest form the law may be stated

as follows : Every substance has a finite positive entropy ,
but at the absolute zero

of temperature the entropy may become zero, and does so become in the case of a

perfectly crystalline substance. The exact significance of a "perfectly crystal-
line substance" will be more clearly understood later ( 24m), but for the

present it should be taken to represent substances in the pure solid state, to

the exclusion of solid solutions and amorphous substances, such as glasses.
1

23b. Experimental Determination of Entropy. According to the third

law of thermodynamics the entropy of a pure solid may be taken as zero at

0K; hence SQ in equation (23.1) is zero for a pure solid substance. The
problem of evaluating the entropy of such a solid therefore resolves itself

into the determination of the heat capacity at a series of temperatures right
down to the absolute zero. The values of Cp/T are then plotted against T,
or Cp is plotted against In T, i.e., 2.303 log T, for the whole range of tempera-

1 Lewis and Gibeon, J. Am. Chem. Soc., 39, 2554 (1917); 42, 1529 (1920); Gibson, Parks
and Latimer, ibid., 42, 1533, 1542 (1920); Gibson and Giauque, ibid., 45, 93 (1923); Pauling
and Tolman, ibid,, 47, 2148 (1925); Eastman, Chem. Rev., 18, 257 (1936); Eastman and

Milner, /. Chem Fhys. t 1, 445 (1933); see also, Cross and Eckstrom, ibid., 10, 287 (1942).
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ture; since S is zero, the area under the curve from K to any temperature
T then gives the entropy of the solid at this temperature, and at the constant

pressure, e.g., 1 atm., at which the heat capacities were measured. Since

the heat capacity determinations cannot be made right down to the absolute

zero, the observations are carried to as low a temperature as possible, e.g.,

10 or 15 K; the results are then extrapolated to K. In many cases the

data can be represented by a Debye function ( 17c) and the characteristic

temperature 6 can be calculated; the values of Cv down to K can then be
obtained by equation (17.4) which is applicable at low temperatures. It

will be noted that the Debye equation gives Cv whereas Cp is required for

the evaluation of the entropy by equation (23.1). However, the difference

between these two quantities is so small at temperatures from to 10 or

15 K as to be quite negligible. This may be seen from equation (21.1), for

example, since both T and (dV/dT)p9 as will be shown below ( 23d), ap-

proach zero as the temperature becomes smaller. All the information is now
available for the determination of the entropy of the solid at any temperature
up to which the heat capacity is known.

If the solid undergoes a polymorphic change (or changes), as is frequently
the case, the heat capacity curve for the solid will consist of two (or more)

portions, one for each crystalline form. In cases of this type the entropy
of transition AH t/Tt)

where AH t is the molar heat of transition and T t is the
transition temperature ( 19h), must be included in the entropy calculations.

TABLE XV.* ENTROPIES OF SOLIDS AND LIQUIDS IN THEIR STANDARD STATES AT
25 C IN CALORIES PER DEGREE PER G. ATOM (OR PER MOLE)

Elements Compounds
C (diamond) 0.58 Fe(s) 6.5 NaF 13.1 AgCl(s) 23.0

C (graphite) 1.36 Zn(s) 9.95 NaCi(s) 17.3 Agl() 27.6

Na(s) 12.2 Br2 (/) 36.7 NaBr(s) 20.1 Hg2Cl 2 (s) 47.0

Mg() 7.77 Ag(s) 10.2 KCl(s) 19.8 PbCl2 (s) 32.6

Al 6.75 I 2 (s) 27.9 KBr(s) 22.6 MgO(s) 6.55

K() 15.2 Hg(f) 18.5 KI(s) 24.1 Al2O(s) 12.5

Cu(s) 7.97 Pb(s) 15.5 H 2O(0 16.75 ZnO(s) 10.4

* For further data, see Table 5 at end of book.

If the substance whose entropy is to be determined is a liquid at ordinary

temperatures, it is first necessary to make measurements on the solid form

up to its melting point; the entropy of the solid at this temperature is then
obtained by the procedure described above. To obtain the entropy of the

liquid at the melting point it is necessary to add the entropy of fusion, which
is equal to A/f//Tm, where AH/ is the molar heat of fusion and Tm is the

melting point. The entropy of the liquid at any higher temperature may
now be obtained by plotting Cp/T against T, or Cp against In T, for the

liquid; the area under the curve between the melting point and any par-
ticular temperature, up to the boiling point, then gives the corresponding

entropy increase which must be added to the value at the melting point.
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Some actual experimental data will be quoted below (sec Table XVI),
but for the present sufficient indication has been given of the procedure used

for determining the entropies of substances which are solid or liquid at ordi-

nary temperatures. For such substances the standard states are the pure
solid or pure liquid at 1 atm. pressure (cf. 12e), and the standard entropies,

per g. atom (for elements) or per mole (for compounds), at 25 C, derived

from heat capacity measurements are recorded in Table XV.2 As stated

earlier ( 19h), entropies are usually expressed in terms of calories per degree,
and the quantity 1 cal. deg.~

!

, the temperature being on the usual absolute

scale, in terms of the centigrade degree, is often referred to as an entropy unit

and abbreviated to E.U.

23c. Entropies of Gases. For substances which are normally gaseous,
it is necessary to follow the procedure outlined above for the solid and the

liquid states up to the boiling point of the latter. The entropy of vaporizer-
tion A//V/T&, where AHV is the heat of vaporization and T* is the boiling

point, at 1 atm. pressure, is then added to the entropy of the liquid to give
that of the gas at the normal boiling point. The method may be illustrated

by the experimental results obtained for nitrogen. The Debye character-

istic temperature 6 was found to be 68 from low temperature heat capacity

TABLE XVI. THE ENTROPY OP NITROGEN GAS AT ITS BOILING POINT

Process E.U. mole"1

to 10 K from Debye equation 0.458
10 to 35.61 K (transition point) by graphical integration 6.034

Transition, 54.71 cal. mole-V35.61 1.536

35.61 to 63.14 K (melting point) by graphical integration 5.589

Fusion, 172.3 cal. mole"1
/63. 14 2.729

63.14 to 77.32 K (boiling point) by graphical integration 2.728

Vaporization, 1332.9 cal. mole-V77.32 17.239

Total 36.31

measurements on solid nitrogen, and this was utilized to determine the en-

tropy of the latter at 10 K. At 35.61 K the solid undergoes a change of

crystalline form, the heat of transition being 54.71 cal. mole""1
;
the entropy

of transition is thus 54.71/35.61, i.e., 1.536 E.U. mole""1
. The melting point

of the higher temperature crystalline form of nitrogen is 63.14 K, and the
heat of fusion is 172.3 cal. mole"1

, giving an entropy of fusion of 172.3/63.14,

i.e., 2.729 E.U. mole""1
. The boiling point of liquid nitrogen is 77.32 K, and

the heat of vaporization is 1,332.9 cal. mole""1
,
so that the entropy of vapor-

ization is 1,332.9/77.32, i.e., 17.239 E.U. mole-*1
. These values for the en-

tropies of the phase changes are added to the entropy contributions of the

two solid states and the liquid obtained by graphical integration of the ex-

perimental Cp/T values against T in the usual manner. The complete

2 For entropies of inorganic substances, see Kelley, U. S. Bur. Mines Bull., 394 (1936),
434 (1941), also 350 (1932); W. M. Latimer, "The Oxidation States of the Elements, etc.,"

1938; for organic substances, see G. S. Parks and H. M. Huffman, "The Free Energies of

Some Organic Compounds/' 1932, and numerous papers in the J. Am. Chem. Soc., etc.
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results are recorded in Table XVI 8
;
it is seen that the entropy of gaseous

nitrogen at its boiling point at 1 atm. pressure is 36.31 B.U. mole-1
.

If precise heat capacity data were available for the gas, it would be

possible to evaluate the increase in entropy between the boiling point and
the standard temperature, e.g., 298.16 K, in the usual manner ( 20a) by
graphical integration over this temperature range. If TI is the normal boil-

ing point and T* represents the standard temperature, the contribution of

the gaseous state to the total entropy, at constant (atmospheric) pressure,
is given by equation (20.9), viz.,

Si - Si = r*^ dT =
f

f2

Cpd in T - t23 -2)
jTl i j Tl

However, sufficiently accurate measurements of gaseous heat capacities down
to the boiling point have usually not been made, and so the entropy con-

tribution of the gaseous state, assuming ideal behavior, is derived from heat

capacities obtained from partition functions as described in Chapter VI.

If the heat capacity can be expressed as a function of the temperature over
the required range, the entropy change can be derived analytically, as

described in 20a.

For reasons which will become clear later, it is the practice to record

the entropy of a gaseous substance in terms of an ideal gas at 1 atm. pressure;
this is the standard state of the gas. The correction to be applied to the
observed entropy at 1 atm. pressure to give the value for an ideal gas at the
same pressure was calculated in 20c. As seen in that section, the correc-

tion for nitrogen gas at its boiling point was found to be 0.217 cal. deg.~
L

mole""1
. Addition of this quantity to the observed entropy, i.e., 36.31 E.U.,

gives 36.53 E.TJ. mole"1 for the standard entropy of nitrogen gas at its boiling

point. The additional entropy of nitrogen, as an ideal gas, from the boiling

point to 298. 16 K, i.e., 25 C, at 1 atm. pressure is found by statistical

methods to be 9.36 E.U., so that the standard entropy of nitrogen gas at

298.16 K is 36.53 + 9.36, i.e., 45.89 E.U. mole-1
.

The standard entropy values of a number of gases will be given later,

after the calculation of entropies by statistical methods, using partition

functions, has been described.

23d. Tests of the Third Law of Thermodynamics. The ultimate test of

the postulate that the entropy of a perfect solid is zero at K is that it

leads to entropy values, such as those in Table XV, which, when combined
with other data, such as heats of reaction, yield results, particularly equi-
librium constants, which are in agreement with experiment. This aspect
of the subject will be taken up later in the book (Chapter XIII). In the

meantime other verifications of the third law of thermodynamics will be
mentioned. One important fact is that entropies calculated on the basis

of the third law, in the manner described above, are usually in complete
agreement with those derived from statistical considerations. A few ap-

* Giauque and Clayton, /. Am. Chem. Soc., 55, 4875 (1933).
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parent discrepancies have been observed, but these are readily explained

by the "imperfect" nature of the solid ( 24m).
An interesting test of the third law is possible when a solid is capable of

existing in two or more modifications, i.e., enantiotropic forms, with a
definite transition point. The entropy of the high temperature form (a)

at some temperature above the transition point may, in some cases, be
obtained in two independent ways. First, heat capacity measurements can
be made on the form (ft) stable below the transition point, and the entropy
at this temperature may then be determined in the usual manner. To this

is then added the entropy of transition, thus giving the entropy of the o-form
at the transition point (cf. first three lines of Table XVI). The entropy
contribution of the a-form from the transition temperature to the chosen

temperature is then obtained from heat capacity measurements on the

o-form. The second procedure is to cool the o-form rapidly below the

transition point so that it remains in a metastable state. Its heat capacity
can then be determined from very low temperatures up to temperatures
above the normal transition point, and the entropy of the a-form is then

obtained directly from these data. Measurements of this kind have been
made with a number of substances, e.g., sulfur, tin, cyclohexanol and phos-

phine, and the entropies obtained by the two methods have been found to

be in close agreement.
4

The results with phosphine are particularly striking, for this substance

exists in a high temperature (a) form, with two low temperature modifica-

tions (ft and 7), both of which change into the a-form at the transition points
of 49.43 and 30.29 K, respectively. The entropy of the a-form at 49.43 K
has been obtained in two ways based on the third law of thermodynamics, a

summary of the results being given in Table XVII. 6 In the first method (I),

TABLE XVH. THE ENTROPY OF SOLID PEtoSPHINE AT 49.43 K

I E.U. mole""1 II E.U. mole~l

to 15 K, 0-form (Debye) 0.338 to 15 K, -y-form (Debye) 0.495

15 to 49.43 K (graphical) 4.041 15 to 30.29 K (graphical) 2.185

Transition ft
-* a at 49.43 K 3.757 Transition 7 -* a at 30.29 K 0.647

30.29 to 49.43 K (graphical) 4.800
Total 8.136

Total 8.127

heat capacity measurements were made on the -form up to the ft
> a

transition point (49.43 K) ; to the entropy obtained from these results was
then added the entropy of the transition to the a-form, thus giving the

entropy of the latter at 49.43 K. In the second method (II), measure-
ments were made on the 7-form up to the y a transition point (30.29 K);
to this was added the entropy of the transition, so as to give the entropy of

the -form at 30.29 K. The increase of entropy of the latter from 30.29

'Keltey, J. Am. Chem. Soc., 51, 1400 (1929); Eastman and McGavock, ibid., SO, 145

(1937); Stephenaon and Giauque, J. Chem. Phya., 5, 149 (1937).
1
Stephcnson and Giauque, ref. 4.
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to 49.43 K was then derived, in the usual manner, from heat capacity
measurements on the <*-form in this temperature range. It is evident from
the data in Table XVII that the agreement between the entropies obtained

by the two methods is excellent. Strictly speaking, this agreement proves
only that the two crystalline modifications (|8 and 7) of the solid have the
same entropy at K. The value is not necessarily zero, as assumed in

Table XVII, but in view of the fact that similar behavior has been observed
with a variety of substances, both elements and compounds, it is probable
that the entropy of each solid is actually zero at K.

According to the third law of thermodynamics, the entropy of a perfect
crystal should be zero at K at all pressures; hence, it follows that

=o
dPr-,

By equation (20.15), (dS/dP) T is equal to - (dV/dT)P, and consequently

(for T = 0),
S).

-
p

so that the rate of expansion of a solid with temperature should become
zero at K. Experimental observations have shown that the values of

(dV/dT)p for a number of solids, e.g., copper, silver, aluminum, diamond,
sodium chloride, silica, calcium fluoride and iron disulfide, do, in fact, ap-
proach zero as the temperature is lowered. 6

Incidentally, this provides the

justification for the statement made earlier ( 23b) that the difference be-
tween values of Cp and CV for a solid becomes negligible at low tempera-
tures. It should be pointed out that what has been proved above is that

(dS/dP)r approaches zero at the absolute zero; in other words, the entropy
of a solid becomes independent of the pressure. This does not prove that
the entropy is actually zero, but it is probable that such is the case.

24. STATISTICAL TREATMENT OF ENTROPY

24a. Entropy and Probability. It was seen in 19k that a correlation
was possible between the entropy of a system and the extent of order or
disorder. An analogous relationship, which permits of quantitative de-

velopment, will now be considered between the entropy and the "prob-
ability" of a system. Suppose, as in the experiments of Gay-Lussac and
Joule ( 9d), there are two similar globes, separated by a stopcock; one globe
contains a gas, whereas the other is evacuated. If the stopcock is opened,
then, according to the second law of thermodynamics, there is a very strong
probability, amounting almost to a certainty, that provided there are present
a large number of molecules, the gas will distribute itself uniformly through
the globes. Some light may be shed on this matter by means of the theory
of probability. Suppose that the whole system consists of a single molecule

Buffington and Latimer, J. Am. Chem. Soc. t 48, 2305 (1926).
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only; there is an equal probability that it will be found in either of the two

globes, assuming them to have equal volumes. The probability that the

molecule will be found in one particular globe at any instant is thus $; that

is to say, there is one chance in two of this condition being realized. If there

are two similar molecules in the system, it can be readily shown that there

is one chance in four that both will be in a given globe at the same time;

thus, the probability of this distribution is \ or () 2
. In general, for a sys-

tem containingN molecules the probability that all the molecules will remain

in the original globe is (i)
y

. For a globe having a volume of one liter the

value of N is about 1022 at ordinary temperature and pressure; even at such

low pressures as 10~6
atm., it would still be of the order of 1016

. The prob-

ability that the molecules will remain in the original globe after the stopcock
is opened is thus extremely small. This is also the probability that the

molecules will return spontaneously to the one globe after having been
distributed uniformly throughout the two globes.

Of course, the foregoing calculations deal with an extreme case of non-

uniform distribution. Nevertheless, it is possible to show by means of the

theory of probability that the chances of any appreciable spontaneous
fluctuation from a uniform distribution of the gas throughout the whole
available space is so extremely small that it is unlikely to be observed in

millions of years, provided the system contains an appreciable number of

molecules. It is possible to state, therefore, that the probability of the

virtually uniform distribution of a considerable number of molecules in the

space available is very large.

To sum up the situation, it may be concluded that the probability that

all the molecules of a gas will remain in one part of the space available to

them is extremely small under ordinary conditions. On the other hand,
the probability of a virtually uniform distribution of the gas is large. The
spontaneous process in which a gas, at constant temperature, fills uniformly
the whole of the available volume is thus associated with a large increase in

the probability of the system. In general, all spontaneous processes repre-
sent changes from a less probable to a more probable state, and since such proc-
esses are accompanied by an increase of entropy, it is to be expected that

there may be a connection between the entropy of a system in a given state

and the probability of that state.

24b. The Boltzmann-Planck Equation. If 5 is the entropy and W is the

probability of a particular state, then it should be possible to represent S
as a function of W, i.e., S = f(W). To ascertain the nature of this function,
consider two systems having entropies SA and SB, and probabilities WA
and WB> respectively. If the systems are combined the probability of the

resulting system is the product WA X WB, whereas the entropy, being
additive ( 19b), is the sum SA + SB ; hence,

SAB - SA + SB f(WA X WB).

Since SA is equal tof(WA) and SB \&f(WB), it follows that

f(WA) +f(W*) -f(WA X
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To satisfy this condition it is obvious that the function must be logarithmic,
so that it is possible to write

S = k In W + constant, (24.1)

where k is a constant which must have the same dimensions as entropy,
i.e., energy (heat) X deg.""

1
. It will be seen shortly that k is, in fact, the

Boltzmann constant, that is, the gas constant per single molecule, equal
to R/N, where N is the Avogadro number. The value of the constant term
in equation (24.1) is not obvious, but the considerations presented by L.

Boltzmann (1890) and M. Planck (1912) have shown that it may be taken
as zero, so that the Boltzmann-Planck equation takes the form

S - k In W. (24.2)

There is no complete proof of this expression, and consequently it is to be

regarded as being in the nature of a reasonable postulate relating the entropy
of a system to its probability.

24c. Significance of Thermodynamic Probability. The problem that

now arises is that of ascribing a precise significance to the "probability of a

system in a given state," so that its value may be determined. This

quantity, sometimes called the "thermodynamic probability," may be de-

fined as the total number of different ways in which the given system, in the

specified thermodynamic state, may be realized.* The complete calculation of

this probability can be carried out by the methods of statistical mechanics,
to be described shortly, but in the meantime some general aspects of the

subject will be considered. In a system consisting of a perfect solid at the

absolute zero, all the molecules are in their lowest energy state, and they are

arranged in a definite manner in the crystal. It would appear, therefore,
that under such conditions there is only one way in which the system may
be realized; thus IF is unity, and hence by equation (24.2) the entropy should

be zero. This conclusion is in agreement with the third law of thermo-

dynamics. It will be seen later that there are certain solids in which the

molecules may be arranged in different ways in the crystal in the vicinity
of the absolute zero. Such solids are not perfect crystals in the sense of the

third law of thermodynamics, and their entropies are not zero at K.
Similar considerations apply to solid solutions and to glasses.

24d. Entropy of Expansion of Ideal Gas. A simple application of equation
(24.2) in connection with the interpretation of thermodynamic probability, is to

calculate the entropy of isothermal expansion of an ideal gas. For such a gas the

energy content, at constant temperature, is independent of the volume, and so the

thermodynamic probability of the system is determined by the number of ways,
consistent with the given energy, in which the molecules can occur in the volume

occupied by the gas.
Consider a single molecule contained in a vessel which can be divided into two

equal parts by means of a shutter. If at any instant the shutter is closed, the

* It may be noted that "thermodynamic probability" is not a probability in the ordinary

i, but is proportional to the latter.
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chances of the molecule being present in one part is one-half that of it being in the

whole vessel. In general, the probability of a single molecule being found in any
volume is proportional to that volume, at constant temperature and energy. If a
is the thermodynamic probability, i.e., the number of ways in which a single mole-
cule can occur, in unit volume, the probability for a volume V is then aV. Since

the same probability is applicable to any one of the N molecules present in the

given volume, the total probability of, or the number of ways of realizing, the

system is (aV)
N

.

Suppose an isothermal expansion is carried out in which the volume of the

ideal gas is changed from V\ to F 2 . If the corresponding entropies are Si and $ 2 ,

and the probabilities are W\ and W*, it follows from equation (24,2) that the

entropy change accompanying the process is given by

For the isothermal expansion of the ideal gas the probabilities are seen to be pro-

portional to VN 9
so that

OS 2
-

Si)r = A: 1

\

V= &ATln
"

(24.3)

If the system consists of 1 mole of gas, AT is the Avogadro number, and, assuming
A; to be the Boitzmann constant, as indicated above, it follows from equation
(24.3) that

for the isothermal volume change of an ideal gas. This result is seen to be
identical with equation (19.26). The identification of k in equation (24.2) with

the gas constant per single molecule, and the general form of the Boitzmann-Planck

equation can thus be justified.

24e. Statistical Mechanics. The evaluation of the total probability of

a system can be carried out by the methods of statistical mechanics. The
details of the arguments are somewhat involved, but it is sufficient to present
them in general outline here. 7 The state of any single molecule can be

completely described by specifying the values of / positional coordinates

and / momenta, where / is the number of "degrees of freedom" of the mole-

cule, equal to three times the number of atoms it contains. If a hypothetical

space, known as phase space, having 2/ axes could be imagined, the exact

state of the molecule could be represented by a point in this imaginary phase
space. For all molecules with external and internal configurations and

energies which are virtually equal, within certain very narrow limits, the

representative points will be found within a particular small volume, called

a unit cell, in the phase space. By specifying the numbers of molecules

7 For further discussion, see R. C. Tolman, "The Principles of Statistical Mechanics/'
1038; R. II. Fowler and E. A. Guggenheim, "Statistical Thermodynamics/' 1939; J. E.

Mayer and G. M. Mayor, "Statistical Mechanics/' 1940; S. Glasstone, "Theoretical

Chemistry/' 1944.
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whose representative points are to be found in the different unit cells in the

phase space, the condition of every molecule in the system is defined. This
determines the macroscopic state of the system, as indicated by its ob-

servable properties, such as pressure, energy, etc.

For a system of identical molecules, an exchange of molecules between
different unit cells will not affect the macroscopic state, i.e., the observable

properties, of the system. Each distribution of the molecules among the

permissible unit cells corresponding to the same macroscopic state of the

system is known as a microscopic state. The total number of microscopic
states then represents the number of different ways in which the given system can
be realized, and this is its thermodynamic probability, in the sense defined

above. If the different possible cells are indicated by the numerals 1,

2, . . .
,
i
t

. . .
,
the numbers of representative points in each of these cells are

Ni 9 Nt, . . .
, Nit

. . .
, their sum being equal to N, the total number of mole-

cules in the system. In classical statistics, the molecules, although identical,

are treated as distinguishable, and so the total number of microscopic states,

which is equal to the probability of the system, is given by the number of

possible ways of arranging a total of N distinguishable articles in a number
of groups, so that there are Ni in the first, N% in the second, and so on, with,
in general, Ni in the ith group. The evaluation of the number of ways of

realizing this arrangement is a relatively simple mathematical problem; the
result is

W =- -- (24 4)
NilNtl ... Nil ...

^ }

The development of quantum statistics has shown that this expression

requires modification in two respects. The first arises because there are

frequently a number of states whose energies are so close together that they
behave classically as a single state. However, when determining the total

number of ways a particular state can be realized, this multiplicity must
be taken into account. Thus, to each energy level, or unit cell, there must
be ascribed a statistical weight, as stated in 16b. If g* is, in general, the

statistical weight corresponding to the ith cell, there will be a choice of

states for each of the Ni molecules, for every possible arrangement of the
other molecules in this cell; the number of different microscopic states in the
cell is thus increased by a factor of g^\ Applying this correction to each
of the cells, equation (24.4) for the probability becomes

The second change necessary in equation (24.4) is due to the fact that
the classical concept of distinguishability of the molecules is found to be
inconsistent with quantum mechanics. In order to correct for this, it is

necessary to divide equation (24.5) by N\, so that the result is

IF-gt.JSt
1

. ..!... (246)
Nil N*l Nil

^ }
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This expression may be regarded as a consequence of the classical treat-

ment modified by the requirements of quantum statistics. However, two
different forms of quantum statistics, namely the Bose-Einstein statistics,

which are applicable to photons and to atoms and molecules containing an
even number of elementary particles, i.e., electrons, protons and neutrons,
and the Fermi-Dirac statistics, which apply to electrons and to atoms and
molecules containing an odd number of elementary particles, have been

developed. These give somewhat different results for the total number of

ways in which a given state can be realized, but it is important to note that

at all temperatures and pressures of chemical interest the final expressions

may be reduced to a form equivalent to equation (24.6). The value of W
given by the latter may thus be taken as representing the probability of a

given state of a system of N molecules.

24f. Statistical Calculation of Entropy. Since the evaluation of the en-

tropy by equation (24.2) requires a knowledge of In W, this quantity will

now be considered. Upon taking logarithms of equation (24.6), the result is

In W = (N l }ng l + Ntlng*+ +Ni \ng i + )

(24.7)

If the system consists of a very large number of molecules, as is the case

under normal conditions, the various numbers Ni, JV2,
. . .

, A^, . . .
,
are also

very large. It is then possible to make use of the Stirling approximation
for the factorials of large numbers; thus,

In AM * NiluNt - Ni

In AM = NtlnN* - N 2

In AM = N, In Ni -
.V,

Upon adding these quantities, and recalling that Ni + AT* H-----h Ni, -\
----

is equal to the total number N of the molecules in the system, it is seen that

AT,
- AT.

This expression may be substituted in equation (24.7), so that

in w = EAT, in gi
- EAT, in AT, + AT. (24.8)

It was seen in 16b that in an ideal gas the number of molecules AT,

possessing energy 4 at the temperature T was given by equation (16.5) as

T
, (24.9)*

*
It is of interest to note that this equation can itaelf be derived from equations (24.4),

(24.5) or (24.6), BO that the treatment does not involve any arguments other than those

developed here and in the preceding section.
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where Q is the partition function of the given molecular species. If this

result is inserted for the second Ni in the term Ni In N^ the latter becomes

*T 1 fff /

i
= Ni;

In I gitr**
1

\Q
\r i_ V \r i^ _

and by combining this result with equation (24.8) it is seen that

.

The summation # t < is given by equation (16.6); thus,

#*i = AToto -I- N*i+~-+N<u+~ = E -

and hence, utilizing equation (16.8),

-
-go alnQ\

\ dT )fcr fcT kT v

It follows, therefore, that

The value for In W from equation (24.10) may be substituted in the

Boltzmann-Planck equation, so that the general expression for the entropy
of an ideal gaseous system is found to be

S-kl*W = kNlnQ + RT(?-^} +kN.,(dlnQ\
\ *T A

If N is the Avogadro number, kN is equal to the molar gas constant R, and
then S is the molar entropy; hence,

S - Bin + r + R. (24.11)

For certain later purposes, it is convenient to write this equation in a some-
what different form by utilizing the Stirling approximation

ln#! = NluN - N,
so that

fcln#! - kNlnN - kN
= R In N - R.

Since

R In % - R In Q - fl In N,N
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it can be readily shown that equation (24.11) becomes

It is seen from the foregoing results, e.g., equations (24.11) and (24.12),

that by combining statistical mechanics with the Boltzmann-Planck equa-
tion it is possible to derive a relationship between the molar entropy of any
gas, assuming it to behave ideally, and the partition function of the given

species. Since the partition function and its temperature coefficient may
be regarded as known, from the discussion in Chapter VI, the problem of

calculating entropies may be regarded as solved, in principle. In order to

illustrate the procedure a number of cases will be considered.

24g. Entropy of Monatomic Molecules : The Sackur-Tetrode Equation.
A monatomic molecule has no vibrational or rotational energy, and so the

only contributions to the partition functions are those for translational

energy and for possible electronic states. The translational partition func-

tion is given by equation (16.16), and if the electronic factor is Q t
it follows

that for a monatomic gas

where V is the volume occupied. Assuming Qe to be independent of tem-

perature, as will be the case for the majority of substances at not too high

temperature ( 16f), then

and hence the molar entropy of an ideal monatomic gas is given by equation
(24.11) as

S - R In & (2T fc)3/2 V + f/?, (24.13)

where V is now the molar volume. Since the gas is ideal, V may be replaced

by RT/P, so that another form of equation (24.13) is

Sr> i I s\ \ ** n "if <* J ***= K

These are alternative expressions of what is known as the Sackur-Tetrode

equation, derived in a somewhat different manner by O. Sackur (1911-13)
and H. Tetrode (1912).

8

If the universal constants R, IT, k, h and N are separated from m, T,
P and Q, which are characteristic of the system, equation (24.14) becomes

S - [i In m + | In T - In P + In Q. + In R(2*k/h?)*'*/N + f].

Sackur, Ann. Physik, 40, 67 (1013); Tetrode, ibid., 38, 434 (1912); 39, 266 (1913);

Stem, Physik. Z. t 14, 629 (1913).
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The treatment of units is here the same as that employed in connection with
the translational partition function in the problem in 16e; m, k and h are
in c.g.s. units, and if P is in atm., R in the In R term should conveniently
be in cc.-atm. deg.-

1 mole"1
. The actual weight m of the molecule may be

replaced by M/N, where M is the ordinary molecular weight. Making
these substitutions and converting the logarithms, it is found that

S = 2.303/2(2 logM + log T -
log P + log Q9

-
0.5055), (24.15)

for the molar entropy, where P is the pressure in atm. It is of interest to

compare equation (24.15) with (19.22), derived earlier for an ideal gas; since

CP for an ideal gas is equal to fR these two expressions are identical in form,
the constant s'Q ,

which cannot be derived from purely thermodynamic con-

siderations, involving the molecular weight of the gas, its electronic multi-

plicity and a numerical constant.

If the pressure P in equation (24.15) is taken as 1 atm., the entropy is

that of the particular substance behaving as an ideal gas at this pressure,
and hence represents the standard entropy SQ

(20c). By taking R as

1.987 cal. deg.""
1 mole"1

, equation (24.15) then gives the standard molar

entropy of the gas in these same units; thus,

S = 4.576(f log M + f log T + log Q. - 0.5055), (24.16)*

in cal. deg."""
1 mole"1

, i.e., E.U. mole""1
. It is thus a very simple matter to

determine the standard entropy of a monatomic gas at reasonable tempera-
tures. It should be noted that the electronic factor Q is always included

in the expression for the entropy, but it was usually omitted from the corre-

sponding equations in Chapter VI in which the partition function was related

to the energy and the heat capacity. The reason for this is that the latter

involve (d In Q/dT)v only, and if Qe is constant, as it usually is, it makes no
contribution to the energy or heat capacity. It will be seen from equation

(24.11), however, that the entropy depends on In Q, as well as on the tem-

perature coefficient; the actual value of Qe, or rather of In Qe, must conse-

quently be included, even if it is constant.

Problem: Calculate the standard entropy of atomic chlorine at 25 C.

The atomic or molecular weight, actually the mean isotopic weight, is 35.46;
this gives the value of M; T is 298.2 K, and Q, may be taken as 4.03, as calculated

in the problem in 16f, the temperature variation being neglected. Hence, by
equation (24.16),

S = 4.576(f log 35.46 + $ log 298.2 + log 4.03 - 0.5055)
= 39.4 cal. deg.~

l
g. atom~l

.

The calculated standard entropies for a number of monatomic gases at

25 C are recorded in Table XVIII, together with the entropies obtained

*The factor 4.576, which is frequently encountered in thermodynamic calculations,
is equal to 2.303 X 1.987, where 2.303 is the factor for converting ordinary to natural

logarithms, i.e., In x 2.303 log x, and 1.987 is the value of R in cal. deg."
1 mole"1

.
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from heat capacity measurements, as described earlier in this chapter.
9 For

these particular elements the ground states are all singlet levels, so that

Qe is unity in each case.

TABLE XVIII. CALCULATED AND EXPERIMENTAL ENTROPIES OF
MONATOMIC GASES AT 25 C

Gas Calo. Exp.

Helium 30.1 E.U. mole"1 29.2 E.U. mole~l

Argon 37.0 36.4

Cadmium 40.1 40.0

Zinc 38.5 38.4

Mercury 41.8 41.3

Lead 41.9 41.8

24h. Polyatomic Molecules. Since the partition function appears only
in the form of its logarithm in the general equation (24.11) or (24.12) for

the entropy, it is permissible, as with the energy and heat capacity, to

consider the total entropy as the sum of the contributions associated with

the various forms of energy. As stated in 16d, this procedure is approxi-

mate, although very little error can be involved in the separation of the

translational contribution and also the electronic contribution if the mole-

cules are almost entirely in the ground state, e.g., at normal temperatures.
Tn this event, equation (24.14), (24.15) or (24.16) gives the sum of the trans-

lational and electronic entropies for any type of molecule, monatomic or

polyatomic.
The complete partition function of a polyatomic molecule may now

be represented by the product Qt X Q, where Q t is the translational, in-

cluding the electronic, factor, as derived above, and Q; is the combined
rotational and vibrational, i.e., internal, factor. Since In Q is then equal to

In Qt + In Qiy equation (24.12) may be written in the form

S = St + S<
=

(k
In^

The expression in the square brackets in equation (24.17), which is of the

same form as (24.12), gives the combined translational and electronic en-

tropies, and that in the parentheses is the internal contribution. The con-

dition of constant volume has been omitted, since the rotational and vibra-

tional partition functions are independent of the volume of the system (cf .

16h, 16j, etc.). It will be noted that the Nl has been included in the

translational term. As far as the final result is concerned, it is immaterial

which term contains the N !, but there are theoretical reasons, which need

not be considered here, for including it in the expression for the translational

entropy. Since k In Q? is equivalent to R In Q<, because kN is equal to R,
9
Lewis, Gibson and Latimer, J. Am. Chem. Sor., 44, 1008 (1922); Rodebush and Dixon,

ibid., 47, 1036 (1925).



241 STATISTICAL TREATMENT OF ENTROPY 193

it follows that the total rotational and vibrational contribution to the

entropy is given by

Si - 12 In Q< + RT ^. (24.18)

For accurate results, Q< should be the combined rotational and vibra-

tional partition function derived from the actual energy levels of the mole-

cule as obtained from spectroscopic measurements ( 16k). For most pur-

poses, at ordinary temperatures, very little error results from the separation

of Qi into the product of two independent factors, viz., Qr and Q, represent-

ing the rotational and vibrational partition functions, respectively. Be-

cause equation (24.18) involves Q in logarithmic terms only, it follows that

an expression of the same form can be used to give the separate rotational

and vibrational entropies. Thus, if Qi is replaced by Qr,
the result is Sr,

the rotational contribution to the entropy, and similarly the vibrational

contribution S, is obtained by using Qv for Q< in equation (24. 18) . The sum
of Sr and S derived in this manner represents S, which added to St, as given

by equation (24.14), etc., yields the total entropy.
241. The Vibrational Entropy. It was seen in 161 that the contribution

to the partition function of each mode of vibration of frequency co cm."4 is

given by a factor (1 e~*)-
l
9 where x is equal to Jicu/kT = 1.439co/r.

The vibrational entropy is represented by the appropriate form of equation

(24.18) as

and hence it is not a difficult matter to show that the contribution to the

molar entropy of each mode of vibration is

S. - -^r - In (1
-

6T-). (24.19)
e* 1

The terms in equation (24.19) can be readily obtained for any value of x,

i.e., Acw/fcr, by means of the tables of Einstein functions mentioned

earlier ( 16j).

If 3 is relatively large, as is the case at moderate temperatures for many
stable diatomic molecules, which have large vibrational frequencies, e* be-

comes very large and 6~* is very small. It is seen from equation (24. 19) that

in this event 5, is almost zero. This is true for hydrogen, deuterium,

oxygen, nitrogen, carbon monoxide and hydrogen chloride, for example, at

temperatures up to about 370 K. For these molecules, it has already been

seen ( 16j) that the vibrational contribution to the energy and heat capacity

is also negligible at such temperatures. If the vibration frequency o> is

relatively small, or the temperature fairly high, the value of S* as given by
equation (24.19) is not negligible; this is the case, for example, with chlorine

even at ordinary temperatures. Molecules containing more than two atoms

invariably have at least one vibration with a low frequency which makes an

appreciable contribution to the entropy at all reasonable temperatures.
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24j. Nuclear Spin Entropy. Before considering the contribution to the

entropy of a molecule associated with its rotational motion, it is necessary
to refer to the subject of nuclear spin and its effect on entropy. When dis-

cussing the evaluation of energies and heat capacities from the partition
function in Chapter VI, the nuclear spin was deliberately neglected. This

procedure is justified by the fact that the nuclear spin contribution to the

partition function is a constant factor, independent of temperature, except

possibly in the vicinity of the absolute zero. However, as emphasized
earlier in another connection, the expression for the entropy involves In Q
itself, in addition to its temperature coefficient, and consequently the nuclear

spin factor must be included. For each atomic nucleus having a spin

quantum number i, the contribution to the partition function is a factor

2i + 1 at all reasonable temperatures. It follows, therefore, from equation

(24.18) that the nuclear spin entropy is R In (2i + 1) for every nucleus in

the molecule. To obtain the total entropy of a molecule the appropriate
R In (2i + 1) terms must be added to the contribution of translation, vibrar

tion, rotation, etc.

Since atoms retain their nuclear spins unaltered in all processes except
those involving ortho-para conversions, there is no change in the nuclear

spin entropy. It is consequently the common practice to omit the nuclear

spin contribution, leaving what is called the practical entropy or virtual

entropy.*
It is of importance to note that, except for hydrogen and deuterium

molecules, the entropy derived from heat capacity measurements, i.e., the

thermal entropy, as it is frequently called, is equivalent to the practical

entropy; in other words, the nuclear spin contribution is not included in

the former. The reason for this is that, down to the lowest temperatures at

which measurements have been made, the nuclear spin does not affect the

experimental values of the heat capacity used in the determination of en-

tropy by the procedure based on the third law of thermodynamics ( 23b).

Presumably if heat capacities could be measured right down to the absolute

zero, a temperature would be reached at which the nuclear spin energy began
to change and thus made a contribution to the heat capacity. The en-

tropy derived from such data would presumably include the nuclear spin
contribution of R In (2i + 1) for each atom. Special circumstances arise

with molecular hydrogen and deuterium to which reference will be made
below ( 24n).

24k. The Rotational Entropy. At all temperatures above the lowest, the
rotational partition function Qr of a diatomic molecule, or of any linear

molecule, is given to a good approximation by equation (16.24), i.e.,

r
<rh*

*It may be noted, incidentally, that the practical or virtual entropy also does not
include the entropy of mixing of different isotopic forms of a given molecular species. This

quantity is virtually unchanged in a chemical reaction, and so the entropy change of the

process is unaffected by its complete omission.
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where / is the moment of inertia of the molecule and <r is its symmetry num-
ber ( 16h, 161). Insertion of this result in equation (24.18) gives the
rotational contribution to the molar entropy of a linear molecule,

& - B In 4- + R, (24.21)
(rhr

since d In Qr/dT is equal to l/T. If the recognized values are inserted for

the universal constants T, k and h, in c.g.s. units, and if R is taken as 1.987

cal. deg.~
l mole"1

, it is found, after converting the logarithms, that

Sr - 4.576(log / + log T -
log <r + 38.82) cal. deg

-1
mole,-

1
(24.22)

the moment of inertia being still in c.g.s. units., i.e., g. cm.
2

. This expression

gives the molar rotational entropy in conventional E.U. mole~l for any
diatomic or linear molecule.

Problem: Calculate the total standard entropy of nitrogen gas at 25 C, using
data in Tables VIII and IX.

Since the ground state of molecular nitrogen is a singlet level, Q is unity, and
the molecular weight M being 28.00, the combined standard translational and
electronic entropy, the latter being actually zero, is given by equation (24.16) as

o = 4.576(1 iog 28.00 + flog 298.2 - 0.5055)
= 35.9 E.U. mole~l

.

The vibrational frequency is 2360 cm."1
(Table IX), and hence x, i.e., 1.439w/T,

is 11.4. Insertion of this result into equation (24.19) gives a value for Sv that is

negligibly small. The vibrational contribution to the entropy of molecular

nitrogen at 25 C may thus be taken as zero.

The moment of inertia is 13.9 X 10"40
g. cm.2

(Table VIII), and <r is 2, since

the nitrogen molecule is symmetrical; hence, by equation (24.22),

Sr
= 4.576[log (13.9 X 10~40) + log 298.2 - log 2 + 38.82]
= 9.8 E.U. mole""1

.

The total entropy of nitrogen gas in its standard state at 25 C is thus the sum of

35.9 and 9.8 E.U., i.e., 45.7 E.U. mole*"1
,
which may be compared with the thermal,

i.e., third law, value of 45.89 E.U. mole""1
given in 23c.

For a nonlinear molecule, the rotational partition function [cf. equation

(16.34)] may be taken with sufficient accuracy as

( OT
.

' ( '

and since d In Qr/dT is \/T, it follows from equation (24.18) that

+ jR, (24.24)

where A, B and C are the moments of inertia of the molecule. Extracting
the constants and converting the logarithms, in the usual manner, it is
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found that

Sr
- 4.576(i log ABC + f log T -

log <r + 58.51), (24.25)

for the molar rotational entropy in cal. deg.-
1 mole""1

.

Problem: Calculate the rotational contribution to the molar entropy of am-
monia at 25 C.

From Table X, the three moments of inertia are 2.78 X 10~40
, 2.78 X 10"40

and 4.33 X 10^ g. cm.2
, a is 3 and T is 298.2 K, so that by equation (24.25),

Sr - 4.576[i log (2.78 X 2.78 X 4.33 X 10-") + f log 298.2 - log 3 + 58.51]
11.5 cal. deg.~

l mole"1
.

It is seen that the rotational contribution to the entropy is quite appre-
ciable, the amount increasing, in general, with the size of the molecule and
the masses of the atoms, since these cause the moments of inertia to be

relatively large.

24L Comparison of Third Law and Statistical Entropies. If the vibration fre-

quencies and moments of inertia of a molecule, which are often available from

spectroscopic measurements, are known, the standard entropy of any gaseous sub-

stance can be evaluated with a fair degree of accuracy. By the use of combined
rotational and vibrationai partition functions, derived directly from the energies
in the various levels ( 16k), more precise entropy values are obtainable. In the

great majority of cases the entropies obtained by the statistical method, based on
the Boltzmann-Planck equation, are in complete agreement with those derived

from heat capacity measurements, utilizing the third law postulate of zero entropy
for the perfect solid at K. There are a few cases, however, where some dis-

crepancy has been observed; these are carbon monoxide, nitric oxide, nitrous oxide,

hydrogen, deuterium, water and organic compounds, such as ethane, in which the

internal rotation is restricted ( 16m). The various types of discrepant behavior

will now be considered.

24m. Random Orientation in the Solid. For carbon monoxide, nitric oxide

and nitrous oxide, the thermal entropy, based on the third law of thermodynamics,
is found in each case to be about 1.1 cal. deg.""

1 mole"1 less than the value given by
the statistical method. This result suggests that the entropies of the respective
solids are not zero at K, as required by the third law, but that they are actually
about 1.1 E.TT. mole"1

. A possible explanation of this fact is to be found in the

similarity between the two ends of the respective molecules, so that the alternative

arrangements

CO OC NO ON NNO ONN

can occur in the crystal lattices. Instead of all the molecules being oriented in

one direction in the crystal, two alternative arrangements are equally probable.
The crystal is, therefore, not "perfect" in the sense required by the third law, and
hence it is not correct to take the entropy as zero at K. If the distribution of

molecules between the two possible orientations were completely random, the

probability of the state, as defined in 24c, would be two, and the entropy should
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be R in 2, i.e., 1.38 cal. deg.-
1 mole""1

, instead of zero for the perfect crystal. The
observed discrepancy of 1.1 E.U. mole""1 indicates that the arrangement of the two
alternative orientations in the solid is not completely random at the low tempera-
tures at which heat capacity measurements were made. In the three instances
under consideration, the correct entropies are those obtained from the partition

functions, for these are based on the properties of the gas, and do not involve

extrapolation, through the liquid and solid states, down to the absolute zero as is

necessary for the evaluation of thermal entropies.
Somewhat analogous considerations apply to the entropy of water vapor. The

result derived from heat capacity measurements is again lower than the statistical

value, and this can be accounted for by random orientation of the water molecules
in the solid. The situation is complicated, however, by the distribution of hydro-
gen bonds in the ice crystal, and by other factors. In this instance, also, the

crystal is not perfect, and so the entropy would not be zero at K. The statistical

value of the entropy is therefore the correct one to be used in thermodynamic
calculations.

24n. Entropy of Hydrogen and Deuterium. An entirely different phenomenon
is responsible for the discrepancy between the third law and statistical entropies
of hydrogen and deuterium. The thermal value for hydrogen is 29.64 cal. degr 1

mole""1 at 25 C and 1 atm. pressure, corrected to ideal behavior, but statistical

calculations give 33.96 cal. deg.*"
1 mole"1

, including the nuclear spin contribution.

The latter is R In (2i + I)
2
, since the molecule consists of two atoms each with a

nuclear spin i; for the hydrogen nucleus i is i, and so the nuclear spin entropy is

R In 4, i.e., 2.75 cal. deg."
1 mole""1

. If this is subtracted from 33.96 cal. deg."
1

mole"1
,
the result still differs from the thermal value. The responsible factor in

this instance is the existence of hydrogen in ortho and para states. The statistical

calculations are based on the assumption that ortho-para equilibrium is attained

at all temperatures, but this condition is not realized in the hydrogen used for heat

capacity measurements (cf. 16i).

Because solid hydrogen at low temperatures still contains the ortho and para
forms in the normal proportions of three to one, the entropy cannot become zero

at K. The actual value is equal to the entropy of mixing, as calculated in the

problem in 19j, viz., 4.39 E.U. mole"1
, x If this is added to the apparent third law

value of 29.64, the result is 34.03 cal. deg."
1 mole"1

,
which is in good agreement with

the statistical entropy, 33.96 cal. deg."
1 mole"1

. For use in connection with the

entropies of other substances, when there are no changes in the ortho-para hydro-

gen ratio, the appropriate value of the practical entropy is obtained by subtracting
the nuclear spin contribution of 2.75, given above, from the statistical value of

33.96 cal. deg."
1 mole"1

;
the entropy of molecular hydrogen is thus taken as 31.21

E.U. mole" 1
. The data for molecular deuterium must be treated in an analogous

manner.

24o. Restricted Internal Rotation. When there is restriction to internal rota-

tion of two parts of a molecule with respect to one another, as in ethane and other

paraffin hydrocarbons, and in alcohols, amines, etc., the calculation of the entropy
from the partition functions requires a knowledge of the energy which restricts

rotation. As stated in 16m, this can be obtained from a comparison of an ex-

perimentally determined thermodynamic property with that derived by means of

partition functions. Actually, however, when there is a possibility of restricted

rotation the entropy is usually obtained from heat capacity measurements.
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Nevertheless, where the necessary data are not available, it is possible to make a

very satisfactory estimate by the statistical method, the restricting energy being
assumed to be equal to that in a related compound for which the value is known.10

24p. Standard Entropies of Gases. The standard entropies for a num-
ber of gases, that is, corrected to ideal behavior at 1 atm. pressure, at 25 C
are recorded in Table XIX. 11 They are based partly on statistical calcula-

TABLE XIX.* STANDARD ENTROPIES OP GASES AT 25 C IN
CAL. PER DEGREE PER MOLE

H, 31.21 IIC1 44.66 CO* 51.06

D, 34.62 HBr 47.48 N,O 52.68

N 45.77 HI 49.36 SO, 59.24

Oi 49.00 CO 47.30 NH, 46.03

Cl 53.31 NO 50.34 CH4 44.50
Br2(0) 58.63 H2O(0) 45.11 C2H 54.85

Iafo) 62.29 HjS 49.15 C2H4 52.48

* For further data see Table 5 at end of book.

tions and partly on thermal data, depending on which are considered more
reliable in each case. The values are all practical entropies which may be
used in conjunction with those given for solids and liquids in Table XV to

calculate the entropy change in a chemical reaction. These entropy changes
will be utilized for important thermodynamic purposes in Chapter XIII.

Special problems associated with the determination of the entropies of ions

in solution will be taken up in Chapter XIX.

Problem: Calculate the standard entropy change for the reaction

at 25 C.

From Table XIX, the total entropy of the products is 47.30 (for CO) + 31.21

(for Hi), i.e., 78.51 E,U. From Table XV, the entropy of the reactants is 1.36(C)
+ 16.75(HaO, Z), i.e., 18.11 E.U. The standard entropy change A for the reac-

tion is thus 78.51 - 18.11 = 60.40 cal. deg."
1 at 25 C.

EXERCISES

1. Since the atoms or molecules in a solid occupy fixed positions they may be

treated as distinguishable; there is consequently only one way of realizing a perfect

10 For reviews, see Pitzer, Chem. Rev., 27, 39 (1940); Aston, ibid., 27, 69 (1940); Wilson,

tind., 27, 17 (1940); also, H. S. Taylor and S.
Gladstone,

"Treatise on Physical Chemistry,"
3rd ed., 1942, Chap. IV (J. G. Aston); for empirical methods of treating molecules with

restricted internal rotation, see Pitzer, J. Chem. Phys., 8, 711 (1940); Chem. Rev. t 27, 39

(1940); Pitzer and Scott, /. Am. Chem. Soc., 63, 2419 (1941); Ewell, Ind. Eng. Chem., 32,

778 (1940).
11 See Kelley, ref. 2, Latimer, ref. 2; see also, Thacker, Folkins and Miller, Ind. Eng.

Chem,., 33, 584 (1941), Wagman, Kilpatrick, Taylor, Pitzer and Rossini, J. Res. Nat. Bur.

Stand., 34, 143 (1945); Wagman, Kilpatrick, Pitzer and Rossini, ibid., 35, 467 (1945);

Kilpatrick, Prosen, Pitzer and Rossini, ibid., 36, 559 (1946); for references, see Wilson,
ref. 10.
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solid, i.e., its thermodynamic probability is unity. In a solid solution consisting
of NI molecules of one substance (or form) and N* molecules of another, the system
can be realized in Nl/Ni\N 3 l different ways, where N is equal to NI + N+ (Note
that for a substance in the pure state this reduces to unity.) Show that the en-

tropy of formation of 1 mole of a solid solution from its pure solid constituents,

i.e., the entropy of mixing, is R(NI In NI + N2 In N2), where NI and N2 are the

respective mole fractions [cf. equation (19.32)].
2. By assuming a solid solution of silver chloride (NI = 0.272) and silver

bromide (NJ = 0.728) to have an entropy of zero at K, the thermal entropy at
25 C was found to be equal to the sum of the entropies of the pure constituents.

Other measurements, not based on the third law, however, indicated that the

entropy of the solid solution was greater than that of the constituents by about 1.1

cal. deg.""
1 mole"1 (Eastman and Milner, ref. 1). Account quantitatively for the

discrepancy.
3. The heat of vaporization of mercury at its normal boiling point (357 C)

is 13,600 cal. g. atom""1
,
and the mean heat capacity of the liquid is 6.5 cal.

deg.""
1
g. atom""1

. Assuming the vapor to be an ideal monatomic gas and the
atoms to be in a singlet electronic state, calculate the entropy of (i) gaseous,

(ii) liquid, mercury at 25 C. (The actual values are 41.8 and 18.5 E.U. g. atom"1
.)

4. Use the tables of entropy data to determine the entropy changes accom-

panying the following reactions: (i) Na(s) + KCl(s) = NaCl(a) + K(); (ii)

AgClW + JH 2(0)
- HCifo) + Ag(); (in) Hg(Z) + tO,fo) = HgO.

5. From the following data, evaluate the third law molar entropy of hydrogen
chloride as an ideal gas at 1 atm. pressure and 25 C. The entropy of the solid

at 98.36 K is 7.36 E.U. mole"1
;
at this temperature transition to another solid

form occurs, the heat of transition being 284.3 cai. mole"1
. The increase of

entropy accompanying the heating of the second solid modification from 98.36 to

158.91 K, the melting point, is 5.05 E.U. The heat of fusion of the solid is 476.0
cal. mole"1

. From the melting point to the normal boiling point (188.07 K), the

increase of entropy is 2.36 E.U. and the heat of vaporization is 3860 cal. mole"1
.

The mean heat capacity of hydrogen chloride gas from the boiling point to 25 C
may be taken as 6.98 cal. deg."

1 mole"1 at 1 atm. pressure.

6. Use the moment of inertia and vibration frequency given in Chapter VI to

calculate the standard (practical) entropy of hydrogen chloride at 25 C. Com-
pare the result with that obtained in the preceding problem.

7. Calculate the standard (practical) entropy of hydrogen sulfide at 25 C,
using data in Chapter VI.

8. Show that if the Debye heat capacity equation were applicable, the entropy
of a perfect solid at very low temperatures should be equal to JCp, where Cp is

the heat capacity at the given temperature. What would be the value in terms
of the Debye characteristic temperature?

9. By means of the following data for cyclohexanol [Kelley, J. Am. Chem. Soc.,

51, 1400 (1929)], which exists in two crystalline modifications, test the third law
of thermodynamics. For form I, the Debye characteristic temperature is 112;
the increase in entropy of the solid, from CP measurements, from 13.5 to 263.5 K
is 33.55 E.U. At 263.5 K there is a transition to form II, the heat change being
1 ,960 cal. mole-1

. The entropy change from 263.5 to the melting point (297.0 K)
is 5.02 E.U., the heat of fusion is 406 cal. mole"1

. For form II, the Debye tem-

perature is 84, and the entropy increase from 13.5 to 297.0 K, the melting point,
is 45.34 B.U. mole"1

.
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10. The following beat capacities in cal. deg.""
1 mole~l have been recorded for

solid chlorine [Giauque and Powell, /. Am. Chem. Soc., 61, 1970 (1939)]:

Determine the entropy of solid chlorine at its melting point, 172.12 K. The

entropy contribution at temperatures below 14 K should be obtained by assuming
the Debye equation to be applicable.

11. The thermal entropy of normal deuterium was found to be 33.90 B.U.

mole"1
. Normal deuterium consists of two parts of ortho- to one part of para-

molecules; at low temperatures the former occupy six and the latter nine closely

spaced levels. The spin of each deuterium nucleus is 1 unit. Show that the

practical standard entropy of deuterium gas at 25 C is 34.62 E.U. mole"1
. (Add

the entropy of mixing to the thermal entropy and subtract the nuclear spin con-

tribution.) Compare the result with the value which would be obtained from
statistical calculations, using moment of inertia, etc. in Chapter VI.

12. Show that equations (19.25) and (19.26) for the entropy change of a"h ideal

monatomic gas at constant pressure and constant temperature, respectively, follow

from the Sackur-Tetrode equation (24.13) or (24.14).



CHAPTER X

FREE ENERGY

25. THE FREE ENERGY AND WORK FUNCTIONS

25a. The Work Function. Although the entropy concept is the funda-
mental consequence of the second law of thermodynamics, there are two
other functions, which utilize the entropy in their derivation, that are more
convenient for use in many instances. One of these, the free energy, will

be employed extensively in subsequent portions of this book in connection
with the study of equilibria, both chemical and physical, and the direction

of chemical change.
The work function, represented by the symbol A, is defined by

A = E - TS, (25.1)

where 1$ is the energy content of the system, T is its temperature, and S
its entropy. Since E, T and S are characteristic properties of the system,

depending only on its thermodynamic state and not on its previous history,
it is evident that the same considerations must apply to the work function.

Hence A is to be regarded as a single-valued function of the state of the system,
and dA can be treated as a complete differential ( 4e). Further, since E
and S are both extensive properties, A will also be extensive in character,
its value being proportional to the quantity of matter constituting the

system under consideration.

In order to obtain some understanding of the physical significance of the

work function, consider an isothermal change from the initial state indicated

by the subscript 1 to the final state indicated by 2; thus,

A l
= Ei - TSi and A 2 = E2

- TS2,

so that AA T, the increase in the work function accompanying the process
at constant temperature, is given by

A, - A l
= (E2

- E 1)
- T(S2

-
/SO

or

AA T = &ET - T&S. (25.2)

If AS in equation (25.2) is replaced by Qm./T, where Qrev. is the heat taken

up when the given change is carried out in a reversible manner, then

AA r = A#r - Q.. (25.3)

According to the first law of thermodynamics [equation (7.2)], assuming a

201
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reversible, isothermal process,

-
Qr~.. (25.4)

Comparison of equations (25.3) and (25.4) shows that

- &AT -
TFn,v., (25.5)

so that the decrease in the A function in any process at constant temperature
is equal to the reversible work done by the system. Since the reversible

work is, under these conditions, the maximum work that can be obtained
from the given thermodynamic change in state, it follows that in an iso-

thermal process the decrease of the work function is a measure of the maxi-
mum work obtainable from that change in state. It is this fact which

justifies the use of the term "work function" for the quantity defined by
equation (25.1), although it was at one time called the "free energy" (H. von
Helmholtz). It should be noted that any given process, isothermal or

otherwise, is accompanied by a definite change in the value of the work
function A, but it is only for an isothermal process that this change is a
measure of the maximum work available.

Since AA? and AJEr are completely defined by the initial and final states

of the system, the results obtained above, e.g., equations (25.3) and (25.5),

provide proof of the statement made earlier ( 8b), that in any isothermal,
reversible process the values of W and Q are definite, depending only on the
initial and final states. The work term W here includes all the forms of

work performed on or by the system.
u*5b. The Free Energy. The second, and more generally useful, function

derived from the entropy is called the free energy, and is defined by

F = E - TS + PV, (25.6)

where P and V refer, as usual, to the pressure and volume of the system.
This definition may be written in two alternative forms which are frequently

employed. First, by equation (25.1), A is equal to E TS; hence,

F-A + PV. (25.7)

Second, since by equation (9.5), H is equivalent to E + PV, it follows that

F H - TS. (25.8)

Like the work function, the free energy F is seen to be a single-valuedfunction

of the thermodynamic state of the system, so that dF is a complete differential.

In addition, the free energy, like A, S, E and H, is an extensive property.

Comparison of equations (25.1) and (25.8) reveals an interesting fact of

general applicability: A is related to F in the same manner as E is to H .

It will be seen later that there are many relationships involving A and E,
with similar expressions relating F and H.

For aprocess taking place at constant pressure, it is evident from equation
(25.7) that

AFP - kAp + PAY. (25.9)
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If, in addition! the change is an isothermal one, i.e., the temperature is

constant, AA is equal to Wnv. f
as seen above, so that equation (25.9) gives

- Wm .
- PAF. (25.10)

The quantity Wnv. represents the total reversible work obtainable in the

given change; this may include other forms of work, e.g., electrical or surface

work, in addition to work of expansion. The latter is equal to PAV ( 3g),
and so Ww. PA7 represents the reversible work, exclusive of work of

expansion, that can be obtained from a given change in state. This quan-
tity is sometimes referred to as the net work, and is represented by W'w.,
so that by equation (25.10),

- AFp.T - W'nv, (25.11)

The decrease of free energy accompanying a process taking place at con-

stant temperature and pressure is thus equal to the reversible, i.e., maximum,
work other than work of expansion, i.e., the maximum net work, obtainable
from the process. It is because the change in F is a measure of the "useful"
work that F has been called the free energy.

1 It has also been referred to

as the "thermodynamic potential" (J. W. Gibbs), and as the "available

energy" (Lord Kelvin). As mentioned in connection with the work func-

tion, the value of AF for any change is quite definite, no matter under what
conditions the process is performed, but only when the temperature and pres-
sure are constant is the free energy change equal to the maximum net work
available for the given change in state.

'"
25c. Work Function and Free Energy Relationships. It was seen in

19i, for an infinitesimal stage of an isothermal, reversible process, in which
the work done is restricted to work of expansion, that [cf. equation (19.18)J,

.

and hence,
TdS = dE + PdV. (25.13)

By differentiation of equation (25.1), i.e., A = E TVS, which defines the
work function,

dA = dE - TdS - SdT, (25.14)

so that from (25.13) and (25.14), it follows that

dA =- PdV - SdT. (25.15)

At constant volume, therefore, dA v = SdTv ,
or

*
Lewis, Proc. Am. Acad. Arts Sti. t 35, 3 (1899); Z. phys. Chem., 32, 364 (1900); see also,

G. N. Lewis and M. Randall, "Thermodynamics and the Free Energy of Chemical Sub-

stances,
1'

1923. *
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and at constant temperature, dAr = PdVr, or

These relationships give the variation of the work function with temperature
and volume, respectively

Differentiation of equation (25.6), i.e., F = E - TS + PV, yields

dF = dE - TdS - SdT + PdV + VdP, (25.18)

and for an infinitesimal stage in a reversible process involving only work of

expansion, use of equation (25.13) reduces this to

dF = VdP - SdT. (25.19)

Hence, at constant pressure, dFP = SdTP ,
or

ffX-* <

and at constant temperature, djFV = VdPr, or

giving the variation of the free energy with temperature and pressure.

Comparison of equation (25.16) with (25.20) and of (25.17) with (25.21)

brings to light another useful generalization : A is related to V in the same
manner as F is related to P. It is found that by exchanging A for F and
V for P, equations involving A and V may be converted into analogous
expressions relating F and P; however, since an increase of pressure corre-

sponds to a decrease of volume, the change of variable from V to JP, or

vice versa, is accompanied by a change of sign [cf. equations (25.17) and

(25.21)].
It must be emphasized that the results derived above, like those obtained

in 20b, et seq., are applicable only to closed systems, as stated in 20g.
Such systems may be homogeneous or heterogeneous, and may consist of

solid, liquid or gas, but the total mass must remain unchanged. It will be
seen later that in some cases a system consists of several phases, and al-

though the mass of the whole system is constant, changes may take place

among the phases. In these circumstances the equations apply to the

system as a whole but not to the individual phases. Since it has been

postulated that the work done in a change in state is only work of expansion,

equal to PdV, the second condition stated in 20g, that the system is always
in equilibrium with the external pressure, must also be operative.

25d. Isothermal Changes in the Work Function and Free Energy. For
an isothermal change dF is zero, and hence, as noted above, equation
(25.15) becomes

(25.22)
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For an appreciable isothermal process the increase AA in the work function
can be obtained by integration of equation (25.22) between the limits of

the initial state 1 and the final state 2; thus,

AA r - (A f
-

Ai) r = -
1

'

PdV. (25.23)
Jvi

Comparison of this result with-equutl&Yi (H.2) shows it to be in agreement
with the relationship derived in 25a, between the change in the work
function in an isothermal process and the reversible work obtainable.

The corresponding expressions involving the free energy could be written

down by changing P for V, and altering the signs where necessary, but they
may be derived in a simple manner. At constant temperature, equation
(25.19) gives

dFT = VdP, (25.24)

and hence for any appreciable isothermal process,

VdP.
/;

In the special case of the system being 1 mole of an ideal gas, V may be

replaced by RT/P, so that

Xp*
fip p n ./

^ = RT\n^- (25.25)
-i

p p *

Since, for an ideal gas, P*/P\ is equal to Vi/V2 at constant temperature, it

follows that AFr is equal to AAr, as may be seen by replacing P in equation

(25.23) by RT/V and integrating. It is important to point out, however,
that this equality applies only to an isothermal process with an ideal gas,
but it is not true generally. Considerable confusion was caused in the

earlier development of chemical thermodynamics because of the failure to

realize this limitation.
*

2$e. The Gibbs-Helmholtz Equations. If the value of S given by equa-
tion (25.20) is substituted in (25.8) the result is

> (25 -26)

and, similarly, combination of equation (25.16) with (25.1) gives

(25-27)

These two expressions are forms of the equation derived by J. W. Gibbs

(1875) and H. von Helmholtz (1882), and usually referred to as the Gibbs-
Helmholtz equation. Upon dividing equation (25.26) by T2

,
and rearrang-
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ing, it is readily found that an alternative form is

r ay/rn __#. r2528x

I *T ]f & (25 -28)

The analogous expression [d(A/T)/dT}r E/T* can be derived from

equation (25.27), but this is rarely used by chemists.

There are other forms of the Gibbs-Helmholtz equation which are more
frequently employed; these deal with changes in the free energy, heat con-

tent, etc., accompanying an appreciable process. The process may be
chemical or physical in nature; the only restriction is that it takes place in

a closed system, i.e., one of constant mass, which is in equilibrium with the
external pressure. For the initial and final states, indicated by the sub-

scripts 1 and 2, respectively, of an isothermal process, equation (25.8)
becomes

Fi = #1 - TSi and F2 - H2
- TS*,

so that by subtraction,

F* - F, -
Off,

- H l)
- T(S* - SO,

AF = AH - TAS, (25.29)

where AF, AH and AS represent the increase of free energy, heat content
and entropy, respectively, for the given isothermal process.* Further,
from equation (25.20),

-"---*>- -
,

-

If this result is inserted into* equation (25.29) there is obtained

, (25.31)

a very useful form of the Gibbs-Helmholtz equation.

Similarly, by means of equations (25.1) and (25.16) it is possible to

derive the analogous expression

AA - MS + T
[2^]r

(25.32)

Still another form of the Gibbs-Helmholtz equation may be developed
from (25.31) by utilizing the same procedure as was employed in converting
equation (25.26) into (25.28); thus, dividing through equation (25.31) by

*
Subscript! T might have been included to indicate that constant temperature is

implied, but this condition is usually understood.
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T2 and rearranging, the resulting expression may be put in the form

This equation represents the variation of AF, or rather of &F/T, with tem-

perature at constant pressure. If &H is expressed as a function of the tem-

perature ( 12k), it is thus possible, upon integration, to derive an expression
for AF in terms of the temperature. This matter, as well as other applica-
tions of the various forms of the Gibbs-Helmholtz equation, will be taken

up in later sections.

Attention may be drawn to the fact that although certain restrictions

were mentioned in the course of the foregoing deductions, the final results

are of general applicability. The Gibbs-Helmholtz equations (25.31),

(25.32) and (25.33), for example, will hold for any change in a closed system,

irrespective of whether it is carried out reversibly or not. This is because

the values of AF and AH (or AA and AjE?) are quite definite for a given change,
and do not depend upon the path followed. The only condition that need
be applied is the obvious one that the system must be in thermodynamic
equilibrium in the initial and final states of the process, for only in these

circumstances can the various thermodynamic functions have definite

values ( 4d).
" 25f. Conditions of Equilibrium. An important use of the free energy

and, to some extent, of the work function, is to obtain simple criteria of

spontaneous processes and of thermodynamic equilibrium which lend them-
selves very readily to practical application. The result derived in 19e,

that for a spontaneous (irreversible) process there is a net increase of entropy
of the system and its surroundings, is based on equation (19.14); in other

words, the essential fact is thai in an irreversible process A > 5, the sum
of the q/T terms for all the isothermal stages is less than the increase in

entropy of the system. Hence, in an infinitesimal stage of an irreversible

process q/T is less than dS, i.e.,

dS > ~
(irreversible process),

where dS refers to the system alone, and not to the net entropy of the system
and surroundings. For a reversible change, on the other hand, dS, by
definition, is equal to q/T, so that

dS = ~
(reversible process).

It is, therefore, possible to combine these two results in the general expression

dS>, (25.34)
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where the "greater than" sign refers to an irreversible process, while the

"equal to" sign applies to a reversible process which, as seen in 8a, is a
succession of equilibrium states.

By the first law of thermodynamics, q = dE + w [cf. equation (7.5)],

so that (25.34) may be written in the form

dS > **. (25.35)

If, in any process, the energy content remains constant and no work is done

against an external force, dE and w are both zero; hence,

dS 0, if dE = and w = 0. (25.36)

In the event that the external pressure is the only "force," the work is

entirely work of expansion, i.e., PdV] the condition that w is zero is then
satisfied when dV is zero, i.e., the volume is constant. In these circum-

stances, equation (25.36) becomes

dSKtV > 0, (25.37)

where the subscripts E and V indicate constancy of these properties. Con-

sequently, when the energy and volume are maintained constant, the entropy
of a system increases in a spontaneous process, but remains unaltered for a

small change in the system when it is in a state of thermodynamic equi-
librium.* In other words, the entropy ofa system at equilibrium is a maximum
at constant energy and volume, since a spontaneous process always represents
a closer approach to the equilibrium state under the given conditions.

By combining equation (25.14) with (25.35) it follows that

iA ^ - w - SdT,

inhere the "less than" sign now refers to the spontaneous (irreversible)

process. If the temperature is maintained constant and no work is done,
so that dT and w are zero,

dA $0, if dT = and w = 0.

Again, when the work is solely work of expansion, the result may be written

in the form
dA TtV ^ 0. (25.38)

This means that in a state of thermodynamic equilibrium, at constant tempera-
ture and volume, the work function is a minimum; under the same conditions

a spontaneous process is accompanied by a decrease in the work function.

* Since dS in equations (25. 34) to (26.37) refers to the gain in entropy of the system

alone, it depends on the initial and final states only and not on the path between them; hence,

SK.V will increase in any change that is potentially spontaneous, even if it is actually carried

out in a reversible manner, provided E and V are constant. Compare in this connection the

first footnote in J 19ef which refers to the entropy of the aystem and its surroundings.
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When the work is only work of expansion, and the system is always in

equilibrium with the external pressure, w in equation (25.35) may be re-

placed by PdV, where P is the pressure of the system; thus,

, Q , dE + PdV
dS ^ ---__-

f

TdS ^ dE + PdV.

If this result is combined with equation (25.18), it is seen that

flF $ VdP - SdT,

and hence at constant temperature and pressure,

<IFT.i> ^ 0, . (25.39)

where the "less than" sign refers to a spontaneous process. Since most
chemical reactions and many physical changes are carried out under condi-

tions of constant temperature and pressure, equation (25.39) is almost in-

variably used, rather than (25.37) or (25.38), to give the conditions of a

spontaneous process or of thermodynamic equilibrium. Since dFT , r is either

IPSS than or equal to zero, according as the system changes spontaneously
or is in equilibrium, it follows that for a system in equilibrium, at a given

temperature and pressure, the free energy must be a minimum. Further, all

spontaneous processes taking place at constant temperature and pressure are

accompanied by a decrease of free energy. This conclusion is of fundamental

significance, for it provides a very simple and convenient test of whether a

given process is possible or not. For an appreciable process, such as a
chemical reaction, carried out at constant temperature and pressure, equa-
tion (25.39) may be written as

AF Tt /> ^ 0, (25.40)

a form in which the condition for a spontaneous process or for equilibrium
is frequently employed (Chapter XIII).

25g. Work Function and Free Energy from Partition Functions. For
1 mole of a gas which behaves ideally, PV is equal to RT, and so equation
(25.6), which defines the free energy, may be written

F = E - TS + RT. (25.41)

Utilizing equations (16.8) and (24.11), for E and S respectively, in terms of

the partition functions, it follows that for 1 mole of an ideal gas,

F = #o -
,N

F - Eo -- RTln- (25.42)N
*
It should be noted that in this section Q refers to the partition function.
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It is seen from equation (25.41) that at K, when T is zero, F and E are

identical! and hence equation (25.42) may also be expressed in the form

F - Fo - - RT In
^- (25.43)

These equations permit the calculation of the molar free energy of an ideal

gas, with reference to the value in the lowest energy state, i.e., at K; they
will be used in Chapter XIII in connection with the determination of equi-
librium constants and the free energy changes accompanying chemical

reactions.

Since the work content A is equal to F PV [equation (25.7)], and
hence to F RT for 1 mole of an ideal gas, it is seen from equation (25.42)
that

A - Eo -- firing- RT,N
and this may be written in the equivalent form

A - Ao - - RT In % - RT, (25.44)N

since A and E are equal at the absolute zero.

25h. Thermodynamic Formulae. It is of interest at this point to refer to

certain general procedures which may be used for the derivation of thermodynamic
relationships. One of these, which has been already employed from time to time,
is the following. If 2 is a single-valued function of the variables y and z

t e.g., a

thermodynamic property of a closed system, it is possible to write for the complete
(exact) differential dx,

dx = Mdy + Ndz, (25.45)

where M and N are also functions of the variables. If z is constant, so that dz

is zero, then equation (25.45) yields the result

^ )
- M, (25.46)

whereas if y is maintained constant, so that dy is zero,

/ dx\
( ^ )

- N. (25.47)
\dzjy

If equation (25.46) is differentiated with respect to z, with y constant, and (25.47)
with respect to y, with z constant, the results must be identical, so that

(25.48)

This result, sometimes referred to as the Euler criterion, or the reciprocity relation-

ship, will now be used to derive some thermodynamic expressions.
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An examination of the present and preceding chapters will reveal four analogous
equations which are of the form of (25.45) ;

these are

(i) dE TdS - PdV
(ii) dH - TdS + VdP
(iii) dA - - SdT - PdV
(iv) dF = - SdT + VdP

[cf. equations (20.1) or (25.13), (20.13), (25.15) and (25.19), respectively]. By
the use of equation (25.48), there follow immediately the four Maxwell relation-

ships, viz.,

dT\ /dP\ . ... ^^'
--(asX from(l)

J5 )
=

UTS' from (fi)
V

fff / fl \ CrO / P

ft)r
=
(^X from (m)

If X and F are functions of the variables x, y and 2, such that

dX = L<&/ + 0:^0

dY = Lrf/ + 2dx,

then by equation (25.46) or (25.47),

'dJT

By applying this result to the expressions (i), (ii), (iii) and (iv), a new set of

relationships can be derived as follows:

SE \ /SH\

dE\ /dA , ... ......= from (I) and (m)

= from (ii) and (i

dA\ I dF\ , ..... .
,. x

Iw }
=

( ~&r }
from (l11^ and (lv)'a/ iv \oi IP

By the use of equations analogous to (4.9) and (4.10), and the familiar mathe-
matical relationship of the form

(cf. 21b), numerous thermodynamic equations can be derived.
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Since there are eight common thermcxlynamic*. variables, viz., P, V, T, E, //,

S, A and Ft
there are possible 8X7X6, i.e., 336, first (partial) derivatives, and

a large number of relationships among them exist. P. W. Bridgman 1914) has
devised a system which permits the derivation of an expression for any of these

first derivatives in terms of three quantities which are, in general, capable of

experimental determination, viz., (dV/dT)P , (dV/dP)r and (dII/dT)P , i.e., CP .

The procedure adopted is to write in a purely formal manner

(dx).

where x, y and z represent any of the eight variables, and then to make use of the

Bridgman formulae to obtain the appropriate values of (da;), and (dy),. There
are actually fifty-six such formulae, but since (da:), is equal to (dz)x the number
is effectively reduced to the twenty-eight results given below.

(6T)P = - (dP)T = 1

(dV)P =- (6P)V = (dV/6T)P
(dS)P - - (dP) = Cp/T
(dE)P = - (dP)E = CP- P(dV/dT)P
(dH)P = - (dP),, = CP
(6F)p = - (dP)p = - S
(dA)P = - (dP)A =- S - P(dV/dT)P

(dV)T = - (dT)v = - (dV/3P)T
(dS)T = - (dT)s = (dV/dT)p
(dE)T =- (dT)E = T(dV/dT)P + P(dV/dP)T
(dH)T = - (dT)a = - V + T(dV/dT),.
(dF)T = - (dT)F = - 7
(dA)T =- (dT)A = P(dV/dP)T

(dS)v = - (dV)s = CP(dV/8T)r/T + (dV/dT)*P
(6E)V = - (dV)B = Cp(dV/dP)T + T(dV/dT)*P
(dH)v = - (dV)u = CP(dV/dP)T + T(dV/dTYf - V(dV/dT)p
(dF)v =- (dV)F =- V(dV/dT)P - S(dV/dP)T
(dA)v = - (dV)A - - S(dV/dP-)T

(dE)s = -
(dS)B = PCp(dV/dT) T/T + P(dV/dT)%

(dH) 3 = - (dS)H = - VCp/T
(dF)s - - (6S)r = - VCp/T + S(dV/dT)P
(dA) s =- (dS)A = PCP(dV/dP)T/T + P(dV/dT)j, + S(dV/dT~)P

(dH)E - - (dE)H = - VICp - P(dV/dT)p -\
- PECP(dV/dP)T

(dF)K = - (dE)F = - V[CP - P(dV/dT)P1 + S[_T(dV/dT-)P

= - V(CP + S) + TS(dV/dT)P
(dA)H = - (dH)A = -

[_S + P(dV/dT)PJ_V - T(dV/dT)PJ + P(dV/dP)T .

(dA)P - - (dF)A = - SIV + PtfV/dPW - PV(dV/dT)P .

The use of the Bridgman formulae may be illustrated by employing them to

derive an expression for (dT/dP)u, which is the Joule-Thomson coefficient ( lib).
The required results are

(dT)H = - (dH)T - V - T(dV/dT)P
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so that

/n .JLU
\dp) H CP [

2

\dT
as in equation (22.2) .

2

26. CHEMICAL POTENTIAL
/

3
*

v
26a. Partial Molar Properties. Although the concept of partial molar

quantities is employed in connection with thermodynamic properties other
than the free energy (see Chapter XIX), the partial molar free energy will

be used so frequently that the opportunity may be taken to introduce some
of the general ideas here. It has been mentioned, from time to time, that

the results obtained so far are based on the supposition that the system
under consideration is a closed one, that is, one of constant mass. The
change of any thermodynamic property is then due to a change in the state

of the system, and not to the addition or removal of matter. In the study
of systems consisting of two or more substances, i.e., solutions, and of

heterogeneous systems containing two or more phases, it is necessary to

consider open systems, where composition and mass may vary. In this

connection the concept of partial molar properties, as developed by G. N.
Lewis (1907), is of great value. 3

Consider any thermodynamic extensive property, such as volume, free

energy, entropy, energy content, etc., the value of which, for a homogeneous
system, is completely determined by the state of the system, e.g., the tem-

perature, pressure, and the amounts of the various constituents present;

thus, G is a function represented by

G = f(T, P, ni, n 2 , ...,n,, ...), (26.1)

where ni, n2,
. . .

, n-, . . .
,
are the numbers of moles of the respective con-

stituents, 1,2, . . .
, i, . . .

,
of the system. If there is a small change in the

temperature and pressure of the system, ate well as in the amounts of its

constituents, the change in the property G is given by

r, ni , n,.... T, ni . nti ...

+ .... (26 .2)

The derivative (dG/dn^T.p,^ ____ is called the partial molar property for the

constituent i, and it is represented by writing a bar over the symbol for

1 Bridgman, Phya. Rev., 2, 3, 273 (1914); see also, P. W. Bridgman, "Condensed Collec-

tion of Thermodynamic Formulas/' 1925; for other generalized treatments, see Shaw,
Phil. Trans. Roy. Sac., A234, 299 (1935), or summary in Margenau and Murphy, "The
Mathematics of Physics and Chemistry," 1943, p. 18; Lerman, /. Chem. Phya., 5, 792 (1937) ;

Tobolsky, ibid., 10, 644 (1942).

'Lewis, Proc. Am. Acod. Arta Sri., 43, 259 (1907); Z. phyaik. Chem., 61, 129 (1907);
see also, G. N. Lewis and M. Randall, ref. 1; J. Am. Chem. Soc., 43, 233 (1921).
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the particular property, i.e., <?, so that

)
-** (26-3)

*/r,p, *!,*,, ...

It is thus possible to write equation (26.2) in the form

. (26.4)

If the temperature and pressure of the system are maintained constant,
dT and dP are zero, so that

dGT.p = Gidni + Gydfh + - Gdrii + - -

, (26.5)

which gives, upon integration, for a system of definite composition, repre-
sented by the numbers of moles ni, na, . . .

, n<, . . . ,*
~

+ nj& H-----h nA + - (26.6)

By general differentiation of equation (26.6), at constant temperature
and pressure but varying composition, it is seen that

dOTt p - (nidGi + GidnJ + (ndG* + Grin*) H

-) (26.7)

Comparing this result with equation (26.5), it follows that at a given tem-

perature and pressure

ndGi + ndG* + - + n4Gi + - -
0, (26.8)

which must obviously apply to a system of definite composition. This

simple relationship is the basis of the important Gibbs-Duhem equation

( 26c), first derived by J. W. Gibbs (1875) and later, independently, by
P. Puhem (1886).
X 26b. Physical Significance of Partial Molar Property. The physical sig-

nificance of any partial molar property, such as the partial molar volume,

partial molar free energy, etc., of a particular constituent of a mixture may
now be considered. According to equation (26.3), it is the increase in the

property of the system resulting from the addition, at constant temperature
and pressure, of 1 mole of that substance to such a large quantity of the

system that its composition remains virtually unchanged. However, a more
useful picture is obtained from equation (26.6) : this states that the sum of

the n<Qi terms for all the constituents is equal to the total value for the

system of given composition at constant temperature and pressure. Hence,
the partial molar property <?< of any constituent may be regarded as the

* In general, constant composition WI!A be indicated by the mibeoript N, as in GT.P.X
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contribution of 1 mole of that constituent to the total value of the property
(f of the system under the specified conditions. Upon first consideration

it might be imagined, in view of this interpretation, that the partial molar

property Gi wag equal to the value of Gi for 1 mole of the constituent i in

the pure state. It will be seen later that this is only true in certain limited

circumstances. In general, Gi in a solution is not equal to (? for the pure
substance, and further, the valueT of Gi varies as the composition of the

system is changed.*
It may be pointed out, in view of equation (26.6), that the partial molar

property Gi is an intensive property ( 4d), and not an extensive one; that

is to say, its value does not depend on the amount of material constituting
the system, but only on the composition, at the given temperature and

pressure. Allowance for the quantity of each constituent is made by the

appropriate values of ni, n^, . . ., nf-, . . ., in equation (26.6), so that n\G\,

nzGz> . . .
, UiGi, . . .

, are the contributions to the total value of the property
G. This same conclusion can be reached by precise mathematical argu-
ments based on the use of Euler's theorem on homogeneous functions. At
coastant temperature and pressure the property G is a homogeneous func-

tion of the numbers of moles (n) of degree unity; hence, the derivative of G
with respect to n t , i.e., Gi, in general, will be a homogeneous function of

degree zero. In other words, the partial molar property is independent of

the n's and hence of the amounts of material in the system. It should be

remembered, however, that Gi is not independent of the composition of the

system, that is, of the ratio of the various n's to one another.

26c. Partial Molar Free Energy: The Chemical Potential. Although
the partial molar quantities of various thermodynamic properties will be

considered in the course of this book, the discussion at present will be re-

stricted mainly to a consideration of the partial molar free energy, that is,

Ft for the ith coastituent. This quantity is, for present purposes, identical

with the function described by J. W. Gibbs, known as the molar chemical

potential or, in brief, the chemical potential, and which is represented by
the symbol /* Hence, by the definition given above, the partial molar free

energy or chemical potential of a constituent of a mixture is

= Ft
= M, (26.9)

. P, n1 . . .

It is thus possible to rewrite equation (26.4), replacing G by F, and using
AC'S for the partial molar quantities, to give

dF =

. (26.10)

* For a system consisting of a single (pure) substance, the partial molar property Gi has

only a formal significance, for it is then identical with the molar property <?.
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In the special case when there is no change in the numbers of moles of

the various substances present, that is to say, when the system is a closod

one, dn\ t dn%, etc., are all zero, so that equation (26.10) becomes

It has been shown previously ( 25c) that for an infinitesimal change in a
closed system, in equilibrium with the external pressure,

dF = VdP - SdT,

so that, equating coefficients,

and

'~
}

=V. (26.12)

These equations are identical, as of course they should be, with equations

(25.20) and (25.21) which are applicable to a closed system. If these results

are now substituted in equation (26.10), it follows that for the open system

dF = - SdT + VdP + ^dni + ndn* + + M<rfn< + - -
. (26.13)

At constant temperature and pressure this becomes

dFT,p nidni + /zadn* + - + /**fo< + , (26.14)

which is of the same form as equation (26.5).

When the partial molar property #,- is the partial molar free energy /i t-,

equation (26.8) becomes

+ ndn + = 0, (26.15)

which is one form of the Gibbs-Duhem equation, applicable to a system at

constant temperature and pressure. This equation has many applications,

especially in connection with the study of liquid-vapor equilibria, such as

are involved in distillation.

^/26d. Equilibrium in Heterogeneous System. The condition represented

by equation (25.39) for a system at equilibrium, viz.,

dFT,p 0,

is applicable to a closed system. As indicated earlier, it is possible for a

system consisting of several phases to be closed; nevertheless, one or more of

the constituent phases may be open, in the sense that there may be exchanges
of matter between them. In a case of this kind, the change of free energy
of each phase (open system) for a small change at constant temperature
and pressure is given by equation (26.14), and for the system as a whole

(closed system) dFr.p is given by the sum of the changes for the individual
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phases. If the whole system is in equilibrium, at a given temperature and

pressure, dFr.p is zero, as seen above, and hence, by equation (26.14),

2>t<*n< - 0, (26.16)

where the summation includes all the pdn terms for all the phases constituting
the system. This result forms the basis of the well known "phase rule

1

', as

will be seen in 28a.

26e. Alternative Definitions of Chemical Potential. Although the definition

of the chemical potential as the partial molar free energy is the one which is most

generally useful in chemical thermodynamics, it is of interest to show that it can
be defined in other ways. This justifies the use of the general term "chemical

potential", indicating that the property has a wider significance than the partial
molar free energy.

The energy content of a system, like the free energy, may be expressed as a
function of the thermodynamic coordinates and masses of the constituents; for

the present purpose it is convenient to choose as the coordinates the entropy and
the volume. Hence, it is possible to write

+ -- (26-17>
V,nlt

.-

By utilizing equation (19.18) or (25.13), it is readily seen that (dE/dS)v.n and
(dE/dV)s,x, which refer to constant values of the n's and hence are effectively

applicable to a closed system, are equal to T and P, respectively. Conse-

quently, it follows that

dE = TdS - PdV + dni + - + dm + . -. (26.18)
\ cmi / s, v, nt,

... \ oni /s, v,nlf
. . .

From the definition of F as E TS + PV [equation (25.6)], there is obtained

upon differentiation equation (25.18), viz.,

dF = dE - TdS - SdT + PdV + VdP
t

and hence at constant temperature and pressure, i.e., dT and dP are zero,

dFT.p = dE - TdS + PdV.

Combination of this result with equation (26.18) then gives

dFT.r -()** + (|^)*i.+ +(?)**+ (26.19)

Since the values of dn\, dn2 , etc., are independent of one another, it follows from a

comparison of equations (26.19) and (26.14), that

dE /dE
etc -

which are alternative definitions of the chemical potentials. It should be under-

stood that (dE/Jdn\)s,vt ni, ... etc., are not partial molar energies, for they refer to

constant entropy and volume, and not to constant temperature and pressure. The
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partial molar energy content would be defined by (d//dni)r, p. *,..., and this is,

6f course, not equal to the chemical potential.

By means of arguments similar to those employed above, it can be shown that
the chemical potential may also be defined in other ways, viz.,

_() _(\ CWi /S.P.nt, ... \ CWi

_/ 26f. Variation of Chemical Potential with Temperature and Pressure.

The variation of the chemical potential of any constituent of a system with

temperature may be derived by differentiating equation (26.9) with respect
to temperature, and equation (26.11) with respect to n; the results are

and

the latter being equal to the partial molar entropy, by definition. Since

dF is a complete differential, the order of differentiation is immaterial, and
hence equations (26.21) and (26.22) are equivalent, so that

This result is analogous to equation (25.20) which is applicable in particular
to a pure substance.

By equation (25.8), F = H TS, and differentiation with respect to w t-,

the temperature, pressure and the numbers of moles of the other constituents

remaining constant, gives

T. P, !.... \ dn t Jr. p, ni , . . . V dtt,- / Tt p, n lt . . .

or, in alternative symbols,

M< = Pi = ff t
- TS t .

If the expression for the partial molar entropy given by equation (26.23)

is introduced, it is seen that

*-r(!g) =5,, (26.24)
V 01 /p,N

which is a form of the Gibbs-Helmholtz equation ( 25e). Upon dividing

through both sides of equation (26.24) by T"2
, the result, analogous to

(25.28), is

-- ->
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This equation is particularly useful for expressing the variation of the
chemical potential with temperature, at constant pressure and composition!
of any constituent of a gaseous, liquid or solid solution.

The effect of pressure on chemical potential may be derived by differ-

entiating equation (26.9) with respect to pressure and (26.12) with respect
to nt ;

it is seen that
dF _ (dfJLi\

\dPjT.NdnP

\dni/T,P,nlt ...

so that

'%) =n (26.26)or / r, N

which may be compared with the analogous equation (25.21) for a closed

system, e.g., a pure substance. The rate of change of chemical potential
with pressure of a particular constituent of a system, at constant temperar-

ture, is thus equal to the partial molar volume of that constituent.

For a system of ideal gases, a further development of equation (26.26)
is possible. The total number of moles, ni, in the equation of state

PV = nRT may be replaced by the sum of the number of moles of each
constituent present in the mixture ; hence,

The partial molar volume is then given by differentiating with respect to n,
all the other n's remaining unchanged, at constant temperature and pres-

sure; thus,

F, . I _:. (26.27)"

If this result is substituted in equation (26.26), it is found that for any
constituent of an ideal gas mixture,

-
. (26.28)

This result will be employed in connection with the thermodynamics of

mixtures of gases in Chapter XII.

26g. Free Energy Change in Any Process. A useful application of the

chemical potential is to determine the free energy change accompanying any
process. In a completely general case, which may refer to a chemical or a

physical change, the system may consist initially of ni, n*, etc., moles of

constituents with respective chemical potentials MI, MI, etc. The total fre*

energy of the system is then given by equation (26.6) as niMi + n*Mi +
If, in the final state, the system consists of nj, ni, etc., moles of substances



220 FREE ENERGY 26g

whose chemical potentials are MI> M2, etc., the total free energy in the final

state is n'^'i + n^2 + The free energy change accompanying the

process is thus

AF =
(n{/4i + niiS+)- ("iMi + n^ + ) (26.29)

A number of applications of this result will be found in later sections.

EXERCISES

1. Derive expressions for (i) the free energy change, (ii) the work function

change, accompanying the appreciable isothermal expansion of a van der WaalS
gas. (Use the expression for V in terms of P derived in 21a.)

2. Explain how the generalized compressibility diagram (Fig. 4) could be used
to determine (i) the free energy change, (ii) the work function change, for any gas
at constant temperature.

3. Utilize the expression for the partition function derived in Chapter VI to

develop an equation for the free energy of an ideal, monatomic gas referred to the
value FO in the lowest energy state.

4. The variation of the volume of a liquid with pressure is given approximately
by 7 = 7 (1 &P) where is the compressibility coefficient and V o is the volume
at low (virtually zero) pressure. Derive an expression for the change of free

energy accompanying the isothermal change of a liquid from pressure Pi to F2 .

For water at 25 C, is 49 X 10~6 atm.-1 at moderate pressures. Calculate the

change of free energy in cal. accompanying the compression of 1 mole of water
from 1 atm. to 10 atm. at 25 C. The specific volume of water at 1 atm. and 25 C
is 1.00294 cc. g.~

l
. Would there be any appreciable difference in the result if

the water were taken to be incompressible, i.e., with ft
= 0?

5. For the reaction 2H2S(0) + SO2(0)
= 2H20(Q + 3S() at 25 C and 1 atm.

pressure of each gas, the change of heat content and the entropy change can be
obtained from data in preceding chapters. What is the corresponding free enert >

change in calories? Is the reaction likely to occur spontaneously, with the sub
stances in their standard states, under the given conditions?

6. Without the use of tables, prove that

which is equal to S + R for 1 mole of an ideal gas. Show that the same re-

sult can be obtained from the Bridgman table.

7. Show that for a given process the rate of variation of the free energy change
AF with temperature at constant pressure is given by [_d(&F)/dT']p AS.
Estimate the value of AF in Exercise 5 at a temperature of 30 C, assuming the
rate of change of AF with temperature to remain constant between 25 and 30 C.

8. Show that the relationships [d(AF)/dr> = - AS and [d(AF)/dP> = AV,
which are applicable to any physical or chemical change, constitute the basis of
the Le Chatelier principle of mobile equilibrium. [Make use of equation (25.40).]

9. Using the fact that at equilibrium AFr.p 0, what conclusion can be
drawn concerning the free energy change accompanying the transfer of water from
liquid at 25 C to vapor at 23.76 mm., which is the equilibrium vapor pressure, at
the same temperature? Hence, determine the free energy change in cal. for the
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transfer of 1 mole of liquid water to vapor at 1 atm. and 25 C. The vapor may
be regarded as an ideal gas.

10. The equilibrium vapor pressure of ice at 10 C is 1.950 mm. and that
of supercooled water at the same temperature is 2.140 mm. Calculate the free

energy change in cal. accompanying the change of 1 mole of supercooled water to

ice at 10 C, and the same total (atmospheric) pressure. Is the sign in agree-
ment with expectation?

11. Combine the result of the preceding exercise with that obtained in Exer-
cise 7, Chapter VIII to evaluate the change in heat content for the process
HtO(0 - HiO(s) at - 10 C and 1 atm.

12. Utilize the Bridgman table to verify the relationships

dH\ dF\ . fdF\ /dA
and -

13. Derive an expression for (dF/dH)s by means of the Bridgman table.

14. Show that equation (25.20) can be used to derive the expression

for the entropy of a gas in terms of its partition function.

15. Prove the relationships in equation (26.20).



CHAPTER XI

PHASE EQUILIBRIA

27. SYSTEMS OP ONE COMPONENT

- 27a. Equilibrium Between Phases of One Component Most of the dis-

cussion hitherto has been devoted to laying the foundations of thermo-

dynamic theory; the time is now opportune to consider some applications
of the results already derived to problems of physical and chemical im-

portance. In the present chapter a number of subjects will be discussed

which have a bearing on equilibria between two or more phases, e.g., liquid
and vapor, solid and vapor, etc., of one or more constituents. Such systems
remain of constant mass, as a whole, no matter what changes occur within

them, and so they can be treated as closed.

Consider any system consisting of two phases, e.g., liquid and vapor,
of a single substance in equilibrium at constant temperature and pressure.

Suppose that a small amount of one phase is transferred to the other; it

follows, therefore, from equation (25.39) or (25.40), that the corresponding
free energy change is zero. As long as both phases are present, an appreci-
able transfer, e.g., of 1 mole, from one phase to the other, will not disturb

the equilibrium at constant temperature and pressure. For example, if

liquid water and its vapor are in equilibrium, a large amount of water can
be transferred from one phase to the other, at constant temperature and
pressure, without affecting the state of equilibrium. It is, therefore, possible
to utilize equation (25.40), viz.,

AF -
0, (27.1)

where AF is the free energy change accompanying the process under con-
sideration. If FA is the molar free energy of the substance in one phase,
e.g., liquid, and FB is that in the other, e.g., vapor, the transfer of 1 mole
of liquid to the vapor state is accompanied by an increase FB and a decrease

FA in the free energy; thus,
AF = FB - FA .

Since this is zero, by equation (27.1), when the system is in equilibrium,
it follows that

FA - FB . (27.2)

In other words, whenever two phases of the same single substance are in equi-

librium, at a given temperature and pressure, the molar free energy is the same
in each phase. This conclusion can be extended to three phases, which is

the maximum number that can coexist in equilibrium for a system of one

component.
223
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It must be remembered that the treatment has been limited to a system

of one component. If there are two or more components present, it will be
seen later ( 28a) that the chemical potential, in place of the molar free

energy, of each component is the same in every phase when the system is

at equilibrium.
.x27b. The Clapeyron Equation. Since the molar free energy of a given

substance is the same in two phases A and B of a one-component system
at equilibrium, it follows that if the temperature and pressure are altered

infmitesimally, the system remaining in equilibrium under the new condi-

tions, the change in the free energy must be the same in each phase, i.e.,

dFA = dFB .

In a phase change there is no work done other than work of expansion, and
so it is permissible to use equation (25.19), namely,

dFA = VAdP - SAdT and dFB = VBdP - SBdT.

Since dFA is equal to dFB ,

VAdP - SAdT = VBdP - SBdT,
dP SB - SA AS
dT VB - (27.3)

The term AS is the entropy increase for the transfer of a specified quantity,

e.g., 1 mole, of substance from phase A to phase B, and hence it is equal to

&H/T, where AH is here the molar latent heat of the phase change taking

place at the temperature 5P; making this substitution, equation (27.3)

becomes

dT

where AV is the difference of the molar volumes in the two phases. This

expression is a form of the equation first derived by B. P. E. Clapeyron
(1834) ;

it gives the variation of the equilibrium pressure with temperature
for any two phases of a given substance.

An alternative derivation of the Clapeyron equation makes use of the

Maxwell equation (20.12), viz.,

OPX-OfX-
which is applicable to any closed system, homogeneous or heterogeneous, in

equilibrium with the external pressure. For a system consisting of two

phases of the same substance and, in fact, for any univariant system of

more than one component, the equilibrium pressure, e.g., the vapor pressure,
is dependent on the temperature only, and is independent of the volume.
It is thus possible, for a univariant system, to replace (dP/dT)v by dP/dT
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without the constant volume restriction.* If AS is the entropy change
when any given quantity of the substance is transferred from one phase to

the other, at constant temperature, and AF is the accompanying increase

of volume, then AS/AV will be constant at a given temperature, for both

AS and AF are extensive properties which are proportional to the quantity
of material transferred. Thus, (dS/dV) T may be replaced by AS/AV at

the given temperature, so that equation (27.5) becomes

dP = AS AH
dT AF TAV '

utilizing the fact that AS is equal to AH/T, where AH is the latent heat of

the phase change. The result obtained in this manner is identical with

equation (27.4). The quantities AH and AF must refer to the same amount
of the substance under consideration; this is usually either 1 gram or 1 mole.

27c. Solid-Liquid (Fusion) Equilibria. Solid and liquid phases of a given
substance are in equilibrium at the melting (or freezing) point; hence, in

the Clapeyron equation (27.4), T is the melting point when P is the external

pressure exerted on the system. By writing equation (27.4) in the in-

verted form

an expression is obtained which gives the variation of the melting point T
with the external pressure P. If F, is the molar volume of the solid phase
and Vi is that of the liquid at the temperature T and pressure P, then AF
may be taken as Vi F,, representing the increase of volume in transferring
1 mole from solid to liquid phase. The corresponding value of AH, i.e.,

the heat absorbed, in the same phase change is the molar heat of fusion, and
this may be represented by AH/, so that equation (27.6) becomes

dT _ T(Vt - F.)

dP
--

AH,
(27 '7)

Alternatively, Vi and F. may be taken as the respective specific volumes;
AH/ is then the heat of fusion per gram.

From a knowledge of the volumes (or densities) of the liquid and solid

phases, and of the heat of fusion, it is possible to determine quantitatively
the variation of the melting point of the substance with pressure. Quali-

tatively, it may be observed that if Fj is greater than F,, that is, the liquid
has a smaller density than the solid, at the melting point, then dT/dP will

be positive, and the melting point will increase with the applied pressure.
This is the case for the majority of solids. However, if Vi is smaller than Ft ,

the liquid having the greater density, increase of pressure will cause the

melting point to decrease. Very few substances, notably ice, bismuth and

antimony, exhibit this type of behavior.

* It should be understood that a system containing an inert gas, in addition to a pure
liquid (or solid) and its vapor, is not univariant.
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Problem: The specific volume of liquid water is 1.0001 cc. g."
1 and that of

ice is 1.0907 cc. g.~
l at C; the heat of fusion of ice at this temperature is 79.8

cal. g.*
1
. Calculate the rate of change of melting point of ice with pressure in

deg. atm.~l
.

If the values of Vi, V, and AH/ given above are inserted in equation (27.7),
it is readily seen that dT/dP will then be in deg. cc. cal.""1 . In order to convert
this into deg. atm.~l

,
use may be made of the fact that 0.0242 cal. cc.""1 atm."1 is

equal to unity (cf . 3h) ; hence, multiplication of the result obtained above by
this figure will give dT/dP in deg. atm."1

. Thus, since T is 273.2 K,

dT = 273.2 X (1.0001
-

1.0907) X 0.0242

dP 79.8

- - 0.0075 atm.-1
.

Since dT/dP is small, it may be assumed to remain constant over an appreciable

pressure range, so that the melting point of ice (or the freezing point of water)
decreases by 0.0075 C for 1 atm. increase of the external pressure. It is because
the specific volume oi" ice is greater than that of water at C, that increase of

pressure is accompanied by a decrease in the melting point.

Instead of utilizing the Clapeyron equation (27.7) to determine the

variation of the melting point with pressure, it may be applied to calculate

the heat of fusion from a knowledge of dT/dP, or rather of AT/AP, which
is assumed to be constant; the specific volumes, or densities, of the solid

and liquid phases must, of course, be known.
27<L Equilibrium Between Two Crystalline Forms. The variation with

pressure of the transition point at which two crystalline forms of a solid are

in equilibrium is given by an equation of the same form as (27.7). Thus,
if ft represents the form stable below the transition point, and a. the form
stable above the transition point, then

dT _ T(Va - V,)

dP
--

' {27 -8)

where dT/dP is the rate of change of the transition temperature T with the

external pressure P; Va and Vp are the molar (or specific) volumes of the

indicated forms, and AH is the molar (or specific) heat of transition, all

determined at the temperature T. It is unnecessary to enter into a detailed

consideration of equation (27.8), for the comments made in connection with

(27.7) can be readily adapted to the present case.

Problem: The specific volume of monoclinic sulfur (stable above the transition

point) is greater than that of rhombic sulfur by 0.0126 cc. g.~
l
. The transition

point at 1 atm. pressure is 95.5 C, and it increases at the rate of 0.035 atm.""1
.

Calculate the heat of transition in cal. g.~
l
.

If the values given for A7/AP and V V
ft are inserted directly into equa-

tion (27.8), it is readily found that A# will be obtained in cc. atm.-1
g.~

l
. Since

the result is required in cal. g.""
1
, all that is necessary is to multiply by the con-
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version factor 0.0242 cal. cc.~l atm."1
, which is equal to unity. Hence, at

273.2 + 95.5 - 368.7 K,

T(Va - V
ft) _ 368.7 X 0.0126 X 0.0242

1
~~

(AT/AP)
~

0.035

= 3.2 cal. g.-
1

.

^ 27e. Liquid-Vapor (Vaporization) Equilibria. As applied to the equi-

librium between a liquid and its vapor at a given temperature and pressure,

the Clapeyron equation is used in the forms of both equations (27.4) and

(27.6). The increase of volume AF accompanying the transfer of 1 mole

(or 1 gram) of liquid to the vapor state is equal to Vv Vi, where F and

Vi are the molar (or specific) volumes of the vapor and liquid, respectively;
*

AHV is the molar (or specific) heat of vaporization, so that equation (27.6)

becomes
dT _ T(VV

-
F,) ,

dP ~' (27 '9)

The boiling point of a liquid is the temperature at which the pressure of

the vapor in equilibrium with it is equal to the external pressure; hence,
in the form of (27.9), the Clapeyron equation gives the variation of the

boiling point T of a liquid with the external pressure P.

On the other hand, if the equation is inverted, it gives the rate of change
of vapor pressure f of the liquid with the temperature; thus,

(27.10)V 'dT T(VV
-

Fi)

These equations may be utilized for various purposes; for example, if the

variation of boiling point with pressure or, what is the same thing, the

variation of vapor pressure with temperature, is known, it is possible to

calculate the heat of vaporization. Alternatively, if the latter is available,
it is possible to determine dT/dP or dp/dT, for the rate of change of boiling

point or of vapor pressure, respectively.

Problem: Assuming the heat of vaporization of water to be constant at 539
cal. g.""

1
,
calculate the temperature at which water will boil under a pressure of

77.0 cm., the boiling point being 100.00 C at 76.0 cm. The specific volume of

water vapor at 100 C and 76.5 cm. pressure is 1664 cc. g.""
1 and that of liquid

water is (approximately) 1 cc. g.-
1
.

Since A#v ,
Vv and Vi should be mean values, assumed constant over a range

of temperature, dT/dP in equation (27.9) may be replaced by A!F/AP. This

quantity is required in deg. cin."1
(of mercury), but it is convenient to obtain the

result first in deg. atm.~*. The procedure is similar to that described in the

* The volumes F, and Fi measured at the same temperature and pressure, i.e., the

vapor pressure, are sometimes called the "orthobaric volumes."

t The symbol p will be used for vapor pressure (and for partial pressure), and P for

external (atmospheric) or total pressure.
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problem in 27c; the use of V vt Vi and A//, given above yields AT/AP in deg.
cc. cal.~l

, and multiplication by 0.0242 cal. cc.""1 atm."*1 converts this into deg.
atm.-1

. Thus, by equation (27.9), taking T as 100.0 C, i.e., 373.2 K,

AT = 373.2 X (1664 - 1) X 0.0242

AP 539

= 27.9 atm.~l
.

If this is divided by 76.0, the number of cm. of mercury equivalent to 1 atm. pres-

sure, the result is 0.37 cm.""1
,
so that an increase of 1.0 cm. in the external pres-

sure, in the vicinity of 76 cm., causes the boiling point to rise by 0.37 C. Hence
the required boiling point at 77.0 cm. pressure is 100.37 C.

\j
27f. The Clausius-Clapeyron Equation. If the temperafa

near the critical point, the volume of the liquKJ^jLe*, Vi, is small in com-

parison~with thatrof the vapor, i.e.,^Fi, atJjie same tempfiraturlTancr pres-

sure; hence, Vv Vi inay be replaced i>y Vv, and then- equation (27.10)

may be written as

dp _~

Further, in regions well below the critical point, the vapor pressure is rela-

tively small, so that the ideal gas law may be assumed to be applicable, i.e.,

pVv = RT, where Vv is the molar volume of the vapor and p is its pressure
at the temperature T. Substituting RT/p for Vv in equation (27.11), this

becomes
1 dp ^ Aff

p'dT RT2 '

*L . ^. (27.12)
dT RT2 ^ }

This expression is sometimes referred to as the Clausius-Clapeyron equation,
for it was first derived by R. Clausius (1850), in the course of a compre-
hensive discussion of the Clapeyron equation. Although the Clausius-

Clapeyron equation is approximate, for it neglects the volume of the liquid
and supposes ideal behavior of the vapor, it has the advantage of great

simplicity. In the calculation of dp/dT (or dT/dP) from a knowledge of

the heat of vaporization,* or vice versa, it is not necessary to use the volumes
of the liquid and vapor, as is the case in connection with equations (27.9)

and (27.10). However, as may be expected, the results are less accurate

than those derived from the latter expressions.

27g. Integration of the Clausius-Clapeyron Equation. A particular ad-

vantage of the Clausius-Clapeyron equation is the readiness with which it

can be integrated; thus, if the heat of vaporization is assumed to be inde-

pendent of temperature, integration of equation (27.12) between the tem-

perature limits of Ti and T* and the corresponding vapor pressures pi and

* For the heats of vaporization of a number ofcommon liquids, see Table 2 at end of book.



228 PHASE EQUILIBRIA 27h

pj, gives

If A#, is expressed in cal. mole"1

,
then R will be 1.987 cal. deg.-

1 mole~ l
f

and hence, after converting the logarithms, equation (27.13) becomes

pi 4.576 !- 2

recalling that 4.576 arises from the product of the logarithm conversion

factor (2.303) and the value of R, i.e., 1.987, in cal. deg.-
1 mole"-1

. This

equation may be used to calculate the heat of vaporization if the vapor
pressures of the liquid at two adjacent temperatures are known. Because
A/f is not really independent of temperature, as was assumed in the integra-
tion of equation (27.12), the value obtained is actually a mean for the given

temperature range. Alternatively, if a mean heat of vaporization is avail-

able, the vapor pressure at one temperature (or boiling point at a given

pressure) can be calculated (approximately) if that at another is known.

Problem: The mean heat of vaporization of water in the temperature range
between 90 and 100 C is 542 cal. g.""

1
. Calculate the vapor pressure of water at

90.0 C, the value at 100.0 C being 76.0 cm.

In equation (27.14), A//v is the molar heat of vaporization of water in cal.;

since the molecular weight is 18.02, A#, is 542 X 18.02 cal. mole-1
. At 100.0 C,

i.e., 373.2 K, which will be taken as 2%, the value of p* is 76.0 cm.; it is required to

find pi at Ti equal to 90 C or 363.2 K. Hence, by equation (27.14),

76.0 = 542 X 18.02 / 373.2 - 363.2 \
g

pi 4.576 \ 363.2 X 373.2 /'

Since pi has been expressed in cm., p\ will be in the same units; therefore,

Pi = 52.9 cm.

(The experimental value is 52.6 cm.).

27h. Vapor Pressure-Temperature Relationships. General integration
of the Clausius-Clapeyron equation (27.12), assuming AHV to be constant,

gives

In p = + constant, (27.15)
til

or, converting the logarithms and expressing R in cal. deg."*
1 mole"1

,
so that

IP is the heat of vaporization in cal. mole"1
,
this becomes

-
C, (27.16)

where C is a constant. It follows, therefore, that the plot of the logarithm
of the vapor pressure, i.e., log p, against the reciprocal of the absolute tern-
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peraturo, i.e., 1/3T, should be a straight line of slope A/7,,/4.576. Thus,
the slope of this plot can be used to obtain an approximate indication of the

mean molar heat of vaporization over a specified temperature range.
Because A//v is not constant, equation (27.16) is applicable over a re-

stricted range of temperature; in order to extend the range, allowance should

be made for the variation of the heat of vaporization with temperature,

Thus, A// may probably be expressed as a power series function of the

absolute temperature, viz.,

AHV
= A# + <*T + PT* + -

-, (27.17)

where A/Jo, a, 0, etc., are constants for the given liquid. As a first ap-

proximation ail terms beyond the linear one may be neglected, so that

aT, (27.18)

and if this result is substituted in equation (27.12), integration gives

/y

In p = - tfi5 + jf in T + constant. (27.19)RT H

This expression, which is of the form

log P =
^ + B log T + C, (27.20)

where A, B and C are constants, is similar to the equation proposed em-

pirically by G. R. Kirchhoff (1858) and others. It is seen, therefore, that

over an appreciable temperature range the plot of log p against 1/T should

not be exactly linear, in agreement with observation on a number of liquids.

Several other vapor pressure-temperature relationships of a more com-

plicated character have been proposed from time to time, but as these have

no obvious thermodynamic basis or significance they will not be considered

here. It may be mentioned, however, that if the experimental vapor pres-

sure data can be expressed with some accuracy as an empirical function of

the temperature, for example of the form

log? = ~ + B + CT + DT* + -

-, (27.21)

it is possible by differentiation to derive an expression for d In p/dT in terms

of the temperature. By the use of the Clausius-Clapeyron equation, the

heat of vaporization at any temperature can then be calculated. This

procedure, however, assumes the applicability of the ideal gas law to the

vapor. To avoid the error introduced by this approximation, dp/dT, which

is equal to p X din p/dT is determined from (27.21), and the Clapeyron

equation (27.10) is used; the orthobaric volumes Vv and V\ of vapor and

liquid must then be known.
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Problem: The vapor pressure of liquid chlorine, in cm. of mercury, can be

represented by the expression

log P - - + 9.91635 - 1.206 X 10~*T + 1.34 X 10-'7*

The specific volume of chlorine gas at its boiling point is 269.1 cc. g.~
l and that

of the liquid is (approximately) 0.7 cc. g.~
l
. Calculate the heat of vaporization

of liquid chlorine in cal. g.~~
J at its boiling point, 239.05 K.

Differentiation of the equation for log p with respect to temperature gives

_ j.206 X 10-* + 2.68 X

Further, since

dlog p 1 dlnp _ 1
dp^

~dT~~ ~2303' dT
~~

2.303?
"

df '

it is readily found that at the boiling point, 239.05 K, when p is 76.0 cm.,

-~ = 3.343 cm. (of mercury) deg.""
1

0.04398 atm.

By equation (27.10),

Aff.- r<V,- 7,)^,
and if V9 and V i are 269.1 and 0.7 cc. g.-

1
, respectively, and dp/dT is 0.04398 atm.

deg."
1
, A#, will be in cc.-atm. g."

1
;
to convert this to cai. g.""

1
,
it is necessary to

multiply by 0.0242 cal. cc.~l atm.-1
, which is equal to unity. Thus, at 239.05 K,

&HV - 239.05 X 268.4 X 0.04398 X 0.0242
= 68.3 cai. g.-

1
.

271. The Ramsay-Young and Diihring Rules. If the B log T term in equation
(27.20) is neglected, that is to say, if the heat of vaporization is taken as constant,
the vapor pressure variation with temperature of two liquids A and B can be

represented by

log PA - ^~ + CA and log PB - ^ + (7B . (27.22)

If these substances have the same vapor pressure p at the temperatures TA and

TB, respectively, then

so that,

-

(27-23)

Suppose that at the temperatures T'A and TB, respectively, the two liquids have
the same vapor pressure p'\ hence,

-
<27 -24>
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Subtraction of equation (27.24) from (27.23) then gives

(27 '25)

where C\ is a constant. This result was obtained empirically by W. Ramsay and
S. Young (1885), who found that C\ was small; in fact, if the substances A and B
are related chemically Ci is almost zero, so that equation (27.25) becomes

rp mf
-
r< <27 -26>

It is to be expected, therefore, that for any two liquids which are related chem-

ically, the ratio of the temperatures at which they have the same vapor pressure should

be constant. The same result can be stated in another way: the ratio of the boiling

points of two similar liquids should have the same value at all pressures.
The extent to which the Ramsay-Young rule, represented by equation (27.26),

is applicable may be illustrated by reference to water and ethanol. The vapor
pressure of water is 12.2 mm. of mercury at 287.5 K, and ethanol has the same

vapor pressure at 273.2 K; the ratio of these temperatures is 287.5/273.2, i.e.,

1.052. Since the normal boiling points are 373.2 K for water and 351.5 K for

ethanol, these are the temperatures at which both have the same vapor pressure
of 1 atm.; the ratio of these temperatures is 373.2/351.5, i.e., 1.062. The two
ratios thus agree to within about one per cent.

Problem: The vapor pressures of molten silver and sodium are both 1 mm. of

mercury at 1218 C and 441 C, respectively. The normal boiling point of sodium
is 882 C, estimate that of silver.

Let A represent silver, and B sodium; TA is 1218 + 273 = 1491 K, and T*
is 441 + 273 = 714 K; T'* is 882 + 273 1155 K, and consequently by equa-
tion (27.26),

1491 = T'A

714
"

1155'

T'A = 2412 K.

The boiling point of silver is thus calculated to be 2412 - 273 = 2139 C. (The

experimental value is 1950 C; in view of the extrapolation from 1 mm. to 760 mm.
involved in this calculation, the agreement is quite reasonable.)

By rearrangement of equation (27.26) it is found that

Ti - TB TB T'B
or

constant> <27 -27)

the constant being independent of pressure; this constant should, in fact, be equal
to the ratio of the normal boiling points, e.g., T'JT'^ of the two liquids. This
result is an expression of the rule discovered by U. DUhring (1878). Like the

Ramsay-Young equation (27.26), the DUhring equation (27.27) is particularly

applicable to pfcirs of similar liquids, although it has been found to hold with a
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moderate degree of accuracy for substances of different types, provided both are

associated, e.g., hydroxylic compounds, or both are nonassociated.

Provided the vapor pressures of a reference liquid are known over a range of

temperatures, it is possible, by means of the Ramsay-Young or Duhring rules, to

establish the complete vapor pressure-temperature variation of another substance

from one datum for the latter. It should be noted that the results obtained cannot
be very precise, for the equations (27.26) and (27.27) can be exact only if the

vapor pressures are represented by the linear equations (27.15), and if the constant

Ci in equation (27.25) is zero.1

27j. Trouton's Rule and Vapor Pressure Relationship. It has been found

experimentally that for a number of substances the molar entropy of vaporization
A3V at the normal boiling point has approximately the same value of 21 cal. deg.~

l

mole"1
. Thus, if A//v is the molar heat of vaporization at the normal boiling

point !T&, i.e., at 1 atm. pressure, then

21 cai. deg.-
1 mole-1

,

which is a statement of the generalization known as Trouton's rule (F. Trouton,
1884). This rule holds for many familiar compounds with molecular weights in

the region of 100, provided they are not associated in the liquid state. Various

attempts have been made to modify the Trouton rule, so as to make it more widely

applicable. According to J. H. Hildebrand (1915) the entropy of vaporization
is more nearly constant if it is measured at the same concentration of the vapor
in each case, instead of at the same pressure of the vapor, as in Trouton's rule.

Although these empirical rules, strictly speaking, lie outside the realm of

thermodynamics, they have been mentioned because of their practical value in

certain cases. At the normal boiling point the vapor pressure of a liquid is equal
to 1 atm.; hence, equation (27.16) can be written as

log l = ~ + c'

As seen above, however, AHv/Tb may be taken as equal to 21 for many non-
associated substances; hence, for such substances C should have a constant

value, viz.,

The expression for the vapor pressure p. in atm., of any substance to which
Trouton's law is applicable thus becomes

log p(atm.) - - - + 4.59. (27.28)

As a first approximation, the molar heat of vaporization at the boiling point may
be used for A//v ; an expression for the variation of the vapor pressure with tem-

perature is thus obtained from the one datum. Alternatively, if the vapor pres-

1 Ramsay and Young, Phil. Mag., 20, 515 (1885); 21, 33 (1886); 22, 32, 37 (1887);

Diiliring, Ann. Physik, 11, 163 (1880); Leslie and Carr, Ind. Eng. Chem., 17, 810 (1925):

Perry and Smith, ibid., 25, 195 (1933); Carr and Murphy, /. Am. Chem. Soc., 51, 116 (1929);
Lamb and Roper, ibid., 62, 806 (1940).
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sure is known at one temperature, A//v may be evaluated from equation (27.28)
and the result may then be assumed to apply at other temperatures. Another
possibility, which is equivalent to the use of Trouton's law, is to choose the known
vapor pressure as 1 atm. at the boiling point in order to determine A//v ;

this value
can then be inserted in equation (27.28).*

Problem: The normal boiling point of benzene is 80.1 C; estimate its vapor
pressure at 40 C.

Since T* is 80.1 + 273.2 = 353.3 K, then by Trouton's law, A//v is21 X 353,3
= 7419 cal. mole" 1

;
hence by equation (27.28),

7419
log p(atm.) = -

; + 4.59.

At 40 C, the value of T is 40.0 + 273.2 - 313.2 K, so that

7419
log p(atm.) = - + 4.59 = - 0.587,

p = 0.259 atm.
= 0.259 X 76.0 = 19.6 cm.

(The experimental value is 18.1 cm. The agreement is not too good, but the
calculation may be used to give an approximate indication of the vapor pressure
when experimental data are lacking.)

It is of interest to note that equation (27.28) is essentially equivalent to the

Ramsay-Young rule. In the first place, it is based on equation (27.16), and in
the second place, it supposes that the constant C has the same value for all liquids;
if this were the case, CA CB *n equation (27.24) and hence Ci in equation (27.25)
would have to be zero. Hence, (27.28) would lead directly to the Ramsay-
Young equation.

27k. Solid-Vapor (Sublimation) Equilibria. An equation of exactly the
same form as (27.10) is applicable to solid-vapor equilibria; thus,

dT
~
T(V9

-
7,)

'

where AH. is the molar (or specific) heat of sublimation, and Vv and V, are
the molar (or specific) volumes of vapor and solid, respectively, at the equi-
librium temperature and pressure. This equation gives the variation of the

vapor (sublimation) pressure of the solid. The Clausius modification in

which V. is neglected and Vv is taken as equal to RT/p, as for an ideal gas,
is permissible, and hence an equation similar to (27.12) can be used for the

vapor pressure of the solid. By means of this equation, or by the integrated
form (27.14), the various calculations referred to in connection with liquid-

vapor systems can be made. Since the procedure is obvious it is not

necessary to enter into details.

* For estimation of heats of vaporization, see Watson, Ind. Eng. Chem., 23, 360 (1931);
Meissner, ibid., 33, 1440 (1941); bthmer, ibid., 34, 1072 (1942). For vapor pressure charts,
see Gcrmann and Knight, ibid., 26, 1226 (1934); Cox, ibid. f 28, 613 (1936); Killefer, ibid.,

30, 477, 565 (1938); Davis, ibid., 32, 226 (1940); 33, 401 (1941).
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It is well known that the vapor pressure curves of the solid and liquid

phases of a given substance meet at the triple point; thus, in Fig. 16 the

curve AO represents solid-vapor equilibria, OB is for liquid-vapor, and OC
for solid-liquid equilibria. The three curves meet at the triple point
where solid, liquid and vapor can coexist in equilibrium. It will be observed
that near the triple point, at least, the slope of the curve AO on the pressure-

temperature diagram is greater than that of OB; in other words, near the

point 0, the value of dp/dT is greater

along AO than along OB. That this

must be the case can be readily shown

by means of the Clausius-Clapeyron

equation. For the solid-vapor system,
this can be written in the form

dp. _ Aff,

dT P'RT*'

whereas, for the liquid-vapor system,

dpi ^ &HV

dT Pl
RT*'

At the triple point p and pi, the vapor
pressures of solid and liquid, respec-

tively, are equal, and so also are the

temperatures T; the relative values of

the slopes dp9/dT and dpi/dT are thus
determined by the heats of sublima-
tion (Aff,) and of vaporization (A//,),

respectively. By the first law of

thermodynamics, the change of heat content in the transition solid > vapor,
at a given temperature, must be the same whether it is carried out directly
or through the intermediate form of liquid. Hence, AH must be equal to
&HV + A/f/, at the same temperature, so that A#, is greater than A/f,;
the slope dpt/dT of the curve AO is thus greater than dpi/dT of the curve

OB, in the vicinity of the triple point.

271. Variation of Equilibrium Latent Heat with Temperature. If a given sub-
stance can occur in two phases, A and B, one of which changes into the other as
the temperature is raised, then the value of the accompanying latent heat and its

variation with temperature depend on whether the pressure is maintained con-

stant, e.g., 1 atm., or whether it is the equilibrium value. In the former case the
Kirchhoff equation (12.7) will apply, as stated in 12j, but if equilibrium condi-
tions are postulated allowance must be made for the change of pressure with

temperature.
For any process, the change of Aft with temperature and pressure can be

represented by the general equation

Temperature

Fio. 16. Pressure-temperature

equilibrium diagram
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and hence,

d(Aff) r a(Aff) ] ra(Aff)]
dp

dT
~

[ dT \ P +L dP \ T dT

It can be seen from equation (20.20) that

and according to the Clapeyron equation (27.4), dP/dT = AH/T&V for a phase
change; insertion of these results into equation (27.30) then leads to

d(Aff)

dT

for the variation of the equilibrium latent heat AH with temperature. In this

expression ACp is equal to (CP)B (CP)A, where the constant pressure is the

equilibrium pressure of the system at the temperature T.

For the liquid-vapor change the value of d(AHv)/dT is not greatly different

from ACp, as may be seen from the following considerations. As shown in 27f,

AV may be taken as equal to V v ,
the volume of the liquid being neglected in com-

parison with that of the vapor, and this may be replaced by RT/p, the vapor being
assumed to behave as an ideal gas. In this event,

f d(AV) ] _R A7
L 9T JP p T '

and hence the quantity in the braces in equation (27.31) is equal to zero. It

follows, therefore, that provided the temperature is not too near the critical point,
and the foregoing approximations may be made with some justification, equation
(27.31) becomes

ACp = (CW. - (CW,f (27.32)

where (Cp) and (Cp)i are the heat capacities of vapor and liquid, respectively,
at constant pressure equal to the vapor pressure at the given temperature.

In connection with the variation of the equilibrium heat of fusion with tem-

perature, this simplification is not permissible. However, |[d(AVJ/dT^p is usually
small for the solid-liquid phase change, and so equation (27.31) reduces to

(Cp) t
_

(<7,) + .

(27.33)

27m. Dependence of Vapor Pressure on Total Pressure. When a liquid
or a solid vaporizes into a vacuum and a state of equilibrium is reached,
the same pressure, i.e., the vapor pressure, is exerted on the two phases in

equilibrium. If by some means, e.g., by introducing an insoluble, inert

gas in the free space above it, the pressure on the liquid (or solid) is changed,
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the pressure of the vapor will be affected. The problem is treated below
in a general manner, without restriction as to the nature of the two phases
or the method of applying the pressure.

Consider any two phases A and B of a given substance in equilibrium
at a specified temperature; the pressures on the respective phases are then

PA and PB* Since the phases are in equilibrium, the molar free energies
must be the same in each phase ( 27a) ; hence, if a small change were made
in the system in such a manner that the equilibrium was not disturbed, the

free energy increase dFA of one phase would be equal to the increase dFB of

the other phase. Suppose the pressure on the phase A is altered by an

arbitrary amount rfP^; let the accompanying change in the pressure on B,
which is required to maintain equilibrium, be dPB . The molar free energy

changes of the two phases are given by equation (25.24) as

dFA VAdPA and dFB - YsdPs,

where VA and VB are the molar volumes of the phases A and B, respectively,
under the equilibrium conditions. As seen above, dFA must be equal to

dFB,
so that

VAdPA = VBdPB .

Hence, the criterion of equilibrium, at constant temperature, is given by

which is a generalized form of the equation first derived by J. H. Poynting
(1881). For equilibrium to be retained, the pressure changes on the two

phases must evidently be inversely proportional to the respective molar

(or specific) volumes.
In the special case in which A is a liquid and B a vapor, the Poynting

equation is

&l!
dP V.'

where P is the total pressure on the liquid and p is the vapor pressure. As-

suming the vapor to behave as an ideal gas, V, is equal to RT/p, so that

The effect of external (total) pressure on the vapor pressure of a liquid is

small, so that dp/dP may be replaced by Ap/AP, where Ap is the increase

of vapor pressure resulting from an appreciable increase AP in the total

pressure exerted on the liquid. Hence, equation (27.35) may be written

in the form

(27.86)
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from which the effect on the vapor pressure resulting from an increase ot

the external pressure, e.g., by introducing an inert gas, can be readily
evaluated.

Problem : The true vapor pressure of water is 23.76 mm. at 25 C. Calculate

the vapor pressure when water vaporizes into a space already containing an
insoluble gas at 1 atm. pressure, assuming ideal behavior.

In using equation (27.36), it will be seen that Ap and p must be in the same
units, the exact nature of which is immaterial; further, the units of R are deter-

mined by those of Vi and AP. Thus, if Vi is expressed in liters and AP in atm.,
R will be 0.082 liter-atm. deg.~

l mole"1
. The specific volume of water may be

taken, with sufficient accuracy, as 1.0, so that V i is about 18 ml. or 0.018 liter

mole""1
.

When the water vaporizes into a vacuum, the vapor pressure p is equal to the

total pressure, i.e., 23.76 mm. at 25 C or 298 K; the external pressure is increased

by approximately 1 atm., assuming the vapor pressure not to alter greatly, so

that AP is 1.0. Hence, by equation (27.36),

Ap 0.018 X 1.0

23.76 0.082 X 298

A 0.018 X 23.76
A" -

0.082 X 298
=

The vapor pressure is thus 23.76 + 0.018 27.78 mm.

The effect of external pressure on the vapor pressure of a liquid is seen

to be relatively small; nevertheless, the subject has some significance in

connection with the theory of osmotic pressure.
8

28. SYSTEMS OP MORE THAN ONE COMPONENT

28a. Conditions of Equilibrium. If a system of several phases consists of

more than one component, then the equilibrium condition .of equal molar
free energies in each phase requires some modification. Because each phase

may contain two or more components in different proportions, it is necessary
to introduce partial molar free energies, in place of the molar free energies.

Consider a closed system of P phases, indicated by the letters a, 6, . . .
, P,

containing a total of C components, designated by 1, 2, . . .
, C, in equilibrium

at constant temperature and pressure which are the same for all the phases.
The chemical potentials, or partial molar free energies ( 26c), of the various

components in the P phases may be represented by Mi(a>, M2(<o, -
, Akx) J

Mi(fc>> M*<&), --, Atcw; ; MKP), M2(P>, -, ^C(P). Suppose various small

amounts dn moles of the components are transferred from one phase to

another, the temperature and pressure remaining constant; the whole closed

system is in equilibrium, and so according to equation (26.16) the sum of all

8
See, for example, 3. Glasstone, "Textbook of Physical Chemistry," 2nd ed., 1946,

Chap. IX.
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the fjtdn terms for all the phases will be zero. It follows, therefore, that

+ Mi<6)dni<&> -f- -f-

4-

0. (28.1)

At equilibrium, the total mass of each component will be constant, since

the whole system is a closed one; hence,

+ dnc(p> = 0. (28.2)

If the expression in equation (28.1) is to remain zero for all possible var-

iations dn in the numbers of moles of the components, subject only to the re-

strictions represented by the equations (28.2), it is essential that

Ml(a)
=

Ml(6)
= ' ' = Ml(P)=-=

M2(P)

(28.3)

It is seen, therefore, that when a system consisting of a number of phases

containing several components is in complete equilibrium, at a definite tem-

perature and pressure which are uniform throughout, the chemical potential

of each component is the same in all the phases. It may be noted that in the

special case of a single component, the partial molar free energy (or chemical

potential) is equal to the molar free energy (see footnote, 26b), and the

equations (28.3) become identical with (27.2).

If the phases of a system are not in equilibrium, the chemical potentials
of the components will not be the same in each phase. There will then be
a tendency for each component, for which such a difference exists, to pass

spontaneously from the phase in which its chemical potential is higher to

that in which it is lower, until the values become identical in the two phases.
In other words, matter tends to flow spontaneously from a region of higher
to one of lower chemical potential. There is thus seen to be an analogy
between chemical potential and other forms of potential, e.g., electrical

potential, energy potential, etc.

28b. The Phua Rule. By means of the conclusion reached in the pre-

ceding section, it is possible to derive the familiar phase rule which gives
the relationship between the number of components and phases in equi-
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librium in a system, and the number of variables, i.e., the degrees of freedom,
which must be specified in order to define the system completely. The
composition of a phase containing C components is given by C 1 concen-
tration terms, for if the concentrations of all but one of the components are

known, that of the last component must be equal to the remainder. Hence,
for the compositions of P phases to be defined it is necessary to state P(C 1)

concentration terms. The total number of concentration variables of the

system is thus P(C 1). In addition to the composition, the uniform

temperature and pressure of the system must be specified, and assuming that
no other factors, such as surface or electrical effects, influence the equi-

librium, it follows that

Total number of variables = P(C 1) + 2.

The fact of the closed system being in equilibrium, at a given temperature
and pressure, leads to the result represented in the equations (28.3) : this is

equivalent to a set of C(P 1) independent equations which automatically
fix C(P 1) of the possible variables. The number of variables remaining
undetermined is then [P(C - 1) + 2]

- C(P - 1)
= C - P + 2. In

order to define the system completely, therefore, this number of variables

must be arbitrarily fixed, and hence must be equal to the number of degrees
of freedom (F), or variance, of the system; hence,

F = C - P + 2, (28.4)

which is the phase rule derived by J. W. Gibbs (1875).
It may be noted that if a particular component is absent from any phase,

the number of composition variables is reduced correspondingly. At the

same time there will be a similar decrease in the number of independent
equations determined by the equality of the chemical potentials, i.e., equa-
tions (28.3). The net effect will thus be to leave unchanged the number of

degrees of freedom, as given by equation (28.4). The phase rule in its

familiar form will then hold for the system even if all the components are

not present in every phase

28c. TJnivariant System of Several Components. It was indicated in 27b
that an equation of the form of (27.4) is applicable to any univariant system,

although its derivation was restricted to a system of one component. It is of

interest to show, by a more detailed procedure, that the same result can be ob-

tained if the univariant system consists of several components. However, to

avoid too great a complication of symbols, etc., the discussion will be restricted

to a system of two components. According to the phase rule, if such a system is

to be univariant, i.e., F =
1, with C =

2, the value of P will be 3, so that there

must be three phases in equilibrium.
A simple example of such a system would be a saturated solution of a non-

volatile solid in equilibrium with vapor of the solvent; the three phases would
then be (i) the solid component 1, e.g., a salt, (ii) a saturated solution of this

substance in the liquid component 2, e.g., water, and (iii) the vapor of the latter.

Suppose a small"change is made in the system, which is maintained in equilibrium,
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involving changes of temperature dT and pressure dP and transfer of dn\ moles
of component 1 from the solid to the solution. The accompanying change in the

partial molar free energy (chemical potential) of the substance in the solution is

then given by

whereas the corresponding change in the chemical potential of the pure solid,

which is equivalent to the change in its molar free energy, is

dp> <28 -6>

the primes being used to indicate the solid phase. Since the molar free energy
of the solid is independent of the amount, there is no term involving dn\ in equa-
tion (28.6). By utilizing equations (26.23) and (26.26), i.e., (dm/dT)p,n Bit

and (dfjLi/dP)T,vi
=* P, equation (28.5) can be written as

d/ii - - &idT + FidP + (*r
1
} dm. (28.7)

Similarly, by means of equations (25.20) and (25.21), i.e., (3F/dT)P - - S, and

(6F/dP)T V, equation (28.6) can be.transformed into

dp{ = - S(dT + V{dP. (28.8)

Since the system has remained in equilibrium, the chemical potential of the given

component must be the same in both phases, i.e., solid and solution; hence, the

change of chemical potential in one phase must be equal to the accompanying
change in the other phase. In other words, dpi and dn{, as given by equations
(28.7) and (28.8), must be identical; it follows, therefore, by subtraction, that

- (S l
- S'JdT + (7, - VJ)dP + (^} dni - 0. (28.9)

Suppose that when the dn\ moles of solid (solute) are transferred from the solid

phase to the solution, as described above, it is necessary to transfer dn* moles of

the component 2 (solvent) from the vapor to the solution in order to maintain the

equilibrium. By proceeding in a manner precisely similar to that used in deriving

equation (28.9), it is found that

-
OS,

- SS)dT + (f, - VfidP + (j&) dm -
0, (28.10)

where SJ and V% refer to the molar entropy and volume of component 2 in the

(pure) vapor phase.
If equation (28.9) is multiplied by n\, the number of moles of constituent 1

in the solution, and (28.10) is multiplied by n>, the number of moles of the sub-

stance 2, and the results added, it is possible to eliminate the last term in each

equation. The reason is that

* Aa in f 26a, the subscript N is used to represent constant composition.
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is equivalent to n\d^i + nyd^ for the solution at constant temperature and pres-

sure, and by the Gibbs-Duhem equation (26.15) this is zero. Hence, it follows that

- (n^ - niSI + naS2
- n&ftdT + (n l? l

- n^ { + n 2P 2
- n^V^dP = 0. (28.11)

The expression in the first parentheses, which may be rearranged to take the form

(niSi + nt$i) (niSi + ntS"), is equal to the increase of entropy accompanying
the formation of a saturated solution from n\ moles of solid 1 and n 2 moles of

vapor 2, since n\S\ + riaSa represents the entropy of the solution [cf. equation
(26.6)], ni^i is that of n i moles of the pure solid 1, and n 2S that of the n2 moles of

pure vapor 2. This quantity may be represented by AS, and the quantity in the

second parentheses may similarly be replaced by AV, the corresponding increase

of volume. It follows, therefore, that equation (28.11) may be written as

- &SdT + AVdP =
0,

dP = AS
dT AV '

and since AS may be replaced by &H/T, this becomes

which is identical in form with equation (27.4).

It is thus seen that an equation analogous to that of Clapeyron has been
derived for a univariant system of two components, and a similar result

could be secured for any number of components. As obtained above, equa-
tion (28.12) gives the variation with temperature of the vapor pressure of a
saturated solution; A/? is the change of heat content accompanying the

formation of the given solution from the solid solute and the vapor of the

solvent, and AF is the corresponding volume change. The same equation,
when inverted, will give the influence of pressure on the eutectic temperature
at which two pure solids 1 and 2 are in equilibrium with saturated solution.

In this case AH and AF are the heat content and volume changes, respec-

tively, for the formation of the equilibrium solution from the appropriate
amounts of the two constituents in the solid state.

28d. Properties of the Surface Phase. In the thermodynamic treatment
of systems in equilibrium it has been postulated, up to the present, that the

only force acting upon the system is that due to the external pressure. The
work done is then only work of expansion, represented by PdV. It is

possible, however, that other forces may have to be taken into consideration.

For example, thermodynamic systems are invariably subject to gravita-
tional and surface forces, but in most instances their influence is so small as

to be negligible. Electrical and magnetic forces may also be operative in

special circumstances. Of particular physicochemical interest are surface

forces, the effect of which becomes apparent when the quantity of matter

contained in the surface is relatively large in comparison with that of the

system as a whole.
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Consider a heterogeneous system, of one or more components, consisting
of two phases; there will then be a surface of separation between the phases.
The transition from one phase to the other, across the bounding surface, is

probably a gradual one, so that the surface of separation is not to be regarded
as sharp, but as a region of more or less definite thickness. For the present

purpose, the exact thickness of the region is immaterial, provided it contains

all the parts of the system which are within the influence of the surface

forces. Thus the two bulk phases, e.g., two liquids or a liquid and vapor,

may be thought of as being separated by a surface phase. It may be
remarked that the so-called surface phase is not a true phase in the usual

physical sense, but the description is convenient.

In order to derive the thermodynamic properties of the surface phase,
consider a hypothetical state involving an exact geometrical surface placed
between the two bulk phases. A suitable position for this imaginary surface

will be proposed later. The surface excess, which may be positive or nega-

tive, of any constituent of the system is then defined as the excess of that con-

stituent in the actual surface phase over the amount there would have been if both

bulk phases remained homogeneous right up to the geometrical surface. Thus
if n,* is the total number of moles of the constituent i in the system, c( and c?

are the numbers of moles per unit volume, i.e., the concentrations, in the

interior of the two bulk phases, and V and V" are the respective volumes
of these phases right up to the imaginary geometrical surface, then the

number of moles n\ of surface excess of the constituent i is given by

n, - c'iV + c?F" + nl (28.13)

The actual values nj, nj, . . .
,
for the surface excesses of the various com-

ponents of the system depend on the location postulated for the hypothetical
surface. For the general treatment which follows, its exact position need
not be specified, but subsequently this will be defined in a particularly
convenient manner.

The surface free energy F* may be expressed by a relationship similar to

equation (28.13), viz.,

F = F' + F" + F; (28.14)

where F is the total free energy of the system, consisting of the two bulk

phases and the surface phase; F' and F" are the free energies of the bulk

phases calculated on the assumption that they both remain homogeneous
right up to the hypothetical, geometrical surface. The free energy F9 may
thus be regarded as the contribution to the system made by the "surface

excess
11 amounts of the various constituents or, in other words, of the surface

phase. Other thermodynamic properties of the surface phase are defined in

a manner exactly analogous to equation (28.14), but the surface chemical

potential (partial molar free energy) M'/ and the surface entropy S' only will

be employed here.

28e. Equilibrium of Surface Phase. Consider a small change in the

system described above. The free energy change dF is then equal to
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dF' + dF" + dF9
. The first two terms, which refer to the homogeneous

bulk phases, are given by equation (26.13) as

dF' - - S'dT + V'dP' + /iidni + M + (28.15)

and

dF'
1 = - S"dT + V'dP" + Adifi + n"M + . (28.16)

In evaluating dF9 for the surface phase, it is necessary to take into account
the free energy change accompanying a change in the surface area. The
work required to increase the area of the surface by an infinitesimal amount
ds, at constant temperature, pressure and composition, is equal to yds,
where y is the quantity usually referred to as the surface tension.. The
latter is a measure of the reversible work which must be done for unit in-

crease in the surface area under the given conditions. Since the surface

work does not involve work of expansion against the external pressure, it

may be identified with the net work and hence with the free energy change
( 25b). The expression for dF9 for a small change in the system should
thus include the term yds. On the other hand, since the surface contribu-

tion to the volume may be ignored, the quantity corresponding to VdP may
be omitted. It follows, therefore, that

dF9 = - S'dT + yds + n[dn[ + 2̂dn
8
2 + -, (28.17)

where MI, M, ,
are the surface chemical potentials of the various con-

stituents of the system. It is consequently seen from equations (28.15),

(28.16) and (28.17), that dF, obtained by summing dF', dF" and dF9
,
is

dF - - SdT + V'dP' + V'dP" + yds
+ iVidn'i + I>?dnT + E^nJ, (28.18)

where S is the total entropy of the system, i.e., S' + S" + S*.

For a system in which the only force acting is that due to the external

pressure, the condition of equilibrium is given by equation (25.39) as

dFrt p = 0. When surface forces are significant, however, it is not difficult to

show that this result must be modified by stipulating constant surface area,

in addition to constant temperature and pressure, so that for equilibrium

dFTt p..
= 0. (28.19)

Upon applying this conclusion to equation (28.18), it is seen that

i + EMtdn? + MWnJ = (28.20)

at equilibrium. If there is no restriction concerning the passage of matter

between the two bulk phases and the surface phase, the variations dnj, dn?
and dn\ are independent, provided the sum for each component is equal to

zero, since no matter passes in or out of the system as a whole. It follows,

therefore, from equation (28.20) that for each constituent

M - A - MS- (28.21)
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This result is an extension of equation (28.3) ;
the surface chemical potential

of any constituent of a system is thus equal to ite chemical potential in (he, bulk

phases at equilibrium.
28f. The Gibbs Adsorption Equation. The surface free energy F* is the

sum of the contributions of the various constituents, i.e., nj/ii + n^nl + ,

[cf. equation (26.6)], and of a quantity depending upon the area of the

surface. The latter is equal to 75, where s is the total surface area; hence,

F' = ys + nfoi + n|M2 + , (28.22)

where nf, nj, . . ., are as defined by equation (28.13). Since F9
is a definite

property of the surface, depending only upon the thermodynamic state of

the system, dF* is a complete differential, and hence differentiation of equa-
tion (28.22) gives

dF9 - yds + sdy + n\dp\ + nM + + Adn\ + &dn\ +
- yds + sdy + nJ<M + Uridnl (28.23)

Upon comparison with equation (28.17), it is seen that

S'dT + sdy + 2X44 =
0,

and at constant temperature this becomes [cf. equation (26.15)]

sdy + ZX4f! =
0, (28.24)

thus providing a relationship between the change in surface tension and the

corresponding changes in the surface chemical potentials. Dividing through
by s, the surface area, the result is

dy + -<M + 25<*/*5 + =0,
s s

or, replacing n\/s by TI, nl/s by T2,
and so on,

dy + iWi + T2dM2 + -
0, (28.25)

where I\ Fa, . . ., are the excess surface "concentrations" of the various
constituents of the system; these "concentrations" are really the excess

amounts per unit area of surface. For a system of two components, e.g.,

a solution of a single solute, equation (28.25) becomes

dy + Tid/ii + Tdri = 0. (28.26)

at constant temperature.
If the system is in equilibrium, at constant temperature, pressure and

surface area, the surface chemical potential of any constituent must always
be equal to its chemical potential in the bulk phase, i.e., the solution, by
equation (28.21). It is thus permissible to write equation (28.26) in the

form

dy + r,dM i + Tjd/iJ - 0, (28-27)
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where MI and ^2 refer to the chemical potentials in the solution. It will be
recalled ( 28d) that n\ and nj, and hence FI and F2 , depend upon the arbi-

trary position chosen for the geometrical surface. In connection with the

study of dilute solutions it is convenient to choose the surface so as to

make FI zero; that is to say, the surface excess of constituent 1, the solvent,
is made equal to zero. In these circumstances equation (28.27) becomes

dy + F 2dM2 =

It will be seen later [equation (31.2)] that the chemical potential ^2 of

any constituent of a solution, e.g., the solute, may be represented by
M + RT In a2 ,

where M is a constant for the substance at constant tempera-
ture, and a2 is called the "activity

"
of the solute, the activity being an

idealized concentration for free energy changes. Upon making the substitu-

tion for M2, equation (28.28) becomes

\r = -2

For dilute solutions, 0,1 may be replaced by c, the concentration of the solute,
so that

RT\dlna T

(28-M>

The equations (28.28), (28.29) and (28.30) are forms of the Gibbs

adsorption equation, first derived by J. Willard Gibbs (1878); it relates the

surface excess of the solute to the variation of the surface tension of the

solution with the concentration (or activity). If an increase in the concen-

tration of the solute causes the surface tension of the solution to decrease,

i.e., (dy/dc)T, is negative, F2 will be positive, by equation (28.30), so that

there is an actual excess of solute in the surface; in other words, adsorption
of the solute occurs under these conditions. If (dy/dc) T is positive, F2 is

negative and there is a deficiency of the solute in the surface; this phenom-
enon is referred to as negative adsorption.

28g. Vapor Pressure and Solubility of Small Particles. Another effect of

surface forces relates to the change in certain physical properties, e.g., vapor
pressure and solubility, resulting from the difference in size of the particles of a
solid or drops of a liquid. Consider, on the one hand, a spherical drop or particle
of a pure substance, of radius r, in equilibrium with vapor at a pressure p. On
the other hand, consider a flat surface of the same substance, the vapor pressure

Po differing from that of the small particles. The free energy change dF for the

transfer of dn moles of substance from the flat surface to the spheres is equivalent
to the transfer of this quantity from pressure po to pressure p, at constant tern-
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perature. If the vapor behaves as an ideal gas, then by equation (25.25)

dF - dnRTln^- (28.31)

The increase of free energy for the process under consideration is to be attributed

to the fact that the addition of material to the small drops causes an appreciable
increase in the surface area, whereas for the flat surface the accompanying decrease

is negligible. The increase of free energy for a change ds in the surface area is

equal to yds, where y is the surface tension; hence it is possible to write equation
(28.31) as

dnRTln yds. (28.32)

If V is the molar volume of the substance under consideration, and the spher-
ical drop of radius r contains n moles, then

nV =

and upon differentiation it is found that

dn = ~ dr. (28.33)

The surface area s of the drop is equal to 4irr2
,
and hence

ds = Sirrdr. (28.34)

Consequently, by combining equations (28.32), (28.33) and (28.34), it is seen that

(28.35)
Po r

The vapor pressure of the spherical drops or particles is thus greater than that of the

fiat surface, the proportion increasing as the radius of the particles decreases.

The higher vapor pressure of small drops or particles accounts for their tendency
to disappear by "distillation" on to larger particles. Large drops or particles
thus tend to grow at the expense of smaller ones. If the vapor does not behave

ideally, equation (28.35) is not exact; as will be evident from the next chapter, the

correct form is obtained by using the "fugacity" in place of the vapor pressure.

Problem: The vapor pressure of a large (flat) body of water is 23.76 mm. at

25 C. Calculate the vapor pressure of drops of 10~~5 cm. radius. The surface

tension of water may be taken as 72.0 dynes cm."1 and its molar volume is 18.0

cc. mole""1
.

If y is in dynes cm.-1
,
V in cc. mole~l and r in cm., the right-hand side of

equation (28.35) would be in ergs mole""1
; hence, it is convenient to express

R as 8.314 X 107 ergs deg.""
1 mole"1

. Consequently, at 298.2 K,

8.314 X 10' X 2.303 X 298.2 log^ ~ 2 X TMX 18.0

p - 24.01 mm.

For particles in equilibrium with a saturated solution, the free energy of

transfer from a flat surface, also in contact with its saturated solution, can be
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expressed in terms of the concentrations of the solutions, at least for dilute solu-

tions (cf. Chapter XV). In this case, equation (28.35) takes the form

RT In - -
, (28.36)

Co r

where c and c represent the concentrations of saturated solutions in contact with
small particles and a flat surface, e.g., large crystals, respectively. In this case

-7 is the tension at the interface between the solid (or liquid) solute and the solu-

tion. It is evident that fine particles can have an appreciably larger solubility

than large crystals of the same substance. Strictly speaking, the activity of the

solute should be used instead of the concentration in equation (28.36), but this

refinement may be ignored for the present.

EXERCISES

1. The vapor pressures of carbon tetrachloride at several temperatures are

as follows:

t 25 35 45 55 C
p 113.8 174.4 258.9 373.6mm.

Plot log p against l/T and from the slope evaluate the mean heat of vaporization
of carbon tetrachloride in the given range.

2. From the results of the preceding exercise determine (approximately) the
constant C in equation (27.16), and see how close the result is to that expected
from Trouton's law. Using the values of AHV and C just obtained estimate the

normal boiling point of carbon tetrachloride. (The actual value is 76.8 C.)
3. At its normal boiling point (77.15 C) the orthobaric densities of ethyl

acetate are 0.828 (liquid) and 0.00323 (vapor) g. cc."1
. The rate of change of

vapor pressure with temperature in the vicinity of the boiling point is 23.0 mm.
deg."

1
. Calculate the heat of vaporization by (i) the Clapeyron equation, (ii) the

Clapeyron-Clausius equation.
4. Below its boiling point the variation of the vapor pressure of benzene with

temperature is given by

n** 1402.46 51387.5
log p(mm.) = 7.2621 ------

[Mathews, J. Am. Chem. Soc.
t 48, 562 (1926)] from which the boiling point is

found to be 80.20 C. The specific volume of benzene vapor at its boiling point at

1 atm. is 356 cc. g.""
1 and that of the liquid is 1.2 cc. g.""

1
. Calculate the heat of

vaporization of benzene at this temperature and estimate the boiling point at

77.0 cm. pressure.
5. Use the equation for log p as a function of temperature in the preceding

exercise to derive an expression for the variation of the heat of vaporization of

benzene with temperature. (The vapor may be supposed to behave ideally.)

6. Show that if TA and TB are the temperatures at which two liquids have the

same vapor pressure, then by the Ramsay-Young rule, log TA = log TB + const.;
the plot of log TA against log TB should thus be linear.

The vapor pressures of mesitylene at various temperatures are as follows:

t 60 80 100 120 C
p 67.35 150.8 247.25 381.1 mm.
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By means of these data and those given for carbon tetrachloride in Exercise 1,

determine how closely the Ramsay-Young rule is obeyed. (Plot the vapor pres-

sure as a function of temperature in each case, and determine the temperatures at

which the two liquids have the vapor pressures 120, 240 and 360 mm., and then

plot log TA against log jTs.)

7. At 110C, dp/dT for water is 36.14 mm. deg."
1

;
the orthobaric specific

volumes are 1209 (vapor) and 1.05 (liquid) cc. g.""
1
. Calculate the heat of vapor-

ization of water in cal. g."
1 at 110 C.

8. The mean heat capacity of water vapor in the range from 100 to 120 C
is 0.479 cal. g.~

l
,
and for liquid water it is 1.009 cal. g."

1
. Taking the heat of

vaporization of water as 539 cal. g."
1 at 100 C, determine the approximate value

at 110C, and compare the result with that obtained in the preceding exercise.

9. The melting point of benzene is found to increase from 5.50 to 5.78 C
when the external pressure is increased by 100 atm. The heat of fusion of benzene

is 30.48 cal. g.""
1
. What is the change of volume per gram accompanying the

fusion of benzene?
10. A liquid (mercury) normally boils at 357 C and its heat of vaporization is

68 cal. g.""
1
. It is required to distil the liquid at 100 C; estimate the approximate

pressure that would be used.

11. The variation of the vapor pressure of solid iodine is given by

OC10 00

log p(atm.) = -
^

- 2.013 log T + 13.374

[Giauque, /. Am. Chem. Soc., 53, 507 (1931)]. The heat of sublimation at 25 C
is 58.6 cal. g.~

l
,
and the specific volume of the solid is 0.22 cc. g"

1
. Estimate the

molar volume of the vapor at its equilibrium pressure at 25 C, and compare with

the ideal gas value.

12. The heat of vaporization of chlorobenzene at its boiling point (132.0 C)
is 73.4 cal. g."

1
. Estimate the (approximate) pressure in cm. of mercury under

which the liquid will boil at 130 C. Recalculate the result, taking V Vi as

277.5 cc. g.~* at the normal boiling point.

13. The true vapor pressure of ethyl acetate at 35 C is 59.0 mm. and its

density is 0.788 g. cc.^1
. Determine the change of vapor pressure resulting from

the introduction of an inert gas at 2 atm. pressure.

14. A hydrocarbon (n-heptane) is known to have a vapor pressure of 92 mm.
at 40 C. Estimate its normal boiling point. (The experimental value is 98.5 C.)

15. The normal boiling point of n-hexane is 69.0 C. Estimate its vapor
pressure at 30 C. (The experimental value is 185 mm.)

16. Dtihring's rule has been found to apply to unsaturated solutions of a given
solute, pure water being the reference liquid. An unsaturated solution of calcium
chloride (30 g. per 100 g. solution) has a vapor pressure of 240 mm. at 75.7 C;
pure water has this vapor pressure at 70.6 C. At what temperature will the

given solution boil at 1 atm. pressure?
17. Ramsay and Young (1886) found that in the vicinity of the boiling point

the quantity T(dp/dT) is approximately constant for many liquids. Show that

this is a consequence of the Ramsay-Young rule, and that it leads to the relation-

ship AT cTAP, where AT is the increase of boiling point for an increase AP in

the external pressure; for liquids obeying Trouton's rule, c should be approxi-

mately constant and equal to 1.2 X 10~* if AP is in mm. (Craft's rule). Estimate
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the boiling point of benzene at 77.0 cm. and compare the result with that obtained
in Exercise 4.

18. The vapor pressures of (a) solid, (ft) liquid, hydrogen cyanide are given by
[Perry and Porter, /. Am. Chem. Soc. 9 48, 299 (1926)]:

(a) log p(mm.) - 9.33902 - 1864.8/T (from 243.7 to 258 K)
(6) log p(mm.) - 7.74460 - 1453.06/!T (from 265 to 300.4 K).

Calculate (i) the heat of sublimation, (ii) the heat of vaporization, (iii) the heat
of fusion, (iv) the triple point temperature and pressure, (v) the normal boiling

point. (Note that the latent heats are approximately constant in the given
temperature ranges.)

19. Calculate the difference in slope, in mm. deg.~
l
,
between the vapor pressure

curves of solid and liquid hydrogen cyanide at the triple point, using the data in

the preceding exercise.

20. Show that if the vapor behaves ideally,

i-P- .

where p, and pi are the vapor pressures of solid and supercooled liquid, respec-

tively, at the same temperature T; AH/ is the (mean) molar heat of fusion and
Tm is the melting point of the solid. Use the data in Exercise 10, Chapter X to

calculate the mean heat of fusion of ice in the range from to 10 C.
21. Give the complete derivation of equation (28.10).
22. Give in full the derivation of an expression for the variation of a binary

eutectic temperature, i.e., for a two-component system, with pressure.
23. Prove the condition of equilibrium given by equation (28.19) which is

used when surface forces must be taken into consideration.

24. At appreciable concentrations, the variation of the surface tension y with
concentration c of aqueous solutions of the lower fatty acids is given by
7 = A + B log c, where A is a constant for each acid and B is approximately the
same for all the acids. Show that the extent of adsorption of a fatty acid at the

surface of its aqueous solution is then roughly independent of the concentration
of the solution and of the nature of the acid. Suggest a physical interpretation
of this result.



CHAPTER XII

FUGACITY AND ACTIVITY

29. FUGACITY OP A SINGLE GAS

29a. Definition of Fugacity. By utilizing the free energy fu notion, G. N.
Lewis (1901) introduced the concept of "fugacity," which has proved of

great value for representing the actual behavior of real gases, as distinct

from the postulated behavior of ideal gases. It has been applied especially,
as will be seen in 32c, in the study of chemical equilibria involving gases
at high pressures. The fugacity is chiefly employed in connection with gas
mixtures, but the introductory treatment will be restricted to pure gases;
at a later stage ( 30b) it will be extended to systems consisting of more than
one component.

1

According to equation (25.24), for an infinitesimal, reversible stage of an
isothermal change involving work of expansion only,

dF = VdP. (29.U
If the system consists of 1 mole of an ideal gas, V may be replaced by RT/P,
so that

dF a RT^ - RTd In P, (29.2)

where P is the pressure of the gas. For a gas which does not behave ideally,

equation (29.2) will not hold, but a function /, known as the fugacity, may
be (partially) defined in such a manner that the relationship

dF = RTdluf (29.3)

is always satisfied, irrespective of whether the gas is ideal or not. Integra-
tion of (29.3) at constant temperature gives

F = RTlnf+C, (29.4)

where F is the molar free energy of the gas and / is its fugacity; the integra-
tion constant C is dependent upon the temperature and the nature of the gas.

Actually, equation (29.4) defines the ratio of the fugacities at two differ-

ent pressures, i.e., the relative fugacity, at a given temperature. This may
be seen by considering the definite integral of equation (29.3), viz.,

F2
- Fx = RTlnfy, (29.5)

/i
1
Lewis, Proc. Am. Acad. Arts Sci., 37, 49 (1901); Z. phyf. Chem., 38, 205 (1901); G. N.

lewis and M. Randall, "Thermodynamics and the Free Energy of Chemical Substances/
1

1923, Chap. XVII.

250
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where FI and F2 are the molar free energies of the gas in two states, i.e.,

pressures, at the same temperature, and /i and /* are the corresponding

fugacities. The experimentally determinable quantity is the free energy
difference F2 FI (or AF), and this is seen by equation (29.5) to give the

ratio of the fugacities f*/fi. In order to express the fugacity in any state,

it is necessary therefore to assign it a specific value in a particular reference

state.

For an ideal gas the difference of molar free energy in two states at the

same temperature is given by equation (25.25), which may be written as

F2 -/<\ =
firing,

and comparison of this result with equation (29.5) shows that for an ideal

gas the fugacity is proportional to the pressure. It is convenient to take

the proportionality constant as unity, so that for an ideal gas//P =
1, and

the fugacity is always equal to the pressure. For a real gas, the fugacity
and pressure are, in general, not proportional to one another, and f/P is not
constant. As the pressure of the gas is decreased, however, the behavior

approaches that for an ideal gas, and so the gas at very low pressure is chosen

as the reference state and it is postulated that the ratio f/P of the fugacity
to the pressure then approaches unity; thus,

lira L = 1

P-+0
"

or

^
-> 1 as P - 0.

It will be seen shortly that this postulate, which makes the fugacity of a real

gas equal to its pressure at very low pressure, permits the evaluation of actual

fugacities at various pressures. It may be mentioned that since gas pres-
sures are usually expressed in atm., fugacities are recorded in the same units.

29b. Determination of Fugacity: Graphical Method. For an ideal gas
the fugacity is equal to the pressure at all pressures, but for a real gas this

is only the case at very low pressures when it behaves ideally. To determine
the fugacity of a gas at any pressure where it deviates from ideal behavior,
the following procedure has been used. By combining equations (29.1)
and (29.3), both of which apply to any gas, it follows that at constant

temperature

RTdlnf = VdP (29.6)
or

(dlof\ _ V
~~

RT ' (29 '7)
fdlnf\
\~tPj

where V is the actual molar volume of the gas at the temperature T and
pressure P. For an ideal gas the volume of 1 mole is RT/P, and for a real
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gas the quantity a, which is a function of the temperature and pressure,

may be defined by

(29.8)a p V.

Hence from equation (29.6),

RTdlnf = RT-:?
-

din/

dl p jf
dp '

If this result is integrated between a low, virtually zero, pressure and a given
pressure P, at constant temperature, the
result is

or

In L . _ JL C
P

= in P - JL

Pressure (P)

adP.

adP, (29.9)

since, as postulated above, f/P becomes
equal to unity, and hence In (f/P) be-

800 Atm. comes zero, at zero pressure.
2 To calcu-

FIQ. 17.

late the fugacity, therefore, it is necessary
to plot a, derived from experimentally
determined molar volumes of the gas at

various pressures, against the pressure;
the area under the curve between the pressures of zero and P gives the value
of the integral in equation (29.9).

Determination of fugacity
of nitrogen gas

Problem: Utilize the following data to calculate the fugacitiea of nitrogen gas
at the various pressures at C.

P
PV/RT

50
0.9846

100
0.9846

200
1.0365

400
1.2557

800
1.7959

1,000 atm.
2.0641

It can be readily seen from equation (29.8), which defines a, that

JBT \ !T/P

Since the PV/RT values for various P's are given above, it is possible to derive

2
Tunell, /. Phys. Chem., 35, 2885 (1931), has suggested that it would be preferable to

define the fugacity by means of equation (29.9) ; the conditionsf/P -* 1 and/ -* as P -*
then follow automatically.
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the corresponding a/RT values; these may be plotted against P (Fig. 17),* and
hence the integral of a/RT between zero and any pressure P may be evaluated

graphically. By equation (29.9) this is equal to In (//P), and hence f/P and/
can be determined; the results are given below.

P a/RT Integral f/P f

50 atm. 3.08 X 10~< atmr1 0.0206 0.979 48.95 atm.
100 1.54 0.0320 0.967 96.7

200 - 1.82 0.0288 0.971 194.2

400 - 6.39 - 0.0596 1.061 424.4

800 - 9.95 - 0.3980 1.489 1191

1,000
- 10.64 - 0.6060 1.834 1834

29c. Determination of Fugacity from Equation of State. If / is the

fugacity of a gas at pressure P, and/* is the value at a low pressure P*, then

integration of equation (29.6) or (29.7) gives

(29 - 10)

The variable of the integrand in equation (29.10) is now changed by inte-

grating by parts; thus,

/p "iv /v
I VdP = PV\

-
I PdV

JP* J 7* Jy*

= PV - P*V* - PdV,
Jy*

where V* is the molar volume corresponding to the low pressure P*. Since

the gas then behaves almost ideally, it is permissible to replace P*V* by RT,
and upon substituting the result in equation (29.10), it is seen that

Utilizing the postulate that//P approaches unity at low pressure, i.e., /*/P*
is virtually unity, it follows that In (///*) may be replaced by In (//P*),
that is, by In/ In P*; hence,

In/ - In P* +~ (PV -RT - C
V

PdV\ . (29.11)

By means of an equation of state, it is possible to express P as a function of

V, at constant temperature, and hence the integral in (29.11) can be
evaluated analytically.

* The shape of the curve at low pressures has been adjusted to the fact that a then
tends to an approximately constant value (cf. 29d).
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The procedure may be illustrated by reference to a von der Waals gas, for

which the equation of state is

/>___, (29.12)

where a and b may be regarded as constants, independent of the pressure, that

have been derived from experimental P-V data at the given temperature. By
equation (29.12),

^V -b
and hence

c Pdv = c J^5 dv - f ~ dv
*/ir# */ v* \Jv1f

J?T* In _^_^_^__ I __ . ____"~~ xV J- 111 _. ^ , | "TT '

_^ .

Since V* is very large, V* 6 may be replaced by 7*, which is equal to RT/P*,
and a/F* can be neglected; thus,

/"/V*
PdV

+ (29.13)

It can be readily shown from the van der Waals equation (29.12) that

RTb - -

y -.5 y >

and combination of this result with equations (29.11) and (29.13) gives

(29'14)

Consequently, the fugacity of a van der Waals gas at any pressure can be calcu-

lated from the volume at that pressure, at the specified constant temperature,

provided the van der Waals constants for the given gas are known. The values

of a and 6 to be used here are those which have been derived from actual P-F
measurements at the required temperature. Because of the incomplete quanti-
tative nature of the van der Waals equation (cf. Chapter II), these will differ

from one temperature to another; in any event they will not be identical with the

tabulated a and b values, for the latter are usually based on the critical data ( 5d).
It is only when other information is lacking that these may be used to obtain an

approximate indication of the fugacity.

The fugacities of oxygen at a number of pressures at C have been
calculated by G. N. Lewis and M. Randall 8

using equation (29.14); a was
taken as 1.009 liter2 atm. mole-2 and b as 2.64 X 10~2 liter mole"1

.* The

* Lewis and Randall, rcf. 1, p. 196.
* The conventional values of a and 6 for oxygen, derived from critical data, are 1.32

and 3.12 X 10~*, respectively (see Table I).
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results are recorded in Table XX; the figures given under the heading PM.
are the pressures which an ideal gas would exert if it occupied the same
volume as the actual gas at the given temperature.

TABLE XX. FUQACITT OF OXYGEN AT C

P f Pld. f/P P/Pld.

50 aim. 48.0 52.0 0.960 0.961
100 92.5 108 0.925 0.929
200 174 220 0.87 0.91

400 338 381 0.85 1.05

600 540 465 0.90 1.29

Even though a and b are derived from actual P-V-T data, the fugacitics
obtained from equation (29.14) may not be too reliable over a range of

pressures because of the approximate nature of the van der Waals equation.

By using a more exact equation of state, such as the Beattie-Bridgeman
equation, better values for the fugacities can be obtained, but since this

equation involves five empirical constants, in addition to R, the treatment
is somewhat more complicated than that given above. 4

29d. Approximate Calculation of Fugacity. It is an experimental fact,

with which the van der Waals equation is in agreement (cf. Chapter II,

Exercise 7), that at not too high pressures the value of PV for any gas is a
linear function of its pressure at constant temperature; thus,

PV - RT - AP,

where A may be taken as constant at a given temperature. From this

equation it is seen that a, defined by equation (29.8), is given by

RT
17 A

<* =
-p--

V = A,

so that a is (approximately) constant over a range of pressures, provided

they are not too high. Utilizing this result, equation (29.9) becomes

or

(29- l5)

At moderate pressures f/P is not very different from unity (cf. Table XX),
and so it is possible to make use of the fact that In x is approximately equal
to x 1 when x approaches unity; hence, equation (29.15) becomes

/_, __P
P RT

4 Maron and Turnbull, Ind. Eng. Chem., 33, 69, 246 (1941); see also, Brown, ibid., 33,
1536 (1941); Maron and Turnbull, J. Am. Chem. Soc., 64, 44 (1942).
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Upon introducing the definition of a, it is seen that

P*V
'-!& (29- 16)

so that the approximate fugacity of the gas can be determined directly from
its pressure and molar volume. This result may be put into another form
of interest by introducing Pia., referred to above; this is equal to RT/V,
and hence,

It can be seen from Table XX that this relationship is approximately true

for oxygen at C up to pressures of about 100 atm., and so equation (29.16)

may be utilized to give reasonable values of the fugacity at moderate pres-
sures. For gases which depart from ideal behavior to a greater extent than
does oxygen, however, equation (29.17), and hence (29.16), does not hold

up to such high pressures, except at higher temperatures.
It may be mentioned here that although the fugacities in Table XX are

always less than the corresponding pressures, this is not always the case

(cf. problem in 29b). For hydrogen and helium, for example, even at

moderate pressures, at ordinary temperatures, PV is greater than RT, and
hence it is evident from equation (29.16) that the fugacity will then be

greater than the pressure. The results obtained for hydrogen at 25 C are

recorded in Table XXI. 5

TABLE XXI. FUGACITY OF HYDROGEN AT 25 C

Pressure 25 50 100 200 600 1,000 atm.

Fugacity 25.4 51.5 106.1 225.8 685 1,899 atm.

29e. Generalized Method for Determining Fugacities. The definition

of a given by equation (29.8) may be written in an alternative form, viz.,

RT T7 RT(, PV
a = V = I 1p P \ RT

The factor PV/RT is the compressibility factor K, considered in earlier

sections ( 5i, 20e), so that

RT n .

<***(!-*).

If this is inserted in equation (29.9), it follows that

ln/lnP+ f
P
f-Z-idP, (29.18)

Jo *

* Deming and Shupe, Phys. Rev., 40, 848 (1932); see also, idem., ibid., 37, 638 (1931);

38, 2245 (1931); 56, 108 (1939).
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or, replacing the P terms in the integral by the corresponding, reduced

pressure T,

^-^
dT, (29.19)

ir being equal to P/PC, where Pc is the critical pressure of the gas.

It was seen in 5i that at a given reduced temperature and pressure the

compressibility factors * of all gases are approximately equal; hence equa-
tion (29.19) is a generalized expression which may be plotted graphically on
a chart so as to give the value of In (//P), or of f/P itself, for any gas in

terms of the reduced temperature and pressure. In constructing the chart

the values of K are derived from Fig. 4, and the integral in equation (29.19)

is evaluated graphically.
6 An example of such a chart is given in Fig. 18

in which f/P is plotted as ordinate with the reduced pressure IT as the

abscissa and the reduced temperature 6 as the parameter. For reasons

which will be understood later ( 30b), the ratio of the fugacity of the gas
to its pressure, i.e., f/P, is called the activity coefficient of the gas at the

given pressure.

Problem: Utilize Fig. 18 to estimate the fugacity of nitrogen gas at C and

pressures of 50, 100, 200 and 400 atm.

Since T for nitrogen is 126 K, it follows that 6 is 273/126 = 2.17; Pc is 33.5

atm., and the respective values of v are given below. By utilizing these results,

the following data for f/P are obtained from Fig. 18, and hence the fs can be
calculated.

P * f/P f

50 atm. 1.5 0.98 49 atm.
100 3.0 0.97 97
200 6.0 0.98 196

400 12 1.07 428

(The results are seen to be in very good agreement with those obtained by the

accurate procedure based on P-V data in the problem in 29b.)

291. Variation of Fugacity with Temperature and Pressure. For two
states of a gas in which the molar free energies are F and F*, and the corre-

sponding fugacities are / and /*, equation (29.5) becomes

F - F* - RT In L
, (29.20)

where F* and /* refer to a very low pressure when the gas behaves almost

ideally. Upon dividing through equation (29.20) by T, and rearranging,

Newton, Ind. Eng. Chem., 27, 302 (1935); see also, Selheimer, Souders, Smith and

Brown, ibid., 24, 515 (1932); Lewis and Luke, ibid., 25, 725 (1933); Lewis, ibid., 28, 257

(1936); for a nomograph applicable below the critical point, see Thomson, ibid., 35, 895

(1943).



29f FUGACITY OF A SI.VGLB GAS 259

the result is

/ F F*

By equation (25.28),

L

and so it is readily found by differentiation of equation (29.21) with respect
to temperature, at constant pressure, that

a inA _n*-H , .

' (29>22)

since /* is equal to the gas pressure at very low pressures and hence is inde-

pendent of temperature. In this expression H is the molar heat content of

the gas at the given pressure P, and H* is the value at a very low, i.e., zero,

pressure; hence, H* H is the increase of heat content accompanying the

expansion of the gas to zero pressure from the pressure P, at constant tem-

perature, This is, in fact, the quantity discussed in 20e, so that the results

in Fig. 14 may be utilized to calculate the change in the fugacity of a gas
with temperature, at constant pressure. In a sense, Fig. 18 already includes

the variation of fugacity with temperature, but more reliable values may
be obtained from Fig. 14 if the fugacity is known accurately at one tempera-
ture. However, because of the variation of H* H itself with temperature,
the direct use of equation (29.22), in conjunction with Fig. 14, is not simple.

The temperature dependence of fugacity may be related to the Joule-Thomson
coefficient MJ.T. of the gas. Since (d///dP)r is equal to MJ.T.CP [^equa-
tion (11.5)],

p / dH\ rp
} dP - MJ.T.CpdP, (29.23)Xp

/ dH\ rp

(^ } dP -
J

MJ.T.

the low pressure, for which //* applies, being taken as zero, and combination of

this result with equation (29.22) gives

As a first approximation, Cp may be treated as independent of the pressure, and
if MJ.T. is expressed as a function of the pressure, it is possible to carry out the

integration in equation (29.24); alternatively, the integral may be evaluated

graphically. It is thus possible to determine the variation of the fugacity with

temperature.

The influence of pressure on the fugacity of a gas at constant temperature
is given by equation (29.7) which has been used in connection with the

determination of fugacities. It is consequently unnecessary to discuss this

expression further.
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29g. Fugacity of Solids and Liquids. Every solid or liquid may be re-

garded as having a definite vapor pressure at a given temperature; although
this vapor pressure may be extremely small for so-called nonvolatile sub-

stances, there is, nevertheless, always a definite pressure at which a solid

or liquid is in equilibrium with its vapor, at constant temperature. Since

the system is in equilibrium, the molar free energy of the liquid (or solid)

must be the same as that of the vapor ( 27a). It follows, therefore, from

equation (29.4), that the fugacity of the liquid (or solid) will be equal to

that of the vapor with which it is in equilibrium provided, of course, that

the reference state is taken to be the same in each case. If the pressure of

the vapor is not too high, its fugacity will be equal to the vapor pressure;
hence the fugacity of a liquid (or solid) is measured, approximately, by its vapor

pressure. This rule is frequently employed, although it is not exact. If the

vapor pressure is high enough for departure from ideal behavior to be con-

siderable, the fugacity may be derived by means of equation (29.16).

Problem: The vapor pressure of liquid chlorine is 3.66 atm. at C, and the

molar volume of the vapor under these conditions is 6.01 liters mole"1
. Calculate

the fugacity of liquid chlorine at C.

The fugacity of the liquid is equal to that of the vapor at C and 3.66 atm.,
with V equal to 6.01 liters mole*"1

; hence, by equation (29.16), with T equal to

273 K and R as 0.0820 liter-atm. deg.~
l mole-1

,
it follows that

, (3.66) X 6.01 OK
f = 0.082X273

~ 3 -5

The fugacity of liquid chlorine is thus 3.59 atm. at C, which is somewhat less

than its vapor pressure.

The variation of the fugacity of a solid or liquid with pressure or tem-

perature is expressed by equations similar to those applicable to gases.

Since equations (29.1) and (29.3), the latter partially defining the fugacity,
will hold for solid, liquid or gaseous substances, the result obtained by
combining them, viz., equation (29.7), gives the effect of pressure on the

fugacity at constant temperature in each case. It should be noted, however,
that V refers to the molar volume of the particular phase under consideration,

since this is its significance in equation (29.1).

By following the procedure given in 29f, with / representing the

fugacity of pure liquid or solid, an equation exactly analogous to (29.22) is

obtained for the variation of the fugacity with temperature at constant

pressure. As before, H* is the molar heat content of the gas, i.e., vapor, at

low pressure, but H is now the molar heat content of the pure liquid or solid

at the pressure P. The difference H* H has been called the ideal heat
of vaporization, for it is the heat absorbed, per mole, when a very small

quantity of liquid or solid vaporizes into a vacuum. The pressure of the

vapor is not the equilibrium value, but rather an extremely small pressure
where it behaves as an ideal gas.
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30. MIXTURES OF GASES

30a. Mixture of Ideal Gases. In the thermodynamic study of mixtures

of gases it is necessary to utilize the partial molar free energy, i.e., the

chemical potential, in place of the free energy. The treatment may be
introduced by considering, first, a system consisting of a mixture of ideal

gases. According to equation (26.28), the variation with total pressure P
of the chemical potential /it of any constituent i in a mixture of ideal gases,

can be expressed in the form

dn = RT^ - RTd \n P (30.1)

at constant temperature and composition. Since ni and n are constant,
it follows from equation (5.6) that d In p- = d In P; hence, in a given mix-
ture of ideal gases at constant temperature,

dju, = RTd In p^ (30.2)

Upon integration this gives
* ^ i I?1P In T f^Cl Q\

where M* is the integration constant, the value of which depends on the

nature of the gas, and also on the temperature. It will be seen from equation
(30.3) that M* is the chemical potential of the gas i, at the given temperature,
when its partial pressure p* is unity. According to equation (30.3), the
chemical potential of any constituent of a mixture of ideal gases is deter-

mined by its partial pressure in the mixture.

The partial pressure p< of an ideal gas is related to its concentration c

in the mixture by p* = RTd ( 5b), and if this is introduced into equation
(30.3) the result is

Mi - (M* + RT In RT) + RT In a
- M* + firinc<, (30.4)

where M? for the given gas is also dependent on the temperature.
Another possibility is to express p* as N<P, where N< is the mole fraction

of the gas i in the mixture and P is the total pressure [equation (5.8) ].

Insertion of NP for p> in equation (30.3) then gives

Mt = (M* + fir In P) H
_ .

* i DT* 1v-k -.r /on K\MN T~ Ki in N, (oU.5;

where the quantity MN now depends on both temperature and the total pressure.
30b. Mixtures of Real Gases. For a mixture of real gases, the fore-

going results are no longer applicable, but the introduction of the fugacity
concept rectifies the situation. By comparison of equation (29.3) with

(30.2), it is possible to write for a constituent i of a mixture of nonideal gases,
at constant temperature,

di4i RTdlnfi, (30.6)
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where /* is the fugacity of the gas i in the given mixture. Upon integration,

the result, analogous to equation (29.4) for a single gas, is

M< - n* + RTlnf>, (30.7)

where the integration constant /x* depends on the nature of the gas and the

temperature of the system. The equation (30.7) partially defines the

fugacity in a mixture, and in order to complete the definition it is necessary
to specify the reference state. Comparison of equations (30.3) and (30.7)

shows that, as for a single gas ( 29a), the fugacity of an ideal gas in a mixture

is proportional to its partial pressure, and, as before, the proportionality
constant is chosen as unity, so that fi/pt is equal to unity, i.e., the fugacity
and partial pressure are taken to be identical, at all pressures. For a real

gas, the reference state is taken as the system at a very low total pressure, and
it is postulated that ft/p* approaches unity as the total pressure of the mixture

approaches zero. On the basis of this postulate, the constant /** in equation

(30.7) becomes equivalent to that in (30.3), and it may be regarded either

as the chemical potential of a real gas when its fugacity in the mixture is

unity [equation (30.7)], or as the chemical potential of the same gas if it

behaved ideally at unit (1 atm.) partial pressure [equation (30.3)], at the

same temperature.
For certain purposes, it is useful to employ a different procedure to

express the chemical potential of a real gas in a mixture; thus, equation
(30.3), for an ideal gas, is modified so as to take the form

jti
-

ju + RT]nai, (30.8)

where a is called the activity of the given gas in the mixture, and M is an

arbitrary constant. This equation may be taken as partially defining the

activity of any constituent of a mixture, the complete definition requiring

specification of the condition which determines /i.

Since M* and /A are both constants for a given substance at a specified

temperature, it is evident from equations (30.7) and (30.8) that the activity

is proportional to the fugacity, the actual value depending on the arbitrary
choice of the proportionality constant. This conclusion is of general ap-

plicability, as will be seen later.

According to equation (30.8), ju is the chemical potential of the gas i

when its activity a; is unity, but as the value of
/LI can be chosen arbitrarily,

the condition of unit activity is also arbitrary. The state of unit activity is

called the standard state, and there is some freedom in its choice ( 37a) ;

however, in practice there are certain states that are more convenient than

others in this connection. For a gaseous system it is advantageous to choose

the standard state of unit activity as that in which the fugacity of the gas is unity,

at the given temperature. In other words, the standard state is that of the

gas behaving ideally at unit (I atm.) pressure, i.e., the gas at unit fugacity.
This particular choice makes M in equation (30.8) identical with /i* in

(30.7), for the latter gives the chemical potential of the gas under consider-
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ation in the stale of unit fugacity. It is then possible to write equation
(30.8) in the form

/ii
= M* + RTlnap(i)-, (30.9)

where tf
/>(T)

is the activity of the constituent i on the basis of the proposed
standard state.

Since the actual chemical potential MI must have a definite value, irre-

spective of any choice of standard state, it follows that equations (30.7) and

(30.9) must be identical. As already seen, the constants are made equal by
the particular standard state chosen, and so the activity apu) of the given gas
in the mixture must be equal to its fugacity /t

- in that system. It should be

clearly understood, however, that this coincidence of fugacity and activity
is a consequence of the particular standard state defined above. It makes
the arbitrary proportionality constant, which relates the activity to the

fugacity, equal to unity. The two quantities are then expressed in terms of

the same units, e.g., atm.

In an ideal gas mixture, ap() should be equal to the partial pressure p,
since the latter is then identical with the fugacity; the ratio apw/pi, or the

equivalent quantity /;/p,, may be taken as a measure of the approach to

ideality. This dimensionless ratio, which tends to unity as the gas ap-

proaches ideal behavior, i.e., at very low total pressure, is called the activity

coefficient, and is represented by the symbol yp . Thus, omitting the sub-

script i to avoid the multiplicity of symbols, equation (30.9), for any con-

stituent of a mixture of gases, may be written as

M = M
* + RTlnypp, (30.10)

where p is the partial pressure of the given constituent. For the present

purpose the partial pressure may be defined, as indicated in 5i, by equation

(5.8), i.e., pi = N tP, where N is the mole fraction of the gas and P is the

total pressure of the mixture.

The standard state chosen in the foregoing is a hypothetical one, viz,,

an actual gas behaving ideally at 1 atm. pressure, which may be difficult to

comprehend. Its use may be avoided, however, by means of a reference

state which leads to exactly the same results. The reference state chosen

is identical with that employed in connection with fugacity, namely, the gas
at very low total pressure of the mixture. It is then postulated that the

ratio of the activity of any gas to its partial pressure becomes unity in the refer-

ence state, i.e., apa)/pi approaches unity as the total pressure becomes very
small. It will be evident that this postulate makes the activity of a gas in

a mixture identical with its fugacity, just as does the standard state pro-

posed above.

In some cases the standard state is chosen as the ideal gas at unit molar

concentration, and the chemical potential is expressed as

(30.11)
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where M? is the chemical potential the gas i would have if it behaved ideally
at unit concentration. This is equivalent to postulating that the ratio

c(i)/c
*

of the activity to the molar concentration becomes unity in the reference
state of low total pressure.^ With this choice of standard state, M? of equation
(30.4) is identical with M of equation (30.11), and hence

so that equation (30.11) becomes

M< - M* + RT In RT + RT In Oa (o- (30.12)

Comparison of this result with equation (30.9) shows that

RT In UT + RT In o^o = flZ
7
In ap(0 = 72T In /<,

and so, omitting the subscripts i for simplicity,

n
a*

,

J . /on 1^~"~
"P/TI

""" 'p ' ^oU.lo;

It is seen that the proportionality constant which relates the activity to the

fugacity of a given gas is now equal to l/RT.
The activity coefficient ya in the present case is defined by ac/c; this also

approaches unity as the gas approximates to ideal behavior, i.e., at very lo\v

total pressure, but it is not equal to yp . By equation (30.13)

~ = -c - -J
(30.14)

and, as seen above,

7, = ^ = ^, (30.15)

but p for a nonideal gas is not equal to RTc
t
and so the two activity coeffi-

cients will not be identical, although they will approach one another, and

unity, as the gas pressure is diminished.

30c. Variation of Fugacity with Pressure. The expressions for the varia-

tion with pressure and temperature of the fugacity of a gas in a mixture are

similar to those previously obtained for a pure gas cf. equations (29.7) and

(29.22)]. Since M* of a gas depends only on the temperature, differentiation

of equation (30.7) with respect to the total pressure, at constant temperature
and composition of the gas mixture, J gives

~ f \

(30.16)

fit will be observed that whereas the standard state is that in which the defined

activity is unity, the corresponding rcferenco state is that in which the defined activity

coefficient is unity.

J As in 26a, the subscript N is used to imply constant composition.
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Hence, by equation (26.26), i.e., (dfjn/dP)r.u = P<, where P< is the partial
molar volume of the gas i in the given mixture, it follows that

When the standard state is chosen so as to make the activity of a gas equal
to its fugacity, as explained above, this expression also gives the variation of
the activity with the total pressure.

To determine the dependence of the activity coefficient yp of a gas in a
mixture on the pressure, equation (30.15) is written in the logarithmic form,

hi7P = ln/< lnp<
= In /< In P In N,

the defined partial pressure p* being replaced by the product of the mole
fraction N< and the total pressure P. Upon differentiating with respect to P
it is seen that, at constant temperature and composition,

(30- 18)
J,N \ or /T.vr \ of /T.K

the mole fraction N t
-

being independent of the pressure. Upon introducing

equation (30.17), it follows from (30.18) that

~RT P RT '
t '

-where Vf , equal to RT/P, is the molar volume of the pure gas i at the total

pressure P of the mixture on the supposition that it behaves ideally.

For an ideal gas the activity coefficient yp is unity at all pressures, and

hence, by equation (30.19), F< F? is always zero, so that F is equal to F?.

Further, F* is now identical with the actual molar volume F* of the gas,

since the latter is supposed to be ideal. It follows, therefore, that the par-
tial molar volume "P,- of a gas in a mixture of ideal gases is equal to its molar
volume Ft in the pure state, at the same temperature and (total) pressure.

The total volume F of a mixture of gases, at constant temperature,

pressure and composition, is given by equation (26.6) as

F - mVi + n2?2 + + mVi + ,

where ni, ra2,
. . .

,
n it . . .

,
are the numbers of moles of the various gases

whose partial molar volumes in the given mixture are "Pi, "p2, . . .
, F<, . . .

,

respectively. As seen above, if all the gases are ideal, the partial molar

volume of each is equal to its molar volume at the same temperature and

pressure, so that

F

where Fi, Fj, . . ., F<, . . ., are the molar volumes of the constituent gases
in the pure state. The right-hand side of this expression is, incidentally,
also equal to the sum of the volumes of the individual gases before mixing.
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It is seen, therefore, that there would be no volume change upon mixing a

number of ideal gases. For real gases, Vi is, in general, not equal to Vt,

and hence the total volume of the mixture will usually differ from the sum
of volumes of the separate gases, and mixing 'will be accompanied by a

change of volume (cf., however, 5k).

30d. Variation of Fugacity with Temperature. If equation (30.7) is

divided through by T and rearranged, the result is

Making use of equation (26.25), it is found upon differentiation with respect

to temperature, at constant pressure and composition, that

JEM *?-*, (30.20)
dl /P,N RT2

where B is the partial molar heat content of the constituent i in the mixture,
at the given temperature and pressure. As stated in 30b, /** is equivalent
to the chemical potential of the gas if it behaved ideally at a pressure of

1 atm.; hence Bf refers to the partial molar heat content under these condi-

tions. It will be shown below that for an ideal gas in a mixture the partial

molar heat content is equal to the molar heat content of the pure gas at the

same temperature. It is consequently permissible to replace Bf in equation

(30.20) by ff*, where the latter is the molar heat content of the pure gas i

at very low pressures when it behaves ideally, i.e., in the reference state;

hence the equation for the variation of fugacity with temperature may be

written
/ *\ i_ f \ rr* fr

-
(30.21)

This equation also gives the dependence of the activity ap on the temperaturCj
since this activity is equal to the fugacity. Further, since ap is equal to

7Pp, where yp is the activity coefficient, the same equation represents the

variation of the activity coefficient with temperature, p being constant.

Since equation (30.20), like (30.21), also represents the variation with

temperature of the activity coefficient of a gas in a mixture, it follows that

for an ideal gas Bf fit is constant, and consequently Bi is equal to //*

at all pressures. By utilizing exactly similar arguments to those employed
in 30c when considering the volume of a mixture of ideal gases, it can be
shown that the partial molar heat content Bi of any gas in a mixture of ideal

gases is equal to its molar heat content Hi in the pure state at the same

temperature. It is unnecessary to specify the pressure because the molar
heat content of an ideal gas is independent of the pressure ( 9e). Since Bi
for an ideal gas is identical with #,-, it follows that the total heat content of

a mixture of ideal gases is equal to the sum of the heat contents of the indi-

vidual gases, and there is consequently no heat change upon mixing, at

constant temperature.
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30e. Determination of Fugacity in Gas Mixtures: The Lewis-Randall Rule.
Tho principle involved in the determination of the fugacity of a gas in a mixture
is analogous to that developed in 29b for a pure gas. According to equation
(30.17), at constant temperature and composition,

RTdlnfi

and if a quantity a, which is a function of the temperature, total pressure and

composition of the mixture, is defined for the gas i by
Tom

on =

where P is the total pressure, it is readily found that

t , (30.22)

Upon integration, at constant temperature and composition, between the limits

of the very low total pressure P* and the appreciable pressure P, it is seen that

of tdP. (30.23)

The partial pressure p* of the gas is equal to N<P*, where N< is the mole fraction

of the gas in the given mixture; hence, equation (30.23) becomes

or

In/, - In N, + In P + In 5 -
^L

C* a%dP.

If the low pressure P* may be taken as virtually zero, ff/p* is then unity, as

postulated in 30b, and hence In (ff/p*) is zero, so that

In/, = In N< + In P -
-=^=

f
*
aidP. (30.24)

If P-T7 data are available for the gas mixture, it is possible to determine the

partial molar volume t\ of any constituent (see Chapter XVIII), and hence a*

at various total pressures may be calculated from equation (30.22). The integral
in equation (30.24) can thus be evaluated graphically, and hence the fugacity /
of the gas whose mole fraction is N< in the given mixture, at the total pressure P,
can be determined.7

There is an interesting modification of equation (30.24) possible in the

special case in which there is no volume change when the gases are mixed at

constant temperature, at all pressures. In this event, the partial molar
volume Vi of each gas in the mixture must be equal to its molar volume.

7 Gibson and Sosnick, J. Am. Chem. Soc., 49, 2172 (1027); see also, Gillespie, ibid., 47,

305, 3106 (1925); 48, 28 (1926); Lurie and Gillespic, ibid., 49, 1146 (1927); Gillespie, Chem.

Rev., 18, 359 (19&).
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The last two terms in equation (30.24) are then equivalent to the fugacity

/{ of the pure gas i at the total pressure P of the mixture [cf . equation (29.9)].
It follows, therefore, that

Infi hiNi + In/J
or

/< N<f. (30.25)

The fugacity of a gas in a mixture would then be equal to the product of its mole

fraction in the mixture and its fugacity in the pure state at the total pressure of
the mixture. This rule was proposed from general considerations by G. N.
Lewis and M. Randall (1923). It follows from the arguments presented
above that it can apply only to a mixture of gases which is formed without

a volume change, sometimes called an "ideal mixture," not necessarily con-

sisting of ideal gases. Although the formation of gas mixtures is often

accompanied by a volume change, the rule represented by equation (30.25)
is frequently used, on account of its simplicity, to give an approximate indi-

cation of the fugacity of a gas in a mixture (cf. 32c). Actual determina-
tions of fugacities have shown that the Le>vis-Randall rule holds with a fair

degree of accuracy at pressures up to about 100 atm. for a number of

common gases.
8

31. LIQUID MIXTURES

3 la. Fugacity in Liquid Mixtures. The fugacity of a constituent of a

liquid mixture may be expressed in terms of the fugacity of the vapor of that

constituent in equilibrium with the mixture, just as was seen to be the case

for a pure liquid or solid ( 29g). Since the chemical potential of a given
substance must be the same in all phases at equilibrium, at constant tem-

perature, it follows that the fugacities must be equal, provided the same
reference state, namely the vapor at very low pressures, is used in each case.

If the vapor pressures are not too high, the vapor may be regarded as be-

having ideally, and so the fugacity of any constituent of a mixture is ap-

proximately equal to its partial vapor pressure in equilibrium with the

mixture; this approximation is frequently employed, especially for vapor
pressures of the order of 1 atm. or less.

The equations derived in 30c, 30d thus also give the variation with

pressure and temperature of the fugacity of a constituent of a liquid (or

solid) solution. In equation (30.17), Vi is now the partial molar volume
of the particular constituent in the solution

y
and in (30.21), Ri is the corre-

sponding partial molar heat content. The numerator H* Hi thus repre-
sents the change in heat content, per mole, when the constituent is vaporized
from the solution into a vacuum (cf. 29g), and so it is the "ideal" heat of

vaporization of the constituent i from the given solution, at the specified

temperature and total pressure.

8 G. N. Lewis and M. Randall, ref. 1, pp. 225-227; see also, papers mentioned in ref. 7,
and Merz and Whittaker, /. Am. Chem. Soc., 50, 1522 (1928); Krichevsky, ibid., 59, 2733

(1937).
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31b. Activities and Activity Coefficients in Liquid Solutions. Since the

chemical potential of any constituent of a liquid solution must be equal to

that of the vapor in equilibrium with it, it follows from equation (30.7) that

M< = M* + #rin/< (31.1)

is the general expression for the chemical potential of any constituent of a
solution. Alternatively, this quantity may be stated in terms of the activity

by means of the equation

at-, (31.2)

where a is the activity in the given solution, and M is the chemical potential
when the activity of i is unity. Comparison of equations (31.1) and (31.2)

shows, in agreement with the statement made in 30b, that the activity of

the constituent i of the given solution is proportional to its fugacity in that

solution. The actual value of the activity, and of the proportionality con-

stant relating it to the fugacity, depends upon the choice of the standard
state of unit activity.

For dilute solutions the best choice of standard state for the solute is

different from that adopted here (see 37b, III), but for the solvent in

dilute solutions and for all constituents of solutions of completely miscible,
or almost completely miscible, liquids, the standard state of unit activity
is usually selected as that of the 'pure liquid at the same temperature and 1 atm.

pressure. The activity scale is chosen, therefore, so as to make the activity
of any constituent of a mixture equal to unity for that substance in the pure
liquid state at 1 atm. pressure. According to the postulated standard state,

the value of M for a given liquid depends only on the temperature and is

independent of the pressure.
The standard state described above is equivalent to choosing the pure

liquid form of any constituent at 1 atm. as the reference state in which the

activity is equal to its mole fraction, i.e., unity. Thus, at 1 atm. pressure,
the ratio of the activity a to the mole fraction N, i.e., a t/Nt-, tends to unity
as the pure liquid state is approached. Except for an ideal solution (cf .

34a) at atmospheric pressure, the ratio a/N, which defines the activity
coefficient 7# of i in the given solution, varies with the composition and may
differ from unity. In general, the activity a< may be stated as the product
of the activity coefficient and the mole fraction of the particular constituent,

i.e., TNN.
The chemical potential of a pure liquid at a given temperature and 1 atm.

pressure, i.e., M ;
can be expressed by means of equation (31.1) as

M = M* + #Tln/?, , (31.3)

where/? is the fugacity of the pure liquid in its standard state at the specified

temperature. If this result is inserted into equation (31.2), it is seen that

M< - M* + RT In/? + RT In a<, (31.4)
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and comparison with equation (31.1) yields

a<=|j,
(31.5)

which may be taken as an alternative definition of the activity. It is seen

that the proportionality constant relating the activity to the fugacity of a

constituent of a liquid mixture is I//?, where /? is numerically equal to the

fugacity of the pure liquid at 1 atm. pressure, at the temperature of the

mixture.

31c. Variation of Activity in Liquid Mixtures with Temperature and
Pressure. If equation (31.2) is divided through by T, it is found upon
rearrangement that

and hence, upon differentiation with respect to temperature, at constant

pressure and composition, utilizing equation (26.25), the result is

^ "" Ri
(31.6)*

/

V N RT*

where Bi is the partial molar heat content of the constituent i in the given

solution, and //<, written in place of /?? to which it is equivalent, is its molar
heat content in the pure state at 1 atm. pressure, since M is the chemical

potential of the pure liquid i at this pressure. It will be seen later that

for an ideal solution the partial molar heat content is equal to the molar heat

content (cf. also 30d), so that Si and Eft are identical. In these circum-

stances, the activity at constant composition and pressure, is independent
of the temperature.

It should be noted that equation (31.6) also gives the variation of the

activity coefficient YN with temperature. This follows from the definition of

TN as a</N; since N<, the mole fraction of the given constituent, is constant,
the variation of the activity coefficient with temperature vrill be exactly the

same as that of the activity at constant composition and pressure.

Upon differentiating equation (31.2) with respect to pressure, at con-

stant temperature and composition, and utilizing equation (26.6), i.e.,

r,N = Vi, it follows that

JL(^i\ .H /am*
RT\dP) T,v RT' ^ ' n

where P is the partial molar volume of the constituent i in the solution. It

should be noted that since a pressure of 1 atm. was specified in the definition

of the standard state, /* is independent of pressure, as indicated earlier,

and hence (d^/dP) T is zero. In accordance with the remarks made above,
* The same result can be obtained directly from equations (30.21) and (31.5).

t This result can also bo obtained from equations (30.17) and (31.5).
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equation (31.7) also gives the variation of the activity coefficient YN with

pressure.
Further reference to activities and activity coefficients in connection

with the properties of various solutions mil be made in later sections.

Sufficient, however, has been given here for the present purpose, which is

the application of the concept of activity to the study of chemical equi-
librium to be taken up in the next chapter.

EXERCISES

1. Utilize the following data for C to calculate the fugacity of carbon
monoxide at 50, 100, 400 and 1,000 atm. by graphical integration based on

equation (29.9) :

P 25 60 100 200 400 800 1000 atm.

PV/RT 0.9890 0.9792 0.9741 1.0196 1.2482 1.8057 2.0819

[Bartiett, /. Am. Chem. Soc. t 52, 1374 (1932)]. Compare the results with those

given by the approximate rule applicable at low pressures.
2. Using the PV/RT values for 50 atm. and 400 atm. given in Exercise 1,

calculate the van der Waals a and b for carbon monoxide. From these determine
the fugacities at the various pressures and compare the results with those obtained
in the preceding exercise.

3. Show that at moderate and low pressures (and moderate temperatures)
f/P of a pure gas is approximately equal to its compressibility factor (K). Verify
this for * equal to 2 and values of of 1.20 or more by means of Figs. 4 and 18.

4. The compressibility of a gas may be represented by

PV/RT - A + BP + CP* + DP\

where A, B, C, D are functions of the temperature; hence, derive an expression
for the fugacity as a function of the pressure at a given temperature. For nitrogen
at C, A is 1 .000, B is - 5.314 X 10~4

,
C is 4.276 X 10~ and D is - 3.292 X 10-*

with P in atm. up to 400 atm. [Bartiett, /. Am. Chem. Sac., 49, 687 (1927)].
Evaluate the fugacity of the gas at 300 atm. pressure.

5. At 25 C, the vapor pressure of water is 23.76 mm. and the specific volume
of the vapor under these conditions is 43,400 cc. g.~

l
. Calculate the free energy

change for the transfer of 1 mole of water from liquid at 25 C to vapor at unit

fugacity. What error is involved in treating the vapor as an ideal gas (cf.

Exercise 9, Chapter X)?
6. By utilizing the form of the van der Waals equation applicable at low

pressures, show that the function a, defined by equation (29.8), is usually not zero

at zero pressure.
7. Use the generalized fugacity diagram (Fig. 18) to determine the fugacity

of (i) hydrogen at 25 C and 200 atm., (ii) oxygen at C and 200 atm., (iii)

carbon dioxide at 100 C and 250 atm.
8. Utilize the relationship between the free energy change and the fugacities

in the final and initial states to show how the generalized fugacity diagram can be

used to determine the free energy change for an isothermal expansion or compres-
sion of any gaa. Calculate the free energy change in cal. for the compression of

nitrogen gas from 1 to 200 atm. at 25 C.
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9. Calculate the fugacity of liquid water at 100 C, at which temperature and
1 atm. pressure the specific volume of the vapor is 1675 cc. g."

1
,
relative to the

usual reference state of the gas at low pressure. What is the free energy change
corresponding to the transfer of 1 mole of water vapor from 1 atm. at 100 C to

unit fugacity at the same temperature? Is the value significant in magnitude?
10. The following data were obtained for the molar volumes V\ and Fi in ml.

for pure hydrogen and nitrogen, respectively, at various pressures P and C.

On the other hand, Pi and F2 are the partial molar volumes in a mixture containing
0.6 mole hydrogen to 0.4 mole nitrogen, where P is now the total pressure.

P Vi F 2 F! P2

50 atm. 464.1 441.1ml. 466.4 447.5ml.
100 239.4 220.6 241.3 226.7

200 127.8 116.4 129.1 120.3

300 90.5 85.0 91.1 86.9

400 72.0 70.5 72.5 71.8

Determine by the graphical method the fugacity of nitrogen in the mixture at

the various total pressures, and compare the results with those obtained for the

pure gases; hence, test the Lewis-Randall rule for the fugacity of a gas in a mixture

[cf. Merz and Whittaker, J. Am. Chem. Soc., 50, 1522 (1928)].
11. Use the Lewis-Randall rule and Fig. 18 to calculate the fugacities of carbon

monoxide, oxygen and carbon dioxide in a mixture containing 23, 34 and 43 mole

%, respectively, of these gases at 400 C and a total pressure of 250 atm.
12. Give the alternative derivations of equations (31.6) and (31.7).

13. Combine equation (29.11) with the Berthelot equation to derive an ex-

pression for the fugacity of a Berthelot gas. Calculate the fugacities of carbon
monoxide at various pressures at C, and compare the results with those obtained
in Exercises 1 and 2.

14. By considering the influence of temperature and pressure on the fugacities,

which must remain the same in both phases, derive a form of the Clapeyron
equation (27.4) for the equilibrium between two phases of a single substance.

15. The following values of PV/RT were obtained for nitrogen at high pres-
sures at C:

P 1500 2000 2500 3000 atm.

PV/RT 2.720 3.327 3.920 4.947

Extend the results of the problem in 29b and Fig. 17 to determine the fugacity
of nitrogen gas at 3000 atm. pressure. (Note the high value of //P.)

16. Show that in its standard state the chemical potential M of a gas is

independent of the pressure.



CHAPTER XIII

FREE ENERGY AND CHEMICAL REACTIONS

32. THE EQUILIBRIUM CONSTANT

32a. Chemical Equilibrium. When a particular chemical reaction can

proceed simultaneously in both directions, a state of equilibrium will be
reached when the system appears stationary at a given temperature and
pressure. As is well known, it is highly probable that the apparently sta-

tionary state is one of dynamic equilibrium in which the reactions are pro-

ceeding in opposite directions at the same rate. When- the state of equi-
librium is attained, a condition which may take a considerable time if the
reactions are relatively slow, the system still contains certain amounts of

the reactants, as well as of the products. Many chemical reactions, on the
other hand, appear to proceed to virtual completion, so that undetectable

quantities of the reactants remain when the reaction is complete. However,
even in such cases it is probable that the reverse reaction takes place, al-

though to a very small extent, and a state of equilibrium is attained. By
the use of the free energy concept, thermodynamics has been employed to
throw light on the problems of chemical equilibrium. It is possible, for

example, to define the conditions of equilibrium, and to show how they may
vary with temperature and pressure. Further, by the use of heat content
and entropy data, the actual state of chemical equilibrium can be determined.

32b. The Equilibrium Constant. Consider a closed system in which the

perfectly general reaction represented by

aA + 6B + . . . ^ ZL + mM +

has been allowed to reach a state of equilibrium at a given temperature and
external (total) pressure. Suppose an infinitesimal change is made to occur
in this system, from left to right; thus dn moles of A, dn& moles of B, etc.,

are consumed, while dn\, moles of L, dnM moles of M, etc., are formed. The
free energy change accompanying this process is given by [cf. equation
(26.14)]

dFr.p - G*iX*nL + MMdnM+)- (^dn/, + /uBdnB + ), (32.1)

where the M'S are the chemical potentials (partial molar free energies) of

the indicated species. Since the closed system is in equilibrium, this free

energy change dFT,p must be equal to zero [equation (25.39)], so that

)- (MxdnA + n*dn*+) 0. (32.2)

273
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The various quantities dnA ,
dnB ,

. . .
,
dnL , dM, . . .

, taking part in the
chemical reaction indicated above must be in the respective proportions of

a, &, . . .
, Z, m, . . .

,
so that equation (32.2) for the equilibrium condition may

be written as

(/ML + WMM+)- (a/iA + bfjLB +-.) 0. (32.3)

By equation (26.29) the left-hand side of (32.3) is equivalent to AF, the free

energy change accompanying the complete reaction under equilibrium con-

ditions; hence,
&F -

(32.4)

at equilibrium [cf. equation (25.40)]. The equations (32.3) and (32.4)

represent the fundamental condition for chemical (and physical) equilibria of
all types.

The chemical potential /* of any constituent of a mixture, gaseous or

liquid, may be represented by an equation of the form [cf. equations (30.8)
and (31.2)]

M = M + RT In a, (32.5)

where ju is the chemical potential of the given substance in the chosen
standard state of unit activity, and a is its activity in the mixture under
consideration. If the values of the chemical potential given by equation
(32.5) are introduced into (32.3), the equilibrium condition becomes

l(A + RT In aL) + m(& + RT In aM ) + - -

- a(A + RTln aA )
- b(A + RTln aB) + - =

0,
so that

In

(32.6)

using equation (26.29). At constant temperature the right-hand side of

equation (32.6) is constant;
* since RT is also constant, it follows that

'*"?*'" =
constant, i.e., K, (32.7)

where the constant K is called the equilibrium constant of the reaction.

The expression is sometimes known as the law of equilibrium, for it provides
a simple relationship between the activities of the reactants and products
when equilibrium is attained in a chemical reaction at a given temperature.
In the form given in equation (32.7) the law holds for any equilibrium irre-

spective of whether it involves one or more phases; the results are applicable,

however, to the whole (closed) system, and not to each phase separately.
The special forms to be taken by the expression for the equilibrium constant
in a number of reactions of different types will now be considered.

* Since standard states are commonly defined in terms of unit fugacity for gases
and 1 aim. pressure for liquids, solids and solutions, the M values, and hence AF, are

independent of pressure (cf. 31b and Chapter XII, Exercise 16).
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32c. Equilibrium in Homogeneous Gaseous Systems. If the reaction is

one involving gases only, it will be homogeneous, taking place in a single

phase. If the standard state of unit activity is taken as the state of unit

fugacity, i.e., ideal gas at 1 atm. pressure, the activity of each reacting
substance may then be replaced by its fugacity (cf . 30b) in the equilibrium

system, so that the equation (32.7) for the equilibrium constant becomes

/ort Q\
> (32 '8)

where the fa are the respective fugacities. It will be noted that the equi-
librium constant is now represented by K/9

the subscript / being used to

indicate that the activities are expressed by the fugacities.

Since the ratio of the fugacity /,- to the partial pressure Pi of any gas in

a mixture is equal to the activity coefficient 7,- ( 30b), it is possible to replace
each fugacity factor by the product p X 7. If this substitution is made,
equation (32.8) becomes

K _ PJ, X pS X yl X 7M X
*' "

PlXrtX".
'

TlXTiX-.'
The data necessary for the evaluation of the activity coefficients (or

fugacities) of the individual gases in a mixture ( 30e) are not usually avail-

able, and an alternative treatment for allowing for departure from ideal

behavior is frequently adopted.

According to the approximate rule referred to in 3Qe, the fugacity / of

any gas in a mixture, in which its mole fraction is N,-, is given by equation

(30.25), viz.,

fi N,/!, (32.10)

where /J is the fugacity of the pure gas i at the total pressure of the mixture.

Making this substitution in equation (32.8), it is possible to write

X
(32 n)'

Nj X N* X /l
a X /B X ' ' '

the symbol K'f being used, in place of Kf, to show that the expression in

equation (32.11) is based on an approximation [equation (32.10)] and hence

Kf cannot be exactly constant. If each of the /' terms is divided by P, the

total pressure, the result, i.e., /{/P, is the corresponding activity coefficient

y
f

t of the particular gas in the pure state when its pressure is equal to P; hence

equation (32.11) may be written as

Kf

f
= gL21NMX .

7L* X 7M* X
. pA'

Nj X < X 7l
a X 7B X -

'

where An, the change in the number of molecules in the gas reaction, id equal
to (I + m + ) (a + 6 + ) The first and third factors in equation

(32.12) can be" obtained by experiment, and so these may be combined to
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give K'p\ thus,

K f N L X NM X '

p Al| ,,*9 .

*'-N'A XN>X'--
( }

and hence, equation (32.12) may ho written in the form

K'f - K'XJy., (32.14)

where the function ,/V
* of the activity coefficients is defined by

'I v <v'
m V ...

T TL A. TM A. /Qrt 1 ,-xA -
rfXy'JX---

(32 ' 15)

It may be noted that if the gases taking part in the reaction were ideal,

the activity coefficient factor in equation (32.9) would be unity; further, the

partial pressure p- of each gas would be equal to N tP, by equation (5.8). In
this event, the result would be identical with the expression in (32.13), so

that the quantity defined by K'p would represent the true equilibrium con-

stant. When the departure of the reacting gases from ideal behavior is not

large, e.g., when the total pressures are of the order of 1 atm. or less, a very

satisfactory approximation to the equilibrium constant K/ can be obtained

from equation (32.13). At high pressures, however, the values of K'p deviate

considerably from constancy, as will be seen below, but a great improvement
is possible by the introduction of the activity coefficient factor, as in equa-
tion (32.14).

Although it is not commonly used in the study of gaseous equilibria, mention

may be made of the form taken by the equilibrium constant when the activities

ac are expressed on the basis of the standard state of unit activity as equal to

that of an ideal gas at unit molar concentration ( 30b) ; thus, equation (32.7)

may be written

OOL X (qjft X .

*"(.)! X (oOi x ...' (32 ' 16)

According to equation (30.13), ac is equal tof/RT, where /is the fugacity, so that

K. = *?*"" ' (BD"*"- . (32.17)

The first term on the right-hand side is obviously equal to K/, as defined by equa-
tion (32.8), and hence

Kf - Kc X (RT)*
n

. (32.18)

For a gas reaction in which there is no change in the number of molecules, An is zero,

and K/ and Kc are identical; the equilibrium constant is then independent of the

chosen standard state.

An alternative form of equation (32.16) is obtained by replacing each activity
factor by the product of the concentration and the appropriate activity coefficient,

* The symbol / will be used for a function having the same form as the equilibrium

constant, the nature of the variable being indicated by the subscript.
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i.e., a, = c X 7; then

K- - CL X CM X (7.){. X (YJS, X .

' ~ 4 X 4 X
'

(T.)i X (y.)!, X
' (3SU9)

The concentration function may be represented by K'c and the activity coefficient

function by Jye,
so that

K - K' X A.. .(32.20)

This equation is exact, but for many approximate purposes Jye
is taken as unity,

and then the law of equilibrium is expressed in the form

CL X CM X

where K'e is not precisely constant.

32d. The Ammonia Equilibrium. A homogeneous gaseous equilibrium
which has been studied in some detail, over a considerable range of pressure
and temperature, is the reaction

employed in the Haber process for the production of ammonia. For the

equilibrium,

g/
= ,/v% <32 -22)

jNa <* /Ha

and a proper application of this equation requires a knowledge of the fugacity
of each gas in the particular equilibrium mixture. Since the data are not

available, it is more convenient for practical purposes to employ the some-
what less exact equation (32.12) or (32.14); in the present case this takes

the form

. (32.23), ,.
TN* X 7n,

where the experimental quantity K'p is given by

g;- A

NNH
.

-
(32.24)

Njr,X< P

In the investigation of the equilibrium, mixtures containing nitrogen and

hydrogen in the molar ratio of 1 to 3 were allowed to come to equilibrium
at various temperatures and pressures; the proportion of ammonia in the

resulting mixture was then determined by analysis. From this the mole
fractions NNH,, NN, and NH, at equilibrium could be readily calculated, and
hence K'p could be evaluated by equation (32.24). A selection of the results

obtained in this manner by A. T. Larson and R. L. Dodge (1923-24) is given
in Table XXII for a temperature of 450 C.1

i Larson and Dodge, /. Am. Chem. Soc., 45, 2918 (1923); Larson, tW&, 46, 367 (1924).
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TABLE XXII. THE Nj -f JH ^ NH EQUILIBRIUM AT 450 C

Pressure K'p Jr Kf
10 aim. 6.59 X 10~ 0.988 6.51 X 10~

30 6.76 0.969 6.55

50 6.90 0.953 6.57

100 7.25 0.905 6.56

300 8.84 0.750 6.63

600 12.94 0.573 7.42

1000 23.28 0.443 10.32

An examination of the values of K'p shows that they are fairly constant

up to a pressure of about 50 atm.; below this pressure the deviations of the

gase* from ideal behavior at 450 C are evidently not very large. At higher

pressures, however, the deviations are considerable, and the value of K'p is

seen to increase rapidly with increasing pressure. By using the method
described in 29e, based on Fig. 18 which gives the activity coefficient f/P
at any (reduced) pressure directly, the function J^ has been calculated for

various values of the total pressure. The. results, together with the corre-

sponding values of Kj, that is, of K'p X JV, are recorded in Table XXII.
It is seen that K'f is remarkably constant up to 300 atm., and fairly constant

up to 600 atm. total pressure. At 1000 atm. there is appreciable deviation

from constancy, and this is undoubtedly due to the failure at high pres-
sures of the fugacity rule for mixtures, as given by equation (32.10).

2

32e. Homogeneous Reactions in Liquid Solution. For a reaction taking

place in a homogeneous liquid system, the standard state of unit activity
for each substance is taken as the pure liquid at the temperature of the

reaction and 1 atm. pressure, as described in 31b. The activity of each

species may then be set equal to the product of its mole fraction and the

appropriate activity coefficient in the equilibrium mixture, i.e., a = NTN, so

that equation (32.7) gives the expression for the equilibrium constant as

_ N j. X N X - (7y)L X (7y)S X ,o ,,

The approximately constant equilibrium function

jri _ N L X NM X ' '
, 9 O N

N ~~

Ma V N* V . *
(32.26)

NA X NB X *

is often employed, but this should be multiplied by the activity coefficient

function J?N , represented by the second factor in equation (32.25), to give
the true equilibrium constant. Unfortunately, no liquid phase reaction has
been studied in sufficient detail to enable equation (32.25) to be verified

completelyf
but the equilibrium mole fraction function K'N has been deter-

mined for some esterification processes. The approximate constancy ob-

Newton, Ind. Eng. Chem., 27, 302 (1936); Newton and Dodge, ibid., 27, 577 (1935);
see also, Gillespie, Chem. Rev., 18, 359 (1936); R. N. Pease, "Equilibrium and Kinetics of

Gas Reactions/' 1942, pp. 13 et aeq.



32f THE EQUILIBRIUM CONSTANT 279

tained in these cases is mainly due to the partial cancellation of the activity
coefficients on both sides of the reaction, so that JyN is not very different

from unity.
32f. Homogeneous Reactions in Dilute Solution. Most equilibrium re-

actions that have been studied in dilute solution involve electrolytes, and
for these substances a special standard state is used ( 37b, IV). However,
it is possible to derive a modification of equation (32.25) which is applicable
to all reactions in sufficiently dilute solution. If a solution contains n^ moles
of A, UB moles of B, . . .

, TIL moles of L, UM moles of M, etc., dissolved in

no moles of an inert solvent, the mole fraction of any constituent, A for

instance, is given by

nB H-----h nL + raM
-

<32 -27)

The concentration (molarity) CA, in moles per liter, of the same constituent

is obtained by dividing n& by the volume of the solution in liters; the latter

can be derived from the total mass of the constituents of the solution and
its density p. Thus, if M Q is the molecular weight of the solvent, and

MA, MB, . . .
, ML, MM, etc., are the molecular weights of the substances tak-

ing part in the reaction, the mass of the solution is given by

Afass of Solution = noM + nM + n^M^ +
+ nLML + nMMM + - = 2>M. (32.28)

The ^olume of the solution in liters is then obtained upon dividing the mass
in grams by p to obtain the volume in ml., and then by 1000 to convert into

liters; thus,

Volume of solution = f^-^ liters, (32.29)
10(K)p

and consequently, the concentration of A is given by

(32.30)
Vol. of solution

If this expression is compared with equation (32.27) it is seen that

a result which is of completely general applicability for the relationship be-

tween the mole fraction of a given constituent of a solution and its molarity,

i.e., its concentration in moles per liter.

If the solution is dilute, the number of moles of solvent is greatly in

excess of the total number of moles of the reacting substances, so that

n M and n n
,
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and hence equation (32.31) reduces to

(32.32)

For a dilute solution, also, p is not greatly different from the density p of

the pure solvent, and since this and its molecular weight M are constant,
it follows from equation (32.32) that the concentration (molarity) of any solute

in a dilute solution is approximately proportional to its mole fraction. It is

possible, therefore, to modify equation (32.25) in the following manner. In
the first place, if the solution is dilute, and particularly if it contains no

electrolytes, the activity coefficient factor may be taken as unity, so that

equation (32.25) reduces to (32.26). If the mole fractions are replaced by
the corresponding molarities, utilizing equation (32.32), it is found that

X / M, n
/OOOON
(32 '33)

where An, as before, is equal to (I + m + ) (a + &+). Since the

final factor in the expression is constant, it follows that

g'.-^vlf*'"* (32-34)
CA X* CQ x\ * * *

where K'c is approximately constant at equilibrium, provided the solution

is dilute.

The use of equation (32.34) may be justified by means of the results

obtained by J. T. Cundall (1891) for the dissociation of nitrogen tetroxide

in dilute chloroform solution. The equilibrium is represented by

N 2O 4 ^ 2NO 2 ,

and the concentration equilibrium function K'c is given by

N2 4

The data over a range of concentrations, for a temperature of 8.2 C, are

given in Table XXIII.3 The relative constancy of the values of K'c in the

TABLE XXIII

<~NiO4 CNO2 K'o

0.129 mole liter*1 1.17 X 10- mole liter-i 1.07 X 1Q-*

0.227 1.61 1.14

0.324 1.85 1.05

0.405 2.13 1.13

0.778 2.84 1.04

last column shows that the solutions are sufficiently dilute for the activity

coefficient factor to be close to unity.

Cundall, J. Cheni. Soc., 59, 1076 (1891); 67, 794 (1895).
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Another form of representation of the equilibrium in dilute solutions is

based on the expression of concentrations in terms of molality, that is, the

number of moks of solute to 1000 grams of solvent. The mass of the solvent

corresponding to n moles of solute A is n A/o; hence the molality m\ is

given by __

/00 OK v

(32.35)
o

and consequently,

(32.36)

If this result is introduced into equation (32.27), the mole fraction is

KT - mA
NA ~

1000

If the solution is dilute, n may be taken as approximately equal to n
,

as seen above; equation (32.37) then reduces to

A , (32.38)

so that the molality of any solute in a dilute solution is approximately propor-
tional to its mole fraction in that solution. It is thus possible to derive from

equation (32.25) a molality equilibrium function, viz.,

K f mL X WM X '

/o9 OQNKm ~~
*

--
(32.39)

32g. Chemical Equilibria in Heterogeneous Systems. The most com-
mon heterogeneous chemical equilibria involve gases and solids, or liquid

solutions and solids. In all cases the general equation (32.7) is applicable,
but the situation is considerably simplified by the universally adopted con-

vention that the activity of every pure solid or pure liquid is to be taken as unity
at atmospheric pressure. This is, of course, in accord with the usual choice

of the standard state of unit activity of a liquid as the pure liquid at the

same temperature and 1 atm. pressure; an analogous standard state, viz.,

pure solid at 1 atm. pressure, is chosen for substances present in the solid

form. It should be understood that if the solid or liquid involved in a

heterogeneous system is not present in the pure state, but as solid or liquid

solution, its activity is no longer unity; as a first approximation, it may then

be taken as equal to the mole fraction.

The result of taking the activity of a pure solid or pure liquid as unity
is that the corresponding factor may be omitted from the expression for the

equilibrium constant. Strictly speaking, this is only true if the total pres-
sure on the system is 1 atm., in accordance with the defined standard states.

At other pressures, the activities of solid and liquid phases are constant,
but their values are not unity. If the corresponding factors are then
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omitted from the expression for the equilibrium constant, the result is a

quantity which varies with pressure, as well as with temperature. This

quantity is not the true equilibrium constant, and it should not be used in

equations such as (33.6), etc., to be considered shortly, to determine standard
free energy changes. Since the effect of pressure on the activity of a liquid
or solid is usually small [cf. equation (31.7)], and there is frequently a par-
tial cancellation of terms for reactants and products, the constants obtained

at pressures other than atmospheric, on the assumption that the activities of

pure solids and liquids are unity, do not differ appreciably from the true

equilibrium constants. In practice, therefore, the variation of the constant

with pressure is frequently neglected.
A simple illustration of a heterogeneous reaction, in which, incidentally,

the effect of pressure is likely to be small, is

+ H20(<7)
- FeO(s) + H2 (<7),

the Fe and FeO being present as pure solids. 4
Consequently, strictly at a

total pressure of 1 atm., and with a good degree of approximation at all

moderate pressures,

and hence,

v /HS PHS NH.
/V,y

= J- _ i_ _
/H2O PH2O NH2O

Numerous instances of reactions of this type are to be found in the literature

of physical chemistry, and need not be considered here. It is of interest to

mention, however, that vaporization (cf. 33g), freezing, solubility, and
other heterogeneous physical equilibria can be treated in the same manner,
although other methods are often preferable (see Chapter XIV).

33. FREE ENERGY CHANGE IN CHEMICAL REACTIONS

33a. The Reaction Isotherm. Consider, once again, the general reaction

aA + bB + ^IL + raM + .

The free energy of any mixture of a moles of A, 6 moles of B, etc., is given
in terms of the chemical potentials, i.e., the partial molar free energies, by
means of equation (26.6), as

F(reactants) = a/iA + &MB 4 ,

and the free energy of a mixture of I moles of L, m moles of M, etc., is

F(products) = ZML + WMM + ,

at constant temperature, pressure and composition, in each case. These

expressions are applicable to the systems of reactants and products at any
4 For review, see Austin and Day, Ind. Eng. Chern., 33, 23 (1941).
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arbitrary concentrations, not necessarily the equilibrium values. The free

energy increase AF accompanying the reaction depicted above, at constant

temperature and pressure, is thus given by

&FT.P = F(products) F(reactants)

&MB + '

) (33.1)

Utilizing the general equation (32.5), i.e., M = M + RT In a, for the chemical

potential of any substance, M being the value in the standard state, it

follows from equations (33.1) and (26.29) that

, (33.2)
*

,

^A X ^B X ' " '

where the activities are any arbitrary values.

It is evident from a comparison of equation (32.6) and (32.7) that

AFT =- RTlnK. (33.3)

The same result can be derived from equation (33.2), for if the arbitrary
activities were the equilibrium values, the last term would be identical with

RT In K, while &FT.P would then be zero, thus leading to the expression in

equation (33.3). If this is substituted in (33.2), it is found that, in general,

AFr,P=-RT\nK + RTln^^^ ^
""

(33.4)
&A X &B X

= - RT In K + RT In Ja , (33.5)

where, as indicated in the footnote in 32c, Ja is a function of the same form
as the equilibrium constant involving, in this case, the arbitrary values of

the activities of reactants and products. The important equations (33.4)

and (33.5) are forms of the reaction isotherm first derived by J. H. van't

Hoff (1886). It gives the increase of free energy accompanying the transfer of
reactants at any arbitrary concentrations (activities) to products at arbitrary
concentrations (activities). As seen above, if the arbitrary concentrations are

chosen so as to correspond to the equilibrium state, the two terms on the

right-hand side become identical, and hence &FT, p is then zero.

33b. Standard Free Energy of Reaction. The standard free energy in-

crease AFr, often referred to as the standard free energy, of the reaction

at a specified temperature T, is given by equation (33.3) which, because of

its importance, will be repeated here; thus,

AFS, =- RT In K. (33.6)

It gives the increase of free energy when the reactants, all in their standard
states of unit activity, are converted into the products, in their standard
states. The relationship (33.6) is extremely useful, as will be seen shortly,

* As stated earlier, AF* is independent of pleasure, if the usual definitions of standard
states are employed; hence, the symbol AFJ is sufficient.
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for it provides a convenient method for tabulating the equilibrium constants

of reactions, especially for processes which appear to go to virtual completion.
Substitution of the value for AF^, given by equation (33.6), into (33.5),

leads to

AFr.p = AFS* + RT In J, (33.7)

and the reaction isotherm is frequently encountered in this form. In gen-

eral, the subscripts T and P are omitted, it being understood that constant

temperature and pressure are implied.
As seen earlier, the actual values of the activities and of the equilibrium

constant depend on the choice of the standard state; this must also be the

case, therefore, for the standard free energy changes, as defined above. It is

consequently necessary to specify clearly the standard state employed in every
case. For gas reactions, the standard state is usually that of unit fugacity,

i.e., ideal gas at 1 atm. pressure; the form of equation (33.7) is then

AF = AF? + RT In J/, (33.8)

where

AF? = - RTlnKf. (33.9)

If the gases behave ideally, or approximately ideally, the fugacities may
be replaced by the corresponding partial pressures, so that equation (33.8)

becomes
AF AF + RT In Jp, (33.10)

in which form the reaction isotherm is sometimes employed for gas reactions.

If the standard state is chosen as the ideal gas at unit concentration, the

corresponding equation is

AF - AF + RT In Je (33.11)
where

AF* =- RTlnKe , (33.12)

the definition of K being given by equation (32.19).

For reactions in solution, the reaction isotherm may take the form

AF = AF + RT In JK , (33.13)
where

AF =- RTlnKN , (33.14)

the equilibrium constant K$ being defined by equation (32.25). In connec-

tion with these expressions, the standard state of each substance is chosen
so that the activity is equal to the mole fraction in the reference state.

33c. The Direction of Chemical Change. From the chemical point of

view the great significance of the reaction isotherm lies in the fact that it

provides a means of determining whether a particular reaction is possible or

not under a given set of conditions. It was seen in 25f that for a process,
at constant pressure and temperature, to be spontaneous it must be ac-

companied by a decrease of free energy; that is to say, for a spontaneous
reaction, &FT,p must be negative. If the value of AF under a given set of
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conditions is positive, the reaction cannot possibly take place under those

conditions, although it may do so if the conditions are altered.

An examination of the general equation (33.5) shows that the sign of

AF depends on the relative values of the quanities K and /a ; if the reaction

is to be spontaneous, the latter must be less than the former, for then AF
will be negative. If the conditions are such that Ja is greater than K,
the reaction will not be possible under those conditions, but there are two

ways in which the situation can be changed. First, the arbitrary activities,

i.e., pressures or concentrations, of the substances concerned in the reaction

may be changed so as to decrease the value of Ja below that of K\ this

means that the activities of the products must be decreased or those of the

reactants increased, or both. Second, the temperature may be changed in

such a manner as to increase if; in this way, without altering the arbitrary

activity function Ja ,
the latter may become less than K, so that AF is

negative and the reaction is possible. The foregoing arguments are applica-
ble to processes of all types; for heterogeneous reactions, the activity of each

pure solid is taken as unity, as mentioned earlier. This is equivalent to its

omission from In Ja ,
since the logarithm of unity is zero.

An analogous significance to that just described can be given to the

standard free energy AF of a reaction. If AF is negative, the reaction with

all the reactants and the products in their respective chosen standard states

can take place spontaneously. On the other hand, if AF is positive, the

reaction cannot occur under those conditions.

It can now be seen that thermodynamics provides a simple solution of

the problem, concerning the conditions determining the direction of chem-
ical change, which had puzzled investigators for many years until J. H.
van't Hoff (1883) indicated the importance of the free energy change. Inci-

dentally, it may be mentioned that the same idea was undoubtedly in the

minds of J. W. Gibbs (1876) and of II. von Ilelmholtz (1882), although it

was not stated explicitly.

Problem: It is 'required to pass carbon monoxide at 10 atm. and water vapor
at 5 atm. pressure into a reaction chamber at 700 C and to withdraw carbon
dioxide and hydrogen at partial pressures of 1.5 atm. Is this possible theoreti-

cally? The equilibrium constant for the reaction is known to be 0.71.

The reaction is

C0(g) + H 2OG7) = C0 2(0) + H 2(0),

and since there is no change in the number of molecules, the equilibrium constant
is independent of the standard state. However, since the arbitrary concentra-
tions (activities) of the reactants and products are stated in terms of pressures,
it will be assumed that the equilibrium constant is K/ or Kp . For the present
purpose, it is sufficient to assume ideal behavior, so that the free energy change is

given by equation (33.10); this takes the form

AF = - RT In Kp + RT In
PcOt X Pn *

,

Pco X PH,O
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where the p's are the arbitrary values given in the problem. All that it is required
to know is the relative values of Kp and Jp* 9 but it is instructive to calculate the
actual free energy change. This is usually expressed in calories, so that R is taken
as 1.987 cal. deg.""

1 mole"1
; the temperature T is 700 C or 973 K, and Kp is

0.71 as given above. Hence, converting the logarithms,

AF - - 4.576 X 973 log 0.71 + 4.576 X 973 log
1 '5X

n10 X 5
- - 4.576 X 973 (log 0.71 -

log 0.045)
= - 5,340 cai.

Since AF is negative, the process is theoretically possible.

The reaction isotherm is of particular value in the study of chemical

processes, but it has also been used in connection with physical changes,
to which it is equally applicable. The general criterion of a decrease of free

energy for a process to be spontaneous is applicable, of course, to all proc-

esses, physical or chemical.

Although any reaction accompanied by a free energy decrease is theo-

retically possible, it is important to note that this is no indication that the

process will occur with a measurable speed. In a series of analogous reac-

tions the rates at which the processes occur are often roughly in the order
of the free energy decreases, but in general, for different reactions, there is

no connection between the magnitude of the decrease of free energy and the
rate of the reaction. For example, at ordinary temperature and pressure
the free energy change for the combination of hydrogen and oxygen has a
very large negative value, yet the reaction is so slow that no detectable
amount of water would be formed in years. The passage of an electric spark
or the presence of a suitable catalyst, however, facilitates in this case the
occurrence of a reaction which the free energy change shows to be theo-

retically possible.
33<L Variation of Equilibrium Constant with Pressure. The extent to

which the equilibrium constant of a reaction is affected by pressure can be
determined by utilizing equation (33.6), in the form

(33.15)

Differentiation with respect to the total pressure P, at constant tempera-
ture, gives

lnK\ 1

dP ) T RRTl dP

Since standard states have been defined so as to be independent of the

pressure of the system, the standard free energy change AF, and conse-

quently the equilibrium constant K, will not vary with the external pressure.

*The latter is 1.5 X 1.5/10 X 5, i.e., 0.045, and since this is less than Kp, i.e., 0.71,
the reaction is obviously possible.
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It should be noted that although K, and hence K/, is independent of the

pressure, the equilibrium functions K'f and K'p for a homogeneous gas reac-

tion should vary with the pressure, as is actually found to be the case (see

Table XXII). This is, of course, due to the dependence of the activity
coefficients on the pressure at constant temperature, as indicated in 32d.

Since a change of pressure is usually accompanied by a change in the com-

position of the system it is not possible to use equation (30.19) to determine
the effect of pressure on the activity coefficient factor. The calculation can
be made by thermodynamic methods, along lines which will be described

in Chapter XIV in connection with physical equilibria, but the results

have no direct practical application without introducing a number of

approximations.
Similar considerations apply to the influence of pressure on other equi-

librium functions, such as K'N , etc., for reactions in solution. In general,

however, the changes due to increase of pressure can be neglected at all

moderate pressures.
It is opportune to recall here the remarks made in 32g in connection

with heterogeneous reactions. If the activities of pure solids and liquids

taking part in the process are taken as unity, then the true equilibrium
constant is obtained only if the total pressure of the system is 1 atm. Unless

allowance is made for the effect of pressure on the activities, the constants

obtained at other pressures vary with pressure in a manner dependent on
the volume change of the solid and liquid phases involved in the reaction

[cf. equation (31.7)].

33e. Effect of Pressure on Position of Equilibrium. Although the true

equilibrium constant of a gas reaction is not affected by the pressure, the

actual position of equilibrium will be altered if the reaction is one involving
a change in the number of molecules. The subject is dealt with adequately
in physical chemistry texts, in connection with the Le Chatelier principle of

mobile equilibrium. As is well known, increase of pressure will favor the

reaction which is accompanied by a decrease in the number of molecules.

Such a change is necessary in order that the equilibrium constant may remain

unaltered. However, there is another aspect of this matter that merits

attention here. Because of the effect of pressure on K'p, there will be an
additional change in the equilibrium composition. The increase of K'p with

pressure in the ammonia equilibrium, for example, means that there is a

larger proportion of ammonia present when equilibrium is attained at high

pressures than would have been the case if the system had consisted of ideal

gases. This factor, therefore, operates to the advantage of the yield of am-
monia in the Haber process. The effect of pressure on K'p due to departure
from ideal behavior will alter the position of equilibrium even when there is

no change in the number of molecules.

Problem: Estimate qualitatively the effect of a pressure of 500 atm. on the

gaseous equilibrium CO + H,O ^ CO, + H, at 600 C,
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If the four gases behaved ideally, pressure would have no effect on the position
of equilibrium, since there is no change in the number of molecules accompanying
the homogeneous reaction. However, because of deviations from ideal behavior,
a shift in the composition is possible when the pressure is changed. The equi-
librium constant may be written as

,
__ Pco* X T>H? Tcos X

Pco X PH SO 7co X

and it is desired to find the value of the activity coefficient factor Jy at 600 C,

i.e., 873 K, and 500 atm. At 1 atm. pressure, the value may be taken as virtually

unity. At the higher pressure use may be made of the fugacity chart in Fig. 18,

and for this purpose the reduced temperature (6) and pressure (TT) of each gas
are required.

For CO 2 : T is 304 K, 8 = 873/304 = 2.87) _ t OQ
PC is 72.9 atm., TT = 500/72.9 = 6.85/

7c 2
" Uy *

For II,: Tc is 33.2
C
K, = 873/(33.2 -f 8) =

21.2\ _ ft

PC is 12.8 atm., TT = 500/Q2.8 + 8) = 24.0/
711 '

~" 1<1U '

For CO: Tc is 134 K, d = 873/134 =
6.51\ _ 1 9q

PC is 34.6 atm., T = 500/34.6 14.4/
7co "" LMm

For H 20: Tc is 647 K, 6 = 873/647 -
1.35\ __ n 77

PC is 218 atm., w = 500/218 -
2.29J

7H2 ~" U'"'

The values of 7 given at the right are those based on the approximation that

the activity coefficient of a gaseous constituent of a mixture is equal to the value

for the pure gas at the total pressure of the mixture. In this case,

^ 1.09 X 1.10 =
7

~~

1.23 X 0.77
"

' '

Since Jy has increased when the pressure is increased to 500 atm., it follows that

the product pco 2 X PH Z must decrease, or pco X pn 2o increase, in order to retain

Kf constant. Thus, increase of pressure to 500 atm. causes the equilibrium to

shift to the left, because of deviations from ideal behavior.

33f. Variation of Equilibrium Constant with Temperature. The effect of

temperature on the equilibrium constant may be determined by differentia-

tion of equation (33.15) with respect to temperature. Since K is independ-
ent of the external pressure, the constant pressure condition and the ac-

companying partial differential notation can be omitted, so that

d\nK = __ 1 d(AJ

dT R dT

and hence, by equation (25.33), it follows that

where
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or, in general,

A# X>#(final state)
- >H(initial state).

The equation (33.16) is the rigorous form of a relationship originally derived

by J. H. van't Hoff; it is consequently sometimes referred to as the van't

Hoff equation. It is to be understood, of course, that the particular stand-

ard states chosen for the activities of the reactants and products in the ex-

pression for K, i.e., in equation (32.7), must also apply to AH , as defined

above.
For a homogeneous gas reaction the equilibrium constant is Kf and equa-

tion (33.16) takes the form

ding/ = A#
dT RT* (33.17)

where A/f is the heat of reaction adjusted to a low value of the total pres-

sure, when the gases behave ideally. It was seen in 20e that at moderate

pressures the heat content of a real gas does not differ appreciably from the
ideal gas value, and for most purposes it is possible to replace A// in equa-
tion (33.17) by A#, the ordinary heat of reaction in the vicinity of atmos-

pheric pressure.
If the standard state is that of an ideal gas at unit molar concentration,

the equilibrium constant Kc is related to Kf by equation (32.18), viz.,

Kf
= Kc X CRT

7

)*
71

,

so that, taking logarithms,

In Kf
= In K + An In R + An In T,

and hence, upon differentiation with respect to temperature, and utilizing

equation (33.16),

ding/ _dlnge An _ Ag
dT dT T RT*'

It follows, therefore, that

^f==AH ^n(fl2)
-

(33 - 18)

Since A# is the heat of reaction at constant pressure, adjusted to ideal

behavior, it follows that Aff = A# + PAF = AjB + An(#!T), so that

equation (33.18) becomes

The variation of the functions K'f and K'p with temperature is not quite
the same as that given above for Kf,

because of the change in the activity
coefficient factor with temperature. Since the composition of the system
does not remain constant when the temperature is changed, equation (30.21)
cannot be employed, but a method similar to that described in 34f, 34i
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could be used. However, without introducing approximations, the results

are of no practical value. Provided the pressures are not too high, it is

therefore the common practice to employ equation (33.17) in the approxi-
mate form

dlnK'p
dT RT* ' (33.20)

where A# is taken as the ordinary heat of reaction at constant pressure,

usually 1 atm. The variation of K'p with pressure is ignored.
For a homogeneous reaction in a liquid system the equilibrium constant

is conveniently expressed in the form of equation (32.25), the standard state

of each substance being the pure liquid at the equilibrium temperature and
1 atm. pressure. Differentiation with respect to temperature then gives

[cf. equation (33.16)]

(33 '21)

where A/7 is the heat of reaction starting with pure liquid reactants and

ending with pure liquid products, at 1 atm. pressure and temperature T.

It will be noted that, as before, the constant pressure condition has been
omitted from equation (33.21), since the equilibrium constant on the basis

of the chosen standard states is independent of thfe pressure. For many
purposes it is sufficiently accurate to replace KN by the equilibrium function

KN involving mole fractions; at the same time AT, the ordinary heat of

reaction is substituted for AT, giving the approximate result

(33 '22)

For reactions in dilute solution, it is convenient to use the concentration

equilibrium function K'C) defined by equation (32.34). Upon taking log-

arithms, it follows from equations (32.33) and (32.34) that

(33.23)

Provided the temperature range is not too great, the variation of the density

Po of the solvent will not be large, and the last term in equation (33.23) may
be taken as approximately independent of temperature. The difference

between d In K^/dT and d In K'e/dT may thus be neglected, and it is possible
to write

dlnK'c AH , Q 9 .

(33 '24)

It is important that this result, for a reaction in dilute solution, should not
be confused with equation (33.19), which gives the variation of Kc for a

homogeneous gaseous equilibrium; the latter involves A, and not A/7.
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In the foregoing discussion various forms of the van't Hoff equation,
some exact and others approximate, have been derived for equilibria of

different types. It is necessary to bear in mind, however, that in the form
of equation (33. 16) the relationship is applicable precisely to any equilibrium,
chemical or physical.

33g. Heterogeneous Reactions: Influence of Temperature. The equa-
tions derived above for homogeneous reactions apply equally to heterogene-
ous equilibria. The various A# values refer to the complete reaction, in-

cluding the solid phases, although, as mentioned in 32g, the activity is

unity for every pure solid taking part in the reaction; the corresponding
factor may thus be omitted from the expression for the equilibrium constant.

Because they present certain features of interest, brief reference will be
made here to some heterogeneous equilibria, and others will be considered
later.

In reactions involving one or more solids and one gas, as, for example,

CaCOa(s) = CaO(s) + CO2(0)

JCuSO 4.5H 2O(s) = JCuS0 4.3H2000 + H2O(0),

the true equilibrium constant, e.g., K/, is equal to the fugacity of the gas in

equilibrium with the solid at a total pressure of 1 aim. (cf . 32g). The varia-

tion of In/ with the temperature is then given by equation (33.16), with
Aff equal to the heat of reaction adjusted to the value for the gas at low

pressure. In studying these equilibria, the experimentally determined

quantity is the partial pressure p, which is equivalent to K'p,
and as a general

rule no attempt is made to keep the total pressure at 1 atm., or even con-

stant, although the dissociation pressure should vary to some extent with
the total pressure. The dependence of the pressure p on temperature is

thus usually expressed by the approximate equation (33.20) in the form

where Aff is the ordinary heat of reaction at the temperature T.

Heterogeneous physical equilibria, e.g., between a pure solid and its vapor or

a pure liquid and its vapor, can be treated in a manner similar to that just de-

scribed. If the total pressure of the system is 1 atm., the fugacity of the vapor
is here also equivalent to the equilibrium constant. The variation of In/ with

temperature is again given by equation (33.16), where A// is now the ideal molar
heat of vaporization of the liquid (or of sublimation of the solid) at the temperature
T and a pressure of 1 atm. If the total pressure is not 1 atm., but is maintained

constant at some other value, the dependence of the fugacity on the temperature
can be expressed by equation (29.22), since the solid or liquid is in the pure
state; thus,

dln/\ Atf?
(

"FJp"^' (33 '26)

where, according to the remarks in 29g, the numerator on the right-hand side

is equal to the ideal molar heat of vaporisation (or sublimation) at temperature
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T and pressure P. It should be noted that equation (33.26) is the exact form of

the Clausius-Clapeyron equation (27.12). If the vapor is assumed to be leal,

so that the fugacity may be replaced by the vapor pressure, and the total pressiuc
is taken as equal to the equilibrium pressure, the two equations become identical.

In this simplification the assumption is made that the activity of the liquid or

solid does not vary with pressure; this is exactly equivalent to the approximation
used in deriving the Clausius-Ciapeyron equation, that the volume of the liquid
or solid is negligible.

33h. Integration of the van't Hoflf Equation. If the change of heat con-
tent A// were independent of temperature, general integration of the van't
Hoff equation would give [cf. equation (27.15)]

or

so that the plot of log K against l/T should be a straight line of slope
- A/f/4.576 with A.ff in calories. Integration between the temperature
limits of T\ and T2,

the corresponding values of the equilibrium constant

being K\ and K*, gives

Kz

In K = --
; + constant,Kl

R

or, converting the logarithms and expressing R in cal. deg.~* mole""1
,

*2 _ AiP/r.-r
I0g

Id "4.578V T,T*

This equation, or (33.27), may be used to evaluate the heat of reaction if the

equilibrium constant is known at two temperatures; alternatively, if Ajff

is available, the equilibrium constant at any temperature can be determined
provided it is known at one particular temperature.

The results obtained in this manner are approximate only, for heats of

reaction are known to vary with the temperature, as seen in 12j, 12k. 5

The standard change of heat content can be expressed as a function of tem-
perature in accordance with equation (12.16), so that

Aff - AHg + AT + iA/ST
2 + \&yT* + -, (33.29)

where A, A/9, Ay, etc., are derived from the heat capacities of the reactants
and products and their variation with temperature. If this expression is

1 For a more exact significance of A# in equation (33.28), even when the heat content
varies with temperature, see Douglas and Crockford, J. Am. Chem, Soc., 57, 97 (1936);
Walde, /. Phys. Chem., 45, 431 (1939).
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substituted into (33.16), the result is

dlnK A#g A<* Aft Ay""
"*"

2R
"*"

3ft
"*"

" "'

and upon integration it is found that

where K is either // or KN, for reactions in the gas or liquid phase, respec-

tively, and /' is the integration constant.

If AH and Aa, A, etc., $re available from thermal measurements, it is

possible to derive A#o by utilizing the procedure described in 12k; if K is

known at any one temperature, it is possible to evaluate the Integration
constant /', and the variation of In K (or log K) with temperature can then

be expressed in the form of equation (33.30). The accuracy of the resulting

expression is limited largely by the thermal data, for these are often not
known with great certainty. Care should be taken to ensure that the

standard states used in connection with the heat of reaction A// are ako
those employed for the equilibrium constant. Actually, the standard states

chosen in 30b, 31b correspond with those almost invariably employed in

both equilibrium studies and heat of reaction measurements.

Problem: Taking the equilibrium constant (//) for the JN2 + fHk^
equilibrium to be 0.00655 at 450 C (Table XXII), and utilizing the heat of

reaction and heat capacity data in 12k, derive a general expression for the varia-

tion of the equilibrium constant with temperature. Determine the value of Kf

at 327 C.

According to the result obtained in the problem in 12k, which is supposed
to refer to the standard states, it follows that

A# = - 9.13 - 7.46 X 10~8T + 3.69 X 10-T2 - 0.47 X 10~9T3 kcai.
= - 9,130

- 7.46T + 3.69 X 10~3T2 - 0.47 X 10-6r3
cat.,

and hence,

A#J = - 9,130; Aa = - 7.46; JA/3 = 3.69 X lO'3
; JAy = - 0.47 X 10~* cal

Upon insertion of these values into equation (33.30), it is seen that

, ^ 9,130 7.46. m ,

3.69 X lO'3 0.47 X lO"6 m .

T,

---JT lnT + --R- T --
2ft

T+/ '

At 450 C, i.e., 723 K, the value of Kf is 0.00655, and utilizing these data it is

found that /' is 12.07, so that, taking R as 1.987 cal. deg,~
l mole~ 1

,
the expression

for K/ becomes

In Kf
= 2.303 log Kf

- - 8.64 log T

+ 1.86 X lO-'T - 0.12 X 10-6
!T

2 + 12.07.
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At 327 C, i.e., 600 K, In Kf is thus found to be - 3.19, and hence Kf is 0.041.

(The experimental value is about 0.040.)

It can be seen that if Aa, A0, etc., are known, the right-hand side of

equation (33.30) still contains two unknowns, viz., Aflo and /'. If the

equilibrium constant K has been determined at two or more temperatures,

therefore, equation (33.30) can be solved for the unknowns, and hence
In K can be expressed as a function of the temperature. If the value of K
is known at several temperatures, a simple graphical procedure is possible
which permits the use of all the available data. By writing equation
(33.30) in the form

A 77- R InK + Ac* In T + ^T + %&yT* + - - = = -
I'R, (33.31)

it is seen that the plot of the left-hand side against l/T should yield a

straight line of slope equal to AjHo- With A// known, the integration
constant /' can be readily evaluated.6

Attention may be called to the fact that the procedure just described

provides a useful method for determining heats of reaction from equilibrium
constant data. Since Aflo has been derived above, and Aa, A, etc., are

available, it is possible to express A/? as a function of the temperature by
means of equation (33.29). The standard heat of reaction can then be
determined at any temperature in the range in which Aa, A/?, etc., are

applicable.

Problem: Utilize the following values of K/ for the ammonia equilibrium to

derive an expression for A# as a function of the temperature. Determine the

standard heat of reaction, i.e., heat of formation of ammonia, at 25 C.

Temp. 350 400 450 500 C
Kf 2.62 X 10~2 1.27 X 10~2 6.55 X 10~3 3.78 X 10~3

Inserting the values for Aa, A and AY given in the preceding problem, equa-
tion (33.31) becomes

- 4.576 log K - 7.46 In T + 3.69 X 10~*T - X 0.47 X 10~*T* = ~ - PR.

The values of the left-hand side (L. H. S.), obtained from the equilibrium constants

given above, and the corresponding 1/T's are then found to be as follows:

L. H. S. - 38.56 - 37.53 - 36.58 - 35.82

l/T 1.605 X 10~3 1.486 X 10r3 1.383 X 10~3 1.294 X 10~3
.

These results are plotted in Fig. 19; the points are seen to fall almost exactly on a

straight line, the slope of which is 8,810 cal. This is consequently the value
3f A//JJ, so that by equation (33.29),

A// = - 8,810 - 7.46T + 3.69 X 10-!P - 0.47 X 10~T* cai.

Randall, et al. t J. Chem. Ed., 8, 1002 (1931); Ind. Eng. Chem., 23, 388 (1931).
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At 25 C, i.e., 298 K, it is found that

A# - - 8,810
- 2,223 + 328 - 12 = - 10,717 cal.

(It will be noted that A/fJ obtained here differs by about 320 cal. from that adopted
in the preceding problem. The discrepancy may be due partly to an error in the
thermal A/7 value upon which AJ/jJ in the previous problem is based, and partly
to uncertainties'in Aa, Aj3, etc., which give the variation of heat capacities with

temperature. It is also possible that the Kf values are not exact.)

-38.0

02

W-37.0

-36.0

1.30 1.40 1.50

l/T X 10 s

FIG. 19. Determination of A#8 from equilibrium constants

1.60

33L Variation of Standard Free Energy with Temperature. If equation
(33.30) is multiplied through by RT, the result is RT In K; by equation
(33.6) this is equal to AF, the standard free energy of the reaction under
consideration. It follows, therefore, that

AF T - + IT, (33.32)

where the constant / is equal to I'R. This highly important equation
gives the variation of the standard free energy of a reaction with tempera-
ture, and since AF is equal to RTln K it is also, in effect, an expression
for the equilibrium constant as a function of temperature. The value of

AF given by equation (33.32) applies to the reaction as written for the
determination of the equilibrium constant. For example, if the ammonia
equilibrium is written as

*N 2 + fH* ^ NH3
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the equilibrium constant Kf is /Nn,//Jit X /if2 ,
as stated earlier, and AF

is the standard free energy increase for the formation of 1 mole of ammonia.
If the reaction were written

N 2 + 3II 2 ^
the equilibrium constant would be/NH3//Nj X /H,, which wouhd be the square
of the preceding value. Since AF is equal to RT In K, the free energy

change would consequently be doubled, as it should be for the formation

of two moles of ammonia instead of one.

In order to utilize equation (33.32) it is necessary to know A//S, Aa, etc.,

and the integration constant I. It will be assumed, as before, that heat

capacity data are available, so that Aa, A0, etc., may be regarded as known.
The procedure for the derivation of AH8 and /, the latter being equal to

I'R, is then similar to that described in 33h in connection with equation
(33.30) ;

this is based either on a single value of the equilibrium constant

together with A// at any temperature or, alternatively, on the equilibrium
constants at two or more temperatures. If the constants in equation

(33.30) have previously been evaluated it is, of course, a simple matter to

derive the corresponding equation for

Problem: Derive an expression for the standard free energy of formation of

1 mole of ammonia as a function of temperature, and evaluate AF at 25 C.

By utilizing the results obtained in the first problem in 33h, with A7fJ equal
to 9,130 cal. and /' equal to 12.07, it is readily seen that

AF = - 9,130 + 7.46T In T - 3.69 X lO-'I72 + 0.235 X 1Q~*T* - 12.07fi!F.

This gives AF in cai. per mole of ammonia. Setting R equal to 1.987, and taking
T as 25 C, i.e., 298 K, it is found that

AFJM - - 9,130 + 12,660
- 328 + 6 - 7,145 - - 3,936 cal.

It may be noted that if a slightly different value of A# were employed,
e.g., 8,810 cal. as derived in the second problem in 33h, I' and hence / would
be also changed, with the result that AFJ98 would not be greatly affected.

Attention may be drawn to the fact that the constant I in equation
(33.32) is related to the entropy change AS accompanying the reaction,
and might be evaluated if AS were known. This may be seen, in a general

manner, by comparing equation (33.32) with (25.8) for the standard states,

i.e., AF = A# TAS . However, it is more convenient to use entropy
values in another manner for calculating free energy changes, as will be
seen shortly.

33j. Simultaneous Equilibria: Addition of Free Energies. In some sys-
tems there may be two or more equilibria which are established simul-

taneously. In the "water gas" reaction

(1) C0 2 + H2 - CO + H 20,

for example, at high temperatures, there will be a partial dissociation of
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carbon dioxide, viz.,

(2) C02
- CO + *02

and of water vapor, viz.,

(3) H 2 = H 2 + K>2,

so that three simultaneous equilibria, at least, will exist. For reaction (1)

the equilibrium constant K\ is given by

v OCO X flHjO
JR. 1

=-
9

oco, X aHl

whereas, for reactions (2) and (3), the constants are

K 2
=

Since these equilibria occur in the same system, the equilibrium activity of

any substance involved in K\, K* and K3 will be the same; hence, it follows,

immediately, that

ffi - f-
2

-

(33.33)
Aj

It is thus possible to calculate any one of these equilibrium constants if the

other two are known. This fact has proved useful in the determination of

equilibria which cannot be readily studied directly by experiment.

By taking logarithms of equation (33.33) and multiplying each side by
RT, it is seen that

- RTlnK 1
=- RT\nK2 + RTln Kz,

and consequently, by equation (33.6),

AF? - AF2 - AF.

An examination of the chemical equations for the three equilibria given
above shows that, as written, reaction (1) is equivalent to reaction (2)

minus reaction (3). Consequently, if standard free energy equations are

written out in a manner similar to that used for thermochemical (heat of

reaction) equations in 12d, etc., they can be added and subtracted in an

analogous manner.

Problem: The standard free energy AF for reaction (2) is 61.44 kcal. and
that for reaction (3) is 54.65 kcal. at 25 C. Calculate Kf for the "water gas"
reaction at this temperature.

The standard free energy is equal to AFjJ AFJ, i.e., 61.44 54.65 6.79

kcal., or 6,790 cal. Since AFJ - - RT In Kf ,
it follows at 25 C, i.e., 298.2 K,

6,790 - - 4.576 X 298.2 log Kf,

with K, like AF, expressed in calorie units; hence,

log Kf
- - 4.98,

Kf
= 1.05 X Itr'at 25 C.
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33k. Standard Free Energies of Formation. Because of their additivity
and their relationship to equilibrium constants, and for other reasons, it is

useful to tabulate standard free energies, like heats of reaction; the methods
available for the determination of free energy changes for chemical reactions

will be reviewed in the next section. The results are conveniently recorded
in the form of standard free energies of formation of compounds, and these

are derived from the free energies of reactions in a manner similar to that

used to obtain standard heats of formation from the heats of reaction in

12f. There is no method known for the experimental determination of

absolute free energies, but this is of no consequence, since the solution of

thermodynamic problems requires a knowledge of free energy changes. For
the purpose of evaluating free energies of compounds, the convention is

adopted of taking the free energies of all elements in their standard states to be

zero at att temperatures. The standard states of solid and liquid elements
are their respective pure stable forms at 1 atm.; for gaseous elements the

standard states are the ideal gases at 1 atm. pressure, i.e., at unit fugacity.
On the basis of these conventions, the standard free energy of a compound is

equal to its standard free energy of formation, that is, to the increase of free

energy accompanying the formation of 1 mole of the compound from its

elements, all the substances being in their respective standard states. For

example, for the reaction between hydrogen and oxygen at 25 C,

= - 54.65 kcal.,

the standard states being the gases at unit fugacity, so that the standard
free energy of formation of water vapor is 54.65 kcal. mole"1 at 25 C.

This means that the free energy of 1 mole of water vapor in its standard state

is less by 54.65 kcal. than the sum of the free energies of 1 mole of hydrogen
gas and J mole of oxygen gas in their respective standard states at 25 C;
hence,

, g)
- [F(Ha , g) + Jf (O,, ?)] = - 54.65 kcal.

If the standard free energies of the elements are set equal to zero, by con-

vention, the standard free energy of 1 mole of water vapor becomes equal to

the standard free energy of formation from its elements.

The standard free energies of formation of a number of compounds at

25 C are given in Table XXIV.7 They can be utilized, like heats of forma-

tion (standard heat contents) in Chapter V, to calculate the standard free

energies of many reactions, for several of which the values could not be
obtained in any other way. This is especially the case for reactions, par-

7 Data mainly from W. M. Latimer, "The Oxidation States of the Elements, etc.,"

1938; see also International Critical Tables, Vol. V; G. S. Parks and H. M. Huffman, "The
Free Energies of Some Organic Compounds," 1932; Kelley, U. S. Bur. Mines Butt., 384

(1936); 406, 407 (1937); Pitzer, Chem. Rev., 27, 39 (1940); Parks, ibid., 27, 75 (1940);

Thacker, FoDrins and Miller, Ind. Eng. Chem., 33, 584 (1941); Wagman, Kilpatrick, Taylor
Pitzer and Rossini, /. Res. Nat. Bur. Stand., 34, 143 (1945); Prosen, Pitzer and Rossini,

ibid., 34, 255, 403 (1945); Wagman, Kilpatrick, Pitzer and Rossini, ibid., 35, 467 (1945);

Kilpatrick, Prosen, Pitzer and Rossini, ibid., 36, 559 (1946).
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ticularly those involving organic compounds, which proceed to virtual

completion, and for which equilibrium constants could not be determined

experimentally.
It is sometimes required to know the free energy of formation of a sub-

stance in one physical state when that in another is given. For example,
the free energy of formation of liquid water is recorded in Table XXIV, since

TABLE XXIV. STANDARD FREE ENERGIES OF FORMATION
AT 25 C IN KCAL. PER MOLE *

Substance

HFfo)

HBr(0)
COfo)
C02(0)

AF
-31.8
-22.74
- 12.54
- 32.81
- 94.26

Inorganic Compounds

Substance AF

NO(0) 20.66

HjSfa) - 7.87

SO2 (<7)
- 71.7

-3.94
- 56.70

Substance

Sb2 3 (a)

BaCO(s)
Bi 2 3 (s)

CaCO,(a)

- 149.0
- 137.7

-271.6
- 116.6
- 270.4

Substance

Methane (g)

Ethane (g)

Propane (g)

Ethylene(0)

Acetylene(0)

Organic Compounds
AF Substance

- 12.14

-7.86
-5.61
16.34

50.7

Methyl alcohol(Z)

Ethyl alcohol(Z)

Acetaldehyde (I)

Acetic acid(Z)

Benzene (I)

-40.0
-40.2
-31.9
-94.5

29.06

* For further data, see Table 5 at end of book.

this is the standard state at ordinary temperatures, but for certain purposes
the standard free energy of water vapor, i.e., at unit fugacity, is required.
For this purpose, it is necessary to determine the standard free energy change
of the process H2O(Z) == H2O(0). Since the molar free energy of the liquid
water is equal to the molar free energy of the vapor with which it is in

equilibrium ( 27a), the problem is simply to calculate the difference in.free

energy of 1 mole of water vapor at its equilibrium (vapor) pressure, at the

given temperature, and in the standard state of unit fugacity, i.e., ideal gas
at*l atm. For this purpose, use may be made of equation (29.5), viz.,

A/*
7 = F2 FI = RT In -

, (33.34)

where /2 is unit fugacity, and /i is that corresponding to the vapor pressure.

For most purposes, except near the critical point, the ratio of the fugacities

may be replaced by the ratio of the vapor pressures, that is, ideal behavior

is assumed (cf . Chapter XII, Exercise 5) ; equation (33.34) then becomes

Pi
(33.35)

which, incidentally, is identical with the expression in 25d for the free energy

change accompanying the expansion of an ideal gas. The vapor pressure
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of water at 25 C is 23.76 mm., and since equation (33.35) involves a ratio

of pressures, the units are immaterial. Thus p2 may be set equal to 760
mm. and pi to 23.76 mm., so that at 298.2 K, with R in cal. deg.""

1 mole""1
,

AF - 1.987 X 298.2 X 2.303 log 2,054 cal.
23.76

The standard free energy of formation of liquid water is 56.70 kcal., and
hence for water vapor, AF is - 56.70 + 2.05, i.e.,

- 54.65 kcal., at 25 C.

Problem: The standard free energy change for the reaction CQ(g) + 2H2(#)
- CH 8OH(0) is - 5.88 kcal. at 25 C. Calculate the standard free energy of

formation of liquid methanol at 25 C, the vapor pressure being 122 mm. at that

temperature.

For the process CH 8OH(0) = CH 8OH(Z), the standard free energy change at

298.2 K, assuming ideal behavior of the vapor, is given by

AF - RT In & = 4.576 X 298.2 log^
PI 7oU
= - 1,084 cal.,

since pi, the vapor pressure of the final state, i.e., liquid, is 122 mm., and p\, for

the initial state, i.e., vapor at 1 atm., is 760 mm. Hence, for the reaction

CO(^ + 2H*(0) = CH|OH(Z), AF = - 5.88 - 1.08 = - 6.96 kcal.

(-33.0) (0) (x)

Writing the free energy of formation of each species below its formula, it is seen
that for liquid methanol at 25, AFJM is given by

x - (-33.0 + 0) =- 6.96,
x = - 40.0 kcai.

331. Determination of Standard Free Energies. Three main procedures
have been used for the evaluation of standard free energies of reactions.

The first is based on the experimental determination of equilibrium con-

stants, and their combination in the manner indicated above. By the pro-
cedure described in 33i, an expression can then be obtained for AF as a
function of temperature, so that the value at any particular temperature
can be evaluated.

The second method, which has been largely used for reactions involving
ionized substances, is based on the measurement of the E.M.F.'S of certain

galvanic cells. It was seen in 25b that the decrease of free energy ac-

companying any process at constant temperature and pressure, i.e., AJPV.p,
is equal to the maximum (reversible) work, other than work of expansion,
obtainable from that process. If the particular reaction can be performed
in such a manner that, apart from work of expansion, all the work is elec-

trical in nature, then the free energy change is equal in magnitude to the

electrical work. Many processes can be carried out reversibly in a suitable

galvanic cell, and the (maximum) E.M.P. of the cell may be used to derive
the accompanying free energy change.
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The subject will be considered more fully in Chapter XIX, but for the

present it will be sufficient to accept the fact that cells can be devised in

which particular chemical and physical changes take place. In order that
the E.M.F. may be employed for free energy calculations, it is necessary that
the cell should function reversibly; the tests of reversibility are as follows.

When the cell is connected to an external source of E.M.F., which is adjusted
so as exactly to balance the E.M.F. of the cell, i.e., so that no current flows,
there should be no chemical change in the cell. If the external E.M.F. is

decreased by an infinitesimally small amount, current will flow from the cell

and a chemical change, proportional in extent to the quantity of electricity

passing, should take place. On the other hand, if the external E.M.F. is

increased by a small amount, the current should pass in the opposite direc-

tion and the cell reaction should be exactly reversed. To determine the

maximum, or reversible, E.M.F. of such a cell, it is necessary that the cell

should be operated reversibly, that is, the current drawn should be in-

finitesimally small so that the system is always virtually in equilibrium.

Fortunately, the potentiometer method, almost universally employed for

the accurate determination of E.M.F.'S, involves the exact balancing of the
E.M.F. of the cell by an external E.M.F. of known value, so that the flow of

current is zero or infinitesimal. The external E.M.F. applied from the po-
tentiometer thus gives an accurate measure of the reversible (maximum)
E.M.F. of the cell. It may be mentioned that if large currents flow through
the cell when its E.M.F. is measured, concentration gradients arise within the

cell, because of the slowness of diffusion, etc., and the E.M.F. observed is less

than the reversible value.

If the E.M.F. of a voltaic cell is E int. volts, and the process taking place
within it is accompanied by the passage of N faradays of electricity, i.e.,

NF coulombs, where F represents 96,500 int. coulombs, the work done by
the cell is NFE int. volt-coulombs, or int. joules (cf. 3b). If the cell is a

reversible one, as described above, and E is its reversible, i.e., maximum,
E.M.F., at a given temperature and pressure, usually atmospheric, it follows

from the arguments presented earlier that

- AF = NFE, (33.36)

where AF is the increase in the free energy accompanying the process taking

place in the cell. The value of AF refers, of course, to a definite temperature
and pressure, and instead of writing AFr.p this is usually understood. The
number N of faradays required for the cell reaction can be readily obtained

by inspection of the chemical equation. In general, this number of faradays
is equal to the number of equivalents of electricity, or number of unit

charges, transferred in the cell reaction (cf. 45b).
At the present moment, the chief interest is the evaluation of the stand-

ard free energy AF of a process. It will be seen in Chapter XIX that this

can be calculated from AF and the activities of the substances present in the

cell, by utilizing a form of the reaction isotherm [equation (33.5)]. It can

be stated, however, that if the substances involved in the cell reaction are
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all present in their respective standard states, the resulting E.M.F. will be

the standard value . The standard free energy change is then given by
the appropriate form of equation (33.36), viz.,

NFE. (33.37)

The measurement of E.M.F.'S, of reversible cells thus provides a simple, and

accurate, method for evaluating standard free energy changes. Various

applications of this procedure will be given in later chapters.

The third method commonly employed for obtaining standard free

energies depends on the use of entropy values; this will be discussed in some
detail in the following section, as it provides a highly important practical

application of the results obtained in the earlier study of entropy.
33m. Standard Free Energies and Entropy Changes. It is apparent

from the general equation

Atf - rAS, (33.38)

that AF for any reaction could be calculated if Aff and AS were known.
In many cases where direct determinations of free energy changes are not

possible, it is a relatively simple matter to obtain the heat of reaction Aff

with reactants and products in their standard states. This is true, for

instance, for many reactions involving organic compounds. If the corre-

sponding entropy change AS were known, the problem of obtaining the

standard free energy change would be solved.

If the entropies in their standard states are known for all the substances

concerned in a reaction, it is possible to evaluate the entropy change AS
for the process at the same temperature. It was seen in Chapter IX that

the entropies of solids, liquids and gases can be obtained from heat capacity

measurements, utilizing the third law of thermodynamics. For gases, the

entropies can frequently be derived from the respective partition functions,
and these can be converted into the values for the solid and liquid states by
means of the entropies accompanying the phase changes as obtained from
the corresponding latent heats. Another procedure which has been found
useful is to determine the entropy of an element or compound from a

knowledge of the standard entropy change of the reaction and the entropies
of all but one of the substances taking part in the reaction. The entropy

change for the whole reaction can, of course, be evaluated if Aff and AJP

are known, by means of equation (33.38).
If the reaction can be made to take place in a reversible galvanic cell,

a direct method for the determination of the standard entropy change is

possible. For a substance in its standard state, equation (25.20) takes

the form

the constant pressure condition being omitted as unnecessary; hence, for

a process involving reactants and products in their respective standard
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States,

Xf SgL. (33.39)

If the reaction can take place in a reversible cell, whose E.M.P. is E, it follows,

by combining equations (33.37) and (33.39), that

AS = NF- (33.40)

The standard entropy change of the reaction can thus be determined from
the temperature coefficient of the E.M.F. of the cell.

Problem: For the cell Ag(s)|AgCl(s)KCl soln. Hg2Cl 2(s)|Hg(0, in which the
reaction is Ag(s) + iHg 2C! 2(s)

= AgCl(s) + Hg(J), the temperature coefficient of

the E.M.F. is 3.38 X 10~4 volt degr1 at 25 C. The entropies at this temperature
of Ag(), AgCl(s) and Hg(2) are known from heat capacity measurements to be

10.2, 23.0 and 18.5 E.U. mole~l
(or g. atom^1

), respectively. Calculate A5 for

bhe reaction, and the standard molar entropy of Hg 2Cl 2(s) at 25 C.

It may be noted that in this particular ceil ail the substances taking part in

the reaction are in their respective standard states, thus simplifying the problem.
[n this case dEQ/dT is equal to dE/dT, which is 3.38 X 10~4 volt deg.-

1
. Since

diver is univalent, the cell process would require the passage of J. faraday, i.e.,

N is 1 equiv. Since the entropy is required in cal. deg.~
l mole""1

,
it is convenient

;o express F as 23,070 cal. volt""1 g. equiv.^
1
(Table 1, Appendix), o that

AS 1 x 23,070 X 3.38 X 10~4

= 7.80 cal. deg.-
1
, i.e., E.U.

For the given reaction,

DS(AgCl) + S'(Hg)] - CS(Ag) + *<S(Hg 2Cl2)l
7.80 = (23.0 + 18.5)

-
[10.2 + iS(Hg2Cl2)3,

S(Hg 2Cl 2)
= 47.0 E.U. mole-1

.

By definition, the entropy change in a reaction is equal to the heat

change, when the process is carried out reversibly, divided by the absolute

temperature. If the amount of heat liberated in a reversible cell when it

>perates could be measured, the entropy change for the reaction could be
letermined. Because of experimental difficulties this method does not

ippear to have been used.

33n. Application of Free Energy and Entropy Data. With the standard

intropies for many elements and compounds known (see Tables XV and

QX), a highly valuable means is available for the determination of free

nergy changes, and hence of equilibrium constants, for numerous reactions.

por many of the processes no direct experimental methods for obtaining

hese quantities have yet been developed. An important application of the

lata is to decide whether a particular reaction is possible, or not, at a certain

emperature before attempting to carry it out experimentally.
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Problem: Determine the standard free energy change of the reaction CH4(0)

+ 208(0)
- CO 2(0) + 2H0(0 at 25 C, using the following standard entropies

and heats of formation:

CH4 (<7) 2(0) C0a(0) H20(0
5 44.5 49.00 51.06 16.75 cal. deg."

1 mole-1

Aff - 17.9 - 94.0 - 68.3 kcal. mole-1
.

For the reaction as written above,

AS = [51.06 + (2 X 16.75)] - [44.5 + (2 X 49.00)]
- 57.9 E.U.

Aff = [- 94.0 + (- 2 X 68.3)]
- [- 17.9 + (2 X 0)] = - 212.7 kcal.

At 25 C,
!TAS = - 298 X 57.9 - - 17,250 cal. = - 17.3 kcal.

Hence,
AF - A# - !FAS - - 212.7 + 17.3

= - 195.4 kcal. at 25 C.

Problem: A mixture of hydrogen and carbon monoxide in the molecular pro-

portion of 2 to 1 is allowed to come to equilibrium, in the presence of a catalyst,
at 600 K and 250 atm. Disregarding side reactions, determine the extent of

conversion into methanol according to the reaction 2H 2 + CO = CHOH(0), using
heat capacity, heat content and entropy data, together with the generalized

fugacity chart.8

At 25 C, Aff of formation of CHsOHfo) is - 48.1 kcal., that of CO is - 26.4

kcal., and that of hydrogen is zero by convention. Hence, for the methanol

reaction, A# is - 48.1 - (- 26.4 + 0) = - 21.7 kcal., or - 21,700 cal.

The values of CP in cal. deg.""
1 mole"1 are as follows:

4.394 + 24.274 X lO-'T - 68.55 X
2 X CP(H 2) 13.894 - 0.399 X 10r*T + 9.62 X 10-7!P

Cp(CO) - 6.342 + 1.836 X 10~8T + 2.80 X
so that

ACp = - 15.842 + 22.837 X 1Q~*T - 80.97 X
Hence,

Aa = - 15.84, Aj8 = 22.84 X 10~$
, AT = - 80.97 X 10~7

.

Inserting these results, together with A// at 298.2 K, into equation (33.29),

- 21,700 = A#2 - 15.84 X 298.2 + 11.42 X 10"1 X (29S.2)
2

- 26.99 X 10-7 X (298.2)'
- A#X - 4,723 + 1,015

-
72,

A#S - - 17,920 cal.

The standard entropies are 56.63 for CH,OHty), 2 X 31.21 = 62.42 for 2H,,
and 47.30 E.U. for CO, so that for the reaction A is 53.09 cal. deg."

1
. Hence,

at 298.2 K,
AF - Atf - TAS

- 21,700 + 298.2 X 53.09 - - 5,870 cal.

Cf. Ewell, Ind. Eng. Chem. t 32, 147 (1940).
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Using this value of AF, together with Af/J, Aa, A0 and A?, it is possible to

determine the integration constant / in equation (33.32); thus, with T equal
to 298.2 K,

- 5,870 = - 17,920 + 15.84 X 298.2 X In 298.2 - 11.42 X 10~3 X (29S.2)
2

+ 13.5 X 10~7 X (29S.2)
3 + 298.27

= - 17,920 + 26,920
-

1,015 + 36 + 298.27,
7 = - 46.59.

At 600 K, the value of AF is given by

AF * - 17,920 + 15.84 X 600 X In 600 -
1 1.42 X 10~3 X (600)

2

+ 13.5 X 10-7 X (600)
3 - 46.59 X 600

= - 17,920 + 60,820 - 4,111 + 292 - 27,950
= 11,130 cal.

Since AF = RT in K/ t with fugacities in atm. in this case, it follows that 7C/

at 600 K is equal to 8.9 X 10~ 5
.

The data for the determination of the activity coefficient function ,/ 7
' at

600 K at 250 atm. are as follows:

Te Pc TT 7'

CH 3OH 513.2 K 98.7 atm. 1.17 2.53 0.58

H 2 33.2(+8) 12.8(+8) 14.56 12.02 1.10

CO 134.4 34.6 4.65 7.23 1.13

"

y
(.lO)x 1.13

' >

If this may be taken as equal to the true activity function, then as a good
approximation Kf Jy > X Kp ; hence, K'p is 8.9 X 10- fi

/0.42 2.1 X 10~4
.

If the system initially contains 2 moles of H 2 and 1 mole of CO, and x is the

extent of conversion at equilibrium, the numbers of moles at equilibrium are

2 2x(H 2), 1 z(CO) and z(CH 3OH). Hence, the respective mole fractions

are (2 2z)/(3 2z), (1 z)/(3 2x) and x/(3 2z), and so for the reaction

2H 2 + CO^ CH 3OH(0), for which An is - 2,

p-2 = x(3 - 2oQ
2

P N 2

H3 XNco

Since K'p is 2.1 X 10~4 and P is 250 atm., Kf and K'P being based on the fugacity
of 1 atm. as standard state, solution of the equation by successive approximation

gives x equal to 0.67. There is consequently 67 per cent conversion of hydrogen
and carbon monoxide into methanol under the given conditions.

Attention may be called to the omission of the entropies and heat con-

tents of ions from the foregoing discussion, so that the data for the calcula-

tion of the free energies of ionic reactions are not yet available. However,
the subject will be taken up in Chapter XIX, when the omission will be

rectified.

33o. Confirmation of Third Law of Thermodynamics. It was stated in

23d that confirmation of the third law is to be found in the agreement with
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experiment obtained by using thermal entropies in conjunction with other

data. Numerous examples of such agreement are to be found in the literature

of thermodynamics, but two simple cases will be considered here. In the

problem in 33m, the entropy of mercurous chloride was derived from
E.M.F. measurements and from the third law entropies of mercury, silver

and silver chloride. The fact that an almost identical result, viz., 47 cal.

deg.""
1 mole"1

,
has been obtained by direct heat capacity measurements on

solid mercurous chloride, assuming the entropy to be zero at the absolute

zero, may be regarded as confirmation of this (third law) postulate. Very
satisfactory agreement has been found in other instances of a similar type.

Another procedure for testing the third law of thermodynamics is to

combine heat content with entropy data for a given reaction, and so to

determine the free energy change, the value of which is known from direct

measurement. The standard free energy change for the formation of silver

oxide, i.e., for the reaction 2Ag(s) + O2 ({7)
= Ag2O(s), can be derived from

the dissociation pressure (cf. Exercise 11); this is found to be 2.59 kcal.

at 25 C. The third law entropies of silver oxide, silver and oxygen are

29.1, 10.2 and 49.0 cal. deg.-
1 mole"1

, respectively, at 25 C, and hence for

the reaction in which 1 mole of silver oxide is formed, A/S is 29.1 (2 X 10.2

+ X 49.0), i.e.,
- 15.8 cal. or -0.0158 kcal. deg.-

1
. The standard heat

of formation of the oxide is known to be 7.30 kcal. mole"1

, and hence
the free energy of formation, given by Aff TAS

,
should be 7.30

-
(298.2 X -

0.0158) = - 2.59 kcal. mole"1

,
in complete agreement with

the direct experimental value. Analogous results have been obtained in

many cases involving both inorganic and organic compounds.
33p. Free Energy Functions. In connection with homogeneous gas re-

actions in particular, an alternative method of presenting what amounts

essentially to entropy data is to utilize certain free energy functions based
on the use of partition functions. It was seen in 25g [equation (25.42)],
that

F - Eo = - RT In ^ , (33.41)

where F is the molar free energy and Q is the partition function of the given
species; EQ is the molar energy content when all the molecules are in their

lowest energy state, i.e., at K; N is the Avogadro number. The partition
functions invariably refer to the ideal gaseous state, and if the pressure of

the gas is taken as 1 atm., the values apply to the usual standard state. It

follows, therefore, that equation (33.41) may be written as

fo _ #o ^ _ RT ln <_
N

so that

j' (83.42)
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By definition, H = E + PV, and for 1 mole of an ideal gas, this may
be written as H - E + RT, or # = E + RT if the substance is in its

standard state, i.e., 1 atm. pressure. It follows, therefore, that at K,
when RT is zero,

HQ =
JBo.

It is consequently possible to substitute HQ for EQ in equation (33.42), giving

T (33.43)

The quantity
- (F - E$)/T or - (F - Ho)/!

7

,
that is, the left-hand side

of equation (33.42) or (33.43), is known as the free energy function of the

substance; its value for any gaseous substance, at a given temperature, can
be readily derived from the partition function for that temperature, at 1

atm. pressure. The data for a number of substances, for temperatures up to

1500 K, have been determined in this manner and tabulated (Table XXV).9

TABLE XXV. FREE ENERGY FUNCTIONS IN CAL. DEG."1 MOLE"1

Substance

H 2

2

N 2

Graphite
CO
CO,

Cl*
HC1
NO
HzS
CH4

C2H

clul
NH8

SO,

298.16

24.423

42.061

38.817
0.517

40.350
43.555

37.172

45.951

37.734

42.985

41.174

36.46

45.25

44.05

40.01

37.989

50.95

51.94

400

26.422

44.112

40.861

0.824

42.393

45.828

39.508

48.148
39.771

45.141

43.53

38.86

48.20

46.7

42.49

40.380

53.49

54.81

600

29.203

46.968

43.688
1.477

45.222

49.238

43.688

51.298

42.588

48.100

46.83

42.39

53.06

50.8

46.38

43.826
57.21

59.31

800

31.186

49.044

45.711

2.138

47.254

51.895

45.711

53.614

44.597

50.314
49.27

45.21

57.28

54.4

49.50

46.450

60.05

62.98

1000

32.738

50.697

47.306

2.771

48.860
54.109

47.306

55.453

46.171

51.878
51.24

47.65

61.12

57.5

52.14

48.634

62.39

66.12

1500 K
35.590
53.808

50.284

4.181

51.884
58.461

50.622

58.876

49.096

54.979
55.06

52.84

69.49

64.2

57.43

53.033

66.91

It will be observed that Table XXV contains values for the free energy function

of graphite; this has not been obtained from equation (33.43), which is applicable
to gases only. The method for the calculation of (F H$)/T for solids is

based on the use of heat capacities. For a pure solid, since S is zero, by the

third law of thermodynamics, equation (23.1) becomes

fr
/"'
Vy P
~

(

,

For main sources of data, see references in Wilson, Chem. Rev., 27, 17 (1940); also,

Wagman. et cd., ref. 7, Kilpatrick, el aL, ref. 7, Pitzer, ref. 7.
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the symbol S being employed since the pure solid, nt 1 atm. pressure, represents
the standard state. Further, since Cp is equal to (dH/dT)p, it follows upon
integration that

CpdT. (33.44)X,

Upon combining these two expressions with the relationship F = // TS, for

the standard state, it follows immediately that

Hence, if CP of the solid is known as a function of the temperature, (F 7/J)/T
can be obtained by analytical or graphical integration.

33q. Calculation of Standard Free Energies. The free energy functions

can be utilized to calculate equilibrium constants or the standard free energy
changes of gas reactions in the following manner. The change in the free

energy function accompanying a particular reaction is A(F Ho)/T,
and this may be written as

T T '

so that

(ipo

_ rjro \

J
+ Affg. (33.45)

The first term on the right-hand side can be derived directly from the table

of free energy functions, and hence for the determination of the standard free

energy change AF it is necessary to know A#o for the given reaction.

Several methods are available for arriving at the proper values of A7/o, but
these all require a knowledge of heat content changes, that is, of heats of

reaction. From this fact it will be evident that the foregoing method of

obtaining AFJ5 is really equivalent to the use of the entropy change.
As seen earlier ( 12k), A//8 for a reaction may be evaluated from thermal

measurements, including heat capacities at several temperatures. How-
ever, instead of using experimental heat capacity data to derive A//2 from
A# values, the results may be obtained indirectly from partition functions

(cf. 16c). The energy content of an ideal gas is independent of the pres-

sure, at a given temperature; hence, E E in equation (16.8) may be re-

placed by E EQ, so that

, (33.46)

and since # = E + RT for 1 mole, and E$ and H$ are identical, it follows

that

+RT. (33.47)
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Values of H 7/8, known as the relative heat content, for a number of

gases at various temperatures, calculated from partition functions by means
of equation (33.47), have been recorded (Table XXVI). 10 For pure solids,

TABLE XXVI. RELATIVE HEAT CONTENTS IN KCAL. PER MOLE *

Substance

II 2

N,
Graphite
CO
C02

C1 2

HC1
NO
H2S
CH 4

C 2H 6

C2H
C 2H2

NH 3

SO2

298.16

2.024

2.070

2.072

0.252

2.073

2.238

2.365

2.11

2.00

2.206

2.386

2.397

2.865
2.59

2.41

2.407

2.53

2.77

400

2.731

2.792

2.782

0.503

2.784

3.195

3.190

2.923

3.22

3.323

4.27

3.2992

3.53

4.10

600

4.129

4.279

4.198

1.198

4.210

5.322

4.873

4.385

4.99

5.549

8.03

5.2656

5.75

7.22

800

5.537

5.854

5.669

2.082

5.700

7.689

6.666

5.834

6.92

8.321

12.78

7.5720

8.17

10.78

1000

6.966

7.497

7.203

3.075

7.257

10.222

8.580

7.584

9.01

11.560

18.37

10.123

10.70

14.63

1500 K
10.694

11.776

11.254

5.814

11.359

17.004

13.876

11.701

14.79

21.130

34.56

17.460

17.29

* The entropy at any temperature may be derived from the free energy function and the

relative heat content by utilizing the relationship S = - [(F - H8)/!F] + [(# -
Hg)/!T].

HQ HQ at any temperature may be derived from heat capacity measure-
ments by means of equation (33.44).

If A/f for the reaction is known at any temperature (Chapter V), it is

then a simple matter to obtain Al/jj by means of the relationship

A// -
(33.48)

the last term being evaluated from Table XXVI.
A third method for obtaining A# has been employed in certain instances

by utilizing heats of dissociation derived from spectroscopic measurements.
These results refer to the substances in their lowest energy state, and hence

correspond to AffoJ the corrections required to convert the results to Affjj, i.e.,

to the standard states, are usually small, and can be calculated if necessary.

Problem: For the reaction H 2(0) + JO 2(0)
= H 2O(0), the value of Atf at

25 C is - 57.80 kcal. Utilize Tables XXV and XXVI to determine the standard

free energy change of the reaction.

From Tables XXV and XXVI the following data are obtained at 25 C,

i.e., 298.2 K:

~ (F*
- HD/T 24.423 21.031 37.172 - A[(F -

//X)/f] - - 8.282 oal.deg.-*

# - HI 2.024 1.035 2.365 A(// - //) = - 0.694 kcal.

"Seeref. 9.
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Since Aff is - 57.80 kcal., AHJ is - 57.80 - (- 0.69) - - 57.11 kcal. By
equation (33.45), AF - (- 298.2 X 8.282 X 10~) + (- 57.11) - - 54.64 kcal.

33r. Equilibrium Constant and Partition Functions. There is another ap-

proach to the problem of evaluating free energy changes of gas reactions from

partition functions which, although formulated somewhat differently, is funda-

mentally the same as that described above. Since, by equation (33.43),

it follows that for any homogeneous gas reaction,

AF - - RT In /Qo/Ar +

using a notation similar to that in 32c (see footnote, p. 276). Since AF is

equal to RT In Kf ,
in this case, it is seen that

(33.49)
JLlfJL

For the general reaction

aA + 6B H = IL + mM +-, .

equation (33.49) becomes

In IT = In
WWL X COV^ft X " A^o

7
(QVAOl X (Q /^V)B X fiT

7 '

and hence,

The method of calculating K/ based on equation (33.50) thus also requires a

knowledge of A#J, which can be obtained by the methods described in 33q. If

this and the partition functions of the reactants and products of the process are

known, the equilibrium Constants can be readily calculated.

For many purposes it is not necessary to know the actual partition functions,
for they may be derived with sufficient accuracy by means of the equations given
in Chapter VI. The calculations may be illustrated by reference to the simple
case of the dissociation of a gaseous molecule into two atoms, viz.,

A2 ^2A,
for which

T? f
(Q/AQl .-AtfJ/ftr /OQ K1\

/ ~(CVAr
) 2

' (33 '51)

where the subscripts 1 and 2 refer to the atoms and molecules, respectively.
The partition function of the atomic species consists of the electronic and

translational contributions only, but for the diatomic molecule A2 the partition
function involves the electronic, translational and rotational factors, and also the
contribution of one vibrationai mode. The translational partition function is

given by equation (16.16) as

t (3352)
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where V is the molar volume. For the present purpose the partition function is

required for each substance in its standard state. In order to obtain K/t the
standard state is that of the ideal gas at 1 atm. pressure. It is, therefore, con-
venient to write Qt in a slightly different form, by replacing V by RT/P, where P
is the pressure of the gas; hence, equation (33.52) becomes

n (ZirmkTy'* RT
Qt - --

j-r* ~p- (33.53)

As seen in 16b, the partition functions are based on the postulate of ideal be-

havior of gases; hence if P in equation (33.53) is set equal to 1 atm. the result will

be the translational contribution to the partition function of the gas in the standard

state, i.e.,

Qt =-
^
- RT, (33.54)

with R in cc.-atm. deg.~~
l mole"1

. This result is applicable to both atoms and
molecules, using the appropriate value of the mass m of each unit particle, i.e.,

the atom A or the molecule A2, respectively.
The rotational and vibrational factors in the partition function of the diatomic

molecule A* are given by equations (16.24) and (16.30), respectively. These are

independent of the pressure (or volume) and require no adjustment or correction

to the standard state.

Utilizing the foregoing facts, and representing the masses of the atoms and
molecules by m\ and m 2 , respectively, equation (33.51) becomes

RT _ T
* U e '

h* N vh*

where Qe \ and Qez are the respective electronic factors; / is the moment of inertia

of the molecule A2 ,
is its symmetry number, i.e., 2, and co is the vibration fre-

quency in cm."1
. In addition to A#J, which is derived in the manner already

described, the masses m\ and m2 ,
obtained from the atomic and molecular weights,

respectively, and the universal constants TT, k, h, R, N and c, the other information

required for the evaluation of the equilibrium constant Kf can be obtained from

spectroscopic data. In some cases, e.g., dissociation of hydrogen, oxygen, nitrogen
and the halogens, the value of A//J can also be derived from spectroscopic studies,
and so the equilibrium constant can be calculated without any chemical or thermal
measurements.

Problem: Calculate the equilibrium constant Kf for the dissociation of molecu-
lar iodine into atoms at 1000 C. The electronic state of the molecules may be
taken as a singlet, and all the atoms may be regarded as being in the state for

which the resultant quantum number j is . The value of A#J is known from

spectroscopic measurements to be 35,480 cal. The moment of inertia of molecular
iodine is 743 X 10~40

g. cm.2 and the vibration frequency is 214 cm."1
.

For atomic iodine, Q*\ is 2; + If i.e., 4.00; m\ is 127/AT, where N is the Avo-

gadro number. For molecular iodine, Q,a is 1, mi is 254/7V, and the symmetry
number is 2. Inserting these values in the equation given above, together with
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ft, c and k in c.g.s. units and R in the brackets in cc.-:itm. cleg."
1 mole" 1

,
it is found

that at 1000 C, i.e., 1273 K,

Kf (for 1 2
- 21) -- O.JS4.

The example given above provides a simple illustration of the use of moments
of inertia and vibration frequencies to calculate equilibrium constants. The
method can, of course, be extended to reactions involving more complex sub-

stances. For polyatomic, nonlinear molecules the rotational contributions to the

partition functions would be given by equation (16.34), and there would be an

appropriate term of the form of (16.30) for each vibrational mode.11

33s. Equilibrium Constants of Metathetic Reactions. When a reaction in-

volves a metathesis, or double decomposition, a very simple, if somewhat approxi-

mate, expression can be derived for the equilibrium constant, particularly if

diatomic molecules only take part in the process, as in the case, for example, of

the gas reaction

AB + CD = AC + BD.1234
For such a reaction, in which there is no change in the number of molecules, the

equilibrium constant is independent of the standard state ( 32c), so that it is

possible to write equation (33.50) as

, X (QVAQ, X/Rr _ &210J HllRT
x

e
' (33 '55)

where, for simplicity, the symbols Q\, Q2 , Q* and QA are used to represent the

partition functions, in their standard states, of the diatomic molecules AB, CD,
AC and BD, respectively. For the diatomic molecules the electronic factors may
be taken as unity; if they are not individually unity, the cancellation of the terms
in equation (33.55) will lead to a value not very different from unity. The ex-

pression for the translational partition function [equation (33.54)3 may be simpli-
fied in form; thus,

where M is the molecular weight of the gas, and a is the same for all gases at

definite temperature, independent of the nature of the substance. In a similar

manner, the equation for the rotational partition function for a diatomic molecule

may be written as

8ir*IkT . I
0r ""rtT-" 6

?'

where b is also a constant, at a given temperature; / is the moment of inertia of

the molecule. The four vibrational factors, i.e., (1 g-fccw/fcrj-i^ are no j. verv
different from unity, and, in any event, because of cancellation of terms, the com-

plete contribution is virtually unity, and so they may be omitted. Making the

appropriate substitutions, equation (33.55) becomes

11 For extensive reviews, see Zeise, Z. Elk., 39, 758, 895 (1933); 40, 662, 885 (1034);

48, 425, 476, 693 (1942).
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or

+ l +l- (33.56)

The value of the equilibrium constant may thus be derived from A/f
JJ
for the reac-

tion, and the molecular weights, moments of inertia, and the symmetry numbers
of the substances taking part. Equations of the type of (33.56) have been em-

ployed particularly in the study of isotopic exchange reactions, where the error

due to the cancellation of the vibrational partition functions is very small, espe-

cially if the temperatures are not too high.
12

Problem: Determine the equilibrium constant of the homogeneous gaseous
isotopic exchange reaction between hydrogen and deuterium iodide, via.,

H2 + 2DI = 2HI + D2

at 25 C. From spectroscopic measurements, A#J is found to be 83 cal., and
the moments of inertia are as follows: H 2(0.459 X 1Q-40

), DI(8.55 X lO"40
),

HI(4.31 X 10-40
), D 2(0,920 X 10~40

g. cm.2
).

The symmetry numbers for H2 and D 2 are each 2, and for HI and DI they are

both 1; consequently the symmetry numbers cancel, so that the corresponding
factor is unity, and its logarithm in equation (33.56) is zero. The molecular

weights are 2 for H 2 ,
129 for DI, 128 for HI and 4 for D 2,

so that by equation
(33.56), after converting the logarithms, at 298 K,

log K - - ""'
T + I log M

m
x Mf + log 7

m J*
Zi.OV/O/l/Z i jjj ^ 1K jjj 'Hi ^ * DI

83.0 3 (128)
2 X 4 (4.31)

2 X
4.576 X 298

"*" 2 g 2 X (129)*
"*" g

0.459 X (8.55)*

- 0.0876,

K - 1.22.

EXERCISES *

1. At 250 C and 170 atm. pressure the value of K'v for the methanol equi-

librium, i.e., CO + 2H2 = CH 3OH(fir), was found to be 2.1 X 10~2
. Apply the

corrections for deviation from ideal behavior, and hence calculate K/ at 250 C.
2. The following equilibrium constants K/ t

with fugacities in atm., were
obtained at 700 C, the Fe, FeO and C being present as solids:

Fe + H 2O(?) - FeO + H 2 K, = 2.35

Fe + CO 2
= FeO + CO 1.52

C + H20(?) = CO + H2 1.55.

Utilizing the free energy concept, and disregarding departure from ideal behavior,
answer the following questions: (i) Will a mixture consisting of equimolecular pro-

portions of water vapor and hydrogen at 1 atm. total pressure be capable of re-

"Cf. Urey and Rittenberg, /. Chem. Phys., 1, 137 (1933); Rittenberg, Bleakney and
Urey, Md. t 2, 48 (1934); Urey and Greiff, J. Am. Chem. Soc., 57, 321 (1935); Libby, J. Chem.

Phys., 11, 101 (1943).
* For heat content, heat capacity, entropy and free energy data, see tables in text or

at end of book.
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ducing FeO at 700 C? What is likely to be the effect of increasing the total

pressure? (ii) Will a gas mixture consisting of 12 mole % carbon monoxide, 9
mole % carbon dioxide and 79 mole % of an inert gas (e.g., nitrogen) at a total

pressure of 1 atni. tend to deposit carbon at 700 C? Above or below what pres-
sure is this likely to occur? [Cf. Austin and Day, Ind. Eng. Chem., 33, 23 (1941).].

3. The values of Kp for the ammonia equilibrium at 500 C and various pres-
sures were found (Larson and Dodge, ref. 1) to be as follows:

P 50 100 300 600 atm.

K'p 3.88 X 10-8 4.02 X 10~8 3.98 X 10"s 6.51 X 10~'

Calculate the fugacity correction (i) by using the generalized fugacity diagram,
(ii) by means of the van der Waals constants (cf . 29c) ; hence, determine the true

equilibrium constant at 500 C. (Cf. Pease, ref. 2.)

4. Show that in the reaction N 2 + $H2 == NH8, assuming ideal behavior of

the gases, the maximum (equilibrium) conversion of nitrogen and hydrogen into

ammonia, at any definite temperature and pressure, is obtained when the reacting

gases are in the proportion of 1 to 3. (Suppose the equilibrium system consists of

Ns and Hi molecules in the ratio of 1 to r; let x be the mole fraction of NH8 formed
at equilibrium. Hence, set up an expression for Kp in terms of mole fractions and
total pressure, and find the condition which makes dx/dr equal to zero, i.e., for

maximum conversion to NH3.)

5. The following values were obtained for the equilibrium constant of the

homogeneous gas reaction H2 + C0 2
= CO + H 2O:

t 600 700 800 900 C
K 0.39 0.64 0.95 1.30

Use a graphical method, based on heat capacities, etc., to derive A#J for this

reaction, and hence develop expressions for AF and A# as functions of the

temperature. What are the standard free energy and entropy changes for the

reaction at 25 C?
6. Check the results derived for 25 C in the preceding exercise by using

tabulated free energy and entropy data. Also check the value for AOff H ),

i.e., A# - AHJ, obtained.

7. For the reaction C() + H20(0) = CO + H2, the equilibrium constant

Kf is 2.78 X 10~* at 800 K. Calculate the free energy change in cal. accom-

panying the reaction of steam at 100 atm. with carbon to form carbon monoxide
and hydrogen each at 50 atm, (i) assuming ideal behavior of the gases, (ii) allowing
for departure from ideal behavior. What is the standard free energy change of

the reaction at 800 K?
8. Use AF values at 25 C, together with heat capacity data, to derive an

expression for the variation with temperature of the equilibrium constant of the
reaction SOS + JO - S08(0). What would be the value of Kf at 450 C?

9. A mixture of sulfur dioxide and oxygen, in the molecular proportion of 2
to 1, is allowed to come to equilibrium at 450 C at (i) 1 atm. (ii) 200 atm., total

pressure; estimate the composition of the final mixture in each case, allowing for

deviations from ideal behavior. (Use the value of K/ obtained in the preceding
exercise.)

10. Utilizing heat content, heat capacity and entropy data, together with the

generalized fugacity diagram, make a therinodynamic study of the reaction
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+ H2O(0) = C 2H8OH(0). Determine the extent of conversion of an

equimolar mixture of ethylene and water vapor into ethanol at 450 C and 200
atm. [cf. Aston, Ind. Eng. Chem., 34, 514 (1942)].

11. The dissociation pressures of silver oxide at several temperatures were
found by Benton and Drake [/. Am. Chem. Soc., 54, 2186 (1932)] to be as follows:

1 173 178 183.1 188.2* C
p 422 509 605 717mm.

In this temperature range Cp for Ag is given by 5.60 + 1.5 X lO-T, for Ag*0 by
13.87 + 8.9 X 10-3

!T, and for O 2 by 6.50 + 1.0 X 10~*!T. Determine Atf, AF
and AS for the reaction Ag2O = 2Ag + JO2 at 25 C.

1 2. The E.M.F. of the cell H 2(0) |
KOH aq \ HgO(s), Hg(J), in which the reaction

for the passage of two faradays is H 2(g) + HgO() - H 2O(J) + Hg(l), is 0.9264
volt at 25 C. Use this result together with the known free energy of formation of

mercuric oxide to calculate the standard free energy of formation of liquid water
at 25 C. (The fugacity of the hydrogen gas may be taken as 1 atm.)

13. The temperature coefficient of the standard E.M.F. of the cell Pb|PbClj
sat. soln.|AgCl(s), Agis 1.86 X 10~4 volt deg."

1
; the cell reaction for the passage

of two faradays is Pb + 2AgCl(s) PbCl2(s) + 2Ag. Determine the standard

entropy change for the reaction at 25 C. Calculate AS by using the third law

entropies in Table XV, and state whether the results tend to confirm the third

law of thermodynamics.
14. Using heat content data, determine A# at 25 C for the reaction con-

sidered in the preceding exercise; hence calculate AF for the reaction at 25 C.
What is the E.M.F. of the cell at this temperature? (The experimental value is

0.4900 volt.)
*

15. The reaction Ag(s) + JHg2Cl2() = AgCl() + Hg(l) takes place in a
reversible cell whose E.M.F. is 0.0455 volt at 25 C and 1 atm. pressure. Calculate

the free energy change of the reaction. By using equation (25.21), estimate

(i) the free energy change of the cell reaction, (ii) the E.M.F. of the ceil, at 1000
atm. and 25 C. (The following densities, which may be taken as the mean values

over the pressure range, may be used: Ag, 10.50; AgCl, 5.56; Hg, 13.55; HgCl*
7.15 g. cc.-1

.)

16. Utilize the free energy function and relative heat content tables to deter-

mine the standard free energy change of the reaction CH4 + COa
= 2CO + 2H*

at 1000 K. (Use heat content data from Table V to obtain Aff at 25 C.)
17. Suppose nothing were known of the N2 + $H2 = NH* reaction except

the heat of reaction at 25 C. Using the moments of inertia and vibration fre-

quencies of the molecules given in Chapter VI, calculate the free energy functions

and relative heat contents, by equations (33.43) and (33.47), and utilize them to

determine the equilibrium constant of the reaction at 500 C (cf. Exercise 3).

[See Stephenson and McMahon, /. Am. Chem. Soc., 61, 437 (1939).]
18. By making use of the expression for the variation of Cp for graphite with

temperature, calculate its free energy function and heat content, relative to the

value at K, at 1000 K.
19. Calculate the equilibrium degree of dissociation of molecular hydrogen

into atoms at 3000 K and 1 atm. pressure. The j value for atomic hydrogen in

the ground state is i and no higher electronic states need be considered; molecular

hydrogen exists in a singlet state. The value of A#J for the reaction H2 2H is

known from spectroscopic measurements to be 102.8 kcai.
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20. Determine the equilibrium constant of the isotopio exchange reaction

Hi + Dt - 2HD at 25 C, given that AHJ is 157 cal. (The experimental value
is 3.28.)

21. Estimate the extent of dissociation of water vapor into hydrogen atoms
and hydroxyl radicals, by calculating the equilibrium constant of the reaction

HiO H + OH, at 2000 K, using the method of partition functions. The
electronic statistical weights in the normal state are 1 for HsO, 2 for H and 4 for

OH; higher energy states may be neglected. (Utilize the vibration frequencies
and moments of inertia in Chapter VI, and take A#J as equal to the bond energy
of the O H bond which is broken in the reaction.)

22. In the reaction Fe() + HjOfo) - FeO(a) + H2(0), the density of the
iron is greater than that of the oxide. How does the constant /HI//H,O vary
with pressure?

23. Determine the standard free energy change for the process CHOH(0)
CHsOH(Z) at 25 C on the assumption that the vapor behaves as a Berthelot

gas. The vapor pressure of liquid CHjOH is 122 mm. at 25 C. (Cf. problem in

33k, where the vapor is treated as an ideal gas.)



CHAPTER XIV

THE PROPERTIES OF SOLUTIONS

,34. IDEAL SOLUTIONS

34*. Properties of Ideal Solutions. An ideal liquid solution is defined

as one which obeys an idealized form of Raoulfs law over the whole range of

composition at all temperatures and pressures. According to the original
form of this law, the partial vapor pressure Pi of any constituent of a liquid
solution is equal to the product of its mole fraction N and its vapor pressure

p? in the pure state, i.e.,

Pi = N tp?.

For thermodynamic purposes, however, it is preferable to use the idealized

form

(34.1)

where fi is the fugacity of the constituent
, either in the vapor or in the

solution in equilibrium with it, since they are identical ( 3la), and/? is the

fugacity of the pure liquid at the same temperature and pressure.! It will

be seen below, at least for a solution of two components, that if equation
(34.1) applies to one constituent over the whole range of composition it

must also apply to the other. It follows, therefore, that in an ideal solution

the fugacity of each component is proportional to the mole fraction in the given
solution at all concentrations; the proportionality constant is equal to the

fugacity of that component in the pure state at the temperature and pressure
of the system.

1

The use of the foregoing definition of an ideal solution implies certain

properties of such a solution. The variation of the fugacity /? of a pure

liquid i with temperature, at constant pressure and composition, is given

by equation (29.22), viz.,

dT P RT* '

where -ff? is the molar heat content of the pure liquid at pressure P, and
H* is that of the ideal vapor, i.e., at low pressure, so that H* H? is the

t It is the common practice to represent the fugacity of a pure liquid by the symbol/1 ;

this is misleading, since the fugacity in the standard state is thus implied. To avoid the

possibility of confusion the symbol / is used here for the pure liquid, and / is retained for

the standard state, i.e., pure liquid at 1 aim. pressure. At this pressure / and /* become

identical, but in general the quantity / is dependent on the pressure, whereas / is not.
1 For a review of the properties of ideal solutions, see J. H. Hildebrand, "Solubility of

Non-electrolytes," 2nd ed., 1036, Chapter II.

317
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ideal heat of vaporization ( 29g). For the same substance when present
in solution, equation (30.21) is applicable (cf. 31 a); thus,

dT 7r,N RT*

where Ri is here the partial molar heat content of i in the liquid solution.

Upon subtracting equation (34.2) from (34.3), the result is

'In

This expression will hold for any solution, but in the special case of an ideal

solution, /t//? is equal to N*, the mole fraction of that constituent, by equa-
tion (34.1). Since the mole fraction, for a mixture of definite composition,
is independent of the temperature, it follows that for an ideal solution

H? ffi must be zero, i.e., H? and St are identical. Consequently, the

partial molar heat content of any constituent of an ideal solution (Si) is

equal to the molar heat content of that substance in the pure liquid state

(H?). As a result, equation (26.6), which for heat contents takes the form

H
becomes

H = niH? + n2//? +

The total heat content H of the mixture is thus equal to the sum of individual

heat contents of the pure liquid constituents; hence, there is no heat change

upon mixing the components of an ideal solution. In this respect, therefore,
an ideal liquid solution resembles an ideal gas mixture ( 30d).

By differentiating In/, and ln/P with respect to pressure, at constant

temperature and composition, utilizing equations (29.7) and (30.17), and

adopting a procedure similar to that given above, it can be readily shown that

- v?
(

.

(34>5)
1 _
Jr.,

~
dP >,N RT

As before, ///? is constant for an ideal solution, so that the partial molar
volume Vi of each constituent must always be equal to the molar volume
V? of the substance in the pure liquid state, at the same temperature and

pressure. It follows then that there is no change of volume when the liquid

components of an ideal solution are mixed, so that in this respect, also, an
ideal liquid solution resembles an ideal gas mixture ( 30c).

34b. The Duhem-Margules Equation. For a system consisting of a

liquid solution of two components in equilibrium with their vapors, at

constant temperature and pressure , the condition fOILan infinitesimal change
of composition is given by the Gibbs-Duhem equation (26.15) in the form

n\dn\ H- n^fjtjt
= 0,

"

(34.6)
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where ni and n* are the numbers of moles of the constituents 1 and 2, respec-

tively, present in the solution, and MI and M2 are their partial molar free

energies or chemical potentials. If equation (34.6) is divided by n\ + n*,

the result is

7 A
dfJLl

= 0,
HI + n z ni +

+ N^MS * 0, (34.7)

where NI and N 2 are the mole fractions of the respective components.
The chemical potential of any constituent of a solution depends on the

temperature, (total) pressure and composition of the solution; if the tem-

perature and pressure are maintained constant, however, the chemical po-
tential is determined by the composition only. It is then possible, therefore,
to write, for an infinitesimal change of composition,

T, P

and upon substitution in equation (34.7) it follows that

</N2 = , (34.8)
C7Ni Jr.P \ON2/7W'

L. \
lnN2 /7',

(34.9)

Since the sum of the two mole fractions is equal to unity, i.e., NI + N* =
1,

it is seen that

dNi + dN 2 = or dNi = dN 2 ,

so that equation (34.9) can be written

=0, (34.10)

giving a useful form of the Gibbs-Duhem equation.

According to equation (31.1), the chemical potential of any constituent

of a liquid mixture is represented by

where /* represents the fugacity of the given constituent in the liquid or in

the vapor phase with which it is in equilibrium; /** is a constant for the
substance at constant temperature. Upon differentiation at constant tem-

perature, it is seen that

RTdlnfr (34.11)

[cf. equation (30.6)], and insertion of this result into (34.10) gives

2)
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This is the precise form of what is known as the Duhem-Margules equation,
derived independently, and in various ways, by J. W. Qibbs (1876), P.

Duhem (1886), M. Margules (1895), and R. A. Lehfeldt (1895). It is fre-

quently encountered and employed in a less exact form which is based on
the approximation that the vapor behaves as an ideal gas. In this event,
the fugacity of each component in the vapor may be replaced by its respec-
tive partial (vapor) pressure, so that equation (34.12) becomes

In pi \ d\npz\
(34 ' 13)

where p\ and 3)2 are the partial vapor pressures of the two constituents in

equilibrium with the liquid containing the mole fractions NI and N 2 , respec-

tively, of these constituents.

It is important to note that equation (34.12) is applicable to any liquid

solution of two constituents, irrespective of whether the solution (or vapor) is

ideal or not. In the derivation of this equation no assumption or postulate
was made concerning the properties of the solution; the results are based

only on thermodynamic considerations, and hence they are of completely

general applicability. The form given in equation (34.13) is also independ-
ent of the ideality or otherwise of the solution, but it involves the supposition
that the vapor in equilibrium with it behaves ideally.

34c. Application of Raoult's Law to Both Constituents of an Ideal Solu-

tion. By means of the Duhem-Margules equation, it can be shown that if

the Raoult equation (34.1) is applicable to one constituent of an ideal

binary solution, over the whole range of composition, it must also apply to

the other constituent. Suppose the law holds for the constituent 1, so that

/I - Nl/P.

Upon taking logarithms and differentiating with respect to NI, at constant

temperature and pressure, it is found that

d In /i d In NI

or
/ ^ i /. \

-
1, (34.14)

since /? is constant for a given -temperature and external pressure. If this

result, which is applicable at all concentrations, is compared with equation
(34.12), it is seen that

/ain/,\
\dlnN2/T.P

1, (34.15)

also at all concentrations. Upon integration, bearing in mind that f% be-

comes equal to /? when N2 is unity, it follows that

/2
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It is clear, therefore, that if Raoultfs law is applicable to one of the constituents

of a liquid mixture, at all compositions, it must be equally applicable to the other

constituent.

Attention may be called here to the restriction in connection with Raoult's law
that the total (external) pressure, under which the system is in equilibrium, should
remain constant as the composition is changed, at a given temperature. This has
been implied in the foregoing treatment. At moderate pressures, however, the

fugacity (or vapor pressure) is virtually independent of the external pressure
( 27m); hence, in many of the practical applications of Raoult's law given below,
the restriction of constant total pressure is not emphasized, although for strict

accuracy it should be understood.2

34d. Vapor Pressure Curves. Although precise thermodynamic treat-

ment always requires the use of the fugacity in the equations given above,
it is the vapor pressure which is the corresponding property of practical
interest. Provided the pressure is

not too high, the vapor will not de-

part greatly from ideal behavior, and (

it is permissible to use Raoult's law
in its original form

Pi = N#?, (34.16)

as given at the commencement of

this chapter. If equation (34.16) is
'

applicable over the whole range of

concentrations for one constituent,
it must hold for the other, so that

pi - and

N a-0

for all mixtures of the two consti-

tuents 1 and 2. The plot of the

partial pressure of each constituent

against its mole fraction in the liquid

phase, at constant temperature,
should be a straight line passing

through the origin, as shown by the thin lines in Fig. 20. The total vapor
pressure P is the sum of the two partial pressures, i.e., P = pi + p2 ; hence,
since N2 is equal to 1 NI,

Mole Fraction Nj-0
N,-i

FIG. 20. Vapor pressure curves
for ideal solution

P - NipP +
- Nip? + (1 Ni)pf - P? + Ni(pP - p?), (34.17)

so that the total vapor pressure also varies in a linear manner with the mole
fraction of either component in the liquid phase.

Cf. Krichevsky and Kaaamoweky, J. Am. Chem. Soc., 57, 2168 (1036); Bury, Trans.
Farad. Soc., 36, 705 (1940).
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34e. Composition of Liquid and Vapor in Equilibrium. The composition
of the vapor phase in equilibrium with any liquid solution is readily derived

from the fact that the number of moles (or the mole fraction) of each con-

stituent in the vapor must be proportional to its partial pressure, assuming
the vapor to behave as an ideal gas. If Nj and N represent the mole frac-

tions of the two components in the vapor, then

(34.18)v '

provided Raoult's law is applicable.

Problem: Mixtures of benzene and toluene behave almost ideally; at 30 C,
the vapor pressure of pure benzene is 118.2 mm. and that of pure toluene is 36.7

mm. Determine the partial pressures and weight composition of the vapor in equi-
librium with a liquid mixture consisting of equal weights of the two constituents.

Let w be the weight of each constituent in the mixture; if the molecular weights
are Mi and M2, respectively, the mole fractions NI and N 2 are

w/Mi M* Mi
and ~" l

"
(w/Mi) + (w/Mj

~
Mi + A/ 2

'
*"u " 2 ~

MX + M 2

The molecular weight of benzene (Mi) is 78.0, and of toluene (M2) it is 92.0, sathat

92.0
Nl *

78.0 + 92.0
=

The partial vapor pressures, assuming Raoult's law and ideal behavior of the vapors,
are then pi = 0.541 X 118.2 - 64.0 mm., and p 2 0.459 X 36.7 = 16.8 mm.

The ratio of the numbers of moles (or mole fractions) of the two constituents

in the vapor is thus 64.0/16.8; the proportions by weight are then obtained by
multiplying by the respective molecular weights, viz.,

wt. of\ benzene in vapor _ 64.0 X 78

wt. of toluene in vapor 16.8 X 92

Consequently, although the liquid contains equal weights of benzene and toluene,
the vapor, at 30 C, should contain 3.23 parts by weight of the former to 1 part
of the latter. (For alternative method of obtaining the weight composition, see

Exercise 23.)

By replacing N by 1 NI, and N2 by 1 NI in equation (34.18), and
then combining it with equation (34.17) so as to eliminate NI, it follows that

-
P?)

From this result it is possible to calculate the total vapor pressure P for

any value Ni, the mole fraction of the constituent 1 in the vapor. It is

evident from equation (34.19) that the total vapor pressure is not a linear

function of the mole fraction composition of the vapor, although it is such a
function of the composition of the liquid phase, in the case of an ideal solu-
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Nj-0

tion. By utilizing either equation (34.17) or (34.19) it is possible to plot
the variation of the total pressure with the mole fraction of either constituent

of the vapor. The result is shown in Fig. 21, in which the upper (linear)

and lower (nonlinear) curves represent the total vapor pressure as a function

of the mole fraction composition of the liquid (NI) and of the vapor (N'I),

respectively. At any value of the total

pressure P, the point A consequently gives
the composition of the liquid which is in

equilibrium with a vapor of composition

represented by the point B.

It can be seen from equation (34.18)

that for an ideal liquid system, the vapor
will always be relatively richer than the

liquid in the more volatile constituent, i.e.,

the one with the higher vapor pressure.
For example, if, as in Fig. 21, the component
1 is the more volatile, p? will be greater than

p!?, and hence Ni/N2 will exceed Ni/N2, and
the vapor will contain relatively more of the

component 1 than does the liquid with

which it is in equilibrium. This fact is fundamental to the separation of

liquids by fractional distillation. The limitations arising in connection

with nonideal systems will be considered in 35b, 35c.

34f. Influence of Temperature. When the temperature of a liquid solu-

tion is changed the composition of the vapor in equilibrium with it will be

affected accordingly. The relation between the mole fraction of a given

constituent in the liquid and vapor phases can be readily determined by
making use of the fact the fugacity must be the same in each phase if the

system is to remain in equilibrium. Let // and /t represent the fugacities

of the constituent i in the vapor and liquid phases, respectively, and suppose
the temperature is increased by dT, at constant pressure, the system remain-

ing in equilibrium. The change in //, i.e., dfi or d In //, must tilen be equal

to the change in /, i.e., dfi or d In/* Since the composition of each phase

changes at the same time, it follows that

N{ Nt

Mole Fraction

FIG. 21. Composition of liquid

and vapor for ideal solution

P.N<

T,P
(34.20)

The variation of ln/i, for the vapor phase, with temperature is given by
equation (30.21), and that of ln/<, for the liquid phase, by an equation of

the same form (cf. 31a), so that equation (34.20) becomes

T.P RT*
'dr, (34.21)
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where B( is the partial molar heat content of the constituent i in the vapor
phase and #, is that in the liquid phase.

The result just obtained is applicable to any liquid-vapor equilibrium,

irrespective of the behavior of the gas phase or the solution; if, however,
these are assumed to be ideal, equation (34.21) can be greatly simplified.

For an ideal gas mixture, the fugacity /<, or partial pressure, of any con-

stituent is proportional to its mole fraction N<, at constant temperature and
total pressure ( 5b) ;

it can be readily seen, therefore, that

T.P N

Similarly, it follows from equation (34.1) that for the liquid solution

/

V

These results can be inserted into equation (34.21), and at the same time
the partial molar heat content terms Fli and ff't may be replaced by the

corresponding molar heat contents // and H't, respectively, for the pure
substances, since ideal behavior has been postulated for both phases (cf.

30d, 34a) ;
it is then seen that

_H't
- H< _ AHV

dT P

the numerator on the right-hand side being equal to AjfiTv ,
the molar heat

of vaporization of the constituent i at the temperature T and pressure P.

If the ratio of the mole fraction in the vapor phase to that in the liquid,

i.e., Ni/Nt, is represented by fc, it follows that for any constituent of an
ideal system

'

It was seen in 34e that if component 1 is the more volatile, the ratio N/N
will exceed N^/NJ. For purposes of fractional distillation it is deskable to make
this difference as large as possible; in other words, the quantity NjN2/NiN^, which
is equivalent to ki/k*, should be large. By equation (34.23)

A/A - A//2

' (34 *24)

and hence it is of interest to find the conditions which will tend to increase the

value of Ai/fo. According to Trouton's law ( 27j), &Hv/Tb is approximately
constant for all substances; hence, the lower the boiling point Tb,

that is to say,
the more volatile the liquid, the smaller the value of A#,, the heat of vaporization.
Since constituent 1 is the more volatile, A#i is less than A/?*, and the right-hand
side of equation (34.24) will usually be negative. The value of ki/kt will thus

increase with decreasing temperature, and hence better fractionation can be

Achieved by distilling at a low temperature. For practical purposes, this means



34g IDEAL SOLUTIONS 325

that distillation should be carried out under reduced pressure, for in this way the

liquid can be made to boil at a lower temperature than normal.

34g. The Solubility of Gases. A solution of a gaseous substance in a

liquid may be treated from the thermodynamic standpoint as a liquid mix-

ture, and if it behaves ideally Raoult's law will be applicable. K the gas
is designated as constituent 2, then/2 = N2/JP, where /2 is the fugacity in the

solution, and /J
3
is the fugacity of the pure substance in the liquid state at

the same temperature and external pressure. If the gas is assumed to be

ideal, the fugacities may be replaced by the respective pressures, so that

P2 = Nspi
1

, (34.25)

which may be interpreted as giving the saturation solubility, i.e., N 2 mole

fraction, of an ideal gas at a partial pressure p* and a specified temperature;
p? is then the vapor pressure of the liquefied gas at the same temperature
and total pressure. It is thus possible to calculate the solubility of an ideal

gas in an ideal solution at any temperature below the critical point, pro-
vided the vapor pressure of the liquid form at the same temperature is

known. In this connection, the very small effect of the total external

pressure on the vapor pressure (cf. 27m) is neglected.
3

i
Problem: The vapor pressure of liquid ethane at 25 C is 42 atm. Calculate

the ideal solubility of ethane in a liquid solvent at the same temperature at a

pressure of 1 atm., assuming the gas to behave ideally.

Utilizing equation (34.25), p? is 42 atm., and p 2 is specified as 1 atm.; hence,

N2
= ^ = 0.024 mole fraction.

The ideal solubility of ethane at 25 C and 1 atm. pressure in any solvent should
be 0.024 mole fraction.

The solubilities of ethane in hexane and heptane are not very different

from the ideal value calculated from equation (34.25). In solvents which
are not chemically similar to the solute, however, appreciable departure
from ideal behavior would probably occur, and the solubilities would differ

from the ideal value calculated above.

In order to extend the method of calculating ideal solubilities of gases
to temperatures above the critical point, when the liquid cannot exist and
direct determination of the vapor pressure p is not possible, it is necessary
to estimate a hypothetical vapor pressure by suitable extrapolation. This

is best done with the aid of the integrated form of the Clausius-Clapeyron

equation. If the vapor pressures at any two temperatures are known, the

hypothetical value at a temperature above the critical point may be evalu-

ated on the assumption that the heat of vaporization remains constant.

Problem: The vapor pressure of liquid methane is 25.7 atm. at 100 C and

11.84 atm. at 120 C. Estimate the ideal solubility of methane in any solvent

at 25 C and 1 atm. pressure.

* Hildebrand, op. tit., ref. 1, p. 30.
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At - 100 C, i.e., 173 K, p is 25.7 atm., and at - 120 C, i.e., 153 K, p is

11.84 atm.; hence by the integrated Clausius-Clapeyron equation (27.14),

. 25.7 Aff, / 173 - 153 \
g
11.84

"
4.576 \ 153 X 173 /

'

A#, - 2,037 cal. mole-" 1
.

Utilizing this value of the heat of vaporization, which is assumed to remain con-

stant, the hypothetical vapor pressure p at 25 C, i.e., 298 K, is derived from the

analogous expression

p = 2,037/298 - 173 \
g
25.7 4.576 \ 173 X 298 /

'

p = 308 atm.

This gives p? to be used in equation (34.25) ; hence, if the gas pressure p* is 1 atm.,
the ideal solubility of methane at 25 C and 1 atm., is N2 = 1/308, i.e., 0.00325,
mole fraction, in any solvent. (The observed solubility in hexane is 0.0031 and
in xylene it is 0.0026.)

According to equation (34.25), the ideal solubility of an ideal gas under
a pressure of 1 atm. should be equal to l/p , where p? is the vapor pressure
of the liquefied gas at the experimental temperature and pressure. It fol-

lows, therefore, that the smaller this vapor pressure the greater will be the

solubility of the gas at a given temperature. Gases which are difficult to

liquefy, that is to say, those having low boiling points, will have high vapor
pressures; such gases will consequently have low solubilities. It is thus to

be concluded that if solutions of gases in liquids behaved ideally, the easily

liquefiable gases would be the more soluble in a given solvent at a particular

temperature. Even though most solutions of gases are not ideal, this

general conclusion is in agreement with experimental observation.

34h. Influence of Temperature on Gas Solubility. The influence of

temperature on the solubility of a ^as is given by equation (34.22) in the form

f
.

(34 '26)

provided both gas and liquid solutions are ideal. In the special case in

which the partial pressure of the gas, and hence its mole fraction N, remains

constant,* equation (34.26) becomes

where A#v is the molar heat of vaporization of the liquefied gas at ^he given

temperature T and total pressure P.

It should be noted that AHV may also be identified with the heat of

solution of the gas. The latter can be determined, in principle, by liquefying

* This condition would be approximated at total constant pressure if the vapor pressure
of the solvent were negligible in comparison with the pressure of the gas.
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the gas, at the experimental temperature and pressure, and adding the re-

sulting liquid to the liquid solvent so as to make the saturated solution.

If the solution is ideal, there is no change of heat content in the second stage
of this process ( 34a) ; hence the heat of solution is equal to the heat change
in the first stage, and this is equal in magnitude, but opposite in sign, to

the heat of vaporization of the liquid constituent 2 under the specified condi-

tions. A further consequence of the foregoing argument is that the heat
of solution of a given (ideal) gas forming an ideal solution is independent of

the nature of the solvent.

Since it is unlikely that the latent heat of vaporization of the liquefied

gas can be determined at normal temperatures and pressures, it is more
convenient for practical purposes to regard A/7V as the heat of solution

per mole of gas. If this may be taken as independent of temperature, equa-
tion (34.27) can be integrated so as to yield an expression for the variation

of the solubility of the gas with temperature. On the other hand, if the

solubilities at two or more temperatures are known, the heat of solution can
be calculated. It may be noted that since the heat of vaporization &HV is

always positive, the ideal solubility of a gas, at a given pressure, should

decrease with increasing temperature. The relatively few cases in which
this rule fails, e.g., certain aqueous solutions of hydrogen halides, are to be
attributed to marked deviations from ideal behavior (cf. 35a).

34i. Solid-Liquid Equilibria. When one of the components of a binary
solution separates as a solid phase, the system may be considered from two

points of view. If the solid phase is that of the solute, i.e., the constituent

present in smaller proportion, the composition of the solution may be

regarded as giving the saturation solubility of that constituent at the tem-

perature and pressure of the system. On the other hand, if the solvent,

i.e., the constituent present in excess, separates as a solid, the temperature
is said to be the freezing point of the solution at the particular composition
and pressure. If the two components of the system are such that it is not

desirable to distinguish between solvent and solute, the latter point of view
is usually adopted. However, as far as thermodynamics is concerned the

two types of system are fundamentally the same, since each involves an

equilibrium between a binary liquid solution and a solid phase of one of the

constituents. The subject will, therefore, be first treated in a general
manner and the results will later be applied to special cases.

In the preceding paragraph, it has been tacitly assumed that a pure solid

separates from the liquid solution in each case. Although this is frequently

true, there are many instances in which the solid phase is a solid solution

containing both constituents of the system. The most general case will be
examined first, and the simplifications which are possible when the solid

consists of a single substance will be introduced later. When the tempera-
ture of a system consisting of a binary liquid solution in equilibrium with a
solid solution is changed, the compositions of both phases will be altered if

the system is to remain in equilibrium. However, in spite of the change in

composition and temperature, the fugacity of a given constituent must
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always have the same value in both phases. By following a procedure
similar to that used in connection with the analogous problem in 34f

,
it

is found that [cf. equation (34.21)]

,
(34.28)

T.P Ni T.P

where Bi is the partial molar heat content of the constituent i in the liquid

phase and #'< is that in the solid phase.* As before, this result can be

simplified by postulating ideal behavior for both liquid and solid solutions;

that is to say, it is supposed that at constant temperature and pressure, the

fugacity of any constituent in each phase is proportional to its mole fraction

in that phase. In these circumstances,

and ** -1,
T.P Ni \ N< T.P

and, at the same time, Hi and B( become equal to the molar heat contents of

pure liquid and solid i, respectively; hence, equation (34.28) reduces to

8ln(Ni/N,n _ B'i - Hi _ A/7

dT JP
-- ~ -~

where AfiT/ is the molar heat of fusion of i at the given temperature and

pressure.
In the special case in which the solid which separates from the liquid

solution is a pure substance, N'{ is unity at all temperatures and pressures;

equation (34.29) then becomes

This equation gives the variation of the mole fraction solubility with tem-

perature or of the freezing point with composition, at constant pressure,

according as i is the solute or solvent, respectively. The former aspect of

this equation will be considered below, and the latter will be deferred to a

later section.

34j. Influence of Temperature on Solubility. If component 2 is taken

to be the solute, in accordance with the usual convention, equation (34.30),

in the form
/ \ 1_ __ \ A TT

(34.31)

gives the variation with temperature of the concentration of a saturated

solution, i.e., the variation of solubility with temperature; AHf is the molar

heat of fusion of the pure solid solute at the given temperature and pressure.

* In the present chapter, a prime is used to designate the phase (vapor or solid) which
is in equilibrium with the liquid solution.
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It will be recalled that this result is based on two assumptions: first, that

the solution behaves ideally, and second, that the solute which separates
from the solution is always pure solute and not a solid solution.

If the heat of fusion is independent of temperature, equation (34.31)
can be integrated at constant pressure, e.g., 1 atm., to yield

C, (34.32)

where C is an integration constant. This expression gives the solubility N2,

in mole fractions, as a function of the temperature. If the solution behaves

ideally over the whole composition range, it is possible to derive the value

of C in equation (34.32). Thus, when the mole fraction N2 of the solute in

the liquid phase is unity, the pure solid is in equilibrium with liquid of the

same composition; the temperature is then the melting point Tm. Since

In N2 is now zero, it follows from equation (34.32) that C is equal to AHf/RTm.

Upon inserting this result, it is seen that

or

where A/?/ is the molar heat of fusion in calories.

According to equation (34.32) or (34.33) the plot of the logarithm of the

solubility of a solid, expressed in mole fractions, i.e., log N2, against the

reciprocal of the absolute temperature, i.e., 1/!T, should be a straight line

terminating at the melting point; the slope of this line should be equal to

A/7//4.576. Experimental observations have shown that in many cases

the plot of log N2 against I/T is, in fact, linear over a considerable tempera-
ture range. It is only in a few cases, however, that the slope has the theo-

retical value; this is not surprising, for the saturated solutions would have
to be ideal for equation (34.33) to hold exactly. When the solid and solute

are similar in nature the solutions behave ideally, and solubilities in fair

agreement with experiment can be calculated from equation (34.33), utilizing

only the melting point and heat of fusion of the Solid solute. 4

Problem: The melting point of naphthalene is 80.2 C, and its molar heat of

fusion at this temperature is 4,540 cal. moie~l
. Determine its ideal solubility

at 20 C.

Assuming A#/ to remain constant at 4,540 cal. mole*"1, equation (34.33) may
be employed with T equal to 20 + 273 293 K, and Tm as 80 + 273 - 353 K;

*Schroeder, Z. phys. Chem., II, 449 (1893); see also, Washburn and Read, Proc. Nat.

Acad. Sci., 1, 191 (1915); Johnston, Andrews, et al., J. Phys. Chem., 29, 882 et seq. (1925);

Ward, ibid., 39, 2402 (1935); Morris and Cook, /. Am. Chem. Soc., 57, 2402 (1935); Hilde-

brand, op. eft., ref. 1, Chapter X; Germann and Germann, Ind. Eng. Chem., 36, 93 (1944).
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hence,
4,540/293 - 353 \

N 2
- 0.266.

The ideal solubility of naphthalene in any liquid solvent at 20 C should thus be
0.266 mole fraction; the experimental values in solvents which are chemically
similar to the solute, and which might be expected to form approximately ideal

solutions, viz., benzene and toluene, are 0.241 and 0.224 mole fraction,respectively.
In hydroxylic solvents, which form nonideal solutions, the values are quite differ-

ent, for example, 0.018 in methanol and 0.0456 in acetic acid.

Two general deductions concerning the solubility of solids may be made
from equation (34.33). First, if the heats of fusion of two substances are

not very different, the one with the larger value of Tm, i.e., with the higher
melting point, should have the smaller mole fraction solubility in any solvent.

Second, if two solids have similar melting points, the one with the lower heat
of fusion should be more soluble than the other; this is because the melting
point Tm must be greater than the experimental temperature T, and hence
the quantity in the parentheses is always negative.

For an ideal solution the heat of solution is equal to the heat of fusion

of the solid at the given temperature and pressure, and consequently for a

given solute the former should be independent of the nature of the solvent.

That this should be the case can be readily shown by means of a procedure
exactly analogous to that employed in 34h in connection with the heat of

solution of gases.

35. NONIDEAL SOLUTIONS

35a. Deviations from Ideal Behavior. Theoretical considerations show
that if a mixture of tw6 liquids is to behave ideally, the two types of mole-
cules must be similar. The environment of any molecule in the solution,
and hence the force acting upon it, is then not appreciably different from
that existing in the pure liquid. It is to be anticipated, therefore, that under
these conditions the partial vapor pressure (or fugacity) of each constituent,
which is a measure of its tendency to escape from the solution, will be directly

proportional to the number of molecules of the constituent in the liquid

phase. This is equivalent to stating that a mixture of two liquids consisting
of similar molecules would be expected to obey Raoult's law. Such is

actually the case, for the relatively few liquid systems which are known to

behave ideally, or to approximate to ideal behavior, consist of similar mole-

cules, e.g., ethylene bromide and propylene bromide, n-hexane and ft-

heptane, n-butyl chloride and bromide, ethyl bromide and iodide, and
benzene and toluene.

If the constituents of a mixture differ appreciably in nature, deviations
from ideal behavior are to be expected and are, in fact, observed. These
deviations are most frequently "positive" in nature, so that the actual par-
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tial vapor pressure (or fugacity) of each constituent is greater than it should
be if Raoult's law were obeyed. It can be readily seen from the Duhem-
Margules equation that if one constituent of a mixture exhibits positive devia-

tions from ideal behavior, the other constituent must do likewise. Thus, if f\
is greater than, instead of being equal to, NJ/? [cf. equation (34.1)], indi-

cating positive deviations for constituent 1, it follows from the argument in

34c that

/ain/2 \

\d In N2 /r,/>

so that /2 must be greater than N^/?, implying positive deviations from ideal

behavior for constituent 2. Incidentally, it will be evident that if the

deviation from Raoult's law is "negative" for one component, that is to say,
if its partial pressure (or fugacity) is less than that required by Raoult's law,
the same must be true for the other component. Negative deviations from
ideal behavior are only observed in systems in which the different molecules

have a very strong attraction for one another.

For a nonideal solution exhibiting positive deviations /<//? for each

component is greater than its mole fraction N,\ It is an experimental fact

that as the temperature is increased most liquid solutions tend toward ideal

behavior. This means that for a system of given composition for which the

deviations from Raoult's law are positive, the ratio ///? usually decreases

with increasing temperature. According to equation (34.4), therefore,
which holds for solution of all types, the numerator H? #t must be nega-

tive; thus ff t
- is greater than H?. The total heat content of the solution, con-

sisting of ni moles of constituent 1 and n2 moles of 2, is equal to niBi + njt2,

while the sum of the heat contents of the separate sub3tances is niff? + n2fl?.

Since Hi is greater than H? and Hz is greater than H, it is evident that

the heat content of the solution must be larger than that of the constituents

before mixing. In other words, in this particular case, heat must be ab-

sorbed when the pure liquids are mixed. The general conclusion to be

drawn, therefore, is that upon mixing two liquids which yield a system ex-

hibiting positive deviations from RaouWs law there is an absorption of heat.

For a system which manifests negative deviations from ideal behavior

the ratio ///? increases as the temperature is raised; consequently H? /?<

for each constituent is positive. By using arguments analogous to those

presented above it is a simple matter to show that the formation of a solution

exhibiting negative deviations from RaouWs law is accompanied by an evolution

of heat. 6

35b. Vapor Pressure Curves for Nonideal Systems. The general nature

of the vapor pressure curves showing positive and negative deviations are

depicted in Fig. 22, A and B, respectively; these results refer to a constant

temperature. At any given composition, the slopes of the two partial vapor
pressure curves are related by the Duhem-Margules equation. Thus, if the

* For a review of the behavior of nonideal solutions, see Hildebrand, op. cit. t ref. 1,

Chapter III.
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yapors are supposed to behave ideally, which is possible even if the solution

is not ideal, the Duhem-Margules equation (34.13) may be written in

the form

Ni.rffil^Nl.d^ (3gl)

constant temperature and pressure being understood. The quantities N,-/pf
-

and dpi/dtfi for each constituent, corresponding to any composition of the

solution, can be readily derived if the partial vapor pressure curves of the

Mole Fraction Mole Fraction

A B
FIG. 22. Nonideal solutions: (A) positive deviations, (B) negative deviations

two constituents have been determined. For any given solution the value

of the product of N t-/p
x
,- and dpi/dNi should then be the same for both con-

stituents. This is frequently used as a test of the reliability of experimental
partial vapor pressure data for nonideal mixtures. Where it appears neces-

sary, however, allowance should be made for the deviation of the vapor
from ideal behavior.6

In both Figs. 22, A and B the uppermost curve gives the total vapor
pressure as a function of the composition of the liquid. The corresponding
curve as a function of the vapor composition will lie below it in each case,
so that the vapor contains more of the constituent the addition of which
causes an increase in the total vapor pressure. If an expression for the

partial vapor pressure in terms of the mole-fraction composition of the liquid
is available (of. 35d), an analogous expression for the vapor composition
can be derived by utilizing the relationship based on the postulated ideal

behavior of the vapor, i.e., that N{/N is equal to pi/p* ( 34e), where N!
and Ng refer to the respective mole fractions in the vapor phase.

Zawidski, Z. phys. Chem., 35, 129 (1900); Beatty and Calingaert, Ind. Eng. Chem.,
26, 504, 905 (1934); Carlson and Coibum, ibid., 34, 581 (1942); Scatchard and Raymond,
/. Am. Chem. Soc., 60, 1278 (1938).
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If the vapor pressures of the two pure constituents are close together,
then any appreciable positive deviation from Raoult's law will lead to a
maximum in the total vapor pressure curve; similarly, a negative deviation

will, in the same circumstances, be associated with a minimum in the curve.

In any event, even if the vapor pressures of the pure constituents are ap-
preciably different, marked positive or negative deviations can lead to a
maximum or a minimum, respectively, in the total vapor pressure curve.

Such maxima and minima are the cause of the formation of the familiar

constant boiling mixtures or azeotropic mixtures. A liquid mixture having
the composition represented by a maximum or a minimum will distil without

change of composition, for the proportions of the two constituents are then
the same in the liquid and vapor phases. That this must be the case will

be shown in the next section.

35c. Liquid and Vapor Compositions. Some general rules concerning
the relative compositions of liquid and vapor in equilibrium, which are

applicable to systems of all types, may be derived from the Duhem-Margules
equation, using the form of (35.1). Since the increase in the mole fraction

of one component of a binary mixture must be equal to the decrease for the
other component, dNi is equal to dN2, as seen in 34b; hence equation

(35.1) may be written as

NI
^1 + Nj.^o. (35.2)

Pi C?NI p2 dNi

The total vapor pressure P is equal to p\ + pz, and differentiation with

respect to NI gives
dP _ dp dp*

, I -. j

and thus, by equation (35.2),

(354)
Nip2 /

Suppose it is required to find the condition that makes dP/dxi positive,

that is to say, the total vapor pressure is to increase as the mole fraction of

constituent 1 in the system is increased; it is necessary to determine under
what circumstances the right-hand side of equation (35.4) is positive. The
factor dpt/dtfi, equal to dp 2/dN2,

must always be negative, since the partial

pressure of any component never decreases as its mole fraction in the liquid

phase is increased. Consequently, the condition for dP/d**i to be positive,

is that

or 2J>2!.
P* N2

If the vapors behave as ideal gases, pi/p* is equal to N'I/N^, by equation

(34.18), and hence it is necessary that

2j>2!- (35.5)
N N 2
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In other words, if dP/dNi is to be positive, the vapor must be relatively
richer in the constituent 1 than is the liquid with which it is in equilibrium.
The vapor thus contains relatively more of the substance the addition of which to

the liquid mixture results in an increase of the total vapor pressure. The
general applicability of this conclusion has been already seen in 34e for

ideal solutions, and in 35b for those exhibiting marked nonideality (Figs.

21 and 22).
For a maximum or minimum in the total vapor pressure curve, dP/dxi

must be zero; hence, by equation (35.4), either dp*/d$\ must be zero, or

N2pi must equal Nip2 . The former condition is unlikely, since it would mean
that the partial vapor pressure would remain constant in spite of a change
of composition, and so for a maximum or minimum in the total vapor pres-
sure curve N2pi = Nip* or Ni/N2 = Pi/p* If the gases behave ideally,

Pi/Pa is equal to NI/N^, and the vapor will have the same composition as the

liquid in equilibrium with it, as stated above.

35d. General Equations for Liquid Mixtures. By combining equation (31.2)
for the activity of any component of a liquid solution in terms of its chemical po-

tential, viz., AU /ij + RTlna*, and equation (31.5) which defines the activity
as the relative fugacity, i.e., a = ///?, the result is

and hence

/,

Utilizing the fact that x is equal to e1"
*, this equation may be written as

* N
S (35.6)

which is an expression of general applicability to each constituent of any mixture,
ideal or nonideal.

An equation, somewhat similar to (35.6), was suggested by M. Margules (1895)
to express the variation bf vapor pressure with composition of liquid mixtures in

general; replacing the vapor pressure by the fugacity, this can be written as

(35.7)

and

/i - N^etf N^ Nl
i+"', (35.8)

where /? and /? are, as usual, the fugacities of the pure liquids. It should be
understood that these equations have no real theoretical basis; they were proposed
because they appeared to represent the experimental data in a satisfactory manner.
The constants j8i, /3a, 7i and y*, etc., which are not independent, can be derived

from the slopes of the fugacity actually partial vapor pressure curves at N< =

or N< = 1. For an ideal solution, these constants would all be zero, so that equa-
tions (35.7) and (35.8) would then become identical with (34.1). For nonideal

solutions, however, the sign and magnitude of 0i, 71, etc., depend on the nature,

i.e., positive or negative, and extent of departure from ideal behavior.

In order to describe the procedure for evaluating the constants without making
the treatment too complicated, it will be supposed, as is frequently the case, that

all terms beyond the first in the exponents of equation (35.7) and (35.8) can be
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neglected. Upon taking logarithms of these expressions and differentiating with

respect to In NI and In N2, respectively, at constant temperature and external

pressure, it is seen that

and

According to equation (34.12) these results must be identical, and hence, to the

approximation that 71, 7 2 , etc., are negligible, &\ is equal to 2. The equations
for the variation of fugacity with the mole fraction thus become

/i
- NrfeW5 and /, - N 2/e*K, (35.9)

where |3 is the same in both cases. Under most ordinary conditions, when the

vapor pressures are not too high, the fugacities may be replaced by the respective

partial vapor pressures. The equations (35.7), (35.8) and (35.9) then give the

variation of the vapor pressure with composition; they are frequently used in

this form. 7

By inserting the value of pi or p 2 for a solution of known composition, it is

possible to determine ft from equation (35.9), since p? or pip may be regarded as

available. In most cases, an alternative method is used. Replacing the fugacities
in the equations (35.9) by the respective partial pressures, and differentiating each
with respect to NI, addition of the results gives dP/dNi, in accordance with equa-
tion (35.3); thus,

Two special cases may now be considered, via., NI =
an^d NI =

1; the results are

~j
** P?e*0

~ P?t when NI = and N2 = 1,

and

- = p? p?e*
ff

,
when NI = 1 and N2 = 0.

aNi

It is thus possible to derive /3 directly from the slope, at either end, of the plot
of the total vapor pressure against the mole fraction.

Another form of the general empirical equations for the variation of the fu-

gacity with composition, which is said to be more convenient for certain purposes,
was proposed by J. J. van Laar (1910); thus,

and /, = N^e^iAi+*i>. (35.10)

The relationships between the constants ai, 0i and <*2, 2, which are different from
those in the Margules equations (35.7) and (35.8), can be derived by means of

the Duhem-Margules equation in a manner similar to that described above. It

is then found that

aij3* a2 and atjSi
=

ai,

7 Of. Zawidski, ref. 6; Porter, Trans. Farad. Soc., 16, 336 (1920); see also, Lewis and
Murphree, J. Am. Chem. Soc., 46, 1 (1924); Levy, Ind. Eng. Chem., 33, 928 (1941).
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so that there are only two independent constants, the values of which can be
obtained from vapor pressure curves.8

The Margules and van Laar equations, with vapor pressures in place of

fugacities, are useful for the analytical expression of experimental data, particu-

larly for extrapolation and interpolation purposes. It is of interest to note that
when the vapor pressure (fugacity)-composition curve of one component of a

binary mixture is known, the relationships among the constants a, 0, etc., auto-

matically determine the nature of the curve for the other component. This is,

of course, a consequence of the Duhem-Margules equation. Both the Margules
and van Laar formulae are capable of representing positive and negative devia-

tions from ideal behavior. In the former case, i.e., positive deviations, the ex-

ponential factor is greater than unity, so that the exponent is positive ;
in the latter

case, i.e., negative deviations, this factor is less than unity, the exponent being
negative.

35e. Partially Miscible Liquids. The systems considered so far have
consisted of completely miscible liquids forming a single layer. In the event
of large positive deviations from ideal behavior, however, a separation into

two layers, that is to say, partial miscibility, becomes possible. This can
be seen, for example, by means of the equations (35.9), in which, for a system

N~0 Mole Fraction N-l

FIG. 23. Partially miscible liquids

exhibiting positive deviations from Raoult's law, has a positive value. As
this quantity, which is a constant for a given pair of liquids at a definite

temperature, is increased, e.g., by lowering the temperature or by changing
the components, it can be readily shown that the variation of fugacity (or

See Carlson and Colburn, ref. 6.
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partial vapor pressure) with the composition of each substance may be repre-
sented by curves of the types I, II and III in Fig. 23. In order to make
the results comparable, the relative fugacity f/f t

rather than /, is plotted

against the mole fraction of the corresponding constituent in each case.

When is equal to 4.0 (curve II) the curve exhibits a horizontal inflection,

and if /3 exceeds this value the fugacity curve has a sigmoid character, as seen
in curve III. This curve implies that there are three different solutions,

a, 6 and c, having the same fugacity, which should be capable of coexisting
in equilibrium at the given temperature and external pressure. Actually,
the situation is similar to that arising in connection with the van der Waals

equation (cf . 5d) ;
the point b cannot be realized, and the fugacity, or

partial vapor pressure, curve, as obtained experimentally, is flat between a
and c. There are then two liquid layers, having different compositions,
which are in equilibrium with each other. In between the compositions

represented by the points a and c the two liquids are partially miscible at

the given temperature. Large positive deviations from ideal behavior can
thus lead to incomplete solubility of one liquid in another. The point of

horizontal inflection C on curve II corresponds to the critical solution (or

consolute) temperature for the given system; below this temperature the

liquids are not completely miscible in all proportions.*
In Fig. 23 there are shown the relative fugacity (or partial vapor pres-

sure) curves for one constituent of the system; quite similar curves will be
obtained for the other. The points of horizontal inflection C will, of course,
be identical, as regards temperature and composition of the liquid. Simi-

larly, when the conditions are such that two liquid layers are formed, the

points a, 6 and c, for a given temperature, will occur at the same composi-
tions on the curves for the two constituents of the system.

It is evident from Fig. 23 that when two layers are present, the partial

vapor pressure of a given constituent will have a constant value, at a par-
ticular temperature, which is the same in both layers (points a and c). The
total vapor pressure, equal to the sum of the separate partial pressures, will

likewise be constant, at a given temperature, irrespective of the over-all

composition of the system, provided the two layers are present. The same
conclusion can, of course, be reached by means of the phase rule. 10

36. DILUTE SOLUTIONS

36a. Hemy's Law. It has been found experimentally that as the mole

fraction of a given constituent of a solution approaches unity, the fugacity of

that constituent approximates to the value for an ideal system [equation (34.1)3,

9 Hildebrand, op. cit., ref. 1, p. 52; see also, Porter, ref. 7; Butler, et al., J. Chem. Soc.,

674 (1033).
* For certain pairs of liquids decreases as the temperature is lowered, within a par-

ticular temperature range; such systems exhibit a lower consolute temperature, above which

the liquids are not completely miscible.
10 See, for example, S. Glasstone, "Textbook of Physical Chemistry", 2nd ed., 1946.

Chapter X.
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even though the behavior at lower mole fractions departs markedly from
the ideal. 41 This fact is indicated in Fig. 22, A and B, by the actual partial

pressure or fugacity curve becoming asymptotic with the corresponding ideal

curve as the mole fraction approaches unity. Employing the terms solvent

and solute to indicate the constituents present in greater and smaller

amounts, respectively, in any solution, the observation referred to above

may be stated in the form: In a dilute solution the behavior of the solvent

approaches that required by Raovlt's law, even though it may depart markedly
from ideal behavior in more concentrated solutions.

It is necessary now to consider the behavior of the solute, i.e., the con-

stituent present in small amount, in the dilute solution; two methods of

approach to the problem are of interest. Taking component 1 as the solvent

and 2 as the solute, in accordance with the usual convention, it is seen that

in the dilute solution, as NI approaches unity and N2 approaches zero, the

empirical equations (35.9) become

/i = NI/? as NI - 1 and N2 (36.1)

/a N*/?e** as NI > 1 and N2 0. (36.2)

According to (36.1), the behavior of the solvent tends toward that required

by Raoult's law, as stated above. Further, since is constant, equation

(36.2), for the solute, is equivalent to /2
= Na/ffc', where k' is equal to e*ft

and hence is also constant. It is obvious that in dilute solution the solute

cannot obey Raoult's law unless k' is unity, that is, unless ft is very small

or zero. In other words, although the solvent in a dilute solution satisfies

Raoult's law, nevertheless, the solute does not do so unless the system as a

whole, i.e., over the whole range of composition, exhibits little or no de-

parture from ideal behavior. This conclusion is in harmony with the results

depicted in Fig. 22, A and B. However, although the solute in the dilute

solution does not necessarily obey Raoult's law, it does conform to the simple

expression /2 = N*f?k', which may be written as

/2 = N2& as NI > 1 and N2 > 0, (36.3)

where k, equal to/?A/, is a constant; this constant becomes identical with

f$ when kr
is unity, that is, when the system is ideal over the whole range

of concentrations. The result given in equation (36.3) is an idealized ex-

pression of Henry's law, viz., the fugacity of a solute in dilute solution is pro-

portional to its mole fraction. A dilute solution may thus be defined as one

in which the solvent obeys Raoult's law and the solute satisfies Henry's law.

From the remarks in 34g it can be seen that equation (36.3) may be in-

terpreted as implying that for a saturated solution of a gas the fugacity of the

solute is proportional to its mole fraction in the solution. If the gas behaves

ideally, and the solution is dilute, it follows that the molar concentration of the

*For a solution containing a solute which dissociates, it is necessary to treat the

product* of dissociation as distinct molecules when evaluating the mole fractions of solvent

and solute.
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saturated solution, i.e., the solubility, is proportional to the pressure of the gas,
at constant temperature. This is equivalent to the original form of Henry's law
(W. Henry, 1803), which dealt only with gas solubility, but the statement of the
law given above is a generalized form of wider applicability.

A derivation of Henry's law [equation (36.3)] is possible by the use of

the Duhem-Margules equation. It is readily seen that if fi = NJ/?, as is

the case for the solvent in a dilute solution, then for the solute, i.e., com-

ponent 2,

as and N2 -> 0, (36.4)

by equation (34.15). In 34c this result, like Raoult's law, was taken as

applicable over the whole range of composition, but if the solvent behaves

ideally only when its mole fraction approaches unity, the integration of

equation (36.4) can be carried only over the same limited range. By general

integration, this gives

ln/2 = In N2 + constant, '

or

/2 = N2fc as NI > 1 and N2 > 0,

which is identical with equation (36.3). It follows, therefore, that in any
solution for which RaouWs law is applicable to the solvent, Henry's law must
holdfor the solute, over the same con-

centration range. Incidentally, it

can be readily shown that the re-

verse must also be true; if Henry's
law is applicable to the solute, then

the solvent must obey RaouWs law

over the same range of composition.*
These are characteristic properties
of a dilute solution.

The foregoing conclusions are

depicted graphically in Fig. 24,

which shows the partial vapor
pressure (or fugacity) curves of

three types. Curve I is for an
ideal system obeying Raoult's law
over the whole concentration

range; for such solutions k in equa-
tion (36.3) is equal to /?, and

Henry's law and Raoult's law are

identical . For a system exhibiting

positive deviations, curve II may be taken as typical; in the dilute range,

* The restriction of constant external pressure should
apply

to Henry's law, just as to

Raoult's law ( 34c). At moderate pressures, however, the influence of the total pressure

may be neglected.

Mole Fraction

FIG. 24. Raoult's law and Henry's law
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i.e., at the left-hand side of the diagram, there is marked departure from
Raoult's law, but the curve has an approximately linear slope, indicating
that it satisfies Henry's law [equation (36.3)]. The same is true for curve
III which represents the fugacity of a substance exhibiting negative devia-

tions from Raoult's law. In the region in which Henry's law is obeyed by
one constituent of a solution, i.e., the solute, the fugacity (or vapor pressure)
curve of the other constituent, i.e., the solvent, which is not shown in the

figure, would approach that for an ideal system obeying Raoult's law.

36b. The Freezing Points of Dilute Solutions. Since in any dilute solu-

tion the solvent behaves ideally, in the respect that it obeys Raoult's law,
it follows that equation (34.30), in the form

(36.5)^ ',dT P RT*'

should apply at the freezing point of a dilute solution in equilibrium with

pure solid solvent. In this expression NI is mole fraction of the solvent in

the solution which is in equilibrium with solid solvent at the temperature
T and pressure P; A#/ is the heat of fusion of the solid solvent under the

same conditions. It is seen, therefore, that equation (36.5) gives the varia-

tion with composition of the freezing point of a dilute solution, irrespective

of whether it behaves ideally or not at higher concentrations.

If the heat of fusion is taken to be independent of temperature, an ap-

proximation which can reasonably be made for dilute solutions, integration
of equation (36.5) gives

lnNl= - + c' (36 '6)

where C is the integration constant. When the liquid phase consists of pure
solvent, NI is unity and the freezing point is then To, which is that of the

solvent; hence it is seen from equation (36.6) that the integration constant
is equal to AHffRTV If this result is inserted into equation (36.6) it

becomes

where T is the freezing point of the solution containing NI mole fraction of

solvent. Since NI must be less than unity, In NI is negative, and since A///
is positive, T must be less than TO; in other words, the freezing point of the

solution is always less than that of the pure solvent, provided the solid phase is

the pure solvent and not a solid solution, as postulated above. Since NI
decreases with increasing concentration of the solution, it is clear from equa-
tion (36.7) that the freezing point must decrease at the same time.

Since equation (36.7) may be expected to apply to any dilute solution,

further simplifications, which are applicable to such solutions, can be made.
For a dilute solution the difference between T and T is small, so that TT
may be replaced by TO, and if T T, called the lowering of the freezing
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point of the solution, is represented by 0, equation (36.7) becomes

In NX--. (36.8)

If the solution is sufficiently dilute, NI is only slightly different frcm unity,
so that In NI is approximately equal to NI 1. Further, since 1 NI is

equal to N 2 , the mole fraction of the solute, it follows that In NI in equation
(36.8) may be replaced by N2, giving

N2 = ^0,
or

r m2

2. (36.9)

In a dilute solution, therefore, tJie depression of the freezing point is propor-
tional to the mole fraction of the solute.

36c. Determination of Molecular Weights. Because of the relationship
between the mole fraction and the molecular weight of the solute, it is

possible to use the freezing point lowering of a solution, in conjunction with

equation (36.9), to determine the molecular weight of the solute. Since the
solution must be dilute for this equation to be applicable, a further simplifica-
tion is possible. The mole fraction N2 is equal to n2/(ni + n2), where ni
and n are the numbers of moles of solvent and solute, respectively, in the

solution; since the solution is dilute n2 may be neglected in comparison
with ni, and hence N2 may be taken as equal to n*/n\. If w\ and w* are

the respective weights of the solvent and solute in the solution, and Mi

and Af2 are their molecular weights, then

Upon substituting this result into equation (36.9), it is found that

This equation may be written in the form

RTlMl

1000AU/
'

Xm, (36.11)

where X, which is equal to JZTo-Jfi/lOOOA-ff/, is a constant for the given
solvent. The factor lOOOwt/wiM* is seen to be equivalent to the number
of moles of solute, i.e., m, dissolved in 1000 g. of solvent; it is hence equal
to the molality m of the solution, as indicated in equation (36.11). It will

be apparent that if this equation were applicable at such a concentra-
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tion, X would be the lowering of the freezing point for a molal solution, i.e.,

when m 1
; hence X is referred to as the molal freezing point depression

constant. Actually a molal solution would be too concentrated for equation
(36.11) to be applicable, and so X may be defined as equal to 9/m as the
solution approaches infinite dilution; thus,

where A/f/ is the heat of fusion per mole of the solid solvent, whose formula
weight is Mi, into pure liquid at its freezing point T . The value of X for

any solvent can thus be determined in two ways; either from the known
freezing point To and the heat of fusion or by determining B/m at various

molalities, from actual freezing-point measurements, and extrapolating the
results to infinite dilution.

It will be observed that equation (36.11) is used as the basis of the
familiar procedure for the determination of molecular weights by the freezing

point method. It is obviously strictly applicable only to very dilute solu-

tions; at appreciable concentrations the approximations made in its deriva-
tion are no longer justifiable. These are as follows: first, that AT/ is inde-

pendent of temperature; second, that TQT is equal to TO; third, that In NJ

may be replaced by N2 ; and fourth, that N2 may be set equal to n2/ni.
The two latter approximations are avoided in equation (36.8), and this gives
somewhat better results than does (36.11) in solutions of moderate concen-

tration, provided the solvent still obeys Raoult's law.

Problem: The freezing point of benzene is 5.4 C and its latent heat of fusion
is 30.2 cai. g."

1
. A solution containing 6.054 g. of triphenylmethane in 1000 g.

of benzene has a freezing point which is 0.1263 below that of the pure solvent.
Calculate the molecular weight of the solute.

Since both R and A/f/ can be expressed in terms of calories, the molal depres-
sion constant X for benzene is given by

^ 1.987 X (278.6)*

1000A#, 1000 X 30.2

= 5.11,

noting that A#//Afi is equal to the heat of fusion per gram. By equation (36.1 1)
the molality m of the solution is equal to 0/X, so that

m - 0.1263/5.11 = 0.0247.

Since the solution contains 6.054 g. of solute to 1000 g. of solvent, 6.054 must
represent 0.0247M2, where Af* is the molecular weight of the solute; hence,

M* - 6.054/0.0247 - 245.

36d. Separation of Solid Solutions. If upon cooling a liquid solution the solid

phase consists of a solid solution, instead of pure solvent, it is necessary to make
use of equation (34.29). Assuming the solutions to be dilute enough for the
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fugacity of the solvent, i.e., the constituent present in excess, to be proportional
to its mole fraction in both solid and liquid phases, this equation becomes

RT

where A#/ is the molar heat of fusion of the solvent. If the latter remains con-
stant in the small temperature range between T, the freezing point of the solution,
and TO, that of the pure solvent, at the same pressure, integration of equation
(36.13) yields

T - To /* , ,x
(3<U4)

at constant pressure. For dilute liquid and solid solutions, In NI may be replaced

by N 2, InNj by NJ, and TTQ by T\\ TQ T is equal to 0, and equation
(36.14) then reduces to

RT*
6 = (N2

~
Ni) ' (36 '16)

which may be compared with equation (36.9), for which N,, the mole fraction of

solute in the solid phase, is zero.

The equation (36.15) gives the change in freezing point with composition (NJ)
of the dilute solution, when the solid phase is a solid solution of known composition
(N). It should be noted that if N is less than N 2 ,

the value of is positive, and
the solution has a lower freezing point than the pure solvent. However, it fre-

quently happens that N is greater than N 2 ;
that is to say, there is a larger propor-

tion of solute in the solid phase than in the liquid. In these circumstances 6 is

negative, and the freezing point of the solution is above that of the pure solvent.

Another form of equation (36.15) may be obtained by writing k for the distri-

bution ratio N^/N 2 of the solute between solid and liquid phases; the result is

By treating this expression in the same manner as equation (36.9), it is found that

- Xm(l -
k), (36.16)

so that it is possible to determine the distribution of the solute between the two

phases from freezing point measurements.11

36e. The Boiling Points of Solutions. Just as a solution has a lower

Freezing point than the pure solvent, provided no solute separates in the

solid phase, so it has a higher boiling point, provided the solute is nonvolatile

and hence is not present in the vapor phase. The problem of the variation
rf the boiling point of a solution with composition, at constant pressure,

nay be treated by means of equations already derived, provided the solution

is dilute enough for the solvent to behave ideally. If the solute is nonvola-

tile, as postulated above, the vapor consists entirely of solvent molecules!
md hence NI is unity. In this event, equation (34.22), which applies to a

u van't Hoff, Z. phy*. Chem., 5, 322 (1890).
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liquid-vapor equilibrium such as would exist at the boiling point of a solu-

tion, can be written as

(36.17)

where A/fw is the molar heat of vaporization of the solvent at the specified

temperature and pressure. By assuming this quantity to remain constant
in a small temperature range, integration of equation (36.17) gives

- TQ \
(36.18)

where T is the boiling point of the solution and T is that of the pure solvent

at the same pressure. If the system does not contain an inert gas this

constant pressure is that of the atmosphere, for the temperature is then the

normal boiling point. Because NI is always less than unity, In NI is negar

tive, and hence T T must be positive; consequently, the boiling point of
the solution is greater than that of the solvent. The presence of a nonvolatile

solute thus raises the boiling point.

If the rise of boiling point T T is represented by 0, it follows that for

a dilute solution [cf. equation (36.8)],

(36.19)

and hence for a very dilute solution,

v Xw,

by analogy with equations (36.9) and (36.11). The molal boiling point
elevation constant X is equal to #ToMi/1000A//v , where A#v is the molar
heat of vaporization at the boiling point T of the pure solvent, of formula

weight Mi. The results given above may be used for determining the

molecular weight of a solute from the rise of boiling point of the solution.

If the solute is volatile, so that the vapor in equilibrium with the solution

contains both constituent's, it is necessary to make use of equation (34.22). Pro-

vided the solution is dilute enough for the solvent to behave ideally in the liquid

phase, and the vapor behaves as an ideal gas, this equation becomes

where N( is the mole fraction of solvent molecules in the vapor phase. By treating
this result in the same manner as the analogous equation (36.16), and writing
for T TQ, the elevation of the boiling point, it is readily found that for a dilute
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Solution

-

A//p

where k, equal to NJ/NJ, is the distribution ratio of the volatile solute between the

vapor and the solution. As before, for a very dilute solution, this can be con-

verted into a form analogous to equation (36.16), viz.,

6 = Xm(l -
*) (36.21)

It can be seen from this expression that if k is small, that is to say, if the solute is

not appreciably volatile, 1 k is positive, and the presence of the solute results

in a rise of boiling point On the other hand, if k is larger than unity, as might
be the case for a volatile solute, would be negative, so that the solution has a
lower boiling point than the solvent. This is, of course, of common occurrence

in the distillation of mixtures of two volatile liquids.

36f. Temperature and Solubility in Dilute Solutions. For a saturated

solution of a gas in a nonvolatile solvent, or of a pure solid in a liquid

solvent, the equations (34.21) and (34.28) reduce to

TT.P

where Hj is the molar heat content of the pure gas or solid solute, and Fit is

its partial molar heat content in the saturated solution, at the given tem-

perature and pressure. If the solution is dilute, equation (36.4) will be

applicable, and then (36.22) becomes

(36.23)dT ?" RT*

In this expression, which gives the influence of temperature on solubility
in dilute solution, the saturation solubility N2 in mole fractions, may bo

replaced by the molality m or the molarity c, since these quantities are

proportional to one another in dilute solution.

It should be noted that since the solute does not necessarily obey
Raoult's law, although it satisfies Henry's law, it is not permissible to re-

place R* by the molar heat content of the pure liquid, as was done in

34f, 34i. The numerator on the right-hand side of equation (36.23) thus
cannot be identified with a latent heat. It will be seen in 44b that it is

actually equivalent to the differential heat of solution (cf . 121) of the solute

in the saturated solution under the given conditions. For a dilute solution

this is usually not appreciably different from the integral heat of solution.

It is thus possible to determine the heat of solution of a sparingly soluble

gas or solid by measuring the solubility at two or more temperatures and
then utilizing the integrated form of equation (36.23). As indicated at the
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outset, the assumption is made that one of the phases consists of either pure
solid or pure gas. The same result would apply to a sparingly soluble liquid

solute, provided the solvent did not dissolve in it to any appreciable extent.

EXERCISES

1. If the vapors behave ideally, the equations (35.9) take the form

Pi " Nip?e*0
Ni and pz

Hence, derive expressions for the total vapor pressure of a liquid mixture in terms
of the mole fraction composition of (i) the liquid, (ii) the vapor.

2. Taking p? as 100 mm., p? as 200 mm. and (3 as 2.0, determine the total

vapor pressure at mole fractions 0.2, 0.4, 0.6 and 0.8 by using the results of the

preceding exercise. Plot the values against the mole fraction composition of

(i) the liquid, (ii) the vapor.
3. At 70 C, the vapor pressures of carbon tetrachloride and benzene are 617.43

and 551.03 mm., respectively; at 50 C, the values are 312.04 and 271.34 mm.,
respectively [Scatchard, Mochel and Wood, J. Am. Chem. Soc., 62, 712 (1940)].

Assuming ideal behavior, since the actual deviations are small, plot the curve

giving the variation of the (mole fraction) composition of the vapor with that of

the liquid at each temperature. Would the separation of the two components by
fractional distillation be more efficient at high or at low temperature?

4. Give in full the derivation of the statement in the text that heat is evolved

upon mixing two liquids which form a system exhibiting negative deviations from
ideal behavior.

5. The total vapor pressures of mixtures of chlorobenzene (1) and 1-nitro-

propane (2) at 120 C are as follows [Lacher, Buck and Parry, /. Am. Chem. Soc.,

63, 2422 (1941)]:

NI 0.096 0.282 0.454 0.507 0.675 0.765 0.844 1.00

P 545 565.2 590.2 597.2 597.1 596.6 589.4 579.9 544mm.

Plot the results and determine the value of ft in the simple form of the Margules
equation. Estimate the partial pressure of each constituent in equilibrium with
an equimolar liquid mixture.

6. Show that in the two-constant Margules equations (35.7) and (35.8)

02 = ]8i + 71 and 71 = - 72-

7. Prove that the constants in the van Laar equation (35.10) are related by
tfi/3j 2 and a$\ = cri.

8. Derive expressions for log 7, where 7 is the activity coefficient a/N, on the

basis of (i) the simple Margules equation (35.9), (ii) the van Laar equation (35.10).

Show that for a liquid mixture exhibiting positive deviations from Raoult's law,
the activity coefficient of each constituent, on the basis of the usual standard state,

must be greater than unity, whereas for negative deviations it must be less than

unity.
9. A mixture of 1 mole of ethyl bromide and 2 moles of ethyl iodide, which

behaves ideally, is evaporated into a closed space at 40 C, when the vapor pres-
sures of the pure components are 802 and 252 mm., respectively. Calculate the

total pressure at the beginning and end of the process. (Note that at the end of

the vaporization the composition of the vapor will be identical with that of the

initial liauid.)
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10. The vapor pressures of n-hexane and n-heptane at several temperatures
are as follows:

50 60 70 80 90 100 C
n-hexane 401 566 787 1062 1407 1836mm.
n-heptane 141 209 302 427 589 795

Assuming ideal behavior, draw the curve representing the boiling points of the
mixtures at 1 atm. pressure as a function of the mole fraction composition, e.g.,

0.2, 0.4, 0.6 and 0.8, of (i) the liquid, (ii) the vapor. [Plot the total vapor pressure-

composition curves for various constant temperatures, and hence obtain the neces-

sary data for 760 mm. The calculations may also be made at another pressure,

e.g., 560 mm. and the.change noted (cf. 34f).]
11. The vapor pressure of liquid ethylene is 40.6 atm. at C and 24.8 atm.

at - 20 C. Estimate the ideal solubility of the gas in a liquid at 25 C and
1 atm. pressure. How many grams of ethylene should dissolve in 1,000 g. of

benzene under these conditions, if the gas and solution behave ideally?
12. The absorption coefficient (of solubility) a of a gas is the volume of gas

reduced to C and 1 atm. pressure which will be dissolved by unit volume of

solvent at the experimental temperature under a partial pressure of the gas of
1 atm. Show that for a dilute solution, N2 in equation (36.23) may be replaced

by a. The absorption coefficient of nitrogen is 0.01685 at 15 and 0.01256 at

35 C. Determine the mean differential heat of solution per mole of nitrogen in

the saturated solution in this temperature range.
13. The pressures of sulfur dioxide in equilibrium with a solution containing

0.51 g. SO 2 in 100 g. water are 49.0 mm. at 35.6 C, 57.0 mm. at 41.0 C, 70.0 mm.
at 47.0 C; for a solution containing 1.09 g. SO 2 in 100 g. water, the pressures are

70.5 mm. at 26.8 C, 96.0 mm. at 33.6 C, 124.5 mm. at 39.4 C and 147.0 mm.
at 44.2 C [Beuschlein and Simenson, J. Am. Chem. Soc., 62, 612 (1940)]. Show
that in dilute solutions Henry's law takes the form m = kp, where m is the molality
of the solution and p the partial pressure of the solute; hence, use the foregoing
data to test the validity of the law for the sulfur dioxide solutions at 35 and
45C. Calculate the mean differential heat of solution of the gas in the

range from 26.8 to 47.0 C at a gas pressure of 70.0 mm., and consider how
you would expect this to differ from the heat of condensation, i.e., A#v .

14. The molar heat of fusion A/// of naphthalene at the absolute temperature
T is given by A#/ = A# + 4.8 T, where A# is a constant [Ward, /. Phys. Chem.,

40, 761 (1934)]; at the melting point (80.2 C), A#/ is 4,540 cal. Determine the

ideal solubility of naphthalene at 25 C, allowing for the variation of the heat of

fusion with temperature.
15. The heat of fusion of the hydrocarbon anthracene (CuHio) at its melting

point (216.6 C) is 38.7 cal. g.-
1
. Its mole fraction solubility at 20 C is 0.0081 in

benzene and 0.0009 in ethanol. Account for the results.

16. The freezing point depression of a 3.360 molal solution of urea in water
is 5.490 [Chadwell and Politi, /. Am. Chem. Soc., 60, 1291 (1938)]. The heat
of fusion of ice is 79.80 cal. g.~

l
. Test the applicability of equations (36.7), (36.8),

(36.9) and (36.11) to the results, and hence draw conclusions as to the reliability
of the various approximations.

17. The melting points of benzene and naphthalene are 5.4 and 80.2 C, and
the heats of fusion are then 2,360 and 4,540 cal. mole*"1

. Assuming the system
to be ideal and the heats of fusion to remain constant, determine the temperature
and composition of the eutectic system, i.e., when the liquid mixture is in equi-



348 THE PROPERTIES OF SOLUTIONS

librium with both solids. [Use equation (34.33); a graphical procedure will be

found convenient for obtaining the required solution.]

18. The melting point of p-diohlorobenzene is 53.2 C and that of naphthalene
is 80.2 C; the eutectic temperature is 30.2 C when the mole fraction of the

naphthalene in the liquid phase is 0.394. Calculate the molar heats of fusion of

the two components of the system, assuming idoal behavior.

19. Show that if a solution is dilute and obeys Henry's law, and the vapor
behaves ideally, the moial solubility of the solid (w.A ) y nd of the supercooled liquid

(mi) solute at the same temperature T should be given by

, m,
In R\Tm T)'

where Tm is the melting point of the solid and A/// is its heat of fusion (cf. Exercise

20, Chapter XI). The heat of fusion of solid nitrobenzene at its melting point

(5.7 C) is 2,770 cal. mole-"1
. The solubility of the solid in water at C is

12.6 X 10~3 mole per 1000 g. water; calculate the solubility of the supercooled

Liquid at the same temperature. [The experimental value is 13.5 X 10~3 mole

per 1000 g. water (Saylor, Stuckcy and Gross, J. Am. Chem. Soc., 60, 373 (1938).]

20. The solubilities of stannic iodide in carbon disulfide at several temperatures
are as follows [Dorfman and Hildebrand, J. Am. Chem. Soc., 49, 729 (1927)]:

Temperature 10.0 25.0 40.0 C
Solubility 49.01 58.53 67.56 g. per 100 g. solution

Estimate the melting point and heat of fusion of stannic iodide. (The experi-
mental values are 143.5 C and approximately 3,800 cal. mole"1

.)

21. A solution of 9.14 g. of iodine in 1000 g. benzene has a freezing point
0.129 below that of pure benzene (5.400 C); the solid which separates is a solid

solution of iodine in benzene. The heat of fusion of benzene is 30.2 cai. g.""
1

.

Calculate the ratio in which the iodine distributes itself between liquid and solid

phases in the vicinity olf 5 C. Compare the result with that obtained by analytical
determination as follows: the solid phase contains 0.317 g. and the liquid 0.945 g.

iodine per 100 g. benzene [Beckmann and Stock, Z. phys. Chem., 17, 120 (1895)].

22. Starting with an equation of the form of (34.20), give all the stages in the

derivation of equation (34.29).

23. Show that the weight composition of the vapor, treated as an ideal gas,
in equilibrium with an ideal solution is given by

where Wi and w 2 are the weights of the constituents in the liquid phase, and w{
and wi are those in the vapor; hence, solve the problem in 34e.

24. Show that for an ideal system of two liquids, the free energy of mixing,

i.e., the difference between the free energy per mole of mixture and the sum
of the free energies of the separate constituents, is given by AF = HiRT In NI

+ KzRT In N5 . Hence, use the result concerning the heat of mixing in J 34a
to show that the entropy of mixing two liquids forming an ideal system is

AS - - JR(NI In NI + NI In NJ) (cf. Exercise 1, Chapter IX).
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25. Show that the variation with pressure of the solubility of a pure solid

forming an ideal solution in a liquid is given by

(d
In N 8 \ A Vf

dP )r
"

~RT*

where AV/ is the volume change accompanying the fusion of 1 mole of solid solute

at T and P. What conclusion may be drawn concerning the sign and magnitude
of the effect of pressure on solubility?

26. Show that although the partial molar heat content of the constituent of

an ideal solution is independent of the composition ( 34a), this is not the case

for the partial molar free energy and entropy. Derive expressions for (dfju/dxi) T, p
and (dSi/di*i)T,p for an ideal solution.



CHAPTER XV

ACTIVITIES AND ACTIVITY COEFFICIENTS

37. STANDARD STATES

37a. Choice of Standard State. A knowledge of activities and activity
coefficients is of both theoretical and practical interest in the study of solu-

tions; the present chapter will, therefore, be devoted to a consideration of

the methods by which these quantities may be determined. As seen in

31b, the activity of a substance in any state is a relative property, the

actual value being relative to a chosen standard state. The nature of the

standard state is of no thermodynamic significance, as may be seen in the

following manner. Let a and a represent the activities of a given sub-

stance in two different solutions, the values being in terms of a specified
standard state; let a and aJJ be the corresponding values for another standard

state. Since these activities are relative to the activity in the chosen
standard states, it follows that a/c must be equal to aj/a. If // is the
chemical potential (partial molar free energy) of the substance in the first

solution and /*" is that in the other solution, the free energy increase ac-

companying the transfer of 1 mole of the substance from the first solution

to the second, under such conditions that the compositions remain virtually

unchanged, is given by [cf, equation (26.29)]]

AF = /' - M'-

By equation (31.2)Mthe chemical potentials are

M
' = & + RTlnc& and /i" - /

in terms of the one standard state, and

if = $ + RTlna'f, and " = M?

in terms of the alternative standard state. It follows, then, from the fore-

going equations that

in one case, and

in the other case. As seen above, however, a/c is equal to aj/o, and so

the free energy change for a given process, which is the thermodynamically
important quantity, expressed in terms of the activities, will have the same
value, as indeed it must, irrespective of the choice of the standard state.

850
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In view of the foregoing arguments, it is evident that the standard state

chosen in any particular instance should be the most convenient one in the

given circumstances. It is quite permissible, in fact, to choose different

standard states for a given substance in two (or more) phases in equilibrium;
the effect of the choice is merely to alter the value of the equilibrium con-

stant, without affecting its constancy. It may be pointed out that the ac-

tivities of a given constituent of two phases in equilibrium are equal when

referred to the same standard state. However, when different standard states

are chosen for the two phases, the activities are not equal, although the

chemical potentials must be identical (cf. 28a). Thus, for a constituent

in phase I,

Mi - + RTlnaa ,

while for this substance in the phase II, in equilibrium with phase I,

Mix = MP + RT In ap.

The chemical potentials in the two phases in equilibrium must be the same,

i.e., MI = MII, and hence, for the given substance

M + RT In a M? + RT In a
ft

.

If the chosen standard states are identical, M and M are the same, since these

are the chemical potentials in the standard states; consequently aa and a/j,

the activities in the two phases, will be equal. On the other hand, if the

standard states selected for the phases I and II are not the same, aa and a$
will be different, the difference depending on the corresponding values of

M2 and M?.

37b. Convenient Standard States: L Gases. For gases and vapors the

most convenient standard state, which is almost invariably employed in

thermodynamic studies, is the one referred to in an earlier section ( 30b).
The standard state of unit activity is usually chosen as that of unit fugacity, so

that for a gas the activity is identical with the fugacity. As seen earlier,

this is equivalent to choosing the gaseous system at very low total pressure
as the reference state and postulating that the ratio of the activity of any
constituent to its partial pressure, i.e., the activity coefficient a/p, then

approaches unity. The determination of the fugacities of gases has already
been discussed in some detail (Chapter XII), and since the activity of a gas
is almost invariably defined so as to be identical with the fugacity, it is not

necessary to consider the subject further.

II. Solid or Liquid Solvent. For a liquid or solid which acts as the

solvent of a solution, that is to say, it is the constituent present in excess,

the most convenient standard state is also the one used in earlier sections.

The activity of the pure liquid (or pure solid) solvent, at atmospheric pressure,
is taken as unity at each temperature. As stated in 31b,,the corresponding
reference state is the pure liquid (or solid) at 1 atm. pressure, the activity

coefficient, defined by a/N, being then equal to unity. With increasing
dilution of a solution the mole fraction N* of the solute tends to zero and
that of the solvent, i.e., NI, tends to unity. It follows, therefore, that at 1
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aim. pressure ai/Ni approaches unity as the solution becomes more dilute;

thus,

* 1 as NI > 1 and N2 * 0,
Ni

on the basis of the chosen standard state.

By equation (31.5), the activity of the solvent is equivalent to /i//i

where f\ is the fugacity in a given solution and /? is numerically equal to

that in the standard state, i.e., pure liquid at 1 atm. pressure at the given

temperature. Hence, it is seen from equation (34.1) that for an ideal solu-

tion the activity of the solvent should always be equal to its mole fraction,

provided the total pressure is 1 e
cm. In other words, in these circumstances

the activity coefficient ai/Ni should he unity at all concentrations. For a
nonideal solution, therefore, the deviation of <ZI/NI from unity at 1 atm.

pressure may be taken as a measure of the departure from ideal (Raoult

law) behavior. Since the activities of liquids are not greatly affected by
pressure, this conclusion may be accepted as generally applicable, provided
the pressure is not too high.

in. Solutes: A. Pure Liquid as Standard State. Several different stand-

ard states are used for solutes according to the circumstances. If the solu-

tion is of the type in which two liquids are completely, or almost completely,

miscible, so that there is no essential difference between solvent and solute,

the standard state of the solute is chosen as the pure liquid at atmospheric

pressure, just as for the solvent. The defined activity coefficient <Z2/N 2 then

approaches unity as N2 tends to unity, and its deviation from this value,
at 1 atm. pressure, gives an indication of the deviation from ideal behavior.

In many instances, especially when the solute has a limited solubility in

the solvent, as is often the case for solid solutes, particularly electrolytes or

where dilute solutions are under consideration, it is more convenient to

choose an entirely Different standard state. Three such states are used:

one is based on compositions expressed in mole fractions, but the others

are more frequently employed, because the compositions of dilute and

moderately dilute solutions are usually stated in terms of molality, i.e.,

moles per 1000 g. solvent, or in terms of molarity, i.e., moles per liter of

solution. 1

m. B. Infinitely Dilute Solution as Reference State: Composition in

Mole Fraction. -In the first case, the reference state is chosen as the infinitely

dilute solution, with the postulate that at the given temperature the ratio of
the activity of the solute to its mole fraction, i.e., a2/N2, then becomes unity at

atmospheric pressure. The activity is consequently defined so that at the

temperature of the solution and 1 atm. pressure

->1 as N8 ->0. (37.1)
Njt

1 G. N. Lewis and M. Randall, "Thermodynamics and the Free Energy of Chemical

Substances/
9

1023, pp. 256 et scq.; see also, Adams, Chem. Rev., 10, 1 (1936); Goranson,
J. Chem. Phye., 3, 107 (1937),
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The standard state is here a purely hypothetical one, just as is the case with

gases ( 30b) ;
it might be regarded as the state in which the mole fraction of

the solute is unity, but certain thermodynamic properties, e.g., partial molar

heat content and heat capacity, are those of the solute in the reference state,

ie., infinite dilution (cf. 37d). If the solution behaved ideally over the

whole range of composition, the activity would always be equal to the mole

fraction, even when N2 = 1, i.e., for the pure solute (cf. Fig. 24, 1). In this

event, the proposed standard state would represent the pure liquid solute

at 1 atm. pressure. For nonideal solutions, however, the standard state has

no reality, and so it is preferable to define it in terms of a reference state.

The significance of the foregoing definition of the activity of a solute

may be seen by making use of the fact ( 31b) that the activity is propor-
tional to the fugacity, the value of the proportionality constant depending
on the chosen reference or standard state. Representing this constant by
I/A, it is seen that the activity a* of the solute and its fugacity /* may be
related by

a2 = or /2
- a2fc. (37.2)

In dilute solution, when N approaches zero, a*/Ni approaches unity, ac-

cording to the postulated standard state; hence equation (37.2) can be
written as

/2 = N2fc as N* > 0.

This result is identical with Henry's law [equation (36.3)], and so on the

basis of the present standard state, a2/N2 will be unity, or a2 will equal N2,

for all solutions obeying Henry's law. The activity coefficient TN, equal to

02/Na, of the solute in any solution may thus be used to indicate its obedience

of Henry's law. It is for this reason that the activity coefficient defined in

this manner has been called the rational activity coefficient.

If the solution were ideal over the whole range of composition, k in equation
(37.2) would, of course, be equal to the fugacity of the pure liquid solute at 1 atm.

pressure; and Henry's law and Raoult's law would be identical ( 36a). However,
although the behavior of a solute in solution may deviate considerably from
Raoult's law, it almost invariably satisfies Henry's law at high dilutions. Conse-

quently, for the study of not too concentrated solutions, the standard state under
consideration has some advantages over that in III. A.

HI. C. Composition in Molality or Molarity. Because the compositions
of solutions, especially of electrolytes, in the study of which the activity

concept has proved of the utmost significance, are expressed in terms of

molality or molarity,* alternative standard states have been widely used.

In the event that the composition of the solution is given by the molality
of the solute, the reference state is the infinitely dilute solution, the activity a*

* The use of the molality is to be preferred in thermodynamic studies, since it is inde-

pendent of temperature and pressure; this is not the case for the molarity, because the
volume of the solution is affected by a change of temperature or pressure.
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of the solute being defined so that its ratio to the molality m, i.e., a2/m9 is then

unity at atmospheric pressure, at the temperature of the system. The defini-

tion of the activity is consequently based on the postulate that

52 -1 as w->0. (37.3)m

The standard state is here also a hypothetical one; it is equivalent to a 1

molal solution in which the solute has some of the partial molar properties,

e.g., heat content and heat capacity, of the infinitely dilute solution. It has

been referred to as the "hypothetical ideal 1 molal solution". At high dilu-

tions the molality of a solution is directly proportional to its mole fraction

( 32f), and hence dilute solutions in which the activity of the solute is equal
to its molality also satisfy Henry's law. Under such conditions, the de-

parture from unity of the activity coefficient ym , equal to a^/m, like that

of TN, is a measure of the deviation from Henry's law.

At infinite dilution the activity coefficients TN and ym are both unity, in

accordance with equations (37.1) and (37.3), respectively, which define the

standard states. In dilute solutions the values will also be approximately

equal, but not necessarily unity because of failure to obey Henry's law.

At appreciable concentrations, however, the molality of the solution is no

longer proportional to the mole fraction of the solute, and even if the solu-

tion obeyed Henry's law ym would not be unity. In such solutions TN and

7m will be appreciably different.

When the composition of the solution is given in terms of molarity, i.e.,

moles of solute per liter of solution, the standard state chosen is analogous
to that proposed above. The activity is defined in such a manner that at

the given temperature the ratio of the activity a2 of the solute to its molarity c,

i.e., a*/c, approaches unity in the infinitely dilute solution at 1 atm. pressure;

thus, x

~->l as c-+0. (37.4)
c

The standard state is again a hypothetical one; it corresponds to a solution

containing 1 mole of solute per liter, but in which certain partial molar

properties are those of the solute at infinite dilution.

As seen in 32f
, the molarity of a very dilute solution is proportional to

its mole fraction, and hence for such solutions the activity coefficient yc,

defined by a2/c, represents the compliance with Henry's law. As in the pre-

ceding case, TO and TN are both unity at infinite dilution, and the values are

approximately equal in dilute solutions. With increasing concentration,

however, T and TN differ, and although the latter still indicates the ad-

herence to Henry's law, the former, like Tm, does not. Thus, at high dilu-

tions TN; T and T approach one another, their values approximating to

unity, but at appreciable concentrations the three coefficients differ; the

actual relationships between them will be considered in the next section.
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37c. Relationship between Activity Coefficients of Solute. For a solu-

tion of molality m, the number of moles of solute is m whereas the number
of moles of solvent is 1000/Mi, where MI is its molecular weight. The mole
fraction N of solute is then equal to m/(m + 1000/Mi). On the other hand,
for a solution of molarity c, the number of moles of solute is c, and the
number of moles of solvent is (lOOOp cAfa)/Mi, where p is the density of

the solution andMa is the molecular weight of the solute. The mole fraction

of solute in terms of molarity is thus c/[c + (lOOOp cM2)/AfJ. A slight

rearrangement of these results then gives

^ i =_ i_ .

mMi + 1000 c(Ml
- M2) + lOOOp*

* '

In very dilute solution, when the mole fraction of solute is N*, the molality
m* and the molarity c*, the density po being that of the pure solvent, equa-
tion (37.5) reduces to

* m*M i c*M i /orr NN =
Tooo

= (37'6)

The difference of the free energy of the solute in the solution represented

by N, m and c, and that in the very dilute solution N*, m* and c*, must have
a definite value irrespective of the standard states ( 37a). This is deter-

mined by the ratio of the activities in the two solutions, viz., a/a*; the ac-

tivity a may be represented by N7x, rnvm and cyc , depending on the par-
ticular standard state, but a* is equal to N*, m* and c*, respectively, since

the solution is dilute enough for the activity coefficient to be unity in each

case. It follows, therefore, that

a* N* m* c*

and hence by utilizing equations (37.5) and (37.6) it is found that

V* = ym(l + 0.001*0/0 = y.
P + 0.001c(M t

- M.)

Po

which gives the relationship among the three activity coefficients. It is

evident from this result that in dilute solutions, e.g., when c and m are less

than about 0.1, the values of YN, 7m and yc are almost identical.

By treating ym and yc in an analogous manner, it is found that

p
- O.Q01cM2 ,

Q>ym 7c-- (37.8;
Po

This expression is more convenient than equation (37.7) when the conversion

of 7m to 7c, or vice versa, is required, without the necessity of introducing 7i*.

37d. Partial Molar Heat Contents in Standard and Reference States.

The general expression for the variation of the activity coefficient with

temperature, at constant pressure and composition, may be derived by a
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procedure similar to that used to obtain equation (31.6). Since the molality
and mole fraction are independent of temperature, the temperature variation

of activity coefficients expressed in terms of these quantities, i.e., 7x or ym ,

is given by
/ i_ V frO /V

(37.9)
JBT2 '

where /? is the partial molar heat content of the substance i in the given
solution and /?? is the value in the standard state. It will be observed from
the discussion in 37b, that the standard state is always defined in such a

manner as to make the activity coefficient equal to unity in the reference

state, e.g., pure liquid for a solvent or infinite dilution for a solute, at 1 atm.

pressure, at all temperatures. In the reference state, therefore, 7* is inde-

pendent of the temperature, so that the left-hand side of equation (37.9) is

zero. Consequently, the partial molar heat content of any constituent of a
solution is the same in the reference state as in the standard state. This is the

justification for the remark in 37b, III B, C, where the infinitely dilute

solution was chosen as the reference state, that the partial molar heat con-

tent of the solute in the standard state is equal to that at infinite dilution.

The same is true for the partial molar heat capacity at constant pressure,
since this is the derivative of the heat content with respect to temperature.
It should be understood that the foregoing conclusions apply, strictly, at

1 atm. pressure, for it is only then that the activity coefficient in the reference

state is unity at all temperatures.
Since the volume of a solution changes with temperature, the molarity,

i.e., moles per liter, must change at the same time. Hence, equation (37.9)

does not give the variation of yc with temperature; however, from this equa-
tion, in which 7* is ym or 7N, and (37.7) or (37.8), noting that in the latter c

is merely a numbed, it follows that

At infinite dilution, ye is equal to unity at all temperatures, by definition,

and at the same time p becomes identical with po, so that, in this case also,

the standard partial molar heat content of the solute is equal to its value in

the infinitely dilute solution at 1 atm. pressure.
In order to avoid the possibility of misunderstanding, it may be stated

here that the partial molar free energy and partial molar entropy of the

solute in the standard state are entirely different from the values in the

infinitely dilute solution (see Exercise 24).

38. DETERMINATION OF ACTIVITIES

38a. Activity of Solvent from Vapor Pressure. The activity of any
constituent of a solution is given, in general, by the ratio of the fugacities,

i-fc'j /<//?> fi being the value in the solution and/? is that in the standard state,
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viz., puro liquid at tho Siuuo temperature and 1 aim. pressure. If the vapor
pressure of the solvent is not too high, 1 lie fugacitics may be replaced, with-

out appreciable error, by the respect ive vapor pressures. At the same time,
the effect of the external pressure on thr. activity ni/iy he neglected, vso thnt
it is possible to write

where p\ is the partial vapor pressure of the solvent in equilibrium with the

solution in which its activity is a
} ,
and p? is the vapor pressure of the pure

solvent at the same temperature and (approximately) the same pressure.
The equation (38.1) thus provides a relatively simple method for deter-

mining the activity of the solvent in a solution; it has been applied to aque-
ous solutions, to solutions of organic liquids and to mixtures of molten
metals.2 The activity coefficient at any composition may be obtained by
dividing the activity a\ of the solvent by its mole fraction NI.

Problem: An exactly 1 molal aqueous solution of mannitoi has a vapor pressure
of 17.222 mm. of mercury at 20 C; at the same temperature, the vapor pressure
of pure water is 17.535 mm. Calculate the activity and activity coefficient of

water in the given solution.

At the low pressures, the water vapor may be regarded as behaving ideally,
so that

A molal aqueous solution contains 1 mole of solute and 1000/18.016 = 55.51

moles of solvent; the mole fraction of solvent is thus

-9S23 -

The activity and mole fraction are so close that the activity coefficient is virtually

unity. (It is of interest to note that the mole fraction N2 of the solute in a 1 molal

aqueous solution is only 1.0000 0.9823 = 0.0177, and so it is not surprising to

find that the solvent obeys Raoult's law.)

38b. Activity of Volatile Solute from Vapor Pressure. If the solvent

and solute are essentially miscible, the standard state of the latter may be

chosen as the pure liquid (cf 37b, III A) ;
the activity may then be de-

termined by a procedure identical with that just described, based on equa-
tion (38.1) in the form a2 p<t/p?. For dilute solutions, however, it is

more convenient to use the infinitely dilute solution as the reference state.

By equation (37.2) the activity a2 is equal to /2/fc, where /2 is the fugacity
of the solute in the given solution, and k is a constant. Replacing the

'See, for example, Hildebrand, et al, J. Am. Chan. Soc., 36, 2020 (1914); 37, 2452

(1915); 42, 545 (1920); 49, 3011 (1927); Hirst and Olson, ibid., 51, 2398 (1929); L<ochcr and

Hunt, ibid., 63, 1754 (1941); Lacher, Buck and Parry, ibid., 63, 2422 (1941).
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fugacity /* by the partial vapor pressure 7>a of the solute, which can be

measured, it follows that

ty- (38.2)

The value of k may be derived by utilizing the fact that at high dilutions

the activity of the solute, represented by aj, is equal to the mole fraction N?,
so that if pj is the corresponding vapor pressure, equation (38.2) takes the

form

*-?
By combining this result with equation (38.2) it is seen that at an appreciable
concentration,

at p,|. (38.3)
p$

This expression may be put into a modified form by dividing each side by N.
so that

TN = / ^vN 2 N 2/ Nf

If p*/N2 for a number of solutions is determined and the values are ex-

trapolated to N2 = 0, the result is equal to p*/N?, which is required in equa-
tions (38.3) and (38.4) for the evaluation of the activity or activity coeffi-

cient, respectively.

Expressions exactly analogous to (38.3) and (38.4) are obtained for the

activity and activity coefficient based on a2/m or a2/c becoming unity at

infinite dilution. All that is necessary is to replace N2 (and N?) by m or c,

respectively, according to the standard state chosen.

When it is not possible to make accurate measurements of the partial

vapor pressure of the solute at low concentrations, such as would be neces-

sary to obtain pf/Nj, an alternative procedure can sometimes be adopted.

Thus, if the activity at any composition of the solute is known from other

measurements, such as those described below, the constant k in equation
(38.2) can be evaluated by means of the vapor pressure of the solute in the

same solution. The method has been utilized to determine the activities

and activity coefficients of hydrochloric acid in aqueous solution. 8

38c. Activity of Solvent from Freezing Points. If a, is the activity of

pure solid solvent in terms of the pure liquid solvent, at the same temperature
and 1 atm. pressure, as the standard state, it is possible to write, by equa-
tion (31.2),

fjL9
** Hi -f- RT In &t)

1 Lewis and Randall, ref. 1, Chapter XXII; for application to electrolytes, see Chapter
XXVI, also idem,, J. Am. Chcm. Soc., 43, 1112 (1921); Randall and Young, ibid., 50, 088
(1028).
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where MI refers to the chemical potential of the liquid in the standard state,
and M* is that of the solid at the temperature T. Upon dividing through
this equation by 3T, so as to obtain

*ln .-*-,
and then differentiating with respect to T9 making use of equation (26.25),
the result is

3lna. _ t ._
(38'5)

/

\ dT

where the partial molar heat contents have been replaced by the correspond-

ing molar values, since they refer to pure liquid and solid. If the constant

pressure, applicable to a, and H, is chosen as 1 atm., then the numerator
on the right-hand side is equal to the molar heat of fusion at this pressure
and the temperature T.

At the freezing point of any solution, assuming pure solid solvent to

separate, the fugacity of the solid will be identical with that of the solvent

in the solution, since the system is in equilibrium. In the preceding para-

graph, the same standard state was chosen for the solid as is conventionally

adopted for the solvent in a solution; consequently, the activity of the solvent

at the freezing point must be the same as that of the solid phase in equi-
librium with it (cf. 37a). Hence, the variation of the activity ai of the

solvent at the freezing point of solutions of varying concentration, at 1 atm.

pressure, is given by equation (38.5) in the form

dlnai AH/

which may be compared with equation (34.30) for an ideal solution.

For the complete integration of equation (38.6), allowance must be made
for the variation of AH/ with temperature, instead of regarding it as constant
as when dealing with dilute solutions in 36b. By the Kirohhoff equation,
which is applicable in the form of (12.7) since AH/ refers to a constant

(1 atm.) pressure process,

[^ff^ ],
= (Cp):

~
(Cp) - = *c* (38J)

where (Cp)i and (Cp) 9 represent the molar heat capacities of the pure liquid
and solid solute at 1 atm. pressure. Over a short range of temperature the
heat capacities may be taken as constant, so that integration of equation
(38.7) gives

AH/ - Lo + ACP(T - To), (38.8)

where L is used, for simplicity, for the molar latent heat of fusion at TQ,

the freezing point of the solvent. As in 36b, the temperature difference

3To T may be replaced by 6, the lowering of the freezing point, so that
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equation (38.8) becomes

(38.9)

and substitution in (38.6) gives

7 1 LO - OACp iff,

1
"- -

Since T is equal to To 0, and dT to dO, this equation is equivalent to

-" K=** <38-10>

In order to simplify integration of equation (38.10), the device is used

of expressing l/(To 0)
2 in the form of a power series; thus,

Hence equation (38.10) becomes

~ dlnai = 21 + + " ' (Lo ~

(38 -n)

and this can be integrated between the limits of ai from unity, i.e., pure
solvent,* to 01, the corresponding values of the freezing point depression

being zero and 0, respectively; thus,

a - 4-"" ai "
RTl

+

Since ^ is usually small, the terms involving
3

, ^, etc., can be neglected
and the foregoing expression gives the activity of the solvent at the freezing

point of the given solution.

By means of equation (38.12), it is possible to determine the activity of

the solvent ai in any solution, from a knowledge of the depression of the

freezing point, and certain other properties. The procedure may be illus-

trated by a consideration of aqueous solutions. With water as solvent, Z/o

is the molar heat of fusion of ice at C and 1 atm. pressure, viz., 1438 cal.

mole""1

; further, (Cp)i for water may be taken with sufficient accuracy as 18

and (Cp). for ice as 9 cal. deg."
1 mole"" 1

,
so that ACp is 9 cal. deg.""

1 mole"1
.

Inserting these values into equation (38.12), with T equal to 273, 16 K,
* It should be noted that it is at this point that the postulated standard state for the

solvent is introduced.
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it is found that

In ai = - 9.702 X 10- 3 - 5.2 X 1Q-V.

The activity ai can thus be readily calculated from the freezing point de-

pression at atmospheric pressure.

Problem: The freezing point depression of 0.1 molal aqueous KC1 solution is

0.345 C. Determine the activity of the water in this solution at the freezing

point, with reference to pure water as the standard state.

In this case,

In ai - 2.303 log ai = - 9.702 X 10~3 X 0.345 - 5.2 X 10~ ft X (0.345)
2

- 3.3478 X 10~3

logai 1.454 X 10~3

a t
= 0.9966.

It is important to note that because of the low mole fraction of solute, the activity
of the water is very close to unity in the 0.1 molal solution of electrolyte. It is

consequently the common practice to take the activity of the solvent as unity in

any dilute solution, e.g., about 0.1 molal or less.

The results obtained from equation (38.12) give the activity of the solvent at

temperatures which vary with the concentration of the solution. It is desirable,

therefore, to adjust the results so that the values for the different solutions refer

to the same temperature. This can be done by means of equation (31.6), which
for the present purpose becomes

/dlnoi\ Wi-fli .

where H\i is the molar heat content of the solvent in its standard state, i.e., pure
liquid at 1 aim., and fi\ is its partial molar heat content in the solution. The
quantity S\ //?, known as the relative partial molar heat content of the

solvent, f which will be described more fully in Chapter XVIII, is usually repre-
sented by the symbol LI; hence equation (38.13) may be written

If a( represents the activity of the solvent at a variable temperature T", and a"
is the value at some standard temperature T", e.g., 25 C, integration of equation
(38.14) gives

*T" 7

dT- (38-15)

If the relative partial molar heat content LI of the solvent (i.e., the differential

heat of dilution) is small, as it is for dilute solutions, the activity coefficient of the

* It is important that the distinction between the similar equations (38.5) and (38.13)
should be clearly understood. The former gives the variation with temperature of the

activity of the solvent in a solution at its freezing point, which varies with the composition.
The latter applies to the activity of the solvent in a solution of constant composition.

f It is also the differential heat of dilution of the given solution (cf. 44b.)
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solvent does not vary appreciably with temperature. For other solutions, how-

ever, it is necessary to know L\ and also its variation with temperature, in order

to evaluate the integral in equation (38.15). The procedure has been mainly used

in connection with the study of the activities of solutes, particularly electrolytes,

and it will be described more fully in 39c. 4

38cL Activity of Solvent from Boiling Points. The treatment for the

determination of activities from boiling point measurements is exactly

analogous to that given in the preceding section in connection with the freez-

ing points of solutions. The activity aa of the solvent in the vapor (gaseous)
state can be expressed in terms of the pure liquid as the standard state; thus,

p, - M? + RTlnag ,

where M? is the chemical potential of the pure liquid at 1 atm. pressure at the

given temperature. Upon dividing through by T, and differentiating with

respect to temperature, at constant pressure, as in 38c, it is found that

/

V dT p~ RT* (38 ' 16)

If the vapor behaves ideally, or if the solute is nonvolatile, as is usually the

case with electrolytes, the partial molar heat content Bg of the gaseous
solvent may be replaced by its molar heat content HQ . Further, if the

pressure is taken as 1 atm., H #? is equal to the molar heat of vaporiza-
tion AHV of the solvent at its normal boiling point.

At the boiling point, the liquid and gaseous phases are in equilibrium,
and hence the activity ai of the solvent in the former will be equal to that
in the latter, as given above, since the same standard state is used in each
case. It follows, therefore, that the variation of the activity of the solvent

at the boiling point for solutions of differing concentrations, at 1 atm.

pressure, is given by Aquation (38.16) as

AHV

(38>17)

This expression, except for the negative sign, is similar to equation (38:6),

applicable at the freezing point, and by treating (38.17) ,in an analogous
manner to that described in 38c, it is possible to obtain equations of the

same form as (38.11) and (38.12). The symbol 6 now represents the rise

of boiling point; its sign, being opposite to that of the lowering of the freezing

point, compensates for the negative sign in equation (38.17).

Because boiling point determinations on solutions have been carried out
over a considerable temperature range, by changing the external pressure,
it is necessary to use a more precise expression than equation (38.9) to repre-
sent the variation of &HV with temperature. For this purpose the empirical

relationship

AH, = Lo - bO - cffi
- de\ (38.18)

4 Lewis and Randall, ref. 3.
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where 6, c and d are constants, has been proposed. Upon insertion of this

expression in equation (38.17) and integrating, the result may be put in the
form

<38'19)

the constants 6', c', etc., which are related to 6, c, etc., being derived from
actual heat of vaporization measurements at various temperatures. The
activity of the solvent in the solution can then be calculated directly from
the elevation of the boiling point. By making measurements at various

pressures it is possible to obtain the values over a range of temperature,
the effect of pressure on the activity being usually neglected. The results

can then be used to calculate the relative partial molar heat content of the

solvent, i.e., Li, by means of equation (38.14) or (38.15); further reference
to this subject will be made in 44g.

5

38e. Activity from E.M.F. Measurements. It was seen in 331 that the
E.M.F. of a reversible galvanic cell is related to the free energy change of the

process taking place in the cell. The free energy change is dependent upon
the activities of the substances involved in the cell reaction, and hence the
measurement of E.M.F. provides a possibility for the evaluation of activities.

The method has been largely used in the study of electrolytes, as will be
seen later, but the general principle is of wide applicability. It will be

employed here to determine the activity of one metal when dissolved in

another metal, e.g., in a liquid alloy or amalgam. 8

Consider a galvanic cell in which the two electrodes consist of homo-
geneous liquid amalgams of different proportions, mole fractions N and N,
of the same metal, e.g., thallium, dissolved in mercury; the electrolyte is an
aqueous solution of a salt of the metal, i.e., thallium. The cell may be

represented by

Tl amalgam (N) |
Thallous salt solution |T1 amalgam (N2).

The free energy change accompanying the transfer of 1 mole of thallium
from the left-hand electrode to the right-hand electrode is equal to the differ-

ence in the partial molar free energies (chemical potentials) of the thallium
in the two amalgams. Thus (cf. 37a),

A*7 = M2
-

M2 = RT In ~2

, (38.20)
a2

where a2 and a are the activities of the thallium in the two amalgams.
If the thallium molecule contains x atoms and z is the valence of the

thallous ion in the cell solution, it requires the passage of xz faradays of

electricity in order to dissolve 1 mole of thallium from one amalgam electrode,

Saxton and Smith, J. Am. Chem. Soc., 54, 2625 (1932); Smith, ibid., 61, 500, 1123

(1939); 63, 1351 (1941).
Lewis and Randall, /. Am. Chem. Soc., 43, 233 (1921); see also, idem., ref. 1, Chapter

XXII.
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by the reliction

Tl, (in amalgam) ~ xTl** (in solution) H- xzt,

and to deposit it on the other by the reverse change. The increase of free

energy accompanying the transfer process is therefore given by equation

(33.36) as

AF = - NFE = - xzFE, (38.21)

where xz is equivalent to N\ F represents the faraday and E is the observed

E.M.F. of the galvanic cell under consideration. In the special case where
the metal is thallium, both x and z are unity, so that AF is equal to FE.

Comparing this result with equation (38.20), it follows that

(38.22)

The E.M.P. of the cell is thus seen to be independent of the concentration of

the thallous salt in the cell solution, and is determined by the ratio of the

activities of the thallium in the two amalgams constituting the electrodes.

Although equation (38.22) gives the ratio of the activities in any two

amalgams directly from a measurement of the E.M.F. of the appropriate

cell, it is frequently desirable to express the actual activity of a metal in a

given amalgam with reference to a particular standard state. Suppose the

latter is chosen, in accordance with 37b, III B, so that the activity coeffi-

cient a2/N2 is unity at infinite dilution; the following procedure may then
be used. Equation (38.22) may be written as

EF
In a 2

= - + In ai,

and subtracting In N^ from both sides, this becomes

to - - ! ~ ln ** + 1* <& (38.23)
N2 Kl

or

1 g0/" (38 '24)

A series of cells is now constructed in which the composition (N2) of the

amalgam constituting the right-hand electrode is varied, while that of the
left-hand electrode (N), usually the more dilute amalgam, is maintained
constant. The E.M.F. (E) of each cell is measured, and the corresponding
value of the term in parentheses on the right-hand side of equation (38.24)
is plotted against the mole fraction N2 . Such a plot is shown in Fig. 25, the
data being obtained from thallium amalgam cells at 20 C, with N2 constant
and equal to 0.00326 throughout. When N2 is zero, i.e., at infinite dilution,
the value of a2/N2 is unity, in accordance with the chosen standard state;
since log (a2/N2) will then be zero, it is evident from equation (38.24) that
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the term in parentheses in this equation will be equal to log oj. In
other words, the intercept on the vertical axis for N* in Fig. 25, which is

2.4689, is equal to - log a, so that a is 0.003396. The value of log (a2/N*),

i.e., the logarithm of the activity coefficient TN, in any amalgam can then

3.3

3.1

ft?

2.6

0.1 0.2 0.3

Mole Fraction (N*)

0.4

FIG. 25. Determination of activity of thallium in amalgams

be obtained [cf. equation (38.24)] by adding log a, i.e., 2.4689, to the

term in parentheses, that is, the corresponding ordinate in Fig. 25. In this

manner a2/N2 ,
and hence a2 ,

for any amalgam within the experimental range
can be determined. Some of the results obtained are quoted in Table

TABLE XXVII. ACTIVITY OF THALLIUM IN AMALGAMS AT 20 C

EF
N2

0.00326

0.01675

0.04856

0.0086

0.1680

0.2701

0.4240

i ***-
log N,

volt

0.04555

0.08170

0.11118

0.13552

0.15667

0.17352

(2.4689)
2.4860

2.5592

2.7184

2.9177

3.1045

3.2610

3.3558

N2

1.000

1.042

1.231

1.776

2.811

4.321

6.196

7.707

a*

0.003396
0.02062

0.08624

0.2772
0.7259

1.674

3.268

XXVII. 7 The departure of the values of a2/N 2 from unity indicate tho
deviations from Henry's law. It is evident that except in the most dilute

solutions these are quite considerable.

7 Data from Lewis and Randall, ref. 6.
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Problem: The E.M.F. of the cell

TL amalgam (N - 0.00326) |
Thalious solution |T1 amalgam (NI 0.0986)

is 0.11118 volt at 20 C. Calculate aa/N, and as for the thallium in the right-

hand amalgam.

It will be seen in ( 45d) that if the E.M.F. is in volts and F is in coulombs, R
should then be in (int.) joules, and F/2.3026B is equal to 1.984 X 10~4

;
hence at

20 C, i.e., 293.16 K, equation (38.24) becomes

* ~
lt>gN'

1.984 X 10 X 293.16

As noted above, when N is 0.00326, log aj is 2.4689; hence, when N, is 0.0986,
so that log NI is 1.0061 and E is - 0.11118 volt,

"2-nSSs+*-""
- 0.4488.

Hence, O*/N* is 2.811, and a8 is 2.811 X 0.0986 = 0.2772.

If it had been required to determine the deviations from Raoult's law it

would have been necessary to choose pure liquid thallium at 20 C as the

standard state of unit activity, instead of that employed in the preceding
treatment. In this case the E.M.F. of the cell

H (pure liquid) |
Thalious salt solution |T1 amalgam (N2),

would be given by equation (38.22) as

E --
^Ino,, (38.25)

since the activity of the thallium in the left-hand electrode is now unity.
The activity a2 of the thallium in an amalgam, on the basis of the new
standard state, could thus be calculated directly from the E.M.F. measure-
ment. However, since thallium melts at 302 C, the cell depicted cannot
be studied at 20 C, and an alternative device is used to obtain the activity
in the amalgam with reference to that of the pure (supercooled) liquid
thallium as unity. By plotting the values of a2/Na given in Table XXVII
against N2,

it is possible to extrapolate the results to N2 equal to unity, that

is, to pure liquid thallium. The value of a2/N3 is then found to be 8.3, and
since Na is 1, the activity a2 with reference to the standard based on the

infinitely dilute solution, is 8.3. The new reference state, however, requires
a* to be unity when N* is unity, and so the corresponding activities in the
various amalgams can be obtained by dividing each of the results in the last

column of Table XXVII by 8.3. This is a direct consequence of the con-

clusion reached in 37a, that the ratio of the activities of a given component
in two solutions is independent of the chosen standard state. The activity
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coefficients a2/N2 calculated in this manner show that in the more concen-
trated amalgams, with mole fraction of thallium exceeding about 0.4, the
deviation from Raoult/s law is of the order of a few per cent only.

Problem: Calculate the activity coefficient which indicates the departure from
Raoult's law of thallium in the amalgam containing 0.424 mole fraction of thallium.

For this amalgam, it is seen that a2 in Table XXVII is 3.268; the value in

terms of pure liquid thallium as the standard state is then equal to 3.268/8.3.
The activity coefficient is thus given by

q2 3.268~
8.3 X 0.424

For a solution obeying Raoult's law, a2/N 2 calculated in this manner is unity;
the departure from ideal behavior is seen to be relatively small.

Although the method of obtaining the activity of a metal in a metallic solution

directly from E.M.F. measurements is not usually possible at ordinary tempera-
tures, it has been used considerably for studies at higher temperatures. For this

purpose the electrolyte consists of a fused salt, instead of an aqueous solution.

In general the E.M.F. of the cell

Metal A (liquid) |
Fused salt of A

|
Solution of A in metal B (liquid)

is given by
RT=- IneiA, (38.26)

where <JA is the activity of the metal A in the right-hand electrode, with reference

to pure liquid A as the standard state; N is equal to xz, where x is the number of

atoms per molecule of A, and z is the valence. The activity <ZA can thus be ob-
tained directly from an E.M.F. measurement by means of equation (38.26). By
varying the proportion of A in the right-hand electrode, determinations have been
made over the whole range of composition from pure A to pure B.

The same principle as that just described has been used to evaluate the activity
of a salt in a liquid (fused) mixture with another salt. Consider, for example, the

galvanic cell

Ag(s)|AgBr(N2) in fused LiBr|Br2(0),

in which the reaction is the combination of silver and bromine to form silver

bromide at mole fraction N 2 (or activity a2) dissolved in fused lithium bromide.
The E.M.F. of this cell is given by (cf. 45d)

= < -Sna2, (38.27)f

where E is the E.M.F. of the ceil when the activity of the silver bromide is unity,

i.e., when the electrolyte is pure fused silver bromide. It is thus possible to de-

termine the activity a2 of the latter salt in various fused mixtures, varying in

composition from pure silver bromide (N* = 1) to pure lithium bromide (N O).
8

' Hildebrand, et al., J. Am. Chem. Sac., 49, 722 (1927); 51, 462 (1929); 52, 4641, 4650,

4665, (1930); Salstrom, ibid., 54, 2653, 4257 (1932); 58, 1848 (1936); Strickler and Seltz,

ibid., 58, 2084 (1936); Seltz, Trans. Electrochem. Soc., 77, 233 (1940).
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Problem: At 500 C, the E.M.F. of the cell described above is 0.7865 volt when
the electrolyte is pure AgBr; the E.M.F. is 0.8085 when the mole fraction is 0.5937.

Calculate the activity coefficient in the latter case, the standard state being taken
as pure liquid AgBr.

In equation (38.27), E is 0.8085 and E* is 0.7865; since T is 773 K, this

equation becomes

0.8085 - 0.7865 - 1.984 X 10~4 X 773 log a2,

a2 = 0.7188.

The activity coefficient is a2/N 2, i.e., 0.7188/0.5937 1.211, indicating positive
deviation from Raoult's law.

In the present section it has been seen that E.M.F. measurements can be

used to determine the activity of one of the components of a homogeneous
liquid system. It will now be shown how the same results can be used to

evaluate the activity or activity coefficient of the other constituent. The
treatment is quite general, and can be employed whenever the activity of

one constituent of a solution has been determined by any convenient method.
38f. Activity of One Component from that of the Other Component. By

combining the Gibbs-Duhem equation in the form NI^MI + N2d/*2 =

[equation (34.7)], with the expression for the chemical potential, viz.,

M- M? + RTln a [equation (31.2)], it is seen that for a binary solution,

+ Njzd In a2 = 0, (38.28)

where NI and N2 are the mole fractions of solvent and solute, respectively.
This result is applicable at constant temperature and pressure irrespective
of the standard states chosen for the two constituents, since M? is constant,
in any event, at a specified temperature. A slight rearrangement of equa-
tion (38.28) gives

v

dlnai = - 2 dlna2 , (38.29)
NI

and upon integrating, and converting the logarithms, this becomes

loga2, (38.30)

where a\ and a{ are the activities of the solvent in two solutions in which the

mole fractions of the solute are N2 and N, respectively. By plotting NJ/NI
for any solution against the known value of log a2,

the area under the curve
between the limits of N and N2 represents the integral on the right-hand side

of equation (38.30). In this way the ratio of the activities of the solvent,

i.e., ai/ai, can be determined from the known activities a* of the solute.

Experience has shown that the procedure just described is not too satis-

factory, especially when NI approaches zero; under the latter conditions a2

for the solute, which is then equal to N3, also approaches zero, and log as has
a large negative value. An alternative method, which has been found to
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be more suitable, is the following. Since NI + N 2 = 1 for a binary mixture,
dNi + rfN2 = 0, and hence,

nNI--h N2- =
U,

NI N 2

that is,

In NI + Njjd In N 2 = 0.

If this is subtracted from equation (38.28) the result is

In + N** In =
0,

NI N 2

^. (38.31)
Nl Nl N 2

Upon integrating and converting the logarithms, as before, it is found that

log ! _ iog , _
Ni

&
Ni JN , Ni

By plotting log (a2/N2) against N 2/Ni, and determining the area under the

curve between the limits of N and N 2, the difference between the two corre-

sponding values of log (ai/Ni) can be obtained. Further, if the composition
N{ and N 2 represents infinite dilution, i.e., N = 1 and N = 0, then the

activity a( of the solvent is unity, in accordance with the standard state

usually chosen for a solvent;* ai/Ni is then unity and log (ai/Ni) is zero, so

that equation (38.32) becomes

^.
(38.33)N2

The area under the curve from zero to any composition N2 gives the value

of log (ai/Ni) for the solvent at that composition.

TABLE' XXVIII. ACTIVITY OF MERCURY IN THALLIUM AMALGAMS AT 20 C

1.000 1.000 1.000

0.990 0.999 0.989

0.950 0.986 0.937

0.900 0.950 0.855

0.800 0.866 0.693

0.700 0.790 0.553

0.600 0.734 0.440

0.500 0.704 0.352

To illustrate the application of equation (38.33) to calculate the activity

or activity coefficient of one constituent of a solution when that of the other

is known, use may be made of the results for the thallium amalgams given
in 38e. The values of a2/N 2 for thallium at various compositions are

available (Table XXVII), and the data required for the evaluation of the

* The experimental pressure is assumed to be 1 atm.
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integral are plotted in Fig. 26. The activities of the mercury (ai) at a number
of rounded compositions obtained by means of equation (38.33) are given in

Table XXVIII. 9 The standard state is pure liquid mercury at 20 C and 1

atm. pressure; hence, the deviations of the results in the second column, i.e.,

ai/Ni, from unity indicate the extent of the departure from Raoult's law
since the measurements were made at atmospheric pressure.

0.4 0.6 0.8

log (a,/N,)

Fio. 26. Determination of activity of mercury in thallium amalgams

In this treatment it has been assumed that the activity 6f the solute, i.e.,

constituent 2, is known, and the procedure described was used to calculate

the activity of the solvent. The general method may equally be employed
to determine the activity of the solute if that of the solvent at a number of

compositions is known. Actual use of this procedure will be made in

39b, 39e, 39f .

38g. Analytical Procedure for Calculating Activities. If the activity or ac-

tivity coefficient of one constituent of a mixture could be expressed as a function

of the mole fraction, the integration might be carried out analytically, instead of

graphically. Actually the integration is not necessary for the relationship be-

tween the expressions for ai/Ni and a2/N 2,
that is, y\ and 7*, respectively, are

determined by the Gibbs-Duhem equation. If the pressure is 1 atm., the simplified
form of the Margules equation (35.9) becomes

where /J, the fugacity in the standard state, i.e., pure liquid at 1 atm. pressure at

the experimental temperature, replaces /?. Since the activity ai is equal to /i//J,

9 Lewis and Randall, ref. 6,
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by equation (31.5), it is seen that

or

N = 0'N. (38.34)

Similarly, for the second constituent,

(38.35)

where /3', which is the same in both cases, is equal to 0.217/3. If a/N for either

constituent for any composition is known, the value of can be determined, and
hence a/N for the other constituent is readily found. The standard state in each
case is the particular substance in the pure liquid state. By means of E.M.F.

measurements, the activity coefficient a2/N2 of cadmium in an alloy with tin has
been determined at a number of compositions at 430 C. The results are ex-

pressed to a close approximation by log (a2/N2)
= 0.31NJ, so that the variation

with composition of the activity coefficient of the tin in the same system is given
by log (ai/Ni) - 0.31NJ.

The foregoing method involves a single constant and can be used when the
deviations from Raoult's law are not too great. Better results are obtained by
using the van Laar equations (35.10). Thus, the activities of mercury (component
1) in liquid mixtures with tin (component 2) at 323 C, determined by vapor pres-
sure measurements, can be expressed by

ai __0.22NJ
g ~~

(0.26Ni + N2)
2

Hence, utilizing the relationship between the constants ( 35d), it is found that

02 = 0.846N?
g "

N! + 3.84N 2)
2 '

giving activity coefficients of the tin in amalgams of various compositions. The
standard state in each case is the pure liquid metal at 323 C and 1 atm. pressure.

10

Problem: Assuming the simplified Margules equation to be applicable to the

fused LiBr-AgBr system, use the result obtained in the last problem in 38e to

derive general expressions for the activity coefficients of LiBr (OI/NI) and AgBr
(a2/N8) as functions of the respective mole fractions, at 500 C.

In the problem mentioned, it was found that a2/N2 is 1.211 when N2 is 0.5937;

hence, if

log 1.211 = &' X (1
-

0.5937)',

0' - 0.5035,

" Of. J. H. Hildebrand, "Solubility of Non-electrolytes/' 2nd ed., 1936, pp. 45 et eeq.;

see also, Lacher and Hunt, ref. 2; Laoher, Buck and Parry, ref. 2.
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so that

r/1

log * log -v 3
-- O.oO.'JoN;.

*Nj

This gives the activity coefficient of the AgBr in the fused LiBr-AgBr system.

By equations (38.34) and (38.35), the activity coefficient of the LiBr in the same
system is given by the analogous expression

log = log 7l = 0.5035N*.
NI

38h. Osmotic Pressure and Activity. The osmotic pressure of a solution

is related to the activity of the solvent in it, and hence measurement of

osmotic pressure should provide, in principle, a method for the determination

of activities. Because of experimental difficulties this procedure has not

found practical application, but the thermodynamic treatment is, never-

theless, of interest. The osmotic pressure may be defined as the excess

pressure which must be applied to a solution to prevent the passage into it of
solvent when the two liquids are separated by a semipermeable membrane, i.e.,

a membrane permitting the free passage of the molecules of solvent but not

of solute. If a solution and the pure solvent, both at the same pressure, are

separated by a semipermeable membrane, the system will not be in equi-

librium, for there will be a tendency for the solvent to pass through the

membrane into the solution. In order to establish equilibrium, the pressure
on the solution must be increased above that exerted on the solvent. If P
and Po are the pressures on the solution and solvent, respectively, when equi-
librium is attained, then the difference P Po is equal to n, the osmotic

pressure of the solution.

If MO is the chemical potential of the pure solvent and M is that in the

solution, at the same pressure PO, the two values will not be equal. How-
ever, as seen above, if the pressure on the solution is raised from P to P,
the chemical potential of the solvent in the solution at P will become equal
to that of the pure solvent at Po, for this is the condition of equilibrium.*
It is therefore possible to write

dP, (38.36)

the left-hand side giving the chemical potential of the solvent at PO, and
the right-hand side that of the solvent in the solution when the pressure has
been increased from P to P. According to equation (26.26), (dM,/dP)r,N,
for constant temperature and composition, is equal to the partial molar
volume of the given constituent, i.e., the solvent in this case; thus equation
(38.36) is equivalent to

Mo = M + I PidP, (38.37)

//

I

*/PO

* In physical terms, increase of pressure from P to P increases the vapor pressure

(cf. 27m) of the solvent in the solution, so that it becomes identical with that of the pure
solvent at PO.



38h DETERMINATIONS OF ACTIVITIES 373

where Vi 9 is the partial molar volume of the solvent in the solution. The
chemical potentials /io and p of the solvent in pure solvent and solution,

respectively, may be expressed in terms of their respective fugacities [cf.

equation (31.1)], viz.,

MO = M? + RT ln/P and M = M? + RT ln/i, (38.38)

where f? and f\ arc the fugacitics of the solvent in the pure state and in the

solution, at the same pressure PO. Making the substitution of the equations

(38.38) into (38.37), the result is

VidP. (38.39)

If the pressure PO is 1 atm., /? is identical with the fugacity/? of the solvent

in its standard state, and hence fi/f? may be replaced by ai, the activity
of the solvent in the solution, so that equation (38.39) becomes

VidP. (38.40)

In order to integrate equation (38.40) it is necessary to know how the partial
molar volume Vi of the solvent in the solution varies with the external

pressure. It may be supposed that the variation is linear, so that at any
pressure P,

Fi = 7 [1
- (P - Po)],

where a is a constant and Vo is the partial molar volume of the solvent at

the pressure PO, i.e., 1 atm. If this expression is inserted into equation

(38.40), the result is

- fo

= P (P - Po)[l
- %*(P -

Po)]. (38.41)

As seen above, P PO is equal to H, the osmotic pressure of the solution,

so that equation (38.41) becomes

- RTlna, - F H(1 -
all). (38.42)

According to equation (38.42) it should be possible to determine the

activity of the solvent in a solution by means of osmotic pressure measure-
ments. Since such measurements are not easily made, the procedure is

not convenient. Nevertheless, the accuracy of equation (38.42) may be
tested by using the known activity of the solvent to calculate the osmotic

pressure of the solution, and comparing the result with the experimental
value. Provided the vapor pressures are not high, di, which is equal to

/i//i, may be replaced by p\/p?, and so the osmotic pressure can be derived

from vapor pressure measurements. For aqueous solutions, a is of the

order of 4 X 10~5 atm.-1 and may be neglected, except for solutions of high
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osmotic pressure. The results for sucrose solutions at 30 C obtained in this

manner are given in Table XXIX. 11

TABLE XXIX. OSMOTIC PRESSURES OF SUCROSE SOLUTIONS AT 30 C

Osmotic Pressure

Molality Calc. Obs.

0.1 2.47 atm. 2.47 aim.
1.0 27.0 27.2

2.0 58.5 58.4

3.0 96.2 95.2

4.0 138.5 139.0

6.0 231.0 232.3

EXERCISES

1. Compare the activity coefficients TN, 7*. and ye in an aqueous solution

containing 0.1 mole of phenol per liter, taking the density of the solvent as 1.00

and that of the solution as 1.005 g. cc.~l
.

2. The partial pressures of chlorobenzene(l) at various mole fractions in mix-
tures with 1-nitropropane at 75 C are as follows (Lacher, Buck and Parry, ref. 2) :

Ni 0.119 0.187 0.289 0.460 0.583 0.691 1.00

pi 19.0 28.3 41.9 62.4 76.0 86.4 119mm.

Express log y f r each component as a function of the mole fraction of the type
log y\ 0'Nj, etc. (Plot log y\ against N* and determine the slope.)

3. Show that if the vapor cannot be treated as an ideal gas, equation (38.4)
for the activity coefficient of a volatile solute would become TN = (/2/N2)/(p?/Nj),

assuming the solvent to be nonvolatile so that p* represents virtually zero total

pressure; hence, suggest a possible procedure for determining TN in a case of

this type.
4. The E.M.F. of the cell Pb(Z) | PbCU in LiCl-KCi fused

| Pb-Bi(Z) in which the
mole fraction of bismuth is 0.770 is 0.05976 volt at 327 C (Strickler and Seltz,
ref. 8). Calculate the activity and activity coefficient of the lead in the liquid

alloy, indicating the standard state employed. Derive the constant ft in the

simple Margules equation.
5. The following data were obtained in a study of the vapor pressure of

mercury (pi) in equilibrium with bismuth amalgams at 321 C:

Na(Bi) 0.1486 0.247 0.347 0.463 0.563 0.670 0.793 0.937

0.908 0.840 0.765 0.650 0.542 0.432 0.278 0.092

[Hildebrand and Eastman, J. Am. Chem. Soc., 36, 2020 (1914)]. Determine the

activity coefficients ai/Ni of the mercury in the various amalgams and by plotting

NI/NJ against log (ai/Ni) derive the activity coefficients of the bismuth at the mole
fractions 0.1, 0.2, 0.4, 0.6, 0.8 and 0.9, by using the appropriate form of equation
(38.33). Pure liquid bismuth should be taken as the standard state.

6. What would be the B.M.F. at 321 C of a cell consisting of two bismuth

amalgam electrodes, with mole fractions 0.1 and 0.9 of bismuth, respectively, in

the same electrolyte? (Use results of Exercise 5.)

u Vapor pleasures from Berkeley, et al, Phil. Trans. Roy. /Sac., A218, 295 (1919);
osmotic pressures from Frazer and Myrick, J. Am. Chem. Soc., 38, 1920 (1916).
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7. Utilize the results in Exercise 5 to express log y\ (for the mercury) as a
function of the mole fraction by means of the van Laar equation. Hence derive

an expression for log 72 (for the bismuth) and check the values obtained by the

graphical integration.

8. The following results were obtained at 500 C for the E.M.F. of the cell

Ag() |
Fused AgCl(l) in LiCl(2) | Clj(^) at various mole fractions (NI) of the silver

chloride:

NI 1.000 0.690 0.469 0.136

E 0.9001 * 0.9156 0.9249 0.9629 volt

[Salstrom, et al., J. Am. Chem. Soc., 58, 1848 (1936)]. Calculate the activity and

activity coefficient of the silver chloride at the various mole fractions. Determine
the free energy of transfer of 1 mole of silver chloride from the pure fused state

to the lithium chloride solution in which its mole fraction is 0.136, at 500 C.

9. "For a liquid system which does not deviate greatly from Raoult's law the

activity coefficient of each of the two constituents is the same function of its

respective mole fraction, at a given temperature, provided the pure liquid is taken
as the standard state in each case." Justify this statement.

10. The vapor pressures of mercury in equilibrium with thallium amalgams
containing various mole fractions (NI) of mercury at 26 C were found to be as

follows [Hirst and Olson, /. Am. Chem. Soc., 51, 2398 (1929)]:

NI 1.000 0.835 0.644 0.316

Pl X 105 cm. 20.1 15.15 9.6 6.9

Compare the activities of the mercury in the various amalgams with those ob-

tained by the E.M.F. method at 20 C (cf. Table XXVIII).
11. The E.M.F. of a cell consisting of cadmium amalgam (N2 = 1.781 X 10""8)

as one electrode and a saturated amalgam as the other is 0.05294 volt at 25 C.

What are the activity and activity coefficient of the cadmium in the dilute amal-

gam with reference to that in the saturated amalgam as the standard state?

The E.M.F. of a similar cell, in which the electrodes are pure solid cadmium and
the saturated amalgam, is 0.05045 volt at 25 C. Determine the activity and

activity coefficient of the cadmium in both amalgams referred to in the preceding

paragraph, taking pure solid cadmium as the standard state.

What is the free energy of transfer of 1 g. atom of cadmium from the saturated

to the more dilute amalgam at 25 C?
12. Show that for a nonideai liquid mixture, the free energy of mixing per mole

is given by AF = NiRT In a\ + NzRT In a2, the standard states being the pure
liquids (cf. Exercise 24, Chapter XIV). Suggest how the free energy of mixing
may be determined for a mixture of (i) two liquid metals, (ii) two volatile liquids.

13. Utilizing the results of the preceding exercise and of Exercise 24, Chapter
XIV, justify the use of the term "excess free energy of mixing" for the quantity
AF* KiRTlnyi + xtiRTlnyi, which is a measure of the departure of the

system from ideal behavior, for a given external pressure and composition. Show
that the corresponding heat change &HE is actually equal to the heat of mixing,
at the specified composition [cf. Scatchard, et al., J. Phys. Chem., 43, 119 (1939);
J. Am. Chem. Soc., 60, 1278 (1938); 61, 3206 (1939); 62, 712 (1940)].
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The following partial vapor pressure data were obtained for a mixture contain-

ing equimolecular amounts of ethanol(l) and chloroform (2):

35 45 55 C
pt 59.3 (102.8) 101.9 (172.S) 166.3 (279.9) mm.
p 2 217.7 (295.1) 315.8 (433.5) 438.9 (617.8) mm.

The figures in parentheses in each case are the vapor pressures of the pure liquids.

Assuming the vapors to behave as ideal gases, calculate (i) the free energy, (ii) the

excess free energy, (iii) the heat, of mixing per mole of the equimolar mixture at

45 C. (Use a form of the Gibbs-Helmholtz equation to derive A# from &F; the

total pressure may be supposed to be constant.)
14. Consider equations (38.33) and (38.24) and hence indicate how ai/Ni for

mercury could be determined directly, by a graphical method, from the E.M.F.

data on the thallium amalgam cells in Table XXVII.
15. The following E.M.F. results were obtained in measurements on cells with

potassium amalgam electrodes at 25 C; in each case one electrode consisted of

an amalgam in which the mole fraction of potassium (N) was 0.01984, while the

composition (N2) of the other was varied :

N 2 E N2 E
0.000472 0.13066 volt 0.01301 0.02359

0.000917 0.11267 0.01628 0.01191

0.002620 0.08281 0.01984

0.003272 0.07618 0.02252 -0.00844
0.008113 0.04421 0.02530 (sat.)

- 0.01733

[Armbruster and Crenshaw, J. Am. Chem. Soc., 56, 2525 (1934)]. Determine
the activity and activity coefficient of the potassium in each of these amalgams
at 25 C. Utilize the result of the preceding exercise to determine the same

quantities for the solvent (mercury). Indicate the standard state employed in

each case.

16. Prove that if a solute is distributed between two immiscible solvents (I

and II), the ratio of the activities in the two solvents, i.e., ai/an, should be con-

stant at constant temperature and pressure. Show that this result is the basis of

the Nernst distribution law, i.e., ci/cii (or mi/wn) is constant for dilute solutions.

17. By using the results of the preceding exercise, propose a method for de-

termining the activity coefficient in solvent I of a solute whose activity at various

molalities is known in solvent II. Indicate the nature of the standard state

employed.
18. The freezing points of three glycerol solutions in water are 1.918 C for

1.0 molal,
- 3.932 C for 2.0 molal and - 10.58 for 5.0 molal. Determine the ac-

tivities and activity coefficients of the water in these solutions on the basis of the
usual standard state, and consider the departure from Raoult's law. The vapor
pressure of pure (supercooled) water at 1.92 C is 3.980 mm.; what would be
the aqueous vapor pressure of the 1.0 molal glycerol solution at this temperature?

19. Show that for a dilute solution, the vapor of the solvent behaving ideally,

where VJ is the molar volume of the pure solvent at temperature T and 1 atm.

pressure. If the solution is dilute then show that IIVJ (n*/ni)RT, where n\
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and ns are the numbers of moles of solvent and solute, respectively (H. N. Morse,
1905). At 20 C, the vapor pressure of 0.0908 molal mannitol solution in water
is 0.3096 mm. below that of pure water (17.535 mm.). Estimate the osmotic

pressure of the solution, utilizing both the relationships just derived [Frazer,
Lovelace and Rogers, J. Am. Chem. Soc. f 42, 1793 (1920)]. The density of water
at 20 C is 0.99823 g. cor1

.

20. From the results of Exercise 19, show that it is possible to derive the
van't Hoff osmotic pressure equation KV = RT for a very dilute solution; V is

the volume of solution containing 1 mole of solute.

21. Derive a general relationship between the osmotic pressure of a dilute solu-

tion and its freezing point depression. What form does it take for a very dilute

solution?

22. Give the complete derivation of equation (37.8).
23. Show that the variation with temperature of a*, the activity of the solute

in terms of molality, is given by

/ d in q2 \ = #; -

\ dT /P,N
""

RT*

where B\ is equal to the partial molar heat content in the infinitely dilute solution.

24. Show that the partial molar entropy S* of a solute at high dilution is

related to the value in the standard state J by the expression S* SJ = R In m*,
where m* is the molality of the dilute solution. Hence prove that the partial
molar entropy of a solute approaches an infinitely large value at infinite dilution.



CHAPTER XVI

SOLUTIONS OF ELECTROLYTES

39. ACTIVITIES AND ACTIVITY COEFFICIENTS

39a. Mean Activities of Electrolytes. The treatment of activities in the

preceding chapter has referred in particular to solutions of nonelectrolytes,
but since the activity concept has probably found its most useful application
in connection with the study of electrolytes, the subject merits special con-

sideration. Certain modifications, too, are desirable in order to allow for

the presence of ions in the solution. For solutions of electrolytes, the

standard state of each ionic species is chosen so that the ratio of its activity
to its concentration becomes unity at infinite dilution, at 1 aim. pressure
and the temperature of the solution. 1 The ionic concentration may be ex-

pressed in terms of the mole fraction, the molality or the molarity, just as

for nonelectrolytes (cf. 37b). The mole fraction is rarely used, almost the

only case being that in which an attempt is made to calculate the correspond-

ing activity coefficient of an ion from theoretical considerations (Chapter
XVII). As a general rule, activities of ions are given in terms of molalities,
and this standard state will be adopted for the present. The postulate is,

therefore, that the activity of an ion becomes equal to its molality at infinite

dilution.

Consider an electrolyte, represented by the formula M*+Ar_, which ion-

izes in solution to yield the number v+ of positive ions M*+, of valence z+,

and v- negative ions^A*~, of valence z_; thus,

The chemical potentials of each of those ions is given by the general equa-
tions [cf. equation (31.2)]

M+ * M+ + RT In a+ and /*_
=

/ + RT In a_, (39.1)

where M+ and M- are the chemical potentials, and a+ and a_ are the activities

of the ions M*+ and A*~, respectively, in the given solution. The chemical

potential of the electrolyte as a whole, represented by /**> is given by

/t + RTlna*, (39.2)

where at is the activity of the solute. For a strong electrolyte the chemical

potential m may be taken as equal to the sum of the chemical potentials of

1 G. N. Lewis and M. Randall, "Thermodynamics and the Free Energy of Chemical

Substances/' 1923, pp. 326 et seq.; J. Am. Chein. Soc., 43, 1112 (1921); see also, Adams,
Chem. Rev., 19, I (1936); Goranson, J. Chem. Phys., S, 107 (1937).
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the constituent ions; thus,

M2 - V+VL+ + v-n-. (39.3)

Similarly, the standard state of the strong electrolyte as a whole may be
chosen so that its chemical potential M? in that state is equal to the sum of

the chemical potentials of the ions in their respective standard states; hence,

M2 - *+A + V-M-.
(39.4)^

Substituting the values of /u+, /i- and /ua, given by equations (39.1) and (39.2),
1

into (39.3), and utilizing (39.4), it is found that

v+RT In a+ + v-RT In a_ = RT In a2,

= a2 . (39.5)

This relationship is frequently employed to define the activity a2 of a strong

electrolyte in terms of the activities of the constituent ions.

If the total number of ions produced by one molecule of an electrolyte,

i.e., v+ + v-i is represented by v, then the mean ionic activity a of the elec-

trolyte is defined by
<4 - rtfa-, (39.6)

and hence, by equation (39.5),

aa
= <4. (39.7)

The activity of each ion may be written as the product of its activity

coefficient y and its concentration; if the latter is expressed in terms of the

molality m, it follows that

a+ = y+m+ and a_ = 7_ra_,

so that

7+ = 2 and 7- -
, (39.8)

771+ Wr-

it being understood that the activity coefficient 7 is really 7m, as defined in

37b, III C. The mean ionic activity coefficient 7 of the electrolyte, given

by
7L = 7?7~-, (39.9)

can consequently be represented by

or

(39.10)

where m , the mean ionic molality of the electrolyte, is denned by

r?4 - mfrn^. (39.11)

For a strong electrolyte, which can be regarded as being completely ionized,
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a simple relationship may be derived between the mean ionic molality m
and the actual molality m of the solute. In this case m+ is equal to mv+
and w_ is equal to mv~; hence,

= m'(vi/r). (39.12)

Problem: Determine the mean ionic molality of a 0.5 molal solution of sodium
sulfate.

Since each molecule of Na 2SO4 produces two Na+ ions, i.e., v+ =
2, and one

S0r~ ion, i.e., v- =
1, the value of m+ is 2m, i.e., 2 X 0.5 =

1, and m_ is 1 X m,

i.e., 0.5. Hence the mean ionic molality m is given by

m* = m^mv- = I
2 X 0.5,

and since v is v+ + v~ =
3,

m* = 0.5, m = 0.794.

Relationships analogous to those given above may be derived in an

exactty similar manner for the activities referred to mole fractions or mo-
larities. As seen in 37c, the activities for the various standard states,

based on the ideal dilute solution, can be related to one another by equation

(37.7). The result is, however, applicable to a single molecular species;

the corresponding relationships between the mean ionic activity coefficients of

a strong electrolyte, assumed to be completely ionized, are found to be

p + O.QQlvcMi - 0.001cM2

7N = 7m(l + 0.(
Po

n rkn i r.M
(39.13)

Po

where m is the molality and c is the molarity of the electrolyte; M i and M 2

are the molecular heights of the solvent and solute, respectively, and v has

the same significance as before, i.e., v+ + *>_. At infinite dilution the three

activity coefficients YN, 7m and yc are, of course, identical, each being equal
to unity, and for dilute solutions the values do not differ appreciably.

In the experimental determination of activity coefficients of strong

electrolytes, by the methods described below, the molalities, etc., of the

ions are taken as the stoichiometric values, that is, the total possible mol-

ality, etc., disregarding incomplete dissociation. For example, in the last

problem, the molalities of the sodium and sulfate ions in the 0.5 molal

solution of sodium sulfate were taken as exactly 1.0 and 0.5, respectively,
without allowing for the possibility that the salt may be only partially dis-

sociated at the specified concentration. The activity coefficients obtained

in this manner are called stoichiometric activity coefficients; they allow for

all variations from the postulated ideal behavior, including that due to

incomplete dissociation. If the treatment is based on the actual ionic mol-

alities, etc., in the given solution, as in the Debye-HUckel theory (Chapter
XVII), there is obtained the true (or actual) activity coefficient. The ratio
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of the stoichioinetric to the true activity coefficient is equal to the degree of

dissociation of the electrolyte.

39b. Activities from Freezing Point Measurements. The method of de-

termining the activities of electrolytes based on measurements of the freezing

points of solutions is capable of great accuracy over a considerable range of

concentration. It has been used particularly for studying dilute solutions

where other methods are less reliable. The procedure is based funda-

mentally on the determination of the activity of the solvent, which is then
converted into that of the solute by a form of the Gibbs-Duhem equation,

employing the same principles as were used in 38f .

In 38e, an expression of the form [cf. equation (38.11)]

- din a! = -^ (o + bB + c02 + - )<, (39.14)

where 6, c, etc., are constants, was derived for the activity of the solvent in

a solution at its freezing point; this will now be utilized to obtain the activity
of the solute. By the Gibbs-Duhem equation (38.28),*

d In 02 = --- d In 0,1
N2

= - ~</lnai, (39.15)
?1 2

where n\ and n* are the numbers of moles of solvent and solute, respectively.
If the molality, i.e., the number of moles of solute per 1000 g. solvent, is m,
then nz may be set equal to m, and at the same time n\ becomes 1000/Jlfi,

where MI is the molecular weight of the solvent.f Hence, equation (39.15)

becomes

d In 02 = - - d In 01. (39.16)

Combining this result with equation (39.14) it is found that at the freezing

point of the solution, at a pressure of 1 atm.,

, ln , 1000 / LO
,

be <& \de
a In a2

= 77^- 1 ~^r + ~rr
"
T7" + '*' )~" (o9.17)

RTl \Mi MI MI J m

The primed symbol a is used because the results refer to different tempera-
tures for solutions of differing concentrations; subsequently ( 39c), the

results will be adjusted so as to apply to the same temperature for all

concentrations.

* For an electrolyte solution, the exact form of this equation is Nid In ai-f SNC? In a* =0,
where the summation is to be taken over every solute species i, ionic and nonionic, present
in the solution. Using equation (39.5) for a strong electrolyte, this becomes identical with
the expression used here.

t For aqueous solutions 1000/Afi is 1000/18.016, i.e., 55.51 moles; this figure is fre-

quently encountered in the literature of solutions.
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Since Lo is the molar heat of fusion of the pure solvent at its freezing

point, at 1 atm., RToMi/lQQOLo is exactly equivalent to the molal freezing

point depression constant X, as defined by equation (36.12); hence equation
(39.17) becomes

. . , dO
,

6(10 /<m 10Nd In 02 =r--h , (39.18)
AJU 771

where, for brevity, a is defined by

1000 .
,

.
,

For dilute solutions, e.g., less than 1 molal, the terms c0, etc., may be

neglected, so that a is a constant for the particular solvent. Utilizing the

data for water given in 38c, i.e., L = 1438 cal. mole-1

,
T = 293.16 K,

and ACp = 9 cal. deg.""
1 mole""1

,
a is found to be 5.7 X 10~ 4

.

Adopting the standard state for the electrolyte given in 39a, the activity
a2 may be replaced by a [equation (39.7)], so that In a is equal to v In a;
hence, from equation (39.18),

dlnal = + *
, (39.19)v\m vm

where v is the total number of ions produced by one molecule of electrolyte
in solution. The evaluation of the mean activity a of the electrolyte re-

quires the integration of equation (39.19); the devices used for this purpose
will now be described.

A function j is defined by

which approaches zero as m approaches zero, i.e., with decreasing concen-

tration.* Upon differentiation of this expression, recalling that v and X are

constants, the result is

,. _ 0dm _ d6
2 v\m

,,, .v dm
==(1 -^

so that

d0 ,1 .. dm j.

-T =
(1
-

j)
--

dj
v\m m

== (1 j)d In m dj.

Combination with equation (39.19) then gives

d In c4 - (1
-

fid In m -
dj + a (39.21)

vm
* For an electrolyte producing v ions, equation (36.11) becomes 9 v\m as infinite

dilution is approached; hence 6/v\m approaches unity and j becomes zero as m decreases

toward zero. ^
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By equations (39.10) and (39.12),

In 7 In a In m In (j^Vr)
1

'",

so that

d In 7 = d In a^ d In m. (39.22)

Hence equation (39.21) becomes

firJfi

d\n*Y=- jd In. m -
dj + a. (39.23)

VWI

Since y' is equal to unity at infinite dilution, i.e., when m is zero, in accord-

ance with the choice of the ionic standard states, it follows upon integration,

recalling that j = when m =
0, that

In y' = - f
n

jd In m -
j + - f" d. (39.24)

Jo v JQ m

The integrals in equation (39.24) may be evaluated by plotting j, ob-

tained from freezing point measurements, against In ra, for the first, and by
plotting B/m against 0, the freezing point depression, for the second, and

determining the areas under the respective curves. For solutions less con-

centrated than about 0.1 molal, the second integral is usually negligible, and
if the concentration is less than about 0.01 molal, the first integral may be
evaluated in a simple manner by utilizing the empirical relationship between
the function j and the molality m, viz.,

2

j = Am', (39.25)

where A and x are constants for a given electrolyte.* These constants are

obtained from experimental values of the freezing point depression at various

molalities, j being given by equation (39.20). Upon inserting equation
(39.25) into (39.24), and neglecting the last term, it is found that

CM
In 7j. = A I mxd In m Am*

'0

A(x 4- D
x

m*, (39.26)

so that the activity coefficient at any molality less than 0.01 can be calculated.

The use of equation (39.25) to evaluate the first integral in (39.24) is not
too accurate, and in any case it fails at concentrations exceeding 0.01 molal.

A more reliable procedure is to determine the integral graphically. Instead
of plotting j against In m, or j/m against m, it is preferable to change the

* Lewis and Linhart, /. Am. Chem. Soc., 41, 1951 (1919).
*
According to the Debye-Httckel theory (Chapter XVII), A should bo 0.375 for all

uni-univalent strong electrolytes in aqueous solution at C; x should be exactly 0.5 for

all strong electrolytes.
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variable from m to ml/J
; thus,

Cjd In m - 2 f
* '

-i- dm1 /2
, (39.27)

Jo Jo m
so that the required result is obtained by plotting j/mlt*

against w1 '2
.

39c. Corrections for More Concentrated Solutions. As seen above, for

solutions less concentrated than about 0.1 molal the second integral in

equation (39.24) may be neglected. For more concentrated solutions, how-

ever, this integral must be determined graphically and its value included.

For such solutions another factor must also be taken into consideration: since

the freezing point varies with the concentration, the results do not all refer

to the same temperature. It is necessary, therefore, to apply a correction

involving the relative partial molar heat content of the solvent Li, i.e., the

differential heat of dilution, for the given solution. If the concentration is

less than approximately 0.1 molal, this correction is found to be very small,

so that the values of the activity coefficient of the solute, as given by equa-
tion (39.24), will also represent the results at any temperature not too far

removed from the freezing point of the solvent, e.g., 25 C for aqueous
solutions.

For more concentrated solutions, allowance can be made for the varia-

tion of the activity coefficient with temperature, by utilizing equation

(38.15), viz.,

By definition ( 38c), L\ is equal to HI //?*, where ffi is the partial molar
heat content of the solvent in the solution, and H\i is the molar heat content
of the pure liquid solvent, which has been chosen as the standard state for

this constituent. Upon differentiation with respect to temperature, at con-

stant (1 atm.) pressure, it is found that

ii\ = 0pi - C% 19 (39.29)
-* )P

where Cpi is the partial molar heat capacity of the solvent in the solution

and (?/>! is the molar heat capacity of the pure solvent,* at 1 atm. pressure.
If CPI Cp! is approximately constant over a small temperature range,

e.g., from T to !F", it is possible to integrate equation (39.29) so as to yield

Ix - If - (Cpi - CPl)(T ~ T"). (39.30)

If the value of L\ given by equation (39.30) is inserted in (39.28) and the

integration carried out, the result is

Jf JNfT" T^ (fl pb ^ / Tn T7' T" \
1

ai -My 1 ~
J. ) , WPI Ispi) I * * i_ L \ /on oi\la

^ RT'T"
+ 1 (T^-~ }n

-r)'
(39 '31)

* The partial molar notation is not strictly necessary in this case, but it is employed for

the sake of consistency (cf. full treatment in 44j).
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where T' represents the freezing point of the solution, and T" is the uniform

temperature, e.g., 25 C, to which the activities are to be corrected. If the

value of Li and its variation with temperature, i.e. f Cn Cpl9 for the

given solution are known, the right-hand side of equation (39.31) can be

readily calculated; In (af/aj) may, therefore, be regarded as known, and for

simplicity the symbol X will be used to represent this quantity, viz.,

X = ln^- (39.32)
ai

The transformation of equation (39.31) or (39.32) to give the activity of

the solute is now made, as before ( 39b), by means of the Gibbs-Duhem

equation. If a2 is the activity of the electrolyte at the standard reference

temperature T", then by equation (39.16),

d In a2 = - d In a?, (39.33)

where M\ is the molecular weight of the solvent. By definition [[equation

(39.32)], In a" In a{ is equal to X, and so it follows that

d In a? - d In ai = dX,

and hence equation (39.33) can be written as

ji 1000 ,, , 1000,v /onoj\d In a2 * --rjr d In ai -- dX. (39.34)mM. i mM i

Since a{ here refers to the freezing point of the solution, it is equivalent to

ai in equation (39.14), and hence, utilizing (39.16), the first term on the right-
hand side of (39.34) may be replaced by (39.18), giving

,, do . ede 1000 ,~
a In a2 = --r ---~r- aA.

\m m

Recalling the postulate that In a2 is equal to v In a [equation (39.7) ], it

follows that
4

,, de
,

ede 1000 ,va In a = -~--h a---r^- dX
v\m vm vmMi

- (1
- fldlnm - dj + a - ^^-dX. (39.35)vm

Upon subtracting d In m from both sides, it is evident that the left-hand side

becomes dlny [equation (39.22)3, whereas the right-hand side, with the

exception of the last term, is equal to d In 7, by equation (39.23). Hence,
equation (39.35) may be written as
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Since the activity coefficient of the solute, at any temperature, is taken as

unity at infinite dilution, when m is zero, it follows upon integration that

In 7* - In 7'*
- 129? P"1 dX, (39.36)vMi J m

which is the expression for correcting the activity coefficient y, obtained
from equation (39.24), to that, y, at a standard temperature. The integral
in equation (39.36) is evaluated graphically by plotting 1/m against the

corresponding values of X, as obtained from equation (39.31), and measuring
the area under the curve up to the point corresponding to a given molality.
The results obtained for sodium chloride, at concentrations of 0.1 molal and

greater, are reproduced in Table XXX.8 It is seen that the correction term
is negligible at 0.1 molal, but it increases as the concentration increases.

TABLE XXX. ACTIVITY COEFFICIENTS OF SODIUM CHLORIDE FROM FREEZING
POINT MEASUREMENTS

m y' v (at 25 C)
0.1 0.798 0.798

0.2 0.760 0.752

0.5 0.682 0.681

1.0 0.630 0.650
2.0 0.613 0.661

3.0 0.627 0.704
4.0 0.657 0.765

If the value of y' given by equation (39.24) were strictly applicable at the

freezing point of the solution, it would be a relatively simple matter to adjust the
results to a standard temperature, e.g., 25, by making use of an expression
analogous to equation (39.28) involving o2 and L2, i.e., J?2 R\, which is the

partial molar heat content of the solute in the solution relative to the value at

infinite dilution cf. equation (44*31)]]. Actually, the corrections obtained in this

manner are a satisfactory approximation in many cases, provided the solutions are
not more concentrated than about 1 molal. It should be noted, however, that

although equation (39.23) gives d In T at the freezing point of the particular

solution, the value of In y obtained after integration [equation (39.24)], is a
kind of mean value for the temperature range from the freezing point of the solvent
to that of the solution.4* The treatment which resulted in equation (39.36) allows
for this fact. An alternative method of applying the temperature correction is,

therefore, to employ the latter equation, using graphical integration, to adjust
the values of y to give 7 at C. The temperature range is quite small and
the integral can be evaluated with greater accuracy than is possible when the
standard temperature is taken as 25. Having now obtained the activity coeffi-

cients for all the solutions at C, it is a relatively simple matter to correct the
values to 25 by making use of the appropriate form of equation (39.28) or (39.31),

9 Lewis and Randall, ref. 1.
*
It may be pointed out, for the sake of clarity, that this does not apply to In 01 in

equation (38.12), which gives the activity of the solvent at the actual freezing point of the

solution; consequently, T in equations (38.15), (39.29) and (39.31) represents this temper-
ature.
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with Li and Op 2. For work with concentrated solutions in which considerable

accuracy is desired, this method is preferable to any other.4

The amount of reliable data available for the purpose of correcting ac-

tivity coefficients obtained from freezing point measurements is not large.
The freezing point method has thus been mainly used for the study of dilute

solutions.

39d. Activities from Boiling Point Measurements. Just as equation
(39.24) for the mean activity coefficient of an ionic solute was obtained
from (39.14), which gave the activity of the solvent in terms of the freezing

point depression, so it is possible to derive an expression exactly analogous
to equation (39.24) from (38.19) which relates the activity of the solvent to

the rise of boiling point. The correction for temperature differences can
be made in the same manner as described above, by using equation (39.36);
the procedure is completely general for adjusting activity coefficients to a
standard temperature. However, as indicated earlier, in actual practice
the activity coefficients measured at several temperatures, by using boiling

point elevations obtained at various external pressures, have been employed
to calculate relative partial molar heat contents (cf. 44g).

8

39e. Activities of Electrolytes by the Isopiestic (Isotonic) Method. One
of the simplest methods for determining activities of electrolytes, provided
the solutions are not too dilute, is based on a comparison of vapor pressures.
If two (or more) solutions of different electrolytes in the same solvent are

placed in an evacuated space, the solution of higher vapor pressure, i.e.,

higher fugacity (or activity) of the solvent, will distil over into that of lower

vapor pressure until, when equilibrium is attained, the solutions will all have
the same vapor pressure (and fugacity). Such solutions are said to be

isopiestic or isotonic, the solvent having the same activity in each. Suppose
one of these solutions contains a reference substance whose mean ionic ac-

tivity coefficients at a number of molalities have been determined by a suit-

able method; it is then possible to calculate the activity coefficients in various

solutions of other electrolytes.

For any experimental solute, equation (39.16), based on the Gibbs-

Duhem equation, may be written as

\ , , , ,din a,-- din a*

and since, from equation (39.7), d In a* is equal to vd In a
9
it follows that

-dlnalf (39.37)

where a^. is the mean activity of the ions in the solution of molality m, and

4 Lewis and Randall, ref. 1; see also, Randall and Young (L. E.), /. Am. Chem. Soc.,

50, 989 (1928); Young (T. F.), Chem. Rev., 13, 103 (1933).
*Saxton and Smith, /. Am. Chem. Soc., 54, 2625 (1032); Smith, et al, ibid., 61, 500,

1123 (1939); 63, 1351 (1941).
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ai is the activity of the solvent. Similarly, for a reference electrolyte, whose
molality and mean ionic activity are indicated by the subscript R,

!. (39.38)

If the solutions of the experimental and reference substance are isopiestic,
the activity 01 of the solvent is the same in each case, and hence it is possible
to equate (39.37) and (39.38); thus,

vmd In a-fc v^m^d In aR .

According to equation (39.22), d In a may be replaced by d In m + d In y ,

i.e., by d In my, and similarly for d In aR ; hence,

vmd In my = ?RmRd In mR7R, (39.39)

where YR is the mean activity coefficient of the ions in the reference solution.

The subsequent proceduie is quite general, but in order to simplify the

representation it will be supposed that the two electrolytes are of the same
valence type, so that v and J/R are equal; equation (39.39) then becomes

md In my = mRd In mR-yR,

and upon rearrangement it is readily found that

m \ m
= d In 7R + d In r + (r

-
l)d In wR7R , (39.40)

where r is written for the ratio of the molalities WR/W of the two isotonic

solutions. Further, since wR7R is equal to aR,

da 1/2

d In WR7R = d In aR = 2 ~r ,
/I */*aR

and so equation (39.40) becomes upon integration

r
1/s

r 1

l75-**B
/8

> (39.41)
aR

since 7 and 7R are both unity, and hence In y and In 7R are both zero,
at infinite dilution when m and WR are zero. Since 7R or aR is supposed to
be known at various molalities mR, the integral in equation (39.41) can be
evaluated graphically by plotting (r l)/aR

/2
against a%

2
. It is then pos-

sible to determine the area under the curve from aR
2
equal to zero up to the

point corresponding to the solution of molality mR which is isopiestic with
the experimental solution of molality m. All the information is then avail-

able for deriving h^-t for the experimental solution by means of equa-
tion (39.41).

9 Robinson and Sinclair, /. Am. Chem. Soc,., 56, 1830 (1994).
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39f. The Osmotic Coefficient and Activity Coefficient A method for

determining the activity coefficient of electrolytes either directly from the

vapor pressure of the solvent, or by the isopiestic comparison method, is

based on the use of the osmotic coefficient of the solvent. The chemical

potential of a solvent in a solution may be expressed in terms of its activity
a\ or its activity coefficient 71 by

Mi = MI + RT In d! = MI + RT In Nryi, (39.42)

where NI is the mole fraction of the solvent. The chemical potential may
also be stated in terms of the rational osmotic coefficient g,* defined by

Mi = Mi+0#rinNi, (39.43)

where g approaches unity at infinite dilution. For reasons which will appear
shortly, another coefficient, known as the practical osmotic coefficient 0, is

defined by

(39.44)

where wt refers to the sum of the molalities of all the ions present in the

solution. For a single electrolyte, one molecule of which yields v ions in

solution, wi is equal to vm, where m is the molality of the electrolyte,
and hence equation (39.44) becomes

(39.45)

Comparison with equation (39.42) then gives

(89-46>

which relates the activity of the solvent to the practical osmotic coefficient.

The connection between the two osmotic coefficients, defined by equa-
tions (39.43) and (39.45), is

g inNl . (39.47)vmM\

If the solution is dilute, NI is close to unity, In NI is approximately equal to

NI 1 and hence to N2,
where N2 is here the total mole fraction of the

ions present in the solution. It can be readily shown that this is related to

the molality of the electrolyte [cf. equation (37.5)] by

N 2 =

+ 1000

* The term ^osmotic coefficient'
9

originates from the fact that it is virtually equivalent
to the ratio of the actual to the ideal osmotic pressure of the given solution (see Exercise 17).
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and hence

In NI
vmM\
1000

'

the last approximation being justified by the fact that the solution is dilute.

If this result is substituted into equation (39.47), it is seen that <t> and g are

equal; in other words, the rational and practical osmotic coefficients are

identical in dilute solutions.

The immediate importance of the practical osmotic coefficient of the

solvent lies in its relationship to the mean activity coefficient of an electro-

lyte. From equation (39.37),

vmM i , ,

and, on the other hand, differentiation of (39.46) gives

d In ai = - -~
(<t>dm + md<t>).

Combination of these two expressions for d In i leads to the result

md In a = <t>dm + md$. (39.48)

Again, as before, d In a is equal to d In ra + d In y, by equation (39.22),

and so (39.48) becomes

d In Td= = (<t>
-

l)d In m + d<f>, (39.49)

which gives the mean ionic activity coefficient 7^ at the molality m in terms
of the osmotic coefficient. 7

39g. Determination of Activity Coefficient from Osmotic Coefficient.

Although, in principle, equation (39.49) provides a method for determining

activity coefficients, the details require consideration. The osmotic coeffi-

cients, in the first place, are determined from vapor pressure measurements.
The activity ai of fixe solvent in a given solution is equal to/i//?, by equation

(31.5), or, approximately, to Pi/p? cf. equation (38.1)], where pi is the

vapor pressure of the solvent over the solution and p? is that of the pure
solvent at the same temperature. Hence, by equation (39.46),

>? 1000
'

n i
, (39.50)

so that the practical osmotic coefficient can be derived simply from vapor
pressure measurements.

7
Bjcrrum, Z. Elek., 24, 321 (1918); Z. phys. Chem., 104, 406 (1923); see also, H. S.

Harned and B. B. Owen, "The Physical ChemuUy of Electrolytic Solutions," 1943, pp. 13,
287 etseq.
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In order to determine y by combining equation (39.60) with (39.49),
a function h is defined by

h - 1 - 0, (39.51)

which becomes zero at infinite dilution when </> is unity (see below). Hence,
equation (39.49) may be written

d In 7* = - hd In m - dh. (39.52)

At infinite dilution, i.e., when m is zero, both h and In y are zero, so that

integration of equation (39.52) gives

Xm hd In m -
/i. (39.53)

.

This expression is seen to resemble the first two terms of equation (39.24)
with A, defined by (39.51), replacing j, defined by (39.20). Although h and
j become identical at infinite dilution, as will be shown below, there is an
important difference between these two functions and hence between the

activity coefficients derived from them. Whereas j applies to the freezing

point of the solution, h refers to the particular temperature, e.g., 25 C, at
which the osmotic coefficient is determined, e.g., from vapor pressure
measurements.

As in the case of the analogous integral in equation (39.24), that in

(39.53) is best evaluated by changing the variable to m1/2
[cf. equation

(39.27)], so that (39.53) becomes

cm"2

k
In 7* = - 2 I

-1. dmi/i - h. (39.54)
Jo m'

The values of h/m112 are then plotted against m113
, and the area under the

curve from zero to ra1 '2 is determined, for any given molality m. Since <,
and hence h, can be obtained from actual vapor pressure measurements on a

solution, it is possible by means of a series of such measurements, extending
to high dilutions, to determine the mean ionic activity coefficient in any
solution up to the highest concentration studied. 8

In dilute solutions, the last term in equation (39.24) is negligible, and,
as seen earlier, the results given by the first two terms are independent of

temperature. It is thus possible to compare the first two terms of equation
(39.24) with (39.53), which is applicable at all concentrations; it is seen that
at high dilutions, thereforo,

j = h = 1 - 0,

so that h y like j, must become zero at infinite dilution. Upon introducing
8 Randall and White, J. Am. Chem. Soc., 48, 2514 (1926). For an alternative method

of applying the Gibbs-Duhem equation, see Randall and Longtin, J. Phys. Chem., 44, 306
(1940); Randall, Libby and Longtin, ibid., 44, 313 (1940).
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the value of j given by equation (39.20), it follows that in dilute solutions

*JL.*
v\m

The osmotic coefficient, which is equal to the ratio of the actual osmotic

pressure to the ideal value, is then equal to the ratio of the observed freezing

point depression 6, to the ideal (infinite dilution) value v\m.

In the foregoing method the mean ionic activity coefficient of the solute

has been calculated from actual vapor pressure data. If the osmotic co-

efficients for a reference substance are known over a range of concentrations,
the activity coefficients of another electrolyte can be derived from isopiestic

measurements, without actually determining the vapor pressures. If w, <f>

and v refer to an experimental electrolyte and WR, 0R and PR apply to a
reference electrolyte which is isopiestic (isotonic) with the former, then by
equation (39.46)

since the activity of the solvent must be the same in the isopiestic solutions;

hence,

(39.55)vm

As the osmotic coefficient </>R for the reference substance at the molality raR
is known, the value of <f> at the isopiestic molality m of the experimental
electrolyte can be determined by means of equation (39.55). If the results

are obtained for a series of concentrations of the latter, the activity coeffi-

cient at any molality can then be calculated from equation (39.54), as de-

scribed above. 9

39h. Activity Coefficients from E.M.F. Measurements. The methods
described so far for the determination of the activity coefficients of electro-

lytes are really based on measurements of the activity of the solvent, e.g.,

by freezing point depression, elevation of boiling point or vapor pressure,
and their transformation by means of the Gibbs-Duhem equation. The
procedures now to be considered give the mean ionic activity coefficients of

the electrolyte directly. They depend on the use of suitable galvanic cells

containing solutions of the substance being studied. 10 The first method
requires the construction of a cell in which the reaction involves the forma-
tion of that substance at the activity in the solution. Consider, for example,
the cell

Pt, H2(l atm.)|HCl(w)|AgCl(s), Ag,

Of. Scatchard, Hamer and Wood, J. Am. Chem. Soc., 60, 3061 (1938); Robinson and
Harned, Chem. Rev., 28, 419 (1941).

10 By using activity coefficients obtained from E.M.F. measurements, integration of the
Gibbs-Duhem equation permits the evaluation of the activity of the solvent (water); cf.,

Newton and Tippetts, J. Am. Chem, Soc., 58, 280 (1936).
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consisting of a hydrogen electrode, with gas at 1 atm. pressure, and a silver-

silver chloride electrode immersed in a solution of hydrochloric acid at

molality w. In the operation of this cell hydrogen gas dissolves at the left-

hand electrode, to form hydrogen ions, while silver chloride at the right-hand
electrode is reduced to form metallic silver, leaving chloride ions in solution;

thus, the cell reaction is

iH 2(l atm.) + AgCl(s) = H+(m) + Cl-(m) + Ag(s),

the hydrogen and chloride ions being formed in a solution in which the

molality of each is m.
It will be shown in 45d that since the hydrogen gas, the silver chloride

and the silver are in their respective standard states of unit activity, the

E.M.F. of this cell depends only on the activities of the hydrogen and chloride

ions in the hydrochloric acid solution. The actual value of the E.M.F. is

given by
pm

E = - TT In aH+ cr, (39.56)
f

where R, T and F have their usual significance, and an+ and ocr are the

activities of the ions in the solution contained in the cell; is the standard
E.M.F. of the cell when the ionic activities in the solution are unity. Utilizing
the standard state which makes the activity of each ion equal to its molality
at infinite dilution ( 39a), an"1

" may be set equal to m+y+ and Ocr to m-y~,
where ra+ and m~ are the molalities and 7+ and 7- the activity coefficients of

the indicated ions. Hence equation (39.56) may be written as

E = _ in m+m_ _ in y+y_ (39.57)
r F

In the present case, 7+7- is equal to 7 by equation (39.9), and m+m_, which
is m, is in this case also equal to m2

, since v+ and *. are both unity cf .

equation (39.12)], so that (39.57) becomes, after rearrangement,

E + ln m - ' = - In 7*. (39.58)
f f

This expression provides a method for evaluating the mean ionic activity
coefficient y in a hydrochloric acid solution of molality m from a measure-
ment of the E.M.F., i.e., J, of the cell described above; it is necessary, how-

ever, to know the value of JB, the standard E.M.F. For this purpose the

data must be extrapolated to infinite dilution, and the reliability of the

activity coefficients obtained from equation (39.58) depends upon the ac-

curacy of this extrapolation. Two main procedures have been used for this

purpose, but both are limited, to some extent, by the accuracy of E.M.F.

measurements made with cells containing very dilute solutions. 11

"
Hitchcock, /. Am. Chem. Soc., 50, 2076 (1928); see also, Harned, et al., ibid., 54, 1360

(1932); 55, 2179 (1933); 58, 989 (1936).
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In order to describe the methods of extrapolation, it will be convenient

to choose a definite temperature, viz., 25 C. Inserting the known value

of R and F9 converting the logarithms, and taking T as 298.16 K, equation

(39.58) becomes

E + 0.1183 log m - EQ - 0.1183 log y . (39.59)*

It will be seen in the next chapter, that by one form of the Debye-Hiickel

theory the variation with the molality of the mean activity coefficient of a

uni-univalent electrolyte, such as hydrochloric acid, is given by

log y = - AVm + Cm, (39.60)

where A is a known constant, equal to 0.509 for water as solvent at 25 C,
and C is another constant whose value is immaterial. Combination of this

expression with equation (39.59) and rearrangement yields

E + 0.1183 log m - 0.0602Vm = EQ - 0.1183C.

The left-hand side of this equation should consequently be a linear function

of the molality, and extrapolation of the straight line plot to m equal zero

should give the value -E
, which is required for the determination of the ac-

tivity coefficients. Measurements have been made of the E.M.F.'S of the;

cell under consideration with hydrochloric acid at a number of different

molalities m. The values of + 0.1183 logm - 0.0602Vm derived from
these results plotted against m do not fall exactly on a straight line; never-

theless, a reasonably accurate extrapolation to m equal zero is possible,

when it is found that E is 0.2224 volt, within a probable accuracy of 0.0001

volt. Insertion of this value of in equation (39.59) gives

- 0.1183 log Td= = E + 0.1183 log m -
0.2224,

N

from which the mean ionic activity coefficient of hydrochloric acid at any
molality, for which E.M.F. measurements have been made, can be derived.

Some of the results obtained in this manner are given in Table XXXI. 12

TABLE XXXI. MEAN IONIC ACTIVITY COEFFICIENTS OF HYDROCHLORIC ACID
FROM E.M.F. MEASUREMENTS AT 25 C

m E E + 0.1 183 logm 7

0.1238 0.34199 0.23466 0.783
0.05391 0.38222 0.23218 0.827

0.02563 0.41824 0.22999 0.863

0.013407 0.44974 0.22820 0.893

0.009138 0.46860 0.22735 0.908

0.005619 0.49257 0.22636 0.926

0.003215 0.52053 0.22562 0.939

* With R in (int.) joules and F in (int.) coulombs, tf/2.3026F is -1.984 X 10~4
;
hence

2/27V2.3026F at 25 C, i.e., 298.16 K, is 0.1183.
11 Harned and Ehlers, /. Am. Ckem. Soc., 54, 1350 (1932).
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The second method of evaluating E also makes use of the Dcbye-Hlickel

equation, but this time in a form which is more applicable to dilute solu-

tions, viz.,

where A is identical with that in equation (39.60); d and B are constants,
the actual values of which are not required for the present purpose. If this

expression is substituted in equation (39.59) the result is

E + 0.1183 log m - * _ 00602Vm

1 + dfiVm

taking A, as before, as equal to 0.509 for water as solvent at, 25 C. Upon
rearrangement, equation (39.61) becomes

E + 0.1183 log m - 0.0602Vw = - (E + 0.1183 log m - )dJ3Vm,

and hence the plot of the left-hand side against (E + 0.1183 log m
should be a straight line, the intercept for m equal zero giving EQ

. It will

be noted that for this purpose it is necessary to use a preliminary value
of -E . Employing the same E.M.F. measurements as before, EQ was found
to be 0.2225 volt. It is difficult to say whether this result is to be preferred
over that obtained above, but the difference is not considerable; the effect

on the activity coefficient does not exceed O.O02.18

Although the method described above has referred in particular to solu-

tions of hydrochloric acid, it can be employed, in principle, to determine the

activity coefficient of any suitable electrolyte. The essential requirement
is a cell in which each of the two electrodes is reversible with respect to one
of the ions of the electrolyte (cf . 45a) ;

for example, if the electrolyte is

M
r-i
A,_, then the cell can be represented formally by

M
| M^AP_ solution (m) \

A.

The E.M.F. of this reversible cell is given by the expression ( 45d)

, vRT . vRT .

l
~

where v is equal to v+ + v-., and N} the number of faradays associated with
the formation of 1 mole of the solute in the cell, is equal to vz+ or to v-Z^
where z+ and z_ are the valences of the respective ions. This equation is

analogous to (39.58) and, as before, determination of the mean ionic activity
coefficient from the E.M.F. of the cell requires a knowledge of the standard

13 D. A. Maclnnes, "The Principles of Electrochemistry," 1939, p. 185; see also, Brown
and Maclnnes, J. Am. Chem. Soc., 57, 1356 (1935).
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E.M.F., i.e.! , which is obtained by an extrapolation procedure, as described

above.

39i. Activities from Concentration Cells with Transference. When two solu-

tions of the same electrolyte, at different concentrations, are brought into contact

and identical electrodes, which are reversible with respect to one or other of the

ions of the electrolyte, are inserted in each solution, the result is a "concentration

cell with transference." A typical cell of this kind is

Pt, H 2 (1 atm.) | HCl(c') |HCl(c)|H2 (1 atm.), Pt,

consisting of hydrogen gas electrodes with hydrochloric acid solutions of molarity
c and c', respectively. The dotted line is used to indicate the "liquid junction"
at which the two solutions are in actual contact.

When this cell produces 1 faraday of electricity, 1 g. atom of hydrogen gas
dissolves at the left-hand electrode to yield 1 mole of hydrogen ions, and the same
amount of these ions will be discharged to yield 1 g. atom of gas at the right-hand
electrode. At the same time, t+ mole of hydrogen ions will be transferred across

the boundary between the two solutions in the direction of the current, i.e., from
left to right, and t- mole of chloride ions will move in the opposite direction; t+

and L. are the transference numbers of the positive and negative ions, respectively,
their sum being equal to unity. The net result of the passage of 1 faraday of

electricity is, therefore, the gain of 1 t+, i.e., J_, mole of hydrogen (positive)

ions, and i- mole of chloride (negative) ions in the solution at the right, and their

loss from that at the left. The accompanying increase of free energy AF is then

given by
AF - UM; - M+) + UpL -

M-), (39.62)

where the /*'s are the chemical potentials of the indicated ions in the two solutions.

Since the transference numbers vary with composition, it is convenient to

consider two solutions whose concentrations differ by an infinitesimal amount,
viz., c and c + dc] under these conditions, equation (39.62) becomes

dF = - t-(dn+ + dp-).

Utilizing the familiar relationship m /ij + RT In a for the chemical potential
of an ion in terms of its activity a, it is seen that

dF = - t~(RTd In a+ + RTd In a_)
= - 2t-.RTdlna, (39.63)

where a^, equal to (a+a_)
1/2

,
is the mean activity of the hydrogen and chloride

ions in the hydrochloric acid of molarity c, and L. is the transference number of

the chloride ion in this solution.

It may be noted that equation (39.63) is actually applicable to any concentra-

tion cell containing two different concentrations of a uni-univalent electrolyte in

contact, provided the electrodes are reversible with respect to the positive ion.

If the electrodes were reversible with respect to the negative ion, e.g., as in the Ag,
AgCl electrode, the sign would be changed and <_ would be replaced by t+.

If dE is the E.M.F. of the cell when the concentrations of the two solutions

differ by an infinitesimal amount, then by equation (33.36) the free energy change
dF, for the passage of one faraday, is equal to FdE, where F is the faraday.
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Upon equating this result to that given by equation (39.63), it is seen that

RT
dE2t-.tj-dlna. (39.64)

The actual E.M.F. of the cell in which the concentrations of the two solutions differ

by an appreciable amount can now be obtained by the integration of equation
(39.64), but as this is not needed for the determination of activities, the procedure
will not be given here. For the present requirement the mean activity may be

replaced by the product of the mean ionic molarity, which in this case, i.e., uni-

univalent electrolyte, is equal to the molarity c of the solution, and the mean ionic

activity coefficient 7; thus,,

7?T
dE = 2t-?(d\nc + d In 7*)

r

and hence,

^ -~ (d In c + d In 7*). (39.65)

The activity is expressed here in terms of molarity, rather than molality, because
the transference numbers, which are utilized in the calculations, are usually known
as a function of the former. The procedure to be described below thus gives yc ,

but the results can be converted to ym ,
if required, by means of equation (39.13).

A quantity d may be defined by

f -
j- + 5, (39.66)

*- *R

where fa is the transference number of the anion at a reference concentration CR .

If this result is inserted in (39.65), it is found upon rearrangement that

Integrating between the limits of CR and c, the corresponding values of the mean
ionic activity coefficients being 7R and 7, it follows, after converting the logarithms,
that

l S -
2.303 X

E
2t*RT

+ lo 7 +
2.303

where E is the E.M.F. of a concentration cell in which one of the solutions has the

constant molarity CR, while the other has the variable concentration of c moles

per liter.

The first two terms on the right-hand side of equation (39.67) may be evaluated

directly from experimental data, after deciding upon the concentration CR which is

to represent the reference solution. The third term is obtained by graphical

integration of d against Ef the value of d being derived from the known variation

of the transference number with concentration [equation (39.66)].
The procedure just described gives log (7db/7R)> and hence the mean activity

coefficient 7 in the solution of molarity c is known in terms of that (yn) at an

arbitrary reference concentration CR. It is desirable, however, to express the

results in terms of one of the more common standard states; in this case the most
convenient is that which makes the activity equal to the molarity at infinite
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dilution. For this purpose use is made of the Debye-Httckel expression analogous
to that given above, viz.,

.

log 7<c) - -

where the constants A' and B' are related to A and B, but for dilute aqueous solu-

tions they may be taken as identical. This may be written in the form

log + A'V^ - - log VB - d' log TR + log
* A. (39.68)

YB \ TR /

For solutions dilute enough for the Debye-Huckel equation to be applicable, the

plot of log (T/TR) + A'Vc against Dog YR + log (T/YR)]Vc should be a straight

line, the intercept for c equal zero giving the required value of log YR, by equa-
tion (39.68). The values of log (y/7R) are obtained from equation (39.67), and

log YR, which is required for the purpose of the plot, is obtained by a short series

of approximations. Once log yn has been determined, it is possible to derive

log y for any solution from the known value of log (T/YR). The mean ionic

activity coefficient of the given electrolyte can thus be evaluated from the E.M.F.'S

of concentration cells with transference, provided the required transference number
information is available.14

39j. Activities from Solubility Measurements. The activity, or activity

coefficient, of a sparingly soluble electrolyte can be determined in the pres-
ence of other electrolytes by means of solubility measurements. In a
saturated solution the solid salt Mr+A,_ will be in equilibrium, directly or

indirectly, with p+M** ions and v-A*~ ions in solution; thus,

The activity of the solid salt at atmospheric pressure is taken as unity, by
convention, and hence the equilibrium constant is given by

K. = af X a*- (39.69)

for a saturated solution at a particular temperature and 1 atm. pressure;

a+ and a_ are the activities of the positive and negative ions, respectively,
in the saturated solution of the salt. This equation expresses the solubility

product principle in its exact thermodynamic form; the constant K9, as

defined by equation (39.69), is the activity solubility product of the salt

M, A,_. The activity of each ion may be represented by the product of its

molality and activity coefficient, so that

l- X -frf- - K..

Referring to 39a, it will be seen that this result may also be written as

- *., (39.70)

14
Maolnnes, e* oZ., J. Am. Chem. Soc. t 57, 1356 (1635); 58, 1070 (1936); 59, 503 (1937);

61, 200 (1939); Chem. Rev., IS, 335 (1936).
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where m and y are the mean ionic molality and activity coefficient, re-

spectively, in the saturated solution. It follows, then, from equation
(39.70) that

IT 1 '*

7* -~
(39.71)

The mean activity coefficient of a sparingly soluble salt in any solution, con-

taining other electrolytes, can thus be evaluated provided the solubility

product (K,) and the mean molality of the ions of the salt in the given solu-

tion are known. In order to obtain Kt the values of m are determined
from the experimentally ob-

served solubilities of the spar-

ingly soluble salt in the presence
of various amounts of other elec-

trolytes, and the results are ex- o.018

trapolated to infinite dilution

(Fig. 27). In the latter case the m^
activity coefficient is unity, in

accordance with the chosen
Q Q16

standard state, and hence, by
equation (39.71), K}1* is equal to

the extrapolated value of m.
Problem: By extrapolation of

the experimental solubilities of T1C1
in the presence of various electro-

lytes in water at 25 C, the limiting
value of m is found to be 0.01422.

0.014
0.1 0.2 0.3

/Ionic Strength

FIG. 27. Solubility of thallous chloride

VtlfftUtS V/A ^ *t J,\SIA1*\A VXS *J*~I VT.VT A. 2.4*4*.

In the presence of 0.025 molal KC1, the solubility of the T1C1 is 0.00869 moiai;
calculate the mean ionic activity coefficient of T1C1 in this solution.

The number of ions v produced by one molecule of T1C1 is 2; hence, since wi

is 0.01422 at infinite dilution, when 7 is 1, the value of K 1

J* is 0.01422.

In the KC1 solution, the molality of the T1+ ion, i.e., m+, is 0.00869; the

molality m_ of the Cl~ ion is, however, the sum of the values due to both KCl
and T1C1, i.e., 0.025 + 0.00869 = 0.03369. Hence the mean molality m is

(0.00869 X 0.03369) 1/2 = 0.01711, and by equation (39.71),

0.01422

0.01711
0.831.

The activity coefficients of thallous chloride, in the presence of various

added electrolytes, determined from solubility measurements at 25, are

recorded in Table XXXII; 16 m is the total molality of the thallous chloride

and the added substance. It will be observed that in the more dilute solu-

tions the activity coefficient at a given molality is independent of the nature

of the other electrolyte present in the solution. The significance of this fact

will be considered below.

11 Data from Lewis and Randall, ref. 1, p. 372.
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TABLE XXXII. ACTIVITY COEFFICIENTS OF THALLOU8 CHLORIDE IN PRESENCE OF
VARIOUS ELECTROLYTES AT 26 C

Total Added Electrolyte

Molality (m) KNO, KC1 HC1 T1NO,
0.001 0.970 0.970 0.970 0.970

0.005 0.950 0.950 0.950 0.950

0.01 0.909 0.909 0.909 0.909

0.02 0.872 0.871 0.871 0.869

0.05 0.809 0.797 0.798 0.784

0.10 0.742 0.715 0.718 0.686

0.20 0.676 0.613 0.630 0.546

39k. The Ionic Strength Principle. In order to systematize the data for

the activity coefficients of simple salts, both in the pure state and in the

presence of other electrolytes, G. N. Lewis and M. Randall (1921) introduced

the concept of the ionic strength.
16 This property of a solution, represented

by fjm, is defined as half the sum of the terms obtained by multiplying the molality

of each ion present in the solution by the square of its valence; thus,

*n = VLmpl (39.72)

where m/ represents the molality of the j'th ion and Zj is its valence, the

summation being carried over all the ions present in the solution. In calcu-

lating the ionic strength it is necessary to use the actual molality of the ions,

due allowance being made, especially with weak electrolytes, for incomplete
dissociation. It is of interest to note that although the importance of the

ionic strength was first realized from purely empirical considerations, it is

now known to play an important part in the theory of electrolytes (Chapter

XVII).

Problem: Compare the ionic strengths of solutions of (i) a uni-univalent,

(ii) a uni-bi-(or bi-uni-)valent, and (iii) a bi-bivalent electrolyte, at the same

molality m, assuming Complete ionization.

(i) For a uni-univalent electrolyte, e.g., KCi, the molality of each ion is m
and its valence unity, so that

^ = j[(m X I
2
) + (m X I

2
)] - rn.

(ii) For a uni-bivalent electrolyte, e.g., K2SO4 , the molality of the positive
ion is 2m and its valence unity, whereas the molality of the negative ion is m and
its valence is two; hence,

Vn>
- i[(2m X I 2) + (m X 2*)] - 3m.

(iii) For a bi-bivalent electrolyte, e.g., ZnS04 , the molality of each ion is m
and its valence is two; thus,

Vm - |[(m X 2*) + (m X 2*)] - 4m.

The ratio of the ionic strengths is consequently 1 to 3 to 4. In general the ionic

strength increases rapidly with the product z+z_ of the ionic valences.

" Lewis and Randall, ref. 1, p. 373; J. Am. Chem. Soc., 43, 1112 (1921).
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It was pointed out by Lewis and Randall that, in dilute solutions, the

activity coefficient of a given strong electrolyte is the same in all solutions of the

same ionic strength. The particular ionic strength may be due to the pres-
ence of other salts, but their nature does not appreciably affect the activity
coefficient of the electrolyte under consideration. That this is the case for

bhallous chloride is shown by the data in Table XXXII; since the results

=tre limited to uni-univalent salts, the molalities are identical with the ionic

strengths. Another aspect of the ionic strength principle is that in dilute

solutions electrolytes of the same valence type, e.g., KC1, NaCl and HC1,
lave been found to have equal activity coefficients at the same ionic strength.
These generalizations, for which a theoretical basis will be given in Chapter
XVII, hold only for solutions of relatively low ionic strength; as the concen-
tration is increased the specific influence of the electrolytes present, especially
f these yield ions of high valence, becomes evident.

SQL Results of Activity Coefficient Measurements. The mean ionic ac-

ivity coefficients, in terms of molalities, of a number of strong electrolytes
it 25 C are given in Table XXXIII,
ind some of the results are plotted in

Fig. 28. 17 It will be seen that the

values always decrease at first as the

;oncentration of the solution is in-

jreased, but they frequently pass

ihrough a minimum and then increase

igain. The higher the product of the

onic valences, the sharper is the de-

jrease of the activity coefficient as the

nolality is increased; it must be rc-

nembered, however, that when z+z_ ex-

jeeds unity, the ionic strength is much
greater than the molality. In the more
lilute solutions, electrolytes of the same
valence type, e.g., KC1 and NaCl, CaCl2

ind ZnCl2 , etc., have almost identical

tctivity coefficients at the same mo-

ality, but as the concentration is in-

Teased specific effects become apparent.
Measurements of the activity coef-

icients of electrolytes have been made
n nonaqueous solutions and, in parti-

lular, in solvents consisting of mixtures
rf water and an organic liquid, e.g.,

nethanol, ethanol or dioxane. The
;eneral nature of the results is similar to that for aqueous solutions. How-

17 For activity coefficient data and references, see W. M. Latimer, "The Oxidation States
f the Elements, etc.," 1938; H. S. Harned and B. B. Owen, ref. 7; Harned and Robinson,
Ihem. Reo., 28, 419 (1941).
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ever, the lower the dielectric constant of the solvent the more rapid is the

fall in the activity coefficient of a given electrolyte with increasing ionic

strength; further, a lower value is attained before the subsequent rise is

observed.

TABLE XXXIII. MEAN IONIC ACTIVITY COEFFICIENTS IN AQUEOUS SOLUTION AT 25 C

A knowledge of activity coefficients is of importance in the study of

equilibria involving ions and also in connection with the kinetics of ionic

reactions. Some reference to the applications of the activity coefficients of

electrolytes will be made in the succeeding chapters.
39m. Activity of'Nonelectrolytes in Presence of Electrolytes. Informa-

tion concerning the influence of electrolytes on the activity coefficients of

nonelectrolytes in aqueous solution is of some interest. Vapor pressure
measurements can be utilized for this purpose, but a method based on solu-

bility determinations is commonly employed. Consider an aqueous solution

which is saturated, and hence in equilibrium, with a pure gaseous, liquid or

solid nonelectrolyte solute at a given temperature. Provided this solute

remains unchanged its activity is constant, and hence the activity in the

saturated solution will not be affected by the addition of an electrolyte to

the latter. Let ra be the solubility of the nonelectrolyte in pure water when
its activity coefficient is 70, and suppose the solubility to be m in the presence
of a certain amount of an added electrolyte when the activity coefficient of

the nonelectrolyte is 7; since the standard states are the same, the activities

in the saturated solutions will be equal, so that

Wo7o = ^7.

The activity coefficient 7, or its ratio to 70, i.e., 7/70, can thus be readily
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determined from solubility measurements, since

7 - -?
To. (39.73)m

If the solubilities are expressed in terms of mole fractions or molarities,
instead of molalities, alternative forms of the activity coefficient can be
obtained.

From solubility determinations of various nonelectrolytes, such as helium,
argon, hydrogen and other gases, ethyl acetate, diacetone alcohol, phenyl
thiocarbamide, phenol and aniline, in the presence of electrolytes, it has been
found that log (7/7 ) varies approximately in a linear manner with the ionic

strength of the aqueous solution, viz.,

log (7/70) = fcVm , (39.74)

where, for a given nonelectrolyte solute, k depends on the added electrolyte.
The values of k also vary with the nature of the solute, but the order for a
series of salts is very similar for different nonelectrolytes. In most cases k

is positive, i.e., 7/70 is greater than unity; according to equation (39.73) this

means that ra is greater than m. In other words, the solubility of a non-

electrolyte in water is decreased by the addition of an electrolyte; this is the

phenomenon known as the salting-out effect.

For most electrolytes k lies between zero and 0.1; hence, by equation
(39.74), in a solution of ionic strength 0.1, 7/70 for the nonelectrolyte varies

from unity to 1.023. It is frequently assumed, therefore, that in dilute

solutions of electrolytes, the activity coefficient of a nonelectrolyte, or of the
undissociated portion of an electrolyte, is virtually unity.

There are two points in connection with equation (39.74) to which at-

tention may be drawn. First, it is seen that the activity coefficient of the

nonelectrolyte varies directly with the ionic strength; for electrolytes, in

dilute solution, the activity coefficient depends on the square root of the

ionic strength of the medium (see Chapter XVII). Second, the activity
coefficient of the nonelectrolyte increases with the ionic strength whereas for

an electrolyte the activity coefficient at first decreases. The subsequent
increase observed in many cases is attributed to a type of salting-out effect. 18

EXERCISES

1. Give the complete derivation of equation (39.13). The density of a 0.1

molar solution in ethanol of KI, which dissociates into two ions, is 0.8014; the

density of the pure alcohol is 0.7919. Determine the ratio of the activity co-

efficients 7N, 7m and 7C in this solution.

2. The densities of a number of aqueous sodium chloride solutions at 20 are

as follows:

Concn. 10.05 20.25 41.07 62.48 g. liter-1

Density 1.0053 1.0125 1.0268 L0413g.cc.-1

Consider to what extent (i) the molality, (ii) the molarity, of each ion is propor-
tional to its mole fraction in the various solutions.

19 Randall and Failey, Chem. Rev., 4, 285 (1927); Harned and Owen, ref. 7, pp. 397 el *eq.
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3. A 0.0 1 niolal solution of cerous sulfatc, i.e., Ce2(SO4)j, has a mean ionic

activity coefficient of 0.171 at 25 C. What are the values of W H m^. t m, a
and da? What is the ionic strength of the solution?

4. A solution contains 0.1 molal sodium sulfate, 0.3 molal copper sulfate and
0.05 molal zinc sulfate; assuming each salt to be completely ionized, what is the

ionic strength?
5. Show that by setting v equal to unity, equation (39.24) may be used to

determine the activity coefficient of a nonelectrolyte solute; j is now defined as

1 (0/Xm). For an aqueous solution, Xis 1.858 and a is 5.7 X 10"4
. The follow-

ing values were obtained for the freezing point depressions of aqueous solutions of

n-butanol at various moiaiities QHarkins and Wampier, /. Am. Chem. Soc., 53,
850 (1931)]:

m m 6

0.0242 0.04452 0.21532 0.38634
0.04631 0.08470 0.32265 0.57504

0.06894 0.12554 0.54338 0.95622

0.09748 0.17680 0.95555 1.66128

Determine the activity coefficients of the solute at the moiaiities 0.1, 0.5 and 1.0

by graphical evaluation of the integrals. (Plot j/m against m for the first, and
B/m against for the second; when is the latter negligible?)

6. The freezing points of hydrochloric acid solutions, obtained by Randall and

Young [V. Am. Chem. /Soc., 50, 989 (1928)] by smoothing a large number of

experimental results, are as follows:

m m 6

0.001 0.003675 0.10 0.35209
0.002 0.007318 0.20 0.7064
0.005 0.018152 0.30 1.0689

0.01 0.036028 0.50 1.8225

0.02 0.07143 0.70 2.5801

0.05 0.17666 1.00 3.5172

Determine the mean ionic activity coefficients 7^ of the hydrochloric acid in the

various solutions.

7. The relative partial molar heat contents (Li) in cal. mole""1 and the relative,

partial molar heat capacities (&pi &PI) in cal. deg."
1 mole"1

,
of the water in

hydrochloric acid solutions are as follows:

m 0.01 0.04 0.10 0.25 0.5 0.75 1.00

Li -0.0042 -0.031 -0.111 -0.44 -1.28 -2.60 -4.16
CPI - pi ~ ~ - - 0.0056 - 0.0159 - 0.0293 - 0.0450

Combine these data with the results obtained in Exercise 6 to determine the mean
activity coefficient of the hydrochloric acid at moiaiities of 0.05, 0.1, 0.5 and 1.0

at 25 C.

8. From the values of the osmotic coefficient < for potassium chloride solu-

tions at 25 C given below, determine the activity coefficients at the various

moiaiities by means of equation (39.54).

m 0.1 0.2 0.3 0.5 0.7 1.0 1.5

<t> 0.926 0.913 0.906 0.900 0.898 0.899 0.906

9. The small proportion of undissociated molecules of hydrogen chloride in

an aqueous solution will be in equilibrium with molecules in the vapor, on the
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one hand, and with ions in solution, on the other hand. Hence, show that the

fugacity (approximately, partial pressure) of hydrogen chloride over a solution of

hydrochloric acid is proportional to a^, where a is the mean ionic activity in

the solution.

The hydrogen chloride pressure in equilibrium with a 1.20 molal solution is

5.08 X 10"~7 atm. and the mean ionic activity coefficient is known from E.M.F.

measurements to be 0.842 at 25 C. Calculate the activity coefficients in the

following solutions from the given hydrogen chloride pressures [Randall and

Young, /. Am. Chem. Sac., 50, 989 (1928)]:

m 2.0 3.0 4.0 5.0 10.0

p 2.06 X 10- 7.78 X 10~6 2.46 X 10~6 7.01 X 10~6 5.42 X 10~8 atm.

10. Show how E.M.F. measurements of the ceil Zn|ZnSO4(w) |Hg2804(5), Hg,
in which the reaction is Zn + Hg 2S0 4 (s)

= Zn++(w) + S04~(tfi) + 2Hg, might
be used to determine the activity coefficients of zinc sulfate at various molaiities.

11. The E.M.F.'S of the cell H 2(l atm.)|HBr(m)|AgBr(s), Ag, in which the

reaction is |H 2 + AgBr(s) = H+(w) + Br~(m) + Ag, with hydrobromic acid at

various low moialities (m), at 25 C, were found to be as follows:

m E m E
1.262 X 10~4 0.53300 10.994 X 10~4 0.42280
1.775 0.51618 18.50 0.39667
4.172 0.47211 37.18 0.36172

[Keston, /. Am. Chem. Soc., 57, 1671 (1935)]. Determine the standard E.M.F.

E? of the cell. (The actual value is 0.0713 volt at 25 C.)
12. With more concentrated solutions of hydrobromic acid the following

results were obtained for the E.M.F. of the cell referred to in the preceding exercise

[Keston and Donelson, J. Am. Chem. Soc., 58, 989 (1936)]. Using the value of

J5 obtained there, determine the activity coefficients of hydrobromic acid at the
various molaiities.

m E m E
0.001 0.42770 0.05 0.23396

0.005 0.34695 0.10 0.20043
0.01 0.31262 0.20 0.16625
0.02 0.27855 0.50 0.11880

13. The E.M.F.'S of the cell with transference Ag, AgCl(s) |0.1 N HC1 jHCl(c) |

AgCl(s), Ag at 25 C and the transference numbers of the hydrogen ion in the

hydrochloric acid solution of concentration c mole liter"1
,
are given below [Shed-

lovsky and Maclnnes, J. Am. Chem. 5oc., 58, 1970 (1935); Longsworth, ibid., 54,
2741 (1932)]. Utilize the data to calculate the activity coefficients of hydrochloric
acid at the various concentrations.

c X 103 E tH+

3.4468 0.136264 0.8234

5.259 0.118815 0.8239
10.017 0.092529 0.8251

19.914 0.064730 0.8266

40.492 0.036214 0.8286

59.826 0.020600 0.8297

78.076 0.009948 0.8306

100.00 0.8314
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14. The solubility of silver iodate (AglO,) in pure water at 25 C is 1.771 X lO"4

mole liter"1 ;
in the presence of various amounts of potassium nitrate the solubilities

are as follows:

KNO, AglO, KNO, AglO,
mole liter"1 mole liter"1 mole liter"1 mole liter"1

0.1301 X 10- 1.823 X Wr4 1.410 X 10"2 1.999 X 10"4

0.3252 1.870 7.060 2.301

0.6503 1.914 19.98 2.665

[Kolthoff and Lingane, /. Phya. Chem., 42, 133 (1938)]. Calculate the activity
coefficients of the silver iodate in the various solutions; state the total ionic

strength in each case.

15. Show that the free energy of dilution of a solution from one molality (m)
to another (m'), i.e., the difference in the partial molar free energy (/i) of the solute

in the two solutions, is equal to

AF = vRT In (a'/a) = vRT In (m'y'/my),

where v is the number of ions formed by one molecule of the electrolyte solute.

The a's, m's and the 7*8 are the mean ionic activities, molalities and activity

coefficients, respectively. How can the free energy of dilution be determined from
E.M.F. measurements? Utilize the data in Table XXXIII to determine the free

energy of dilution, in cal. mole"1 of solute, of a 1.0 molal solution of potassium
chloride to 0.001 molal at 25 C.

16. Give the complete derivation of equation (39.15) for an electrolyte
solution.

17. Making use of equations (38.42), (39.42) and (39.43), show that if the
effect of pressure on the partial molar volume of the solvent is negligible, the
rational osmotic coefficient is equal to the ratio of the actual osmotic pressure of

a solution to the value it would have if it behaved ideally, i.e., the solvent obeyed
Raoult's law.



CHAPTER XVII

THE DEBYE-HttCKEL THEORY

40. IONIC INTERACTION IN SOLUTION

40a. Deviation from Ideal Behavior. The activity or activity coefficient

of an electrolyte has been regarded hitherto as a purely thermodynamic
quantity which can be evaluated from observable properties of the solution.

The treatment involves no theory, for the activity is defined in terms of the

chemical potential by the expression /i
= n + RTln a, and its experimental

determination depends ultimately on this definition. The activity coeffi-

cient is related to the activity since it is equal to the latter divided by the
measurable concentration of the substance in whatever units are chosen as

convenient in connection with the specified standard state. It has been
stated earlier ( la) that theories dealing with the behavior of matter lie,

strictly, outside the realm of pure thermodynamics. Nevertheless, it is de-

sirable to refer briefly to the theory of P. Debye and E. Huckel (1923) which
has made it possible to calculate the mean activity coefficients of dilute

solutions of electrolj
rtes without recourse to experiment. The theory thus

bears the same relationship to thermodynamics as do those described earlier

which permit of the estimation of other properties, such as heat capacity,

entropy, etc. Although the treatment of Debye and Huckel has a number
of limitations, it represents an important advance in the problem of account-

ing for the departure of dilute ionic solutions from ideal (Henry's law) be-

havior, as is evidenced by the deviations of the activity coefficients from

unity even at very low concentrations. 1

The first postulate of the Debye-Hiickel theory is that if the ions of an

electrolyte lost their charges and became neutral particles, the solution would
behave like a dilute solution obeying Henry's law ( 36a). The departure
from ideal behavior is then attributed to the mutual interaction of the elec-

trical charges carried by the ions. Hence, in writing the chemical potential

(partial molar free energy) of an ion i in the form

M* *= M? + RT In a* M? + RT In N< + RT In y t, (40.1)

where the activity at
- of the ion is replaced by the product of its mole fraction

N, and its (rational) activity coefficient 7* (cf. 37b, III B), the term

1 Debye and Hiickel, Physik. ., 24, 185, 334 (1923); 25, 97 (1924); for reviews, sec

H. Falkenhagen, "Electrolytes/
1 1934 (translated by R. P. Bell); H. S. Harned and B. B.

Owen, "The Physical Chemistry of Electrolytic Solutions/' 1943; LaMer, Trans. Electro-

chem. Soc., 51, 607 (1927); Williams, Chem. Rev., 8, 303 (1931); Schingnitz, Z. Elek., 36, 861

(1930). For a critical examination of the Debye-Huckel treatment, see R. H. Fowler and
E. A. Guggenheim, "Statistical Thermodynamics," 1939, Chapter IX.

407
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RTln 7 is equal to the partial molar free energy /iici. of the given ions in

the solution resulting from electrical interactions. If Fe\. represents the

contribution to the free energy of the solution due to these electrical forces,

then

7 i, (40.2)
T.P

where nt
- is the number of moles of ions of the ith kind present in the solution.

40b. Electrical Potential of Ionic Atmosphere. The problem is now to calcu-

late the electrical free energy of the solution, and in this connection Debye and
Hiickel postulated that as a result of electrical interaction each ion in the solution

is surrounded by an ionic atmosphere of opposite sign, arising somewhat in the

following manner. Imagine a central positive ion situated at a particular point,
and consider a small volume element at a short distance from it in the solution.

As a result of the thermal movement of the ions, there will sometimes be an excess

of positive and sometimes an excess of negative ions in this volume element.

However, it will be expected to have a net negative charge as a consequence of

the electrostatic attraction of the central positive ion for ions of opposite sign.
In other words, the probability of finding ions of opposite sign in the space surround-

ing a given ion is greater than the probability of finding ions of the same sign. Every
ion may thus be regarded as associated with an ionic atmosphere of opposite sign,

the charge density of the atmosphere being greater in the immediate vicinity of

any ion, and falling off with increasing distance. The net charge of the whole

atmosphere extending through the solution is, of course, equal in magnitude, but

opposite in sign, to that of the given ion.

By assuming that Boltzmann's law for the distribution of particles in a field

of varying potential energy, which is based on statistical mechanics, is applicable
to the distribution of the ions in the atmosphere of a central ion, Debye and Htickei

were able to derive an expression relating the charge density at any point to the
electrical potential at that point. By introducing Poisson's equation, which is

based on Coulomb's inverse square law of force between electrostatic charges,
another equation Connecting the electrical charge density and the. potential can
be derived. From these two expressions the electrical potential ^ at an ion due
to its surrounding atmosphere is found to be

(40 '3)

where z* is the number of charges carried by the ion, i.e., its valence, e is the unit

(electronic) charge, D is the dielectric constant of the medium, i.e., the solvent,
which is assumed to be continuous in nature, a is the mean distance of closest

approach of the ions in the solution, and K is defined by

j, (40.4)* HmDkT^""
where N is the Avogadro number, k is the Boltzmann constant, i.e., the gas con-

stant per single molecule, and T is the absolute temperature; c, is the concentration

in moles per liter and / is the valence of the ions, the summation being carried

over all the kinds of ions present in the solution.
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The value of the factor *, as defined by equation (40.4), is seen to increase with
the concentration of the ions in the solution, and for dilute solutions ted in the
denominator of equation (40.3) may be neglected in comparison with unity, so
that this equation becomes

*--- (40.5)

As seen above, the charge of the ionic atmosphere must be equal to the charge
carried by the central ion, which in this case is 2,-c. If a charge equal in magnitude
and opposite in sign to that of the central ion itself were placed at a distance I/K
from the ion, the potential produced at the ion in a medium of dielectric constant

D is given by electrical theory as Zi&c/D. This is seen to be identical with the

electrical potential, due to the ion atmosphere, given by equation (40.5). It

follows, therefore, that the effect of the ion atmosphere in a dilute solution is equivalent
1o that of a single charge, of the same magnitude, placed at a distance I/K from the

central ion. If the whole ionic atmosphere were concentrated at a point, or in a

thin spherical shell, at a distance I/K, the effect at the central ion would be the

same as the actual ionic atmosphere. The quantity I/K can thus be regarded as

a measure of the radius of the ionic atmosphere in the given solution. The
more dilute the solution the smaller is the value of

/c,
and hence the larger the

thickness of the atmosphere. Under these circumstances there is a greater justi-

fication in treating the medium, i.e., the solvent, as if it had a continuous, instead

of a molecular, structure, as is done in connection with the dielectric constant.

40c. Electrical Free Energy and Activity Coefficient. From a knowledge
of the electrical potential at an ion due to its atmosphere, it is possible to

calculate the work done in charging all the ions in a solution at a given con-

centration, and also at infinite dilution. The difference between these quan-
tities, ignoring a possible small volume change in the charging process, is

then identified with the electrical free energy of the solution. Utilizing

equation (40.5) for the potential, the result for a dilute solution is found to be

*".. - -
*!, (40.6)

where n,- represents the number of moles of an ionic species of valence z/,

the summation being carried over all the species present in the solution.

The derivative of Fel ,
at constant temperature and pressure, with respect to

n t-,
all the other n's being constant, is equal to /A,-ei., and hence to RT In 7,

by equation (40.2). Recalling that, according to equation (40.4), K involves

c}
/2

,
and hence n]

/2
,
it is found that

- 2D ' <4 '7>

and hence

An equation has thus been derived for the activity coefficient of any single
ionic species in an electrolytic solution.
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In order to put this result into a practical form, the expression for *, i.e..

equation (40.4), is introduced, and then the values of the universal constants

N, R. k, e and v are inserted. It will be observed that K involves the factor

^cfr; this is very similar to twice the ionic strength defined by equation
(39.72), except that the former contains the molarity, in place of the molality
of each ion in the latter. If the ionic strength, in terms of molarity, is

defined by analogy with equation (39.72) as

?, (40.9)

it is possible to write (40.4) as

SwfN
IQOODkT

y. (40.10)

It should be noted that, as stated in 39k, the value of cy in equation (40.9)
refers to the actual ionic concentration; in the event that one or more of the

substances present in the solution is not completely dissociated, due allow-

ance for this must be made when calculating the ionic strength. Upon
combining equations (40.8) and (40.10), substituting the numerical values

for the universal constants, and converting the logarithms, it is found that

1.824 X 106
2 /

For a given solvent and temperature, D and T have definite values which

may be inserted; equation (40.11) then takes the general form

log7<---A*JVi?, (40.12)

where A is a constant for the solvent at the specified temperature. For

water, the dielectric constant D is 88.15 at C and 78.54 at 25 C; hence,
for aqueous solutions A is 0.488 at C, and 0.509 at 25 C.

40d. Mean Ionic Activity Coefficient. No method is at present available

for the experimental determination of the activity coefficient of a single
ionic species, an expression for which has been derived above on the basis of

the theoretical concepts of Debye and HiickeL All the methods described

in Chapter XVI for the determination of activity coefficients give the mean
value for the two ion$ of a particular electrolyte. In order to test the results

of the Debye-Hlickel treatment outlined above, it is desirable to derive from

equation (40.12) a relationship for the mean ionic activity coefficient. Ac-

cording to equation (39.9)

</ = 7;v- ,

where v, equal to v+ + v~
y is the total number of ions produced by one mole-

cule of the given electrolyte; hence, taking logarithms,

log 7 = + --. (40 . 13)
C+ + V-
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By equation (40.12), log y+ is equal to -Az+Vy and log 7- to AsLVy;
making use of the fact that for any electrolyte v+z+ is equal to v^t-, where
the valences z+ and z_ are numerical only and do not include the sign, it is

found from equation (40.13) that

log T = - Az+z-Jv, (40.14)

where A is the same as before. For an aqueous solution at 25 C, the value

of A y as seen above, is 0.509, so that

log 7d= = - 0.509z+z-V. (40.15)

These equations give the mean ionic activity coefficient in terms of the ionic

strength of the solution. It is important to remember that y refers to a

particular electrolyte whose ions have the (numerical) valences of z+ and z_,

but the ionic strength p contains terms for all the ions present in the solution.

If the solution contains a single, strong, uni-univalent electrolyte the

ionic strength y is equal to the molarity c of the solution; at the same time

z+ and z_ are both unity, so that equation (40.14) takes the simple form

(40.16)

or, for such an aqueous solution at 25 C,

log 7* = -0.509Vc. (40.17)

The various forms of equation (40.15), referred to as the Debye-Hiickel
limiting law, express the variation of the mean ionic activity coefficient of

a solute with the ionic strength of the medium. It is called the "limiting
lawv because the approximations and assumptions made in its derivation

are strictly applicable only at infinite dilution. The Debye-Hiickel equa-
tion thus represents the behavior to which a solution of an electrolyte should

approach as its concentration is diminished.

40e. Change of Units and Standard State. Before proceeding to a comparison
of the results derived from the Debye-Htickel treatment with those obtained ex-

perimentally, some consideration must be given to the matter of units and standard
states. The ionic strength factor which appears in the Debye-Hiickel equation
involves ionic concentrations expressed in molarities, i.e., in moles per liter of

solution. It has been seen, however, that in the study of activity coefficients,

it is often more convenient to employ molalities, i.e., moles per 1000 g. of solvent;
the ionic strength is then used in its original form as defined by equation (39.72).
It will be apparent from equation (37.6), or it can be readily shown from general

considerations, that in a dilute solution the molarity c and the molality m are

related by c/pQ = m, where p is the density of the solvent. It follows, there-

fore, that

(40.18)

for the concentration range in which the Debye-Hiickel limiting law might be

regarded as applicable. For aqueous solution* p is so close to unity, that y and

tju may be taken as identical, but for other solvents it is necessary, when employing
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the Debye-Htickei equation, either to use p involving molarities, or to apply the

appropriate correction [equation (40.18)] to the molal ionic strength.
The activity coefficients given by the Debye-Hiickel treatment presumably

represent deviations from the dilute solution behavior, i.e., from Henry's law, and
are consequently based on the standard state which makes the activity of an ion

equal to its mole fraction at infinite dilution ( 37b, III B), In the experimental
determination of activity coefficients, however, it is almost invariably the practice
to take the activity as equal to the molarity or the molality at infinite dilution.

The requisite corrections can be made by means of equation (39.13), but this is

unnecessary, for in solutions that are sufficiently dilute for the Debye-Huckel
limiting law to be applicable, the difference between the various activity coefficients

is negligible. The equations derived above may thus be regarded as being inde-

pendent of the standard state chosen for the ions, provided only that the activity
coefficients are defined as being unity at infinite dilution.

It should be noted that the Debye-Htickei theory yields true, and not stoi-

chiometric, activity coefficients ( 39a), since it is the behavior of the ions only,
and not of the whole solute, which is taken into consideration. For strong electro-

lytes dissociation is virtually complete at all dilutions for which the limiting law

may be expected to hold; for such solutes, therefore, the distinction between true

and stoichiometric activity coefficients may be ignored.

41. APPLICATIONS OP THE DEBYE-HUCKEL EQUATION

41a. Tests of the Debye-Hiickel Equation : Qualitative. Although the

Debye-Hlickel treatment is generally considered as applying to solutions of

strong electrolytes, it should be emphasized that it is not restricted to such

solutions. The results are of general applicability, but it should be noted,
as mentioned previously, that in the calculation of the ionic strength the

actual ionic concentration must be employed. For incompletely dissociated

substances, such as weak and intermediate electrolytes, this involves a

knowledge of the decree of dissociation which may not always be available

with sufficient accuracy. It is for this reason that the Debye-Hiickel limit-

ing law equations are usually tested by means of data obtained with strong

electrolytes, since they can be assumed to be completely dissociated at all

concentrations for which the law should be valid.

It will be observed that the Debye-Htickei limiting equations contain no

reference, apart from the valence, to the specific properties of the electrolytes
that may be present in the solution. The mean ionic activity coefficient of

a given solute, in a particular solvent at a definite temperature, should thus

depend only on the ionic strength of the solution, the actual nature of the

electrolytes present being immaterial. This conclusion is identical with the

empirical result stated in 39k. Further, for different electrolytes of the

same valence type the Debye-Htickei theory requires the activity coefficients

to be the same in solutions of equal ionic strength; this expectation is again
in general agreement with experiment, provided the solutions are dilute

( 39k, 391).

It is evident from equation (40.15) that, at a definite ionic strength in a

given solvent at constant temperature, the deviation of the mean ionic ac-
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tivity coefficient of an electrolyte from unity should be greater the higher the

valences of the ions constituting the electrolyte. This is in harmony with
the results given in Table XXXIII.

41b. Tests of the Debye-Hiickel Equation: Quantitative. In essence,
the Debye-Hiickel limiting law, e.g., equation (40.14), states that the plot
of log y of a given electrolyte against the square root of the ionic strength,

i.e., Vy, should approach, with increasing dilution, a straight line of slope

equal to AZ+Z-., where A is a constant whose value depends on the dielec-

tric constant of the solvent and its temperature. For aqueous solutions at

25 C, A should be 0.509, and consequently the limiting slope of log 7-t

against Vy should be 0.509z+2_. How far this theoretical expectation
is fulfilled is shown by the results in Fig. 29 for three salts of different valence
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0.6

0.5

0.4

i

0.3

0.2

0.1

FIG. 29. Debye-Hiickel limiting law and valence type

types, viz., sodium chloride, -p_ --
1; calcium chloride, z f2_ = 2; zinc

sulfate, z+2_ = 4. The theoretical slope in each case is indicated by a

broken straight line. It is evident that the experimental results approach
the values required by the Debye-Hurkel limiting law with increasing dilu-

tion, i.e., with decreasing ionic strength. It is not absolutely certain that

the limiting slopes are exactly constant for .salts of the same valence type,
and that the values are always precisely equal to 0.5092+2-. There is a

possibility that there may be slight variations from the theoretical figure

according to the nature of the salt, apart from its valence type, but the

activity coefficient data for dilute solutions are not sufficiently accurate for

a clear decision to be made in this connection. It may be concluded, there-

fore, that -as a first approximation, at least
,
the Debye-Hiickel law represents

the limiting behavior of electrolytes in aqueous solutions at. 25 C.

According to equation (40.11) it appears that for electrolytes of the same
valence type, or for a given electrolyte, the limiting slope of the plot of
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log T against Vy at constant temperature should be inversely proportional

to J53'2, where D is the dielectric constant of the solvent. Experimental

data, obtained by E.M.F. measurements, on the activity coefficients of hydro-
chloric acid in methyl and ethyl alcohols, and in a number of dioxane-water

mixtures, with dielectric constants varying from 9.5 to 78.6, are in satis-

factory agreement with the theoretical requirement. It may be noted that

the lower the dielectric constant the smaller the concentration at which the

limiting slope is attained (Fig. 30) ;
there are theoretical reasons for this, but

as they lie outside the scope of thermodynamics they will not be discussed.2

FIG. 30. Debye-Htickel limiting law and dielectric constant

The influence of one other variable, namely, the temperature, remains to

be considered. It is not an easy matter to vary the temperature without

changing the dielectric constant, and so these factors are taken together.

From equation (40.11) it is evident that the limiting Debye-Hiickel slope

should vary as 1/(D!T)
3/2

, where T is the absolute temperature at which the

activity coefficients are measured. The experimental results obtained under

a wide variety of conditions, e.g., from liquid ammonia at 75 C to water

at the normal boiling point, 100 C, are generally in satisfactory agreement
%

* Harned, el al., J. Am. Ckem. Soc., 61, 49 (1939); for references to numerous tests of

tte Debye-Huckel tneory, see ref. 1
; also, S. Glasstone, "The Electrochemistry of Solutions,"

2nd ed., 1937, Chapter VII.
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with the theoretical requirements. Where discrepancies have been observed

they can probably be explained by incomplete dissociation of the electrolyte
in media of low dielectric constant.

41c. Solubility and the Debye-Httckel Theory. An interesting applica-
tion of the Debye-Htickel equation is to be found in the study of the influence

of "inert" electrolytes on the solubility of a sparingly soluble salt. By
equation (39.70), in a saturated solution

- &., (41.1)

where w-t is the mean ionic molality of the salt at saturation and K, is a
constant for the salt, viz., the solubility product; y is the mean ionic ac-

tivity coefficient of the salt in the given solution, which may contain added

electrolytes. If S is the saturation solubility of the salt, expressed in

molalities, then by equation (39.12)

, (41.2)

the molality m being identified with /S, the solubility. Substitution of this

result into equation (41.1), and simplifying gives

Sy = constant. (41.3)

This equation accounts for the fact, so frequently observed, that the addition

of an inert salt, not having an ion in common, will increase the solubility of a

sparingly soluble salt. The inert salt increases the ionic strength of the me-

dium, and hence the activity coefficient 7-t decreases. In order for the prod-
uct Sy to remain constant the solubility S must increase correspondingly.

If S is the solubility of the salt in pure water and S is that in the presence
of another electrolyte which has no ion in common with the saturating salt,

and 70 and y are the corresponding mean ionic activity coefficients, then by
equation (41.3)

A = 12
So y

'

or
Cf

log = log To - log 7-

Introducing the values of 70 and 7 as obtained from the Debye-Htickel
limiting law equation (40.14), it follows, provided the ionic strength is low

enough for the equation to be applicable, that

log -f
= Az+z-(*fc

- Vo), (41.4)
oo

where yo and y are the ionic strengths of the solutions containing the spar-

ingly soluble salt only, and of that to which other electrolytes have been

added, respectively. Since y is a constant for a given saturating salt, it is

apparent from equation (41.4) that the plot of log OS/So) against Vp should
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be a straight line of slope -Az+z_, where z+ and z_ are the (numerical) valences

of the ions of the saturating salt.

A large number of solubility determinations have been made of sparingly
soluble salts of various valence types, with values of z+z_ from 1 to 9, in

solvents of dielectric constant from 10.4, as in ethylene chloride, to 78.6, in

water at 25 C. The results have been found in nearly all cases to be in

very fair agreement with the requirements of the Debye-Hiickel limiting
law. 8

Appreciable discrepancies have been observed, however, when the

saturating salt is of a high valence type, especially in the presence of added
ions of high valence. The effect is particularly large when the high valence
ions of the saturating and added salts have opposite signs; this suggests that

there are electrostatic factors which have not been allowed for in the Debye-
Hiickel treatment. 4

Problem: The solubility of silver iodate in pure water at 25 C is 1.771 X 10~4

mole liter"1
;
calculate the solubility in the presence of 0.3252 X 10~2 mole liter"1

of potassium nitrate.

In this case, SQ is 1.771 X 10~4 mole liter"1
,
and since silver iodate is a uni-

univalent salt, this is also the value of yo. In the potassium nitrate solution, y is, as

a first approximation, equal to (0.3252 X 10"2
) + (1.771 X 10~4

)
= 0.343 X lO"2

;

hence, by equation (41.4)

log
S

_4
- 0.509[(0.343 X 10~2

)'/
2 -

(1.77 X

taking A as 0.509 for water at 25 C, with z+ and 2_ both equal to unity. Solving
this equation, the solubility S in the potassium nitrate solution is found to be

1.868 X 10~4 mole (AgI0 3) liter"1
. (The experimental value is 1.870 X 10~4

mole liter"1
.)

4id. Debye-Hiickel Theory and the Osmotic Coefficient. Multiplication of

equation (39.49), i.e., d In 7 =
(< l)d In m + dcfr, by m throughout gives

md In 7 =
(< l)dm

-
1)] (41.5)

for the relationship between the osmotic coefficient <t> of the solvent and the mean
ionic activity coefficient y of the solute. Upon integration of equation (41.5)

between the molality limits of zero and m the result is

/"Jo
md In 7-fc

=
m(<t> 1),

and hence,

~ 1 + - f
m
mdln T. (41.6)m Jo

3
Cf., Br0nsted and LaMer, J. Am. Chem. JSoc., 46, 555 (1924); LaMer, King and Mason,

Md., 49. 363 (1927).
4 LaMer and Cook, /. Am. Chcm. Soc

, 5i, 2622 (1929); LaMer and Goldman, ibid.,

51, 2632 (1929); Neuman, ibid., 54, 2195 (1932).
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In dilute solution the mobility and molarity arc approximately proportional,
so that

1 +T rnn7db, (41.7)

where c is the molarity corresponding to the moiality m at which the osmotic

coefficient <t> is determined. Utilizing the Debye-Hlickel limiting law expression

for In y, i.e., 2.303 log y-b, and noting that Vy involves c1/2
,
it is readily found that

1 + j In y
2 303

1 + -
log y ,

so that, by equation (40.14),
2.303

(41.8)

This is the limiting law for the osmotic coefficient as a function of the ionic strength
of the solution. At high dilutions, when this equation may be expected to be

applicable, 1 </> is equal to
.;' ( 39g), so that, by equation (39.20),

(41.9)

where 6 is the observed freezing point lowering of the solution, X is the molal

lowering for infinite dilution, v is the number of ions produced by one molecule
of the solute, and m is the moiality of the solution. The Debye-Hiickel theory
thus provides a direct (limiting) relationship between the freezing point and the
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FIG. 31. Debye-Httckel limiting law and freezing point depression

ionic strength in dilute solutions. An illustration of the test of equation (41.8),

with the values of </> being determined by means of (41.9) from freezing point
measurements in cyclohexanol as solvent, dielectric constant 15.0 at 23.6 C, is

provided by the results in Fig. 3 1.
5 The full curve is drawn through the values

of 1 for a number of uni-univalent electrolytes, while the broken line shows
the limiting slope required by equation (41.8).

Schreiner and Frivold, Z. phys. Chem., 124, 1 (1926).
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41 e. The Debye-Hiickcl Theory in More Concentrated Solutions.

Even a superficial comparison of the Debye-Huckel limiting law equation
with the activity coefficient data in Table XXXIII (or Fig. 28) shows that

the equation requires considerable modification if it is to be valid in solutions

of appreciable concentration. According to equation (40.14), the activity
coefficient should decrease steadily with increasing ionic strength, whereas
the actual values pass through a minimum and then increase. Further,

according to the Debye-Hiickel treatment the activity coefficient of a par-
ticular electrolyte at a given ionic strength should depend only on its valence

type, and not on the specific nature of the ions. The experimental results,

however, show that this is true only for very dilute solutions. At appreci-
able concentrations, e.g., greater than 0.02 molal, the activity coefficients of

HC1, NaCl and KC1 differ at the same molality, indicating the existence of

specific ionic effects.

It will be recalled that in 40b the solution under consideration was sup-

posed to be so dilute that K& was negligible in comparison with unity. If,

however, the term 1 + K& is retained in the denominator of the expression

[[equation (40.3)] for the electrical potential, it will also appear in the equa-
tions for the electrical free energy and the activity coefficient. In this event,

equation (40.14) becomes

where d is the mean distance of closest approach of the ions in the solution;
this varies with the nature of the ions, and thus a specific property of the

electrolyte is introduced. It is seen from equation (40.10) that K is equiva-
lent to Byl/z

, where B involves universal constants together with the dielectric

constant and the temperature. Hence equation (41.10) may be written as

for a given solvent and temperature; for water as solvent, B is 0.325 X 108

at C and 0.329 X 108 at 25 C.

In order to utilize the modified form of the Debye-Hiickel equatioq, it

is necessary to know the value of & for each electrolyte; although this should

be of the order of the diameter of the ions, i.e., about 10~ 8
cm., there is,

unfortunately, no independent method of assessing its exact value in any
particular case. The general correctness of equation (41.11) may be tested

by determining the value of A required to make this equation harmonize
with the experimental activity coefficients, and seeing if the results are

reasonable.

By rearranging equation (41.11) it can be put in the form

log
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BO that if the left-hand side of this equation, obtained from experimental
values of 7, is plotted against Vv, the result should be a straight line of slope
AB. Since B is known, the mean distance of closest approach d of the ions

can thus be determined. It has been found that for solutions of moderate
ionic strength, e.g., up to about 0.1 molal, this plot is, in fact, linear, and the
values of A for several electrolytes derived from the corresponding slopes are

about 3 to 5 X 10~8 cm. (Table XXXIV). 8 It is seen, therefore, that the

TABLE XXXIV. MEAN DISTANCE OF CLOSEST APPROACH OF IONS

Electrolyte d Electrolyte A

HC1 4.3 X 10-* cm. CaCl2 5.2 X 10- cm.
NaCl 4.4 MgSO 4 3.4

KC1 4.1 K2S0 4 3.0

CsNO, 3.0 La2(S0 4) 3.0

use of reasonable values for & in equation (41.11) frequently makes it possible
to represent the variation of the activity coefficient with the ionic strength

up to appreciable concentrations. However, it must be pointed out that in

some cases the experimental activity coefficients lead to values of & which,

although of the correct order of magnitude, viz., 10"~8 cm., cannot represent
the distance of closest approach of the ions. For example, with potassium
nitrate it is necessary to postulate a value of 0.43 X 10~8 cm. for A in order

that equation (41.11) may reproduce the dependence of the activity coeffi-

cient upon the ionic strength in aqueous solution at 25 C. Salts of high
valence type in particular behave abnormally in this respect. These dis-

crepancies provide further support for the view that the Debye-Hiickel
treatment is not quite complete, although it provides a very close approxima-
tion in many instances.

41f. The Hiickel and Brjfasted Extensions. It can be seen from equation
(41.11) that as the ionic strength increases, the value of log y should approach
a constant limiting value equal to Az+z~/dB. Actually, however, it is known
that log 7 passes through a minimum and then increases. It is evidently neces-

sary to include an additional term in equation (41.11), and various lines of argu-
ment lead to the view that it should be proportional to the ionic strength. The
inclusion of such a term, e.g., C'y, sometimes called the "salting-out" term Ccf.

equation (39.74)], leads to what is known as the Hiickel equation, viz.,

log T =- *- + CV, (41.13)

where C' is a constant which must be derived from experimental data. An equa-
tion of this type, with properly selected values of the two constants A and (7'9 has
been found to represent the behavior of many electrolytes up to concentrations as

high as three or more molal. It should be noted that over this range the value
of the activity coefficient depends on the particular standard state chosen for the

activities; equation (41.13), as already ieen, gives the rational activity coefficient

9 For further data, seeEarned and Owen, ref. 1, p. 381.
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TN, and this must be corrected to yield ym or yct as required, by means of equa-
tion (39.13).

7

Upon dividing the numerator by the denominator of the fraction in equation
(41.13) and neglecting all terms in the power series beyond that involving y, the
result is

log y = At+g-ilv + dABz+Z-y + C'y

+ Cy, (41.14)

where C is a constant for the given electrolyte. This relationship is of the same
form as an empirical equation proposed by J. N. Br0nsted (1922), and hence is in

general agreement with experiment.
8

41g. Uses of the Debye-Huckel Equations. The various equations de-
rived from the Debye-Hiickel theory have found a number of uses in thermo-

dynamic problems. For example, the limiting law equation may be em-
ployed to calculate activity coefficients in dilute solutions when experimental
values are not available. For a uni-univalent electrolyte the results ob-
tained in a solvent of high dielectric constant, such as water, are reliable up
to an ionic strength of about 0.01. By assuming an average value of about
3 X 10~8 cm. for d, the product dB is approximately unity, since B is

0.33 X 108 in water at 25 C, and equation (41.11) takes the simple form

which may be used to give rough activity coefficients, especially of uni-

univalent electrolytes, in aqueous solutions up to about 0.1 molal.

Problem: Calculate the approximate mean ionic activity coefficient of a 0.1

molal uni-univalent electrolyte in water at 25 C.
Since A is 0.509 for water at 25 C, and z+ and z_ are both unity, equation

(41.15) gives

,
0.

7 = 0.755.

(Some experimental values are 0.766 for NaOH, 0.769 for KC1, and 0.778 for NaCl.)

The Hiickel equation (41.13), appropriately adjusted to give ym , has
been frequently employed for the analytical representation of activity co-

efficient values as a function of the ionic strength of the solution, and various
forms of the Debye-Hiickel and Brjzfnsted equations have been used for the

purpose of extrapolating experimental results. Some instances of such ap-
plications have been given earlier ( 39h, 39i), and another is described in

the next section.

7 HUckel, Physik. Z., 26, 93 (1925); see also, Butler, /. Phys. Chen., 33, 1015 (1929);
Scatchard, Phyaik. Z. t 33, 22 (1932); for applications, see Harned and Owen, ref. 1.

Br0nsted, /. Am. Chem. Soc., 44, 938 (1922); Br0nsted and LaMer, ibid., 46, 555
(1924).
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41h. Debye-Hiickel Equation and Equilibrium Constants. AVlirn any
electrolyte, such as an acid or a base, is dissolved in a suitable solvent an

equilibrium is established between the free (solvated) ions and the undissoei-

ated portion of the solute. In the simple case of a uni-univalent electrolyte

MA, such as a, monobasic acid, the equilibrium may be represented by

MA ^ M+ + A-

and the equilibrium constant is given by

where the a terms are the activities of the indicated species, OMA being that

of the undissociated molecules. The constant K is referred to as the

ionization constant or, better, as the dissociation constant of the substance
MA in the given solvent at a definite temperature. Writing the activity
of each species as the product of its molar concentration a and activity

coefficient 7*, in this case 7 equation (41.16) becomes

K .-
M

-

f(
'-~ TM^TA^

CMA 7MA

= #'2*12*1. (41.17)
7MA

It should be understood that CM + and c.\~ refer to the actual concentrations

of the ions, allowing for possible incomplete dissociation; 7+ and 7_ are then
the "true" activity coefficients, e.g., as given by the Debye-Hlickel theory.
The equilibrium function K', which is equal to CM+C\-/CMA, is in general not

constant,* but it becomes equal to the true equilibrium (dissociation) con-

stant when the activity coefficient factor is unity, i.e., nt infinite dilution.

Before describing the method of extrapolating the results to infinite dilu-

tion, there are some qualitative aspects of equation (41.17) that are of

interest. The following considerations are quite general, but they are par-

ticularly important in connection with the dissociation of weak electrolytes,

e.g., weak acids and weak bases. If the ionic strength of the solution is

increased, by the addition of "neutral" salts, the activity coefficient factor

in equation (41.17) decreases. As a result, in order to maintain the equi-
librium constant, K' must increase; this means that the dissociation oi the

weak acid or base will increase, thus increasing CM+CA" while decreasing CM.\.

At high salt concentrations, the activity coefficients will increase, after pass-

ing through a minimum, and hence K f must then decrease. Consequently,
in the presence of large amounts of salts the extent of dissociation of a weak
electrolyte \vill decrease, after having passed through a maximum value.

This variation of the degree of dissociation with the ionic strength of the

* If the ionir* strength of the medium is maintained constant, o.g., by the addition of

"inert" electrolytes, the equilibrium function K' will remain virtually constant, although iL

will, in general, differ from the true dissociation constant.
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medium is the basis of what is called the "secondary kinetic salt effect" in

homogeneous catalysis. If a particular reaction is catalyzed by hydrogen
ions, for example, the concentration of these ions, and hence their catalytic

effect^ can be changed merely by altering the salt concentration of the solu-

tion. The results, in dilute solution, can often be accounted for quantita-

tively by utilizing the Debye-Htickel limiting law to express the ionic ac-

tivity coefficients.
9

The particular application of the Debye-Huckel equation to be described

here refers to tfye determination of the true equilibrium constant K from
values of the equilibrium function K' at several ionic strengths; the necessary
data for weak acids and bases can often be obtained from conductance
measurements. If the solution of the electrolyte MA is sufficiently dilute

for the limiting law to be applicable, it follows from equation (40.12), for

the activity coefficient of a single ionic species, that

log TM+ = log ?A- = - A Vtf, (41.18)

since z+ and z~ are both unity. Assuming no ions other than M+ and A~,
derived from MA, to be present in the solution, it follows that

X I2
) + (CA- X I

2
)]. (41.19)

If c is the stoichipmetric, i.e., total, concentration of the solute, in moles per

liter, and a is the degree of dissociation, the concentrations CM+ and CA~ of the

respective ions are both equal to ac; hence equation (41.19) becomes

p = %(M + ac) = ac,

so that, by (41.18),

log 7M+ = log TA" = - A Vac- (41.20)

In the region in which the Debye-Hiickel limiting law is applicable, the

activity coefficient of the molecules of undissociated MA is probably very
close to unity, as may be inferred from the known variation of the activity co-

efficient of a neutral molecule in the presence of added electrolytes (cf . 39m).
It follows, therefore, upon taking logarithms of equation (41.17) that

log K = log K' + log TM+ + log TA~
= logtf'

- 2AV^c,
or

log K' = log K + 2A Vac. (41.21)

It is seen from this equation that if the value of log K' in any solution is

plotted against Vac, where c is the concentration (molarity) and a is the

degree of dissociation of the electrolyte MA in that solution, the result

should be a straight line with intercept equal to log K. For concentrations

that are too high for the limiting law to hold, the values of log K' do not fall

on the straight line, but they approach it with decreasing concentration

9
See, for example, 8. Gladstone, "Textbook of Physical Chemistry/

1 2nd ed., 1946,

p. 1139; see also, pp. 1115-18.
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(Pig. 32). This procedure has been utilized for the determination of dissoci-

ation constants of weak acids from conductance measurements. 10

Another application of the Debye-Hiickel equations, involving aa equi-
librium between polyvalent ions, is worthy of mention because of its interest

in another connection ( 45h). If a solution of ferric perchlorate, containing

-4.736

-4.746

-4766

0.01 0.02 0.03 0.04
Vac

FIG. 32. Dissociation constant of acetic acid

free perchloric acid to repress hydrolysis, is shaken with finely divided silver,

the equilibrium

Ag() + Fe(C104) 3 ^ AgC104 + Fe(ClO4)2

is attained. Since the perchlorates are strong electrolytes, they may be

regarded as completely dissociated, provided the concentrations are not too

high; the equilibrium may thus be represented by

Ag() + Fe+++ ^ Ag+ + Fe++,

where the ionic concentrations are equal to the total concentrations of the

respective salts. The equilibrium constant is then given by

K. =
7Fe

(41.22)

the activity of the metallic (solid) silver being taken as unity; the value of

the function K' in any solution can be determined by analyzing the solution

for ferrous, ferric and silver ions when equilibrium is established.

" Maclnnes and Shedlovsky, J. Am. Chen. Soc., 54, 1429 (1932); Maclnnes, J. Frank.

In*., 225, 661 (1938); D. A. Maclnnes, "The Principles of Electrochemistry," 1939,

Chapter 19.



424 THE DETlYK-HtJCKSL THEORY 41h

Upon taking logarithms of equation (41.22), and utilizing the extended

Debye-Hiickel equation in the form of (41.14), adapted to a single ion, viz.,

log T = - Az*^ + CM,
it is found that

log K = log K' + log 7Ag
+ + log 7Fe++

~
log y o

+++

- log K' -
(zls + z\S+ - 4e+*+)^V + CV

- log K' +4A,fc + CV, (41.23)

where A is equal to 0.609 for aqueous solutions at 25 C, and C is a composite
constant made up of the various CVs. By rearranging equation (41.23), it

is seen that

so that the plot of the left-hand side of this expression, which is available

from the experimental determinations of K' in solutions of various ionic

strengths, against the ionic strength should be a straight line; the intercept
for y equal to zero, i.e., log K, should give the value of K, the true equilibrium
constant. Even if the plot is not exactly linear, it should provide a con-

venient method for extrapolating the data to infinite dilution. From
measurements made in solutions of ionic strengths varying from about 1.4

t" 0.1, the equilibrium constant has been estimated as 0.53 at 25 C. 11 It

appears from other evidence ( 45h), however, that this result is somewhat
too high, the correct value being probably about 0.35. The error is un-

doubtedly due to the somewhat lengthy extrapolation necessary to obtain

K from the experimental data. If accurate measurements could be made
in dilute solutions, the final result obtained by the procedure described above
would be more reliable.

EXERCISES

1. Show that the expression for the mean ionic activity coefficient, derived

from equation (40.11), can be written in the form

,
1.824 X

log 7 = -

2. Plot the logarithms of the activity coefficients of silver iodate obtained in

Exercise 14, Chapter XVI against the square roots of the corresponding (total)

ionic strengths, and hence test the Debye-Hiickel limiting law.

3. Calculate the effective radius of the ionic atmosphere (I/*) in a 0.1 molal

aqueous solution of potassium sulfate at 25 C. The dielectric constant of water
at 25 C is 78.64.

4. Show that for electrolytes of the same valence type, the Debye-Hiickel-
Br0listed equation (41.14), as applied to moderately concentrated solutions, leads

to the result

log

i Schumb and Sweetser, /. Am. rhnn. <&* ?, 871 (1936).
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where y/y* is the ratio of the mean ionic activity coefficient of any electrolyte to

that of a reference substance of the same valence type at the same concentration c;

A; is a constant for the given electrolyte. The plot of log (7/711) against c should
thus be a straight line [Akerlof and Thomas, /. Am. Chem. Soc., 56, 593 (1934)].
Test this by the data for hydrochloric acid and potassium chloride in Table
XXXIII at molalities of 0.1 and higher. (Molalities may be used to represent
the concentration.)

5. Evaluate the Debye-Htickel constants A and B for methanol as solvent

at 25 C, its dielectric constant being 31.5. Hence, write an expression for the

mean ionic activity coefficient of zinc chloride in moderately dilute methanol
solutions as a function of the ionic strengths y and \im at 25 C. (The density of

methanol is 0.790.)
6. Compare the mean ionic activity coefficient of a 0.1 molai solution of (i) a

uni-univalent, (ii) a bi-bivalent, electrolyte in water and methanol as solvents

respectively, at 25 C. The mean ionic diameter d may be taken as 3A in each case.

7. Utilize the mean ionic activity coefficients for solutions up to 0.05 molal in

Table XXXIII to determine by a graphical procedure the mean ionic diameter d
of hydrochloric acid.

8. Utilize the following data for the solubility of the uni-bivalent salt

[Co(NH 3)4(C 2O4)]2S2O6 in the presence of various amounts of added electrolytes

[Brjzfnsted and LaMer, /. Am. Chem. /Soc., 46, 555 (1924)] to test the Debye-
Iliickel limiting law at 25 C, The solubility in pure water is 1.545 X 10~4

mole liter"1
.

Added Salt Solubility Added Salt Solubility

(equiv. liter" 1

) (mole liter""
1
) (equiv. liter" 1

) (mole liter*1 )

0.001 NaCl 1.597 X 10~4 0.01 KNO 3 1.880 X 10~*

0.002 NaCl 1.645 0.005 MgSO4 1.866

0.005 NaCl 1.737 0.010 BaCl 2 2.032

Plot log (S/So) against Vy Vtfo; determine the slope and compare with the

calculated value for a uni-bivalent electrolyte.

9. Show that if 71, i is the mean ionic activity coefficient of a uni-univalent

electrolyte, and 7 is that of any other electrolyte with ions of valence z+ and _,

at the same ionic strength, then the Debye-Hiickel limiting law requires that

7 7irf~. What general conclusions concerning the effect of valence on the

activity coefficient can be drawn from this result?

10. Using the values of A and B for water given in the text, plot log 7 for

a uni-univalent electrolyte against Vy for ionic strengths 0.01, 0.1, 0.5 and 1.0,

taking d equal to (i) zero, (ii) 2A, (iii) 4A, (iv) 8A. Hence, draw general conclu-

sions as to the effect of increasing the ionic size. Investigate qualitatively the

result of increasing the valence of the ions.

11. By means of the Debye-Htickel theory, calculate the activity coefficients

of silver iodate in the various potassium nitrate solutions mentioned in Exercise 14,

Chapter XVI. Compare the values with those derived from the observed

solubilities.

12. Account for the following observations: (i) the addition of increasing
amounts of an "inert" electrolyte causes the solubility of a sparingly soluble salt

first to increase to a maximum and then to decrease steadily; (ii) the addition of a
salt with an ion in common wifh the sparingly soluWe salt causes the solubility of
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the letter to decrease and then to increase. (Complex ion formation should be

disregarded.)
18. Justify, by means of the Debye-Hiickel limiting law, the statement in the

footnote in 41h.

14. The freezing point depressions (0) of dilute aqueous solutions of potassium
chloride are given below:

c (mole liter""
1
) 6 c (mole liter"1)

0.001596 0.00586 0.02867 0.1011

0.002143 0.00784 0.04861 0.1702

0.008523 0.03063 0.1047 0.3606

[Lange, Z. phya. CAero., A186, 147 (1934) ]. Plot 1-0 against V and determine

the limiting slope; compare the value with that given by the Debye-Htickel theory.

(The constant A is 0.488 for water at C.)

15. The dielectric constant of cyclohexanol is 15.0 and its freezing point is

23.6 C. Calculate the limiting slope of 1 against V^, according to the

Debye-Htickel theory, and compare the result with that in Fig. 31.

16. The following data were derived from conductance measurements of solu-

tions of picric acid in methanol at 25 C [D. A. Maclnnes, "The Principles of

Electrochemistry/
1

1939, p. 362]:

c (mole liter-1) a Kr

1.00 X 10-1 0.05871 3.662 X 10~*

5.00 X 10-* 0.07823 3.320

2.50 X 10-' 0.1037 2.996

1.25 X lO-2 0.1379 2.758

6.25 X 10~3 0.1820 2.532

3.125 X 10~3 0.2408 2.384

Use the Debye-Hiickel equation (for A, see Exercise 5), in conjunction with a

graphical procedure, to evaluate the true dissociation constant from the Kf
values.

(The result is 1.845 X 10~4
.)

17. The solubility of barium sulfate in pure water at 25 C is 9.57 X 10~6 mole
liter"1 . Estimate the solubility in the presence of (i) 0.01 molar sodium chloride,

(ii) 0.01 molar sodium sulfate. Use the Debye-Hiickel equation (41.11), assuming
a value of 3A for the mean distance of closest approach of the ions.

18. The mean ionic activity coefficients of hydrochloric acid in water and in

dioxane-water mixtures, at an ionic strength of 0.001, together with the corre-

sponding temperatures and dielectric constants are given below. Use the data to

test the Debye-Hiickel limiting law, with particular reference to the effect of

temperature and dielectric constant.

< C D 7
88.15 0.967

25 9.53 0.398

50 15.37 0.675

[Harned and Owen, ref. 1],



CHAPTER XVIII

PARTIAL MOLAR PROPERTIES

L DETERMINATION OP PARTIAL MOLAR PROPERTIES

42a. Thermodynamic Significance. The importance of partial molar

properties will be evident from the many uses of these quantities that have
been made in the preceding sections of this book. In the present chapter
it is proposed to consider certain of these properties, such as the partial
molar volume and heat content, and related matters, in somewhat greater
detail. It may be pointed out that the treatment of activities given in

Chapters XV and XVI is essentially a convenient method for studying
partial molar free energies or, more correctly, partial molar free energies
relative to the value in an arbitrary standard state. This may be seen by
writing the equation m =

/*? + RT In a in the form

RT In a, = /LU M? = ^t ^?,

since the chemical potential /i is equivalent to the partial molar free energy
P. The determination of the activity at is thus equivalent to the evaluation

of the partial molar free energy Ft of the constituent i relative to that (F%)
in the chosen standard state.

One significant aspect of partial molar properties is that represented by
equation (26.6) . If (?< is the partial molar value of any property in a system
containing n t

- moles of the constituent i, then the total value O for the system
is given by the sum of all the nXr terms. For a system consisting of a

single, pure substance the partial molar property is identical with the ordi-

nary molar value. This result has often been used in the earlier treatment.

Another aspect of partial molar volumes and heat contents, in particular,

arises from the thermodynamic requirement that for an ideal gas mixture

or for an ideal liquid solution, as defined for example in 30a and 34a,

respectively, there is no change of volume or of heat content upon mixing
the components. This means that the partial molar volume and heat con-

tent of each substance in the mixture are equal to the respective molar values

for the pure constituents. Any deviation of the partial molar quantity
from the molar value then gives an indication of departure from ideal be-

havior; this information is useful in connection with the study of solutions.

42b. Apparent Molar Properties. Although not of direct thermo-

dynamic significance, the apparent molar property
1
is related to the corre-

sponding partial molar property, as will be seen below. The importance of

1 Of. O. N. Lewis and M. Randall, "Thermodynamics and the Free Energy of Chemical

Substances," 1923, p. 35; J. Am. Chem. Soc., 43, 233 (1921).

427
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the apparent molar properties lies in the fact that they arc usually capable
of direct experimental determination in cases when the partial molar proper-
ties arc not. For this reai-on. apparent molar quantities are frequently em-

ployed, particularly for the study of the t hermodynamic properties of sys-

tems of two components. In the subsequent treatment it will be assumed

throughout that the systems arc of this kind, the two constituents being

represented by the subscripts 1 and 2; when a distinction is possible, the

solvent will be regarded as constituent I and the solute as constituent 2.

If G is the value of a particular property for a mixture consisting of n\

moles of constituent 1 and HI moles of constituent 2, and Gi is the value of

the property per mole of pure constituent 1
,
then the apparent molar value,

represented by <<?, of the given property for the component 2 is given by

In order to indicate the fact that the value of <c as given by equation (42.1 )

applies to the constituent 2, i.e., the solute, a subscript 2 is sometimes in-

cluded. However, this is usually omitted, for in the great majority of cases

it is understood that the apparent molar property refers to the solute. It is

seen from equation (42.1) that <t>o is the apparent contribution of 1 mole
of the component 2 to the property G of the mixture. If the particular

property were strictly additive for the two components, e.g., volume and
heat content for ideal gas and liquid solutions, the value of </>o would be

equal to the actual molar contribution, and hence also to the partial molar
value. For nonideal systems, however, the quantities are all different.

X4e^ Determination of Partial Molar Quantities: k Direct Method. 2 In

view of the definition of the partial molar property (? as

an obvious method for its determination is to plot the value of the extensive

property (?, at constant temperature and pressure, for various mixtures of

the two components against the number of moles, e.g., n^ of one of them,
the value of n\ being kept constant. The slope of the curve at any par-
ticular composition, which may be determined by drawing a tangent to the

curve, gives the value of <52 at that composition.
3 Since the molality of a

solution represents the number of moles of solute associated with a constant

mass, and hence a constant number of moles, of solvent, the plot of the

property G against the molality can be used for the evaluation of the partial
molar property of the solute. Once (72 at any composition has been de-

termined, the corresponding value of G\ is readily derived by means of the

relationship G = nidi + n2<?2.

2 For methods of determining partial molar properties, see ref. 1; see also, Young and

Vogel, J. Am. Chem. Soc., 54, 3025 (1932).
* See Latehaw, /. Am. Chem. Soc., 47, 793 (1926); Gucker and Brcnnen, tWrf., 54, ,886

(1932);V
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In view of the difficulty of determining the exact slope of the curve at

all points, it is preferable to use an analytical procedure instead of the

graphical one just described. The property G is then expressed as a func-

tion of the number of moles of one component, e.g., the molality, associated

with a constant amount of the other component. Upon differentiation with

respect to n, i.e., the molality, an expression for the partial molar property
is obtained.

Problem: At concentrations exceeding 0.25 molal, the volume of a NaCl
solution, per 1000 g. of water, at 25 C is given by

V = 1002.9 + 16.40m + 2.5m2 - 1.2m8 ml.

The molar volume of pure water at 25 C is 18.069 ml. mole""1
. Derive general

expressions for the partial molar volume and the apparent molar volume of sodium
chloride in aqueous solutions, and compare the values for a 1 molai solution.

The partial molar volume is given by

and hence, utilizing the expression for V,

Vz = 16.40 + 5.0w - 3.6m2 ml. moie~l
.

In a 1 molal solution, therefore, V* is 17.8 ml. mole""1
.

The apparent molar volume (j>v is given by equation (42.1) as

V - niFi V - (1000/18.016)Vi
<pv =- =

n% m

since n\ is equal to 1000/Afi, where AT i, equal to 18.016, is the molecular weight
of the solvent, i.e., water, and n 2 is m, the molality. Consequently, utilizing
the expression for V and taking Vi as 18.069, it follows that

<t>v 16.40 + 2.5m 1.2m2 ml. mole-1
,

and hence in a 1 molal solution the apparent molar volume is 17.7 ml. mole"*1.

. From Apparent Molar Properties. A method that is often more con-

venient and accurate than that described above, makes use of the apparent
molar property. It is seen from equation (42.1) that

G niGi =
ri20<7,

and if ni is maintained constant, so that niGi is constant, differentiation

with respect to 712, constant temperature and pressure being understood, gives

or

++<> (42-4)
nt ,
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Since the molality m is equivalent to n, with ni constant, equations (42.3)

and (42.4) may be written as

and

respectively. If the apparent molar property <j>o is determined for various

values of 712, with n\ constant, or at various molalities, the partial molar

property <?2 can be calculated from the slope, at any given composition, of

the plot of 4>a against n2 (or m) or against log n* (or log m). The method
based on the use of equation (42.3) or (42.5) is usually more accurate than
that involving the logarithmic plot, since it does not give undue importance
to results obtained in dilute solutions. An analytical method can, of course,
be used in place of the graphical procedure if <f>o can be expressed as a func-

tion of na or of the molality.
For use in a later connection, an alternative form of equation (42.5) is

required and it will be derived here. The right-hand side of this equation
is equivalent to d(rrKf>G)/dm, that is,

and upon integration, m varying between the limits of zero and m, and
between zero and m<t>o, it is found that

I

<t>o
=

For dilute solutions, the molality is proportional to the molar concentration

Cj and hence it is permissible to put this result in the form

s

-JO.

(42.7)

Method of Intercepts. The method of intercepts is useful in many
instances, especially as it gives simultaneously the partial molar properties
of both constituents of a binary mixture of any composition. Let G repre-
sent the mean value of a particular extensive property per mole of mixture,
so that the observed value of the property O for the system is given by

(ni + nj)G.

Differentiation with respect to n*, at constant n\, constant temperature and
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pressure being understood, then gives

*-()-+<+*>()..
The mole fraction NI of the component 1 is defined by

431

(42.8)

(ni + n2)
2 + n2

'

and differentiation of this expression, keeping n\ constant, gives

that is,

Utilizing this result,

X"- wiGX'
and upon insertion in equation
(42.8), it follows that

G

The value of do/dNi is indepen-
dent of the method whereby NI is

varied, and hence it is unneces- o

sary to postulate HI constant;

consequently, it is possible to *

write

= G (42.9)

FIG. 33.

NJ B
Partial molar quantities by method

of intercepts

The values of the mean molar

property a for mixtures of various

compositions are plotted against
the mole fraction NI, as shown in

Fig. 33. Let be the point at

which the partial molar property is to be determined; at draw the

tangent CD and the horizontal line EF, parallel to the base line AB.
The slope of CD is da/dNi, and so CE is equal to Ni(do/dNi) at 0. Since

AE is the value of a at that point, it is evident from equation (42.9) that

the distance AC gives the partial molar property &. In an exactly similar

manner it can* be shown that BD is equal to Gi for the mixture whose
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composition is represented by tho point O; henre, both G\ and (Va are <>b< nined

at the same time.

General Methods. In the methods described above for the determination
of partial molar quantities, it has been tacitly assumed that the property G is

one which is capable of experimental determination. Such is the case, for ex-

ample, if represents the volume or the heat capacity. However, if the property
under consideration is the heat content then, like the free energy, it cannot be

determined directly. In cases of this kind modified methods, which involve

measurements of changes in the property, rather than of the property itself, can
be used. It should be pointed out that the procedures are quite general and they
are frequently adopted for the study of properties susceptible of direct measure-

ment, as well as of those which are not.
'

If HI moles of constituent 1 and n 2 moles of constituent 2 are mixed, the ob-

servable change ACr in the property G is given by

AG = G - (niGi + n 2 2), (42.10)

where G is the value of the property for the mixture, and Gi and G2 are the molar

properties for the pure substances. The change A(r upon mixing can be deter-

mined experimentally, even though G cannot. For a series of mixtures, in which

n\ is maintained constant while n* is varied, the change in the property per mole
of constituent 2 is A(-r/n 2,

and equation (42.10) may be written as

n 2(AG/n 2)
= G - (md + n 2G 2).

Upon differentiating with respect to n2 ,
with n\ constant, the constancy of tem-

perature and pressure being understood, the result is

<j2
_ G2 = n

This equation is seen to be similar to (42.3), and the values of G 2 G2 can be
derived in an analogous graphical manner from the plot of AG/n 2 against n 2,

with

HI constant. An equivalent relationship can be employed to obtain Gi O\.

An alternative procedure is to divide both sides of equation (42.10) by n\ + n2 ;

thus,

AG = G -
(NI(?I + N 2G 2), (42.12)

where AG is the change in the property upon mixing the constituents, per mole of
mixture. As before, G is the value of the property itself per mole, and NI and N2

are the mole fractions. By differentiating equation (42.12) with respect to NI,

with temperature and pressure constant, and bearing in mind that N 2 is equal to

1 NI, it is possible to derive an expression for Ni(da/dNi) which, upon insertion

into equation (42.9), gives

G* - G2
- AG - NI .

(42.13)
aNi

This expression is seen to be similar to equation (42.9), and hence the method of

intercepts can be applied to the plot of AG against NI, for various mixtures, in

order to obtain (52 G* and G\ G\ for any composition. If 0\ and (72 are

known, as would be the case if G represented the volume, then G\ and Q* can also

be determined.
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When NI is zero, i.e., pure 2, and N 2 is unity, i.e., pure 1, AG must be zero;
the plot of Ao against NI is thus of the form shown in Fig. 34 if AG is positive, e.g.,

heat of mixing of ethyl iodide and ethyl acetate. If Aa is negative, the curve is

similar in form but it lies on the other side of the Ni-axis. Another possibility is

that AG is positive when one constituent is present in excess, and negative when
the other is in larger proportion.

4

AG

Cj-G,

Nj-o Mole Fraction NJ-I

FIG. 34. Generalized method of intercepts

It is frequently more convenient to determine the partial specific proper-

ties, defined in terms of grams instead of moles, of the constituents of a

solution, and then to multiply the results by the respective molecular

weights to yield the partial molar properties. Any of the methods described

above may be adapted for this purpose. The value of the property G or

of A(? per mole is replaced by the value per gram, and N or n, the mole
fraction or number of moles, is replaced by the corresponding gram fraction

or number of grams, respectively.

43. PARTIAL MOLAR VOLUMES

43a. Partial Molar Volumes from Density Measurements. A conveni-

ent form of method I for determining partial molar volumes in liquid solu-

tions is based on density measurements at a number of different concentra-

tions. Consider a solution containing ?ii moles of solvent of molecular

weight M i to 1 mole of solute of molecular weight M2 in a total volume of

V liters; then its density p is given by

p =
n\M i

1000F

so that

lOOOpF -
Hl =

Mi
4
Sosnick, /. 4m. Chem. Soc., 49, 2255 (1927); R. F. Newton, private communication.
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Upon differentiating, at constant temperature and pressure, the result is

1000(pd7 + Vdp)

and hence

M l

dV Mi
dn, 1000[p + V(dp/dV)j

(43.1)

Since the value of dV/dni refers to a constant amount, viz., 1 mole, of the

constituent 2, it is equivalent to (dF/dr&Or, p,n,, and hence to f\, so that

equation (43.1) gives the value of the partial molar volume, in liters, of

constituent 1. In order to use this expression, V on the right-hand side is

replaced by 1/c, where c is the concentration in moles per liter, so that

(43.2)

1.0

Mole Fraction of Water

0.8 0.6 0.4 0.2

1000[p
-

c(dp/cfc)]
'

since V(dp/dV) is equal to c(dp/dc). To evaluate Fi it is necessary,

therefore, to determine the density of the solution at various concentrations,
and to plot the results. The slope at any point gives the required value of

dp/dc, and this, together with the density, can then be inserted in equation

(43.2), so as to obtain the partial molar volume of the constituent 1. An
expression for V^ similar to equation (43.2), and involving dp/dc, can be
derived in an analogous manner.

43b. Liquid Mixtures. When two liquids which form an ideal solution

are mixed there will be no change of volume, and the partial molar volume
of each constituent will be equal to its

ordinary molar volume, as indicated

earlier. If a solution exhibits positive
deviations from Raoult's law ( 35a),
there is usually an increase of volume

upon mixing, and the partial molar
volume of each substance is greater than
its molar volume in the pure state. This

may be attributed to the mean attractive

force between the molecules in the mix-
ture being smaller than for the con-
stituents separately. In fact, the same
underlying cause is responsible, for the
increased vapor pressure, i.e., positive

deviations, and the volume change. For
a system which shows negative deviation

from Raoult's law, the attractive force in

the mixture is greater because of the net attraction of the two molecular

species; this results in a lowering of the vapor pressure and a decrease of

volume. Negative deviations from ideal behavior are thus, in general, asso-

ciated with partial molar volumes that are less than the respective molar

0.2 0.4 0.6 0.8
Mole Fraction of Ethanol

1.0

FIG. 35. Partial molar volumes in

water-ethanol mixtures
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volumes. An illustration of a system of this type is provided by the results

in Fig. 35, which give the partial molar volumes of water and ethanol in mix-
tures of these two liquids.

6 The results for the alcohol are of particular

interest, since they show a steady decrease, followed by an increase in dilute

solution, when the mole fraction is less than 0.1. The interpretation of

these facts is of considerable interest although it lies outside the immediate

scope of thermodynamics.

43c. Solutions of Electrolytes. Because of the thermodynamic relationship
between the partial molar volume and the partial molar free energy (chemical

potential) it is possible to develop a theoretical treatment of partial molar volumes
of electrolytes by means of the Debye-Hiickei concept.

6
According to the argu-

ments in Chapter XVII, the mean activity coefficient given by the Debye-Hlickel
limiting law, e.g., equation (40.14), represented by TD.H., is determined solely by
the electrostatic forces between the ions in the solution at constant temperature
and pressure. Strictly speaking, the complete mean activity coefficient T should
contain another factor, designated Tn.e., to allow for nonelectrical forces in the

solution; this factor may be close to unity, but it will not necessarily be ?nlependent
of temperature and pressure. Consequently, it is possible to write, in general,
T - TD.H. X Tn.e. or

In T = In TD.H. + In Tn.e.. (43.3)

By equation (39.2),

M2
-

MS = RT In a 2 ,

where n\ is the chemical potential of the electrolyte in its standard state, which is

defined in terms of a reference state at 1 atm. pressure, and is consequently inde-

pendent of the pressure. Replacing a* by (m7-t) r
,
in accordance with the treat-

ment in 39a, it is seen that

/i 2
-

M5 = VRT In Wi + vRT in y , (43.4)

v being the total number of ions produced by the dissociation of one molecule of

solute. If equation (43.3) is substituted into (43.4), and the resulting expression
differentiated with respect to pressure, at constant temperature and composition,

recalling that, by equation (26.26), (d/i 2/dP)r,N *s equal to t^a, whereas /ij is inde-

pendent of pressure, it is found that

(43.5)

As the solution approaches infinite dilution and the electrostatic forces become

negligible, In TD.H. approaches zero irrespective of the pressure; that is to say,
as m tends to zero, the left-hand side of equation (43.5) becomes zero, and hence

= as m^ 0>
,
N

where VI is the partial molar volume of the solute at infinite dilution. Although
this result is. strictly applicable only at infinite dilution, it may be assumed to

5 Adapted from Lewis and Randall, ref. 1, p. 40.

Redlich and Rosenfeld, Z. phys. Chem., A155, 66 (1931); R. F. Newton, private
communication.
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hold in the same region as does the Debye-Httckel limiting law, and hence substi-

tution in equation (43.5) gives

(43.6)

The Debye-Hiickei equation (40.11) for log T, for a single ion, may be com-
bined with (40.13) to give an alternative expression for the mean ionic activity
coefficient represented here by the symbol TD.H.; thus (cf. Exercise 1, Chapter
XVII),

log TD.H. = - -

3/i 2><*<> (43.7)

where v* is the number of ions of valence 2 formed from one molecule of the solute

in the solution. For the present purpose, that is, the evaluation of the partial
molar volume of the solute, equation (43.7) is restricted to a solution containing a

single completely dissociated electrolyte. In this case, the concentration c of any
ion is equal to ViC, where c is the concentration of the solute in moles per liter,

and hence

t*
= il>*? =

so that equation (43.7) becomes

(E"^"2^ (43 '8)

This result may now be inserted into equation (43.6) and the differentiation

carried out, at constant temperature and composition; taking R as 8.314 X 10 7

ergs deg.~
l mole""1

,
it is found that

2.469 X 10"
3/2 j /j.gg . . (439)-

( '

Attention may be called to the presence of the term (dV/dP)r/V; this arises

because the concentration is inversely proportional to the volume, and the latter

varies with the pressure, at constant temperature. Actually, (dV/dP)T/V is

the compressibility of the solution, but since equation (43.9) can apply only to

dilute solutions, it may be regarded as the compressibility of the solvent, and
hence is known. The dependence of dielectric constant upon pressure, which is

required for the value of (dD/dP)T, has not been studied to any extent except for

water as solvent, and even in this case the results are not too reliable. Taking
the compressibility of water as 45 X 10~12

(dyne cm.~2
)~

l and (dD/dP)r/D as

47 X 1 O-12
(dyne cm.-8

)-
1 at 25 C, with D equal to 78.54, equation (43.9) reduces to

? 2
- yj = 0.99(I>.3

2
)
3/2 Vc'cc. mole-1

, (43,10)

for dilute aqueous solutions at 25 C; hence,

? 2
= vl + 0.99(Li> tz

2

)
3/2Vc cc. mole" 1

. (43.11)

Problem: Derive an expression for the partial molar volume of BaCUin dilute

aqueous solution at 25 C.

For BaCl 2, v+ =
1, z+ =

2, and v- =
2, z^ = 1; hence X>sJ = [(1 X 2)

+ (2 X I2)] =
6, so that (IX*2

)
3' 2 = 6S/2 = 14.7. From equation (43.11),
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therefore,

p 2 a f; + 0.99 X 14.7 Vc

= fJ + 14.6Vc cc, mole-1
.

The accuracy of equation (43.11) may be tested by plotting the experimental
values of V*, the partial molar volume of the solute, at various concentrations

against Vc; the results should approach a straight line of slope 0.99 GC^tf*)
3'* in

dilute aqueous solution at 25 C. A simpler method, however, is to derive an

analogous relationship involving the apparent molar volume, for this can be ob-
tained more readily from the experimental data. The general equation (42.7), for

dilute solutions, in the present case takes the form

<t>v
= - tMc. (43.12)

If the expression for P 2 given by equation (43.11) is now introduced, it follows

directly that

=
<t>*v + 0.66(X>i*;)

8'2Vc cc. mole"1
. (43.13)-

The verification of this equation requires accurate measurements of density
of aqueous solutions at high dilutions, and so not many data are available for the

purpose. From such information as is available, however, it appears that the

limiting slope of the plot of the apparent molar volume of an electrolyte solute

against the square root of the molar concentration is approximately equal to

0.66C[>iJ)
3'2

,
as required by equation (43.13).

7

Attention may be called to the interesting fact that for a large number of salts

the apparent molar volume in aqueous solution is a linear function of the square
root of the molarity at concentrations exceeding about 0.25 molar up to quite high
values. The slope of this line, however, is specific for each electrolyte, whereas,

according to equation (43.13), in dilute solution, it should be dependent only on
the valence type of the solute. In general, the slope at high concentrations differs

from the theoretical limiting Debye-Huckel slope as given by equation (43.13).
8

44. PARTIAL MOLAR THERMAL PROPERTIES

44& Relative Partial Molar Heat Contents. The partial molar thermal

properties, namely, heat content and heat capacity, are of particular interest,

as well as of practical importance, as will be seen from some of the examples
to be given below. In accordance with the general definition ( 26a), the

partial molar heat content of any constituent of a solution is represented by

dH

'Redlich, /. Phys. Chem., 44, 619 (1940); Redlich and Bigeleisen, Cftem. Rev., 30,
171 1942).

8 For review, see H. S. Harned and B. B. Owen, "The Physical Chemistry of Electrolytic

Solutions," 1943, pp. 250 et seq.; also, Gucker, Chem. Rev., 13, 111
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the amounts of all the constituents, except n,, being constant. As indicated

earlier, since it is not possible to determine absolute values of the heat con-

tent H of any system, it is the practice to consider values relative to the

reference state chosen in connection with the definition of activity ( 37b),

viz., pure liquid at 1 atm. pressure for the solvent (constituent 1) and the

infinitely dilute solution at 1 atm. for the solute (constituent 2).

For the solvent, the standard state and the reference state are identical,

on the basis of the usual convention, and consequently the molar heat con-

tent in the reference state may be represented by H\. The partial molar
heat content of the solvent in anv solution relative to the heat content in

the reference state is then Bi #1; this quantity is called the relative partial

molar heat content of the solvent, and is represented by the symbol Li,

so that in any solution

!
= #!- //?. (44.1)

For the sake of consistency, a slight modification is sometimes made in this

expression. The partial molar heat content of the pure solvent, i.e., 5?,
which is the same as in a solution at infinite dilution, is, of course, identical

with the molar heat content of the pure solvent, i.e., B\ =
//?; hence,

equation (44.1) may be written

I,! = tti
- #?. (44.2)

For the solute, the reference state is the infinitely dilute solution, and
although this is not the same as the standard state, the partial molar heat
contents are the same in both cases ( 37d). The reference value, which is

the partial molar heat content of the solute at infinite dilution, can then
be represented by the symbol R%. The relative partial molar heat content
L2 in any solution is thus given by

L2 - #2 ~ #i (44.3)

It may be noted that with the reference states chosen above, S\ becomes
identical with /??, and #2 becomes identical with ff%, at infinite dilution.

Hence, in an infinitely dilute solution, LI and L* are both zero.

In accordance with the usual properties of partial molar quantities [cf.

equation (26.6)], the heat content of a system consisting of ni moles of

constituent 1, and n* moles of constituent 2, is

H m#i + n2#2 , (44.4)

and hence, by equations (44.2) and (44.3),

H -
(ruS? + n2#S) = nilx + n*Z2 . (44.5)

The quantity niBi + nJH may be taken as the reference value of the total

heat content of the solution, so that the left-hand side of equation (44.5)

gives the total relative heat content, for which the symbol L is used. It

follows, therefore, that

L - niZi + raaZra, (44.6)

which is consistent with the general property of partial molar quantities.
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44b. Heats of Solution and Dilution* The partial molar heat contents

are related to such experimental quantities as heats of solution and dilution,

and hence these will be considered. If H is the heat content of a solution,

as described above, and HI and H2 are the molar heat contents of the pure
solvent and solute,* respectively, at the same temperature and pressure, the

change of heat content upon mixing the constituents of the solution is then

A77 - H - (mHi + n*H$. (44.7)

This quantity, divided by n% so as to give the value of A77 per mole of solute,

is the total or integral heat of solution at the given concentration ( 121).

If equation (44.7) is differentiated with respect to n2 ,
while the tempera-

ture, pressure and n\ are maintained constant, it is found that

JT.P, n t

= B2
- 772 , (44.8)

since, by definition, the first term on the right-hand side is equal to Bz .

The quantity obtained in this manner is the partial or differential heat of

solution of the solute; it is seen from equation (44.8) to be the increase of heat

content per mole of solute when it is dissolved in a large volume of solution at a

particular concentration, so that there is no appreciable change in the latter.

Another expression for the differential heat of solution of the solute may
be obtained by adding and subtracting the term B\ at the right-hand side

of equation (44.8) ; thus,

#2
- 7/2 = (#2 - 77) - (H2

- #8)

= L2
-

Lt, (44.9)

where Lz is the relative partial molar heat content of the solute in the given

solution, and L2 is the relative (partial) molar heat content of the pure solute,

the reference state in each case being the partial molar heat content at

infinite dilution. Since Z/2 is equal to B% 772 ,
it is evident from equa-

tion (44.8) that it represents the differential heat of solution of the solute at

infinite dilution.

By differentiation of equation (44.7) with reference to ni, keeping T,
P and na constant, the result, analogous to (44.8), is

, p, n,

- #! - H , or B l
-

#?, (44.10)

since in this case #1, for the pure solvent, is identical with 77? and /??. The
left-hand side of (44.10), which is seen to be equal to the relative partial

molar heat content LI of the solvent in the given solution, is called the partial

* The quantity Hi is identical with HI and #?, but the same relationship does not apply
to &; the latter refers to pure solute, whereas B\ applies to infinite dilution.
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or differential heat of dilution.
* H may Ix* defined PS the change of heat

content per mole of solvent when it ?* added to a large volume of the solution at

the given concentration.

The integral heat of dilution *
is the change of heat content, per mole of

solute, when a solution is diluted from one specified concentration to another.

By Hess's law, i.e., by the first law of thermodynamics, the integral heat
of dilution must be equal to the difference of the integral heats of solution in

the initial and final states. If the dilution is carried out by means of an
infinite amount of solvent, so that the final solution is infinitely dilute, the

heat change is referred to as the integral heat of dilution to infinite dilution.
K-44c. Relative Apparent Molar Heat Contents. If <// is used to represent

the apparent molar heat content of the solute, then by equation (42.1),

// i ,
,

<t>H
=-

, (44.11)n 2

where //? is used, as before, in place of //?, for the molar heat content of the

pure solvent; hence,
// = ni#? + n2</>//. (44.12)

At infinite dilution, equation (44.4) becomes

#o niffO + njjo2) (44 13)

and at the same time the general equation (44.12) takes the form

H = mfl? + n*l?H , (44.14)

where $% is the apparent molar heat content of the solute at infinite dilution.

Comparison of equations (44.13) and (44.14) then shows that

<& = #2, (44.15)

so that the apparent and the partial molar heat contents of the solute are

identical at infinite dilution, f

By equation (44.12), H fti//? is equal to nybu, and since, by (44.15),

n^<t>H is equal to n%fl%, it follows that

H -
(mfti + n2H 2)

= nrf//
-

n*t>H ,

and hence, by (44.5),

n\L\ + w2Z<2 = ni(<}>H </&)
- n^ Lj (44.16)

where the relative apparent molar heat content of the solute, i.e., <// <t?H,

is represented by <L. This quantity, as will be seen below, is equal in

* Heats of dilution arc sometimes considered as heats of solution of the solvent, to indi-

cate that there is no essential difference between the solvent and solute.

t This result is of general applicability; thus 4>
** $2 f r infinite dilution at any con-

stant pressure. In equation (44.15) the implied pressure is that of the reference state,

i.e., 1 atm. (cf. 44a).
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magnitude but opposite in sign to the (integral) heat of dilution to infinite

dilution per mole of solute, as defined in 44b, for a solution consisting of n\

moles of solvent and n moles of solute.

44d. Heats of Dilution to Infinite Dilution. When n moles of solute are

dissolved in an infinite amount, i.e.,
<*> moles, of solvent, the heat content

of the infinitely dilute solution, i.e., #, is given by equation (44.4) as

(44.17)

the partial molar heat contents being 5? and /?2, for solvent and solute,

respectively. For a solution consisting of n\ moles of solvent and H* moles
of solute, the heat content H is cf. equation (44.4)]

H - nnffi + ntBi. (44.18)

If oo m moles of solvent are added to this solution, it will become identical

with the one just considered, i.e., n2 moles of solute in an infinite amount of

solvent; the change of heat content is then the heat of dilution to infinite

dilution. The heat content of oo m moles of solvent is ( oo ni)Bi, and
so the sum of the heat contents of the given solution and the infinite amount
of solvent, before mixing, is n\fti + nJS* + (

oo ni)/??. The heat con-

tent, after mixing, is given by equation (44.17), and hence the heat of dilu-

tion to infinite dilution, represented by A//>+o, is

fit). (44.19)

By the definitions of equations (44.2) and (44.3), this becomes

and hence, by (44.16),

o - - n*t>L . (44.20)

The value of A#**o is for the infinite dilution of a solution containing n?
moles of solute, and consequently the integral heat of dilution to infinite

dilution, per mole of solute, is equal <L, as stated above.

The integral heat of dilution of any solution to infinite dilution can be
determined experimentally. To measure the heat change accompanying
the actual dilution of a given solution by an infinite amount of solvent is,

of course, not practicable. The procedure employed is to dilute the given
solution in stages by using finite amounts of pure solvent, or by adding a
more dilute to a more concentrated solution. The heat content changes in

the various states are additive, and from the results it is possible to derive

the heats of dilution to increasing extents. The data obtained in this

manner for the dilution of 0.1 molar sodium chloride solution to various
final molarities c, at 26 C, are given in Table XXXV. 9 The values of

A/fo.i^j represent the heats of dilution, per mole of solute, of the 0.1 molar
solution to the final concentration of c mole per liter. Extrapolation of these

1
Robinson, J. Am. Chem. Soc., 54, 1811 (1082); Earned and Owen, ref. 8, p. 225.
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values to infinite dilution, preferably by plotting A// .i-~ against Vc, gives

83.0 cal. mole""1 for A// .i-o, the integral heat of dilution to infinite

dilution. Hence for 0.1 molar sodium chloride at 25 C, the value of <t>L,

i.e., <t>a <&, is 83.0 cal. mole~ l
.

TABLE XXXV. HEAT OF DILUTION OF O.lN SODIUM CHLORIDE SOLUTION AT 25 C

C A//o.l-e A//-o .

0.06 mole liter"1 12.8 cal. mole"1 - 70.2 cal. mole~l

0.025 - 27.8 - 55.2

0.0125 - 42.9 - 40.1

0.00605 - 52.9 - 30.1

0.00305 - 61.5 - 21.5

0.00153 - 67.4 - 15.6

0.00076 - 73.1 - 9.9

0.00039 - 75.7 - 7.3

(- 83.0)

Once the integral heat of diluting a given solution, e.g., 0.1 molar, to

infinite dilution is known, the values of #L for other solutions can be deter-

mined much more easily. All that is necessary is to measure the total

(integral) heat change accompanying the dilution of any solution to 0.1

molar; upon adding the value of <L for 0.1 molar, the result is <L for the

former solution. For solutions more dilute than 0.1 molar, the values of <L,

i.e., Afio-to per mole of solute, can be obtained by subtracting A/Joa-c,
which is determined experimentally, from Affo.i-o, which may be regarded
as known.

The relative apparent molar heat contents of sulfuric acid (solute) in

mixtures with water (solvent), for various compositions at 25 C, are re-

corded in Table XXXVI.*10 It may be noted that when <z. is positive,
A//o-o is negative, and the dilution process is accompanied by the evolution

of heat. It is seert, therefore, from Table XXXVI that heat is evolved

upon the infinite dilution of sulfuric acid solutions at all concentrations down
to the lowest studied, viz., 0.00108 molal.

44e. Integral Heat of Finite Dilution. The relative apparent molar heat

content values in Table XXXVI give not only the heat changes accompany-
ing infinite dilution of a particular solution, but also the change in heat con-

tent for a finite dilution. This is, of course, merely a reversal of the pro-
cedure described above for determining heats of dilution to infinite dilution.

If a solution is diluted from molality m' to molality m, the change of heat
content per mole of solute is represented by

-
*L), (44.21)

where <L and </L are the relative apparent molar heat contents of the solute

at the molalities m' and m, respectively.

" Calculated by Craig and Vinal, J. Ret. Nat. Bur. Stand., 24, 475 (1940).
"The relative partial molar heat contents I/i and L* are also included in the table;

they are derived from the $L values, as explained in $ 44f.
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/iABLE XXXVI. HEAT CONTENTS OF AQUEOUS SOLUTIONS OP SULFURIC ACID AT 25 C

Molality Moles H 2O $L d*L L L L,
m Moles H^CU cal. mole"1 dm11* cal. mole"1 cal. mole"1

oo

0.00108 51,200
0.00217 25,600
0.00434 12,800
0.00867 6,400
0.01734 3,200
0.03469 1,600
0.06938 800
0.1388 400
0.2775 200
0.5551 100

1.1101 50
2.2202 25
3.7004 15

5.551 10

6.938 8
9.251 6

13.876 4

18.502 3

27.75 2

55.51 1

111.01 0.5

oo

Problem: What is the net amount of heat required to remove half of the water
from a solution containing 1 mole of H 2S(>4 to 400 moles H 2O at 25 C?

The final solution will contain 1 mole H2S04 to 200 moles H 2O, and the heat
which must be supplied is equal in magnitude but opposite in sign to the heat
evolved upon diluting this solution to one containing 1 mole H 2SO4 to 400 moles
H 2O. The change of heat content accompanying the dilution in this case is given

by equation (44.21) as - |>L (for 200H2O/1H 2SO4)
-

< L (for 400H20/1H2S04)].

Hence, from Table XXXVI,

A/7 = -
(5,410

-
5,020) = - 390 cal.

The heat required to remove the water is thus 390 cal.

Problem: How much heat is evolved when 1 mole of H 2SC>4 is added to 200
moles H 2O at 25 C?

The process is here equivalent to dilution from an initial solution containing
OH 20/1H 2S04 to a final solution of 200H2O/1H 2SO4 . Hence, by Table XXXVI,
the value of Atf is - |>z, (for OH 20/1H*S04)

-
to, (for 200H2O/1H 2SO4)]; thus,

AH - - (23,540
-

5,410) - - 18,130 cal.

The amount of heat evolved is 18,130 cal. This is the integral heat of solution

of the sulfuric acid in the solution.

Although it is mainly of theoretical interest, there is a simple relationship
between the integral heat of finite dilution ATm^m and the corresponding
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apparent molar heat contents <# and fa of the solute in the initial and final

solutions. Thus, by definition [cf. equation (44.16)],

the same reference value <A# being applicable in both cases. Inserting these

expressions into equation (44.21), it is seen that

A#m^ = -
(<t>'H - 4a). (44.22)

44f. Determination of Relative Partial Molar Heat Contents. A number
of methods a^e available for evaluating the relative partial molar heat con-

tents Li and L2 of the constituents of a solution. One of these makes use of

the apparent quantities, such as those given in Table XXXVI. Since

+ nzLz = n20L, (44.23)

by equations (44.6) and (44.16), it follows, upon differentiation with respect
to ra2,

the temperature, pressure and number of moles ni of solvent being

constant, that

(44.24)
T, p, ni vn* T, P, H!

This result is identical with the general equation (42.3), and could, of course,
have been obtained directly from it. Since nz in equation (44.24) may be

replaced by the molality m, for this satisfies the condition that ni is constant,
it follows that, at constant temperature and pressure,

(44.25)

By plotting <t>L against m (or logra), and determining the slope d<pL/dm
(or d<t>L/d log m) at any required molality, the value of Lt can be found, as

described in 42c, II.

For electrolytes, more accurate results are obtained by plotting ^
against m1/2

; thus, utilizing the relationship

dm = 2m1/2dfm1/2
,

it follows from equation (44.25) that

(4t26)

If the value of I/a given by equation (44.24) is substituted in (44.23),
it is found that

(44.27)
p.fij

Further, if n* is replaced by -the molality, then n\ is equal to 1000/Afi, where
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Mi is the molecular weight of the solvent; hence equation (44.27) becomes

at constant temperature and pressure. For a solution of an electrolyte, this

is preferably written in the form

It is thus possible to derive both Li and Lt from the slope of the plot of <t>L

against m for a nonelectrolyte, or against m112 for an electrolyte.* The
results obtained in this manner, for aqueous solutions of sulfuric acid, are
included in Table XXXVI, above.

In the procedure just described, both LI and L^ are obtained from the
same data, viz., the relative apparent molar heat contents; other methods,
however, give only LI or Z2, as will be seen shortly. If one of these quanti-
ties is known, the other can be calculated by using a form of the general

equation (26.8) ; thus, in the present case, at constant temperature and pressure,

nidLi + n*tdL* = 0,

so that

Consequently, if n2/ni (or m) is plotted against L* for various compositions,
it is possible to evaluate Li by graphical integration (cf. 38f).

According to the results derived in 44b, it is seen that L\ is equal to the

differential heat of dilution of the given solution. This may be obtained

experimentally by determining the heat changes upon mixing a definite quan-
tity of solute with varying amounts of solvent. If the results are plotted

against the number of moles of solvent, the slope, i.e., Cd(A//)/dtti]r.p.n,,
at any concentration gives the differential heat of dilution, and hence Li,
at that concentration [cf. equation (44.10)]; this is equivalent to method I

( 42c). If the solute is a solid, this procedure is not convenient. The
method that can then be employed is to take a solution of definite concen-

tration and determine the heat change per mole of solvent, i.e., Aff/ni, upon
dilution with varying amounts of solvent. If these data are extrapolated
to zero added solvent, the result is equivalent to the heat change accompany-
ing the dilution of the solution by a mole of solvent under such conditions

that the composition remains virtually constant; this is evidently the differ-

ential heat of dilution of the given solution. An approximate value of this

* It will be evident that if either L\ or L9 is determined in this manner, the other could

be obtained directly from equation (44.23).
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quantity rnay be determined directly by adding a small amount of solvent

to a solution, and assuming that the heat change per mole of solvent is equal
to Li at a mean concentration between the initial and final compositions.

11

Problem: Solve the first problem in 44e by using the relative partial molar
heat contents L\ and 2 in Table XXXVI.

The relative heat content L in the initial state is 400Li + L 2 for the system
400H 2O/1H 2SO4; this is (400 X -

1.54) + 5,638 = 5,022 cal. The final solution

consists of 200 moles H2O and 1 mole H 2S04, and in addition there are 200 moles
of pure H 2O. Since pure solvent is the reference state, LI for the latter will be
zero (cf. Table XXXVI), and hence L for the final state is 200L X + 2 for the

system 200H 20/1H2SO4, i.e., (200 X -
2.16) + 5,842 = 5,410 cal. The change

of heat content is thus 5,410 5,022 = 388 cal. Since the final state has a larger
heat content than the initial state, 388 cai. must be supplied. (The small differ-

ence from the result in 44e is due to the use of two decimal places only in L\. It

should be noted that since L is equal to n*t>L, by equation (44.23), the method used
here is identical in principle with that employed in the previous solution of the

problem. The use of relative heat contents is, however, more fundamental.)

Problem: Calculate the heat change when 1 mole of H2S(>4 is added to a
solution of 1 mole H 2SO4 in 400 moles H 20, using Table XXXVI.

The relative heat content L in the initial state is equal to 400Li + L2 for the

solution 400H 20/1H 2S04 , plus L 2 for the pure H 2SO4 ; this is (400 X -
1.54)

-f 5,638 + 23,540 = 28,562 cal. In the final state, L is 400li + 2t2 for the solu-

tion 200H 2O/1H 2SO4 , i.e., (400 X -
2.16) -f (2 X 5,842) - 10,820 cal. The

change of heat content is thus 10,820 28,562 = 17,742 cal. (This problem
could also be solved by using the $L values in Table XXXVI.)

44g. Activity Coefficients and Relative Partial Molar Heat Contents. It was
seen in 39c that the variation of the activity coefficient with temperature
is dependent upon Li] this variation can be utilized, both directly and indi-

rectly, to evaluate relative partial molar heat contents. By equation (26.25),

[5(M/I
7

)/57
7

]p,N = Bi/T2 for any constituent of a solution; hence, utilizing

(43.4), for an electrolyte, in the form

!?-!?- itf In WiYi,

it follows, upon differentiation with respect to temperature, at constant pressure
and composition, that

_
T* \ dT

Since /7 2 // is equal to L 2 ,
this is equivalent to

11 Randall and Bisson, J. Am. Chern. Roc., 42, 347 (1920); Randall and Rossini, ibid.,

51, 323 (1929); Rossini, J. Res. Nac. Bur. Stand., 6, 791 (1930); 9, 679 (1931); Gucker, J. Am.
Chem. Soc., 61, 459 (1939).
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or

By determining the mean ionic activity coefficient at several temperatures, e.g.,

from the elevation of boiling point at different pressures,* the values of 3 at

various concentrations may be calculated from the plot of In y (or log 7^) against
either T or 1/T. The relative partial molar heat contents of a few salts have been
determined in this manner.12

The reverse of this procedure provides one of the main applications of the

relative partial molar heat contents. If these are determined by means of thermal

measurements, as described in 44f, they can be employed to evaluate the ac-

tivity coefficients at one temperature if those at another temperature are known
( 38c, 39c).

Problem: Assuming 2 to remain constant, calculate the relative change in the

mean ionic activity coefficient of 1 molal sulfuric acid solution from to 25 C.

Integration of equation (44.31) with 2 constant gives

**$-
L' " '

where 7 and y' are the mean ionic activity coefficients at T and 7", respectively.
For H 2Sp4 ,

v is 3, i.e., 2H+ + SO", and by Table XXXVI, L2 for a 1 molal

solution is close to 6,000 cal. Hence,

l
7m = 6,000 / 298 - 273 \ =g
7298 4.576 X 3 \ 273 X 298 /

*
'

so that 7273/7298 1.36. (If allowance were made for the variation of 2 with

temperature, using partial molar heat capacities given later (Table XXXVIII),
a slightly smaller ratio, about 1.34, is obtained. The experimental value, derived

from E.M.F. measurements, is 1.33. The variation of y with temperature is

unusually large, because 2 for sulfuric acid is considerably greater than for most
electrolytes.)

An indirect method of using equation (44.31) is based on the employment of

E.M.P. measurements. For example, if the solute is a suitable electrolyte Mr+A,__,

the E.M.P. of a cell of the type M| Solution of M^A^_| A, referred to in 39h, is,

in the general case,

,.0 _**:,.

- vRT
In

where AT is the number of faradays associated with the formation of 1 mole of the
solute M,+Ar_ in the cell. Upon rearranging this result, and differentiating with

* The variation of the activity coefficient with pressure is negligible.

"Smith, et al., J. Am. Chem. Soc., 61, 1123 (1939); 63
;
1351 (1941).
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respect to temperature, at constant pressure and composition, it is seen that

P,N NF

Utilizing equation (44.31), it follows that

NFT - NF(E -
E"), (44.35)

\ 1 / P, N

which is a form of the Gibbs-Helmholtz equation (25.31), since i is equal to

R* B* [cf also, equation (45.3)].

By means of equation (44.35), it is evidently possible to determine the relative

partial molar heat content of an electrolyte by measuring the E.M.F. of a cell of

the type mentioned above at several temperatures, so that the temperature coeffi-

cient can be evaluated. This gives the first term on the right-hand side of equa-
tion (44.35), and the second term* is obtained from the actual E.M.F.'s.

13

The most convenient procedure, however, is to express the E.M.F. of the cell,

with electrolyte at a given molality or molarity, as a power series function of the

temperature; thus,
E = a + bT + cT* + dT* H---- , (44.36)

where a, 6, c, etc., are empirical constants. Similarly, the standard E.M.F. can
be represented by an analogous expression

- a + 6!T + c!T* + dr + - -
. (44.37)

If the temperature range is not too large, it is not necessary to proceed beyond
three terms; hence,

Upon differentiating with respect to temperature and inserting the result in

equation (44.34), it follows that

(44.38)

The relative partial molar heat content of the solute can thus be determined at

any temperature within the range in which equations (44.36) and (44.37) are

applicable.
The relative partial molar heat contents of the constituents of a liquid metallic

alloy can be obtained in an analogous manner by making use of cells of the type
described in 38e, viz., Metal A(liquid) |

Fused salt of A (Solution of A in metal
B(liquid). In this case the standard state is taken as pure liquid A, and, conse-

quently, E, the standard E.M.F., is zero; equation (44.34) then becomes

" Earned, et al. t J. Am. Chem. Soc., 54, 423 (1932); 55, 2179, 4838 (1933); LaMer, ei al.,

ibid., 55, 1004, 4343 (1933); Akerlftf, et al., ibid., 59, 1855 (1937); 62, 620 (1940); see also,

Earned and Owen, ref. 8, Chapters 10, 11, 12 and 13.
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The values of L\ for a series of compositions can thus be obtained by changing the

proportion of A in the alloy electrode; the corresponding values of LB can then be
calculated by a suitable application of the equation (26.8), i.e., n^dL\ + n^dLv = 0,

as seen in 44f.
M

44h. Determination of Heat of Solution of Solute. In some cases, par-

ticularly, when the solute is a liquid which is completely miscible with the

solvent, e.g., sulfuric acid and water, or a gas that is very soluble, e.g.,

hydrogen chloride in water, it is possible to extrapolate the relative partial
molar heat content 2 , i.e., 82 /?, to the value for the pure solute. This

quantity is H* flS, where H* refers to the pure solute, and hence is

identical with L2 defined in 44b, and employed in equation (44.9). Inci-

dentally, for the pure solute n\ is zero, and hence, by equation (44.16) the

corresponding value of Z/2, in this case L2, is equal to <L. The figures on the
last line of Table XXXVI were obtained by extrapolation of the $L values.

Once Z/2 is known, the differential heat of solution of the solute at any
composition can be calculated, since it is equal to L* L8 cf. equation
(44.9)]; Z/2 is itself equal to the differential heat of solution at infinite

dilution, as seen in 44b.

An expression for the integral heat of solution can be derived in various

ways; perhaps the simplest is to utilize equation (44.21). In this case the

initial state m' is the pure solute, so that <$>L is identical with Z/2, as found

above; hence the integral heat of solution, to form a solution of molality m,
is (Z/2 #L) or <r, Z/2, where 4>L refers to the final molality. This

procedure was actually used in the second problem in 44e.

When the solute is a solid having a limited solubility, then it is not pos-
sible to obtain Z/2 at all accurately by ex-

trapolation of the <t>L values, and another

procedure is used. The solute, e.g., a salt,

can invariably be obtained in the pure

state, and the integral heat of solution to

a particular concentration can then be de-

termined experimentally. By reversing the

procedure just described, it is thus possible

to evaluate Z/2, provided <L is known for

the same concentration.
Molality (m)

Alternatively, the differential heat of _ .

i A ri/Arrv/n n u- u 14. FIG. 36. Determination of heats
solution [d(A#)/<to*]ni, whlch 1S e<lual to

of solution

Z* Z/2, may be obtained if the observed

heat change AT, when m moles of solute (equivalent to n2) are added to a

definite quantity, e.g., 1000 g. of solvent (equivalent to constant ni), is plot-

ted against m, and the slope determined at any required composition (e.g.,

<7, Fig. 36). If Ir> at this composition is available, then Z/s may be derived

immediately.

"See, for example, Strickler and Seltz, J. Am. Chem. Sec., 58, 2084 (1036); Selta,

Trans. Ekctrochem. Soc., 77, 233 (1940).
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It may be remarked that in dilute solution the heat of solution A// is

usually a linear function of the molality (see Fig. 36) ;
the integral heat of

solution per mole, i.e., AH/m, is then equal to the differential heat of solution

d(AH)/dw. Provided the solution is sufficiently dilute, therefore, the ex-

perimental value of the former may be identified with Z/2, since this is

equivalent to the differential heat of solution at infinite dilution.

Problem: The integral heat of solution at infinite dilution per mole of KC1
was found by extrapolation to be 4,120 cal. at 25 C. The integral heat of solution

of 1 mole of KC1 in 55.5 moles of water, to make a 1 molal solution, is 4,012 cal.

From the slope of the plot of the heat of solution per mole of solute against the

number of moles of solvent, the differential heat of dilution of 1 molal KCl solution

is found to be 3.57 cal. mole""1
. What is the differential heat of solution of KCl

in this solution?

The integral heat of solution at infinite dilution may be identified with the

differential heat of solution under these conditions, and hence 1/2 = 4,120 cal.

mole""1
. Further, for a finite solution, the integral heat of solution per mole of

solute is <t>L 2 (or L L 2); this is 4,012 cal. mole"1 for the 1 molal solution,
so that <bt (or L) is 108 cal. mole"1

. The differential heat of dilution, 3.57 cal.

mole"1
,
is L\\ since L = n\Li + n 2L 2 ,

where n\ is 55.5 and n2 is 1 mole, L2
= 306

cal. mole"1
. The differential heat of solution of the solute is Lz I/ 2,

and hence
in the 1 molal solution this is - 306 + 4,120 = 3,814 cal. mole"1 of KCl.

For a system consisting of two similar, miscible liquids, e.g., alcohol and
water or benzene and toluene, it is neither necessary nor desirable to dis-

tinguish between solvent and solute. The treatment for deriving heats of

solution may be applied to either constituent. The fact that the pure liquid
is chosen as the reference state for each substance is immaterial, for the

results must be independent of the particular reference state.

44i. Thermal Properties and the Debye-Hiickel Theory. Since equation

(44.31) relates the relative partial molar heat content of an electrolyte to the mean
ionic activity coefficient, there is clearly a possibility of introducing the Debye-
Htickel treatment.15

Thus, inserting equation (43.8)
* into (44.31) and carrying

out the differentiation, allowing for the fact that c is inversely proportional to

the volume, the result is

r 2.469 X 101 *
2 N 3,2

3 /i ,

r dD
.
T dV \ r 11- -

ZW/* ^"'^ '

2 (/
+ F^ + 3? 3T JP

^ ergs mole-.

(44.39)

For water at 25 C, (dD/dT)P ,
at atmospheric pressure, is 0.3613 deg.-

1
,
the

dielectric constant D is 78.54, and the coefficient of cubical expansion (6V/dT)p/V
is 2.58 X 10~4

deg.""
1

; the quantity in the large parentheses is thus 0.346.

"Bjerrum, Z. phys. Chem., 119, 145 (1926); Scatchard, /. Am. Chem. Soc., 53, 2037

(1931); H. Falkenhagen, "Electrolytes," 1934 (translated by R. P. Bell); Harned and Owen,
ref. 8, p. 48.

* By following the procedure used in 43c it can be shown that in dilute solutions, at

least, the nonelectrical factor in the activity coefficient is independent of temperature; hence,
TD.H. may be used for y when differentiating with respect to temperature.
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Consequently, dividing by 4.184 X 10T to convert the result into calories, equa-
tion (44.39) becomes

L* - 255(5> tsJ)"
2Vc caL mole"1

. (44.40)

The quantity most easily determined experimentally is the integral heat of
infinite dilution AJ/^oj as seen in 44d, the value per mole of solute is equal to

<t>L t the relative apparent molar heat content of the solute at the concentration c.

By utilizing a similar procedure to that employed in deriving equation (43.12),
it is found that

and hence, by (44.40),

-- f
C

c Jo

-
| X

- 170(I>^) 3/2Vc cal. mole-1
. (44.41)

-40

o

0.1

The heat of dilution to infinite dilution, per mole of solute, should thus be propor-
tional to the square root of the concentration, at least for dilute solutions. The

slope of the plot of A#^ against Vc should approach the limiting value of

170Q[X3?) 8/2 for aqueous solutions at

25 C. The experimental results appear
to be in general agreement with equation
(44.41). Although the data are probably
not precise enough to permit the exact verifi-

cation of the theoretical slope, they show
that equation (44.41) probably constitutes

a satisfactory limiting approximation
(Fig. 37)."

It is of interest to observe that the nega-
tive sign of A//C-+O means that the infinite

dilution of a dilute solution of an electrolyte
is accompanied by an evolution of heat. At
higher concentrations, however, when the

limiting equation (44.41) is no longer, even

approximately, applicable, the sign of the

heat of dilution for many salts is reversed (cf. Fig. 37); heat is then absorbed
when the solution is diluted to infinite dilution.

Attention may be called to the fact that equation (44.41) can be derived from
the Debye-Htickel treatment in an alternative manner, which is based on the
same fundamental principles as that just described. In 40a the deviation from
ideal behavior, as represented by the activity coefficient, was attributed to the
interaction of the ions, and the heat of dilution to infinite dilution may be ascribed

to the same cause. The quantity A//c-o can thus be identified with He\. corre-

sponding to F*i. evaluated in 40c
; these quantities are then related by a form of

the Gibbs-Helmholtz equation [cf. (25.28)],

0.2

FIG. 37. Heats of dilution and the

Debye-HUckel limiting law

16 For reviews, see Lange and Robinson, Chem. Rw., 9, 80 (1931); Robinson and Wallace,
ibid., 30, 195 (1942); Earned and Owen, ret 8, pp. ZKetseq.
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If equation (40.6) for Fi. is inserted in this expression, and the differentiation per-

formed, the result obtained, after making appropriate substitutions for (dD/dT)p9

(dV/dT)p/Vt etc., is found to be identical with (44.41).

44j. Partial Molar Heat Capacities. The heat capacity at constant

pressure CP of a solution containing n\ moles of solvent and n* moles of

solute is given by

r ~(BH \
\JT)PN'

the pressure and composition being constant. Upon differentiation with

respect to ni, maintaining n2 constant, it follows that

(

dCP \ dH
dni Jr.p.nt

where CPI is the partial molar heat capacity, at constant pressure, of the
constituent 1 of the given solution. The partial molar heat content BI of

this constituent is defined by

(
\

}
dUiJV.P.n,

'

and hence differentiation with respect to temperature gives

3H
(44.43)

P,N dttiCTJT

the result being identical with CPI, by equation (44.42). The partial molar
heat capacity of the solvent in any particular solution may thus be defined

by either equation (44.42) or (44.43). Similarly, for the solute, i.e., con-

stituent 2,

'dCP \ _, v~ ai
(4444)f

\V

If equation (44.2) for the relative partial molar heat content, i.e.,

Ll = Hi //I,

is differentiated with respect to temperature, at constant pressure and

composition, it follows that

d5Pp,N
- Cfl - <&, (44.45)

where CPI, identical with CPI or CPl ,
is the molar heat capacity of the pure

solvent or the partial molar heat capacity of the solvent in a solution at

infinite dilution. Thus, Cpi may be regarded as an experimental quantity,
and if the variation of the relative partial molar heat content of the solvent
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with temperature, i.e., (dLi/dT)P#, is known, it is possible to determine
CPI at the corresponding composition of the solution. The necessary date
are rarely available from direct thermal measurements of Z/i, such as thoee
described in 44f

, at several temperatures, but the information can often
be obtained, although not very accurately, from E.M.F. measurements.

By differentiating the expression for the relative partial molar heat
content of the solute [equation (44.3)] it is found, in an exactly similar

manner to that used above, that

= CP^ - C^. (44.46)

In this expression C%2 is the partial molar heat capacity of the solute in the

infinitely dilute solution. Although the experimental significance of this

quantity is not immediately obvious, it will be shown below to be capable
of direct determination. Thus, from a knowledge of the variation of *,

the partial molar heat content of the solute, with temperature, it should be

possible to derive, with the aid of equation (44.46), the partial molar heat

capacity of the solute CP* at the given composition.

It was seen in 44g that it is sometimes possible to express L\ as a function
of temperature by means of E.M.F. measurements. In this event, the differentia-

tion can be carried out so as to give CPt J>2 directly. Thus, utilising equation
(44.38), it follows from (44.46) that

Cpa - C'P2 - 2NF(c - c)!T,

which is applicable at the same concentration as are (44.36) and (44.37). In
Table XXXVII a comparison is made of the relative partial molar heat capacities
of hydrochloric acid in various solutions as obtained from E.M.F. and from thermal

measurements; the corresponding values of the relative partial molar heat contents

are also given.
17

TABLE XXXVH. THERMAL PROPERTIES OF HYDROCHLORIC ACID
IN AQUEOUS SOLUTION AT 25 C

Molality E.M.F. Thermal E.M.F. Thermal

0.02 87 100 cal. mole"1 1.5 cal. deg.~
l mole-1

0.06 132 150 2.2

0.10 181 203 2.9 2.4

0.20 245 274 3.7 3.4

0.50 396 431 5.3 5.3

1.0 606 645 7.6 7.5

2.0 1055 1056 11.2 10.6

3.0 1506 1486 14.0 13.0

It will be recalled that in connection with partial molar heat contents it

was not possible to determine actual values, but only the values relatiye to

"Seeref. 13.
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a chosen reference state. However, with partial molar heat capacities,

actual values can be obtained from experimental measurements at constant

pressure (or volume), just as can the total heat capacity of the system. In

fact, by determining the latter at various compositions, the partial molar
heat capacity of each constituent can be evaluated by the method of inter-

cepts ( 42c, III and IV). For solutes of limited solubility, e.g. n electro-

lytes, when heat capacity measurements cannot be made over the whole

range of composition from pure 1 to pure 2, only one intercept, namely, the

one which gives Cp\, can be obtained. The corresponding Cp* could then

be estimated by the use of equation (26.8) and graphical integration. How-
ever, because of the relatively low concentrations, in terms of mole fractions,

the method of intercepts is not very accurate for solutions of salts.

44k. Apparent Molar Heat Capacities. Another approach to the prob-
lem of partial molar heat capacities is through a consideration of the respec-
tive apparent quantities. In accordance with the usual definition [[equa-

tion (42.1)], the apparent molar heat capacity of the solute is given by

, (44.47)

where C/>! has been written, for consistency, in place of C%lt the heat ca-

pacity of the pure solvent; CP is the experimental heat capacity of the solu-

tion containing ni moles of solvent and w2 moles of solute. In accordance

with the general equation (42.3), therefore,

(44.48)

constant temperature and pressure being understood. Utilizing the molality m
in place of na, in the \usual manner, this becomes

<?P2 = *c + m^- (44.49)am

By plotting the observed values of the apparent molar heat capacity against
the molality, it is possible to determine d4>c/dm at any molality, and hence

(?p at that molality can be obtained from equation (44.49). This procedure
is satisfactory for nonelectrolytes, but for electrolytes it is preferable to

plot <frc as a function of ra1/2
,
as in 44f

; thus, equation (44.49) may be
written

(44'50)

For solutions of electrolytes containing large proportions of solute, e.g.,

concentrated solutions of sulfuric acid, the plot of <t>c against m1/2
gives less

accurate results than does an alternative method. Utilizing the fact that the

mole fractions NI and NI are equal to n\/(ni + ni) and n*/(n\ + n2), re-

spectively, it can be readily shown that equation (44.48) can be put in
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the form

(44.51)

at constant temperature and pressure. The values of c?0c/dNa are then
obtained from the plot of <t>c against Na, the mole fraction of the solute; thus,
Cpa can be obtained for any composition by means of equation (44.51).

It will be observed from equation (44.49) that at infinite dilution, when
m is zero but d<t>c/dm is finite, CP* must become equal to 0c; hence [cf.

equation (44.15)],

Cp2
=

<t>C-

Since the value of the apparent molar heat capacity at infinite dilution may
be obtained by the extrapolation of experimental data, it is thus possible,
as indicated earlier, to determine Cp2 the partial molar heat capacity of the
solute at infinite dilution.

The foregoing treatment permits the calculation of the partial molar heat

capacities of the solute; it will now be shown how the values for the solvent

may be obtained from the same data. By combining equations (44.47) and

(44.48) with the general relationship for partial molar quantities, viz.,

Cp = n\Cp\ + flaCpa,

where CP is, as before, the observed heat capacity of the solution of the

specified composition, and Cpi and CP* are the partial molar heat capacities
of solvent and solute in that solution, it is found that, at constant temper-
ature and pressure,

, (44.52)

which is analogous to equation (44.27). As before, replacing n* by the

molality, and HI by 1000/Mi, where MI is the molecular weight of the sol-

vent, equation (44.52) becomes

and hence

d<f>c

The former of these two equations may be used for nonelectrolytes and the
latter for electrolytes. Since CQ

Pl is actually equal to the molar heat capacity
of the pure solvent, its value may be taken as known. For solutions of high
molality, better results are obtained by utilizing the equivalent form

where NI is the mole fraction of the solute.18

19 Randall and Ramage, J. Am. Chem. Soc,, 49, 93 (1927); Randall and Rossini, ibid.,

32, 323 (1930); Rossini, /. Res. Nat. Bur. Stand., 4, 313 (1930); 6, 791 (1931); 7, 47 (1931);

3, 679 (1932).
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The partial molar heat capacities of water (1) and sulfuric acid (2) at

25 C, obtained as described above, are recorded in Table XXXVIII. 19

TABLE) JUULV1IA. HEAT CAPACITIES OF AQUEOUS SOLUTIONS OF SULFURIC ACID AT 25 C

Molality
Moles H,O +c QPI Qn

m Moles HtSO< cal. deg.~
l mole"1

0.0347 1,600 6.00 18.01 7.06

0.0694 800 6.85 18.01 8.37

0.1388 400 8.10 18.01 10.22

0.2775 200 9.82 18.00 12.84

0.5551 100 12.32 17.97 16.55

1.110 50 15.85 17.90 21.78

1.850 30 19.35 17.77 26.80

3.700 15 22.40 18.04 22.01

5.551 10 21.22 18.57 15.68
6.938 8 19.85 18.88 12.92

9.251 6 18.77 18.02 18.77

13.876 4 20.15 16.46 26.39

18.502 3 22.20 15.33 30.26

37.753 2 26.03 12.51 37.05

44.406 1.25 31.52 9.92 41.64

55.51 1.00 33.16 15.09 36.08
85.62 0.6483 32.40 22.94 29.21

186.51 0.2976 31.40 17.96 31.42

388.70 0.1428 31.68 14.23 32.22

32.88 2.94 32.88

Attention may be called to the remarkable variations in these quantities
with the composition, particularly the sharp drop of CP\ from about 18 to

9.9, followed by a rapid increase to over 20 cal. deg.~* mole""1
,
and the corre-

sponding rise of CPZ up to 41.6, followed by the decrease to 29 cal. deg.~
l

mole""1
,
in the region of

x
50 molal. This composition corresponds closely to

equimolecular amounts of water and sulfuric acid, and suggests the forma-
tion of a strong complex, viz., B^SO^H^O. The other, minor, variations

must also have a definite chemical significance, but their consideration lies

outside the scope of this book. It may be mentioned, however, that these

variations are not evident in the total heat capacity of the mixture; they
become apparent only when the results are treated thermodynamically so

Ets to give the respective partial molar quantities.

Problem: A solution of 2 moles of H2S04 to 100 moles H 2O at 30 C is mixed
with one containing 1 mole of H2SO4 to 200 moles H2O at 25 C. Assuming the
heat capacities to remain constant, and ignoring losses due to radiation, etc.,

what will be the final temperature?

The problem is here somewhat similar to that involved in the determination
of flame temperatures in 13a, 13c. The simplest procedure is to bring the
initial solutions to the reference temperature, 25 C, and allow them to mix at
this temperature; from the net heat change, the temperature of the final solution
oan be calculated.

19 Calculations by Craig and Vinal, ref. 10 from data that are probably not too reliable.



441 PARTIAL MOLAR THERMAL PROPERTIES 457

For the solution of 2 moles HsSO4 to 100 moles HtO, i.e., 50HO/lHtSO4,

CP is lOOCpi + 20P - 100 X 17.90 + 2 X 21.78 - 1,833.6 cal. deg.-
1

(from
Table XXXVIII) . Hence, if this is cooled from 30 to 25 C, Aff is - 5 X 1,833.6
= 9,168 cal., assuming Cp to remain constant. The other solution is already
at 25 C, and for this AH is zero.

Since L is equal to n^L, by equation (44.23), the relative heat contents of the
initial solutions at 25 C are 2<r, for 50H 2O/1H2SO4 plus <t>L for 200H2O/1H2SO4 ,

i.e., 2 X 5,780 + 5,410 16,970 cal. (from Table XXXVI). The final solution

contains 3 moles of H2S04 and 300 moles H20, so that the relative heat content is

3<t>L for 100H2O/1H 2SO 4 , i.e., 3 X 5,620 = 16,860 cal. Hence AH for mixing is

16,860
-

16,970
- 110 cai. The total AH for cooling and mixing is thus

-9,168 - 110 =-9,278 cal.

This value of AH must be equal in magnitude but opposite in sign to that re-

quired to heat the final solution to the final temperature. The heat capacity of

the solution is 300 X 17.97 + 3 X 16.55 = 5,441 cal. deg.~
l

. Hence, the increase

of temperature, above 25 C, is 9,278/5,441 = 1.71; the final temperature is,

therefore, 26.71 C.

441. Heat Capacities and the Debye-Hiickel Theory. By combining the

general equation (44.46) with the expression for L2 [equation (44.39)] derived
from the Debye-Htickel theory, it is found that for a solution containing a single

strong electrolyte,

V, T)>VS ergs deg.- mole-', (44.53)

where /(D, V 9 T) is a somewhat complicated function involving the first and second
derivatives of D and V with respect to temperature, at constant pressure. These

quantities are known only approximately, but for aqueous solutions at 25 C,
equation (44.53) becomes, after conversion to calories,

CPZ - CJ* = 4.7(1; "*!)
s/2Vc cal. deg.-

1 mole-1
. (44.54)

From this result, it is possible to obtain, by means of an equation of the form of

(42.7), an expression for the apparent molar heat capacity; thus,

</>c
- <$ + i X 4.7(2>i?)

8'2Vc cal. deg -i mole-*. (44.55)

It is doubtful if heat capacity measurements of sufficient reliability have yet
been made in solutions dilute enough for equations (44.53) to (44.55) to be ap-
plicable. It cannot be said, therefore, that the Debye-Hiickel limiting law for

heat capacities of electrolytes has been adequately tested. Such a test, involving
as it does two successive differentiations with respect to temperature of the Debye-
Hiickel equation for the activity coefficient (or electrical free energy), would be

extremely stringent.
20 It may be mentioned that, as in the case of the apparent

molar volume, both the apparent and relative molar heat capacities have been
found to vary in a linear manner with the square root of the concentration in the

range from about 0.2 to 3.0 molar. The slope of the plot of the heat capacity
function against Ve is specific, varying even among electrolytes of the same valence

10 Of. Young and Machin, /. Am. Chem. Soc., 58, 2254 (1936); Wallace and Robinson,
i&tdL, 63, 958 (1941).
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type. The slopes are, of course, quite different from the limiting values required

by the Debye-Htlckel equations.
11

EXERCISES

1. Derive an expression for t% in terms of dp/dc, analogous to equation (43.2).

The variation of the density of aqueous ammonium nitrate solutions with the

molarity (c) at 25 C is given by

p - 0.99708 + 3.263 X 10~2c - 9.63 X lO-V2 - 4.73 X lO-'c2 g. ml.-*

[Quaker, /. Phys. Chem., 38, 307 (1934)]. Determine the partial molar volume
of the salt in a 1.0 molar solution.

2. Show that if V is the volume of a solution consisting of m moles of solute

in 1,000 g. of solvent (i.e., molality m), then

where M 2 is the molecular weight of the solute and P2 is its partial molar volume
in the given solution.

3. The apparent molar heat capacity of sucrose in water is given as a function

of the molality by the expression

0c = 151.50 + 1.130m - 0.0466m2 cal. deg.~
l mole-1

[Gucker, Pickard and Planck, /. Am. Chem. Soc., 61, 459 (1939)]. Derive

expressions for CP\ and p2 ; C%1 is 18.02 cal. deg.~* mole"1
. Calculate the heat

capacity of a solution consisting of 1 mole of sucrose and 1,000 g. water.

4. Give in full the derivation of equation (42.13).

5. Prove that, in general, <t>o # so that the apparent molar value of any
property of a solution at infinite dilution is equal to the partial molar property of

the solute in the same solution.

6. When various numbers of moles (HI) of water were added to 9,500 g. of a
2.9 molar solution of strontium chloride at 25 C, the observed changes of heat

content were as follows:

HI 37.2 30.0 27.7 20.0 10.0 moles
A# - 129.8 - 113.3 - 109.2 - 86.3 - 48.5 cal.

[Stearn and Smith, /. Am. Chem. Soc., 42, 18 (1920)]. Evaluate the differential

heat of dilution, i.e., I/i, of the 2.9 molar strontium chloride solution.

7. The mean ionic activity coefficient of 1 molal sodium chloride was found
to be 0.641 at 80, 0.632 at 90 and 0.622 at 100 C [Smith and Hirtle, J. Am.
Chem. Soc., 61, 1123 (1939)]. Determine the value of 2 at about 90 C.

8. Using the values for Z* for hydrochloric acid solutions at various mobilities

at 25 C, calculate by a graphical method the values of L l at 0.1, 0.5, 1.0, 2.0 and
3.0 molal.

m Us m LI m LI\

0.0001 7.2 cal. 0.04 136 cal. 1.0 645 cal.

0.0016 28.6 0.10 202 2.0 1,055
0.01 71 0.50 430 3.0 1,484

n Randall and Rossini, ref 18; Rossini, ref. 18; Gucker, et al. t J. Am. Chem. Soc., 54,
1358 (1932); 55, 1013 (1933); 57, 78 (1935). For nonelectrolytea, see Gucker, 4 a*., ibid.,

59, 447, 2152 (1937); 61, 459 (1989).
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9. The values of C/ 2 Cj 2 for hydrochloric acid in the temperature range
from to 25 may be taken to be constant, viz., 2.4 cal. deg.~

A for 0.1 molal,
7.5 cal. deg.~

l for 1.0 molal, and 13.0 cal. deg.~
l for 3.0 molal. Use these results

together with the data in Exercise 8 to calculate the ratio of the mean ionic ac-

tivity coefficients of hydrochloric acid at the temperatures and 25 C for 0.1,

1.0 and 3.0 molal solutions. What error is involved in neglecting the variation

of L2 with temperature, i.e., in taking Cp z C%2 to be zero?

10. Making use of the known heats of formation of lead dioxide, pure sulfuric

acid, lead sulfate and water, and of the data in Table XXXVI, determine the

change of heat content for the reaction

Pb + PbO 2 + 2H 2SO 4(25 aq) 2PbSO4 + 2H 2O(N!/N 2 - 25.0)

which takes place in the lead storage battery. (Compare Exercise 4, Chapter V
\vhich is for a slightly different concentration of acid.)

11. Upon mixing chloroform and the dimethyl ether of ethylene glycol, the

following changes of heat content, per mole of mixture, were observed for various

mole fractions (N) of chloroform at 3 C:

N 0.1 0.2 0.4 0.5 0.6 0.8 0.9

AH -290 -560 -1010 -1180 -1180 -720 - 400 cal.

[Adapted from Zellhofer and Copley, /. Am. Chem. Soc., 60, 1343 (1938).] De-
termine S H for each component by a graphical method at the mole fractions

0.2, 0.4, 0.6 and 0.8, and plot the results. Does the system exhibit positive or

negative deviations from ideal behavior?

12. Pure acetone has a vapor pressure of 185.2 mm. and ether one of 443.5 mm.
at 20 C. For a liquid mixture containing 0.457 mole fraction of the former, the

respective partial vapor pressures are 105.2 and 281.8 mm., respectively. Assum-

ing ideal behavior of the vapors, determine the partial molar free energy F F9

of each constituent of the mixture, relative to that of the pure liquid.

13. The B.M.P. of the H 2
| HCl(m) | AgCl(s), Ag cell can be expressed as a func-

tion of the temperature of the form

E* = E + a(t
-

25) + b(t
- 25)

2
,

t being on the centigrade scale. The following values of a and 6 were obtained

for various molalities of hydrochloric acid, and for the standard (hypothetical
1 molal ideal) solution:

m 0.001 0.01 0.1 1.0 Standard

a X 10* 560.1 177.9 - 180.5 - 512.1 - 639.64

b X 106 - 3.149 - 3.041 - 2.885 - 2.541 - 3.181.

Determine L2 and p2 C%^ f r each solution at 25 C [Harned and Ehiers,

J. Am. Chem. Soc., 54, 2179 (1933)].
14. The apparent relative molar heat contents <z, of potassium chloride in

aqueous solution at 25 C at various molalities are as follows:

m <!>L m <f>L m <!>L

0.01 38 cal. mole-1 0.50 48 2.00 - 169

0.05 69 0.70 18 3.00 - 300
0.10 78 1.00 26 4.00 - 405

0.20 81 1,50 - 99 4.50 - 448
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Plot <t>L against m1/s and hence verify the values of L\ given below.

m Irs m Z/i

0.10 01 cal. mole**1 2.00 - 446
0.20 72 3.00 -648
0.60 - 21 4.00 - 782
1.00 - 176 4.82 (sat.)

- 840

(Data from Harned and Owen, ref . 8.)

15. The heat of solution of solid potassium chloride to form an infinitely

dilute solution at 25 C is + 4,120 cal. mole"1
. Use this result and the data in

the preceding exercise to determine (i) the magnitude and sign of the heat change
when 1 mole of KC1 is dissolved in sufficient water to make a saturated solution

(4.82 molal); (ii) the integral heat of dilution of a 4.0 molal solution to 0.1 molal,

per mole KC1; (iii) the heat change per mole KC1, apart from heat of vaporization,

required to concentrate a 0.01 molal solution to the saturation point; (iv) the heat

change when 1 mole of KC1 separates from a large amount of saturated solution;

(v) the heat change when 1 mole of KC1 is added to a solution consisting of 1 mole
of KC1 and 1000 g. water; (vi) the heat change when 1 mole of KC1 is added to a

very large amount of a 1 molal solution; and (vii) the heat change, apart from
heat of vaporization, for the removal of 1 mole of water from a large amount of

a 1 molal solution. Give the sign of AH in each case.

16. Verify equation (44.41) by using the expression for Fe\. given by (40.6)
17. Show that for a solution consisting of n\ moles of solvent and na moles of

solute the following relationship holds: H* (integral heat of solution differential

heat of solution) = n\ (differential heat of dilution).

18. The following thermal properties have been recorded for sodium hydroxide
solutions at 20 C [adapted from Akerldf and Eegeles, /. Am. Chem. Soc., 62, 620

(1940)]:

m cal. mole""1 cal. degr1 mole~l

0.6
V

0.6 - 14 17.96 - 11.3

1.0 2.4 - 162 17.81 - 1.6

1.5 4.4 -260 17.64 4.4

2.0 6.3 - 276 17.46 7.8

3.0 0.3 - 170 17.16 9.7

4.0 - 16.1 88 16.94 7.7

Assuming the heat capacities to be independent of temperature, determine the
final temperature when 1 mole of solid NaOH is dissolved in 1,000 g. water, given
that the heat of solution to form an infinitely dilute solution is 10,100 cal.

Determine the final temperature in each of the following cases: (i) 1,000 g.

water are added to a solution consisting of 4 moles NaOH and 1,000 g. water;
(ii) 2 moles NaOH are added to a solution containing 2 moles NaOH and 1,000
g. water; (iii) a solution consisting of 1 mole NaOH and 600 g. water is mixed
with one consisting of 0.6 mole NaOH and 1,000 g. water.

19. Show that if the vapor behaves as an ideal gas, the relative partial molar
heat content L\ of the solvent in a solution is given by
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where PI is the vapor pressure in equilibrium with the solution, of constant compo-
sition, and p\ is that of the pure solvent; the external (total) pressure P is supposed
to be 1 atm. Hence suggest possible methods for the determination of L\ of a

given solution.

20. Show that in very dilute solution the nonelectrical factor yn.*. in the

activity coefficient of an electrolyte, defined in 43c, is independent of tempera-
ture, at constant pressure and composition.



CHAPTER XIX

E.M.F.'S AND THE THERMODYNAMICS OF IONS

45. E.M.F.'s AND ELECTRODE POTENTIALS

45a. Reversible Cell and Reversible Electrodes* It was seen in Chapter
XIII that the E.M.F. of a reversible cell is a measure of the free energy change
of the process taking place in the cell, and this fact has been already utilized

to determine activities and activity coefficients. There are, however, many
other useful applications of reversible cells, and some of these will be de-

scribed in the succeeding sections. It is desirable, in this connection, to

consider first the fundamental structural basis of reversible galvanic cells.

Every reversible cell consists of at least two reversible electrodes, and several

types of such electrodes are known. The first type of reversible electrode

consists of an element in contact with a solution of its own ions, e.g., zinc in

zinc sulfate solution or silver in silver nitrate solution. Although electrodes

of this kind usually involve metals, certain nonmetals yield reversible elec-

trodes, at least in principle; these are hydrogen, in particular, and also

oxygen and the halogens, the corresponding ions being hydrogen, hydroxyl
and halogen ions respectively.

1" Since the electrode material is a noncon-
ductor and often gaseous when the element is a nonmetal, a sheet of platinum,
or other inert conductor, coated with a finely 'divided layer of this metal,
is employed for the purpose of maintaining electrical contact.

If the reversible Clement is a metal or hydrogen, which is in equilibrium
with positive ions (cations), the reaction occurring at the electrode when it

forms part of a cell may be formulated as

M ^t M**- + *s,

where represents an electron; the valence of the cation in this case is z
y

so that it carries z positive charges. The direction of the reaction indicated

depends on the direction of flow of current through the cell of which the
electrode under consideration is part. If the electrode element is a non-
metal A, the corresponding reactions are

A~ :? A + a*,

where A.*~ is the negative ion (anion) of valence , e.g., OH~, Cl~. With an
oxygen electrode, which is theoretically reversible with respect to hydroxyl

*
Although no method has yet been found for establishing a reversible oxygen gas-

hydroxyl ion solution electrode, this electrode is possible in principle; other electrodes, e.g.,
nickel in a nickel salt solution, are somewhat similar. Such electrodes will be referred to
as "theoretically reversible" or as "reversible in principle.'

1

402
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ions, the reaction may be written

2OH- ^ JO* + H2O + 2t.

Electrodes of the second type consist of a metal and a sparingly soluble

salt of this metal in contact with a solution of a soluble salt of the same anion.

An example of this form of electrode consists of silver, solid silver chloride

and a solution of a soluble chloride, e.g., hydrochloric acid, viz.,

Ag,AgC100|HClsoln.

The reaction in this electrode consists, first, of the passage of silver ions

into solution, or the reverse, i.e.,

Ag(s) ^ Ag+ + 6,

and this is followed by interaction of the silver ions with the chloride ions

in the solution, i.e.,

Ag+ + Oh ^ AgCl(s)

to form the slightly soluble salt silver chloride. The net reaction is then

Ag + Cl-;=AgCl(s)+,

which is essentially the same as that of a chlorine electrode,

except that the silver chloride is to be regarded as the source of the chlorine.

Electrodes of the type under consideration are thus reversible with respect
to the common anion, namely, the chloride ion in this case. The Ag, AgCl
electrode is thermodynamically equivalent to a chlorine gas electrode with
the gas at a pressure equal to that in equilibrium with silver chloride dis-

sociating at the experimental temperature (cf. 45j) according to the

reaction

AgCl(s) - Ag(s) +
Electrodes of this kind have been made with other similar halides, e.g., silver

bromide and iodide, and mercurous chloride and bromide, and also with
various sparingly soluble sulfates, oxalates, etc.

The third type of reversible electrode consists of an inert metal, e.g., gold
or platinum, immersed in a solution containing both oxidized and reduced states

of an oxidation-reduction system, e.g., Fe*4" and Fe^4"*", Fe(CN)<f
--- and

Fe(CN) , and Mn++ + 4H2O and MnOr + 8H+ The purpose of the

inert metal is to act as a conductor for making electrical contact, just as with
a gas electrode. The oxidized and reduced states may consist of more than
a single species, as in the case of the manganous ion-permanganate system,

just given, and the substances involved are not necessarily ionic. For ex-

ample, in an important type of reversible electrode the oxidized state is a

quinone, together with hydrogen ions, while the corresponding hydroquinone
is the reduced state. Electrodes of the kind being considered are sometimes
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called oxidation-reduction electrodes or redox electrodes; the chemical reac-

tions occurring at these electrodes are either oxidation of the reduced state

or reduction of the oxidized state, e.g.,

Mn++ + 4H2 ^ MnOr + 8H+ + 5c,

depending on the direction of the current through the cell. In order that

the electrode may behave reversibly, it is essential that both oxidized and
reduced states of the given system should be present.

The three types of reversible electrodes described above differ formally,
as far as their construction is concerned; nevertheless, they are all based on
the same fundamental principle. A reversible electrode always involves an
oxidized and a reduced state, using the terms "oxidized" and "reduced" in

their broadest sense; thus, oxidation refers to the loss of electrons, and reduc-

tion means gain of electrons. If the electrode consists of a metal M and its

ions M"1
"
the former is the reduced state and the latter is the oxidized state.

Similarly, for an anion electrode, the A~ ions are the reduced state and A
represents the oxidized state. In the Ag, AgCl electrode, the metallic silver

and the chloride ions together form the reduced state of the system, while

the silver chloride is the oxidized state. It can be seen, therefore, that all

three types of reversible electrodes are made up from the reduced and
oxidized states of a given system, and in every case the electrode reaction

may be written in the general form

Reduced state ^ Oxidized state + Nc,

where N is the number of electrons by which the oxidized and reduced states

differ.1

45b. Reactions in Reversible Cells. The reaction occurring at a re-

versible electrode is either oxidation, i.e.,

Reduced state > Oxidized state + Nc,
or reduction, i.e.,

Oxidized state + Nc > Reduced state.

It can be seen, therefore, that in a reversible cell consisting of two reversible

electrodes, there is a continuous flow of electrons, and hence of current, if

oxidation occurs at one electrode, where electrons are set free, and reduction

occurs at the other electrode, where the electrons are taken up. According
to the convention widely adopted, the E.M.F. of the cell is positive when oxida-

tion takes place at the left-hand electrode of the cell as written, reduction occurring
at the right-hand electrode^ as a result of spontaneous operation. If the E.M.F.

is positive, there is thus a tendency for electrons to pass from left to right

through the wire connecting the electrodes outside the cell. If the reverse

is the case, so that reduction is taking place at the left-hand electrode and
oxidation at the right-hand electrode, the E.M.F. of the cell as written is

1 See 8. Gladstone, "An Introduction to Electrochemistry/' 1042, Chapter VI.
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negative. If the cell is written in the opposite direction, the sign of its

E.M.F. would be reversed; it is important, therefore, to pay special attention

to the actual representation of the cell.

If the sign of the E.M.F. of a cell is known, there is no uncertainty con-

cerning the direction of the reaction, but if it is not available, the reaction

is written as if oxidation takes place at the left-hand electrode. By utilizing
the general information concerning electrode reactions, it is usually a simple
matter to determine the process taking place in a particular cell. Consider,
for example, the cell

Pt, H2 (1 aim.) | HCl(m) | AgCl(), Ag,

referred to in 39h; assuming the process at the left-hand electrode to be

oxidation, i.e., liberation of electrons, it may be written as

$H2 (1 atm.) = H+ + *,

whereas at the right-hand electrode, the reduction process is

AgCl() + c - Ag(s) + C1-,

so that the complete cell reaction is

4H2 (1 atm.) + AgCl(s) H+(m) + Cl~(m)

the hydrogen and chloride ions,* representing hydrochloric acid, being
formed at the molality m existing in the cell. The complete reaction would
occur for the passage of 1 faraday of electricity, for 1 electron only is involved

in each individual electrode process as written.

If the cell had been written in the reverse direction, viz.,

Ag, AgCl(s) | HCl(m) |
H2 (1 atm.), Pt,

the reaction would be exactly opposite to that given above; thus, for 1

faraday,

Ag() + H+(m) + Cl-(m) - AgCl(s) + H2 (1 atm.).

In this case the silver is oxidized to silver chloride at the left-hand electrode,
while hydrogen ions are reduced to hydrogen gas at the right-hand electrode.

At moderate concentrations of hydrochloric acid the cell in this form has a

negative E.M.F., and so the spontaneous cell reaction is the reverse of that

given here, coinciding with the direction given above.

Another example of a reversible cell for which the reaction is of interest is

Ag | AgClO4 soln. Fe(ClO4) 2, Fe(ClO4)3 soln.
| Pt,

equivalent to

Ag|Ag+ Fe++, Fe+++|Pt.

* The ions are, of course, hydrated in solution; this may be understood without actually
indicating the inclusion of water molecules,



466 E.M.F.'S AND THE THERMODYNAMICS OP IONS 4Sc

Assuming oxidation to take place at the left-hand electrode, the process is

Agfa) - Ag+ + ;

whereas at the right-hand electrode the reduction process is

Fe+++ + - Fe++

so that the complete cell reaction, for the passage of 1 faraday, is

Ag(s) + Fe+++ = Ag+ + Fe++

with the ions in solution, i.e.,

Ag(s) + Fe(C10 4) 3
= AgC10 4 + Fe(ClO 4) 2 .

45c. Change of Heat Content in Cell Reaction. The E.M.F. of a re-

versible cell is related to the free energy change AF of the reaction occurring
within it, at constant temperature and pressure, by equation (33.36), viz.,

AF = - NFE, (45.1)

where E is the E.M.F., and N is the number of faradays (F) required for the

cell reaction. If the entropy change for the process were known it would
be possible to determine the change in heat content Aff, i.e., the heat of

reaction at constant pressure, at the given temperature. Alternatively,
AS for the reaction may be determined, as indicated in 33m, from the

temperature coefficient of the E.M.F. of the cell. As given in that section,
the treatment referred in particular to the standard entropy change, but the

results are applicable to any conditions existing in the cell.

The matter may be treated quite generally by utilizing the Gibbs-
Helmholtz equation (25.31), viz.,

p
, (45.2)

so that combination with (45.1) gives

or

(45.3)

From this equation it is possible to calculate Aff for any cell reaction, irre-

spective of whether the substances involved are present in their standard

states or not. It will be evident that the term NF(dE/dT)p is equivalent
to AS, the entropy change for the cell reaction.

Problem: The E.M.F. of the cell

Zn
|
ZnCi 2 (l .Om) | AgCl(), Ag
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is 1.015 volts at C and 1 .005 volts at 25 C. Assuming the temperature coef-

ficient to be approximately constant in this vicinity, calculate the heat change of

the cell reaction at 25 C.

First, consider the actual cell reaction. Since the E.M.P. is positive, oxidation

takes place at the left-hand electrode; thus,

Zn(s)

The simultaneous reduction reaction at the right-hand electrode is

2AgCl(*) + 2e-> 2Ag() + 2Cl~,

so that the complete cell reaction is

Zn(s) + 2AgCl(s) = Zn++(lm) + 2Cl-(2m) + 2Ag(s),

or

*+ 2AgCl(s) = ZnCl 2(lm) + 2Ag(s),

for the passage of 2 faradays, since 2 electrons are involved in each electrode

process.* It will be noted that the Zn++ + 2Cl~~ is equivalent to zinc chloride

in the 1 molal solution existing in the cell.

The heat of the reaction as written may be obtained from equation (45.3).

By taking F, the faraday, as 23,070 cal. volt"1
g. equivr1

(Table 1, Appendix) with
E in volts and (dE/dT)p in volt.deg."

1
,
the value of AH will be in calories. At

25 C, E is 1.005 volts and (OE/dT) P may be taken as equal to AE/AT, i.e.,

(1.005 1.015)/25 = - 4.0 X 10~4 volt deg."
1

. Hence, since N is 2 equiv. in

this case, it follows that at 25 C, i.e., 298.2 K,

A// = - 2 X 23,070[1.005 + (298.2 X 4,0 X 10~4
)]

= - 51,830 cal. = - 51.83 kcal.

It may be noted that since the zinc chloride solution is 1 molal, the ionic activities

are somewhat different from unity and vary with temperature; hence AH as

calculated is not quite the same as the standard value, although the difference

would probably be less than the experimental error.

45d. General Expression for E.M.F.'s of Reversible Cells. Suppose
that the general reaction

aA + 6B H---- = IL + raM H----

can take place in a reversible cell of E.M.F. equal to E, for the passage of N
faradays; for this reaction the free energy change AF is NFE, with the

substances A, B, . . .
, L, M, etc., at the activities actually existing in the cell.

If these substances were all in their respective chosen standard states, the

E.M.F. would be the standard value
,
and the standard free energy change

AF would-be - NFE?.

* It would be quite permissible to write the reaction as

JZn() + AgCl(s) - JZnCl2(lw) -f Ag(s)

for the passage.of one faraday.
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According to the reaction isotherm derived in 33a, the free energy

change of the process is represented by

AF - AF + RT In ^ X a
?
X ' "

(45.4)
al X 4 X ^

+ #T In J, (45.5)

ej as in 32c, the symbol Ja indicates a function of the same form as

the equilibrium constant involving, in this instance, the activities of the

various substances in the given cell. Replacing &F by NFE and AF
by W, the result is

Ja, (45.6)

which is the general equation for the E.M.F. of any reversible cell.

In order to employ equation (45.6), the values may be inserted for the

constants R and F; since E is almost invariably expressed in volts, F may
be conveniently used in coulombs g. equiv."

1
,
and R in int. joules (i.e.,

volt-coulombs) deg."
1 mole""1

(see Table 1, Appendix). Upon converting
the logarithms, therefore, equation (45.6) becomes

2.3026X8.313 TE ~
96^00 A

= - 1.984 X 10-
-^

log Ja volts. (45.7)

At 25 C, which is the temperature commonly employed for E.M.F. measure-

ments, T is 298.16 K, and hence

E = E> - -

i g Jm volts. (458)
IV

The application of the foregoing equations may be illustrated with refer-

ence to the cells considered in 45b. Thus for the cell Pt, H2 (1 atm.) |

HCl(?n)| AgCl(s), Ag, the reaction for 1 faraday (N =
1) is

iH2 (1 atm.) + AgClW = H+ + 01" + Ag(),

and hence, by equation (45.6),

E = _ ln
F a

Since the silver and silver chloride are present as solids, they are in their

conventional standard states;
* hence a\K and aAgci niay be set equal to

unity. Further, the hydrogen gas is at a pressure of 1 atm. and although
* Unless there is a specific statement to the contrary, it may be assumed that the ex-

ternal pressure is 1 atm., so that pure solids taking part in cell reactions are in their standard
states.
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this does not represent unit fugacity, the departure from ideal behavior is

so small that the difference is quite negligible; hence the hydrogen gas may
be regarded as being in its standard state, so that OH, is also unity. Conse-

quently, equation (45.9) becomes

<> - In aH+acr. (45.10)

Another convenient form of this equation is obtained by replacing

by (and)
2 in accordance with (39.6) ; hence,

(45.H)

where anci is the mean activity, i.e., a, of the hydrochloric acid in the cell

solution. The standard E.M.F. of the cell is seen to be its E.M.F. when the

product of the activities of the hydrogen and chloride ions, or the activity
of the hydrochloric acid, in the cell is unity. Actually this standard E.M.F.

was determined by the extrapolation procedure described in 39h, its value

being 0.2224 volt at 25 C.

For the other cell considered in 45b, involving silver and iron per-

chlorates, the reaction for 1 faraday is

Ag(i) + Fe+++ = Ag+ + Fe++,

so that the E.M.F. is given by

g-P-g: la *-*****, (45.12)F aFe+++

the activity of the solid silver being omitted, since this is unity. In general,
the activity factors for substances which are present in the cell in their

standard states may be omitted from the expression for the E.M.F.

45e. Single Electrode Potentials. There is at present no method avail-

able for the experimental determination of the potential of a single electrode;
it is only the E.M.F. of a cell, made by combining two or more electrodes,
which can be actually measured. In fact, it is doubtful if absolute single
electrode potentials, like single ionic activities, have any real thermodynamic
significance. However, by choosing an arbitrary zero of potential, it is

possible to express the potentials of individual electrodes on an arbitrary
reference scale. The zero of potential used in thermodynamic studies is the

potential of a reversible hydrogen electrode with gas at 1 atm. pressure (or

ideally, unit fugacity) in a solution containing hydrogen ions at unit activity.
This particular electrode, i.e., H* (1 atm.), H+(aH+ = 1), is the standard

hydrogen electrode, since both the hydrogen gas and the hydrogen ions are

in their respective standard states of unit activity. The convention given
above, therefore, is to take the potential of the standard hydrogen electrode as
zero at all temperatures; electrode potentials baaed on this scale are said to

refer to the hydrogen scale.
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If any electrode, e.g., one consisting of the metal M in contact with a

solution of its ions M*+, is combined with the standard hydrogen electrode

to make the complete cell

M
| M+(a+) H+(aH+ - 1) |

H f (1 atm.),

the potential of the left-hand electrode, on the hydrogen scale, would be

equal to the measured E.M.F. of the cell, since the potential of the right-

hand electrode is zero, by convention.* The reaction taking place in this

cell for the passage of z+ faradays is

M() + *+H+(aH+.= 1) =* M-+(a+) + i*+H, (1 atm.),

and since the solid metal M, the hydrogen ions and the hydrogen gas are all

in their standard states, it follows immediately, from equation (45.6), that

the E.M.F. of the cell or the potential of the electrode is given by

(45.13)

where a+ is the activity of the M+ ions in the electrode solution. The
standard electrode potential JEjj is seen from equation (45.13) to be that

when the M 1* ions in the solution are at unit activity.

If the electrode is reversible with respect to an anion of valence Z-., so

that the cell obtained by combining it with a standard hydrogen electrode is

A
| A-(a_) H+(aH+ - 1) I

Ht (1 atm.),

the cell reaction for z_ faradays is

A*~(a_) + *_H+(aH+ = 1)
= A + s_H2 (1 atm.).

Here again, the electrode potential is equal to the E.M.F. of the cell, given

by equation (45.6) as

RT 1

a_, (45.14)

where a_ is the activity of the A*~ ions in the electrode solution; the non-
metal A is assumed to be in its standard state. As before, the standard

potential 1% of the electrode is that when the reversible ions, i.e., A*~, are

present at unit activity.
The results just derived may be put in a general form applicable to

electrodes of all types. When any reversible electrode is combined with a
standard hydrogen electrode, as depleted above, an oxidation reaction takes

place at the former, while at the latter the hydrogen ions are reduced to

*It 10 tacitly assumed here, and subsequently, that liquid-junction potentials, i.e.,

potentials existing at the junction between two different solutions, do not arise or else have
been completely eliminated.
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hydrogen gas. Writing the electrode process in the general form given at

the end of 45a, viz.,

Reduced state = Oxidized state + Afe,

and the corresponding hydrogen electrode reaction as

NH+(an+ = 1) + Afc - 4ATH2 (1 atm.),

the complete cell reaction for the passage of N faradays is

Reduced state + NK+(aH+ = 1)
= Oxidized state + MI2 (1 atm.).

The E.M.F. of the cell, which is equal to the potential of the reversible elec-

trode under consideration, is then obtained from equation (45.6) as

o RT , (Oxidized state) f
. ,

e\. -rr= m -
, (45.15;

(Reduced state)

the activities of the hydrogen gas and hydrogen ions being omitted since they
are both unity in the standard hydrogen electrode. This equation, in which
the parentheses are used to indicate the product of the activities of the

substances concerned, is completely general, and expresses the potential of

any electrode on the hydrogen scale. The standard potential E&. is that

for the electrode when all the substances concerned are present in their

respective standard states of unit activity.

In the case of an electrode consisting of a metal M (reduced state)and
its ions M*+ (oxidized state), the activity of the reduced state, i.e., the metal,
is unity; hence, the general equation (45.15) becomes equivalent to (45.13),

since N is now equal to z+. On the other hand, for an electrode involving
anions A*~ (reduced state) and A (oxidized state), the activity of the latter

is unity, and equation (45.15) becomes identical with (45.14).

For an electrode containing a conventional oxidation-reduction system,
terms are included in both numerator and denominator of equation (45.15).
For example, if the system is manganous-permanganate ions, as given in

45a, the expression for the electrode potential is

the solution being assumed to be dilute enough for the activity of the water
to be taken as unity (cf. 38c, problem).

45f. Sign of Electrode Potential. It will be recalled that in deriving

equation (45.15) for the potential of an electrode on the hydrogen scale, the

electrode was placed at the left in the hypothetical cell in which it was com-
bined with a hydrogen electrode. The reaction taking place in the cell,

as seen above, involved the conversion of the reduced state to the oxidized

state of the (left-hand) electrode system. For this reason, the potentials

given by equation (45.15), and also by the related equations (45.13) and

(45.14), are Called oxidation potentials. If the electrode had been written
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to the right of the cell, the reaction taking place within it would be reduction,
and the potential would be equal to the value given by equation (45.15) but

with the sign reversed. The reduction potential of any electrode is thus equal
in magnitude, but of opposite sign, to the corresponding oxidation potential.

In order to indicate whether the process in a particular electrode is to be

regarded as oxidation or reduction, a simple convention is employed. If

the electrode material is a metal, an oxidation electrode is represented by
writing the reduced state of the system to the left and the oxidized state to

the right; the following, for example, are all oxidation electrodes:

Cu, Cu++ (e.g., CuSO4 soln.) ; Ag, Ag+ (e.g., AgNO3 soln.) ;

Ag, AgCl(s), Cl- (e.g., KC1 soln.).

The potentials of these electrodes are given by the appropriate forms of

equation (45.15).

If the electrodes are written in the reverse manner, with the oxidized

state to the left and the reduced state to the right, viz.,

Cu++ Cu; Ag*, Ag; Cl", AgCl(), Ag,

it is implied that the electrode process is reduction, and the potential is

given by equation (45.15) with the sign reversed.

When the electrode material is nonmetallic, and an inert metal must be
used to act as an electrical conductor, the convention is to write the symbol
of the inert metal, e.g., Ft, to the left when an oxidation electrode is implied
and to the right when a reduction process is to be inferred. The order of

writing the components of the solution is immaterial, although if one is a

gas or a sparingly soluble liquid or solid it is usually written next to the
inert metal. The following are oxidation electrodes:

Pt, C12, C1-; Pt, 2, OH-; Pt, I2, 1"; Pt, Fe++ Fe+++,

and the corresponding reduction electrodes are:

Cl- C12, Pt; OH- O2, Pt; I~, I 2, Pt; Fe^, Fe+++ Pt.

If these conventions are rigidly adopted, many of the complexities which are

to be found in the literature become unnecessary.
2

If any two reversible electrodes are combined to form a reversible

cell, e.g.,

Pt,Cl,(0)|Cl-|AgCl(a),Ag,

then in accordance with the conventions given above the process at the left-

hand electrode is presumed to be oxidation, while at the right-hand electrode

a reduction is supposed to take place when the cell operates spontaneously,

upon closing the external circuit. It will be noted that this is in agreement
with the convention adopted in 45b. The E.M.F. of a complete cell is then

* G. N. Lewis and M. Randall, "Thermodynamics and the Free Energy of Chemical

Substances," 1928, p. 402.
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equal to the algebraic sum of (he potentials of the two electrodes, one being an
oxidation potential and the other a reduction potential. Assuming, for sim-

plicity, that in the cell depicted above the chlorine gas is at 1 atm. pressure
and the activity of the chloride ions is unity, the (oxidation) potential of

the left-hand electrode is found experimentally to be 1.358 volt, and the

(reduction) potential of the right-hand electrode is + 0.2224 volt, at 26 C.
The E.M.F. of the cell as written is therefore 1.358 + 0.222 1.130
volt. The negative sign shows immediately that if this cell were to be

constructed, then upon closing the circuit there would actually be reduction
at the chlorine gas electrode and oxidation at the silver electrode. By
writing the cell in the opposite direction, i.e.,

Ag,AgCl()|Cl-|Cl,G/),Pt,

the E.M.F. would be 1.136 volt, indicating that the spontaneous cell reaction
involves oxidation at the left-hand electrode, viz.,

Ag() + Cl- - AgCl(s) + c,

and reduction at the right-hand electrode, viz.,

*GU + - Cl-

The net reaction in the cell when the circuit is closed is therefore

Ag() + *C1(0) ~ AgCl(s),

that is, the formation of solid silver chloride from solid silver and chlorine

gas; this is in agreement with expectation, for the reverse reaction would
certainly not be spontaneous at ordinary temperature and pressure.

Attention may be called to a matter of interest in connection with the
E.M.F. of a cell. As seen above, the latter is the sum of an oxidation and
a reduction potential, and this is equivalent to the difference of two oxidation

potentials. As a consequence, the E.M.F. of a cell is independent of the

arbitrary zero chosen for the representation of single electrode potentials;
the actual value of the zero of the scale, whatever it may be, cancels out
when taking the difference of two potentials on the same scale.

45g. Standard Electrode Potentials. For the purpose of recording elec-

trode potentials the important quantity is the standard potential for any
given system. The actual value of this potential depends on the chosen
standard states; as usual, pure solids and liquids at atmospheric pressure
are taken as being in their standard states, and the standard state of an ion
is generally chosen so that the ratio of the activity to the molality becomes
unity in very dilute solution ( 37b, 39a). The activities of ions are thus

expressed in terms of their respective molalities. Once its standard poten-
tial is known the potential of an electrode containing arbitrary activities

(concentrations) of the various substances concerned can be readily calcu-
lated by means of the appropriate form of equation (45.15). The obvious
method of determining the standard potential of any electrode is to set up
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this 'electrode with the components at known activities, to combine it with

a standard hydrogen electrode, and then to measure the E.M.F. of the result-

ing cell. This will give the potential of the electrode on the hydrogen scale.

By inserting the value for E in equation (45.15) and using the known activi-

ties, the standard potential J5 can be evaluated. Actually this procedure
is not simple: the standard hydrogen electrode is not always a practical

device, the activities of the cell substances are not necessarily known, and
there is always the possibility of a junction between two liquids in the cell

which introduces an uncertain "liquid junction" potential.
One way whereby the difficulties are overcome is to use a reference

electrode, of a form more convenient than the hydrogen electrode, as a

secondary standard. One such reference electrode is the silver-silver chlor-

ide electrode. As already seen, the standard E.M.F. of the cell formed by
combining a hydrogen electrode with this electrode is 0.2224 volt at 25 C
( 39h, 45d); thus, the E.M.F. of the cell

Pt, H, (1 atm.) | H+(aH+ - 1) Cl-(acr - 1) | AgCl(), Ag

is 0.2224 volt. The left-hand electrode is the standard hydrogen electrode,
and so its potential, by convention, is zero; thus the standard reduction

potential of the silver chloride electrode, viz.,

is 0.2224 volt at 25 C.

In order to determine the standard potential of a metal forming a soluble,

highly dissociated chloride, e.g., zinc, the measurements are made on cells

of the type
Zn

| ZnCh(m) | AgCl(s), Ag.

The cell reaction for the passage of 2 faradays is

Zn() + 2AgCl() - 2Ag() + Zn++ + 2C1-,

and since the solid zinc, silver chloride and silver are in their respective

standard states, the B.M.F. is given by equation (45.6) as

- %W ln z ++ cr. (45.16)

The activity of each ionic species may be represented as the product of its

molality and its (stoichiometric) activity coefficient; hence aza++ is equal to

my+ and acr to 2my_, where m is the molality of the zinc chloride solution

in the cell. By equation (39.9), 7+7! is equal to 7*, where 7* is the mean
ionic activity coefficient; hence equation (45.16) becomes

RT. . 3RT
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which, upon rearrangement, gives

E + ~l

The problem of evaluating JS is now similar to that in 39h. The simplest

procedure is to determine the E.M.F. of the cell for various molalities of zinc

chloride, and to plot the values of E + (RT/2F) In 4m8 as ordinate against
a function of the molality, e.g., -fin, as abscissa. At infinite dilution, i.e.,

when m is zero, the right-hand side of equation (45.17) is equal to
, since

7 is then unity and In y is zero. The extrapolated value of the ordinate

for m is thus equal to . Alternatively, the method of extrapolation

utilizing the Debye-Htickel limiting law, as in 39h, may be employed.
The value of J2 for the cell was found to be 0.9834 volt at 25 C, and

since the standard (reduction) potential of the right-hand i.e., silver chloride,

electrode was recorded above as 0.2224 volt, it follows that the standard

(oxidation) potential zn of the zinc electrode is given by zn + 0.2224
- 0.9834 volt, so that JEJL is 0.7610 volt at 25.

If the chloride of the metal is not suitable, for one reason or another, the

sulfate may prove satisfactory. In this event a sulfate reference electrode,

e.g., SO", HgaSO4(s), Hg may be employed in place of the silver chloride

electrode. The standard (reduction) potential of this electrode has been

found to be 0.6141 volt at 25 C, by means of measurements similar to those

described in connection with the silver chloride cell in 39h.

In some cases, e.g., the silver-silver ion electrode, neither the chloride

nor the sulfate is satisfactory because of their sparing solubility. It is then

necessary to construct cells containing solutions of the nitrate, e.g., silver

nitrate: There is, however, no nitrate reference electrode, and a chloride

electrode is employed, the two solutions being separated by a solution of

an inert electrolyte, constituting a "salt bridge.
11 Due allowance must then

be made for liquid junction potentials, but as the values of these potentials

are somewhat uncertain, the results are not always highly accurate.*

45h. Standard Potentials from Equilibrium Constants and Free Energy
Data. When direct measurement of electrode potentials is not convenient

or when the allowance for the activity coefficients is uncertain, it is often

possible to determine the standard electrode potential by indirect procedures.
One of these is based upon the relationship AF = NF&, where JE is the

standard E.M.F. of a cell, and AF is the standard free energy change of the

reaction taking place within it. As seen in 33b, AF is related to the equi-
librium constant K of the reaction, i.e., AF RT In K Qsf. equation

(33.6)], and hence it follows that

RTfaK,

lC, (45.18)

'For descriptions of determination of standard potentiate, see Lewis and Randall,
ref. 2, Chapter XXX; see also, D. A. Maclnnes, "The Principles of Electrochemistry/'

1939, Chapters 10 and 16; G'asetone, ref. 1, Chapters VTI and VIII.
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or at 25 C,

(45.19)

It is seen, therefore, that if the equilibrium constant of a reaction could be

determined experimentally, the standard E.M.F. of the cell in which that

reaction takes place can be calculated. The constant K is, of course, the

true (thermodynamic) equilibrium constant, and in its determination allow-

ance should be made for departure of the solution from ideal behavior, either

by including activity coefficients or by extrapolation to infinite dilution.

The method may be illustrated by reference to the Sn, Sn++ electrode.

If combined with a Pb, Pb+4
~

electrode there would be obtained the cell

Sn|Sn++ Pb++|Pb,
in which the reaction

Sn() + Pb++ - Sn++ + Pb()

would take place for the passage of 2 faradays. The equilibrium constant
K is given by

the activities of the solid tin and lead being unity. By shaking finely

divided metallic tin and lead mth a solution containing the perchlorates of

these metals, and analyzing the solution after the equilibrium

Sn(s) + PbClO4(o$) ^ SnClO4(og) + Pb(*)

was established, the value of K was found to be 2.98 at 25 C. Upon inser-

tion of this result into equation (45.19), the standard E.M.F. of the tin-lead

cell, depicted abovg, is found to be

log 2.98 = 0.014.

This is equal to the standard (oxidation) potential of the Sn, Sn++ electrode

minus that of the Pb, Pb4"1
"

electrode; the latter is known to be 0.126 volt,
and so the standard (oxidation) potential of the Sn, Sn++ electrode is 0.140

volt at 25 C.4

The same method has been used to determine the standard potential of

the ferrous-ferric electrode, by considering the cell

Ag|Ag+

in which the reaction, for the passage of 1 faraday, is

Ag(s) + Fe-H-n _ Ag+ + Fe++

The value of K for this equilibrium was given as 0.63 at 25 C in 41h, and
4 Noyee and Toabe, /. Am. Chem. Soc., 39, 1537 (1017).
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hence the standard E.M:F. of the cell is found to be 0.016, by equation

(45.19). The standard (oxidation) potential of the Ag, Ag+ electrode is

known to be - 0.799 volt, and hence that of the Pt, Fe++, Fe+++ electrode

is 0.783 volt at 25 C. It appears from various direct E.M.F. measure-
ments that the correct standard potential is about 0.771 volt, the dis-

crepancy being probably due to uncertainty in the extrapolation of the

equilibrium constant values to infinite dilution, as indicated in 41h.

The procedure just described essentially utilizes free energy values to calculate

E.M.F.'S, and another example, based on the same principle, is the determination
of the standard potential of the oxygen electrode. The problem is to evaluate

the E.M.F. of the cell

Pt, H2 (1 atm.) | H+(aH+ - 1), OH-(a H~ 1) |
O 2 (1 atm.), Pt,

for the potential of the left-hand electrode is zero, by convention, and the right-
hand electrode represents the standard (reduction) potential of the oxygen elec-

trode. The reaction taking place in this ceil is

H 2 (1 atm.) + J0 2 (1 atm.) = H20(J),

for the passage of 2 faradays. The standard free energy change of this reaction

is known to be - 56.70 kcal. at 25 C (see Table XXIV), and this is equivalent to

NFE*, where N is here equal to 2 equiv. Hence, taking F as 23,070 cal. volt~l

g. equiv."""
1
,
it is seen that

This is the standard E.M.F. of the cell

Pt, H2 (1 atm.) |
Water

|
O2 (1 atm.), Pt,

in which both hydrogen and oxygen electrodes are in contact with the same solu-

tion, the latter having the same activity as pure water, at 25 C. If the hydrogen
ion activity in this solution is taken as unity, the potential of the left-hand elec-

trode is then zero, and hence 1.229 volts is the potential of the electrode

H20(Z), H+
(aH+ = 1)|0 (1 atm.), Pt.

It is known from other investigations that in pure water the product of the activities

of hydrogen and hydroxyl ions, i.e., an^oon", is always equal to 1.008 X 10"~14 at
.25 C ( 45k). Hence the electrode just indicated can also be represented as

OH-(a ir = 1.008 X 10-W)|O 2 (1 atm.), Pt,

or reversing the electrode, so as to imply oxidation, the potential of the electrode

Pt, 2 (1 atm.)|OH-(ooH- = 1.008 X 10-")

is 1.229 volts at 25 C. This result may be inserted into equation (45.14),
which gives the oxidation potential of an electrode yielding negative ions; thus,
at 25 C, since the valence of the OH~~ ions is unity,

- 1.229 - + 0.05914 log (1.008 X 10~"),

- - 0.401 volt.
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The standard (oxidation) potential of the oxygen gas electrode is thus 0.401

volt at 25 C.

Another method for calculating standard potentials from free energy
data will be described in 46c; this employs heat content and entropy values,

so that the free energies are obtained indirectly.

45L Standard Electrode Potentials and their Applications. By the use

of methods, such as those described above, involving either E.M.F. measure-

ments or free energy and related calculations, the standard potentials of a

large number of electrodes have been determined. Some of the results on
the hydrogen scale for a temperature of 25 C are quoted in Table XXXIX ;

5

as noted above the standard state for any ion is taken as the (hypothetical)
ideal solution of that ion at unit molality. The potentials in Table XXXIX
are all oxidation potentials, as indicated by the symbols (cf . 45f) and by
the expression for the electrode process in each case. The corresponding
standard reduction potentials are obtained by reversing the signs. The
standard E.M.F. of any cell can be obtained by adding the standard oxidation

potential of the left-hand electrode to the standard reduction potential of

the right-hand electrode. The same result is obtained, of course, by sub-

tracting the standard oxidation potential of the right-hand electrode from
that of the left-hand electrode.

Numerous applications of standard electrode potentials have been made
in various aspects of electrochemistry and analytical chemistry, as well as

in thermodynamics. Some of these applications will be considered here,
and others will be mentioned later. Just as standard potentials which
cannot be determined directly can be calculated from equilibrium constant

and free energy data, so the procedure can be reversed and electrode poten-
tials used for the evaluation, for example, of equilibrium constants which
do not permit of direct experimental study. Some of the results are of

analytical interest, as may be shown by the following illustration. Stannous
salts have been employed for the reduction of ferric ions to ferrous ions in

acid solution, and it is of interest to know how far this process goes toward

completion. Although the solutions undoubtedly contain complex ions,

particularly those involving tin, the reaction may be represented, ap-
proximately, by

Sn++ + 2Fe+++ = Sn++++ + 2Fe++.

A knowledge of the equilibrium constant would provide an indication of the
extent to which the reaction proceeds from left to right; if it were large, then
the process could be regarded as being virtually complete. The reaction

between stannous and ferric ions can, in principle, be made to take place in

the reversible cell

Pt
|
Sn++ Sn-H-H- Fe++ Fe+++

1 Pt,

Data mainly from W. M. Latimer, "The Oxidation States of the Elements and Their
Potentials in Aqueous Solutions/' 1938, where a very complete collection of electrode

potentials will bo found,
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TABLE

Electrode

Li,Li+
K,K+
Na, Na+

Pt, H,, OH-
Zn,

Fe,

Pt, O++
Cd,
Co,
Ni, Ni++

Ag, Agl(a), I-

Sn, Sn++
Pb, Pb++
H,,H+
Pt, Ti

Ag, AgBr(s), Br~

Pt,

Pt, Cu+
Ag, AgCl(s), Cl-

Hg,
Cu,

STANDARD (OXIDATION) POTENTIALS AT

Reaction

Na-*Na+-fe
iH4 + OH--*
Zn -*

25 C

Fe++ 4- 2
-* Cr+^ -f- c

Cd -* Cd^ + 2e

Co -* Co-^ -f 2e

Ni -+ Ni++ + 2

Ag-f I--^AgI-f e

Sn -. Sn-^ + 2

Ag + Br- -H. AgBr + e

Sn++ ->

Ag -f Cl- -+ AgCl -f

Hg + Cl- -* lHg2Cl2 -f

Cu -* Cu++ + 2

Pt, Fe(CN)f , Fe(CN); Fe(CN)r -

, S04

-

Pt, O 2 , OH-
Pt, I2 (a), I-

Pt,

Hg,
Pt,

Hg,
Ag,
Pt,

Pt, Br,(0, Br-

Pt, T1+ Tl+++

Pt, CUfo), Cl-

Pt,
Pt

Pt! PbSO4(), PbO 2 (s),

Pt,

Pt,

H2O

r, H+

2OH-
I- -* JI +
MnOr~ -* MnOr + e

2Hg + SO -* Hgs8O4 + 2e

Fe++ -^ FC+++ -f c

2Hg -* Hgf+ + 2

2e

Cl- -* iC!2 -f e

Mn++ + 4H 2O ~* MnOr + 8H+ -f

Ce^+-*Ce++++ -f

PbSO4 + 2H2O -* PbO2 + 4II+

Br- -* iBr2 +

i"- +

Potential

3.024 volt

2.924

2.712

0.828

0.762

0.440

0.41

0.402

0.283

0.236

0.1522

0.140

0.126

0.000

- 0.0711
- 0.15

-0.167
- 0.2224
- 0.2680
- 0.340

-0.356
- 0.401
- 0.536
- 0.54
- 0.6141
- 0.771
- 0.7986

-0.7995
- 0.906
- 1.066

-1.22
- 1.358
- 1.52

-1.61
- 1 .685

-1.7
-1.8

* Numerous other standard potentials can be calculated from the standard free energy
values in Table 5 at the end of the book.

for the passage of 2 faradays. The standard E.M.F. is equal to the standard

(oxidation) potential of the stannous-stannic electrode, i.e., 0.15 volt,

minus the standard (oxidation) potential of the ferrous-ferric electrode, i.e.,- 0.771 volt; hence, JE is - 0.15 - (- 0.771) - 0.62 volt at 25 C. By
equation (45.19), therefore, since Nia 2,

0.62
0.05914

K = 9.3 X 1020.
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The large value of the equilibrium constant shows that the reaction proceeds
to virtual completion from left to right, within the limits of analytical

accuracy.
An examination of these calculations shows that the large value of the

equilibrium constant is determined by the large difference between the

standard potentials of the Sn++, Su**** and Fe++, Fe4H
~h

systems. In

general, the greater the difference in the standard potentials, the more com-

pletely will the system with the lower (algebraic) oxidation potential be

reduced, and that with the higher oxidation potential be oxidized. This
conclusion is applicable to oxidation and reduction in the general sense, al-

though the example given above refers to conventional oxidation and
reduction.

For the sake of completeness) attention may be called to the fact that

the calculation of an equilibrium constant from standard potentials is

equivalent to the determination of the standard free energy of the corre-

sponding reaction. Since AF is equal RT In K the former can be readily
obtained if K is known. Alternatively, of course, AF could be calculated

directly from NFEP, without the use of the equilibrium constant.

Another important use of standard potentials is for the determination of

solubility products, for these are essentially equilibrium constants ( 39j).

If M^A^ is a sparingly soluble soft, a knowledge of the standard potentials
of the electrodes M, Mr+A,_(), A*- and M, M+ permits the solubility

product to be evaluated. A simple example is provided by silver chloride

Ifor which the standard (oxidation) potential of the Ag, AgCl(s), Cl~~ elec-

trode is known to be - 0.2224 volt at 25 C. The activity of the chloride

ion in the standard electrode is unity, and hence the silver ion activity must
be equal to the solubility product of silver chloride. The value of OAg+ may
be derived from equation (45.13), utilizing the standard potential of silver;

thus M ifr 0.2224 volt, EM for silver is 0.799, and z is 1, so that at 25 C,

- 0.2224 - - 0.799 - 0.05914 log aA +,

aAg+ 1.78 X 10-10
,

so that the solubility product a^ X ocr of silver chloride is 1.78 X 10~10

at 25 C, in terms of mortalities.

Since the solubility product, e.g., of silver chloride, is the equilibrium
constant of the process

AgCl(*) - Ag+ + Cl-

the ions being in solution, the standard free energy change AF is equal to

RT In Ktf where K9 is the solubility product. Hence, the standard free

energy change for the solution of solid silver chloride in water at 25 C is

equal to - 2.303 X 1.987 X 298.2 log 1.78 X 10-10
, i.e., 13,300 cal. It will

be observed that this value is positive, and hence (cf. 25f) solid silver

chloride will not dissolve to form silver and chloride ions at unit activity in

terms of molality . Because of the low solubility of silver chloride in water
it is obvious that the reverse process, namely the precipitation of this salt
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from a solution in which the silver and chloride ions have activities, or

(approximately) concentrations, of 1 molal, will be spontaneous. For this

process the standard free energy change is 13,300 cal. at 25 C.

45j. Dissociation Pressures. In 45a it was stated that the Ag, AgCi(s), Cl~
electrode could be regarded as a chlorine electrode with the gas at a pressure equal
to the dissociation pressure of silver chloride at the experimental temperature.
That this must be the case can be seen in the following manner. Consider the

reaction between solid silver chloride and hydrogen taking place in the hydrogen-
silver chloride ceil; this may be written in two stages, viz., first, an equilibrium
between solid silver chloride, on the one hand, and solid silver and chlorine gas at

its dissociation pressure pc\ t on the other hand,

and second, reaction between the chlorine and hydrogen in the presence of water,
to form hydrochloric acid, i.e., hydrogen and chloride ions in solution,

iCl,(pci,) + iH 2 (1 atm.) = H+ + Cl".

The free energy change for the dissociation of solid silver chloride to yield chlorine

gas at the pressure pci 2 is zero, since the system is in equilibrium; hence, the free

energy change of the second reaction is identical with that for the over-all process.
An electrode consisting of chlorine gas at the dissociation pressure pci 2 would thus
have the same potential, in a given chloride ion solution, as would the Ag, AgCl(s)
electrode.

The conclusion just reached may be utilized to determine the dissociation

pressure of chlorine gas in equilibrium with solid silver chloride; for this purpose
it is necessary to consider the problem of a gas electrode in which the pressure
differs from the standard value of 1 atm. For such electrodes, the general equa-
tion (45.15) is still applicable, but allowance must be made for the activity, i.e.,

approximately the pressure, of the chlorine gas, as well as of the reversible ions.

For a chlorine electrode, the gas is the oxidized state and the chloride ion the

reduced state, and hence the electrode process may be written as

2C1- - Cl
?(0) + 2,

for the passage of 2 faradays of electricity. By equation (45.15), therefore, the

oxidation potential is given by

- In PCI* + ~ In ocr. (45.20)*

If the pressure (or fugacity) of the chlorine gas were 1 atm., this would reduce to

exactly the same form as equation (45.14).
At 25 C, the value of Ecl2 is - 1.368 (Table XXXIX), and if the activity

oor of the chloride ions is taken as unity, the oxidation potential of the chlorine

* It would be permissible to write the electrode reaction as Cl" - Jd*(0) + , so that

Nia unity; in this case, however, the activity of the chlorine gas would be pj^ and that of

the ions aa-, thus leading to the same result as in equation (45.20).
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gas electrode would be

from equation (45.20). Further, if pci, is the dissociation pressure of silver

chloride at 25 C, this potential must be identical with that of the Ag, AgCl(s),

Cl~~(ocr ** 1) electrode, which is 0.2224 volt; hence,

- 0.2224 - - 1.368 - ~^
log pci,

Pci, - 3.98 X 10~w atin.

The dissociation pressure of solid silver chloride at 25 C is thus 4 X 10~M atm.;
if the necessary thermal data were available, it would be possible to calculate the

dissociation pressure at other temperatures (cf. 33h, 33i).

Although the preceding discussion has dealt in particular with silver chloride,
the general conclusions are applicable quite generally, not only to the chlorides

of other metals, but also to bromides, iodides and oxides. Thus, the potential of

an electrode M, MO(), OH~ is exactly equivalent to that of the oxygen electrode

Pt, Oi(pot), OH~, in the same hydroxyl ion solution, with oxygen gas at the dis-

sociation pressure of the oxide MO, at the experimental temperature. By utilizing

this relationship, together with heat of reaction and heat capacity data, estimates

have been made of the temperatures at which various metallic oxides dissociate

freely in air, the dissociation pressure being then equal to the partial pressure of

oxygen in the atmosphere, i.e., 0.21 atm.

Problem: The standard potential of the Ag, Ag2O(a), OH~ electrode is 0.344

volt at 25 C. The heat of formation of silver oxide is 7,300 cal. at 25 and
ACp is about 1.0 cal. deg.~~* mole"1

. Estimate the temperature at which silver

oxide will dissociate freely in air.

Treating the electrode as an oxygen electrode in a solution in which OOH~ is

unity, the potential is gjven by equation (45.15) as

E "" E ~~ U ln Po"

since 4 faradays are required to convert an oxygen molecule into OH" ions. In
this case, E is 0.344, and E for the oxygen electrode is - 0.401 volt (Table
XXXIX); hence, at 25 C,

- 0.344 - - 0.401 -
log p0f,

4

so that poj is 1.40 X 10~4 atm. This may now be taken as the equilibrium con-

stant for the reaction

2Ag20() - 4Ag()

two molecules of silver oxide being necessary to produce oixe molecule of oxygen,
so that Kp is equivalent to p0f . For this reaction A# at 298 K is 2Atf for

theformotion of the oxide, i.e., 14,600 cal., and ACp is, similarly, 2.0 cal. deg."
1

;

hence, by equation (12.16) or (33.29),

14,600 - AffJ
- 2.0 X 298; A#J - 15,200 cal.
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Utilizing equation (33.30), with K equal to 1.40 X 10~ atm. at 298 K.

R * ^2.303

Taking R as 2 cal. deg.-
1 mole~l

, /'/2.303 is found to be 9.76; hence, the general

expression for log K becomes

c OAA
-1-0 log T + 9.76.

The oxide will dissociate freely in air when po,, i.e., K, is 0.21 atm.; inserting this

value in the expression for log K, and solving by successive approximations, T is

found to be 435 K, i.e., 162 C. (The experimental value is about 150 C.)

45k. The Dissociation (lonization) Constant of Water. In pure water,
and in any aqueous solution, an equilibrium exists between the undissociated

molecules of water, on the one hand, and hydrogen and hydroxyl ions, on
the other hand; thus,

H,0(Q ?

The equilibrium (dissociation) constant of this reaction is given by

K

but for pure water, or for dilute aqueous solutions of electrolytes, the ac-

tivity of the water, i.e., <ZH,O, may be taken as unity; the result, referred to

as the dissociation (or ionization) constant or, sometimes, as the ionic

product, of water, is then
Kw = aH+ck>H~. (45.21)

One of the most accurate methods for determining the dissociation con-

stant of water is based on E.M.F. measurements of cells of the type

Pt, H* (1 atm.) | MOH(mi) MCl(m2) | AgCl(a), Ag,

where M is an alkali metal, e.g., lithium, sodium or potassium. The E.M.F.

of this cell, like that for other hydrogen-silver chloride cells ( 45d) is

given by

E - - In aH+ocr. (45.22)

Since, by equation (45.21), an^oon"" is equal to Kw,
it follows that

--^lnKtt -^lrx^lF F OOH~

v , (45.23)F F ~" ~

where, in equation (45.23), the activities have been replaced by the product*
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of the respective molalities and activity coefficients. Upon rearrangement,
equation (45.23) gives

E- E>-
& Won F F Ton""

'

(45.24)

At infinite dilution the activity coefficient fraction TCI~/TOH" becomes equal
to unity, so that log (Tcr/ToH~) is then zero; under these conditions, there-

fore, the right-hand side of equation (45.24) becomes equal to log Kw .

It follows, therefore, that if the left-hand side of this equation, for various
molalities of MOH and MCI, is plotted against some function of the concen-

tration, e.g., the ionic strength, the intercept for infinite dilution gives the
value of log Kw . At 25 C, for the cell under consideration is known
to be 0.2224 volt, and the actual E.M.P. of the cell, i.e., ,

can be measured;
by assuming racr to be equal to m2 (for MCI) and raoir to be equal to Wi
(for MOH), the left-hand side of equation (45.24) can be readily evaluated.
From results of this kind, with various chlorides and hydroxides, Kw has
been found to be 1.008 X 10~14 at 25 C. Accurate measurements of the
same type have been made in the temperature range from to 50 C,
with cells containing a number of different chlorides.

The E.M.F. of the hydrogen-silver chloride cell

Pt, H 2 (1 atm.)|HCl(m;) MCl(wiJ)|AgCl(*) f Ag,

containing hydrochloric acid and a metallic chloride solution, is

RT
E' = - ?-- In ai+ofcr. (45.25)

If this result is combined with equation (45.22) for the E.M.P. of the similar cell

containing the hydroxide (and chloride) of the metal M, it is seen that

mu+mcr F 7H+7cf

the standard potentials JE being the same in equations (45.22) and (45.25). If

the ionic strengths in the two ceils are kept equal, then provided the solutions are

relatively dilute, the activity coefficient factor in equation (45.26) is unity and its

logarithm is zero; equation (45.26) then becomes

By introducing the term (RT/F) In moiT, equation (45.27) can be rearranged



451 E.M.F.'S AND ELECTRODE POTENTIALS 485

to give
RT . . _ _. . f ri y ,. . ^^v--=r In memoir - - E --

^- In
H ^

, (45.28)r r mci~

where, as before, the primed quantities refer to the cell containing hydrochloric

acid, and those without primes apply to the alkali hydroxide cell. The particular
interest of equation (45.28) lies in the fact that it permits of the determination
of mH+

fWoH~, known as the molal ionization product of water, in various halide

solutions. In a pure halide solution the molalities of the hydrogen and hydroxyl-
ions are equal; hence, the square root of maroon" gives the actual molalities of

the hydrogen and hydroxyi ions, produced by the ionization of water, in the
halide solution.6

451. The Dissociation (Ionization) Constant of a Weak Acid. The
dissociation constants of weak acids, as defined in 41h, may also be deter-

mined by means of E.M.F. measurements. For this purpose another form
of the hydrogen-silver chloride cell, viz.,

Pt, H 2 (1 atm.)|HA(mi)NaA(m2)NaCl(m3)|AgCl(5), Ag,

where HA is the weak acid and NaA is its sodium salt, is employed. The
E.M.F. of this cell is given, as usual, by

= - =- In ms+mor - In 7H*Tor. (45.29)
f r

The dissociation constant K of the acid may be expressed in the form

7HA

and combination of this result with equation (45.29) gives

mHAWtct - in _ ln K
F mA- F -KA- F

(45.30)

If the left-hand side of this equation, for various molalities of HA, NaA
and NaCl, is plotted against the ionic strength, the value extrapolated to

infinite dilution gives log K, since the first term on the right-hand side

of equation (45.30) is then zero. As a first approximation, WHA is taken as

equal to m\9 mci~ to ma and m^r to m*\ this neglects the dissociation of the

acid HA in the presence of the salt. Allowance for the dissociation can be

made, if necessary, by utilizing a preliminary value of K for the given acid.

Harned and Hamer, J. Am. Chem. Soc., 55, 2194 (1933); for reviews! see H. S. Harned
and B. B. Owen, "The Physical Chemistry of Electrolytic Solutions," 1943, Chapter 15;
Chem. Rev., 25, 31
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The procedure just described has been used for the determination of the

dissociation constants of a number of weak monobasic acids. It has also

been extended to the study of polybasic acids and ammo-acids.

Dissociation constants of weak acids can also be derived from measure-
ments on "unbuffered" cells of the type

Pt, H2 (1 atm.) | HA(mi) NaCl(m3) | AgCl(s), Ag.

These are similar to those described above except for the omission of the salt

NaA from the electrolyte. By means of these cells it is also possible to

determine the quantity mn^WA ~/mHA, which gives the actual extent of dis-

sociation of the weak acid, in solutions containing various amounts of sodium
chloride or other halides. 7

46. THERMODYNAMICS OF IONS IN SOLUTION

46a. Free Energies of Formation of Ions. In Chapter XIII tho standard

free energies of formation of various neutral molecules were given; it will

now be shown how corresponding values may be obtained for many ions.

The results may then be combined to determine the standard free energy

changes of reactions involving ions as well as neutral molecules. In the cell

M
| M+(a+ = 1) H+(aH+ - 1) |

H2 (1 atm.),

the E.M.F. of which is equal to the standard potential EU of the M,
electrode, the reaction for z+ faradays is (cf. 45e).

M(s) + 2+H+(aH+ = 1)
= M*+(a+ =

1) + Js+H 2 (1 atm.).

Hence the standard free energy change of this reaction is z+FEw* How-
ever, the convention of taking the standard potential of the hydrogen elec-

trode as zero is equivalent to stating that the standard free energy change
for the transfer of hydrogen gas to hydrogen ions, or the reverse, is arbi-

trarily set equal to zero. Consequently, on the basis of this convention,

z+FEfa is the standard free energy change accompanying the formation

of M*4"

ions in solution, viz.,

M(s) = M*+(a+ 1) + *+

By adopting the foregoing convention, therefore, it is possible to define the
standard free energy of formation of a positive ion M**1

",
from the element M,

as z+FEw, where EM is the standard (oxidation) potential on the hydro-
gen scale.

Similarly, for an electrode involving negative ions, the reaction in the cell

A
| A-(a_ - 1) H+(aH+ - 1) | H, (1

is

A-(a_ =
1) + zJH+(aH+ - 1) - A + H-H2 (1 atm.)

7 Earned and Ehlers, /. Am. Chem. Soc. t 54, 1350 (1932); Nima, ibid., 55, 1946 (1933);
Harned and Owen, ref. 6.
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for 2- faradays. Hence, adopting the same convention as above, viz., that

the standard free energy change of formation of hydrogen ions is zero,
is the standard free energy of the process

This is the reverse of the standard free energy of formation of the A*- ion,

and consequently the latter is equal to zJFE^ where 1 is the standard

(oxidation) potential of the A, A*~ electrode.*

Provided the potential of an electrode of the type M, M*+ or A, A*~,
where M and A are elements, can be measured, the standard free energy of

formation of the M*+ and A*~ ions, respectively, can be readily determined.

For this purpose the data in Table XXXIX may be used. If the ion is

one which cannot form a stable electrode of the simple type indicated,
indirect methods must be adopted; sometimes electrode potential or equi-
librium data can be employed, but in other cases recourse must be had to

heat content and entropy values. For example, the potential of the Fe,
Fe+++ electrode cannot be determined experimentally because the system is

unstable; however, the potentials of the Fe, Fe++ and the Pt, Fe++, Fe+++

systems are known, viz., + 0.441 and 0.771 volt at 25, respectively, and
from these the free energy of formation of the ferric ion can be determined.

Thus, for the process

Fe = Fe++ + 2e,

the standard free energy change is 2F X 0.441, i.e., 0.882^, and for

it is - F X (- 0.771), i.e., Q.771F. The total standard free energy change
for the formation of ferric ions,

Fe = Fe+++ + 3e,

is thus ( 0.882 + 0.771)F i.e., 0.111F. To express the free energy
change in calories, F is taken as 23,070 cal. volt"1

,
so that the free energy of

formation of ferric ions is 2,560 cal. g. ion~l
.

The calculation of free energies of formation of ions from equilibrium
data may be illustrated by reference to the ioclate (I0i~) ion. At 25 C the

equilibrium constant K for the system

3Ii() + 3H 2O(Z) = I0r + 5I~ + 611+

is approximately 2 X 10~ 56
,
so that the standard free energy change is

given by

AF = - RT In K - - 4.576 X 298.2 log K
- 76,000 cal. - 76.0 kcal.

* In general, the standard free energy of formation of any ion in solution is equal to

zFE*t where z is the valence of the ion including its sign.
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By convention (cf . 33k) the free energy of formation of every element in

its standard state is taken as zero, and, as seen above, the same applies to

the hydrogen ion. The standard free energy of formation of liquid water at

25 C is - 56.70 kcal. mole"1
(Table XXIV), and that of the iodide ion is de-

rived from its standard potential (Table XXXIX) as 1 X 23,070 X (- 0.536)

cal., i.e., 12,37 kcal. g. ion""1
. It follows, therefore, that

[AF(IOr) + (5 X - 12.37) + (6 X 0)]
-

[(3 X 0) + (3 X - 56.70)] = 76.0,

AF(IOr) ~ 32.3 kcal. g. ion-1
,

so that the standard free energy of formation of the iodate ion at 25 C is

32.3 kcal. g. ion*-1
.

A similar result has been obtained from measurements of the potential
of the electrode Pt, IOr + 6H+, }!*(*), for which the reaction is

il() + 3H 20(Z) = I0r + 6H+ + 5c.

The standard potential at 25 C is 1.195 volt, and so the standard free

energy change is - 5 X 23,070 X (- 1.195) cal., or 137.8 kcal. The
standard free energies of formation of solid iodine and of hydrogen ions are

taken as zero, and since that for liquid water is 56.70 kcal. mole^1 at

25 C, it follows that

[AF(IOr) + (6 X 0)]
-

[(J X 0) + (3 X - 56.70)] -
137.8,

= - 32.3 kcal. g. ion-1

,

in agreement with the result obtained above.

46b. Standard Entropies of Ions. The evaluation of the standard en-

tropies of ions has provided a method for the calculation of standard free

energies of formation^ and hence the standard electrode potentials, of ions

which are not susceptible of direct experimental study. The data may also

be used in conjunction with other entropy values, such as those given in

Chapter IX, to determine the entropy changes of reactions involving both
molecules and ions. Several methods are available for determining the

standard entropies of ions, the particular one used depending on the

circumstances.

For ions which are reversible with respect to a metallic element that

dissolves in dilute acid solution, the following procedure is the simplest.
Consider the general reaction accompanying the solution of the metal M, viz.,

M + *+H+ = M*+

the standard free energy change AF is z+FEf^, and this can be determined
if the standard potential E^ is known. The standard heat content change
A// of the same reaction is virtually identical with the experimental heat

of .solution of 1 g. atom of the metal in a dilute acid splution. By utilizing

the familiar thermodynamic relationship AS (Aff AF)/T, it is thus

possible to determine the standard entropy change of the reaction between
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the metal and hydrogen ions in solution. Considering the species involved
in the reaction it is seen that

AS' - (SL+ + iMfe.) - OSM + i+fli+), (46.1)

where Si* and fi^
+ are the standard entropies of the M'+ and H+ ions,

respectively, and Snt
and SM are the entropies of the hydrogen gas at 1 atm.

and of the metal M, respectively. These two latter quantities are pre-

sumably known, from the data in Tables XV and XIX, and if by convention
the standard entropy of the hydrogen ion is taken as zero* it is possible to

calculate S^+ for the given ion by means of equation (46. 1).
8

Problem: The standard heat of solution of 1 g. atom of potassium in dilute

acid is found to be 60.15 kcal. at 25 C. The standard oxidation potential of

this metal is 2.924 volt at the same temperature; the standard entropy of solid

potassium is 15.2 B.U. g. atom"1 and of gaseous hydrogen it is 31.21 E.U. mole"*1
.

Calculate the standard entropy of the potassium ion in solution at 25 C.

For the solution reaction

K() + H+ = K+ + iH,(f),

is about - 60.15 kcal., i.e.,
- 60,150 cal., and AF is obtained from the

standard potential as - 1 X 23,070 X 2.924, i.e.,
- 67,450 cal. Hence,

AS = [- 60,150 - (- 67,450) ]/298.2 = 24.5 E.U.,

and by equation (46.1)

24.5 = (SK+ + $ X 31.2)
-

(15.2 + 0),

Si+ = 24.1 E.U. g. ion-1
.

If the standard potential of an electrode is known at two or more tem-

peratures, the entropy of the reversible ion can be determined by using a

form of the Gibbs-Helmholtz relationship. As seen in 331; the standard

entropy change may be expressed in terms of the standard electrode po-

tential, viz.,

AS =
Atf^, (46.2)

and this is also the value of AS given by equation (46.1). The subsequent

procedure for obtaining S^+ is then similar to that described above.

* Since it has been postulated that the standard potential of the hydrogen electrode

is zero at all temperatures, it follows that A/S for the reaction iH2 (0)
= H+ 4- c must also

be zero. An alternative convention would therefore be to take the standard entropy of the

hydrogen ion as equal to that of JH2 (0); this is equivalent to postulating zero entropy for

the electrons. It is immaterial, however, which convention is employed, provided it is

adhered to strictly. Since the convention that 8 for the hydrogen ion is zero is widely
used in the literature, it will be adopted here.

8 Latimer and Buffington, J. Am. Chan. Soc., 48, 2297 (1026); Latimer, Chem. Rev., 18,

349 (1936), and numerous papers by Latimer, et al. t in J. Am. Chem. Soc.; see also, Bernhardt
and Crockford, /. Phys. Chem., 46, 473 (1942).
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Problem: From measurements of the standard potential of zinc, the value of

dE*/dT was found to be - 1.00 X lO^4 volt deg.-*
1 at 25 C. The standard

entropy of solid zinc is 9.95 B.U. g. atomr1 and of hydrogen gas it is 31.21 E.U.

mole"* at 25 C. Calculate the standard entropy of the zinc ion. 9

In this case, the reaction with hydrogen ions in solution is

Zn() + 2H+ = Zn++ + H2(0),

and the standard entropy change is 2 X 23,070 X (- 1.00 X 10~4
) cal. deg."

1
;

hence AS is found to be 4.61 E.U. By equation (46.1), therefore,

- 4.61 = GS n
++ + 31.21) -

(9.95 + 0),

SZn++ = - 25.9 E.U. g. ion- 1
.

For anions, in particular, an entirely different procedure is adopted to

determine the standard entropy of the ion in solution. Consider the solid

salt M,+A,_ in equilibrium with its ions M+ and A- in a saturated solution;

thus,

The equilibrium constant is equal to the solubility product Kt ,
at 1 atm.

pressure, and hence the standard free energy change AF of the indicated

process is given by RT In K9 (cf. 45i).

The significance of A/? for the reaction may be seen in the following
manner. The total heat content of the products (right-hand side) in their

standard states is v+ff\. + v-Jl-, and this is equivalent to $2, the standard

partial molar heat content of the solute Mr+A,_ in solution. The standard
heat content of the initial state (left-hand side), which consists of pure solid

solute at 1 atm. pressure, is identical with the molar heat content H& of

the solid salt. It is seen, therefore, that

Aff #S - Hs . (46.3)

Since H* is equal to the partial molar heat content of the solute at infinite

dilution, it follows from equation (44.8) that A// in this case is equal to the

differential heat of solution of the solid salt in the infinitely dilute solution.

In dilute solution the total heat of solution usually varies in a linear manner
with the molality, and so the differential heat of solution is then equal to

the integral heat of solution per mole (cf. 44h).
For a sparingly soluble salt the differential heat of solution in the satu-

rated solution is virtually the same as that at infinite dilution; the former

can be derived from the solubility of the salt at two temperatures ( 36f),

and the resulting value can be used for A/? of the process under considera-

tion. Alternatively, the experimentally determined heat of precipitation of

a sparingly soluble salt may be taken as approximately equal, but of opposite

sign, to the differential heat of solution.

9
Bates, /. Am. Chem. Sac., 61, 522 (1939).
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By means of arguments exactly similar to those given above, it can be
shown that

AF - ft - Fs - Ma
-

Fa, (46.4)

and by combining equations (46.3) and (46.4) with the thermodynamic
relationship AF = A/7 T&P, it is found that for the present process

o /Ar ~
2
_

5> (46.5)

where SS is the standard partial molar entropy of the salt in solution and
Ss is the molar entropy of the solid salt. The standard partial molar en-

tropy of the solute in solution may be taken as the sum of the molar entropies
of the constituent ions, i.e.,

5 = F+SJ + F-jSi, (46.6)

so that by equation (46.5)

AS F+S!}. + V-.S- - S8 . (46.7)

If the standard entropy of either of the ions and that of the solid salt is

known, the entropy of the other ion may thus be calculated.

As indicated previously, Aff can be determined in various ways, and
Ss for the solid salt can be obtained from heat capacity measurements,
based on the third law of thermodynamics. There remains the evaluation

of AF to be considered. If the solubility product K8 is known in terms of

activities, either by extrapolation of solubility measurements ( 39j) or from
electrode potentials ( 45i), AF can be obtained directly, since it is equal to

RT In Kt ,
as stated above. When the activity solubility product is not

available, use may be made of equation (39.70) for the solubility product, i.e.,

K. - (m 7 )'.

As seen in 41c, m" may be replaced by mr
(v5*it), and m may be identified

with the saturation solubility of the given salt; hence, it follows that

K. = (roT )'i<iht. (46.8)

The value of m may be obtained from the solubility of the salt at the specified

temperature and T can be derived from the Debye-Hiickel equation, if

the solution is sufficiently dilute. For more concentrated solutions, 7

may be estimated by extrapolation from activity coefficients determined in

more dilute solution, or by comparison with that of a similar salt at the

same concentration.

Problem: The solubility of barium sulfate in water is 9.57 X 10"6 molal at 25;
the heat of solution is 5,970 cal. mole"*1

. The standard entropy of the barium ion

is 2.3 B.U. g. ion"1 and that of solid barium sulfate is 31.5 E.U. mole""1
. Determine

the standard entropy of the sulfate ion in solution.

For BaSO4 ,
both v+ and v~ are unity and v is 2, so that by equation (46.8)

AF = - RT in K. - - 2RT in my .
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The value of m in the saturated solution is given as 0.57 X 10^ and 7 for this

concentration may be estimated from the Debye-Htickel limiting law. Since both
ions- are bivalent, the ionic strength is equal to 4 X 9.57 X 10"*, and hence by
equation (40.15),

-
log y - 0.609 X 4 X V4 X 9.57 X 10~* - 0.0126, so that

7 - 0.971. Consequently,

AF - - 2 X 4.576 X 298.2 log (9.57 X 10- X 0.971)

- 13,740 cal.

Since Aff is 5,970 cal., AS of solution is (5,970
- 13,740)/298.2 - - 26.0 B.U

Hence, by equation (46.7),

- 26.0 - SbS+ + SJoT -
S^so,

- 2.3 + SSoT"
-

31.5,

S&oT - 3.2 B 'u - ion~* at 25 C.

(An average value from various data is given as 4.4 E.U. g. ion"1
.)

The standard free energies of formation of a number of ions and the

corresponding entropies at 25 C, based on the conventions stated in the

preceding sections, are recorded in Table XL.10 The AT values for the

TABLJB XL. STANDARD FREE ENERGIES AND HEATS OF FORMATION (iN KCAL. O. ION*1
)

AND ENTROPIES (iN CAL. DEO."1 O. ION"1
) OF IONS AT 25 C *

Ion kcal.

AI+++ - 115.5

-2.53
-132.7
107.8

-35.18
-20.3

39.42
-67.43
-62.59

18.44

sr

K+

AH*
kcal.

- 126.3

-9.3
-129.5
- 110.2

-36.3
-20.6

41.6

-60.3
-57.5

25.2

B.U.

-76
-61
- 11.4

-31.6
-25.7
-25.9
-6.5
24.2

14.0

17.54

* For further values, see Table 5 at end of book.

formation of various ions are also given; these may be derived from the

&F and TAS data, or they may be obtained by an alternative procedure
described below ( 46d).

46c. Application of Standard Entropies. If the heat of solution of a metal M
in dilute acid is known, and the entropy of the M*+ ion is available, it is obviously
& simple matter, by reversing the calculations described above, e.g., for the po-
tassium ion, to calculate the free energy of formation of the M*+ ion, and hence
the standard potential of the M, M*+ electrode. The standard potentials of Mgf

Mg++ and Al, A1+++, for example, which cannot be obtained by direct measure-

ment, have been calculated in this manner.

10
Entropy and free energy data mainly from.Lfttimer, ref. 5.
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To calculate the standard potential of an anion electrode two methods have
been used. The first is possible if the heat of formation from its elements of the

corresponding acid in dilute aqueous solution is available. In order to illustrate

the procedure the standard potential of the chlorine electrode will be calculated.

For the reaction

H 2(0) + !C1.(0) + aq = H+(aq) + Cl-(ag),

A# is found to be 39.94 kcal. at 25 C. The standard entropies of hydrogen
and chlorine gases are 31.21 and 53.31 E.U. mole"1 and that of the chloride ion is

13.5 E.U. g. ion~l
; since the standard entropy of the hydrogen ion, by convention,

is zero,

AS = (0 + 13.5)
-

1(31.21 + 53.31) = - 28.76 E.U.
*

Consequently, the standard free energy change AF of the reaction, i.e., A#
- TAS, is - 39,940

- (298.2 X -
28.76), i.e.,

- 31,360 cal. By convention,
the standard free energies of formation of the hydrogen and chlorine gases and the

hydrogen ion are all zero; hence the standard free energy of formation of the

chloride ion is 31,360 cal. at 25 C. As seen earlier, this is equal to z^FE*^,
where E^ is the standard potential of the Pt, Clz(g), Cl~" electrode, so that

23,070 X E\ = -
31,360 cal.

EA = - 1.359 volts.

The direct experimental value is 1.358 volts at 25 C.

Another method makes use of the heat of formation of a dilute solution of a

salt of the anion. Once again the procedure will be explained by reference to the

chloride ion. The heat of formation A# from its elements of sodium chloride

in dilute solution, i.e.,

Na + iCUfo) + aq = Na+(o0) + C\-(aq),

is 97.4 kcal. at 25 C. The standard entropy of solid sodium is 12.2 E.U. g.

atom"1
, that of chlorine gas is 53.31 E.U. mole""1

,
and the values for the sodium

and chloride ions in solution are 14.0 and 13.5 E.U. g. ion"1
, respectively. Hence,

for the reaction given,

AS = (14.0 + 13.5)
-

[12.2 + (1 X 53.3)] = - 11.35 E.U.,

and consequently

AF = A# - !FAS = - 97,400 - (298.2 X -
11.35)

= - 94,000 cal.

Since the standard free energies of formation of the solid sodium and the chlorine

gas are both zero, this result represents the sum of the free energies of formation

of the sodium and chloride ions. The standard potential of sodium is 2.714 volt,

and so the standard free energy of formation of the sodium ion is 1 X 23,070
X 2.714, i.e., 62,600 cal. The standard free energy of formation of the chloride

ion is therefore, 94,000 ( 62,600), i.e., 31,400 cal., and the corresponding

potential would be 1.36 volts at 25 C. This method has been used for de-

termining the standard potential of the Pt, Fs(0)> I*~ electrode, for which direct

measurements have not been made.
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46d. Standard Heats of Formation of Ions. The standard free energies
of formation of ions are based on the convention that for the hydrogen ion

the value is zero (46a); this is consistent with the postulate that the

standard potential of the hydrogen electrode is zero ( 45e). Since it has

been stipulated that this potential be taken as zero at all temperatures, it

follows, from equation (45.3) for example, that A//, the standard heat of

formation of the hydrogen ion, must also be zero. This is the convention

adopted in the determination of the standard heats of formation of other

ions; two general methods have been employed for the purpose.
The first method, which uses free energy and entropy data, may be

illustrated by reference to the heat of formation of the SO ion. It is seen

from Table XL that the standard free energy df formation of this ion is

176.1 kcal., so that for the reaction

Hifo) + S(a) + 202(0) + aq - 2H+(o$) + 80r-(og)

the value of AF is ~ 176,100 cal. at 25 C. From Tables XV, XIX and

XL, AS is given by [0 (for 2H+) + 4.4 (for SOr~)] - [31.21 (for H,)
+ 7.62 (for S) + 2 X 49.00 (for 2O2)] - - 132.5 E.U. Consequently Atf
for the formation of the sulfate ion, taking that for the hydrogen ion as zero,
is equal to AF + TAS, i.e.,

- 176,100 + (298.2 X - 132.5) = - 215,600

cal., or 215.6 kcal.

If, now, the heat of formation of a metallic sulfate at infinite dilution is

known, e.g.,

SO~(aq)
- 330.5 kcal.,

the heat of formation of the associated cation, i.e., the Na4*

ion, can be
calculated. In the present case, the standard heat of formation of the

sodium ion is J[ 330.5 ( 215.6)] = 57.5 kcal. From this result

and the heat of formation of sodium chloride at infinite dilution, viz.,

97.4 kcal., the standard heat of formation of the chloride ion, i.e.,

97.4 ( 57.5) = 39.9 kcal., can be obtained. Proceeding in this

manner, the values for other ions can be derived. Instead of starting with

the SOr~ ion, as described above, A/P for the formation of the chloride ion,

or of another ion, could have been evaluated from the appropriate AF and
S data and made the basis of the calculations.

The second general method makes use of thermal data only. At 25 C,
the heat of formation of gaseous hydrogen chloride is 22.06 kcal., and the

heat of solution at infinite dilution is 17.88 kcal., so that for the reaction

*H,fo) + *Cl2 (i7) + aq - H+(og) + Cl~(aq)

Al/ is 39.94 kcal. By convention, the heats of formation of the hydrogen
gas, the chlorine gas and the hydrogen ion are all zero, so that the standard
heat of formation of the chloride ion is 39.94 kcal. From the known heats
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of formation of various chlorides at infinite dilution, the heats of formation

of the associated cations can be evaluated.

Another approach to the subject is through a consideration of the heat of

neutralization of a strong acid and strong base at infinite dilution; this is equivalent
to the standard heat change of the reaction

H+(aq) + OH-(a?) - H 2O(J) A// = - 13.50 kcai.,

at 25 C. By combining this with the heat of formation of liquid water, viz.,

H 2(0) + *02(0)
- H 20(J) A/P - - 68.32 kcal.,

it is seen that

- 54.82 kcal.

On the basis of the usual convention, the standard heat of formation of the OH"
ion is 54.8 kcal. at 25 C. Utilizing the known heat of formation of sodium

hydroxide in dilute solution, i.e., 112.2 kcal., the heat of formation of the sodium
ion is found to be 112.2 ( 54.8) = 57.4 kcal., in satisfactory agreement
with the result obtained previously.

Instead of starting with an anion in the calculation of the heats of

formation of ions, it is possible to use a cation. For this purpose it is

necessary to know the heat of solution of a metal in very dilute acid solu-

tion, e.g.,

Al() + 3HCl(og) = Al+++(o?) + 3Cl~(aq) + fHifo).

Since the dilute acid may be regarded as completely ionized, this reaction is

equivalent to

AIM

and hence the heat change, i.e., 126.3 kcal. at 25 C, in this case, is equal
to the standard heat of formation of the AI+++ ion. The values for other

cations can be derived in the same manner, and hence the heats of formation
of anions can be calculated from the heats of formation of dilute solutions of

the appropriate salts.

Problem: Utilize the standard heats of formation of the ions to determine the

heat of formation of a dilute solution of calcium nitrate at 25 C.

The required result is obtained by adding A# for the Ca** ion to the value

for 2NO^ ions; from Table XL, this is seen to be - 129.5 + 2 X -
49.5, i.e.,

228.5 kcal. at 25 C. (This is very close to the experimental value.)

The standard heats of formation of ions, as recorded in Table XL, may
be combined with the free energies of formation and the entropies, in the

same table, to calculate thennodynamic quantities for a variety of ionic re-

actions. Further, these data may be utilized in conjunction with those

given in Tables V, XV, XIX and XXIV to determine standard free energy,

entropy and heat content changes for reactions involving both ions and
neutral molecules.
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Problem: Calculate the values at 25 C of AF, AS and A# for the reaction

2NO(0) + fOa(</) + H20(J) + aq - 2H+(o$) + 2NO,-(a<?).

The free energies and heats of formation and the entropies of the various

species are as follows (see Tables V, XV, XIX, XXIV and XL):

2fo) H 20(Z) H+ N0 3

~

Free Energy (kcal.) 20.66 - 56.70 - 26.25

Heat Content (kcal.) 21.6 - 68.32 - 49.5

Entropy (E.U.) 50.34 49.00 16.75 35.0

Hence,

AF = (0
- 2 X 26.25)

-
[(2 X 20.66) + -

56.70] = - 37.12 kcal.

A# = (0
- 2 X 49.5)

-
[(2 X 21.6) + -

68.32] = - 73.9 kcal.

AS" - (0 + 2 X 35.0)
-

[(2 X 50.34) + (f X 49.00) + 16.75] = - 120.9 E.U.

From the AF and A# values, A/S should be (
-

73,900 + 37,120)/298.2 = - 123.4

E.U., the small difference being due to the fact that some of the data are not quite
exact.

EXERCISES

1. Determine the chemical reactions taking place in the following (theo-

retically) reversible cells:

(i) Cd
|

CdSO4 soin.
|
PbSO4 (s), Pb

(ii) K(Hg) |
KCi soin.

| AgCi(s), Ag
(Hi) Pt, H 2fo) |

HI soin.
|
I 2 (s), Pt

(iv) Fe
|
FeCU soin. : FeCl 2 , FeCU soin.

|

Pt

(v) Zn, Zn(OH) 2(s) |
NaOH soin.

| HgO(s), Hg
(vi) Hg, Hg 2Cl 2 (s) |

KCI soin. j K2SO4 soin.
| Hg 2SO4 (s), Hg

(viij Pt, C1 2(0) |

KCI soin. : KBr soin.
| Br,(J), Pt

(viii) Pt, fr2(0) |
HC1 soin. : NaOH soin.

|
H 2(^), Pt.

2. Write equations for the E.M.F.'S of the cells given in Exercise 1; liquid

junction potentials may be ignored.

3. Devise (theoretically) reversible cells in which the over-all reactions are:

(i) PbOW + H,fo) - Pb + H 20(Z)

(ii) H2 (</) + J0 2(0)
- H20(Z)

(iii) Zn(s) + 2AgBr(s) = ZnBr 2 soin. + 2Ag(s)

(iv) JH2 (fir) + JCUfo) - HC1 soin.

(v) 5Fe++ + MnO4

- + 8H+ = 5Fe+++ + Mn++ + 4H 2O
(vi) 2Hg(Q + Cl,(?) - Hg2Cl 2(s)

(vii) Ce+^+ + Ag() = Ce+++ + Ag+
(viii) 2Ag() + J0.to) - Ag 20(*)

Suggest possible uses for some of these cells.

4. Propose cells, without liquid junction, which might be used for determining
the activities (or activity coefficients) of (i) HiSOi, (ii) KCI, (iii) NaOH, (iv)

CdBr*, in solution. Why is it not possible to determine the activity of a nitrate

in this manner?
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5. The E.M.F. of the cell H (1 atm.) | HCl(a - 1) | AgCl(), Ag is 0.22551 volt

at 20, 0.22239 volt at 25 and 0.21912 volt at 30 C [Earned and Ehlers, J. Am.
Chem. Soc., 54, 1350 (1932)]. Write out the cell reaction and determine the

standard change of (i) free energy, (ii) heat content, (iii) entropy, at 25 C. Com*
pare the results with those obtained from tabulated data.

6. The variation with temperature of the E.M.F. of the cell H* (1 atm.) |

HBr(a - l)|HgiBr2(), Hg is given by Larson [/. Am. Chem. Sac., 62, 764

(1940)] as

E = 0.13970 - 8.1 X 10~*(*
-

25)
- 3.6 X 10~6

(
-

25)
2

,

where t is the temperature on the centigrade scale. Write down the cell reaction

and determine the standard change of (i) free energy, (ii) heat content (iii) entropy,
at 25 C. Given the entropies of H2(0), Hg2Br2(s) and Hg(J), determine that of

the Br~ ion.

7. Suggest methods for the experimental determination of the standard po-
tentials of the following electrodes, using cells without liquid junctions: (i) Pb,
Pb++ (ii) Cu, Cu++ (iii) Hg, Hg2S04(a), SO", (iv) Ag, Ag20, OH~.

8. The E.M.F. of the cell Zn| ZnCl 2(ra) | AgCl(s), Ag, with various molalities m
of zinc chloride, was found to be as follows at 25 C:

ni E m E
0.002941 1.1983 0.04242 1.10897

0.007814 1.16502 0.09048 1.08435

0.01236 1.14951 0.2211 1.05559

0.02144 1.13101 0.4499 1.03279

[Scatchard and Tefft, J. Am. Chem. Soc., 52, 2272 (1930)]. Determine the

standard potential of the Zn, Zn*"1
"

electrode.

9. By utilizing the standard potentials given in Table XXXIX, calculate

the true equilibrium constant and standard free energy change of the reaction

Ag(fi) + Fe+++ Ag+ + Fe++ at 25 C (cf. 41h).

10. The equilibrium constant for the reaction CuCl() + AgCl(s) + aq
- Cu++ + 2CI- + Ag(s) was found to be 1.86 X 10~ at 25 C [Edgar and

Cannon, /. Am. Chem. /Soc., 44, 2842 (1922)]. Using the known standard poten-
tials of the Ag, AgCl(s), Cl~ and Cu, Cu++ electrodes, calculate that of the Cu,
CuCl(s), Cl- electrode.

11. Account quantitatively for the fact that metallic mercury is able to
reduce ferric chloride to ferrous chloride, to virtual completion within the limits

of analytical accuracy.
12. The equilibrium constant of the reaction JHgO(s) + JHg(0 + iH20(Z)

+ Br~ = JHg 2Br 2(a) + OH~ is 0.204 at 25 C [Newton and Bolinger, /. Am.
Chem. Soc., 52, 921 (1930)]. The E.M.F. of the cell H 2 (1 atm.)|HBr(a =

1)|

Hg2Br2(3), Hg is 0.1397 volt and that of the cell H2 (1 atm.) | NaOH(og) | HgO(s),
Hg is 0.9264 volt at 25 C. Calculate the standard free energy change of the

reaction H2O(0 = H+ + OH"", and the dissociation constant (Kv) of water.

13. Using tabulated free energy and entropy values, calculate the standard

E.M.F., and the temperature coefficient at 25 C, of the cell Pt, HsJHBrsoln.j
AgBr(0), Ag. What would be the E.M.F. if the pressure (fugacity) of the hy-

drogen gas was 0.1 atm. and the molality of the hydrobromic acid solution was 0.1?
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14. Using the standard potential of the Pt, CU(p), Cl~ electrode, and taking
the partial pressure of hydrogen chloride in equilibrium with a hydrochloric acid

solution of unit activity as 4.97 X 10~7 atm. at 25 C (cf. Exercise 9, Chapter XVI),
together with the known heat capacities of hydrogen, chlorine, and hydrogen
chloride, derive a general expression for the standard free energy of formation of

hydrogen chloride gas as a function of the absolute temperature.
15. The solubility of silver iodate in water is 1.771 X 10~4 mole liter*1 at

25 C. Calculate the standard free energy change of the process AgIO8(s)
* Ag"

1
*

+ I0r Using the standard potential of the Ag, Ag+ electrode, calculate that of

the Ag, AgIO8(), I0r electrode at 25 C.

16. The standard potential of the Hg, HgJ+ electrode is 0.7986 and that
of the Pt, HgJ+, Hg++ electrode is - 0.910 volt at 25 C. Calculate (i) the

standard potential of the Hg, Kg** electrode, (ii) the ratio of Hgi^ to Kg"
1
"

1
"

ion

activities in a solution of mercurous and mercuric ions in equilibrium with metallic

mercury, at 25 C.
17. The temperature coefficient of the standard potential of the Ag, Ag+ elec-

trode (E* - - 0.7995 volt) is 0.967 X 10~8 volt deg.~
l in the vicinity of 25 C

[Lingane and Larson, J. Am. Chem. Soc., 59, 2271 (1937)]. Determine the en-

tropy and the heat of formation of the Ag+ ion.

18. The solubility of silver chloride in pure water is 1.314 X 10""5 molal, and
the mean ionic activity coefficient is then 0.9985 [Neuman, J. Am. Chem. Soc.,

54, 2195 (1932)]. The heat of solution of the salt is 15,740 cal. mole-1
. Taking

the entropy of solid silver chloride as 22.97 E.U. mole"1
, and using the results of

the preceding exercise, calculate the standard free energy and heat of formation
and the entropy of the Cl~ ion at 25 C.

19. Show that the B.M.P. of the cell M
| M+(a = 1) : A~(a - 1) | MA(), M is

given by E = (RT/F) In K9, where K, is the solubility product of the sparingly
soluble salt MA. Propose a cell for determining the solubility product of silver

iodide, and use the data in Table XXXIX to calculate the value at 25 C.
20. The standard potential of the silver azide electrode, i.e., Ag, AgNs(0), Nj",

is - 0.2919 volt at 25 C [Earned and Nims, J. Am. Chem. Soc., 60, 262 (1938)].
If the solubility of silver chloride is 1.314 X 10~6

molal, calculate that of silver

azide at 25 C. (Complete dissociation may be assumed in the saturated solution

in each case.)

21. The heat of solution (A#) of cadmium in dilute acid is 17.1 kcal. g.

atom""1 at 25 C [Richards, et a!., /. Am. Chem. Soc., 44, 1051, 1060 (1922)].

Using the known standard Cd, Cd++ potential, and the entropy of Cd and Hs(0),
determine the standard entropy of the Cd4""1" ion.

22. The heat of formation of a dilute solution of sodium fluoride is 136.0C

kcal. at 25 C. Using the standard entropies of Na(), F2(0), Na+ and F"% together
with the known standard potential Na, Na+, calculate the standard potential of

the Pt, Fjfo), P- electrode.

23. The heat of solution of aluminum in dilute acid is 126.3 kcal. at 25
C
C.

Using the standard entropies of Al(s), H(0) and A1+++, calculate the standard

potential of the Al, AI+++ electrode.

24. From the standard free energies of formation of PbSCMs), Pb++ and SO,
calculate the solubility product of lead sulfate at 25 C. Assuming complete
dissociation, estimate the solubility in water, in terms of molality.

25. From the standard free energies of formation of OH" ions and of HtO(I),
calculate the dissociation product (Kw) of water at 25 C.
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26. The standard potential of the Ag, Ag2O(), OH" electrode is - 0.344 volt

and that of the Pt, AgO(), Ag20(), OH- electrode is - 0.57 volt at 25 C.

Using the standard O 2(0), OH*" potential, determine the oxygen dissociation pres-
sure of (i) Ag 2O, (ii) AgO, at 25 C. What would be the dissociation pressure in

the latter case if the reaction AgO Ag + J0 2(0) occurred?

27. Derive the general expression

dPj T NF

for the influence of pressure on the E.M.F. of any cell, at constant temperature.
Show that for the cell H 2(P) | HCI(w) | Hg2Cl 2 , Hg(f),

AF as
2(t^Hci(m) + FH) (FH*(P) + FngiCij)

where FncKm) is the partial molar volume of the hydrochloric acid, i.e., V*, in the

solution of molality m; Fn 2(p) is the molar volume of hydrogen at the pressure P
in the cell; Fng and FHg2ci 2 refer to the indicated substances in the pure states.

The terms FHCI, Fng and FHg2ci a are relatively small and their resultant is

virtually zero; hence, show that in this case

,
-

1
*

where E\ and E* are the E.M.F.'S of the cells with hydrogen gas at fugacities /i and

/2, respectively. Compare this result with that obtained from the general equa-
tion (45.6).

28. With 0.1 molar hydrochloric acid at 25 C, EI is 0.3990 volt when the

hydrogen pressure (or fugacity) is 1 atm., and J 2 is 0.4850 volt when the pressure
of the gas in 568.8 atm. Calculate the fugacity of hydrogen at the latter pressure

using the equation derived in the preceding exercise. Compare the result with

that obtained from the compressibility equation

PV = B!T(1 + 5.37 X 10~4P + 3.5 X lO-'P2
).

[Hainsworth, Rowley and Maclnnes, J. Am. Chem. Soc., 46, 1437 (1924).]
29. The potential of the tetrathionate-thiosulfate electrode (Pt, 840,

2S2O), involving the process 2S 20" = S4O" + 2c, cannot be determined di-

rectly. Estimate its value, given that the standard entropies of the S2O" and

840^" ions are 8 and 35 E.U., respectively, and that A# for the reaction 2S2O"
-h I2(s) S4O~ + 21- in solution is - 7.76 kcal. at 25 C. Any other data

required may be obtained from tables in the book.

30. The E.M.F. of a lead storage battery containing 2.75 molal sulfuric acid was
found to be 2.005 volt at 25 C. The aqueous vapor pressure of the acid solution

at this temperature is about 20.4 mm., while that of pure water is 23.8 mm. The
mean ionic activity coefficient of the sulfuric acid is 0.136. Calculate the standard

free energy change of the cell reaction at 25 C and check the values from tabulated
free energy data.

31. Using tabulated standard free energies and the known activity coefficients

of nitric acid solutions, calculate the free energy change of the reaction

) + H 2O(/) = 2HNO, (soin.)

at 25 C, (i) for the standard state, (ii) for 2 raolal nitric acid.
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32. Assuming the heats of formation to remain approximately constant in the

range from 25 to 30 C, calculate the ionic product of water at these two tem-

peratures, using standard free energy and heat of formation data only.
33. Show that the heat of solution of an electrolyte at infinite dilution is

equal to the sum of the standard heats of formation of its constituent ions minus
the standard heat of formation of the pure solute. From the data in Tables V
and XL calculate the heats of solution at infinite dilution per mole of (i) NaOH,
(ii) HJ304, (iii) AgCl, (iv)
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TABLE 1. CONSTANTS AND CONVERSION FACTORS *

1 liter 1000.028 cm.
1 atm 1.01325 X 106 dynes cm.-*
1 int. joule 1.00017 abs. joule
1 (defined) cal 4.1833 int. joules

4.1833 int. volt-coulombs
4.1840 abs. joules
0.041292 liter-atm.

41.293 cc.-atm.

1 liter-atm 1.0133 X 10 ergs
1.0131 X 10> int. joules
24.218 cal.

1 cc.-atm 0.024212 cal.

Molar volume of ideal gas at C and 1 atm 22.4140 liter mole"1

Ice Point 273.16 K
Molar gas constant (R) 8.3144 abs. joules deg.-

1 mole"1

8.3130 int. joules deg."
1 mole' 1

1.9872 cal. deg.-1 mole"1

0.082054 liter-atm. deg.-1 mole"-1

82.057 cc.-atm. deg.-1 mole"1

Avogadro number (N) 6.0228 X 10 mole-1

Boltzmann constant (k R/N) 1.3805 X 10' " erg deg.-
1

Planck constant (h) 6.6242 X W" erg sec.

Velocity of light (c) 2.99776 X 1010 cm. sec.-*

hc/k 1.4385 cm. deg.

Faraday (F) 96,500 int. coulombs g. equiv."
1

23,070 cal. volt"1 g. equiv.-
1

*
Mainly from publications of the National Bureau of Standards, cf., J. Rea. Nat. Bur.

Stand.. 34, 143 (1945).

501
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Substance

Hi
N,
Os
cu
CO
CO,

NO
NO,
HC1
HBr
HI

H,8
80.
80,
NHi
HCN
CEU

C.H.

C,H4
CH,
C.H,
CBM)H
CiHiOH
C,H,

TABLB 2. PBOFBBTIBB OF GASJ&fl AND LIQUIDS
*

B. P. AH, at B. P.

20.3 K 216 cal. mole"1

77.3 1,360
00.2 1,610

239.5 4,800
81.1 1,410

183.7

121.4

189.5 3,600
206.2 3,950
237 4,300
373.2 9,717
213.4 4,490
263.2 6,060
317.8 9,500
239.8 5,560
299.2 5,700
111.7 1,950
185.9 3,800
231.0 4,500
272.6 5,300
263.0 5,080
169.3

226.2

184.7

337.8 8,410
351.6 9,400
353.3 7,400

tical Tables. For empirical formulae

for estimating critical temperatures and heats of vaporisation, see Watson, Ind. Eng. Cfom.,

23, 360 (1931); Othmer, ibid., 32, 841 (1940); 34, 1072 (1942); Meissner, ibid., 33, 1440

(1941); 34, 521 (1942). When no other information is available, the Guldberg-Guye rule

may be used, i.e., T. 1.6 X B. P. (in K), to obtain the critical temperature. Heats of

vaporisation may be estimated from Trouton's rule.
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Gas

Hs
D,
O,

N,

Clt

Br,
CO

HCl
HBr
H,O

CO,

HCN
N,O
SO,
NH,
80s

CH 4

CjH,

CH
n-C4Hi.

CtH4

C,H,
C.H.
CH,OH
C,H,OH
CHaCOCH,

TABLE 3. HKAT CAPACITIES OF OASES AT 1 ATM. PRESSURE
CP - a + pT + yT* + *T* cal. deg.~

l mole-1

6.947

6.830

6.096

6.148
6.449

6.524

7.576

8.423
6.342

6.420

6.732
6.578
7.219

7.256
6.396

6.214

1 5.152
5.974

6.529

6.147
6.189

f 3.603
6.077

1 4.171

3.381

1 1.279

2.195

f
- 1-209

0.410

f
- 0.012

4.357

2.706

11.942
- 9.478

4.398

3.578

1 2.024

5.371

X 10

2.313

2.057

8.649

1.722

2.035

7.961

9.706

7.082

*
Spencer, et aZ., J. Am. Chen. Soc., 56, 2311 (1934); 64, 250 (1942); 67, 1859 (1945);

see also, Bryant, Ind. Eng. Chem., 25, 820 (1933). Most of the data are applicable from
about 300 to 1500 K.

t More accurate values, involving four constants.
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TABLE 4. HBAT CAPACITIES OF SOLIDS AND LIQUIDS AT 1 ATM. PRldSSURtt

CP - a -f bT cT~* cal. deg."
1 mole"1

Substance

Al

AW),
B
Cd
CaO
CaCO,
Graphite
Cu
CuO
Pb
PbO
PbS
Hg(Z)
Ag
AgCl
Zn
ZnO
ZnS

a

4.80

22.08

1.64

5.46

10.0

19.68

2.673

5.44

10.87

5.77

10.33

10.63

6.61

5.60

9.60

5.25

11.40

12.81

6 X 10*

3.22

8.971

4.40

2.466

4.84

11.89

2.617
1.462

3.576

2.02

3.18

4.01

1.50

9.29

2.70

1.45

0.95

cX 10-*

0.5225

0.1080
0.3076

0.1169

0.1506

0.1824
0.1946

*Kelley, U. S. Bur. Mines Bull., 371 (1934). Except for mercury, the values are

applicable from C to the melting point or to about 1000 C, whichever is the lowei.
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TABLE 5.* .STANDARD FREE ENERGIES AND HEATS OP FORMATION (iN KCAL.
MOLE"1

) AND ENTROPIES (iN CAL. DEO.'1 MOLE"*1
) AT 25 C f

505

* Data mainly from F. R. Bichowsky and F. D. Rossini, "The Thermochemistry of the

Chemical Substances," 1936 (heats of formation); W. M. Latimer, "The Oxidation States of

the Elements and their Potentials in Aqueous Solutions/' 1938 (free energies and entropies);

Kelley, U. S. Bur. Mines Butt.
,
434 (1941) (entropies); see also, Chapter XIII, ref. 7.

Because of temperature differences and the variety of sources, the data are not always
completely consistent; the deviations are, however, usually not greater than the experi-
mental errors.

f Unless otherwise indicated, e.g., SOi(0), all substances are supposed to be in their

stable forms at 25 C and 1 atm. It may be noted that where two of the quantities are

available for any substance it is usually possible to calculate the third, provided the en-

tropies of the elements involved are known. The heats and free energies of formation of

elements in their standard states are taken as zero, by convention.
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AF1 AJ5Tf

kcal. kcal.

-90.45 -94.1
-78.9

-102.0
-118
-343

-68.8 -61.0

15.3

-190.4

-351.0
-134.1

18.44

-2.59
2.60

-26.22
-22.90
-15.8
-24.1

4.96

-9.5
-145.9

-62.59

-91.7

-90.48
-250.8

-133.2

271.9

-203.3
360
-150

25.2

-7.3
-3.0
-30.3
-24.0
-15.0

-29.4
-5.5

-170.0

-57.5
-99
-136.0
-98.3
-86.7

-102.0

-270.0

-111.7

-330.5

-130.0

-140.8
-290
-345

B.U.

22.6

24.1

31.8

44.8

16.6

28.7

10.0

18.5

4.5

10.1

68.0

57.3

10.2

17.54

29.1

23.0

25.6

27.6

37.5

33.7

35.0

47.8

12.2

14.0

17
13.1

17.3

20.1

22.5

32.5

27.8

35.7

13.3

-7.3
13.0

23.2

28.2
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Subotanoe

Suitor
Rhombic
Monoclinic
B
H8~
H.S
8F.
SO,

HtS04

S0r~
HSOr
80,

Tl
11+

kcal. kcal.

49.74 28
-44.19 -48.6

-6.28
0.7

-110.6 -127.4
-67.7
-138

- -35.18

-174.8
-43.2

-36.3
-84
-193.3
-44
-233.4

B.U.

25.6

12.3

-4.9

62.1

13.5

12.5

9.95

-25.7

10.4

19.7

13.8

30.7

TABLJB 6. INTEGRAL HEATS OF SOLUTION OF SALTS (1 MOLE SALT TO
200 MOLES OF WATER) AT 25 c *

* Data adapted from F. R. Bichowsky and F. D. Rossini, "The Thermochemistry of

the Chemical Substances," 1936; the values given there refer to 18 C, but those at 25 C
are not very different. The heat of solution at infinite dilution for any electrolyte may be
obtained by summing the standard heats of formation of the constituent ions (from Table 5)

and subtracting the heat of formation of the substance in the pure state.
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Absolute temperature, 4-5

zero, 5, 140

entropy, 178, 181, 183
heat capacity, 121, 124

unattainability, 139

Absorption coefficient, 347

Activity, 262, 269, 350-74
in amalgams, 363-67, 369-71

coefficient, 258, 351-54, 356
and Debye-HUckel theory, 409-24

determination, 381-400, 403

boiling point, 387

E.M.F., 392-98

freezing point, 381-86

isopiestic method, 387-88
osmotic coefficient, 390-92

solubility, 398-400, 403
and dielectric constant, 414
and electrical free energy, 409
in electrolytes, 379
and equilibrium constant, 275-76
in gas mixtures, 263, 264
and pressure, 265
and temperature, 266

and Henry's law, 353-54
and ionic strength, 401, 410-12
in liquid mixtures, 269
and pressure, 270-71
and temperature, 270, 356

and Margules equation, 370
mean ionic, 379
of nonelectrolytes, 402-03
and osmotic coefficient, 389-92
and pressure, 270

rational, 353, 407
and standard states, 355, 380

stoichiometric, 380, 412

table, 402
and temperature, 270, 356, 386, 387, 447

true, 380, 412
and valence type, 401, 412, 413
and van Laar equation, 371

determination, 356-74

boiling point, 362-63
B.M.F., 363

freezing point, 358-61

vapor pressure, 856, 857
in electrolytes, 878-79
and equilibrium constant, 274

Activity (Cont.)
and fugacity, 262, 270, 358
in gas mixtures, 262
and pressure, 265
and temperature, 266

and Gibbs adsorption equation, 245
in liquid mixtures, 269

and pressure, 270
and temperature, 270

and Margules equation, 370
and osmotic pressure, 372-73
and pressure, 270

solubility product, 398
standard state, 350-54

gas, 263, 263, 264, 351
and reference state, 263, 352-54

solute, 352-54

solvent, 351
and temperature, 270, 361, 362

Adiabatic combustion, 84-89

process, 55-9

entropy change, 1 47, 1 50

pressure-volume relationships, 57

temperature change, 56
work of expansion, 58

relationships, 162

Adsorption, 245
Gibbs equation, 244-45

negative, 245

Amagat's law of volumes, 31

Amalgams, activities in, 363-67, 369-71

Ammonia, heat of formation, 81

equilibrium, 277-78

Ampere, 9

Apparent molar, heat capacity, 454-57
heat content, 440-46, 449-52

relative, 440-45, 451

properties, 427-28
and partial molar properties, 429-30

volume, 429, 437
Atomic heat capacity, see Heat capacity

Avogadro number, 95, 100

Beattie-Bridgeman equation, 26
Berthelot equation, 25-26

and entropy correction, 158
and heat capacity correction, 169, 171
and heat content correction, 160

509
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Boiling point, dilute solutions, 343-45

elevation, 344
and activity, 362-63, 387

and pressure, 226, 227, 231

table, 502
volatile solute, 344

Boltzmann constant, 100
-Planck entropy equation, 184-85

Bond energies, 90
and heat of reaction, 91-92

table, 91

Bridgman, thermodynamic formulae, 212

Br0nsted equation, 420

Calorie, defined, 9
standard (15), 7

Calorimeter, 9
Capacity factor, energy, 6

Carbon, heat of vaporization, 90
Carnot cycle, 135, 138, 141, 148

efficiency, 137
on entropy-temperature diagram, 147

theorem, 133

Cells, reversible, 330-32, 462-86

entropy change in, 466

general E.M.F. expression, 467-68
heat change in, 466

reactions, 464-66

Centigrade scale, 3

C.g.s. units, 6

Chemical change, direction, 284

equilibrium, 273-313

potential, 215, 217
x

and activity, 262, 269, 350, 363
of electrolytes, 379
and fugacity, 261-62, 269
in gas mixtures, 262-64
of ions, 378, 407
in liquid mixtures, 319
and osmotic coefficient, 389
and osmotic pressure, 372
and partial molar free energy, 215, 427

phases in equilibrium, 238, 244-45
and pressure, 218-19

significance, 238
in surface phase, 243
and temperature, 218-19

Chlorine, atomic heat capacity, 107

liquid, vapor pressure, 230

molecule, heat capacity, 98, 99, 115, 116
vibrational partition function, 114

Clapeyron equation, 223-26, 229, 233, 235,
241

Clausius-Clapeyron equation, 227-29, 233,

292, 325, 326

integration, 227-29

Cl&nent and Desonnes, heat capacity ratio,
59

and Reech's theorem, 177
Closed system, 163, 204

several phases, 216, 237, 274

Combustion, adiabatic, 84-89
heat of, 75

calculation, 89-90

Compressibility curves, generalized, 28
factor, 27
and fugacity, 256-57

generalized treatment, 27-30
and heat content correction, 161

of gases, 21-31
Conservation of energy, law, 34, see also

First law of thermodynamics
and heat of reaction, 71

Consolute temperature, 337

Constants, physical, 501
Conversion factors, 11, 501

Cooling, by adiabatic expansion, 57

by Joule-Thomson effect, 64

Corresponding states, 25
law of, 25

Coulomb, 7
Craft's rule, 248
Critical point, 23

data, table, 502
solution temperature, 337

temperature, 22
Cubic cm. and milliliter, 6

Cycle (or cyclic process), 39

Carnot, 135-37, 138, 141, 148

energy change, 38-39

entropy change, 144, 146
heat and work, 39

irreversible, 144, 146

efficiency, 144

Joule, 153

Debye, characteristic temperature, 122, 124
heat capacity theory, 122-25

Debye-Htickel, equation, 411

applications, 395, 398, 421-24
for concentrated solutions, 418-20

limiting law, for activity coefficient, 411

and dissociation constant, 421
and equilibrium constant, 421-24
and solubility, 415

tests, qualitative, 412

quantitative, 413-16
for freezing point, 417
for heat capacity, 457
for heat content, 451
for heat of dilution, 451
for partial molar volume, 435-37
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Debye-Hflckel (Cont.)

theory, 883, 407-24
and activity coefficient, 409-10
mean ionic, 410-11

and dielectric constant, 414
and electrical free energy, 409

incomplete nature, 416, 419
and ionic atmosphere, 408
and osmotic coefficient, 416-17
and standard states, 412
and temperature, 414

Deuterium, entropy, 194, 197, 200
heat capacity, 96, 97, 111

rotational, 113
rotational partition function, 109

Diamond, heat capacity, 121, 123
Diatomic molecule, heat capacity, 96, 97

moment of inertia, table, 110

partition function, combined, 116

electronic, 108
and entropy, 192

rotational, 109-12

vibrational, 113
rotational energy, 110

heat capacity, 111

symmetry number, 109
vibrational energy, 113, 114, 115

frequency, 113

table, 114
heat capacity, 114-15

Differential, complete or exact, 16-18, 210
heat of dilution, 83, 384, 440

to infinite dilution, 440, 441-42
of solution, 82, 361, 439, 449, 450

in dilute solution, 345
a,t infinite dilution, 490
and solubility, 345

Dilute solutions, 337-46

boiling point, 343-45

freezing point, 340-43
heat of solution in, 345

Henry's law, 337-40

homogeneous equilibria in, 279-81

solubility and temperature, 345

Dilution, free energy of, 406
heat of, 83, 384, 440, 441-42, 449-50
and Debye-Htickel theory, 451

differential, see Differential

integral, see Integral
Disorder and entropy, 152
Dissociation constant, 421

and Debye-Httckel theory, 421-22
of water, 483-84
of weak acid. 485-86

pressure and B.M.P., 481-33

Distillation, fractional, 323, 324
reduced pressure, 825

Duhem, see Gibbs-Duhem
Duhem-Margules equation, 318-20, 331,

332, 333, 335, 336

Duhring's rule, 231-32, 248

Dulong and Petit, heat capacity, 120

Dyne, 6

Efficiency, Carnot cycle, 137
heat engine, 133
irreversible cycle, 144
reversible cycle, 137, 140

Einstein characteristic temperature, 122

functions, 115, 193

heat capacity theory, 121

Electrical work and heat, 9

maximum, 45

Electrodes, oxidation-reduction, 464

potentials, 469-80

applications, 478-83
and entropy, 489, 492-93

oxidation, 471

sign, convention, 471-72

standard, 470-80

table, 479

reference) 474, 475 -

Electrolytes, activity coefficient, 379

boiling point method, 387
calculation, see Debye-Huckel
E.M.F. method, 392-98

freezing point method, 381-86
and ionic strength, 401, 410-12

isopiestic method, 3X7-88
osmotic coefficient method, 390-92

solubility method, 398-400

table, 402
and valence type, 401, 410-12

chemical potential. 378

partial molar heat capacity, 455, 457
heat content, 444, 450

volume, 435
Electromotive force, see K.M.P.

Electron "gas," heat capacity, 125

Electronic contribution to entropy, 101

to heat capacity, 107

partition function, 106

diatomic gas, 108
monatomic gas, 106-7

polyatomic gas, 116

states, 102
monatomic gases, 105

Elements, free energy convention, 298
heat capacity, 120-25

at absolute zero, 121, 124
at low temperatures, 124

heat content convention, 74
E.M.F. and activity determination, 363-68,

392-98
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E.M.F. (Cont.)
and dissociation constant, water, 483

weak acid, 485-86
and electrode potentials, 472-73
and entropy change, 466
and free energy change, 300-02, 466, 468,

475, 478
of galvanic (reversible) cells, 462-96

general expression, 467-68
and heat content change, 466
and partial molar heat capacity, 453

heat content, 448
and pressure, 499

sign, convention, 464

standard, 302, 393, 467, 469
and entropy change, 303, 489
and equilibrium constant, 475-76
and temperature, 448

Energy, 6, 36, 38, see also Free energy
change and work, 38

in cycle, 38-39
conservation of, 34, 71

content, 36, 38
of ideal gas, 50-51

dimensions, 6

degradation and entropy change, 146

cquipartition principle, 97-98
and heat, 6, 7, 10, 40

intensity and capacity factors, 6
of isolated system, 35

kinetic, 95, 104
and mass, 35-36

quantum theory, 99, 106
and partition function, 101

rotational, 96, 97, 98, 110, 111, 117

translational, 95, 105

units, 6, 11

vibrational, 96, 97, 98, 113, 114, 115, 118
of solids, 121, 122

and work, 6, 10, 40

zero-point, 100

Enthalpy, 48, see also Heat content

Entropy, 141-52
at absolute zero, 178, 183

applications, 303-05, 492-93

change, from B.M.F., 303, 466, 489
and equilibrium, 208
and free energy change, 302-04
of ideal gas, 148-50, 185
in irreversible (spontaneous) process,

144-46
in isolated system, 146
in phase change, 148
in reversible process, 144

correction, nonideal, 158

determination, 178
and disorder, 152

Entropy (Cont.)
electronic contribut ion, 11)1

of expansion, ideal gas, 148-50, 185
extensive property, 143
of fusion, 148, 152, 170

gases, 180

calculation, 188-90

table, 198, 505-O8
of glasses, 185
and heat capacity, 155
of ions, standard, 488-94

table, 492, 505-08
of liquids, table, 179, 505-08
of mixing, gases, 150-51

liquids, 348

solids, 199
of monatomic gases, 190-92
and nuclear spin, 194

partial molar, 218
and partition function, 188-96

practical, 194
and probability, 183-85, 189
and pressure, 156-57
and randomness, 152

rotational, 193, 194-96
of solid solutions, 185, 199
of solids, table, 179, 505-508

standard, 158, 179, 181, 191

tables, 179, 198, 505-08
statistical and thermal, 196
statistical treatment, 183-96
and temperature, 154-55

-temperature diagram, 147

thermal, 194
and third law of thermodynamics, 178-P3,

196

of transition, 180, 182

translational, 192
and unavailable heat, 143

unit, 180
of vaporization, 148, 180

vibrational, 193

virtual, 194

Equations of state, 15, 18-29

Beattie-Bridgeman, 26

Berthelot, 25

general, 26
ideal gas, 15, 18

reduced, 24-25, 174

thermodynamic, 159-60
van der Waals, 22

Equilibrium, chemical, 15, 273-313

conditions, thermodynamic, 207-09, 23V
in heterogeneous systems, 216-17,
237-58

constant, 274
and activity, 274
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Equilibrium constant (Cont.)
and activity coefficient, 275-76
and Debye-Httckel equation, 421-24
and electrode potential, 476
and E.M.F., 475, 479
and free energy change, 274
and fugacity, 275
and heat of reaction, 292-95
of isotopic exchange reactions, 313
of metathetic reactions, 312-13
and pressure, 286-87
and standard free energies, 283-84, 300
and standard state, 276
and temperature, 286-91

van't Hoff equation, 289
of crystalline forms, 225

heterogeneous chemical, 281-82, 291

homogeneous, gaseous, 275-79

liquid, 278-81, 290

liquid-solid, 224, 234, 327-30

liquid-vapor, 226-33, 234
ideal solutions, 322-24
nonideal solutions, 331-40

mechanical, 15
and partition function, 310-12

phase, 222-47

one-component system, 222

pplycomponent system, 237-41

position, and pressure, 287-88

simultaneous, 291-97

solid-liquid, 224, 234, 327-30

solid-vapor, 233, 234

surface, 241-47

conditions, thermodynamic, 243

temperature (or thermal), 2, 3, 15

thermodynamic, 15

vapor-liquid, 226-33, 234
ideal solutions, 322-24
nonideal solutions, 331-40

vapor-solid, 233, 234

Equipartition principle, 97
and heat capacity, gases, 98, 111, 115, 117

solids, 120-21

Erg, 6
and joule, 7, 11

Euler criterion (reciprocity relationship), 210
theorem on homogeneous functions, 215

Eutectic temperature, 241, 347

Evaporation, see Vaporization
Expansion, adiabatic, 55-58

reversible, 41

throttled, 60
work of, 10

reversible, 42
Extensive properties, 16

Explosion bomb, 70

pressure and temperature, 88

First law of thermodynamics, 35, 37, 38, 68,

71, 72, 129, 202
and thermochemistry, 68, 71, 72

Flame temperature, actual, 86
maximum, 84-86

Fractional distillation, 323, 324
Free energy and free energy change, 202-

20, 222, 242, 25Q-51, 273-74, 282-

86, 295-310, 466-68, 475, 486-88,
9ee also Activity, Chemical poten-
tial and Fugacity

and activity coefficient, electrolytes, 409
in chemical reaction, 282-83
of dilution, 406
and direction of chemical change, 284-85

electrical, 408
and Debye-Huckel theory, 409

and electrical work, 300
and electrode potential, 477
and E.M.F., 300-02, 466, 468, 475, 478

equations, addition, 297

equilibrium conditions, 209, 222, 274
and fugacity, 250, 258

functions, 306-09
in isothermal change, 205
of mixing (solution), 375
and net work, 203, 300

partial molar, 215, see also Chemical po-
tential

from partition functions, 209-10, 306-10
and phase change, 299
and phase equilibrium, 222
and pressure, 204
in any process, 219^

relationships, 204

standard, 274, 283-S4

applications, 303-05

determination, 300

calculation, 308
E.M.P. method, 300-02

entropy method, 302

by equilibrium constant, 300
of formation, 298

of ions, 486-88

tables, 299, 492, 505-08
of reaction, 283-85
and temperature, 295-96

surface, 242-43
and temperature, 204, see also Gibbs-

Helmholtz equation
Freezing point, 327
and composition, 328

depression, 340, 382
and activity, 358-61, 381-86
and Debye-Huckel theory, 417
and ionic strength, 417
and osmotic coefficient, 392, 417
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Freezing point (Cont.}
dilute solutions, 340-43
and solubility, 330

Fugacity, 260-70
and activity, 262, 264, 270, 353, 358
and activity coefficient, 258, 263, 264

determination, 251-58, 267

approximate, 255
from equation of state, 253-54

generalized (compressibility) method,
256-58

graphical, 256-58
in mixtures, 267-68

and Duhem-Margules equation, 319
and equilibrium constant, 275
and free energy, 250

gas, ideal, 251

mixtures, 261-71

single, 250-60

generalized curves, 259
and Henry's law, 338-39, 353
in ideal solution, 317-18

liquid, mixtures, 268-71, 317-18

single, 260
in nonideal solution, 334
and osmotic pressure, 373
and phase equilibrium, 260
and pressure, 251, 259, 264-65

solid, 260
and temperature, 259, 266

Fusion, entropy of, 148, 152, 179, 180

equilibria, 224
heat of, 76, 224, 225
and freezing point, 340-43
and solubility, 328-30
and temperature, 79, 235, 359

Galvanic cells, see Cells

Gas and gases, 18-31

compressibility, 21

factor, 27

constant, 19, 501

cooling, 57, 64
critical state, 22-23, 502

temperatures, table, 502

entropy, tables, 198, 505-08

equations of state, see Equations of state

fugacity, 250-70, see also Fugacity
heat capacity, determination, 167

difference (CP- C,), 54-55, 164r-167

mean, 53

monatomic, 96
and pressure, 51-52, 64-65, 168-70

ratio, 59-60, 96, 171

tables, 53, 503
and temperature, 52-53
and volume, 170-71

Gas and flams (Cont.)

ideal, see Ideal gas
Joule-Thomson effect, 60-64, 171-75

mixtures, fugacity, 261-70, see also Fu-
gacity

heat changes in, 266

ideal, 268

partial pressures in, 20, 30
volume changes, 31, 265

real, 21-31

mixtures, 30-31
standard state, entropy, 158, 198

free energy, 298
heat content, 72

throttled expansion, 60

Gay-Lussac, energy content of gas, 50
Generalized methods, for compressibility, 28

for fugacity, 256-58
for heat capacity correction, 170
for heat content correction, 161

for Joule-Thomson effect, 174-75

Gibbs, adsorption equation, 214-45
chemical potential, 215, see also Chemical

potential
-Duhem equation, 214, 216, 318-19, 368,

370, 381, 387, 392, see also Duhem-
Margules equation

-Hclmholtz equation, 205-07, 218, 451,

466, 489

phase rule, 239

thermodynamic potential, 203

Gram, 6

Heat capacity-, 8

apparent molar, 454-57

atomic, solids, 120-25
at absolute zero, 121, 125
classical theory, 120

Debye theory, 122

Dulong and Petit law, 120
Einstein theory, 121

electron "gas" contribution, 125
at low temperatures, 124

of calorimeter, 9
classical calculation, 98, 120
constant pressure and volume, 48-49

difference, 50, 54-55, 163-67

maximum, 165

ratio, 56, 9&-97
and atomicity, 60

determination, 167
and pressure, 60, 171

determination, 9, 167
dimensions and units, 8
and entropy, 155, 178-79
of gases, see Gas
and internal rotation, 119
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Heat capacity (Cont.)
and kinetic theory, 95-96

molar, 8

partial molar, 452-58
and E.M.F., 463

and partition functions, 102, 105, 111-

13, 115, 117, 118-19
and pressure, 64-65, 168-70

quantum theory, 9&-120

ratio, 56, 60, 96-97, 167, 171

relationships, 163-71

rotational, 111, 117
of solid compounds, 126

elements, 120-25

specific, 8

tables, gases, 53, 503

solids, 504
and temperature, 52-54, 503, 504

translational, 105

vibrational, 114, 118
and volume, 170-71

changes at constant pressure and volume,
47-48

of combustion, 75, 85, 89, 92

content, 48

apparent molar, 440

relative, 44O-46, 449-52
and Debye-Hiickel theory, 450

and cell reaction, 466
and E.M.F., 466
and free energy, see Gibbs-Hclmholtz

equation
and heat of reaction, 68, 70, 73-74, see

also Reaction

partial molar, 218, 266, 318, 356, 361,

384, 386, 387
in reference state, 356, 438

relative, 438-54
in standard state, 356

and phase changes, 76
and pressure, 160

ideal gas, 52

relative, 309
and temperature, 54
in throttled expansion, 61

conversion into work, 129, 130, 131, 133

efficiency, 133, 137, 138, 140

ynjyvify*UTT>j 138

definition, 2, 7
of dilution, Bee Dilution

and energy, 6, 7,

engine, 133

Carnot's, 135-87

Joule's, 158

reversible, 133

efficiency, 137
of formation, 72, 79-74, 91

Heat of formation (Cont.)
of elements, 74
and heat content, 73-74
of ions, 494-96

standard, 72-74, 494

tables, 73, 492, 505-08
of fusion, see Fusion
of hydrogenation, 75

measurement, 9
of mixing, ideal systems, 268, 318

nonideal, 331, 375, see also Solution
of reaction, 68, 70, 74, see also Reaction
of solution, see Solution
of transition, see Transition
unavailable and entropy, 143
of vaporization, see Vaporization
and work, 10

in cycle, 39

dependent on path, 39

equivalence, 33
not properties of system, 40

Helmholtz, conservation of energy, 34
free energy, 202
see also Gibbs-Helmholtz

Henry's law, 337-38, 345, 353

deviations, 353-54, 365
ionic solutions, 407, 412

and external pressure, 339
and gas solubility, 338-39
and Raoult's law, 339-40, 353

Hess, law of thermochemistry, 72

Heterogeneous chemical equilibria, 281-2
and temperature, 291

equilibrium conditions, 216-17

system, 14

see also Phase equilibria
Hildebrand's rule, 232

Homogeneous equilibria, gaseous, 275-78
and temperature, 289-90

in solution, 278-81

dilute, 279
and temperature, 290

Hlickel equation, 419, 420, see also Debye-
Hiickel equation

Hydrochloric acid, activity coefficients, 394
thermal properties, 453

Hydrogen, electrode standard, 469

entropy, 194, 197

fugacity, 256
heat capacity, 96, 97, 111

ion, entropy, 489
free energy, 486
heat of formation, 494

Joule-Thomson effect, 64
ortho and para, 111

heat capacity, 112
rotational heat capacity, 111-13



516 INDEX

Hydrogen (Cont.)

partition function, 109, 112

scale, electrode potentials, 469
vibrational partition function, 114

Ice point, 3
on absolute scale, 5

Ideal gas, 19, 159, 160
adiabatic processes, 55-58

constant, 19, 501

energy content, 50-51

entropy changes, 148-50
of expansion, 186

equation of state, 15, 18

fugacity, 251, 261

heat capacity, 96

difference, 55, 96, 164

and pressure, 51-62, 168

ratio, 96
kinetic theory, 95

mixtures, 20, 265, 268

solubility, 325-26

thermometer, 4
work of expansion, 43-44

heat of vaporization, 260, 268, 291, 318

liquid solutions, 317, 318, 320, 330

deviations, 330-37, 427

vapor pressures, 321

see also Raoult's law
Indicator diagram, 135

Integral heat of dilution, 83, 440, 442-44
of solution, 82, 439, 449, 450

in dilute solution, 345, 450

Intensity factor, energy, 6
Intensive properties, 16

Internal pressure, 62
v

rotation, energy, 119
Inversion temperature, Joule-Thomson, 63,

173

Iodine, dissociation, 311

Ionic, activity, mean, 379

coefficient, mean, 379
and Debye-Huckel theory, 410-11
and osmotic coefficient, 417

atmosphere, 408, 410

radius, 409

molality, mean, 379

product, water, 483

strength, 400, 410, 411, 412, 436
and activity coefficient, 401, 410-12
and equilibrium function, 421-24
and freezing point, 417
and osmotic coefficient, 417

Ions, activity and activity coefficient, see

Ionic

distance of closest approach, 418-19

entropy, standard, 488-93

Ions, entropy (Cont.)

applications, 492-93

determination, 488-92

table, 492, 505-08
free energy of formation, 486-88

table, 492, 505-08
heat of formation, 494-96

table, 492, 505-08
Irreversible process, 130-31

energy degradation, 146

entropy change, 144-46

Isentropic change, 147, see also Adiabatic
Isolated system, 14

entropy change, 146
and first law of thermodynamics, 35

Isopiestic method, activity, 387-88, 392
Isothermal change, free energy, 205

work function, 205

expansion, reversible, 41-43
work of, 42-43

Isotonic, see Isopiestic

Isotopic exchange reaction, equilibrium con-

stant, 313

Joule, 7
absolute and international, 7, 11, 501

cycle, 153
and denned calorie, 9, 10, 501

energy content of gas, 50-51
mechanical equivalent of heat, 33
-Thomson coefficient, 61-64, 171-72

and fugacity, 259
at low pressure, 172, 173

sign and magnitude, 62
for van der Waals gas, 172, 175

effect, 60-64, 171-175

cooling by, 64

experiments, 51, 60
throttled expansion, 60

inversion temperature, 63, 173-75

generalized treatment, 174-75

Kelvin, available energy, 203

energy content of gas, 51

temperature scale, 5, 139-40
see also, Joule-Thomson

Kharasch, heat of combustion calculation^
90

Kilogram, 6
Kinetic theory, 95

and heat capacity, 95-96

Kirchhoff, heat of reaction-temperature
equation, 77-82

application, 79
'and latent heat, 79, 234, 359

vapor pressure equation, 229

Kopp, heat capacity of solids, 126
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Latent heat, see Fusion, Vaporiiation, etc.

Latimer, ionic entropies, 480-03
Lavoisier and Laplace, thermochemical law.

91

Law, additive pressure, 30
additive volume, 31

Amagat's, 31
of conservation of energy, 34
of corresponding states, 25

Debye-Huckel, limiting, 411, 417, 451, 457
Dulong and Petit, 120
of equilibrium, 274

Henry's, 337-38, 345, 353

Maxwell-Boltzmann, 100
of partial pressures, 20

Raoult's, 317, 320-21

thtrmochemical, Hess, 72
Lavoisier and Laplace, 71

thermodynamics, first, 35, 37, 38
second, 129, 131, 133

third, 178, 181-83, 194
Le Chatelier principle, 220, 287

Lewis, atomic heat capacity at constant

volume, 120
free energy, 202

fugacity, 250

partial molar properties, 213

sign of electrode potential, 472
of B.M.F., 464

Lewis-Randall, ionic strength, 400
and activity coefficient, 401

fugacity in gas mixtures, 268, 275

Liquid, fugacity, 260

junction, 396

potential, 470, 474, 475

mixtures, activity and activity coeffi-

cients, 269-71

fugacity, 268-71

general equation, 334

partially miscible, 336-37
reference state, for activity, 351

for heat content, 438

solutions, activity, 269-71

dilute, 337-46

fugacity, 268-71, 317-20, 233-328, 331,
334

ideal, 317, 318, 320, 330, see also

Raoult's law

nonideal, 330-37

fugacity, 334
heat change, 331
volume change, 331, 434

standard state for activity, 281, 351, 352
for entropy, 180
for heat content, 72

-vapor equilibria, ideal solutions, 321-23
nonideal solutions, 831-34

Liter, 6

-atmosphere, 11

Lummer-PringBheim, ratio of heat capaci-
ties, 59

Margules equation, 334, 336
and activity coefficient, 370-72
see also Duhem-Margules equation

Maximum efficiency, heat engine, 138

work, electrical, 45
of expansion, 44-45
and work function, 202

Maxwell relations, 163, 211, 223
Maxweli-Boltzmann law, 100

Mayer, mechanical equivalent of heat, 33
Mechanical equivalent of heat, 33

and heat capacities, 34
Melting point, and pressure, 224, see also

Freezing point

Mercury, activity in amalgams, 369-70

Meter, 6
Methanol equilibrium, 304
Miffiliter, 6

Mixing, entropy, gases, 150-51

liquids, 348
solids (solution), 199

free energy, 375
heat change, 318, 331, 375
volume change, 318

Mixtures, gases, ideal, 20, 261

real, 30-31

activities, 262-64
additive pressure law, 30
additive volume law, 31

fugacity, 261, 267-68

liquids, ideal, 317, 318, 320, 330

nonideal, 330-37

partially miscible, 336-37
Molal boiling point elevation, 344

freezing point depression, 342

Molality, 281
and activity, 353-54
and mole fraction, 281
mean ionic, 379

Mole, 8

fraction, 20
and molality, 281
and molarity, 279

Molecular weight, determination, 341-42,
344

Moment of inertia, diatomic molecules, 110
and equilibrium constant, 312

polyatomic molecules, 117
Monatomic gas, electronic partition func-

tion, 105-06

entropy, 190-92
heat capacities, 96
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Morse equation, osmotic pressure, 376-77

Nmurt heat theorem, 178
Net work, 208

in surface, 243

Nitrogen, compressibility, 21

entropy determination, 180

fugacity, 252, 258
Joule-Thomson coefficient, 63

inversion temperature, 173

tetroxide, dissociation, 280
Nonideal solutions, 330-37

vapor pressures, 331-33
see also Raoult's law

Nuclear spin, entropy, 194, 197

partition function, 194

quantum number, 109

Open systems, 213

part of closed, 216
Ortho and para states, 109

of hydrogen, 111, 112
Osmotic coefficient, 389

and activity coefficient, 389-92
and Debye-Hiickel theory, 416-17
and freezing point, 392, 417
and ionic strength, 417
and vapor pressure, 390

pressure, 372-74
and activity, 373-74
and vapor pressure, 373, 376

Oxidation potentials, 471

table, 479
Oxidation-reduction electrodes, 464

system, 463

Oxygen, electrode potential, 477

gas, fugacity, 255 ^

molecules, electronic states, 108

Partial molar, heat capacity and heat con-

tent, see Heat capacity and Heat
content

free energy, see Chemical potential

properties, 213-15, 427-58

determination, 427, 428-33

by apparent molar properties, 429
direct method, 428

general methods, 432

intercept methods, 430-31, 432

significance, 214-15, 427
volume, see Volume

pressures, 20, 30
law of, 20

specific properties, 433

Partially miscible liquids, 336-37
Partition function, 101

electronic, 106-107, 108

Partition function (Cont.)
and energy, 101
and entropy, 188-96
and equilibrium constant, 310-12
and free energy, 209, 306-10
and heat capacity, 102
and relative heat content, 308-09

rotational, 103, 110, 117

translational, 103, 104

vibrational, 103, 114, 118
Path, thermodynamic, 37

Pauling, bond energies, 90
Perfect crystal, entropy, 178, 185, 196

Perpetual motion, first kind, 34, 39
second kind, 132

Person, temperature and heat of reaction,

78, see also Kirchhoff
Phase change, entropy change, 148

free energy change, 299
heat change, 76, 223, see also Fusion,

Vaporization, etc.

equilibria, 222-47

one-component, 222

polycomponent, 237

rule, 238-39

space, 186

surface, 241
Planck constant, 104

quantum theory, 99
and third law of thermodynamics, 178
-Boltzmann entropy equation ,184-85

Polyatomic molecules, entropy and partition

function, 192-96
heat capacity, 96, 97, 116
moments of inertia, 117
rotational partition function, 117

symmetry number, 117
vibration frequencies, 118

Potential, chemical, see Chemical potential
electrode, 469-83

oxidation, 471

table, 479

reduction, 472

standard, 470-83

applications, 478-83
and entropy, 489, 492-93

liquid-junction, 470, 474, 475

Poynting equation, 236

Pressure, critical, 23

table, 502
and B.M.F., 499
in explosions, 88-89

internal, 62
law of additive, 30
partial, 20, 30
reduced, 25
and solubility, 339, 349
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Pressure (Cont.)
and vapor pressure, 236-36

Probability and entropy, 183-85, 189

thermodynamic, 185, 187

Process, irreversible and spontaneous, 129-

30,146
reversible, 41-42

spontaneous and probability, 184

thermodynamic conditions, 207-09

Properties of system, extensive and inten-

sive, 16

Quanta, 99

Quantum number, nuclear spin, 109

rotational, 109

theory, of energy, 99, 106
of heat capacity, gases, 102-19

solids, 121, 122

Ramsay-Young rule, 230-33

Randall, see Lewis-Randall
Rankine temperature scale, 5
Raoult's law, 317, 330, 338, 339, 357

applicable to both constituents, 320-21

deviations, 330-37, 352, 366
and heat and volume changes, 331, 434
and partial miscibiiity, 336

and external pressure, 321
and freezing point, 340, 342
and Henry's law, 338-40, 353
and solvent in dilute solution, 338, 339

Rational activity coefficient, 353, 407

Reaction, heat of, 68
and bond energies, 90-92

calculation, 89-92
and conservation of energy, 71

at constant pressure and volume, 70
and heat content, 68, 70

of formation, 74
and pressure, 69, 160
in solution, 69, 82
standard state, 72
and temperature, 77-82

free energy of, 283-84
and direction, 285

isotherm, 282-84, 301, 468

isotopic exchange, 313

rate, 286
Reduced equation of state, 24-25, 27-29

and fugacity, 258
and Joule-Thomson inversion tem-

perature, 174

pressure, temperature and volume, 25,

29,161
Reduction potential, 472
Reech's theorem, 177
Reference electrode, 474, 475

Reference (Cont.)
state for activity, gas, 263, 264

solute, 352-54
for fugacity, 251, 262

partial molar heat content in, 355-56
for partial molar properties, 438

Refrigeration engine or refrigerator, 134, 138
coefficient of performance, 139

Relative partial molar heat content, 361,

384, 386, 387, 438-S4
and activity coefficient, 384, 386,

387,446
and B.M.F., 448
and heat of dilution, 439, 441-42, 445
and heat of solution, 439, 449

Reversible adiabatic change, 55

pressure and volume, 57

temperature, 56
work of expansion, 58

cells, 300-02, 462, see also Cells

chemical reactions, 273-82

cycle, 135

electrodes, 462-64, see also Electrodes

expansion of gas, 41
heat change in, 51
maximum work, 41-45
work of isothermal, 43-44

heat engine, 133

efficiency, 137, 140

processes, 41-42

entropy change, 144

Rotation, internal, 119

energy of, 119

restricted, 119
and entropy, 197

Rotational energy, 96, 97, 98, 99, 103
diatomic molecule, 110, 111

entropy, 194-96
heat capacity, 111, 112, 117

partition function, 103
diatomic molecule, 109-10, 194

hydrogen, 111

polyatomic molecule, 117

quantum number, 109

Sackur-Tetrode equation, 190

Salt bridge, 475

Salting-out effect, 403
term in Hiickel equation, 419

Second, 6
Second law of thermodynamics, 129, 131,

133
Silver-silver chloride electrode, 474
Sodium chloride, activity coefficients, 386

heat of dilution, 442
Solid or solids, entropy, 178-30, 182

heat capacity, 120-25, 126
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Solid, heat capacity (Cont.)
classical theory, 120

Debye theory, 122
Einstein theory, 121

Kopp's rule, 126
at low temperatures, 124

random orientation in, 196

solution, separation on freezing, 327, 342-
43

standard state, for activity, 281, 351

for entropy, 180
for heat content, 72

Solubility, gas, ideal, 325-27
and pressure, 339
and temperature, 328-30

product, 398, 415, 491
and Debye-Huckel theory, 415-16

by electrode potential, 480
and free energy of solution, 491

small particles, 246-47

solid, 327
and pressure, 349
and temperature, 328-30

Solution or solutions, dilute, 279, 337-46

boiling point, 343-44

definition, 338

freezing point, 340
and Henry's law, 337-40
and Raoult's law, 338-40

solubility and temperature, 345

gases in liquids, 325-27
heat of, 82-84

differential, 82, 345, 439, 449

gases, 326-27
at infinite dilution, 490

integral, 82, 439, 449

table, 508
solids, 330
and solubility, 345

homogeneous equilibria in, 278-81

and temperature, 290

liquid, ideal, 317, 318, 320, 330, see also

Raoult's law

nonideal, 330-37

solid, 327
and freezing point, 342-43

Specific heat, 8, see also Heat capacity

Spin, nuclear, quantum number, 109

Spontaneous process, 129-30

entropy change in, 146
and probability, 184
reversal of, 13O-31

thermodynamic conditions, 207-09
Standard electrode potentials, 470-80, 489,

applications, 478-83

determination, 474, 493

Standard electrode potentials (Cont.;

table, 479

B.M.F., 302, 393, 467, 469

entropies, gases, 158, 198

ions, 488-93

liquids, 179, 180

solids, 179, 180

table, 505-08
free energy of formation, 298

of ions, 486-88

tables, 299, 492, 505-08
heat of formation, 72-74, 494

of ions, 494-96

tables, 73, 492, 505-08

hydrogen electrode, 469

states, for activity, choice of, 350-61

gases, 262, 351

ions, 378

liquids, 269, 281, 317, 351

solids, 281, 351

solutes, 352-54
for entropy, gases, 158, 181

liquids, 180

solids, 180
and equilibrium constant, 276
for heat of formation, 72
and partial molar heat content, 355-56
and reaction isotherm, 284
and reference state for heat content, 438
and van't Hoff equation, 289, 293

Stf!e, corresponding, 25

equations of, 15, 18-29

reduced, 24-25, 27-29

generalized, 26

thermodynamic, 159-60

macroscopic, 187

microscopic, 187

standard, see Standard

thermodynamic, 14

Statistical mechanics, 186

treatment of entropy, 183-96

weight factor, 100, 187
for nuclear spin, 109

for rotation, 109

Statistics, classical and quantum, 188
Steam point, 3

Stirling approximation, 188
Stoichiometric activity coefficient, 380, 412

Sublimation, equilibrium, 233-34
heat of, 233, 234

Sulfuric acid, solutions, heat capacity, 456-
57

partial molar heat content, 442, 443-44
and activity coefficient, 447

Surface, chemical potential, 243-44

equilibrium condition, 243
excess concentration, 242
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Surface (Gout.)

forces, 241
free energy, 242

phase, 242

tension, 243-46

change with concentration, 245
see also Adsorption

Symmetry number, diatomic molecules, 109,
312

polyatomic molecules, 117, 196

System, 14

closed, 163, 204, 216, 237, 274

heterogeneous and homogeneous, 14

isolated, 14

and first law of thermodynamics, 35

open, 213, 216

properties, extensive and intensive, 16
and thennodynamic equilibrium, 16

simple, 15

state of, 14

Temperature, absolute, 4-5
characteristic (Debye), 122

table, 124

concept, 2

critical, 22

table, 008
critical otution (consolute), 337

difference, 2

equilibrium, 2, 3, 15

entropy diagram, 147

explosion, 88-89

flame, 84-88
Joule-Thomson inversion, 63, 173

Kelvin, 139-40

reduced, 25

scales, 3-5, 139-40

standard, 5

Thallium, amalgams, activity, 363-67
Thallous chloride, activity coefficient, 399-

400
Thermal entropy, 194

equilibrium, 2, 3, 15

Thermochemical equations, 69, 71

laws, Hess, 72
Lavoisier and Laplace, 71

Thermochemistry, 68-92

Thennodynamic or thermodynamics,change
and process, 37

conditions of equilibrium, 207-09
of spontaneous process, 207-09

equations of state, 159-60

equilibrium, 15

and properties of system, 16
and spontaneous processes, 130

first few, 85, 87, 88, 68, 71, 72, 129, 202

formulae, 2HM2

Thennodynamic or thermodynamics (Cont.)
limitations, 1

probability, 185, 187

properties, 14-16

complete differentials, 16-18

reversibility, 41
second law, 129, 131, 133

scope, 1

state, 14

temperature scale, 139-40
third law, 178, 185, 194

tests, 181-83, 305-06

variables, 14-16

Thermometer, 3

Thermometric scales, 3-5

absolute, 4

centigrade, 3
ideal gas, 4
Kelvin (thermodynamic), 5, 139-40

practical, 5

Rankine, 5
Third law of thermodynamics, 178, 194

tests of, 181-83, 305-06
and probability, 185

Thomson, see Kelvin and Joule-Thomson

Thornton, heat of combustion, 89
Throttled expansion, 60-61

Transition, entropy of, 180, 180
heat of, 77, 225

point and pressure, 225
Translational energy, 95, 99, 103

heat capacity, 96, 105

partition function, 103, 104-05
Trouton's rule, 232-33, 324

Univariant system, equilibrium, 223

polycomponent, 239

Valence type and activity coefficient, 401,

412, 413

van der Waals constants, 22-25

table, 23

equation, 22-25
and critical state, 22-23
and fugacity, 254
and heat capacity difference, 164-65

pressure effect, 169, 171

and internal pressure, 62
and Joule-Thomson coefficient, 67, 172

inversion temperature, 175

van Laar equation, 335, 336
and activity, 371

van't Hoff, osmotic pressure equation, 377
reaction isotherm, 282-84, 301, 468

and direction of chemical change, 285
and E.M.F., 468
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van't Hoff (Cont.)

temperature-equilib] ium oocurtant equa-
tion, 289

integration, 202

Vapor-liquid equilibria, 222-24, 220-33
in mixtures, ideal, 322-23

and temperature, 323

nonideal, 331-33

pressure, and activity, 356-68
of electrolytes, 387-88, 390-92
of ideal liquid mixtures, 317

curves, 321
maximum and minimum, 333
of nonideal liquid mixtures, 330

curves, 331-33
and osmotic pressure, 373, 376
of saturated solution, 241
of small particles, 245-46
and temperature, 226, 227, 323

equations, 229-33
and total pressure, 235-37

Vaporization, entropy of, 148, 180

equilibria, 226-33
heat of, 76, 77, 226, 227, 228, 229, 230
and boiling point elevation, 344
and distillation, 324
and gas solubility, 326-27

ideal, 260, 268, 291, 318

table, 502
and temperature, 79, 235, 362

Vibrational energy, 96, 97, 98, 99, 103

entropy, 193

frequency, diatomic molecules, 114

polyatomic molecules, 118
heat capacity, gas, 114, 115, 118

solid, 120, 121, 122 v

partition function, 103, 113, 118

Volt, 7

Volume, apparent molar, 429, 437
of electrolytes, 437

critical, 23

Volume (Coat.)
law of additive, 31

partial molar, 872-78, 427, 429, 488-87
of electrolytes, 485-86

reduced, 25

Water, boiling point, 3
dissociation constant, 488-84

entropy of vapor, 197

freezing point, 3

-gas equilibrium and pressure, 287-88
heat capacity of vapor, 118
ionic product, 483-84
molal ionization product, 485

Work, in Carnot cycle, 136

definition, 5

electrical, and heat, 9
and energy, 6

change, 38
of expansion, 10
and heat of 'reaction, 70

function, 201

change in isothermal change, 205
and equilibrium condition, 208
and maximum work, 202
and partition function, 210

relationships, 203
and heat, 10

conversion, 129, 130, 131, 133
in cycle, 39

dependence on path, 39
not properties of system, 40

maximum, in reversible process, 4445
and work function, 202

sign, convention, 38

Zero, absolute, 5

entropy of solid at, 178, 181, 188
heat capacity of solid at, 121, 124

unattainability of, 139

-point energy, 100, 113



TABLE A.I CONVERSIONS, CONSTANTS, AND FORMULAS

Volume and Weight
U. S. gallon-8.34 IbsxSp Gr
U. S. gallon=0.84 Imperial gallon
cu ft of liquid=7.48 gal
cu ft of liquid=62.32 IbsxSp Gr

Specific gravity of sea -water= 1.025

to 1.03
cu meter 264.5 gal
barrel (oil)=42 gal

Capacity and Velocity

1 gpm=449 cu ft per sec

gprn^j
1* P" hour

500xSp. Gr.

gpm=0.069x boiler Hp
gpm=0.7 x bbl/hour=0.0292

bbl/day
gpm=0.227 metric tons per hour

1 mgd= 694.5 gpm.
y gpmx 0.321 _ppmx 0.409

area in sq. in
~~

02

gpm gallons per minute
Sp Gr= specific gravity based

on water at 62F
Hp= horsepower
bbl= barrel (oil)=42 gal
mgd~ million gallons per day

of 24 hours
V= velocity in ft/sec
D=diameter in inches

g- 32. 16 ft/sec/sec
H=hcad in feet

Head

Head in feet
Head in psix2.31

Sp Gr
1 foot water (cold, fresh)= 1.133

inches of mercury
1 psi=0.0703 kilograms per sq

centimeter
1 psi=0.068 atmosphere

2

psi=pounds per square inch

Powar and Torque
1 horscpower=550 ft-lb per sec

=33,000 ft-lb per ntin
= 2545 btu per hr
745.7 watts

-0.7457 kilowatts

bhp=

bhp.

gpmx Head in fcctx Sp Gr.

3960x efficiency

gpmx Head in psi

17 14 x efficiency

Torque in ibs feet=
.Hp x 5252

rpm

bhp= brake horsepower

rpm= revolutions per minute

Miscellaneous Centrifugal Pump
Formulas

Specific sj
*

where H=head per stage in feet

Diameter of impeller in

inches=d~
1840 Ku

rpm

where Ku is a constant varying with

impeller type and design. Use H at

shut-off (zero capacity) and Ku is

approx. 1.0

At constant speed :

At constant impeller diameter



TABLE A.2 MEASUREMENT CONVERSION

M^TTgJoot oidi

31274
1J432J4

Kssrii
^.

*l

"*"* --
Mf**>*

"Bsrr4 -

..,...
b

Kl*irtr . . . 1,000 Mttn
O.ttl m*

t',nsC
&Hrti^ ~ . . . . .

34.17 Btu pw MMMt*

I JJ00027 cubM: tfctaM
1057 qtun
0264lto

35 313 cub fwi
IJ04 CUbMSHU*

Ut^M !>* . . 2.12 cu ft per mmitt
CU74 U S. G*l ptf MM

^^
l.Ot yards

ai34l

231 cubic tochM
M023ihortum

tiBBra"

l2t"fairo t . WOIh .t^.^^ ..

14pog.43 pow*d of wtttr HdJ?^*""'
^^

Ou0254

2773 cubic i

1 J01 U S. i
10 ita *t ^TTskx
4,544 liun Otl 437.5 snte*

Otlltfoyo
2*J3 craa T^ ^^ ^^^ (**tHc) 4 4 gaUoat per

. .3X000 ft IfcpvrH
42.41 Bnt p*r mm

JRoTSaU ftlTJ






