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Chapter 1

Introduction

This text has grown out of the monograph “Propagators in Quantum Chem-
istry” by J. Linderberg and Y. Ohrn, Academic Press, London, 1973, which has
been out of print for some time. The content is revised to take into account
some of the considerable literature in the intervening years by many workers
in the field. However, this is not intended as a review of the theory and ap-
plication of propagators, but rather an attempt to present the theory and the
basic approximations in a unified manner with some illustrative applications.
The material is presented from our own perspective, and we apologize for any
omissions of references to important work in the field.

Propagators gained early prominence in formal many-body theory of fermion
systems'. Concerns about the elimination of unlinked terms in the perturbation
expansions and the associated correct scaling with systems size naturally led to
the propagator concept. Treatment of double-time Green’s functions (propaga-
tors)? established that they provide an important and useful link between pure
state quantum mechanics at the absolute zero of temperature and quantum
statistical mechanics employing ensembles at finite temperature. Condensed
matter theory employed the propagator concept to great advantage®. Recent
advances in computational techniques and power of electronic computers have
led to numerous successful applications of approximate propagator theory for so-
called quasiparticle calculations in solids #. Propagator theory for finite systems
led to new ideas in the theory of molecular electronic spectra®.

Computer codes were developed, and ab initio calculations were carried out
primarily for a great variety of electronic spectra and properties of molecular
systems, in particular, implementing the theory of the electron and the po-

1see P. Noziere, Theory of Interacting Fermion Systems, W. A. Benjamin Inc., New York,
1964

2see D. N. Zubarev, Soviet Physics Uspekhi 3, 320 {1960)

3see L. Hedin and S. Lundqvist, Solid State Physics 23, 1 (1969) and references therein

4see W. G. Aulbur, L. Jénsson, and J. W. Wilkins, Solid State Physics 54, 1 {2000)

5see Y. Ohrn and J. Linderberg, Phys Rev. 139, A1063 (1965), and J. Linderberg and Y.
Ohrn, Proc. Roy. Soc. (London) A285, 445 (1965); Chem. Phys. Letters 1, 205 (1967)
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larization propagators®. Also, reviews were written”, as well as an important
monograph by P. Jgrgensen and J. Simons®.

In recent years there has been many applications of the electron and the po-
larization propagators to a great variety of problems concerned with molecular
properties and spectra, demonstrating the importance and usefulness of prop-
agators to the understanding of experimental results. Stationary states, which
is the focus of traditional electronic structure theory cannot, strictly speaking,
be observed as such through experiments, since every observation involves a
probing of the system with some external perturbation. The response of the
molecular system to such probing and the associated influence on the probe are
directly involved in the measuring process. A theoretical analysis, which focuses
on the determination of observable quantities, naturally leads to the study of
propagators as a key concept. This view was pioneered by Richard P. Feyn-
man in his path integral approach to quantum mechanics, and propagators are
theoretical tools commonly used in physics.

In spite of their demonstrated power and success, propagators are not yet
widely accepted tools in theoretical chemistry. This may have to do with the ten-
dency on the part of all but a few quantum chemists to focus almost exclusively
on the running of generally available computer codes, which employs traditional
and well-worn concepts, and applying them to new chemistry problems. There
is also a certain reluctance to struggle with new theoretical concepts, no matter
how powerful they may be. There are notable exceptions, however, and par-
ticularly the work of J. V. Ortiz shows great promise ®. He uses the electron
propagator to achieve correlated treatments of molecular electronic structure
and spectra while still preserving the chemically useful orbital concept. This
approach is available for applications through the ubiquitous Gaussian program
system.

This text is written with the graduate student or researcher in mind, who is
already familiar with atomic and molecular quantum theory and with elemen-
tary statistical physics. The choice of topics reflects the personal tastes of the
authors. Problems are introduced throughout the text to give the reader an
opportunity to work out further details and applications of the theory.

Special thanks go to Dr. Remigio Cabrera-Trujillo who has provided the
expertise and help to convert text files from outdated formats to .tex files that
can be easily edited and merged into a bock format.

bsee e.g. G. D. Purvis and Y. Ohrn, J. Chem Phys. 60, 4063 (1974); J. Chem Phys. 62,
2045 (1974); L. S. Cederbaum, Theor. Chim. Acta 31, 239 (1973); Mol. Phys. 26, 1405
(1973); J. Simons and W. D. Smith, J. Chem. Phys. 58, 4899 (1973)

“see G. Csanak, H. S. Taylor, and R. Yaris, in Advances in Atomic and Molecular Physics
7, 287 (1971), Editors D. R. Bates and 1. Esterman; P. Jgrgensen, Annual Reviews of Physical
Chemistry, 26, 359 (1975); L. S. Cederbaum and W. Domcke, in Advances in Chemical Physics
36, 205 (1977), Editors I. Prigogine and S. A. Rice; J. Oddershede, Advances in Quantum
Chemistry 11, 275 (1978); Y. Ohrn and G. Born, Advances in Quantum Chemistry 13, 1
(1981)

8P. Jgrgensen and J. Simons, Second Quantization-Based Methods in Quantum Chemistry,
Academic Press, New York, 1981

Isee, for instance, J. V. Ortiz,J. Phys. Chem. A 106, 5924 (2002), and references therein
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Chapter 2

Differential Equations and
Green’s Functions

Consider a homogeneous differential equation in one dimension on a <z <b

1 d?
E-’-E@—V(:I)) o (z) =0. (2.1)
In the study of stationary states in quantum chemistry, one would normally
introduce boundary conditions, as for instance, ® (a) = ®(b) = 0 and solve
the resulting eigenvalue problem. Solutions occur only for certain values of
E = ¢, so-called eigenvalues, and the corresponding solutions ®,, (z) are called

eigenfunctions.
Example 1: Particle in a box, i.e.,

0 a<z<b

V(m):{oo x<a x>0 (2.2)
and for a = 0, the solutions &, () = \/%sin Bz, en = %ﬁ; are obtained.
Example 2: Harmonic oscillator, t.e.,
L, 2
V{z)= Ekz and a = —00,b=+o00, (2.3)

with the solutions ®, () = Aexp [-—amz] Hy (\/az) , en =(n+ %)wo, where wo = Vk, a=

1
1 1
1N\ 3 2
%\/E, A= |:<k72) 2"1n!:| , and Hp, is a Hermite polynomial of degree n.

The previous two example solutions were obtained by traditional solution
methods, as, for example, a series method. Instead of proceeding in this manner,
we consider a general solution of the second-order differential equation (2.1):

Pp(z) = Aug(z) + Bug(x), (2.4)

3
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where u and v are particular solutions to Eq. (2.1), and the subscript E indicates
that the solution applies for all values of that parameter. From now on, the
subscript E is dropped.

The particular solutions are chosen such that u(a) = v(b) = 0, and the
Wronskian is

W = Wiu,v] = u(z)v (z) ~ u (z)v(z), (2.5)

where the single prime is used to denote the first derivative with respect to z.
(Similarly the double prime notation is used for the second derivative.) The
Wronskian does not depend on z, because ‘fi—v:— = u(z)v’ (z) — u” (z)v(z) = 0,
where the property that v and v are particular solutions has been used, i.e.,

’

v =2[V(z) - Elu and v = 2[V(z) — Elv. (2.6)

To solve the inhomogeneous equation corresponding to Eq. (2.1),

Bt v ew =@ @)
5 72 T z) =r(x), .

the boundary conditions ¥(a) = ¥(b) = 0 are used, and Eq. (2.7) is multiplied
by 2u(z). The relations in Eq. (2.6) yield

() () ' (2) ()] = 2u(@)r(z) 28)
which can be directly integrated from a to x to yield
w(z)¥ (z) — v/ (2)¥(z) =2 /: w(z Yr(z )dz . (2.9)
Similarly
b
v (2)¥(z) — v(z)¥ (z) = 2/x v(z )z )dz (2.10)

is obtained.
Eliminating ¥’ between Egs. (2.9) and (2.10) yields

T b
W (z) = 2o(z) / w(@ (@ )dz + u(z) / o) )dr]. (211)

This can be rewritten using r. and zs as the smaller and greater of x and z’,
respectively,

b b
V(z) = / w(z<)v(zs)r(c )dr = / G(z,z  E)r(z )dz (2.12)
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(for W # 0). Thus, the two independent particular solutions of the homogeneous
differential equation (2.1) determines G(z,z’; E), the Green’s function, which
determines the solution ¥(x) of the inhomogeneous differential equation (2.7)
for arbitrary source function r{x).

If in particular r(z) = §(z — '), Eq. (2.12) becomes

b
¥(zr) = /G(;c,a:”;E)r(x”)dz”:
(2.13)

I

b
/ Glz,z E)s(z" - )z = Glz,z 1 E).

This shows that in particular the Green’s function G satisfies the inhomogeneous
differential equation

1 d? , ,
[E+§E_2“V(“’) Gz,z;E)=6xz—2x). (2.14)
Example 3: Consider again the particle in a box problem discussed in Example 1.
Put E = x2/2, put a = 0, and use the particular solutions u(x) = A sin(xz); v(z) =

B sin(k(b — z)) to obtain W = — ABksin(xb) and

G(z,z/; B) = fx) = - 2sin(kz <) sin(k(b — x> ))

2.15
s sin(kb) (2.15)

Consider k (and thus E) a complex parameter, and note that f(x) has simple poles at
k =nn/bfor n =1,2,3.... The residue at such a pole is

rm= lim (k—nm/b)f(k) = — s1n(——x<) sin(2hz5) . (2.16)
k—nw/b b

The following theorem from the theory of meromorphlc functions applies:

Theorem: When f(x) has simple poles at p1,p2, ..., pn such that 0 < |p1| < |p2] < ... <
|pn|, (with residues r1, 72, - - -, ) the contour(s) Cr, which encloses these poles (and no other
poles) has a length L, = O(R,) (e.g., a circle L, = 27 R,,), and f(x) is bounded on Cy,, then
as n — oo (with Ry, — 00)

- 1 1
f(“)—f(o)"’f‘::lrn [K—pn_i_;:l . (2.17)
In our case this leads to
=, 26 . nmw . NT 1 1
f(x) = f(0) + _Z Esm(—b—-z) sm(Tz ) [bn — + E] , (2.18)

where n = 0 is not included in the summation. Combining the terms for positive and negative
n values, one can write

e, B) = Gla;0)+Y %m(?@ sin(254) /1B -~ en]
) (2.19)

+ z—:% Zl—at)sm( )/en.
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This means that

o0
Gz, :r';E) = %sin(—nilx) sin(n%x/)/[E-— €n), (2.20)
n=1
i.e., the Green’s function has an expansion in terms of eigenfunctions and eigenvalues of the
homogeneous differential equation, and they appear as residues and poles as a consequence of
the analytical properties of the Green’s function.
Example 4: The analogous treatment for the harmonic oscillator problem in Example
2, proceeds by first making the variable transformation & = 2v/ax and putting ¢ = —E/VEk,
which yields the equation

[ — 78 - de© =o0. (2.21)

This equation has the parabolic cylinder functions as standard solutions. Choose the two
particular solutions u(§) = U(c,£€) and v(¢) = U(e, —&), which satisfy the desired boundary
conditions at a = —o0, and b = oo, respectively.

The relationship with the “irregular” parabolic cylinder function V{(c, &), U(c, —&) =
7V (c, &)/T{c+ %) — sin(wc)U (e, £) can then be used to evaluate the Wronskian

W{U(c,€), Ule, —€)] = F(TZT)W[U’ V] = % (2.22)
2 2

The Green’s function then becomes G(&, ¢ E)=+/2/7T(c+ %)U(c, U (e, —£).

The gamma function I'(c + 1/2) is single valued and analytic over the entire complex
c-plane except at ¢ = —n — 1/2 for n = 0,1, 2, ..., where it has simple poles with residues
(—=1)™/n!. The parabolic cylinder functions satisfy

Ul-n= 2,8 = (C1)"U(-n— 2,8 =2 Fepl-1&IHaE/VE)  (229)

making Eq. (2.18) read as

G €E) = GlE¢€;0)
. i": 2773 (1) =1y /E exp[- 1(€2 + € 2)| Hn (O Hu(C)
n=0 E N (n + %)\/E
(2.24)
2 275 () =1y /E exp[— L (€2 + €' 2)| Hn () Hn(C)
* Z \/— (n+ 41)\/E Y
n=0 2
with ¢ = £/v/2, and thus
Gle,zE)= ) @n(@)nle)/(E - en], (2.25)
n=0

where ®,, and ¢, are defined in Example 2.



Propagators in Quantum Chemistry, Second Edition
Jan Linderberg and Y ngve Ohrn
Copyright © 2004 John Wiley & Sons, Inc. ISBN: 0-471-66257-7

Chapter 3

Propagators and Second
Quantization

The Schrédinger equation for an electron or for N noninteracting electrons is

577+ V(O] vt = iovte, oo (3.1)

with units such that Planck’s constant is 27 and the electron mass is 1, and
with € = (7,¢) being a combined space-spin variable. The wave function or
Schrédinger amplitude ¢(€,¢) can be expressed in an orthonormal basis {us(§)}
as

= ur(§)ar(t), (3.2)
r
giving the Schrédinger equation in discrete form
i0as(t)/0t = Y herar(t) = 0. (3.3)
T
The notation

b = [3(©) |57 + V@) wr(erae (3.4)

has been employed.
Let x be a unitary transformation to energy eigenstates: x'x = xx! = 1,
x'hx = ¢ (diagonal). A formal solution to Eq. (3.3) may be written as

Os szk exp|—ieg(t —t (Zxkrar ) . (3.5)

The system may be prepared such that |a,(t)|? = 1, and |a,(t )|* = 0 for
s # r. Then the quantity
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las () = | > ok expl—iex(t — t )], (3.6)
k
is the probability for the electron to be “observed” in spin orbital s at time ¢,
when it is known to be in spin orbital r at time ¢’ with unit probability.
Consider a formal scattering process with an electron entering a system of
N (noninteracting) electrons at time ¢ in spin orbital r and being detected
leaving the system at time ¢ in spin orbital s. The N-electron system is in
its ground state, consisting of the N lowest spin orbitals being occupied. An
injected electron has access only to the unoccupied orbitals (Pauli principle),
and entering the system at time ¢’, it cannot be observed leaving the system
prior to that time, 4.e., t > t’. Define an associated probability

, ’ i ’
Psr(t,tl) = { ng zsk(l - fk)exp{—ZEk(t -1 )]xkrl2 i Z i/ (37)

with the occupation numbers fr = 1 or 0 if spin orbital k is occupied or unoccu-
pied, respectively in the N-electron ground state. An electron could, of course,
be observed leaving the system in spin orbital s at time ¢ < ' provided it is
one of the electrons already present in the N-electron system. The associated
probability is defined as

_ o, 0 t>t
PS’!‘ t,t = . ’ ’ 38
wh=1{] S ok expl—ien(t — )]zl t <t (38)
This leads to the definition of the probability amplitude
Gar(t,t) = —ib(t — t') > za(1 — fi) exp[—iex(t — t )]z},
k
+i0(t' = 1) > o fr exp[—iex(t —t )]zf,, (3.9)
k
where the Heaviside step function
1 t>0
o(t) = { 0 t<0, (3.10)

such that |G (t,¢)|? is the probability of detecting an electron leaving the
system in s at time t provided an electron enters in spin orbital r at time ¢'.
The probability amplitude is the electron propagator Gs,«(t,t/) and the Green’s
function of the differential equation (3.3) because it can readily be shown that

0G5 [0t — Y hggGar = 6576(t —1t). 3.11
a~'q
q

Here we have used a relationship between the Heaviside step function and the
Dirac delta function expressed as
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0(t) = /_ TR (3.12)

and also that the delta function satisfies §(—t) = 6(¢).
The propagator is discontinuous at t =t for s = r, which is shown by

Jim [Gar(t,t +d) = Gartyt = d)] = iGsr. (3.13)

According to Eq. (3.9), the propagator is a function of the time interval ¢ — t
and the temporal behavior can be studied via the Fourier integral

Gor(t —t) = (2m)~1 / " B Gor(E) exp|—iE(t —t )] . (3.14)
The inverse relation
Ger(E) = / ” d(t —t)Ger(t —t YexpliE(t -t ,)], (3.15)
leads to improper integrals of the type

/000 dtexp[it(E — )], (3.16)

which can be dealt with by introducing a convergence factor exp[—tn] and taking
the limit 7 — +0 after integration. It follows from Eqgs. (3.9) and (3.15) that

fr 1— f }
Gsr(E) = hm szk[ S — + o in]xkr, (3.17)

which allows the definition of G,,.(F) for arbitrary complex E, as
Gor(E) = szk[E — et . (3.18)
This expression is a resolvent to the Hamiltonian matrix h and satisfies

EGu(E) = 8sr + Y _ hsgGor(E), (3.19)

q

which can be readily discerned from the identity

E[E— ¢ 1=1+¢E—¢ L (3.20)

It may be used in the integral Eq. (3.14) instead of the form Eq. (3.17), provided
the integration of the energy variable is performed as a contour integral in the
complex F-plane. An appropriate contour is chosen such that it bypasses the
singularities at £ = ¢, on the real axis. Figure 3.1 displays an acceptable
contour for the case that fi > f; when ¢ < ¢.
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Figure 3.1: Acceptable contour for the case of fi > fi and e < ¢.

This corresponds to the ground state of the N-electron system with the
condition on the occupation numbers being

1, e <u
fe = { 0, x> p. (3.21)
A continuous spectrum, showing a cut on the real axis rather than simple poles,
can be handled similarly when considered as the limit of a discrete one.

The Fourier transform G, E') of the propagator is an analytic function in the
complex E-plane, except on the real axis where it can have simple poles and cuts.
These correspond to energy eigenvalues of the (single-particle) Hamiltonian h.
Consideration of the discontinuity of G,,(E) at the real axis yields the spectral
density function

Asr(e) = nl_i’rﬁo(i/%r) [Gsr(e +in) — Gsr(e — in)]
= D ek, lm (n/ml(e - e)® + %] 7! (3.22)

k
= > zax],d(e — ).
k

The Dirac delta function appears here as the limiting function

§(z) = (n/m)[=* + 0], (3.23)

lim
n—+0
which satisfies all defining criteria for that “function,” particularly

b
_ _f fle), a<e<b
/a ¥z~ O)f(x)dz = { 0, otherwise. (3.24)

It is notable that the knowledge of the spectral density function A,,(e) suffices
to yield G4-(F) in the complex E-plane from the integral

+o0
Gor(E) = / deAg(€)/[E — €] (3.25)

— 00
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Also, the physical properties feasible to

11

obtain from the propagator are calcu-

lated once the spectral density function is known. Stationary state properties

of an N-electron system are related to
can write

-1

N=3 f
k

I

The contour C consists of the one given

t—t' —0

(271)

the propagator, and in particular, one

lim )" Ge(t,t)

8

‘I/CdEgGss(E)

(3.26)

;[;uad

in Fig. 3.1 plus an infinite semicircle in

the upper half of the complex E-plane or in fact any other contour obtainable
from it by a deformation that does not bring it through any of the singularities.
A particular contour used by Coulson is shown in Fig. 3.2

/’/
/'/
/ i E-plane
/
/ n
\81 €y EN € N+1...
\
\\
\\
\\\
“ |

Figure 3.2: Contour used by Coulson (see text).

The total energy can be obtained as

> erfe =

Ey

|

k
i) |

m —iGy(t,t)
t—t’ —0

EdE)_ Gq(E) (3.27)
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Z /_; edeAgq(€)

with the same choice of contour as above. Relations such as these are exam-
ples of the initial conditions that specify the propagator or Green’s function in
conjunction with the differential equations. They appear as sum rules for the
spectral density function.

In terms of the spin orbital basis {u,(£)}, we can define the Green’s function

G(¢,¢; B) zur uy (€), (3.28)
and similarly
G(§, ¢t — t') = Zur(g)Grs(t - t,)u:(é)' (3.29)

From Eq.(3.11), it follows that

,LBG(gv 6,; t— t,)

L) VR VIO €5t - ) = (e - £)3(E - €)  (3.30)

and similarly we can obtain an expression analogous to the Eq.(3.19). Here the
delta function 6(€ — &’} comes from

Zur =5(¢-¢), (3.31)

which assumes the spin orbital basis to be complete.

Notes and Bibliography

An excellent exposition of the propagator concept and role in quantum mechanics is given by

e R. P. Feynman and A. R. Hibbs, in Quantum Mechanics and Path Integrals, McGraw-
Hill Book Co., New York, 1965

Several useful results in the theory of matrices, determinants, and resolvents are developed by

e R. Courant and D. Hilbert, in Methods of Mathematical Physics, Vol. 1, Interscience
Publishers, New York, 1953.

3.1 The Hiickel Model

E. Hiickel introduced a simple quantum mechanical model for the description
of the electronic structure of planar unsaturated molecules with the bonding
connectivity as input. This model has been widely used. Although today’s
computing power and quantum chemistry software available for all chemists
have made the assumptions of the Hiickel model unnecessarily simplistic, the
model is still used to make estimates of molecular energies and has established
itself as a useful teaching tool.
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Coulson and Longuet-Higgins gave the theory an elegant formulation that
readily connects to the propagator theory as discussed above. As the Hamilto-
nian is independent of electron spin, the discussion can be limited to situations
where the labels such as r and s refer to orbitals rather than spin orbitals. Each
orbital is associated with a particular atomic site in the molecule, and with one
orbital per site there is a one-to-one correspondence between labels and sites.

The resolvent or the Fourier transform of the propagator is used and a matrix
notation

G(E) ={G;-(E)}, (s,r=1,2,---M) (3.32)
is introduced so that one can write
(F1-h)G((E)=1. (3.33)
The secular determinant

D(E) = det{E1 — h} (3.34)

is a function of the various Hamiltonian matrix elements hg,., and from the
matrix theory expression for the elements of an inverse matrix it follows that

Gsr(E) = (=1)"91In D(E)/0h, . (3.35)
This formula is valid when all elements hg, are independent, i.e.,
Ohpg/Ohrs = Srplsq - (3.36)
Another result from matrix theory is

TrG(E) = Y _ Gy(E) = ?lia%@ . (3.37)

The simple case of doubly filled orbitals leads to the expressions

e dln D(E)
N = (mi l/dE———,
(1) ; 55

- O0lnD(E)
Ey = (m 1/ dE—F—F,
° ™)™, OF

(3.38)

for the number of electrons and the total energy, respectively.
The particulars of the Hiickel model include the following choices of matrix
elements:

hep = (e
(3.39)
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all being real and considered the basic parameters of the model. Furthermore,
the off-diagonal elements [, are zerc unless sites s and r are neighbors. The
formal electron charge on site s is defined as

qs = 0Fy/0as (3.40)

which can be equivalently expressed as

gs = (m')—l/chG”(E) (3.41)

readily seen from the above expressions. Similarly, the mobile bond order

Por = 5 0Fo/0fr (3.42)

can be expressed as

per = (2mi)") /C dE [Gor(E) + Gyo(E)]
(3.43)

f

(mi)~1 /C dE G (E).

Higher derivatives of the energy are used in the Hiickel model and are called
mutual atom-atom, atom-bond, or bond-bond polarizabilities. These quantities
are all obtainable from a general second derivative

0?Eq/0h,s0hpy = (mi)™! / dE G5, (E)G 4 (E), (3.44)
(&)

where the actual form of the derivative of G(F) with respect to any parameter
comes from the differentiation of Eq. (3.33).

Using the asymptotic form of D(E) for large E-values and the contour integral
expression in Eq. (3.38), one can derive the Coulson’s energy formula

Oln D(p + 1y)
O(u + iy)

The Hiickel model for planar unsaturated hydrocarbons introduces the pa-
rameter choices

Eo=Trh+7! /—00 dyl{p + iy) - M]. (3.45)

hrr = ar=a=u (3.46)

e { Bsr for bonded atomsr and s
sr T

hrs = 0  otherwise,

leading to the propagator equation
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(E = w)Gsr(B) = 8sr + ) BsgGor(E). (3.47)

It is straightforward to show that iteration of this equation yields

(B —p)?— Z [ﬂrq|2]Grr(E) =(E —p)+ Z Z BrqBapGpr(E) - (3.48)

q p#r

An approximate treatment where the last term is discarded can be used to cal-
culate the total energy and the bond orders for molecules with all S-parameters
equal. The average energy per atom for a graphite layer, for instance, equals
t + Bv/3, which is less than 10% in error in comparison to the accurate value
@+ 1.5768.

Notes and Bibliography

An elegant form of Hiickel theory was formulated by:

e C. A. Coulson and H. C. Longuet-Higgins, in a series of papers in Proc. Roy. Soc.
(London), A191, 39; A192, 16; A193, 447; A193, 456 (1947).

e Coulson published his integration method in Proc. Camb. Phil. Soc. 40, 201 (1940).

3.2 Electron Field Operators

In order to discuss interacting electrons, it is often advantageous to introduce
electron field operators or second quantization, which means that the expansion
coefficients a,(t) of Eq. (3.2) become operators rather than scalars. These oper-
ators are non-Hermitian so that also their adjoints af(t) are needed. These op-
erators are postulated to satisfy the anticommutation relations (at equal times):

[as(t),ar(t)], =asar+aras =0

[al(t), al(t)]+ =alal +alal =0 (3.49)

[as(t),al(t)]Jr =asal +ala;, =g .
This means that the adjoint amplitudes of ¥/(,¢) are also operators satisfy-
ing the anticommutation relations [t/)(f,t),w(fl,t)]_*_ = [wT(f,t),¢T(§/,t)]+ =
[¥(E,1), ¢T(§/,t)]+ —3(¢—€') = 0. For a complete basis, this is compatible with

Eq.(3.49).
The energy integral value

/ W (EDRBEDE = S horal (Bar(t) = Ho (3.50)

thus becomes an operator, and the question arises if it will do as a hamiltonian.
The question of what kind of vector space the electron field operators ¢, and
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their adjoints should act on has not yet been addressed, but the guide will be
the evaluation of quantum mechanical expectation values.

The field operators are time dependent and thus Heisenberg operators, i.e.,
they satisfy

i0as(t)/0t = [as, Ho| -, (3.51)

where the right-hand side is the commutator
las, Hol- Z hgrlas, aqar]_ Z hsrar (3.52)
T

and where the relations in Eq. (3.49) were used. Comparison with Eq. (3.3)
shows that the definition of Hy as the hamiltonian makes sense.
The charge density of electrons is

g(M) =ed_ pHEw(©), (3.53)
¢

with the electron charge e and the summation over spin. The time variable is
suppressed. The charge density g is also an operator, and an operator Q of total
electron charge is obtained by integrating over all space:

Q= / ¢(F)dF = e / STEW(E)E = e No, (3.54)

where Ny is the operator for the total number of electrons

No= [!(©w(e)ds =Y ale. =Y na. (3.55)

Np has eigenvalues 0, 1, 2, ..., because the operators ng = ala; commute and are
idempotent, i.e., n? = ns. The eigenstate |vac) corresponding to the eigenvalue
0 is assumed to be non-degenerate, normalized to unity (vac|vac) = 1, and
satisfying the condition

aslvac) = 0. (3.56)
This also makes n;|vac) = 0, and No|vac) = 0. The definition af|vac) = |r) and
the basic anticommutation relations in Eq. (3.49) show that

No|r) = |r}); (3.57)

i.e., |r) is an eigenstate of Ny corresponding to the eigenvalue 1, which means
that it is a one-electron state. Similarly |rs) = alal|vac) is a two-electron state,
and it is antisymmetric, <.e.,

Nolrsy = 2|rs), |rs) = —|sr). (3.58)
Note that (rs| = {(vaclasa, and that
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{rs|rs) = (vacjvac) = 1. (3.59)

It is easy to show that |N) = al al ...l |vac) is an N-electron state, properly
antisymmetric, and with a one-one correspondence to the Slater determinant D

such that

D

|

det{ur, (£1)ur, (&2)---ury (En)} (3.60)
(vac|p(En)P(En-1)-- (&) |N).

It should be noted that (N|N) =1 and (N|M) =0 for N # M. In this way,
the electron field operators {a{} map the N-electron Hilbert space on the (N +
1)-electron Hilbert space, whereas the {as} map the N-electron Hilbert space
on the (N - 1)-electron one. This is illustrated by the result a,rs) = |s) (note
that as|rs) = —|r)).

Rather than express the hamiltonian Hy in terms of a general spin orbital
basis, one could, of course, choose the diagonal representation

Hy = ZhsraZar Z (Zalxsk)fk(szar)
s, k s T

Il

il

(3.61)

= E €kC~LLfik .
k

Ordering the energies €1 < €2 < ... < ey < ..., one can write the ground state
of the N-electron system as

0) = ala)...ak|vac) . (3.62)

The average value
(01Hol0) =~ ex(0lafar|0) = > frex (3.63)
k k

is another evidence that our hamiltonian choice is correct. (Note that the oc-
cupation number (Old;’c&k|0) = fi is unity when spin orbital k is occupied in |0)
and zero when unoccupied.)

It is now straightforward to show that

| —i{0las(D)al(t)]0) t>t
S CURE e (364
by noting that from Eq. (3.5) that
as(t) = zok exp|—iext]ix(0), (3.65)

k
and thus
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~i{0las(t)al(t)0) = > o expl—iext +ieyt (1~ fi)(Olaral, |0)z],
k&'
= —i szk(l — fr) exp[—ieg(t — tl)]x};r . (3.66)
k

The relation axal, = Opr — &L,&k and the identity (0|d fr = 0 are used.

Eq. (3.64) is the defining expression for the electron propagator or Green’s
function, and it applies for the case of interacting electrons, with |0) being the
ground state of the full hamiltonian including electron interaction.

Problems

1. Prove, in a similar way as in the text, the second part of Eq. (3.64).

3.3 Angular Momentum

Angular momentum is an important example of quantum mechanical operators
in terms of electron field operators. The components of the angular momentum
vector = [+ § are the generators of the 3-dimensional rotation group. In our
units, the operator of orbital angular momentum is

[=Fxp=—iFfxV (3.67)

and the operator of spin angular momentum is § = %&' in terms of the Pauli

spin matrices & = (0; 0y 0;). The total angular momentum operator of a
many-electron system is then obtained as

T= [ =Y jealar =L+ 5. (3.68)
8
Many molecular hamiltonians commute with the total spin angular momen-
tum operator, a fact that leads to the consideration of transformation properties
of electron field operators under rotations in spin space. Basis functions, natural
for such studies, are

o
ues© = { 58 (3.69)
with o and § eigenvectors of the z-component of § and {x,(F)} a set of or-

thonormal functions. The operator of total spin of a many-electron system is
then

5= / W (©Fp(©)dE = 3 5r, (3.70)

with
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-

S’r = rxgz + Srygy + Srzgz (371)
and

Lot f

Srz = E(ar+%ar,1 +a _%a,,_,,%),
Lo t

Sry = _Z—Q-(ar+%ar_% - ar—%ar”}’%)’ (3.72)

1
Srz = §(nr+—2- - nr—%)

A rotation in spin space about an axis, the magnitude and direction of which
can be given by a vector © = (0, 0, ©,), produces transformed electron field
operators

v

(3.73)
= exp(i®- S))a

where the last line follows because the operators 8-S, commute. The following
commutation relations are readily proven:

—

[6-5,,al

TI/]—

i

VGZG’IU + (%ex + i”@y)alﬂn
(G510 8al ] = (50)dl,. (374

This leads to the transformed field operators

i, = al,+i6-5al,] ~ 26-5.06-Sral) ] +
R 1
- aI.UCOS‘;‘@’Fi[@'Sraaiu]—(%@)—lsinie’ (375)
Where®=|é|.

Notes and Bibliography

e Second quantization was introduced in the study of many-particle systems in the early
days of quantum mechanics by Born, Jordan, Dirac, Fock, and others.

e Those who are intrigued by the mathematical aspects of the field operator algebra are
referred to F. A. Berezin, The Method of Second Quantization, Academic Press, New
York, 1966.

e The transformation properties of field operators is discussed by F. A. Kaempffer in
Concepts in Quantum Mechanics, Academic Press, New York, 1965.
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Chapter 4

Double-Time Green’s
Functions

The proper electron interaction hamiltonian is

Hipt :% Z (Ts|r/sl)a1a1,as/as (4.1)
with
(rslr's’) = € / de / de wh(€)us (€)IF — 717l (€ uy (). (4.2)

This hamiltonian is correct because it gives the correct expectation values. The
average value with respect to a two-electron state is (kl|H;n 1kl) = (kk|ll) —
(kljlk) exactly as the result (coulomb minus exchange) of calculating the average
of 1/|71 — 72| with respect to a two-electron Slater determinant with the spin
orbitals ug and u; in “first-quantization”. The full electronic hamiltonian can
be expressed as

H= Z hrsalas + % Z (rs|r’s’)a;[al, aya,. (4.3)
s rs,r s
It is common to use an alternative notation for the electron-electron interac-
tion integrals (rr |ss') = (rs|r's'), i.e., with the complex conjugate spin orbitals,
belonging to the a! operators, on the left. One can introduce the compact nota-
tion (rs||tv) = (rs|tv) — (rs|vt) for an ”antisymmetric interaction integral” and
write

1 by
Hi =7 Y (7 |lss )alala, 0, (4.4)

’ ’
r,s,r',s

21
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The state |0} is the N-electron ground state (including electron interaction) and
satisfies H|0) = Ey (N)|0). The electron propagator can then be expressed as

((as(t); al(t)))
= —if(t -t ){0las(t)al(t)]0) (4.5)
+ i0(t —t)(0la(t)as(1)|0),

Gor(t,t)

where 6 is the Heaviside step function.
Following Zubarev!, the double bracket notation introduced above is used
to define a general double-time Green’s function or propagator

(AR BE )Y = — 0t —t)(ADBE))
+ Bt —t)(B(t)A(t)), (4.6)

where 4 and B are boson-like or fermion-like dynamical operators, which could,
for instance, be formed as sums of products of even or odd numbers of simple
electron field operators, respectively. A and B could of course also refer to other
particles, e.g., photons. The plus sign of the second term in Eq. (4.6) applies
only for the case of both A and B being fermion-like.

Double-time Green’s functions or propagators are often studied in terms of
their Fourier transforms

oo

((A; B))p = / ((A(t); B ))) expliE(t — ¢ )]d(t — 1), (47)

— 00

and sometimes the inverse relation is useful,

(AW BN = o= [ (4 By g exp[—iE(t — £ )ldE . (48)

27 J_ o

Such integrals can be made well defined by contour integration in the com-
plex plane and with appropriate convergence factors and limiting procedures,
as discussed in the previous chapter.

Formal expansions are considered in terms of energy eigenstates |n) of the
many-electron hamiltonian (Eq. (4.3)) and the number operator (Eq. (3.55)):

Hin) = En (Myn)[n),  Noln) = Mn|n), (4.9)

with M, =0, 1, 2, .... Again, |0) is the N-electron ground state. Using the
fact that A and B are Heisenberg operators, [i.e., A(t) = e'#*A(0)e~*f* and

1Zubarev, Soviet Phys. Uspekhi 3, 320 (1960)
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B(t) = e!ftB(0)e~*H], and the completeness of the eigenstates 1 = 3 |n)(n|,
we can write

((A(t); B(t))) (4.10)
{ ~i Y, (01A|n)(n|B|0) exp[—i(En — Eo)(t —t)] t>t

+i 3", (0| Bin){(n]A|0) exp[—i(Eo — En)(t —t)] t<t.

The identities

. ) ©  exp|—iE(t —t)]
L 4.1
nl—lﬂo ) o E—(Eo—E,)— indE (411)
B 0 t>t
- iexp[—i(Ep — Ep)(t —t)] t<t

and

. o0 —iE(t —t)]
1 L exp|—i 4.12
oo 27 /_OOE—(En—EO)+indE (4.12)
_ —iexp[—i(E, — Eo)(t —t)] t>t
- 0 t<t

are then used to write

S AR @B _QIBmA) g

((A4;B))g = lim E-E,+FEy+in~ E—-FEy+E,—in

n—+0
n

for the Fourier transform from Eq. (4.8). This is the so-called spectral {(or
Lehmann) representation of the propagator.
The identity E(E — a)™! =1 + a(E — a)~, and the relations

(0|A|n)(En — Eo) = (0|[A, H]-|n)
(4.14)
(n|B|O)(En — Eo) = (n|[H,B]-|0},
can be used to obtain the two equivalent forms of the equation of motion of

({(4;B))g:

E(4:B)e = (A Bls)+ ({4 Hlx; B)e
= ([4,Bl+) + (4 [H,B]- ))& (4.15)
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It is sometimes useful to consider the averages in Eq. (4.6) that define the
propagator not to be taken with respect to a pure state |0) but rather with
respect to a density operator p,

(AB) = Tt {pAB} , (4.16)

which would lead to the expression

((A; B)E (4.17)

. Pn Pm
-1 A B [ + :
o ;l(“' mYml B | 5= F T B v in S E— B+ Bl = in]

assuming that the density operator is diagonal in the energy eigenstates, t.e.,
Prm = (nlpIm) = dmnpn.

The actual calculation of the propagator naturally involves approximations
of various kinds. Approximate treatments of propagators are often handled in
terms of the moment expansion

{((4;B))E “H[A, Bl£) + E*{[[A, H]-B]+)
+E"N[[[A, H]-, H] -, Bs) +
= EN[A,Bly) + E7([A, [H, B]-]x)

+E_3<[A’ {H7 {H’B]—]—]:{:>+"' (4'18)

obtained by iterating the equations of motion (4.15). In order to obtain a
systematic treatment in terms of matrices, it is often useful to introduce the
concept of a linear space of field operators and the notion of superoperators
acting on this space. Thus, a basis of field operators {Xi}, a superoperator
hamiltonian H and a superoperator identity I are introduced, such that HX =
[H,X]- and IX = X. A scalar product (A|B) = ([A', B]+) is defined for any
two operators in the space spanned by {X;}. The moment expansion can then
be expressed as

(A, B))p = E"Y(A|B)+E~*(A|AB) + E73(A|H’B) + - --
= (A|(EI - H)"'B), (4.19)
where a formal summation has been performed to obtain the superoperator
resolvent (EI — H)™!

In the following, it will sometimes be useful to consider the array of all
propagators in terms of a suitable basis of field operators

{(X\(BI - H)'X;)} = {Gy(E)} = G(E) (4.20)
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and the notation

I

G(E) EYX|X) + E*(X|HX) + E3(X|A?X) + - - -

= (X|(EI - H)~'X) (4.21)

is introduced, where G is a square matrix and X is the appropriate row (or
column) array of field operators.

The higher moments in the moment expansion of the propagator or the prop-
agator matrix can become quite complicated and approximations are necessary.
The simplest approximation that yields useful results proceeds by approximating
higher moments as powers of the first moment F = (X|HX). Denote S = (X|X)
and obtain the approximation

G(E)

i

E71S14+ E'S7'F+ E2S7'FSF 4 .. ]
S(ES —F)71S, (4.22)

where again the geometric progression has been summed. This is called the
geomelric approrimation.

Problems

1. Show that the average value of Eq. (4.1) with respect to a two-electron
state is (kl|Hine|kl) = (kk|II) — (kl|lk), and that it is the same as cal-
culating the average of 1/|r; — 72| with respect to a two-electron Slater
determinant with the spin orbitals uy and u; in “first-quantization”. Also
show that the average value of the electron interaction hamiltonian in Eq.
(4.1) is zero with respect to a one-electron state, as it should be.

4.1 The Electron Propagator

The electron propagator is obtained when the basis field operators are restricted
to the electron field operators X; = a;f and becomes

{(as;a0)) e = (a]|(BT - H) ). (4.23)

This propagator is particularly useful in studying single-electron detachment or
attachment processes, because it exhibits simple poles in the complex energy
plane corresponding to ionization potentials and electron affinities. This can be
seen from the expressions (OIai|n)(n|a}|O) and (Ola}ln)(nlaim}, the numerators
in the energy representation of the propagator as given in expression (4.13).
For |0) being an N-electron state these expressions differ from zero only if |n)
is either an (VN +1)-electron or an (IV — 1)-electron state, which means that the
electron propagator singularities in the energy plane occur at E = E,(N +1) —
Eo(N) and E = Eo(N) - En(N — 1)
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The elements of the “metric matrix” S and the “dynamical matrix” F that
occur in the geometric approximation are readily calculated from the basic anti-
commutation relations (Eq. (3.49)) and the hamiltonian as given by Eqs. (4.3)
and (4.4). The results are

Sy = (a;’|a;) = ([ai,a}]+) = 0y
Fi (al|Hal) = ([as, [H,al]-]4) (4.24)

hiy + Y _(irlljs)(alas) .

Diagonalization of F with the constraint that the first-order reduced density
matrix v (the one-matrix) satisfies 75, = (alas) = (n,)ds with occupation
numbers (n,) =0 or 1 (i.e., Tr v = N and v% = ) is done iteratively and con-
verges to a single determinantal SCF approximation for the N-electron ground
state corresponding to the appropriate set of occupation numbers.

The unitary transformation x then satisfies x!Fx = ¢, where ¢ is a diagonal
matrix so that

il

i

(a;a' Vg = (al (BT — H) 'a') ~ x(E1 — ) 'x! (4.25)

in the geometric approximation. Comparing this expression with the energy
representation of the electron propagator

({as;al)) g (4.26)
Z (0}a.{m){m|al0) (0lat|m)(m]as|0) ]
E E,+Ey+in FE+FE,—Ey—1in

the identifications E,, (N + 1) — Eo {N) = €, and (0]a;|m) = zin ((mla}lO) =
*},,), can be made for spin orbital m unoccupied in the N-electron ground state
|0), whereas Ey, (N — 1) — Eg (N) = —€p, and {(m|a;|0) = zim (<O|aT[m) =z
for spin orbital m occupied in the N-electron ground state.

The unitarity of x leads to the following result:

Jm)

(m}> " alzjml0) = > 2%, 2jm =1, (4.27)
J 3j

which means that 3~ a :v]m|0) |m). This result introduces the transformed
electron field operators

am = Z a5 T5m and @&l = Z a;f.xjm (4.28)
7 J



4.1. THE ELECTRON PROPAGATOR 27

corresponding to the SCF spin orbitals, and it inspires the introduction of the
basic excitation and de-excitation operators

o = al, for m unocc. O = &m for m unocec.
™71 @m for m occ. rowm al, for m occ.

The SCF spin orbitals and their corresponding electron field operators are la-
beled in order of increasing energies ¢,,, making the N first orbitals occupied in
the N-electron ground state

10y = alal - al|vac) . (4.29)

This is also the reference state defining the electron propagator in this approx-
imation. It is now straightforward to deduce that

(min) = (01Qm@L10) = {0/[@m, Q1] +10) = Symn,
(mlH|n) = (0lQmHQLI0) = (0/[Qm, [H,Q}]-1+10)
= bmn€m, (4.30)

which is the essence of a consistent model, i.e., a model where our only choice
is the computational orbital basis and everything else is a consequence of the
equations of motion. In Eq (4.30), the fact that Qn,|0) = 0 for all m has
been used. This so-called killer condition for all of the de-excitation operators
becomes an essential consistency requirement, and it permits us to identify the
various stationary states |m) as independent spectroscopic states for electron
detachment and attachment processes in this approximation.

The geometric approximation for the electron propagator, as discussed above,
is of course the Hartree-Fock approximation (or in a finite basis, the SCF ap-
proximation). This approximation can be generalized slightly by using a density
operator, which yields the pure state Hartree-Fock propagator as a special case.
The grand-canonical density operator p = exp[~3(Hp — uNy)|/Tr{exp[—(Ho —
uNo)]} is introduced, with Hy = >, exng, No = X_) Nk, g = d};dk, and p the
chemical potential. As the so-called occupation number operators ny are idem-
potent (n? = ny) and mutually commute,

p =TT+ Mena)/Te{] [(1 + Mema)}, (4.31)
k k

with Ay = exp[—f(ex — )] — 1. One should here observe that the Fock space
is a direct product of eigenspaces of the operators ng and that the trace of a
direct product of operators is a product of the traces of the individual factors.
The eigenstates of ny are the two states corresponding to spin orbital k empty
or filled. The matrix representatives of the operators in this basis are



28 CHAPTER 4. DOUBLE-TIME GREEN’S FUNCTIONS

_joo] 4_jool o] |1
o 1% T 1o ]P% T oo T o

This permits the expression

1+ Agnyg
= 4.32
H 2+ Ag ! ( )

and the occupation numbers are (ng) = Tr{pnr} = (1 + A)/(2+ A) = 1/(1 +
exp[B(ex — p)]), which with 8 = 1/kT (k is Boltzmann’s constant and T is the
absolute temperature) yields the ordinary Fermi-Dirac distribution. However,
the density operator can now be expressed entirely in terms of the occupation
numbers without reference to any thermodynamic parameters:

p= 10~ () + 2(n) = D). (4.33)
k

Comparing the geometric approximation as given by Eq. (4.25) with the energy
representation of the electron propagator according to Eq. (4.17)

((as;al)hs = 3 (nlas m)miafin) [ g™ + =],

m,n
one obtains szl = (nl|as/m)(mlal|n) (pn + pm) and & = E,, — E,. It is
straightforward to show that for a density operator p = C exp[—B(Hy — uNo)] it

holds that p,/pm = exp[B(Em — Ep) — u(Nm — Ny)] = exp[B(ex ~ )], yielding
the results

i

m{nlasim)(mlaf|n) ZskTri/[1 + exp[B (ex — p)]]

Ty (k) (4.34)
prinlasim)(mlalin) = zgzyy (1 - (k) .

This means that the electron propagator in the geometric approximation can

be given as

(1= () |+
Gs’r‘ 87 r - S N ’ .
(E) ={{a YE = E azk[ —ek—z77+E—ek+m z,., (4.35)

which is the most general expression consistent with the equation of motion

> (Edsq = Fug)Gar(E) = 84 (4.36)

q
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The significance of this result is that a set of occupation numbers (ny) can
be specified, which could even be fractional numbers between zero and one,
defining a density operator as the one in Eq. (4.33). Such a density operator is
normalized and internally consistent, i.e., Tr{p} = 1, and Tr{pni} = (ns), and
permits a self-consistent determination of the singularities (poles) of G, (E)
or the molecular orbital energies ¢ and the residues at those poles, or the
corresponding molecular orbital coefficients x 4.

Most stable molecular systems have a gap in the electron propagator spec-
trum because the ionization potential of the (N + 1)-electron molecular ion is
smaller than the one of the N-electron molecule, i.e.,

min[E (N + 1) — Eo(N)] > max[Eo(N) — En(N — 1)]. (4.37)

This means that the “chemical potential” or “Fermi energy” u may be chosen,
such that it lies in the gap. The occupation numbers then satisfy N = >~ (n)
for the sum over all & such that €; < u. For open shell systems where there is
no gap, the possibility of using noninteger occupation numbers is particularly
useful.

The propagator G, (E) is analytical in the complex F-plane except on the
real axis (for n = 0) where it has simple poles. (The exact propagator can
also have cuts along the real axis corresponding to the continuum part of the
spectrum, but in a finite basis, the approximate propagator has only (simple)
poles.) These poles correspond to eigenvalues of the single-particle effective
hamiltonian or Fock operator F, with matrix elements F;; as given in Eq. (4.24),
which depend on the single particle reduced density matrix with elements v, =
{alas). This density matrix can be calculated from the electron propagator as
a contour integral in the complex E-plane

1

ey — L .
Yor = (afas) = 5 /C Gon(E)E, (4.38)

where the closed contour C consists of the real axis Re(F) and a semicircle
in the upper half-plane (i.e., for Im(E) > 0) such that, when the infinitesimal
n > 0, Cencloses the so-called occupied orbital energies. Thus, from the residue
theorem,

Yor = 3 O (mlag|n)(nlal|m)pn = Tr{palas} = (a}ay). (4.39)

In this manner, an iterative process can be followed to determine the electron
propagator self-consistently in the geometric approximation. This approach
represents a slight generalization of the ordinary SCF method for the calculation
of molecular spin orbitals and orbital energies.
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Problems

1. Show that Eq. (4.36) follows from Eq. (4.15) for the electron propagator in the geo-
metric approximation.

Notes and Bibliography

D. N. Zubarev has written an interesting account of the theory and application of general
double-time Green’s functions, published in Soviet Physics Uspekhi 3, 320 (1960) (English
translation).

4.2 Electrons in a Central Potential

Some of the consequences for the Green’s function of a spherically symmetric
potential energy are explored. The WKB (Wentzel-Kramers-Brillouin) electron
propagator for this case is introduced.

4.2.1 Electron Propagator

The electron propagator

(e ty v, 1)) = @n) / dEe~E¢=)G(¢ € | B) (4.40)

for a system with a hamiltonian

i = [aio [—{ﬂz V()| w(e (4.41)

i.e., with a spherically symmetric, spin-independent potential energy, can be
represented as

G(¢,€E) = 5. G(F, 7 ; E). (4.42)

Only three variables are s1gn1ﬁcant for G’(r 7, ; £} and can be chosen to be
r=|F, r =|7| and v, where 7- 7 =77 cos~.

The electron propagator or Green’s function describes an electron scattering
from a spherically symmetric center or equivalently from another particle (elec-
tron or proton) in the center-of-mass coordinate system. The physics of such
a scattering process possesses cylindrical symmetry about the polar axis and is
independent of the polar angle ¢.

The hamiltonian is separable in the variables r and <, and we obtain the
total Green’s function as a convolution:

I3

G, 7 E) = (2mi)"! / dAD(cosy; NG (r, 7' s E) Jrr (4.43)
C
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with the contour C surrounding the positive real X -axis in the counterclockwise
direction such that no poles of G, fall inside the contour. The angular Green’s
function satisfies the equation

[A+ 8%/0v® + coty9/07] D(cosv; A) = 6(1 — cos ), (4.44)

and one can show that it has the spectral form

2l + 1 Pl(cosv)

1

YA E 4
D(cos ; 4 ) l 1) , (4 5)

in terms of the Legendre polynomials. The radial Green’s function satisfies

[2m(E — V(r)) — \r? + 82/0r?) Ga(r,r ; E) = 2mé(r — 1) (4.46)

and the boundary condition that it vanishes at the origin.
A closed expression for D(cosvy; ) can be obtained from the theory of Leg-
endre functions P,(cos~y), which are solutions to

[v(v + 1) + 8%/0v® + cotyd/07] P,(cos) = 0. (4.47)

Legendre functions for general complex degree v are not regular for v =
Two linearly independent solutions to Eq. (4.47) are P,(cos~v) (P,(1) =1) and
P,(cos(m—7)) = P,(— cosvy). The first is regular at the end point v = 0 and the
second at the end point v = 7 of the interval on which the Legendre functions
are defined.

The Green’s function

D(cosv;v(v+ 1)) (4.48)
satisfies Eq. (4.44) for 0 < v < 7 and is then proportional to P, (— cos ), since

it follows from the spectral form, Eq. (4.45), that it has a finite value at v = 7.
The constant of proportionality follows from

= (De+y & 1 1
g[v(v“)—l(z“)] B g(—l)l[u—l—quH—l]

= (=) x

n Z v—1 sinvr’ (4.49)

where the last step uses the result of expansion of a meromorphic function from
Appendix A. Thus,
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1 =«
. ~ L1 " p( 4.
D(cosy;v(v +1)) i sinmrP (—cosv) (4.50)
and the relation between v and A is
1 1.1
VZ—E:E(/\“Fz)Z. (4.51)

The integration in Eq. (4.43) can be changed to involve the variable v with the
contour surrounding the real v-axis in counterclockwise direction.

Only a few potential energies V(r) admit closed form expressions for the
radial Green’s function. The Coulomb case

V(r)=-e2Z/r (4.52)

has been studied by many and obtained in a variety of representations.

4.2.2 The WKB Propagator

An approximate solution of Eq. (4.46) can be obtained for a general potential
energy V (r) by means of the WKB method and expressions derived for a number
of quantities. Using Kramers’ modification A = (v + £)? in the differential
equation (4.46), one defines the local wave number as

1
2

p{r) = [Qm(E V) —-(v+ %)2/7“2 , (4.53)

where Im p,(r) > 0. The homogeneous equation corresponding to Eq. (4.46)
has two linearly independent solutions, which in the WKB approximation are
given as

exp[+i /’" pu{s)ds — % Inp,(r)]. (4.54)

Comment: The WKB approximation uses a power series in A and since the units chosen
here have i = 1 it may be useful to briefly outline the essence of the WKB approximation
without those units. The solution is expressed as exp[iS(r)/h] yielding

ihS =S 24 p2(r) =0, (4.55)

which with

S=S8o+hS1+... (4.56)

and equating equal powers of h results in the first two equations
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——S(/J2 + p?,('r‘) = 0
iSy — 28,8, = O. (4.57)
The solutions are
So(r) = i/ pu(s)ds (4.58)
and
1,
S1(r) = zilnpy(r). (4.59)

2

The Wronskian of the two independent solutions is 27 and the Green’s func-
tion, which should vanish when r or v’ equals zero or infinity, is

G,(r, r’;E) = (m/i)exp[i /T> pu(s)ds — %lnp,,(r) - %lnp,,(r’)], (4.60)

where v has replaced A as the label of the radial propagator. The integration
limits r~ and r- denote the smaller and greater of r and r’, respectively, and
the integration in the exponent thus performed over a positive interval, which
together with the choice of branch of the local wave number guarantees the
desired boundary conditions.

The Green’s function (4.60) has, for real v, a branch cut along the real F-
axis, thus exhibiting a completely continuous spectrum. The spectral density
function can be determined as discussed before. The complex energy variable
is written as E = € + in and the real quantity

1\2 (3
ku(r) ={2m[e — V(r)] — —(V _:22) (4.61)
defined. When
(v+3)?
1% — .
e <V(r) + 5—5-, (4.62)
r is said to be in the forbidden region, and then
lin%)pl,(r) = 1k, (r). (4.63)
n—
On the other hand, when
1)2
e v+ U (4.64)

2mr?
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7 is said to be in the allowed region, and

hrn p,,( ) = £k, (r). (4.65)

7]—>

The spectral density function is obtained as

A, (r,rse) = hr& (i/2m)[Gu(r,r s €+ in) — Gu(r,r je — in)]. (4.66)
Several distinct cases can be recognized depending on whether r and r are in
forbidden or allowed regions and the number of turning points, i.e., zeros of
k. (r), lie in the interval (r,r ). Assuming for simplicity that r is less than r ,
one can distinguish the following cases:

i) 7 and 7 both in forbidden regions and no turning points in (r,7’), then

A, (r,r';€) =0. (4.67)
ii) 7 and 7 both in forbidden regions and two turning points, @ < b in (r,7’),
then
Au(r,7'5€) = (m/m)ky (r)ko ()] "%

X exp[— /k ds—/ k. (s)ds] xsm[/ ky(s)ds].

iii) r in forbidden and r in allowed region, one turning point, a, in (r, r/),
then

=

A(rrie) = (m/m)k,(r)k, (r))”

exp[— /a ky(s)ds] x sin[/r k,(s)ds + g]

X

iv) r and r’ in allowed region, no turning points, a < b, in (r, '), then

’

’

Ay(r,r s €) = (m/m)[k, Pk, ()]~ cos| / k. (s)ds]. (4.68)
v) r and r in allowed regions, two turning points in (r, r/), then

A(rr'se) = (m/m)lk(r)k, (r)]) (4.69)

’

X exp[— /ab k,(s)ds] x cos[/ra k,(s)ds + /br k. (s)ds).
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These formulas can be collected in the form

’

Ay (r,7';€) = (m/m)k, (r)k, (r )]~ % exp[—a]sin 3, (4.70)
where « is the sum of integrals of k,, over the forbidden regions in (r, r'), and
B is the sum of integrals of k,, over the allowed regions plus 7/4 for each end
point in an allowed region.

The spectral density function A, (r, r €) is clearly related to the wave func-
tions in the WKB approximation. In particular, in case (iii), it is the product of
two connecting solutions across a turning point. The Green’s function does not,
at this level of approximation, give the Bohr-Sommerfeld quantization condition,
but one can note that in case (ii) the spectral density function is the product
of the wave functions in the end points of the interval and an amplitude factor,
which assumes its extremum value when the quantization condition

b
/ k,(s)ds = (n+ %)ﬂ' (4.71)

holds.
The radial density distribution for real angular momentum v is given as (see
Eq. (4.60))

n,(r) = (2mi)~! | dEG,(r,r; E) = (2mi)~" | dE[m/ip,(r)], (4.72)
c C

which is analogous to the expression for electron charge on a site in the Hiickel
model . Changing the integration variable to p, yields

Il

N, (1)

~(2m)™ / dpy (4.73)
—_ { k’u(T)/TF, E=u> V(r) + (l/ + %)27.-—2

0, otherwise.

This formula was used by Fermi to obtain the number of electrons in a given
angular momentum state in the statistical theory of the atom. One can note
that there is an upper bound to the possible angular momentum in that the
radial density distribution vanishes when

1
|l/ + 5‘ > rk_%(r) (4.74)

corresponding to r times the maximum linear momentum.
The total density is similarly obtained as
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n) = ) [ dEY G E)
¢

= (mi)~? /C dE G(7,7, E) (4.75)

Z(l + %)nl(r)/m’z.

l

The summation over [ can be approximated by an integration to yield

() = ~(x/3) [ dm@P = (/D4 @F, (4.76)

where the integration limits for [ has been taken as -1/2 and rk_ 1 {(r). This

result permits the parameter yu, which separates the occupied and unoccupied
levels to be related to the density, ¢.e.,

w=V(r)+ (2m) " [3r2n ()3, (4.77)

which is the result for an electron gas and reduces to one of the conditions for
the statistical model of the atom when p=0. These results illustrate the role of
4 as chemical potential.

The total number of electrons is obtained from the density as

N = 47T/n(F')r2dr (4.78)

using Eq. (4.76), which for the case of a Coulomb potential V(r) = —e2Z/r
yields

N = (2/3)[-e*Z%m/2u)*/2. (4.79)

Solving for the parameter u, one obtains

1
p= -§e4zzm[z/31v]%, (4.80)

which implies that the principal quantum number of the highest occupied level
1
equals the integer part of [3N/2]3.

Problems

1. Calculate the energy density for the WKB-approximation to the electron
propagator as

Wu(r) = (27ri)"1/CEdEGV(T,T;E). (4.81)
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4.3 The Atomic Central Field Problem

Some of the consequences of the spherical symmetry of the hamiltonian of an
atomic system for the Green’s function are explored in this section. A number
of results concerning tensor operators are invoked and the reader are assumed
to be familiar with the Wigner 35 and 65 symbols.

4.3.1 Electron Propagator

It has been shown in Sec. 4.2 that the electron propagator for a spherically
symmetric potential can be expressed as a convolution of an angular and a
radial factor Green’s function. Such a separation is also possible for the case
of a many-electron system, when the ensemble used for the definition of the
Green’s functions is invariant under rotations about the atomic nucleus. The
many-electron states appearing in the spectral form of the electron propagator
can, in the case of an atom, be characterized by explicit labels of total orbital
and electron spin angular momentum quantum numbers. Assuming Russell-
Saunders coupling, one writes

In) = |yLMLSMs), (4.82)

where v denotes other possible quantum numbers. The density operator would
then have diagonal elements

Pn = PyLMSMs = w(’VLS)/[(QL + 1)(2S + 1)]7 (4'83)

when it commutes with the operators of orbital and spin angular momentum.
The electron field operators are expanded in a spin orbital basis {us(£)} with the
compound space spin coordinate £ = (7, ¢) adapted to the spherical symmetry,
i.e.,

Us (6) = Rnl(r)YEm (97 qs)(su(: (484)
where Y}, is a spherical harmonic and where the electron spin function is rep-

resented as a Kronecker delta (v = £1). The spherical harmonics are defined
with the phase convention of Condon and Shortley?, such that

1/2 i
vue,0) = [GE] [-esdana] | (455

and

2Condon and Shortley, The Theory of Atomic Spectra, Cambridge University Press, 1953
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1/2
Yim (6, ) = [(l—(_%%] [619(—0/06 + icotbd/dp] ™ Yu(0, ). (4.86)

The electron field operators are

PE) = Y Rur(r)Yim (8, $)0ucanimu, (4.87)

n,l,m,v

leading to the following expressions for the operators of total (electron) orbital
and spin angular momentum,

Li=Le+ily = 7 [(0=m){I+m+ D) 0l animo,
n,l,m,v
L.o=L,—il, = Y [(+m)I-m+1)]"%al, | anm, (4.88)
n,l,m,v
L, = Z ma:llm,,anlmuy
n,l,m,
Sy = Se+iSy =) al, 10um 1,
n,l,m
S. = S, —iS, =), ailm~%anlm%, (4.89)
n,l,m
1 t o
S, = 5 Z [anlm%anlm% - nlm— nl'm-—]
n,l,m

when the radial functions are assumed to be orthonormal, i.e.,

/ R, yridr =4, (4.90)

The creation operator is a tensor operator of rank | with respect to the
orbital angular momentum and of rank % with respect to spin. For instance,

(L0 )= = [ = m)(I + m + 1)]2a] (4.91)

nlm+11/

and

1 1 1/2
[S“}'?a':zlmu]‘ = (_2' - V)(_Q_ +v+ 1) alllmz/+1 - 5—51/ nlmi” (492)



4.3. THE ATOMIC CENTRAL FIELD PROBLEM 39

Similar expressions can be derived for the annihilators a,pm,,. It must be recog-
nized that (~1)l_m+%_"anlmy transforms as all_m_u.

Matrix elements of the field operator 4 (¢) over the many-electron states can
now be calculated in terms of reduced matrix elements of the tensor operators

al using the Wigner-Eckart theorem. Explicitly one obtains

nlmy

<7LML3MSW< )W L' M8 M)
= > Ru(n)Y;,(6,6)d,c(~1)FMeFEMs (4.93)

n,l,m,v

L l I S 1/2 g T o
g (—ML m M'L> (—MS v M's) (vLSllaylly L' S).
Since only the reduced matrix element and the radial function depend on

the label n, it is advantageous to define a more general reduced matrix element
as

(YLS||R] ("Y' L'S") ZR r){(vLSllal,|lv L'S"), (4.94)

which is independent of the particular choice of radial basis functions. As a
consequence of the transformation properties of ¥(£) and anim,, it follows that

(v LS| Ri(r)|I¥LS)

> Bu(r)(y LS |lan|IYLS) (4.95)

= (—1)FHLES =Sy LS||R] (r)||y L'S')*.

In addition to the orbital and spin rotations, one can also consider other sym-
metry properties. In the case of Russell-Saunders coupling, considerations of
parity further limits the possible [ values such that only even (odd) values are
allowed when v and 4’ have equal (different) parity quantum numbers.

The form of the matrix elements in Eq. (4.93) permits partial summations
in the spectral representation of the electron propagator. Thus, one obtains
explicitly that

> (Y L M Mgp(€)lyLS M Ms)
Mp,M, ,Ms,Mg

x (yLMy Ms|pt (€)Y L'S My M)

O put
_ Y Fo) | LSV
- & ;Pl(cos ©)(vLS||R](r)|IY L'S")

< (YLS||R}(r)II¥' L'S), (4.96)

with
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cos® = sinfsinf cos(¢p — gb/) + cosBcosf
= 77/, (4.97)
where the orthogonality of the 37 symbols and the addition theorem of spherical

harmonics have been used. The result for the electron propagator in the case of
a spherically symmetric potential can now be employed to write

’ 20+1 ’ '
G, & E) =6, g —?Pl(cos@)G,(lH)(r,r s E)/rr. (4.98)
!

Identifying this expression with the spectral form of the electron propagator,
for the case of a density operator [Eq. (4.33)] that commutes with the orbital
and spin angular momentum operators, and using Eq. (4.96) lead to the result

’

Giasp)(rm, r'; E)

4;:2 l(r)||7,L’SI>*
x (YLS||R}(r)lv'L'S")
[ w(yLS)/(2L +1)(25 + 1)
E-ENLS)+EQRLS) —1in
w(y'L'S) /(2L +1)(28" +1)
E—-E(LS)+EXLS)+in

(4.99)

One could compare this expression to that of the radial Green’s function for
the case of a spherically symmetric potential (noninteracting electrons)

Giayr)(r,7 ; E) Zuk rui(r )/ (E — e), (4.100)

with the orthonormal functions u(r):

/uZ(r)uk/ (r)dr = b, . (4.101)

In the case of interacting electrons, the corresponding amplitudes are propor-
tional to (y L'S’||Ry(r)||yLS), which in general are not linearly independent. In-
stead of considering the general case one could study specific cases. For instance,
in the simplest theory of atomic spectra, the many-electron states |yLMSMg)
are expressed in terms of configurations with a prescribed number of basis spin
orbitals from each occupied subshell (nl). That is, these states are eigenvectors
of the subshell number operators
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an = Za;lm”anlmy. (4.102)
my

Let us consider an atomic term (yLS) , corresponding to eigenvalues Np;(7y)
of the operators IV, respectively. This atomic term can be thought to arise
from a term (7/L/SI) of the positive ion by adding an electron to the subshell
(nl). Thus,

Nut(7) = Nu(y) +1 (4.103)

for that subshell, while equal in the two terms for all other subshells. In such a
case, only one reduced matrix element (yLS ||a;, Iy LS} is different from zero

and one can define a coefficient of fractional parentage (YLS{|y L'S") through
the relation

(YLSllalyllv'L'S") (4.104)
(= 1)Mt O [N (y) (2L + 1)(28 + D]V2(vLS{5 LS.

The coefficients of fractional parentage satisfy the orthonormality condition

> LSV LS LS{VL'S) =4, (4.105)
’Y,yLlys,

which follows from the definitions (4.104) and (4.102) and the relation (4.93).

Using this simplest description of atomic spectra, it is straightforward to
show that the radial electron propagator of Eq. (4.99) achieves a form similar
to that of (4.100) in that the radial amplitudes are orthonormal, but instead of
each factor (E — en;)” " appears a sum of terms > ¢i(E —¢;)71, where each
pole corresponds to a transition from a term (yLS) to another.

A particular simple example of an atomic electron propagator is obtained in
the pure state case for a half-filled subshell.

Then all terms have zero weight, except the one with L =0 and S =1 + %
These two quantum numbers specify the term uniquely. The Pauli exclusion
principle then gives the selection rule

1 1
(0, I+ §{|7LS) = 5Ll551(0,l + 5{”,1) = 011095 (4.106)

and

(yLS{|0,1 + %) = b16s1(20 +1)7V/2, (4.107)
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The final expression for the electron propagator is

1 1
at We =6 6 2 2 4.108
<<amuaam v >>E mm’ Yvr (E_El +1in + FE - E, —in) ( )

with

E, = E(I%*1 0,1+ %) — B({#*2 1) (4.109)
and

Ey = E(%,1,l) - E(*%1,0,1 + %). (4.110)

An example would be the nitrogen atom with its 4S ground state term connect-
ing with the anion and cation 3P terms.
Expressing the electron propagator in terms of the spectral weights A(€, ¢ ; s),
one can write the electron propagator as
A6 €5s)

G, € E) = E-c.¥n (4.111)

with

Eo(N) = Ey(N —1) for ImE >0
€s =

E{(N+1)—Ey(N) for ImE <0

of a spectrum from infinitely negative to infinitely positive values, and which
has a gap, the midpoint of which is an energy equal to the negative of the
electronegativity on the Mulliken scale. The gap arises because

min[Ey(N + 1) — Eg(N)] > max|Eo(N) — Eo(N —1)], (4.112)

which is equivalent to stating that the ionization potential of the (N+1)-electron
ion is less than that of the N-electron atom. The negative of the electronega-
tivity, as defined by Mulliken, is the average of these energies, i.e.,

a = %max[Eo(N) CEJ(N 1)+ % min[Es(N + 1) — Eo(N)]
- —%[I(N) +I(N +1), (4.113)

where I(N) is the energy required to remove an electron from the N-particle
system.
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The spectral weight can be obtained from the spectral form of the electron
propagator as

es=En—Ey,

AEEs) = D (rlp©Im)ml (€)n)on + prml; (4.114)

n,m

where the energy selection rule (imposed by the delta function form of the
spectral density) limits the summation to a restricted set of states.

The energy spectrum and the spectral weights are directly useful for the de-
termination of atomic properties. For instance, the one-electron reduced density
matrix becomes

WHEN(E) = Y A€ 9). (4.115)
The sumrules 5
N = [wiovends = 3 [ & (4.116)
and b
D A€ s) = (W EWE) + w(©w (&) = (e - £), (4.117)

follow straightforwardly from the properties of the propagator and the field
operators as discussed above.
The transition amplitude

(YNLMSMs|y! (€)' N'L' M, S Mg) (4.118)

may be interpreted as the complex conjugate of the wavefunction for an elec-
tron appended to the state I’y'N'L/M}JS'Mjg) of N’ electrons to produce the
state |YNLMSMg) of N electrons. The functional form of the angular part
of this wavefunction is quite restricted by symmetry, whereas there are no such
symmetry restrictions that in general determines the radial part. Approximate
calculations of these radial amplitudes for the hydrogen, carbon, and nitrogen
atoms are presented at the end of this section. The contribution of such transi-
tion amplitudes to the spectral weight matrix is obtained as

’ 5 4 ’ r_r
AEEss) = =3 Pilcos®)(INLS|IRI(nly N'L'S')"
l

X (YNLS||R/(* )||Y N'L'S') (4.119)
x[w(yNLS)/(2L +1)(25 + 1)
+w(y N'L'SY/@L +1)(25" +1)],
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and the amplitudes

(YNLS{R/()|I¥ N'L'S") (4.120)

for €, < a determines the charge distribution of the atom in a way analogous
to that of the occupied orbitals in the Hartree-Fock approximation.

4.3.2 Hartree-Fock Equations

The Hartree-Fock equations for the case of an atom exhibit sufficiently special
features to warrant separate considerations. The form of the spin orbital basis
(which can be assumed to be the solutions) is defined in Eq. (4.84), and the
density operator is

p =[]0 = (nk)) + (2(ni) — Dna] (4.121)
k

with normalization

Trp =1, (4.122)

and the occupation numbers

Trpnk = (nk> (4.123)

Requiring the density operator to be invariant under rotations of the coordinate
system is equivalent to demanding that the occupation numbers (ns) = (npm.)
are independent of m and v. Denoting the average number of electrons in a
subshell by

(Nn1) = gq(nl), (4.124)

it follows that

(T} = q(nd)/ (41 + 2). (4.125)

As is shown in the general discussion of the Hartree-Fock approximation, the
relations

(afar) = dr(n) (4.126)

and
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(ala]aman) = (nk) () (Bkndim — Skmdin) (4.127)

hold and the average value of the many-electron atomic hamiltonian is

(H) = hos(ns) + % 3 (stllst) ns) (ne). (4.128)

s,t

Because of the assumption of a spherically symmetric density operator the ma-
trix elements h,g are independent of m and v, and one can denote them by

I(nl). (4.129)

The two-electron integrals are in detail expressed in terms of 3j-symbols and
Slater integrals R* as

(niliymyvy, nalamavs|nalomave, nalymavy)
= OuwyOuar, (1) (4.130)

XZ I ks l4 k I3 Lh k Iy ls k I3
k—ml,u,mg —mg K M3 0 0 0 0 0 0
"

X [(211 + 1)(2[2 + 1)(2[3 + 1)(214 + 1)]1/2 Rk(nlll,nglg,nzlz,n4l4).

It is obvious from the average Eq. (4.128) that the only integrals RF(n;ly,
ngls, nale, n4ls) occurring are those with

(nilh) = (n2l2) = (n,1),
(4.131)

(nsls) = (nals) =(n'l),

which are denoted

’or o o0 ’I"k
Pty = [ty [T iRt (5 ) 1R ()P, (0122
0 0 >

and those with

(nlll) :(n4l4) :(n7l)7
(4.133)

(naly) = (nals) = (n,0),
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denoted

G*(nl,n'l') (4.134)

o] oo ,,.k
=/ de7”1/ rydraRyy (r1) R,y (r1) (3%) Ry (r2)Ri(r2)-
0 0 >

In these expressions, r« and 7~ are the smaller and greater of r1 and r5, respec-
tively.

Summations over the magnetic (m) and spin (v) quantum numbers in the
two-electron part of (H) yield the average electron-electron interaction param-
eters

2

I\ 2
V(nl,n/l’)zFO(nl,n'l')vlz<é ’5 10> G*(nl,n'l').
k

With the results and notations introduced above, one can express (H) as the
energy functional

(H):;I(nl)q(nl)-i—% ST q(nl)g( )WV (nl,nl). (4.135)

7
n,l,n’ 1

By introducing the modified radial functions

Poi(r) = rRn(r) (4.136)

(assumed real) and defining the potential functions

Ue(nl,n ;7)) = r’k'l/ s¥ P ()P, (s)ds
0

+7‘k/ s 1P ()P, (s)ds, (4.137)

one can form the functional derivative of (H) with respect to P,; to obtain

6(H)/0Pu
= g(nl) [_1 " (r) + %l(l + 1)r2Py(r) = (Z/7)Pu(r)
+ 3 g V(0 ,n'1's7) Pu(r) (4.138)
n' U

7

2
1 r s l k l [
_5 Q(n ! ) (0 0 0) Uk(n l 1nl;r)Pn'l' (T)



4.3. THE ATOMIC CENTRAL FIELD PROBLEM 47

Atomic units have been used, and Fj is the integro-differential operator of the
Hartree-Fock equations that determines the radial factors P,;. The usual way
of making stationary an energy functional that includes the orthonormality con-
straints of these radial factors introduces undetermined multipliers e(nl). As the
definition of £} introduces the same potential for all P, there is no need for off-
diagonal undetermined multipliers, and the variation of the energy functional
with the constraints yields the equation

EPy(r) = e(nl) Po(r) (4.139)

for the optimal radial functions.

Assuming that this equation has been solved and that these optimal orbitals
are used in calculating (H), then the partial derivatives with respect to the
subshell occupations ¢(nl) can be studied. One obtains

O(H)/0q(nl) = I(nl) + Y q(n'I')V (nl,n'l') = e(nl), (4.140)

’ ’
n',l

i.e., the (subshell) orbital energies are obtained as partial derivatives of the
total energy. It should be noted that this treatment is carried out in Fock space
and that the averaging with the chosen density operator involves a distribution
over all possible occupations of the subshell under consideration. For example,
one electron in an s-subshell corresponds to (n;) = % and the density operator
gives rise to a binomial distribution over the configurations s°, s!, and s2, with
weights w(s®) = 1/4, w(s') = 2/4, and w(s?) = 1/4. The total energy is then

(HY = w(s*)E(s"), (4.141)

with E(s*) the Slater average of configuration. For the lithium atom, one ob-
tains

(HY = 2I(1s) 4+ I(2s) + F°(1s,1s) + 2F°(1s,2s)
—G%(1s,25) + 3F0(2s,2s), (4.142)

where the last term represents a certain amount of self-interaction in the open
subshell. Positive contributions like this will result in somewhat higher total
energies (H) than that obtained with a fixed number of electrons. There is no
physical significance in this fact alone, but the importance lies in the novel cen-
tral field obtained and the spin orbitals it defines. Resulting multiplet splittings
and one-electron energies are quite reasonable and agreement with experiment
quite satisfactory and actually better than what is obtained with conventional
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Table 4.1: Comparison of central field calculations for Fe, Co, and Ni atoms.
Energies in Hartrees. I: Derived from Eq. (4.135). II: Derived from Slater’s
average of configuration energy functional (from J. B. Mann)

(H) €(3d) e(4s)

Fe 3d%4s?

I -1261.304 -0.3474 -0.2718

II -1262.291  -0.6079 -0.2601
Co 3d"4s?

I -1380.388 -0.4472 -0.2773

11 -1381.309 -0.6531 -0.2686
Ni 3d%4s?

I -1506.069 -0.5531 -0.2825

I -1506.816 -0.6971 -0.2768

central fields. Comparison of different central field calculations are given in
Table 4.1.

Minimization of the expectation value of the energy while keeping the ex-
pectation value of the number operator constant leads to the condition 9[{H) —
{Nop)]/9g(nl) <0, whereas

0<qgnl) <4l+2. (4.143)
The undetermined multiplier 1 appears as the chemical potential in statistical

mechanics, and it has a value that separates occupied from unoccupied orbital
energy levels. The minimum total energy is obtained when

g(nl) = 4l+2 for e(nl) < p,
gnl) = 0 for e(nl) > p, (4.144)
0<qgnl) < 4i+2 for e(nl) = p,
and
> a(nl) = (Nop) = N. (4.145)
n,l

These relations are seen to lead to several open subshells only in the case when
the corresponding orbital energies are degenerate.

Problems

1. Express (H) for the fluorine atom in terms of I(nl), F*, and G* integrals.
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2. Show that the width of the number operator Nop = 3 ns satisfies

((Nop = (Nop))?1% =[S (a1 — (]2, (4.146)

when the average is taken with the density operator
p= H[l — (ns) + (2(ns)y — 1) ng). (4.147)
s

4.4 Complex Spectra

The many-electron hamiltonian can be partitioned into an unperturbed part
consisting of the Fock operator in diagonal form and a perturbation consisting
of modified interaction terms. One can write

H = Z€rnr+ Z (rr'lss/)[alai,as/as —ai(a:,as/)as
T

7 1
8,7 ,8

al, (alas)a, + al(a:, as)ay + ai, (ala,)as). (4.148)
The perturbation term plays an important role for open shell atoms and ions, as
has been shown by Slater. He used first-order perturbation theory, and Russell-
Saunders states |yLMSMg) to calculate multiplet energies. Exactly the same
treatment can be used with our Fock operator, which is different in the case of
open shells from the one derived by the conventional variational treatment. The
density operator employed by us leads to averages involving configurations with
different numbers of electrons. As this approach can be seen as dealing with an
ensemble of atoms and ions and the electron number operator receives a nonzero
width, this approach has been named Grand Canonical Hartree-Fock. It has also
been applied to the study of molecular absorption spectra. In the Table 4.2 some
calculated multiplet separations are given for several atomic systems using the
Grand Canonical Hartree-Fock central field with first-order perturbation theory.
The agreement with experiment must be judged satisfactory for this type of
treatment.

4.5 Single Subshell Approximation

When the discussion is limited to a single open subshell and to perturbations
within such a shell, an interesting formulation of the many-electron atomic prob-
lem can be achieved that exhibits useful particle-hole symmetry. The summa-
tions in the perturbation term of the hamiltonian then run only over electron
states (nimv) of the open subshell (nl). This means that the electron repulsion
integrals can be expressed as
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Table 4.2: Multiplet separations from Grand Canonical Hartree-Fock central

field calculations and experiment for some atomic systems in units of cm™?.

ATOM TERM CALCULATED OBSERVED
3p 0 0
C12p? ) 10211 10164
1g# 17706 21619
g 0 0
N1I2p8 2p 20202 19200
2p 26917 28840
Sp 0 0
012 1D 16556 15790
1G* 20517 33700
SF 0 0
) 9141 8231
Ti IIT 3d2 3p 11169 10419
g 14354 14156
5D 0 0
3p 22500 18551
SH 20200 19173
3F 23200 20411
Fe I 3d64s2 3G 25600 23636
1y 30300 28910
3D 33200 28953
e 31300 29396
D 30900 34234

(nlmyvy, nlmgvsinlmaovy, nlmyvs) = 64,050,041, Z F*(nl, nl)(21 + 1)?
E.p

(RN ko Lok LY pymimaes
0 0 O —-my 4 Mg —ms  —p My

2
_ k 2l kI bolok
= Bubu, », FF(2I+1) (0 0 0) {1 I L

k,L,M

L0 1L A /
x (2L + 1)(~1) <m1 s _M> <m2 s _M),

where the last expression follows from the properties of the 35 and 65 symbols,
and where the arguments (nl) of the integrals F* have been suppressed.
Electron pair annihilation, m(LMySMs), and creation, wf(LM;SMs), op-
erators can be defined such that 7t creates a normalized two-electron state with
the specified orbital and spin angular momenta when applied to the vacuum



4.5. SINGLE SUBSHELL APPROXIMATION 51

state or to a state where no electrons occupy the spin orbitals of the subshell in
question. These operators are given by

T LMLSMs) = (—1)Me+Ms[(2L +1)(25 +1)/2]Y/?
(4.149)
11 L 1/2 1/2 S Py
< ) (P ) e

and by the adjoint expression.

It follows from the symmetry properties of the 35symbols and from the an-
ticommutation relations of the electron field operators that the triplet operators
do not exist for L even, while the singlet operators exist only for such L.

The hamiltonian in reduced form for the subshell (nl) can be expressed as

2
H = |e(nl) —qnl)F° + %q(nl)X:F’c <(l) (l) g) } Ny
k

1
+ 5 FONot(N — 1) (4.150)

+ > V(L)r' (LML SMs)m(LMLSMs),
L,M;,8,Msgs

where

IR S R e

k0

are the electron repulsion energies in the pair states with angular momentum
quantum number L. The average energy of the electrons in this subshell is

-ixe (i b))

when computed with the density operator in Eq. (4.121).

The introduction of the pair operators allows a simple way to demonstrate
that corresponding particle and hole configurations have the same terms and
similar energy expressions. This particle-hole symmetry has been known since
the early work of Heisenberg. A unitary transformation U is employed, which
is expressed in terms of the pair operator 7' = 7' (0000) and its adjoint

such that

(H) = e(nl)g(nl) - %q nl)?

U = explis], (4.151)
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where S = (’)/71' + 7*7rT) is Hermitian, with v an arbitrary complex number. The
transformation of an operator A can be expressed as

A = vaAU!
A —i[A,S)- + (i2/2D)[[A, 5], S]- (4.152)
—(@®/3N[[[4, 8]-, 5], 8] +---.

The commutator

[@mw, S]— = (=1)™ra=vy (20 + 1)~ V2 (4.153)
then yields the transformed electron field operator
Gmy = my cos|y(20 +1)7Y3? (4.154)

—(=nFmrEmral iyt /) sin (20 + 1)V

One can see from this result that a complete particle-hole transformation occurs
when

Iy = %ﬂ(2l +1)Y2, (4.155)

The generators 7 and 7' of the transformation commute with the total orbital
and spin angular momenta such that the transformation only connects states
with the same quantum numbers (LM, SMs). The various operators appearing
in the hamiltonian in Eq. (4.150) under a complete particle-hole transformation
become

Nuy=4l+2— Ny (4.156)

and

A (LML SMg) = (—1)MetMs+1(j|n| ))20(L — MLS — Mg),  (4.157)

which means that

> #H(LMLSMs)r(LMLSMs)
My, Ms

>l (LMLSMs)r(LMLSMs) (4.158)
Mp,Ms
+ > [M(LMLSMs), ' (LMLSMs)] -,

My, Ms

I
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with the last term equal to

(2L +1)(25 + 1)[1 = Ny /(20 + 1)]. (4.159)

This means that apart from a term involving the number operator, the hamil-
tonian is invariant under the complete particle-hole transformation and the rel-
ative energies of the terms of a configuration (nl)? are the same as those of a
configuration (nl)4+2-9,

One can assume generally that the energy parameter V' (0) is dominant of all
the V(L), and one can investigate the consequences of neglecting all but V(0).
If then there are states |N, g) that are characterized by the eigenvalue N of the
number operator N,; and by other quantum numbers ¢, and that satisfy the
relation

7|N,g) =0, (4.160)

it follows that the energy of such states is dependent only upon N. For a given
N such a state is written

IN,N,g), (4.161)

where the second label in this notation denotes the seniority number. Thus,
such a state has the seniority number N. Another set of states may satisfy

(m)/THN,N - 2f,9) =0 (4.162)

and are given the seniority number N — 2 f, where it is implied that

(m)/|N, N —2f,g) #0. (4.163)

The label g can distinguish between the different eigenstates of the hamiltonian
with a common particle number and a common seniority number. One can also
define states

IN +2f,N,g) = Csn(x')|N,N, g), (4.164)

which are eigenstates of the hamiltonian, and where Cyy is the normalization
constant, i.e.,

IC¢nl™2 = (N,N,g|nf(x")f|N, N, g)
(N, N, gl (]|, N, ) (4.165)
= [f(2+2~N-£)/Q@+D}N,N,glx/~ (=" "1 N,N, g)

(f!)2<2l+}_N) @+1).

Il
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The calculation of the electronic interaction energy in such a state is straight-
forward:

(N +2f,N,g|lV(O)r'n|N + 2f,N, g)
= ICfN|2<N7 N, gIWfV(O)WTW(WT)fIN7 N7 g)
= VO FfQ2l+2-N-f)/2l+1). (4.166)

Due to the particle-hole symmetry, the range of the parameters N and fcan be
limited, so that

N+2f <2l+1, (4.167)

implying that the largest interaction energy occurs for states with the greatest
difference between the electron number and the seniority number. Racah, who
introduced the seniority concept, found the seniority number to be an almost
good quantum number. This fact is borne out in the above analysis, since the
neglected terms in the hamiltonian are small. It is clear that the pair creator
7t commutes with the orbital and spin angular momentum operators for the
electrons and will not change the corresponding quantum numbers for a state.
Thus, a general particle-hole transformation will have matrix elements only
between states of equal seniority, orbital, and spin angular momentum.

Other two-particle operators can also be expressed in terms of the general
pair creators and annihilators. For instance, the total orbital angular momen-
tum is

L? = I+ 1)Ny+2030+1)@20+1) (4.168)

X Z(—1)L{§ ; é}ﬂT(LMLSMS)w(LMLSMS),

and the total spin is

8% = (3/4)Ny (4.169)

+ 32(—1)5“{ }g }g ;}H(LMLSMS)w(LMLSMS).

The number of electron pairs in the subshell is

1
N (N = 1) = > wl (LMLSMs)r(LMLSMs).

It is in general possible to express any two-particle interactions in terms of
these operators with a result analogous to that in Eq. (4.150) with a more
general form of V(L) parameters than that given in Eq. (4.151). Such ideas
have been explored by Trees, although expressed in different terms from those
introduced here.
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Problems

1.

Introduce a complete set of projectors Py corresponding to eigenvalues N
of the number operator.

(a) Verify that the realization
1
Py = / dt exp[2mit (Nop — N)] (4.170)
0

of the projectors satisfy the relations

(Nop— N)Py =0, P} =Py, > Py =1. (4.171)
N

(b) Introduce the density operator [with p defined in Eq. (4.121]
pn = Pnp/TrPyp, (4.172)
and show that the average of H is given by
1 1 1ot
(Hyn = zl:I(nl)q(nl) +3 lz,l, Qnl,n )V(nl,nl),  (4.173)

with (Npime )N (4 + 2) = q(nl) and (Rpmun, 0 YN (4D + 2) (41 +2) =
Qnl,n'l".
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1960).
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The discussion of the particle-hole symmetry goes back to the early work of W. Heisen-
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Transformation of field operators generated by the totally symmetric pair operators
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(Prentice-Hall Inc., Englewood Cliffs NJ, 1966), but in a different form from what is
done here.
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e Atomic Hartree-Fock calculations for the whole periodic system have been performed
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4.6 Approximate Atomic Transition Amplitudes

In this section, a few examples are given of the approximate determination of
matrix elements of electron field operators. Atomic units are used throughout.

4.6.1 The Hydrogen Atom

The ground state is degenerate and the corresponding manifold of states are

15,0,0,1/2,1/2) = a100%|vac>,
|1s,0,0,1/2,-1/2) = aloo_%|vac>. (4.174)
The amplitudes of interest are
(15,0,0,1/2, —=1/2|3"(€)|vac) = U3 (€) = u15p(6) (4.175)

as defined in Eq. (4.84), with the radial part Rjp being the exact ground state
solution of the radial Schrédinger equation for the hydrogen atom, and
((15)2, 0,0,0, O|1/)T(§)|ls, 0,0,1/2,-1/2) (4.176)
N /”lsﬁ(€')<(1$)2,0,0,O,OIW(E)W({)IUGC)@',

which can be calculated with an explicit choice of wavefunction for the hydrogen
anion. A simple spin singlet wavefunction can be expressed as

(vacl(€)¥(©)l(15)%,0,0,0,0) (4.177)
o< exp[—u(r + 1) coshiv(r — )] {a(¢)B(O) = BC)a(O)} -
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This wavefunction has been variationally determined® for H~ with the optimal
parameter values p = 0.6612 and v = 0.3780. One can directly evaluate the
amplitude

{(1)*,0,0,0,00%"(¢)|15,0,0,1/2, ~1/2)
oc exp(—pur)[(1 + p + v) 3 exp(vr)
+(1 4 p — v) 2 exp(—vr)]a*(€). (4.178)

This amplitude has the normalization integral

/((15)2,0,0,0,0|¢T(§)|1s,o,o, 1/2,—1/2)d¢ = 0.695 (4.179)

and overlaps the hydrogenic 1s orbital to almost 67%, or

1{(1s)?,0,0,0, 0|a}00% [15,0,0,1/2,—1/2)|* = 0.445. (4.180)

It is notable that the two largest terms in the sum rule

Z/“IOO%A(&ﬁ,;3)“100%(5,)d§d§, =1 (4.181)

equals 70% of the total value. A closer look at the amplitude (4.178) shows
that the component that dominates at large distances from the nucleus has a
considerably smaller exponent than that of the other component. This reflects
the fact that the probability amplitude for finding an electron far from the
nucleus in the hydrogen anion and another in the 1s state has an asymptotic
functional form corresponding to a wavefunction of an electron with a small
binding energy. The numerical value of the asymptotic exponent is y — v =
0.2832 to be compared with the “exact” theoretical value of (—2me )2 =
0.2355.

4.6.2 The Carbon and Nitrogen Atoms

A quasi-vacuum consisting of the singlet state core

lqv) = |(15)%(25)?,0,0,0,0) (4.182)

is introduced and held fixed throughout the calculation. The discussion is lim-
ited to the lowest multiplets of the (2p), (2p)?, and (2p)® configurations.

States of interest can be calculated from approximate wavefunctions, such
as

3H. Shull and P.-O. Léwdin, J. Chem. Phys. 25, 1035 (1956)
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1(26),1,1,1/2,1/2) = / w(€) (€)|qv) e, (4.183)
with
w(€) = C(u)r exp(—pr) Vi (6, §)a(0), (4.184)

where C(p) is a normalization constant. Similarly, for two electrons in the (2p)?
subshell the triplet state

(2p)%,1,1,1,1) = / w(Er, &)1 (€)% (E2)lqv)derde, (4.185)

with

u(€1,82) = C(u1,p2)

Z Prirgexp(—pir1 — pars)
PeSs

xS5(1, 2)a(C)a(Cz), (4.186)

where C(u1, 2) is the normalization constant, ﬁ > pe sy P 1s the symmetric
projector of the permutation group Sy of N electrons, and

1 1 1
5(172) = Z 31/2 (ml ma _ > Y1m1 (91,¢1)Y1m2 (927 ¢2)
my,mz

is the antisymmetric angular part. For the quartet state of (2p), one can write

1(2p)%,0,0,3/2,3/2)
= / w(€r, &2, )01 (€)1 (E2)01 (63)lqu)dE1déades,  (4.187)

with

u(€1,€2,&3) = C(p1, 2, p3)

X[ Y Prirargexp(—purs — para — piars)]
PeSs

x5(1,2,3)a(Cr)ax(Cz)ex(Cs), (4.188)

where C(u1, p2, p3) is the normalization, and



4.6. APPROXIMATE ATOMIC TRANSITION AMPLITUDES 59

1 1 1
I A

mi,m2,Mm3

X Y1y (01, 01)Yim, (B2, $2)Y1m, (03, ¢3) (4.189)

is the antisymmetric angular part. It should be noted that the spin and radial
parts are symmetric in the electron labels. The exponents can be optimized
using the wavefunctions u for the separate ions. Then, defining the modified
radial amplitude for the N electron ion as

P}y = r(yNLS||Ry(r)||lY N'L' S )N (2L + 1)(28 + 1)]7/2, (4.190)

the following amplitudes are obtained for carbon:

Ps(r) = r%5.00546 exp(—1.798r),
Ps(r) = 1?[3.18457 exp(—2.0167) + 0.82624 exp(—1.114r)),
P;(r) = 7r%[0.1549 exp(—0.628r) + 0.5393 exp(—1.1917)
+2.0578 exp(-—-2.0617)]. (4.191)

In Tables 4.3 and 4.4 the calculated exponents, total energies in Hartrees, and
the ionization potential in electronvolts are given.

Table 4.3: Carbon

N 4 5 6 7
U1 0 1.798 1.114 0.628
U2 0 0 2.016 1.191
U3 0 0 0 2.061
Eiot -36.330564 -37.26425 -37.67795 -37.70538
IP(calc) - 25.41 11.26 0.75
IP (exp) - 24.38 11.26 1.25
Table 4.4: Nitrogen
N 4 5 6 7
U1 0 2.345 2.644 2.787
1o 0 0 1.624 1.732
13 0 0 0 1.220
Etot -50.90343 -52.73425 -53.86133 -54.39581
IP(calc) - 49.82 30.67 14.54
IP(exp) - 47.43 29.61 14.54
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Chapter 5

The Excitation Propagator

The energy representations in Eq. (4.13) or Eq. (4.17) show that the appropriate
energy differences corresponding to excitations of the N-electron system are
obtained from the excitation propagator, i.e., the one with the field operator
basis

X, = qz = &Ldl, for (ng) < (n), (5.1)

where (ny) = (a/t&k> and the average is taken over the appropriate reference
state or with the appropriate density operator. If the reference would be the
Hartree-Fock single-determinantal ground state of Eq. (4.29), the index k refers
to unoccupied (or particle) spin orbitals and ! to occupied (or hole) spin orbitals,
making the operators q;r so-called particle-hole operators with the compound
index 7 = (k,]). It should be noted that the adjoint (hole-particle) operators are
q; = &;rdk. The matrix propagator to consider has the block structure
_ [ Ugds  (ga)s
P = | (R G ]

[ (a'|(Ef - H)"'a") (a'|(El - H) 'q) } (5.2)
(al(BI - H)~'q") (al(EI-H) 'q)
~ S(ES-F)7!S,

where in the last step, the geometric approximation is invoked. Using the basic
anticommutation relations of the electron field operators and taking the average
with respect to the density operator of Eq. (4.33), which for integer occupation
numbers ( 0 and 1) becomes the single-determinantal pure state of Eq. (4.29),
one can easily compute the elements S;; (with ¢ = (k,!) and j = (k',!') ) of the
metric matrix S (for {(n;) > (ng)):

(@la) = (laoall-) = G S () = (nk)) = B3N,
(@lay) = (ol a5]-) = S Sy ((mi) = () = =65\,
@lg) = (alg)=0. (5.3)

61
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The dynamical matrix F similarly has the elements

(@/|Hq)) = (gi|H q)-]-) = (q:|Ha;)" = By,
@1Hg) = (ai, [H,q5]-1-) = (@lHql)* = Cyj, (5.4)
where !
Bij = (ex —e)Nidyj — NN (UKD,
Ciy = MN(RE D). (5.5)

For fractional occupation numbers, the division between occupied and un-
occupied spin orbitals gets blurred and one could have a situation where (n;) =
(n;). Operators ¢; and their adjoints for which this situation occurs are simply
excluded from the basis. This avoids a singular metric.

The propagator matrix in block form is

- -1
A 0 || EA-B  -C A0
PE) = 1o -a -C* -EX-B* [ 0 —A ]
(5.6)
- _ _ -1 )
_ | A o ||E1-B -C AR 0
B 0 A& ~C* —E1-B* 0 A |

where ) is a diagonal matrix and B = A"2BA"Z, and € = —A"3CA~%. This
is the excitation propagator in the Time-Dependent Hartree-Fock (TDHF) or
the Random Phase Approximation (RPA). It is known to give imaginary excita-
tion energies for the case that the optimized single-determinantal Hartree-Fock
reference state does not correspond to an absolute energy minimum (i.e., has a
positive energy Hessian). This is known as instabilities and can in general be
cured by choosing a suitable correlated reference state. In the case of B and C
real and B 4+ C and B — C positive, one can proceed as follows.
Find a unitary transformation U such that

(B+C)U =UX, (5.7)
where X is diagonal and positive. Then form the positive matrix
w? =X:UlB - C)UXz, (5.8)

and find the unitary matrix V such that W2V = Vw2, where w? is diagonal
and positive. The matrices

D=UX"?Vw?, and T=UXIVw %= (D')"! (5.9)

!Note that the C matrix defined in Appendix D is the negative of this C matrix.
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are defined and the combinations Z = (D + T)/2 and Y = (D — T)/2 formed.
The propagator matrix can then be expressed as

Az o0 Z Y || (E1-w)! 0
P(E) = {o A%][Y z 0 ~(E1+w)!
Zt YP || ar 0
ERRIE| o0
Comparing the (m,n) element of P in the geometric approximation
1 1 1 1
AN Zmp B A A Y Y2
= — 5.11
Punt) = 30 ML It} gy

with a corresponding element in, say, the {(g;q"))g block of the energy rep-
resentation of the excitation propagator, the following identifications can be
made

1 1
MNoZme = (Olgmlk), M Zx = (klgl|0),
1 1
AaYme = (klgml0).  AEY% = (0lgl|k),
W = Ek(N) — E()(N) (5.12)
Since ZTZ — YTY =1, it holds that
_1
(K| Z/\mz(QIank — qmYmi)10) = 1, (5.13)

and one can conclude that the excitation operator that creates an excited state
|K) from the reference state is

1. e rw
Q}( = Z)\(kfl) (aLalZ(k,l)K - a;rakY(k,l)K). (5.14)
k.l

The corresponding de-excitation operators Qg must also, in this case, satisfy
the killer condition Qk|0) = 0 for consistency, but for a single-determinantal
reference, this is not in general true because fiLdl]0> # 0. The consistency then
only obtains when all elements Y(; yx = 0 or are insignificantly small. This
means that all excited states are represented as monoexcited CI states out of a
single-determinantal reference. This has been referred to as the Tamm-Dancoff
Approximation (TDA). As in general all the Y-elements do not vanish, there is
an inconsistency in RPA, which can be addressed in various ways in practice
by introducing correlated reference states. Strictly speaking, one cannot within
RPA identify the various individual stationary states. There is only a spectral
density function.

Problems

1. Show that when B+C and B-C are positive, the second variation of (H)
for the single determinantal Hartree-Fock ground state is positive.
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5.1 Antisymmetrized Geminal Power

As in general all the Y-coefficients do not vanish one has to assume a more
general reference state than the single determinant SCF state. This is the rather
well-known problem of finding the consistent reference state for the Random
Phase Approximation (RPA). It also means that the field operator basis can
be enlarged and can for instance include the N-electron occupation number
operators (in this discussion, electron field operators b; and their adjoints are
used referring to a basis of spin orbitals that are the “natural spin orbitals”
of the reference state, as will be discussed below, i.e., the spin orbitals that
diagonalize the one-matrix)

qii = (b]bi — (b:))]0)(0], (5.15)
with
(bIbs) = (ni) = (0[b!b.]0). (5.16)
The elements of the metric corresponding to these operators are
Ay = (ailass) = (Ollais, a};]-10)
= —(010)(0l(b}b; — (bJb;))(blb: — (b]0:))10)(00)
= —6ij(ni) — (b]bbsba) (1 = 8i5) — (mi)(ny)- (5.17)
Similarly,
(giilgs;) = Ay, and (qilgl;) = (af;la5;) = 0. (5.18)

The metric matrix elements between operators ¢q; and the operators b};bl
and their adjoints also vanish.

It has been shown? that for an even number of electrons 2N, the appropriate
correlated reference state to consider is

0) = (GHN|vac), with Gf = gibTbT . 5.19
: 1 1+8

Such a reference state has been called an antisymmetrized geminal power (AGP).
Should the number of electrons be odd 2N + 1, one may construct the appro-
priate reference state as a generalized antisymmetrized geminal power (GAGP)

2N+1

0y =@GhH™ ] bllvac), (5.20)

k=2m+1

with k referring to spin orbitals that are orthogonal to the 2s spin orbitals that
make up the geminal (two-electron function)

9(1,2) = <Uacl¢(2)¢(1)GT|Uac> (5_21)
= D gilui(Duirs(2)) = o), (5.22)

2Linderberg and Ohrn, Int. J. Quantum Chem. 11, 161 (1977), and ibid 15, 343 (1979)
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with

= biug(1) and |ui(1)uiss(2)) (5.23)
being an electron field operator and a Slater determinant, respectively. A GAGP
might be useful also for the case of an even number of electrons when a part,
say the core, can be given an uncorrelated treatment. In the following, the case

of an even number of electrons is explicitly treated with an AGP reference.
The two-matrix of the geminal |g) is simply

D?(g) = lg){gl, (5.24)

and the normalization of the geminal coefficients is conveniently chosen as
Tr{D*(g)} = Y _lg:l* =1, (5.25)
=1
with

=3 Dl s wi(Duirs(2)) (us (1)u;45(2)]. (5.26)

i=1 j=1

The one-matrix has eigenvalues n; (i=1,2,...,2s) displaying at least the double
degeneracy

ni = Nips = |gs|%, for i=1,2,.,s, (5.27)

simply due to the antisymmetry of the geminal g. Thus, the one-matrix becomes
an u;(1 ) + wjirs (Dt (1)] (5.28)
with
Te{ D'(g)} = 22 |lgil? = (5.29)

The AGP wavefunction may be expanded in determinantal components:
(vaclp(N)P(N — 1)..p(1GHN lvac) = |g")

DD D Gni i (5.30)

Jji=1lj2=1 jn=1
X fugy (Dt 45(2) - ujy (2N = Dujy 15 (2N)).

From this expression, one can see that the AGP can be represented as a leading
determinant and all double, quadruple, hexatuple, e.t.c., even nonlinked replace-
ments out of that determinant. The mixing coefficients of these determinants
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are all functions of the far fewer geminal coefficients g;. Each mixing coefficient
is in fact a product of N out of the total number of s geminal coefficients, and
thus a very nonlinear function of the s basic parameters g;, with s being the
total number of orbitals in our basis set. The normalization of the AGP

<9N|9N> = (N')zz Z Z Tjy Mgy Thjn

1<j1 1<ja<... <jn<s

= (N)Sn (5.31)

depends on the symmetric function Sy of order N of the s geminal parameters
(occupation numbers) n; = |g;|% for j = 1, 2, .., 5. The one-matrix D(g") of
the AGP has the same eigenfunctions (the natural spin orbitals of the AGP) as
the one matrix D!(g) of the geminal, but it has different occupation numbers

N«L' = Sg,lnz(?SN/an (532)

Thus,

DMg™) = > Nj{ui(D)uj (1) + wyps(1)uf o (1)} (5.33)
j

The number of determinants in the expansion of the AGP, s!/Nl(s — N)!,
grows impressively large as the number of spin orbitals r = 2s increases. For
example, when s = 40 (i.e. a forty orbital basis) and N = 20 (a 20-electron
system), there are approximately 10° configurations. The coefficients of these
are of course not free to vary independently, but they are functions of the s
variational parameters g;.

Also the two-matrix has a simple form when the basis is ordered as follows:

Uillirs), 1<i<s; |uuy), 1<i<j<2s and t+s#3}. (534
3

The two-matrix then has the form
B 0
D?(g") = [ 0 T ] (5.35)

the so-called “Box and Tail” form where T is a diagonal matrix of dimension
2s(s-1), and with the elements

Tigws = (o™ blbjbsbilg™)/ (g™ 1g™) (5.36)
= Sg,lnmjaQSN/anianj for 1<i<j<2s, i+s#j.
The block B is of dimension s and has the off-diagonal elements

Bjjrspirs = (9" 1bpb obiasbslg™) /(g™ ™) (5.37)
= Sﬁlg;gk(??SNH/@njank for 1<j#k<s
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and the diagonal elements
Bjj+3;jj+s = S;,lnjBSN/an = Nj for 1 S j S S. (538)

The total electronic energy is

E(g) = (g"IHIg™)/(g"Ig")
= Tr{hD'(¢g™)} + Tr {VD?(g")}, (5.39)
where
iy = (il — 5V~ 3 2/ | R~ Fluy) (5.40)
k

are the one-electron integrals with Z; the atomic number and Ry the position
vector of nucleus k, while the antisymmetric electron interaction integrals are

Vigier = (iglkl) — (igltk) = (ij]lkt) (5.41)

forl<i<j<2sandl<k<l<2s.
The total energy of the AGP can then be expressed in terms of these one-
and two-electron integrals as

E(g) = > Nj{hy +hjrsirs + (id + slljj + )}
j=1
+ > Tikrsyrrs x {(k3llks) + (ki + sllks + s)
1<j<k<s
+{k + sjllk + sj) + {k + sj + s||k + sj + 3)}
+2 Y R{Bjjrskes(kk + slljj + )} (5.42)
1<j<k<s

In general, the geminal is a linear combination of a spin singlet and a spin
triplet function. A restricted version of the AGP that guarantees a spin singlet
reference state is obtained when the geminal is restricted to be a singlet func-
tion only. This restriction means that u;4 is the conjugate spin orbital to u;;
i.e., it would have the complex conjugate orbital part and opposite spin. The
expression for the total energy then simplifies to

Blo) = 23 Nylhy + 533}
+ Y Tl alklik) — (iklkd)) (5.43)

1<j<k<s

+92 z R{B;jer(kklg)},

1<j<k<s



68 CHAPTER 5. THE EXCITATION PROPAGATOR

after summation over spin. The first two terms in this expression should be

compared with the closed shell single-determinantal SCF energy. It has the

same general form, but the coefficients N; and Tji;x are now quite general

fractional numbers. The last term has the appearance of a sum of pair energies.
The field operators

qgj—{-s = g;b;[b.H"s + g:b;bl-Fs
q;r+sj = g;b;[%-sbj + g:b}#sbi (544)
q;'rj = g;b;'rbj - g:b;+sbi+s
qg+sj+s = 9;b1+sbj+s - g:b;bl (545)

are introduced for 1 < ¢ < j < s and n; # n;. These operators acting on the
AGP yield, for instance,

aliralg™) = ABH(GNY vac)

with A = Sy'(ni—n;)N. (5.46)
This is so because

[4}j15, GT]- = (ns —ny)blbl, (5.47)
and

040 (GHNZ = D (GHN g, G- (G
k
= Nlglj., G1-(GHY . (5.48)

Similar relations for the other operators permit us to write

‘I;r+sj|9N> = _Abz+sb}+s(GT)N—llvac>’
qifjlgN> = _Ab;fb;+s(gT)N—1]vac>’
Qiojisld™) = Ab bHGHN " jvac). (5.49)

All of these states are GAGP’s and together with the reference AGP, |g),
form an orthogonal set of 2N-electron states. On the other hand, the operators

Gijts = bl sbi + 9ibly b (5.50)
satisfy the relation
(Gij+s, GTl= = g;9ib}, bl , + g;9:bl, bl =0, (5.51)

which means that g;;4, annihilates |g"'). The same holds true for g;1s;, ¢,
and @it gj4s-
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The first step in the determination of the propagator is the optimization of
the reference |¢g"V), i.e., the minimization of E(g) with respect to the natural
orbitals corresponding to the field operators b; and with respect to the s geminal
coefficients g, for a given orbital basis set.

With these optimized orbitals and geminal coefficients, the operators are
formed and the normalized reference obtained as

gV) = [Sn(N)? 73 (GT)V vac). (5.52)

The operators qu+3, quj, q;rj, and q;r+sj+s for ¢ < j and for n; # n; are

constructed and augmented with the “diagonal” operators

dl; = (blbs — (b]b:))lg™ (g
+ (bl bivs — (b birs))g™ MW ], (5.53)
with
(b3b;) = (N |blbilg") for 1<i<s. (5.54)

Then the metric

S:[g _OM], with = g R , (5.55)

is calculated, where Y is the metric of the “diagonal” operators and A is the
metric of the “regular” q operators. Although A is diagonal T is not. A unitary
transformation U is found that diagonalizes T, which is a semipositive matrix
with at least one zero eigenvalue. This arises from the fact that the number op-
erator for the total number of electrons is spanned by the “diagonal” operators,
resulting in a linear relationship between these basis operators. Discarding the
zero eigenvalues Ly of

L =UTU, (5.56)
the canonically orthonormalized operators
N S
e = Lx)"2 > _@Usx for Ly >0 (5.57)
i=1

can be obtained.
Using the array of operators

_ [t t Tt 1
q' = {2ijrer Givsjr Gij> Girsjrsr st (5.58)
and an array of their adjoints, the metric

A= (g"[a,q']-|g") (5.59)
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is formed and the dynamical matrices

B = (¢"|[a,[H,q"]-]-1g") (5.60)
and

C = (g"{la, [H,q]-]-|g") (5.61)

constructed, where the notation tacitly assumes that the arrays of operators g
and q are in the appropriate column or row format so as to result in square
matrices A, B, and C.

For real orbitals and geminal coefficients g;, the excitation propagator P(FE)
is written in the geometric approximations as before, but now with the aug-
mented set of field operators. Considering the block

{{a:a")e (5.62)

of the matrix propagator, the element

1
Pmn(E) B ; [ E—wg FE+ wk (5.63)
can be identified with the spectral representation to obtain
1
MoZoi = (Olgmlk), MZ2 = (Klg710),
1 1
AmYmp = <k|qm|0>v MY = <0|qn >7 (5.64)

and wg = Ey ~ Ey, with Fy = E(g).
The field operators ¢ can be transformed so that they produce spin eigen-
states when applied to the singlet restricted AGP. Thus, ¢ = @it + qrrsk+s OT

m = qkk for singlets, and g, = q — qi+sk+s and gm = Qik+s, Gm = Quysk for
spin triplets with z-component of spin angular momentum equal 0, 1, and -1,
respectively. As Z1Z — Y'Y = 1, the relation

1> Am? (@], Zmk — gmYop)|0) =1 (5.65)
holds. Thus, the excitation operator
-1
Q=D Mn® (@h Zink — am¥iik) (5.66)
m

satisfies the relation
k) = Q110). (5.67)

But, the de-excitation operators @y still do not annihilate the reference
unless all Y, vanish. From the earlier discussion, one can see that this will
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happen if the matrix C is neglected in the propagator expression. This approx-
imation is the so-called AGP-based Tamm-Dancoff Approximation (TDA) and
means that the excited states are represented in terms of all single excitations
out of the AGP reference. Calculations show that in many cases the C matrix
elements and the Y-coefficients are several orders of magnitude (1073 — 1076)
smaller with the AGP reference than they are with the single-determinantal
SCF reference. The AGP-based TDA then gives the same excitation energies
and transition moments as does the AGP-based Random Phase Approximation
(RPA), which is obtained when the C matrix is included in the propagator. In
this sense, the singlet restricted AGP reference is the consistent reference of the
excitation propagator in the RPA. There are, however, cases for which the TDA
and the RPA give quite different results and the consistency of the approxima-
tion is lacking. The use of spin unrestricted AGP reference states should then
be studied. This might require spin projections to guarantee pure spin states
and would also lead to more complicated field operators.

Several calculations have been reported for the AGP-based polarization
propagator applied to atoms and small molecular systems. When the Eq. (5.67)
is satisfied, individual stationary excited states can be obtained as excitations
from the AGP reference state. Thus, starting from an energy optimized AGP,
the vertical excitation (and de-excitation energies, when the AGP is not the
ground state) determines potential energy surfaces and wavefunctions for other
states. B. Weiner and Y. Ohrn? calculate the X'E+ ground state of the LiH
molecule as an AGP and, with a modest basis, obtains potential energy curves
from the polarization propagator also for the A'L*, and the B'II states in
excellent agreement with rather elaborate CI (configuration interaction) calcu-
lations, which use a considerably larger orbital basis. Electric dipole moments
and transition moments (see Fig. 5.2) as a function of internuclear distance
for all three states agree very well with the more elaborate wavefunction calcu-
lations. E. Sangfelt, R. Roy Chowdhury, B. Weiner, and Y. Ohrn?, although
primarily studying the stability problem, obtain equally satisfactory results for
the three lowest % and the lowest 3II state of LiH. Unpublished results also
show excellent results for the various transition moments as functions of inter-
nuclear distance for this system. Comparisons were made with H. Partridge
and S. Langhoff® for the singlet states and with K. K. Docken and J. Hinze®
for the triplet states, and although the total energies are lower for these more
elaborate calculations, the overall shapes and splittings of the potential energy
curves from the AGP calculations agree within 20 cm™! or better.

Applications to the Li; molecule by E. Sangfelt, H. A. Kurtz, N. Elander,
and O. Goscinski” show equally excellent results employing modest basis sets.
Once a potential energy curve is obtained and interpolated, the Schrédinger

3B. Weiner and Y. Ohrn, J. Phys. Chem. 91, 563 (1987)

4E. Sangfelt, R. Roy Chowdhury, B. Weiner, and Y. Ohrn, J. Chem. Phys. 86, 4523
(1987)

5H. Partridge and S. Langhoff, J. Chem. Phys. 74, 2361 (1981)

6K. K. Docken and J. Hinze, J. Chem. Phys. 57, 4928, 4936 (1972)

7E. Sangfelt, H. A. Kurtz, N. Elander, and O. Goscinski, J. Chem. Phys. 81, 3976 (1984)
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LiH Singlet states (AGP Calc.)
"7.7 T 1 ] | I T

Energy (Har.)
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Figure 5.1: AGP potential energy curves for X!+, A'S+, and B'II states of
LiH.

equation for nuclear motion can be integrated (for Liy regarded as a symmetric
top. In this way, spectroscopic constants and vibrational energies are obtained.
The eigenenergies in terms of vibrational and rotational quantum numbers v
and J are given as

E(v,J) = G()+FE,(J),
GW) = we(v+1/2) —weze(v +1/2)% (5.68)
FV(J) = BVJ(J+1)7

B, = B.—oa(v+1/2).
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LiH Singlet states (AGP Calc.)
3.5 T T 1 I I T

Transition Moments (a.u.)

2 4 6 8 10 12 14
Internuclear distance (Bohrs)

Figure 5.2: Transition moment curves for the X «— A, X <« B, and A « B
transitions in LiH.

The we and w.z. values are determined from a fit to the G(v) values using
the three or four lowest vibrational states. The B, values are calculated as
B, = (h/4mcu){v|R™2%|v), where |v) is a rotationless vibrational wavefunction
and p is the reduced mass. A straight line fit of the B, values yield B, and
ae. The agreement with experimentally determined spectroscopic constants and
with those obtained from quite elaborate configuration interaction calculations
is reasonable for the four lowest singlet and three lowest triplet states. The pub-
lished AGP results contained some mistakes and were later corrected, 8 resulting
in vastly improved agreement. In Table 5.1, the corrected AGP spectroscopic

8E. Sangfelt, personal communication
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LiH Singlet states (Partridge and Langoff)
3-5 T I T T T

Transition Moments (a.u.)

2 4 6 8 10 12 14
Internuclear distance (Bohrs)

Figure 5.3: Transition moment curves for the X «— A, X «— B, and A « B
transitions in LiH.

constants for the X 12; are compared with experiment.

The corrected G(v) values for the eleven lowest vibrational states of the Li,
ground state are given in Table 5.2.

This excellent performance of the theory is, indeed, very interesting and
should be explored further for other systems and with the theory generalized
to spin unrestricted AGP’s. Most quantum chemistry calculations including
the propagator variety usually do not consider situations far removed from the
equilibrium ground state geometry, and in general quantum chemistry tends
to use rather different methodology to calculate energy dependence on geome-
try (potential energy surfaces) from that used to calculate spectra (excitation
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Table 5.1: Spectroscopic constants for the Li» ground state (in cm~! and bohr)

We Wele B, Qe Te D, Dy

KO? 347.0 3.6 0.66 0.0055 2.696 8297 8120
AGP | 352.5 2.66 0.6736 0.00745 2.698 8519 8344
EXP® | 351.39 2.58 0.6726 0.00702 2.673 8600 8425

a.- KO refers to M. L. Olson and D. D. Konowalow, Chem. Phys. 22, 129
(1977) and D. D. Konowalow and M. L. Olson, J. Chem. Phys. 71, 450
(1979).

b.- EXP refers to results in K. F. Huber and G. Hertzberg, Molecular Spec-
tra and Molecular Structure IV. Constants of Diatomic Molecules, Van
Nostrand Reinhold, New York, 1979.

Table 5.2: G(v) values for the first several vibrational states of the Li, ground
state

KO® AGP EXP?
1772 1745 1750
524.0 5211 5213
860.2 863.3  862.3
1189.3 1201.1 1198.0
1513.1 1534.0 15284
1832.4 1861.5 1853.5
21475 21836 2173.1
2458.4 2500.5 2487.2
2764.5 2811.7 2795.8
3065.7 3117.3 3098.7
3361.7 3417.3 33958

O 00N O Ut Wi~ OIx

—
(=]

a.- KO refers to M. L. Olson and D. D. Konowalow, Chem. Phys. 22, 129
(1977) and D. D. Konowalow and M. L. Olson, J. Chem. Phys. 71, 450
(1979).

b.- EXP refers to M. Hessel and C. R. Vidal, J. Chem. Phys. 70, 4439 (1979).

energies and transition moments). Starting from a reference AGP state, the
polarization propagator seems to offer a way to compute simultaneous poten-
tial energy surfaces for ground and a few low-lying excited states. This is so
because this procedure seems to exhibit reasonable energy splittings at most
molecular geometries and is capable of generating separate stationary electronic
state wavefunctions from the energy optimized AGP ground state.
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Chapter 6

Interaction of Radiation
and Matter

The general theory of the interaction between electromagnetic radiation and
matter lies in the realm of Quantum Electrodynamics, which is well beyond
the scope of this text. Thus, our aim in this chapter is to formulate a working
description of electromagnetic processes, which permits discussion of various
photon scattering and absorption processes on a common footing using propa-
gator theory.

6.1 A Charged Particle in an Electromagnetic
Field

A particle with charge e and mass m moving under the influence of an electro-
magnetic field experiences the force field

B L1 .
F:e[E—#—-UxB], (6.1)
C

where ¥ is the velocity of the particle and ¢ is the speed of light in vacuum. The
electric field strength E and the magnetic field strength B can be expressed in
terms of the vector potential A = A'(F) and the scalar potential ¢(7), where 7
is the position vector of the particle. Note that the dependence on the time
parameter t is not explicitly shown, and that ¥ = 7 = dF/dt.

Newton’s equation of motion yields

L 104 -, 1. =
mi=F =e —ZE—V(Jﬁﬁ—va(VXA)}. (6.2)
This can be rewritten using the result from vector analysis that
TX(VxA) =V(@ A~ (@ V)4 (6.3)

77
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and the result (using the chain rule of differentiation) that

dA 0A 04 0A. 04 04

7o ettty +6Zz_a—t+(ﬁ~t7)A’ (6.4)
to give
%[m17+ SA’] = V]-ed+ Sa- Al. (6.5)
Comparing this result to the Lagrange’s equation
(o o o
dt \ 0z ox

and the analogous ones for the y and z components shows that an appropriate
Lagrangian is

1 -
L= smi —ep+ gﬁ- A (6.7)

and, thus, the momentum p'= (p;, py, p.) conjugate to ¥ = (z,y, 2) is

p = (8L/9%,0L/8y,0L/0%)
= mi+ g/f. (6.8)
The corresponding hamiltonian is
H = p-v-L= %mﬁz+e¢
1 /., e -2
- _2.77_1( —EA) + e, (6.9)

In order to derive an expression for the energy of interaction between an
intrinsic magnetic moment (as for a particle with nonzero spin angular momen-
tum) and the electromagnetic field, one cannot proceed via classical mechanics
as for the charged particle. Rather one proceeds via the relativistic Dirac equa-
tion and seeks the nonrelativistic limit!.

The result is that the energy of interaction between the intrinsic magnetic
moment = & = §(c;,0y,0;) of an electron and an electromagnetic field is

—B6-B=—35-(V x A), (6.10)

where § = e/2mc is the Bohr magneton and &; are the Pauli spin operator
components.
The hamiltonian for an electron with charge e and spin § = %&’ (note that ki
= 1) in an electromagnetic field then takes the form
1 7, e N2 .
H= (7~ 24) —ep—p5-(V x ), (6.11)

2m
in the nonrelativistic limit.
Isee, e.g., L. 1. Schiff, Quantum Mechanics, McGraw-Hill, New York, 1955, p. 329f.
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6.2 Quantization of the Radiation Field

A key quantity is the vector potential A(7,t) = A(7), which satisfies a wave
equation analogously to the wave equation for the electron field operators ¥(§).
It is chosen divergence free V - A(7) = 0. Invoking zero scalar potential and this
choice is usually referred to as the Coulomb gauge.

A K

n

Figure 6.1: The polarization vectors 7; and 7i; and the propagation vector k
for a right-handed set of axis.

The vector potential is expanded in a complete set of plane waves orthonor-
malized over a finite volume V:

AF)=Vv-3 ZA exp(ik - 7), (6.12)
and thus,
V. A(F) = V=% k- A(k)exp(ik - 7) = 0 (6.13)
3

or k - /T(E) = 0, ie., /T(E) lies in a plane perpendicular to the propagation
vector k. The unit vectors 7i1(k) and ﬁg(E) define two mutually orthogonal
polarization directions in this plane. These vectors can be arranged such that
(71, (k), iz(K), k) form a right-handed set of axes (see Fig. 6.1). The vector
potential can then be expressed as

A(F) = V_'ZA)\ k)iiy(K) exp(ik - 7), (6.14)
EA
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which permits us to use the Maxwell’s equations to write
10A(7)
c ot

= -~ ZA)\ (K)7in (k) exp(ik - 7) (6.15)
Py

E(7)

for the electric field, and
B = VxA@
= —iV™ S (2 1) kAr(B)firs1 (K) exp(ik - 7) (6.16)
EA
for the magnetic field. (Units in terms of the esu and emu system are employed.)
The energy of the electromagnetic field is

Hon = 817r [ET(F)E(F)-%BT(F)B(F)]dr
= 5z D AGOLG + kP4RAGR], )
EA

where the classical expression is generalized by anticipating that the electric and
magnetic fields are operators. Define the operators

bx (k)

by (~k)

1

[iAA(E) + (kc)AA(E)} (87k®) "%,
[_m;(_ﬁ) + (kc)Af\(#;)} (8rkc?)~%, (6.18)

fl

and use the relation Al (k (“) = (=1)**1 Ay (~k), which follows from, say, that the

k
electric field is a Hermitian operator, Et = E, and that 7ix(—k) = (— 1))‘“71')\(1_5)
It then follows that
1

bl (—K) = (—1)*! [—iA(E) + (kc)AA(l}')] (8mkc®)~%. (6.19)
The energy (hamiltonian) can be expressed as

Hpp = = ch [bf Yox (k) + ba(— E)bg(—zs)]. (6.20)

One of Maxwell’s equations, BE(F, t)/cdt = V x B(F,t), permits us to write
O2Ax(K)
ot?

and thus i9by(k)/0t = [ba(k), Hpp]- = keba(k), where the last equality is con-
sistent with the commutation relations

ba(R), by ()]~ = [bL(),bL, ()]~ =0,
BA(R), b1 (B)]_ = by oz (6.22)

—A\(k) = - = (ke)?Ax(k), (6.21)
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Analogously to the situation for electrons, the operator b;(E) applied to the

vacuum state produces a state vector of one photon with propagation vector k
and polarization vector 7, (k). The expression

A =3 (@re/kv)} [b,\(l?) n (-1)*“1;1(45)] An(E) exp(ik -7  (6.23)
EA

for the vector potential is easily obtained, where the time variable is suppressed.
The hamiltonian can be rewritten using the commutation relations of Eq. (4.28)
to read

Hpp = ke [bi‘\(ﬁ)b,\(l_c') + %] . (6.24)
EA

When the source charges and currents of the photon field are separate (dis-
tant) from the electron system under study, the hamiltonian for the interacting
electrons and the photon field can be expressed as

o= v (9 Sm)’
S5 (T x A) + V()] wle)de

2mce
< / PHEOWNE ) o (€ () dEdE + Hyp,  (6.25)
2 i P '

where ¢ = (0,,0,,0;) are the Pauli spin operators.
In order to study the equations of motion, the relation

[ba(k), H]— = kebx (k) — (2m/kcV) % jx () (6.26)

is used, where jx(k) = 7ix(k) - [ (7 exp(—ik - 7) and the current density
operator is

i = 5= 30 [(199'©) wie) - w' ©Vu(e)
- Zpew@dn + 9 x WOawe) | 620

The propagation of photons through matter is governed by Eq. {6.26) and
the corresponding ones for electron operators. Define the photon propagator
Dy (k E E) = ((by (K ); b;\(k)))g, which satisfies the equation of motion

= ([by (), b5 (R))=) + ({[by (K ), H] =3 b\ (E))) & (6.28)
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from which it follows, with the help of Eq. (6.26), that
(E —k'¢)Dy, (K K E)
= B — (2m/K V) ((Gy (K );bL (). (6.29)
Using the second form of the equation of motion (4.15), one obtains
(B~ ke){(Gy (K); bL(F))) e
= (lix (K ), B\(R)]=) — (2 /keV) 3 Gy (B ) N (B)e (6.30)

with

W=

(L (B), 5 (B)]-) = — (2ne® /m*keV)® 7y () - in(B)a(k — k), (6:31)
where §(k = ([ drg(F) exp(— ik - 7)), i.e., the Fourier transform of the charge
density of the matter ground state. In thls way the study of photon processes
naturally leads to the consideration of the propagator ((j, (k ); ]I\(k))) E-

Problems

1. Show that Eq. (6.26) is correct with the definition of the current density
operator as given by Eq. (6.27).

6.3 Absorption Spectroscopy

In dealing with dilute systems and not too intense light sources one can elim-
inate, from the current density operator, the term with the vector potential
A (7). This eliminates from consideration multiple scattering processes and in-
elastic processes. The propagator ((j,s (K ); ]:{(E))) £ is then approximated with
its counterpart derived from the equations of motion of matter (electrons).

Information about photon scattering processes can with advantage be dis-
cussed in terms of wave packets. Assume that a wave packet with wave vector k
polarization A and energy kc is emitted at time ¢t = 0. It takes the wave packet
L/c seconds to traverse the system volume V with linear dimensions L.

The probability that the wave packet can be detected with polarization A’
and wave vector k (with the same energy kc) is the square of the amplitude

O ® L/ E ) = - [ dBoy )bl (D)) e exp(~iEL/c)
= exp(—ikL) [0, \0p ¢ (6.32)
—~@riL/keV) {(e/m) Gk — Ryity (F') - ia (R)
+ (G B3 B Dee ]

where Eq. (4.8) is used and terms proportional to L retained.
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The probability amplitude (by(E, L/c)bf\(lg, 0)) gives direct information on
the photon absorption process. Let the specific volume per molecule be the
quantization volume V. The probability that a photon (wave packet) can pass
through this volume of linear dimension L without being scattered is

[(ba(E, L/c)bl (K, 00 |? = 1 + (47 L/kc*V)S((ja(k); 31 (6))) ke (6.33)

where again terms proportional to L are retained (i.e., terms proportional to
(L/V)? are neglected). The absorption coefficient (extinction coefficient per
molecule) is the decrease in probability per unit length:

a =~ (4r/kSV) S{(jr(K); 43, (k) k- (6.34)
This holds for the matter ground state, i.e., excluding emission processes.

When the wavelength of the radiation is much greater than the molecular
dimensions (k-7 << 1)

By =) [ 3mem R~ ia(f) - [ i (6.35)

and if the field-dependent and spin-dependent terms in the current density op-
erator are excluded, the result is

/ F(7)dr ~ (e/m) / BHE)(—iVB(E))dE = (e/m)p. (6.36)

Thus, the basic propagator to consider is the (tensor) propagator {((B7))ke,
which is related to ((R; R))x. through the relation [E, H]_ = ief/m, where

fi= [ =e [ @ (6.37)
is the so-called polarization operator. One can write
a = —(4rk/V)S((Rx; Bx))ke- (6.38)

Put k¢ = w and wpn = E,, — E, and use Eq. (4.17) to write the polarization
propagator as

(i Rl = 3 [l P e B
so that
S(Bx; RA))w = - 7;1 |(m| R |n) 2 pnr [6(w — wimn) + 8(w + winn)]
= - Z [(m|Raln)?pnS(w — wma), (6.40)

mn
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where in the second line the second delta function has been dropped (consider-
ing only absorption E,, > E,). The shape function S shows a delta function
“spike” spectrum. A more realistic extinction function will take into account
molecular collisions in a gaseous sample leading to Lorentzian shape functions
S(w —wmn) = A/((w —wmn)? + B) or will take into account Doppler broadening
leading to Gaussian shapes S(w — wmn) = Aexp[~B(w — wmn)?].

Averaging over all molecular orientations, as is appropriate for a gaseous
sample, yields?

[({(Re; Rx))w + ((Ry; Ry))w + ((Rz; Rz))o]

W=

({(Bxi BA))w  —

1
= —=aw), (6.41)
3
where a(w) is the frequency-dependent polarizability. Thus, a = (47w/3cV)Sa(w),
or for a pure state {(p, = dno), one obtains

a = (47wiNo/3c) Y _|(m|R|0)|*S(w ~ wmo), (6.42)

where Ny = 1/V is the number of molecules per unit volume in the ground
state |0). For a light source frequency close to wymo, the single term {4nw(Ng ~
Nm)/30}|<mlﬁ|0)|25(w — wmo) will dominate the contribution to the extinction
coefficient, where the effect of induced emission from the state |m) with popu-
lation N,, is included. The emitted photons are assumed to have propagation
vector k and will reduce the extinction coefficient by giving photons to the field.
When degenerate states are involved, appropriate degeneracy factors must be
included.

When a transition is dipole forbidden, i.e., (m|1§|0) = 0, say, due to symme-
try, then higher terms in the expansion exp(—iE Ty~ 1-— ik - ¥+ - - - become
important in the expression for j A(l—c') and lead to so-called magnetic dipole and
electric quadrupole transitions.

For electrons,
in(B) = (e/m) [ deH(E)[1 = ikrs + - | (~iVa(€), (6.43)

where 73 is the component of 7 along k and V, is the component of V along
7ix(k). The identity

ri(—iVy) = % [re(=i93) = A (=i V)]

+% [Tk(-—iV)‘) + 7‘,\(——ivk)] (6.44)

2(8m)—1 Z)\ foﬂ sin 6d6 fozw de({Rx; Ry))w with, say, #1(k) = (cosfcos¢, cosfsing,
—sin@) and Aia(k) = (~sin$, cos ¢, 0), for k = k(sin 0 cos ¢, sin Osin ¢, cos ).
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permits us to write
IR = (efm) [ = (/2 (=1 s — kT (6.45)

in terms of the components of electron momentum py, of orbital angular mo-
mentum [, and of a tensor operator Tii) corresponding to the second term of
Eq. (6.44) transforming as spherical harmonics of order two and directly related
to the electric quadrupole tensor.

The spin operator part of the current density also causes absorption of elec-

-,

tromagnetic energy. The corresponding contribution to jx(k) is

(e/2m) / dee=F 7ty (F) - ¥ x (01 (©)59/())
= (—iek/m)(—1)** 7irs1 (k)3 (6.46)

where integration by parts has been used, exp(——ilg -7) =~ 1, and the operator of
total electronic spin § introduced .
One can then write quite generally that

a = —(4n/kV)S((x (k); L)) ke (6.47)
with

Jak) =~ (e/m)iin(k) - p— ick x Ar(K) - (e/2mc)( + 23)
—ike(e/me)TD. (6.48)

This form would be particularly useful for the case of polarized light passing
through an anisotropic medium. In many experiments, however, unpolarized
light is passing through an isotropic medium as a liquid solution, or a gas. One
then averages over all molecular orientations or equivalently over all photon
directions, and also over polarizations:

%Z % /dQ. (6.49)
A

One should also remember that when summing over states in the propagator
expressions, one is summing over energy eigenstates of Hpqtter + Hpn, where
Hpnatter is the operator of Eq. (4.3). This means that one is summing over
states that are products of matter eigenstates and photon eigenstates. When
the terms with the vector potential in the expression of the current density
operator are excluded in Eq. (6.27), the only effect of the summation over
photon eigenstates is a factor in the expression of the absorption coefficient a
giving the number of photon states at a particular frequency w. An expression
can be derived for this by considering the photon field in a cubic box of side L.
The end result is actually not critically dependent on the shape of the box. The
appropriate boundary conditions for standing waves in the box are to demand
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that the vector potential (and its derivatives) should have the same values at
corresponding positions of opposite surfaces of the box.
This means that k% = (n +n2+n2), since ko L = 2wng, kyL = 27ny, and

k,L = 2mn, for the propagatlon vector k = (kz,ky, k2), where @ = (ng, ny,n;)
defines a set of integer lattice points in three dimensions with each point or
triplet of integers corresponding to a photon state for a fixed polarization. The
number of lattice points (states) per polarization in a frequency range w to
2= 4’222':2 n? e, n=

L
27rcw’

w+dw can be figured as follows. Note that k2¢? = w
and that the number of lattice points in a solid angle dQ2 about 7 (or k) between
n and n+dn is n2dndQ) = (L/27c)’ w2dwdS). The number of photon states at
the frequency w is then (V/8m3c3) w? for a particular propagation direction and
polarization.

Problems

1. Show that (a|ri (—iV) + ra (—iVi) |b) = iwes{a|reralb) for two energy
eigenfunctions |a) and |b), where w,, = E, — F}, in the units with Planck’s
constant = 27, and electron mass=1. Note the relation to the electric
quadrupole moment operator for an electronic system [ dFrg(7). Note
the dyadic notation 77 for the tensor quantity!

2. Try to carry out the averaging in Eq. (6.49). It can be done using, say, the
vectors k = k(sinfcos ¢, cosf), ni1(k) = (cosfcosd, cosfsing, —sinb),
and 7z(k) = (—sin¢, cos¢, 0) in spherical polar angles.

6.4 RPA Transition Moments

The excitation propagator (particle-hole propagator) at the RPA level of ap-
proximation can be expressed as

AI/QZ 7 )\1/2 )\1/2Y Y A1/2
(gmigh)ye = Y [Fmionkn nk

B E - wy E+ wyg
z E-FE.+E E—FEy+ Ey ' )

where the appropriate identifications can be made between the RPA expression
in the first line and the formal spectral representation in the second. This means
that

Olgmlk) = )\117{2ka7
(Olghlk) = AV, (6.51)
and, thus,
(klghlo) = (Olgnlk)* = Zz AL/,

(klgn|0) (Olgh k)™ = YAy 2. (6.52)

fl
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The transition energies wy = Ey — Ey, i.e., excitation energies out of the ref-
erence (ground) state, and their negatives, i.e., de-excitation energies to the
ground state, are simple poles of this propagator, and the residues are related
to corresponding transition moments.

Consider a general one-electron operator

M =" M,.ala, (6.53)

r8

and represent it in the Hartree-Fock basis of spin orbitals. Then

(OIMIE) =Y {Mn(0lamlk) + My, (Olah|k)} , (6.54)

where M7, = M, and ¢, = alas, qf, = ala, for {n,) > (n,). Remembering
the matrices Z = £[D + T] and Y = ;[D — T}, one can now write

OIMIE) = 3 {R (M} AL/ Dy + 39 {Min} AT } (6.55)

For real orbitals, the dipole length matrix elements (0|F]k) are real, while
dipole velocity matrix elements (0|plk) are purely imaginary. This means that

(O71k) =Y Fn AL 2 Din, (6.56)
whereas
<0]ﬁ1k> = ZﬁmA%2ka- (6.57)

For exact eigenstates of the many-electron hamiltonian, it holds that

(Oiplk) = (O[[r, H]-|k)
(Ex — Ep) (071k)
= Wi {0k, (6.58)
because
(7 H]- = [F,7°/2)- = [F,p]-P = iP. (6.59)

For the RPA, the relations
OFK) = 3 FnA{? Do
- Z'Fm)\yln(z(émn - émn)Tnk/wk (660)

= Z Fm)\sr{2)\;l/2(an + Cmn))\;l/zTnk/wk

m,n
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hold, where
Ux?vuw!? = D= (B-C)Ux/?vu 32
= B-C)Tuw™! (6.61)

has been used. Further simplifications can be made by using the definitions of
the B and C matrices so that

(OlF1k) > nllam + g, [H, gl 1) 2 T i

m,n

= 3 H, gAY T

n

= Z([[’F’ H]-vql]‘>>‘r_zl/2Tnk/wk (6.62)

n

= Y (B )M P Toun fe
= Ziﬁm<[Qm7qm—p‘;l/zTnk/wk
= > B A Tk fwi = (Oliplk) Jwk.

This means that the oscillator strengths of an absorption spectrum calculated
within the RPA (in a complete orbital basis) will be identical in the dipole length
form

2
1l = 5101718 P (6.63)
and in the dipole velocity form

78 = OB . (6.64)

6.5 Optical Rotatory Dispersion and Circular
Dichroism

The first discovery of optical rotatory power in some materials, i.e., that they
have the property to rotate the plane of polarization of linearly polarized light,
was made already in the early 1800’s. From a macroscopic point of view, one
can consider optical rotation as the difference of refraction of left and right
circular polarized light®. Another effect, circular dichroism, first observed just
before the year 1900 is that some materials transform linearly polarized light
into elliptically polarized light, simply due to a difference of absorption for the
left- and right-hand circularly polarized light. (Linearly polarized light can be

3M. Born, Optik, Springer, Berlin, 1930
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thought of as made up of two equally weighted components of left and right
circularly polarized light.) The quantity that describes this property is called
the ellipticity. It is related to optical rotatory power in the same way that
ordinary dispersion is related to ordinary absorption. Recall that the absorption
coeflicient can be written as

4m R T
o=~ (g ) SUA B E e (6:65)
or spherically averaged,
dr \
a= .66
a <302V> Salke) (6.66)
with
alke) = — Y lal Bl = (660)
“lkc—Epe +in  kc+ By —in

a,b

Theoretically, the phenomena of optical activity can be described with the
tools already developed. A photon (wave packet) with wave vector k is scat-
tered from polarization 7, (k) to 7ia(k) (and the same energy) with probability
amplitude

(a(E. L/}(E,0)) = — exp(—ikD) (257 ) (aByisl Bier (659)

obtained from Eq. (6.32).
For the case of minimal absorption the photon in the forward direction will

have the polarization vector 71, (k) — 7i2(k)®L, where

® = (2mi/kc®V ) (G2 (R); 51 (B))) ke (6.69)

is the so-called complex rotatory power. The polarization direction of a beam
of photons will be turned an angle R® (the rotatory power) radians per unit
length of a medium with 1/V molecules per unit volume. Similarly —3® is
the ellipticity per unit length under these conditions. A connection between
the ellipticity and ordinary absorption can be established by observing that the
averaged difference of absorption coeflicient for left and right circularly polarized
light equals the ellipticity. Light entering the eye of an observer is right circularly
polarized if its polarization vector is turning in the clockwise direction.

In order to compare this result with the expressions commonly used in the
theory of optical rotation?, the long-wavelength limit is considered, i.e., Eq.
(6.45) is used to write

(HAOFHON™ (6.70)

e\?2 1 2 ! 2
= (Z) (pe + ik (Gl = TR)ipr + k(52 + Ti0 )i

4E.U. Condon, Rev. Modern Phys. 9, 432 (1937); Eyring, Walter, and Kimball, Quantum
Chemistry, Wiley 1944, p. 342
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The average over molecular orientations, or equivalently over photon propaga-
tion directions, appropriate for gaseous samples or liquid solutions, yields

® = —(nke?/3m2c?V) Z[((ly;py>>k:c + ((pvs lu)) kel (6.71)

where one sums over Cartesian coordinates v=xz,y, and z. .
As ke((Ry; 1)) ke = (ie/m) {{py; L)) ke and the angular momentum [ defines

the magnetic dipole moment operator M = (e/2mc)l, it holds that
® = (2mik/3V) Y [({Ru; My)ke = ({My; Ru))ke] - (6.72)

v

Comparing this expression with Eq. {(4.17), one finds for the complex rotatory
power

0 = ) { o S S 0T 5, -
a b

+ ;ch > ra(n/m) > S{alBlb) (bl M|a) (6.73)
a b

1 1
X [(kc " Eea)? + 172 (ke + Eoa)® + 772] } ’

where Ry = S(a|R|b)(b|M|a) is the so-called rotatory strength.

It holds that Y, Rap = 0, i.e., for each state |a), all the rotatory strengths
cannot have the same sign. One can, from this, draw the conclusion that optical
rotatory dispersion is a small effect in comparison with ordinary dispersion and
ellipticity is a small effect in comparison with ordinary absorption. The fact that
only electronic transitions give a significant contribution to optical activity and
that vibrational or rotational transitions are significantly less important can be
understood from the fact that the magnetic moments for nuclei are proportional
to the inverse nuclear mass and, thus, several orders of magnitude less than the
electronic magnetic moment. From Eq. (6.73) the inverse dependence on EZ,
follows, making transitions in the visible region much more important than
transitions in the far ultraviolet.

Considering absorption involving one particular band involving electronic
states a and b, it follows that

3®  Re
a  |(alRJp)[’
showing that measurements of absorption @ from Eq.(6.66) and ellipticity for a
band permits the determination of rotatory strengths from line strengths.

(6.74)

Problems

1. Show that the polarization vectors @i, (k) = R[{Ai1(k) + ifia(k)}e™R?]
and 7y (k) = %[{ﬁl(lg) - iﬁ2(E)}eim¢'] apply to right and left circularly
polarized light, respectively.
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2. Do the spherical averaging of Eq. (6.71) using the vector representation
in spherical polar angles.

3. Consider the rotatory strength and show that fundamental symmetry re-
quirements for a molecule to be optically active are that it possesses neither
a center nor a plane of symmetry, and it cannot be superimposed on its
mirror image.

4. Demonstrate that the ® can be obtained as the rotationally averaged
difference of absorption coefficients for left and right circular polarized
light.
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Chapter 7

Temperature-Dependent
Perturbation Theory

Consider the partition function

Z(8) = Tr exp(~B(H — ulNo)] (7.1)

with 8 = 1/kT, Ny the number operator for electrons, and the hamiltonian
H = Hy + V split into an unperturbed part Hy and a perturbation V. The
factorization

Z(B) = Tr{exp[-B(Ho — uNo)|S(8)} (7.2)
is introduced, where the relation S(8) = exp[B(Ho — pNo)] exp|—B(H — uNo)]
is used. Correspondingly, the unperturbed partition function

Zo(B) = Trexp[—B(Ho — uNo)] (7.3)
is defined permitting the expression Z(8) = Zo(8)(S(8))o, where the average
(-+-)o is formed with the density operator p = Z; *(8) exp[—B(Ho — uNo)].

Since S(0) = 1, it follows that S(8) =1+ ff(aS(T)/aT)dT. Explicit differ-
entiation yields

Q%E_—Tz = —exp[T(Ho — uNy)|V exp[—7(Ho — uNo)]S{7), (7.4)

and the notation V() = exp[r(Ho — 1No)]V exp[—7(Ho — uNo)] can be intro-
duced to write

B8
S(B) =1- /0 V(r)S(r)dr. (7.5)

One can then write a formal expansion of {(S(53))o by iteration of Eq. (7.5):
o0 I T1 Tn-1
@ = 143 (1" [dn [Cdne [T dnvim) Vi
oy 0 0 0
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(7.6)

oo 1 , B8 B s
13 v [Can [ [ @ Vel

In the last expression, T means the “r-ordering” operator which arranges the
operators inside the brackets so that the arguments 7; increase from right to
left. If now V = AV} 4+ A2V%, one can write in some more detail that

)\n+2m
<S(5 ZZ n+m n'm' / dry -+ /dTn/ dTpt1

n=0m=0

(7.7)

B8
/0dTn+m(T[V1(T1)"'Vl(Tn)V2(Tn+1)‘"V2(Tn+m)]>0-

The free energy, and the unperturbed free energy are defined as F = —3
In Z(B) and Fy = —B~'1In Zy(B), respectively. This leads to the expression

(S(B))o = Z(B)/Zo(B) = exp[—-B(F - Fp)]. (7.8)
Through first order in V,

(S(B)o =1 - B(V)o (7.9)
which can be compared to the expansion of the exponential in Eq. (7.8),
(S(B)o=1-B(F — Fo) + - (7.10)
to conclude that through first order in the perturbation V
F —Fy = (VYo = MW + A2(Va)o. (7.11)

Similarly, through second order in V

F-—FO = <V>0 + / dTl/ de (7'2)])0. (712)
Using Eq. (7.6), one gets, through second order in A, that
1
P~ Fo = A+ 3 (Walo + SO0 + SR N em| . (119

where the result of problem 1 is used in the last term.

A magnetic field B = V x A(7) external to our electron system is an im-
portant type of perturbation that will result in a total hamiltonian of the form
given in Eq. (6.25). The perturbation terms in orders of the vector potential
can be identified as

Vi

f

- [ari@ 5o - [ arB@me,

Vo = (¢/m) / R GRG) (7.14)

I
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where the gauge is chosen as V - A(7) = 0, the charge density is ¢(7) =
€2 spin Y1 (&) (€), the electron momentum part of the current density is jo () =

(e/2m) 3, i (VYT (E)W(E) — it () V(&) = Sp(7), with j(F) being the elec-

tron moment density, and the magnetic moment density is 7i(7), the electron

part of which is (e/2m) >, »H(E)FY(E).
The free energy for a nondegenerate ground state for T'= 0 (8 = oo) and
with the order parameter A = 1/c becomes

PR = 22[ Vabo+ % [ aF [ a7 A Go(7)s o)) o ()
(7.15)

[ ar [ ar B (e () - B )

The mixed terms in ((V;; V1)) p=o vanish for this case, because jp is a tensor of
rank zero in spin space, while 7 is of rank one. Note that (V)¢ = 0.

Problems
1. Show that — 5 7 dry [} dra(T[Vi(r))Vi(m2)]o = 2R((Vi; V1)) B—o
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Chapter 8

Molecules in Magnetic
Fields

Nuclear magnetic resonance (NMR) experiments subject a sample to a strong,
static homogeneous magnetic field B = (0,0, B) that splits the energy levels of
degenerate nuclear spin states. Transitions between these “Zeeman levels” are
induced with an oscillating field (radio frequencies around 10™% cm™1).

8.1 Nuclear Spins

An atomic nucleus with spin angular momentum I, has magnetic moment 'ysI_;,
where vs; = ¢gs0n is the gyromagnetic ratio, i.e., the g-factor of the nucleus
times the nuclear magneton (Gy = —éfrll—z), note that the electron charge is e and
the proton charge is -e in our notation. This magnetic moment contributes to
the magnetic vector potential, as discussed in problem 8.1. The total vector

potential then becomes
- 1~ -
APy = 5B x7+ ijvs(ls X 7)/rs, (81)

where |7 — Ry| = |Fs] = rs. The total magnetic field is then not only the applied
external field B but also contains contributions V x A(7) from the nuclear
magnetic moments, as shown in one of the problems.

The free energy can now be written in the form

1- = ~ L1 . o
F~Fy=-3BxB - > L1 ~g)B+ 5 > LJyuln, (8.2)
s g,h

where x is the magnetic susceptibility tensor, g is the magnetic shielding con-
stant tensor for nucleus s, and J, is the nuclear spin-spin coupling (constant)
tensor. The convention is used of introducing the (1 — g) factor to emphasize

97
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the shielding of the bare nuclei due to the electrons. One can now set out to
study more closely the various contributions to these tensors.

Problems

1. Show that the vector potential from a constant magnetic moment [ is
AF) = i x /13 =V x (i/r).

2. Show that the magnetic field from a vector potential as the one in the
previous problem with mu = .1 is

ﬁxﬁxz’y; 877/3)2%157”3 +Z [3(15 - 7s) s—Isrg].

8.2 Magnetic Susceptibility

One contribution to the magnetic susceptibility obviously comes from the term

202 2(Va)g, which gives the contribution

-y [@ e, (5.3)
to the susceptibility tensor, when B = (0,0, B) and A(F) = %E x ¥ = 4(—By,
Bz, 0).

Other contributions to the magnetic susceptibility tensor come from the last
two terms in Eq. (7.15). From the first of these comes

1 . <, 3 - - = = -

s [ d [ 47 (B x 7){(Ga(r)s o)) ool B x )

_ e*B?

T 8¢2m?

which yields the contribution —R((M; M))g—o to the susceptibility, where the
relation M = e
momentum is introduced .

There is no contribution from the last term in Eq. (7.15) for the electron
magnetic moment ;> 35, in the case of a nondegenerate electron ground state (a

R{(l2;12)) E=0, (8.4)

spin singlet state). The nuclear spins will add a term ~sI so that for the
general case there is a contribution to the magnetic susceptibility tensor

~R((M; M)) =0, (8.5)
with . e - .
M=o —(I+25) + 27313. (8.6)

The representation of operators in incomplete basis sets will cause severe
problems in maintaining gauge invariance in the calculation of magnetic suscep-
tibilities. It is generally required to use field-dependent basis functions (see the
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section on magnetic properties) and to refrain from expansions in terms of the
order parameter 1/c at intermediate steps in the development.

8.3 NMR-Spectra

The last two terms of the free energy in Eq. (8.2) are studied in NMR spec-
troscopy, and the one linear in the applied field involves the shielding constant
tensor g, which arises from various terms in Eq. (7.15). The origin in shielding
calculations is usually put at the nucleus in question (for a discussion of the
origin dependence, see the section on magnetic properties).

The term (V2)o/c? gives rise to the contribution

2(e/2mc?) / dFZ(B x 7) - 7f’l—f’TBXE<q(f')>o

g
= (en/ame)F, [ ar| T (o8 (s.7)
where the dyadic notation 77, is used in the tensor and the scalar product is

assumed multiplied with the unit tensor. An isotropic sample yields 1/3 of the
trace, i.e.,

3w /2me) BT, [ drer® ) (o, (85)

Another contribution comes from the next to the last term in Eq. (7.15)
and can be expressed as

2(1/26)R [ 5(B % (ol Golr)) 5o (”I,,Z ) drdr

= —yL.B, §R/dr Mz; joz (7)) B= (%)
— (M oy (M) o (5] (8.9)

When averaged over all molecular orientations and combined with the result
from Eq. (8.8),

7 = (esme®) [ drla@hor
~(1/39% Y e,\w/dr (My; jou (7)) B— 0( ) (8.10)

PWIRY

where the notation 7y = z, r2 =y, r3 = z, and the Levy-Cevita tensor €.,
which assumes the value 1 for Aur an even permutation, -1 for Aur an odd
permutation of 123, and 0 for any two of A, u, and v being equal, are used.
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8.3.1 Indirect Nuclear Spin-Spin Coupling Constants

The term % > ok fg J g hf;l in the free energy, which gives rise to the ﬁne-structure

in NMR spectra, is obtained from a variety of contributions. The term Z L{(Vado
in Eq. (7.13) yields the contribution

(e/2migm [ (I) ~ (Ih xfh) (a(Fod (5.11)

g Th

to be summed over g and h. A spherical average appropriate for, say, a liquid
solution sample, yields

Iy Tute sy [ (oo | 0% (8.12)

Another contribution comes from the next to the last term in Eq. (7.15) when
the nuclear moment part of the vector potential is used. After averaging over
molecular orientations, the result is

Iy - 1.(1/6¢%)vgvm (8.13)
<R Y camwersr [ A (7 or () -ana 1y )
Ay V0 05T

The so-called orbital contributions to the nuclear spin-spin coupling constants
are then

Jon = Yon(1/3¢%) Qe/m)/dr (™o

Tg Th
(rgrn)3

(8.14)

RS erwersr [ A o dor (7)) B0 ()]

Ay Vs pyT

Note that this means that integrals over operators as I, /r® are needed for the
propagator in Eq. (8.14). The diagonal term Jg, appears to be infinite, a dif-
ficulty attributed to the assumption of point dipoles and to the nonrelativistic
treatment of the electrons. These terms, however, do not influence the interpre-
tation of the NMR experiments.

Next, the contributions from the last term in Eq. (7.15) are considered
with the magnetic field due to the nuclear magnetic moments . When the
unperturbed hamiltonian contains no magnetic fields ((7(7); m(r"))) g—o is pro-
portional to the unit tensor. We write

R((my (7);mus (1)) =0 = 6,0 Uo(F, 7). (8.15)
The dipole term of the magnetic field then ylelds

’Y’Yh/d I, Tng—IgT
g

5
Tg

I —I
x Up(F, 1) 3(n - "h)rh ”h, (8.16)

h
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which after averaging over molecular orientations gives the dipole contribution
to the nuclear spin-spin coupling constants suitable for isotropic samples

Tg = (vem/c)
x / drdr Uo(7, 7 )[3(Fy - 7)% — (rgrp) 1/ (rg)® (8.17)

This term is finite also for g and h equal !.

There is also a delta function term in the expression for the magnetic field
due to the nuclear spins. The cross terms between the delta function part and
the dipolar part vanishes upon spherical averaging, and one is left with the delta
function contribution to the nuclear spin-spin coupling constants. This term is
called the Fermi contact contribution

Ten = Y9 7n(87/3¢)*Un(Ry, Rp), (8.18)
and in total Jgp = JZ, + J&, + JZ,. It has long been assumed that Jg, is the
dominant contribution, and although this seems to be true for protons, recent
quantum chemical calculations indicate that the orbital and dipolar terms can
be just as important and even dominate for other magnetic nuclei.

Problems

1. Show that ((m,7);my, (7 ))) E=0 = 6,, Up(7¥ ) when the unperturbed hamil-
tonian contains no magnetic fields.

2. Calculate the NMR spectrum for two protons A and B (spin 1/2) in terms
of their shielding constants o4 and o g, the frequency v=~B, where B=
(0,0, B) is the applied field, and in terms of the coupling constant J.(See
Section 8.12 for help.)

8.4 Magnetic Properties of Molecules

The magnetic moment operator for electrons is M= —g(f + g.8) with the Bohr
magneton and the electron g-value being 8 = %, ge = 2.0023.... Usually

the electron g-value is put equal to 2. The deviation from that value is due
to quantum electrodynamics effects and results in very minor corrections not
significant at the level of treatment feasible for molecules.

8.5 Diamagnetic Molecules

Diamagnetic molecules mean singlet ground state molecules. The diamagnetic
susceptibility of such molecules has a diamagnetic Kd and a paramagnetic x?

1The g = h term has been considered by P. Pyykks6 and J. Linderberg in “On Nuclear
Pseudoquadrupole Interactions in Lithium Fluoride and Lithium Bromide Molecules,” Chem.
Phys. Lett. 5, 34 (1970) and is shown to yield a very small effect.
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part. The diamagnetic part of the diamagnetic susceptibility tensor can be
obtained from

e —
= [ anA@orE e, (8.19)
(see Chapter 7 on Temperature Dependent Perturbation Theory) with
. 1 =
A(F) = §B X T (8.20)
and B independent of r. Using the identity

(Bx7)-(Bx#) =(B-B)#-7)~ (B B), (8.21)

the diamagnetic susceptibility tensor becomes

X o= /dF(F'F—FF)((I(F))o

4mc?

e2

(07 7 — 7710, (8.22)

4mce?

where the dyadic notation 7 is used for a tensor and where in the second line
the notation

ror-ri= [ der e -7 (8.23)

for the operator in second quantization is employed. The spherical average for
an isotropic sample as a gas or liquid solution, as shown before, becomes

2

[ a0 = = oz 0710} (8.24)

1
2Ty = —
3 X 6mc2
where in the last expression, the operator notation r? = [ déy(¢)r?¢(€) again
is used.

The paramagnetic part of the magnetic susceptibility for a spin singlet
ground state is, as shown before,

S (0}Z[n){(n|i]0)
P _ .
X° = —R((M; M))p=0 = 4m262 Z B~ (8.25)

obtained from the definition of the propagator.

8.6 Units and Magnitude of Magnetic Suscepti-
bilities
The dimensionality of the susceptibility is

(E]

Xl = B (8.26)
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and in cgs units, the magnetic field (actually the magnetic flux density or in-
duction) is measured in Gauss (1 Tesla=10* Gauss), which has the dimension
(GrauSS:crn’l/2 gl/? s™1) and x is obtained in cm®. For a macroscopic sample
that is given per mole, while for single molecule calculations, the relation

x/emimol ™! = — X /o molecule™? 8.27
3

~ Naag(cm)

can be used, where N4 is Avogadro’s number= 6.0225 x 10?3 and ao(cm) is the
Bohr radius = 0.529172 x 107 cm. This works out such that x/cm*mol ™! =
11.206x/a.u. molecule™ . A typical unit used is in terms of parts per million
(ppm=10~°).

Table 8.1: Diamagnetic susceptibilities of molecules

Molecule x/ppm cm® mol~!
CH3;CH,OH -33.60
meso-naphtodianthrone -221.8
glucose -102.60
NH3 -18.0
C(graphite) -6.0
He -1.88

The applied magnetic field (induction) varies typically from 1-10 Tesla in
NMR experiments. Sustained B-fields of 50 Tesla (1 T = 1 Wbm~2% = 10*
Gauss)? are possible with special magnets 2. At 32 Tesla the energy density (in
ST units) is (go = vacuum permeability=4r x 1077 N A~%)

B2 322

—— = _Jm ™3 =4.074 x 108Jm 3. 8.28
20 8rx10-70M m (8.28)

For NH3 with

x = —18.0ppm cm® mol™!
= —18.0x 107" m3 mol™* (8.29)
the energy becomes
F-Fy, = 7.333x107%J mol™!

= 1.218 x 10726.J molecule™!
= 6.1x10"%em™t
= 18MH:z (8.30)

2Note that a Weber is a Voltsecond.
3The High Magnetic Field Laboratory in Florida is constantly pushing the limit of higher
fields.
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i.e., a very small energy.

The diamagnetic contribution x¢ is easy to calculate since it is only a ground
state average. Experience shows that it is rather insensitive to electron corre-
lation. The calculated values of (r?) are given in Table 8.2 at the equilibrium
geometry for a number of small molecules?.

Table 8.2: Calculated values of (r?) in a.u.

Molecule SCF MRSD-CI
H>0 19.3968 19.6489
Ny 39.3968 38.9108
NH; 26.5927  26.7063
HCI 34.1387  34.0287

The paramagnetic contribution x? is more demanding to calculate and is
a bit more sensitive to electron correlation, although not a great deal. For
instance, for ammonia, the RPA (effectively uncorrelated) value is 38.45 ppm
a.u., while the Second Order Polarization Propagator Approximation {(corre-
lated) yields 38.15 ppm a.u.

8.7 Paramagnetic Molecules

Neglecting the influence of nuclear spins the magnetic susceptibility is

x = ~R((M; M))g—o (8.31)

with M = T (f + 25). For the external magnetic field directed along the
laboratory zaxis, consider first the diagonal zz-component of the susceptibility
tensor. Details are provided only for the case when the splittings of the multiplet
levels are considerably less than £T. Other cases follow by similar reasoning.

The propagator expression

(1 Dem0 = it | 2oLl L] (s

m,n

with pp, = ePFo-Em+uN) and g = 1/kT. As for (E, — En,) << kT, it follows
that

pn/pm = e PEEn) 1 — B(E, — Ey) (8.33)

and

U

(L3 12)) E=o —B> " l(mll|n)*pn

myn
= —(I3)/kT. (8.34)
4D. Feller, C. M. Boyle, and E. R. Davidson, J. Chem. Phys. 86, 3424 (1987)
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Similarly, it is straightforward to obtain

((s2382))B=0 = —(s7) /KT (8.35)

and

((lzy sz>>E=0 + ((32; lz>>E=0 = _2<lzsz>/kT1 (836)
which lead to the result

2
e
X-p = —m%«ll +282;lz +25z>>E=0

e2

= 3 (12 + 452 + Al s,) /KT
62

= sl 2s,)) kT (8.37)

For an isotropic sample, the result
2

ez (C+29))/kT (8:38)

1
X = E(Xzz + Xyy + sz) =
is valid, and should for some reason the orbital angular momentum contribu-
tion be negligible (for an orbital non-degenerate state it would be zero), the
paramagnetic susceptibility would be

2 2+2

() /KT = 5‘%’%3(5 +1)/kT, (8.39)

e

X= 3m2c?

where in the last step, the existence of a dominant spin multiplet is assumed.
This equation is sometimes referred to as the Langevin-Debye equation.
Examples of paramagnetic molecules in the gas phase are NO at T=293K
with a xy = 1461 ppm cm?® mol~!, NO, at T' = 408K with x = 150 ppm cm?®
mol~!, and O, at T = 293K with x = 3449 ppm cm? mol~1.
It is noteworthy that the 1/ T dependence of the paramagnetic susceptibility
agrees with experiment.

8.8 NMR Spectra and Shielding
The spin I ofa magnetic nucleus & gives rise to a (point) magnetic moment

= |€| I 7
— aem—— — 8.40
Hh = 9 Ghih = Yhdh, ( )

where m,, is the proton mass. The |gp| values range from 0 to 6 depending on the

-

nucleus, and the spin of a magnetic nucleus ranges from 1/2 to 6 (|1 *°v)| = 6)
in units of A. The nuclear spin and g-value for some common isotopes are given
in Table 8.3.
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Table 8.3: Nuclear spin and ¢g-value for some common isotopes.

Isotope 1 g Isotope [T g
TH 1/2 5584  BSi 1/2 -1.1094
Bo o 1/2 14042 MN 1 0.4036
5Ny 1/2 -05660 @ *H 1 08574
¥p  1/2 5.2546 79 5/2 -0.7572
stp 1/2 22610 1°B 3 0.6001

Consider first the interaction of a bare nucleus with an external magnetic
field with induction B =(0 0 B):

F — Fy=—ji- B=—4BI,. (8.41)

This spin hamiltonian causes a splitting of the |I, M) substates of an energy
level (see Fig. 8.1).

The splitting between the energy levels is the same and proportional to B.
Another (oscillating) field in the z-direction would induce transitions between
the energy levels with selection rules AM = +1. In the example of a nucleus
with spin 3/2, there are three possible transitions all with energy hv = yB. One
can see from this that for magnetically equivalent protons, one would expect a
single line in the NMR spectrum with an intensity roughly proportional to the
number of protons.

For a nucleus with spin 1/2, as a proton, there would only be two energy
levels and one transition. Inserting the g-value for a proton, the frequency of
the absorbed electromagnetic radiation is found to be

vp(MHz) = 42.6B(Tesla). (8.42)

The magnitude of B is commonly described by the proton resonance frequency
vy (MHz) it will cause. Thus, the magnetic flux in a 60 MHz NMR spec-
trometer is about 1.4 Tesla, while in a 600MHz spectrometer, it is about 14
Tesla.

Due to the presence of electrons, the magnetic field at the nucleus does not
equal the applied external field for an atom or molecule, but the nucleus is said
to be shielded by the electrons and this is normally expressed as

—

B(R)=(1-0)B, (8.43)

where ¢ is the shielding tensor, 1/3 the trace of which is called the nuclear
magnetic shielding. The magnitude of o (which is dimensionless) is of the order
of ppm (107%) but can vary widely depending on the particular nucleus and its
chemical environment.

It is not possible to measure the shielding directly in an NMR experiment,
but rather the chemical shift 6 = g,y — o, where o,.s is the shielding of the
nucleus in some reference compound.
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E
A
B 13/2,-3/2>
A
hv
L 13/2,-1/2>
hv
13/2,1/2>
hv
_— 13/2,3/2>
B=0 B

Figure 8.1: The energy levels (hv = yB)of the spin hamiltonian in Eq.(8.41) for
a nuclear state with spin I = %

From Section 8.3, expressions for the various contributions to the shielding
tensor can be discerned. In particular,

ot = g [drtrn, — TR
e? T-Tg—TTg
= GO0 (8.44)

is called the “diamagnetic” contribution and

€ - =
UZ = M2t R({; l/ >)
(0liln nllg/r3i0) + (0llg /r3In) (n]I]0)
= 2m202§ B E, g (8.45)
n#0

the “paramagnetic” contribution to the shielding tensor (see Eq. (8.10)). Here
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the notation
lirs = [ sl ©1, x )/t (5.46)

is used. The similarities of the two contributions to the shielding tensor with
those to the susceptibility tensor are quite striking and are part of the reason for
labeling the two contributions to the shielding as diamagnetic and paramagnetic.

8.9 NMR Spectra and Spin-Spin Coupling

More detailed expressions for the indirect nuclear spin-spin coupling constants
can be obtained from those already considered. For instance, the so-called
diamagnetic orbital part is

o €YgVh TgTh —TgTh
i - 2o [ar| PR o,
- h

mc?
e? YgTh ;o Tg * Th — rg T
= 0 0). 8.47
me? (ol rgr?l 10) (847)

In the second line, the notation

(Tg - Th —Tg Th) _ t (Fy - Th —Tg Th)
e = [ v ©uee s (8.48)

is used for the operator in second quantization. This type of abbreviated nota-
tion is often used, and the reader has to be aware of the context in which an
expression is used. Similarly, because

7

[ [ af @y x 7 (G e - G x )
62 - = - = -
= 5 [ [T, (@ Ws (5.49)
with [.;1(7:) =7y X p(7), it follows that

e? ~
T = g [ [ @G E ) ) e

= TYgYh m6202 (8.50)
(01l /r2lm) (nin /ri|0) + (O|ih /ri¥|n)(nlly/72]0)
X ;} Eo — E,

for the paramagnetic orbital part, with the notation l; /ri={ df'l:,(f') /3.
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The dipole contribution to the nuclear spin-spin coupling constants in Sec-
tion 8.3 comes from the more general expression

A N A
[ ar [ ar TR =N ey ) ST = o
g

78 T2
= fg/df/df’ (8.51)
— — s — 4
L. T m(r 4 L4l T m(r -
(307 -~ M55 my T - T o,
g g h h

where the magnetic moment density is due only to the electron spin, i.e., 7 (F) =
707 2o spin Y1(€)F€(x) = £5(F). Introducing the notation

2m
S, = / dF [3@’ : g(m? — g (8.52)
T
g
one finds
sd 62
Joh = VM55 (8.53)
(01Sg|m) (] Sh|0) + (0|Sh|n)(n|Sy|0)
X :é; 5 _E. (8.54)

for the spin dipole part of the nuclear spin-spin coupling tensor.
There are also the contributions from the delta function part of the field due
to the nuclear spins, which give

JLf’S = yyvn(87e/3mc)?
.y SR >|n><n|s(Rh>igz_ 0 [SBR)In) (nlSF)(0) g ooy
nF#0 "

the so-called Fermi contact term.

8.10 The Origin Problem

If the origin of the coordinate system, in which the molecular system particles
are described, is changed so that the position of the new origin relative the old
one is given by a vector G, one can investigate the origin dependence of the
magnetic susceptibility and the shielding tensors.

The electron coordmates change to ¢ = 7 — G the nuclear coordinates
to Ryg = R, — G, while the electron coordinates 7, Ty relative a given nucleus
remain the same. This means that the spin-spin coupling tensor is invariant to
the change of origin.
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From the equation of motion of a (excitation) propagator ((A4; B))g, it
follows that

(01[A, B] |0} = ({[H, A]-; B)) =0 = {(4;[B, H]-)) g=o0- (8.56)

Consideration of the magnetic susceptibility tensor and the observation that the
identity

@xl,7)- =ih(F-d@—7a) (8.57)

holds®, involving the orbital angular momentum operator, lead to the expression

OF 770 = = (0llFx L7 [0)
- -Z;%((FXE[F,H]'»E:O- (8.58)

Using the relation

ih
—p = |7, _ 8.5
—p= [, H]-, (8.59)
it follows that
2
d _ € S T
X' = g T B o
2
P~ R e 8.6
X Am2c2 <<7 ))E-—O ( : O)

displaying a great deal of “symmetry”; i.e., (as a mnemonic device) you get
from one to the other by “moving” 7 from one operator to the other in the
propagator expression.

Similarly, putting @ = 74/r3 in Eq. (8.57), one gets (see Eqs.(8.44) and
(8.45))

d [ — 7.3
= 2m2c2 <<T9Xl/r9’ﬁ>>E:0’
2
€ 7 3.
o’ = o aale/rgi ) r=0- (8.61)

The magnetic susceptibility tensor referred to the displaced origin can be ex-
pressed as

xh= x +4T§2_02 {m< 7 G — 7 G|0) + m(0|G - 7 — G 70)
— (G x(ExPM)r=0}, (8.62)

5We are here and in the following using the dyad notation, such as 7 &, for nine component
tensors, with each component being a product of cartesian components of the vectors.
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where taking the real part has temporarily been omitted. The analogous ex-
pression for the paramagnetic part becomes

62

) {<<Eé X P g0 + (G x 7, 1)) g—o

~ (GxFHCxP)e=o}- (8.63)

P _ Y4
KG_ X +

Taking the trace of these tensors and focusing first on the terms quadratic in
origin displacement yields

Il
=2
Q
I
Q
|
u
S
=
3
I~
li
[=]

(G x (G x )i ) p=o

and

—

Tr((G x 5, G x p)) =0 = (G - G)TX{(B; 2)) B0 — {{G - ;G - D)) =0, (8.65)

where in the last equation the trace of the tensor (G x p) (G x p) is expressed as
(G x P)- (G x p) and the vector relation (@ x b)- (Ex d) = (@-&)(b-d)— (G- d)(b-&)
then employed. It follows that the terms quadratic in origin displacement cancel
in the expression for the total x = %Tr (Kd + K”), which applies for the case of
an isotropic sample.

It is possible to eliminate also the linear origin-dependence of the trace of

the susceptibility tensor®. This is done by considering

(GG xPMp=0 = (G xpl)) =0
= —m(0|G-7 -G 7o), (8.66)

provided (Ep — E,)(n||0) = £(n|p|0) (called the off-diagonal hypervirial re-
lation), which holds true in an exact theory and in certain approximations as
the RPA, when using a complete orbital basis. Thus, origin dependence can be
somewhat controlled in this manner but never completely eliminated.

Analogous treatment of the shielding tensor yields origin independence also
for that quantity for an isotropic sample.

The equation for the magnetic shielding constant corresponding to Egs.
(8.62) and (8.63) has an origin dependent term expressible as [see also Egs.
(8.44) and (8.45)]

2
- - € — —
AQQ(T——)T!]) = - 2m262<<l9/rg;me)E=0
e? 5 Ty N o
T o (G : <OI§|0) -G (0|%|0>) . (8.67)

8see J. Geertsen, J. Chem. Phys. 90, 4892 (1989)
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Convention and convenience put the origin at the center of mass for suscep-
tibility calculations, and at the particular nucleus for shielding constant calcula-
tions. The origin dependence is often large and unsettling. There are, however,
methods that guarantee origin independence also for calculations in any finite
basis. These are the techniques of using so-called field-dependent orbitals or
gauge-independent atomic orbitals (GIAO).

8.11 The Gauge Problem

A transformation,

-

A A+ VA1)

¢ &+ OA(7, )/t (8.68)

of the vector and scalar potentials is called a gauge transformation. All measured
and calculated quantities should be independent of such a transformation, in
particular the magnetic and electric fields,

It

B = Vx4,

E = -V¢+dA/cot, (8.69)
remain invariant under such a transformation. (Remember that V x VA(7,t)
= 0.) The corresponding transformation of the state vector (Schrodinger am-

plitude) must be ¥ — ¥’ = Texp (£ A) for the Schrédinger equation with the
hamiltonian

= N2 = -
H= (_mv - EA) J2m —ed - (V x A)/2mc - ep + V (8.70)

to be gauge invariant.
When the origin of our coordinate system is translated by a vector G, the
vector potential of a constant external magnetic field transforms as A = %B X

—

7o = A— 1B x G. It follows that

m:-%éxé or A=—(BxG)-7 (8.71)

N =

which can be written as

A=2G - (Bx7)=G-A (8.72)

Field-dependent basis orbitals as v;(7, G, B) = u;(7) exp(—3 (B x G)-7) should
be used, resulting in a similar transformation of the electron field operators.
Such field-dependent orbitals would guarantee gauge origin independence even
in a finite basis. In this expression, G is the position of orbital u; with respect to
an arbitrary origin and the electron coordinate 7 is given in the same coordinate
system. Usually the atomic orbitals are centered at the nuclear positions. In
such cases, R, takes the place of G for the orbital v, (7, R, B).

"see, e.g., F'. London, J. Phys. Radium 8, 397 (1937), and R. Ditchfield, Mol. Phys. 27,789
(1974)
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8.11.1 Calculation of Magnetic Properties

The nuclear spin-spin coupling constants of 'H!®F are given in Table 8.4 8.

Table 8.4: The nuclear spin-spin coupling constants of *H'®F at equilibrium R
= 1.7328 a.u.) in Hertz

Contrib. RPA HRPA SOPPA CCSDPPA  Exp.
fc 467.3 4199 338.3 329.4
sd -12.4 -6.4 -1.0 -0.6
po 119.3 164.9 195.7 195.7
do -0.1
total 654.1 578.4 532.9 524.4 529123

The nuclear spin-spin coupling constants of HD are given in Table 8.5 °

Table 8.5: The nuclear spin-spin coupling constants of HD in Hz at equilibrium
R =1.40a.u.

Contrib. CHF HRPA SOPPA CCSDPPA Exp.
fc 53.11  42.62 42.60 39.93
sd 0.57 0.52 0.51 0.49
po 0.83 0.82 0.83 0.82
do -0.33  -0.33 -0.33 -0.33
total 54.18  43.63 43.61 40.91 42.94+ 0.04

Even better agreement with experiment can be obtained by vibrational av-
eraging.

The relative importance of the various contributions to the spin-spin cou-
pling constants varies greatly from system to system, and it appears absolutely
necessary to compute them all. In Table 8.6 the results for '*C'70 at the equi-
librium bond distance R = 2.132 a.u. are given, as well as vibrationally averaged
results'® in Hertz.

The difference between the HRPA and the SOPPA1 approximations is pri-
marily the inclusion of the so-called 2particle-2hole correction in SOPPAL.
It is generally observed that the Fermi contact (fc) contribution exhibits the
strongest dependence on internuclear separation.

Nuclear magnetic shielding is hard to calculate, and results without em-
ploying field-dependent orbitals are somewhat unpredictable with any method.
Table 8.7 shows results for the CO molecule with different methods:

8see J. Geertsen, J. Oddershede, and G. E. Scuseria, Int. J. Quantum Chem. S21, 475
(1987)

9see J. Oddershede, J. Geertsen, and G. E. Scuseria, J. Phys. Chem. 92, 3056 (1988)

10]. Geertsen, J. Oddershede, and G. E. Scuseria, J. Chem. Phys. 87, 2138 (1987)
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Table 8.6: Spin-spin coupling constants in Hz for 3C'70 at the equilibrium
bond distance R = 2.132 a.u.

Contrib. RPA HRPA SOPPA1 SOPPA2 SOPPA Exp

vib. avg.
fc -8.13  1.53 8.51 7.30 7.93
sd -9.26 -2.94 -3.82 -3.97 -3.99
po 1224 11.86 15.29 14.80 14.95
do 0.1 0.1 0.1 0.1 0.1
total -5.05 10.55 20.08 18.23 18.99 16.4+ 0.1

Table 8.7: Nuclear magnetic shielding for the CO molecule with a variety of
methods as discussed in the text.

Method oc/ppm  Acc/ppm  oco/ppm  Aco/ppm
RPA -22.5 439.86 -84.79 743.42
LORG -22.22 440.12 -84.94 743.64
SOPPA -15.40 429.88 -73.45 726.40
SOLO -13.31 413.44 -69.15 719.95
Mixed method 10.2 392.1 -5.8 624.4

Experiment 3.0£09 405+14 -40.1+17.2 676.1+ 26

The gauge origins are the nuclear positions (equilibrium bond distance R =
2.132 a.u.). The SOLO method is described by T. D. Bouman and Aa. E.
Hansen!!. LORG is just RPA using local gauge origins. The mixed method is
described by S. I. Chan, M. R. Baker, and N. F. Ramsey!'?. A discussion of
the experimental results and some calculations can be found in I. Paidarova, J.
Komasa, and J. Oddershede!3. Considerably better agreement with experiments
are obtained in that paper for the HCN molecule. The gauge origin dependence
of the magnetic shielding tensor is given in Eq. (8.67) and this term can be
rotationally averaged to yield 1/3 the trace of the tensor, which are the numbers
given in the table above.

The large gauge origin effects are rather unsettling, but what they ought to
be can be estimated from experiments on spin rotation constants!4, the details
of which are left out of this discussion.

11T, D. Bouman and Aa. E. Hansen, J. Chem. Phys. 175, 292 (1990)

128 1. Chan, M. R. Baker, and N. F. Ramsey, Phys. Rev. 136, 1224 (1964)

131. Paidarova, J. Komasa, and J. Oddershede, Mol. Phys. 72, 559 (1991)

H4see Molecular Structure and Dynamics by W. H. Flygare, Prentice-Hall, Englewood Cliffs,
NJ (1978)
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8.12 An Elementary Example of NMR Spectra

Consider two spin one-half nuclei with spins I4 and I in an applied field
B=(0 0 B). The free energy expression

H,=F—Fy = ——’w(l—O’A)IAz —w(l—O’B)IBZ+JfA~fB, (8.73)

which can now be viewed as an effective spin hamiltonian with the notation
w = vB. The spin quantum number for a proton is 1/2 in units of A. The
product basis for the two spins is

lacr), |aB), |Ba), |65) (8.74)

such that, say, 14;|aB) = |af), while Ip;|aB) = —3|aB); i.e., the first position
refers to nucleus A and the second to nucleus B. Using the ladder operators, it
follows that
- o 1
IA-IBZIAZIBZ+§(IA+IB_+IA_IB+), (8.75)

which readily yields the energy expressions

(aa|H,jaa) = —w+ %w(aA +op)+J/A= By,

(BOIHLIBE) = w— sw(oa+os)+J/4=Ey,

(@BlH,Jaf) = —gulos —oa) = J/4

(BalH,|pa) = qu(on—oa)=J/4

(@BlH o) = J/2=(BalH,|ap). (8.76)

Solving the 2 x 2 eigenvalue problem gives

E, = —J/4- % [ +wi(os - o5)?] " = —J/a -,

Es

i

T4+ % [ 4 won—op)?]Y2 = g4+ Q. (877)

In order to draw an energy level diagram, the assumptions ¢ = %w(aB —04)>0
and J > 0 are used ( the sign of J cannot be determined by NMR measurements),
and the notation b = Lw(ca + o) is introduced [see Fig. 8.2].

An oscillating field along the z-axis would induce transitions among these en-
ergy levels, the intensities of which would be proportional to |(m|la, +Ipz|n)|? .
Since Iar + Igs = %(IA+ + Is_ + Ipy + Ip_), it means that the states
|m) and |n) must differ by +1 or —1 in the eigenvalues of 14, + Ip, for
an allowed transition. This means that the following transitions are allowed
1—2,1—3,2—4, 3— 4. The eigenvectors are
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E
A
+J/4
W b i 4
J/4+Q-q
d 'y E3
0
E -1/4-Q+q
A E2
+}/4
b
1
-W
no chem. J=0
shift

Figure 8.2: Energy levels of the hamiltonian in Eq.(8.73) with o4 = o = 0,J =
0, with o > 04 #0,J =0, and for 6 > a4 #0,J > 0.

) = Iaa%

|2) |aeBB) cos @ — |Ba) sin B,

|3) |aB) sin @ + |Ba) cos b,

|4) = 166) (8.78)
with

tan(20) = J/w(og ~ c4) (8.79)
i.e.,

sin(26) = J/[J? + w*(oa — o)V (8.80)

The following spectrum results with a = w — Jw(o4 + o) =w —b.
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Table 8.8: Transitions, frequencies, and relative intensities corresponding to the
spectrum in Fig. 8.3

transition frequency relative intensity
1—-2 a—J/2-Q 1 — sin(26)
34 a+J/2-Q 1 + sin(26)
1-3 a-J2+Q 1+ sin(26)
24 a+J/24+Q 1 —sin(20)

T

a Treq.

Figure 8.3: Spectrum resulting from the transitions depicted in Fig. 8.2.

1. When J = 0 (sin26 = 0), the four lines coalesce into two with equal
intensity.

2. When J nonvanishing and << g, there are four lines with almost equal
intensity.

3. When o 4 approximately equal to og(sin 26 close to 1), the two outer lines
will disappear.

4. When the two protons are magnetically equivalent (i.e., 04 = 0p = ¢
and Jag = Jpg for all nuclei with o4 different from o), then the spectrum
degenerates to one line.

It is obvious from this example that only relative magnetic shielding for a
nucleus is obtainable from an NMR spectrum. One therefore uses reference com-
pounds in order to be able to make comparisons between different compounds
for a given nucleus. The compound (CHj3)4Si (tetramethylsilane) is often used
as the reference for proton shielding.

The case 2 above would be with the doublet at higher field corresponding
to nucleus A (op > o04). Thus, the presence of nucleus A causes the splitting
of the B resonance into a doublet and vice versa (see Fig. 8.4). It should
also be possible to see that spin-spin coupling between groups in a molecule can
cause specific multiplet structures in the NMR spectrum. For instance, the CHg
group in ethanol (CH3CH,;OH) (see Fig. 8.5) has three magnetically equivalent
protons, and would by itself result in a single line in the spectrum corresponding
to a characteristic chemical shift §;, but the spin-spin coupling with the protons
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B A

|
| |
|

[ >

increasing field
Figure 8.4: Illustration of how proton A causes the splitting of the proton B
resonance into a doublet and vice versa.

of the CHj group (both having the same chemical shift ;) will cause a triplet
splitting of the C H3 line with intensity pattern 1:2:1 (because of the

aa, gg .88 (8.81)

spin distribution). Similarly the single resonance of the CH, group will be split
into a quartet with intensity pattern 1:3:3:1 by the protons of the CHj3 group
because of the spin distribution

aafl  afp
aaa, afa , BaB ,B66 (8.82)
Paa  BPa

and each line is split into a doublet to a small extent, due to the OH proton.

8.13 Paramagnetic Molecules

Consider a molecule with a ground state manifold of states (multiplet) with
nonzero spin but orbitally nondegenerate. At sufficiently low temperatures this
multiplet is dominating and the density operator

p= e—ﬂ(Ho—uNo)/Tr{e—ﬂ(Ho—uNo)} (8.83)

can be expressed as

I

po= 3 Inwnlnl/ S wn,

wp = exp[—B(E, — pN)] (8.84)

in terms of the unperturbed energy eigenstates. In our case, these states would
be

In) = |n, S, M) (8.85)
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P

Figure 8.5: Schematic NMR spectrum of ethanol.

in general, with spin quantum numbers Sand M = -5, -5 +1,---,5, while at
low temperatures, only the ground state manifold would be involved; i.e.,

In) = 10,8, M),

E, = E(O,S),

p o= (25S+1)7') 10,8, M)0,8,M|. (8.86)
M

The expression for the free energy contains the average of the perturbation

V= - [ @) G - [ drB@ - me) (8.87)

The average of the first term over any electronic state is zero because of the
electronic momentum operator being odd under inversion. The second term
also vanishes, because

Vi)o = (2S+1)"1) (0,8, M|Vi0, S, M)

M
- (2S+1)—1ZE/dFBZ(f)<o,s,M|sz|o,s,M>
IY; m
= 0. (8.88)
This means that the term
1 _ _ 1 2 Pn — Pm
22UV Vi)p=o = @%l(nl‘/ﬂm)\ E._E,

(8.89)
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1 pm/pOMs
= — 0,5, M T e
55 O 10,5 MIVim) ponss it
M,m
gives the lowest order nonvanishing contribution. The ratio
pm/posy = €2 EON=En) 1 4 B(E(0S) — E.) (8.90)

has in the last step been approximated for the case that 1/8 = kT >> (E(0S) —
E,;). This means that

L Lh

22 M Vi) =0 = — 55 (25 + 1)7EY (0,8, MIVE|0, 5, M) (8.91)

M
After averaging over molecular orientations, the contribution
e2h?

o35 S(S + D/kT (8.92)

X:

to the magnetic susceptibility remains.
Contributions to the average (V1)o could arise from the magnetic field terms
coming from the nuclear spins. The aim here is to obtain a spin hamiltonian
acting on both nuclear and electronic spin states so one would in general be
interested in the terms obtained before summing over electronic spin coordinates
to obtain a spin hamiltonian

F — Fy = I,AS (8.93)

for each nucleus. For the ground state manifold, we would thus be interested in
matrix elements

%(o,s,M|V1|o, S, M. (8.94)

There are two contributions for each nucleus (i) the contact field
B(r) = Sy Fy(7— Ry) (8.95)
and (ii) the dipole field
B(7) = 22 [3(F, - 77 — 72 (8.96)
o 9 Tg)Tg — 4gTyy - :

The dipole field contribution vanishes upon spherical averaging.
The contact field yields the contribution

-%79@ . /dra( R,)(0, 8, M|i()]0, S, M)

= (0,8, M|, 50,5 M)
§ [_ 8% <o,snm(ﬁg>uo,s>}

3¢ (0,5]70,5) (8.97)
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This is so since for tensor operators, it holds that

(0,8, M|I- 50,5, M)
(8.98)

:Z(_1>S—qu<o,sn§u0,5>(34 L 13>

and a similar expression for (0, .5, M|f ﬁ(ﬁg)|0, S, M'). The properties of the
3j symbols means that the right-hand side reduces to one term, i.e., the one for
g=M — M.

The expression in the square brackets in Eq.(8.97) is the isotropic part a4 of
the A tensor used in the interpretation of paramagnetic resonance experiments.
This means that

ST 4By, (8.99)

A, =
g 3em
which shows that only orbitals with nonzero amplitude at the nucleus will con-

tribute.

Problems

1. Use the properties of tensor operators to show that

=~ | ety 5 A (5100
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Chapter 9

The Electron Propagator in
Higher Orders

Improved descriptions of single-electron processes require treatments beyond
the geometric approximation given by the Hartree-Fock electron propagator in
Eq. (4.25). More elaborate approximations of the equation of motion (9.1)

E{{as;al))E = ([as,all+) + ((as; [H, 0l ))& (9.1)

may be generated in various ways. The discussion here will be confined to the
use of perturbation theory.

Such a treatment can, with advantage, be expressed in terms of the superop-
erators introduced in Eq. {4.19) and in terms of a basis of field operators. The
basis of fermion-like operators {X;} = {d,‘;,d;&;&m,&,t&;rdln&ndp,---} is cho-
sen, such that the electron field operators correspond to the SCF spin orbitals.
The field operator space supports a scalar product (X;|X;) = ([XZT VXjl4) =
Tr{p[X], X;]+ }, where p is the density operator defined in Eq. (4.33). The su-
peroperator identity and the superoperator hamiltonian operate on this space of
fermion-like field operators and, in particular, (X;|HX;) = ([X;r, [H, X;]-]+) =
Tr{p| X/, [H, X;]-]+}.

Perturbation theory starts with a partitioning of the hamiltonian, and thus
of the superoperator hamiltonian, into an unperturbed part and a perturbation:

H=H+V, (9.2)

such that HoX = [Ho, X]_ and VX = [V, X]_, with X being a fermion-like
operator and
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This expression in terms of the SCF spin orbital basis is readily obtained from
Egs. (4.3), (4.4), and (4.24).
The field operator space can be partitioned by the projection operator

0 =>"lal)a}| =1at) (&' (9.4)
k

and its complement
P=1-0. (9.5)
Consider the superoperator resolvent (Ef — H )~1 and its outer projection
G(E)=OEI - H)™'0 (9.6)

onto the model subspace of single-electron field operators and note that the
electron propagator matrix of Eq. (4.25) can be expressed as

G(E) = (af|G(E)at). (9.7)
Implementing the perturbation theory, one obtains
G(E) = OFEI-H,-V)'0 (9.8)
= Go(E) + Go(E)VGo(E) + Go(E)V[Go(E) + To( E)|[VGy(E)
+Go(E)V [Go(E) + To(E)]V[Go(E) + To(E)V Go(E) +

where the identity (A — B)™' = A~! + A"'B(A — B) ™! has been iterated with
A = EI — Hy and B = V. Also, the relations [O, Hy]— = 0 and 0% = O and
the notations

(EI —Hoy)™* = (BI-Hy) 'O+ (EI—Hy)'P
Go(E) + To(E) (9.9)

are used. The perturbation expansion can be rearranged such that

G(E) = Go(E)+Go(BE)V +VTo(E)V
+ VIWE)WVT,(E)V +--]G(E), (9.10)

which can be easily checked order by order. The quantity in the square brackets
is referred to as the self-energy or mass (super)operator ¥, and

G(E) = Go(E) + Go(E)S(E)G(E), (9.11)

which is the so-called Dyson-like equation or just the Dyson equation after the
analogous equation in quantum electrodynarmics.

The quantities G(E), Go(E), L(E), and To(E) are functions of the su-
peroperators I , I:Io, and V. When such superoperator functions operate on
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the field operator space, they must first be expanded in terms of the super-
operators, which are then successively applied. For example, To(E)VX =
([E~'+E?Hy+E3H} + - |PVX.
The propagator matrix can be formed as
G(E) = (alG(B)al) = (a'|Go(E)a)
+(a"Go(B)a") (@' |2(E)a")(al|G(B)at)

= Go(E)+ Go(E)X(E)G(E). (9.12)

Solving for the electron propagator matrix, one obtains

G(E) = [G5'(B) - S(E)] ™ (9.13)

Various approximations of G are defined by their different forms of self-energy
3, since Gy is given by the choice of partitioning. Because

Hoal = [Ho,al)- = exlalar,al]- = ¢;al, (9.14)
k

i.e., the simple electron field operétors are eigenelements of the unperturbed
hamiltonian, and since

(d:'(l&;') =Tr {P[ai, d;]+} = i, (9.15)
it holds that
Go(E)i; = (a}|(TE — Ho) &) = 6;;(B — &))" (9.16)

The evaluation of each term in the expansion of the self-energy requires

consideration of
1 ’ ’ ~ - - ~ -
1 Z (rr ||ss )[ala:,as:as,a}]_

’ ’
7T ;8,8

Val = [v,al]_

= > (rs'llss ) (ny)ala, al)
r,s,s
1 ’ . ! - - -
3 Z {rr ||js )ala:,asf (9.17)

ro
T .8

- > (rs'|lis ) (ng)al.

The first-order contribution to the self-energy now becomes

. 1 o o
(a“Va;-) = 3 Z {rr ||js )Tr{p[ai,a:[a:,as,“}
= (rs'{l5s ) ny ) Tr {plas,af] 4 } (9.18)

= ) (ir'|lis Wng )0y — > (is|lis Hny) =0,
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where the result Tr {palds} =6,/ (n, ) is used.

The second-order contribution to the self-energy is the lowest order nonvan-
ishing correction to the electron binding energies as given by the orbital energies
in the geometric approximation. In order to evaluate this correction term,

To(EWa, = (1B - i)~ PVa) = (1B - A)~ Val (9.19)

is considered, where the last term arises because P =7-0 and OV&} =
Yok |&};)(d,t|17?z}) = 0, as shown above. Also, the result

is needed such that

~ N -1 N . R -1 _
(I E - Ho) val = (IE - Ho) V,al]-
1 ’ ’ .
= 3 (rr |lis ) (B — er — €0 +6) ' alalay
r,r/,s'
- Z(Ts'lljs'ﬂnsf) (B —e)7 ). (9.21)
‘I‘,Sl

The second-order correction to the self-energy then becomes

2 ~t (e o
SP(E) = @IVTy(B)Val)
1 . e

= 5 2 0rllis) (B-e—er +e,) " @lValalay)
r,r',s'

_ 1 (is'{[rr ) (rr'|1js YN o

= 3 Z S ———— (9.22)
T,r ,8

where
Nrr's' = [<ns'> + <n7'><nr'> - (nr><ns'> - <nr'><ns'>]' (923)

The evaluation of averages of the commutators and anticommutators arising
from (&IIV&I&:, G ) uses the results

Tr {Pdids} = 6rs<nr>7
Tr {p&I‘&T &s' a‘s} = (57‘551"3' - 57‘3'67"3) (nT><nr'>‘ (924)

’
T

In general, the result

Tr {Pail e alnasn T a81} = det {6ns15rzsz o 5rnsn} H<nn‘> (9-25)
i=1
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holds.
For integer occupation numbers (0 and 1), N, differs from zero only for
the two cases

(nr) = (n) =0, (ny) =

and (n,.)

Il
Il
:—‘
Il
P —

(9.26)

which means that

£ (E Z (iallpg){pqllja) Z (ip|lab) (abl|sp) (9.27)

E-l»ea—ep—eq E+e—€—€p

a,p,q abp

where a,b,... denote spin orbitals occupied in the single determinantal reference
state, p,q,... denote unoccupied spin orbitals, and 4,j,... denote either.

One should note that because the electron propagator matrix elements G;; (E)
have simple poles, i.e., become infinite, the inverse of the propagator matrix will
have a zero eigenvalue at those energies. Neglect of off-diagonal terms in the
self energy gives the form

Gy (E) = 55/ I(E — &) 655 — S5 (B)]. (9.28)

The poles are thus obtained from

where E is an electron binding energy. It can be solved either by iteration or
by perturbation methods, i.e., the calculation of £;;(e;) through some definite
order of the perturbation V.

The lowest order correction to the so-called Koopmans’ theorem, which
equates the electron binding energies with spin orbital energies, can then be
expressed as

(ia]|pg)(pq|lia) (ip||ab)(ab]|ip)
L~ e SRR Bt LA Gl 3
“t3 zp:qez-i-ea—ep—eq 2262 (9.30)

where the electron binding energy is labeled by the spin orbital energy. This
expression can be further analyzed!

) _ 1 |(iallpg)|? |(ipl[ia)[*
() = Z §Z€z+€a—6p—€q Z

a p.q p~ Ca
1 ip||ab)|?
2 : €+ €p — €z —€p
a#i,b#i,p

where the expression in the square brackets can be identified as the lowest
order pair correlation energy term?. The second term is the lowest order orbital

lsee, e.g., B. Pickup and O. Goscinski, Mol. Phys. 26, 1013 (1973)
2see, e.g., O. Sinanouglu, Adv. Chem. Phys. 14, 237 (1969)
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relaxation correction, i.e., the lowest order correction. This means that it is the
lowest order correction to the Koopmans’ theorem result for, say, an ionization
potential, calculated as the difference of two separately optimized total Hartree-
Fock (SCF) energies, i.e.,
RN
EHF(N)—E;IF(N—U:ei+z&?|—"i>'—+-.~, (9.32)
= &t

where E% (N — 1) is the total Hartree-Fock energy for the hole state with spin
orbital ¢ empty.

The third-order contributions to the self-energy can also readily be calcu-
lated. These terms lead to fivefold summations and are more cumbersome to
computes.

Problems

1. Diagram the third-order contributions to the electron propagator self-
energy listed in Appendix D.

9.1 Renormalization of the Electron Propagator

The order by order treatment of the self-energy is performed under the tacit
assumption that the perturbation expansion converges. In nuclear many-body
theory and in the theory of the electron gas model system, one has found that
not to be the case. In order to remove the divergencies, it has been found nec-
essary to sum certain types of diagrams to all orders. This practice of summing
certain types of diagrams through all orders is often referred to as renormaliza-
tion. A great variety of renormalization procedures exist, such as propagator,
interaction, and vertex renormalizations. What distinguishes such various pro-
cedures is mainly the type of diagrams that are being summed. In what follows,
we concentrate on some specific forms of renormalizations of the self-energy.
The superoperator formalism can be adapted to yield renormalized self-energy
expressions corresponding to the summations of specific types of diagrams.

9.1.1 The 2p-h TDA and the Diagonal 2p-h TDA Self-

Energy
The self-energy matrix in a spin orbital basis can be expressed as
X(E) = (@l |(V + VT(E)V)al), (9.33)
with
T(E) = Pla0 + (EI — Hy)P — PVP]~'P, (9.34)

3see, e.g., G. Born, H.A. Kurtz, and Y. Ohrn, J. Chem. Phys.68, 74 (1978)
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where o # 0 is an arbitrary constant, and O =la)(al|, P=1-0,0?=0,
P2 = P and OP = PO = 0. Using an SCF reference state and the associated
spin orbitals, the self-energy can be expressed as

S(E) = (@'|VT(E)Val) (9.35)
since (af|Val) = 0.
The projector for the orthogonal complement to the single-particle space is
P = |fh(f1], (9.36)
with

('} = {aza;am,aza;a;'napaq, -} (9.37)

Restricting {f'} to only some simple fermion-like products of electron field
operators will generate only certain types of diagrams that can then be summed
to all orders. For instance, self-energy diagrams in third order of the “ring” and
“ladder” types, which can easily be generalized in any order. It is notable that
between consecutive interaction lines, there only occur one hole line and two

particle lines or vice versa [see Fig. 9.1].

_______ O

Figure 9.1: RINGS and LADDERS

This suggests that the intermediate virtual states in these perturbation terms
are “two particle one hole” (2p-h) or “two holes one particle” (2h-p) excitations
out of the reference state. Since the rings and ladders are important contribu-
tions to the self-energy, one can assume that restricting the complement space
to the operators

{f'y = {aTa‘Laa,a abap} (9.38)

will be a reasonable approximation.
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This particular truncation of the complement space of field operators is inter-
nally orthonormal and orthogonal to the single-particle space, ¢.e. (f fiff)y =1,
and (af|f') = 0. Thus, while P+ O # I, P> = P, and OP = PO = 0. The
superoperator in Eq. (9.34) can be expanded to read

T(E) = Pla™'O+ (EI - Hy) 'P)
+(@™'0 + (BI — Ho) ' P)PVP(a™'0 + (EI - Ho) ™' P)
+ ]]5 (9.39)

and because

I:I()f,;'lm = ﬁoaza;ram = (ex + € — €m) a,ta;'am (9.40)

and
5kk/ 511’ 6mm/

il (BT~ o)™ 1l ) = ot (9.41)
which means that
(£')(BT — o)~ 't") = (¢'|(BT — Ho)et) ™ (0.42)
and that
T(B) = |t (E|(ET - Ho)f!) = (£1)
+IEN (BT — Ho) ey~ (gt v e (9.43)
x(EV[(ET — Ho)f") = (£1] + -+
This expression can again be summed to read
T(E) = |f)Y(EH(EI - Hy — V)EH) (5. (9.44)
This means that the self-energy matrix becomes
S(E) = (af [VEY(EH (BT — Ay — V)EH)~1(fF|Val) (9.45)
and a general matrix element can be evaluated as follows:
(ahajaplVa)) = (Ollafaraa, [V, aj)-1+0)
= > (TT’||13,){ (0lla}avaq, afal, a,]410)
—mfm»M[%%,mm% (9.46)
= (abllsp)

and

(atalap|(EIA ~Hy — V)aJr a; 1ay)

= 8ot Opyy 8, (E + €5 — €0 — €5) — Aabp, (9.47)
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with
Dopp = (alagapraLaZ,ap/)
= (0llafasaa, [V, al,a,]-]4|0) (9.48)
1 .
= §<ab|la b)6,, + (0 allpa Yoy
+(p'bllpb ),
Similarly,
(alalaa|Val) = (pqilja) (9.49)
and
1 r o ’ ’ ’ ’
Apga = 5{Pallp 4 )0aa — (a pllp a)d,y — (g allga)dy, - (9.50)

The size of the {f, ;bp, fgqa} subspace is quite large for reasonable basis sets. For
N electrons and a spin orbital basis of rank K, there are (K — N)(K — 2)N/2
elements in the orthogonal complement space. The solution of the Dyson-like
equation would require the inversion of a matrix of this dimension for every value
of the energy parameter. This approximation of the self-energy first introduced
by J. Linderberg and Y. Ohrn,%, has been discussed by G. D. Purvis III, and
Y. Ohrn,® and J. Schirmer and L. S. Cederbaum®. A simplified version of this
approach is the so-called “Diagonal 2p-h TDA” | which becomes

- tp|lab){ab
S2-hTDA () _ aszp - Epp! e e'ijf>Aabp
m a
HE e o
where
Batp = ~ 5 {abllab) + (apllap) + (bpllop) (952)
and
Bpaa = 5 pallpa) — (pallpa) — (qollga) (9:53)

9.2 Partitioning and Inner Projections

Starting with the matrix electron propagator in Eq. (9.12), an alternative for-
mulation of approximation can be introduced. One employs an inner projection

4J. Linderberg and Y. (“)hrp, Chem. Phys. Lett. 1, 295 (1967)
5G. D. Purvis I, and Y. Ohrn, J. Chem. Phys. 60, 4063 (1974)
6J. Schirmer and L. S. Cederbaum, J. Phys. B11, 1889 and 1901 (1978)
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manifold”

Il

{h} {hy}U{hs} U{hs}u---

{af,itYU {a'bTi,iT5Ta) U {albclig, iTTkTab} U- - (9.54)

from the space of fermion-like operators, where the notation {a, = r} is used
for the SCF electron field operators, to write

(af|(BI - H)™'al)
(at/h)(h|(EI — H)h) ™ (hja’), (9.55)

G(E)

I

It

which transforms the superoperator inverse to a matrix inverse8.

It is convenient to use an orthonormal set of inner projection basis elements
so that (h;/h;) = 1 and (h;|h;) = O for ¢ # j. A first step in seeking adequate
approximation schemes for the electron propagator is a partitioning of the inner
projection manifold. When the aim is to obtain a theoretical photoelectron
spectrum, it is convenient to choose the partitioning

h = {hlvf}a
f = {hs}U{hs}U--- (9.56)

Il

such that Eq. (9.55) becomes

N N -1
El—(al|Hal) —(al|ff 1
GE)=[1 0] -(fﬁ%[laf)a) El(— (lf|fI)f)} [o } (9-57)

The partitioned form of the inverse matrix yields

G YE) = FE1-(al|Ha’)
—(al|Hf)[E1 - (f|Hf)| ! (f|Ha')
= (a'|(El — H)al) (9.58)
+(af |HE)(f|(ET — H)f)"'(f|Hal)
= Gyl(B)-X(B),

where the unperturbed propagator and the self-energy term have been defined
to show the relation to the so-called Dyson-like equation for the propagator. An
untruncated manifold f means no approximation, only a reformulation of the
propagator equations. In order to arrive at a definite approximation and provide

7see P.-O. Léwdin in Perturbation Theory and Its Application in Quantum Mechanics,
edited by C. H. Wilcox, Wiley, New York, 1966 and L. T. Redmon, G. D. Purvis, and Y.
Ohrn, J. Chem. Phys. 63, 5011 (1975).

8 Another way to achieve this is to use a nonorthogonal basis of field operators, which in
general affords the expansion Jat) = |h)(h/h)~!(h|af), and if the basis is complete, the reso-
lution of the identity is |h)(h|/h)~!(h| = 1. This permits the identity (hjh) = (h|A~!Ah) =
(hJA=1h)(h|h)~!(h|Ah), which can be written as (h{A~'h) = (h|h)(h|Ah)~(h|h). For
A= EI - H, this yields Eq. (9.55).
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algorithms for the calculation of the matrix elements defining the propagator, a
reference state and a truncation of the inner projection field operator manifold
must be chosen.

The Hartree-Fock or SCF single determinantal state |0) = |HF) provides
the natural starting point for the choice of reference state at various levels of
approximation. Although the electron propagator theory can be fully developed
within a perturbation theory framework with only the SCF single determinantal
reference state and choice of inner projection manifold, it is desirable to keep
a balance between the level of description of the reference state |0) and that
of the inner projection manifold f. Such a balance kept through various orders
of perturbation theory guarantees hermiticity of the superoperator hamiltonian
matrix and the elimination of spurious terms. Starting from a partitioning of
the hamiltonian and thus also of the superoperator hamiltonian

H = Hy+6H

Hy, = Zeppfp (9.59)
P
1
SH = 3 (pallrs)[5pa"s7 — dus{mabpe],
»q,7,8

the reference state can be expressed in terms of Rayleigh-Schrédinger perturba-
tion theory (RSPT), or coupled-cluster (CC) theory. Also multi-configurational
SCF (MCSCF) theory has been implemented for the electron propagator refer-
ence state. Here we restrict the discussion to reference states based on RSPT
and CC theory.

The hermiticity problem consists of the equation

(X|AY) = (Y|HX)* (9.60)

not being satisfied for an approximate reference state or more generally for a
density operator

p=po+p+&p+---+ (9.61)

correct through order n in perturbation theory. The average defining the prop-
agator matrices is then formed as a trace, as discussed in the introduction to
double-time Greens functions [see Chapter 4], i.e.,

(-)y=Tr{p---}. (9.62)
Because
(XWIHY))w) — (YL, X)) = ((H, [XT,Y]4]2)
= Tr{plH, (X" Y]]} (9.63)
= T {[p, H]- (X!, Y]]}
and since

[00, Ho]- =0 (9.64)
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and
(6%p, Ho)_ + [0 p,6H]_ =0 (9.65)
are assumed to hold for £k = 1,2,...,n, the error term is of order n+1, 7.e.,
(X|AY) — (Y|HX)* = Te{[0"p,6H]_[ X1, Y] }. (9.66)

The Rayleigh-Schrédinger perturbation expansion for the reference state,
0 rspr = (1 + K1+ K2 + K3 +--)|HF), (9.67)

is defined by

= ktali, (9.68)
>

=3 kghaliv'y, (9.69)

i>j a>b

and

Ky= Y > kitcalibijc'k (9.70)

i>j>ka>b>c
with , in particular

(ig]lab)

ab
kg = Dab (9.71)
iJ
and
a 1 <bCHa’]> be <Zb|']k> ab
k":iz De A ke —Z k| (9.72)
jbe kb K
The denominators are defined as
Di =€, — ¢, (9.73)
and
ijb =€ + € — €5 — €p. (9.74)

The concept of order in the perturbation expansion of the electron propagator
ultimately means order in terms of the electron-electron interaction, or equiva-
lently, two-electron integrals. The inclusion of electron correlation through first
order in the reference state is achieved with the double excitation terms Ko,
whereas the K terms are also needed for second-order corrections.
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The coupled-cluster (CC) expression® for the reference state
|0)ce = eT|HF) (9.75)
is defined by
T=T+T2+T3+...+Tn, (9.76)

with N being the number of electrons of the system and

=" tali, (9.77)

=" tihalib'j, (9.78)

>4 a>b

Ts= Y > t¥ealibije (9.79)

i>j>k a>b>c

and so on.

The T amplitudes contain infinite order contributions to each excitation
level from the HF state. Thus, replacing the RSPT K amplitudes with the
CC T amplitudes may be considered a renormalization procedure since certain
classes of perturbation terms or diagrams are summed to infinite order. This
idea was employed in work on both the electron propagator!® and the excitation
propagator11

Expansion of the exponential in the CC method gives

Il

N+T1+ (e + le) + .. J|HF)

[1+22t“ i3> tebaldlij (9.80)

i>j a>b

Z Ztaau (Z Z to15) + .. JJHF) ,

where the last term can be rewritten as

1 . . . .
SIS T - TS| o
i a ¥ b i>] a b

D> [t e3alivly) + (sbe5blial))
i>7 a>b

9see, e.g., J. Cizek and J. Paldus, Physica Scripta 21, 251 (1980)

Osee J. V. Ortiz, Int. J. Quantum Chem. S25, 35 (1991)
Hgee J. Geertsen and J. Oddershede, J. Chem. Phys. 85, 211 (1986)

10)cc

I
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and, since for the orthonormal basis of SCF spin orbitals,
bliatj = —alibly, (9.82)

the CC reference state becomes,

Oce = D+Ti+(Ta+ le) +..]|HF) (9.83)
= [1+ZZt”aU+ZZT“baT2bU +...J|HF),
>3 a>b
where
2 = 128 4 totb — bt (9.84)

Restricting the coupled-cluster expansion to single and double (CCSD) ex-
citations, i.e.,

0)cc = [0)cosp = e T T HFY, (9.85)

the equations for the T amplitudes can be obtained by inserting the trial function
in the Schrédinger equation and form

e~(M+T) geT+T2 | [ By = BIHF). (9.86)

Projecting this expression against (HF'| yields the CCSD energy. Projecting
against a singly excited determinant (H F|iTa yields a vanishing right-hand side
and an equation for the 77 amplitudes:

DIt = th,bFab — Zt?Fji + Z tg']bF]b +
. F P
- th jallib) — Zt (jal|be) (9.87)

ibe
——Zt (kj||bi).

Jkb

Similarly, a projection against a doubly excited determinant (HF|j'bifa yields
an equation for the T amplitudes:

1
absab . . ac b
Dt = (ijllab) + P (ab) 3t (Fbc -3 ? thkc>

: a 1 c
—P (ij) thg <ij + 3 thch>
k c

1 b 1 cd
+§ ;7‘& Wklij + —2— %;Tij Woabed (9.88)
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+P(i7)P(ab) Y (#5Wives — t5tE(bllcs))
ke

P(ij) > t&{abllci) — Plab) ) _ ta(kbllij),
c k

where
Fap = Zt° Falleh) — 5 St (killbe)
klc
Fji =t} {jkllia) + Zfﬁf’ (jkllab) ,
ak k:ab
Fyp =) t3(ij|lba) ,
Wiii; = (kl[|ij)+P(ij)Zt‘}(leia)
+ Z (kl||ab) ,
Wabeda = {ablled) — P (ab) th (ailled)
42 (illed) ,
and

Wie; = (kbllci) + Y t3(kbllca) — Y t8(kille) +

b b .
- Z (zt;; + 2ot ) (ki||ca) .
The effective two-particle excitation operators 7 and 7 are
Tab = 0P+ t2eh — ¢he?
and

1
7o =130 + 3 (t7th — e2e2)
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(9.89)

(9.90)

(9.91)

(9.92)

(9.93)

(9.94)

(9.95)

(9.96)

respectively. In the above equation, P (ij) and P(ab) denote the permutational

interchange operations.
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The k coefficients in the RSPT expansion can be obtained from the coupled-
cluster ansatz through iteration of the 7 equations. For instance, the first
iteration of the T3 equation gives K»; that is,

a a i7||ab
) - L) 0on
i
which, when applied in the T} equation yields
o .a 1 ajllbe) e jk|lib) ,
K =ti(1) =3 > %—)t% OESY <—D|—;—>t]-}; . (9.98)

jbe jkb 4
Consequently, it is possible to write reference states for the electron propagator
approach as expansion coeflicients of the perturbation theory or as converged T’
amplitudes from the solution of the coupled-cluster equations.

Also, in comparing the RSPT and CC wave functions, it is clear that

O grspr =(1+ K1 +Kes+...)|HF)

X
O)ccsp=(1+T1+( To +1%/2)+...)|HF)
4 (9.99)
CC—-EP + RSPT-EP
)
7 e K
be - kf;’.

From the definition of the spectral representation, it follows that the ele-
ments of the electron propagator matrix G(E) become infinite when E equals
an electron binding energy. Then, the inverse G™1(E) has a zero eigenvalue at
such an energy. This result can be used to devise iterative methods to find the
electron propagator poles and residues at a given level of perturbation expan-
sion.

Truncation of the inner projection operator manifold f and the use of RSPT
for the reference state based on the so-called Moéller-Plesset partitioning of the
hamiltonian as expressed in Eq. (9.59) facilitates an order analysis of the elec-
tron propagator. In particular, the self-energy and consequently properties as,
e.g., electron binding energies and the one-electron reduced density matrix can
be calculated to a given desired order of electron correlation or electron inter-
action. Starting from the inverse propagator matrix, as given in Eq. (9.58) and
using a shorthand notation, the following expression is obtained:

G™Y(B) = Raa(E) — RayR;; (E)R 4, (9.100)
where

Ru(E) = (af|[(El - H)al) = B1 - H,,
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R.; = (al|(BI - A)f) = -H,;, (9.101)
Rfa = (fI(BI-H)a')=-Hso = -Hl,
R.(E) = (f{(EI - H)f) = E1 - Hy4.

The RSPT expression for the reference state then permits the expansion
-3 ny), (9.102)

where the fact that Hg}) = 0 has been used. Together with corresponding ex-
pansions for the other matrices, this gives an expression for the inverse electron
propagator matrix through order n as

T
G.'(E) = RO +) RY
i=1

(n)

_ (ZH(’)> (Zrﬁ”)wl (gmg)) . (9.103)

The first-order propagator vanishes and the lowest order expressions are ob-
tained by calculating the various matrices to specific orders and by choosing the
operator manifold f as follows:

= 2= n;=1,n,=0;f = hg,
n = 3=>n :2,7’Lz = 1;f=h3, (9104)
= 4:>n1:3,n2=2;f=h3Uh5,

which will be further elaborated in the following sections.

Obviously the inversion of the very large matrix Ry ¢(E) is one of the dif-
ficult problems that has to be addressed. An inversion could be performed by
employing a reduced linear equation (RLE) scheme but rapidly becomes im-
practical with increasing basis sets. A number of approximate treatments have
been proposed with varying success. The order concept can be preserved with
the identity

-1

( “’HZR“’) (9.105)
()" - () (S0 (o)

i=1

Ry (E)

which can be iterated and truncated.
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9.2.1 Method of Solution
The general expression for the element
GoalE) = (apl(EL — B)a,) (9.106)

of the electron propagator matrix G(E) is symmetry blocked, where each block
is formed by the spin orbital indices p and ¢ belonging to the same irreducible
representation of the orbitals. In addition, the electron propagator matrix G(F)
is spin blocked. Therefore, it is sufficient to solve separately the electron prop-
agator equations for each symmetry and spin block pq.

For a given block and energy E, it is possible to construct the matrix

W(E) = E1-GYE)
= E1- (Ru(E) - HyR;H(E)H] )
— B1—((a'|(Bl - B)la’) — HayR; H(E)H] )
= E1-((E1-H, - HyR;}(E)HL)

= Hg, +Ho R} (E)H],, (9.107)
which allows the expression
(1E - W(E))G(E) = 1. (9.108)
This shows that the diagonalization
A1 (E) . 0
UW(EU=AE) = : Ap(E)
0 . M(E)

(9.109)
= U'(H., +R!,R;(E)Rw,)U,

is important, with n being the dimension of the symmetry pg block, and the
eigenvalue corresponding to the spin orbital of interest (p) should be the p-th
pole (E,) of the electron propagator matrix. This eigenvalue can be used as the
next guess for an iterative search of the p-th pole or used to obtain a guess for
a Newton-Raphson procedure. As the derivatives of W(E) with respect to £
can be evaluated analytically, a Newton-Raphson procedure can be efficiently
employed to calculate the next guess for E, so that usually, after three or four
iterations the difference between the input E and the eigenvalue is less than
10~% Hartree.

Layzer!? treated such (in general non-Hermitian) eigenvalue problems. When

UT(E):{UPT}7 p:1727"'7n (9110)
12A. J. Layzer, Phys. Rev. 129, 897 (1963)
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is the eigenvector of W (E) corresponding to the eigenvalue A, (E) and U (E)
is the eigenvector of W' corresponding to eigenvalue \* (E), the expansion

Upr (E) Uy, (E)

GPQ(E): E*)\T(E)

(9.111)

follows. The types of possible solutions have been discussed by G. Csanak, H.
S. Taylor, and R. Yaris,'® and details have been explored by G. D. Purvis and
Y. Ohrn'*. The pole of interest E, is found when

E. =) (E,) (9.112)

and within a finite basis, the E, are real and discrete. Elementary residue
calculus gives

Jim [(E = B.) Gyq (B)] = Ty (E) Uy, (By), (9.113)
where
T, = [1 - d—’\"—(-E—)} (9.114)
dE | p_g
is the pole strength introduced earlier. The resulting expression
Gpq(E) = Z FTUPT]EJE_T);}ZT(ET) (9.115)
can then be compared with the spectral representation to find
(Olaglr) = T3/ 2Upr(Bn(N +1) = Eo(N)),
(rlagl0) = TY2U,(Bo(N) - En(N - 1)). (9.116)

The Feynman-Dyson amplitudes directly associated with the various electron
binding energies are then

XPAE) = stm E.)r}/? (9.117)

in terms of the canonical molecular SCF spin orbitals.
The relationship of these amplitudes to the electron propagator

G EE) = (W(©iv'(€))e

o &)
a nlﬂo; E + Eo(N) — E-(N +1) +1n

n 9r(£)gr(§) (9.118)
E— Eo(N)+ E(N —1)—1in
13G. Csanak, H. S. Taylor, and R. Yaris, Advances in Atomic and Molecular Physics 7, 287
(1971)
4G, D. Purvis and Y. Ohrn, J. Chem. Phys. 60, 4063 (1974)
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defined in position and spin coordinate space becomes obvious from the expan-
sion

t) =Y xp(€)ap(t) (9.119)

of the fundamental electron field operators (£, t) and their adjoints in the basis.
The Feynman-Dyson amplitudes then are of two kinds associated with electron
attachment processes and with electron detachment processes, respectively

e = pr €)(0laplr) = pr (&)U, TY?,

9:(&) = ZXP Nrlapl0) = ZXP UprL'; V2. (9-120)

9.2.2 A Possible Algorithm
1. choose r
get block pq
get guess for E,
construct W (F) = Hg, + HafR]T} (E) Hzf
diagonalize UW (E,) = A(E,)1

A A o

get the eigenvalue A, associated with r

7. set E,?gw = Ar
8. get new guess (Newton-Raphson):
oG~ YE
Eii = B — G-1(Ey, (25 (B (9.121)
OE E=E;

9. |Ei - Ei_1| <1075 7

a. 7 yes = Pole = E;
b. 7 no = go to step 3

9.2.3 Order Analysis of the Propagator Matrices
Second-order electron propagator

In the following, the subscript 1 refers to the hy = af part of the field operator
manifold and the subscript 3 to the hg part and so on. Through second order,
the inverse of the electron propagator matrix then becomes

-1 +
Gy (B)=RY -HY (rRY (®) (BY) (9.122)
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where
ROENw = (B~ €)dpg,
( la)p,abi = (szab)
H)pija = (pallis),
R (E)avieas = (E+ € — €a — €5)0acObadis,

RP(E)ijarpy = (E+€a— € — €)6:x0510ap. (9.123)

The second-order self-energy matrix then has the elements

2 (pillab){ab||qi)
(=®(E) Z R (9.124)

za,

Z {pallij)(ijllqa)
2 E+ea~el—e]

i,j,a

where the factor of 1/2 comes from the relaxation of the ordered indices.

Third-order electron propagator
A similar treatment through third order yields
Go(B) = GL(E) (9.125)
FHIY - HY (RE () HE (R (B) 7 (M)
~HE(RE (£) 7 HE) - HPRE (9) 7 (H),

where
HD)pe = D wallbg)sas ~ > (pillgi)sis
a,b 1,7
+> (1 + P(ia)){pillga)k?, (9.126)
with

ac.be
Kb = DD KK,

c i>j

SO kePks (9.127)

I a>b

Kij

and where P(ia) is the permutational interchange operation. The second-order
matrices are

HD )iy = D (ipllmn)kd,

m>n
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+(1— P(ab)) ) {pclmaykiy,,

™m,c
(H)ijap = > _(apllbe)kly
b>c
+(1 = P(i) > _(pmllci)ksy,, (9.128)
and the first-order diagonal terms are

(B8)) .., = O (ablled) — duc(bilid) + dua(billes)
+bc{ajl|di) — Gpalajllci), (9.129)

(B) = Gulillkl) + & (5bllla) - Sulsbllka)

ija,klb

— 0, (ib||la) + d;1(ib||ka).

Fourth-order and partial fourth-order electron propagator

Without including the operator manifold hg, the full fourth-order propagator
matrix can be expressed as
-1
_ 4
Gy (B) = Ggi(E)+H{ -HY (RY (m)) HY'

1 -1
H(S)T (3> (R(O) (E)) H%)T

®)
1 0
-HYY (R (B
1 0
B (RY(

B)

p) uE (R ®) 1Y es0)
RO (5) " HY (RY @) 1

(®)

_H13

(
(1) ( (0)

LIe 0) D1
) (RY () B

“n® (RO ) " HY (RY (5) T HY (RY (8) " HY.

It is generally more important to include the contributions from the hs manifold
before increasing the order of the expansion, and one therefore finds it justifiable
to study the electron propagator through what has been coined the “partial
fourth-order”, where only the terms formed from the matrices already obtained
in third order are retained.

9.3 Recipe for Diagrams

We consider the diagramming of a perturbation series and choose the electron
propagator self-energy expanded in terms of the electron interaction and ex-
pressed in terms of a Hartree-Fock spin orbital basis and the associated orbital
energies.
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Consider the sum
1 (ip||ab) (ab||jp)
- _— 9.131
22;%:E+ep—ea—eb ( )

where a and b denote occupied spin orbitals, p unoccupied spin orbitals, and 1, j
label unspecified Hartree-Fock spin orbitals. The two-electron integrals

(ipllab) = /i*(l)P*(Q)Tf21(1 — P12)a(1)b(2)d(1)d(2) (9.132)

are antisymmetric, 4.e., contain Coulomb minus exchange contributions.

9.3.1 STEP 1

Choose one of the antisymmetric two-electron integrals in Eq. (9.131) (say the
second), and draw a line { dashed or wavy) to represent this interaction. In
a formal scattering process, the left end of this interaction line represents the
point where electron 1 enters and leaves, and the right end where electron 2
enters and leaves [see Fig. 9.2].

1 NN 2

Figure 9.2: Interaction line of the integral (a(1)b(2)|[7(1)(p(2)).

9.3.2 STEP 2

Draw propagation lines with arrows to indicate direction. The labels on the
left side of the double bar in the integral notation (a(1)b(2)]|7(1)p(2)) carry the
“star” of complex conjugation, i.e., label the (daggered) creation field operators
in the hamiltonian, and stand for “outgoing” or “post-collision” electrons. The
first letter (in this case “a”)} thus labels an outgoing electron, and we draw a
solid line with an arrow going out of the left end of the interaction line. When
“a,” as in this case, also denotes an occupied spin orbital, the line goes downward
in addition to going away from the end of the interaction line. An unoccupied
orbital would have the solid line pointed up and away from the interaction line,
and a general spin orbital would have the line going out horizontally.

The second label (“b”) also stands for an outgoing electron in an occupied
orbital, and we draw a solid line for it following the same convention, ¢.e., down
and out from the right end of the interaction line.

The labels on the right of the double bar represent “incoming” or “pre-
collision” electrons, and we draw incoming solid lines. If the orbital is occupied,
the lines comes down and in; if it is unoccupied, the line comes up and in; and
if the orbital is a general one, the line comes in horizontally.
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1 2

Figure 9.3: Orbitals a(l) and b(2) in {a(1)b(2)}|7(1)(p(2)) depicted as "down
and out” arrows.

Figure 9.4: Integral (a(1)b(2)||7(1)(p(2)).

9.3.3 STEP 3

Decide whether the next interaction line should lie above or below the first
interaction line. In our simple example the next interaction is (ip||lab). Since
a downward line is not permitted to suddenly turn upward of its own (and an
upward line suddenly to turn downward), and as (ip||ab) contains an incoming
downward “a” line, which must be joined to the directed line in the above
figure, we conclude that the new interaction line must lie below the first one. If
contradictions occur at this stage, you have made a mistake.
Repeat STEP 2 for the second interaction line.

Figure 9.5: Integrals {(ab||jp) and (ip||ab).

9.34 STEP 4

Join the solid propagation lines, which have the same label. As the lines are
joined, check that each continuous line starting at one interaction and ending
at another travels in only one direction.
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Figure 9.6: The second order diagram corresponding to Eq. (9.131).

9.3.5 REMARKS

The diagrammatic methods are ordinarily used to derive perturbation expres-
sions. Here we have emphasized the converse approach primarily to familiarize
ourselves with diagrams.

When a perturbation series cannot be diagrammed, it must be wrong. Di-
agrammatic analysis provides an independent check on the perturbation series.
The diagrams used here are the kind discussed by Brandow. They are a com-
bination of Goldstone and Hugenholtz diagrams. One distinguishing feature is
the antisymmetrized interactions.

I. Diagrams for the self-energy have two horizontal lines with free ends.
Diagrams for the total energy have no lines with free ends. Diagrams for the
wavefunction have an even number of lines with free ends all entering from above
all interaction lines (Kelly).

II. Include a factor 1/2 for each “equivalent pair” of lines. Two lines form
an equivalent pair if they (1) both begin at the same interaction, and (2) both
end at the same interaction (¢.e., both also go in the same direction).

III. Include an overall sign factor (—1)!*", where | = number of closed loops,
and h = number of downgoing (internal) line segments (“hole lines”).

IV. The numerator is a product of antisymmetrized two-electron integrals
(12]|34), (1) “left out,” (2) “right out,” (3) “left in,” (4) “right in,” for each
interaction line or vertex.

V. Include the energy denominators: the sum of all downgoing line energies
minus the sum of all upgoing line energies between consecutive interaction lines
constitute one factor; the product of all such factors constitute the denominator.
The imaginary line joining the free lines gives the unspecified energy E.

VI. Sum each upgoing line independently over all unoccupied spin orbitals
(particle states), and each downgoing line independently over all occupied spin
orbitals (hole states).

9.4 Photoelectron Spectra

The calculation of electron binding energies and photoelectron intensities for
atomic and molecular systems is a natural problem area for employing the elec-
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tron propagator. In this section, some prototypical results are given for various
levels of treatment. As an example, in the table below, the valence ionization
energies for the Ny molecule at various levels of theory are listed.

Table 9.1: Valence ionization energies (eV) for Ny
State K.T. Delta K. T. G(E) G(E) G(E) part. Exp. (g)

limit SCF (¢) 2nd.ord 3rd 4th
(a) (b) (d) order (e) order
(0)
30 17.28 1597 17.30 14.91 15.69 15.80 15.60
1w, 16.74 1538 16.72 17.23 18.04* 17.09 16.98
20, 2117 20.17 21.08 17.55 18.63 18.76 18.78

(a) Koopmans’ Theorem (K.T.) results (i.e. orbital energies) from P. E. Cade, K. D. Sales,
and A. C. Wahl, J. Chem. Phys. 44, 1973 (1966).

(b) Estimated value from potential energy curves in reference (a). .

(c) Hartree-Fock orbital energies with a 22 STO basis G. Purvis and Y. Ohrn, Int. J. Quantum
Chem. S11, 359 (1977).

(d) from G. D. Purvis and Y. Ohrn, J. Chem. Phys. 60, 4063 (1974).

(e) from T.T. Chen, W. D. Smith, and J. Simons, Chem. Phys. Letters 26, 296 (1974); * this
result is corrected from the one first given in this reference.

(f) partial fourth-order results from reference (c).

(g) from D. W. Turner, C. Baker, A. D. Baker, and C. R. Brundle, Molecular Photoelectron
Spectroscopy, Wiley, New York, 1970.

As can be seen from this example, for a small molecule, one can expect
errors of about 1 eV to persist through the third-order treatment of the self-
energy. Partial fourth-order theory has been applied with some success to small
molecules, although it represents a substantial computational effort. The cor-
rections of the orbital energies through second order tend to overshoot as is the
case here. Delta SCF (see Eq.(9.32})) is not particularly good for valence bind-
ing energies, although it represents almost the entire correction for core binding
energies.

The contributions to the self energy can be classified, as shown, into relax-
ation and correlation contributions. Performing a delta SCF calculation for a
particular electron binding energy would account (by definition) for the entire
relaxation contribution. The additional corrections can be labeled as correlation
and when calculated through third order gives quite reasonable electron binding
energies with typical errors of a few tenths of an electron volt.

Even in second-order theory some predictions may be reliable if only quali-
tative results suffice. For instance, if only the principal peaks in a photoelectron
spectrum are needed, such as in the study of some simple donor-acceptor com-
plexes, as borane (BH3) with donors such as H,O and CO.

Monomeric borane has a very short lifetime, but it is a strong Lewis acid
and may be stabilized by forming complexes with Lewis bases. BH3 resem-
bles a transition metal atom in a low oxidation state, in the sense that it can
form complexes with, say, carbon monoxide and phosphorous trifluoride hav-
ing negligible basicity. It has been suggested that the complexes of BH; with
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CO or PF3 are formed via a n-type delocalization of the BH3 e-orbitals into
unoccupied CO and PF3 orbitals. A motivation for the study of systems such
as BH3 ¢ CO and BH3 e H2O is that it may provide experience as to the re-
liability and suitability of the electron propagator as a tool for analyzing PES
experiments'® on heterogeneous catalysis, for instance, CO chemisorption and
reactions (methanol synthesis) on low oxidation state d° transition metal ox-
ide surfaces, such as ZnO(1010) and CuCl(111). The basis sets are correlated
consistent pVDZ, which consist of (9s4pld/[3s2pld] for first row elements and
(4s1p)/[2s1p] for hydrogen. All structures are optimized at the MBPT|2] level
of theory. The results are listed in Table 9.2.

Table 9.2: Optimized geometries at the MBPT[2] level with pVDZ bases. The
notation Hg means that the proton lies in the symmetry plane of the C; point
group.
Complex  Point Group Geometrical MBPT[2] Experimental
Parameter /pVDZ

BC 1.565 A 1.540 A
H3;BeCO Csy CO 1.144 A 1.131 A
BH 1.217 A 1.194 A
CBH 103.8° 104.2°

BO 2.585 A

H3;BeOC Cso CcO 1.147 A

BH 1.203 A

OBH 90.9°

BO 1.730 A

H3;BeOH, C, OH 0.963 A

BH& BH, 1214 A

OBH 100.6°

OBH, 103.7°

H:B Dsn BH 1.203 A
CcO Coov CcO 1.147 A 1.128 A
H,O Co OH 0.964 A 0.958 A
HOH 102.0° 104.5°

The photoelectron spectrum with a UV source (UPS) of H3BeOH; calcu-
lated at the SCF (Koopmans’ theorem) and the EP2 levels are compared with
experimental results in Table 9.3.

Due to the hydrolysis of diborane, the experimental investigation of the
H3BeOH> complex is difficult and introduces some uncertainty about whether
the observed features in the Hel spectrum really are due to H3BeOH> or some-
thing else. The agreement between the calculated (EP2) peaks and the UPS
spectrum is as expected except for the observed feature at 14.4 eV. This is not
consistent with the theoretical result, but before suggesting that this feature

155¢¢ R. Longo, B. Champagne, and Y. Ohrn, Theor. Chim. Acta 90, 397 (1995)
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Table 9.3: Electron propagator poles at the SCF level (Koopmans) and at the
EP2 level are compared with experiment for the HsBeOH, complex

Assignment Koopmans (eV) EP2 (eV) Experiment UPS
(Pole Strength) (eV)
7(B-H) 72 1.3 10.5 (0.93) 9.7
m(B-H) 7a” 11.8 11.1 (0.94) 10.6
o(B-0) 6a’ 15.6 13.5 (0.91) 11.8
n(O) 5a’ 16.4 14.2 (0.90) 13.2
n(0) + ¢(B-0) 4a’ 20.7 18.6 (0.89) 14.4

might not be due to H3BeOHj, the electron propagator calculations have to be
carried to the third or partial fourth order and a larger basis should be used.

Comparison of the Koopmans’ theorem and the EP2 results with experiment
for the H3BeCO complex is presented in Table 9.4. Experimental results from
T. Pradeep and C. N. R. Rao'® are used.

Table 9.4: Electron propagator poles at the SCF (Koopmans) level and at the
EP2 level compared with experiment for the H;BeCO complex
Assignment Koopmans’ (eV) EP2 (eV) Experiment UPS

{Pole Strength) {(eV)
% (B-H) 12.8 11.9 (0.92) 11.9
6a; (B-C) 15.1 13.9 (0.91) 14.1
le (C-O) 18.6 17.1 (0.87) 17.0
5a; (CO) 21.6 18.1 (0.85) 18.5*

* Adiabatic ionization energy

Similar calculations are carried out for the H3BeOC complex and are re-
ported in Table 9.5.

Table 9.5: Comparison of the electron propagator poles at the SCF (Koopmans)
level and at the EP2 level with the same UPS spectrum as in Table 4
Assignment Koopmans (eV) EP2 (eV) Experiment UPS

(Pole strength) (eV)
% (B-H) 13.2 12.6 (0.94) 11.9
6a; (B-C) 15.3 14.0 (0.92) 14.1
le (C-O) 17.5 16.3 (0.89) 17.0
5a1 (B-H) 18.7 17.5 (0.92)
18.5*
da; (C-0) 22.5 19.0 (0.86)

* Adiabatic ionization energy

There is definitely a better agreement between the calculated and the ob-

16T, Pradeep and C. N. R. Rao, J. Mol. Struct. (Theochem) 200, 339 (1989)
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served PES for H3BeCO, than for H3BeOC indicating the discriminatory power
of the electron propagator theory even at this primitive level.

In conclusion, one can again reaffirm what already has been established by
many workers in the field, namely, that the propagator theory is an appro-
priate and practical approach to the interpretation and prediction of spectra.
The results presented here also show that in order to contain truly quantitative
agreement with experiment, it is necessary to consider electron propagator the-
ory at the third and partial fourth order and to also be able to accommodate
larger basis sets.

9.5 Photoionization Cross Sections

The photoionization process involves an absorption of a photon as discussed
in Section 6.3 on absorption spectroscopy. Rather than to use the result from
that section, the photoionization cross section is discussed in terms of “first-
quantization.” This will introduce some appreciation for how the electron prop-
agator amplitudes are related to the wavefunctions of the N- (N - 1), and (N +
1)-electron systems. The differential cross section for photoionization, i.e., the
probability that the system absorbs a photon and makes a transition from the
ground state |V} to the excited state | N, s) in the continuum with one electron
escaping into solid angle d€}; with wave vector Ef (and the rest of the system
in a bound state) is'”

dog
dfdy

N
= (&%ks/2mmel Aow) |(N, 5| S A(R) - V,INP,  (0.133)
j=1

where A(7) = Aofiexp(ik - 7) is the vector potential of the monochromatic
radiation field with polarization vector 7 and w = kc is the circular frequency.

The N-electron ground state |N) is represented by the wavefunction $g(&;,
&2, --&n) and the final state | N, s) by the wavefunction OAsN%’U(Ef, En)Ds(&n,
2, -&n-1).

Both &y, and @5 are assumed to be antisymmetric in the electron indices
and Oas = N71 — Z,ICV:—II Pyn] with the permutational interchanges Ppy
guarantees that the final state is antisymmetric in all of the electron indices.
This permits us to write

N
(V8| S AF) - VIN) = / o (R, )4 - Vgal€)de
j=1

s [v@Enop©d, (0130

7see, e.g., H.A. Bethe and E.E. Salpeter Quantum Mechancis of One- and Two-Electron
Atoms, Academic Press, New York, 1957.
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where g5(£) = N# f¢>:(€{,§2, o En-1)®o(&r, - EN—1,8)dEr - - dEn_1 and

ps(§) = (N—1)N%/Q:(ﬁlvﬁz,"'ﬁN—l)g(Fl)
V1®o(é1, En-1,8)dEr -+ dén—1. (9.135)

The photoelectron amplitude 'U(E 1, &) being strongly orthogonal to ®q leads
to the conclusion that the second term on the right-hand side of Eq. (9.134)
vanishes. This can be accomplished by assuring that U(E 1, &) is orthogonal to the
bound state basis set. This would be the case if the photoelectron amplitude
was an orthogonalized plane wave. It can be shown that even when strong
orthogonality does not exist, the first term in Eq. (9.134) dominates over the
second term for photon energies away from threshold.

In cases as these,

dos e2kf (7 ikFe O ?
= v*(kp, M) TR - Vs (F)drF (9.136)

dQ}y  mmew

where a factor 2 has been introduced for the two possible spins of the ejected
electron. Further simplifications are possible when the wavelength of the ion-
izing radiation is large in comparison with the molecular dimensions. Then
exp(ik - 7) ~ 1, and

dos erf
dQ ¢ T pimew

|7 - P2, (9.137)

with P = fv*(Ef,ﬁﬁgs(ﬂdﬁ For an isotropic sample, as a gas, the pho-
toionization intensities represent an average over all incident photon directions.
Furthermore, if the incident photon is unpolarized, one must average over po-
larizations:

dog erf _— -
= n - P fis - P|°}1d$2
dQds Tmew8T /[|n1 [+ 172 - PI]
ezkf —
= P32 9.
<Lip (9.138)

The result needs to be modified when the system is anisotropic or when the
radiation is linearly or otherwise polarized.

The evaluation of Iﬁ | requires knowledge about the photoelectron amplitude.
It should, of course, be calculated as a continuum amplitude from the Dyson
equation, but for a general molecule that is still a tough problem, and one pro-
ceeds by making more or less ad hoc choices. The perhaps simplest description
of the photoelectron is v(ic},f') = (2m)~ 2 exp(iEf - 7). This choice of a plane
wave is often referred to as the sudden approximation, or the zeroth-order Born
approximation. If a primitive atomic orbital basis {®q; (7 — R,)} is used,

- ik O s
P = (;ﬂf)‘% Ze“““f'Racgj/e-““f'r@aj(f)dﬁ (9.139)

aﬂj
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If the detector is swept, one integrates over all photoelectron directions
o5 = (e’ks/3mmew) / |13|2de. (9.140)

Since P involves summation over atomic centers, this expression for o, involves
both one- and two-center terms.

For linearly polarized light (say in the 7i; direction and with a plane wave,
v(ks,7) = (2r)~3/2 exp(iky - 7), it holds that

2

dos __e’ky , (9.141)

S T2
Qs 87r4mcculn1 kil

/exp (—iEf -F) gs (7) dF]

or with 71y -Ef = kscosf, one gets a differential cross section of the form Bcos?6.
This form does not agree with most experimental findings. However, with the
term involving p, nonzero, or with a photoelectron amplitude being a distorted
wave, as for instance an orthogonalized plane wave, one obtains

dog
dQy

=a+ Bcos’d, (9.142)

a form that agrees with much experimental data. Normally one controls the
angle © between the incident photon direction, & and the direction k£ of the
ejected electron. Then

cos? @ = sin? © cos® & (9.143)

where the polarization direction 72y, of course, is in a plane perpendicular to
the propagation direction k. Many experimental setups work with a fixed angle
e = 90°.
Problems

1. Show that g is a Dyson amplitude, i.e., gs(§) = >, us(§){(N — 1, sla;|N)

in terms of the basis spin orbitals.
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Chapter 10

Atomic and Molecular
Orbitals

This chapter deals with the discussion and interpretation of approximate molec-
ular electronic structure methods in terms of propagator concepts. Only situa-
tions with fixed nuclear frameworks are considered, and the discussion is limited
to the description of states that are close in energy to the normal state of the
system. We adopt the view that the main features of the electronic structure
of such states can be developed in terms of atomic orbital representations of
operators and that only valence shell orbitals need be considered.

10.1 Nonorthogonal Basis Sets

The treatment of orbital overlap in conjunction with the use of nonorthogonal
basis sets deserves particular attention in treatments in terms of electron field
operators. The definition of creation and annihilation operators and their an-
ticommutation rules are basic for this development. Let {us(£)} be a set of
atomic spin orbitals used to define the creation operators

al = / we ()01 (€)de (10.1)

and annihilation operators

0. = [ uiepwe)as (10.2)
The fundamental anticommutation rules

’

[%(£), (€ )]+

TAGRAUSIN (10.3)
[W(E), ¥ ()« —8(E-€)=0

155



156 CHAPTER 10. ATOMIC AND MOLECULAR ORBITALS

lead to the relations

[aS?aT]+ = [aLai]«g» =0,
las,al], = / wk (&) ur(€)dE = dsr + Ser- (10.4)

For an orthonormal basis set, all of the matrix elements S, equal zero. The
basis defines a subspace of the total Hilbert space and a projection operator can
be introduced through the kernel

D(gle) Zus [(1+8) Y arus(€), (10.5)

which defines the components of the electron field operators in approximate
electronic structure theory as

¥(§) — ¥p(§)

| prete i e
> _us(©)as + Y us(§)Terar, (10.6)

with T = {T,} = (1 +S)~! — 1. This truncated expansion of an electron field
operator is an example of an approximate representation. Such approximations
will impose limitations on the general theory, some of which will be discussed
in this chapter.

There will also be corresponding approximate representations of the state
vectors of interest. It will be assumed that such states can be generated from
a common reference state, analogous to the vacuum state. The reference state
|0) should have the property that

¥p(€)I0) =0 (10.7)

and need not be specified further. A general state vector |®) can be expressed
as

@) = [ d02.Nwh0uh) - vhMOBa2--N) (108

or as

®) = alal---a]|0)®re.., (10.9)

where ®(12--- N) and
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(I)rs~~~t (1010)

are the appropriate amplitudes corresponding to the wave function in a contin-
uous or discrete representation, respectively. The dimension of this state vector
space is 2M | where M is the rank of the spin orbital basis {u,(£)}.

The problem can now be formulated as one of finding the appropriate map-
ping from the states of physical interest to the model states given in Egs. (10.8)
and (10.9).

10.2 Green’s Function Considerations

The formal structure of the electron propagator of a free atom can provide
indications as to the appropriateness of the choice of limited basis set and the
associated choice of model hamiltonian. We consider the Green’s function

G(¢,€ E) ZE“EH:H (10.11)

expressed in terms of the spectral weights A(£, ¢ ,; s) and the electron attachment
and detachment energies

€s = Es(N+ 1) - EO(N),
s = Eo(N) - Eg(N —1). (10.12)

In the limited basis, the outer projection Green’s function
Gp(&,€5B) = (Wn(E):ivh(EN)
[aupenea,zap@e), (o)

and its corresponding spectral densities Ap (€, ¢ €) are the appropriate quanti-
ties. The projected spectral densities obey the sum rule

/ deAp(£,€ ;€)= D(EIE) (10.14)

to be compared with the relation

Y A Es) =66 -¢) (10.15)

for the exact spectral weights.
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For the case of a free atom, the low-lying states can often be described as

arising from orbital configurations of the form [s9()pa(P)]. The limited basis

then consists of the eight spin orbitals (£ = (7,(), v = +3)

us(§) = Ro(r)Yoo(,¢)d vy

un(€) = Ri(r)[Yi-1(6,9) — Y (6,9)]duc/ V2,

up(€) = Ru(r)[Y1-1(6,9) + Y11(0, 9)]iduc / V2,

uw(§) = Ri(r)Y10(0, 9)duc. (10.16)

The kernel D(£]¢") can then be expressed as

DEIE) = S [Ro(r)RS(r)
+3P;(cos ©)Ry (r)R:(r )] /4, (10.17)

with

cos® =77 Jrr . (10.18)

One can now express the spectral density as

Ap(6:€5€) = e [Ro(r)Ao(e)Ry(r)
+3P;(cos ©) Ry (r) A1 () R:(r )] /4, (10.19)

where the “orbital densities” Ag(e) and A;(e) both sum to unity.

We have used moment expansions in terms of nested commutators in the
determination of propagators, and these concepts are useful also in this context.
The notation

agk) = [agk-1)7H]7
a9 = a, (10.20)

is introduced. The spectral densities can now be expressed as

/deekAo(e) = ([aik_),al_]Jr)EWo(k),
/ decbr(e) = ([a),af,)s) = Wik). (10.21)

In these equations, the expectation value is supposed to be taken over a
rotationally invariant ensemble as was used in Chapter 4. The moments Wi(k)
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will depend on this choice of ensemble, and on the overlap between the radial
amplitudes of Eq. (4.95) and the basis functions R; (r). When it holds, as
is often the case, that these overlaps are large only for a few states, one can
expect to be able to obtain approximate values for the moments from experi-
mental energy levels by the means of fractional parentage and vector coupling
coefficients. Similarly, one may assume moments to be known from calculations
on atomic systems. Once known, the moments can be used to establish a model
hamiltonian for an atomic valence shell.

A model hamiltonian should have the structure of the full hamiltonian, but
could in principle have terms consisting of higher order products of annihilation
and creation operators. Here we limit considerations to such operators that con-
tain a one-electron part and an electron-electron interaction part. The number
of independent matrix elements can be considerably reduced by symmetry con-
siderations and by requiring compatibility with other operator representatives.
It is clear that the form of the spectral density requires that the hamiltonian
commutes with the total orbital angular momentum and with various spin op-
erators. These are given in the limited basis as

[ =iz, S (al i
L=ié; ) (al,ay, —al,a.,) i€, > (al,az, —al az)

14

+ ié’zZ(aLl,ax,, al,ay,) (10.22)

and
§=8,+8:+85,+85., (10.23)
with
S, =€,S% + €ySry + €:Sr,, for r=s,2,9,2 (10.24)
and
Sre = (a:+%ar—% +a:¢%ar+%) /27
Spy = —i (a:+%ar_% —a:_%aH_%) /2, (10.25)

©
™N
Il

i T
(ar+%ar+% +ar_%ar_%) /2.

The only one-electron part that commutes with L and § is a linear combi-
nation of the number operators N; [see Eq. (4.102) ], i.e.,

H = agNg+a1Ny (10.26)
= Z aluas,, + o Z (al,,ax,, + aL,,ay,, + az,,az,,) .
v v
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Were we to choose this as our model hamiltonian, the coefficients o would
be identified with the moments W;(k), which would guarantee that the first mo-
ment of the spectral density agrees with the experimentally determined value.
This is equivalent to the assumption that «; is the negative of the orbital elec-
tronegativity parameter.

The electron interaction terms are considerably more complicated than the
one-electron part. They may be analyzed using the pair creation operators of
Eq. (4.149). In Table 10.1 we give them in cartesian form for the limited basis.

Table 10.1: Pair creation operators for a set of s~ and p-operators in cartesian
form. Other operators for S = 1 can readily be obtained from the ones given
using the “step-down” operator such that [S_,7(S, Ms)] = ='(S, Ms)[(S +
Mg)(S — Ms + 1)]}

v L M, S Ms 7' (yLMLSMs)
2 0 0 0 0 alal_,
2 2
sp 1 z 0 0 (aiéal—% —az_%aié)/\/i
1w 000 (30, y a3 ))/V2
sp 1 z 0 0 (aTlal 1 —ai 1ail)/\/§
53 -3 -3 3

» 0 0 0 0 (a',a ,+al,d , +aiaT_l)/\/§

z3 :ZIT2 ; Y3 yT2 Tzz Z—3
p? 2 Ty 0 0 (az%ay_% —ax-%ay%)/\/—é
2 ot _ .t i
P 2 Yz 0 0 (a}}l%a?_% a}[/_%a?%)/\/i
p? 2 2T 0 o0 (az%aw_% —az_%az%)/\/ﬁ
PP 2 22-342 0 O (GL%GL_; —GL%GL-;)/\/E
p? 2 zz 0 0 (2‘111@1—% —ai%al_% +ai%a;fl_%)/\/6
sp 1 z 1 1 GZ%GL%
sp 1 Y 1 1 GZ%GL%
sp 1 2z 1 1 a%%azé
2 1
P 1 T 1 1 a?%atz%
pr 1 z 1 1 al,al,

As in the subshell hamiltonian in Eq. (4.150), there should be an interaction
parameter V (yLS) corresponding to the electron pair operators. The possibility
exists to introduce parameters that couple pair states of equal L and S but
different v’s. We require that the two-particle part of the hamiltonian commutes
with the parity operator



10.2. GREEN’S FUNCTION CONSIDERATIONS 161

Table 10.2: Interaction parameter in terms of Slater-Condon F- and G-integrals

v~ L 8 V (vLS)
s? 0 0 FU(s,5)
sp 1 0 F°(s,p)+(1/3)G* (s,p)
sp 11 F°s,p)—(1/3)G! (s,p)
pP» 1 1 F°%p,p)—(1/5)F(p,p)
P 2 0 F°pp)+(1/25)F(p,p)
p» 0 0 Fpp)+(2/5)F*(p,p)
s?, p G'(s,p) /V3
P = exp(im Z INY), (10.27)
1

and this leaves us only one possible extra parameter to be called
V(s p?). (10.28)

The interaction hamiltonian then has the form

Hiy = Y V(yLS)x'(yLMLSMs)m(yLMSMs) (10.29)
+V (5%, p%)[x' (s20000)7 (p?0000) + 7' (p?0000)7(520000)].

The parameters V' (yLS) can be calculated from Slater-Condon F- and G-integrals

and are given in Table 10.2.

In general, there could be seven parameters of this kind; however, we note
that there are only five independent Slater-Condon parameters.

Accurate atomic energy levels could be determined from a hamiltonian H +
H;,,; expressed as in Egs. (10.26) and (10.29) with the, in general, nine pa-
rameters (the seven V(vLS), and ap and o ) at our disposal. Description of
transitions between such energy levels requires a representative of the electric
dipole moment operator in the chosen basis. We use the form

R=e / dew (€)Y (©) (10.30)

and introduce the notation

1= (e/V3) / drr® Ro(r) Ry (r) (10.31)

to write
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=u Z a7 L0z + az,,as,,) (10.32)

and analogous expressions for the other cartesian components of the dipole
moment operator. Obviously, these representatives of R, Ry, and R, do not
commute with one another, which is a typical result of the truncated basis. Fur-
thermore, the dipole velocity operator commonly obtained via the commutator
of R with the hamiltonian,z.e.,

R. = —i[Rg, H + Hipny]
~ip(ag — ag) Z(aluazu — aL,as,,) —i[Ry, Hint], (10.33)

il

has a two-particle contribution. The requirement that the dipole velocity oper-
ator should be represented as a single-particle operator, as it is in a complete
basis, means that

[Ray Hint] =0 (10.34)

must be satisfied. In order to accomplish this, we introduce relationships be-
tween the free parameters, such that only two independent interaction param-
eters V(yLS) remain.

A convenient form of the hamiltonian can then be found in terms of N =
Np + Nq and S , which both commute with E. Such a model hamiltonian can
be expressed as

1 = 3
atom = KN - - 2= s .
Hutom = )_ N+ sKN(N = 1) = J(§* = IN) (10.35)

with K an average Coulomb-type integral and J an exchange integral. When
this hamiltonian is used to derive the moments of Eq. (10.21), we obtain

Wi(1) = g+ K(N) — (K = ST)N0) /(41 4 2), (10.36)

which depends explicitly on the ensemble used for calculating the average values.
The second moments are more involved, but one obtains straightforwardly the

3
Wi(2) = Wi+ (K-S )XN)A+2 - (N) (4l +2)7*
+(2K — J)J(S - S) (2l + 1) + J2(S?), (10.37)
with Sp = S, and §) = (S, + S, + 5.)/3 (see Eq. (10.24)).
The four parameters in the model hamiltonian may be determined in terms

of the four moments Wi(k), I = 0,1; k& = 1,2. The detailed calculation of
the moments may vary from case to case depending on the number of available
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energy levels and on which ensemble average is used to determine their relative
weights. According to Eq. (4.99), we obtain the moments for a term as

WiLS,k) = Y W L'S)(LS|laf|ly L'S)]? (10.38)
’YI7LI,SI
+H-DF Y KO LS LS el LS) P,

1ot ool

~,L",S
with
[E(Y'L'S') ~ E(vLS)}®

SOLS) = N EL TDES 1) (10.39)

In Table 10.3, we list the weights for the configurations under considerations
with the reduced matrix elements of creation operators obtained within the
simple orbital picture.

Table 10.3: Weights for the calculation of moments of the spectral densities A;(¢)
for s2p™ configurations. Note that for such configurations there is a unique spin
multiplicity for each L- value

[(s’p" LS]la]|Is?p" 1L’ )| [P+ LS Jal||s%p" LS) 2
6(2L+1)(25+1) 6(2L+1(25+1)
n L\L' 0 1 2 0 1 2
0 0 0 0 0 0 1 0
1 1 1/6 0 0 1/18  1/2 5/18
2 0 0 1/3 0 0 2/3 0
2 1 0 1/3 0 2/9 1/6 5/18
2 2 0 1/3 0 0 1/6 1/2
3 0 0 1/2 0 0 1/2 0
31 1/9 5/36 1/4 1/9  5/36 1/4
3 2 0 174 1/4 0 1/4 1/4
4 0 0 2/3 0 0 1/3 0
4 1 2/9 1/6 5/18 0 1/3 0
5 1 1/18 1/2 5/18 1/6 0 0
6 0 0 1 0 0 0 0
[(sp" LS|laf||sp LS)> _ 28 41
22L+1)(25+1) = 1512

The calculation of the hamiltonian parameters from moments of the spectral
density of the electron propagator offers a systematic approach to the general
problem of assigning weights in a fitting procedure for energy levels. We notice
that when J is neglected in the simple hamiltonian in Eq. (10.35), one recovers
the result that the Coulomb parameter v equals the difference between the
ionization energy and the electron affinity of the atom.
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10.3 A Simple Model Hamiltonian

Analysis of Green’s functions can be useful in seeking to establish model hamil-
tonians with the property of giving approximately correct propagators, when
put in the equations of motion. In this section, we explore a particularly simple
model in order to familiarize the reader with various molecular orbital concepts
using the terminology of Green’s function theory. We employ the Hartree-Fock
approximation and seek the molecular Fock operator matrix elements

frs = ([[arv Htot]7 a’i]-f—)' (1040)

As a guide to this calculation, we consider the limit of separated atoms, for
which we may write

frs — 0ps Wi, (10.41)
which can be derived from an effective hamiltonian

Hepp =Y Wralay, (10.42)
T

expressed in terms of only the first moments W, = W,.(1) of the atomic spectral
density functions. When we assume that this effective hamiltonian also applies
at interatomic distances in molecules and when the electron field operators refer
to a nonorthogonal basis, Eq. (10.4) applies and we get

frs = 57‘3Wr + Srs(Wr + Ws) + Z Syt Wi Sis. (1043)
i

This result is similar to the widely used approximations suggested using different
arguments by Mulliken and by Wolfsberg and Helmholz. The equation of motion
for the Green’s function [Eq. (4.15)]

EG,s(E) = b6rs + Srs + WeGrs(E) + > SuWiGis(E), (10.44)
t

and in matrix form, this has the solution
G(E)=[E@+8S)"' -wW]™!, (10.45)

where W is a diagonal matrix of moments.
It is often the case that all the elements W, are negative, so we can write

W, = —k2, (10.46)

r

where &, are the elements of a diagonal positive definite matrix k. An alternative
form may then be given for this approximate electron propagator such that

G(E) = k™ E1 + s(1 + S)x]"1x(1 + 8). (10.47)
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This means that the poles of the Green’s function, i.e., the molecular orbital
energies, are obtained as eigenvalues of a negative definite matrix with elements
—Kr(6r5 + Srs)ks. The molecular orbital coefficients can straightforwardly be
inferred from the residues at the poles of this spectral representation.

In spite of the very simple assumptions leading to this model, it leads to
quite acceptable approximate values for electron binding energies for molecular
species when compared with some other approximate approaches. This model
has been applied under the name Energy Weighted Maximum Overlap (EWMO)
to a number of problems involving photoelectron spectra and to a number of
problems in the interpretation of spin resonance experiments.

10.4 Electronic Indices from Green’s Functions

The electron propagator can be used to calculate the charge distribution and
other electronic indices that are relevant for a discussion of ground state prop-
erties of molecules. We will examine in detail the Mulliken population analysis,
which attempts to relate charge distributions to a partial occupation of atomic
orbitals and valence shells.

The number operator for electrons in a limited basis is obtained from Eq.
(10.6) as

Nop =Y _lal +> alT)a, =Y N, (10.48)
T S T

where N, are the so-called population operators. These operators mutually
commute and are idempotent, but not Hermitian. The gross population of spin
orbital r is defined by the expectation value

N = () = 5= [ dBY GraB)our + T, (10.49)

where we have invoked the definition of the reduced density matrix from Eq.
(4.38). When we now use the particular EWMO propagator, we get

N(r) = (2mi)~"! /C dE[EL + r(1 + S)R|=L, (10.50)

which is the result that would have been obtained for an orthonormal set of
orbitals had we chosen the Fock operator matrix elements as

—Kp(Ops + Srs)ks. (10.51)

The gross atomic population, which gives a measure of the formal charge of an
atom in a molecule, is defined as the sum over all N(r) for r a spin orbital on
the atom under consideration.

The population numbers N(r) are clearly not physical observables in a strict
sense, but serve as electronic indices, which may be employed in various ways.
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Table 10.4: Electron binding energies (in eV) of the molecules SFg (O sym-
metry) and CF4 (T symmetry) calculated in various approximate ways and
compared with measured values from photoelectron spectroscopy

(a)
(b)

(c)

(d)

Molecule Symm. (a) (b) (c) (d) Exp.

SF¢ ey 194 175 178 181 ~16
tiu 19.0 16.8 21.5 185

tig 182 159 224 179 173

tou 194 16.8 231 19.1 18.7

tog 222 18.8 242 217 199

tiu 24.7 21.8 29.0 235 229

alg 29.6 26.7 308 275 27.0

ey 454 356 431 414 393

tiu 46.9 36.5 50.8 474 41.2

alg 50.4 39.3 57.0 574 442

CFy t2 16.2 205 182 16.1
t1 15.3 225 183 174
e 16.8 23.6 205 185
to 20.8 285 235 222
ag 234 298 259 251
ta 356.0 485 457 403
ay 37.7 55.0 56.3 4338

Hartree-Fock calculations with Gaussian basis set from U. Gelius, B. Roos, and P.
Siegbahn, Chem. Phys. Lett. 4, 471 (1970) as quoted in (b).

“Muffin-tin” potential, one-electron self-consistent calculation, J. W. D. Connolly, and
K. H. Johnson, Chem. Phys. Lett. 10, 616 (1971) for SFg, and J. W. D. Connolly,
Int. J. Quantum Chem. 86, 201 (1972) for CF4.

CNDO approximation, K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P. F.
Hedén, K. Hamrin, U. Gelius, T. Bergmark, L. O. Werme, R. Manne, and Y. Baer,
ESCA Applied to Free Molecules, North-Holland Publishing Co., Amsterdam, 1969.
This reference also contains the experimental values.

The values are the poles of electron propagator in Eq. (10.47) with W, taken as
the free atom Hartree-Fock orbital energies.  Overlap integral are calculated from
the corresponding atomic orbitals given by E. Clementi, Tables of Atomic Functions,
Suppl. to IBM Journal of Research and Development 9, (1965)

For instance, they can be used to estimate the molecular dipole moment in a
point charge model with the dipole moment operator approximated as

E=Y"N, / A (©)]2. (10.52)

Other electronic indices are the bond orders, which may be correlated with bond
distances and bond energies. Their definition in the context of nonorthogonal
orbitals has been the subject of much discussion. The simple EWMO model
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examined here offers a definition of a bond order matrix element as
Prs = (2mi) 7} / dE[E1 + (1 + S)k) (10.53)
C

This is in line with the definition used in Hiickel theory.

10.5 Orthogonalized Atomic Orbitals

A variety of models for molecular electronic structure have been developed where
the overlap problem has been circumvented by using formally orthogonalized
orbital. In a separate chapter, we examine in some detail the Pariser-Parr-Pople
model for m-electron systems. In this section, we discuss some of the common
general features of such models. The symmetric orthogonalization procedure
introduced by Léwdin offers a unique transformation of a set of atomic orbitals
to an orthonormal set, where each member has the maximum overlap with a
corresponding member of the original set still consistent with orthonormality.
The orthogonal set obtained in this fashion is denoted {@;(£)}, while the original
nonorthogonal basis is denoted {u,(£)}.
We write

us(€) = Y u(E)crs, (10.54)
with
= [ g (©us(©) (10.55)

From these relations, it follows that

Ors + Spa =D _ CirCs (10.56)
t

A general expression for the expansion coefficients that satisfy this relation can
be expressed as

crs = Y Y[l + M X[, (10.57)
k

where X = {X,;} is a unitary matrix satisfying
S X[ SreX g = Mebpy (10.58)
r,s

and where Y = {Y,+} is another unitary matrix, which may be varied. The
maximum overlap property between members of the two sets may be formulated
in terms of the expression

S [ defunte) - au(©F = Sl2 - ens - i), (10.59)

s
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which should be a minimum when the unitary matrix Y is varied. The optimum
choice is found to be Y = X, which leads to the result

c={cs} = (1 +8)%. (10.60)

According to the definition of the electron field operators in a basis (Egs.
(10.1) and (10.2)), the basis electron field operator transformations are

al = alas (10.61)

t

and the corresponding relation for the annihilators. The transformed operators
s and @l satisfy the appropriate anticommutation relations for an orthonormal
basis.

When the orthonormal set {#s(€)} is now employed for representations of the
hamiltonian and other relevant operators, it is in approximate theories taken as
a justification to neglect in a first approximation integrals involving the product
density of spin orbitals associated with different atomic centers. This is the
so-called Zero Differential Overlap (ZDO) approximation. The charge density
operator, for instance, would then become

o) =ed_ YhEYn(e) = e Y @(u(¢)ala

spin spin,s,t

~ S, (10.62)
A

Il

where g4 (7) is an atomic charge density operator defined as a partial sum over
spin orbital s and ¢, belonging to atom A. Two-center terms are neglected, and
the approximation has been termed Neglect of Diatomic Differential Overlap
(NDDO).

A more drastic approximation than the NDDO is the Complete Neglect
of Differential Overlap (CNDO), where all cross products in Eq. (10.62) are
omitted and the atomic charge density operator is simply

A =e > > lus(6)ala,. (10.63)

spin seA

Both the NDDO and the CNDO assumptions apply only to matrix elements
involving the charge density operator. Other arguments have to be used for
matrix elements of other operators, such as the kinetic energy and the current
density.

The properties of the charge density operator g4 (7) warrants some additional
comments. The incomplete basis set causes the charge density operator at 7 not
to commute with the position vector 7 # 7. The CNDO approximation restores
this commutation property of the full theory. The cost of this is rather high
because then also the dipole moment operator will have a representation where
so-called atomic dipoles are neglected. This means that matrix elements of the
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position operator between orbitals on the same atom are omitted even though
these are important for the determination of transition moments, for instance,
between s and p-orbitals. Furthermore, the form of g4 () should be invariant
under unitary transformations among the basis orbitals of atom A. This implies
that the CNDO approximation must be used in a form such as

qa(7) = el@al?® Y ala, = elial*Na, (10.64)
seA

with N4 the number operator for atom A and where |i4|? denotes a represen-
tative orbital density on atom A. With the CNDO approximation for the charge
density operator, the electron interaction term of the hamiltonian becomes

1
Hipe ~ 3 Z”YABNA(NB —0aB). (10.65)

The one-electron terms in the total hamiltonian cannot be expressed only in
terms of the charge density and one adopts the general form

> hrsiilas, (10.66)

where the off-diagonal elements h,s; are proportional to the overlap integral
Srs. The remaining diagonal elements h,, are usually chosen such that atomic
properties are reproduced when S, and thus, the so-called hopping terms h,.g
are omitted.

We can use the total hamiltonian

o1
H=>"hydlas + 5 > vaBNa(NB — 645) (10.67)
AB

r,s

to obtain the following expression for the Fock operator matrix elements in the
basis:

fTS = <[[dr,H],ELZ]+> = h'rs - 7AB<6167'> + 5sr Z'VAC’(NC) (1068)
C

where spin orbitals 7 and s are associated with atoms A and B, respectively.

Neglect of off-diagonal elements leads to that the number operators N4
commute with the total hamiltonian and that the bond orders (a{a,) vanish. It
also follows that the expectation values (N¢) assume integer values that equal
the normal number of occupied valence spin orbitals in an isolated atom, i.e.,
(N¢) — Zc. Identification with the separated atoms limit and comparison with
Eq. (10.36) for the diagonal elements of the Fock matrix lead to
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fre = ar +7a4(Za — (@Ldr) + Y vac((No) - Ze). (10.69)
C

From the above discussion, it follows that the construction of parameterized
hamiltonians for molecular orbital calculations may lead to certain operator re-
lationships being violated in a limited basis. It is also clear that some of these
operator relations can be restored at the expense of introducing various approx-
imations in the evaluation of integrals. Atomic parameters may be derived from
consideration of the separated atoms limit, while interatomic parameters are
commonly associated with overlap integrals and possibly other functions of the
interatomic distance. For instance, it is often assumed that when r is a spin
orbital on atom A and s is one on atom B, a suitable form for the hopping term
is

hrs = 5(Ba + 85)S,s, (10.70)

where the 8 parameters may be determined from comparisons with experimental
or theoretical data for selected molecules. The CNDO form in Eq. (10.63) of the
one-electron off-diagonal matrix elements leads to the following expression for
the many-electron hamiltonian in the CNDO approximation; the CNDO model
hamiltonian:

1
_ a4t ita
H(CNDO) = const.+ zs:asasas + 5 Tz;(ﬁA + BB)Srsdlas
1
+5 > Y¥aB(Na — Za)(Ns — Z) (10.71)
AB
1
+ ;’YAANA(ZA - 5)-

The constant contribution to the hamiltonian is significant only in the sense
that it can serve to define an appropriate average value for some reference state.

We saw in connection with the establishment of the atomic model hamil-
tonian that it commutes with the electric dipole moment operator even if it
contains average exchange integrals. Strict application of the CNDO approxima-
tion of Eq. (10.63) yield a purely diagonal representation of the dipole moment,
but it is the general experience that both transition moments and permanent
electric dipole moments have significant contributions from intra-atomic dipole
integrals. Thus, one would favor the NDDO approximation over the CNDO.
The arguments leading to Eq. (10.34) showed on the other hand that only
electron interaction terms constructed from the number operators N4 and spin
operators S 4 could be considered. Based on such arguments, we can put forth
a model hamiltonian containing intra- and interatomic exchange integrals Jag,
such as
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H(CNDOX)=H(CNDO) - > JapSa-Ss. (10.72)
A,B

The interatomic exchange integrals would be zero in any approximation
where diatomic differential overlap is neglected, while the intra-atomic exchange
is included in the approximation called Intermediate Neglect of Differential
Overlap (INDO). The form of hamiltonian in Eq. (10.72) is more restricted
than the one which applies for the NDDO approximation. These restrictions
are imposed by Eq. (10.34) as soon as the dipole moment operator cannot be
expressed in terms of the N4’s only.
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Chapter 11

The Pariser-Parr-Pople
Model

11.1 Introduction

Propagator or Green’s function methods are employed in this chapter to an-
alyze the many-electron problem in planar unsaturated molecules as treated
within the Pariser-Parr-Pople (PPP) model. A derivation of the model in many-
electron theory serves to demonstrate the nature of the approximations involved.
Applications are presented for the case of weakly interacting atoms. A decou-
pling procedure for Green’s functions proposed by the authors is shown capable
of yielding a correct description of this case.

Propagators have the advantage of giving direct information about transition
energies and amplitudes from a reference state, but like density matrices, they
suffer from a lack of simple ways generally to ensure so-called N-representability
or correspondence to proper many-electron state vectors. Nevertheless, the
propagator approach to semi-empirical many-electron theory appears to have
certain advantages over other methods. Such treatment has led to useful rela-
tions between matrix elements in the PPP-model 1.

The molecular orbital method is a very flexible and often successful tool
for analyzing electronic structure-dependent properties. Its deficiencies are inti-
mately connected with the treatment of superpositions of configurations. In par-
ticular, the molecular orbital model is not satisfactory when the overlap between
relevant valence orbitals on adjacent atoms is smaller than 1/2. This result was
particularly well illustrated by Coulson and Fischer 2 in their well-known study
of the hydrogen molecule, and it is relevant for the molecular orbital treatment
of m-electron systems, where the typical overlap is in the range 1/3-1/4. Ev-
idence has also been presented for the insufficiency of the PPP-model when

1J. Linderberg, Chem. Phys. Lett. 1, 39 (1967)
2C. A. Coulson and I. Fischer, Philos. Mag. 303, 386 (1949)
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the overlap exceeds 1/2 ®. Thus, it appears that the construction of approxi-
mate eigenstates to the PPP-hamiltonian using the molecular orbital method
requires considerable justification. The instabilities of the normal molecular or-
bital ground state noticed in the application of the random phase approximation
further supports this view. Extensions of the simplest molecular orbital picture
to include superposition of configurations have been reported by several authors,
and Cizek 4 has given an effective formulation of the problem. However, the
drawback of such an approach is the need to perform separate calculations for
different states and the difficulty in claiming similar accuracy for separate cal-
culations. The propagator approaches have the advantage that they give direct
information on energy differences of sets of states and that the approximations
generally yield similar accuracy for all states considered.

An alternative approach to extend the molecular orbital method is offered
by the work of Hubbard ® for the study of narrow energy bands in solids with
the aim to study magnetism. The main idea of this work is to analyze the
many-electron problem for the case of separated atoms, which means the limit
of zero bandwidth.

A separation of intra- and interatomic characteristics is sought. Rather than
proceeding with a perturbation theory treatment from the separated atomic
limit, which appears to be too complicated for actual applications, we apply a
decoupling procedure for the truncation of the chains of propagator equations.
This suggests a general technique for systematic decoupling of such equations.
The next section casts the derivation of the PPP w—electron approximation
in terms of electron field operators. The second section contains an analysis
of the separated atom limit. Special attention is given to the definition of
elementary excitation operators and the relationship to the Heisenberg spin
hamiltonian for the determination of the ground state energy. The third section
deals with interatomic terms and the propagator decoupling procedure. In the
fourth section, various expectation values needed for the equations of motion
are calculated. The proposed scheme is applied in the fifth section to the infinite
linear chain.

11.2 Reduction to the Pariser-Parr-Pople Model

In order to derive the PPP-hamiltonian, it is assumed that the nuclear frame-
work of the molecular system is invariant under the point group Cj, which
contains the operations of identity and a reflection. This is not always true
for all molecules to which the model is applied, and then the magnitude of the
perturbation caused by the noninvariant part of the nuclear potential must be
examined. The electron field operators ¥(¢,t) are expressed as the sum of two
components, each transforming according to an irreducible representation of Cj,

3]. Fischer-Hjalmars, in Adv. Quantum Chem., P.O. Lowdin, Ed., Academic Press Inc.,
New York, 1965, Vol. 2, p. 25

4J. Cizek, J. Chem. Phys. 45, 4256 (1966)

5J. Hubbard, Proc. Roy. Soc. (London) A244, 199 (1958)
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such that
(&) = ¥(d',€) +p(a”, §). (11.1)

The a’- and a”-components are the o- and w-components, respectively, in the
conventional nomenclature.

As the “o-field” and the “m-field” are orthogonal by symmetry, the total
number operator for electrons is simply the sum

Nop = [ dew!€016) = N(@) + N(a') (11.2)

of number operators for the two separate fields. The hamiltonian is obtained as
a sum of several terms

H = Hy+ Hy + Hy, (11.3)
where (h = 1)
Hy = -;-ezf;zgzh/[ég—éﬂ, (11.4)
mo= [al©-apmvi-@ Y - Rive (L)
~ Hi(d)+ Hi(a"),
He = 3¢ [dedglr=71 9 @l (€ wie)wle) (116)

= H(d',d',d',d') +2H(a",d’,a’,a") + 2Ha(a",a’,a",a’)
+ H2(a/’a/’a//’a//) + H2(a//’a//’ a/’ a/) + H’2((l//,a'//7 a//, a//)-

The hamiltonian has in this manner been divided into parts that represent in
order: the mutual repulsion of nuclei, the kinetic and potential energy of the
“o- and 7-fields,” the self-interaction of the “o-field,” the coulomb and exchange
interactions between the “o- and n-fields,” the energy of transfer of electrons
from 7 to o and reverse, and finally the self interaction of the “m-field.”

Electron transfer between the two “fields,” i.e., the fourth and fifth terms of
Hj, do not commute with N(a’) and N(a”) separately and prevent the number
of m-electrons from being a constant of the motion. The omission of these terms
is equivalent to the ansatz of Lykos and Parr®. A perturbation theory argument
can be made to show that the effect of this omission is small when the ratio
of exchange-like integrals between ¢ and 7 orbitals or reverse is small. This
approximation appears to be more valid than some others introduced in the
following.

A second step considered by Lykos and Parr is the “freezing” of the o-part.
In second quantization, this corresponds to a neglect of the operator nature of
Y(a’,€) and the replacement of products such as ¥f(a’, &) (a’,€) with their
expectation values, assuming that such average values are not dependent on
the particulars of the states under consideration. This is a crucial point in the

6P. G. Lykos and R. G. Parr, J. Chem. Phys. 24, 1166 (1956)
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establishment of the PPP model and requires special attention. Perturbation
theory arguments can be presented that show that the approximation is not
severe when the polarizability of the molecular o-skeleton is small. Particularly
interesting in this connection is an experimental study of the optical reflectiv-
ity of graphite by Taft and Philipp 7. It demonstrates convincingly that it is
meaningful to consider a separation of a o- and n-part of the electrons. One
would expect this to hold true for most planar unsaturated molecules at least
in describing their response to long wavelength optical excitations. The study
of Taft and Philipp also demonstrates that the polarizability of the o-skeleton
is not small and that dispersive effects are not important for energies below the
10—16eV range. The total effect of the o-system is to shift the resonance energy
of the m-system to lower energy, which is to say that the neglect of dynamical
effects of the o-skeleton can be formally compensated for by a reduction of the
electronic interaction within the w-system. Such a reduction or screening can
be considered as a dielectric effect from the o-medium, but the introduction of
a simple dielectric factor in the electron repulsion integrals may be too much of
a simplification.

Screening of electronic interactions can be qualitatively understood, but
hardly subject to numerical estimates. The difficulty arises from the inhomoge-
neous nature of the medium, since the reduced interaction must be described at
distances comparable to chemical bonds. Neither is it sufficient to consider only
local effects of screening, nor to screen independently the various wavelengths
in the Fourier transform of the coulomb interaction. Hubbard formulated an
integral equation for the screened interaction, but only very approximate solu-
tions seems to be feasible. We will demonstrate that some numerical evidence
supports the determination of interaction integrals based on screening theory.

The neglect of dynamical effects of the o-skeleton makes it possible to include
the second and third terms of H; into H;(a”’) to obtain H,yre{a”) in the common
nomenclature of the model. The first term of H> combines with Hy to a new
constant Hj. The effective hamiltonian for the m-electron system then may be
expressed as

H(a") = Hy + Heore(a”) + Ha(a”, 0", 0", a"). (11.7)
The precise definition of Here(a”) is
Heore(a") = [ dw! (@, )~ (1/2m)V? + Vaor ()0, )
~¢ [ dedgw! @ W@ i e HF =TI (L)
with

Veore(F) = =€) Zy /|7 — Ryl + e2/dg’(wT(a’,g')w(a',g')w— 77t (11.9)

"E. A. Taft and H. R. Philipp, Phys. Rev. 138, A197 (1965)
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The core potential is the Coulomb potential from the nuclei and the electron
density of the a’-system. The exchange potential is represented separately.

It is worth mentioning at this stage that Eq. (11.7) is a complete defini-
tion of H{a") and cannot without extra specifications be given a configuration
space representation. The field operators (a”,£) contains the supplementary
condition that in the configuration space picture of the states there will only be
m-orbitals in the wavefunction.

One further step is required to reach the PPP-model, and that is the ap-
proximation of linear combinations of atomic orbitals. The field operators are
expanded in a set of symmetrically orthonormalized atomic spin orbitals of

" symmetry. Furthermore, each atomic orbital is associated with a separate
atomic center 7 in the molecule. We write

1/1(0", é) = Zuru(g)aruy (11.10)
ary = [ deuz, ©w(a6) (11.11)

where the operators a,, are annihilation operators for electrons in the m-orbital
on atom r with spin component v. The zero differential overlap approxima-
tion, which is part of the PPP-model means that the spin orbital product
urp(&)usy (€) is put equal to zero for r # s. This leads to

Yi(a”, (e, €) = lur (&) [*nrs, (11.12)

where n,., = aiuaw is the occupation number operator for the spin orbital u,.,,.
The orbital expansions Eq. (11.10) and Eq. (11.12) are inserted in the hamil-
tonian in Eq. (11.7), resulting in the Pariser-Parr-Pople model hamiltonian

I4 !
1
H(PPP)=H|+ E Op Ny + E ﬁrsalyas,, + 3 E Vs Ty Mgy . (11.13)

A prime on the summation sign as usual indicates the omission of diagonal
terms. In the PPP-hamiltonian, this means the omission of terms where the
operators would correspond to the same spin orbital. Thus, there is neither a
term with (3, nor with n,,n,,, but there is one with n,,n,_,. The parameters
o and By are matrix elements of Heore between atomic spin orbitals ., (§) and
us,(£), and 7,4 is the electron repulsion integral between spin orbital densities
e/ (€)1? and |us, (€)1,

An immediate consequence of the form of H(PPP) in (11.13) is that ex-
citation energies for transitions between states of equal number of m-electrons
involve only differences of the o and ~ parameters. This can be illustrated by
the operator

SH = 6éaN(a")+6yN(@")N(d") 1] (11.14)

’
do Z Nyy + %5"}’ Z Ny Mgy’

I
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which when added to H{P PP) changes it to an equivalent form where all the o
and 7 parameters are uniformly increased by da and §, respectively. Moreover,
0H is a constant within each manifold of eigenstates belonging to a particular
eigenvalue of N(a”), which means that energy eigenvalue differences within such
a manifold are independent of dax and é~.

The result of the previous paragraph permits us to draw some conclusions
regarding the appropriate magnitude of the electron repulsion integrals. Accord-
ing to Hubbard’s theory of screening of electronic interactions, the v, s represents
the potential felt at atom 7, averaged over |u,|?, from an electron with charge
distribution |us|? and its surrounding polarization field. The results of Taft and
Philipp suggest that the polarization is essentially instantaneous on the time-
scale of the m-electrons, and should have little effect. This result is reflected
in most empirical determinations of these parameters. A modification of the
electron repulsion parameters due to dielectric effects influences only one-center
and nearest-neighbor integrals. Such changes of the parameter values are no-
ticeable in spectra through the differences of these integrals to second neighbor
values. For instance, in the case of the benzene molecule, these differences as
given by Simmons® in various approximations are generally scaled down by a
factor 1/2, which would correspond to a an effective dielectric constant for the
o-medium equal to 2. That compares well with the optical value of 2.5 found
by Taft and Philipp. The technique afforded by Hubbard’s theory of screen-
ing appears more satisfactory than simple perturbation theory arguments. One
might suggest that the evaluation of the electron repulsion integrals be based
on the assumption that the charge distributions should correspond to a more
diffuse atomic m-orbital, which would be computed for a valence state configu-
ration. Obviously, there are some drawbacks to such a procedure, because the
nearest-neighbor integrals will increase due to the decrease in localization, and
the use of the zero differential overlap approximation will be harder to justify.

11.3 Limit of Separated Atoms

In this section, we examine in some detail the case when the off-diagonal ma-
trix elements of the core operator 3,5 are small in comparison with the electron
repulsion integrals v,,. This corresponds to the situation of separated atoms,
but it should be realized that other matrix elements also depend on the relative
positions of the nuclei, both through the core operator and the symmetric or-
thonormalization procedure of the orbitals used in the expansion Eq. (11.10).
In the following, the constant term of H(PPP) is omitted, the third term is
considered as a perturbation, while the second and fourth parts constitute the
unperturbed hamiltonian for this case.

Thus, in the limit of separated atoms, we write the hamiltonian as

8H. E. Simmons, J. Chem. Phys. 40, 3554 (1964)
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1
Hatoms = ZHT+§Z7rs(nr++nr—)(ns+ +ns—), (1115)
r r#s
H., = ap(ney +7p-) 4+ Yernpyne_. (11.16)

The only nonvanishing anticommutation relation of the basis field operators is

[@ru,al ]+ = 6purbrs, (11.17)

which means that all the operators n,,, commute, and all

Ny =14 +np_ (11.18)

mutually commute and commute with Hgiom,.

The unperturbed energy eigenvalues are given in terms of the eigenvalues
of the operators N,., which are simply 0, 1, or 2, meaning that an atom can
have zero, one, or two electrons in its w-orbital. The states with one electron in
each atomic orbital are degenerate, and in general, a large number of degenerate
states corresponds to each unperturbed eigenvalue. Some of these degeneracies
can be classified according to the theory of coupling of spin angular momentum.

The operators

1

S,y = §[ai+ar_ +al_ary), (11.19)
1,

S-,-y = §z[ai+ar_ - a;r-_ar+]7
1

Sy, = §[al+aT+ - al_ar_]

satisfy the commutation relations for components of angular momentum, i.e.
[Sra) Sryl- = 15,2, 2,9, 2, cyclic, (11.20)

and the total spin on site r is given by

SZ=8% + 82, +S2, = ZN”(Q — N,). (11.21)
Within each manifold of states characterized by the eigenvalues of the oper-
ators N,., there will be a unique correspondence between the operators S, and
ordinary spin operators and they will be interpreted as spin operators for atoms.
The different spin components for an atom are all constants of the motion in
the unperturbed case. Spin coupling becomes important when the perturbation
terms are introduced.
Before considering spin coupling details, we examine the Heisenberg equa-
tion of motion for the electron annihilation operators in the unperturbed case.
Hubbard found that the two components n,_,a,, and (1 — n,._,)a,, of the
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operator a,, develop harmonically in time when the hamiltonian is H,. We
write

za(l —nr_p)ar, = |1 =nr_y)ar, Hr]- = a1 — np_y)ay, (11.22)

i'c‘l't‘nr—uaru = [nr—uaru’ r]—- = ar+7rr)nr vary. (1123)

The solution of (11.23) and (11.23) yields

ary (t) = [1 + ny—,(0)(exp (—ivrrt) — 1)]ar, (0) exp —ic,t, (11.24)
which can also be written as

ary(t) = ary (0) exp [—it(r + Yrrnir—u)]. (11.25)

When the total unperturbed hamiltonian is used for the time evolution, we
obtain

Gro(t) = exp (itHatoms)ru(0) exp (~itHatoms) (11.26)
= aru(O) exp [_it(ar + 'YrTnT—V) + Z Ns]'
sFET

The expansion of the exponential operator in Eq. (11.26) gives a product
of factors similar to the expression in Eq. (11.24). It follows from Eq. (11.26)
that the compound field operators n,_,a,, and (1 — n,_,)a,, are basic for the
full treatment within a manifold of states defined by a set of eigenvalues of the
operators N,. They act as operators for elementary excitations for the case of
separated atoms.

The algebraic steps presented above can now be applied in the development
of a perturbation expansion of the evolution operator in a similar way used by
Bulaevskii®. We consider only terms of the second order in the perturbation

pert Z/Brsan,asw (1127)

since there are no first-order energy shifts, and degenerate second-order pertur-
bation theory is required to find the stable zero-order states.

When P is the projection operator on the particular degenerate manifold of
eigenstates of Hyoms in which we are interested, it can be specified in terms of
the eigenvalues ¢, of N,

N,P = gq,P. (11.28)

The formal charge g, of electrons on atom r also defines uniquely the unper-
turbed energy,

9L. N. Bulaevskii, Zh. Eksp. Teor. Fiz. 51, 230 (1966) [Sov. Phys.- JETP 24, 154 (1967)]
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HatomsP = E0P7 (1129)
1 1«
Ey = Z[ar(h + 57rr‘1r(Qr - 1)] + 5 Z’)’qurqs. (11.30)

As the perturbation cannot connect degenerate states within a particular man-
ifold defined by a set of formal charges q,, we can conclude that

PHpert P = 0. (11.31)
Schrodinger perturbation theory leads to the study of the second-order reduced

hamiltonian, which is given by
Hred = PHpert[(l - P)/(EO - Hatoms)]HpertP (1132)

0
= lim—i / PHpers (0)Hypert (t) Peltdt.

The perturbation operator in the interaction representation is obtained by in-
serting the expression (11.27) in the form (11.32). The integrand in Eq. (11.32)
then assumes the form

PHpert(0)Hpert ()P = P Y Braal,asuBeral,, (t)ar (t)P. (11.33)
rs,vv’

In order to simplify this expression, it is useful to define

W, =a, + Z’YTSQSa (1134)
SFET

and to observe that the commutation relation

(Nr,ar]- = —ar, (11.35)

can be used to obtain

exp [itNrYsr]@ry = Gy €Xp [(E(Ny — 1)7vsr]- (11.36)

We find after some algebraic manipulation that

> Pal azal ,(t)an, ()P

= P{%Qr@ —gr)(2 —¢s)(1 — gs)exp [it(Ws — Wy —vsr)]  (11.37)

+ %QT(qr - 1)(2 - qs)(l - Qs)eXP ['Lt(Ws - Wr = Ysr — 'Yr'r)]
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1 .
+ §qr(2 - QT)QS(2 - QS) exXp [Zt(Ws -W, + Vss — ’Yrs)]

1 B
+ é‘QT(qr - 1)qs(2 - qs) exp {Zt(WS - Wr + Yss — Ysr — ’Yrr)]

— 25_;,. . gs exp [it(Ws -W, + Yss 77"5)]}'

The first four terms of the right-hand side of Eq.(11.37) when inserted into
Eq. (11.33) give a constant contribution to H,.q in Eq. (11.32), and we obtain
a spin hamiltonian of Heisenberg type

Hyeq = constant — Y _ J;.S, - S, (11.38)
with
Jrs - _Iﬁrslz[(Ws - W'r' + Yss — 'Yrs)_l + (Wr - Ws + Yrr — 'Ysr)—l]' (1139)

A system with identical atoms and with one w-electron per atom will in this
approximation behave as a Heisenberg antiferromagnet with the exchange inte-
grals

Jrs = _2’/67%'2/(71‘7' - ’Yrs)- (1140)

The constant in this case is such that we can write

Hred = Z Jrs(—
rs

The above analysis demonstrates the nature of the spectrum of the PPP-
hamiltonian when the off-diagonal elements of the core hamiltonian are small.
The elementary excitation operators are essentially atomic and correspond to
localized processes. There will be families of states that are almost degenerate
and that are connected to one another through spin excitations.

+5,.5,). (11.41)

|

11.4 Interacting Atoms

This section deals with the calculation of double-time Green’s functions for the
study of electron propagation through a system with small interactions between
atoms.

The Green’s functions of interest are defined with respect to the ground
state of the system, and the decoupling procedure for the equations of motion
refers to this state. The detailed nature of ground state will ideally be the
result of the calculation, but it should be clear from the following that its con-
struction is a complicated matter. However, ground state properties may be
calculated without explicit knowledge of the state. Important questions regard-
ing N-representabilty are left unanswered here.

The two types of elementary excitation operators, n,_,a,, and (1—n,.,)ap,,
to describe the limit of separated atoms form the basis also for the discussion
of interacting atoms. We introduce the particular linear combinations
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Ary = (1 - n'f‘—l/)a”l‘l/ + Np—pQry (1142)

and
bry = Zr(nr—u - <nr—u>)arw (1143)

with
ze = [(ne—) (@ = (ne_)) 72 (11.44)

All expectation values are assumed to be evaluated for a singlet spin state.
Thinking of the ground state as an expansion of valence bond states, we can see
that while a,, annihilates an electron on atom r with spin v, b, has the same
effect with a change of relative phase and weights of the structures for which
atom 7 is “ionic” and “covalent”.
These operators satisfy the relations
<[b,«,,,aL,]+) =0 (11.45)

and

((Bros bl 14 = 6rsbuur (11.46)

The two propagators of interest are the electron propagator

Grs(t —t') = ({aru(t);al, (t)), (11.47)

and the mixed propagator

Kro(t = ') = ((bru ();al, (£)- (11.48)

Their Fourier transforms

Grs(E) = ({arv;al,))E = / Gys(t)e*Pldt, (11.49)

and the analogous expression for K, s(E) are used in the calculations and satisfy
the equations of motion

EGys(E) = 6,5 + ({{ary, H]_;al ) g (11.50)

and

EK,s(E) = (([ber]—Wlu))E: (11.51)

as well as certain initial conditions. The hamiltonian in these equations is the
PPP-hamiltonian from Eq.(11.13).

The procedure of decoupling of the equations of motion means to truncate
the chain of equations such that the propagators on the right-hand side of Egs.
(11.50) and (11.51) are expressed as linear combinations of only G and K type
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propagators. This is equivalent to expressing a general fermion field operator
X in terms of only a’s and b’s, i.e.,

X = (frvtrw + Lubr). (11.52)

The coefficients f,, and I, can be determined from the requirement that the
effect of the operator X on the ground state should equal the effect of the
expansion on the same. This yields the two equations

X[0) = ) (frwars + Iuby,)0), (11.53)
O1X = (0> (froary + Lvbry), (11.54)
which imply that
Fro = (X, al,]4) (11.55)
and
I, = ([X,b,]4). (11.56)

From the Eqgs. (11.50) and (11.51), it follows that in the present case, the
operator X is either [a,,, H]|- or [byy, H]-. Thus, we define the matrix elements

frs = <[[aTV7H]—’aiu]+>7 (11'57)
I, = ([[aTVvH]—7bJsru]+>ﬂ (11'58)
frs = ([[bruyH]—7bjr9u]+>' (11'59)

The approximation defined by this truncation of the propagator equations
leads to the following matrix equation:

s B[] o

The ordinary molecular orbital approximation according to the Hartree-Fock
method is obtained from Eq. (11.60) when the matrix I is neglected and there
is no coupling between the Green’s function of type G and type K.

The solution of Eq. (11.60) is achieved by standard methods once the matrix
elements are obtained. Their evaluation involves the calculation of expectation
values, which can be found when the solution of Eq. (11.60) is available, and we
are, thus, faced with a self-consistency requirement, which is similar to but more
complex than the corresponding challenge in the Hartree-Fock approximation.
In the next section, the calculation of the matrix elements is addressed.

The solution of Eq. (11.60) can be conveniently discussed in terms of the
eigensolutions of the homogeneous problem obtained when the right-hand side
is replaced by zero. This defines the eigenvalue problem
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o]

with the orthonormality condition

= e [ e ] (11.61)

Vk

uLuk/ + VLV](/ = QK- (11.62)

The eigenvectors serve to define elementary excitation operators Ay, as

Apy = Z(uLTaW + v,trb”,), (11.63)

r

which are a convenient basis, i.e.,

Qry = ZurkAkua (1164)
k

bTV

> vk Ars, (11.65)
k

and derive their importance from the property that

([ Akw, H)=, AL 14) = €xbhpr B, (11.66)
and that

(B ~ ex){({Akvs Av)) E = Ok - (11.67)

Important are also boundary conditions, and we know that the behavior of
Green’s functions at the poles of their Fourier transforms uniquely determines
the various properties of the solution. The only sensible specification with regard
to the poles is to require that the inverse Fourier transform is carried out with
an integration along the real axis in the complex E-plane as in the contour in
Fig. 3.1, i.e., such that all poles to the left of a point u are circumvented below
the axis, while all poles to the right of i are circumvented above the real axis.
As we have seen before, this is equivalent to adding or subtracting an imaginary
infinitesimal part when €; — p is negative or positive, respectively, i.e.,

€r — €k + 10sgn(p — €x), 6 > 0. (11.68)

The choice of the point u is critical and determined by the condition that the
ground state should contain a certain number of electrons. It is not apparent
that this number always should be an integer, and we may have to accept states
of the type used by Bardeen, Cooper, and Schrieffer in their theory of supercon-
ductivity, i.e., a superposition of states with varying number of particles. This
difficulty has not occurred in actual applications carried out so far.

The number of electrons in the ground state is given in terms of the propa-
gator as
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N = an y =23 lim —iGp(t) _22 (2mi)™ /dEGTr( ). (11.69)

t—0-—

The contour C in the complex E-plane encircles the part of the real axis where
E < p. Thus, we get

N =23 "fuml, (11.70)

T (k)

where the summation over k extends over the values for which €, < .
This expression does not necessarily yield an integer. However, the deviation
from an integer can be analyzed by applying the identity

alyar,, =Ny, = b o + (2(ne_y) — l)zraiubr,,, (11.71)
which leads to the expression
N =233 "[lorkl* + (Nr) = Dzersf vpe], (11.72)
r (k)

where we have used the expansions in terms of the excitation operators Ay, and
averaged the number operator over the spin singlet ground state. An alternative
result is obtained as the average of this expression and the result in Eq.(11.70),

N = Rl e ()~ Dzl 0179

The case of one electron per atom, (V) = 1, then immediately yields an integer
result from the normalization condition (11.62). However, for other cases, this
may not be true.

Alternative forms are also available for the calculation of the total ground
state energy. The most direct approach is to compute the expectation value
of the hamiltonian. Another common technique in the application of Green’s
functions makes use of the identity

7
Za’lu [arw H]_ = Z(ar5rs + ﬁm)aluaru + Z YrsNrpTsu, (11.74)
TV

T,8,V 78,0,

so that
Ey = (H)
= (2mi)71 / dE [(or + E)bys + Brs|Gier(E) (11.75)
c rs

2 Z[(Olr + 6k)5T8 + /Brs]usk'll:};r.

rs (k)

It
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The expression (11.75) is also valid in the Hartree-Fock approximation,
where all the vy, vanish. In the more general case, this expression may not
agree with the direct calculation of the hamiltonian expectation value. This is a
difficulty not uncommon in the application of Green’s functions. It should have
been avoided by some auxiliary constraint on the decoupling procedure!?.

Inconsistencies in the theory such as the ones discussed above may be con-
sidered connected with the lack of preservation of certain formal equivalencies
in an approximate theory. An obvious relation that follows from the Hellmann-
Feynman theorem is the expression for the bond order as a derivative of the
total energy

1 1
_ - . = i f
Psr = 23E0/8ﬂsr = 3 g (al, a5, +al ar,) (11.76)

= (mi)7! /C dEG(E).

The simultaneous validity of Eqs. (11.75) and (11.76) puts conditions on the
relations of various expectation values and thereby on the decoupling procedure.
There is no simple way to incorporate these conditions, and it is not given any
further considerations in this chapter.

We now investigate the result of Eq. (11.76) with the energy computed with
the reduced hamiltonian of Eq. (11.38). The bond order should be computed
to order Brs, and the matrix elements of Eq. (11.61) are obtained for the case
when all (N,) =1 and all atoms are equivalent as

frr = W-+0(8%), (11.77)
1
Jrs = Brs— 5’)’rsprs, (11.78)
1
]rr = 577'7‘ + 0(162)7 (1179)
Irs = 0(3%), (11.80)
frr = WH0(8Y), (11.81)
fra = Brslllbrvralyas +al_ae_, +al_,ar_u],bl]4)  (11.82)
1
+ §7rsp7‘s + 0(52)

A straightforward perturbation calculation on Eq. (11.60) produces the
Green’s function through order 3. The contour integral in Eq. (11.76) with the
parameter g chosen equal to W yields

Drs = [frs - frs]/'Yrr- (11.83)

105ee, for instance, the Ward identities in perturbation theory discussed in P. Noziere, Le
problems a N corps, Dunod Cie, Paris, 1963, p. 243ff.
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This is an implicit equation for p,.; according to Eqs. (11.78) and (11.83), which
can be solved to yield

Prs = —Brs/ (Vrr — 'Yrs)][l - 4<§T' ’ §s>], (11.84)

when terms of higher order in 8 are neglected in the evaluation of the expectation
value in Eq. (11.83) and spin symmetry is used.

Thus, the correct result is obtained provided the the expectation values of
the product of spin operators can be evaluated. This analysis is given in the
next section.

11.5 Calculation of Expectation Values

The matrix elements defined in Egs. (11.58)-(11.59) are evaluated in this section
under the assumption that a ground state | Fy) exists such that the Green’s func-
tions are determined in the manner described in this chapter. This assumption
takes the form

(AL, Ak} = Vibiis o, (11.85)

where the “occupation number” vy is defined such that

1 e <
Vi _{ 0 i cop (11.86)
This implies the property
(1 — i) Agy + vk AL )| Eo) = 0. (11.87)

The conditions imposed on the ground state by this equation have not been
proven to be incompatible, and this property is basic for the following calcula-
tions.

All expectation values of concern can be expressed in the form (Xa,,), with
X a fermion-like annihilation operator. Eq.(11.64) and the property (11.87) are
applied to obtain

<XTaru) = Zurkyk<XTAku> = Zurkyk“XTy Aku]+>
k k

= Z Z urk”k“]t:s([XT’ Gsu]+)

k

+ ZZuml/kv};s([XT,bsu]Jr). (11.88)

k

We introduce the following notations:
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e = ) [ AEG(E) = Dl = g, (159)
C

krs

(2mi)~ / dEKs(E Zvrkykuks, (11.90)
C

which are assumed to be real and for which the ground state is assumed to be
nondegenerate. Eq. (11.88) can now be written as

Xta,,) ng (XT, a0 s +Zk (X, bs,]2). (11.91)

This equation is an implicit equation that leads to an equation system for several
expectation values. Only when X is a simple fermion or quasi-fermion operator
do we get the result that

(al,ar,) = grs (11.92)
and

(bl ar) = ki, (11.93)

in accordance with the initial value conditions on the Green’s functions.
There is a formal exact correspondence between the matrix elements f,.; and
the Fock operator in the Hartree-Fock approximation, i.e., the expression

frs = Ors {ar + 2 Z 'Yrtgtt] + Brs — YrsGrs (1194)
t

holds, but the difference with Hartree-Fock lies in the calculation of the g,’s.
The elements of the I-matrix are evaluated from the expression

Is = 0y Z'Yrtzr«nr—u - grr)”tu) - 'Yrsk:r- (1195)

tp

Application of Eq. (11.91) to {(ny, — grr)neyu) yields a system of equations,

((ry = gre)nep) = Oupulgredre — 97y — kre]?]
+  kuze{(Nry — gre)Ne—p), (11.96)

with the solution

((nry = gre)(new + o)) = [9rrbre = g7y = Vkre*)/[1 = ke, (11.97)

The explicit expression for the matrix element I,.; is obtained by inserting this
expression into Eq. (11.95), a step we omit here. The matrix elements f.s are
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more complicated, and we first express them in a less compact form obtained
from Eq. (11.59) and the definition (11.43) such that

fTS = ZT((nT*V g'rr)[[aru, H] bjrsu]+
+ [nT~V7H] [aTW bst/]+ + [bsw [nT ,,,H] ] aru)
= Zrzs«nrﬂu - grr)(ns-u - gss)[[aru’ H]—7 ai,,]-k (1198)

+ 51‘3[77'7“—1/: H]—(nr—u - grr) + aly[ns—w [nr—-ua H]—]—aru>-

It follows that the diagonal elements are

frr = f’r‘r + Zr(l - zgrr)-[rr + 2r Z(/Brtk;« + k'rtﬂtr)
t

+ 2229, - Zgnﬁtr (11.99)

It can be shown that it is self-consistent for the case of an even alternant hydro-
carbon molecule to assume that the last three terms in this expression vanish.
Off-diagonal elements can be expressed as

frs = ﬁrszrzs<(nr—u - grr)(ns—u - gss)

+ alas_val_Lar —alal_Lar_yam, — s (bl b)), (11.100)

The average value in the last term is denoted §,s and evaluated as

= vratillbl,, Arle) = Y vrktav), = Gre. (11.101)
The average value of the first term is obtained from Eq. (11.96) as

{((r—v = grr)(Nts—y — gss)) = [grrOrs — 935 - |krs{2]/[1 - k?s 32] (11.102)

a form that is not expressed symmetrically in 7 and s.
Similarly, we find the expressions

(al,asval_Lar,) = [grrbrs — 25 = lkrs|?]/[1 + Kss2s) (11.103)

and

(aluai_uar_,,ar,,) = [g,.s k*2 + krgsrzr (1 — 2g70)]/[1 = ksszs).  (11.104)

We note that the frequently appearing quantity ksszs is a measure of the dis-
persion of the operator Ny, i.e.,

S

koszs = 22((Riery — Gos)ew) = %f((Ns — (N - 1. (11.105)
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In the limit of small interatomic coupling, the denominators in the expres-
sions (11.103) and (11.104) are almost vanishing and the limit needs to be taken
with due consideration of the details. A careful analysis reveals that the limit
can be expressed in terms of the spin operators S, and S; of atoms r and s, as
we have already indicated.

11.6 Application to Linear Chains

A linear chain is here defined as a system with the hamiltonian H{PPP) in
Eq. (11.13) for which it is appropriate to assume a periodic arrangement of the
atoms. Examples of such a system would be the annulenes.

Hiickel theory for the even alternant hydrocarbons leads to the Coulson-
Rushbrooke theorem!! and some other characteristic results shown by McLach-
lan 12 to be valid also in the Pariser-Parr-Pople model. These are the well-
known pairing relations between electronic states of alternant hydrocarbon cat-
and anions. This particle-hole symmetry is analogous to the situation discussed
in Chapter 4 for electrons and holes in atomic subshells.

For even alternant hydrocarbons, the atomic sites may be divided into two
classes (even and odd) such that the atoms belonging to one class have nearest
neighbors only of the other. This symmetry property of the PPP-hamiltonian
can be readily explored if we write

’
H(PPP) = KNop + Zﬂrsaluasu + Z'Yrs[(Nr - 1)(N5 - 1) - 1]
r<s

1

£ Yl = - =)= 3h (11.108)

where K = a, + %'y" + Z#T Yrs is a constant for all atoms 7.
Consider the complete particle-hole transformation by the unitary operator
U = exp (iS), where

even odd

§=g"= g{Z(aLai_ + Gp_Qpy) — Z(aL_al_ +ar_ar+)}.  (11.107)

From the result in Chapter 3, we obtain the following relations for the trans-
formed field operators & = UaU:

T

Gt = —,Z?” for r even (11.108)
ar— = da,,

and

11C. A. Coulson and G. S. Rushbrooke, Proc. Cambridge Phil. Soc. 40, 193 (1940)
12A. D. McLachlan, Mol. Phys. 2, 271 (1959)
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Table 11.1: Matrix elements for a cyclic alternant hydrocarbon in the Pariser-Parr-Pople
model

Matrix 7 and s both odd 7 and s not both odd

elements or even or even
Brs 0 £0
Grss Grs %5rs #0
kys #0 0
fTS /’I’(STS # O
I’r‘s 7é 0 0
frs [ors #0
a + = 'LCI.T
N r for 7 odd. (11.109)
Gr— = —ia,,

One should note that when only nearest-neighbor interactions are considered
for §,s the atomic sites 7 and s belong to different classes and the associated
“bond order” operator product satisfies the relation

al,as, = al,a.,. (11.110)

The transformed hamiltonian can then be written as

H(PPP) = H(PPP) + 2K (n — N,p), (11.111)

where 7 is the number of carbon atoms and the parameters 3,5 are considered
to be real, since no magnetic fields are included in this treatment.

The implications of these results for the present study are a number of con-
ditions on the matrix elements g,;, k.s, and §,.s, which we will show to be
self-consistent for the case of an alternant hydrocarbon. Table 11.1 lists the
effects of the alternant character on the model.

The parameter p can be chosen equal to the common constant diagonal
element of matrices f and f, since the resulting secular equation (11.60) will show
pairing of roots around p and the number of roots equals twice the number of
electrons (cf. Eq. (11.70)). The pairing property can be shown from Eq. (11.61)
by using the transformations

€ — [ — Y — €k, (11.112)
Urg — (_)rur—ky
Urk — (")rvr~k7
which can also be used to demonstrate the self-consistency of the solution. An

obvious feature of the pairing is the existence of a “gap” in the energy spectrum
around p. This is not an unreasonable result because even the Hartree-Fock
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approximation yields a small number of states around the middle of the spec-
trum, in particular, all unrestricted Hartree-Fock procedures give a finite “gap”
for nonvanishing interactions in a linear system.

Electronic interaction integrals enter the various matrix elements, but he
most significant contribution from them comes in the matrix I, particularly in
its diagonal elements. Most of the characteristics of the problem are preserved
by omitting off-diagonal parts of I or equivalently put all two-center integrals ~,.¢
equal to zero. This is not such a crude approximation as it may seem because
those integrals occur only in conjunction with small factors everywhere except
in the diagonal elements f,.., which anyway are put equal to a reference point
on the energy scale. Furthermore, they occur in the nearest-neighbor elements
frs and frs and here they can be accounted for by a “renormalization” of the
B-value. In this manner, we can account for the last term in Eq. (11.94). These
approximations lead to a significant simplification of the problem, and we are
left with the following matrix elements when g is put to zero.

| B8 r,s neighbors
Frs = { 0 otherwise, (11.113)
1
I.s =16, = Eyrrérs, (11.114)
and
: | AB 7,5 neighbors
Frs = { 0 otherwise, (11.115)
where A = ~12g2 /(1 — 4k2,) for r, s neighbors.
Solution of the eigenvalue problem is obtained with the ansatz
VNux = cosfexpidr, (11.116)
VNv,, = sinfexpigr, (11.117)
with the boundary conditions for a periodic solution, i.e.,
Urk = u'(r-f—N)k’ (11118)
Urk = Y@r4+Nk
which yield the equation system
(ex — 2B cos¢)cosd = Isind, (11.119)

(ex — 2ABcos¢@)sing = Icosb.
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From this equation, two branches of eigenvalues arise, which can be seen from
the quadratic form

(ex — 2B cos d){ex, — 2ABcos ) = I*. (11.120)

Using the boundary condition (11.119) and the pairing property (11.113), we
obtain

¢ = 2rk/N (11.121)

for positive or negative integers k, and we obtain the roots

ex = (14 A)Bcos (2rk/N) + [I% + (1 — A\)28% cos® (2nk/N)|%,  (11.122)

for k=0,1,2,---,N — 1 and

€k = —€k|, (11123)
fork=—-N,-N+1,---,-2,-1.

The eigenvectors are determined in terms of the parameters 6y = 0; from
Eq. (11.120), and we can determine the parameter A = —12g2 /(1 — 4k2)
self-consistently.

One can derive that

-1
Ngon = - Z cos? Oy, cos (27k/N) (11.124)
k=—N
1 N-1)
= —=(L=X)(B/I) > cos® (2mk/N)
2 k=0

X [L+ (1= N)2(B/1)? cos® (2mk/N)] 2,

which yields the two limiting results

li - I .
Ghm gor = —(1 = A)(5/41) (11.125)
and
N-1
Jim g0y = 3 Jcos (2mk/N)| /2N 2= 1/7. (11.126)
k=0

One can also derive that

-1
Nkoy = Z cos O, sin 6y, (11.127)
~N
N—

p—l

[1+ (1 = A\)2(8/I)? cos® 2wk /N)|™ %
k=0

MI»—J
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Table 11.2: Comparison of calculations of the energy of an infinite linear chain in the limit
of |8/ < 1

Method EoI/28°N % of exact value
One-parameter AMO —0.4053 58.5
Many-parameter AMO ~0.5000 72.1
Eq.(11.76) ~0.6250 90.2
Eq.(11.75) —0.8594 124
Exact —0.6931 100

with the limiting values

1 1
i (1= NXB/T)? .
B}llmokoo 5+ 2( A (B/I) (11.128)

and
lim kg0 = 0. 11.129
11 oo (11.129)
We conclude that for NV > 6 it holds that

3
—5 <A< ~12/m% = ~1.216. .. (11.130)

and that this result is rather insensitive to the ratio 8/I. The two branches
of the eigenvalue spectrum defined by Eq. (11.120) form a hyperbola when
the eigenvalues ¢ are plotted against the Hiickel energy 23 cos (2nk/N) with
asymptotes, the slopes of which are unity and A.

In order to compare this treatment of the PPP hamiltonian with known
results, the total energy of the linear chain is calculated in the limit of small
B. The total energy of the presented Green’s function approach is obtained in
two ways: from Eq.(11.75) and from the integral of Eq.(11.76). These results
are compared to the one- and many-parameter alternant molecular orbital ener-
gies!3, and with an exact calculation for the antiferromagnetic chain'?. We note
that Eq. (11.75) gives too low an energy, a result that we interpret as a failure
to satisfy the identity (11.74) within the present approximate calculation.

Notes and Bibliography

e The Green’s function method applied to the Pariser-Parr-Pople hamil-
tonian going beyond the Hartree-Fock approximation follows closely the
work presented by the authors in 1967 (Chem. Phys. Lett. 1, 295) and in
1968 (J. Chem. Phys. 49, 716).

13R. Pauncz, J. de Heer, and P. -O. Léwdin, J.Chem. Phys. 36, 2247, 2257 (1962)
141, Hulthén, Arkiv. Mat. Fys. Astr. 26A, 11 (1938)
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The original work that has given the name to this model are from 1953
by R. Pariser and R. G. Parr in J. Chem. Phys. 21, 446 and 767, and by
J. A. Pople in Trans. Faraday Soc. 42, 1375.

The Hellmann-Feynman theorem used in developing the formula as a
derivative of the total energy has its origin in the work of H. G. A. Hell-
mann (1937) Einfihrung in die Quantenchemie, Leipzig, page 285, and in
the work of R. P. Feynman from 1939 published in Phys. Rev. 56, 340.

Detailed calculations for the six-membered ring using the approximations
presented in this chapter were published by J. Linderberg and E. W. Thul-
strup in 1968 in J. Chem. Phys. 49, 710.

The linear chain problem with a simplified hamiltonian using v,.; = ¥d,s
has been solved by E. H. Lieb and F. Y. Wu in Phys. Rev. Lett. 20, 1445
(1968).
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Chapter 12

The Excitation Propagator
in Higher Orders

The excitation propagator is of importance for the understanding of electronic
excitation spectra, polarizabilities, indirect nuclear spin-spin coupling tensors,
and many other quantities. It has been treated in higher order approximations!
and is capable of yielding predictive results. An approach analogous to the one
followed for the electron propagator is quite feasible.

A more accurate treatment of the equation of motion

E((alaj;ala)) s = ([ala;, afai] ) + ({ala;; [H ala] )} s (12.1)

is needed than what is done within the geometric approximation (RPA). The
reference state is chosen as a single determinantal SCF state |0) with the SCF
spin orbital basis and the associated electron field operators being divided into
occupied (labeled by indices a, b, ¢, ...) and unoccupied (labeled by indices p,
g, 7, ...). The superoperator hamiltonian is used again, and a basis of Boson-like
operators

(X} = {a;foaa,a;r,aaazab,a;aaagabalac...}
= {dl.dldl.dlalq} -} (12.2)

is employed. The hamiltonian is again partitioned into an unperturbed part
and a perturbation as

Hy = E eia;fai
i

.. 1
Z (ij]1kl) [Zaza;alak - 6jl(nj>a;rak] (12.3)
5.kl

Isee, e.g., J. Oddershede and P. Jgrgensen, J. Chem. Phys. 66, 1541 (1977)

|4

197



198 CHAPTER 12. EXCITATION PROPAGATOR IN HIGHER ORDERS

but a different (but equivalent) way is chosen to proceed toward the perturbation
expansion than what was done in the case of the electron propagator.
The excitation (matrix) propagator in Eq. (5.2)

p(m) = (4 )iwi i a a)) (12.4

can now be approximated by introducing a truncated inner projection manifold
h of our field operator space such that

P(E) ~ (( ‘g )IR)(1|(ET ~ A)R) " (BI( a' q ). (12.5)

If the projection manifold spans the entire field operator space, there is no ap-
proximation. However, that is not feasible and one proceeds by partitioning the
projection manifold so that {h} = {(q' q)|f}. Provided f is orthogonalized
against the particle-hole and the hole-particle space, i.e.,

@) = o,
(df) = o, (12.6)

one obtains

pe) ~ ((4)icat an{(( 4 )E-mia a))

(9 Eoasr - o @ACa o))

i
(3 )ica’ a). (12.7)
The treatment of this expression through third order in electron interaction
has been carried through?. It is necessary to introduce corrections to the SCF
reference state through second order in electron interaction. This is usually
accomplished via a Rayleigh-Schrédinger perturbation expansion. When this is
done, one needs to also introduce renormalized particle-hole and hole-particle
operators, which slightly complicates the formalism.

An explicit treatment of the excitation propagator through second order in
electron interaction is presented in the following. First the projection manifold
is limited to {f} = {(q'q" aqq)}, and the superoperator

R=H+ HIf)E((ET — IHE)~(f|H (12.8)

is introduced to write

_( Bl-(lRa)  (@liRe)
P(E’“( (al2a) ~E1—<quq>>' 129

Zsee, e.g, J. Oddershede and P. Jgrgensen, J. Chem. Phys. 66, 1541 (1977)
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As all four blocks of the matrix propagator contain the same information re-
garding excitation energies and transition moments (as is clear from the spec-
tral representation), one can choose to concentrate on the so-called particle-hole
propagator, which satisfies

({a:a")z" = E1 - M(E), (12.10)

where M(E) is the proper particle-hole self-energy or the “irreducible vertex
part”. The expression

M(E) = (d'|Rq')+ (d'|Rq)[E1 + (q|Rq)] *(qlRq’)  (12.11)

can be analyzed through various orders of perturbation theory, where order is
defined in terms of the electron interaction. For excitation energies through
second order in electron interaction, one has to evaluate (qTIRqT) through sec-
ond order, while since (qf|Rq) is at least of first order, (q|Rq) needs only be
evaluated through zeroth order.

The reference state of the propagator needs to be evaluated through first
order in electron interaction, which gives

_ _ (qpllab)alaqalay
ref) =10) + |[DE) = N1+ ) P Eb)lo). (12.12)
p>q
a>b
First, consider
(a|Rd’) = (qf|Hq)
) tot ..
+(@'|H( q'q’ aqq ))(( qqg )I(EI—H)( ad'q’ aqq )7’
tot
q'q ot
X(( aq )IHq ); (12.13)

where several terms can be dropped when limiting the treatment only to low
orders. For instance, (qq|fI q') is zero when using the SCF average, and when
the first-order correction |DE) is used, these terms are at least of second order.
Thus, through second order one would only have to consider

(@ |Rq") =B +aT(E1-A) la (12.14)
with

B (a'lHa"), a=(d'qdl|Hq),
A = (d'qd'|Hq'q). (12.15)

Similar arguments lead to (qT]ﬁq) =C= (qT |ﬁ q), which starts to contribute
in first order.
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Through second order, the excitation propagator can then be expressed as

- E1-B C
P~ (E) = < c* —E1—B*) (12.16)
_(aT(E1-A)'a 0
0 al(—=F1 - A*)"la* )’

where the first matrix is the inverse of the RPA propagator and the second ma-
trix contains the so-called “two-particle two-hole corrections” (2p-2h-corrections).

One can now evaluate explicit expressions for the elements of these matri-
ces in terms of two-electron integrals over SCF spin orbitals and spin orbital
energies. Observing the special nature of the particle-hole and hole-particle
operators, one obtains readily

Bappa (0) = <Ol[aZaq, [Ho, a;f,aa]_]_ |0} = (€p — €a) OpgBabs
Bgppa (1) = (0“‘1;%7 v, aLaa]—]—l0> = {qalibp),
Barpa (2) = (0l[a}aq, |V, ala,]-]-|DE) (12.17)
_ Y {gm||cd){cd||mp)
T2 m,c,d€q+€m“6a_€b
_@g {ac||mn){mn||bc)
2 et Gt —Ec— 6 ’

for the terms contributing to the B-matrix through second order. For the other
matrices, one finds

Copipa (1) = (0|[a:§ab, v alaa]—]—lo) = {abl|gp),
tnamepa (1) = (0l[afamalan, [V, a}aa] ]-|0)
= —dpplan]|ed) + np{amlled) (12.18)

—bca(mn||dp) + daa(mnilcp),
Andmesspre (0) = (0llalamalan, [Ho,alasalac]-]-10)
= (em + € — €c — Ed) 6ns6mr5df(scea

for the terms that contribute through second order.

One can, of course, proceed to higher orders and introduce diagrammatic
analysis analogously to what was done for the electron propagator®. Calcu-
lations beyond second order are yet not feasible for other than the smallest

systems. Iterative solutions of
E = Mgppa (E) (12.19)

for converged excitation energies can be obtained, although they are costly. Sim-
ilar considerations to those expressed for the electron propagator apply here?.
3see, e.g., J. Oddershede and P. Jgrgensen, J. Chem. Phys. 66, 1541 (1977)

4see, e.g., J. Oddershede, in Adv. in Quantum Chem. Vol. 11, 275 (1978) and references
therein for a comprehensive discussion of connections to other methods
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12.1 Awuger Spectroscopy

Auger spectroscopy prepares a system in a core-hole state by ionizing radia-
tion and measures the kinetic energy of secondary electrons produced when the
highly excited core-hole state makes a radiationless transition to a continuum
state with two valence-holes and a free electron. The initial photoelectron and
the secondary (Auger) electron make this a two-electron detachment process
leading to the two-particle two-hole propagator

axa aral
((arapalal Ve = Z[ (0laxailp) (plalal,|0)

E—E, (N +2)+ Eo (N) +in

(0la}al lp> (plakazl())

" E B (M E, (N2 i) (12.20)
which can be expressed in matrix form as
A(E) = ((az;atal)); = (afa'|(Bf - H)~'alal)
~ S(ES-F)'S, (12.21)

where in the last step the geometric approximation is again invoked. A single-
determinantal SCF reference state |0) is employed and the indices ordered such
that k < [ (m < n). It should be noted that in the operator basis { X} = {&I&L},
both k and ! (m and n) are either occupied or unoccupied spin orbitals in the
reference state. Should, say, k refer to an occupied spin orbital and [ refer to an
unoccupied spin orbital (or vice versa), the metric would be singular. This can
be seen from

Sij = (Xi|X;) = (Ol[adi, af,al,] - 10) = dindem (1 = (k) — (), (12.22)

with ¢ and j being the compound indices (k,l), and (m,n), respectively. Such
“mixed” field operators are excluded from the basis. The basis field operators
are then ordered in such a way that propagator assumes the block form

00 ou]
b

o (12.23)

A(E) = (38381 = [

where oo refers to the block with the indices of both @& and @'a' corresponding
to occupied spin orbitals, and so on.

In the following, the convention is used that a and b refer to occupied and
p and ¢ refer to unoccupied spin orbitals. The inverse of the propagator in the
geometric approximation can then be expressed as

=) e ][ 1] wa

Using the single-determinantal SCF reference state, one can readily calculate
Bij = (Xi|HX;) = (0|[Gads, H,d!,a},]-]-10)
= =8, 0, (ca+ep) + (ablla’d), (12.25)
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where the hamiltonian in Eq. (9.3) is used. Similarly,

Ciy = (XilHX;) = (0|[@ads, [H,alal]-]-|0)

R Rt

= —{abl|pg). (12.26)

One should note that the off-diagonal block C is rectangular because as a rule
the rank of the unoccupied space of spin orbitals exceeds that of the occupied
space by a factor of two or more. It is quite easy to show that

Cii = (X;1HX:) = (0l[apaq, [H,ajal]-]-|0)
= —(pq”ab):ij, (12.27)

i.e., C = C!. The diagonal block corresponding to the unoccupied spin orbitals
has the elements

Dy = (Ollapd, [H,a}a!]-]-10)
= B0y (ep+cg) + (pallp @) (12.28)

Partitioning can be used so that the various blocks of A{E) can be expressed
in terms of blocks of its inverse. In particular, for the top diagonal block of A(E),
which corresponds to the occupied spin orbitals or the “hole states”, one obtains

A(E), =[-(E1-B)-C(E1-D)"'Cf]™.. (12.29)

[ele]

This means that a particular diagonal element of this block of the inverse is

At (E)ab;ab = —E — Bapab — Z Cabipg (E1 - D)-l g Ca

7/
pg;p g abpq

.. (12.30)

’ ’
P.q,p .9

As A(E) becomes infinite for F equal to a two-electron binding energy, it holds
that the inverse has a zero eigenvalue and an estimate of the E-value is found
from Eq. (12.31). Thus,

A YE)abap =0, for E = Ey(N)— E,(N —2), (12.31)

i.e., the negative of a two-electron detachment energy.

The resulting equation for the negative of the two-electron detachment en-
ergy can be solved by iteration or by perturbation theory. Through second order
in electron interaction,

E = ea+e— (abllab) — 3 [{abllpg)|®

. (12.32)
p €q t € —€p — €4

s

Although this is an expression for the negative of the energy required to remove
two electrons (in spin orbital a and b) from our system, it reveals nothing about
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the specific process. The Auger process, as has been previously remarked, is an
internal conversion or radiationless transition between two states of the same
energy. The initial step creates a hole state

ac (0 |0Y, (12.33)

where d. (0) removes an electron at time 0 out of the core spin orbital ¢ in the
N-electron ground state.

This is, of course, a somewhat oversimplified description, since the initial
ionization at t = 0 produces not only a simple hole state but also has amplitudes
corresponding to other processes as “shake-ups” and “shake-offs”. In most cases,
though, the by far largest amplitude initially obtains for the simple vertical hole
state. The initially created hole state might then evolve into

@} (7)aa(r)as(7)]0), (12.34)

at time 7, i.e., a state with a free electron in continuum spin orbital k (orthogonal
to all the bound state spin orbitals) and with two (valence) holes in spin orbitals
a and b of the original N-electron state. In order for the Auger electron to be
observed escaping in spin orbital £, this process must be faster than the radiative
lifetime of the initial hole state, i.e., typically 7 < 1079 seconds.

The probability amplitude for the radiationless transition of the Auger pro-
cess then is

(0@} () a} (1) ax () ac (0) |0). (12.35)

One can express this probability amplitude in terms of the appropriate propa-
gator as

(0lal (7)) (7)ax(7)c(0)10)
= (i/2m) / (@@l ax; ac)) g exp(—iET)dE (12.36)

— 00

for 7 > 0, which follows from the Fourier transform of the double-time Green’s
function in Eq. (4.8). Since the equation of motion is

E((alajax; dc))p = ((@halax, acl+) + ((@lalax; [H,6c)-))s,  (12.37)
it follows from Egs. (9.14) and (9.17) that

(E + €.) ((&Ld;&k;dc))g = = Z ie]|51){( abak,azala]))
4,551

—Z ct||78){ni){ abak,a]»E. (12.38)

This looks somewhat complicated, but if one wants only the result through first
order in electron interaction, only the first term in the moment expansion of
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the propagators on the right side of Eq. (12.38) is needed. This means the
evaluation of the averages

(Ollakapax, alad;)+10) = Six (na)(ns) (azOnt — Saidy) (12.39)
and
(0l[ala}ax, a;]+10) =0, (12.40)

where the natures of the spin orbitals a, b, and k£ have been used to get the
result.
Eq. (12.36) will then read

(olaj (r) a} T)ak( ) @ (0) [0)
_{kcllab)e* T —iET

2
(2/2m) o E(E+e.+in)

E, (12.41)

where the infinitesimal in (n > 0) is added, because the poles of the propagator
under the integral sign in Eq. (12.36) that correspond to electron detachment
energies lie in the lower complex energy half-plane. Also observe that the prop-
agator has no poles at £ = 0, so that pole in the above expression is spurious.
Thus, one obtains

(0[a} (1)} (1) (r)ac(0)]0) = (kellab)e’" /c.. (12.42)

Assuming the reference state to be a singlet, the final two-(valence)hole state
can be either a spin singlet or a triplet. This means that the operator G, in
the basis should be replaced by

(Gaadbs — Gaplne) /22 (12.43)

for the singlet case, where now a and b label orbitals rather than spin orbitals.
Similarly, for the triplet case, the operators

~ - - - 1
(aaaab,@ + aaﬁaba) /22 y
Gaclba, or (1244)
003003

are used. It is straightforward to show that the probability for the emission of
an Auger electron in continuum orbital & then is proportional to the square of
the amplitude

({(kclab) + (kc]ba)) (12.45)
for the two-(valence)hole singlet, and
3172 ({kclab) — (kclba)) (12.46)

for the triplet.
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The relation between the (negative of) two-electron binding energies and the
Auger spectrum that measures the kinetic energy %ki of the Auger electron can
be expressed as

%ki = constant + (Eo (N) ~ E, (N — 2)). (12.47)

This is so since E¢ (N — 1) = 2k% + E; (N — 2), where E. (N — 1) is the energy
of the initial core-hole state and

E. (N ~1)—FEy(N) = hv — %k?, (12.48)

with hv the energy of the ionizing photon and %k% the kinetic energy of the initial
photoelectron. For a given spectrum, both of these quantities are constant,
giving us the desired relation.

Problems

1. Diagonalize the propagator matrix in the geometric approximation and
compare with the energy representation of the two-hole two-particle prop-
agator analogously to what was done in the case of the polarization prop-
agator.

Notes and bibliography

e Auger spectroscopy was first introduced by P. Auger in Compt. rend.
180, 65 (1925).

e The book X-Ray Photoelectron Spectroscopy in the series Benchmark Pa-
pers in Physical Chemistry and Chemical Physics, v.2 Ed. Thomas A.
Carlson, Dowden, Hutchinson & Ross Inc., Stroudsburg, PA, 1978, dis-
cusses a few interesting experimental results.

e More elaborate and precise theoretical treatments of molecular Auger pro-
cesses are presented by H. D. Schulte and L. S. Cederbaum in Phys. Rev.
A60, 2047 (1999), and by E. Pahl, L.S. Cederbaum, and F. Tarantelli in
Phys. Rev. A60, 1070 (1999).
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Chapter 13

Propagators and Chemical
Reaction Rate

Chemical reactions and their rates are central to chemical research. The quan-
tum mechanical theory of reaction rates invokes quantum mechanical scattering
theory and statistical mechanics. Thus, one considers the propagation of a sys-
tem from an initial situation to a different one. Expressions for such processes
are developed by means of quasi-stationary nonequilibrium theory.

Central to the development is an ensemble operator I' akin to the one con-
sidered in the previous chapter and constructed from the appropriate system
hamiltonian H of the reacting system and a bias operator B. A self-adjoint
orthogonal operator B is constructed as the difference between a projector onto
the product states and a projector Qg onto the reactant states, such that

B=(1-Qr)-Qr=1-2Qr (13.1)
Obviously it holds that B2 = 1. A suitable ensemble operator is

I =exp[B(F — H + AB)], (13.2)

where 8 = 1/kT, F is the free energy, and A is the energy bias parameter. A
positive value of the bias favors the product subspace of states. The expectation
value of B is a measure of the difference in the number of systems present in
the product and that present in the reactant states. The bias operator induces
a perturbed equilibrium, and to first order in the parameter A, the change can
be calculated by perturbation theory as

B A 8 B , 9
(B) = (B)o+ 5 / dr / ' (Br)B), ~ BB)Z| . (133)

where
B(r) = e HBe ™ (13.4)

207



208 CHAPTER 13. PROPAGATORS AND CHEMICAL REACTION RATE

and the subscript 0 indicates an average over the unperturbed ensemble with
A = 0. It holds that

A [P ¢ , )
(B) = (B)p + 5/0 dT/O dr'(T [B(T)B(m")])e- (13.5)

The 7-ordering operator T and the concept of connected terms are used in
Chapter 7, and Appendix F.

The expectation value in Eq. (13.3) does not remain constant in time, be-
cause the bias operator does not commute with the hamiltonian. A quasi-
equilibrium is maintained through an adiabatic switching that turns on the bias
via the integral representation

0 0
B= 77/ dte™B(it) = B —/ dte J(it), (13.6)

where the flux operator
J(it) = —i[B(it), H] (13.7)

is introduced. The expectation value of the flux operator gives the rate of change
of the expectation value of the bias, i.e.,

8(B)
—6t_ = )\/ dT T)J

—)\/ dT/ dte™(J (T +it)J),. (13.8)
0 — 00

Solving for the parameter A and using Eq. (13.3), the expression
B) [2dr [°_ dtem™(J(r +it)J),

at
By~ (B) ~ 3 [Zar [§ ar (T [B()B()).

emerges for the reaction rate, where the numerator depends on the flux-flux
autocorrelation function, and the denominator expresses the fluctuations in the
bias value.

A spectral representation of the flux-flux autocorrelation function takes the
form

(13.9)

/ % i / D dte (T + i)Yo (13.10)

/ dT/ dtze(ﬁ T—it)(F— Em)J e(TJm)(F E, )+ntJ

m,n

Continuous spectra are more conveniently accommodated in terms of a spectral
density function
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(z,z'; E) Z,hpm E — Ep)k ('), (13.11)

which expresses the result of the flux operator applied to the propagator spectral
density

A(z,z'; E) Zwm Y6(E — Ep)k (). (13.12)

We note that

B 0
/ dT/ dteB~T—t)(F—E) (r+it)(F~E')+nt
0
eﬁ(F_El) _ eﬁ(F—E)
(E-E)(n+i(E - E")
—  Brd(E' — E)ePE-B) (13.13)

for n — 0, which means that we can write

B 0
/ dr / dte™ (J(r +it) Yo

0 oo
,87r/dEdzdx'eﬂ(F“E)AJ(x,z';E)AJ(z',ac;E)

By PE=En) | ] 26(Em — En), (13.14)

m,n

where the last expression is sometimes referred to as “a summation over final
states and an average over initial ones”.

Processes that may be interpreted in terms of a one-dimensional quantum
mechanical model offer simplifications of the general expression. The system
hamiltonian is specified in terms of a local potential U(z), and a mass M, i.e.,

1 d?
2M dz?
The bias operator is local with the value 1 for the product region, x > 0, and
the value —1 for the reactant region x < 0, or in terms of the Heaviside step
function ©

H=Ulz) - (13.15)

B = B(x) = 0(z) — O(—x). (13.16)

The flux operator then becomes

J = —i[B,H] = ‘Kii {5( )% - d%a( )} , (13.17)
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and matrix elements have the form

?

/ doy* (2)79(@) = — 5 {w*(()) d‘flf) - dw;io)qsm)} . (13.18)

For this simple case, we obtain the expression

//dz'dIAJ(m,:c';E)AJ(:I:',:B;E) (13.19)
4i\* [dA(0,0; E) dA(0,0; E) - d2A(0,0; E)
B <M> [ dz dz’ —A(0.0:B) dxdx’ ’

which needs to be evaluated.

In Appendix F, we present an application of this approach to the Eckart
potential, which is a one-dimensional potential applicable to chemical reaction
problems and which yields to analytical solutions.
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Appendix A

Complex Calculus Primer

A complex variable z has a real part z and an imaginary part y and is written
z = x + ty. Functions f(z) of a complex variable are our concern. Explicit
examples are 1/z, z2, and exp(z). Any function of a complex variable can be
expressed as

f(z) =u(z,y)+iv(z,y), (A.1)

where u and v are real functions.

iy
A

\j

Figure A.1: Complex number plane.

A.1 Continuity

A function f(z) is said to be continuous at z = z; if given any positive number ¢,
one can find a number § such that |f (2) — f (20)] < € provided that |z — zg| < 4.
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Let 2 = o +iyo. It then follows that |u (x,y) — u (2o, yo)| < |f (2) — f(20)] <€
if |z — 20] < & dce., |z —xo| < 6v2, y— ol < §/V2. Hence, if f(2) is contin-
uous, so is u(z,y) and similarly v(z,y). Conversely, it can be shown that if
u(z,y) and v(z,y) are continuous, so is f(z).

A.2 Differentiability

If the limit

£ (z0) = lim 1) =70 (A.2)
z2—20 zZ— 20
exists, f(z) is said to be differentiable and the limit f/(zg) is the derivative at
z = zp. It is essential to note that this definition asserts that along whatever
path z approaches zg, the ratio in Eq. (A.2) always tends to a limit, and that
all paths lead to the same limit.
Using this severe requirement and choosing z — zq first purely real i.e., zp =
T + iyo, and z = x + iyp, and then purely imaginary, i.e., z = x¢ + iy, one
obtains the Cauchy-Riemann equations

du_dv v du a3
dr dy dx dy
for the derivatives of the functions u, and v at = xg, ¥ = yg, by equating the
real and imaginary parts, respectively, of the limits of the ratio in Eq. (A.2)
obtained for the two paths.

A.3 Analytic Functions

A function f(z) differentiable in the above sense is said to be analytic at z = zo.
The Cauchy-Riemann equations are necessary, but not sufficient for analyticity.

A function is said to be analytic in a region if it is analytic at all points
of the region. Analyticity in a region has useful consequences. Examples are
log(1+2) =2z — % + 23—3 — -+, which is analytic for |2 <1, and e* = 3777, z
cosz = (e + e %¥)/2, and sinz = (e** — e~ *#)/2i, which are analytic for all
finite values of |z|.

A.4 Complex Integration

Let AB be an arc C of a curve defined by x = ¢(¢); y = ¥(¢), where ¢ and ¢
are functions of a real parameter ¢ and have continuous derivatives ¢’ and v’.
The parameter ¢ varies from t4 to tp when the point (z, y) moves steadily from
A to B. Let f(z) = u(z,y) + iv(z,y) be continuous along C.
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One proceeds as in the case of real integration by dividing the arc C succes-
sively into more intervals z,,, — z,,—1 and considers the infinitesimal limit to be
the integral [, f(z)dz.

Figure A.2: Arc of a curve in the complex number plane.

Thus, Sy, = >0 _1 f(Gn)(Zm — Zm—1), where (m = &y, + inm is a point on C
between z,, and z,_3. Also, define u,, = u(€y, nm) and vy, = v(Em, Nm) and
write

S, = Z (U + 10m) (Tm + Wm — Tm—1 — WYm—1)- (A.4)

m=1

The expressions

T~ Tmo1 = $(tm) ~ B(tm-1) = ¢ (Tm)(tm — tm1),
Y — Y1 = P(tm) = V(Em-1) = ¥ Fm) (tm — tm—1) (A.5)

are introduced, where 7,, and 7, are points in the closed interval (t,,—1,tm).

Since all functions concerned are (uniformly) continuous, one can find a 4,
given e, such that |tm¢ (Tm) — W(Zm, Ym)@ (tm)| < € provided |ty, — tm_1| < 4.
Since Y7 1 €(tm —~ tm—1) = €(tp — ta), it follows that as e and § tend to zero,
S 1 Um® (Tm)(tm ~tm—1) tends to the same limit as -7 | u(%m, Ym)® (tm)(tm—
tm-1), which is the integral f:AB w(@(t), ¥(t))d (t)dt. Similar arguments can be
given for the terms of v and 1’ of Eqs. (A.4) and (A.5) and the limit of the sum
Sy, becomes the integral

/C () dz = /tA (utiv) {¢ (1) + i (1)} dt. (A.6)

This has the obvious interpretation as the sum of two real integrals, one of which
is multiplied by .

This complex integral of f(z) along C (generally referred to as the contour)
has some obvious properties as can be seen from Eq. (A.6), e.g., fc(f(z) +
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9(2))dz = [, f(2)dz + [, 9(2)dz, and [, f(z)dz = — [, f(2)dz. If M is an
upper bound for |f(z)] on C and L is the length of C, then !fc 2)dz| < ML.

Example: Let us calculate the integral fC ~ where the contour C is a circle
of radius r centered at the origin (see Fig.A.3).

iy
A

Figure A.3: Integration contour.

It follows that x = rcost = ¢(t), y = rsint = ¢(¢), and 0 < ¢t < 27, while
z = rexp(it), and ¢ (¢) + ¢ (t) = riexp(it). Thus,

27
L - (A7)
c Z 0

A.5 Cauchy’s Theorem

If a function f(z) is analytical and single-valued inside and on a closed contour

C, then
/ f(z)dz =0, (A.8)
C

This is so because [, f(z)dz = [,(udz —vdy) + i [, (vdx + udy) and the inte-
grands of the two 1ntegrals on the right are complete differentials due to Cauchy’s
equations (i.e., say, if u = dG/dz, it follows that v = —dG/dy).

A.5.1 Cauchy’s Integral

Let f(z) be a function analytic inside and on a closed contour C. Let z be any
point inside C. It follows that the function f(w)/(w — 2) is analytic on and
inside C, except at w = z. Hence,
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DFWRYF (OF 49)

ow—z z b

'Y

where 7y is any other closed contour inside C that includes w = z. Let v be a
circle centered in w = z with radius . This can be seen by using Eq. (A.8)
with a contour T’ (as used in the discussion of the Laurent series) consisting of
C and v and a straight line between them traveled once in each direction.

As f(w) is continuous, r can be made so small that |f(w) — f(z)| < eon~.
One can then write

/%dwzf(@/wdi +/ f(wuz:ﬁ(z)dw. (A.10)

From the complex integral in the above Example, it follows that f(z fc w—

z)Ydw = f(z)2mi and from the fact that the upper bound of the integrand in
the second term on the right of Eq. {(A.10) is ¢/r, and the length of the contour
v is 277, one can conclude that |f7(w — 2)" f(w)dw — 2mif(z)] < 2me, and
because the left side is independent of ¢,

7 = 1) 4, (A1)

27rz cw— z
Any derivative f(")(z) is also readily obtained as

™) = 1”— /C (Tf%dw. (A.12)

2mi

A.6 Laurent Series

Let f(z) be analytic in the ring-shaped region between two concentric circles C
and C of radii R and R’ and center a, and on the circles themselves. Then f{z)
can be expressed as

Z (z—a)" an(z—a)_" (A.13)

for R <|z—a| <R.

The contour r encloses the ring-shaped region where f(z) is analytic, thus,
flzy = 2m Jp(w — 2)7t f(w)dw. Since f(z) is single-valued, the two integrals
along the radius vector joining the circles cancel and

_ Sflw)
H(z) = 2 Jow— 2z z " omi / - z ' (A-14)

First, consider the integral on C and write
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C

Figure A.4: The contour I" encloses the ring-shaped region and travels both
directions along the radius vector joining the two circles.

1 _ 1 1 1 n z—a
w—z  w-a|l-Z%2) w-a (y-q)
(z—a)"
+"'+m+"' (A.15)

which can be multiplied by (27i)~! and integrated term by term to obtain

1 [ fw) - n
2_71'_1: /C w—_;dw = Zan(z — a) , (A16)
n=0

where a, = 5= [(w —a)™" ! f(w)dw. Note that in general a, # LT:!(—QZ, since

f(2) is not necessarily analytic throughout the interior of C.

Considering the integral over C in Eq. (A.14), one can write
1 1 w—a (w—a)™

= RUTI Sodie? A A7
z—w z:—a,—lh(z—a)2+ +(z—a)"+1+ ( )

which is uniformly convergent on C’, and can be integrated term by term to
yield

1 - n
_Tm/cf Ufj—@zdw =3 ba(z— ), (A.18)

n=1

with b, = 7= [ (w — )" f(w)dw. Thus, the Laurent series is obtained.

A.7 Isolated Singularities

When f(z) is analytic at z for |z — a] < R except at z = g then a is an isolated
singularity of f(z).
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One can then make C arbitrarily small (R’ — 0), and then

= Zan(z —a)" + an(z—a)“", (A.19)
n=0 n=1

with 0 < |z — a| < R. Three cases can be distinguished:
(i) All b, = 0: Then f(z) analytic for |z — a| < R except at z = a. Example:

f(z)={ 1 z#a (A.20)

0 z=a
This is an artificial, noninteresting case.
(ii) A finite number of b, # 0:

z):Zan(z—a)"—i—an(z—a)_". (A.21)
n=0 n=1

The singularity at z = a is a pole of order m. If f(z) has a pole of order m, then
obviously (z — a)™ f(z) is analytic and different from zero at z = a. Hence g(z) =
1/(z —a)™ f(z) is analytic and different from zero at z = a, and 1/f(2) = (z — a)™g(z)
has a zero of order m at z = a.

(iif) The series Z:o: bn(z — a)~™ does not terminate. Then the singularity at z = a is an
essential singularity. Example: f(z) = exp(1/z) has an essential singularity at z = 0.

A.8 Residue at a Singularity

In the neighborhood of an isolated singularity z = @, a single-valued analytic
function f(z) may be expanded according to Eq. (A.19). The coefficient b; is
called the residue of f(z) at z = a. It is readily seen that

= = / Flz (A.22)

where v is a circle with center in ¢ and it excludes all other singularities. One
can also readily conclude that if the singularity at z = a is a simple pole (m = 1),
then

lim(z — a)f(z) = b. (A.23)

z—a

It follows from Cauchy’s theorem that if there is a finite number of contours
Cy, Cg, ... ,C,, inside C, and f(z) is analytic in the region between them, then

/f(z)dz: f(z)dz+ f Ydz + - / f(z (A.24)
c o)

Thus, if f(2) is single-valued, analytic inside and on C except at a finite number
of isolated singularities at z = 21, 23, ..., 2, with the residues at these points
being r1,79, ..., 7y, then
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/C f(2)dz = 2mi(ry + 12+ 4 1) (A.25)

A.9 Expansion of a Meromorphic Function

A function f(z) is said to be meromorphic in a region if it is analytic in the region
except at a finite number of poles. Let f(z) only have singularities that are
simple poles (except at infinity) at p1,p2, ..., pn, (0 < |p1} < |p2] < -+ < pnl)-
Let the residues be r1, 72, ..., r,, respectively. Let C,, be a contour that includes
Z = P1,P2, .-, Pn, but no other poles. Let the minimum distance R,, of C, from
the origin tend to infinity with n. Let L,, (the length of C,) be O(R,), and let
f(z) be bounded on C,. Then

f2) = F0) + 3 1 [ LI pln] , (A.26)

z —
n=1 Pn

The proof follows from that

1w
I = 2 /C w(w — z)d
_ = T'm _ f(O) f(z)
- 7;1 Palom—2) 2 |z (427
and
1< s e, |, — 0. (4.28)
Thus,
&) _ SOy S
z - z n—>oom§_:0 pm(pm — Z) ’ (Azg)
or
fo) = FO)- 30—
? mzzl pm(pm - Z)
= SO+ Y | ], (A.30)
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Appendix B

First and Second
Quantization

Quantum mechanics takes many different guises. For instance, one can use a
Hilbert space realization in terms of time-dependent wavefunctions ® (£1,£2, - -
&n;t) of an N-particle system, where & = (¥,¢) is a compound configuration
space and spin variable for a particle. Operators acting on this Hilbert space
are obtained by making the common identifications p — —ihV for the momen-
tum and 7 — 7 for position vector of a particle, which can be referred to as first
quantization, producing quantum mechanical operators out of classical expres-
sions. One can equally well use time-dependent field operators (so-called second
quantization) (£, ) and their adjoints 1 (¢, ¢) to build Hilbert spaces (or rather
Fock spaces) and corresponding quantum mechanical operators. The connec-
tion between different formulations must be that they give the same expectation
values of operators.

Thus, we have, say, an N-electron operator in first quantization, which is a
sum of single-particle operators

N
A = Zal(@-)- (B.1)

An example would be the N-electron kinetic energy operator with a;(&;) =
—%Vf. The corresponding operator in second quantization is

Ay = / W (€, 1) (E)(E, t)de. (B2)

If we introduce a spin orbital basis {us(£)}, in which to expand the electron
field operators

219
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Y€)= us(Eas(t), (B.3)
we can write
Ay = Z(Tléﬂs)alas, (B.4)
where
tlaaks) = [ ur(©ar(©us(©)de (B5)

is a one-electron integral in the chosen basis.
Similarly one can treat operators made up of pair-operators

Bi=3 Y &), (B.)
p.q

An example would be the operator of electron-electron interaction energy, for
which

e2

i)l(fp’fq) = 1F = (B'7)

|7‘p_7?q|.

The corresponding operator in second quantization is

By = = [ae [dewtie, 00t (€ 0bie € )i DvE D)
2

1 ! !
= 3 Z {rr |ss )alal,as/as. (B.8)

vt
78,7 ,8

An integral operator K acts via its kernel k(¢, 5') such that

Ki(e) = / K(EE)F(E)dE (B.9)

An example is the exchange potential energy in the Fock operator, i.e., an
integral operator with the kernel

k(€)= (19} (B.10)

G
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where

Zus (€){alas)ur(€) (B.11)

is the one-particle reduced density matrix in the Hartree-Fock approximation.

In wavefunction form or in terms of first quantization, the one-particle re-
duced density matrix corresponding to an N-electron state with wavefunction
O(&1,82,- -+, EN) s defined as

7(676,) = N/®(§7§27§37 ot 7§N)(D*(§/a£27£37' ot 7£N)d€2 st dé-N (B12)

This expression can be rewritten as an expectation value of an integral operator

R N
0=> 6p) (B.13)

p=1

with the single-particle integral operator 6(p) having the kernel

0(&p, &) = 8(€ — €,)0(E, — €). (B.14)
This means that
Oy = N(o)
= N [0 ol )0 (€6 ) derder - dey
= &) =) us(E)rsrur(€), (B.15)

r,8

where in the first line we have used the symbol (---) for the average value,
and assumed the wavefunction to be normalized to unity and antisymmetric
under permutation of the electron labels. In the last step, an expansion in a
spin orbital basis is performed. Let the state vector |V} in second quantization
correspond to the wavefunction ®. Then one can write

1EE) = (N / B (€0)0(L)p(E2)dEr | V)

(] / w*@l)o(&,si)w(é)df;dmm (B.16)
= (NIHE ) Zus (alasyur(€)
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and one can conclude that the one particle reduced density matrix (one-matrix)
in a basis is simply

Ysr = (aTas> (B.17)

as used before.

Exercise:Use the average of the integral operator O = %Zp Z o(p) x 6(g) to show

that the two-particle reduced density matrix (two-matrix)

a#p

L, m€ . m) (B.18)
= M%_—l)/‘b*(g/,n',gg,-~,5N)<I>(§,n,§3,---,gN)d§3~-~d§N

in second quantization becomes —(Nl'z/)f( Yt (6" (0 (&) ).

The single-particle Green’s function or electron propagator

(WE): v (€
_ ¥ (N|9(E)IN +1,m)(N + 1, mlpt(€)|N)
-~ E — En(N +1) + Eo(N) + in

(NJYHENN = 1,m)(N — 1,m|w(s>|N>}
E — Eo(N) + Epn(N — 1) —in

G(¢,€5E)

1

+

’

¥ lfm(é)f;(é ), gm(ﬁ)gfn(ﬁ')} (B.19)

E—-en+in E-—e€n—in

yields the one-particle reduced density matrix

1(€,€) = /GéfE (B.20)

where the contour C consists of the real axis RF and a semicircle in the upper
complex E-plane. We can thus write

)= gm(©)g5(€) (B.21)

in terms of the so-called Dyson amplitudes. Using the definition in Eq. (B.12)
it is straightforward to show that these Dyson amplitudes in first quantization
are

— VN / B(E b, En)BE (G- - En)dEn - - dEn (B.22)
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i.e., an overlap between the (neutral ground) N-electron state and a particular
(positive ion) (N — 1)-state ®,,,. In the Hartree-Fock approximation with the
N-electron ground state described by a single determinant and with the positive
ion state the same determinant with a single spin orbital removed, it is obvious
that in this Koopmans theorem description, the Dyson amplitude is just the
missing spin orbital (i.e., the one out of which an ionization has taken place).
At this level of theory, the Dyson amplitudes are orthonormal, something that
is not guaranteed in general.
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Appendix C

Stability of Hartree-Fock
Solutions

The many-electron Hamiltonian is expressed as

1 ’ ’
H= Z hrsalas + 5 Z (rs|r s )alai,asras, (C.1)

’ 7
s rr 8,8

where the Mulliken notation is used for the two-electron integrals. The Fock
matrix then has the elements

Frg = hps + Z |:(T‘S|T‘/S/) - (7'3’]7',3)} s’ (CQ)
T/,S,
with v,/ = (a:,as/) = Tk{pai,as/} an element of the 1-matrix, and the single-
particle density operator p = Il [l — (fig) + (2(fi) — 1)7ik]. The tilde denotes
operators relative the Hartree-Fock spin orbitals, i.e.,

g = dLar, Gk = aTy, (C.3)
r

with Y° 2} 2r = 0k and Y, Trel, = Ops.
The average value of the Hamiltonian can be expressed in a number of ways

(H) = Tr{pH}

1 ’ 7
= Z hrs’Ysr + '2‘ Z (TSIT S ) ['VST’YS’T/ - 751"79'7‘]
7,8

’ ’
T 48,8

1 ) ro
= ; hrsYsr + 3 Z [(rs]r s)—(rs]r s)] YsrYg o'

’ ’
™r ,8,8

225
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= % Z[hrs + Frs)7sr~

Note that
Z (rs|r s YIr{pa! a Qg G}
rr',s,s
= E (rsir's) Z xrpxrlqxsfmxsnTr{dedjldmd'n},
rr’ s, p,g,m,n
with
Te{palalamin} = Tr{[L - (ip) + (2p) — Diplibipdpm}
xTr{[1 — {fig) + (2(fg) — 1)ﬁq]d:§~ gm )
~Tr{[1 — (7ip) + (2(ftp) — )7ipla}apdpm }
X Tr{[1 ~ (7ig) + (2(Pig) — 1)ftg)d}dg0qn}
= <ﬁp><~q>[5pn5qm — GpmOgn]-
Thus,
Z (Ts‘r s )T\"{pa ,a &g}
= > (rslr's)[{alas)(al ay) — (al,as)(alay)]
because
Zxrk d )z = xsk<ﬁk)x;rw

and because the trace of a direct product is a product of traces.
The first variation of the energy is (for an extremum point)

1 1
0= 5<H> = 5 ZéFrs'Ysr + 5 Z[hrs + Frs]‘s')’sr

rs (]

or since

0Frs =Y (rsllr's )y,

one can write

(C.4)

(C.5)

(C.6)

(C.7)

(C.9)

(C.10)
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S(H) = Tx{Fd~}. (C.11)

A general unitary transformation of the spin orbital basis, which conserves the
factorization property (aia:, Ay Qs) = YerVe' o' — YVor' Vs'y anld thus the indepen-
dent particle character of p, can be expressed as

U = exp[iA] = expli Z quaLaq] (C.12)

»,q

with AT = A. The transformed density operator can then be given as

p = UlpU
[1—iA + (—iA)? /20 + - p[l 4+ iA + GA)? /20 + -]
= p+ilp AL~ Gl Al AL 4o (C.13)

Only infinitesimal transformations are considered, so that

Yor = TI‘{(p, - p)aias} = ¢Tr{]p, A]—G’Ias}
= 1Tr{p[A, a:[as]—} =i{[v,Al-}sr
= Z(<ﬁs> - <ﬁr>)Asra (C14)

where in the next-to-last step

[A,alas)_ = Zqu (6rqatas — dspalag) (C.15)
P.q

is used. In the last step, the result is given in terms of the Hartree-Fock spin
orbitals.
The second variation can be written as

P = —5Te{(lo, Al A]afas)
=~ Tr{plA, A, afa,] ]} (C.16)
where
[A,[A,alag)-]- = Z(5rq A, a;f,as]_ — 0sp[A, aiaq]_)qu. (C.17)
p,q

Thus,
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5 50r = = 57 AL Nar = () = ()l Asr 7, (C18)

where again, in the last step, the basis is assumed to be the Hartree-Fock spin
orbitals.
From Eq. (C.4), the total electronic energy can be written as

1 ’ ’
(H) = Z Brsysr + 2 Z (rsllr s )7sr73’r’7 (C.19)

r,s,r’ s
with the antisymmetric two-electron integrals (rs||r's ) = (rsr's’) — (rs'|r's).

Assuming that 2. corresponds to a stationary point of the energy and one
writes

Ysr = ’Y\gr + 5'Ysr + 62757‘ + -, (CZO)

which leads to the expression

i

(H) (H)o + 6(H) + 82(H) + - --

]. ’ ’
(H>O+ZJ~“,~35%,~+5 > (rslir’s)overdyy,  (C.21)

’ ’
T8 r,8,7 ,8

+ > Fro0®yar
8

If

through second order. From Eq. (C.14), it follows that

§(H) = Tr{Féy}=iTr{F[v,A]-}
= iT{[F,7]-A} =0, (C.22)

where the fact that the matrices v and F commute has been used. Thus, the first
variation of the energy in the Hartree-Fock approximation vanishes. Further
characterization of the stationary point involves the second variation of the
energy.

In the Hartree-Fock spin orbitals, i.e., the basis that diagonalizes F and 7,
it holds that F).; = €40,5, which yields

D PPy == Y €s((fis) — ()| A2 (C.23)

T8

The third term in Eq. (C.21) becomes
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1

~5 2 (rsllr $)({s) — () (i) = (o)) Aar By (C.24)

’ ’
7,8,7" 8

The Hartree-Fock spin orbitals, which are assumed to be real, can now be sep-
arated into particle ones (k) and hole ones (I}, such that (7;) > (fig). For a
pure single determinantal state, these occupation numbers are simply 1 and 0.
Obviously, the spin orbitals with (f;) = (7ix) are not contributing. The matrices
with elements

Bij = Oy (ex — ) ({Tur) — (fir))
FRUNE Y () — (Fr))({(Fip ) — () (C.25)
and
Cij = (kUK 1) (R — (Au)) ((Fy ) — (i) (C.26)

and compound indices i=(k,} and j=(k’,!’), can now be used to write

1
SHH)Y = 5 > [A7BiA; + ABiA;
2%
—A;Ci; A — NiCijAy). (C.27)

In matrix form, this reads

S2(H) = -;-( Al AT )( by ) ( 2 ) (C.28)

where now the A array is a column vector. If one separates the real and imagi-
nary parts of A, such that A = Ay +iAy, it follows that

2 (H)y=AT (B-C)A; + AT (B + C)A,, (C.29)

which means that both (B — C) and (B + C), since A; and A, are arbitrary,
must be positive for a true minimum point.
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Appendix D

Third-Order Self-Energy

The 12 energy-dependent and 6 “constant” terms of the electron propagator
self-energy that contribute in third order are listed below. The convention is
followed of denoting the spin orbital occupied in the SCF reference state by
a,b,c,..., and those unoccupied by p,q,r,..., while unspecified spin orbitals are

denoted by 4,j,...

©) _ 1
i (E) = 1 Z

(iallpg)(pql|rs)(rs||ja)
(E4e—€r —¢€5)(E+eq—e€p—e€q)

a
p7 q’ 7'7 S
1 T (ip||ab){ab|cd)(cd||jp)
4 (E+ep—€.—€q) (E+ep—€q —€p)
D
a,b,c,d

(ibl|rq){ral|pb) (pqllja)

_Z(

a,b

E+e—ep—e€q)(E+e—€q—¢€r)

N Z E+epqu|cb>(cpllaQ)(aijp)
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(E+eq—€p—€q) (€ +€c—€p — €g)
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1 (ip||ab)(abllgr){gr|iip)
+4 azb (E4+ep—€q—€p)(€q+€p—€q—¢€r)
b,q,7
1 (ipllar){gr|lab){abl|jp)
+Z aE;) (E+e€p—€o—€p)(€a+ € —€qg—€r)
p? Q’T
(ir||ag)(ablipr){pql|ib)
) azl:) (E+eb—€p— €q) (fa+€b_6p_€r) (B-1)
D, 4,7
(2bpr){(pgl|ab){ar|liq)
- % (E+e—ep—€r)(eq +6€ —€p—€q)
D, 4,7
3 {ig|lac)(abllpg)(pc|jb)
aXb:c (E+eq—€y—€)(€a+€p—€p —€q)
P, q
3 (icl|gb){gpl|ac){abl|ip)
a%c (E+ep—€q—e€p)(€a+€c—€p—€g)
b, q

1 (ir||7p){abllrq){pgl|ab)
+§ z (

€ot € —€p—€g) (o + €6 — € — €r)

a,b
p».q,r
1 3 (1a]|jc){cb||pg) (pg||lab)
2 (€a+ €0 —€p —€q) (€ + €c — €p — €g)
a,b,c
p:q
L1 > (ipllja)(abllgr){gr|Ipb)
2 (ea +€b —€q—€r) (€a — €p)
a,b
p7 q? r
1 Z (ip||ja)(bellpg){aq||bc)
2 (er +€c —€p —€q) (€a — €p)
a,b,c
p,q

) (ial|jr)(rb||pqg)(pq||ab)

(g + €0 — €p — €4) (€5 — €r)

a,b
p,q,T
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1 icllg ab){ab|lc
=¥ (< |17p) {pqllab){ablicq)

2 €a+ € —€p —€q) (€c — €p)
a,b,c

D, q
Problems

1. Using the diagram rules of Chapter 10, draw the third-order self-energy
diagrams that correspond to the above expressions.
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Appendix E

Temperature-Dependent
Propagators

E.1 Preliminaries

A diagram technique can be constructed for so-called “temperature Green’s
functions”, which depend on a temperature T, or rather on 7, which varies from
0 to 1/kT, where k is Boltzmann’s constant.

One seeks a perturbation expansion of the partition function

Z(B) = Tr{exp[-p(H — pNo)l}, (E.1)

with 8 = 1/kT, H the many-electron Hamiltonian, Ny the number operator for
electrons, and p a parameter, which may be called the “chemical potential”.
The trace is taken in Fock space; i.e., the summation is taken over all possible
states of the system with a given number of electrons and over all numbers of
electrons.

The Hamiltonian is partitioned into a reference or unperturbed part Hy and
a perturbation V as

H=Hy+V (E.2)

with

Hy = Zﬁka}iak = Eeknk (E.3)
k

k

in diagonal form. The number operator in the same basis is

No=) m. (E.4)
k
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A partition function for the unperturbed system is

Zo(B) = Tr{exp[-B(Ho — uNo)l}, (E.5)

and the trace can be taken over a direct product space made up of the eigenstates
of the occupation number operators

a,tak = ng. (E.6)

As n? = ny, it has eigenvalues of 0 and 1 and in the eigenbasis (i.e., two states
with spin orbital ug occupied or unoccupied) has the form

nk:((l) 8) (E.7)

The trace over a direct product space is the product of the traces of the
factor spaces, such that

Zo(B) = []Tr{expl-Blex — p)nel}
k
= []i2+ (P 1)) (E.8)
k

The unperturbed average of an operator A is defined as

(A)g = Tr{e AHo=nNo) 41/ 7,(3). (E.9)
Define
S(,@) _ GB(HO-MNo)e-ﬁ(H—MNO); (E.].O)
then, obviously,
(S(B))o = Z(B)/Zo(B)- (E.11)
Similarly, define
S(T) — eT(Ho—HNO)e"T(H“l‘NO)’ (E12)

and form the derivative
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82(7—) _ _eT(Ho—,uNo)Ve—T(Ho—MNo)S(T)
-
= —V(T)S(T), (E13)
where
V(r) = em(Homuo)y/g=7(Ho=pNo) (E.14)
Obviously
B
| B =56 - 500 = 56 - 1. (E.15)
O T
and thus,
B
S(By=1 +/ ag—f—)d’r =1-V(r)S(n). (E.16)
0

Iteration of this equation straightforwardly yields

o B T
(SB)e = 1+ ;(_1) /0 dr, /0 dry--.
[ v v
N
1+n§1 o /0 dTI/O drg - (E.17)

B
/0 drn (T [V (1)V (72) - V (7)o,

1

with T the “r-ordering operator” that orders the operators in the brackets |...]
such that the arguments 7; decreases from left to right and accounts for the
necessary sign changes due to the anticommutation rules of Fermion operators.
At equal “times” 7 operators are put in normal order. Thus, one can write

S(r) = Ty exp[— /0 "V ar). (E.18)

E.1.1 Intermezzo

The introduction of the “r-ordering” operator can be understood from the rather
elementary Dirichlet’s theorem in calculus. Starting with two functions F(x)
and G(y), one forms the integral
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[ oo [ wrwot = [as [ aur
fémédwwmw (E.19)

where the second term on the right equals

/0 "y /0 ! 2 F(2)G (). (E.20)

This can be seen from two figures below that intend to show the two equivalent
modes to integrate over the same area.

4

a a-
. %
T |
| . /
>
, [ S » Lv"ﬁ"»

a a

Figure E.1: Illustration of that [ dz [*dy = [ dy [} d=.

Now a change of integration variable yields

faéﬁwmmw=.EMA%W@Gy
+‘KMA%W@W@ (E21)

and if G = F is an operator and

F(z)F(y) = £F(y)F(z) (E.22)

and T the x, y-ordering operator, then

/0“ dx /Oa dyT[F(z)F(y)] = /Oa da /0z dyT[F(z)F(y)]

T /Oadx /OxdyT[F(y)F(x)], (E.23)
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or

/0 " /O " TP (@) F(y)] = 2 /O " /0 " Ay TIF(2) )], (E.24)

where the generalization to arbitrary number of factors F'is straightforward.

E.1.2 Electron Field Operators

The electron field operators in analogy with the time-dependent case can now
be expressed as

Bl r) = eHmNoITy(g)e=(Honlo)r,
PHa,7) = elHuNoT gl (g)em(HomNo)T, (E.25)

or in the so-called “interaction picture”

Pz, 7) = e(Ho—HNo)Tw(x)e—(HO-MNO)T
d)T(x’T) — e(Ho—uNo)TwT($)e—(Ho—uNo)T7 (E.26)
where it should be noted that ¢!(z,7) is not the adjoint of ¥ (z,7) in either

case.
The electron propagator at finite temperature (7' # 0) is defined as

G(zxy, 713 %2,T2) = G(x1,T2; 71 — T2)

_ —Tr{e(F+}tNo~—H)1§(1:1,Tl)’l/;i(fllg,’rg)} 1 > T2 (E 27)
T‘I‘{G(F+“N°—H)1/)T($2,7'2)’(/1(111,7'1)} 1 < Tg '

B G~ T < Ty

- G~ T2 < T1,

with F the free energy defined by
e PP = Z(p). (E.28)

Remembering that

S(r) = elHomnNo)7 o= (H—uNo)r (E.29)

and, thus,

S—l(T) — e(H—;tNo)-re-—(Ho—uNo)"" (E,30)
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it follows that

G = _eFﬁTr{e—(Ho—uNo)BS(B)S—l(Tl)e(Ho—uNO)flw(zl)
w ¢~ (Ho—pNo)rs S(Tl)5~1(Tg)emo-mvo)nd,f(xQ)e—(Ho«uN())rzS(Tz)}
= —eFPTr {eHomm NS (8) 57 (1) 1, 7) S () (E.31)
xS Hr) ! (z2,72)S(72) } -

Similarly, one can write

< = eFaTr{e—(Ho—uNoWs(g)s—1(72)1/;T(:cg,TQ)S(TQ)
XS_I(TI)U)(CL‘l,Tl)S(Tl)}. (E32)

Using the properties of T, the electron propagator or Green’s function can be
expressed as

(T-[p(zr, 7)Y (2, 72)S(B)])o _

G(z1, 71572, 72) = — (SB)% (E.33)
In this expression, the fact has been utilized that
e TP = Z(B) = Zo(B)(S(B))o- (E.34)

In terms of a spin orbital basis {ug(z)}, the electron field operators in the
interaction picture can be expressed as

1[,(:1;77—) — Zuk(z)ak(T) — e(Ho—HNo)Tw(x)e—(Ho—liNo)‘r, (E35)
k
and, thus,
ak(r) = eHo=uNo)7 gy o= (Ho=plNo), (E.36)
As
A, —A 1 1
etae™ =a+[A,a]- +§[A, [Aa]-]- +§[A’ A [Aya]-]-]----  (E.37)

for A = (Ho — pNo) 7, and as

[A,ak]- = (e = wlm, ) = —(ex — pw)Tax, (E-38)
l
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it follows that

ap(7) = age= (M7 (E.39)

and

Pz, 7) = Z up(z)age™ (W7,
k

iz, 1) = Zui(z)aze("‘““)f. (E.40)
k
The expression
gzr,z 7)) = —(T, ]y, 7)¢T(x’ Mo (E.41)
= - Zuk aka;rc Yo e~ (kT gley s =T O(r — 7'/)

+ Z up{z u;, a;'c, ak)oe_(e‘“"”)Te(ek’ —wT 9(7' — 1)
is called a contraction and becomes

o(ar, T Z“k Jelr=7 ew=n)
x [9(7 — ) ng)o — O(r — 7)1 — nk>0] . (E42)

This is so, because

(@l ak)e = Tr{eHomrNo)lal a1}/ 7,(5)

= O Tr{exp[— Z(el — wmng]/Zo(8) (E.43)
1
= G Tr{ (1 + Ae)nx [T+ Aimi)}/Z0(8),
I#k

where \; = e~ (©@~#F _ 1. Using Eq. (E.8), one obtains an expression for the
occupation numbers (a,,tak)o = {ng)o from

(@l ardo = O (nk)o,

14+ Ag 1
= = . E.44
(n)o 24+ 1+ eBlex—n) ( )
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E.2 Wick’s Theorem

An average value of a “r-ordered” product of field operators can be evaluated
as the determinant of a matrix with elements g(zr,2 7 }. In particular,

(~D)™M(T p(L)$(2) - - )yt ()t (n — 1) -T2 )))o

’

9(1,1) 9(1,2) - g(,n)
_| o) g<2j2> ooty | .
g(nvll) 9(27'”’) g(nvn,)
where the notations
Y(G) =v(z5,m)  9(i,3) = glwim, @y7)) (E.46)

have been used.
Proof: The theorem is by definition true for n = 1, suggesting that one can
proceed by induction. Consider the two relations

(Xak)o = (akak) ([ X, ak)+)o (E.47)

and

(Xa})o = (akal)o([X, af]+)o, (E.48)

where X is any “7-ordered” product of an odd number of electron field operators.
The first of these relations can be obtained from

{Xag)o

I

Tr {Xake—(Ho—HNo)ﬂ} /Z0 (8)
Tr { Xe~ (HomulNoday (8)} /270 (6)

1

= {ax (B) X)o = (axX)oe (=17, (E.49)
where the definition
ag (8) = elHo—ulNo)g o~ (Ho—pNo) — g o= (e —1)8 (E.50)
has been used. Thus,
(Xag)o +{(axX)o = ([ar, X]+)o
= (Xag)o (1 +elexFmP) (E.51)
and
-1
<Xak>0 = (1+8(5k_“)'8) ([X, ak]+)o

(@} ar)o{[X, ar]+)o- (E.52)

1l
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The second relation can be shown analogously.
Two separate cases can be distinguished: (¢) an unprimed variable 7; and
(%) a primed variable 775, respectively, is less than all other 7 and 7’ variables.

(1)
(~D)™T: (1) - p(n)ei (n ’)---w*<1’>]>o (E.53)
= ()XY O~Zuk e~ (=M (10 (X o,
where
X =T (1) -9 — D + Dt -9t (1), (E.54)

since bringing ¥(7) to the right means n — j + n interchanges of field
operators. Using Eq. (E.47) leads to

(=)™ (1) - ()t () - T (1 )])o
Zuk e (e “)T’(a ar)o([X, ar)+ Vo (E.55)

- ch (=173 (0] 4}
XZ It gt (0, a4 o (T [, v Do,

where T[4, 1//] is the original ordered product of field operators with ()
and 9 (v ) missing. Again using Eq. (E.47) yields

(~)™MT ) ) (n)) - T @A )])o
= Y (=D)HEE)PE ()T v e (B.56)

v

= > (=1)"Hg(i, v ) (=) T, v Do,

v

which can be viewed as the expansion of the determinant in Eq. (E.45)
by the jth row, with

(1) (=1)" YT [, v o (E.57)

the corresponding minors.
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(%) An analogous treatment of this case using Eq. (E.48) yields

(~D)™TH (1) - p(n)wt(n) -t )N)o
= Y (D)"Y =1 T v, 5 o, (E.58)

v

which can be viewed as the expansion of the determinant in Eq. (E.45)
by the 3th column.

Then if the determinantal form of Eq. (E.45) is correct for n — 1, it is
correct for n, and because it holds true for n = 1, the induction proof is
complete, and Wick’s theorem is proven.

E.3 Diagrams

A rational approach to the evaluation of the terms in the series in Eq. (E.17)
is to apply the diagrammatic analysis introduced by Feynman for the time-
dependent and by Matsubara for the temperature-dependent case. It is in this
process that Wick’s theorem is crucial.

The electron-electron interaction term in the interaction picture is

Vi) = [ do [ dywe o)L e 0w 0t 0wt e 0] (E59)

and

B
S(8) = Ty exp|— /0 V(r)dr). (E.60)

From Eqs. (E.17) and (E.33), it follows that the first-order correction to G is

1 B
X ATy (1, 7)Y (w2, 72) ¥ (2, )y, 7)Y (y, )V (2, 7))o

The average of the T-ordered product of field operators can be reorganized to
read

— (T [ty
= _<TT [’([1(.’1,‘1, T1)¢($a T)w(yv T)W (y7 T)¢T ('7"7 T)¢T (x27 7'2)]>0

9(3317'1,10272) 9(15171,17') 9(3717'17317)
=| g(zm,x2m2)  glzT,TT)  g(2TT,YT) (E.62)
glyr,zema)  glym,zT)  g(yT,Y7)
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according to the properties of T, and Wick’s theorem. The integral in Eq.
(E.61) after expanding the determinant of contractions can be expressed as

@ fafan | " dr e, gt 2oy yg(eim 2am),
0 - / dz / dy /O ’ drw(z,y)g(ar, y7)g(y7, 27)g(T171, T2T2),
© [ [ " dr wl,y)o(erm, #r)e(er, 2rm)e(yrur),
@ [ fay | " dr we o(aim, ar)g(ar yrIgyr, aam),
© faofar | " dr wle,o(eim, y)glyr, 2Nyl wam),

B
N /dm/dy/o dr w(z, V) g(xz171, y7)g(yr, z2m2)g9(xT, 27).  (E.63)

The terms (a) through (f) can be diagrammed (see Figure E.2 using the rules
of Feynman; i.e., the (z, 7) coordinates are points in the plane, and points in a
single contraction are connected by a line with direction (¢(z, 7) outgoing arrow
and ¥ (z,7) incoming arrow). Points in the symmetric interaction w(z,y) =
w(y, z) are connected by a dashed line.

Diagrams (a) and (b) have disconnected parts and are called disconnected
diagrams, whereas the rest are called connected diagrams. Diagrams (c) and (f)
are actually the same, because of the symmetry w(z,y) = w(y, z), and so are
(d) and (e). Actually if the interaction is written as the antisymmetric form

w(z, y)(1 - Pry), (E.64)

where the interchange operator acts on the left entries in the contractions, all
four can be expressed as a single diagram (see Figure E.3) with the dashed
interaction line representing a so-called antisymmetric vertex (this corresponds
to a coulomb minus exchange integral)

E.3.1 Disconnected Diagrams

Disconnected diagrams consist of two distinguishable parts: (¢} A factor con-
sisting of all V(7) or parts of V(7) connected to v(z1,71) and 9! (z2,72) and
(#3) a second factor, which simply is the remainder of the diagram. A general
such term can be expressed as

(_l)n /dTidTé e dTrln (TT[’(J)(xl, Tl)wT (11527 7'2)V(7';) co V(Tm)bc

- n!
x [ dr TV ) V5, (E.65)
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where (---) is the connected part of the diagram. Redistribution of the n
different 7, among the m Vs in {---). and the n - m Vs in {---)p merely
corresponds to relabeling of the integration variables and gives an identical

contribution to G from each such term. There are n!/m!(n —m)! = <Z) such

arrangements, and the total contribution from such terms then equals

—1 m ’ I3 7 / ’
- O [arar (o, m (e )V () Ve
T T
ﬁ\\xr y = p
y\ /+ 777777777 { y XT K:w* Af/% y1
- e
—_— ————————
Xq Ty X5 1o Xq Ty X5 To
-
O
\
\»’/Y’C
|
| RN
} X 1 T 1 /// X 2 T 2
S e N
X7y XT X57To X T vyt
—
O
\\ /"/
T XT
|
// \\ ;
—p L e O G ——
X1 T4 yt XT X2‘C2 X1 T4 yT X212
(e) ®

Figure E.2: Diagram version of the terms in Eq. (E.63).
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Figure E.3: Single diagram representation of the four diagrams (c), (d), (e), and
(f) in Figure E.2 using an antisymmetric vertex.

’ ’

X ((_;1__%/dTr'n+1"'dTrIL<TT[V(Tm+1)"'V(Tn)])o. (E.66)

Summing the contributions of those diagrams of all orders that consist of a
particular connected part and an arbitrary disconnected part, i.e.,

. (_1)m /dTidTé ... dTrln <T7.['(p(.’1:1, 7-1);[;7(:52, TZ)V(Ti) t V(Tm)DC

m!

’

1 ’ 1 ’ ’ ’
X <1 - /dTm+1V(Tm+1) + 5 /dTm+1dTm+2T7’[V(Tm-{—l)V(Tm-f-Z)] T

(=D*
Kl

’

+ / ATy ATk Te [V (Topg1) - V(i) + 000, (B.67)

shows that all terms have a common factor of (S(3))o, and thus,

(Tr [y (z1, 7)Y (x2,72)S(B)])o = (Lr[(m1, 7)Y (2, T2))e(S(B))o  (E.68)

and

G(xl‘rl; IBQTQ) = <TT[¢($1, Tl)/(/)T(xQ, TQ)])C. (E69)

E.3.2 Propagator Diagram Rules

1. Form all connected topologically nonequivalent diagrams with 2n vertices
and two external lines where two solid lines and two dashed lines meet
each vertex.

2. Associate a factor g(x;71, x272) with each solid line starting in (z;7;) and
ending in (z272).

3. Associate w(z,y)(1 ~ Py,) with each dashed line.

4. Integrate over all internal vertex coordinates (x;7;), and sum over all in-
ternal spin coordinates.
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5. Multiply the resulting expression by (—1)"*¥ where F equals the number
of closed Fermion loops.

6. Put g(z17,727) = (¥'(22)9(x1))o for equal 7’s.

E.3.3 Fourier Transform

Consider the Green’s function in Eq. (E.27),

G> =-Tr {e(F+“N°‘H)01/_J($1,Tl)IZT(mz,7'2)} y  T1 < Ty, (E-70)

and use the definitions in Eq. (E.25) to write

G = _rﬁ{e(F+uNo—H)Be(H—uNo)T¢(xl)e—(H—uNo)TW(m)}
= G(ry,x2;7), (E.71)

where 7 = 77 — 7». Similarly,

G< = Te{eF+sNo=HByH gy m)h(z1,71)}
= Te{eFPelH—uNolry (g )= H=sN)THE) (1 (5,)}
= Tr{e(FruNo—H)B(H-uNo) (T +8) (4 ) o~ (H=mN)T+8) (41 (1)}

= —G(z1,z2;7 + 3), (E.72)

where 71 < 7o, and, thus 7 < 0, and 0 < 74+ 8 < (. Analogous algebraic
manipulations show that

g(zim,zoma) = —(Tr[¥(z1, 7)Y (22, 72)])o
= g(xy,20;7) (E.73)

(see also Eq. (E.42)) is a function of 7 on the interval (—3, 3), which satisfies
the relation

g(x1, 225 7) = —g(z1, 20,7 + B) (E.74)

for 7 < 0.
Expansion in a Fourier series on this interval yields

g(z1,22;7) = Zgn(xl,xz)e—mw/ﬁ, (E.75)
n

with the coefficients



E.3. DIAGRAMS 249

1 8 ,
gn(z1,2) = %/59(I1’$2;T)emﬂ/ﬁd7' (E.76)

Using the properties discussed above, one obtains

1 ’ 3 ° inTT
gn(T1,72) = 23 [/ g($1,x2;7)e’"”7/ﬂdr+/ g(z1,T2; 7)™ /ﬁdT}
0

1| [? _ s
= — / g($1,$2;7‘)em“T/BdT—/ 9(11712 T)emwv— B)/ﬁdT
26 | Jo A
(E.77)

_ 1 —inm s . inwT/B =0, n = 2m
= %[1—6 ]/0 g1, 25 T)e dr #£0, n=2m+1.

Using Eq. (E.42), one obtains
92m+1(Z1, 22) ﬁ Z u{z)ug(z2) /(B — ) +i(@2m + 1)/pn].  (E.78)

When T — 0, the parameter 3 — oo and the Fourier series in Eq. (E.75)
becomes an integral. This can be seen from

l [es) uk(xl)uZ(xz) e—i(zm Vrr/0 m
3 Z (Z [u—6k+i(2m+1)ﬂ'/ﬁ]> i A

m=—o0 k
ug(z1)ug(z2) —i(2m+1)n7/B
m;w (Z [ — ex +5( 2m+1)7r/ﬁ]> ¢ A2m +1)r/8
— Z uk(xl)u,’;(zg)% / dze iz 4+ p — €]t (E.79)
k —00

Rewriting the integral with iz + p = € yields

+ioc0
g{z1,22;7) = Z Uk(xl)uZ(zg)Q—l—, /ﬂ de e“(é"“)T/[e — €k (E.80)

k ™ —1i00

and further writing this as

p+i00
glz1,20;7) = (27ri)"1/ de g(x1, To; €)™ (7T (E.81)
o

— 1300
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shows that a system of noninteracting electrons has the electron propagator
with an energy representation

gl aaye) = Y W), (£.82)
k

The functions g(zy1,z2;7) and g(r1,22;€) above are connected via a Laplace
transform.
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for the time-dependent case and by T. Matsubara in 1955 in Progr. Theoret. Phys.
(Kyoto) 14, 351, for the temperature case.

e Wick’s theorem occurs first in a paper by G. C. Wick in Phys. Rev. 80, 268 (1950).

e Analytical properties of propagators, analytical continuation and other relevant proce-
dures for their mathematical treatment are discussed by

~ G. Baym and N. Mermin in J. Math. Phys. 2, 232 (1961)
~ J. M. Luttinger and J. C. Ward in Phys. Rev. 118, 1417 (1960) and by
— W. Parry, and R. Turner in Reports on Progress in Physics 27, 23 (1964).

e The book by A. A. Abrikosov, L. P. Gorkov, and 1. E. Dzyaloshinski, Methods of
Quantum Field Theory in Statistical Physics, Prentice-Hall, Englewood Cliffs, NJ,
1963, contains a thorough treatment of the temperature-dependent case.

e Laplace transforms are discussed in some detail in Handbook of Mathematical Func-
tions, Edited by M. Abramovitz and I. A. Stegun, Dover Publications, Inc., New York,
1970, p. 1020.
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Appendix F

The Eckart Potential and
its Propagator

Eckart (see references in Notes and Bibliography at the end of this appendix)
introduced a one-dimensional, analytically solvable,quantum mechanical model,
which is applicable to the study of chemical reactions . The potential is given
by

1 kexp (z/b)

U(z) = U(=o0) {1 +exp (x/b) + 1+ exp (x/b)]? } ’ (F.1)
where the parameter s provides the shape of the transition from the initial
situation with energy U(—o0) to the final one with energy U(oo) = 0. A k-
value on the interval [—1,1] gives a smooth step, while other values yield a
barrier or a well in the transition region (see Figure F.1).

The Green’s function satisfies the equation (A = 1)

1 d?
2M dax?
The introduction of dimensionless independent and dependent variables such
that z = bq, E = k2/2Mb%, G(z,2'; E) = 2Mbg(q,q’; k?), U(z) = w(q)/2Mb?,
a = 2Mb?U(—oc), and w(q) = a[l + /(1 +€e~ )] /(1 +€9) results in the equation

[E - U(z)]|G(z,2'; E) + G(z,z'; E) = 6(x — ). (F.2)

2
k2 — w(@)lg(a, ' k) + g‘ﬁg(q,q/; k) = 8(q— o), (F.3)

A solution u(z) to the homogeneous equation corresponding to Eq. (F.3) can
conveniently be expressed in terms of the Gauss hypergeometric series F(z) of
the auxiliary variable z =1/(1 4+ ¢~?). Thus,

[k — w(q)lu(z) + %d% [Z—; dl;(;)] =0, (F.4)

with

251
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Ul
U(->)

-10 -3 0 5 10

x/b

Figure F.1: Eckart potential for three values of the shape parameter, x =
4,1/3,-4.

w(g) = a(l - 2)(1 + 2) (F.5)
and
dz
—_— — . F
aq (1-2)z (F.6)
A solution has the form
1 1
u(z) =27(1 - Z)TF(§ +o+¢+w,§ +o+1—w;l+20;2), (F.7)

with the parameters of the Gauss hypergeometric series defined as

1
o?=a-k* 7P=—k% Wi= 1o (F.8)

Properties of the Gauss series admits another independent solution of the form

1 1
v2) =21 =2 FG+o+7+w, s +0+7-wil+2r1-2).  (F9)
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The properties of these solutions are such that as ¢ tends to infinity on the
negative real axis and z to zero, u{z) tends to exp (go). Similarly, as ¢ tends to
infinity on the positive real axis and z to 1, v(z) tends to exp (—¢7). The Gauss
series in u(z) and v(z) are absolutely convergent for |z| < 1, when the real part
of 7 and o, respectively, is negative. The following definitions are useful:

oc=ik' =i(k* —a)/?, o+0*<0, T=ik;T+7* <0, (F.10)

and introduce the wave numbers &’ and %, which are both chosen to lie in the
upper half of the complex plane. The two roots to the equation w? = % +ak
for w occur in the Gauss series, and the choice of branch is arbitrary.

The two linearly independent solutions to be used to express the propagator
can then be written in terms of these new parameters as

L . 1
uz) = z27*% (1 - z)’kF(% — k' + ik + w, 3~ ik' + ik —w;1 — 2ik';2) (F.11)

L ) 1
v(z) = 2% (1 —z)_lkF(% +ik —ik+w, 5 +ik' —ik—w;1—2ik; 1 —2z). (F.12)

The asymptotic behavior of these solutions are such that

u(z) » e *9  and v(z) — (%) ek'a (F.13)
for ¢ — —o0, and z — 0, while
u(z) — (K—> e ™ and w(z) — e (F.14)
2ik
forgq - o0 and z — 1.
The Wronskian W equals

W(u,v) = wu(z) du(z) _ v(z)dl(;f]z) = %;— (u% - v%) (F.15)

~ I(1 - 2ik")T(1 — 2ik)
T — ik — ik +w)D(3 £ ik — ik —w)’

1 1

= 2ik'F(§+ik'—ik+w,§+ik'—ik+w;1-—2ik;1)
1 1

= 2ikF(§ —ik'+ik+w,§ — ik’ + ik +w; 1 — 2k'; 1),

and, thus, the propagator can be written as
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a2y _ w(z)v(zs)
g(q7q ’k ) - W(U,U) ’ (F16)
according to Eq. (2.12).

The spectral density of the Green'’s function reflects the discontinuity as the
energy parameter crosses the real axis. Complex energy values are considered
and the energy plane is cut along the real axis from a least energy value where
both regions are open to infinity, i.e., the interval {max[0, U{-o00)],00}. Lim-
iting values for k and k' are positive and real when approaching the cut from
above and otherwise negative.

The transformation property of the hypergeometric series under wave num-
ber sign change is found to be

1 1
F(§+ik'—ik+w,5+ik’~ik—w;1—Qilc;l—z)

1 . 1 . ) W
= F(E +zk'—zk+w,§ +zk"zk—w;1+22k';z)2ik/

+ Z—-2ik'(1 . z)2ik:

1, 1o, . NS
X F(2 1k +zk—f—w,2 ik’ + ik —w; 1 22k,z)2ikl, (F.17)
with the amplitude x given in terms of ratios of gamma functions as
_ D(§ =ik — ik + W) (5 — ik — ik — w)[(2ik) (F.18)
© D(3 + ik — ik + w)D(& + ik — ik — w)D(-2ik") '
It holds, for positive values of k& and &/, that
W(u,v) . ,
o) = L8 (o) 1wz, (F.19)
and the general form of the spectral density function yields
2Mb
A(z,2"; B) = =—3 lim g(q,q';k* + in), (F.20)
iy 7—+0
which reduces to
, Mb .
Az, 2 E) = Wmu(k){u (25) + u(z>)x}- (F.21)

The derivatives of the spectral density exhibit a discontinuity at equal argu-
ments, which can be seen from

0z«  dgdzdzc  2(1-2) .,
dr  dzdg dz b o' - 2),
0z~ dqgdzdzs  2(1 - z)

oz drdg dz ~— b

O(z ~ 2), (F.22)
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from which follows that

0A(z,z'; E) B Mz(1 - 2) ' du(z); . ’
b = aw O R W) )
+ Mo {28 1 2, ] (29

An equivalent expression holds for the derivative with respect to z’, and for the
second derivative at the origin, we obtain

O°A(0,0,E) M _du(}) dur(})  du(l)
Ozox’ —lﬁﬂk'bm dz { dz + dz X} (F.24)

where we note that the d-function term from the differentiation of the Heaviside
step function does not appear after the real part is taken.
The expression in Eq. (13.19) now becomes

/dmdx’AJ(:v,x';E)AJ(a:’,z;E)

(ﬁ)Q {dA(0,0;E) dA(0,0;E) A0 O_E)dQA(O,O;E)

M dr dx' dzdz’
- <;%> [R(u'B)R(uii’) — Rud)R(u'd)], (F.25)

where in the last expression, the derivatives with respect to z or 2z’ are indicated
by primes and the suppressed arguments are % We recall the definition of 4 as
& =u*+ uy, (F.26)
which can be used to obtain the following expression for Eq. (F.25):
wu'” — w'ur\ 2 2 9
oM ) (-b) = (- EP).  (F2)

with the energy dependence of the amplitude x explicitly given. The numerator
in the rate expression Eq. (13.9) can now be expressed as

/dT/ dte™ (J(r +it)T)o ﬂ/ dESF-B) (1 - (E)?), (F.28)

and it is essentially the energy weighted average transmission coefficient for the
Eckart potential. It should be noted that the choice z = 0 is arbitrary and could
be replaced by another value to obtain the identical result.

The transmission coefficient is
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T(E) = (1-[x(B)P)
T(} — ik — ik +w)D(L — ik’ — ik —w)T(2ik) |
(3 + ik — ik +w)[ (5 +ik' — ik — w)[(~2ik")
coshm(k’ — k + iw) coshw(k’ — k — iw)
 coshr(k + k' + iw) cosh 7 (k + k" + iw)
2sinh2rk sinh 2k’

= 2 F.29
cosh 27 (k + k') + cosh 2miw ( )

for a purely imaginary value of w. The formula holds also for real values as
pointed out by Eckart. Both k& and k¥’ have to be real and positive and no
transmission is allowed unless the kinetic energy is positive in both regions.
After substitution, the integral can be expressed as

2 1
25 / dEePF-B)P(E) = ZfF-U(=00) / doT(6) (F.30)
™ Yis 0
with
g =1—ePlUl-o0)=E) (F.31)

There are four energy parameters in 7'(6): (i) the potential energy difference
between the entrance and exit channels, U(—o0); (ii) the height of the potential
barrier,

(k+1)2 (k - 1)2
=U(—o0)——— =U(~ 14 —1; .
Umax U( OO) 4,‘4: ( OO) + 4f<.‘, ; (F 32)
(iii) the width of the barrier 1/2Mb?%; and (iv) the temperature parameter 1/3.
Only ratios of these parameters are significant and we choose the dimensionless

2
quantities a, h = a("jnl) ,and T = % as our parameters. It holds that

w? =14 (v'h + v/l = a)? Figure F.2 shows how the integrand changes under
changes in parameter values.

The similarity between panels A and C shows that it is the height of the
barrier above the higher energy channel that is the important parameter and
not the energy difference between the two. A similar conclusion derives from
panel B, where it is the barrier height in relation to the average kinetic energy
in the system that changes. Panel D shows that the thinner barrier admits
tunneling at lower energies than does the wider one.

The integral in Eq. (F.30), for a boson or fermion system, takes the form
23 T(E) 2 T(6)
- / Ry g / B T (1= 8)’ (F.33)

where the exponential in the denominator dominates so that it may be consid-
ered constant.
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T A T B

6 0

Figure F.2: Illustrations of the transmission coeflicient T' as a function of the
energy-dependent variable 8. The heavy line in all panels shows the form when
a =7 = h/2=1. Panel A shows in addition the values for a = 0.5 and @ = 1.5.
Panel B shows changes with temperature as 7 = 0.5 and 7 = 1.5. Panel C gives
the form for different barrier heights A = 1.5 and h = 2.5. Panel D indicates
changing barrier widths whena =7 =h/2=025anda=7=h/2=4.

The denominator in the rate expression Eq. (13.9) is calculated with the
relevant Green’s functions. Thus,

I

1 B B , ,
ﬁ/o dT/O dr' (T [B(T)B(r")])¢

:t%/d‘rdT'dxdx’B(x')G(x"r’,xT)B(:r)G(xT, '), (F.34)

1
K

I

with the temperature form of the propagator. The upper sign applies to boson
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systems, while the lower one works for the fermion case.
Using the Fourier representation (see Appendix E for the propagators, we
obtain for the boson case the form

G(zr, 2’7y = —Aﬁi ; (q,q ;51— 2—?Igz)(a)(p [QTgW(T - T’)], (F.35)

n=—0oo

whereas for fermions, we write

G(ar,z'r") (F.36)

B 2Mb = ), @n-Ur . [(@n-Dir
= > 9l qsn 5 )ep[—————ﬂ ( )]~

Integrals over the T-variables become summations, and we get

}1{_: %;(2]\;})2)2/0 Z)u z)/ ;)iziz) _ (F.37)

It is implied here that u, v, and W depend on the Fourier summation index n
through the complex wave numbers

n=-—o0

k = (2MB*(u — 2nir/B))""* (F.38)
and
k' = (2Mb2 (i — U(—o00) — 2nin /)" (F.39)

The integral is obviously divergent when the limits of the intervall0,1] are im-
plemented. We observe that

1 2 ' .92
v (2) , () ~
/Z z’(l—z’)dz = o8 for |1-zl<1 (F.40)
and
1 ’ . o
( ) y_ W (2)
/z I8 —z')d Wiz T for k<L (F.41)

where the terms that cause singularities are indicated. Limiting the integration
to a finite interval ~L < z < L, we can write

1-¢ 2 u2 =z 1 P !
s =
w?(¢)v*(¢) w?(1 - ¢v*(1 - ¢)
=0 MO —ma—or !
W2L
b

n (¢)

[(2ik") 2 + (2ik)7°] (F.42)

~
~
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for ¢ = (1 +exp (L/b))~! and b < L.
The relation

) 1/2 . 1/2*
(2Mb2 (u + 27;”)) = - <2Mb2 <u - 37—;—”)) =k  (F43)

is used to sum over positive integers in the expressions

_11? — _8_1\22 {(2,',/2]\/[”/)—3 + (2iv/2Mp)~3

o0 b 3 b 3
* 2%; (2ik’> +<ﬂ> }}
ML i

oo {25|u'|\/2M|u’l +2ﬁlul\/2Mlul
S (F a0

n=1

An integral estimate of the infinite sums yields

1 V2MIL? 1 ]
Lo VEMIPg) 1 AL Al (F.45)
K 2 Vi =i Vu—im o 20W 20p

for ' = p— U{—00) and 5 = 2x¥/5 with 0 < 9 < 1. Explicitly, for the boson
case, we get

1 ey HMeEEew)”

K 46" o/ 12 + 2
1/2
L LM L(M(\/u2 +n7+ u)) (F.46)
4pu? 2w/ u? + n? ) )

Appropriate modifications for the fermion case yield the same functional form
with a change of sign and no zero frequency term. The 7 parameter requires
careful consideration.

The result for 1/K can also be expressed as a derivative of the number of
systems with respect to the chemical potential. The number of systems N is
written as an integral of the propagator as

N = / daG(zT,274)

— 00
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- 2y Z/ dq [9(g, ¢; —o0 — 2min/p3)

- g(q, ¢ p - 2min/B)] . (F.47)

The integration approximation of the sum is a contour integration like the one
depicted in Fig. 3.2 in Chapter 3, using the so-called Coulson contour, which is
an infinite semicircle in the left half-plane and a straight vertical line. The first
propagator g in Eq.( F.47), which is evaluated at an infinitely large negative
value of the chemical potential, corresponds to the semicircle of the Coulson
contour. Change of sign and summation variable is required for the fermion
case. A useful rewrite Eq. (F.47) yields

2
N=- 2Mb Z/ dq/ do 9{q,q;0 — 2min/B). (F.48)

Limiting the dlvergent integral over g, as was done above, results in

L _ ) _ 1=¢ w(2)u(z) (1 1\ L
/;L dqg(q,q;02min/B) = /C dZ;(l———z)W = (Qik’ + Zk_) 7 (F.49)

and we can write

2ML b
N = Z/ (211« +ﬂ>

””L/ = () - ()

n=-—o0

= /_ . K_Z—ﬁ (F.50)

with a generalized notation for K. The final expression for the number of
systems is

v = H{P (e ea) )

26|w'|
= {L_W -~ (M (\/m+u))l/2}, (F.51)

for bosons, where p < 0 and p < U(—00), and

v = Hp(wmen)”)
-ﬁ- { (M (Vi ++ u))w} (F.52)
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for fermions. The inverse relation between between chemical potential and the
density of systems per unit length is not readily expressed.

Notes and Bibliography

In this appendix, a scattering approach is used that can be found in the book Quantum
Chemistry, John Wiley & Sons, Inc., New York, 1944, p. 311, by H. Eyring, J. Walter, and G.
E. Kimball. The mathematical development uses formulas and relations that can be found in
the Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,
U. S. Department of Commerce, National Bureau of Standards, Applied Mathematics Series,
55, Fourth printing, December 1965, Edited by M. Abramowitz and 1. A. Stegun. In particular,
the chapter on Hypergemetric Functions by F. Oberettinger, p. 555 is useful for the material
presented here. The original introduction of the potential can be found in the paper Phys.
Rev. 35, 1303 (1930), by C. Eckart. Related treatments of chemical reactions can be found in
the book Nonequilibrium Statistical Thermodynamics by D. N. Zubarev, Consultant Bureau,
London, 1974, in J. Chem. Phys. 33, 281 (1960) by T. Yamamoto, and in J. Chem. Soc.
Faraday Trans. 93, 893 (1997) by J. Linderberg.
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Complex E-plane, 9-11, 29, 204

Complex rotatory power, 90

Complex rotatory power, 89

Complex spectra, 55

Configurations, 40, 47, 49, 51, 57,
66, 158, 163
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Fock matrix, 169, 225

Fock operator, 29, 49, 220
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Fourier transform, 82
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Fourier representation, 258
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Free energy, 207

Functional derivative, 46
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Gauge origin independence, 112

Gauge transformation, 112
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Geometric approximation, 25-30, 61,
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Hartree-Fock, equations, 44, 47
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Heaviside step function, 22, 255
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Hiickel model, 12-15, 35, 167

INDO approximation, 171
Inner projection, 131-133, 138, 198
Interaction hamiltonian, 21
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Interaction picture, 239, 240, 244
Irreducible vertex part, 199

Killer condition, 27, 63
Koopmans’ theorem, 127
Kramers’ modification, 32

Lagrange’s equation, 78
Laurent series, 215
Legendre functions, 31
Legendre polynomials, 31
Levy-Cevita tensor, 99

Magnetic dipole moment, 90

Magnetic dipole transition, 84

Magnetic field operator, 80

Magnetic moment, 78, 97, 98, 100,
105

Magnetic moment density, 95, 109

Magnetic moment operator, 101

Magnetic moment, nuclear, 97

Magnetic shielding constant, 111

Magnetic shielding constant tensor,
97

Magunetic susceptibility, 98, 102, 104,
120

Magnetic susceptibility tensor, 98

Magnetic susceptibility tensor, 97,
98, 110

Maximum overlap, 167

Maxwell’s equations, 80

Meromorphic function, 5, 31, 218

Metric matrix, 26

Modified interaction, 49

Molecular orbital energies, 29

Molecular orbital coefficients, 165

Molecular orbital coefficients, 29

Molecular orbital energies, 165

Molecular orbital theory, 171

Molecular orbitals, 155, 164

Molecular orbitals, canonical SCF,
141

Moment expansion, 24

Moment expansion, 24, 25, 158, 203

Mono-excited CI states, 63

Multiplet energies, 49
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NDDO approximation, 168,170, 171

Nitrogen, 42, 43, 57, 59

Normal order, 237

Nuclear magnetic resonance, 97

Nuclear Magnetic Resonance, spec-
tra, 99

Nuclear magnetic shielding, 106

Nuclear spin-spin coupling constants,
100

Number operator, 49, 159

Number operator, 22, 49, 53, 55, 69,
93, 165, 169, 170, 235

Occupation number operator, 27

Occupation number operator, 236

Operator, annihilation, 155, 168

Operator, creation, 159

Operator, annihilation, 155, 159

Operator, creation, 38, 155, 160, 163

Optical rotatory dispersion, 90

Optical rotatory dispersion, 88

Orbital densities, 158

Orbital energies, 29, 47, 126, 127,
144, 148, 165, 166

Oscillator strengths, 88

Overlap, 57, 155, 159, 167, 223

Pair operators, 51

Pair creation operators, 160

Pair creation operators, annihilation
and creation, 50

Pair creation operators, 49

Pair operators, 51, 55

Parabolic cylinder functions, 6

Paramagnetic molecules, 101, 105

Paramagnetic susceptibility, 105

Pariser-Parr-Pople model, 167

Parity operator, 160

Particle in a box, 3, 5

Particle-hole symmetry, 51

Particle-hole transformation, 54

Particle-hole operator, 61, 198, 200

Particle-hole propagator, 86, 199

Particle-hole self-energy, 199

Particle-hole symmetry, 49, 54, 55

Particle-hole transformation, 52, 53
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Partition function, 93, 235, 236

Pauli spin matrices, 18

Pauli exclusion principle, 41

Pauli exclusion principle, 8

Pauli spin operators, 78, 81

Perturbation theory, 93, 123, 124,
133, 138

Perturbation theory, first-order, 49

Perturbation theory, Rayleigh-Schrédinger,

133

Photon absorption, 83, 151

Photon emission, 84

Photon propagator, 81

Photon scattering, 82, 89

Photons, 22, 81, 82, 151

Planar unsaturated molecules, 12,
14

Polarizability, frequency dependent,
84

Polarization, 82, 89

Polarization vector, 89

Polarization propagator, 83

Polarization vector, 79, 81, 89, 90

Population operators, 165

Population analysis, 165, 171

Probability, 8, 82, 83, 151

Probability amplitude, 8, 57, 83, 89

Projection operator, 124, 156

Projectors, 55, 58, 129

Propagator, 1, 7, 22, 200, 253

Propagator, electron, 39, 157

Propagator, excitation, 198

Propagator, Hartree-Fock, 27

Propagator, electron, 8, 18, 22, 25—
30, 37, 40, 42, 43, 123-125,
127,128, 131-135,138-142,
144, 149, 150, 163-166, 198,
200, 222, 239, 240, 250

Propagator, electron WKB, 30

Propagator, electron, renormaliza-
tion, 128

Propagator, EWMO, 165

Propagator, excitation, 61-63, 70,
86, 110, 197, 198, 200

Propagator, excitation, RPA, 71

Propagator, first-order, 139
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Propagator, Fourth order, 144

Propagator, Hartree-Fock, 123

Propagator, particle-hole, 199

Propagator, photon, 81

Propagator, polarization, 2, 56

Propagator, polarization, AGP, 71,
75

Propagator, radial, 33, 41

Propagator, RPA, 200

Propagator, second-order, 142

Propagator, temperature dependent,
235

Propagator, tensor, 83

Propagator, third-order, 143

Propagator, WKB, 32

Quantization, second, 219
Quantization, first, 21, 219
Quantization, second, 15

Radial density distribution, 35

Radiation field, 79, 151

Random Phase Approximation, 62

Random Phase Approximation, 64,
71

Random Phase Approximation, tran-
sition moments, 86

Rate expression, 255

Reduced matrix elements, 39

Reduced matrix elements, 39, 41,
55, 163

Renormalization, 128, 135

Residue theorem, 29

Residues, 5, 6, 29, 87, 138, 141, 165,
217, 218

Resolvent, 9, 12, 13, 24, 124

Rotations in spin space, 18

Rotatory power, 88-90

Rotatory strength, 90

RPA, 200

Russell-Saunders coupling, 39

Schrédinger equation, 136
Schrédinger equation, 7, 56, 72, 112
Secular determinant, 13
Self-consistent, 29, 166, 229



INDEX

Self-energy, 125, 126, 128, 130-132,
138, 143, 231

Self-energy diagrams, 129

Self-energy, operator, 124

Self-energy, propagator, 128, 144

Seniority, 53, 54, 56

Separated atoms, 164, 169, 170

Shielding constant, 65, 97, 99, 101,
111, 112

Slater determinant, 17, 21, 25

Slater-Condon integrals, 161

Slater-Condon parameters, 161

Spectral density function, 11

Spectral representation, 39, 138, 199

Spectral density, 43, 157-160, 163,
164, 254

Spectral density function, 10, 12, 33—
35, 63, 208

Spectral representation, 70, 141, 165

Spectral representation, Lehmann,
23

Spectral weights, 42, 43, 157

Spherical harmonic, 37, 40, 55, 85

Spherical potential, 30, 37, 40

Spin orbital, 165, 169

Spin function, 37

Spin Hamiltonian, 106, 115

Spin hamiltonian, 120, 171

Spin operator, 170

Spin orbital, 8, 21, 25-27, 29, 37, 40,
44, 47, 51, 61, 62, 64, 66,
87,123,124, 127-129, 131,
144,145,155, 157, 158, 165,
168-170, 201, 202, 219, 221,
223,227,229, 231, 236, 240

Spin orbitals, 17, 202

Spin projections, 71

Spin resonance, 165

Spin-spin coupling, 109, 197

Spin-spin coupling, 97, 100, 101, 108,
109, 113, 117

Stationary states, 3, 27, 63, 75

Stationary states, excited, 71

Statistical mechanics, 1, 48

Statistical physics, 2
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Statistical theory of the atom, 35,
36

Subshell, 40, 41, 44, 47, 49, 51, 54,
56, 160

Sudden approximation, 152

Superoperator, 24

Superoperator hamiltonian, 24

Superoperator resolvent, 24

Superoperator identity, 24

Susceptibility, diamagnetic, 101

Susceptibility, Units and magnitude,
102

Temperature, 1, 28, 118, 119, 235,
239, 244, 250, 256
Tensor operator, 37-39, 85, 121
Time-Dependent Hartree-Fock, 62
Transformation properties, 18, 19,
39
Transformation, unitary, 7
Transformation, gauge, 112
Transformation, infinitesimal, 227
Transformation, unitary, 26, 51, 62,
69, 227
Transition amplitude, 43
Transition amplitude, 43
Transition moment, 71
Transmission coefficient, 255
Turning points, 34, 35

Vacuum state, 51, 81, 156
Vector potential, 79, 81, 82, 85, 94,
97, 98, 100, 112, 151

Wave number, local, 32, 33
Wave vector, 151

Wick’s theorem, 242, 244, 250
Wigner 375, 55

Wigner 33, 37

Wigner 65, 37, 55
Wigner-Eckart theorem, 39
WKB approximation, 32
WKB method, 32

Wronskian, 4, 6, 33

ZDO approximation, 168





