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equations; Newton-Lorentz equations; Poisson; Schrodinger
Equivalence:
between the A « p and E e r pictures, 272, 296, 316, 321, 337¢, 356e
between the Aepand Ze+ OV pictures, 349
between relativistic Q.E.D. in the Lorentz and the Coulomb gauges, 424
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Expansioninaand a* (orinaand a):
of the electric and magnetic fields, 171, 241e
of the four-vector potential, 391
of the Hamiltonian and momentum in the Lorentz gauge, 382, 391
of the Hamiltonian and momentum of the transverse field, 172
of the transverse vector potential, 171
Expansion in normal variables:
of the electric and magnetic fields, 27, 28, 32
of the four-vector potential, 372, 376
of the Hamiltonian and momentum in the Lorentz gauge, 378, 379
of the transverse field angular momentum, 27, 48
of the transverse field Hamiltonian, 27, 31
of the transverse field momentum, 27, 31
of the transverse vector potential, 29, 31
External field, 141, 172, 178, 180, 198, See also Hamiltonian for particles in an external
field: Lagrangians for electrodynamics
External sources (for radiation), 24, 219, 314, 370, 372, 400, 418
F
Factored states, 207
Fermi:
golden rule, 323
Lagrangian, 366
Fermion, 99, 161e, 413,414
Fields (in general), see also Angular momentum: Energy; Hamiltonian (general
considerations); Lagrangian (general); Momentum; Quantization (general)
complex, 95



real, 90
transverse and longitudinal, 13, 37
Fierz, see Pauli-Fierz-Kramers transformation
Final, see Initial and final states of a process
Fock space, 31, 175
Fourier transform, 11, 12, 15, 56, 97
Four-vector:
current, 10, 365, 411
field energy-momentum, 379
potential, 10, 364, 376
Free (fields, potentials), 28, 58, 183, 205, 373, 376, 382,414
Fresnel mirror, 208
Functional derivative, 92, 126
G
Gauge, see also Coulomb gauge; Lorentz gauge; Poincare gauge
gauge transformation and phase of the matter field, 167e, 449e
invariance, 8, 17, 107, 269
transformation, 9, 13, 108, 255, 267, 270, 331, 368, 375, 397
Generalized coordinates:
change of, 86, 260
complex, 87, 88
real, 81, 84
Goppert-Mayer transformation, 269, 275, 304
Ground state:
of the quantized Dirac field, 417
of the radiation field, 186, 189, 252¢, 385, 386, 394
H
Hamiltonian (general considerations), see also Effective, (Hamiltonian)
with complex dynamical variables, 88, 97, 154e, 157e
for a discrete system, 83, 147e
for a field, 93, 97, 148e
Hamiltonian and energy, 83, 136, 146e
in quantum theory, 89, 259
transformation of, 258, 261, 263
Hamiltonian of the particles:
Dirac Hamiltonian, 410
expression of, 144, 197
Pauli Hamiltonian, 432
physical meaning in various representations, 271, 297
of the quantized Dirac Field, 415
for two particles with opposite charges, 232e
for two separated systems of charges, 313, 328
Hamiltonian for particles in an external field:
for a Dirac particle, 410



electric dipole representation (E » r), 271, 304, 320
Henneberger picture, 277
for an ion, 342e
for the quantized Dirac field, 419
standard representation (A ¢ p), 144, 198, 266, 317
Hamiltonian for radiation coupled to external sources:
in the Couilomb gauge, 218
in the electric dipole representation, 314, 353e
in the Lorentz gauge, 370, 400, 418
Hamiltonian (total):
in the Coulomb gauge, 20, 33, 116, 138, 173, 439
in the Coulomb gauge with external fields, 144, 174,198
of coupled Dirac and Maxwell fields, 419, 431, 451e
in the Power-Zienau-Wooley picture, 289, 292, 295, 329
Hamilton's equations:
for a discrete system, 83
for a field, 94, 132, 371
Heaviside function, 226
Heisenberg:

equation, 89 equations for a and a* 179, 217, 249e, 420
equations for the matter fields, 99, 161e, 420
equations for the particle, 177
picture, 89, 176, 185, 218, 221, 382
relations, 241e, 248e
Hennebcrger transformation, 275, 344e, 349
Hilbert space, 89, 387
Hole theory, 413
Hydrogen atom:
Lamb transition, 327
1s-2s two-photon transition, 324, 338e
I
Indefinite metric, see also Scalar potential
definition and properties, 387, 391, 445e
and probabilistic interpretation, 390, 392
Independent variables, 95, 109, 121, 362, See also Redundancy of dynamical variables
Initial and final states of a process, 264, 271, 296, 300, 302, 317, 326, 337¢
Instantaneous, see also Nonlocality
Coulomb field and transverse field, 16, 21, 64e, 67e, 122, 291, 292
interactions, 18, 122, 313, 330
Intensity correlations, 186 Intensity of light, 185
Interaction Hamiltonian between particles and radiation:
in the Coulomb gauge, 197, 232¢
in the electric dipole representation, 271, 307, 312, 315



in the Power-Zienau-Woolley representation, 290, 292, 296, 329
in relativistic Q.E.D., 419
Interactions, see Contact interaction; Coulomb: Dipole-dipole interaction; Electric
dipole; Instantaneous: Magnetic dipole moment: Quadrupole electric (momentum
and interaction): Retarded: Hamiltonian
Interference phenomena:
with one photon, 208, 210
quantum theory of light interference, 204
with two laser beams, 208, 212 with two photons, 209, 211
Interferences for transition amplitude, 213
Invariance, see also Covariant
gauge invariance, 9, 107, 167e, 267
relativistic invariance, 10, 15, 106, 114
translational and rotational, 134, 153e, 200, 370
lon (interaction Hamiltonian with the radiation field), 342e
K
Kramers, see Pauli-Fierz-Kramers transformation
Kronecker (delta symbol), 94, 148e
L
Lagrange's equations:
with complex dynamical variables, 87, 96, 154e
for a discrete system, 82, 129, 147e
for the electromagnetic potentials, 104, 142, 150e, 151e, 366
for a field, 92, 96, 131, 147e, 150e
for a matter field, 157e, 167e, 367, 449e
for the particles, 103, 142, 151e
Lagrangian (general), see also Density, Lagrangian: Functional derivative: Matter field
with complex dynamical variables, 87, 95, 154e, 157e
of a discrete system, 81, 147e
elimination of a redundant dynamical variable, 84, 154e, 157¢
equivalent Lagrangians, 82, 92, 108, 256
of a field, 91, 95, 147e
formalism, 79, 81
linear in velocities, 154e, 157¢
Lagrangians for electrodynamics, see also Covariant Lagrangians; Standard Lagrangian
in the Coulomb gauge, 113, 137
with external fields, 142, 143, 266, 271, 449
in the Power-Zienau-Woolley picture, 287
Lamb:
shift, 191
transition, 327
Least-action principle, 79, 81
Light intensity, 185
Linear response, 221, 352e



Linear susceptibility, 221, 352e
Locality, 12, 14, 15, 21, 103, 291, See also Instantaneous; Nonlocality
Localized systems of charges, 281, 304, 307
Longitudinal:
basis of longitudinal vector functions, 53
contribution of the longitudinal electric field to the energy, momentum and angular
momentum, 17, 19, 20
electric field, 15, 64e, 172, 283
normal variables, 374
photons, 384, 430 vector fields, 13
vector potential, 112, 255
Longitudinal vector potential:
in the Coulomb gauge, 16, 113
in the Lorentz gauge, 22
in the Poincare gauge, 332
Lorentz equation, 104, 178, See also Lorentz gauge: Subsidiary condition
Lorentz gauge, see also Subsidiary condition
classical electrodynamics in the Lorentz gauge, 364
definition, 9
relativistic Q.E.D. in the Lorentz gauge, 361, 419, 424, 453e
M
Magnetic dipole moment:
interaction, 43, 288
orbital, 288
spin, 44, 197, 439
Magnetic field, 21, 24, 27, 32, 42, 118, 171, See also Expansion
Magnetization:
current, 284
density, 42, 284, 292
Mass:
correction, 69e
rest mass energy, 432
Matter field:
Dirac matter field, 107, 366, 408, 414, 433, 451e, 454e
quantization, 98, 161e, 361, 414
Schrodinger matter field, 157e, 161e, 167e
Maxwell equations, see also Heinsenberg: Normal variables of the radiation
covariant form, 17, 366
for the potentials, 9, 10, 366
quantum Maxwell equations, 179
in real space, 7
in reciprocal space, 12, 21
Mean value in the indefinite metric, 389, 396, 398, 406
Mechanical momentum, 20, 177, 271, 290



Mode, 24, 27, 374, See also Normal mode, Normal variables of the radiation: Expansion
Momentum, see also Commutation: Expansion in normal variables: Expansion in a and

at (orinaand @)

conservation, 8, 61e, 138, 200

contribution of the longitudinal field, 19, 20

of the Dirac field, 451e

of the electromagnetic field in the Lorentz

gauge, 370, 379

of a general field, 152e

momentum and velocity, 20, 177, 271, 290

for a particle, 20, 177

of the particle + field system, 8, 20, 118, 139, 174, 199

of the Schrodinger field, 158e

of the transverse field, 19, 27, 31, 172, 193, 188
Multiphoton amplitudes (calculations in various representations), 316, 325, 338e, 344e,

348c, 349e

Multipole:

expansion, 287

waves, 45, 55, 58, 60
N
Negative energy states, 413
Negative frequency components, 29, 184, 193,422
Newton-Lorentz equations, 7, 104, 178
Nonrelativistic:

approximation, 103, 122, 200

limit, 424, 432, 439
Nonresonant processes, 325, 356e
Nonlocality, 14, 15, 21, 151e, See also Instantaneous; Locality
Norm:

in the indefinite metric, 388, 445e, 447e

negative, 385
Normal mode, 24, 27, 374, See also Normal variables of the radiation: Expanion
Normal order, 185, 195, 237e
Normal variables of the radiation, see also Expansion in normal variables

a, and a, normal variables, 375, 376, 378

analogy with a wavefunction, 30

definition and expression, 23, 25, 29, 371
discretization, 31

evolution equation, 24, 26, 32, 66e, 219, 371, 372
Lorentz subsidiary condition, 374

quantization, 33, 171

scalar and longitudinal normal variables, 372, 374, 379
transverse normal variables, 25, 29, 374



O
Observables, see Physical variables
Operators in the indefinite metric:
adjoint, 388
eigenvalues and eigenfunctions, 389, 445e
hermitian, 388, 445e
Order:
antinormal, 237e
normal, 185, 195, 238e
P
Parseval-Plancherel identity, 11
Particles see Conjugate momenta of the particle coordinates; Matter field: Hamiltonian
for particles in an external field
Particle velocities:
in the Coulomb gauge, 117, 177
in the Goppert-Mayer approach, 271, 306
in the Henneberger approach, 277
in the Power-Zienau-Woolley approach, 290, 295
Pauli:
exclusion principle, 163e, 413, 416
Hamiltonian, 432
matrices, 410, 437
Pauli-Fierz-Kramers transformation, 278, 429
Periodic boundary conditions, 31
Phase:
of an electromagnetic field mode, 208, 212, 243e
of a matter field and gauge invariance, 167e, 449e
Photodetection signals, see also Interference phenomena
double counting signals, 185, 209, 214
single counting signals, 184, 188, 206, 213
Photon, see also Annihilation and creation operators: Bose-Einstein distribution:
Interference phenomena; S-matrix: States of the radiation field; Wave-particle
duality
as an elementary excitation of the quantized radiation field, 30, 187
longitudinal and scalar photons, 384, 392, 403, 425, 430, 443e, 446e
nonexistence of a position operator, 30, 50, 188
photon number operator, 187
single-photon states, 187, 205, 208, 210, 385
transverse photons, 186, 385
wavefunction in reciprocal space, 30
Physical meaning of operators:
general, 259, 269
in the Goppert-Mayer approach, 271, 306, 310
in the Henneberger approach, 277, 345e



in the Power-Zienau-Woolley approach, 290, 292
Physical states, 384, 394, 396, 405, 423, 430, 443e, See also Physical meaning of
operators: Physical variables; Subsidiary condition
Physical variables, see also Angular momentum: Electric field: Energy; Magnetic field:
Momentum; Particle velocities: Photodetection signals: Physical meaning of
operators; Position operator
in classical theory, 257
corresponding operators in various representations, 116, 117, 271, 277, 294, 306,
310
mean value in the indefinite metric, 396
in quantum theory, 259, 296
transformation of the corresponding operators, 260, 263
Planck, 1
Poincare gauge, 331, 333
Poisson:
brackets, 86
equation, 10, 345e
Polarization:
current, 284
density, 281, 292, 308, 329
Polarization of the radiation:
polarization vector, 25, 376
sum over transverse polarizations, 36
Position operator, see also Photon; Translation operator
in the Henneberger approach, 276, 345e
for the particles, 33, 118, 258
Positive:
positive energy slates, 412
positive frequency components, 29, 184, 193,422
Positron, 408, 413
Potential, see Longitudinal vector potential; Scalar potential: Transverse vector potential
Power-Zienau-Woolley transformation, 280,286, 328, 331
P-representation, 195, 206, 211, 236e, 251e
Processes, see Absorption (of photons); Emission (of photons): Multiphoton
(amplitudes (calculations in various representations): Nonresonant processes;
Resonant, processes: Scattering: S-matrix
Q
Quadrupole electric (momentum and interaction), 288
Quantization (general), see also Matter field
with anticommutators, 98, 162e, 453e
canonical quantization, 34, 89, 258, 380
for a complex field, 98, 99, 161e
for a real field, 94, 148e
second quantization, 414, 439



Quantization of the electromagnetic field:
canonical quantization in the Coulomb gauge, 119, 144
canonical quantization in the Power-Zienau-Woolley representation, 294
covariant quantization in the Lorentz gauge, 380, 383, 387, 391
elementary approach, 33
methods, 33, 34
Quantum electrodynamics (Q.E.D.):
in the Coulomb gauge, 169
in the Power-Zienau-Woolley picture, 293 rclativistic
Q.E.D. in the Coulomb gauge, 424,431
relativistic Q.E.D. in the Lorentz gauge, 361,419, 424, 453e
Quasi-classical states of the field, see also Photodetection signals; Quasi-probability
density
definition, 192
graphical representation, 242e
interferences with, 207, 209
production by external sources, 217, 404
properties, 194, 447e
Quasi-probability density:
suited to antinormal order, 236e, 250e
suited to normal order, 195, 206, 211, 236e, 250e
R
Radiation emitted by an oscillating dipole, 71e, 352¢
Radiation Hamiltonian:
eigenstates of, 186

as a function of a and a* 172, 197, 241e, 296, 382
as a function ofaand a, 391
as a function of the conjugate variables, 116, 144, 290, 296, 370
as a function of the fields, 18, 312
as a function of the normal variables, 27, 31, 378
in the Lorentz gauge, 370, 378, 382, 391, 398
physical meaning, 292, 312
Radiation reaction, 68e, 74e
Radiative damping, 71e, 76e
Raman scattering, 326
Rayleigh scattering, 75e, 198, 326
Reciprocal:
half-space, 102
space, 11, 36
Redundancy of dynamical variables, 109, 113, 154e, 157e, 362, See also independent
variables
Relativistic, see also Covariant; Covariant Lagrangian: Quantum electrodynamics
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description of classical particles, 107
Dirac field, 366, 408, 414, 433, 451e, 454¢
modes, 123
Resonant:
processes, 316, 326, 349e
scattering, 75e
Retarded, see also Instantaneous
field, 21, 310, 330
potential, 66e
S
Scalar photons, 384,392,403,425,430,443e, 446e

Scalar potential, see also Expansion in a and a* (or in aand @), Expansion in normal
variables
absence of a conjugate momentum with the standard Lagrangian, 109, 362
antihermiticity in the Lorentz gauge, 392
conjugate momentum in the Lorentz gauge, 369
in the Coulomb gauge, 16, 22, 67e
elimination from the standard Lagrangian, 111
in the Poincare gauge, 333
Scalar product:
in a Hilbert space, 387
with the indefinite metric, 387, 395, 445e
Scattering, see also Compton: Raman scattering; Rayleigh scattering: Thomson
scattering: Transition amplitudes
Cross section, 74e, 346e
nonresonant scattering, 356e
in presence of radiation, 344e
process, 326
resonant scattering, 75e
Schrodinger:
equation, 89, 157e, 167e, 176, 261, 263
representation, 89, 176, 219
Schrodinger field:
Lagrangian and Hamiltonian, 157e, 167e
quantization, 161e
Schwarzchild, 79
Second quantization, 414
Selection rules, 199, 233e
Self-energy
Coulomb, 18, 71e, 201
dipole, 312
of the transverse polarization, 290, 329
S-matrix:



definition, 299, 317
equivalence in different representations, 298, 302, 321, 349e, 356e
for one- and two-photon processes, 317, 349e
Sources (classical or external), 24, 217, 314, 370, 372, 400, 418
Spectral density, 191
Spin:
magnetic moment, 44, 197, 439
spin-statistics theorem, 99
Spin-1 particle, 49
Spin-orbit interaction, 440
Spinors:
Dirac spinors, 409, 412, 433
two-component Pauli spinors, 434
Squeezed states, 245e, 246e, 248, 250
Standard Lagrangian:
difficulties for the quantization, 109
expression, 100
symmetries, 105
State space, see also Subsidiary condition
in the Coulomb gauge, 175
in the covariant formulation, 385
for scalar photons, 392, 443e
States of the radiation field, see also Physical states: Quasi-classical states of the field:
Vacuum
factored states, 205, 207
graphical representation, 241e
single-photon states, 187, 205, 208, 210, 385
squeezed states, 243e, 246e, 248e, 250e
two-photon states, 211
Subsidiary condition:
in classical electrodynamics, 9, 10, 22, 368, 370, 374, 442e,443e
in presence of interaction, 406, 421, 430
for the quantum free field, 384, 386, 394
Sudden switching-on of the potential, 264, 336e
Symmetries
and conservation laws, 134
of the standard Lagrangian, 105
T
Thomson scattering, 75e, 198
Transformation, see also Physical variables; Unitary transformation; entries under
Gauge; Hamiltonian; Lagrangian
of coordinates and velocities, 85
from the Coulomb gauge to the Lorentz gauge (or vice versa), 63e, 425
Goppert-Mayer transformation, 269, 304



Henneberger transformation, 275, 344e, 349e
Pauli-Fierz-Kramers transformation, 278,429
Power-Zienau-Woolley transformation, 280, 287, 328, 331
of the state vector, 261, 263, 268

Transition amplitudes
definition and calculation, 176, 271, 316,
337e, 338e, 346e identity in different pictures, 264, 269, 273, 297, 316, 321, 349,

356e

interference between, 213

Transition matrix, 300, 356e

Transition rate, 323

Translation operator:

for the a and a* operators, 195, 308
for the aand a operators, 404, 425, 446e
infinitesimal generators, 163e, 199, 383, 417
for the momentum of a particle, 305
for the position of a particle, 276
Transverse, see also Expansion; Instantaneous: Nonlocality: Photon
basis of transverse vector functions, 25, 37, 53
commutation relation for the transverse field, 119, 223, 230e
delta function, 14, 36, 38, 42, 64e, 120, 173, 231e
displacement, 283, 291, 295, 310
energy, momentum and angular momentum of the transverse field, 18, 19, 20, 27,
47,48, 174, 312
equations of motion of the transverse field, 21
electric field, 21, 24, 27, 32, 64e, 117, 171, 287, 295, 310
magnetic field, 21, 24, 27, 32, 42, 118, 171
projector onto the subspace of transverse fields, 37
summation over transverse polarizations, 36
vector field, 13, 50
vector potential, 17, 29, 31, 119, 171, 223, 294, 377, 396
Transverse vector potential, see also Expansion: Instantaneous: Nonlocality
commutation relations, 119, 223, 230e
conjugate momentum, 115, 289
gauge invariance, 17
U
Unitary transformation, see also Translation operator
associated with a change of Lagrangian, 260, 262, 296
associated with a gauge transformation, 268, 271
on the Hamiltonian, 262, 276, 304, 343e
\Y
Vacuum, 186, 189, 252e, 385, 386, 394
Vacuum fluctuations, 191, 199, 279



Vector potential, see Longitudinal vector potential: Transverse vector potential
Velocity, see Particle velocities
W
Wavcfunction of the photon, 30, 50, See also Photon
Wavelength scale, 202, See also Approximation: Compton
Wave-particle duality, 204, 215
Waves:
multipole waves, 45, 55
traveling plane waves, 28
Woolley, see Power-Zienau-Woolley transformation
Z
Zienau, ,see Power-Zienau-Woolley transformation



Preface

The spectacular development of new sources of electromagnetic radia-
tion spanning the range of frequencies from rf to the far ultraviolet (lasers,
masers, synchrotron sources, etc.) has generated considerable interest in
the interaction processes between photons and atoms. New methods have
been developed, leading to a more precise understanding of the structure
and dynamics of atoms and molecules, to better control of their internal
and external degrees of freedom, and also to the realization of novel
radiation sources. This explains the growing interest in the low-energy
interaction between matter and radiation on the part of an increasing
number of researchers drawn from physics, chemistry, and engineering.
This work is designed to provide them with the necessary background to
understand this area of research, beginning with elementary quantum
theory and classical electrodynamics.

Such a program is actually twofold. One has first to set up the
theoretical framework for a quantum description of the dynamics of the
total system (electromagnetic field and nonrelativistic charged particles),
and to discuss the physical content of the theory and its various possible
formulations. This is the subject of the present volume, entitled Photons
and Atoms— Introduction to Quantum Electrodynamics. One has also to
describe the interaction processes between radiation and matter (emission,
absorption, scattering of photons by atoms, etc.) and to present various
theoretical methods which can be used to analyze these processes (per-
turbative methods, partial resummations of the perturbation series, master
equations, optical Bloch equations, the dressed-atom approach, etc). These
questions are examined in another volume entitled Interaction Processes
between Photons and Atoms. The objectives of these two volumes are thus
clearly distinct, and according to his interests and to his needs, the reader
may use one volume, the other, or both.

An examination of the topics presented here clearly shows that this
book is not organized along the same lines as other works treating
quantum electrodynamics. In fact, the majority of the latter are addressed
to an audience of field theorists for whom such ideas as covariance,
relativistic invariance, matter fields, and renormalization, to name a few,
are considered as fundamentals. On the other hand, most of the books
dealing with quantum optics, and in particular with laser optics, treat the

XVII



XVIII Preface

fundamentals of electrodynamics, as well as the problems posed by
quantization of radiation, rather succinctly. We have chosen here an
approach between these two, since there seems to be a real need for such
an intermediate treatment of this subject.
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Introduction

The electromagnetic field plays a prominent part in physics. Without
going back to Maxwell, one can recall for example that it is from the study
of light that the Planck constant and the ideas of wave-particle duality
arose for the first time in physics. More recently, the electromagnetic field
has appeared as the prototype of quantum gauge fields.

It is therefore important to develop a good understanding of the
dynamics of the electromagnetic field coupled to charged particles, and in
particular of its quantum aspects. To this end, one must explain how the
electromagnetic field can be quantized and how the concept of photon
arises. One must also specify the observables and the states which describe
the various aspects of radiation, and analyze the Hamiltonian which
governs the coupled evolution of photons and atoms. It is to the study of
these problems that this volume is devoted.

The quantization of the electromagnetic field is the central problem
around which the various chapters are organized. Such a quantization
requires some caution, owing to the gauge arbitrariness and to the redun-
dancy associated with the vector and scalar potentials. As a result, we will
treat these problems at several levels of increasing difficulty.

In Chapter I, we begin with the Maxwell-Lorentz equations which
describe the evolution of an ensemble of charged particles coupled to the
electromagnetic field and show that a spatial Fourier transformation of
the field allows one to see more clearly the actual independent degrees of
freedom of the field. We introduce in this way the normal variables which
describe the normal vibrational modes of the field in the absence of
sources. Quantization then is achieved in an elementary fashion by quan-
tizing the harmonic oscillators associated with each normal mode, the
normal variables becoming the creation and annihilation operators for a
photon.

The problem is treated again in a more thorough and rigorous fashion
in Chapter II, starting with the Lagrangian and the Hamiltonian formula-
tion of electrodynamics. One such approach allows one to define unam-
biguously the canonically conjugate field variables. This provides also a
straightforward method of quantization, the canonical quantization: two
operators whose commutator equals i/ then represent the two correspond-
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2 Introduction

ing classical conjugate variables. We show nevertheless that such a theoret-
ical approach is not directly applicable to the most commonly used
Lagrangian, the standard Lagrangian. This is due to the fact that the
dynamical variables of this Lagrangian, the vector and scalar potentials,
are redundant. The most simple way of resolving this problem, and then
quantizing the theory, is to choose the Coulomb gauge. Other possibilities
exist, each having their advantages and disadvantages; these are examined
later in Chapter 1V (Poincaré gauge) and Chapter V (Lorentz gauge).

Many of the essential aspects of quantum electrodynamics in the
Coulomb gauge are discussed in detail in Chapter III. These include the
quantum equations of motion for the coupled system charges + field;
the study of the states and observables of the free quantized field, of the
properties of the vacuum, and of coherent states; and the analysis of
interference and wave—particle duality in the quantum theory of radiation.
We also examine in detail the properties of the Hamiltonian which
describes the coupling between particles and photons.

This last subject is treated in more detail in Chapter 1V, which is
devoted to other equivalent formulations of electrodynamics derived from
the Coulomb gauge. We show how it is possible to get other descriptions
of electrodynamics, better adapted to this or that type of problem, either
by changing the gauge or by adding to the standard Lagrangian in the
Coulomb gauge the total derivative of a function of the generalized
coordinates of the system, or else by directly performing a unitary
transformation on the Coulomb-gauge Hamiltonian. Emphasis is placed
on the physical significance the various mathematical operators have in
the different representations and on the equivalence of the physical
predictions derived from these various formulations. It is here that a
satisfactory understanding of the fundamentals of quantum electrodynam-
ics is essential if one is to avoid faulty interpretations, concerning for
example the interaction Hamiltonians A - por E - r.

From the point of view adopted in Chapters Il and 1V, the symmetry
between the four components of the potential four-vector is not main-
tained. The corresponding formulations are thus not adaptable to a
covariant quantization of the field. These problems are dealt with in
Chapter V, which treats the quantization of the field in the Lorentz gauge.
We explain the difficulties which arise whenever the four components of
the potential are treated as independent variables. We point out also how
it is possible to resolve this problem by selecting, using the Lorentz
condition, a subspace of physical states from the space of the radiation
states.

We mention finally that, with the exception of the complements of
Chapter V, the particles are treated nonrelativistically and are described
by Schrodinger wave functions or Pauli spinors. Such an approximation is
generally sufficient for the low-energy domain treated here. In addition,
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the choice of the Coulomb gauge, which explicitly yields the Coulomb
interaction between particles which is predominant at low energy, is very
convenient for the study of bound states of charged particles, such as
atoms and molecules. This advantage holds also for the other formulations
derived from the Coulomb gauge and treated in Chapter IV. A quantum
relativistic description of particles requires that one consider them as
elementary excitations of a relativistic matter field, such as the Dirac field
for electrons and positrons. We deal with these problems in two comple-
ments in Chapter V. We show in these complements that it is possible to
justify the nonrelativistic Hamiltonians used in this volume by considering
them as “effective Hamiltonians” acting inside manifolds with a fixed
number of particles and derived from the Hamiltonian of relativistic
quantum electrodynamics, in which the number of particles, like the
number of photons, is indeterminate.

This volume consists of five chapters and nineteen complements. The
complements have a variety of objectives. They give more precision to the
physical or mathematical concepts introduced in the chapter to which they
are joined, or they expand the chapter by giving examples of applications,
by introducing other points of view, or by taking up problems not studied
in the chapter. The last complement in each chapter contains worked
exercises. A short, nonexhaustive bibliography is given, either in the form
of general references at the end of the chapter or complement, or in the
form of more specialized references at the foot of the page. A detailed list
of the books, cited by the author’s name alone in the text, appears at the
end of the volume.

It is possible to read this volume serially from beginning to end. It is
also possible, however, to skip certain chapters and complements in a first
study.

If one wishes to get a flavor of field quantization in its simplest form,
and to understand the particle and wave aspects of radiation and the
dynamics of the system field + particles, one can read Chapter I, then
Chapter III and its Complement A ;. Reading Complements Ay and By
can also give one a simple idea of the electric dipole approximation and of
the equivalence of the interaction Hamiltonians A - p and E - r for the
study of one- or two-photon processes.

A graduate student or researcher wanting to deepen his understanding
of the structure of quantum electrodynamics and of the problems tied to
the gauge arbitrariness, should extend his reading to Chapters II, IV, and
V and choose those complements which relate best to his needs and his
area of interest.






CHAPTER 1

Classical Electrodynamics:
The Fundamental Equations and the
Dynamical Variables

The purpose for this first chapter is to review the basic equations of
classical electrodynamics and to introduce a set of dynamical variables
allowing one to characterize simply the state of the global system field +
particles at a given instant.

The chapter begins (Part A) with a review of the Maxwell-Lorent:z
equations which describe the joint evolution of the electromagnetic field
and of a set of charged particles. Some important results concerning the
constants of motion, the potentials, and gauge invariance are also reviewed.

With a view to subsequent developments, notably quantization, one
then shows (Part B) that classical electrodynamics has a simpler form in
reciprocal space, after a Fourier transformation of the field. Such a
transformation allows a simple decomposition of the electromagnetic field
into its longitudinal and transverse components. It is then evident that the
longitudinal electric field is not a true dynamical variable of the system,
since it can be expressed as a function of the positions of the particles.

The following part (Part C) introduces linear combinations of the
transverse electric and magnetic fields in reciprocal space which have the
important property of evolving independently in the absence of particles
and which then describe the normal vibrational modes of the free field.
These new dynamical variables, called normalf variables, play a central role
in the theory, since they become, after quantization, the creation and
annihilation operators for photons. All the field observables can be ex-
pressed as a function of these normal variables (and the particle variables).

The chapter ends finally (Part D) with a discussion of the various
possible strategies for quantizing the foregoing theory. One simple, eco-
nomic method, albeit not very rigorous, consists of quantizing each of the
“harmonic oscillators” associated with the various normal modes of
vibration of the field. One then gets all the fundamental commutation

5



6 Classical Electrodynamics I

relations necessary for Chapter III. The problem is approached in a more
rigorous manner in Chapter I, beginning with a Lagrangian and Hamilto-
nian formulation of electrodynamics.

Finally, Complement B; compiles some results relative to the angular
momentum of the electromagnetic field and to the multipole expansion of
the field.
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A—THE FUNDAMENTAL EQUATIONS IN REAL SPACE

1. The Maxwell-Lorentz Equations

The basic equations are grouped into two sets. First, the Maxwell
equations rtelate the electric field E(r. 1) and the magnetic field B(r, 1) to
the charge density p(r, t) and the current j(r, 1):

V-E(r.z):g—p(r, 1) (A.1.a)
0

V:-Brt) =0 (A.1.b)

VxE(r.t):—% B(r, 1) (A.1.¢)

E(r 1) +

mero_% j(r. 1) (A.1.d)

-~
)|”§J

2

Next, the Newton—Lorentz equations describe the dynamics of each parti-
cle «, having mass m_, charge q,, position r(¢), and velocity v (1), under
the influence of electric and magnetic forces exerted by the fields

d?
e r(1) = q,[E(r(0. 1) + v,(t) x B(r(1). n]. (A.2)
The equations (A.2) are valid only for slow, nonrelativistic particles
(v, <o)

From (A.l.a) and (A.1.d) one can show that

p(r H+V-jre=0. (A.3)

~
)l‘\)

Such an equation of continuity expresses the local conservation of the
global electric charge,

Q= Jd3r p(r, 7). (A.4)

The expression of p and j as a function of the particle variables is

p(r, 1) = ¥, 0[r — (0] (A.5.2)

i) =Y g, vi(0)d[r — r(n]. (A.5.b)

One can show that Equations (A.5) satisfy the equation of continuity
(A3).
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Equations (A.1) and (A.2) form two sets of coupled equations. The
evolution of the field depends on the particles through o and j. The
motion of the particles depends on the fields E and B. The equations (A.1)
are first-order partial differential equations, while the equations (A.2) are
sccond-order ordinary differential equations. It follows that the state of
the global system, field + particles, is determined at some instant ¢, by
giving the fields E and B at all points r of space and the position and
velocity r, and v, of each particle a:

{ E(l’, tO)a B(r7 IO)’ ra([O)v Va(fo) } : (A . 6)

It is important to note that in the Maxwell equations (A.1), r is not a
dynamical variable (like r,) but a continuous parameter labeling the field
variables.

2. Some Important Constants of the Motion

Starting with Equations (A.1) and (A.2) and the expressions (A.5) for p
and j, one can show (see Exercise 1) that the following functions of E, B,
r,, and v :

1
H=3 3 M, vi(1) + %O Jd*‘r[Ez(r, 1)+ & B, )] (A.7)
P=>mv()+ ¢ fd3r E(r, 1) x B(r, 1) (A.8)
J =Y r,(0) x mv(1) + g jd3rr x [E(r, 1) x B(r. )] (A.9)

are constants of the motion, that is, independent of ¢.

H is the total energy of the global system field + particles, P is the total
momentum, and J the total angular momentum. The fact that these
quantities are constants of the motion results from the invariance of the
equations of motion with respect to changes in the time origin, the
coordinate origin, and the orientation of the coordinate axes. (The connec-
tion between the constants of the motion and the invariance properties of
the Lagrangian of electrodynamics will be analyzed in Complement By;).

3. Potentials— Gauge Invariance

Equations (A.1.b) and (A.l.c) suggest that the fields E and B can
always be written in the form
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B(r,t) =V x A(r, 1) (A.10.3)

E@r, () = — -E%A(r, 1) — VU(r, 1) (A.10.b)

where A is a vector field, called the vector potential, and U a scalar field
called the scalar potential. A first advantage in introducing A and U is that
the two Maxwell equations (A.1.b) and (A.1.c) are automatically satisfied.
Other advantages will appear in the Lagrangian and Hamiltonian formu-
lations of electrodynamics (see Chapter 1I).

Substituting (A.10) in Maxwell’s equations (A.1.a) and (A.1.d), one gets
the equations of motion for A and U

AU(r, 1) = —%p(r,t)—V-%A(r,t) (A.11.a)
0

1 &
(3 5= 8 e -

:f' j(r.t)—V[V-A(r,t)+—13%U(r,t)] (A.11.b)
’ [l

2
o €

which are second-order partial differential equations and no longer first-
order as in (A.1). Actually, since d2U/dt* does not appear in (A.11.a),
this equation is not an equation of motion for U, but rather relates U to
dA/dt at each instant. The state of the field is now fixed by giving A(r, ¢,)
and JdA(r, t,)/d¢ for all r.

It follows from (A.10) that E and B are invariants under the following
gauge transformation:

Ar, 1) > A(r, 1) = A(r. t) + VE(r, 1) (A.12.a)
Uir,t)y > U'(r,t) = U, t) — %F(r, 1) (A.12.b)

where F(r, t) is an arbitrary function of r and z. There is then a certain
redundancy in these potentials, since the same physical fields E and B can
be written with many different potentials A and U. This redundancy can
be reduced by the choice of one gauge condition which fixes ¥ - A (the
value of 7 X A is already determined by (A.10.a)).

The two most commonly used gauges are the Lorentz gauge and the
Coulomb gauge.

(1) The Lorentz gauge is defined by

1
V'A(r,t)+c—2—tU(r,z):o. (A.13)

¢
l
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One can prove that it is always possible to choose in (A.12) a function F
such that (A.13) will be satisfied for A’ and U’. In the Lorentz gauge, the
equations (A.11) take a more symmetric form:

OuU(r, 1) :Fip(r, 1) (A.14.a)
0

OJA(r, 1) =

i o) (A.14.b)

&y C*
where 0 = 3%/¢*31% — A is the d’Alembertian operator. This is due to
the fact that the Maxwell’s equations on one hand and the Lorentz
condition on the other are relativistically invariant, that is, they keep the
same form after a Lorentz transformation. Using covariant notation,
Equations (A.13) and (A.14) can be written

Y e,A" =0 (A.15)
I
with ¢={1£nv} /wz{EuA}
¢ Ct ¢
and
1
Z e, A = e (A.16)
" &g €7
with Jo={cp.j}

where A" and j* are the four-vectors associated with the potential and the
current respectively.

(i) The Coulomb (or radiation) gauge is defined by
V-Ar,1) =0 (A.17)

Equations (A.11) then become

AU(r, 1) = —Fip(r, ) (A.18.a)
0

-~

I
jmg—jvgumn. (A.18.b)
¢ ¢

OA(r, 1) =

a2
gy ¢

Equation (A.18.a) is Poisson’s equation for U. The covariance is lost, but
other advantages of the Coulomb gauge will be seen in the subsequent
chapters.
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B—ELECTRODYNAMICS IN RECIPROCAL SPACE

1. The Fourier Spatial Transformation—Notation

Let &(k, 1) be the Fourier spatial transform of E(r, 7). Then E and &
are related through the following equations:

&k 1) = Jd3r E(r, t) e *r (B.1.a)

1
(2 m)’?

E(r, 1) =

Wj‘dsk éﬂ(k, [) e"‘". (Blb)

In Table I the notations used for the Fourier transforms of various other
physical quantities are shown. Block letters are used for the quantities in
real space, and script ones for the same quantities in reciprocal space.

TABLE 1
Er,t)— &k 1)
B(r, 1)« Ak, 1)
Alr. 1) =Kk 1)
ur, 1) < 4Kk 1)
p(r. 1) < p(k, 1)

ir.n) o fk 1)

Since E(r, 1) is real, it follows that
E*k. 1)y =8(—k 1). (B.2)

In this treatment one frequently uses the Parseval—Plancherel identity

jd3r F*(r) G(r) = jd3k F *k) 9(k) (B.3)

where % and ¥ are the Fourier transforms of F and G. as well as the fact
that the Fourier transform of a product of two functions is proportional to
the convolution product of the Fourier transforms of these two functions:

! e , _
T de% F(r) G(r — r) o F(k) %(K) (B.4)
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Table II lists some Fourier transforms that are used throughout this book

TaBLE 11
1 - 1 L
4 Tr (2 72:)3/2 k2
r 1 — ik
4nr T Qm? K
or — 1) W e ikra

Finally, to simplify the notation, we write &, in place of dr,(7)/dz, E in
place of dE(r, t)/3t, € in place of 3°&(k, t)/dt%,..., whenever there is
no chance of confusion.

2. The Field Equations in Reciprocal Space

Since the gradient operator ¥ in real space transforms into multiplica-
tion by ik in reciprocal space, Maxwell’s equations (A.1) in reciprocal
space become

1

k& =—p (B.5.a)
)

k-8 =0 (B.5.b)

kx&=-—-2 (B.5.¢)

K x B=—é 4+ (B.5.d)
c gy C°

It is apparent in (B.5) that ﬁ'(k) and #(k) depend only on the values of
&), #(k), p(k), and 4(k) at the same point k. Maxwell’s equations,
which are partial differential equations in real space, become strictly local
in reciprocal space, which introduces a great simplification.

The equation of continuity (A.3) is now written

ik-/j+p=0. (B.6)
The relationships between the fields and potentials become

{ A =1k x of (B.7.a)
& = — o — iku (B.7.b)

Il
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the gauge transformation (A.12)

oA > d =od +ikF (B.8.2)
U>U =U—F (B.8.b)

and the equations for the potentials (A.11)

1 .
kz@l:p—pnhik-d (B.9.a)
0

1

C2

A+ koA =

=i ik<ik c o+ iﬂz) (B.9.b)
& € c

3. Longitudinal and Transverse Vector Fields

By definition, a longitudinal vector field V,(r) is a vector field such that
VxV@=0. (B.10.a)

which, in reciprocal space, becomes
ik x ¥(k) =0. (B.10.b)
A transverse vector field V, (r) is characterized by

{V-VL(r):O (B.11.a)
ik -7, (k) =0. (B.11.b)

Comparison of (B.10.a) and (B.10.b) or (B.11.a) and (B.11.b) shows that
the name longitudinal or transverse has a clear geometrical significance in
reciprocal space: for a longitudinal vector field, ¥7 (k) is parallel to k for
all k; for a transverse vector field, ¥7, (k) is perpendicular to k for all k.

It is important to note that a vector field is longitudinal [or transverse]
if and only if (B.10) [or (B.11)] are satisfied for all r or all k. For example,
in the presence of a point charge at r,, V - E is, according to (A.l.a), zero
everywhere except at r,, where the particle is located. In the presence of a
charge, E is therefore not a transverse field. This is even more evident in
reciprocal space, since k - & is then proportional to e "™, which is
clearly nonvanishing everywhere.

Working in reciprocal space allows also a very simple decomposition of
all vector fields into longitudinal and transverse components:

1K) = 1K) + ¥ (k). (B.12)
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At all points k, ¥7,(k) is gotten by projection of ¥"(k) onto the unit vector
k in the direction k:

k = Kk/k. (B.13)

One thus has
(k) = k[x - ¥ ()] (B.14.a)
{ V. (k) = (k) — ¥ (k) (B.14.b)

V,(r) and V| (r) are then gotten by a spatial Fourier transformation of
(B.14).

Remarks

(1) In reciprocal space, the relationship which exists between a vector field
¥7(k) and its longitudinal or transverse components is a local relationship. For
example, one can show from (B.14) that

ki k;
Vik) =3 <5u - 7’) Vik) (B.15)

J

where i, j = x, y, z. Each component of ¥ 1 (k) at point k depends only on the
components of ¥"(k) at the same point k. By Fourier transformatiors, Equation
(B.15) then becomes, using (B.4),

V=Y Jd%’ SHr — ) Vir) (B.16)
i

L — ! 3 ikrf § %
o0 = s | ke (8, -

N2 .
=500 + —— L fd’-*ke"”i

where

A A kl

érpcry (2 n)3

. 1 &
= 0;0(r) + 4ner, ér;

1 (B.17.a)
;

8,7 (r) is called the “transverse 8-function”. The presence of the last term in
(B.17.a) shows that the relationship between V 1(r) and V(1) is not local: V| (r)
depends on the values V(r') of V at all other points r’. Note also that the
calculation of the last term in (B.17.a) needs special caution at r = 0. The
second derivative of 1/r must be calculated using the theory of distributions
and contains a term proportional to 8;,8(r). The calculation, presented in detail
in Complement A, leads to

2

IHr) = 3

C. 1 . 3rr
0;; 0(r) — e 0; —5 (B.17.b)
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(i) The decomposition of a vector field, arising from a four-vector or from an
antisymmetric four-tensor, into longitudinal and transverse components is not
relativistically invariant. A vector field that appears transverse in a Lorentzian
frame is not necessarily transverse in another Lorentzian frame.

(ili) Even though the separation (B.12) introduces nonlocal effects in real space
and is no longer relativistically invariant, it is nonetheless interesting in that it
simplifies the solution of Maxwell’s equations. In effect, as will be seen in the
following subsections, two of the four Maxwell equations establish only the
longitudinal part of the electric and magnetic fields, whereas the other equa-
tions give the rate of variation of the transverse fields. Such an approach then
allows one to introduce a convenient set of normal variables for the transverse
field.

4. Longitudinal Electric and Magnetic Fields

Return to Maxwell’s equations. It is clear now that the first two
equations (B.5.a) and (B.5.b) give the longitudinal parts of & and . The
second equation clearly shows that the magnetic field is purely transverse:

B =0=B. (B.18)

The first equation (B.5.a) relates the longitudinal electric field &, (k) to the
charge distribution p(k):

8K) = Siop(lo% (B.19)

and & (k) appears then as the product of two functions of k whose
Fourier transforms are

p(k) <> p(r) (B.20.a)
_é%H%):_;;g_ (B.20.b)
Using (B.4), one then has
1 3 r—r
E (1) = Zn—so Jd rp(r, t)m
L g, o0 (B.21)

T, s PIr—n P
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It thus appears that the longitudinal electric field at some time ¢ is the
Coulomb field associated with p and calculated as if the density of charge
p were static and assumed to have its value taken at ¢, i.e., the instanta-
neous Coulomb field.

It is important to note that this result is independent of the choice of
gauge, since it has been derived directly from Maxwell’s equations for the
field E and B without reference to the potentials.

The fact that the longitudinal electric field instantly responds to a
change in the distribution of charge does not imply the existence of
perturbations traveling with a velocity greater than that of light. Actually,
only the total electric field has a physical meaning, and one can show that
the transverse field E, also has an instantaneous component which
exactly cancels that of E;, with the result that the total field remains
always a purely retarded field. This point will be discussed again later.

Consider now the longitudinal parts of (B.5.c) and (B.5.d). The two
terms of (B.5.c) are transverse. The longitudinal part of (B.5.d) is written

. 1 .

Taking the scalar product of (B.22) with k, and using (B.19) and the fact
that k - 4, = k - 4 one gets

p+ik-j=0 (B.23)

which is just the expression of the conservation of charge (B.6) and thus
conveys nothing new.

Remarks
(i) From equation (A.10b) or (B.7.b) connecting the electric field to the
potentials, it follows that

E, = — A, (B.24.2)

E, = A, —VU. (B.24.b)
In the Coulomb gauge, one has A = 0, with the result that

Ay=0 - E = -VU. (B.25.a)

It follows that the longitudinal and transverse parts of E are associated, in the
Coulomb gauge, with U and A respectively. Comparison of (B.25.a) and (B.21)

shows that, in the Coulomb gauge, U is nothing more than the Coulomb
potential of the charge distribution:

A =0 - Uy = ! jd%’ p('/"?A (B.25.b)
‘ 4 ng, [r —r'|
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The same result can be gotten directly from Equation (A.18.a). The solution of
this Poisson equation, which tends to zero as |r| = o, is nothing more than
(B.25.b).

(ii) It is clear from (B.8.2) that a gauge transformation does not change A, . It
follows that the transverse vector potential A | is gauge invariant:

A, =A,. (B.26)

(iii) Maxwell’s equations are presented here in two sets: (A.l.a) and (A.1.b)
give the longitudinal fields, and (A.1.c) and (A.1.d) give the rate of variation of
the transverse fields [§B.6]. This grouping is different from the one used in
relativity, where Equations (A.1.b) and (A.l.c) on one hand, and (A.l.a) and
(A.1.d) on the other, are combined in two covariant equations

E‘,AF‘.‘,+(7‘,FW+E‘DFM=0 HEVED (B.27.a)
D Ry (B.27.b)
” & €
where
F, =23,4, 04, (B.28)

is the electromagnetic field tensor, A4, the potential four-vector, and j, the
current four-vector.

5. Contribution of the Longitudinal Electric Field to the Total Energy,
to the Total Momentum, and to the Total Angular Momentum

One now uses (B.19) for & (k) to evaluate the contribution of the
longitudinal electric field to various important physical quantities.

a) THE TOTAL ENERGY

The Parseval—Plancherel identity (B.3) allows one to write
€o 3 €o 3
5 drE-E:7 d*k&* - . (B.29)
One then replaces & by &, + &, and uses &, ¢, = 0. This yields
£o 3 2 _ %o 3 2 £o 3 2
5 d’r E =5 dk\é"u(k)\ + 5 k| & (k) |2 (B.30)

The first term in (B.30) is the contribution H,,,, of the longitudinal
electric field to the total energy given in (A.7):

Higng = %" Jd3k &K |* = %" jd%qﬁ(r) (B.31.a)
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while the second, when added to the magnetic energy, gives the contribu-
tion H,,  of the fields E, and B:

trans

&
Hipans = ﬂd%[l 8P+ c*| Bk ]

= 8—2" J $r[EXm) + ¢ BX(n)]. (B.31.b)

Inserting the expression (B.19) for & (k) in (B.31.a), one gets

1 k
Hioms = 37 Jd% P10 2 (B.32)

which can finally be written using (B.3) and (B.4) as

gl ”ds,dar,Mr_’) (B.33)

one 8 e, fr—r|

H,,,, is nothing more than the Coulomb electrostatic energy of the system
of charges. Finally, one calculates H,,,, for a system of point charges. For
this it is convenient to use the expression

q“ —ik.rg

for the Fourier transform of the charge distribution given in (A.5.2).
Substituting (B.34) in (B.32), one gets

2 .
qa d3k q,q e ik.(rg—rg)
Hoe = Vo = 25— |—5+ Y —2 | PPk ——
fone 7 Cout gzao(zn)sz a;B280(2n)3J K

(B.35)

The first term of (B.35) can be written ¥ ¢, where

o = - [ L B.36
Coul 2 50(2 7[)3 kz ( . )

is the Coulomb self energy of the particle & (in fact, infinite, unless one
introduces a cutoff in the integral on k). The second term is nothing more
than the Coulomb interaction between pairs of particles (a, 8), so that
finally

1 4, 4qp
87y 5y |1, — 1|

Higg = Veowr = ) 6Cou + (B.37)
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In conclusion, one has seen in this subsection that the total energy
(A.7) of the system can be written

1 .
H = Z 5 m, l': + VCoul + leans (B38)

and appears as the sum of three energies: the kinetic energy of the
particles (first term), their Coulomb energy (second term), and the energy
of the transverse field (third term). As in the preceding subsection, these
results are independent of the choice of gauge.

b) THE TOTAL MOMENTUM

One substitutes E, + E; for E in the second term of (A.8). The total
momentum of the field appears then as the sum of two contributions, Py,
and P, given by

Plang

Il

& Jd:*r E,(r) x B(r) = & Jd3k &Mk) x B(K)

(B.39.a)

o
|

rans = soj d3 E (1) x B(r) = ¢ jd3k EX(k) x RBk).
(B.39.b)

Using (B.19) for &, the relationship (B.7.a) between # and &7, and the
identity

ax(bxc)z(a-c)b—(a-b)c (B.40)

one can transform (B.39.a) into

Lok
Pione = %0 jd3k£ —1—(5 x (ik x )
g k
= jd3k p*[of — k(- )] . (B.41)

The factor in brackets in (B.41) is nothing more than the transverse
component of &, with the result that P, takes the simpler form

Plong = Jd:‘k p* ML = jkd}lﬁ pAJ. = Z qa Ai(rz) (842)

where (A.5.a) has been used for p. As before, this result is independent of
the choice of gauge, since A | is gauge invariant [see (B.26)).
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Finally, the total momentum P given in (A.8) can be written

P=3%[mt +qAx)]+ P (B.43)

and is the sum of the particle mechanical momenta m f, the longitudinal
field momentum % _g,A | (r,), and the momentum of the transverse field.
Equation (B.43) suggests that one introduce for each particle the quantity

p, = m, ¥, + q, A(r) (B.44)
so that P can be written

P = Z pa + Ptrans . (B45)

In fact, one can show that in the Coulomb gauge, p, is the conjugate
momentum to r, or the generalized momentum of the particle a (see §C.3,
Chapter II). One can see then that, in the Coulomb gauge, the difference
between the conjugate momentum p, and the mechanical momentum
m ., of the particle a is nothing more than the momentum associated with
the longitudinal field of the particle a.

Remark

Using (B.44), the total energy given in (B.38) can be written
1
H = Z ﬁ [px — 4y AL(ra)]z + VCoul + leans : (846)

One can show that H is nothing more than the Hamiltonian of the system in
the Coulomb gauge (see §C.3, Chapter II).

¢) THE TOTAL ANGULAR MOMENTUM

Calculations analogous to the foregoing (see also Complement B, §1)
show that the total angular momentum J given in (A.9) can be written

J = Z r1 X p1 + Jlrans (B47)
where p, is defined in (B.44), and where

Jiane = € Jd3rr x [E (r) x B(n)] (B.48)

is the angular momentum of the transverse field.
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6. Equations of Motion for the Transverse Fields

One now returns to the second pair of Maxwell’s equations (B.5.c) and
(B.5.d), and one examines the transverse parts of these two equations,
which can be written in the form

0

The second pair of Maxwell’s equations then appear as the dynamical
equations giving the rate of variation of the transverse fields 4 and &, .

It is important to note that the source term appearing in the equation
of motion (B.49.b) for &, is 4, , and not 4 Since, in real space the
relationship between j, and j is not local (see Remark i of §B.3 above),
the rate of change of E | (r, ) at point r and time ¢ depends on the current
j(r’. 1) at all other points r’ at the same time ¢. It follows that E
includes, like E“, instantaneous contributions from the charge distribu-
tion. It can be shown (see Exercise 3) that the instantaneous parts of E |
and E, compensate each other exactly, so that the total field E = E, + E |
is a purely retarded field.

To conclude this section it is useful to reconsider the definition (A.6) of
the “state” of the global system field + particles at time ¢,. Since the
longitudinal field can, in fact, be expressed totally as a function of r, [see
(B.21)], the state of the system is completely fixed by giving

{ g_L(k’ tO)’ JZ(k’ tO)’ ra({())* i-1(t0) } (B . 50)

for all k and all «. We will see in the next section that it is possible to
improve the choice of the dynamical variables characterizing the state of
the field.

Remark

In Section B, only the equations (B.5) for the fields have been examined. It is
also possible to study the longitudinal and transverse parts of the equations
(B.9) for the potentials. Since the last term in (B.9.b) is longitudinal, the
transverse component of (B.9.b) can be written

| .
FEQ{L + k2 oA = W’/L (B.SD)

and this becomes in real space

OA, = —3l.- (B.52)
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This equation is analogous to (A.14.b) except that one now has A | and j, in
place of A and j. If one takes the longitudinal part of (B.9.b) and uses (B.9.a) to
eliminate %, once again one gets the conservation of charge (B.6). As with
(B.5.d), the longitudinal part of (B.9.b) gives rise to nothing new. Finally, only
(B.9.2) remains, and it can be written

kz%=gip+ik-&é‘, (B.53)
(4]

(since k - &/ | = 0). This equation is not sufficient to fix the motion of 2/, and
%. This is not a surprising result, since there is a redundancy in the potentials.
To find &/ " and %, it is necessary to have an additional condition, that is, to
define the gauge. If one chooses the Coulomb gauge, one makes &/, = 0, and
(B.53) then gives % [see also (A.18.a)]. If one chooses the Lorentz gauge, the
supplementary condition (A.13) in reciprocal space is

U=~k .. (B.54)
The pair of equations (B.53) and (B.54) then forms a system of two first-order

equations giving the evolution of &/ and %. Other choices of gauge are
equally possible.
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C—NORMAL VARIABLES

1. Introduction

In ordinary space the rates of change, E(r) and B(r), of the fields E and
B at point r depend on the spatial derivatives of E and B and thus on the
values of E and B in the neighborhood of r. Maxwell’s equations (A.1) are
partial differential equations.

In going to reciprocal space, one has first of ali eliminated & (k) which
is not really a dynamical variable, since it can be expressed as a function
of r,. One has then seen that the rates of change &, (k) and #(k) depend
only on the values of &, (k) and #(k) [and on that of 4, (k)] at the same
point k. Equations (B.49) give a system of two coupled differential
equations for each point k.

Inspection of this linear system (B.49) suggests that one attempt to
introduce two linear combinations of &, and # which evolve indepen-
dently of one another, at least for the free field where 7, = 0.

2. Definition of the Normal Variables
To begin, one writes Equations (B.49) in the form
éinczkx%—sijL (C.1.a)
0
kx B =ik*é&, . (C.1.b)

One seeks the eigenfunctions for such a system in the case 7, = 0. One
then finds from (C.1) that

0 _ ) . _
E(cﬁ’i F ek x B)=Fiw(&, F ck x B) (C.2)

with
o = ck k = k/k. (C.3)

One is then led to define, even if 7, # 0, two new variables a(k, 7) and

Bk, 1):
a(k, 1) = — 3 ﬁv(k) (&, 1) — ck x Bk )] (C.4.a)

Bk 1) = [k 1)+ cx x Bk 1)] (C.4.b)

2 /V(k)
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where A7(k) is a normalization coefficient which will be chosen later so as
to have the simplest and clearest form for the total energy H.

Before proceeding farther, it is important to note that a and B are not
in fact independent dynamical variables. The real character of E, and B,
which gives rise to equations such as (B.2) for &, and %, requires that

Bk, 1) = — a*(=k, 7). (C.5)

Inverting the linear system (C.4) and using (C.5), one then gets
8 (k 1) = iN(k) [a(k, 1) — a*(— k, 1)] (C.6.2)
Bk, 1) = LAk [k x a(k, 1) + k¥ x a*(— k,1)]. (C.6.b)

4

Knowledge of a(k, ¢) for all the values of k is then equivalent to knowing
&, (k,t) and #(k, ). In addition, the a(k,¢) are truly independent
variables, since no conditions such as (B.2) exist for a(k, 7). One is able
then, for determining the global state of the system, to replace (B.50) with

{ a(k, 7y), T,(to), i'a(to) } - (C.7

3. Evolution of the Normal Variables

From Maxwell’s equations (C.1) and the definitions (C.4.a) for «, one
gets

One notes especially that since §, and # are related to a by (C.6),
Equation (C.8) is strictly equivalent to Maxwell’s equations. It is neverthe-
less simpler than Maxwell’s equations. It resembles the equation of motion
of the variable x + i( p/mw) of a fictitious harmonic oscillator with
eigenfrequency w, driven by a source term, due to the particles, propor-
tional to #, (k, 7).

When 4, = 0 (the case of the free field), the evolutions of the various
normal variables a(k, ¢) are completely decoupled. The solution of (C.8) is
then a pure harmonic oscillation describing a normal vibrational mode of
the free field. This is the reason why the a(k,?) are called “normal
variables”.

If external sources are introduced, that is to say, sources independent of
a, the variables a corresponding to different k continue to evolve indepen-
dently of one another, each driven by 7, (k, ) (see, for example, Comple-
ment Byp).
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Finally, if the sources are the particles interacting with the field, the
motion of 7, depends on a, with the result that the evolutions of
the various variables a(k, ) are, in general, coupled through the action
of the current 4, (k, ¢). It is then necessary to add to (C.8) the equation of
motion of 4, (k, 1) [determined from the Newton-Lorentz equation (A.2)
and the definition of the current (A.5)] and to solve this coupled set of
equations.

To conclude this subsection some new notation is introduced. Since a
is (like &, and #), a transverse vector field, one can, for each value of k,
expand a(k, r) on two unit vectors ¢ and &, normal to one another and
both located in the plane normal to x (Figure 1).

(C.9)
gred =g k=¢€'k=0
k.
£
K
e «Hk
k,
l
~N
~N
~
k. >
Figure 1. The transverse polarization vectors ¢ and ¢’.
One thus gets
alk, 1) = eo(k, 1) + € a.(k 1)
=Y rak. 1) (C.10)
where
ak, t) =€ - ak 1) (C.11)

is the component of a along e. The set {a,(k, 1)} for all k and & forms a
complete set of independent variables for the transverse field. The equa-
tion of motion for a(k, t) is
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ik 1) + iwak 1) = TI/V—(k) e j(k 1) (C.12)
(4]

where one uses € - 5, = & * 4.

4. The Expressions for the Physical Observables of the Transverse Field as
a Function of the Normal Variables

Later on one always uses the normal variables a,(k, 1) (and the corre-
sponding quantum operators) to characterize the state of the transverse
field. Thus it is important to have expressions for the various physical
observables of the transverse field as a function of the ..

a) THE ENERGY H .. OF THE TRANSVERSE FIELD

We substitute in (B.31.b) the expressions (C.6) for &, and £ as a
function of a and a* [the more concise notation a* is used for a*(—k, 7)].
In addition, one respects the ordering between a and o* as it arises in the
calculation although a and o* are numbers which commute. The reason
for doing this is that in quantum electrodynamics, a and o will be
replaced by noncommuting operators. The results obtained in this subsec-
tion then remain valid in the quantum case.

From (C.6), one finds

EX -8 = Nia* —a ) (@ — o)
= NHa*ra+a_ ot —a*-a* —a_ o)
2B B = NHa* 4+ a) (o + a*)
= N a*ra+a_ o +a¥-at +a )
(C.13)

with the result that (B.31.b) becomes
Hypans = %0 j‘”" Aa* o+ o - ak] (C.14)

Changing from k to —k in the integral of the second term allows one to
replace a_- a* by a - o*. Let us now take for the normalization coeffi-

chosen so that in the quantum theory the commutation relations between
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the operators corresponding to «, and af are simple. Equation (C.14)
then takes the more suggestive form

H .= Jvd3k Z LoX(k, 1) o (k, 1) + a,(k, 1) oaX(k, )]. (C.16)

It then appears as the sum of the energies of a set of fictitious harmonic
oscillators with an oscillator of frequency w = ck being associated with
each pair of vectors k, ¢ (with & normal to k). Such a pair defines a
“mode” of the transverse field.

AND THE ANGULAR MOMENTUM J

b) THE MOMENTUM P, OF THE

TRANSVERSE FIELD

rans trans

A calculation similar to that above allows one to get from (B.39.b)

Pians = J 3kz—[fx*(k 0k 1) + ok 1) of(k )]. (C.17)

For the angular momentum J,_,,, of the transverse field given in (B.48),
the calculations are a little more tedious than for H,,,,, and P, (see
§2.b of Complement B,). The following result is obtained:

trans __ h
Ja T2 Z

bed

J‘ds [ Eabe kb ac %y + a;k Eape X —
Eape kp O 0f — 0ty &g 0¥]  (C.18)

where a, b,c,d =x, y, or z, 3, = d/dk,, and ¢, is the antisymmetric
tensor.

Remark

The product E, X B appears in the expressions for P, and J,,,... In quantum
theory E, and B become operators and one can ask if it is not necessary to
symmetrize E| X B in the form (E, XB — B X E ,)/2. In fact, E, and B are
taken at the same point in space, and we will see in Chapter IIT (§A.2) that
E | (r) and B(r) are commuting observables, so that symmetrization is not

required.

¢) TRANSVERSE ELECTRIC AND MAGNETIC FIELDS IN REAL SPACE

The expansions of E | (r, #) and B(r, 1) are gotten by taking the Fourier
transforms of (C.6.a) and (C.6.b) [in the integral over k of the last terms of
(C.6.a) and (C.6.b) one replaces k by —k]. This then becomes

E (o) =i Jd3k Y & [k 1) g e — a*(k, 1) ge %] (C.19)
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B(r. 1) = iJid3kZu@w[a£(k, HK x g™ — ¥k 1)K x ge )

(C.20)
with

hw 172
E =|——— =& /c. .21

The .eal character of E | and B (*) is obvious in (C.19) and (C.20).
_ For the free field 4, = 0, the solution of the equation of motion for «,
is

ok, 1) = a (k) e " (C.22)

Substituting (C.22) in (C.19) and (C.20), one gets for E, and B an
expansion in traveling plane waves e® T~ with wave vector k. For
example,

E(r1) =i f kY &, o (k) ee®r o 4 cc (C.23)

It is easy to prove that, with the solution (C.22) for a free field, the
expressions (C.16), (C.17), and (C.18) for H,,,, P,.m. and J,,. . are
constants of the motion (independent of r).

It must be emphasized that the definition (C.4) for the normal vari-
ables, as well as the expansions (C.16) to (C.20) which follow, are valid in
the presence or absence of sources. In contrast, the simple solution (C.22)
for a (k, 1) applies only to a free field. In the presence of sources, the
solution of the equation of motion (C.12) is more complicated than (C.22),
and the expansions (C.19) and (C.20) for E, and B are no longer linear
superpositions of traveling plane waves. Likewise, the energy of the
transverse field given in (C.16) is no longer a constant of the motion.
Energy exchanges take place between the transverse field and the particles,
and only the total energy given in (B.38) is conserved. The same ideas
apply to P, and J, .

It is usual to denote by E(*)(r, t) the part of the expansion (C.19)
containing only the a,(k, 7) [and not the a*(k, 1)}

EN@r ) =i j BkY 8, alk 1) ee™r. (C.24)

(*) The polarization vector ¢ is real. It is certainly possible to introduce complex
polarization vectors to describe the modes of the transverse field having a circular or
elliptical polarization. In that case it is necessary to replace the second ¢ in (C.19) and (C.20)

by &*.



1.C4 Normal Variables 29

The other part is denoted E{7)(r, 1):
EC(r 1) = [EV(r, 0]* . (C.25)

For a free field, E(*) is the “positive-frequency” part of E | ; E(™) the
“negative-frequency” part.

d) THE TRANSVERSE VECTOR POTENTIAL A | (r, 1)

In what follows it will also be useful to give the expansion of the
transverse part of the vector potential A in normal variables. Remember
that A | is gauge invariant [see Equation (B.26)].

Note first that the transverse fields E, and B depend only on A | .
From (A.10.a) and (B.24.a) it follows that

E (rt)= —%Al(r, t) (C.26.a)

B(r, 1) V x A (C.26.b)

since VX A, =0.
One can show now that A | (r, ¢) can be written

A (1) = fd3k Y A,k 1) g™ + cc] (C.27)
with
A, = Bk = & fo. (C.28)

Since ¢ is normal to k, the vector field (C.27) is transverse. If one takes the
curl of (C.27), one gets the expression (C.20) for B, so that (C.27) verifies
(C.26.b). Since A | has a zero divergence, Equation (C.26.b) is sufficient to
determine it entirely, and the Maxwell equations insure that (C.26.a) is
automatically satisfied.

One can also find the Fourier transform &7, (k, ) of A | (r, r). After
changing k to —k in the second integral of (C.27), we get

[ h
oA (k1) = T o [ak, 1) + a*(— k, 1)]. (C.29)

Finally, it is possible to combine (C.29) and (C.6.a) to find a as a function
of &/ and &, [rather than as a function of &, and # as in (C.4.2)]:

ak ) =[5 [0,k 1) — i€,k D].  (C.30)
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5. Similarities and Differences between the Normal Variables and the
Wave Function of a Spin-1 Particle in Reciprocal Space

Consider first the free field. Equation (C.8) can be written

iha(k, t) = hoa(k, 1) (C.31)

and appears then as a Schrodinger equation relative to a “ vector wave
function” a(k, 7), the corresponding Hamiltonian being diagonal in the
reciprocal space with matrix elements #wd(k — k’). Equation (C.16) can
also be interpreted as the mean value of such a Hamiltonian in the wave
function a(k, ¢). Likewise, since in quantum mechanics the momentum
operator of a particle is diagonal in reciprocal space with matrix elements
hké(k — k), Equation (C.17) can be interpreted as the mean value of the
momentum operator in the wave function a(k, ¢). Finally, one can show
(see §2.c, Complement B;) that Equation (C.18), giving the angular
momentum of the transverse field, coincides with the mean value in the
wave function a(k, 1) of J = L + S (where L and S are the usual quantum
operators for the orbital angular momentum and spin angular momentum).
The first term in the bracket of (C.18) corresponds to L, the second to S.

All the preceding results suggest that one interpret a(k, ¢) as the wave
function in reciprocal space of a particle of spin 1 (*), namely the photon.
Such an analogy should not, however, be pushed too far. First of all, one
can show that the Fourier transform of a(k, 7) can not be interpreted as
the photon wave function in real space and, more generally, that it is
impossible to construct a position operator for the photon. (**) Addition-
ally, the equation of motion of a no longer has the form of a Schrédinger
equation in the presence of sources: it is not homogeneous. Such a result is
not surprising. The Schrodinger equation preserves the norm of the wave
function and thus the number of particles. Now it is well known that in
the presence of sources, photons can be absorbed or emitted. Thus one
cannot introduce a Schrodinger equation for a single photon in the
presence of sources. In fact, the electromagnetic field itself must be
quantized, and photons then occur as elementary excitations of the
quantized field. We will see in the following chapters that the “wave
function”, or more properly the state vector, of the quantized field is a

(*) The value of 1 for the spin is tied to the vector character of a. See Akhiezer and
Berestetskii, Chapter 1.

(**) See, for example, E. Wigner and T. D. Newton, Rev. Mod. Phys., 21, 400 (1949);
M. H. L. Pryce, Proc. Roy. Soc., 195A, 62 (1948).
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vector in a Fock space where the number of photons can vary from zero
(vacuum state) to infinity.

The preceding analogy can however be of some use. It suggests, for
example, that one examine the transverse eigenfunctions of J* and J, in
reciprocal space. This leads to the multipolar expansion of the transverse
field (see Complement B,), more convenient than the plane-wave expan-
sion (given above) in all problems where the angular momentum is
important.

6. Periodic Boundary Conditions. Simplified Notation

It is common to consider the fields as being contained in a cube of edge
L, and satisfying periodic boundary conditions at the sides of the cube. At
the end of the calculation one lets L go to infinity. All the physical
predictions (cross-sections, transition probabilities, etc.) should certainly
be independent of L.

The advantage of such a procedure is the replacement of the Fourier
integrals by Fourier series. In other words, the integrals on k are replaced
by discrete sums over

ky,.=2nn., /L (C.32)
where n, , , are integers (positive, negative, or zero). The variables
a,(k, 1) are replaced by the discrete variables ay (1):

a(k, 1) = o (1), (C.33.2)

One can even use the more concise notation

Uperes = % (C.33.b)

i

where the index i designates the set (k;, €;). The correspondence between
the two types of sum obeys the following rule:

Jd ka(ks)Hz< ) f(k;, &) (C.34)

In summary, the following are the expansions in a; and a* of H

trans?

trans’ A E and B:
how,
Htrans = 2_2_(0(1* o + o O(T) (C35)
hk;
Ptrans = Z——l(a* ai + ai al*) (C36)

A Z Jz/ [y g ™ + are g iker) (C.37)
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E, =i Z E ooy &7 — aF g e M) (C.38)

B =i} 4,le Kk x ge" — o k; x g e ] (C.39)

with

ho, 12 & &
8o = [2 - L3] B, =-2 o, =-2.  (C.40)
‘0

In these expressions ¥, indicates summation on all the modes ke, It is
convenient to note also that when going from the Fourier integral to the
Fourier series, the factor (1/27)%? of Equations (B.1) is replaced by
1/L%/%. This explains why &, contains L* in place of (27)° [compare
(C.21) and (C.40)]. Finally the ‘evolution of a; is governed by

i

& + iw; oy = ————= (C.41)
V2 g hw;
with
o 1 3 —iki.r . d
Ji —ﬁjd re g - j. (C.42)
Remark

The discrete variable @, has not the same dimensions as the continuous variable
a,(k). More precisely,

32
o = (2%) a4, (K,) . (C.43)
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D —CONCLUSION: DISCUSSION OF VARIOUS
POSSIBLE QUANTIZATION SCHEMES

After this rapid survey of classical electrodynamics, we now face the
problem of quantization of the theory. Here we will review various
possible strategies for quantization which will clarify the motivation and
the organization of the following chapters.

1. Elementary Approach

The formulation given in this chapter lends itself particularly well to an
clementary approach. Indeed, we have shown that the global system
(electromagnetic field + particles) is formally equivalent to a set of mutu-
ally interacting particles and oscillators. The simplest idea which can then
be put forth for quantizing such a system is to quantize the particles and
the oscillators in the usual way. With the position r, and with the
momentum p, of the particle a we associate operators (*) whose commuta-
tor is ik, and we replace the normal variables «; and a* of the oscillator
by the well-known annihilation and creation operators a; and a} with
commutator equal to 1 taken from the quantum theory of the harmonic
oscillator:

o > a;

af —>a . (D. D

All the physical quantities, which can be expressed as functions of r,, p,,
a,, and a*, become operators acting in the space of the quantum states of
the global system.

Such an approach is, however, heuristic. Since it does not come from a
Lagrangian or Hamiltonian formulation, we do not know if r, and p, on
one hand or a, and a* on the other [more precisely, ¢, = (o, + a¥)/ V2
and p, = (o} — a;)/ V2] can be thought of as conjugate dynamical
variables with respect to a Hamiltonian which has yet to be written.
Certainly, in this chapter the expression for the total energy of the system
has been given, but the conditions under which this expression can be
considered as the Hamiltonian of the system have not been established.

It is nevertheless possible to avoid this difficulty. One postulaies the
following expression for the Hamiltonian in the Coulomb gauge:

1 . hw,
H=Y5—p— 6. A0 + Veou + L 5@ a; + 4;a7) (D.2)

(*) To simplify the notation the same symbols are retained to designate the classical
variables of the particles r, and p, and the associated operators.
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which is nothing more than Equation (B.46) for the total energy (in the
Coulomb gauge A = A |), a; and a} being replaced in Equation (C.35)
for H .. by the operators a, and a;. One also postulates the following
commutation relation for r, and p, on one hand:

[rais 755] = [Pais Pgj) = 0
{ et (D.3)
[”aisl’/}j] = lh(sa[} Oij

where i, j = x, y, z (the §,, indicates that the variables of two different
particles commute), and for 4, and a; on the other:

lg;,a]] =6,;. (D.4)
The §;; indicates that the variables of two different modes of the trans-
verse field commute. One can then show (as will be done in §B.2, Chapter
III) that the Heisenberg equations derived from the Hamiltonian (D.2)
and the commutation relations (D.3) and (D.4) lead to good equations of
motion, that is to say, to the Maxwell-Lorentz equations between opera-
tors.

The reader ready to accept the foregoing points and wishing to get as
quickly and simply as possible to the quantum theory can skip Chapter II,
devoted to the Lagrangian and Hamiltonian formulation of electrodynam-
ics, and go directly to Chapter III, which starts from the expressions given
in this subsection.

2. Lagrangian and Hamiltonian Approach

This approach consists in showing initially that the basic equations of
classical electrodynamics, the Maxwell-Lorentz equations, can be thought
of as Lagrange’s equations derived variationally from a certain La-
grangian. Canonical quantization of the system is then achieved by
associating with each pair formed by a “generalized coordinate” and its
“canonically conjugate” momentum two operators with commutator i4.

Although more abstract, such an approach offers a number of advan-
tages. It allows one to identify which field variables are conjugate (for
example, in the Coulomb gauge the vector potential and the transverse
electric field) and to obtain the Hamiltonian directly without it being
necessary to postulate it. This approach also allows a deeper understand-
ing of the problems tied to the choice of gauge. The Coulomb gauge
appears then as the most “economical” gauge, allowing one to eliminate
most easily the redundant variables in the Lagrangian. Finally, it is well
known that two Lagrangians differing only by a total derivative are
physically equivalent. It is thus possible to construct many equivalent
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formulations of quantum electrodynamics and to discuss directly the
relations which exist between thzm.

Chapter 11 presents classical electrodynamics and its canonical quanti-
zation starting from such a point of view. Equations (D.2), (D.3), and
(D.4) are therein justified in a rigorous fashion. Changes of Lagrangian
and Hamiltonian will be treated in Chapter IV along with the various
formulations of electrodynamics to which they give rise.

For certain problems it is important to use a manifestly covariant
formulation. This leads one to choose a different gauge from the Coulomb
one and complicates the problem of quantization. These questions will be
considered in Chapter V.

GENERAL REFERENCES AND ADDITIONAL READINGS
Jackson, Feynman et al (Volume II), Landau and Lifschitz (Volume II),

Messiah (Chapter XXI, §III), Akhiezer and Berestetskii (Chapter I),
Cohen-Tannoudji (§1).
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COMPLEMENT A,

THE “TRANSVERSE” DELTA FUNCTION

The transverse delta function Sij(p) allows one to extract from a
vector field its transverse component. It is easy to understand why it plays
an important role in electrodynamics in the Coulomb gauge, since the
transverse fields are favored in this gauge. The purpose of this comple-
ment is to establish the expressions and the properties of this function and
to illustrate its use in a simple example. The expression for the transverse
delta function is particularly simple in reciprocal space. On the other
hand, we will see that calculating its Fourier transform to find Sij(p)
presents certain difficulties which justify the detailed treatment given here.

1. Definition in Reciprocal Space

a) CARTESIAN COORDINATES. TRANSVERSE AND LONGITUDINAL
COMPONENTS

Two different types of basis vectors will be used in reciprocal space to
define vector fields: the Cartesian system {e,} (i = x, y, z), and the
system composed of the longitudinal unit vector k = k/k and the two unit
transverse vectors & and &', introduced in (C.9). The Cartesian compo-
nents of vector ¥ are denoted by ¥7. One will often have to perform
summations on the two transverse polarizations of products of compo-
nents of & and ¢'. Their expressions are as follows. Consider first

o) J— ! ’
PRI & & + & &
gl k

[(e; - e)(e-e) + (e-¢€)(e - e) + (e K)(x ey —
— (e W) (k- ¢)
;e — (e - K)(ej‘ K)

= 0y = KiK. (h
Another summation is

Y &k x €)= ¢ &+ &(— ¢) )

tlk
where in writing the right-hand side, we have noted that

K X¢g=¢ KX € =—¢. 3)
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It appears then that (2) is nothing more than the component of the vector
product ¢ X ¢ on e, X e,. This then becomes

Y, ek x g); = Zl:sij, K 4

£lk

where ¢, is the antisymmetric tensor. Finally, using (3) and (1), one
immediately gets

Y (K x £),(k x &), =0; — K K,. (%)

€1k

b) PROJECTION ON THE SUBSPACE OF TRANSVERSE FIELDS

The transverse delta function is closely tied to the projection operator
on the subspace of transverse vector fields. In order to see this, consider a
vector field V(r) and its Fourier transform ¥°(k). In reciprocal space,
¥", (k) is easily gotten from ¥"(k) by projecting ¥"(k) onto the plane
normal to k at point k:

Vk) = ) g(e - ¥(K) (©6)

&

By projecting on e, and using (1), we obtain
V1K) = Y0y ~ w;6) ¥ (k). @
J

Let us denote by A+ the projection operator acting in the space of vector
fields and generating the correspondence between ¥~ and ¥” | :

(Vi) =A" V). ®)

This relation, written between the Cartesian components in reciprocal
space, becomes

V1uk) = jd"’k' 2 Ak k) V(K (€

where Afj(k, k') is the matrix element of the operator A+ in the basis

{Ik,e;)}. Comparison with (7) shows that this matrix element is equal to

s N ki kj /
A =8y~ 7)otk — k). (10)
In real space, the same relation (8) is written

V., (r) = fd%' Y AYrE) VAr). (11)
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The matrix elements of the operator A+ in the basis {|r,e;)} are given by

, , eik.r , e—ik’.r'
Ak(r, ) = Jd3k Jd3k =AMk K)

2 P 3/2 2 3/2
(2 7) 2 n) 12)
d’k ik.(rr')(‘ ki kj)
= s e 0 — —5 |-
2n) k
It appears then that the transverse delta- function introduced in (B.17),
d*k ki k.
5iLj(P) = J‘m e“(‘su - k21> (13)

is tied to the matrix element of A* in the basis {|r,e;)} by
Ajr, ) =05(r — 1). (14)

Remark

One can likewise introduce the projector A’ on the subspace of longitudinal
fields which is the complement to 1 of A+ :

Al=1— AL (15)

2. The Expression for the Transverse Delta Function in Real Space

From the definition (13), it appears that &7 (p) is the Fourier trans-
form of a function which does not tend to zero when |k| tends to infinity.
The transverse delta function then has a singularity at p = 0 which one
must carefully characterize. To this end, one regularizes this singularity by
truncating the spatial frequencies greater than some bound k,,. One later
allows k,, to go to infinity. Physically, such a procedure means that one is
not interested in variations of the field over infinitesimally short distances,
but rather in the mean field over small but finite regions of space.

a) REGULARIZATION OF §,7 (p)

Mathematically, one achieves the regularization by multiplying 9§, —
(k;k;/k*) by ki, /(k* + ki), which has magnitude 1 for k < k,,, and
decreases as 1/k? at infinity:

dk . ki k; ki
Shp) = ikplg 2L} M
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This regularized function can be written, taking account of the properties
of the Fourier transformation, as

oL &2 5 0? 17
0 = — — 9. -
where
B d3k k12W eik.p 18
9p) = J(z 7)° K + K2, (18)

b) CALCULATION OF g(p)
One first performs the angular integral on k:

Tk dk : ™ ki
- dy oo M
g(p) JO e " Jl IR0 ¥ K2

s dk eikp _ e—ikp ki’
Sl e T iR (19)
0 P o
kZ + ikp
= M| ke
@mn)lip )., kK + ki)
This last integral is easily evaluated by the method of residues:
2
g(p) = #; [2in Res (k = iky) + in Res (k = 0)]
k2 e*kMp 1
=L+ 03 } :
2mp Liky (2 iky) 2 ky,
So that finally
1 _
glp) = m(l — € kMp), (20)

Outside the neighborhood of the origin (p > 1/k,,), g(p) is equal to
1/4mp, which is indeed the Fourier transform of 1/k2 But as p — 0,
g(p) remains finite and tends to k,,/47.

¢) EVALUATION OF THE DERIVATIVES OF g(p)

Equation (17) gives the transverse delta function as a function of the
second derivative of the function g(p). Since this latter is only a function
of the modulus of g, one uses to evaluate its derivatives

-

0
=
0p;

9(p) = %g'(p) (21a)
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0
CTP—,' p; = 5:’,‘ (21b)
which yields
é? 3 pip; d <g’(p) (2le)
—_ J ’ + i j e
(‘p,@p]g(p) pg(p) o\ p )
g  prif , ¢
o)
o P p
Then
0? .2
Za gp) =g +=¢ (21d)
p
Substituting in (17) this gives the expression for S,j (p):
Pi Pj g .Y
(P) = : (g - _> - 5ij<g + _> (22)
p? p p
Evaluation of g” and g’/p gives
” — 1 _kMP klz\/[ p2
g(p)—4np3[2 2e <1+kMp+ > (23a)
1 —1
—g'(p) = 1 — e be(l :
5 g =7 7Ip3[ e M2l + ky p)] (23b)

d) DISCUSSION OF THE EXPRESSION FOR S,j. (p)

Equations (21), (22), and (23) lead to the following expression for the
regularized transverse delta function (17):

1 3pip;
55Lj(P) = Vij(P) + 3 np3 [TJ - 5ij:| n(p) (24)
where
ki (pip;
) = ! 5., e kme
7:P) = np< pE +0;)e (25)
np) = 1 —(1 + ko + 3k p2> e ke 26)

The function y,,(p) is localized about the origin. At the limit k,, — oo it
tends to a point-source distribution centered on p = 0. Such a dlstrlbutlon
can a priori be written as a sum of a function 8(p) and its derivatives of
order 1,2,..., which we are going to evaluate.



A2 The “Transverse” Delta Function 41

Note first that, simply as a result of homogeneity, the integral

j pyp) = 1, (27)

is a number independent of k,,. In contrast, the integral of the same
function multiplied by a term of degree m in p, is proportional to
(1/k, )" and goes to zero when k,, — oo. Thus, in the integral of the
product of v,,(p) with a function ¥ (p) expandable about p = 0, only the
first term of the series gives a nonzero contribution in the limit k,, — co:

fdz’p 7P Y(p) = 1, ¥(0). (28)
It follows that
im (0) = 1, 6p) (29)
where
= Jdﬂo 71(P)
" ki Pl -
—J ﬂpddeQG + p MP (30
0
The angular average of p,.pj/pz is 8,,/3, and the radial integral gives
2
I = 3 5:‘]' . (31)

At the limit k), — oo, v,,(p) is then simply

/U(p) 511 5(9) (32)

where it is understood that the function 8(p) has an extent of 1/k,,

The function n(p) is a regularizing function which becomes 1 for
p > 1/k,, and which starts as k},p’/6 at the origin, with the result that
the second term in (24) does not diverge at p = 0. It behaves like a dipole
field regularized at the origin. Such a function has properties in three-
dimensional space analogous to those of the principal-part function
#(1/x). Actually, on integrating over a small volume centered at the
origin, the second term of (24) gives zero, although it has in this region a
value of the order of k3,. This property arises from the vanishing of the
angular average of (3 p; j/pz) — 0;;. in the same way that the integral of
7 (1/x) 1s zero as a result of the odd parity of this function.
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Finally, the transverse delta function can be written

2. ne) (3 p; p;
31(P) = 395 0) + 75 — % (33)

where n(p) is equal to 1 away from the origin and suppresses the
divergence at p = 0.

Remarks

(i) The factor £ in (32) can be simply found. Taking the trace on i of (13) gives
immediately

Y 54(p) = 20(p). (34)

i

In the expression (33) for 8,7 , only the first term contributes to the trace and
the factor 3 of (32) is necessary to satisfy (34).

(ii) One can ask if the second term of (24) does not give rise, in the limit
ka — oo, to derivatives of the delta function 8§(p). In fact, the dimensional
argument already developed for v,;(p) applies: for functions of degree m in p;,
the contribution of the neighborhood of the origin to the integral of the product
of these functions with the second term of (24) is of the order 1/k}; and tends
to zero when k,, — co.

3. Application to the Evaluation of the Magnetic Field Created by a
Magnetization Distribution. Contact Interaction

The magnetic field B(r) created by a magnetization density M(r) is
given by Maxwell’s equation

V x B(r) =

i (35)

€9
where
j(r) =V x M(r) (36)
is the current associated with M(r). Substituting (36) in (35) and trans-
forming into reciprocal space, this becomes

1

ik x Bk) = —
g ¢

ik x .2K). 37)

This equation allows one to find # (k). Projecting both sides of (37) on k
and using the transverse nature of #(k - # = 0), one gets

1

BA) = —— MK — k(- M) = —— MK ()
o€ &g C

3 -

€ 0
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which shows that @ is (except for a factor 1/e,c?) the transverse compo-
nent of . In real space, Equation (38) is written

Byr) = l ML,(r) = lcz Z Jd3 ’5*(r — 1) M(r). 39)
€o j

&o C

Using (33) for the transverse delta function appearing in (39) shows
that B(r) is a sum of two contributions. The first one, coming from the
first term in (33), is simply proportional to the density M(r) taken at point
r. The second one, coming from the second term of (33), represents
physically the dipolar field created at r by the magnetization density M(r’)
at all other points r’. The presence of the regularization function 7 in the
second term of (33) makes all the expressions finite, and symmetry
arguments then allow one to show that the immediate neighborhood of r
does not contribute to the integral on r’ of the product of the second term
of (33) with M,(r’) (see §2.d above).

Consider now another magnetization density M’'(r). The interaction
energy of M'(r) with the field B(r) created by M(r) is

W= - jd3r M'(r) - B(r). (40)

Equation (39) allows this to be written in a more symmetric form,

W= — ! 5 Y Y Jdg‘r jd3r’ M(r) (33(r — 1) M(r). 41)
Eg C7 i

Using (33) again allows one to separate two contributions in W. The
first,

% ! _ jd% M'(r) - M(r) (42)

which depends on the magnetization densities M and M’ at the same
point r, is called for that reason the contact interaction. The second,

= 3, 3,1’[(|l'—l"|)
W, = - 4 g ¢ ZZIZJd Jdrmx

3(r— 1) (r - l'l),‘
r—r)’

X Ml»’(l‘)[ - 5,‘1':, Mj(l‘,) (43)

represents the magnetic dipole—dipole interaction between the two densi-
ties. As above, the regularization introduced by % and symmetry argu-
ments show that the immediate neighborhood of |r — r'| = 0 does not
contribute to W.
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Remark

The foregoing can be applied to the study of the magnetic interaction between
the nuclear spin and the electron spin in an atom. One takes as M(r) the
magnetization density of the nucleus. This density can be appreciable only in a
volume of the order of r;, where r, characterizes the dimensions of the nucleus,
which is taken at the coordinate origin. The integral of M(r) is just the magnetic
moment of the nucleus,

= Jd% M(r) . (44)

One assumes in addition that M'(r) represents the spin magnetization density
of the electron in the state {(r), so that

M(r) = p, [ () |? (45)

where p, is the spin magnetic moment of the electron. Important simplifica-
tions appear in the interaction energy W as a result of the different spatial
extensions of M(r) and M'(r). Indeed, the spatial extent of |{(r)|* is of the
order of the Bohr radius a,, which is much larger than the nuclear radius. If
one ignores the variation of [{(r)|? inside the nucleus, the contact interaction
(42) becomes

W, ~ — 2! 5 fd3r M'(0) - M(r) (46)
3 e

that is, taking into account (44) and (45),

W, ~ —

Ty R WO (47)
-0

In the same way, one can make a multipole expansion of M(r) in (43) and only
keep the lowest-order term, which yields
M(r) = py 6(r). (48)

Equation (43) then becomes

n(r) 3 .
W, ~ 2 Z Z Jda < 2 L — bij) Hej

249
4n€0 7 “)

Finally, regrouping (47) and (49) shows that the magnetic interaction energy
between the two spins appears as the mean value in the state y(r) of the
interaction Hamiltonian

| ‘
5 2 2 My 00 p
L

o €

i

H

1

- 2
dmeg ¢

Il

(50)

8x . M, )y o 1) P, w
[Tue'um(rw = = e

r

where r is the position of the electron with respect to the nucleus and where it is
further understood that the dipole-dipole interaction is regularized at r = 0.
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COMPLEMENT B,

ANGULAR MOMENTUM OF THE ELECTROMAGNETIC
FIELD. MULTIPOLE WAVES

The first motivation for this complement is to establish some results
given without proof in Chapter I and related to the angular momentum of
the electromagnetic field. We first show (§1) that the contribution of the
longitudinal electric field to the angular momentum of the field can be
reexpressed as a function of the particle coordinates r, and the transverse
vector potential A | (r,) and regrouped with the angular momentum of the
particles. We also establish (§2) the expression for the angular momentum
of the transverse field as a function of the normal variables a(k). The
expression gotten is closely analogous to that giving the mean value for
the total angular momentum of a spin-1 particle whose vector wave
function is precisely a(k) in reciprocal space.

The foregoing analogy suggests then that one look for functions a(k)
suitable for the angular momentum of the transverse field. More precisely,
one tries to determine transverse vector functions of k, defined on a sphere
of radius k,, which are also eigenfunctions of J? and J,, where J is the
total angular momentum of a spin-1 particle. Instead of coupling in the
usual fashion the orbital angular momentum L to the spin angular
momentum S of such a particle, we will see in §3 a simpler method for
constructing the eigenfunctions of J 2 and J, which give the longitudinal
or transverse eigenfunctions directly.

When the eigenfunctions thus found are substituted for the normal
variables in the expansion of the electric and magnetic fields, one then
gets, in real space, electromagnetic waves corresponding to photons with
well-defined energy, angular momentum, and parity (§4). The second
motivation behind this complement is to give a simple derivation of such
multipolar waves, which are well suited to all the problems of atomic or
nuclear physics where exchanges of angular momentum between matter
and radiation play an important role.

1. Contribution of the Longitudinal Electric Field to the Total
Angular Momentum

Let

Jione = &0 jd3rr x (E; x B) (1)
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be the contribution of the longitudinal electric field to the total angular
momentum of the system field + particles. Replacing B by v X A |
(since ¥ X A, = 0) and using the expression for the double vector prod-
uct to transform E, X (7 X A ) yields

Jiong = €0 Jd%{ Erx VYA, —rx(E,;-V)A, } (2)
a=x,y,z
The last term in (2) can be rewritten by moving r to the right of 7:

¢ Jd%[— B, V)(rxA)+E xA]J. 3)

Integrate the first term of (3) by parts. The integrated term gives a surface
integral at infinity which vanishes if the fields go to zero sufficiently
quickly. In the remaining term the quantity v - E, appears, and this is
p/g; from Maxwell’s equation (A.l.a). Regrouping the expression so
obtained for (3) and the first term of (2), and making use of the fact that
E, = — VU, where U is the Coulomb potential, one gets finally

J

long =

= Jd%{p(r x A) — g2 (V,U)(r x V)4, — &(VU) x Al}. (4)

One can see now that the last two terms in (4) cancel. Integrating them by
parts, one gets

N Jd%{}j UV, rx V) A,, + UV x AL)}. (5)

Now

SUVrx VA, =UrxV)(V-A)—UY xA). (6

The first term of (6) vanishes, since 7 - A | = 0. The second term of (6)
cancels with the last term of (5). Only the first term of (4) remains, which,
using (A.5.a) for p, gives

Jlong = Z q,r, X Al(rz) . (7)

It is clear then that J,,,, can be written as a function of the coordinates
r, of the particles and of the transverse potential A | . This result is gauge
independent, since A | is gauge invariant [see (B.26)].
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One now groups Jy,., with the angular momentum of the particles,
L1, X m,i, This gives

Jlong + Z rz X ’na ia = Z raz X [qa A_L(ra) + ma l..a]

=yr xp, (8)

where p, is defined by (B.44). In the Coulomb gauge (A = A ), p, is the
momentum conjugate with r,, or equivalently the canonical momentum of
particle a. It appears then that in the Coulomb gauge the difference
between the quantities r, X p, and r, X mf, 18 just the angular momen-
tum associated with the longitudinal electric field of particle a.

2. Angular Momentum of the Transverse Field

In this section, we transform the expression for the angular momentum
of the transverse field,

Jtrans =& J\dsrr X (EJ. X B) (9)

a) J,,., IN RECIPROCAL SPACE

The calculations at the beginning of §1 above remain valid when one
replaces E| by E | throughout. Since 7 - E | = 0, the integration by parts
of the term corresponding to the first term of (3) now gives a zero result,
and only the terms corresponding to the first term of (2) and the last term
of (3) remain:

Jtrans = & jd3r{ina(r X V) AJ_a + EJ. x AJ_ } . (10)

One now expresses J, ., as a function of the Fourier spatial transforms
&, and & of E, and A . For this, one uses the Parseval-Plancherel
identity and the following table:

TABLE 1
r 1V

V «—ik
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giving the correspondence between the operators multiplication by r and
gradient with respect to r in real space on one hand and the operators
multiplication by k and gradient with respect to k (denoted by ¥V to
distinguish it from V) in reciprocal space on the other. One then gets

Jlrans =& J\dsk { Z (’)@fa(k X V)"Q{La + gf X dl} (11)

(usingk x V = — F x k).

b) J IN TERMS OF NORMAL VARIABLES

trans

In Part C of this chapter, &, and &/, have been given in terms of
normal variables a(k):

8 =iMa — a*) (12)

| =%/}(a+a’i). (13)

Recall that A" is a normalization coefficient given by (C.15) and that o _
is an abbreviated notation for a —k, 7). Substituting (12) and (13) in (11)
and changing k to —Kk in certain terms, one gets

2
Jirans = &0 stkﬂ—{za:(— ik xF)oa, — ia* x o—

w

—Yo_(—ikxV)o,+ie. x a—

— [same terms where o & a*] } (14)

The contribution of the second line of (14) to the integral is zero. Firstly,
the term a_X a is odd in k and its integral vanishes. Then, changing k to
—k in the first term of the second line of (14) and integrating it by parts,
one sees that the contribution of this term is equal to its opposite and thus
vanishes. One has then

Jiane = ng"’k{[z a¥(— ik x V)o, — ia* x a] —[e= a*]} (15)

X

an expression equivalent to Equation (C.18).
In all the calculations we have done, the ordering between a and o* has
always been respected and is as it appears in the equations. If one neglects
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to take this ordering into account, Equation (15) simplifies and becomes

Jians = 11 jd3k[z a*(— ik x V)a, — ia* x a]. (16)

a

¢) ANALOGY WITH THE MEAN VALUE OF THE TOTAL ANGULAR
MOMENTUM OF A SPIN-1 PARTICLE

We will now see that it is possible to reinterpret Equation (16) for Jy ...
To do this, set aside for the moment the problem of the angular momen-
tum of the electromagnetic field, and consider the quantum mechanics of a
spin-1 particle.

There are three possible spin states for such a particle, and the wave
function representing the state |¢) of the particle will be a vector wave

function with three components. In reciprocal space these components
will be called

(kald) = ¢ k). (17)

We have taken a spin-state basis {]a)} which is not the set of eigenstates
(1 = 1,10}, | + 1)} of S., but the set of Cartesian spin states
(1), ), |2} related to it:

1
7
|y>=\/%(l—1>+|+1>)
lz> =10). (18)

One now evaluates the mean value in the state |¢) of the total angular
momentum

xy=—7=(-1>-1+1))

J=L+S (19)

for such a particle, where L and S are the orbital and spin angular
momenta. Using Table I, L is given in reciprocal space by the operator

L=iVxhk=—ilik x V. (20)

Since L does not act on the spin quantum numbers,

<¢lLl¢>=ﬁjd3kz¢f(k)(—ikXV)¢a(k)~ @n
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To find the mean value of S, let us first give the action of S, S,, and S,
on the Cartesian basis states |x), [y), and |z):

S 0b> =ik ey lc) (22)

which derives from the known action of S, and S,= S, + iS, on the
eigenstates of S, and from equations (18)."Since S does not act on the
quantum numbers k, one gets then from (22)

(oIS

¢ = —ih Jd3k ¢*(k) x ¢(k). (23)

Compare (21) and (23) with the two terms appearing on the right-hand
side of (16) for J,,,. If one identifies the normal variables a(k) with the
vector wave function ¢(k) of a spin-1 particle in reciprocal space, J, .
appears then as the mean value of the total angular momentum of such a
particle, the first and second terms of (16) being associated with the
orbital angular momentum and the spin angular momentum respectively.

Remarks

(1) It must be kept in mind that the normal variables a(k) form a transverse
vector field. If one reinterprets a(k) as the wave function of a photon in
reciprocal space, it is equally necessary to constrain the photon wave-function
space to belong to the subspace of transverse fields and to consider as physical
only the observables leaving such a subspace invariant. Let us show that L and
S are not separately physically observable as J = L + S is. The operator L is
associated with an “orbital rotation” of the vector field: L rotates the point of
application k of each vector a(k) of the field without rotating o« at the same
time. In such an operation, the orthogonality between k and a(k) is not
preserved. Likewise, S causes the vector a to rotate without changing its point
of application, which also causes the transversality of the field to break down.
In contrast, J causes the vector and its point of application to rotate at the
same time, preserving the angles and thus the transversality. This can also be
clarified by the following argument. The spin of a particle represents its total
angular momentum in the frame where it is at rest. Such a frame does not exist
for the photon, which propagates at the velocity of light, with the result that S
(and likewise L) is not separately observable for a photon.

(ii) Analogous reasoning allows one to understand why r cannot be a position
operator for the photon: r generates translations in reciprocal space, and
such operations in general do not retain the orthogonality between « and the
vector k.
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3. Set of Vector Functions of k “Adapted” to the Angular Momentum

a) GENERAL IDEA

As seen in Part C, giving the complex vector function a(k) completely
defines the state of the electromagnetic field. Up to transversality (to
which we shall return), this function is isomorphic with the wave function
of a spin-1 particle. To each basis in the state space of this particle there
corresponds a set of states of the electromagnetic field able to produce
through linear combination any state of the field. Thus, the set of
functions

b, . (K) = & d(k — k) (24)

for all k; and all ¢, normal to k, form a basis for the space of vector
functions, to which corresponds the field expansion in plane waves used in
Chapter L. This basis is in fact the basis of eigenstates of the momentum
for the associated spin-1 particle. This property explains the simple form
of (C.17) for the momentum of the transverse field when using this basis.

In a similar way one can now construct another basis “adapted” to the
angular momentum. It is a basis of eigenstates for J? and J., J being the
total angular momentum (19) of the spin-1 particle which we have
associated with the electromagnetic field. It is well known that the
orbital-angular-momentum operator L acts only on the polar angles of
vector k, or equivalently on the unit vector k = k/k. The operator for S
does not act on k. Consequently, knowledge of the eigenvalues of J 2 and
J_ does not give any information on the radial part of the eigenfunction. If
one takes this radial part proportional to 8(k — k), the basis functions
are also energy eigenfunctions with eigenvalue hck, (since the photon
energy depends only on |k|). One thus takes

[
brumlk) = T Ok — ko) bp(x) (25.a)
where the factor 1/k, has been introduced for normalization:
Jd% Of (k) - O omk) = (kg — ko) Oy Opgar - (25.b)

The angular function ¢, (k) is likewise normalized on the sphere of
radius 1:

sz’\' OFp(K) * D)y (6) = 3550 Opppp (25.¢)
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and must be fixed with the condition that ¢, ,,,(k) is an eigenfunction of
J? and J, with eigenvalues J(J + 1)4? and Mh respectively.

A first method of constructing ¢,,,(x) is to take the orbital eigenstates
for L? and L, (the spherical harmonics) and to couple them to the spin
eigenstates for S, using the usual algebra for combining angular momenta.
One thus constructs the vector spherical harmonics. Now these vector
functions are in general neither longitudinal nor transverse [¢,,,(k) is
neither parallel nor perpendicular to k]. To get the transverse functions it
is necessary to combine the functions with the same quantum numbers J
and M but with different eigenvalues L(L + 1)4? of L2.

Here we are going to use a simpler method, due to Berestetskii, Lifshitz,
and Pitayevski, which directly gives the longitudinal and transverse func-
tions.

b) METHOD FOR CONSTRUCTING VECTOR EIGENFUNCTIONS FOR J? AND J,

One can generate vector functions by letting an orbital vector operator
V act on a scalar function x(k) defined on the sphere of unit radius in
reciprocal space. Consider the action of J on such a function:

Jo(V()) = L(Vx()) + S(V(K)). (26)

Since V is an orbital vector operator, it has the following simple commuta-
-ion relations with L:

(Lo Vil =10} e V. (27)

which allow one to write
L(Vx(x)) = V(L, x(x)) — ifi e, x Vy(K). (28)
To find S,(Vx(k)) note first of all that the vector wave function Vx(x) is

associated with the ket £,|b) |V, x), where |V, x) is the orbital part of the
ket and |b) the spin part. Using (22), one gets then

Sa 2N I Vead> =ih L oew X Vx> (29)
b c.b
which yields for the associated wave function
So(Vx(®)) = ifi e, x Vy(x). (30)
Add (28) and (30). This gives

JVx(x)) = V(L, x(x)). (3D
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It follows immediately then that if one selects for x(x) a spherical
harmonic Y),,(x) which is an eigenfunction of L? and L, with eigenvalues
J(J + 1)h? and Mh, then VY, (k) is a vector eigenfunction of J?* and J,
corresponding to the same eigenvalues:

{ FVY () = JU + 1) 72 VY 1 (8)
Jz(v YJM(K)) = Mh VY ,;u(x). (32)

It remains now to select a suitable V so that VY, will be longitudinal
or transverse.

¢) LONGITUDINAL EIGENFUNCTIONS

As a first choice for V, consider the operator of multiplication by «.
One gets a vector function, certainly longitudinal, which one calls N,

N, (K) = K Y p,(x) (33)

and which is normalized on the unit sphere.

Consider the action of the parity operator II on the function N,,, (k).
Since N,,, is a polar vector field, the operator IT changes the sign of N,,,
at the same time it changes its point of application from k to —«:

(ITNjp) () = — Nyp(— %). 34
Knowing that
Yol = %) = (= 1) Y3(K) (35)
one finds
(ITN}) () = (= 1)’ Njp(x) (36)

N,,, thus has parity (—1)”.

d) TRANSVERSE EIGENFUNCTIONS

As a second choice for V, take the gradient operator on the unit sphere.
Such an operator, denoted ¥,, acts only on the polar angles of k. It is
related to the ordinary gradient operator ¥ through

o 1
V:K6_k+§l7"' 37
The first term of (37) gives the radial component of the gradient, and the
second the component normal to k. The result of this is that p, ¥}, (k) is
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in the tangent plane of the unit sphere and is therefore a transverse vector
function. We introduce

7,0k = ——
™ JIJ + D

where the factor 1/J(J + 1) has been introduced for normalization.
The transverse functions Z ;, are orthogonal to the longitudinal ones N,,,.
They are, additionally, orthogonal among themselves. One has

Ve Y 00() (38)

szK Ziy(k) © Z; (k) =
I
JIT+ DU+ 1)

J A2V Y ) = (e Y yong) - (39)

An integration by parts gives —4,Y,.,., which is equal to J'(J" + 1)Y,,,,
so that, taking into account the orthonormality of the spherical harmonics,

jdz"' Z3y(K) * Zjyp (k) = 055 Oy - (40)

Note finally that since the operator ¥V, is polar, Z,,, like N, has parity
(-1

As a third choice for V consider the operator k X ¥ and the functions

\

X -
ult) JITF 1)

where the factor 1/ yJ(J + 1) is again introduced for normalization. The
function X,, is always normal to N,,, and Z,,, and thus orthogonal to
both these functions (in the sense of the scalar product of functions of ).
It is a transverse vector function related to Z,,, by

(x x Vi) Y p (%) (41)

X () = x x Z;y((x) (42)
which can be inverted to give
Z;y(k) = — k x X;p(x). (43)

Note that there exists a simple connection between k x J/,, and the
angular momentum operator L. Actually, taking into account (37) and
(20), k x W, is nothing more than k x ¥, that is to say, iL/A, so that

X -1 Ly . 44
(K) 5 \/J(J T D m(K) (44)
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The components of X;,, are easy to find as a function of the spherical
harmonics, and likewise, through (43), those of Z,,, as well. The orthonor-
malization of X,, immediately results from the orthonormalization rela-
tions (40) for Z,,, thanks to Equation (42), which relates the integrals of
X#, - X, to those of Zj, - Z,,,. Finally, since the vector k X F, 1s axial,
X, has opposite parity to Ny, and Z,,, i, (-1/*h

The three families of functions N, X, and Z at each point on the unit
sphere form a rectangular coordinate system on which one can project any
vector field; that is, they form a basis for vector functions on the unit
sphere. 1f one keeps only the fields X and Z, one generates all the
transverse fields.

More precisely, the set of functions

1.
d)k“JMX(k) = k_o ()(k - ko) XJM(K) (45 .a)

-
Puoawr®) = =0k = ko) Zyyy(¥) (45.b)

form a basis for the transverse fields in reciprocal space. Giving the
eigenvalues of energy [hck,), those of J and J. [J(J + 1)4? and Mh],
and the parity [(—1)?*! or (—1)’] unambiguously specifies the corre-
sponding eigenfunction (45.a) or (45.b). The energy, the total angular
momentum (J2 and J,), and the parity thus form a complete set of
commuting observables for the photon. Every state a(k) of the transverse
field can be expanded in only one way on the basis (45):

x +J

ak) = s‘ dkg Z Z x | Ao MX Gomx(K) + %nz Oy rmz(K) I

J 0o J=1M=-J
(46)

The' coefficients a, jpx OF Q juz in this expansion (and their complex
conjugates) become, after quantization, the destruction (and creation)
operators for a photon with energy #ck,, angular momenta J(J + 1)h?
and Mh, and parity (— 1)’ *or (=1)’.

Remark

One does not have a function X or Z with J = 0, since Yy, is a constant and
Py Y oo= 0. This is why the sum on J starts with J = 1 in (46).

4. Application: Multipole Waves in Real Space

When all the expansion coefficients in (46) are zero except for one, the
function a(k) reduces to the eigenfunction &y vy (k) or &4 sz (K). In this
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section the structure of the electromagnetic waves gotten by replacing
a(k) by &, spx(K) or &, (k) in (C.19) and (C.20), giving E _ (r, 1) and
B(r, t) as functions of a(k), will be considered. Such waves, called
multipole waves, are the waves associated with photons whose energy,
angular momentum, and parity are well defined.

a) EVALUATION OF SOME FOURIER TRANSFORMS

When one replaces ¥ o (k)e = a(k) by the eigenfunction (45a) or (45b)
in the equation (C.19) for E | , one sees immediately that one needs the
Fourier transforms for these functions. For this it is useful to recall the
expression for the expansion of a plane wave in spherical waves (*¥)

=

+1
H*r=an Y Y @ik YK Y,(0) (“47)

=0 m=—1
where

r
p=1 (48)

is the unit vector in the direction of r and where j,(kr) is the spherical
Bessel function of order /. From (47) it follows that

0

J@k&*%éw-kaYmm)=4MW%meonAm (49)

which will be used later.
Let us evaluate first of all the Fourier transform of ¢, /¢ (k), which is
denoted

Ly sax(r) = ET.{ brosmx(k) } =

1 J‘Pk eik.r_l_é(k — ko) (K X V)) Youl®) (50)

2o ko JIT+ 1)

Since x X V, does not act on k, 8(k — k;) can be put to the right of
k X F.,which is written as k X p following (37). This yields then, using
Table I in §B,.2,

hmMﬂ=FT%kxméﬂk—mJ%%%ﬁ}
Y ;5 (%) }
JIG+n)

(*) See, for example, Cohen-Tannoudji, Diu, and Laloe, Complement Ayyy;.

= £—(r x V)F.T. {5(k — k) (51)

0
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Using (49), the calculation of the Fourier transform of the expression in
braces yields

k Y
Lomx(n) = (2—7{;37(r x V) [4 (@)’ jiko 1) ﬁJJM—(r)T)] (52)

Since r X V only acts on p, the expression (41) for X,,,(p) arises, and
finally

4n N
Bowx() = s Kol Jotko 1) X () (53)
The calculation of

Loy =FT. {Lé(k — ko) Vs Y (%) } 54

ko JIJ+ 1)
is a little more complex. Since Y,,(x) does not depend on k, the

expression in braces can be simplified using (37):

7(1;5(k ~ ko) Vi Y () = 0k — ko) VY jp()

- k
=V [0k — ko) Y;pu()] — ‘Eé (k — ko) Yyp(k). (55)
This then yields, using Table I in §B,.2,
1

I -
k(,JMZ(r) m

{ — irF.T. [0k — ko) Y p(6)] +

+iVET. Bé’(k — k) YJM(K)} } (56)

One next calculates the two Fourier transforms of (56). The first is directly
given by (49) to within a factor k,/(27)*?. To evaluate the second, note
that in the integrand of (49) (1/k,)8(k — ky) can also be written
(1/k)8(k — k). Taking the derivative with respect to ko then gives the
desired Fourier transform except for the sign:

o\
4 7!(1) {(_ ll') k(z)]J(kO r) Y_]M(p) +

1 =
kosMZ(T) 0 0 r———J(J D
+ (= V)3 Lk ko 1) Yy (#)] } 57

The action of the operator V is seen more explicitly if one separates the
action of its radial and angular parts and introduces the dimensionless
variable x = kyr:

1
VZP?“F—VP =k0p—+k0;Vp (58)
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and

V —— [kojsko 1) Y 1y(P)] =
ok,

)

1 ¢
= (kop (-f_r + ko o VP) i (xXj5(x)) Y jpe(P) - (59)

Referring to (33) and (38), one sees that (57) contains N,,(p) and
Z,,(p). The term between the braces in (57) can be written as —ik,
multiplied by

N2 A
[XJJ(X) + (:7 (YJJ(V))i| N;u(p) + l\ (_\ (x5, Z(p) /I + 1) (60)

Since j,(x) is the solution of the radial equation

WD, m=0 @)

. 2, .

Jix) + ;JJ(X) + Ji(x) —
the coefficient of N, (p) is simply (1/x)J(J + 1) j,(x). After this simpli-
fication, Equations (60) and (57) give

4 NS -1 .
IknJ.\lz(r) = % {\/J(J + 1) jiko ) Nyplp) +

b g otk 1 Zut9) (6

b) ELECTRIC MULTIPOLE WAVES
These waves correspond to a(k) = ¢, ;u~(k). From (C.19) and (C.20),
E  (r,?) and B(r, ¢) are then given by

E oz 1) =12 n)*2 &, L jpAr) e ' + ce

(¢

Bynzr ) = 1212 &, L ux@®e " + ce (63)

One assumes the field to be free so that the temporal evolution is purely
harmonic, and takes ¢B rather than B so that the dimensions are the same
as for E |

The magnetic field at r is perpendicular to the vector r, like I, ;5 (r),
which is proportional to X ,,,(p). The expression for the electric field E |
contains both Z,,,(p) and N,,,(p) [see (62) for I, ;,-(r)]. E (r) is then
not normal to r. This is indeed necessary if one wants E | XB to have a
nonzero moment with respect to the origin. Furthermore, E | and B are
normal to one another.
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Near the origin (ky,r < 1)

(ko 1’

Jilko 1) = SR (64)

so that

(ko r)J
E_L(l', l) ~ 4 TCkO éawom m X
x { QI + DNp(p) + (I + D Zyplp)] €7 + cc. )
(ko r)J I+ —iwot
B(r, 1) ~ 4k, &, CNERIRR {7 X plp) e + cc }. (65)

The functions N, X, and Z are on average of the same order of magnitude
on the unit sphere. One has then

¢B ~ }ko rE, . (66)

Compared to a plane wave with the same electric field, the magnetic field
(66) is smaller by a factor of k,r/J near the origin. In the neighborhood
of the origin such waves are mainly coupled to the electric multipole
moments, hence the name electric multipole waves.

At large distance (kyr > 1)

. I . i
Jilko ¥) ~ T sin <k0 r—J —2-> (67)

ot

and the asymptotic forms of the fields are

E (r.1) ~ 47n6, {[% cos <k0 r—J g) Z,y(p) +

J y et
+f_li—_o sin (ko - Jg> N,M(m} (i et + C.C.} (69)

cB(r. 1) ~ 416, { 1; sin <k0 r—J g) X,ap) () e 4 e }

The radial part of E decreases as 1 /r?, so that at infinity only the wave
decreasing as 1/r remains, with the structure of a stationary plane wave,
transverse in r-space.
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¢) MAGNETIC MULTIPOLE WAVES

The waves associated with ¢, ;yx(Kk) are called magnetic multipole
waves. The corresponding free fields E ;| and B are given by

E kormx(t 1) = i(2 m)*? oo Legrnax (1) e 1 4 e
By ux(r ) = — 12126, LD e + cc.. (69)
In comparing (69) and (63) one discovers that one has simply inverted E |

and ¢B and changed the sign of one of the two fields. All of the
conclusions of the previous section can be carried over without any

difficulty.
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COMPLEMENT C,

EXERCISES

Exercise 1. H and P as constants of the motion.

Exercise 2. Transformation from the Coulomb gauge to the Lorentz
gauge.

Exercise 3. Cancellation of the longitudinal electric field by the in-
stantaneous transverse field.

Exercise 4. Normal variables and retarded potentials.

Exercise 5. Field created by a charged particle at its own position.
Radiation reaction.

Exercise 6. Field produced by an oscillating electric dipole.

Exercise 7. Cross-section for scattering of radiation by a classical
elastically bound electron.

1. H AND P AS CONSTANTS OF THE MOTION

a) Show that the energy of the system particles + electromagnetic field
given by

H:;%%ﬁ+%Jfﬂ?+8W] (1)

is a constant of the motion.

b) Derive the same result using the expansion of the transverse field in
normal variables.

¢) Show that the total momentum
P=Zmav1+sojd3rExB )
is also a constant of the motion.

Solution

a) One calculates

@I

Jd%[E E L o Q] 3)
ct ct

and substitutes for dv,/d: using the Lorentz equation and for JE/d¢ and dB/dt using
Maxwell’s equations This gives

=Y v, (0. E(r,.0) + 10J‘d3r[E' (('ZV x B — 