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PREFACE 

This book focuses on statistical data evaluation, but does so in a fashion that 
integrates the question-plan-experiment-result-interpretation-answer 
cycle by offering a multitude of real-life examples and numerical simulations 
to show what information can, or cannot, be extracted from a given data 
set. This perspective covers both the daily experience of the lab supervisor 
and the worries of the project manager. Only the bare minimum of theory 
is presented, but is extensively referenced to educational articles in easily 
accessible journals. 

The context of this work, at least superficially, is quality control in the 
chemical and pharmaceutical industries. The general principles apply to any 
form of (chemical) analysis, however, whether in an industrial setting or not. 
Other readers need only to replace some phrases, such as “Health Author- 
ity” with “discriminating customer” or “official requirements” with “market 
expectations,” to bridge the gap. The specifically chemical or pharmaceutical 
nomenclature is either explained or then sufficiently circumscribed so that 
the essentials can be understood by students of other disciplines. 

The quality and reliability of generated data is either central to the work 
of a variety of operators, professionals, or managers, or is simply taken for 
granted. This book offers insights for all of them, whether they are mainly 
interested in applying statistics (cf. worked examples) or in getting a feeling 
for the connections and consequences (cf. the criminalistic examples). Some 
of the appended programs are strictly production-oriented (cf. Histo, Similar, 
Data, etc.), while others illustrate an idea (cf. Pedigree, SimCal, OOS-Risk, 
etc.). 

When the first edition was being prepared in the late 1980s, both authors 
worked out of cubicles tucked into the comer of an analytical laboratory 
and were still very much engaged in hands-on detail work. In the intervening 
years, responsibilities grew, and the bigger the offices got, the larger became 
the distance from the work bench. Diminishing immediacy of experience 
may be something to bemoan, but compensation comes in the form of a 
wider view, i.e., how the origin and quality of the samples tie in with the 
product’s history and the company’s policies and interests. 

Life at the project and/or line manager level sharpens awareness that 

... 
X l l l  



x1v PREFACE 

“quality” is something that is not declared, but designed into the product and 
the manufacturing process. Quality is an asset, something that needs man- 
agement attention, particularly in large, multinational organizations. Labora- 
tory instrumentation i s  largely computerized these days, a fact that certainly 
fosters standardization and method transfer across continents. The computa- 
tional power makes child’s play of many an intricate procedure of yesteryear, 
and the excellent report-writing features generate marvels of GMP-compli- 
ant documentation (GMP = Good Manufacturing Practices). Taken at face 
value, one could gain the impression that analytical chemistry is easy, and 
results are inevitably reliable and not worthy of introspection. This history 
is reflected in the statistically oriented chemical literature: 10-15 years ago, 
basic math and its computer-implementation were at the forefront; today’s 
literature seeks ways to mine huge, multidimensional data sets. That numbers 
might be tainted by artifacts of nonideal chemistry or human imperfection is 
gradually being acknowledged; the more complex the algorithms, though, the 
more difficult it becomes to recognize, track, and convincingly discuss the 
ramifications. This is reason enough to ask for upfront quality checks using 
simple statistical tools before the individual numbers disappear in large data 
banks. 

In a (laboratory) world increasingly dominated by specialization, the ven- 
dor knows what makes the instrument tick, the technician runs the samples, 
and the statistician crunches numbers. The all-arounder who is aware of how 
these elements interact, unfortunately, is an endangered species. 

Health authorities have laid down a framework of regulations (“GMPs” in 
the pharmaceutical industry) that covers the basics and the most error-prone 
steps of the development and manufacturing process, for instance, analytical 
method validation. The interaction of elements is more difficult to legislate 
the higher the degree of intended integration, say, at the method, the labora- 
tory, the factory levels, or at the sample, the batch, and the project perspec- 
tives. This second edition places even greater emphasis on these aspects and 
shows how to detect and interpret errors. 

PETER C. MEIER 

SchufShuusen, Switzerland 

RICHARD E. ZUND 

Visp, Switzerland 



PREFACE xv 

PREFACE, First Edition 

Both authors are analytical chemists. Our cooperation dates back to those 
happy days we spent getting educated and later instructing undergraduates 
and PhD candidates in Prof. W. Simon’s laboratory at the Swiss Federal Insti- 
tute of Technology in Zurich (ETH-Z). Interests ranged far beyond the mere 
mechanics of running and maintaining instruments. Designing experiments 
and interpreting the results in a wider context were primary motives, and the 
advent of computerized instrumentation added further dimensions. Masses of 
data awaiting efficient and thorough analysis on the one hand, and introduc- 
tory courses in statistics slanted toward pure mathematics on the other, drove 
us to the autodidactic acquisition of the necessary tools. Mastery was slow 
in coming because texts geared to chemistry were rare, such important tech- 
niques as linear regression were relegated to the “advanced topics” page, and 
idiosyncratic nomenclatures confused the issues. 

Having been through despiriting experiences, we happily accepted, at the 
suggestion of Dr. Simon, an offer to submit a manuscript. We were guided in 
this present enterprise by the wish to combine the cookbook approach with 
the timely use of PCs and programmable calculators. Furthermore, the when- 
and-how of tests would be explained in both simple and complex examples 
of the type a chemist understands. Because many analysts are involved in 
quality-control work, we felt that the consequences statistics have for the 
accept/reject decision would have to be spelled out. The formalization that 
the analyst’s habitual quest for high-quality results has undergone-the key- 
words being GMP and IS0 9000-is increasingly forcing the use of statis- 
tics. 

PETER C. MEIER 

Schafiausen, Switzerland 

RICHARD E. ZUND 

Visp, Switzerland 
September 1992 
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INTRODUCTION 

Modern instrumental analysis is an outgrowth of the technological advances 
made in physics and electronics since the middle of this century. Statistics 
have been with us somewhat longer, but were impractical until the advent of 
powerful electronic data processing equipment in the late 1960s and early 
1970s, and even then remained bottled up in the central computer depart- 
ment. 

Chemistry may be a forbidding environment for many nonchemists: there 
are few rules that link basic physics with the observable world, and typical 
molecules sport so many degrees of freedom that predictions of any kind 
inevitably involve gross simplifications. So, analytical chemistry thrives on 
very reproducible measurements that just scratch the phenomenological sur- 
face and are only indirectly linked to whatever one should determine. A case 
in point: what is perceived as off-white color in a bulk powder can be due 
to any form of weak absorption in the VIS(ib1e) range ( h  = 400-800 nm), 
but typically just one wavelength is monitored. 

For these reasons, the application of statistics in an analytical setting will 
first demand chemical experience, full appreciation of what happens between 
start of samplings and the instrument’s dumping numbers on the screen, and 
an understanding of which theories might apply, before one can even think 
of crunching numbers. This book was written to tie together these aspects, 
to demonstrate how every-day problems can be solved, and how quality is 
recognized and poor practices are exposed. 

Analytical chemistry can be viewed from two perspectives: the insider 
sees the subject as a science in its own right, where applied physics, math, 
and chemistry join hands to make measurements happen in a reliable and rep- 
resentative way; the outsider might see the service maid that without further 
effort yields accurate results that will bring glory to some higher project. 

The first perspective, taken here, revolves around calibration, finding rea- 
sons for numbers that are remarkable or out of line in some way, and 
validation. The examples given in this book are straight from the world 
of routine quality control and the workhorse instruments found there: gas 
chromatography (GC), high-pressure liquid chromatography (HPLC), acid- 
ity (pH) meters, and the like. Whether we like it or not, this represents ana- 
lytical “ground truth.” The employed statistical techniques will be of the 
simpler type. No statistical theory can straighten out slips in manufacturing 
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Table 1 The evaluation of raw data is embedded in a process 

/ 

CHEMICAL PROCESS e g 
Manufacturing step X 
> competing reactions 
> phase transitions 
> equilibria 
> etc 

1 
1 
1 

1-- -~ 

1 
I, 
1--- 

- SAMPLING B WORK-UP 

-SENSOR/TRANSDUCER - ELECTRONIC INSTRUMENT 

~- 

I “RAW DATA 1 Refs 4, 19, Figs 1 24, 1 29, 1 32, 4 2 

--+ DATA REDUCTION SCHEME 
> physico-chemical model 
> statistical theory - COMPUTER ALGORITHM 

Figs 2 20 ,4  4 , 4  13 ,4  21 
Refs 20-26 ,  Fig 4 3  

Refs 17,23, 27 - 29, Figs 1 32, 3 11 

LNALYTICAL RESULT’ - 

Ref 30, Figs 1 8 , 2  1, 2 12 ,2  13, 2 22,4 18, 4 22, 
4 23, 4 44, 4 49, Table 4 44 

--+ EVALUATION of analytical results 
in terms of all available information 

I 

3 

References, Figures, Tables 

Fig. 1.8 
The analyte that is to be determined can stem from 
any source, even if this is commonly not associated 
with chemistry, such as a trace compound in the 
environment that is subject to all the physical and 
chemical transformations atoms and molecules can 
undergo. 

Refs. 3 -  13; Figs. 1.6,4.1, 4.9 

Ref. 14; Figs. 1.5, 2.4,4.21 

Refs. 15 - 18; Figs. 3.3,4.22, 4.23,4.24, 4.36 

to 3 to be the most useful for the constellation of “a few precise measure- 
ments of law-abiding parameters” prevalent in analytical chemistry, but this 
does not disqualify other perspectives and procedures. For many situations 
routinely encountered several solutions of varying theoretical rigor are avail- 
able. A case in point is linear regression, where the assumption of error-free 
abscissa values is often violated. Is one to propagate formally more correct 
approaches, such as the maximum likelihood theory, or is a weighted, or 
even an unweighted least-squares regression sufficient? The exact numerical 
solutions found by these three models will differ: any practical consequences 
thereof must be reviewed on a case-by-case basis. 
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Table 2 The steps of recognizing a problem, proposing a solution, checking it for robust operation, 
and documenting the procedure and results under GMP are nested operations 

The choice of subjects, the detail in which they are presented, and the 
opinions implicitly rendered, of course, reflect the author experiences and 
outlook. In particular, the GMP aspect had been built in from the begin- 
ning, but is expanded in this second edition: the basic rules applicable to 
the laboratory have been relocated to Chapter 3 and are presented in a more 
systematic manner (see Table 2) and many additional hints were included. 
To put things into a broader perspective and alert the analyst to the many 
factors that might affect his samples before they even hit the lab bench or 
could influence his evaluation, Section 4.38 was added. It lists many, but 
by far not all of the obstacles that line the road from the heady atmosphere 
of the project-launch meeting to when the final judgment is in. Because the 
GMP philosophy does not always permeate all levels of hierarchy to the 
same degree, this table, by necessity, also contains elements indicative of 
managerial style, work habits, and organizational structure, besides pedes- 
trian details like keeping calibration standards in stock. 

Some of the VisualBasic programs that come with the book offer 
approaches to problem-solving or visualization that may not be found else- 
where. Many VB programs and Excel sheets were crafted with a didactical 
twist: to make the influence of random noise and the bias due to the occa- 
sional error apparent. Details are found in Section 5.3. 

Many figures illustrate abstract concepts; heavy use is made of numerical 
simulation to evade the textbook style “constructed” examples that, due to 
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reduction to the bare essentials, answer one simple question, but do not tie 
into the reader’s perceived reality of messy numbers. In the past, many texts 
assumed little more than a pencil and an adding machine, and so propagated 
involved schemes for designing experiments to ease the number-crunching 
load. There are only three worked examples here that make use of integer 
numbers to ease calculations (see the first three numerical examples in Chap- 
ter 1); no algebraic or numerical shortcuts are taken or calculational schemes 
presented to evade divisions or roots, as was so common in the recent past. 

Terminology was chosen to reflect recent guides33 or, in the case of sta- 
tistical symbols, common usage.34 

There are innumerable references that cover theory, and still many more 
that provide practical applications of statistics to chemistry in general and 
analytical chemistry in particular. Articles from Analytical Chemistry were 
chosen as far as possible to provide world-wide availability. Where neces- 
sary, articles in English that appeared in Analytica Chimica Acta, Analyst, 
or Fresenius Zeitschriji fur Analytische Chemie were cited. 

There are a number of authorative articles the reader is urged to study 
that amplify on issues central to analytical ~nders tanding .~~-~* 

THE CONCEPT BEHIND THIS BOOK 

Background 

Textbooks and courses in general statistics are easily accessible to students 
of chemistry, physics, biology, and related sciences. Some of the more or less 
explicitly stated assumptions that one often comes across are the following: 

A large population of objects is available from which samples can be 
pulled. 

Measurements are easy and cheap, that is a large number of measure- 
ments is available, either as many repeats on a small number of samples 
or as single determinations on a large number of independent samples. 

The appropriate theoretical distribution (Gaussian, Poisson, etc.) is 
known with certainty. 

The governing variables are accurately known, are independent of each 
other (orthogonal) and span wide value ranges. 

Simple mathematical models apply. 

Sample9 collection and work-up artifacts do not exist. 

Documentation is accurate, timely, and consistent. 
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The investigated (chemical) moiety is pure, the major signal (observ- 
able) is being investigated. 
Few, if any, minor signals are in evidence for which the signal-to-noise 
ratio is good and which can be assigned to known chemical entities 
that are available in quantities sufficiently large to allow for a complete 
physicochemical characterization. 

The measured quantities accurately represent the system under investi- 
gation. 

Statistics are used to prove the appropriateness of the chosen model. 

Nonstatistical decision criteria do not exist. 

Professional communities can be very diverse in their thinlung: 

Many natural scientists think in terms of measured units like concentra- 
tion (mg/ml, moles/liter, etc.), and disregard the issue of probabilities. 

In medical circles it is usual to cite the probability of treatment A being 
better than B.  

A coefficient of determination is known to lab supervisors to be y2 > 
0.99 for any worthwhile calibration. 

Instrument makers nonetheless provide this less-than-useful “infonna- 
tion,” but hardly anybody recognizes r2 as the outflow of the wide cal- 
ibration range, the linear concentration-to-signal transfer function, and 
the excellent repeatability. 

Mathematicians bask in proofs piled on other proofs, each proof being 
sold as a “practical application of theory.” 

Statisticians advise “look for a simpler problem” when confronted with 
the complexity and “messiness” of practical chemistry. 

Chemists are frustrated when they learn that their problem is mathe- 
matically intractable. All sides have to recognize that the other’s mental 
landscape is “valid and different” and that a workable decision neces- 
sitates concessions. The chemist (or other natural scientist) will have to 
frame questions appropriately and might have to do some experiments 
in a less than straightforward manner; the statistician will have to avoid 
overly rigorous assumptions. 

Fields of Application for Analytical Chemistry 

A somewhat simplistic description of reality would classify analytical 
practice as follows (see Table 3): 
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Table 3 Types of problems encountered 
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PROBLEM 

TYPE 

CRITERIA 

METHOD 

EVALUATION 

j. 

One-of-a-kind solution B 
implementation (e.g. research) 

is amenable to an experiment, or 
(2) Many low-cost samples andlor a cheap 

numbers that can somehow be linked to 
the quantity of interest (e.g. find 
complexation constants, determine optimal 
composition, description of one aspect of a 

.1 
Employ a statistician or an investigator 
who is knowledgable in sophisticated 
statistical tools; do not impose rules on 
evaluation team, allow them to concentrate 
on interesting aspects (EXPLORATIVE 
DATA ANALYSIS); after the brainstorming, 
bring in the process and analytics experts 
for a round-table discussion: CAN THE 
POSTULATED EFFECTS BE EXPLAINED 
BY THE INVOLVED CHEMISTRY, BY 
ARTIFACTS, OR HAS SOMETHING NEW 
BEEN OBSERVED? 

.L 
Optimized design for routine use (e.g. 
GMP-type conditions) 

success criteria, high costs & risks, tough 
specifications, and (usually) few data 
points 

I J 

use of linear portion of response function, 
simple statistical tools, results can be 
interpreted in terms of physico-chemical 
concepts; binding specification limits, and 

according to the imposed regulations; 
scientifically interesting investigations 
should be the exception, rather than the 
rule, because the process has been fully 
investigated and is under control. 

TOOLS FOR RAPID EVALUATION: 
USE PRE-DETERMINED CRITERIA AND 

FULLY DOCUMENT THE RESULTS AND 
OBTAIN A DECISION. 

1. Research use of individual methods or instruments in an academic 
or basic research environment, with interest centered around obtain- 
ing facts and relationships, where specific conditions exist as concerns 
precision, number of measurements, models, etc. that force the use of 
particular and/or highly sophisticated statistical techniques. 

2. Research use of analytical results in the framework of a nonanalytical 
setting, such as a governmental investigation into the spread of pollu- 
tion; here, a strict protocol might exist for the collection of samples 
(number, locations, time, etc.) and the interpretation of results, as pro- 
vided by various consultants (biologists, regulators, lawyers, statistici- 
ans, etc.); the analytical laboratory would only play the role of a black 
box that transforms chemistry into numbers; in the perspective of the 
laboratory worker, calibration, validation, quality control, and interpo- 
lation are the foremost problems. Once the reliability and plausibility 
of the numbers is established, the statisticians take over. 

3. Quality control (QC) in connection with manufacturing operations is 
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probably the most widespread, if mundane, application of analytical 
(chemical) determinations. The keywords are precision, accuracy, reli- 
ability, specifications, costs, and manageability of operations.31 Since 
management takes it for granted that a product can be tested for com- 
pliance with specifications, and often only sees QC as a cost factor that 
does not add value (an obsolete notion), the lab staff is left to its own 
devices when it comes to statistical support. 

Statistical Particulars of Analytical Chemistry 

Much of today's instrumentation in principle allows for the rapid acqui- 
sition of vast amounts of information on a particular sample.§ However, the 
instruments and the highly trained staff needed to run them are expensive. 
Often, samples are not cheap either; this is particularly true if they have to 
be pulled to confirm the quality of production lots. [See (A).] Then each 
point on the graph represents a four-, five-, or even six-digit investment in 
materials and manpower. Insisting on doubling the number of samples N 
to increase statistical power could easily bankrupt the company. For further 
factors, see Section 4.38. 

A manufacturing process yields a product that is usually characterized by 
anywhere from one to as many as two dozen specifications, each in general 
calling for a separate analytical method. For each of these parameters a dis- 
tribution of values will be observed if the process is carried out sufficiently 
often. Since the process will change over the years (raw materials, equip- 
ment train, synthesis fine-tuning, etc.), as will the analytical methods (better 
selectivity, lower limit of detection, new technologies), the overall distribu- 
tion of values must be assigned to an assortment of subpopulations that will 
not necessarily match in all points. These subpopulations might intrinsically 
have narrow distributions for any given parameter, but what is observed is 
often much wider because several layers of effects contribute to statistical 
variance through insufficient sampling for reasons of time, money, and con- 
venience: 

(A) The number of batches produced under a given set of conditions (each 
batch can cost millions) 

(B) The number of points in space or time within one such batch A that 
needs to be tested (spacial inhomogeneity due to viscosity, tempera- 
ture gradients, etc.); temporal inhomogeneity due to process start-up 
and shut-down. 
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(C) The number of repeat samples3 pulled in one location/time coordinate 

(D) The number of sample work-ups conducted on any one sample C, and 
(E) The number of repeat determinations performed on any one worked- 

B 

up sample D. 

Note the following points: 

The number of samples is often restricted for cost reasons (A, B ) ,  

Careless or misguided sample pulling (B,  C) and/or work-up (D) can 
easily skew the concentration-signal relationship, 
The dynamic range of the instrument can be overwhelmed, leading to 
signal distortions and/or poor signal-to-noise ratios for the observed 
moiety (E) ,  
Specificity is often inadequate (i.e., the instrument insufficiently sup- 
presses the signal for the chemical species not being investigated); 
Duplicate determinations ( D  or D + E )  can be justified, but more repeats 
usually do not improve the interpretation dramatically, 
The instruments generally yield very precise measurements (E,  CV << 
5%) ,  
For impurity signals in high-quality chemicals, the digital resolution of 
the instrument may encroach on the repeatability figure-of-merit, 
The appropriate theoretical distribution (A, B ,  C) can only be guessed 
at because the high price and/or time loss attached to each result pre- 
cludes achievement of the large N necessary to distinguish between rival 
models, 
By the time the analytical result is in, so many selective/non-linear pro- 

$Vote: A chemical sample is a quantity of material that represents physicochemical reality. 
Each of the samples/processes A t .  . E given in the text introduces its own distribution function 
(Cf. Fig. 1.8.) by repeated measurements E on each of several work-ups D done on each of 
several samples C pulled from many locations/time points B on the number of batches A 
available for investigation. The perceived distribution function (compound data A . . . E at level 
E )  may or may not be indicative of the distribution function one is trying to study (e.g., level 
A); a statistician’s “sample”, however, is a number in a data set which here corresponds to the 
numerical result of one physical measurement conducted on a chemically processed volume of 
product/water/soil/ . . . /tissue. The unifying thought behind the nomenclature “sample” is that 
it supposedly accurately represents the population it is drawn from. For the statistician, that 
means, figuratively speaking, a pixel in a picture (both are in the same plane); for the chemist, 
the pixel and the chemical picture are separated by a number of veils, each one further blurring 
the scene one would perceive if it were not there. 
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cess steps ( B  . . . E )  have modified the probability density function that is 
to be probed, that the best-guess assumption of a Gaussian distribution 
for (A,  B, C )  may be the only viable approach, 
After the dominant independent variables have been brought under con- 
trol, many small and poorly characterized ones remain that limit further 
improvement in modeling the response surface; when going to full-scale 
production, control of “experimental” conditions drops behind what is 
possible in laboratory-scale work (e.g., temperature gradients across 
vessels), but this is where, in the long term, the “real” data is acquired, 

Chemistry abounds with examples of complex interactions among the 
many compounds found in a simple synthesis step, 

Sample collection and work-up artifacts (D)  exist, as do impurities and 
problems with the workers (experience, motivation, turnover, deadlines, 
and suboptimal training), all of which impact the quality of the obtained 
results, 

The measured quantities frequently are related to tracers that only indi- 
rectly mirror the behavior of a hard-to-quantitate compound; 

The investigated species or physical parameter may be a convenient 
handle on an otherwise intangible concept such as ‘‘luster,’’ “color,” or 
“tinge,” 

Because physicochemical cause-and-effect models are the basis of all 
measurements, statistics are used to optimize, validate, and calibrate the 
analytical method, and then interpolate the obtained measurements; the 
models tend to be very simple (i.e., linear) in the concentration interval 
used, 

Particularly if the industry is government regulated (i.e., pharmaceuti- 
cals), but also if the supply contract with the customer stipulates numeri- 
cal specification limits for a variety of quality indicators, the compliance 
question is legal in nature (rules are set for the method, the number of 
samples and repeat determinations); the analyst can then only improve 
precision by honing his/her skills, 

Nonstatistical decision criteria are the norm because specification limits 
are frequently prescribed (i.e., 95 to 105% of nominal) and the quality of 
previous deliveries or competitor’s warranty raises expectations beyond 
what statistical common sense might suggest. 

Selection of Topics 

Since the focus of this book is the use of statistics in practical situations in 
everyday work, one-of-a-kind demonstrations are avoided, even if the math- 
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ematics is spectacular. Thus, the reader will be confronted with each of the 
following items: 

A brief repetition of the calculation of the mean, the standard deviation, 

Hints on how to present results, and limits of interpretation, 
The digital resolution of equipment and the limited numerical accuracy 
of calculators/programs, 
An explanation of why the normal distribution will have to be used as 
a model, even though the adherence to ND (or other forms) cannot be 
demonstrated under typical conditions, 
Comparisons between data sets ( t  test, multiple range test, F test, simple 
ANOVA), 
Linear regression with emphasis on the use as a calibration/interpolation 
tool. 

and their confidence limits, 

Because the number of data points is low, many of the statistical tech- 
niques that are today being discussed in the literature cannot be used. While 
this is true for the vast majority of control work that is being done in indus- 
trial labs, where acceptability and ruggedness of an evaluation scheme are 
major concerns, this need not be so in R&D situations or exploratory or 
optimization work, where statisticians could well be involved. For prod- 
ucts going to clinical trials or the market, the liability question automatically 
enforces the tried-and-true sort of solution that can at least be made palat- 
able to lawyers on account of the reams of precedents, even if they do not 
understand the math involved. 

For many, this book will at least offer a glimpse of the nonidealities the 
average analyst faces every day, of which statistics is just a small part, and 
the decisions for which we analysts have to take responsibility. 

Software 

A series of programs is provided that illustrates the statistical techniques 
that are discussed. The data files that are provided for experimentation in part 
reflect the examples that are worked in the book, and in part are different. 
There is a particular data file for each program that illustrates the application. 
(See Section 5.4.) 

Because the general tone is educational, principles are highlighted. The 
programs can be used to actually work with rather large sets of experimental 
data, but may fail if too much is demanded of them in terms of speed, data 
volume, or options. 
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Liabilio: The authors have applied their half-century of programming 
experience to design clean user-interfaces, to get their math straight, and 
test the resulting applications in all lunds of circumstances. Colleagues were 
enlisted for “testing”, but these programs were not validated in the strictest 
sense of the word. Given the complexity of today’s operating systems, we 
do not claim they are foolproof. The authors should not be held responsible 
for any decisions based on output from these programs. 

Each program includes the necessary algorithms to generate t-, p - ,  z-, F-, 
or X2-values (relative errors below 1%; for details, see (Display Accuracy) 
options in program CALCVAL. Therefore, table-look-up is eliminated. 

The source code is now in VisualBasic (it used to be in GW-BASIC, 
later in QBASIC); the files are provided in compiled form, together with a 
structured menu. Some Excel files are included in the XLS directory. 



CHAPTER 

1 

UNIVARIATE DATA 

The title implies that in this first chapter techniques are dealt with that 
are useful when the observer concentrates on a single aspect of a chemical 
system, and repeatedly measures the chosen characteristic. This is a natural 
approach, first because the treatment of one-dimensional data is definitely 
easier than that of multidimensional data, and second, because a useful solu- 
tion to a problem can very often be arrived at in this manner. 

A scientist’s credo might be “One measurement is no measurement.” 
Thus, take a few measurements and divine the truth! This is an invitation 
for discussions, worse yet, even disputes among scientists. Science thrives 
on hypotheses that are either disproven or left to stand; in the natural sci- 
ences that essentially means experiments are re-run. Any insufficiency of a 
model results in a refinement of the existing theory; it is rare that a theory 
completely fails (the nineteenth-century luminiferous ether theory of electro- 
magnetic waves was one such, and cold fusion was a more shortlived case). 

Reproducibility of experiments indicates whether measurements are reli- 
able or not; under GMP regulations this is used in the systems suitability 
and the method validation settings. 

A set of representative data is considered to contain a determinate and a 
stochastic component. The determinate part of a signal is the expected or 
average outcome. The human eye is good at extracting the average trend 
of a signal from all the noise superimposed on it; the arithmetic mean is 
the corresponding statistical technique. The stochastic part is what is com- 
monly called noise, that is, the difference between the individual measure- 
ment and the average that is wholly determined by chance; this random ele- 
ment comprises both the sign and the size of the deviation. The width of the 
jittery track the recorder pen traces around the perceived average is com- 
monly obtained by calculating the standard deviation on a continuous series 
of individual measurements. 

1.1 MEAN AND STANDARD DEVIATION 

This section treats the calculation of the mean, the standard deviation, and 
the standard deviation of the mean without recourse to the underlying theory. 

13 
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It is intended as a quick introduction under the tacit assumption of normally 
distributed values. 

The simplest and most frequent question is “What is the typical value that 
best represents these measurements, and how reliable is it?”39 

1.1.1 The Most Probable Value 

Given that the assumption of normally distributed data (see Section 1.2.1) 
is valid, several useful and uncomplicated methods are available for finding 
the most probable value and its confidence interval, and for comparing such 
results. 

When only a few measurements of a given property are available, and 
especially if an asymmetry is involved, the median is often more appropriate 
than the mean. The median, x,, is defined as the value that bisects the set 
of n ordered observations, that is, 

If n is odd, (n  - 1)/2 observations are smaller than the median, and the 
next higher value is reported as the median. 

Example 1: For n = 9 and x() = 4, 5 ,  5 ,  6, 7, 8, 8, 9, 9 + x, = 7.0 and 
x,,,, = 6.78. 

If y1 is even, the average of the middle two observations is reported. 

Example 2: For n = 6 and x() = 2, 3,  4, 5 ,  6, 6 + X, = 4.5 and Xmean = 
4.33. 

The most useful characteristic of the median is the small influence exerted 
on it by extreme values, that is, its robust nature. The median can thus serve 
as a check on the calculated mean. 

The mean, x,,,,,, can be shown to be the best estimate of the true value 
p ;  it is calculated as the arithmetic mean of n observations: 

where “C” means “obtain the arithmetic sum of all values xi, with i = 1 . 
n” 

Example 3: If the extreme value “15” is added to the data set x() = 2, 
3 ,  5, 5, 6, 6, 7, the median changes from x,, = 5.0 to 5.5, while the mean 
changes from x,,,~ = 4.8571 to 6.125. (See Figure 1.1.) 
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Figure 1.1. The median xm and the average are given for a set of observations. This figure is 
a simple form of a histogram; see Section 1.8.1, An additional measurement at x = 15 would 
shift Xmean much more than Xmedian. 

Notice that by the inclusion of Xg, the mean is much more strongly influ- 
enced than the median. The value of such comparisons lies in the automatic 
processing of large numbers of small data sets, in order to pick out the sus- 
picious ones for manual inspection. (See also the next Section.) 

1.1.2 The Dispersion 

The reliability of a mean is judged by the distribution of the individual 
measurements about the mean. There are two generally used measures of 
the spread (the scatter) of a set of observations, namely the range R and the 
standard deviation s,. 

The range, R, is the difference between the largest and the smallest obser- 
vation: 

Precisely because of this definition, the range is very strongly influenced 
by extreme values. Typically, for a given sample size n, the average range 
R(n) will come to a certain expected (and tabulated) multiple of the true stan- 
dard deviation. In Figure 1.2 the ranges R obtained for 390 simulations are 
depicted. It is apparent that the larger the sample size n, the more likely the 
occurrence of extreme values: for n = 4 the two extremes are expected to be 
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Experimental 
distribution for 
N = 10 using 

100 simulations 
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Figure 1.2. The range R(n) for size of sample n, with n := 2 . . . 40 (left). The line gives the 
tabulated values.34 The range R is given as y = R/s, in units of the experimental standard 
deviation. A total of 8190 normally distributed values with mean 0 and standard deviation 1 
was simulated. (See Section 3.5 .5 . )  The righthand figure gives the distribution of ranges found 
after simulating 100 sets of n = 10 normally distributed values. 

around +. one standard deviation apart, and the other two values somewhere 
in between. At n : 40, the range is expected to be twice as large. 

There is no alternative to using the full range if there are only few obser- 
vations available and no plausible theoretical description of the distribution. 
With n larger than, say, 9, the concept of quantiles (or percentiles) can be used 
to buffer the calculated range against chance results: for n = 10, throwing out 
the highest and the lowest observations leaves n' = 8; the corresponding range 
is termed the 10-90% range (difference between the loth and the 90th per- 
centiles). This process of eliminating the extremes can be repeated to yield the 
20-80% range, etc. A very useful application is in the graphical presentation of 
data, for instance by drawing a box around the central two-thirds of all obser- 
vations and extensions to mark the overall range. (See Fig. 1.3.) 

The advantage of this technique is that no assumptions need to be made 
about the type of distribution underlying the data and that many sets of obser- 
vations can be visually compared without being distracted by the individual 
numbers. For further details, see Section 1.8. Note that the fraction of all 
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observations bounded by the 17" and the 83rd quantiles encompasses two- 
thirds of all values, which is very close to the 68.3% expected in the interval 
.+1 . s, around the mean. 

The standard deviation, s,, is the most commonly used measure of dis- 
persion. Theoretically, the parent population from which the n observations 
are drawn must meet the criteria set down for the normal distribution (see 
Section 1.2.1); in practice, the requirements are not as stringent, because 
the standard deviation is a relatively robust statistic. The almost universal 
implementation of the standard deviation algorithm in calculators and pro- 
gram packages certainly increases the danger of its misapplication, but this 
is counterbalanced by the observation that the consistent use of a somewhat 
inappropriate statistic can also lead to the right conclusions. 

The standard deviation, s,, is by definition the square root of the variance, 
VX 9 

17% quantile 

E 
E 

s,, =  xi ~ x,,,,)~ = C(ril2 (1.34 

s,, = C(x?) ~ (Cxi)*/n (1.3b) 

v, = Sxx/(n - 1) (1 .3~)  

s, = Jv, (1.3d) 

wheref = (n - 1) is the number of degrees of freedom, by virtue of the fact 
that, given x,,,, and n - 1 freely assigned xi values, the nth value is fixed. 
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S,, is the sum of squares of the residuals, ri, that are obtained when the 
average value x,,,, is subtracted from each observation x,. x,,,, is the best 
estimate for the true mean p.  When discussing theoretical concepts or when 
the standard deviation is precisely known, a small Greek sigma, 0, is used; 
in all other cases, the estimate s, appears instead. 

Example 4: For a data set x() = 99.85, 100.36, 99.75, 99.42, and 100.07 
one finds C ( x , )  = 499.45, C($) = 49890.5559; S,, according to Eq. (1.3b) 
is thus 49890.5559 - 49890.0605 = 0.4954. Here the five significant digits 
“49890” are unnecessarily carried along with the effect that the precision, 
which is limited by the computer’s word length, is compromised. The aver- 
age x,,,, is found as 99.89 and the standard deviation s, as k0.3519 (via 
Eqs. (1 .3~)  and (1.3d); see also Table 1.1). 

The calculation via Eq. (1.3b) is the one implemented in most 
 calculator^^^^^^ because no x, values need to be stored. The disadvantage 
inherent in this approach lies in the danger of digit truncation (cf. error 
propagation, Section 3.3), as is demonstrated earlier. This can be avoided 
by subtracting a constant from each observed x,, xi = x, - c,  so that fewer 
significant digits result before doing the calculations according to Eq. (1.3b); 
this constant could be chosen to be c = 99.00 in the previous example. 

Example 5: The exact volume of a 100 ml graduated flask is to be deter- 
mined by five times filling it to the mark, weighing the contents to the nearest 
0.1 mg, correcting for the density to transform grams to milliliters, and aver- 
aging; the density-corrected values are 99.8536, 99.8632, 99.8587, 99.85 18, 
and 99.8531 ml (see data file VOLUME.dat). For the purpose of demon- 
stration, this task is solved using 32-bit VisualBasic 5.0, GW-BASIC and 
seven different models of calculators; the results are given in Table 1.1. Of 
course it would be more appropriate to round all volumes to four or at most 
five significant digits because a difference in filling height of 0.2 mm, which 
might just be discernible, amounts to a volume difference of 0.02 . (0.8)2 . 
7r/4 -- 0.01 ml (inside diameter of the flask’s neck: 8 mm), but for the sake 
of the argument, the full accuracy theoretically available in the standard den- 
sity tables is used. In all cases the correct mean 99.85608 was found. The 
digits given in italics deviate from the correct value given in bold numbers. 
Drawing the root by hand shows that the VB5 double-precision mode result 
is actually a bit less accurate than the GW-BASIC one for this particular 
numerical constellation! This difference is irrelevant for practical applica- 
tions because the sum of squares S,, and the product 4 . s, I s, differ by only 
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Table 1.1. Reliability of calculated standard deviations 
~~~ - 

Calculator Internal Digits Standard Deviation a$ 
Model Digits Diqplayed Displayed Case 

TI-95 ? 13 

HP-7 1 B 1s 12 
HP-32s 15 I 1  

HP-l I and ? 10 
41C 

HP-55 12 10 

TI-30D 10 8 

GW-BASIC* 

VB 5.0 

Excel 97 

16 
16 
15 

15 

hand calculation 16 

0.004767074574621 
0.004767284342265 
0.00476728434226 
0.004766235412 
0.004767284342 
0.0047672843423 
0.0048 7801 2 
0.004766235 
0.004767284 
0.004767284342 
0.00500000000 
0.0047670751 
0.0047672841 
0.0104403 
0.004878 
0.0047662 
no result 
0.0047672843 
0.004767284342264767 
0.004767284262925386 
0.00476728434226759 
0.00476728426292539 
0.00476728388778602 
0.00476728434386556 
0.00476728434224702 
0.00476728434226458 
0.00476728434226447 
0.00476728434226759 
0.004767284342264472 

a 
b 
a 
a 

d’ 
a 
b 

C, d, e 
c’, d’, e’ 

a 
b 

a 
b 

d 
d’ 
f 

g 
f 
g 
a 
b 

d 
e 
f 

b, c, d 

C 

C 

C 

- 

*) an older version of BASIC that was available on disc operating systems (at Ieat  up to DOS 3.11; QBASIC replaced it 

at least up to DOS 6.21); the mathematical algorithms used in Visual Basic appear to be very similar, but not identical. 

ab can be seen from the difference in the last three digits of the double-precision results; the single-precision result is 

. . ,8446. . . instead of . . ,8426. . . 
~- ~~~ ~ ~ 

Amount c Digits Number of Significant 
Case Subtracted Typed in Digits 

a 0.0000 99.8536 6 
b 90.0000 9.8536 5 
C 99.0000 0.8536 4 
d 99.8000 0.0536 3 
e 99.8500 0.0036 2 (3) 
f 99.85608 -0.00248 double-precision mode, Eq. (1.3a) 

g 99.85608 -0.00248 single-precision mode, Eq. (1.3a) 
see program MSD 

see program MSD 
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1 in the 15‘h digit. The square of the result for the TI-95 SD differs from the 
correct value by about 1 . while the corresponding difference for the 
VB5 SD is about three orders of magnitude better. The best result achieved 
by Excel uses case “e”, with a deviation (s, - u) /u  on the order of 7 . 
As is pointed out in Section 1.7.2, only the first one or two nonzero digits 
(rounded) are to be reported (e.g., “0.005” or “0.0048”); all available dig- 
its are printed here to demonstrate the limitations inherent in the employed 
algorithms. The number of significant digits carried along internally (where 
available) and the those displayed are given in columns 2 and 3. The cases 
show how, by way of example, the first data point was typed in. A prime (’) 
indicates a multiplication by 10 000 after the subtraction, so as to eliminate 
the decimal point. The HP-71 displays the last three digits “226” either if 
cases a‘, b’, etc. apply, or if the output SDEV is multipled by 1000. The TI- 
95 has a feature that allows 13 significant places to be displayed. The TI-30D 
fails in one case and displays “negative difference”; because of the restricted 
word length, and hence accuracy and number of displayable digits, this cal- 
culator should only be used to check the grocery bill and not for scientific 
work. The difference between program MSD in single- and double-precision 
mode (effected by redefining all the variables in the source program) is quite 
evident: either 7 or 14 significant digits; because the intermediate results are 
accessible, the fault can be unequivocally assigned to the SQR-function. All 
told, the user of calculators and software should be aware that the tools at 
his disposal might not be up to the envisaged task if improperly employed. 
The particular models of calculators cited are probably no longer available, 
but the information remains valid because a successful “math package” (the 
code developed to solve the mathematical functions) designed for a given 
word length will continue to be used in later models. 

The relative standard deviation RSD (also known as the coeficient of 
variation, c.o.v., or CV), which is frequently used to compare reproducibil- 
ities, is calculated as 

and is given as a percentage. 

mean is found as 
For reasons that will not be detailed here the standard deviation of the 

The difference between s, and s~,,,,, is crucial: while the first describes 
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Figure 1.4. The standard deviation of the mean, 
number of measurements n.  (Cf. Fig. 1.18.) 

converges toward zero for a large 

the population as such and tends with increasing n toward a positive constant, 
the latter describes the quality of the determination of the population mean, 
and tends toward zero. 

1.1.3 Independency of Measurements 

A basic requirement, in order that the above results “mean” and “standard 
deviation” are truly representative of the sampled population, is that the indi- 
vidual measurements should be independent of each other. Two general cases 
must be distinguished: 

1. Samples are taken for classical off-line processing, e.g., a 10 ml aliquot 
is withdrawn from a reaction vessel every hour and measurements are 
conducted thereupon. 

2. The sensor is immersed in the reaction medium and continuously trans- 
mits values. 

In case (1) the different samples must be individually prepared. In the 
strictest interpretation of this rule, every factor that could conceivably con- 
tribute to the result needs to be checked for bias, i.e., solvents, reagents, cal- 
ibrations, and instruments. That this is impractical is immediately apparent, 
especially because many potential influences are eliminated by careful exper- 
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imental design, and because the experienced analytical chemist can often 
identify the major influences beforehand. Three examples will illustrate the 
point: 

In UV-spectroscopy the weighing and dilution steps usually introduce 
more error than does the measurement itself and thus the wish to 
obtain a replicate measurement involves a second weighing and dilu- 
tion sequence. 

In contrast, in HPLC assays the chromatographic separation and the 
integration of the resulting analyte peak normally are just as or even 
more error-prone than is the preparation of the solutions; here it would 
be acceptable to simply reinject the same sample solution in order 
to obtain a quasi-independent measurement. Two independent weigh- 
ings and duplicate injection for each solution is a commonly applied 
rule. 

In flame photometry, signal drift and lamp flicker require that one or 
a few unknowns be bracketed by calibrations. Here, independent mea- 
surements on the same solutions means repeating the whole calibration 
and measurement cycle. 

In other words, those factors and operations that contribute the most toward 
the total variance (see additivity of variances, next section) need to be indi- 
vidually repeated for two measurements on the same sample to be inde- 
pendent. Provided the two samples are taken with a sufficiently long delay 
between them, they can be regarded as giving independent information on 
the examined system. 

In case 2 the independent variables are time or distance of movement of 
the sensor. Repeat measurements should only be taken after the sensor has 
had enough time to adjust to new conditions. Thus if a continuous record 
of measurements is available (strip chart recorder or digitized readings), an 
independent measurement constitutes the average over a given time span 
(hatched bar) at least five time constants 7 after the last such average. The 
time spans from which measurements are drawn for averaging may not over- 
lap. The time constant is determined by provolung a step-response. If the 
conditions of independency are met as far as the analytical equipment and 
procedures are concerned, one must still differentiate between rapidly and 
slowly relaxing chemistry. (See Table 1.2 and Fig. 1.5.) 

Taking measurements on a tighter raster or at shorter time intervals 
increases the workload, improves the plausibility of the results, but does not 
add any new knowledge about the system under investigation. 



MEAN AND STANDARD DEVIATION 23 

1.1.4 Reproducibility and Repeatibility 

Both measures refer to the random error introduced every time a given 
property of a sample is measured. The distinction between the two must be 
defined for the specific problem at hand. Examples for continuous (Fig. 1.6) 
and discrete (Fig. 1.7) records are presented. 

Repeatability is most commonly defined as the standard deviation 
obtained using a given standard operating procedure (SOP) in connection 
with a particular sample, and repeatedly measuring a parameter in the same 
laboratory, on the same hardware, and by the same technician in a short 
period of time. Thus, boundary conditions are as controlled as possible; the 
standard deviation so obtained could only be improved upon by changing the 
agreed-upon analytical method (column type, eluent, instrument, integration 
parameters, etc.). System suitability tests are required under GMP settings 
to determine whether the hardware is up to the task. 
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Figure 1.5. Under stagnant conditions a sensor will sample a volume, that is, the average 
response for that volume is obtained. A sensor in a current yields an average reading over 
time and cross-section. The observed signal S over time t is the convolute of the local con- 
centration with the sensor’s sampling volume and time constant. Two measurements are only 
then independent when they are separated at least by five time constants and/or a multiple of 
the sampling volume’s diameter. At the left, the sampled volumes are depicted. At the right, a 
typical signal-versus-time record (e.g., strip-chart recorder trace) and the system response to 
a step change in concentration are shown. Tau (7) is the time constant defined by an approx- 
imately 63.2% change (1 ~ I/e) = 0.63212, with e = 2.71828 .. . . The hatched bars indicate 
valid averages taken at least 5 . i- after the last disturbance. 

Reproducibility is understood to be the standard deviation obtained for the 
same SOP over a longer period of time. This time frame, along with other 
particulars, has to be defined. For example, similar but not identical HPLC 
configurations might be involved, as well as a group of laboratory techni- 
cians working in shifts; the working standard and key reagents might have 
been replaced, and seasonal/diurnal temperature and/or humidity excursions 
could have taken their toll. The only thing that one has to be careful to really 
exclude is batch-to-batch variation in the sample. This problem can be cir- 
cumvented by stashing away enough of a typical (and hopefully stable) batch, 
so as to be able to run a sample during every analysis campaign; incidentally, 
this doubles as a form of a system suitability test, cf. Sections 1.8.4 and 3.2. 

In mathematical terms, using the additivity of variances rule, 

Vreprod Vrepeat -!- Vternp -k Voperator -!- Vchemicals -!- vwork-up -!- Vpopulation -!- . . . (1.6) 

Each of these variances is the square of the corresponding standard deviation 
and describes the effect of one factor on the uncertainty of the result. 
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Figure 1.6. Repeatability and reproducibility are defined using historical data. The length of 
the time interval over which the parameter is reviewed is critical: the shorter it is, the better 
defined the experimental boundary conditions tend to be; the repeatability sets the limit on what 
could potentially be attained, the reproducibility defines what is attained in practice using a 
given set of instrumentation and SOPS. 

1.1.5 Reporting the Results 

As indicated in Section 1.7.2, the standard deviations determined for the 
small sets of observations typical for analytical chemistry are trustworthy 
only to one or two significant digits. 

Example 6: Thus, for x(): 1.93, 1.92, 2.02, 1.97, 1.98, 1.96, and 1.90, an 
ordinary pocket calculator will yield 

x,,, = 1.954285714 S, = 0.040766469 

The second significant digit in s, (underlined) corresponds to the third dec- 
imal place of x,,,,. In reporting this result, one should round as follows: 

xmean = 1.954 k 0.041 (n = 7) 

Depending on the circumstances, it might even be advisable to round to one 
digit less, i.e., 
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Figure 1.7. Reproducibility and repeatability. For a cream the assay data for the active princi- 
ple is shown for retrospective surveys (left) and validation runs (right). This particular product 
is produced in about 20 batches a year. At the end of every year, product release analysis data 
for a number of randomly picked batches is reviewed for an overall picture of the performance 
of the laboratory. In four successive years, 30 batches (circles) were investigated; the repeat 
determinations are given by simple (UV) and bold (HPLC) and the respective mean xmean 
and CL(x) are indicated by horizontal lines; the CL(xmean) are given by the symbols bars. 
For definitions of CL see Section 1.3. The residuals for the double determinations are shown 
below (dots). The following conclusions can be drawn: (a) All data are within the *9.1% spec- 
ifications (hatched bars), because otherwise the releases would not have been granted; (b) The 
mean of the third group is higher than the others ( p  < 0.025, 95% CL being shown); (c) 
Four pairs of data points are marked with arrows; because the individual points within a pair 
give typical residuals, either one of three artifact-causing mechanisms must be investigated: 
(1) over- or under-dosing during production, (2) inhomogeneity, and (3) errors of calibration. 
Points 1 and 2 can be cleared up by taking more samples and checking the production records; 
point 3 is a typical problem found in routine testing laboratories (deadlines, motivation). This 
is a reason why Good Manufacturing Practices (GMP) regulations mandate that reagent or cal- 
ibration solutions be marked with the date of production, the shelf life, and the signature of the 
technician, in order that gross mistakes are avoided and such questions can retrospectively be 
cleared. In the right panel, validation data for an outdated photometrical method (squares) and 
the HPLC method (bold squares) are compared. HPLC is obviously much more reliable. The 
HPLC-residuals in the righthand panel (repeatability, same technician, day, and batch) should 
be compared with those in the lefthand panel (reproducibility: several technicians, different 
days and batches) to gain a feeling for the difference between a research and a routine lab. 
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xrnean = 1.95 f 0.04 
Xmean = 1.95 k 2.1% RSD 

(n = 7) or 
(n = 7) RSD : relative standard deviation 

Notice that a result of this type, in order to be interpretable, must comprise 
three numbers: the mean, the (relative) standard deviation, and the number 
of measurements that went into the calculation. All calculations are done 
using the full precision available, and only the final result is rounded to an 
apprcpriate precision. The calculator must be able to handle 24 significant 
digits in the standard deviation. (See file SYS-SUITAB.xls.) 

1.1.6 Interpreting the Results 

The inevitability of systematic and random errors in the measurement process, 
somewhat loosely circumscribed by “drift” and “noise,” means that xrnean and 
s, can only be approximations to the true values. Thus the results found in the 
preceding section can be viewed under three different perspectives: 

1. Does the found mean x,,, correspond to expectations? The expected 
value E ( x )  written as p (Greek mu), is either a theoretical value, or an 
experimental average underpinned by so many measurements that one 
is very certain of its numerical value. The question can be answered by 
the t-test explained in Section 1.5.2. A rough assessment is obtained 
by checlung to see whether p and xmean are separated by more than 
2 . s, or not: if the difference Ax is larger, x,,,, is probably not a 
good estimate for p.  

2. Does the found standard deviation, s,, correspond to expectations? The 
expected value E(s,) is (Greek sigma), again either a theoretical 
value or an experimental average. This question is answered by the 
F-test explained in Section 1.7.1. Proving s, to be different from (T is 
not easily accomplished, especially if n is small. 

3 .  Is the mean x,,, significant? The answer is the same as for question 
(l), but with p = 0. If the values (x,,,, - 2 . s,) and (x,,, + 2 . s,) 
bracket zero, it is improbable that p differs from zero. 

The standard deviation as defined relates to the repeatability of measurements 
on the same sample. When many samples are taken from a large population, 
“sampling variability” and “population variability” terms have to be added 
to Eq. (1.6) and the interpretation will reflect this. 

For analytical applications it is important to realize that three distribu- 
tions are involved, namely one that describes the measurement process, one 
that brings in the sampling error, and another that characterizes the sam- 



28 UNIVARIATE DATA 

pled population. In a Gedankenexperiment the difference between the pop- 
ulation variability (which does not necessarily follow a symmetrical distri- 
bution function, cf. Statistical Particulars in the Introduction), and the errors 
associated with the measurement process (repeatability, reproducibility, both 
usually normally distributed) is explored. 

In chemical operations (see Fig. 1.8) a synthesis step is governed by a 
large number of variables, such as the concentration ratios of the reactants, 
temperature profiles in time and space, presence of trace impurities, etc. The 
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Figure 1.8. Schematic frequency distributions for some independent (reaction input or con- 
trol) resp. dependent (reaction output) variables to show how non-Gaussian distributions can 
obtain for a large population of reactions ( is . ,  all batches of one product in 5 years), while 
approximate normal distributions are found for repeat measurements on one single batch. For 
example, the gray areas correspond to the process parameters for a given run, while the histo- 
grams give the distribution of repeat determinations on one (several) sample(s) from this run. 
Because of the huge costs associated with individual production batches, the number of data 
points measured under closely controlled conditions, i.e., validation runs, is miniscule. Dis- 
tributions must be estimated from historical data, which typically suffers from ever-changing 
parameter combinations, such as reagent batches, operators, impurity profiles, etc. 
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outcome of a single synthesis operation (one member of the sampled popula- 
tion) will yield a set of characteristic results, such as yield, size-distribution 
of crystals, or purity. If the synthesis is redone many times, it is improb- 
able that the governing variables will assume exactly the same values every 
time. The small variations encountered in temperature profiles, for example, 
will lead to a variation in, say, the yield that might well follow a skewed 
distribution. Repetition of the analyses on one single sample will follow a 
normal distribution, however. If the same synthesis is carried out on sev- 
eral, most likely slightly different equipment trains, then one might have to 
contend with several versions of Figure 1.8. Thus, even if a synthesis step 
is run once a day, it will take years until a sufficient number of points is 
accumulated to determine the distribution function parameters to any level 
of accuracy. By that time, it is likely that new operators have been trained, 
the synthesis has been modified, or key equipment has been replaced. 

1.2 DISTRIBUTIONS AND THE PROBLEM OF SMALL NUMBERS 

If a large number of repeat observations on one and the same sample are 
plotted, most fall within a narrow interval around the mean, and a decreasing 
number is found further out. The familiar term bell curve is appropriate. (See 
Fig. 1.9.) 

1.2.1 The Normal Distribution 

It would be of obvious interest to have a theoretically underpinned func- 
tion that describes the observed frequency distribution shown in Fig. 1.9. A 
number of such distributions (symmetrical or skewed) are described in the 
statistical literature in full mathematical detail; apart from the normal- and 
the t-distributions, none is used in analytical chemistry except under very 
special circumstances, e.g. the Poisson and the binomial distributions. Instru- 
mental methods of analysis that have Poisson-distributed noise are optical 
and mass spectroscopy, for instance. For an introduction to parameter esti- 
mation under conditions of linked mean and variance, see Ref. 41. 

For a long time it was widely believed that experimental measurements 
accurately conformed to the normal distribution. On the whole this is a pretty 
fair approximation, perhaps arrived at by uncritical extrapolation from a few 
well-documented cases. It is known that real distributions are wider than the 
normal one; t-distributions for 4 to 9 degrees of freedom (see Section 1.2.2) 
are said to closely fit actual data.20 

Does this mean that one should abandon the normal distribution? As will 
be shown in Sections 1.8.1 through 1.8.3 the practicing analyst rarely gets 
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Figure 1.9. A large number of repeat measurements xi are plotted according to the number 
of observations per x-interval. A bell-shaped distribution can be discerned. The corresponding 
probability densities PD are plotted as a curve versus the z-value. The probability that an 
observation is made in the shaded zone is equal to the zone’s area relative to the area under 
the whole curve. 

together enough data points to convincingly demonstrate adherence to one 
or the other distribution model. So, for all practical purposes, the normal 
distribution remains a viable alternative to unwieldy but “better” models. 

For general use, the normal distribution has a number of distinct advan- 
tages over other distributions. Some of the more important advantages are 
as follows: 

Efficiency. 

Lack of bias. 

Wide acceptance. 

Incorporation into many programs and tests. 
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Its characteristics are described in detail in Fig. 1.10. For practical pur- 
poses, distributions over less than 50-100 measurements must be regarded 
as belonging to the normal distribution class, even if small deviations are 
observed, because the contrary cannot be proven. The only real exceptions 
consist in (1) manifest asymmetry, and (2) the a priori knowledge that another 
model applies. For example, if the outcome of an observation can only be 
of the type “0” or “l”, a binomial distribution must be used. Since nearly all 
types of measurements in analytical chemistry belong to the class yielding 
continuous values, however, it is a defensible approach to assume a normal 
distribution. If results are obtained in digitized form, the Gaussian approx- 
imation is valid only if the true standard deviation is at least three to five 
times greater than the digitizer resolution. 

The normal or Gaussian distribution a bell-shaped frequency profile 
defined by the function 

(1.7) 

Figure 1.10. The figure demonstrates what is obtained when the Monte Carlo method (cf. 
Section 3.5.5) is used to simulate normally distributed values: each histogram (cf. Section 
1.8.1) summarizes 100 “measurements”; obviously, many do not even come close to what one 
expects under the label “bell curve.” 
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where p is the true average, as deduced from theory or through a very large 
number of measurements, u is the true standard deviation, as deduced from 
theory or through a very large number of measurements, x is the observed 
value, PD is the probability density as a function of x, that is, the expected 
frequency of observation at x. 

Since it is impractical to tabulate PD(x) for various combinations of p and 
u ,  the normal distribution is usually presented in a normalized form where 
p = 0 and u = 1, that is 

PD = 0.39894. exp(-z2/2) (1.8) 

where z = (x -p) /u;  this state of affairs is abbreviated “ND(0, l)”, as opposed 
to “ND(p, (T ’)”. Because of the symmetry inherent in PD = f ( z ) ,  the ND(0, 
1) tables are only given for positive z-values usually over the range z = 0 
. . . 4, with entries for 0.05 or smaller increments of z .  

The corresponding statistical table is known as the probability density 
table; a few entries are given for identification purposes in Figure 1 . 1 1. 

When many observations are made on the same sample, and these are plot- 
ted in histogram form the bell-shaped curve becomes apparent for TI larger 
than about 100. Five such distributions calculated according to the Monte 
Carlo method (see Section 3.5.5) for n = 100, 300, 1000, 3000, and 10 000 
are shown in Fig. 1.12; a scaling factor was introduced to yield the same 
total area per distribution. The z-axis scale is -4 . . . 4 . sigma, resp. C = 80 
classes (bins), that is, each bin is u/10 wide. A rule of thumb for plotting 
histograms suggests C = 4 classes (bins): that would mean about 8-12, 
15-20, 30-35, 50-60, respectively 100 bins. The number C is often chosen 
so as to obtain convenient boundaries, such as whole numbers. A constant 
bin width was chosen here for illustrative purposes; thus, the left two fig- 
ures do not represent the optimum in graphical presentation: one could either 
fuse 5 to 10 adjacent bins into one, e.g., bins 1-10, 11-20, etc, and plot the 
average, or then one could plot a moving average. (Cf. Section 3.6.) 

r a  
Z = O  PD = 0.3989 

1 0.2420 
2 0.0540 

a n  

3 0.0060 -3 -2 -1 0 1 2 3 

Standardlzed Deviation z 

Figure 1.11. The probability density of the normal distribution. Because of the symmetry often 
only the right half is tabulated. 
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-~ -3 
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Figure 1.12. Simulated normal distributions for n = 100 to 10 000 events. For details see text. 

Since one is only rarely interested in the density at a precise point on the 
z-axis, the cumulative probability (cumulative frequency) tables are more 
important: in effect, the integral from --w to +z over the probability density 
function for various z 2 0 is tabulated; again a few entries are given in Fig. 
1.13. 

1 

n 
0 
.- 5 0 8  - .- 

Z = - 3  CP=0.0013 P 
-2 0.2270 P 

-1 0 1587 n 
0 0.5000 
1 0.841 3 
2 0.9773 
3 0.9987 

m 

2 0 6  

aJ > 
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.- 
w 
2 0 4  
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0 
- 0 0 2  

n 
Q - n  

C m 

u-3 -2 -1 0 1  2 3  
Standardized Deviation z 

Figure 1.13. The cumulative probability of the normal distribution. The hatched area corre- 
sponds to the difference ACP in the CP plot. 
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The integral function is symmetrical about the coordinate ( z  = 0, CP = 

0.5000); for this reason only the right half is tabulated, the other values being 
obtained by subtraction from 1 .OOO. 

Example 7: For z = -2, CP = 1 - 0.97725 = 0.02275. 

Some authors adopt other formats, for instance, 

the integral z = 0 to + z is given with CP = 0.0000 to 0.4987 

the integral z = -z to + z is given with CP = 0.0000 to 0.9973 

(at z = 3), or then 

(at z = 3; 1 - 2.0.00135 = 0.9973) 

In lieu of normal distribution tables, fairly accurate approximations to the 

The cumulative probability table can be presented in two forms, namely 
entries can be made by using the following equations: 

1 - CP = P(z )  

z = P’(lgt(1 - CP)) 

(1.94 

(1.9b) 

where (1 - CP) is the area under the curve between +z and +m. 

P and P’ are functions that involve polynomials of order 6.  The coef- 
ficients and measures of accuracy are given in the Appendix 5.1.1. Both 
functions are used in sample programs in Chapter 5. 

1.2.2 Student’s &Distribution 

The normal distribution is the limiting case (n = -) for the Student’s t- 
distribution. Why a new distribution? The reason is simply as follows: If 
the number of observations n becomes small, the mean’s confidence interval 
Cl(xmean) can no longer be ignored. The same is true for the uncertainty asso- 
ciated with the calculated standard deviation s,. What is sought, in effect, is 
a modification of the normal distribution that provides for a normally dis- 
tributed x,,,, (instead of a fixed p )  and a variance V,  following a X2-distri- 
bution (instead of a fixed h a 2 ) .  This can be visualized as follows: pick two 
values p + A p  and cr + Au, and calculate the normal distribution according 
to Eq. (1.7). Repeat the procedure many times with different deviations A p  
and Aha (cf. algorithm, Section 3.5.5). Add the calculated distributions; this 
results in a new distribution that is similar in form to the normal one, but 
only wider and lower in height for the same area. The Student’s t value is 
used exactly as is the variable z in the normal distribution (see Table 1.3 and 
Fig. 1.14.) 
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Table 1.3. Critical Student’s &Factors for the One- and Two-sided Cases for 
Three Values of the Error Probability p and 7 Degrees of Freedom f 

Two-sided One-sided 

P= 0.1 0.05 0.01 0.1 0.05 0.01 

f = 1 6.314 
2 2.920 
3 2.353 
4 2.132 
5 2.01 5 

10 1.812 
20 1.725 
M 1.645 

12.706 
4.303 
3.182 
2.776 
2.571 
2.228 
2.086 
1.960 

63.66 3.078 
9.925 1.886 
5.841 1.638 
4.604 1.533 
4.032 1.476 
3.169 1.372 
2.845 1.325 
2.576 1.282 

6.3 14 
2.920 
2.353 
2.132 
2.015 
1.812 
1.725 
1.645 

31.821 
6.965 
4.541 
3.747 
3.365 
2.764 
2.528 
2.326 

0 4  

0 3  

0 2  

0 1  

n 

PD 
t 

I 1 /I, 

-1 0 -5 0 5 10 

Figure 1.14. The probability density functions for several f-distributions (f = 1, 2, 5, resp. 
100) are shown. The t-distribution forf = 100 already very closely matches a normal distri- 
bution. 

1.3 CONFIDENCE LIMITS 

If a result is quoted as having an uncertainty of f l  standard deviation, 
an equivalent statement would be “the 68.3% confidence limits are given by 
x,,,, f 1 . sX,” the reason being that the area under a normal distribution 
curve between z = -1.0 to z = 1.0 is 0.683. Now, confidence limits on the 
68% level are not very useful for decision making because in one-third of all 
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cases, on average, values outside these limits would be found. What is sought 
is a confidence level that represents a reasonable compromise between these 
narrow limits and wide limits: 

Wide limits: the statement “the result is within limits” would carry a 
very low risk of being wrong; the limits would be so far apart as to be 
meaningless. 

Example 8: k3.5 . s,: The probability of error is 0.047%, and the confi- 
dence level is 99.953% for n = 2. 

Narrow limits: any statement based on a statistical test would be wrong 
very often, a fact which would certainly not augment the analyst’s cred- 
ibility. Alternatively, the statement would rest on such a large number 
of repeat measurements that the result would be extremely expensive 
and perhaps out of date. 

Example 9: k0.5 . s,: The probability of error and the confidence level 
are, respectively 

61.7% 
11.4% 
0.6% 

38.3% for n = 2 
88.6% for n = 10 
99.4% for n = 30 

Depending on the risks involved, one would like to choose a higher or lower 
confidence level; as with the many measures of length in use up to the 19th 
century-nearly every principality defined its own “mile”-confusion would 
ensue. Standardization is reflected in the confidence levels commonly listed in 
statistical tables: 90,95,98,99,99.5, . . . %. There is no hard-and-fast rule for 
choosing a certain confidence level, but one has to take into account such things 
as the accuracy and precision of the analytical methods, the price of each anal- 
ysis, time and sample constraints, etc. A balance has to be struck between mak- 
ing it easy and hard to prove a hypothesis. Making it too easy (very narrow lim- 
its on H o )  means that no statement will ever hold up and average noise levels 
would hold sway over the disposition of expensive production runs; making 
it too hard (very wide limits on H o )  means that one side-manufacturing or 
QC, depending on how the question is phrased-is always right. A fair com- 
promise has turned out to be the 95% level, i.e. one in 20 tests will suggest a 
deviation (too high or too low) where none is expected. Rerunning one test out 
of 20 to see whether a real or a statistical outlier had been observed is an accept- 
able price to pay. In effect, the 95% confidence level comes close to being an 
agreed-upon standard. Because confidence limits and the number of measure- 
ments n are closely linked, see Figs. 1.18 and 1.26, opting for a higher confi- 
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dence level, such as 99.9% sharply increases the workload necessary to prove 
a hypothesis. While this may not be all that difficult if a method with a RSD of 
rt0.1% were available, in trace analysis, where the RSD is often around ?20% 
(or more), series of seven or more replicates would be needed just to reduce the 
confidence limits to f100% of the estimate. The effect is illustrated in Figure 
1.20 and Section 1.6. 

Assuming for the moment that a large number of measurements went into 
a determination of a mean x,,, and a standard deviation s,, what is the width 
of the 95% confidence interval, what are the 95% confidence limits? 

A table of cumulative probabilities (CP) lists an area of 0.975002 for z = 

1.96, that is 0.025 (2.5%) of the total area under the curve is found between 
+1.96 standard deviations and +m. Because of the symmetry of the normal 
distribution function, the same applies for negative z-values. Together p = 

2 . 0.025 = 0.05 of the area, read “probability of observation,” is outside the 
95% conjidence limits (outside the 95% conjidence interval of - 1.96 . s, . . . 
+ 1.96 . 3,). The answer to the preceding questions is thus 

95% confidence limits CL(x): x,,,, f z’s, ( 1.1 Oa) 

(1. lob) 95% confidence interval CI(x): 2 . z . ~ ~  centered on x,,, 

With z = 1.96 = 2 for the 95% confidence level, this is the explanation for 
the often-heart term ‘‘f two sigma” about some mean. 

Unless otherwise stated, the expressions of CL() and C1() are forthwith 
assumed to relate to the 95% confidence level. 

In everyday analytical work it is improbable that a large number of repeat 
measurements is performed; most likely one has to make do with less than 20 
replications of any determination. No matter which statistical standards are 
adhered to, such numbers are considered to be “small”, and hence, the law 
of large numbers, that is the normal distribution, does not strictly apply. The 
t-distributions will have to be used; the plural derives from the fact that the 
probability density functions vary systematically with the number of degrees 
of freedom,f. (Cf. Figs. 1.14 through 1.16.) 

In connection with the preceding problem, one looks for the list “two- 
tailed (sym.) Student’s t-factors for p = 0.05”; sample values are given for 
identification in Table 1.3, i.e., 12.7, 4.30, etc.: 

In Section 5.1.2, an algorithm is presented that permits one to approximate 
the t-tables with sufficient accuracy for everyday use. 

1.3.1 Confidence Limits of the Distribution 

After having characterized a distribution by using n repeat measurements 
and calculating x,,,, and s,, an additional measurement will be found within 
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Figure 1.15. Student’s t-distributions for 1 (bottom), 2, 5, and 100 (top) degrees of freedom 
f’. Thc hatched area between the innermost marks is in all cases 80% of the total area under 
the respective curve. The other marks designate the points at which the area reaches 90, resp. 
95% of the total area. This shows how the t-factor varies with f .  The t-distribution for f 
= 100 already very closely matches the normal distribution. The normal distribution, which 
corresponds to t(,f = m), does not depend on ,f. 

Piobability density for the mean of n = 1 ... 50 measurements 

50 I 
I 

- - ~~ ~ 

Figure 1.16. Probability density for d mean xmedn withf - n- 1 = 1 SO degrees of freedom 
The area? under the curve& are equal If points demarlung, say, 95% of the area (cf Fig 1 IS) 
were connected, Fig L 17 (right) would result 
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the following limits 19 out of 20 times on average (compare with Eq. 1.10!): 

95% confidence limits CL(x): x,,,, f t.s, ( 1.1 1 a) 

(1.11 b) 95% confidence interval CI(x): 2 . t . ~ ~  centered on x,,, 

For large n the confidence interval for the distribution converges toward the 
x,,,, f 1.96 . s, range familiar from the normal distribution, cf. Fig. 1.17 (left). 

1.3.2 Confidence Limits of the Mean 

If, instead of the distribution as such, the calculated mean xmean is to be 
qualified: 

95% confidence limits CL(x,,,,): k t.s,/& (1.12a) 

95% confidence interval CI(xmem): 2 .t.s,/& centered on x,,, (1.12b) 

It is apparent that the confidence interval for the mean rapidly converges 
toward very small values for increasing n, because both t ( f )  and 1/& 
become smaller. 

f Student's t I SQR(n) 
POPULATION 

5 

I L -10 1 
1 10 100 1 10 100 

Figure 1.17. The 95% confidence intervals for x and x,, are depicted. The curves were 
plotted using the approximations given in Section 5.1.2; the f-axis was logarithmically trans- 
formed for a better overview. Note that solid curves are plotted as if the number of degrees 
of freedom could assume any positive value; this was done to show the trend; f is always a 
positive integer. The ordinates are scaled in units of the standard deviation. 

1 I 
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Example 10: For y = 0.05, xmean = 10, s, = 1, and different n, Table 1.4 
and Fig. 1.18 present CL that are found. 

Table 1.4. Confidence Limits for the Population and the Mean 

2 12.71 -2.71 . . .  22.71 25.42 1.01 ... 18.99 17.97 
3 4.303 5.70 . . .  14.30 8.61 7.52 . . .  12.48 4.97 
4 3.182 6.82 ... 13.18 6.36 8.41 . . .  11.59 3.18 
5 2.776 7.22 . . .  12.78 5.55 8.76 ... 11.24 2.48 
6 2.571 7.43 ... 12.57 5.14 8.95 . . .  11.05 2.10 

10 2.262 7.74 . . .  12.26 4.52 9.28 . . .  10.72 1.43 
100 1.984 8.02 . . .  11.98 3.97 9.80 . . .  10.20 0.40 

1.001 
POPULATION 

Student's t 0.0001 

0 5  

MEAN 
5 -  Student's t l  SQR(n) 

0 0.5 1 1.5 2 

Figure 1.18. The Student's t resp. f/& for various confidence levels are plotted; the curves 
forp = 0.05 are enhanced. The other curves are forp = 0.5 (bottom), 0.2, 0.1, 0.02, 0.01, 0.002, 
0.001, and 0.0001 (top). By plotting a horizontal, the number of measurements necessary to 
obtain the same confidence intervals for different confidence levels can be estimated. While it 
takes n ~- 9 measurements (f = 8) for a t-value of 7.12 and p = 0.0001, just n' = 3 (f - 2) will 
give the same limits on the population for p = 0.02 (line A + C). For the CL on the mean, in 
order to obtain the same ti& for p = 0.02 as for p = 0.0001, it will take n = 4 measurements 
(line B + E ) ;  note the difference between points D and E !  
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1.4 THE SIMULATION OF A SERIES OF MEASUREMENTS 

Simulation by means of the digital computer has become an extremely 
useful technique (see Section 3.7) that goes far beyond classical interpolation/ 
extrapolation. The reasons for this are fourfold: 

Very complex systems of equations can be handled; this allows inter- 
actions to be studied that elude those who simplify equations to make 
them manageable at the paper and pencil 

Fast iterative root-finding algorithms do away with the necessity of alge- 
braically solving for “buried’ variables, an undertaking that often does 
not yield closed solutions (a solution is “closed” when the equation has 
the form x = f ( u ,  b, c, . . .) and “x” does not appear in the function f ). 

Nonlinear and discontinuous equations can be easily implemented, e.g., 
to simulate the effects of a temperature-limiting device or a digital 
voltmeter.17 

Not only deterministic aspects can be modeled, but random ones as well 
(see Refs. 5 ,  34 and Section 3.5.5). 

This important technique is introduced at this elementary level to demon- 
strate characteristics of the confidence level concept that would otherwise 
remain unrecognized. Two models are necessary, one for the deterministic, 
the other for the stochastic aspects. 

As an example, the following very general situation is to be modeled: A 
physicochemical sensor in contact with an equilibrated chemical system is 
used to measure the concentration of an analyte. 

The measurement has noise superimposed on it, so that the analyst 
decides to repeat the measurement process several times, and to evaluate the 
mean and its confidence limits after every determination. (Note: This modus 
operundi is forbidden under GMP; the necessary number of measurements 
and the evaluation scheme must be laid down before the experiments are 
done.) The simulation is carried out according to the scheme depicted in 
Fig. 1.19. The computer program that corresponds to the scheme principally 
contains all of the simulation elements; however, some simplifications can 
be introduced: 

For the present purposes the deterministic function generator yields a 
constant signal x = 0, which means the summation output is identical 
with that of the noise generator. 
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 DETERMINISTIC ’ /RANDOM NO~SEI 
FUNCTION ~ j GENERATOR 

‘ I  GENERATOR 

1 
1 VOLTMETER 1 

the (simulated) chemical signal 

is sampled at intervals At and 
transformed into an electrical 
signal, which is captured and 
digitized; 

the data set is processed to 
obtain the mean and a 
measure of dispersion, 
i.e. x mean and cLo(m..,) 

Figure 1.19. Scheme for numerical simulation of measurements 

The sensor is taken to be of the linear type, i.e., it transduces the incom- 
ing chemical information into electrical output according to the equation 
elsignal = constant + slope . (chemical signal); without loss of clarity, 
the constant can be set to zero and the slope to 1.00. 

One noise generator in parallel to the chemical function generator suf- 
fices for the present purposes; if electrical noise in the sensor electron- 
ics is to be separately simulated, a second noise generator in parallel 
to the sensor and a summation point between the sensor and the volt 
meter would become necessary. The noise is assumed to be normally 
distributed with p = 0 and (T = 1. 

The computer model does nothing but evaluate the incoming “assay val- 
ues” in terms of Eqs. (1.1) and (1.12a). 

The output of the simulation will be displayed as in Fig. 1.20 or by pro- 
gram CONVERGE.exe; the common abscissa is the sample number i. The 
ordinates are in signal units; the top window (panel A) shows the individ- 
ual measurements as points; the bottom window (panel C) shows how the 
derived standard deviation converges toward its expected value, E(s , )  = 1 .00; 
in the middle window (panel B) the mean and the CL(x,,,,) are shown to 
rapidly, although erratically, converge toward the expected value 0 & 0. Equa- 
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I- 

MEAN(x, i = 19 ... 24) > E(x) 

SD(x, i = 23 ... 25) c E(sx) 

Figure 1.20. Monte Carlo simulation of 25 normally distributed measurements: raw data are 
depicted in panel A, the derived means xmean * CL(xmean) in B,  and the standard deviation sx 
f CL(s,) in C. Notice that the mean and/or the standard deviation can be statistically different 
from the expected values, for instance in the range 23 5 n 5 25 in this example. The ordinates 
are scaled in units of l u .  

tions ( l . l ) ,  (1.3), (1.5), and (1.12a) (middle window), and (1.3), ( lS) ,  and 
(1.42) (bottom window) were used. 

Figure 1.21 was obtained using Excel file CONV.xls, and shows 8 suc- 
cessive “measurements” per group. It is definitely possible that the CI(xmean) 
does not include the expected value: The first few points suggest a satisfy- 
ingly small scatter (Case B).  In this particular simulation, this is due to the 
operation of “pure chance” as defined in the Monte Carlo algorithm. How- 
ever, inadequate instrument configurations, poor instrument maintenance, 
improper procedures, or a knowledge of what one is loolung for can lead to 
similar observations. Analysts and managers may (subconsciously) fall prey 
to the latter, psychological trap, because without a rigid plan they are enticed 
to act selectively, either by stopping an experiment at the “right” time or by 
replacing apparent “outliers” by more well-behaved repeat results. Visual- 
Basic program CONVERGE and Excel sheet CONV allow experimenting 
with various combinations of p and n. 
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D -  E 

Figure 1.21. Monte Carlo simulation of six groups of eight normally distributed measurements 
each: raw data are depicted as xi vs. i (top); the mean (gaps) and its upper and lower confidence 
limits (full lines, middle); the confidence limits CL(s,) of the standard deviation converge 
toward u - 1 (bottom, Eq. 1.42). The vertical divisions are in units of 1 f u. The CL are 
clipped to f 5 u  resp. 0 . . . 5a for better overview. Case A shows the expected behavior, that 
is for every increase in n the CL(x,,,,,) bracket p = 0 and the CL(s,) bracket u ~ 1. Cases 
B, C, and D illustrate the rather frequent occurrence of the CL not bracketing either p and/or 
u ,  cf. Case B @ n = 5.  In Case C the low initial value (arrow!) makes xmean low and sx high 
from the beginning. In Case D the 7'h measurement makes both CI @ n = 7 widen relative to 
the n = 6 situation. Case F depicts what happens when the same measurements as in Case E 
are clipped by the DVM. 

1.5 TESTING FOR DEVIATIONS 

The comparison of two results is a problem often encountered by the ana- 
lyst. Intuitively, two classes of problems can be distinguished: 

1. A systemaiic difference is found, supported by indirect evidence 
that from experience precludes any explanation other than "effect 
observed." This case does not necessarily call for a statistical eval- 
uation, but an example will nonetheless be provided: in the elemental 
analysis of organic chemicals (CHN analysis) reproducibilities of 0.2 
to 0.3% are routine (for a mean of 38.4 wt-% C, for example, this gives 
a true value within the bounds 38.0 . . . 38.8 wt-% for 95% probabil- 
ity). It is not out of the ordinary that traces of the solvent used in the 
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2. 

last synthesis step remain in the product. So, a certain pattern of car- 
bon, hydrogen, resp. nitrogen deviations from the theoretical element- 
by-element percentage profile will be indicative of such a situation, 
whereas any single element comparison, e.g., C(exp) with C(theor), 
would result in a rejection of the solvent-contamination hypothesis. 
In practice, varying solvent concentrations would be assumed, and for 
each one the theoretical elemental composition would be calculated, 
until the best fit with the experimental observations is found. (See x 2 -  
test.) 
A measurement technique such as titration is employed that provides a 
single result that, on repetition, scatters somewhat around the expected 
value. If the difference between expected and observed value is so 
large that a deviation must be suspected, and no other evidence such as 
gross operator error or instrument malfunction is available to reject this 
notion, a statistical test is applied. (Note: under GMP, a deviant result 
may be rejected if and when there is sufficient documented evidence 
of such an error.) 

If a statistical test is envisioned, some preparative work is called for: Every 
statistical test is based on 

a model, 

a conjidence level, and 

a set of hypotheses. 

These three prerequisites of statistical testing must be established and just$ed 
before any testing or interpreting is done; since it is good practice to document 
all work performed, these apparent “details” are best set down in the experi- 
mental plan or the relevant SOP, unless one desires that the investigator have 
unusual freedom to influence the conclusions by choosing the three elements 
to suit his needs (exploratory data analysis is an exception discussed in Section 
3.4). A point that cannot be stressed enough is that statistics provides a way 
of quantitizing hidden information and organizing otherwise unmanageable 
amounts of data in a manner accepted and understood by all parties involved. 
The outcome of a statistical test is never a “hard fact,” but always a stute- 
ment to the effect that a certain interpretation has u probability of x% or less 
of not correctly representing the truth. For lack of a more convincing model, 
the t-distribution is usually accepted as a description of measurement variabil- 
ity, the normal distribution being the limiting case, and a conjidence level in 
the 9.5-99% range is more or less tacitly assumed to fairly balance the risks 
involved. If a difference is found, the wording of the result depends on the con- 
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fidence level, namely “the difference is ‘significant’ (95%) or ‘highly signifi- 
cant’ (99%)’’ The setting up and testing of hypotheses is the subject of Section 
1.9. What hypotheses are there? 

The “null” Hypothesis Ho 

Given that the measured content for a certain product has been within 2% 
of the theoretical amount over the past, say, 12 batches, the expectation of a 
further result conforming with previous ones constitutes the so-called ‘‘null’’ 
hypothesis, Ho, i.e. “no deviation” is said to be observed. 

The Alternate Hypothesis HI 

Since it is conceivable that some slight change in a process might lead 
to a “different” content, a mental note is made of this by stating that if the 
new result differs from the old one, the alternate hypothesis HI applies. The 
difference between Ho and H1 might be due to p~ f pg and/or (TA f 05. 
The first possibility is explored in the following section, the second one will 
be dealt with in Section 1.7.1. 

The situation of Ho and H I  differing solely in the true averages A and B, 
is summed up in Fig. 1.22. 

B‘ A B 
Alternative Null Alternative 
Hypothesis Hypothesis Hypothesis 

Figure 1.22. The null and the alternate hypotheses Ho resp. H I .  The normal distribution prob- 
ability curves show the expected spread of results. Since the alternate distribution N D ( ~ B ,  u *) 
might be shifted toward higher or lower values, two alternative hypotheses Hi and H; are 
given. Compare with program HYPOTHESIS. Measurement B is clearly larger than A, whereas 
B’ is just inside the lower CL(A). 
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Assuming one wants to be certain that the risk of falsely declaring a good 
batch B to be different from the previous one A is less than 5%,  the symmet- 
rical 95% confidence limits are added to A (see Fig. 1.22): any value B in 
the shaded area results in the judgment “B different from A ,  H I  accepted, Ho 
rejected”, whereas any result, however suspect, in the unshaded area elicits 
the comment “no difference between A and B detectable, H I  rejected, Ho 
retained”. Note that the expression “A is identical to B” is not used; by sta- 
tistical means only deviations can be demonstrated, and similarities must be 
inferred from their absence. 

1.5.1 Examining Two Series of Measurements 

Testing requires that a certain protocol be adhered to; this protocol is set 
forth here in a “how-to” format of questions and instructions. The actual 
calculations are shown on pp. 48-65. 

Data. Two series of measurements are made, such as n repetitive determina- 
tions of an analyte concentration in the same sample by two different meth- 
ods: ~ 1 1 ,  ~ 1 2 ,  . . .  XI^, ~ 2 1 7  ~ 2 2 3  . . . ~ 2 n .  

Question 1. Are the group variances Vl and V2 indistinguishable? 
Perform the F-test (Section 1.7.1; most authors find the F-test to be a 

prerequisite for the t-test). If no significant effect is found (Ho retained), the 
two sample variances may be pooled to decrease the uncertainty associated 
with V through inclusion of a higher number of measurements: Of the models 
given in Table 1.10, cases bl  or b3, as appropriate, both give the same degree 
of freedom f ,  but different variances. However, if a significant difference 
between V1 and V2 is found ( H I  accepted), they may, according to some 
authors, be pooled with different models yielding the same variance, but 
different degrees of freedom f (case c). 

Question 2. Are the two means x,,,,, I and x,,,J distinguishable? 
If Ho holds for question 1 ,  all authors agree that a t-test can be performed. 

If H I  is true, opinions diverge as to the propriety of such a t-test. In practice, 
a t-test will be performed: If the outcome is clear, that is t is much different 
from t,, the differences between the models are negligible; if t is close to t,, 
more tests should be performed to tighten the confidence limits, or judgment 
should be suspended until other evidence becomes available. 

Obviously, the t-test also involves its own set of null and alternative hypo- 
theses; these are also designated Ho and H I ,  but must not be confused with 
the hypotheses associated with the F-test. 
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1.5.2 The &Test 

The most widely used test is that for detecting a deviation of a test object 
from a standard by comparison of the means, the so-called t-test. Note that 
before a t-test is decided upon, the confidence level must be declared and a 
decision made about whether a one- or a two-sided test is to be performed. 
For details, see shortly. Three levels of complexity, a, b, and c, and subcases 
are distinguishable. (The necessary equations are assembled in Table 1.10 
and are all included in program TTEST.) 

a The standard is a precisely known mean, a theoretical average p ,  or a 
preordained value, such as a specification limit. 

b The test sample and the standard were measured using methods that 
yield indistinguishable standard deviations $ 1  resp. s2 (cf. F-test, Sec- 
tion 1.7.1). 

c The standard deviations s1 resp. s2 are different. 

In Case a, only the standard deviation estimated from the experimental data 
for the test sample is needed, which is then used to normalize the difference 
x,,,, ~ p. The quotient difference/s,, the so-called Student’s t, is compared 
with the critical t ,  for a chosen confidence level and f = n - 1. (Use Eq. 
1.13.) 

Example 11: xrnean = 12.79, S, = 1.67, n = 7, S,,mean = 0.63, p = 14.00, 
and the chosen confidence level is 95%. 

Table 1.5. Calculation of a Student’s t-Factor 

t = 112.79 -- 14.001/0.63 = 1.92 
tc(6, p = 0.05) =- 2.45 

tc(6, p/2 = 0.05) = 1.94 

Table 1.3 
two-sided test 
one-sided test 

Interpretation: If the alternate hypothesis had been stated as “HI : x,,, 
is different from p,” a two-sided test is applied with 2.5% probability being 
provided for each possibility “xrnean smaller than p” resp. “xmean larger than 
p”. Because 1.92 is smaller than 2.45, the test criterion is not exceeded, so 
H I  is rejected. On the other hand, if it was known beforehand that x,,,,, can 
only be smaller than p, the one-sided test is conducted under the alternate 
hypothesis ‘‘HI :x,,,, smaller than p”; in this case the result is close, with 
1.92 almost exceeding 1.94. 

In Cases b and c the standard deviation sd of the average difference, d = 
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x,,,,, 1 - x,,,,, 2, and the number of degrees of freedom must be calculated 
Case b must be divided into three subcases (see the equations in Table 

1.10): 

Table 1.6. Applications of the t-Test 

bl: nl = n2 

b2: nl -112 

b3: n1 f n2 

one test, repeatedly performed 
on each of two samples, 
one test, performed once on 
every sample from two series 
of samples, or 
two tests, each repeatedly performed 
on the same sample, 1 . . . n, 
n + 1 . . .  2n 
two tests being performed pairwise 
on each of n samples 
same situation as bl ,  but with 
different n: 1 . . . n1, nl + 1 . . . nl + n2 

see Eqn. (1.18) 
through (1.20) 

see Eqn. (1.24) 

see Eqn. (1.14) 
through (1.17) 

Subcase bl:  This case is encountered, for example, when batch records 
from different production campaigns are compared and the same number of 
samples was analyzed in each campaign. (Note: under GMP, trend analy- 
sis has to be performed regularly to stop a process from slowly, over many 
batches, drifting into a situation where each parameter on its own is within 
specifications, but collectively there is the risk of sudden, global “loss of con- 
trol.” “Catastrophe theory” has gained a foothold in physical and biological 
literature to describe such situations; cf. Section 4.14.) 

The variance v d  of the average difference is calculated as (Vl + V2)/n 
(see Eq. 1.18-19) withf = 2n- 2 degrees of freedom. s d ,  the square root of 
V d ,  is used in the calculation of the Student’s t-statistic t = d/sd. 

Example 12: xmean, l  = 17.4, s1 = 1.30, x,,,,,2 = 19.5, s 2  1.15, nl = n2 
= 8, p = 0.05. 

The standard deviations are not significantly different (F-test, Section 
1.7.1); the standard deviation of the mean difference is Sd = 0.61 and t = 117.4 
- 19.51/0.61 = 3.42; f = 14. Since the critical t value is 2.145, the two means, 
Xmean, 1 and X,,,2, can be distinguished on the 95% confidence level. 

Subcase b2: This case, called the “paired t-test”, is often done when two 
test procedures, such as methods A and B, are applied to the same sam- 
ples, for instance when validating a proposed procedure with respect to the 
accepted one. In practicular, an official content uniformity43 assay might pre- 
scribe a photometric measurement (extract the active principle from a tablet 



50 UNIVARIATE DATA 

and measure the absorbance at a particular wavelength); a new HPLC pro- 
cedure, which would be advantageous because it would be selective and the 
extraction step could be replaced by a simple dissolution/filtration step, is 
proposed as a replacement for the photometric method. In both methods the 
raw result (absorbance resp. peak area) is first converted to concentration 
units to make the values comparable. Tests are conducted on 10 tablets. The 
following statistics are calculated: 

The average d and Sd are calculated according to Eqs. ( I .  1 )  resp. (1.5). t = 
d /sd  is compared to the tabulated t-value for f = n - 1. 

Example 13: Consider the following data: x ( )  = 1.73, 1.70, 1.53, 1.78, 
1.71; y ( )  = 1.61, 1.58, 1.41, 1.64, 1.58. One finds x,,,, = 1.690, s, = 0.0946, 
ymea, = 1.564, and sy = 0.0896: the F-value is 1.11, certainly not higher 
than the F ,  = 3.2 critical value for p = 0.05; the two standard deviations are 
recognized as being indistinguishable. 

0 If, despite the fact that the x and the y values are paired, a t-test was 
applied to the difference (x,,,, - y,,,,) using the standard deviations 
sd = 0.0583 according to Eq. (1.18), a t-value of 2.16 would be found, 
which is smaller than the critical t,(2n - 2) = 2.306. The two series thus 
could not be distinguished. The overall mean, found as 1.63, would be 
advanced. 

0 An important aspect, that of pairing, had been ignored in the preceding 
example; if it is now taken into account (proviso: x ( i )  and y ( i )  are related 
as in “ith sample pulled from ith powder mixture and subjected to both 
PM and HPLC analysis, i = 1 . . . n”, etc.), a standard deviation of the 
differences of Sd = 0.0089 is found according to Eq. (1.3). With the 
average difference being d = 0.126, this amounts to a relative standard 
deviation of about 7.196, or a t d  = 14.1, which is clearly much more 
significant than what was erroneously found according to case 61, viz., 
t , (4,  0.05) = 2.77. 

The example demonstrates that all relevant information must be used; ignor- 
ing the fact that the PM and HPLC measurements for i = 1 . . . 5 are paired 
results in a loss of information. The paired data should under all circumstances 
be plotted (Youden plot, Fig. 2.1, and Fig. 1.23) to avoid a pitfall: it must be 
borne in mind that the paired t-test yields insights only for the particular (addi- 
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tive) model examined (see Section 1.5.6), that is, for the assumption that the 
regression line for the correlation PM vs. HPLC has a slope b = 1, and an 
intercept LZPM,HPLC that is either indistinguishable from zero (Ho),  or is sig- 
nificantly different ( H I ) .  If there is any systematic, nonadditive difference 
between the methods (e.g., interferences, slope b # 1 ,  nonlinearity, etc.), 
a regression might be more appropriate (Section 2.2.1). Indeed, in the pre- 
vious example, the data are highly correlated. (sres = f0.0083, r2 = 0.994; 
see Chapter 2.) Using case bl ,  the overall variance is used without talung 
into account the correlation between x and y ;  for this reason the standard 
deviation of the difference xmean ~ yme, according to case b l  is much larger 
than the residual standard deviation (f0.0583 vs. f0.0083), or the standard 
deviation of the mean difference 50.0089. A practical example is given in 
Section 4.14. 

Y 

I .a 

1 .? 

1 .G 

1.5 

1.4 

1.3 

theoretical experimental slope is 
correlation / ' indistinguishable from 1 .OO 

+/- 0.0179 

differences X - Y 
vs. index; 
mean +/-SD 

+/- 0.0946 
I l l 1  

I .5 1.8 

Figure 1.23. Standard deviations in the case of correlated data sets. In the case shown, doing 
the calculations without taking the correlation into consideration results in the SDs given at 
left; SD, appears much larger than expected. When this is recognized, the SD for the difference 
In-yJ or for I y-XI is calculated (at right) and is seen to conf'om much better with experience. 



52 UNIVARIATE DATA 

The same is true if another situation is considered: if in a batch pro- 
cess a sample is taken before and after the operation under scrutiny, say, 
impurity elimination by recrystallization, and both samples are subjected 
to the same test method, the results from, say, 10 batch processes can 
be analyzed pairwise. If the investigated operation has a strictly additive 
effect on the measured parameter, this will be seen in the t-test; in all 
other cases both the difference Axmean and the standard deviation s, will be 
affected. 

Subcase b3: When nl and n2 are not equal the degrees of freedom are 
calculated asf = nl + 112 - 2 for the variance of the difference. Up to this 
point a random pick of statistics t e ~ t b o o k s ~ ~ , ~ ~ ~  shows agreement among 
the authors. The pooled variance is given in Eq. (1.14) where the numerator 
is the sum of the squares of the residuals, taken relative to x,,,, 1 or x,,,,,~, 
as appropriate. Some authors simplify the equation by dropping the “-1” 
in “n ~ 1,” under the assumption n >> 1 (Eq. 1.16), something that might 
have been appropriate to do in the precomputer era in order to simplify the 
equations and lessen the calculational burden. 

In order to get the variance v d  of the difference of the means d,  a way 
must be found to multiply the pooled variance V, by a number akin to l / n ,  
as in Eq. (1.22). A formula is proposed, namely v d  = Vp.( I/nl+ l/nZ). Other 
authors take the sum of the variances of the means, v d  = Vl/nl + Vz/n;? (Eq. 
1.15). 

It is evident that there is no simple, universally agreed-upon formula for 
solving this problem. For practical applications, then, if t is much different 
from t, , any one of the above equations will do, and if t is close to fc, or if 
high stakes are involved in a decision, more experiments (to achieve equality 
nl = n2) might be the best recourse. (See subcase bl . )  

Case c: Subcase b3 is an indication of the difficulties associated with test- 
ing hypotheses. There is no theory available if s~ # s ~ ;  testing for differences 
under these premises is deemed improper by some,“4 while others46,47,49 pro- 
pose a simple equation for the variance of the difference [see Eq. (1.21)] and 
a very complicated one forf [see Eq. (1.22)], where vd is as before and Qf 
= (V, /nf)2/(nf  f 11, i = 1, 2. 

The ambiguity over the sign in the denominator is due to the fact that both 
versions, (n,  ~ 1)46 and (n, + 1),47.49 are found in the literature (“+” resp. “- ” 
behind the equation number (1.22) indicate the sign used in the denominator). 
Equation (1.22-) appears to be correct; Eq. (1.22+) might have arisen from 
transcription errors. 

Some numerical examples will illustrate the discussed cases. Means and 
standard deviations are given with superfluous significant figures to allow 
recalculation and comparison. 
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Case bl : 
Table 1.7. Case b l  

Data xmean, I = 101.26 sx, 1 = 7.328 nl  = 7 Interpretation: 
xmean,2 = 109.73 sx,2 = 4.674 n2 = 7 

F-test F = 2.46 Fc = 4.29 HO 
t-tests Eq. (1.18) t = 2.58 H1 

Eq. (1.19) t = 2.58 H1 
Eq. (1.20), f = 12 tc = 2.18 

Comment: The two standard deviations are similar enough to pass the 
F-test, and the data are then pooled. The difference Xmean, 1 - X,,,,, 2 is sig- 
nificant. Eq. (1,14) gives the same results; if Eq. (1.16) had been applied, t 
= 2.387 would have been found. 

Case b3: 
Table 1.8. Case b3 

Data Xmean,~ = 101.26 sX,1 = 7.328 n l  = 6 Interpretation: 
Xmean,2 = 109.73 sX,2 = 4.674 n2 = 8 

F-test F = 2.46 Fc = 3.97 HO 
t-tests Eq. (1.14) t = 2.65 H1 

Eq. (1.15) t = 2.48 HI  
Eq. (1.16) t = 2.44 HI 
Eq. (1.17), f = 12 tc = 2.18 

Comment: The same as for case h l ,  except that 1z1 and n2 are not the 
same; the different models arrive at conflicting t-values, but with identical 
interpretation; H I  can thus be accepted. 

Case 3: 
Table 1.9. Case c 

Data xmean, 1 = 101.26 sx, 1 = 8.328 nl = 7 Interpretation: 

F-test F = 4.39 Fc = 4.29 H1 

Eq. ( I  .22+), f = 9 tc = 2.26 Hi 
Eq. ( I  .22-), f = 6 tc = 2.45 HO 
Eq. (1.23), f = 8 tc = 2.31 H1 

Xme,n,2 = 109.73 sX,2 = 3.674 n2 = 7 

t-tests Eq. (1.21) t = 2.43 
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Comment: All models yield the same t-value, but differ in the number of 
degrees of freedom to be used. The difference between the means is barely 
significant in two cases. Suggestion: acquire more data to settle the case. 
Program TTEST automatically picks the appropriate equation(s) and displays 
the result(s). Equation (1.21) is used to scan the parameter space (xmean, s,, 
n) in the vicinity of the true values to determine whether a small change 
in experimental protocol (n) or measurement noise could have changed the 
interpretation from Ho to H I  or vice versa. 

1.5.3 Extension of the &Test to More 
Than Two Series of Measurements 

The situation of having more than two series of measurements to compare is 
frequently encountered. One possibility resides in doing a t-test as discussed 
above for every pairing of measurement series; this not only is inefficient, but 
also does not answer the question of whether all series belong to the same pop- 
ulation. The technique that needs to be employed is discussed in detail later 
(Section 1.5.4) and is fully integrated into program MULTI. The same “how- 
to” format of questions and instructions is used as previously. 

Data. Several groups of ni replicate measurements of a given property on 
each of m different samples (for a total of n = C(ni) .  The group sizes ni need 
not be identical. 

Question 1. Do all m groups have the same standard deviation? 
To answer this, do the Bartlett test (Section 1.7.3). If there is one group 

variance different from the rest, stop testing and concentrate on finding and 
eliminating the reason, if any, for 

Systematic differences in the application of the measurement technique 

Inhomogeneities and improper sampling techniques, or 
Chance result ( s , ~  -- 0) due to digitization effects (cf. Fig. 1.21, case F ) ,  
if all measurements collapse on one or two levels, etc. 

used, or 

If the variances are indistinguishable, continue by pooling them (V l ,  
Tables 1.14 and 1.15). 

Question 2. Do all m groups have the same mean? 

the group means in excess of what is expected due to chance alone. 
Do the simple ANOVA test (Section 1.5.6) to detect variability between 
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If no excess between-group variance is found, stop testing and pool all 
values, because they probably all belong to the same population. If significant 
excess variance is detected, continue testing. 

Question 3. Which of the m groups is significantly different from the rest? 
Do the multiple-range test (Section 1.5.4) to find sets of means that are indis- 
tinguishable among themselves; it may occur that a given mean belongs to 
more than one such set of similar means. 

Note concerning question 2: For m groups of objects that all belong to 
one population, the means x,,,,, 1 ,  . . . xmean,, are expected to be distributed 
as a ND with a SD equal to the average within-group SD divided by the 
square root of the average group size; if excess variance is detected, then 
this is interpreted as being due to one or more of the group means differing 
significantly from the rest. 

1.5.4 Multiple-Range Test 

A setting that turns up quite often is the following: A series of m batches 
of a given product have been produced, and a certain parameter, such as the 
content of a particular compound, was measured n, times for each batch. The 
largest and the smallest means, X,,,,, max resp. Xmea,, mi,, appear to differ sig- 
nificantly. Which of the two is aberrant? A simple t-test cannot answer this 
question. The multiple-range test combines several t-tests into one simulta- 
neous test.50 

Provided that the m variances V, = sJ’ are roughly equal (Bartlett’s test, see 
Section 1.7.3), the m means are ordered (cf. subroutine SORT, Table 5.17). 
The smallest mean has index 1, the largest has index m. A triangular matrix 
(see Tables 4.9, 4.10) is then printed that gives the m . (m - 1)/2 differences 
 AX,^^,,^^, = Xmean,u - x,,,,,, for all possible pairings. Every element of the 
matrix is then transformed into a q-value as 

f = C(n,) - m, D is identical to V1 in Section I S.6 

The calculated q-value must be compared to a critical q that takes account 
of the “distance” that separates the two means in the ordered set: if x , , ~ , ~ ~  

and x,,,,,, are adjacent, the column labeled “2” in Table 1.11 must be used, 
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Table 1.11. Critical q-Values for Two Means with Index Number Differences 
of 2,3,10, Resp. 20 

Difference Iu - U I  + 1 
Degr. of 
Freedom 2 3 10 20 

1 17.97 17.97 17.97 17.97 
2 6.085 6.085 6.085 6.085 

10 3.151 3.293 3.522 3.526 
M 2.772 2.918 3.294 3.466 

and if x,,,, and x,,,, are separated by eight other averages, the column 
labeled “10’ is used. 

Critical q-values for p = 0.05 are a ~ a i l a b l e . ~ ~ , ~ ’  In lieu of using these 
tables, the calculated q-values can be divided by the appropriate Student’s 
t ( f ,  0.05) and z/z and compared to the reduced critical q-values (see Table 
1.12), and data file QRED-TBL.dat. A reduced q-value that is smaller than 
the appropriate critical value signals that the tested means belong to the same 
population. A fully worked example is found in Chapter 4, Process Valida- 
tion. Data file MOISTURE.dat used with program MULTI gives a good idea 
of how this concept is applied. MULTI uses Table 1.12 to interpolate the cut- 
off point for p = 0.05. With little risk of error, this table can also be used 
for = 0.025 and 0.1 (divide q by t ( f ,  0.025) . z/z respectively t ( f ,  0.1) . 
&as appropriate. 

The MRT procedure can be applied to two-dimensional data if there is 
reason to suspect that length- or cross-wise effects operate. For example, a 
coating process could periodically change the thickness along the length of 
the web if the rollers are slightly excentric, and could vary systematically 
across the width of the web if the rollers deviated from cylindrical shape or 
the coating gap were different on one side of the web from the other; for an 
example, see file COAT-WEB.dat. Use program DATA to transpose rows 
and columns. 

1.5.5 Outlier Tests 

The rejection of “outliers” is a deeply rooted habit; techniques range from 
the haughty “I know the truth’’ attitude, to “looks different from what we are 
used to, somebody must have made a mistake”, to attempts at objective proof 
of having observed an aberration. The first attitude is not only unscientific, 
but downright fraudulent if “unacceptable” values are discarded and forgot- 
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Table 1.12. Reduced Critical ¶-Values 

Degrees 
Of 

Freedom 4 6 8 10 12 16 18 20 40 

Separation ( u  ~ uI + 1 (Difference between index numbers + I )  

3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
5 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 
6 1.05 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 
7 1.06 1.08 1.09 1.09 1.09 1.09 1.09 1.09 1.09 
8 1.07 1.09 1.10 1.10 1.10 1.10 1.10 1.10 1.10 
9 1.07 1.09 1.10 1.11 1.11 1.11 1.11 1.11 1.11 

10 1.07 1.10 1.11 1.12 1.12 1.12 1.12 1.12 1.12 
20 1.08 1.12 1.14 1.16 1.17 1.17 1.18 1.18 1.18 
40 1.08 1.13 1.15 1.17 1.19 1.20 1.21 1.21 1.22 
w 1.09 1.14 1.17 1.19 1.20 1.23 1.24 1.25 1.30 

ten, something that is forbidden under GMPs and would land the responsible 
person in court. 

The second perspective is closer to the mark: Measurements that appar- 
ently do not fit model or experience should always be investigated in the 
light of all available information. While there is the distinct possibility of 
a discovery about to be made, the other outcome of a sober analysis of the 
circumstances is more probable: a deviation from the experimental proto- 
col. If this is documented, all the better: the probable outlier can, in good 
conscience, be rejected and replaced by a reliable repeat result. 

Over the years an abundance of outlier tests have been proposed that have 
some theoretical rationale at their roots.20 Such tests have to be carefully 
adjusted to the problem at hand because otherwise one would either not 
detect true outliers (false negatives) in every case, or then throw out up to 
50% of the “good’ measurements as well (false pos i t ive~) .~J~  Robust meth- 
ods have been put forward to overcome this.52 Three tests will be described: 

1 .  A well-known test is Dixon’s: the data are first ordered according to 
size, and a range ( X I  +, - x,) and a subrange (x, ~ i - x,) are compared. 
The ease of the calculations, which probably strongly contributed to the 
popularity of this test, is also its weakness: since any out of a number 
of subrange ratio models (combinations of i andj)  can be chosen, there 
is an arbitrary element involved. Obtaining numerically correct tables 
of critical quotients for convenient values of p is a problem; the use of 
this test is increasingly being d i s c ~ u r a g e d . ~ ~ , ~ ~  The Dixon tests build 
on and are subject to the stochastic nature of range measures; they use 
only a small portion of the available information and lack ruggedness. 
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Example 14: For x ( )  = 1.53, 1.70, 1.71, 1.73, and 1.78, D = (1.53 
- 1.70) t 11.53 - 1.781 = 0.680, Dcrit = 0.642 ( p  = 0.05); as a matter 
of fact, this result is significant on the p = 0.035 level. 

2. As in the case of the detection limit (Section 2.2.7), one commonly 
used algorithm is based on the theory that any point outside fz . s, is 
to be regarded as an outlier; if recalculation of x,,, and s, without 
this questionable point confirms the decision, the “outlier” is to be cast 
out. The coefficient z is often fixed at 2.0 or 3.0; the f-function (see 
the two thin curves in Fig. 1.24) and other functions have also been 
proposed. An obvious disadvantage of these approaches is that extreme 
values strongly affect s,, and that more or less symmetrical “outliers” 
cannot be detected. 

Example 15: For the preceding data, x,,,, = 1.69 and s, = 0.0946 
(n = 5), which results in f = 1.69 (not significant). 

3. A wholly different approach is that of Huber,21 who orders the values 
according to size, and determines the median (cf. Section 1.1.1); then 
the absolute deviations Ix, - x,I are calculated and also ordered, the 
median absolute deviation (MAD) being found. MAD is then used as 
is s, earlier, the coefficient k being chosen to be between 3 and 5. This 
algorithm is much more robust than the ones described before. 

Example 16: because x, = 1.71 + MAD = 0.02 + k = 11.53 - 
1.711 + 0.02 = 9, which is significant. 

Example 17: The n = 19 values in Table 1.23 yield a median of 2.37, 
absolute deviations ranging from 0.00 to 2.99, and a MAD of 0.98. The coef- 
ficient k can be as low as 3.05 before a single point is eliminated (-0.614): 
Use data file HISTO.dat in conjunction with program HUBER. 

For the reasons described, no specific test will be advanced here as being 
superior, but Huber’s model and the classical one for z = 2 and z = 3 are 
incorporated into program HUBER; the authors are of the opinion that the 
best recourse is to openly declare all values and do the analysis twice, once 
with the presumed outliers included, and once excluded from the statisti- 
cal analysis; in the latter case the excluded points should nonetheless be 
included in tables (in parentheses) and in graphs (different symbol). “Out- 
liers” should not be labeled as such solely on the basis of a fixed (statistical) 
rule; the decision should primarily reflect scientific experience. l9 The justi- 
fication must be explicitly stated in any report; cf. Sections 4.18 and 4.19. If 
the circumstances demand that a rule be set down, it is best to use a robust 
model such as Huber’s; its sensitivity for the problem at hand, and the typi- 
cal rate for false positives, should be investigated by, for example, a Monte 
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Carlo simulation. Program HUBER rejects points on the basis of Huber’s 
rule and shows the results. For completeness, the means and standard devia- 
tions before and after the elimination are given, and the equivalent z-values 
for the classical mean f z.SD are calculated. The sensitivity of the elimina- 
tion rules toward changes in the k- resp. z-values are graphically indicated. 

An example, arrived at by numerical simulation, will be given here to 
illustrate the high probability of rejecting good data. Figure I .24 shows that 
the largest residual of every series is around 1 . s, for IZ = 3, around 2 . s, 
for n = 13, and close to 3 . s, for IZ = 30. This makes it virtually certain that 

L 

_- p=0.025 

LARGEST 
0 EVlATlO NS 

~ O P U L A ~ I O N  

0 10 20 30 40 ff 

Figure 1.24. Rejection of suspected outliers. A series of normally distributed values was gen- 
erated by the Monte Carlo technique; the mean and the standard deviation were calculated: 
the largest normalized absolute deviate (residual) z = Ixi ~ p Imax/s,, is plotted versus n (black 
histogram, all abs. deviates: gray histogram). The simulation was repeated rn = 20 times for 
every n = 2 . . . 40. The maximally possible z is given by the curve y = (n- 1)/&; however, 
y < 2 for n < 6 and y < 3 for n < 11 ! A rejection strategy denoted by ‘‘kz . s,” ( z  = 2 or 3) is 
implemented by drawing a horizontal line at y = 2 or 3. Repetitive application of this strategy 
can easily lead to the loss of 3-6 values out of n = 20, because after each elimination s, is 
reduced. Huber’s rule with limits set at xm k MAD, k = 3.5, rejects only about 1 out of n = 

20 values. The range R is not quite twice the largest residual, R = 2 . rmax; in this connection 
see Figure 1.3. 
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for a series of n > 10 measurements at least one will be rejected by a “ f 2  . 
sX” recipe, which only makes sense if the individual measurement is to be had 
at marginal cost. Rejection rates become higher still if the observation is taken 
into account that experimental distributions tend to be broader-tailed than the 
normal distribution; a t-distribution f o r t =  4 to 9 is said to give the best fit.20 
(See Figs. 1.14 and 1.29.) The distributions for the extreme (black) and all 
(gray) deviations were simulated for n = 20; the frequency scales are different! 

Because outlier elimination is something that is not to be taken lightly, 
the authors have decided to not provide on-line outlier deletion options in 
the programs. Instead, the user must first decide which points he regards as 
outliers, for example, by use of program HUBER, then start program DATA 
and use options (Edit) or (Delete Row), and finally create a modified data 
file with option (Save). This approach was chosen to reinforce GMP-like 
procedures and documentation. 

The situation of the pharmaceutical industry is today governed by the 
Barr ruling. The foregoing suggestions concerning the use of outlier tests 
are expressly aimed only at those users and situations not subject to the Barr 
ruling. 

Since the 1993 court decision against Barr Labora tor ie~ ,~~ the elimina- 
tion of outliers has taken on a decidedly legal aspect in the U.S. (any non- 
U.S. company that wishes to export pharmaceuticals or precursor products 
to the U.S. market must adhere to this decision concerning out-of-specifica- 
tion results, too); the relevant section states that “. . . An alternative means to 
invalidate an individual 00s result . . . is the (outlier test). The court placed 
specific restrictions on the use of this test. (1)  Firms cannot frequently reject 
results on this basis, (2) The USP standards govern its use in specific areas, 
( 3 )  The test cannot be used for chemical testing results . . . .” A footnote 
explicitly refers only to a content uniformity test,55 but it appears that the 
rule must be similarly interpreted for all other forms of inherently precise 
physicochemical methods. For a possible interpretation, see Section 4.24. 

1.5.6 Analysis of Variance (ANOVA) 

Analysis of variance (ANOVA) tests whether one group of subjects (e.g., 
batch, method, laboratory, etc.) differs from the population of subjects inves- 
tigated (several batches of one product; different methods for the same 
parameter; several laboratories participating in a round-robin test to validate 
a method, for examples see Refs. 5 ,  9, 21, 30. Multiple measurements are 
necessary to establish a benchmark variability (“within-group”) typical for 
the type of subject. Whenever a difference significantly exceeds this bench- 
mark, at least two populations of subjects are involved. A graphical analogue 
is the Youden plot (see Fig. 2.1). An additive model is assumed for ANOVA. 
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The type of problem to which ANOVA is applicable is exemplified as fol- 
lows: Several groups of measurements are available pertaining to a certain 
product, several repeat measurements having been conducted on each batch. 
The same analytical method was used throughout (if not, between-group vari- 
ance would be distorted by systematic differences between methods: this prob- 
lem typically crops up when historical data series are compared with newer 
ones). Were one to do t-tests, the data would have to be arranged according 
to the specific question asked, i.e., “do batches 1 and 2 differ among them- 
selves?”: tests would be conducted according to cases b l  or b3. 

The question to be answered here is not “do batches x and y differ?”, 
but “are any individual batches different from the group as a whole?’. The 
hypotheses thus have the form: 

Since a series of t-tests is cumbersome to carry out, and does not answer 
all questions, all measurements will be simultaneously evaluated to find dif- 
ferences between means. The total variance (relative to the grand mean XGM) 

is broken down into a component V I  “variance within groups,” which cor- 
responds to the residual variance, and a component V Z  “variance between 
groups.” If Ho is true, V1 and V2 should be similar, and all values can be 
pooled because they belong to the same population. When one or more means 
deviate from the rest, V2 must be significantly larger than V1. 

Table 1.13. Equations for simple ANOVA 

The following variables are used: 
m: number of groups, 
j -= 1 . . .  m 
nj: number of measurements in group j 
n: total number of measurements 
x i j :  i-th measurement in j-th column 
The following sums are calculated: 

e.g., m = 5 in Table 1.15 

(column j )  

CCnj) 

uj C ( x i j )  sum over all measurements in (1.26) 

uri CCuj) sum over all n measurements (1.27) 
group j 

(m groups) 

Since the total number of degrees of freedom must be n - 1, and m groups 
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Table 1.13. (Continued) 

mean over group j 
grand mean 

x ~ M ) ~ )  sum of weighted squares 
sum of squares of residuals 

relative to the appropriate 
group mean Xmean,j 

ri = xij - xmem,j 
total sum of squares 
degrees of freedom within 

degrees of freedom between 
groups 

groups 

(1.28) 
(1.29) 
(1.30) 
(1.31) 

(1.32) 
(1.33) 
(1.34) 

(1.35) 

are defined, there remain n - 1 - (m ~ 1 )  = n - m degrees of freedom for 
within the groups (see Tables 1.14 and 1.15). 

For the data given in Table 1.15, an ANOVA calculation yields the results 
shown in Table 1.16. 

V1 and V2 are subjected to an F-test (see Section 1.6.1) to determine 
whether Ho can be retained or not. Since V2 must be larger than V1 if H I  
is to hold, F = V2/V1; should V2 be smaller or equal to V1, then H1 could 
be rejected without an F-test being performed. V2 can be smaller than V1 
because of calculational artifacts. 

If Ho were to be retained, the individual means x ~ ~ ~ , ~  could not be dist- 
inguished from the grand mean XGM; VT would then be taken as the average 
variance associated with XGM and n - 1 degrees of freedom. 

Interpretation of Table 1.16: Since V2 is significantly larger than V1, the 
groups cannot all belong to the same population, Therefore, both the grand 
mean XGM, which is equal to 219.93 + 35 = 6.28, and the associated stan- 
dard deviation J(49.28 + 34) = f1.2 are irrelevant. The question of which 

Table 1.14. Presentation of ANOVA Results 

Sum of Squares Degrees of Freedom Variance Comment 
_. . 

s1 f l = n - m  V1 = Sl/ f  1 variance within groups 
+s2 f 2 = m - l  V2 = S2/f 2 variance between groups 

= ST f T = n -  1 V T  = ST/f T total variance 



64 UNIVARIATE DATA 

Table 1.15. Raw Data and Intermediate Results of an ANOVA Test for 
Simulated Data. (Eq. 1.30) 

Group j 

1 2 3 4 5 

index 1 7.87 6.35 4.65 8.74 5.29 
i = 2 6.36 7.84 5.06 6.02 6.03 

3 5.73 5.31 6.52 6.69 6.06 
4 4.92 6.99 6.51 7.38 5.64 
5 4.60 8.54 8.28 5.82 4.33 
6 6.19 . 4.45 6.88 5.39 
7 5.98 . 8.65 5.85 
8 6.95 . 6.55 5.51 

6.08 7.01 5.91 7.09 5.51 group mean 
1.05 1.26 1.47 1.10 0.56 group standard 

deviation 
8 5 6 8 8 number of 

measurements 
48.60 35.03 35.47 56.73 44.10 sum 

7.72 6.35 10.80 8.47 2.20 sum of squared 

0.33 2.64 0.83 5.21 4.78 sum of weighted 
residuals 

squares 

sum 

Xmean,j: 
3 1.60 

sj 

nj: 35 

U j  : 

s1: 

s2 : 

219.9 

35.52 

13.76 
- 

means are indistinguishable among themselves and different from the rest is 
answered by the multiple range test. 

Other forms of ANOVA: The simple ANOVA set out above tests for the 
presence of one unknown factor that produces (additive) differences between 
outwardly similar groups of measurements. Extensions of the concept allow 
one to simultaneously test for several factors (two-way ANOVA, etc.). The 

Table 1.16. Results of an ANOVA Test 

Sum of Squares Degrees of Freedom Variance Comment 

35.520 30 I. 184 variance within groups 
13.763 4 3.441 variance between groups 
49.283 34 1.450 total variance 

F-test: 3.441/1.184 = 2.91 
The “null” hypothesis is rejected because 2.91 > 2.69. 

F,(4,30,0.05) = 2.69 



NUMBER OF DETERMINATIONS 65 

limit of ANOVA tests is quickly reached: they do not provide answers as to 
the type of functional relationship linking measurements and variables, but 
only indicate the probability of such factors being present. Thus, ANOVA 
is fine as long as there are no concrete hypotheses to test, as in explorative 
data analysis, cf. Section 2.1. 

1.6 NUMBER OF DETERMINATIONS 

Up to this point it was assumed that the number of determinations n was 
sufficient for a given statistical test. During the discussion of the t-test (case 
a), an issue was skirted that demands more attention: Is xmem different from 
P? 

1. If the question refers to the expectation E(xmean) = p for IZ + 00, finding 
a difference could mean a deficiency in a theory. 

2. On the other hand, if E(x,,,) I L, where L is an inviolable limit, 
finding “xmean greater than L” could mean the infraction of a rule or an 
unsalable product. In other words, L would here have to be significantly 
larger than x,,,, for a high probability of acceptance of the product in 
question. 

It is this second interpretation that will occupy us for a moment. Two 
approaches to specification limits, SL, need to be considered: 

2a. The more legalistic reasoning postulates fixed SL with method 
specifics (instrumentation, n, sx, etc.) already taken account of. Mea- 
surements therefore either conform or do not. All pharmacopeial spec- 
ifications are set up this way, which means a measurement stands as 
documented. 

2b. The statistical approach is to ask: “what is the risk of failing the quality 
clause in the contract?” and calculating the p-value; the quality clause 
was set without a specific method or procedure in mind. 

Thus, even under Regime 2a, the manufacturer will set in house limits 
(IHL) that are sufficiently narrow to reduce the risk of a “recall from mar- 
ket” (and all the attendant publicity) to very low levels. (See Fig. 2.13.) The 
risk resides in the possibility that a customer or a regulatory body reanalyzes 
samples and declares “fails” even if the manufacturer’s QC lab found “com- 
plies.” Many things could be at fault in either location, such as equipment, 
operator training, availability of proper standards, etc., but once a suspicion 
is raised in public, industrial science takes a back seat. 
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Number of necessary 
determinations n 
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Figure 1.25. The number of measurements n that are necessary to obtain an error probability 
p of xmean exceeding L is given on the ordinate. The abscissa shows the independent variable 
Q in the range L ~ 3 J, . , . L in units of s,. It is quite evident that for a typical p of about 
0.05, xmean must not be closer than about 0.5 standard deviations s, from L in order that the 
necessary number of repeat measurements remains manageable. The enhanced line is for p = 
0.05; the others are for 0.01 (left), 0.02, and 0.1 (right). 

Replacing p in Eq. 1.13 by L yields 

Most likely, Student's t ,  will be fixed by an agreed-on confidence level, 
such as 9596, and L by a product specification; E(xmean) is the true value of 
the parameter. The analyst has the option of reducing s, or increasing n in 
order to augment the chances of obtaining a significant t. The standard devi- 
ation s, is given by the choice of test method and instrumentation, and can 
be influenced to a certain extent by careful optimization and skillful working 
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habits. The only real option left is to increase the number of determinations 
n. A look at Table 1.3 and Eq. 1.36 reveals that the critical t-value, t,, is a 
function of n, and n is a function of t,; thus a trial-and-error approach must 
be implemented that begins with a rough estimate based on experience, say, 
n = 5 ;  t is calculated for given x,,,, L, and s, and compared to the tabu- 
lated t,. Depending on the outcome, n is increased or decreased. The search 
procedure can be automated by applying the polynomial t = f ( n  - 1) from 
Section 5.1.2 and increasing n until t > t,. The idea behind this is that t is 
proportional to 4, and t ,  decreases from 12.7 (n = 2) to 1.96 (n  = -) for 
a 97.5% one-sided confidence level. Note that a one-sided test is applied, 
because it is expected that x,,,, < L. Equation (1.36) is rearranged to yield: 

The quotient Q is fixed for a given situation. The problem could also be 
solved graphically by drawing a horizontal at y = Q in Figures 1.17 or 1.19 
and taking the intercept as an estimate of n. The necessary number of repeat 
determinations n is depicted in Figure 1.26. 

Example 18: Consider the following situation: The limit is given by L = 

100, and the experimental average is x,,,, = 90; how many measurements n 
are necessary to find a significant difference between L and xmean (Eq. 1.13, 
Table 1. lo)? The error probability can be p = 0.25 . . . 0.00005 (one-sided) 
and the experimental standard deviation is f O . l  . . . +200. (See Table 1.17.) 

Example 19: For s, = f5 and an error probability of falsely accepting H I  
of p = 0.005 would require n 2 6 because 

for n = 6, t = 4.0321, CL = 90 + 5.4.0321 + v'% = 98.23, and 

for n = 5 ,  t = 4.6041, CL = 90 + 5.4.6041 + z/s = 100.30. 

The following statements are equivalent to each other: 

The upper confidence limit CL,(xmean = 90) is less than 100. 
The true value p is in the interval x = 80 (of no interest here) . . . 100 

The null hypothesis Ho: p < L has a probability of more than 99.5% of 

The probability of p being larger than L is less than 0.5% or p I 0.005. 

with a probability of at least 99% (100 ~ 2 . 0.5 = 99). 

being correct. 
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Figure 1.26. Confidence limits of the standard deviation for p = 0.05 and f = 1 . . . 100. The 
,f-axis is logarithmically transformed for a better overview. For example, at n = 4, the true 
value is expected between 0.62 and 2.92 times the experimental sX. The ordinate is scaled 
in units of sl. 

Table 1.17. The Number of Determinations n Necessary to Achieve a Given 
Discrimination 

J~ = 0.1 0.2 0.5 1 2 5 10 20 50 100 200 

p = 0.25 
0.1 
0.05 
0.025 
0.01 
0.005 
0.001 
0.0005 
0.00005 

2 2 2 2 2 2 2 3 13 
2 2 2 2 2 3 4 9 43 
2 2 2 2 2  3 5 1 3  70 
2 2 2 2 3  4 7 1 8  99 
2 2 3 3 3  5 9 2 5 1 3 9  
2 2 3 3 4 6 11 31 171 
3 3 3 4 5 7 15 44 244 
3 3 3 4 5 8 17 50 271 
3 4 4 5 6 11 23 69 360 

47 183 
166 659 
273 1084 
387 1538 
546 2172 
673 2679 
960 3824 

1087 4330 
1392 5518 
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Because for n = 6 (f = 5) ,  the critical t-factor is 4.0321, 99% of the 
individual measurements (two-sided) would be expected in the interval 
69.8 . . . 110.2. 
with n = 6 andf= 5 ,  t 1 (100 ~ 90) + 5 = 2, and the critical t(f = 5 ,  p 
= 0.05, one-sided) = 2.0150; thus, about 1 - 0.05 = 0.95 (95%) of all 
individual measurements would be expected to be below 100.0. 

1.7 WIDTH OF A DISTRIBUTION 

As was discussed in Section 1.1.2, there are several ways to characterize 
the width of a distribution: 

1. From a purely practical point of view the range or a quantile can serve 
as indicator. Quantiles are usually selected to encompass the central 
60-90% of an ordered set; the influence of extreme values diminishes 
the smaller this %-value is. No assumptions as to the underlying dis- 
tribution are made. 

2. Theoretical models are a guide in setting up rules and conventions for 
defining a distribution’s width, the standard deviation being a good 
example. Simply the fact of assuming a certain form of distribution, 
however, undermines whatever strength resides in the concept, unless 
theory and fact conform. 

Measured distributions containing less than 100 events or so just as likely 
turn out to appear skewed as symmetrical, c.f. Fig. 1.10. 

For this reason alone the tacit assumption of a normal distribution when 
contemplating analytical results is understandable, and excusable, if only 
because there is no practical alternative (alternative distribution models 
require more complex calculations, involve more stringent assumptions, or 
are more susceptible to violations of these basic assumptions than the rela- 
tively robust normal distribution). 

1.7.1 The F-Test 

The F-test is based on the normal distribution and serves to compare either 

An experimental result in the form of a standard deviation with a fixed 

Such an experimental result with a second one in order to detect a dif- 
limit on the distribution width, or 

ference. 
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Both cases are amenable to the same test, the distinction being a matter 
of the number of degrees of freedomf. The F-test is used in connection with 
the t-test. (See program TTEST.) 

The test procedure is as follows: 

Table 1.18. Calculation of a F-test Statistic 

Test Distribution Reference Distribution 

Standard deviation SI = Jv, s r = J v ,  
Degrees of freedom f t  f r  
Null hypothesis Ho the standard deviations st and s, are indistinguishable 
Alternative hypothesis H i  st and s, are distinguishable on the confidence level 

Test statistic F = Vt/Vr or F = V,/Vt 2 1.00 Eq. (1.38) 
Nomenclature 

given by p 

F = Vi/V2 withfl resp. f 2  degrees of freedom 

The critical value F, is taken from an F-table or is approximated (cf. 
Section 5.1.3); if 

F > F,: accept H I ,  reject Ho 

F I F,: retain Ho, reject Hi (1.39) 

F,. depends on three parameters: 

1. The confidence level p must be chosen beforehand; most statistical 
works tabulate F, for only a few levels of p ,  0.05, 0.02, and 0.01 being 
typical. 

2. The number of degrees of freedomf, is given by the test procedure, 
and can be influenced: Since the analyst for technical reasons ordinarily 
has only a limited set of analytical methods to choose from, each with 
its own characteristics, the wish to increase the confidence in a decision 
can normally only be achieved by drastically increasing the number of 
measurements. 

3. The number of degrees of freedomf, is often an unalterable quantity, 
namely 

3a. f r  is fixed if the reference measurements originate from outside one's 
laboratory, e.g., the literature, 

3b. f r  = 00 if the limit is theoretical or legal in nature. 
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Example 20: To illustrate the concept ( p  = 0.05 will be used): 

1. A reference analytical method, for which much experimental evidence 
is at hand, shows a standard deviation s, = k0.037 with n, = 50. A few 
tests with a purportedly better method yield st = k0.029 for 

F = (0.037 + 0.029)2 = 1.28 

0 F ,  
On this evidence no improvement is detectable. If-for whatever 
reason-the reference method is to be proven inferior, for the same 
F ratio, over 45 measurements with the better method would be nec- 
essary ( F ,  is larger than 1.28 i f f l  = 49 and f 2  is less than 4.3, or, 
alternatively, 
st would have to be brought down to less than k0.0155 ((0.037 + 
0.0155)2 = 5.7) in order to achieve significance for the same num- 
ber of measurements. (Note: For a small series of measurements, 
tight control and a little bit of correlation (mostly the later measure- 
ment’s dependence on the earlier ones), very low repeatabilities can 
be achieved (see file CONV.xls and program CONVERGE); the jus- 
tification for switching methods should be based on reproducibilities, 
not repeatabilities. 

2. A system suitability test prescribes a relative standard deviation of not 
more than 1% for the procedure to be valid; with x,,,, = 173.5 this 
translates into V, = (1.735)*; because the limit is imposed, this is equiv- 
alent to having no uncertainty about the numerical value, or in other 
words, f , = 00. Since st was determined to be f2.43 for n1 = 7: 

F = (2.43 5 1.735)2 = 1.96 and F,(0.05, 6, -) = 2.1. 
Statistically, the two standard deviations cannot be distinguished. 

rn Assuming the f l% limit was set down in full cognizance of the statis- 
tics involved, the system suitability test must be regarded as failed 
because 2.43 > 1.74. This would be the legalistic interpretation under 
GMP rules. Statistically it would have made more sense to select the 
criterion as st I 0.01 . x,,, . ~F,(O.OS, f , , - )  for acceptance and 
demanding, say, n 2 5; in this particular case, st could have been as 
large as 3.6. 

5.7 forf l  = 49, f 2  x 4 

Unfortunately, few chemists are aware of the large confidence interval a 
standard deviation carries (see Section 4.34) and thus are prone to setting 
down unreasonable specifications, such as the one in the previous example. 
The only thing that saves them from permanent frustration is the fact that 
if n is kept small enough, the chances for obtaining a few similar results in 
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a row because of tight correlation between them, and hence a small s x ,  are 
relatively good. (See Fig. 1.24.) 

For identification, an excerpt from the F-table for p = 0.05 is given as 
follows: 

Table 1.19. F-Table for p = 0.05 

f 1 =  1 2 4 8 16 32 inf 

f 2  = 1 161.5 199.5 224.6 238.9 246.5 250.4 254.3 
2 18.51 19.00 19.25 19.37 19.43 19.46 19.50 
4 7.709 6.944 6.388 6.041 5.844 5.739 5.628 
8 5.318 4.459 3.838 3.438 3.202 3.070 2.928 

16 4.494 3.634 3.007 2.591 2.334 2.183 2.010 
32 4.149 3.295 2.668 2.244 1.972 1.805 1.594 
inf 3.842 2.996 2.372 1.938 1.644 1.444 1.000 

1.7.2 Confidence Limits for a Standard Deviation 

In Section 1.3.2, confidence limits are calculated to define a confidence 
interval within which the true value p is expected with an error probability 
of p or less. 

For standard deviations, an analogous confidence interval CI(s,) can be 
derived via the F-test. In contrast to CI(xmean), CI(s,) is not symmetrical 
around the most probable value because s, by definition can only be positive. 
The concept is as follows: an upper limit, su ,  on s, is sought that has the 
quality of a very precise measurement, that is, its uncertainty must be very 
small and therefore its number of degrees of freedom f must be very large. 
The same logic applies to the lower limit ,s/: 

Table 1.20. Calculation of Confidence Limits for a Variance 

The true standard deviation u, is expected inside the confidence interval 
with a total error probability 2 . p (in connection CI(s,) = 6 . . . 

with F and x2, p is taken to be one-sided). 
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F-values can be calculated according to Section 5.1.3 and X2-values 
according to Section 5.1.4 (see also programs MSD and CALCVAL); both 
could also be looked up in the appropriate tables. 

Example21:Lets,= 1 . 7 , n = 8 , f - 7 , 2 . p = O . l , a n d p = 0 . 0 5 :  

Table 1.21. Numerical Example for CL(s,) 

Tabulated value Tabulated value Control, see Eq. (1.41) 

F(7, 00, 0.05) = 2.0096 
F(m, 7, 0.05) = 3.2298 
sl = 1.7/J20096 = 1.2 
su = 1.7. J32298 = 3.0 

x2(7, 0.05) = 14.067 
x2(7, 0.95) = 2.167 

14.067/7 = 2.0096 
7/2.167 = 3.2298 

Thus with a probability of 90% the true value E(s,) = u, is within the 
limits: 1.2 I ox I 3.0. For a depiction of the confidence limits on s, for a 
given set of measurements and a range of probabilities 0.0002 5 p 5 0.2, see 
program MSD, option (Display Standard Deviation). 

1.7.3 Bartlett Test 

Several series of measurements are to be compared as regards the standard 
deviation. It is of interest to know whether the standard deviations could all 
be traced to one population characterized by u (Ho: no deviation observed), 
and any differences versus (T would only reflect stochastic effects, or whether 
one or more standard deviations belong to a different population ( H I :  dif- 
ference observed): 

Ho: u1 = o2 = . . . = om, and 

H 1 :  u1 # u2 = u3 = . . . = u,,etc. 

For example, a certain analytical procedure could have been repeatedly 
performed by m different technicians. Do they all work at the same level of 
proficiency, or do they differ in their skills? 

The observed standard deviations are s1, s2, s3, . . . s, and the correspond- 
ing number of degrees of freedom are f l  = I Z ~  - 1, . . . f m  = IZ, - 1, withfj 
larger than 2. The interpretation is formulated in analogy to Section 1.5.6. 

The following sums have to be calculated: 
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Table 1.22. Equations for Bartlett Test 

A = CCfl ’ V , )  sum of all residuals; (1.43) 

B - C(f1 ’ ln(V,)) (1.44) 
c = C(l/fl,  (1.45) 
D = Ccft) (1.46) 
Then 
E = D .  ln (A /D) -B  X 2  ( I .47) 
F = (C - 1/D)/(3 . m  - 3) + 1 ( 1.48) 

A/D is the total variance 

correction term 
G = E / F  corrected x’ (1.49) 

If the found G exceeds the tabulated critical value x 2 (  p, m ~ l), the null 
hypothesis Ho must be rejected in favor of H I :  the standard deviations do 
not all belong to the same population, that is, there is at least one that is 
larger than the rest. The correction factor F is necessary because Eq. (1.47) 
overestimates x 2 .  

For a completely worked example, see Section 4.4, Process Validation 
and data file MOISTURE.dat in connection with program MULTI. 

1.8 CHARTING A DISTRIBUTION 

In explorative data analysis, an important clue is the form of the pop- 
ulation’s distribution (cf. Figure 1.9); after accounting for artifacts due to 
the analysis method (usually an increase in distribution width) and sampling 
procedure (often a truncation), width and shape can offer insight into the 
system from which the samples were drawn. Distribution width and shape 
can be judged using a histogram, see program HISTO. The probability chart 
(program HISTO, option (NPS) = “Normal Probability Scale”) tests for nor- 
mality, and the X2-test can be used for any shape. 

1.8.1 Histograms 

When the need arises to depict the frequency distribution of a number of 
observations, a histogram (also known as a bar chart), is plotted. The data are 
assumed to be available in a vector x(); the individual values occur within 
a certain range given by x,nin and xmax, and these two limits can be identi- 
cal with the limits of the graph, or different. How are the values grouped? 
From a theoretical point of view, c = 4 classes (or bins) of equal width 
would be optimal. [t is suggested that, starting from this initial estimate c ,  
a combination of an integer c ,  and lower resp. upper bounds on the graph 
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(a I xmin) and (b 2 xmax) be chosen so that the class boundaries defined 
by a + i . w, with w = (b - a)/c and i = 0, 1 ,  2, . . . c, assume numerical 
values appropriate to the problem (not all software packages are capable of 
satisfying this simple requirement). 

Example 22: For x,in = .327, x,,, = .952, n = 21 

a = .20, b = 1.20, c = 5 ,  w = .20, or 
u = .15, b = 1.35, c = 8, w = .15 
u = .30, b = 1.00, c = 7, w = .10 

This results in sensible numbers for the class boundaries and allows for 
comparisons with other series of observations that have different extrema, for 
example (.375, .892) or (.25, 1.11). Strict adherence to the theory-inspired 
rule would have yielded class boundaries .327, .4833, .6395, .7958, and .952, 
with the extreme values being exactly on the edges of the graph. That this is 
impractical is obvious, mainly because the class boundaries depend on the 
stochastic element innate in xmn resp. x,,,. Program HISTO, option (Scale), 
allows for an independent setting of a subdivided range R with C bins of 
width R/C, and lower/upper limits on the graph. 

Next, observations x1 . . . x, are classed by first subtracting the x-value of 
the lower boundary of bin 1, a, and then dividing the difference by the class 
width w. The integer INT((x~-a)/w+l) gives the class number (index) j .  The 
number of events per class is counted and expressed in form of an absolute, 
a relative, and a cumulative result (E,  100 . E/n,  resp. 100 . C(E/n)) .  

Before plotting the histogram, the vertical scale (absolute or relative fre- 
quency) has to be set; as earlier, practical considerations like comparability 
among histograms should serve as a guide. The frequencies are then plot- 
ted by drawing a horizontal line from one class boundary to the other, and 
dropping verticals along the boundaries. 

Artistic license should be limited by the fact that the eye perceives the area 
of the bar as the significant piece of information. The ordinate should start 
at zero. A violation of these two rules-through purpose or ignorance-can 
skew the issue or even misrepresent the data. Hair-raising examples can be 
found in the “Economics” sections of even major newspapers. 

Example 23: A histogram analysis. (See Table 1.23 and data file 
HISTO.dat .) 

Note that the single event to the left of class 1, equivalent to 5.6%, must 
be added to the first number in the % Events column to obtain the correct 
C%, unless a separate class is established. (Here, it is Class 0.) 
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Table 1.23. Data and Results of a Histogram Analysis. 

Values: 3.35 I 
2.973 
3.431 
2.996 

Results: Number of values n: 
left boundary a:  
smallest value: 
to left of class 1: 
mean: 

Class Events 

1.971 
2.184 
-.304 
0.290 

19 
-0.5 
-.61 

1 event 
2.245 

% Events 

2.68 1 2.309 
-.614 1.848 
4.63 1 3.010 
1.302 2.37 1 

Number of classes: 
right boundary b: 
largest value: 
to right of class 6: 
std. deviation s,: 

0.706 
3.749 
3.770 

6 
5.499 
4.63 

0 events 
k1.430 

ucb 

0 
1 
2 
3 
4 
5 
6 

Total 

1 
2 
2 
5 
6 
2 
1 
19 

5.26 5.26 - inf ~ ,501 
10.53 15.79 - ,500 0.499 
10.53 26.32 0.500 1.499 
26.32 52.63 1 .so0 2.499 
31.58 84.21 2.500 3.499 
10.53 94.74 3.500 4.499 
5.26 100.0 4.500 5.499 

IOO.00 

Class 0 covers the events below the lower limit of the graph, i.e. from -m to -0.5. Icb: lower 
class boundary; ucb: upper class boundary. 

The appropriate theoretical probability distribution can be superimposed 
on the histogram; ideally, scaling should be chosen to yield an area under 
the curve (integral from --oo to +-oo equal to n . w. (See program HISTO, 
option (ND).) 

In Figure 1.27 the preceding data are plotted using 6, 12, resp. 24 classes 
within the x-boundaries a = -0.5, b = 5.5. The left panel gives a common- 
sense subdivision of this x-range. If, for comparison purposes, more classes 
are needed, the two other panels depict the consequences; many bins contain 
only one or two events. 

1.8.2 x2-Test 

This test is used to judge both the similarity of two distributions and the 
fit of a model to data. 

The distribution of a data set in the form of a histogram can always be 
plotted, without reference to theories and hypotheses. Once enough data have 
accumulated, there is the natural urge to see whether they fit an expected dis- 
tribution function. To this end, both the experimental frequencies and the the- 
oretical probabilities must be brought to a common scale: a very convenient 
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Figure 1.27. Histograms of a data set containing 11 = 19 values, the x-range depicted is in all 
cases -0.5 to 5.5 inclusive, leaving one event to the left of the lower boundary. The number of 
classes is 6, 12, resp. 24; in the latter case the observed frequency never exceeds two per class, 
which is clearly insufficient for a ,yZ-test. (See text.) The superimposed normal distribution 
has the same area as the sum of events, n, times the bin width, namely 19, 8.5, respectively 
4.25. 

one is that which sets the number of events TI equal to certainty (probabil- 
ity p = 1.00) = area under the distribution function. The x scale must also 
be made identical. Next, the probability corresponding to each experimental 
class must be determined from tables or algorithms. Last, a class-by-class 
comparison is made, and the sum of all lack-of-fit figures is recorded. In the 
case of the X2-test the weighting model is 

expected number of ) I 2  (1.50) 
observations/class observations/class 

expected number of 
observations/class 

x =  
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Example 24: Consider as an example the set of 19 Monte Car10 gener- 
ated, normally distributed values with a mean = 2.25 and a standard devi- 
ation = +I .43 used in Section l .8. l : Table l .24 is constructed in six steps. 
The experimental (observed) frequencies are compared with the theoretical 
(expected) number. The critical X2-value for p = 0.05 andf = 4 is 9.49, thus 
no difference in distribution function is detected. Note that the first and last 
classes extend to infinity; it might even be advisable to eliminate these poorly 
defined classes by merging them with the neighboring ones: x 2  is found as 
1.6648 in this case; the critical x2  is 5.991. Columns z ~ ,  z,., ACP, expected 
events, and x2  are provided in program HISTO, option (Display): 

1. Calculate normalized deviations z /  = (lcb - xmean)/sX resp. z r  = (ucb - 
xmean)/sx for each class, e.g., (1.5 -- 2.25)/1.43 = -0.521. The number 
1.5 is from Table 1.23, column lower class boundary (lcb). 

2. The cumulative probabilities are either looked up or are calculated 
according to Section 5.1.1: z = -0.521 yields CP = 0.3011. 

3. Subtract the CP of the left from that of the right class boundary to 
obtain the ACP for this class (this corresponds to the hatched area in 
Figure 1.9), e.g., 0.5708 - 0.3011 = 0.2696. 

4. ACP is multiplied by the total number of events to obtain the number 
of events expected in this class, e.g., 0.2696 . 19 = 5.123. 

5. From columns 1 and 7, x 2  is calculated, x2  = (Obs - E ~ p ) ~ / E x p ,  e.g., 
(5.0 ~ 5.123)2 + 5.123 = 0.0030. 

6. The degrees of freedomfis calculated as f =  m - 3 (m:  number of 
classes). 

Table 1.24. Intermediate and Final Results of a X2-Test 

z-values Probability 
Obs. ~ Expected 

events Z/ Zr CPI CP,  ACP events X 2  

1 -M -1.920 .OOOO .0274 .0274 0.521 .4415 
2 -1.920 -1.221 ,0274 .1111 .0837 1.590 .lo56 
2 -1.221 -0.521 .1111 ,3011 ,1900 3.610 ,7184 
5 -0.521 0.178 ,3011 .5708 .2696 5.123 ,0030 
6 0.178 0.878 S708 3100 .2392 4.545 ,4658 
2 0.878 1.577 3100 .9426 .1327 2.520 .lo74 
1 1.577 +M .9426 .9999 0.0574 1.091 0.0075 

19 .9999 19.000 1.8492 
- ~ 
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In terms of the weighting model (see Section 3.1) the x 2-function is inter- 
mediate between a least square fit using absolute deviations (measure = C(xi - 
E ( X ~ > ) ~ )  and one using relative deviations (measure = C((xi - E ~ ) / E ( x ~ ) ) ~ ) .  The 
effect is twofold: as with the least-squares model, both positive and negative 
deviations are treated equally, and large deviations contribute the most. Sec- 
ondly, there is a weighting component with wi = l / E ( x i )  that prevents a moder- 
ate (absolute) error of fit on top of a large expected E(xi)  from skewing the x2-  
measure, and at the same time, deviations from small €?(xi) carry some weight. 

The critical x 2-values are tabulated in most statistical handbooks. An 
excerpt from the table for various levels of p is given: 

Table 1.25. Critical X2-Values for p = 0.975, 0.95,0.9, 0.1,0.05, and 0.025 

P= 0.975 0.95 0.90 0.10 0.05 0.025 

f = 1 0.000982 0.00393 0.0158 2.706 3.841 5.024 
2 0.0506 0.103 0.21 1 4.605 5.991 7.378 
3 0.216 0.3.52 0.584 6.25 1 7.815 9.348 

10 3.247 3.940 4.865 1.5.987 18.307 20.307 
20 9.591 10.851 12.443 28.412 31.410 34.170 
50 32.357 34.764 37.689 63.167 57.505 7 1.420 

100 74.222 77.929 82.358 118.498 124.342 129.561 

This table is used for the two-sided test, that is one simply asks “are the 
two distributions different?” Approximations to tabulated x 2-values for dif- 
ferent confidence levels can be made using the algorithm and the coefficients 
given in section 5.1.4. 

Because of the convenient mathematical characteristics of the x 2-value (it 
is additive), it is also used to monitor the fit of a model to experimental data; 
in this application the fitted model Y = ABS(f(x, . . .)) replaces the expected 
probability increment ACP (see Eq. 1.7) and the measured value yi replaces 
the observed frequency. Comparisons are only carried out between successive 
iterations of the optimization routine (e.g. a simplex-program), so that criti- 
cal x 2-values need not be used. For example, a mixed logarithmic/exponential 
function Y = A1 *LOG(A2 + EXP(X - A3)) is to be fitted to the data tabulated 
below: do the proposed sets of coefficients improve the fit? The conclusion is 
that the new coefficients are indeed better. The y-column shows the values actu- 
ally measured, while the Y-columns give the model estimates for the coeffi- 
cientsAl,A2, andA3. The X2-columns are calculated as ( y -  Y)2 t Y. The fact 
that the sums over these terms, 4.783,2.616, and 0.307 decrease for successive 
approximations means that the coefficient set 6.499 . . . yields a better approxi- 
mation than either the initial or the first proposed set. If the x2  sum, e.g., 0.307, 
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is smaller than a benchmark figure, the optimization can be stopped; the reason 
for this is that there is no point in fitting a function to a particular set of measure- 
ments and thereby reducing the residuals to values that are much smaller than 
the repeatability of the measurements. The benchmark is obtained by repeat- 
ing the measurements and comparing the two series as if one of them was the 
model Y .  For example, for -7.2, -4.4, +0.3, +5.4, and +11.1 and the previous 
set, a figure of x 2  of 0.163 is found. It is even better to use the averages of a 
series of measurements for the model Y, and then compare the individual sets 
against this. 

Table 1.26. Results of a X2-Test for Testing the Goodness-of-fit of a Model 

Data Initial Proposal 1 Proposal 2 
- 

.Y i Y i  Y 1  x2 Y 2  X 2  Y3 x2 
1 --7.4 
2 -4.6 
3 0.5 
4 5.2 
5 11.4 

Total 

Coefficients A 1 
A2 
A3 

-6.641 0,087 
-2.771 1,207 

2.427 1,530 
8.394 1,215 

14.709 0,744 
4,783 

6.539 
0.192 
2.77 1 

-9.206 0,354 
-6.338 0,477 
-1.884 1,017 

3.743 0,567 
9.985 0,201 

2.616 

6.672 
0.173 
3.543 

-7.456 0,000 
--4.193 0,040 

0.545 0,004 
6.254 0,178 

12.436 0.086 
0.307 

6,499 
0.197 
3.116 

As noted earlier, the X2-test for goodness-of-fit gives a more balanced 
view of the concept of “fit” than does the pure least-squares model; how- 
ever, there is no direct comparison between x2  and the reproducibility of an 
analytical method. 

Example 25: The first contribution is calculated as ((7.41-16.6411)2/16.641 I 

A simplex-optimization program that incorporates this scheme is used in 
= 0.087, with 6.641 = 6.539 . ln(0.192 + e(’p2771) 1. 

the example “nonlinear fitting” (Section 4.2). 

1.8.3 Probability Charts 

The X2-test discussed in the preceding needs a graphical counterpart for 
a fast, visual check of data. A useful method exists for normally distributed 
data that could also be adapted to other distributions. The idea is to first 
order the observations and then to assign each one an index value l/n, 2/n, 



CHARTING A DISTRIBUTION 81 

. . . n/n. These index values are then entered into the z = f(CP) algorithm 
(Section 5.1.1) and the result is plotted versus the observed value. If the 
experimental distribution is perfectly normal, a straight line will result, see 
Fig. 1.28. A practical application is shown in Section 4.1. This technique 
effectively replaces the probability-scaled paper. 

Example 26: If 27 measurements are available, the fourth smallest one 
corresponds to a cumulative probability CP = 4/27 = 0.148 and the z-value 
is -1.045; a symbol would be plotted at the coordinates (0.148, -1.045). 
The last value is always off scale because the z-value corresponding to CP 
= 1.000 is +=. (Use program HISTO, option (NPS).) 

If nonnormal distributions were to be tested for, the z =f(CP) algorithm in 
Section 5.1.1 would have to be replaced by one that linearizes the cumulative 
CP for the distribution in question. 

1.8.4 Conventional Control Charts (Shewhart Charts) 

In a production environment, the quality control department does not 
ordinarily concern itself with single applications of analytical methods, that 
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Figure 1.28. Probability-scaled chart for testing of distribution for normality. The abscissa 
is in the same units as the measurements, the ordinate is nonlinear in terms of cumulative 
probability. The left figure shows a straight line and four curves corresponding to t-distributions 
withf= 2 and 4 (enhanced), andf= 3 and 9 degrees of freedom. The straight line corresponding 
to a normal distribution evolved from the CP-function familiar from Section 1.2.1 through 
nonlinear stretching in the vertical direction. The median and the standard deviation can be 
graphically estimated (regression line, interpolation at 50, respectively 17 and 83%). The right 
figure depicts 40 assay values for the active principle content in a cream. (Three values are off- 
scale, namely, 2.5, 97.5, and loo%.) The data by and large conforms to a normal distribution. 
Note the nearly vertical runs of two to four points (arrow!) at the same x-value; this can be 
attributed to a quantization raster that is impressed on the measurement because only certain 
absorbance values are possible due to the three-digit display on the employed instrument. 
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being a typical issue for the Analytical R&D Department, but concentrates 
on redoing the same tests over and over in order to release products for sale 
or reject them. A fine example is the output from a weighing station that 
determines whether a product has been properly packaged, see Fig. 1.29. 
Obvious deviations (points A .  . . L) are used to eject and inspect the packages 
in question. By filtering the data, the reject/retain decision can be fine-tuned, 
see Fig. 1.30 and Section 3.6. 

When data of a single type accumulate, new forms of statistical analysis 
become possible. In the following, conventional control and Cusum charts 
will be presented. In the authors’ opinion, newer developments in the form 
of tight (multiple) specifications and the proliferation of PCs have increased 
the value of control charts; especially in the case of on-line in-process 
controlling, monitors depicting several stacked charts allow floor supervi- 
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Figure 1.29. Example for a control chart. 3442 boxes passed a control-balance at the end of a 
packaging line in order to detect missing or extra components. A box should contain a certain 
number of pouches filled with the medication, and a brochure that explains the proper way of 
taking it. A brochure is heavier than a pouch. Spike E was due to a second brochure. The other 
spikes relate to 1 - 4 missing or extra pouches. If the components had very tightly defined 
weights, hard reject limits could be set to catch all such occurrences. Unfortunately, such pouch 
weights vary a bit depending on where on the foil stock they come from and how they were 
cut. This leads to an irregularly shifting average weight that is compensated for by having 
the balance’s software calculate a box-car average over n = 10 boxes (see Section 3.6) that 
is used as reference level for the next 10 boxes. When these reference values are subtracted, 
the typical residual becomes much smaller than if a global average had been used, see Fig. 
1.30, and the rejection rate due to noise is dramatically cut. Sorting the residuals yields the 
line at the bottom of the figure; the few large residuals are now concentrated at the extreme 
left (missing components), respectively at the right end (extra components). 
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Frequency CP 
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Figure 1.30. A histogram of raw weights from Figure 1.29 and the distribution of residuals 
that resulted after subtraction of a shifted box-car average are superimposed. The CP-curve, 
plotted with the (NPS) option in HISTO, is for the raw weights; the corresponding curve for 
the residuals would be about twice as steep. The asymmetry of the raw-weight distribution 
is evident both in the histogram and the lack of linearity of the CP-curve; it is due to many 
subpopulations of product being lumped into one batch. Every time a mechanic makes an 
adjustment on a knife, a new subpopulation is created. The residuals appear to be normally 
distributed. however. 

sors to recognize the trends before they become dangerous. V-templates (a 
graphical device to be superimposed on a Cusum chart that consists of a v- 
shaped confidence limit32) can be incorporated for warning purposes, but are 
not deemed a necessity because the supervisor’s experience with the process 
gives him the advantage of being able to apply several (even poorly defined) 
rules of thumb simultaneously, while the computer must have sharp alarm 
limits set. The supervisor can often associate a pattern of deviations with the 
particular readjustments that are necessary to bring the process back in line. 
A computer would have to run a fuzzy-logic expert system to achieve the 
same effct, but these are expensive to install and need retraining every time a 
new phenomenon is observed and assigned to a cause. Such refinements are 
rather common during the initial phases of a product’s lifecycle; in today’s 
global markets, though, a process barely has a chance of reaching maturity 
before it is scaled-up or replaced, and so the expert system would most of the 
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time be incompletely validated (QA’s point of view) or unavailable because 
of retraining (according to the production department). 

Although a control or a Cusum chart at first glance resembles an ordinary 
two-dimensional graph, one important aspect is different: the abscissa values 
are an ordered set graphed according to the rank (index), and not according 
to the true abscissa values (in this case time) on a continuous scale. Because 
of this, curve fitting to obtain a “trend’ is not permissible. There is one 
exception, namely when the samples are taken from a continuous process 
at strictly constant intervals. A good example is a refinery running around 
the clock for weeks or months at a time with automatic sampling of a process 
stream at, say, 10-minute intervals. Consider another process run on an 8-or 
16-hour shift schedule with a shut-down every other weekend: curve fitting 
would here only be permissible on data taken on the same day (e.g., at 1- 
hour intervals), or on data points taken once a day between shut-downs (e.g., 
always at 10 A.M.). Sampling scheduling is often done differently, though, 
for good reasons, vk. (a) every time a new drum of a critical reagent is fed 
into the process; (b) every time a receiving or transport container is filled; 
(c) every time a batch is finished, etc. 

The statistical techniques applicable to control charts are thus restricted 
to those of Section 1.5, that is detecting deviations from the long-term mean 
respectively crossing of the specified limits. 

The conventional control chart is a graph having a “time” axis (abscissa) 
consisting of a simple raster, such as that provided by graph or ruled stationary 
paper, and a measurement axis (ordinate) scaled to provide six to eight standard 
deviations centered on the process mean. Overall standard deviations are used 
that include the variability of the process and the analytical uncertainty. (See 
Fig. 1.8.) Two limits are incorporated: the outer set of limits corresponds to the 
process specifications and the inner one to “warning” or “action” levels for in- 
house use. Control charts are plotted for two types of data: 

1. A standard sample is incorporated into every series, e.g. daily, to detect 
changes in the analytical method and to keep it under statistical control. 

2. The data for the actual unknown samples are plotted to detect changes 
in the product and/or violation of specification limits. 

Keeping track of the standards (Case 1)  helps avoid a nasty situation that 
generally turns up when one is close to the submission deadline or has an 
inspector asking questions: the actual event happened months ago, the respon- 
sible people no longer remember what really happened (who has a lawyer’s 
memory for minutae?), and a specification-conforming point is prominently 
out-of-trend. Poor product? No, just a piece of evidence pointing to lack of con- 
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trol, for instance sloppy calibration. (See Figures 4.39,4.9,4.49, and 4.10.) 
The specification limits (Case 2) can either be imposed by regulatory 

agencies, agreed-upon standards, or market pressure, or can be set at will. 
In the latter case, given the monetary value associated with a certain risk of 
rejection, the limits can be calculated by statistical means. More likely, limits 
are imposed: in pharmaceutical technology -t2, f5 ,  or f10% about the nom- 
inal assay value are commonly encountered; some uses to which chemical 
intermediates are put dictate asymmetrical limits, reflecting perhaps solubil- 
ity, purity, or kmetic aspects; a reputation for “high quality” demands that 
tight limits be offered to customers, which introduces a nontechnical side 
to the discussion. The classical f2a and f 3 a  SL are dangerous because for 
purely mathematical reasons, a normalized deviate z = rJs,  2 3 can only be 
obtained for n 2 11 ,53 cf. Fig. 1.24. 

Action limits must be derived from both the specification limits and the 
characteristics of the process: they must provide the operators with ample 
leeway (time, concentration, temperature, etc.) to react and bring the process 
back to nominal conditions without danger of the specification limits being 
exceeded. An important factor, especially in continuous production, is the 
time constant: a slow-to-react process demands narrow action limits relative 
to the specification limits, while many a tightly feed-back controlled process 
can be run with action limits close to the specification limits. If the product 
conforms to the specifications, but not to the action limits, the technical staff 
is alerted to look into the potential problem and come up with improvements 
before a rejection occurs. Generally, action limits will be moved closer to 
the specification limits as experience accrues. 

For an example of a control chart see Fig. 1.31 and Sections 4.1 and 4.8. 
Control charts have a grave weakness: the number of available data points 
must be relatively high in order to be able to claim “statistical control”. As is 
often the case in this age of increasingly shorter product life cycles, decisions 
will have to be made on the basis of a few batch release measurements; the 
link between them and the more numerous in-process controls is not neces- 
sarily straight-forward, especially if IPC uses simple tests (e.g. absorption, 
conductivity) and release tests are complex (e.g. HPLC, crystal size). 

1.8.5 Cusum Charts 

A disadvantage of the conventional control charts is that a small or gradual shift 
in the observed process parameter is only confirmed long after it has occurred, 
because the shift is swamped in statistical (analytical) noise. A simple way out 
is the Cusum chart (cumulated sum of residuals, see program CUSUM.exe), 
because changes in a parameter’s average quickly show up, see Fig. 1.32. The 



86 UNIVARIATE DATA 

t Measured action 
value taken 

-~ - upperSL 

lower SL 

Sequence of measurements 
("time", "index i " )  -- 

Figure 1.31. Typical control chart showing the specification and action limits. The four lim- 
its can be arranged asymmetrically relative to the nominal level, depending on the process 
characteristics and experience. 

Figure 1.32. Typical Cusum-chart showing a change in process mean. The base-line average 
a is the average over the 41 displayed points. The inferred step (intersection of the two linear 
regression lines) appears to precede the actual change from level A to level B because the last 
point in segment A was by chance very high and actually exceeded the AL. The corrective 
action took hold three points later (gray ellipse), but was not strong enough. 
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Index number i Index number i Index number i 

Figure 1.33. Cusum charts (schematic). Type 1 ,  a horizontal line, indicates that the system 
comprising the observed process and the analytical method is stable and that results stochasti- 
cally vary about the average. Type 2, a sloping straight line, indicates a nonoptimal choice of 
the average a, e.g., by using too few decimal places. Type 3, a series of straight-line segments 
of changing slope, shows when a change in any of the system variables resulted in a new 
average a’ different from the previous average a.  Due to the summation process the system 
noise is damped out and changes in the trend rapidly become obvious. 

basic idea is to integrate (sum) the individual values xi. In practice, many 
consecutive results are electronically stored; a reference period is chosen, 
such as the previous month, and the corresponding monthly average a is 
calculated. This average is then subtracted from all values in the combined 
reference and observation period; thus ri = xi - a. On the Cusum chart, the 
sum C(r i ) ,  i = 1 . . . j ,  is plotted at time i. Figure 1.33 examines different 
types of graphs that can be distinguished56. 

Scales should optimally be chosen so that the same distance (in mm) 
that separates two points horizontally corresponds to about 2 . s,/& ver- 
tically, that is twice the standard deviation of the mean found for m repeat 
 measurement^.^^ A V-formed mask can be used as a local confidence limit.32 
This approach, however, is of statistical nature; the combination of intuition, 
experience, and insider’s knowledge is much more revealing. For examples, 
see Ref. 57 and Section 4.8. 

1.9 ERRORS OF THE FIRST AND SECOND KIND 

The two error types mentioned in the title are also designated with the 
Roman numerals I and 11; the associated error probabilities are termed alpha 
(a) and beta (p). 

When one attempts to estimate some parameter, the possibility of error 
is implicitly assumed. What sort of errors are possible? Why is it necessary 
to distinguish between two types of error? Reality (as hindsight would show 
later on, but unknown at the time) could be “red” or “blue,” and by the same 
token, any assumptions or decisions reached at the time were either “red” 
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or “b l~e” .~g  This gives four outcomes that can be depicted as indicated in 
Table 1.27: 

Table 1.27. Null and Alternative Hypotheses. Calculations Involving the Error 
Probability f! are Demonstrated in Section 4.1. The Expression ’ X  = Y’ is to be 

Read as ’ X  is Indistinguishable from Y’ 

Real situation 

X = Y  X f  Y 

Decision “null” hypothesis “false negative” 
taken, Ho correctly retain Ho falsely retain H o  

falsely reject H I  correctly reject H1 
answer given, ’X = Y’ probability 1 ~ a probability /3 

or alternative “false positive” 
hypothesis 

HI falsely reject Ho correctly reject Ho 
situation falsely accept H I  correctly accept H I  

assumed ’x $ Y’ 
“power” of a test: 

probability a probability 1 ~ /3 

The different statistical tests discussed in this book are all defined by the 
left column, that is, the initial situation Ho is known and circumscribed, 
whereas H I  is not (accordingly one should use the error probability a).  

In this light, the type I1 error is a hypothetical entity, but very useful. A 
graphical presentation of the situation will help (see Figure 1.34). 

Assume the ensemble of all results A (e.g., reference Method A )  to be 
fixed and the ensemble B (e.g., test Method B) to be movable in the hor- 
izontal direction; this corresponds to the assumption of a variable bias Ax 

The critical x-value, x,, is normally defined by choosing an error probability 
a in connection with Ho (that is, B is assumed to be equal to A). In the case 
presented here, a one-sided test is constructed under the hypothesis “ H I :  B 
larger than A”. The shaded area in Figure 1.34(left) gives the probability of 
erroneously rejecting Ho if a result x,,,, > x, is found (“false positive”). In 
Figure 1.34(right) the area corresponding to an erroneous retention of H o ,  p 
(“false negative” under assumption “B different from A”) is hatched. Obvi- 
ously, for different exact hypotheses H I ,  i.e., clearly defined position of B, /3 
varies while a stays the same because the limit is fixed. Thus, the power of 
the test, 1-6, to discriminate between two given exact hypotheses Ho and H I  
can for all intents and purposes only be influenced by the number of sam- 
ples, n, that is by narrowing the distribution function for the observed mean. 

~ ~ x,,,,,~ ~ x,,,,,~, to be determined, and usually, to be proven noncritical. 
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A B A B 
Null Alternative Null Alternative 

Hypothesis Hypothesis Hypothesis Hypothesis 

LIMIT risk alpha risk beta 

2 results “rejection of good material A 
because the measurement is 

beyond the imposed limit“ 

“acceptance of bad material 6 
because the measurement is on 
this side of the imposed limit“ 

a o  
Figure 1.34. Alternative hypothesis and the power of a t-test. Alpha (a )  is the probability of 
rejecting an event that belongs to the population associated with H a ;  it is normally in the range 
0.05 . . . 0.01. Beta (0) is the probability that an event that is effectively to be associated with 
H I  is accepted as belonging to the population associated with Ho. Note that the power of the 
test to discriminate between hypotheses increases with the distance between p~ and p ~ .  p~ is 
fixed either by theory or by previous measurements, while p~ can be adjusted (shifted along 
the x-axis), for examples see H1 ~ H4, Section 4.1. Compare with program HYPOTHESIS. 

(See Fig. 1.16.) If there is any reason to believe that an outcome of a deci- 
sion would either carry a great risk (e.g., in the sense of safety), or would 
have immense impact (medication X better than Y ) ,  Ho and H I  will have to 
be appropriately assigned (Ho: X = Y and H I :  X # Y )  or (Ho: X # Y and 
H I :  X = Y ) ,  and a will have to be set to reflect the concern associated with 
not obtaining decision Ho when Ho is deemed to be the right decision. For 
example, if a chemical’s properties are to be used for promotional purposes, 
there had better be hard evidence for its superiority over the competitor’s 
product, otherwise the company’s standing as a serious partner will soon be 
tarnished. Thus, instead of postulating “Ho: our product is better” and “prov- 
ing” this with a few measurements, one should assign “Ho: our product is 
the same”. The reason is that in the former case one would, by choosing a 
small a, make it hard to reject Ho and herewith throw a pet notion overboard, 
and at the same time, because of an unknown and possibly large p, provoke 
the retention of Ho despite the lack of substantiation. In the case “Ho: ours is 
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Table 1.28. Interpretation of a Null/Alternative Hypothesis Situation 

Real situation 

Our product is 
the same Our product is better 

Decision “null” hypothsis 
taken, H o :  

our product 
is the same 

answer 
given, Alternative 
or hypothesis 

H I :  

situation our product 
assumed is better 

have R&D come up 
with new ideas 

“false positive” 

the Marketing 
Department 
launches an 
expensive 
advertising 
campaign; the 
the company is 
perceived to 
be insincere 

This risk can be 
defined 

“false negative” 
loss of a good marketing 

argument; hopefully the 
customer will appreciate 
the difference in quality 

Risk is hard to estimate 

capture the market, you 
have a good argument 

the same,” the tables are turned: “ H I :  superiority” must be proven by hard 
facts, and if found, is essentially “true” (a small), while the worst that could 
happen due to a large /3 would be the retention of an unearned “the same,” 
that is, the loss of a convenient marketing argument. 



CHAPTER 

2 

BI- AND MULTIVARIATE DATA 

Data sets become two dimensional in any of the following situations (in order 
of decreasingly rigorous theoretical underpinnings) and are analyzed by the 
indicated methods. 

Regression 
One-dimensional data are plotted versus an experimental variable; a 
prime example is the Lambert-Beer plot of absorbance vs. concentra- 
tion, as in a calibration run. The graph is expected to be a straight line 
over an appreciable range of the experimental variable. This is the clas- 
sical domain of linear regression analysis. 

The same sample is repeatedly tested during a period of time, as in 
stability analysis; here, we hope, only a slight change of signal is 
observed. If there is a significant change, the form of the function 
(straight line, exponential curve, etc) gives information about the under- 
lying mechanism.58 

Correlation 
More than one dimension, i.e., parameter, of the experimental system 
is measured, say absorbance and pH of an indicator solution; the cor- 
relation behavior is tested to find connections between parameters; if 
a strong one is found, one measurement could in the future serve as a 
surrogate for the other, less accessible one. 

Youden plot, ANOVA 
The same parameter is tested on at least two samples by each of several 
laboratories using the same method (round-robin 
At least two parameters are tested by the same laboratory on many nom- 
inally similar samples. In both cases, the simplest outcome is a round 
patch in the Youden plot,32 see Fig. 2.1, of points that signifies “just 
noise, no correlation . . . no participating laboratory (or sample or point 
in time) is exceptional.” On the other hand, an elliptical patch, especially 
if the slope deviates from what could be expected, shows that some 
effects are at work that need further investigation. After “just noise,” the 

or 

91 
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slope 1.00 

lab#6 

slope b’ 

batch#77 

Sample 1 Parameter 1 
Figure 2.1. Youden’s plot. Dotted horizontals and verticals: expected averages; full line: diag- 
onal with slope 1.00 if the same parameter is tested on two samples, or slope b if two, three, 
or more parameters are tested on the same sample. A dispersion of the points along the diag- 
onal in the left panel indicates a factor common to both samples. As an example, laboratory 
no. 6 could have trouble calibrating its methods or does not employ an internal standard. (See 
Section 4.14.) In a modified form of Youden’s plot, right panel, two or more parameters are 
tested on each of a large number of similar samples, e.g., a mix of three colorants, where batch 
#77 contains too much of one colorant relative to the two others, or an analytical bias crept in. 
(See also Figure 4.49.) Dispersion along the lines signals sampling, weighing, or homogeneity 
problems. 

next most complicated assumption is that some of the laboratories/some of 
the samples are afflicted by a factor that has a simple additive effect on the 
result. If true, this would be confirmed by ANOVA. 

2.1 CORRELATION 

Two statistical measures found in most software packages are the correla- 
tion coeflcient, r ,  and the coeficient of determination, r2. The range of r is 
bounded by - 1 I I’ 5 + I ;  Irl = 1 is interpreted as “perfect correlation,” and 
r = 0 as “no correlation whatsoever.” 

For the definition of S,,, Sxy, and S,, see Eqs. 2.4 through 2.6. Under 
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what circumstances is r to be used? When hidden relations between different 
parameters are sought, as in explorative data analysis, r is a useful measure, 
Any pairing of parameters that results in a statistically significant r is best 
reviewed in graphical form, so that a decision about further data treatment 
can be reached. Even here caution must be exercised, because r is a summary 
measure that can suggest effects when none are present, and vice versa, i.e., 
because of an outlier or inhomogeneous data. Program CORREL provides 
the possibility of finding and inspecting the correlations in a large data set. 

Example 27: Parameters A and B (see data file JUNGLE2.dat) appear to 
be strongly correlated (r2 = 0.877, p < 0.0002, n = 48) whereas parameters 
HPLC and TJTR achieve r2 = 0.646, p = 0.0002, n = 48 (JUNGLE2.dat) 
and r2 = 0.762, p = 0.0181, IZ = 5 (JUNGLEl.dat). For most other appli- 
cations, and calibration curves in particular, the correlation coefficient must 
be viewed as a relic of the past? many important statistical theories were 
developed in sociological or psychological settings, along with appropriate 
measures such as r2.  There the correlation coefficient indicates the degree of 
parallelism between one parameter and another, say, reading skills and math- 
ematical aptitude in IQ tests. The question of cause and effect, so important 
in the physical sciences, is not touched upon: one parameter might be the 
(partial) cause and the other the effect, or, more likely, both are effects of 
several interacting and unquantifiable factors, say intelligence, upbringing, 
and heredity. 

The situation in analytical chemistry is wholly different: cause and effect 
relationships are well characterized; no one is obliged to rediscover the well- 
documented hypothesis that runs under the name Lambert-Beer “law.” What 
is in demand, though, is a proof of adherence. With today’s high-precision 
instrumentation, coefficients of determination larger than 0.999 are common- 
place. The absurdity is that the numerical precision of the algorithms used 
in some soft-/firmware packages limits the number of reliable digits in r2 
to two or three, but show four or more digits on the read-out; however, the 
authors are not aware of anyone having qualms about which type of calcu- 
lator to use. Furthermore, it is hard to develop a “feeling” for numbers when 
all the difference resides in the fourth or fifth digit see Fig. 2.2. As an alter- 
native goodness-of-fit measure, the residual standard deviation is proposed 
because it has a dimension the chemist is used to (the same as the ordinate) 
and can be directly compared to instrument performance [cf. Eq. (2.13)]. 

Example 28: Using file VALID3.dat (r2 = 0.99991038 ...) and a suit- 
ably modified program LINREG, depending on whether the means are sub- 
tracted as in Eqs. (2.4)-(2.6), or not, as in Eqs. (2.7)-(2.9), whether single- or 
double-precision is used, and the sequence of the mathematical operations, 
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10 I i . 0  8.9999 20 I 1.0 8.9996 
10 5 2 .3  8.9982 20 5 5.2 8.9874 
10 25 25.5 8.8171 20 25 17.9 0.8281 

40 1 0 . 9  0.9495 
40 5 5 . 7  8.9857 
40 25 24.7 8.7453 

the last four digits of r2 can assume the values 1038, 1041, 0792, 0802, 
and 0797. Plainly, there is no point in quoting r2 to more than three, or at 
most four, decimal places, unless one is absolutely sure that the algorithm 
is not the limiting factor; even then, r2 at levels above 0.999 does not so 
much indicate differences in the quality of the experiment as the presence 
of chance events outside the control of the investigator. 

2.2 LINEAR REGRESSION 

Whenever one property is measured as a function of another, the question 
arises of which model should be chosen to relate the two. By far the most 
common model function is the linear one; that is, the dependent variable y 
is defined as a linear combination containing two adjustable coefficients and 
x, the independent variable, namely, 
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A good example is the absorption of a dyestuff at a given wavelength 
X (lambda) for different concentrations, as expressed by the well-known 
Lambert-Beer’s law: 

Absorbance = Ablank + pathlength x absorptivity x concentration 

with the identifications Y = Absorbance, a = Abla*, x = concentration, and b 
= pathlength x absorptivity. 

If the measurements do not support the assumption of a linear 
relationship,l8 one often tries transformations to “linearize” it. One does not 
have to go far for good reasons: 

Because only two parameters need to be estimated, the equation of the 

The function is transparent and robust, and lends itself to manipulations 

Relatively few measurements suffice to establish a regression line. 
A simple ruler is all one needs for making or checlung graphs. A linear 
relationship inherently appeals to the mind and is simple to explain. 
Before the advent of the digital computer high-order and nonlinear func- 
tions were impractical at best, and without a graphics-plotter much time 
is needed to draw a curve. Interpolation, particularly in the form X = 
f (  y), is neither transparent nor straightforward if confidence limits are 
requested. 

straight line is far easier to calculate than that of most curves. 

like inversion (X = f (  y ) ) .  

Thus, the linear model is undoubtedly the most important one in the treat- 
ment of two-dimensional data and will therefore be discussed in detail. 

Overdetermination of the system of equations is at the heart of regres- 
sion analysis, that is one determines more than the absolute minimum of 
two coordinate pairs (xl/y~) and (x2/y2) necessary to calculate a and b by 
classical algebra. The unknown coefficients are then estimated by invoking a 
further model. Just as with the univariate data treated in Chapter 1, the least- 
squares model is chosen, which yields an unbiased “best-fit’’ line subject to 
the restriction: 

C(ril2 = minimum (2 .3)  

Here ri is the residual associated with the ith measurement. The question is 
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X I Y  

0 

Figure 2.3. The definition of the residual. The sum of the squared residuals is to be minimized. 

now how this residual is to be geometrically defined. The seemingly logical 
thing to do is to drop a perpendicular from the coordinate ( x i / y l )  onto the 
regression line, as shown by Fig. 2.3 (left): 

While it is perfectly permissible to estimate a and b on this basis, the 
calculation can only be done in an iterative fashion, that is, both a and b 
are varied in increasingly smaller steps (see Optimization Techniques, Sec- 
tion 3.5) and each time the squared residuals are calculated and summed. 
The combination of a and b that yields the smallest of such sums represents 
the solution. Despite digital computers, Adcock’s solution, a special case of 
the maximum likelihood method,60 is not widely used; the additional com- 
putational effort and the more complicated software are not justified by the 
“improved” (a debatable notion) results, and the process is not at all trans- 
parent, i.e., not amenable to manual verification. 

2.2.1 The Standard Approach 

The current standard a p p r o a ~ h ~ ~ , ~ ~ , ~ ~  is shown in Figure 2.3 (right): The 
vertical residuals are minimized according to r ,  = y l  - Y = yi - (a  + b . x,). A 
closed (noniterative) solution is obtained that is easily verifiable by manual 
calculations. There are three assumptions that must be kept in mind: 

1. The uncertainty inherent in the individual measurements of the prop- 
erty Y must be much larger than that for property X ,  or, in other words, 
the repeatability sy relative to the range of the y-values must be much 
larger than the repeatability s, relative to the range of the x-values. 
Thus, if the graph (x,in, x,,,, ymln, y,,,) is scaled so as to be approx- 
imately square (the regression line is nearly identical with a 45 degree 
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diagonal), the confidence intervals are related as CI( y) >> CI(x) if mea- 
sured in millimeters. Maximum likelihood is the technique to use if this 
assumption is grossly violated.6O 

2. Homoscedacity must prevail, that is the reproducibilities of y measured 
for small, medium, and large x-values must be approximately the same, 
so the uniform weighting scheme can be implemented. 

3. The distribution of errors must be Gaussian; regression under condi- 
tions of Poisson-distributed noise is dealt with in Ref. 62. 

Restrictions (1) and (2) are of no practical relevance, at least as far as 
the slope and the intercept are concerned, when all data points closely fit a 
straight line; the other statistical indicators are influenced, however. 

In the following the standard unweighted linear regression model is intro- 
duced. All necessary equations are found in Table 2.1 and are used in pro- 
gram LINREG. In a later section (2.2.10) nonuniform weighting will be dealt 
with. 

The equations were derived by combining Eqs. (2.2) and (2.3), forcing 
the regression line through the center of gravity (xmean/ymean), and setting 
the partial derivative 6(Cr2) /6b  = 0 to find the minimum. 

2.2.2 Slope and Intercept 

Estimating the slope b is formally equivalent to the calculation of a mean 
from a distribution (Section 1.1.1) in that the slope also represents a sta- 
tistical mean (best estimate). The slope is calculated as the quotient of the 
sums S,, and Sx,. Since the regression line must pass through the coordi- 
nate (xmean/ymean), the intercept is given by extrapolating from this point to 
x = 0. The question of whether to force the regression line through the ori- 
gin (a = 0) has been discussed at l e r ~ g t h . ~ ~ - ~ ~  In most analytical situations 
a E 0 could be justified by theory. However, reality is rarely as simple as 
theory, e.g., the lack of selectivity or unexpected interactions between chemi- 
cal species. Assuming reality is simple, then the trade-off between a lower 
number of calibration samples and increased variance V, of the interpolated 
result has to be discussed on a case-by-case basis. 

The confidence interval CI(b) serves the same purpose as CI(xmean) in 
Section 1.3.2; the quality of these average values is described in a manner 
that is graphic and allows meaningful comparisons to be made. An example 
from photometry, see Table 2.2, is used to illustrate the calculations (see 
also data file UV.dat); further calculations, comments, and interpretations are 
found in the appropriate Sections. Results in Table 2.3 are tabulated with 
more significant digits than is warranted, but this allows the reader to check 
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Table 2.1. Linear Regression: Equations 

Linear Regression: Equations 
Correct formulation (sums C are taken over all measurements, i = 1 . . . n): 

Xmean = (C x ; ) / n  Ymean (C y i ) /n  means (1.1) 

(1.3) 
(2.4) 

Sums of Squares (2.5) 

sxy = CCxi - xmean) ’ ( ~i - ymean) (2.6) 

Algebraically equivalent formulation as used in pocket calculators (beware of 
numerical artifacts when using Eqs. (2.7-2.9); cf. Table 1 .l): 

(2.7) 

Sums of Squares (2.8) 

sx, - C(xt ’ Y,) - CC&, . ( C y , ) / n  (2.9) 

Y = a + b . x  regression model (2.10) 

b - s x , / s x ,  a = Ymean - b ‘ xmean estimates a, b (2.1 1) 
(2.12) 

residual variance (2.13) 

v h  = vre\/sxx variance of slope h (2.14) 

variance of intercept a (2.15) 
2 

Xmean 

+ r) v a  v r e , .  

variance of estimate Y (2.16) 

CL of estimate Y (2.17) CL(Y) = u + b . x f t ( , f , p )  . z/vv 

variance of estimate X (2.18) 
1 I. (Y* -ymean? 

n k  b2 . Sxx - + - - +  

CL(X) = (y* - a) /b  f t ( f , p )  ’ 6 
n number of calibration points 
X I  

Y1 measured signal at x, 
Xmean mean of all x; 
Y mean mean of all y i  

s x x  sum of squares over Ax 
&Y sum of squares over Ay 

CL of estimate X (2.19) 

known concentration (or other independent variable) 
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Table 2.1. (Continued) 

S X Y  
U intercept 
b slope 
Ti 
Sres residual standard deviation 
Vres residual variance 
t(f > P )  
k 

Y* 
Y 
X 

sum of cross-product Ax . Ay 

i-th residual ri = yi - (a  + b . xi) 

Student’s t-factor for f = n - 2 degrees of freedom 
number of replicates y z  on unknown 
mean of several y;, k = 1 . . . in, y* = ( C y z ) / m  
expected signal value (at given x) 
estimated concentration for mean signal y* 

recalculations and programs. Figure 2.4 gives the corresponding graphical 
output. 

If the calibration is repeated and a number of linear regression slopes b 
are available, these can be compared as are means. (See Section 1.5.1, but 
also Section 2.2.4.) 

2.2.3 Residual Variance 

The residual variance Vre, summarizes the vertical residuals from Figure 
2.4; it is composed of 

v r e s  Vreprod -k Vnonlin -k Vmisc (2.20) 

where Vreprod is that variance due to repetitive sampling and measuring of an 
average sample (compare Eq. 1.6); Vnonlin stands for the apparent increase 
if the linear model is applied to an inherently curved set of data (cf. Table 

Table 2.2. Data for Linear Regression 

Concentration x Signal y 

50% 0.220 AU x: concentration in % of 
75 0.325 the nominal concentration 
100 0.428 
125 0.537 y :  measured absorbance 
150 0.632 AU: absorbance units 

Degrees of freedom: n = 5,  thus f = n ~ 2 = 3 
Critical Student’s t: t ( f  = 3, p = 0.05) = 3.1824 
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a'. 

Table 2.3. Intermediate and Final Results 

/ 

/a"- 
.,- 

Intermediate Results 

Item Value Equation 

100 
0.4284 
6250 
25.90 
0.10737 

Final Results 

Item Value Equation Item Value Equation 

b 0.004 144 (2.1 1 )  r2 0.99963 (2.1) 
a 0.0 1400 (2.12) t(3, 0.05) 3.18 
V r a  0.00001320 (2.13) Sreq 0.00363 (2.13) 
sh 0.0000459 (2.14) t ' Sb 0.000 146 
SU 0.00487 (2.15) t ' sa 0.0155 

t ' S ) ,  amounts to 3S% of b, CL(b): 0.0040, and 0.0043, CI(b): 0.0003 
t sI1 amounts to 1 I 1  % of a, CL(a): -0.0015, and 0.029, Cl(u): 0.03 

Signal [mAU] 
800 

700 

600 

500 

400 

300 

200 

100 

0 

Figure 2.4. Graph of the linear regression line and data points (left), and the residuals (right). 
The fifty-fold magnification of the right panel is indicated; the digital resolution k1 mAU of 
a typical UV-spectrophotometer is illustrated by the steps. 
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Residuals 

REPRODUCIBILITY NONLINEARITY 

L 
HETEROSCEDACITY 

Figure 2.5. Three important components of residual variance. The residuals are graphed verm.7 
the independent variable n. 

4.18); V h s c  contains all other variance components, e.g., that stemming from 
the x-dependent sy (heteroscedacity). (See Fig. 2.5.) 

Under controlled experimental conditions the first term will dominate. The 
second term can be assessed by using a plot of the residuals (see the next sec- 
tion and Figure 4.21); for a correctly validated GMP-compatible method, cur- 
vature must be avoided and checked for during the R&D phase (justification 
for the linear model!) by testing a concentration range that goes far beyond 
the 80 to 120% of nominal that is often used under routine QC conditions. 
Thus the residual variance should not be much larger than the first term. 
Depending on the circumstances, a factor of 2-4 could already be an indica- 
tion of noncontrol. Under GMP conditions heteroscedacity must be avoided 
or the use of the unweighted model needs to be justified. 

Taking the square root of Vres, one obtains the residual standard deviation, 
s,,, a most useful measure: 

sres has the same dimension as the reproducibility and the repeatabil- 
ity, namely the dimension of the measurement; those are the units the 
analyst is most familiar with, such as absorbance units, milligrams, 
etc. 

sres is nearly independent of the number of calibration points and their 
concentration values x, cf. Figure 2.8. 

sres is easy to calculate and, since the relevant information resides in 
the first significant digits, its calculation places no particular demands 
on the soft- or hardware (cf. Section 3.3) if the definition of ri in Table 
2.1 and Eqs. (1.3a)-( 1.3d) is used. 

s,,, is necessary to obtain other error-propagation information and can 
be used in optimization schemes (cf. Section 3.3). 
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Example 29 (see Table 2.1, Section 2.2.1): a residual standard devia- 
tion of less than 0.004 relative to y = 0.428 indicates that the experiment 
is relatively well controlled: on the typical UV/VIS spectrometer in use 
today, three decimal places are displayed, the least significant giving mil- 
liabsorbance units; noise is usually k l - 2 mAU. If the residual standard 
deviation is felt to be too large, one ought to look at the individual residuals 
to find the contributions and any trend: the residuals are -0.0012, 0.0002, 
-0.0004, 0.005, and -0.0036. No trend is observable. The relative contribu- 
tions are obtained by expressing the square of each residual as a percentage 
of V,, . (n  -- 2), i.e. 100 . (0.0012)2/0.0000132/3, etc., which yields 3.6, 
0.1, 0.4, 63, resp. 33%. Since the last two residuals make up over 96% of 
the total variance, bringing these two down to about 0.002 by more careful 
experimentation would result in a residual standard deviation of about 0.003, 
an improvement of 25%. 

2.2.4 Testing Linearity and Slope 

The test for the significance of a slope b is formally the same as a t- 
test (Section 1.5.2): if the confidence interval CI(b) includes zero, b cannot 
significantly differ from zero, thus b = 0. If a horizontal line can be fitted 
between the plotted CL, the same interpretation applies, cf. Figures 2.6a-c. 
Note that Sb corresponds to s(xmea,,), that is, the standard deviation of a mean. 
In the above example the confidence interval clearly does not include zero; 
this remains so even if a higher confidence level with t(f = 3, p = 0.001) = 
12.92 is used. 

Two slopes are compared in a similar manner as are two means: the sim- 
plest case is obtained when both calibrations are carried out using identical 
calibration concentrations (as is usual when SOPS are followed); the average 
variance VL is used in a t-test: 

t = Ibl ~ b21/& with f 2 . n ~ 4 degrees of freedom (2.22) 

Example 30: Two calibrations are carried out with the results b = 

0.004144 f 0.000046 and b’ = 0.003986 f 0.000073; V’ is thus k 0.000061 
and t = 0.0000158/0.000061 = 2.6; since n = n‘ = 5, f = 6 and t(6, 0.05) 
= 2.45 so that a significant difference in the slopes is found. The reader is 
reminded to round only final results; if already rounded results had been used 
here, different conclusions would have been reached: the use of five or four 



LINEAR REGRESSION I03 

Figure 2.6. A graphical depiction of a significant and a nonsignificant slope (slopes f Sb = 
4.3 t 0.5 (A) resp. --0.75 k 1.3 (B)). If a horizontal line can be fitted between the confidence 
limits an interpretation X = f (  y*) is impossible. It suffices in many cases to approximate the 
curves by straight lines (C). 

decimal places results in t = 2.47 respectively t = 1.4, the latter of which is 
clearly insignificant relative to the tabulated t ,  = 2.45. 

A graphical test can be applied in all cases: the regression lines and their 
confidence limits for the chosen confidence level are plotted as given by Eq. 
(2.24) (next Section); if a vertical shift suffices to bring one line within the 
area defined by the CL of the other, then the slopes cannot be distinguished, 
but the intercept a might be different. If the intercepts a and a’ are indistin- 
guishable, too, the two lines cannot be distinguished. If, as an alternative to 
plotting the CL(Y) point by point over the whole x interval of interest, an 
approximation by straight-line segments as shown in Fig. 2 . 6 ~  will suffice 
in most cases: the CL(Y) are plotted for x,,,, Xmean, and x,,,. 

Eight combinations are possible with the true/false answers to the fol- 
lowing three questions: (1) is sres, I = sres,2?, (2) is bl = bz?, ( 3 )  is ymean,, = 

ymean,2? A rigorous treatment is given in Ref. 34. First, question 1 must be 
answered: if Ho is retained, question 2 must be answered. Only if this also 
leads to a positive result can question 3 be posed. 

There are several ways to test the linearity of a calibration line; one can 
devise theory-based tests, or use common sense. The latter approach is sug- 
gested here because if only a few calibration points are available on which 
to rest one’s judgement, a graph of the residuals will reveal a trend, if any 
is pre~ent ,6~ while numerical tests need to be adjusted to have the proper 
sensitivity. It is advisable to add two horizontal lines offset by the measure 
of repeatability f s, accepted for the method; unless the apparent curvature 
is such that points near the middle, respectively the end of the x-range are 
clearly outside this reproducibility band, no action need to be taken. 

Regarding the residuals, many an investigator would be tempted to cast 
out “outliers”; the reader is advised to consult Section 1.5.5. If values are 
grouped (i.e. several values y I  are measured at the same x), outlier tests can 
be applied to the individual group, however, blind reliance on a “rule,” such 
as ymean k 2 . sy, is strongly discouraged. 
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Table 2.4. Comparison of Averages and Slopes 

Univariate Data 
(Sections 1.1.1 Linear Regression 

and 1.1.2) (Section 2.2.1) Eq. 

model Xmean = CL Y = a + b . Xm,m (2.2) 

v x  
Estimated variance Vx,mean = - n n 
Estimated 

(2.23) Vres 
V y =  ~ 

(2.24) 
CL(xm,an) = xmean * t CL(Y) Y(Xmean) * t confidence 

limits . dV.z ,mean  .Jvu 

A test of linearity as applied to instrument validation is given in Ref. 
68. 

2.2.5 Interpolating Y(x)  

The estimate of Y for a given x is an operation formally equivalent to the 
calculation of a mean, see Table 2.4: 

The expression for V y  = s; 1 Vres/n is true if x = x,,,,; however, if x is 
different from x,,,, an extrapolation penalty is paid that is proportional to 
the square of the deviation. [See Eq. (2.16).] This results in the character- 
istic “trumpet” shape observed in Figures 2.6 and 2.8. The influence of the 
calibration design is shown in Figure 2.8, where the corresponding individ- 

Confidence interval 
f -  of residuals 

0 
-ap- 
n u  

-0- 

Concentration Concentration 

t 
1 

Figure 2.7. Using residuals to judge linearity. Horizontal lines: the accepted variation of a 
single point, e g ,  +2 . sres; thick dashed line: perceived trend; note that in the middle and near 
the ends there is a tendency for the residuals to be near or beyond the accepted limits, that is, 
the model does not fit the data (arrows). For a numerical example, see Section 4.13. The right 
panel shows the situation when the model was correctly chosen. 
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Signal [mAU] 
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40 60 80 100 120 140 160 

Concentration [%] 

Figure 2.8. The slopes and residuals are the same as in Figure 2.4 (50,75, 100, 125, and 150% 
of nominal; black squares), but the x-values are more densely clustered: 90, 95, 100, 105, and 
110% of nominal (gray squares), respectively 96, 98, 100, 102, and 104% of nominal (white 
squares). The following figures of merit are found for the sequence bottom, middle, top: the 
residual standard deviations: +0.00363 in all cases; the coefficients of determination: 0.9996, 
0.9909, 0.9455; the relative confidence intervals of b: +3.5%, +17.6%, ?44.1%. Obviously 
the extrapolation penalty increases with decreasing S,,, and can be readily influenced by the 
choice of the calibration concentrations. The difference in S,, (6250, 250 resp. 40) exerts a 
very large influence on the estimated confidence limits associated with u, b, Y(n),  and X( y*).  

ual points have the same residuals because they were just shifted along the 
regression line to increase or decrease SXx. 

The confidence limits thus established indicate the y-interval within which 
Y(x) is expected to fall; the probability that this is an erroneous assumption 
is 100 . p%; in other words, if the measurements were to be repeated and 
slightly differing values for a and b were obtained, the chances would only 
be 100 . p% that a Y is found outside the confidence limits CL(Y). Use option 
(Y(x)) in program LINREG. The details of the calculation are found in Table 
2.5. 

The CL(Y) obviously refer to the expected mean ordinate Y at the given 
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Table 2.5. Interpolations 

Example 
U 
b 
rres 
X 

Estimate average Y 
Estimate Std. Dev. sy 

Result Y 

CL (population) 
C W m e a n )  

0.0140 n 5 
0.004144 SX, 6250 
0.00363 t 3.18 
120.0 Xmean 100.0 

0.00363 . d1/5 + (120 - 100)*/6250 

0.5 I 1 k 0.006(+1.2%) (2.17) 
0.505 I Y ( x )  I 0.517 (2.17) 
0.498 I y(x) 10.524 (2.25) 

0.0140 + 120.0.004144 = 0.511 

= 0.00187 

abcissa x; if one were interested in knowing within which interval one would 
have to expect individual measurements y, the CL( y) apply (“Y” refers to 
an estimate, “y” to a measurement!): Equation (2.16) for V y  is expanded to 
read 

(2.25) 

The additional term “+I” is explained in Figure 2.9 and in the following: 
If it is assumed that a given individual measurement yf at x, is part of the 

same population from which the calibration points were drawn (same chemi- 
cal and statistical properties), the reproducibility sy associated with this mea- 
surement should be well represented by srea. Thus, the highest y-value still 
tolerated for y l  could be modeled by superimposing CI( y l )  on CI(Y(xi)) as 
shown by Figure 2.9 (left). A much easier approach is to integrate the uncer- 
tainty in yf into the calculation of CL(Y); because variances (not standard 
deviations) are additive, this is done by adding ‘‘Vre5” outside, respectively 
“+1” inside the parentheses of Eq. (2.16) to obtain Eq. (2.25). 

Example 31: In Table 2.5, the term under the root would increase from 
0.264 to 1.264; this increase by a factor of 4.8 translates into CI( y) being 2.2 
times larger than CI(Y). The corresponding test at x = 125 (0.517 I y(x) I 
0.547) shows the measured value in Table 2.2 (0.537) to be well within 
the tolerated limits. Only if the residual standard deviation (0.00363) was 
much larger than expected for the analytical method would there be reason 
to reassess this calculation. 

A test for outliers can be based on this concept, for instance by using 
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/ A  

\ d  / ”  

Figure 2.9. The confidence interval for an individual result CI( y * )  and that of the regression 
line’s CLu A are compared (schematic, left). The information can be combined as per Eq. (2.25), 
which yields curves B (and B’, not shown). In the right panel curves A and B are depicted relative 
to the linear regression line. If e > 0 or d > 0, the probability of the point belonging to the popu- 
lation of the calibration measurements is smaller than alpha; cf. Section 1.5.5. The distance e is 
the difference between a measurement y (error bars indicate 95% CL) and the appropriate toler- 
ance limit B; this is easy to calculate because the error is calculated using the calibration data set. 
The distance d is used for the same purpose, but the calculation is more difficult because both a 
CL(regression line) A and an estimate for the CL( y) have to be provided. 

an appropriate t-value or by malung use of a special table69 (see Appendix 
5.1.2), but as with all outlier tests, restraint is advised: data points should 
never be suppressed on statistical reasoning alone. A good practice is to run 
through all calculations twice, once with, and once without the suspected 
outlier, and to present a conservative interpretation, e.g., “the concentration 
of the unknown is estimated at 16.3 f 0.8 mM using all seven calibration 
points. If the suspected outlier (marked ‘‘2’ in the graph) were left out, a 
concentration of 16.7 +_ 0.6 mM with n = 6 would be found‘’. The reader can 
then draw his own conclusions. If working under GMPs, read Section 1.5.5 
before even considering to touch an outlier. 

The precision associated with Y ( x )  is symmetrical around x,,,, see left 
panel of Fig. 2.10. In practice, the relative precision is more interesting, see 
the right panel. 
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Figure 2.10. For n = 5 ,  10, resp. 20 the estimated CI( y L )  and CI(Y) (bold) are plotted versus 
x. The left figure shows the absolute values It . s y l ,  while the right one depicts the relative 
ones, namely 100 . t . s y / Y  in %. At x = 130 one finds Y = 0.553 with a CI of f0.013 (+2.4%, 
circles). It is obvious that it would be inopportune to operate in the region below about 90% 
of nominal if relative precision were an issue (hatched bar). There are two remedies in such a 
case: increase n (and costs) or reduce all calibration concentrations by an appropriate factor, 
say lo%. The bold lines give the estimates for the regression line (Eq. 2.16), while the thin 
ones are for individual points (Eq. 2.25). 

2.2.6 Interpolating X (  y) 

The quintessential statistical operation in analytical chemistry consists in 
estimating, from a calibration curve, the concentration of an analyte in an 
unknown sample. If the regression parameters a and b, and the unknown's 
analytical response y* are known, the most likely concentration is given by 
Eq. (2.19), y* being the average of all repeat determinations on the unknown. 

The interpolation can lead to asymmetric distributions, even if all mea- 
surements that go into the calculation are normally d i~ t r ibu ted .~~  

While it is useful to know X ( y * ) ,  knowing the CL(X) or, alternatively, 
whether X is within the preordained limits, given a certain confidence level, is 
a prerequisite to interpretation, see Figure 2.11. The variance and confidence 
intervals are calculated according to Eq. (2.18). 

Example 32 (see Section 2.2.1): assume that the measurement of a test 
article yields an absorbance of 0.445; what is the probable assay value? Even 
for m = 10 repeat determinations, the true value of X ( y * )  is only loosely 
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Absorbance 

0 1 2 3 4 0 2 4 6 
Confidence interval around X = f ( y )  t cv [%] 

Figure 2.11. For various combinations of n (5; 10; resp. 20) and m (1,2, resp. 3) the estimated 
CI(X) is plotted versus absorbance y*. The left figure shows the absolute values It . sx 1, while 
the right figure depicts the relative ones, namely 100 t s x / X  in %. It is obvious that it would 
be inopportune to operate in the region below about 90% of nominal (in this particular case 
below y = 0.36; the absolute error for y* = 0.36 is smaller than that for y* = 0.6, but the 
inverse is true for the relative error, see arrows). There are three remedies: increase n or m 
(and costs), or reduce the calibration concentrations to shift the center of mass (xmean, ymean) 
below 100/0.42. At y* = 0.6 and m = 1 (no replicates!) one finds X = 141.4 with a CI of k3.39 
(k2.4%, circle). 

defined: 102.5 I X I 105.5. This large confidence interval implies that the 
result cannot be quoted other than “104%.” (See Table 2.6.) The situation 
can be improved as follows: in the above equation the three terms in the 
parentheses come to 1/5, l /m,  resp. 0.0026, that is 16.6, 83.2, and 0.2% 
of the total for m = 1. The third term is insignificant owing to the small 
difference between y* and ymean, and the large S,,, so that an optimization 
strategy would have to aim at reducing ( l /n  + l/m), which is best achieved 
by increasing m to, say, 5. Thus the contributions would come to 49.7, 49.7, 
resp. 0.65% of the new total. Assuming n = m is the chosen strategy, about 
n = 16 would be necessary to define X ( y * )  to +I (n = 60: f0.5). Clearly, a 
practical limit becomes visible here that can only be overcome by improv- 
ing s,, (i.e., better instrumentation and/or more skillful work). Evidently, 
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Table 2.6. Interpolation 

Regression Parameters 

y* = 0.445 ymean = 0.4284 S,, = 6250 sres = 0.00363 
a : 0.0140 b = 0.004144 n - 5  m =  1 

Final Results 

X ( y * )  = (0.445 ~ 0.0140)/0.004144 = 104.0% of nominal 

.003630 1 (0.445 ~ 0.4284)2 
yx ( m) . ( f + i -I- (0.004144)2 . 6250 

t . A, = 3.182 . d6.924 = 13.06 

Confidence limits CL(X(y*)): 

(2.la) 

= 0.924 

(2.18) 

100.9 . . . 107.1 
102.0 . . 106.0 
102.5 . . . 105.5 

t . cx = k3.06 for m - I independent measurement 
t . s, - k2.04 for m = 3 independent measurements 
t . F, = 11.53 for m = 10 independent measurements 

knowing X(y*) but ignoring CL(X) creates an illusion of precision that is 
simply not there. 

Program SIMCAL was expressly written to allow these sorts of what- 
if questions to be explored, with realistic intercepts, slopes, signal noise, 
digitizer characteristics, and economical factors specified, so one can get a 
feeling for the achieved precision and the costs this implies. 

The CI(X) yields information as to which digit the result should be 
rounded to. As discussed in Sections 1.1.5 and 1.6, there is little point in 
quoting X( y*)  to four significant digits and drawing the corresponding con- 
clusions, unless the CI(X) is very small indeed; in the preceding example, 
one barely manages to demonstrate a difference between X( y * )  = 104 and 
the nominal value X, = 100, so that it would be irresponsible to quote a single 
decimal place, and it would be out of the question to write down whatever 
the calculator display indicates, say “104.005792.” 

The CL(X) are calculated as given in Eqs. (2.18) and (2.19); a comparison 
with Eq. (2.16) reveals the formal equivalence: the expression ( y -yInean)/b 
corresponds to (x ~ x,,,) and dividing s,,, by b converts a measure of uncer- 
tainty in y to one in x. 

The estimation of the intersection of two regression lines, as used in 
titrimetry, is discussed in Refs. 71-73; see program INTERSECT and Sec- 
tion 2.2.11. 

A sin that is casually committed under routine conditions is to once and 
for all validate an analytical method at its introduction, and then to assume 
a = 0 thus, X( y * )  would be calculated from the measurement of a reference, 

* 
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Y R ,  and that of the sample, ys ,  by means of a simple proportionality. The 
possible consequences of this are discussed in Ref. 74. The only excuse for 
this shortcut is the nonavailability of a PC; this approach will have to be 
abandoned with the increasing emphasis regulatory agencies are putting on 
statements of precision. 

Formalizing a strategy: What are the options the analyst has to increase 
the probability of a correct decision? V,, will be more or less given by the 
available instrumentation and the analytical method; an improvement would 
in most cases entail investments, a careful study to reduce sample work- 
up related errors,13 and operator training. Also, specification limits are often 
fixed. 

A general course of action could look like this: 

1. Assuming the specification limits SL are given (regulations, market, 
etc.): postulate a tentative confidence interval CI(X) no larger than 
about 

2. Draw up a list of all analytical methodologies that are in principle capa- 
ble of satisfying this condition. 

3 .  Eliminate all methodologies that do not stand up in terms of selectivity, 
accuracy, linearity, and so on. 

4. For all methodologies that survive step (3), assemble typical data, such 
as V,,, costs per test, and so on. For examples see Refs. 19, 75. 

5. For every methodology set up reasonable “scenarios,” that is, tenta- 
tive analytical protocols with realistic n, m, SIX, estimated time, and 
costs. Make realistic assumptions about the quality of data that will be 
delivered under routine conditions, cf. Figure 1.7. 

6. Play with the numbers to improve CI(X) and/or cut costs (program 
SIMCAL). 

7. Drop all methodologies that impose impractical demands on human 
and capital resources: many analytical techniques, while perfectly 
sound, will be eliminated at this stage because manpower, instrumen- 
tation, and/or scheduling requirements make them noncompetitive. 

8. If necessary, repeat steps (5)-(7) to find an acceptable compromise. 

SI; SI = specification interval. (See Fig. 2.12.) 

Note concerning point (7): In the medium to long run it is counterproduc- 
tive to install methodologies that work reliably only if the laboratory envi- 
ronment is controlled to unreasonable tolerances and operators have to aquire 
work habits that go against the grain. While work habits can be improved 
up to a certain point by good training (there is a cultural component in this), 
automation might be the answer if one does not want to run into GMP com- 
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CATEGORY 

right on target 

probably inside 

borderline case 

certainly outside 

change SL or 
improve method 

SPECIFICATION 6 INTERVAL SI 3 CASE 
lower 

specification 
limit SL, 1 

H 
production 
to I e r a n c e 

confidence interval 
of result CI 

Figure 2.12. The relationship between specification interval, SI, and confidence intervals of 
the test result, CI. The hatched bars denote the product specifications while the horizontal 
bars give the test results with confidence limits. A ratio SI/CI 2 4 is required if differentiation 
between result categories is needed. 

pliance problems. In the pharmaceutical industry, if compliance cannot be 
demonstrated, a product license might be revoked or a factory closed, at 
enormous cost. 

Step (6) can be broken down as given in Table 2.7. If the hardware and 
its operation is under control, and some experience with similar problems is 
available, experiments need only be carried out late in the selection process 
to prove/disprove the viability of a tentative protocol. Laboratory work will 
earnestly begin with the optimization of instrumental parameters, and will 
continue with validation. In following such a simulation procedure, days and 
weeks of costly lab work can be replaced by hours or days of desk work. 

As shown in Figure 2.12, the specificatioq'confidence interval ratio SI/CI 
is crucial to interpretation: While SI/CI 2 4 allows for distinctions, with 
Sl/Cl = 1 doubts will always remain. SI/CI = 4 is the minimum one should 
strive for when setting up specifications (provided one is free to choose) 
or when selecting the analytical method, because otherwise the production 
department will have to work under close to zero tolerance conditions as 
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Table 2.7. Tactics for Improving a Calibration 

Tactic Target 

shift calibration 
points to reduce 

or increase S,, 
(Y* - Yrn,,) 

increase n or rn 

improve skills 

buy better 
hardware 

shift calibration 
points so the 
y-range within 
which the inter- 
polation will 
take place does 
not include 
values below 
about 0.9 ymean 

do each test 
analysis a 
first time to 
obtain a rough 
estimate and 
repeat it with 
the optimal 
sample dilution 

control the labora- 
tory environmenl 
and/or modify 
the experimental 
Plan 

reduce third term 
under 
parenthesis 
in Eq. (2.18) 

reduce terms 1 or 
2 in Eq. (2.18) 

decrease one com- 
ponent of V,, 

decrease other 
component of 
Vr,, 

reduce interpolation 
error for low y* 

* 
Y = Yrnean 

optimize conditions, 
reduce signal 
drift 

organizational Figs. 2.8 
and 2.11 

time, material Figs. 2.10 

training, organi- reduce weighing 
zational, time errors, Fig. 

capital better balances, 
investment mechanical 

dispensers, 
better detector 

organizational Figs. 2.10 
and 2.11 

and 2.11 

4.10 

run a repeat Section 4.13 
analysis using 
a non-standard 
dilution scheme 

infrastructure Section 4.32, 
and/or Eq. (1.61, 
organizational Ref. 188 

regards composition and homogeneity; cf. Section 4.24 (Fig. 4.35). Once 
a target CI(X) is given, optimization of experimental parameters can be 
effected as shown in Section 2.2.8. 

Depending on the circumstances, the risk and the associated financial cost 
of being outside specifications might well be very high, so inhouse limits 
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I probability of obtaining 

I specification limits: 
a :  j a result outside of the 

A p-0.025 

j p = o . 2  

Batch A IS the only one that 
does not activate alarms, 
batch B still passes the IHL, 
but remedial action IS called 
for, while batches C-E fail both 
the ALs and the IHLs 

A- 0.5 

Figure 2.13. The distance between the upper inhouse limit (IHL) and the upper specification 
(SL) limits is defined by the CI(X). The risk of the real value being outside the SL grows from 
negligible (measured value A far inside IHL) to 50% (measured value E on SL). Note that the 
definition of the upper inhouse limit takes into account the details of the analytical method 
( f 7 ,  x,. m, V,,,) to set the minimal separation between IHL and SL for an error probability 
for (xmean > SL) of less than p 0.025. The alarm limits (AL), as drawn here, are very 
conservative; when there is more confidence in man and machine, the AL will be placed closer 
to the IHL. IHL and AL need not be symmetrical relative to the SL. 

(IHL) for X could be set that would guarantee that the risk of a deviation 
would be less than a given level. 

It is evident that the distance between the inhouse and the specification 
limits is influenced by the quality of the calibration/measurement procedure; 
a fixed relation, such as “2a, 3a,” as has been proposed for control charts, 
might well be too optimistic or too pessimistic (for a single test result exactly 
on the 2a inhouse limit, the true value p would have a = 16% chance of 
being outside the 30 SL). Note that it takes at least n = 6 (resp. n = 1 1 )  
values to make a z = 2 ( z  = 3) scheme (see Figure 1.24) even theoretically 
possible. For n = 4, for instance, Ix,,,, I would have to be 2 1 5 7  in order that 
the largest 1x1 could be beyond 3a;  run a series of simulations on program 
CONVERGE and concentrate on the first four data points to see that an 00s 
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result (Ixil > 30) is much more frequent than Ix,,,,I > 20.  Action limits 
(AL) can be identical with the inhouse limits IHL, or even tighter. IHL are 
a quality assurance concept that reflects a mandated policy “we will play on 
the safe side,” while AL are a production/engineering concept traceable to 
process validation and a concern to prevent down-time and failed batches. 
The three sets of limits need not by symmetrically placed with respect to the 
nominal value, or each other. 

2.2.7 Limit of Detection 

Analytical measurements are commonly performed in one of two ways: 

When sufficient amounts of sample are available one tries to exploit the 
central part of the dynamical range because the signal-to-noise ratio is 
high and saturation effects need not be feared. (Cf. Figures 2.11 and 
3.1.) Assays of a major component are mostly done in this manner. 

0 Smaller concentrations (or amounts) are chosen for various reasons, for 
example to get by with less of an expensive sample, or to reduce over- 
loading an analytical system in order to improve resolution. 

In the second case the limit of detection sets a lower boundary on the 
accessible concentration range; Ref. 76 discusses some current achievements. 

Different concepts of “limit of detection” (LOD) have been advanced over 
the years77: 

1. The most well known one defines the LOD as that concentration (or 
sample amount) for which the signal-to-noise ratio (SNR) is given by 
SIN = z ,  with z = 3 . . . 6.78-*3 Evidently, this LOD is (a) dependent 
only on baseline noise, N ,  and the signal, S, (b) independent of any 
calibration schemes, and (c) independent of heteroscedacity. While the 
concept as such has profited the analytical community, the proposal 
of one or the other z value as being the most appropriate for some 
situation has raised the question of arbitrariness. This concept affords 
protection against Type I errors (concluding that an analyte is present 
when it is not), providing z is set large enough, but not against Type I1 
errors (false negatives), cf. Sections 1.9 and 1.5.5. There are a number 
of misconceptions about this popular index of quality of measurement; 
the correct use of the SNR is discussed in Ref. 84. 

2. The linear regression line is established and the quantity q = 100 . sy/Y 
is determined for x = x,,, -)xmln until q equals 15%; the correspond- 
ing x is the LOD. 
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3. The FDA mandates that of all the calibration concentrations included 
in the validation plan, the lowest x for which CV 5 15% is the LOD 
(extrapolation or interpolation is forbidden). This bureaucratic rule 
results in a waste of effort by making analysts run unnecessary repeat 
measurements at each of a series of concentrations in the vicinity of 
the expected LOD in order to not end up having to repeat the whole 
validation because the initial estimate was off by + or - 20%; extrap- 
olation followed by a confirmatory series of determinations would do. 
The consequences are particularly severe if validation means repeat- 
ing calibration runs on several days in sequence, at a cost of, say, (6 
concentrations) x (8 repeats) x (6 days) = 288 sample work-ups and 
determinations. 

4. Calibration-design-dependent estimation of the LOD. (See next.) 

The determination of the LOD in connection with transient signals is dis- 
cussed in Ref. 85. 

The calibmtion-design-dependent LOD a p p r o a ~ h , ~ 6 , ~ ~  namely the use of 
the confidence limit function, is endorsed here for reasons of logical con- 
sistency, response to optimization endeavors, and easy implementation. Fig. 
2.14 gives a (highly schematic) overview: 

The procedure is as follows: 

1. The interception point is normally x = 0 (arrow A, circle); when a 
is negative, an instruction guards against an unrealistically low LOD 
by specifying x to be the interception point with the abscissa so that 
Ylntercept 2 0 (arrow B, square): 
IF Intercept-A > = 0 THEN x = 0 ELSE x = -Intercept-A/Slope-B 

2. CL,, is obtained from Eqs. (2.16) and (2.17) using the add sign (“+”) 

3. A horizontal is drawn through the upper confidence limit marked with 
a circle or a square, as appropriate, in Figure 2.14 

4. CL,, is inserted in Eq. (2.10) (CL,, = a + b . XLOD). The intercept 
of the horizontal with the regression line defines the limit of detec- 
tion, XLOD, any value below which would be reported as “less than 
XLOD.” 

5 .  CL, is inserted in Eqs. (2.18) and (2.19), with k = 00, and using the 
“+” sign. The intercept of the horizontal with the lower confidence 
limit function of the regression line defines the limit of quantitation, 
XLOQ, any value above which would be quoted as “X( y*)  k t . sX” 

6. X-values between LOD and LOQ should be reported as “LOD < X (  y”) 
< LOQ” 
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/ 
Figure 2.14. The definition of the limits of detection, LOD, respectively quantitation, LOQ 
(schematic). 

This reporting procedure is implemented in program LINREG and its 

Pathological situations arise only when 
derivatives. 

sreS is so large that the circle is higher than the square, or 

Slope b is close to zero and/or s,,, is large, which in effect means the 
horizontal will not intercept the lower confidence limit function, and 

The horizontal intercepts the lower confidence limit function twice, i.e., 
if n is small, s,,, is large, and all calibration points are close together; 
this can be guarded against by accepting XLOQ only if it is smaller than 
Xmean . 

How stringent is this model in terms of the necessary signal height relative 
to the baseline noise? First, some redefinition of terms is necessary: 

“Signal” is replaced by the calculated analyte concentration XLOD at 
LOD resp. LOQ 
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Table 2.8. Reporting Interpolation Results Near the Detection Limit 

Example (see Section 2.2.2): 
Regression Parameters 

X L ~ D  -- (0.0155)/0.004144 = 3.7 
CL,(u) = 0.0140 + 0.0155 = 0.0295 
XLOQ is estimated as 3.7 + 3.6 = 7.3 
(Eq. (2.19) with l / k  = 0 and y* = 0.0295) 

Final Results 

The results for three unknown samples would be reported as follows: 
LOD LOQ 
3.7 7.3 

ESTIMATED RESULT 2.5 5.2 15.6 
REPORTED AS ‘<3.7’ ‘5.2’ ‘15.6 k 4.3 ( k  J 1)’ 

0 “Noise” is understood to mean the residual standard deviation expressed 
in abscissa units, N X  = sres/b 

Since, for this model, a calibration scheme is part of the definition, the 
following practical case will be evaluated: for n = 3 . . . SO the lowest con- 
centration value will be at SO, the highest at 150% of nominal (the expected 
concentration of the sample); all other points will be evenly spaced inbe- 
tween. In Figure 2.15 the quotient “signal/noise” XLOD/NX is plotted versus 
the logarithm of n. It is quite evident that the limit of detection defioed by 
the above quotient becomes smaller as n grows for constant repeatability sres. 
The quotient for p = 0.1 is around 2.0 for the largest n,7x and rises to over 7 
for n = 3 .  These results are nearly the same if the x-range is shifted or com- 
pressed. The obvious value of the model is to demonstrate the necessity of 
a thoughtful calibration scheme (cf. Section 4.13) and careful measurements 
when it comes to defining the LOQ/LOD pair. Throughout, this model is 
more demanding than a very involved, correct statistical theory.S8 (See Fig- 
ure 2.15.) This stringency is alleviated by redistributing the calibration points 
closer to the LOD. A comparison of various definitions of LOD/LOQ is 
given in Figure 4.31 and Section 4.23 (Table 4.28). 

2.2.8 Minimizing the Costs of a Calibration 

The traditional analyst depended on a few general rules of thumb for guid- 
ance while he coped with technical intricacies; his modern counterpart has a 
multitude of easy--to-use high-precision instruments at his disposaP9 and is 
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Figure 2.15. The limit of detection LOD: the minimum signal/noise-ratio necessary according 
to two models (ordinate) is plotted against loglo(n) under the assumption of evenly spaced cal- 
ibration points. The three sets of curves are forp = 0.1 (A), 0.05 (B), and 0.02 (C). The correct 
statistical theory is given by the fine points,88 while the model presented here is depicted with 
coarser dots.86 The widely used S / N  = 3 , . . 6 models would be represented by horizontals at 
y =  3 ... 6. 

under constant pressure to justify the high costs of the laboratory. With a few 
program lines it is possible to juggle the variables to often obtain an unex- 
pected improvement in precision,90-94 organization, or instrument utilization, 
cf. Table 2.7. A simple example will be provided here; a more extensive one 
is found in Section 4.3. 

Example 33: Assume that a simple measurement costs 20 currency units; 
n measurements are performed for calibration and m for replicates of each 
of five unknown samples. Furthermore, the calibration series of n measure- 
ments must be paid for by the unknowns to be analyzed. The slope of the 
calibration line is b = I .OO and the residual standard deviation is s,,, = 3, cf. 
Refs. 75,95. The n calibration concentrations will be evenly spaced between 
50 and 150% of nominal, that is for n = 4: xi: 50, 83, 117, 150. For an 
unknown corresponding to 130% of nominal, s, should be below f3.3 units, 
respectively V ,  < 3.32 = 10.89. What combination of n and rn will provide 
the most economical solution? Use Eq. (2.4) for S,, and Eq. (2.18) for V,. 
Solution: since S,, is a function of the x-values, and thus a function of IZ (e.g. 
n = 4: S,, = 5578), solve the three equations in the given order for various 
combinations of IZ and m and tabulate the costs per result, c/5; then select the 
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Table 2.9. Costs and Quality of an Interpolation Result 

Currency Variances V ,  

n S,, m = 1 2 3 4 m = l  2 3 4 

3 5000 
4 5578 
5 6250 
6 7000 
7 7756 
8 8572 
9 9276 

10 10260 

2 52 
36 56 
40 60 
44 64 
48 68 
52 72 
56 76 
60 80 

72 
76 
80 
84 
88 
92 
96 

100 

92 13.6 9.1 7.6 6.9 
96 12.7 8.2 6.7 6.0 

100 12.1 7.6 6.1 5.3 
104 11.7 7.2 5.7 4.9 
108 11.3 6.8 5.3 4.6 
112 11.1 6.6 5.1 4.3 
116 10.9 6.4 4.9 4.1 
120 10.7 6.2 4.7 3.9 

combination that offers the lowest cost at an acceptable variance. (See Table 
2.9.) Similar simulations were run for more or less than five unknown sam- 
ples per calibration run. The conclusions are fairly simple: costs per analysis 
range from 32 to 120 currency units; if no constraints as to precision were 
imposed, (n  = 3/m = 1, underlined) would be the most favorable combina- 
tion. In terms of cost the combination (n  = 3/m = 2) is better than (n  : 10/m 
= 1) for up to six unknowns per calibration run. 

This sort of calculation should serve as a rough guide only; nonfinancial 
reasoning must be taken into account, such as an additional safety margin 
in terms of achievable precision, or double determinations as a principle of 
GMP. Obviously, using the wrong combination of calibration points n and 
replicates m can enormously drive up costs. An alternate method is to incor- 
porate previous calibrations with the most recent one to draw upon a broader 
data base and thus reduce estimation errors CI(X); one way of weighting old 
and new data is given in Ref. 96 (Bayesian calibration); whether this would 
be accepted under GMP rules is open to debate. Program SIMCAL allows 
more complex cost calculations to be made, including salaries, amortization, 
and instrument warm-up time. 

2.2.9 Standard Addition 

A frequently encountered situation is that of no blank matrix being avail- 
able for spiking at levels below the expected (“nominal”) level. 

The only recourse is to modify the recovery experiments above in the 
sense that the sample to be tested itself is used as a kind of “blank,” to which 
further analyte is spiked. This results in at least two measurements, namely 
“untreated sample” and “spiked sample,” which can then be used to establish 
a calibration line from which the amount of analyte in the untreated sample 
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Figure 2.16. Depiction ot the standard addition method: extrapolation (lett), interpolation 
(right). The data and the numerical results are given in the following example. 

is estimated. It is unnecessary to emphasize that linearity is a prerequisite 
for accurate results. This point has to be validated by repeatedly spiking the 
sample. The results can be summarized in two different ways: 

The traditional manner of graphing standard addition results is shown in 
Figure 2.16(1eft): the raw (observed) signal is plotted vs. the amount of ana- 
lyte spiked into the test sample; a straight line is drawn through the two mea- 
surements (if the sample was repeatedly spiked, more points will be avail- 
able, so that a linear regression can be applied); the line is extrapolated to 
“zero” signal. A glance at Section 2.2.6 makes it apparent that extrapola- 
tion, while perfectly legitimate, widens the confidence interval around conc. 
= -X(O), the sought result. This effect can be countered somewhat by higher 
spiking levels and thereby increasing SIX: instead of roughly estimating x and 
spiking the sample to 2 . X(O), the sample is spiked to a multiple of concen- 
tration level X(0) .  This strategy is successful only if spiking to such large 
levels does not increase the total analyte concentration beyond the linear 
range. (See Fig. 3.1 .) 

Furthermore, there is the problem that the signal level to which one extrap- 
olates need not necessarily be y = 0; if there is any interference by a matrix 
component, one would have to extrapolate to a level y > 0. This uncertainty 
can only be cleared if the standard addition line perfectly coincides with the 
calibration line obtained for the pure analyte in absence of the matrix, i.e. 
same slope and 100% recovery, see also Figure 3.2. This problem is exten- 
sively treated in Refs. 97-101. A modification is presented in Ref. 102. 

Another approach to graphing standard addition results is shown in Fig- 
ure 2.16 (right): the signal for the unspiked test sample is marked off on 
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Table 2.10. Standards Addition Results 

Amount Levels Conventional Estimate Alternative Estimate 
Spiked Signal Used (Extrapolation) (Interpolation) 

Omg 58376 
1 132600 0-1* (-) 0.787* 0.787” 
2 203670 0-2 (-) 0.81 1 f 48% 0.796 f 33% 
3 276410 0-3 (-) 0.813 f 10% 0.797 f 8% 

*) If only data points 1 + 2 are used, confidence limits cannot be calculated 

the ordinate as before; at the same time, this value is subtracted from all 
spiked-sample measurements. The same standard addition line is obtained 
as in the left figure, with the difference that it passes through the origin 
x = O/y = 0. This trick enables one to carry out an interpolation instead 
of an extrapolation, which improves precision without demanding a single 
additional measurement. 

The trade-offs between direct calibration and standard addition are treated 
in Ref. 103. The same recovery as is found for the “native” analyte has to be 
obtained for the spiked analyte (see Section 3.2). The application of spiking 
to potentiometry is reviewed in Refs. 104 and 105. A worked example for 
the application of standard addition methodology to FIA/AAS is found in 
Ref. 106. Reference 70 discusses the optimization of the standard addition 
method. 

Example 34: The test sample is estimated, from a conventional calibra- 
tion, to contain the analyte in question at a level of about 0.8 mg/ml; the 
measured GC signal is 58 376 area units. (See Table 2.10): 

2.2.10 Weighted Regression 

In the previous sections of Chapter 2 it was assumed that the standard 
deviation s, obtained for a series of repeat measurements at a concentration 
x would be the same no matter which x was chosen; this concept is termed 
“homoscedacity” (homogeneous scatter across the observed range). 

Under certain combinations of instrument type and operating conditions 
the preceeding assumption is untenable: signal noise depends on the analyte 
concentration. A very common form of “heteroscedacity” is presented in Fig. 
2.17. 

The reasons for heteroscedacity can be manifold, for example: 
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Figure 2.17. Schematic depiction of homo- (left) and heteroscedacity (right). 

The relative standard deviation RSD (or “C.O.V. = coefficient of varia- 
tion”) is constant over the whole range, such as in many GC methods, 
that is, the standard deviation sy is proportional to y .  

The RSD is a simple function of y ,  as in isotope labeling work (RSD 
proportional to 1 / 4 .  

The RSD is small in the middle and large near the ends of the linear 
range, as in photometry. 

Curve-fitting need not be abandoned in this case, but some modifications 
are necessary so that precisely measured points influence to a greater degree 
the form of the curve, more so than a similar number of less precisely mea- 
sured ones. Thus, a “weighting” scheme is introduced. There are different 
ways of doing this; the most accepted model makes use of the experimental 
standard deviation,’07,108 namely: 

(2.26) 

How does one obtain the necessary s,-values? There are two ways: 

1. One performs so many repeat measurements at each concentration 
point that standard deviations can be reasonably calculated, e.g., as in 
validation work; the statistical weights wi are then taken to be inversely 
proportional to the local variance. The proportionality constant k is esti- 
mated from the data. 

2. One roughly models the variance as a function of x using the data 
that are available108-1 lo: the standard deviations are plotted versus the 
concentrations, and if any trend is apparent, a simple curve is fitted, 
e.g., Eq. (2.27) in Table 2.11. As more experience is accumulated, this 
relation can be modified.111J12 
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Table 2.11. Calculation of Weighted Sums of Squares 

I 

2 

3 

4 

5 

6 
7 
8 

w, = k / V ( X i )  

model of std. 
dev. 

normalization 
factor 

statistical 
weight 

weighted 
summation 

weighted 
summation 

weighted S,, 
weighted S,, 
weighted Sxy 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 
(2.33) 
(2.34) 

It is important to realize that for the typical analytical application (with 
relatively few measurements well characterized by a straight line) a weight- 
ing scheme has little influence on slope and intercept, but appreciable influ- 
ence on the confidence limits of interpolated X ( y )  resp. Y ( x ) .  

The step-by-step procedure for option (2) is nearly the same as for the 
standard approach for option (1); only Eqs. (2.27) and (2.29) have to be 
appropriately modified to include the experimental values. All further calcu- 
lations proceed as under Section 2.2.1, standard approach. 

Example 35: The following demonstrates the difference between a 
weighted and an unweighted regression for four concentrations and two mea- 
surements per concentration 

For the weighted regression the standard deviation was modeled as s(x) 
= 100 + 5 . x; this information stems from experience with the analytical 
technique. Intermediate results and regression parameters are given in Tables 
2.13 and 2.14. Table 2.15 details the contributions the individual residuals 
make. 

Table 2.12. GC-Calibration (see Data File WLR.dat) 

xi Y I  Y2 

10 462.7 571.3 
20 1011 1201 
30 1419 1988 
40 2239 2060 
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Table 2.13. Equations for Weighted Linear Regression 

Unweighted Weighted 
Variable Regression Regression Eq./Fig. 

k 
n 

Xmean 

Ymean 

sxx 

SYY 

S X Y  

Vres 

Sres 
r2 

a 
re1 CI(a) 
b 
re1 CI(b) 
LOD 
LOQ 

1 
8 
25.0 
1369.0 
1000.0 
3’234’ 135 
54’950 
35’772 
1189 
0.9336 
-4.75 
323436% 
54.95 
26.6% 
7.3 
13.0 

4 1 ’427 
8 
19.35 
1053.975 
865.723 
2’875’773.6 
48’554.81 
25’422.53 
f159.44 
0.9470 

f922% 
56.09 
23.6% 
5.19 
9.35 

-31.6 

(2.28) 

(2.30) 
(2.31) 
(2.32) 
(2.33) 
(2.34) 
(2.13) 
(2.13) 
(2.1) 
(2.12) 
(2.15) 
(2.11) 
(2.14) 

Fig. 2.14 
Fig. 2.14 

Conclusions: the residual standard deviation is somewhat improved by 
the weighting scheme; note that the coefficient of determination gives no 
clue as to the improvements discussed in the following. In this specific 
case, weighting improves the relative confidence interval associated with 
the slope b. However, because the smallest absolute standard deviations s(x) 
are found near the origin, the center of mass xme,,/ymean moves toward the 
origin and the estimated limits of detection resp. quantitation, LOD resp. 

Table 2.14. Comparison of Interpolations of Weighted and 
Unweighted LinReg 

Interpolations Unweighted Weighted 

x =  10 
x = 20 
x = 3 0  
x = 40 

y = 544.8, M = 1 
y = 1094, M = 1 
y = 1644, M = 1 
y = 2 1 9 3 , M =  1 

Y = 545 k 274(50%) 
Y = 1094 fL 179(16%) 
Y = 1644f 179(11%) 
Y = 2193 f 274(12%) 

X = 10.0 f 9.8(98%) 
X = 20.0 k 9.0(45%) 
X = 30.0 fL 9.0(30%) 
X = 40.0 f 9.8(24%) 

529 k 185(35%) 
10905 138(13%) 
1651 f 197(12%) 
2212 f 306( 14%) 

10.3 f 7.7(75%) 

29.9 k 7.8(26%) 
39.7 f 8.8(22%) 

20.1 f 7.4(37%) 



126 BI- AND MULTIVARIATE DATA 

Table 2.15. Contributions of the Individual Residuals Toward 
the Total Variance 

Unweighted Weighted 

Wi ri %V wi ri %V 

1 
1 
1 
1 
1 
1 
1 
1 

C = 8  

- 82.0 
26.5 

-83.2 
107 

-225 
344 

45.8 
- 133 
c = 0.0 

3. I 1.84 
0.3 1.84 
3.2 I .04 
5.3 1.04 

23.5 0.66 
55.2 0.66 

1 .0 0.46 
8.3 0.46 

c =  100.0 C = 8  

-66.6 
42.0 

-79.1 
1 1 1  

-232 
337 

27.2 
- 152 
c = 0.0 

5.4 
2. I 
4.3 
8.4 

23.4 
49.4 

0.2 
7.0 

c = 100.0 

LOQ, are improved. The interpolation Y = f ( x )  is improved for the smaller 
x-values, and is worse for the largest x-values. The interpolation X = f (  y ), 
here given for m = 1, is similarly influenced, with an overall improvement. 
The largest residual has hardly been changed, and the contributions at small x 
have increased. This example shows that weighting is justified, particularly 
when the poorly defined measurements at x = 30 and 40 were just added 
to better define the slope, and interpolations are planned at low y* levels. 
Note that the CL of the interpolation X = f ( y * )  are much larger (m = 1) 
than one would expect from Figure 2.18; increasing m to, say, 10 already 
brings an improvement by about a factor of 2. The same y* values were 
chosen for the weighted as well as for the unweighted regression to show the 
effect of the weighting scheme on the interpolation. The weighted regression, 
especially the CL(X), give the best indication of how to dilute the samples; 
although the relative CL(X) for the unweighted regression are smallest for 
large signals y*, care must be taken that it is exactly these signals that have 
the largest uncertainty: sy = 100 + 5 . x; if there is marked heteroscedacity, 
the unweighted regression is a poor model. 

If it should happen that both the abscissa and the ordinate measurements 
suffer from heteroscedacity and the assumption of sy >> s, cannot be upheld, 
then a means must be found to introduce both weighting functions, s, = f ( x )  
and sJ = f (  y). What cannot be done is to selectively use one function for the 
abscissa and the other for the ordinate values, because in that case it could 
happen that the weighted means xrnean+ and yrnean,w would combine to a 
pivotal point coordinate that is outside the range of measurements. See Eqs. 
(2.30) and (2.3 1). Therefore, it is suggested that the functions be combined 

* 
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Figure 2.18. The data from the preceding example are analyzed according to Eqs. 
(2.27)-(2.39), (2.10)-(2.17); the effect of the weighting scheme on the center of mass and 
the confidence limits is clearly visible because the noise model was changed. 

using Eq. (2.27) to read s2 = s,” + s; by transforming sy = f ( y )  as a function 
of x: sy = f ’(x). 

2.2.11 The Intersection of Two Linear Regression Lines 

There are a number of analytical techniques that rely on finding the point 
on the abscissa where two straight-line segments of an analytical signal inter- 
sect, e.g., titration curves. The signal can be any function, y = f ( x ) ,  such as 
electrical potential versus amount added, that changes slope when a species 
is consumed. The evaluation proceeds by defining a series of measurements 
yil . . . yi2 before, and another series yjl . . . yj2 after the break-point, and fit- 
ting linear regression lines to the two segments. Finding the intersection of 
the regression lines is a straightforward exercise in algebra. There are sev- 
eral models for finding the confidence limits on the inter~ection.~1-~3 Program 
INTERSECT calculates the overlap of the distribution functions PDyl and 
PDy2 as a function of x to estimate the x-range within which the intercept 
probably lies, see Fig. 2.19. 
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Conductivity 

z=lOo% /i X=95% 

Volume 
Figure 2.19. Intersection of two linear regression lines (schematic). In the intersection zone 
(gray area), at a given x-value two PD-curves of equal area exist that at a specific ?;-value 
yield the densities z1 and z2 depicted by the dashed and the full lines. The product zi . z2  
is added over the whole y-range, giving the probability-of-intersection value for that x. The 
cumulative sum of such probabilities is displayed as a sigmoidal curve; the x-values at which 
5, respectively 95% of ExE,(zl z 2 )  is reached are indicated by vertical arrows. These can be 
interpreted as the 90%-CL(Xint,,,,,). 

2.3 NONLINEAR REGRESSION 

Whenever a linear relationship between dependent and independent vari- 
ables (ordinate-resp. abscissa-values) is obtained, the straightforward linear 
regression technique is used: the equations make for a simple implementa- 
tion, even on programmable calculators. 

The situation changes drastically when curvature is observed23: 

1. Many more measurements are necessary, and these have to be carefully 
distributed over the x-range to ensure optimally estimated coefficients. 

2. The right model has to be chosen; this is trivial only when a well- 
proven theory foresees a certain function y f(x). Constraints add a 
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further d i m e n ~ i 0 n . l ~ ~  In all other cases a choice must be made between 
approaches (3) and (4). 

3. If the graph y vs. x suggests a certain functional relation, there are often 
several alternative mathematical formulations that might apply, e.g., y 
= A, y = a . (1 - exp(b . (x + c))), and y = a . (1 - I/(x + b)): choosing 
one over the others on sparse data may mean faulty interpretation of 
results later An interesting example is presented in Ref. 115 (cf. 
Section 2.3.1). An important aspect is whether a function lends itself 
to linearization (see Section 2.3. l), to direct least-squares estimation 
of the coefficients, or whether iterative techniques need to be used. 

4. In some instances, all one is interested in is an accurate numerical rep- 
resentation of data, without any intent of physicochemical interpreta- 
tion of the estimated coefficients: a simple polynomial might suffice; 
the approximations to tabulated statistical values in Chapter 5 are an 
example. 

5.  In analytical practice, fitting a model to data is only the first step; in 
analogy to Eq. (2.19) an interpolation that uses y* to estimate X( y*) is 
necessary. For many functional relationships y = f ( x )  finding an inverse, 
x = f-’ ( y), is difficult enough; without confidence limits such a result 
is nearly worthless.114 

The linearization technique mentioned under item 3 is treated in the next 
section. 

2.3.1 Linearization 

“Linearization” is here defined as one or more transformations applied to 
the x- and/or y-coordinates in order to obtain a linear “y vs. x” relationship 
for easier statistical treatment. One of the more common transformations is 
the logarithmic one; it will nicely serve to illustrate some pitfalls. 

Two aspects-wanted or unwanted-will determine the usefulness of a 
transformation: 

1. Individual coordinates (xi/yi) are affected so as to eliminate or change 
a curvature observed in the original graph. 

2. Error bars defined by the confidence limits CL(yJ will shrink or 
expand, most likely in an asymmetric manner. Since we here presup- 
pose near absence of error from the abscissa values, this point applies 
only to y-transformations. A numerical example is 17 f I (+5.9%, 
symmetric CL), upon logarithmic transformation becomes 1.23045 - 
0.02633 . . . 1.23045 + 0.02482. 
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Figure 2.20. Logarithmic transformations on x- or y-axes as used to linearize data. Notice how 
the confidence limits change in an asymmetric fashion. In the top row, the y-axis is transformed; 
in the middle row, the x-axis is transformed; in the bottom row, both axes are transformed 
simultaneously. 

Both aspects are combined in Fig. (2.20) and Table 2.16, where the lin- 
ear coordinates are x resp. y, the logarithmic ones u,  resp. u.  Regression 
coefficients established for the lin/lin plot are a, b, whereas those for the 
transformed coordinates are p ,  q.  

Note that the intercept p in the y-transformed graph becomes a multi- 
plicative preexponential factor in the original non- (resp. back-) transformed 
graph and that functions always intersect the ordinate at y 1 LOP. A straight 
line in logarithmic coordinates, if the intercept p is not exactly zero, will 
become an exponential function with intercept l o p  after back transforma- 
tion. Since double-logarithmic transformations are often employed to com- 
press data, such as GC-FID response over a 1 : 1000 dynamic range, statis- 
tical indistinguishability of two such transformed response functions must 
not be interpreted as an indication of identity: for one, any straight line in a 
lin/lin plot takes on a slope of 1.000 in a log/log plot, and any difference 
between intercepts p ,  however small, translates into two different slopes in 
the original plot, while the intercept a is always zero. 
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Table 2.16. Lin/Log Transformations 

Transformed Linear Logarithmized 
Axis Presentation Transformation Presentation 

x-axis y = a + b . x  u = log10(x) =3 y = a + b . l O U  
y = P + q . loglo(x) e= x =  I O U  y = p + q . u  

y-axis y = a + b . x  u =  log10(Y) - 100 = a + b . x 
y = lop . (lay c= y =  1 o u  u = p + q . x  

y = lop ’ x4 c= x =  lou u = p + q . u  

both y = a + b . x  u = loglo(x) + 10’ = a + b . 10’ 
axes u =  loglo(Y) * 

e= y =  l o b  

2.3.2 Nonlinear Regression and Modeling 

Many functional relationships do not lend themselves to linearization; the 
user has to choose either option 3 or 4 in Section 2.3 to continue. 

Option 4 (multilinear regression, polynomials114J16) is uncomplicated 
insofar as clear-cut procedures for finding the equation’s coefficients exist. 
Today, linear algebra (use of matrix inversion) is most commonly employed; 
there even exist cheap pocket calculators that are capable of solving these 
problems. Things do become quite involved and much less clear when one 
begins to ponder the question of the correct model to use. First, there is the 
weighting model: the least-squares approach, see Eq. (2.3),l17 is implicit in 
most commercially available software; weighting can be intentionally intro- 
duced in some programs, and in others there is automatic calculation of 
weights for grouped data (more than one calibration point for a given con- 
centration x). Second, there is the fitted model: is one to choose a polyno- 
mial of order 5, 8, or even 15? Or, using a multi-linear regression routine, 
should the terms x2, y 2 ,  xy, or the terms x2y and x2y2 be introduced114? If one 
tries several alternative fitting models, how is one to determine the optimal 
one? From a purely statistical point of view, the question can be answered. 
There exist powerful program packages that automatically fit hundreds of 
models to a data set and rank-order them according to goodness of fit, a 
sort of hit parade of mathematical functions. So far, so good, but what is 
one to say if, for a series of similar experiments, the proposed “best” mod- 
els belong to completely different mathematical functionalities, or functions 
are proposed that are at odds with the observed processes (for example, dif- 
fusion is an exponential process and should not be described by fractional 
functions)? Practicability demands that the model be kept as simple as pos- 
sible. The more terms (coefficients) a model includes, the larger the danger 
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that a perfect fit will entice the user into perceiving more than is justified. 
Numerical simulation is a valuable tool for shattering these illusions: The 
hopefully “good” model and some sensible assumptions concerning residual 
variance can be used to construct several sets of synthetic data that are func- 
tionally (form of curve) and statistically (residual standard deviation) similar 
to the experimental data but differ stochastically (detailed numbers; Monte 
Carlo technique, see programs SIMGAUSS and SIMILAR); these data sets 
are analyzed according to the chosen fitting model(s). If the same model, say 
a polynomial of order 3 ,  is consistently found to best represent the “data,” 
the probability of a wise choice increases. However, if the model’s order or 
one or more of the coefficients are unstable, then the simplest model that 
does the job should be picked. For a calculated example see Section 3.4. 

Option 3 (arbitrary models) must be viewed in a similar light as option 
4, with the difference that more often than not no direct procedure for esti- 
mating the coefficients exists. Here, formulation of the model and the ini- 
tial conditions for a sequential simplex-search of the parameter-space are a 
delicate matter. The simplex-procedure118-120 improves on a random or sys- 
tematic trial-and-error search by estimating, with a minimal set of vertices 
(points, experiments), the direction of steepest decent (toward lower resid- 
ual variances), and going in that direction for a fixed (classical simplex) or 
variable (Fletcher-Powell, or similar algorithms) distance, retaining the best 
vertices (e.g., sets of estimated coefficients), and repeating until a constant 
variance, or one below a cut-off criterion, is found. The system, (see Figure 
3.4) is not fool-proof; plausibility checks and graphics are an essential aspect 
(see Section 4.2). Even if an arbitrary model is devised that permits direct 
calculation of its coefficients, this is no guarantee that such a model will not 
break down under certain conditions and produce nonsense; this can even 
happen to the unsuspecting user of built-in, unalterable firmware.Il5 

The limit of quantitation in the nonlinear case is discussed in Ref. 121. 

2.4 MULTIDIMENSIONAL DATA: VISUALIZING DATA 

When confronted with multidimensional data it is easy to “plug” the fig- 
ures into a statistical package and have nice tables printed that purportedly 
accurately analyze and represent the underlying factors. Have the following 
questions been asked: 

Does the model conform to the problem? 

Is the number of factors meaningful? 

Is their algebraic connection appropriate? 
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The point made here is that nearly any model can be forced to fit the 
data; the more factors (coefficients) and the higher the order of the indepen- 
dent variable(s) (x, x2, x3, etc.) the better the chance of obtaining near-zero 
residuals and a perfect fit. Does this make sense, statistically, or chemically? 

It is proposed to visualize the data before any number-crunching is 
applied, and to carefully ponder whether an increase in model complexity 
is necessary or justified. The authors abstain from introducing more compli- 
cated statistics such as multiple linear regression (MLR), principal compo- 
nent analysis (PCA), or partial least squares (PLS)i22 because much experi- 
ence is necessary to correctly use them. Since the day the computer invaded 
the laboratory, publications have appeared that feature elegant, and increas- 
ingly abstract, recipes for extracting “results” from a heap of numbers; only 
time will tell whether many of these concepts are generally useful. The fact 
that these standard methods are presented again and again, nearly always 
with some refinement for the particular field of application, or are criti- 
cally compared, is in itself an indication that wielding high-powered, off-the- 
shelves tools is not without risks.123 In an era of increasing accountability, 
there is no guarantee that the justification report for a particular data-evalua- 
tion scheme will not land on a lawyer’s desk some day; it is hard to explain 
involved evaluation schemes to lay persons for whom a standard deviation is 
“advanced science.” If schemes A and B are statistically more or less equiv- 
alent under some set of circumstances, but a given decision could go one 
way or the other, depending on which scheme is used, then a legal trap is 
set. A case in point would be a very large data set that is first reduced to a 
few latent variables through the use of PCA; because the MLR model built 
on these linear combinations does not sufficiently well map the data, the 
model could be expanded to include quadratic and cubic terms. The obvious 
question, “do you really know what you are doing?” could not be shrugged 
off, particularly if a reasonably similar situation was analyzed in a wholly 
different manner by some other company. The simple traditional models do 
have an advantage: their use is widespread and there is much less discussion 
about when and how to apply them. 

Visualizing Data: the reader may have guessed from previous sections 
that graphical display contributes much toward understanding the data and 
the statistical analysis. This notion is correct, and graphics become more 
important as the dimensionality of the data rises, especially to three and more 
dimensions. Bear in mind that: 

The higher the dimensionality, the more acute the need for a visual 

The higher the dimensionality, the harder it becomes for humans to 

check before statistical programs are indiscriminately applied. 
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Table 2.17. Multidimensional Data 

Calculated means Calculated SDs x 100 

Method 1 2 3 4 Mean 1 2 3 4 Mean 

Batch 
A 99.03 99.16 99.27 99.41 99.22 57 k2 k12 5 2  k6.6 
B 99.45 99.34 99.06 99.35 99.42 k2 k1 k17 +15 k10.6 
C 99.17 99.55 99.42 99.55 99.42 +11 k7 +10 57 k8.3 
D 99.04 99.36 98.58 99.20 99.30 +10 _+7 k7 +14 k9.3 

Mean 99.17 99.35 99.33 99.38 99.25 k7.7 54.7 k11.2 k10.2 k9.5 

grasp the situation; with color coding and pseudo-three-dimensional dis- 
plays, four dimensions can just be managed. 

Scientific software tends to be better equipped for handling and present- 
ing complex data than the commonly available business graph packages, 
but even when one knows which options to choose, the limits that two- 
dimensional paper imposes remain in place. 

The reader is urged to try graphics before using mathematics for reasons 
that will become evident in the example of Table 2.17. However, it is sug- 
gested to stick with one or two dimensions if that suffices to present the 
information, and to resist the urge to add pseudo-dimensions even if the illus- 
tration looks slicker that way. 

Example 36: Four batches, A, B, C, and D, of an amino acid hydro- 
chloride were investigated; four different titration techniques were applied 
to every sample: 

1. Direct titration of +H-OOC--R-N+R1R2R3.C1- with NaOH, 
2. Indirect titration using an excess of NaOH and back-titration to the 

3 .  Respectively second equivalence point, and 

4. Titration of the chloride. 

first, 

Six repeat titrations went into every mean and standard deviation listed 
(for a total of 4 x 4 x 6 = 96 measurements). The data in Table 2.17 are 
for batches A, B, C ,  and D, and the calculated means respectively standard 
deviations are for methods 1, 2, 3 ,  and 4. The means for both rows and 
columns are given. The lowest mean in each row is given in bold. The overall 
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Figure 2.21. Results of 96 titrations of an amino acid. (See Table 2.17.) 

mean is 99.25; relative to this, the overall SD is k 0.245, which includes the 
average repeatability (k0.095) and a between-group component of f0.226. 
Because n = 6, t ( p  = 0.05, f = 5)/& = 1.04, which means the standard 
deviation is nearly equal to the confidence interval of the mean. 

A bar chart and a pseudo-3D depiction are shown superimposed on a 
contour map in Figure 2.21; the same information as in Table 2.17 is given 
in an appealing, credible-looking manner in all three cases. The bar chart 
is the least confusing but misrepresents truth all the same; the other figures 
ought to make one think even more before calculations are started: 

1. It is easy to prove that there are differences between two given means 
using the t-test (Case bl or c). 

2. A one-way (simple) ANOVA with six replicates can be conducted by 
either regarding each titration technique or each batch as a group, and 
looking for differences between groups. 

3. A two-way ANOVA (not discussed here) would combine the two 
approaches under 2. 
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Finding differences is one aspect of the problem, the second is to integrate 
problem-specific chemical know-how with statistics: 

a. The chloride titration seems to give the highest values, and the direct 
titration the lowest. Back-titration to the first equivalent point appears 
to be the most precise technique. 

b. The four batches do not appear to differ by much if means over meth- 
ods or batches are compared. 

c. Batches A, B, and C give similar minimal values. 
d. The average standard deviation is 9.5/100/100 = 0.1%, certainly close 

to the instrumentation’s limits. 

By far the most parsimonious, but nonstatistical, explanation for the ob- 
served pattern is that the titrations differ in selectivity, especially as regards 
basic and acidic impurities. Because of this, the only conclusion that can be 
drawn is that the true values probably lie near the lowest value for each batch, 
and everything in excess of this is due to interference from impurities. A more 
selective method should be applied, e.g., polarimetry or ion chromatography. 
“Parsiinony” is a scientific principle: make as few assumptions as possible to 
explain an observation; it is in the realm of wishful thinking and “fringe sci- 
ence” that combinations of improbable and implausible factors are routinely 
taken for granted. 

The lessons to be learned from this example are clear: 

Most statistical tests, given a certain confidence level, only provide clues 

Statistical tests incorporate mathematical models against which reality, 
as to whether one or more elements are different from the rest. 

perhaps unintentionally or unwillingly, is compared, for example: 
- “additive difference”: t-test, ANOVA; 
- “linear relationship.” linear regression, factorial test. 
More appropriate mathematical models must be specifically incorpo- 
rated into a test, or the data must be transformed so as to make it testable 
by standard procedures. 

n A decision reached on statistical grounds alone is never as good as one 
supported by (chemical) experience and/or common sense. 
Never compare “apples” and “oranges” if the distinction i s  evident or 
plausible. 
Refrain from assembling incomplete models and uncertain coefficients 
into a spectacular “theoretical” framework without thoroughly testing 
the premises. “Definitive” answers so produced all too easily take on a 
life of their own as they are wafted through top floor corridors. 



CHAPTER 

3 

RELATED TOPICS 

Except perhaps in some academic circles, analytical chemistry is not a stand- 
alone affair as it is always embedded in real-world problems that need to be 
solved in a reasonable manner, that is legally binding, fast, precise, cheap, 
etc. Making a method reliably deliver the requested results at the pre-deter- 
mined quality leve131 means installing a framework of equipment and pro- 
cedures, and providing the necessary skill base and support functions. This 
is exactly what the GMPs embody; the key phrases are explained below. If 
the concept is adhered to, meaningful numbers will be generated even under 
difficult circumstances, and statisticians will be able to work the numbers; 
if not, the “results” might be worth less than the paper they are written on. 

Statistics are employed both to check the quality and to set the require- 
ments (synonymous with “specifications”). 

Chapters 1 and 2 introduced the basic statistical tools. The necessary com- 
puter can do more than just run statistics packages: in this chapter, a number 
of techniques are explained that tap the benefits of fast data handling, namely 
filtering, optimization, and simulation. 

3.1 GMP BACKGROUND 

With the safety of the consumer at the top of their minds, the Health Authori- 
ties of various countries have over the years established rules and guidelines 
to prevent the sale of harmful or ineffectual “medicines,” and to establish 
minimal quality goals for those medications that do get their approval. As 
can be imagined, the variety of national givens (metric/Anglo-Saxon mea- 
suring systems; linguistic definition of terms; differences in medical prac- 
tice; historical preferences; legal precedents, etc.) brought about a near-Baby- 
lonic confusion that was of no further consequence as long as everbody pro- 
duced only for the local market. Today, globalization enforces harmonization 
against many an authority’s will. Obtaining quality results is only possible 
if all of the manufacturer’s players are included in the effort: definition of 
market needs, product design, production, control, and logistics. The GMP 
guidelines touch on all of these. 

137 
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The pharmaceutical industry is a convenient example because the level of 
regulation is high and encompassing, and codification and enforcement are 
thorough. Other industries face similar pressures, perhaps less out of public 
safety needs than to play the “quality and reliability” card and stay in the 
game for a long time. Thus, other systems have evolved, like the EN and the 
IS0  norm, that naturally evolved to something less specific, but very similar 
to the GMPs, and more generally applicable. 

Of all the requirements that have to be fulfilled by a manufacturer, start- 
ing with responsibilities and reporting relationships, warehousing practices, 
service contract policies, airhandling equipment, etc., only a few of those 
will be touched upon here that directly relate to the analytical laboratory. 
Key phrases are underlined or are in italics: Acceptance Criteria, Accuracy, 
Baseline, Calibration, Concentration range, Control samples, Data Clean-Up, 
Deviation, Error propagation, Error recovery, Interference, Linearity, Noise, 
Numerical artifact, Precision, Recovery, Reliability, Repeatability, Repro- 
ducibility, Ruggedness, Selectivity, Specifications, System Suitability, Val- 
idation. 

Selectivity and Interference: Selectivity means that only that species is 
measured which the analyst is looking for.l0 A corollary is the absence of 
chemical inteqerents. A lack of selectivity is often the cause of nonlinear- 
ity of the calibration curve. Near infra-red spectroscopy is a technology that 
exemplifies how seemingly trivial details of the experimental set-up can frus- 
trate an investigator’s best intentions; Ref. 124 discusses some factors that 
influence the result. 

Linearity appeals to mind and eye and makes for easy comparisons. For- 
tunately, it is a characteristic of most analytical techniques to have a lin- 
ear signal-to-concentration relationship over at least a certain concentration 
range;’25,126 in some instances a transformation might be necessary for one 
axis (e.g., logarithm of ion activity) to obtain linearity. At both ends there is a 
region where the calibration line gradually merges into a horizontal section; 
at the low-concentration end one normally finds a baseline given by back- 
ground interference and measurement noise. The upper end of the calibration 
curve can be abrupt (some electronic component reaches its cut-off voltage, 
higher signals will be clipped), or gradual (various physical processes begin 
to interfere see Fig. 3.1). As long as there is no disadvantage associated with 
it, an analyst will tend toward using the central part of the linear portion for 
quantitative work. This strategy serves well for routine methods: a few cal- 
ibration points will do and interpolation is straightforward. 

Nonlinear calibration curves are not forbidden, but they do complicate 
things quite a bit: more calibration points are necessary, and interpolation 
from signal to concentration is often tedious. It would be improper to apply 
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Figure 3.1. Definition of linear (LR) and dynamic (DR) ranges. The DR is often given as a 
proportion, i.e., 1 : 75, which means the largest and the smallest concentrations that could be 
run under identical conditions would be different by a factor of 75. 

a regression of concentration x on signal y to ease the calculational load, 
cf. Section 2.2.1, because all error would be assigned to the concentrations, 
and the measured signals would be regarded as relatively free of uncertainty. 
The authors are aware of AAS equipment that offers the user the benefit of 
“direct concentration read-out’’ of unknown samples, at the price of improper 
statistical procedures and curve-fitting models that allow for infinite or neg- 
ative concentrations under certain numerical constallations. 115 Unless there 
is good experimental evidence for or sound theoretical reasoning behind the 
assumption of a particular nonlinear model, justification is not easy to come 
by. A good example for the use of the nonlinear portion near the detection 
limit is found in an interference-limited technique, namely the ion-selective 
electrode. An interpolation is here only possible by the time-honored graphi- 
cal method, or then by first fitting a moderately complex nonlinear theoretical 
model to the calibration data and then iteratively finding a numerical solu- 
tion. In both cases, in linear regression, the preferred option where appropri- 
ate, and in curve-fitting, the model is best justified by plotting the residuals 
ri = yi - Y(x , )  versus xi  (Section 2.2.3) and discussing the evidence. 

Accuracy is the term used to describe the degree of deviation (bias) 
between the (often unknown) true value and what is found by means of 
a given analytical method. Accuracy cannot be determined by statistical 
means; the test protocol must be devised to include the necessary compar- 
isons (blanks, other methods). 

Precision: The repeatabizity characterizes the degree of short-term control 
exerted over the analytical method. Reproducibility is similar, but includes all 
the factors that influence the degree of control under routine and long-term 
conditions. A well-designed standard operating procedure permits one to 
repeat the sampling, sample work-up, and measurement process and repeat- 
edly obtain very similar results. As discussed in Sections 1.1.3 and 1.1.4, the 
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absolute or relative standard deviation calculated from experimental data is 
influenced by a variety of factors, some of them beyond the control of the 
ana1yst.7s+90,94J27 Thus there is no one agreed-upon relative standard devia- 
tion to judge all methods and techniques against (example: “f0.5% is ‘very 
good’, +3% is ‘acceptable’, 35% is ‘insufficient”’); the analyst will have to 
assemble from different sources a notion of what constitutes an “acceptable” 
RSD for his or her particular problem. The residual curvature will also have 
to be judged against this value. 

Reliability: This encompasses factors such as the laboratory environment 
and organization, equipment design and maintenance, personnel training, 
slulls and experience, design and handling of the analytical method, etc. 

Economic Considerations: Quality systems like the GMPs and the IS0  
norm do not require operations to be economical; it is recognized, however, 
that zero risk implies infinite costs, and that the type and amount of testing 
should be scientifically justified such that there is reasonable assurance that 
a product meets specifications that are in line with the associated risks and 
the intended use pattern, and still are affordable. 

3.2 DEVELOPMENT, QUALIFICATION, AND VALIDATION 

Demonstrating that an analytical procedure performs as intended is a GMP 
concern.3,19,35-37,128-132 To this end, the employed equipment and the design 
of the method should be such that the intended goals can be met. The method 
validation delivers the formal proof that the outcome meets the expectations. 

Installation-, Operations-, and Performance Qualification: Starting with 
the given task, minimal design and performance criteria are written down: 
this results in a target profile for the selection and purchase of the necessary 
equipment, and a checklist of the tests that need to be carried out. The vendor 
will in general provide a description of equipment performance that covers 
the typical uses it is put to; tests at the vendor’s lab may be necessary to 
make certain the intended application will work. The purchasing agreement 
will include the necessary safeguards and a plan on how to proceed up to 
the customer’s acceptance signature. A first check after the installation shows 
whether the equipment configuration is okay. Each module is then tested for 
correct operation, and the entire machine is challenged for absence of unin- 
tended interactions between and correct cooperation amongst the modules. 
Finally, equipment performance is demonstrated by checking the baseline 
for stability, the signal/noise ratio at various parameter settings, etc. The 
qualification plan and all documentation is then filed for future reference; a 
maintenance and an operator training plan must be set up. The equipment is 
then ready for use. 
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Method Development: An analytical method should be designed with 
standard sample work-up techniques13 and average equipment performance 
levels in mind. The intended goal should first be put in writing (“deter- 
mine A,  B, and C at their typical concentrations of . . . mg/ml, sample size 
X grams, required precision 0.7%, LOQ I . . . mg/ml; expected concen- 
tration ranges Amin . . . A,,,, . . . , specification limits . . . ; throughput of 2 
15 samples/hour”). The requisite calibration and control samples should be 
defined. A system suitability test should be devised that is easy to implement 
and that will, by reference to clearly stated criteria, show up any deficien- 
cies that would lead to measurement problems, such as insufficient recov- 
ery, resolution, precision, or linearity. The method is completed by laying 
out a standard procedure that includes preparatory work, equipment set- 
tings, calibration, systems suitability decision, controls, sample sequence, 
and data evaluation. The exact procedure by which the raw data is trans- 
formed into results, i.e., statistical model, computer program, data entry, 
calculations, presentation of intermediate and final results, . . . , must be 
defined. The calculational procedure should consider such things as calcu- 
lator or software word-length, error propagation, and numerical artifacts. 
The decision pathways are pre-defined so that a result within certain value- 
range will lead to an ACCEPTED, all others to a REJECTED entry in 
the interpretation/comments section of the report. Certain combinations of 
observations (numerical result, peak-shape details, impurity profile, etc) will 
trigger actions that are detailed in an “error recovery protocol,” a standard 
operating procedure that tells the analyst what measures are to be taken in 
case of an unexpected outcome. For example, “If the above test did not yield 
a significant difference, continue with the measurements according to Proce- 
dure A ,  or else recalibrate using Procedure B.” There are always things one 
could not possibly have thought of beforehand, so a catch-all clause, “if none 
of the aforementioned situations apply, notify the supervisor,” is included; 
he will launch an investigation. 

Method Validation: The signal path from detector up to the hard copy 
output of the final results must be perceived as a chain of error-prone com- 
ponents: there are errors due to c~ncept ion ,”~  construction, installation, cal- 
ibration, and (mis-)use. Method validation checks into these aspects. 

With precise expectations as to method performance set out, a test pro- 
tocol is drawn up that lists the experiments that are to be carried out to 
challenge the method. High or low concentrations, low recovery levels, new 
chromatography columns, low or high temperature or pressure settings, other 
operators or days of the week, season, etc are brought to bear. For each exper- 
iment, the reasoning and the success criteria are written down. The intention 
is to prove that the method works according to expectations and does not 
return faulty or misleading results; the method must be shown to be rugged 
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and reliable. The validation report contains the full documentation of these 
experiments and concludes with a statement that the method can or cannot 
be employed. 

Ruggedness is achieved when small deviations from the official proce- 
dure, such as a different make of stirrer or similar-quality chemicals from 
another supplier are tolerable and when the stochastic variation of instrument 
readings does not change the overall interpretation upon duplication of an 
experiment. A non-rugged method leaves no margin for error and thus is of 
questionable value for routine use in that it introduces undue scatter and bias 
in the results (Section 4.1). Ruggedness is particularly important when the 
method must be transferred to other hands, instruments, or locations. This 
is no idle question: an involved protocol is not likely to be followed for 
very long, especially if it calls for unusual, tricky, or complicated operations, 
unless these can be automated. Unrecognized systematic errors,17 if present, 
can frustrate the investigator or even lead to totally false results being taken 
for true.17%24$90 The ruggedness of an analytical method thus depends on the 
technology employed and, just as important, on the reliability of the people 
entrusted to apply it. 

Recovery is a measure of the efficiency of an analytical method, espe- 
cially the sampling and sample work-up steps, to recover and measure the 
analyte spiked into a blank matrix (in the case of a pharmaceutical dosage 
form containing no active principle, the blank matrix is called a “pplacebo”). 
Note: even an otherwise perfect method suffers from lack of credibility if 
the recovered amount is much below what was added; the rigid connection 
between content and signal is then severed. Recovery is best measured by 
adding equal and known amounts of analyte to (a) the solvent and (b) the 
blank matrix from which the analyte is to be isolated and determined. The 
former samples establish a reference calibration curve. The other samples 
are taken through the whole sample work-up procedure and yield a second 
calibration curve. If both curves coincide recovery is 100% and interference 
is negligible. A difference in slope shows the lack of extractive efficiency 
or selectivity. Problems crop up, however, if the added standard does not 
behave the same way as the analyte that was added at the formulation stage of 
the product. Examples of such unexpected “matrix-effects” are the (1) slow 
adsorption of the analyte into packaging material,” (2) the redistribution of 
an analyte between several compartments/phases in the course of days or 
months, or (3) the complexation of the analyte with a matrix component 
under specific conditions during the manufacturing process that then leave 
the analyte in a “frozen equilibrium” from which it cannot be recovered. 
A series of schematic graphs shows some of the effects that are commonly 
observed (combinations are possible). (See Fig. 3.2.) 

Calibration and control means appropriate standards as well as positive 
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Figure 3.2. Schematic representation of some of the effects on the calibration curve observed 
during ~ a l i d a t i o n . ~ ~ ~ ? ~ ~ ~  The dotted line represents the reference method or laboratory, the 
solid line is the test method or new laboratory. 

and negative control samples are available, and their use to secure control 
over the methodology is e~tabl ished.’~,~~ Control samples are blinded, if pos- 
sible, and pains are taken to achieve stability over months to years so that 
identical control samples can be run with calibrations that are far removed 
in time or location from the initial method development Control 
chart techniques are used to supervise both the standards and the analytical 
method. (See Section 1.8.4.) The linlung of calibration factors across time 
and space is discussed in Section 4.32. 

As far as the bench-chemist is concerned, the following nonexhaustive 
list of points should be incorporated into the experimental plan: 

Ensure that the actual instrument configuration conforms to what is 
written under “Experimental”: supplier, models, modifications, consum- 
ables (HPLC or GC columns, gaskets, etc.), and software for the main 
instrument, peripherals (injectors, integrators, computers, printers, plot- 
ters, etc.), and ancillary equipment (vortexer, dispensers, balances, cen- 
trifuges, filters, tubing, etc.). 

For all critical equipment log books are available that show the installa- 
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tion and performance qualification checks, maintenance, validation, and 
calibration history, and status. 

All reagents are traceable to certificates of analysis, are used within the 
posted shelf-life, and are from known suppliers. 

Standard substances of defined purity must be available for major com- 
ponents and the main impurities (criteria: mole fraction, toxicity, legal 
requirements, etc.).9 

Solvents and sample matrices must be available in sufficient amounts 
and appropriate purity (e.g., pooled blood plasma devoid of analytes of 
interest). 

An internal standard (IS) that is physicochemically reasonably similar 
to the main aiialyte must be available. 

The analytical method must have been run using a variety of compounds 
that might turn up as impurities (synthesis byproducts, degradation prod- 
ucts) to prove that there is sufficient selectivity. Materials in contact with 
the sample (tubing, filters, etc.) that might interfere with the analytes of 
interest must be proven to be innocuous. 

A series of calibration standards (CS) is made up that covers the concen- 
tration range from just above the limit of detection to beyond the highest 
concentration that must be expected (extrapolation is not accepted). The 
standards are made up to resemble the real samples as closely as pos- 
sible (solvent, key components that modify viscosity, osmolality, etc.). 

A series of blinded standards is made up (usually low, medium, high; 
the analyst and whoever evaluates the raw data should not know the 
concentration). Aliquots are frozen in sufficient numbers so that when- 
ever the method is again used (later in time, on a different instrument 
or by another operator, in another laboratory, etc.), there is a measure 
of control over whether the method works as intended or not. These so- 
called “QC-st andards” (QCS) must contain appropriate concentrations 
of all components that are to be quantified (main component, e.g., drug, 
and any impurities or metabolites). 

During the method validation phase, the calibration, using the CS solu- 
tions, is repeated each day over at least one week to establish both the 
within-day and the day-to-day components of the variability. To this 
end, at least 6 CS, evenly spread over the concentration range, must be 
repeatedly run (m  = 8-10 is usual), to yield n = 50 measurements per 
day. If there are no problems with linearity and heteroscedacity, and 
if the precision is high (say, CV I 2-5%, depending on the context), 
the number of repeats m per concentration may be reduced from the 
second day onwards (m = 2 - 3 is reasonable). The reasoning behind 
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the specifics of the validation/calibration plan is written down in the 
method justification document for later reference. 
After every calibration, repeat QC-samples are run ( m  = 2 - 3) 
At the end of the validation phase, an overall evaluation is made and 
various indicators are inspected, such as 
- Variability and precision of calibration line slope. 
- Variability and significance of the intercept. 
- Linearity, usually assessed by plotting the residuals vs. the concen- 

- Back-calculated CS concentrations f CL(X). 
- Interpolated QCS concentrations k CL(X). 
- Residual standard deviation: within-day effects and for pooled data. 
- Correlation coefficient r or coefficient of determination r 2  (these 

indicators are not overly useful, see Section 2.1, but so well-known 
that some bureaucrats are unhappy if they do not have them, so they 
were included here but rounded to four or five decimal places). 

- For each of the CS and the QC concentrations the overall mean 
and standard deviation are compared to the daily averages and SDs; 
from this, variance components for the within-day and day-to-day 
effects are estimated by subtraction of variances. 

If the analytical method survives all of the above criteria (suitably mod- 

Changing major factors (instrument components, operators, location, 

tration. 

ified to match the situation), it is considered to be “under control.” 

etc.) means revalidation, generally along the same lines. 

3.3 DATA TREATMENT SCHEME 

Data acquisition is not treated in this book. The most common technique is 
to convert a physicochemical signal into a voltage by means of a sensor, and 
feed the electrical signal into a digital volt meter or a chart recorder. With 
today’s instrumentation this is no longer the problem it used to be. 

Acceptance Criteria: System suitability tests are to be conducted, if nec- 
essary, every time an analysis method is installed, in order to ensure that 
meaningful results are generated. Criteria are in place to supply the neces- 
sary information for a go/no go decision. 

Data Assembly and Clean-Up: Section 4.31 provides an example of how 
tables often look when data was compiled from a multitude of sources: for- 
mats might differ, data quality is uneven, and comments in text format were 
smuggled in to further qualify the entries. Since vital background informa- 
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tion will be missing unless the statistician has chemical or similar training, 
the interpretation can suffer. 

Data evaluation used to be a question of a graduated ruler, a pencil, and 
either a slide-rule or a calculator. Today’s equipment takes the drudge out of 
such mundane jobs, but even for such widely employed operations such as 
the calculation of the area under a peak, the availability of an “integrator” 
is no guarantee for correct results. The algorithms and the hardware built 
into such machines were designed around a number of more or less implicit 
assumptions, such as the form of chromatographic signals. I5,l7 It should not 
come as a surprise then, that analytical methods that were perfectly well 
behaved on one instrument configuration will not work properly if only one 
element, such as an integrator, is replaced by one of a different make. The 
same is true, of course, for software packages installed on PCs (e.g., use of 
single- or double-precision math as a hidden option, or the default parameters 
that set, for example, horizontal or valley-to-valley baseline options). (See 
Figure 3.3.) 

Statistical and algebraic methods, too, can be classed as either rugged or 
not: they are rugged when algorithms are chosen that on repetition of the 
experiment do not get derailed by the random analytical error inherent in 
every r n e a ~ u r e m e n t , ~ ~ ~ J 3 ~  that is, when similar coefficients are found for the 
mathematical model, and equivalent conclusions are drawn. Obviously, the 
choice of the fitted model plays a pivotal role. If a model is to be fitted by 
means of an iterative algorithm, the initial guess for the coefficients should 
not be too critical. In a simple calculation a combination of numbers and 
truncation errors might lead to a division by zero and crash the computer. If 
the data evaluation scheme is such that errors of this type could occur, the 
validation plan must make provisions to test this aspect. 

An extensive introduction into robust statistical methods is given in Ref. 
134; a discussion of non-linear robust regression is found in Ref. 135. An 
example is worked in Section 3.4. 

Presentation of Results: The whole derivation of the final result must 
remain open to scrutiny. Raw data is whatever is noted when reading off 
a gauge, displayed by an instrument, printed on paper, or dumped into a 
file (an unadulterated hardcopy no longer qualifies, according to the FDA). 
The raw data must be signed and dated by the operator (validated electronic 
systems can incorporate an “electronic signature and date stamp”). This typi- 
cally includes the print-out of a balance (tare, net, total), the y - t chart of a 
titrator, an IR spectrum, or a chromatogram. Computerized instruments will 
provide much more, like data tables, date and time, instrument type and iden- 
tification. Any printout that can fade is best photocopied to ensure legibility 
after several years; it is even better to avoid such printers altogether, if a 
legal challenge is likely. 
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9 10 11 12 13 

Figure 3.3. Peak integration options. The thick curve is an actual HPLC-trace from a purity- 
profile run. The residual solvent peaks are disregarded because this is information that is better 
acquired on a capillary-column GC. Besides the main peak, which is far off-scale due to the 
enormous signal-expansion chosen, one can detect at least six impurities (a - f ); other chro- 
matograms indicate a further impurity in the tailing flank of the main peak (?), which seems 
to have just about disappeared here. Its peak area is probably similar to that of peak e,  hut 
because of marginal resolution, it remains unresolved in many runs. This product poses the 
typical industrial quandary. Due to very similar chemical structures, all impurities cluster close 
to the main compound, and optimizing for one invariably destroys the resolution achieved for 
one or more other impurities. Chromatography systems offer a variety of integration options 
that generally are designed with the integration of the main peak in mind. The baseline (BL) 
can be set 8-13 (flat BL), 8-7 (sloping BL), 8-1-2-3-6-7 (valley-to-valley BL), or ?-3-6-7 
(parabolic or exponential fit BL). The peak areas can then be assigned such that verticals are 
dropped (11-3-6-12-11 belongs to e )  or 1-2-4 belongs to the main peak and the area of 
peaks c and d is either separated using a vertical or by slicing c off of d. Every such model 
introduces assumptions that might be fine for one situation but distort the truth for some other 
peak. Statistical evaluation of such data may require fine adjustments in chromatographic and 
integration parameters from run to run, so as not to introduce further artifacts into the data 
base. If baseline resolution of adjacent peaks is not possible, one should neither tinker with 
the integration parameters from one run to the next, nor simply accept default settings and 
hope a little bit of chemometrics would paper over the inconsistencies. 

All formulas are to be written out by hand with the specific numbers in the 
right places on a sheet provided for the purpose, and the calculations are to be 
done by calculator. Caution: Write the numbers exactly as printed, do not round 
any digits, or the quality assurance unit (a sort of corporate vice squad) will not 
approve the report out of fear that someone could have cheated. A validated 
program can be used. While an Excel spreadsheet as such needs no validation, 
a simple cell-formula calls for extensive tests and documentation and proof that 
the sheet is password protected against fraudulent manipulation. On top of that, 
the analyst’s supervisor is required to confirm the calculation and sign off on 
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it, which in effect reduces the computer to an expensive typewriter. The recal- 
culation requirement is relaxed if one works with a LIMS or a similarly tested 
and secured system. The authorities want to make sure that a decision can be 
revisited, and fraud or incompetence exposed. 

The final result is written in a predefined manner: number of decimals, 
units, number of repeats, relevant test criteria, and a decision statement 
(fai 1 s/pas ses). 

Specifications: At least in the pharmaceutical industry, specification lim- 
its are usually given by default values which need not be defended, such 
as the +S% limits on the assay in Europe. If there is any reason for wider 
limits, solid scientific evidence and reasoning must be brought forward if an 
approval is to have much of a chance. Since a basic demand is that state- 
of-the-art methodology and equipment be used, there is some pressure that 
the generous specifications granted years ago (because analytical technology 
was limiting the attainable precision) be tightened up after a grace period; a 
good example is the transition from quantitative TLC to HPLC in the 1980s, 
with a concomitant shift from +lo% to +S% limits. 

If one is less restrained in setting specification limits, a balance can be 
struck between customer expectations and the risk and cost of failure; a 
review of available data from production and validation runs will allow con- 
fidence limits to be calculated for a variety of scenarios (limits, analytical 
procedures, associated costs; see Fig. 2.15 for an example). 

Records Retention: Product design, manufacturing, and control documen- 
tation must remain available for many years after the product has been sold. 
For pharmaceuticals, the limit can be as low as one year after expiration, and 
as high as 30 years after taking the product off the market, for instance, if 
a patient suffered side-effects that might be related to the drug. This clearly 
points out the care that must be invested in making documents readable and 
self-explanatory. Electronic records pose a special risk because there is no 
guarantee that the particular hard- and software under which the records were 
generated will still be available in 5 ,  10, or more years. 

3.4 EXPLORATORY DATA ANALYSIS (EDA) 

Natural sciences have the aura of certainty and exactitude. Despite this, every 
scientist has experienced the situation of being befuddled: 

Analytical projects must often be initialized when little or nothing is 
known about the system to be invesigated. Thus data are generated 
under conditions believed to be appropriate, and after some numbers 
have accumulated, a review is undertaken. 
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Well-known processes sometimes produce peculiar results; data cover- 
ing the past 20 or so batches are collated for inspection. Frequently, one 
has no idea what hypotheses are to be tested. 

Both situations lend themselves to exploration: The available data are assem- 
bled in a data file along the lines “one row per batch, one column per vari- 
able,” or an equivalent organization. In a first step the data has to be criti- 
cally reviewed and cleaned up. (See Section 4.31.) A little detective work 
almost always turns up transcription or calibration errors, or even calcula- 
tional mistakes (someone hit the wrong button on the calculator and got (+3) 
instead of (x3); at first glance the result looks plausible and is jotted down 
because the exponent that is off by - 1  or +1 is overlooked). Programs are 
then used to plot data (e.g., Figures 4.41 and 4.42) and search for correlations 
(program CORREL) or choose any three variables for display in a pseudo 
three-dimensional format (programs XYZ or XYZCELL). Combinations of 
variables are tried according to intuition or any available rule of thumb. Per- 
ceived trends can be modeled, that is, a mathematical function can be fitted 
that is then subtracted from the real data. (See program TESTFIT.) What ide- 
ally remains are residuals commensurable in size with the known analytical 
error and without appreciable trend. 

Exploratory data analysis is a form of a one-man brain-storming session; 
the results must be accordingly filtered and viable concepts can then be 
turned into testable hypotheses. The filtering step is very important, because 
inexplicable and/or erroneous data turn up in nearly every data set not 
acquired under optimally controlled conditions. Global figures of merit, such 
as the correlation coefficient (see Section 2.1), if not supported by visual 
trend analysis, common sense, and plausibility checks, may foster wrong 
conclusions. An example is worked in Section 4.11, “Exploring a Data Jun- 
gle,” and in Section 4.22. 

The EDA technique cannot be explained in more detail because each sit- 
uation needs to be individually appraised. Even experienced explorers now 
and then jump to apparently novel conclusions, only to discover that they 
are the victims of some trivial or spurious correlation. 

3.5 OPTIMIZATION TECHNIQUES 

After the first rounds of experimentation, both the analytical method (equip- 
ment and procedure) and the data evaluation scheme are rarely as good as 
they could be. Assuming the equipment is a given, the procedure, the various 
settings, and the model can be subjected to an investigation that closes gaps 
and polishes the rough edges, figuratively speaking. One should of course 
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Table 3.1. Design of an Experiment 

Classical experiment + ? 3 Statistically guided experiment 
Full analysis after all experiments are 

Functional relationships c= ? 3 Correlations 
Orthogonal factors, simple mathematical e ? * Correlated factors, complex 

e ? 3 On-the-run analysis 
finished 

system mathematics 

first know what one wants to improve: speed, consumption of reagents, pre- 
cision, accuracy, costs, etc. Once this is set, the goal can be approached from 
different sides, all with their pros and cons: 

Small improvements based on experience: This is sure to work, how- 
ever, the gains may be small. 

Search for the overall optimum within the available parameter space: 
Factorial, simplex, regression, and brute-force techniques. The classical, 
the brute-force, and the factorial methods are applicable to the optimiza- 
tion of the experiment. The simplex and various regression methods can 
be used to optimize both the experiment and fit models to data. 

Simulation of the system: This is fine if the chemistry and physics are 
well known. 

3.5.1 Full Factorial vs. Classical Experiments 

In planning experiments and analyzing the results, the experimenter is con- 
fronted with a series of decisions (see Table 3.1). 

What strategy should one follow? In the classical experiment, one factor 
is varied at a time, usually over several levels, and a functional relationship 
between experimental response and factor level is established. The data anal- 
ysis is carried out after the experiment(s). If several factors are at work, this 
approach is successful only if they are more or less independent, that is, do 
not strongly interact. The number of experiments can be sharply increased 
as in  the brute-force approach, but this might be prohibitively expensive if 
a single production-scale “experiment” costs five- or six-digit dollar sums. 
Figure 3.4 explains the problem for the two-factor case. 

As little as three factors can confront the investigator with an intractable 
situation if he chooses to proceed classically. One way out is to use the fac- 
torial approach, which can just be visualized for three factors. An example 
from process optimization work will illustrate the concept. Assume that tem- 
perature, the excess concentration of a reagent, and the pH have been iden- 
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CLASSICAL; 

BRUTE FORCE 
T ["CI SIMPLEX 

90 

2: l  1 .I I :2 1 :4 

Concentration ratio 
Figure 3.4. Optimization approaches. The classical approach fixes all factors except one, 
which is systematically varied (rows of points in left panel); the real optimum ( x )  might never 
he found this way. The hrute-force approach would prescribe experiments at all grid points 
(dotted lines), and then further ones on a finer grid centered on 80/1 : 2, for example. 

A problem with the simplex-guided experiment (right panel) is that it does not take advan- 
tage of the natural factor levels, e.g., molar ratios of 1 : 0.5, 1 : 1, 1 : 2, but would prescribe 
seemingly arbitrary factor combinations, even such ones that would chemically make no sense, 
but the optimum is rapidly approached. If the system can be modeled, simulation136 might 
help. The dashed lines indicate ridges on the complex response surface. The two figures are 
schematic. 

tified as probable factors that influence yield: a starting value (40°C 1.0% 
concentration, pH 6) and an increment (10, 1 ,  1) is decided upon for each; 
this gives a total of eight combinations that define the first block of experi- 
ments. (See Figure 3.5.) Experiment 1 starts off with 40°C, 1 % concentration 
and pH 6, that is, all increments are zero. Experiments 2-8 have one, two or 
three increments different from zero. The process yields are given in Table 
3.2, second row. These eight combinations, after proper scaling, define a cube 
in 3-dimensional space. 

Program FACTOR8 in Section 5.2.3 lists the exact procedure, which 
is only sketched here. Table 3.2, for each factor and interaction, lists the 
observed effect, and the specific effect, the latter being a slope or slopes that 
make(s) the connection between any factor(s) and the corresponding effect. 
A t-test is conducted on the specific effects, i.e., t = Ej/ (Ax . S E ) ,  where El 
is the observed effect yJ - y1, SE its (estimated) standard deviation, and Ax 
the change in the factor(s) that produced the effect. If t is larger than the 
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3 

A [degC] 60 I B [excess] 

Figure 3.5. Factorial space. Numbers in circles denote process yields actually measured (initial 
data set); all other numbers are extrapolated process yields used for planning further experi- 
ments (assuming that the repeatability sy = kO.1; all values are rounded to the nearest integer); 
the “estimated yield” of 108% shows that the simple linear model is insufficient. 

critical t( p ,  f ), the specific effect Fj is taken to be significant, otherwise it 
is not included in the model; a model effect Mj for a combined factor, e.g., 
ac, indicates an interaction between factors a and c. Specific effects found to 
be nonsignificant are given as a dash (--). In Fig. 3.5, the yields measured 
for a reaction under different conditions of pH, temperature, and excess of 
a reagent are circled. The extrapolation to the adjacent cube is straightfor- 
ward, the geometrical center of the original cube serving as a starting point; 
in this fashion the probable direction of yield-increase is easily established. 
Note that the reduction of a complex reality to a linear three-factor model 
can result in extrapolations that do not make sense: a yield cannot exceed 
100%. 

Example 38: For T = 5 5 T ,  1.7% excess, and pH 7.4, the coordinates 
relative to the center of the cube defined by the first eight experiments are 
a = 55 - (40 + 50) + 2 = 10; b = 1.7 - (1 + 2) + 2 = 0.2; c = 7.4 ~ (6 + 7) 
t 2 = 0.9; estimated yield is Y = (51 + 62 + 54 .t 46 + 68 + 59 + 52 + 62) 
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+ 8 + 1 . 2 .  a + 4.5.  b - 4 . 0 .  c + 0 .  a .  b + 0 .  a .  c + 0 .  b .  ~ - - 0 . 6 .  a .  b 
. c; Y = 56.75 + 12 + 0.9 - 3.6 - 1.08 = 64.97. Thus, the yield is expected 
to increase in this direction; after further extrapolations, the vicinity of the 
coordinate 60”C, 2% excess, and pH 6 appears to be more promising. 

The course of action is now to do either of two things: 

1. Continue with measurements so that there are always eight points as 
above by adding four coplanar points parallel to the side of the existing 
cube, e.g., at 60°C, and replacing the extrapolations (72, 8 1 ,  73, resp. 
73) by real measurements. This choice would have the advantage of 
requiring only minimal mathematics, but one is limited by having to 
choose cubically arranged lattice points. 

2. Program FACTOR8 uses a brute-force technique (cf. Figure 3.4) to 
estimate the changes necessary in each of the three factors in order to 
move closer to the local maximum. Since the precise direction is sen- 
sitive to the noise superimposed on the original eight measurements, 
these “suggested changes” should only be taken as indications to plan 
the next two to four experiments, whose coordinates do not necessarily 
lie on the previously established lattice. All available results are entered 
into a multilinear regression program, e.g., Ref. 122 (programs of this 
type are available in many program packages, even on handheld com- 
puters, so that further elaboration is not necessary here). In essence, 
the underlying model is an extension of the linear regression model 
explained in Chapter 2, in that more than one independent variable x, 
exists: 

Because the preceding factor experiment suggests a, b, c, and abc as inde- 
pendent variables, cf. bottom row in Table 3.2, the data table would take on 
the form: 

Table 3.3. Data Matrices for MLR 

Y1 

Y 2  

Y n  
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Some experimenting might be necessary if it turns out that quadratic terms 
such as b2 improve the fit between the model and the data. However, the 
relevant point is that such a model is only a means to refine and speed up 
the process of finding optimal conditions. For this purpose it is counter-pro- 
ductive to try for a perfect fit, it might even be advantageous to keep the 
model simple and throw out all but the best five to 10 experiments, choose 
new conditions, and then return to the work bench. 

The factorial experiment sketched out above is used in two settings (cf. 
Ref. 137 for a tutorial): 

1. If very little is known about a system, the three factors are varied over 
large intervals; this maximizes the chances that large effects will be 
found with a minimum of experiments, and that an optimal combi- 
nation of factors is rapidly approached (for example, new analytical 
method to be created, no boundary conditions to hinder investigator). 

2. If much is known about a system, such as an existing production pro- 
cess, and an optimization of some parameter (yield, purity, etc.) is 
under investigation, it is clearly impossible to endanger the marketabil- 
ity of tons of product. The strategy is here to change the indepen- 
dent process parameters (in random order) in small steps within the 
operating tolerances (cf. Fig. 1.8). It might be wise to conduct repeat 
experiments, so as to minimize the overall error. In this way a pro- 
cess can evolve in small steps, nearly always in the direction of an 
improvement. The prerequisites are a close cooperation between pro- 
cess and analytical chemists, a motivated staff willing to exactly follow 
instructions, and preferably, highly automated hardware. The old-style 
and undocumented "lets turn off the heat now so we can go to lunch" 
mentality introduces unnecessary and even destructive uncertainty. 

The choice of new vertices should always take into consideration the fol- 
lowing aspects: 

A new point should be outside the lattice space already covered. 
The expected change in the dependent (= target) variable (effect) should 

The variation of a factor must be physically and chemically reasonable. 
Extrapolations should never be made too far beyond terra cognitu. 

be sufficient to distinguish the new point from the old ones. 

The optimization technique embodied in Program FACTOR8 could easily 
be expanded from three purported factors to four or more, or to three, four, 
or even five levels per factor. Mathematically, this is no problem, but (1) the 
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Table 3.4. Number of Necessary Experiments 

With L = Number of Levels per Factor 
f- Number of Factors, Eq. (2.36) 

?I = Lf 

Number of Factors 
f -  3 n = 8  27 64 125 

4 16 81 256 625 
5 32 243 1024 3125 

number of experiinents rises sharply, and (2) improper design can lead to 
false conclusions, as is elegantly explained in Ref. 138. The most economical 
approach is then to pick out three factors, study these, and if one of them 
should prove to be a poor choice, replace it by another. The necessary number 
of experiments for the first round of optimization is as shown in Table 3.4; 
see also Figure 3.5. 

3.5.2 Simplex-Guided Experiments 

In three-dimensional space the simplex consists of a triangle as shown in 
Figure 3.4; the concept is readily expanded to four dimensions (tetragon- 
shaped simplex), or higher. Because a large number of experiments needs to 
be run, simplex optimization is best used in situations where an experiment 
does not cost much, or, preferrably, can be done on-line by changing some 
settings and waiting a few seconds until the signal has stabilized. A good 
example would be the optimization of an AAS instrument configuration with 
the factors burner gas-flow, oxidant gas-flow, source intensity, horizontal and 
vertical source positions; the target variable could be the signal-to-noise ratio 
for a standard sample. Each of the five parameters is changed by turning 
a knob and reading the appropriate gauge. The parameter values and the 
measurement are entering into the computer, which then does the calculation 
and suggests a new combination. Here it is even more important than with 
the factorial experiments that the factors be continuous variables, particularly 
in the region of the optimum, where small steps will be taken. The choice 
of initial conditions is crucial: Since the simplex-program does not know its 
chemistry and human imagination fails in four-space and higher, it is hard to 
tell whether one was led off towards a secondary maximum (see Section 4.2) 
even if simplex algorithms employ some sophisticated tricks to automatically 
adjust the step size and direction. 
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3.5.3 Optimization of the Model: Curve Fitting 

Once a mathematical model has been chosen, there is the option of either 
fixing certain parameters (see Section 4.10) or fixing certain points, e.g., 
constraining the calibration line to go through the origin.6346,74J13 

When one tries to fit a mathematical function to a set of data one has to 
choose a method or algorithm for achieving this end, and choose a weighting 
model with which to judge the goodnss of fit. 

As with the method, four classes can be distinguished: 

Graphical fit. 

Closed algebraic solution. 
Iterative technique. 

Brute force approach. 

Each of these four classes has its particular advantages. 
The graphical fit technique makes use of a flexible ruler (or a steady 

hand): through a graphical representation of the data a curve is drawn that 
gives the presumed trend. While simple to apply, the technique is very much 
subject to wishful thinking. Furthermore, the found “curve” is descriptive 
in nature, and can only be used for rough interpolations or estimation of 
confidence intervals. A computerized form of the flexible ruler is the spline 
f u n c t i ~ n ’ ~ ~ . ~ ~ ~  that exists in one- and two-dimensional forms. The gist is that 
several successive points (ordered according to abscissa value) are approxi- 
mated by a quadratic or a cubic polynomial; the left-most point is dropped, 
a further one is added on the right side, and the fitting process is repeated. 
These local polynomials are subject to the condition that at the point where 
two of them meet, the slope must be identical. Only a very small element 
out of each constrained polynomial is used, which gives the overall impres- 
sion of a smooth curve. The programs offer the option of adding “tension,” 
which is akin to stiffening a flexible ruler. The spline functions can be used 
wherever a relatively large number of measurements is available and only a 
phenomenological, as opposed to a theoretical, description is needed. Splines 
can, by their very nature, be used in conditions where no single mathemati- 
cal model will fit all of the data, but, on the other hand, the fact that every 
set of coefficients is only locally valid, means that comparisons can only be 
done visually. 

The algebraic solution is the classical fitting technique, as exemplified by 
the linear regression (Chapter 2). The advantage lies in the clear formulation 
of the numerical algorithm to be used and in the uniqueness of the solution. 
If one is free to choose the calibration concentrations and the number of 
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Figure 3.6. Approximating a given function using polynomials of order 1 through 5. 

repeats, tips on how to optimize are found in Ref. 141. The disadvantages 
that polynomials can have are quite evident in Figure 3.6, where polynomials 
P of order 1 . . . S were imposed on the Studentized range function from 
Figure 1.2. The data D is displayed in the inset, while the %-deviation 100 
. ( P  ~ D ) / D  is given at right; the alternating stretches of hi-low-hi . . . bias 
are evident. If the absolute residuals IP- DI are sorted according to size, the 
left figure is obtained, which shows that at least $ of all estimates found for 
a P2 model are larger than all but the worst one or two estimates found with 
the P5 model. There is no point in going to higher polynomials, because PS, 
with a total of six coefficients, is already down to 39 t 6 = 6.5 points per 
coefficient. 

The iterative method encompasses those numerical techniques that are 
characterized by an algorithm for finding a better solution (set of model coef- 
ficients), starting from the present estimatelJ2: Examples are the regulafalsi, 
Newton’s interpolation formula, and the simplex techniques. 18,129 The first 
two are well known and are amenable to simple calculations in the case of a 
single independent variable. Very often though, several independent variables 
have to be taken account of; while two variables (for an example see Section 
4.2) barely remain manageable, further ones tax imagination. A simplex-opti- 
mization program (available at computing centers, as PC software, and also 
in the Curve ROM module of the HP-71 handheld computer) works in a ( k  + 
1)-dimensional space, k dimensions being given by the coefficients (a l ,  a2, 

. . . ak), and the last one by x 2 .  The global minimum in the x 2  = f (a l ,  a2, . . . 
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ak)  function is sought by repeatedly determining the “direction of steepest 
descent” (maximum change in x2 for any change in the coefficients ul) ,  and 
taking a “step” to establish a new vertex. A numerical example is found in 
Table 1.26. An example of how the simplex method is used in optimization 
work is given in Ref. 143. 

Here a problem enters that is already recognizable with Newton’s for- 
mula: If pure guesses instead of graphics-inspired ones are used for the ini- 
tial estimate, the extrapolation algorithm might lead the unsuspecting user 
away from the true solution, instead of toward it. The higher the number of 
dimensions, the larger the danger that a local instead of the global minimum 
in the goodness-of-fit measure is found. Under the keyword “ruggedness” a 
technique is shown that helps reduce this uncertainty. Simplex methods and 
their ilk, because of their automatic mode of operation, demand thoughtful 
use and critical interpretation of the results. They can be used to either fit a 
model to data or guide an experiment. 

The bruteforce method depends on a systematic variation of all involved 
coefficients over a reasonable parameter space. The combination yielding 
the lowest goodness-of-fit measure is picked as the center for a further round 
with a finer raster of coefficient variation. This sequence of events is repeated 
until further refinement will only infinitesimally improve the goodness-of-fit 
measure. This approach can be very time-consuming and produce reams of 
paper, but if carefully implemented, the global minimum will not be missed, 
cf. Figures 3.4 and 4.4. 

The algebraic/iterative and the brute force methods are numerical respec- 
tively computational techniques that operate on the chosen mathematical 
model. Raw residuals r are weighted to reflect the relative reliabilities of 
the measurements. 

The weighting model with which the goodness-of$ or figure-of-merit 
(GOF = C(u,)) is arrived at can take any of a number of forms. These con- 
tinuous functions can be further modified to restrict the individual contribu- 
tions u, to a certain range, for instance r ,  is minimally equal to the expected 
experimental error, and all residuals larger than a given number Y,,, are set 
equal to rmaX. The transformed residuals are then weighted and summed over 
all points to obtain the GOE (See Table 3.5.) 

A good practice is to use a weighting model that bears some inner con- 
nection to the problem and results in GOF figures that can be physically 
interpreted. A function of the residual standard deviation, s,,, which has the 
same dimension as has the reproducibility, sy, might be used instead of x 2 .  

The chosen weighting model should also be applied to a number of repeat 
measurements of a typical sample. The resulting GOF figure is used as a 
benchmark against which those figures of merit resulting from parameter 
fitting operations can be compared. (See Table 1.26.) The most common 
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Table 3.5. Weighting Schemes 

Y = f ( x / a  . . .) Y designates the model, with the independent variable(s) 

Measured value 
Residual 
Weighting function, e.g. reciprocal variance, cf. Section 

2.2.10 
Statistically and algebraically weighted residual 

Particular examples: 

Linear 
Quadratic, absolute (least squares) 
Quadratic, relative (least squares) 
Intermediate (x2) 

x ,  and parameters a . . . 

situation is that one compares the residual standard deviation against the 
known standard deviation of determination (reproducibility or repeatability). 

Once a fitted model is refined to the point where the corresponding fig- 
ure of merit is smaller than the benchmark (Table 1.26), introducing further 
parameters or higher dimensions is (usually) a waste of time and only nour- 
ishes the illusion of having “enhanced’ precision. 

If several candidate models are tested for fit to a given data set, it need 
not necessarily be that all weighting models w(x) . g(ri)  listed as examples 
above would indicate the same model as being the best (in the statistical 
sense), nor that any given model is the best over the whole data range. 

It is evident that any discussion of the results rests on three premises: 
Constraints, the fitted model, and the weighting model. Constraints can be 
boon or bane, depending on what one intends to use the regression for.64 
The employed algorithm should be of secondary importance, as long as one 
does not get trapped in a local minimum or by artifacts. While differences 
among fitted models can be (partially) judged by using the goodness-of-fit 
measure (graphical comparisons are very useful, especially of the residuals), 
the weighting model must be justified by the type of the data, by theory, or 
by convention. 

3.5.4 Computer Simulation 

“What if ?” This question epitomizes both serious scientific thinking and chil- 
dren’s dreams. The three requirements are (a) unfettered fantasy, (b) mental 
discipline, and (c) a thinlung machine. The trick to get around the apparent 
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measurement 

EXPERIMENT 

equations and noise generator 

SIMULATION 

i. 
data entry I acquisition program 

I 
1 data formatting program 1 

data file 

+ 
I data evaluation program 1 

Figure 3.7. Schematic depiction of the relation between experiment and simulation. The first 
step is to define the experimental conditions (concentrations, molecular species, etc.), which 
then form the basis either for the experiment or for simulation. Real data are manually or 
automatically transferred from the instruments to the data file for further processing. Simulated 
values are formatted to appear indistinguishable from genuine data. 

contradiction between points (a) and (b) is to alternately think orderly and 
freely. The “unimpeded” phase is relaxing: Think of all those “impossible” 
situations that were never dealt with in school because there are no neat 
and simple answers: That is precisely why there is a problem waiting to be 
solved. Then comes the bridled phase: Systematically work through all those 
imagined combinations. This can be enormously tiring, can tax memory and 
common sense, and demands precise recording. For this reason a computer 
is a valuable assistant (c). 

What are the mechanics of ~ i m u l a t i o n ~ ~ J 3 6 J ~ ~ ?  In Figure 3.7 the classical 
sequence experiment/raw-data/evaluation is shown. A persistent but unin- 
spired investigator might experiment for a long time without ever approach- 
ing an understanding of the system under scrutiny, despite his attempts 
to squeeze information from the numbers. A clever explorer will with a 
few experiments gather some fundamentals facts, e.g., noise and signal lev- 
els, limits of operation of the instrumentation and the chemistry (boiling 
points, etc.), and combine this knowledge with some applicable mathemati- 
cal descriptions, like chemical equilibria, stoichiometry, etc. This constitutes 
a rough model; some parameters might still have to be estimated. The model 
is now tested for fit against the available experimental data, and refinements 
are applied where necessary. Depending on the objective of the simulation 
procedure, various strategies can be followed: What is common to all of them 
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is that the experiment is replaced by the mathematical model. Variation of 
the model parameters and/or assumptions allows “measurements” to be sim- 
ulated (calculated) outside the experimentally tested parameter domain. The 
computer is used to sort through the numbers to either find conditions that 
should permit pivotal e~pe r i rnen t s ’~~  to be conducted, or to determine criti- 
cal points. In either case, experiments must be done to verify the model. The 
circle is now closed, so that one can continue with further refinements of the 
model. 

What are the advantages to be gained from simulation? Some are given 
in Section 1.4 and others are listed here: 

Refined understanding of the process under scrutiny. 

Optimization of the experimental conditions, so that reliable data can 

The robustness of assumptions and procedures can be tested. 

If a well-developed theory is available, the limits of the experimental 

Very complex systems can be handled. 

Deterministic and random aspects can be separately studied. 

be acquired, or that data acquisition is more economical. 

system (chemistry, physics, instrumentation) can be estimated. 

A typical problem for simulation is the investigation of a reaction mech- 
anism involving coupled equilibria, such as a pH-dependent dissociation in 
the presence of metal ions, complexing agents, and reagents. Some of the 
interactions might be well known, and for others bounds on association con- 
stants and other parameters can at least be roughly estimated. A model is then 
set up that includes the characteristics of UV-absorption and other observ- 
ables for each species one is interested in. Thus equipped, one begins to 
play with the experimentally accessible concentrations to find under what 
conditions one of the poorly known values can be isolated for better charac- 
terization. In the end, various combinations of component concentrations can 
be proposed that with high probability will permit successful experiments to 
be conducted, in this way avoiding the situation where extensive laboratory 
effort yields nothing but a laconic “no conclusion can be drawn.” 

Here again, no precise instructions can be given because each situation 
will demand a tailored approach. (Note: Numerical simulation in many ways 
resembles the “what-if’’ scenario technique available in spreadsheets pro- 
grams. Several programs supplied with this book allow the reader to play 
with functions and noise levels.) 
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3.5.5 Monte Carlo Technique (MCT) 

In Section 1.4, the MCT was introduced in general terms as an important 
numerical tool for studying the relationship of variables in complex systems 
of equations. Here, the algorithm will be presented in detail, and a more 
complex example will be worked. 

The general idea behind the MCT is to use the computer to roll dice, that 
is to generate random variations in the variables, which are then inserted 
into the appropriate equations to arrive at some result. The calculation is 
repeated over and over, the computer “rolling the dice” anew every time. 
In the end, the individual results average to that obtained if average vari- 
ables had been inserted into the equations, and the distribution approximates 
what would have been found if the propagation-of-errors procedure had been 
applied. The difference between classical propagation of errors and MCT is 
that in the former the equation has to be in closed form (i.e., result = f ( x ,  
y ,  z ,  . . .), the result variable appearing only once, to the left of the equals 
sign), and the equation has to be differentiable. Also, propagation of errors 
assumes that there is a characteristic error Ax, symmetrical about xmean, as 
in mean/standard deviation, that is propagated. Often one of these condi- 
tions is violated, either because one does not want to introduce simplifying 
assumptions in order to obtain closed solutions (e.g., n is assumed to be much 
larger than 1 to allow the transition from “n - 1” to “n” in the denominator), 
or because differentiation is impossible (step-functions, iterative algorithms, 
etc.). 

MCT allows one to choose any conceivable error distribution for the vari- 
ables, and to transform these into a result by any set of equations or algo- 
rithms, such as recursive (e.g., root-finding according to Newton) or matrix 
inversion (e.g., solving a set of simultaneous equations) procedures. Char- 
acteristic error distributions are obtained from experience or the literature, 
e.g., Ref. 95. 

In practice, a normal distribution is assumed for the individual variable. If 
other distribution functions are required, the algorithm z = f(CP) in Section 
5.1.1, respectively the function FNZ() in Table 5.16 has to be appropriately 
changed. 

The starting point is the (pseudo-) randomization function supplied with 
most computers; it generates a rectangular distribution of events, that is, if 
called many times, every value between 0 and 1 has an equal probability 
of being hit. For our purposes, many a mathematician’s restraint regarding 
randomization algorithms (the sequence of numbers is not perfectly random 
because of serial correlation, and repeats itself after a very large number of 
cycles,145 c = lo9 for a PC) is irrelevant, as long as two conditions are met: 
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Table 3.6. Generation of Normally Distributed Random Numbers 

1 
2 

3 Calculate u = loglo(CP) 
4 
5 
6 

R = random number 0 5 R 5 1 
if R I 0.5 then CP = R 
if R > 0.5 then CP = 1 - R 

Calculate u = f (u )  
Calculate z = w . u 
Calculated ND-variable = xmem f z . s, 

sign w =. - 1  
sign w = + 1  

1. Fewer than that very large number of cycles are used for a simulation 

2. The randomization function is initialized with a different seed every 
(no repeats), and 

time the program is run. 

The rectangular distribution generated by the randomize function needs to 
be transformed into the appropriate distribution for each variable, generally 
a normal distribution. Since the ND-transformation function is symmetrical, 
the algorithm can be compressed by using only one quadrant: R-values larger 
than 0.5 are reflected into the 0 to 0.5 range, and the sign of the result z is 
accordingly changed. Note that the z = f (CP) function described in Sections 
1.2.1 and Table 5.16 is used. Here, xmean and s, are parameters of the MC 
subroutine; f (u)  is the second polynomial given in Section 5.1.1. Fig. 3.8 
and Tables 3.6 and 3.7 illustrate the function of the algorithm. 

Simple examples for the technique are provided in Figures 1.9, 1.10, and 
1.19 and in program SIMGAUSS. Additional operations are introduced in 
Figures 1.2, 1.3, and 1.24, namely the search for the extreme values for a 
series. A series of interesting applications, along with basic facts about MCT 
is to be found in Ref. 145. 

In the following, an example from Chapter 4 will be used to demonstrate 
the concept of statistical ruggedness, by applying the chosen fitting model 
to data purposely ‘‘corrupted’’ by the Monte Carlo technique. The data are 
normalized TLC peak heights from densitometer scans. (See Section 4.2): 

An exponential and several polynomial models were applied, with the 

An exponential function was fitted using different starting points on the 
x2 measure of fit serving as arbiter. 

parameter space (A, B). (See Figure 4.4.) 

For the purpose of making the concept of ruggedness clear, a polynomial 
of order 2 suffices. The fitted parabola y = 4 + 2.5 . x - 1.12 . x2 was sub- 
tracted from the data and the residuals were used to estimate a residual stan- 
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Figure 3.8. The transformation of a rectangular into a normal distribution. The rectangle at 
the lower left shows the probability density (idealized observed frequency of events) for a 
random generator versus x in the range 0 5 x 5 1. The curve at the upper left is the cumulative 
probability CP versus deviation z function introduced in Section 1.2.1. At right, a normal 
distribution probability density PD is shown. The dotted line marked with an open square 
indicates the transformation for a random number smaller or equal to 0.5, the dot-dashed line 
starting from the filled square is for a random number larger than 0.5. 

Table 3.7. Four Examples for xmean = 1.23, sX = 0.073 

R 
sign w 
CP 
U 

u 
z 
Xmean + sx ’ Z 
Uncertainty 

0.0903 

0.0903 

+1.3443 

1.1320 
kO.0004 

- 1  

- 1.0443 

- 1.3443 

0.7398 

0.2602 

+0.6375 
+O .63 7 5 

1.2770 
f0.0004 

+ I  

-0.5847 

0.995 

0.005 

+2.5761 
+2.5761 

1.418 
fO.000 

+1 

-2.3010 

0.999 
+ I  

0.001 
- 3 .OOOO 
+3.0944 
+3.0944 

1.456 
k0.007 

dard deviation: s,, = 6.5. Then, a Monte Carlo model was set up according 
to the equation 

Y = ( A  = 4) + ( B  = 25) . x + (C = -1.12) . x 2  fND(0,6S2)  (3 .2)  

A yi-value was then simulated for every xi-value in Table 4.5. This new, 
synthetic data set had statistical properties identical (n ,  Sxx), or very sim- 
ilar (sxy, syy, s,.~,~) to those of the measured set, the difference residing in 
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Figure 3.9. Demonstration of ruggedness. Ten series of data points were simulated that all are 
statistically similar to those given in Table 4.5. (See program SIMILAR.) A quadratic parabola 
was fitted to each set and plotted. The width of the resulting band shows in what x-range the 
regression is reliable, higher where the band is narrow, and lower where it is wide. The bars 
depict the data spread for the ten statistically similar synthetic data sets. 

the stochastic variations of the y: around the estimate Y,  see program SIM- 
ILAR. The regression coefficients were calculated as they had been for the 
measured data, and the resulting parabola was plotted. This sequence of steps 
was repeated several times. This resulted in a family of parabolas (each with 
its own set of coefficients similar to those in Eq. (3.5); a graph of coeffi- 
cient al (= 25) vs. b (= ~ 1.12) yields a highly elliptical patch of points) 
that very graphically illustrates the ruggedness of the procedure: any indi- 
vidual parabola that does not markedly deviate from the “confidence band” 
thus established must be regarded as belonging to the same population. By 
extension, the simulated data underlying this nondeviant curve also belongs 
to the same population as the initial set. The perceived confidence band also 
illustrates the limits of precision to which interpolations can be carried, and 
the concentration range over which the model can safely be employed. An 
“average” set of coefficients would be found near the middle of the above- 
mentioned elliptical patch, see Figures 3.9 and 3.10; these must be investi- 
gated for dispersion and significance: The standard deviation helps to define 
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Figure 3.10. The relationship between the three coefficients A, B, and C for the curves shown 
in Figure 3.9; the quadratic and the linear coefficients are tightly linked. The intercept suffers 
from higher variability because it carries the extrapolation penalty discussed in Section 2.2.5 
and Figure 2.8. 

the number of significant digits, and a t-test carried out for Ho: p = 0 reveals 
whether a coefficient is necessary at all. The CVs are 730% (A), 16.4% (B) ,  
resp. 38.1% ( C ) ;  with yz = 20, the t-factor is approximately 2 for p = 0.05, 
so B and C are significant, while A is not. 

3.6 SMOOTHING AND FILTERING DATA 

All techniques introduced so far rely on recognizable signals; what happens 
if the signal more or less disappears in the baseline noise? 

If the system is @, repeating the measurement and averaging accord- 
ing to Eq. (1.1) will eventually provide a signal-to-noise ratio high enough to 
discriminate signal from background. If the system is dynamic, however, this 
will only work if the transient signals are captured and accumulated by a com- 
puter, as in FT-NMR. A transient signal that can be acquired only once can be 
smoothed if a sufficiently large number of data points is a ~ a i l a b l e . ~ ~  It must be 
realized that the procedures that follow are cosmetic in nature and only serve to 
enhance the presentability of the data. Distortion of signal shape is inevitable.28 
An example will illustrate this: in Figure 3.11 three Gaussian signals of 
different widths [full width at half maximum (FWHM)] are superimposed 
on a sloping background. With Monte Car10 simulation noise is added and 
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individual “measurements” are generated. How is one to extract the signals? 
There are various digital filtering such as box-car averag- 
ing, moving average, Savitzky-Golay filtering, Fourier transformation, I53,ls4 
correlation analysis,155 and ~ t h e r s . l ~ ~ - l ~ ~  The first three of these are related, dif- 
fering only in the number of calculations and the weighting scheme. The filter 
width must be matched to the peak-widths encountered. 

Box-car averaging is the simplest approach. The name can be traced to an 
image that comes to mind: Imagine a freight train (a locomotive and many 
boxcars) running across the page. All measurements that fall within the x- 
range spanned by one freight car (one “bin”) are averaged and depicted by 
a single resulting point in the middle of this range. 

The moving average can be explained as before. After having obtained the 
first set of averages, the “train” is moved by one point and the operation is 
repeated. This simply provides more points to the picture. Wider bins result 
in more averaging. There is a trade-off between an increase of the signal-to- 
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noise ratio and distortion of the signal shape. Note that narrow signals that 
are defined by only a few measurements become distorted or even disappear. 

Savitzky-Golay f i l t e r i t ~ g l ~ ~ - ’ ~ ~  operates by the same mechanism, the dif- 
ference being that instead of just averaging the points in a bin, a weight- 
ing function is introduced that prefers the central relative to the periph- 
eral points. There are Savitzky-Golay filters that just smooth the signal, and 
there are others that at the same time calculate the slope164-166 or the sec- 
ond deri~ative.’6~ Depending on the coefficient sets used, “tension” can be 
introduced that suppresses high-frequency components. The ones that are 
presented here have a width of seven points, see Figure 3.11, Ref. 28, and 
use the coefficients -2, 1, 6, 7, 6, 1, and -2. Program SMOOTH incorpo- 
rates a SG filter (restricted to smoothing polynomials of order 2 and 3, filter 
width 3 . . . 11) that provides filtered output over the whole data range; BC 
and MA filters are also available. 

An extension to two- resp. multidimensional filters is presented in Refs. 
114, 167, 168. Matched filters114 are the most elegant solution, provided one 
knows what form the signal has. The choice between different filter types is 
discussed in Ref. 114. 

The Cusum technique (Section 1.8.5, program CUSUM) can also be 
regarded as a special type of filtering function, one that detects changes in the 
average y. 

Every electronic instrument (sensor, amplifier) filters the true signal, usu- 
ally by suppression of the high-frequency components through the action of 
resistive and capacitive elements. Whether by intention or not, this serves to 
smooth the signal and stabilizes any signal-processing done downstream. If 
the signal is digitized, all of the filters discussed here can be applied. 

3.7 ERROR PROPAGATION AND NUMERICAL ARTIFACTS 

The flowsheet shown in the introduction and that used in connection with 
a simulation (Section 1.4) provide insights into the pervasiveness of errors: 
at the source, random errors are experienced as an inherent feature of every 
measurement process. The standard deviation is commonly substituted for 
a more detailed description of the error distribution (see also Section 1.2), 
as this suffices in most cases. Systematic errors due to interference or faulty 
interpretation cannot be detected by statistical methods alone; control exper- 
iments are necessary. One or more such primary results must usually be 
inserted into a more or less complex system of equations to obtain the final 
result (for examples, see Refs. 23, 91-94, 104, 105, 142. The question that 
imposes itself at this point is: “how reliable is the final result?”39 Two dif- 
ferent mechanisms of action must be discussed: 
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I .  The act of manipulating numbers on calculators of finite accuracy leads 
to numerical artifacts. (See Table l . l . ) l 5 > l 6  

2. The measurement uncertainty is transformed into a corresponding 
uncertainty of the final result due to algebraic distortions and weighting 
factors, even if the calculator’s accuracy is irrelevant. 

An example of mechanism (1) is given in Section 1.1.2: Essentially, numeri- 
cal artifacts are due to computational operations that result in a number, the 
last digits of which were corrupted by numerical overflow or truncation. The 
following general rules can be set up for simple operations: 

Ten nearly identical numbers of s significant digits each, when added, 
require at least s + 1 significant digits for the result. Note that when the 
numbers are different by orders of magnitude, more significant digits 
are needed. Even the best calculators or software packages work with 
only so many digits. For 12-digit arithmetic, cf. Table 1.1, adding the 
squares of five-digit numbers already causes problems. 

Two numbers of s significant digits each, when multiplied, require 2 . 
.F digits for the result. 

The division of two numbers of s significant digits each can yield results 
that require nearly any number of digits (only a few if one number is a 
simple multiple of the other, many if one or both numbers are irrational); 
usually the number of bytes the computer displays or uses for calculation 
sets an upper limit. 
If the rounding procedures used for the display did not mask the effect, 
the math packs that are in use would come up with seemingly nonsen- 
sical results now and then, e.g., instead of a straight 6 one might obtain 
5.9999999999999 or 6.0000000000001 ; those who do their own pro- 
gramming in BASIC, for example, are aware of this. 

Differences of nearly identical sums are particularly prone to truncation. 
[See Eqs. (1.3b) and (2.7)-(2.9).] A few examples will illustrate these 
rules (See Table 3.8.). 

Classical error propagation (2) must not be overlooked: if the final result R 
is arrived at by way of an algebraic function 

with XI . . . X k  variables and A . . . parameters, the function f must be fully 
differentiated with respect to every x: 
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Table 3.8. Common Mathematical Operations and the Number of Significant 
Digits that are Involved 

Calculation 
Number of 

Significant Digits 

(a) (operation) (b) = (c) 

1.2345678 + 9.8765432 = 11.1111111 
1.23457 ‘ 8.56789 = 10.5776599573 
3.333333333333333 . 3 = 10 
0.033310.777777 = 0.42814322529 . . . 
10241256 = 4 

U b C 

8 8 9 
6 6 12 
00 I 2 
3 6 M 

4 3 1 

(3.4) 

and typical errors ei must be estimated for all  variable^.'^^^^ The linear terms 
of the full expansion of (SfISx)  are then used to estimate the error in R. 
The assumption is that all higher-order terms are much smaller because the 
individual errors are uncorrelated and thus cancel each other: 

If, as is usual, standard deviations are inserted for ei, e R  has a similar inter- 
pretation. Examples are provided in Refs. 23, 75, 89, 93, 142, 169-171 and 
in Section 4.17. In complex data evaluation schemes, even if all inputs have 
Gaussian distribution functions, the output can be skewed,172 however. 

3.8 PROGRAMS 

Computer programs have become a fixture of our lives. The following com- 
ments apply to using and writing programs. 

Using Program Packages 

Many fine program packages for the statistical analysis of data, and untold 
numbers of single-task programs are available for a variety of computers 
ranging from main-frames to programmable pocket calculators. The com- 
mercial packages from reputed software houses can generally be considered 
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to be validated, and can be used in GMP areas. However, see Presentation 
of Results in the preceding, the validation status becomes questionable as 
soon as the user starts writing instructions or macros. 

Even the best software contains errors: 

Software can be poorly designed: data format specifications are perhaps 
incompatible, intermediate results are inaccessible, all data are lost if 
an input error is committed, or results and data are not transferable to 
other programs. The division into tasks (modules, menu positions) might 
reflect not human but computer logic, and the sequence of entries the 
user is forced to follow might include unnecessary or redundant steps. 
Software designed for general or specific use might be useless in the 
intended application: sociologists, mathematicians, clinical researchers, 
and physicists, just to name a few user categories, all gather and ana- 
lyze data, to be sure, but each one has particular data structures and 
hypotheses. Tests must be selected to fit the application. 
The software’s author, as is often the case, is unfamiliar with the partic- 
ulars of analytical chemistry or unaware of what happens with the num- 
bers after the instrument has issued a nice report. Is it surprising then 
that an unknown’s concentration is given without confidence limits? Most 
chromatography software might be fine for manipulating chromatograms 
acquired in a short time-span, but the comparison of stacks of chro- 
matograms is accomplished only if there are no nonproportional shifts in 
retention times, a phenomenon often observed when HPLC columns age. 
Instrument suppliers are well acquainted with the design, construc- 
tion, promotion, and sale of their products. The analytical problem- 
solving capabilities thereof are more often than not demonstrated 
on textbook variety “problems” that are only remotely indicative of 
a machine/software combination’s usefulness. If software is tailored 
toward showroom effectiveness, the later user suffers. 
Software is rarely completely free of coding errors. While manifest 
errorb are eliminated during the debugging stage, the remaining ones 
crop up only when specific data patterns or sequences of instructions 
are encountered. 

There is a two-stage procedure to help judge the veracity of a program’s 
output: 

1 .  Validated data are input, and the results are compared on a digit-by- 
digit basis with results from a reference program. If possible, the same 
is done with intermediate results; see the example in Table 1. I .  
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2. The above data base is systematically modified to force the program 
to its limits. For example, the number of “measurements” is multiplied 
by entering each datum several times instead of only once, etc. That 
this step is necessary is shown by the authors’ occasional experience 
that commercial programs as simple as a sorting routine would only 
work with the supplied demonstration data file. 

Note Added in Proof 

Two very interesting references in this regard are: 

M. G. Cox and P. M. Harris, Design and use of reference data sets for testing sci- 
entific software, Analytica Chimica Acta, 380, 339-351 (1999). 

B. P. Butler, M. G. Cox, S. L. R. Ellison, and W. A. Hardcastle, Statistics Software 
Qualijkation (Reference Data Sets), The Royal Society of Chemistry, ISBN 0-85404- 
422- 1. 



CHAPTER 

4 

COMPLEX EXAMPLES 

Life is a complicated affair; otherwise none of us would have had to attend 
school for so long. In a similar vein, the correct application of statistics 
has to be learned gradually through experience and guidance. Often enough, 
the available data does not fit simple patterns and more detective work is 
required than one cares for. Usually a combination of several simple tests is 
required to decide a case. For this reason, a series of more complex exam- 
ples was assembled. The presentation closely follows the script as the authors 
experienced it; these are real-life examples straight from the authors’ fields 
of expertise with only a few of the more nasty or confusing twists left out. 

4.1 TO WEIGH OR NOT TO WEIGH 

Situation and Design 
scribes the following steps: 

A photometric assay for an aromatic compound pre- 

1. Accurately weigh about 50 mg of compound 
2. Dissolve and dilute to 100.0 ml (master solution MS) 
3. Take a 2.00-ml aliquot of MS 
4. Dilute aliquot to 100.0-ml (sample solution SS) 
5. Measure the absorbance A of SS 

The operations are repeated for samples 2 and 3; the final result is the mean 
of the three individual results per batch. 

The original method uses the classical “weigh powder, dilute volumet- 
rically” scheme. In order to improve the efficiency and at the same time 
guarantee delivery of results of optimal quality, an extensive review was 
undertaken. 

In principle, diluter technology accurate to 10 pl or less would have been 
an option, and appropriately smaller sample amounts could have been taken 
at the third step (a reduction at step 1 would have entailed another proof 
of homogeneity and representativity if the number of crystals per sample 
became too small; if unlimited material is available, reducing the sample 

175 
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size does not save money). High-precision diluters require rinsing cycles to 
eliminate carry-over if the sample solution is aspirated and dispensed, which 
increases cycle-time and creates the need for validation. If corrosive solvents 
or solutes are involved, the machine needs to be serviced more often. 

The other option is weighing. Since low-tech glassware or disposable 
pipettes could continue to be used, obtaining a tare and a total weight on 
a top-loading balance would add only a few seconds for each sample, but 
inherently be much more accurate and precise than any operation involving 
just pipettes and graduated flasks.25 

Consideration Any change in procedure would have to be accepted by 
the clients, who would have to adapt their raw materials testing procedures, 
something that could take months to negotiate and accomplish. If any client 
used the material in a GMP-regulated process, a minor change, especially 
if it increases reliability, could simply be communicated to the authorities, 
whereas a major change would result in an expensive revalidation and reap- 
proval of the whole process. Also, if some clients accepted the change and 
others did not, the manufacturer would be stuck with having to repeat the 
analysis twice, the old way and the new way. 

The plan, then, was to do the next 20 analyses according to a modified pro- 
tocol that incorporated a weighing step after every volumetric operation. The 
evaluation of the absorbance measurements (data files VVV.dat, VWV.dat, 
and WWW.dat) was carried out according to three schemes: for the afore- 
mentioned steps 2 to 4, to use either the volumetric or the gravimetric results, 
or use a combination thereof 

W: weight solution to five significant digits, in grams 
V volumetrically dispense solution 

The results are presented in Figs. 4.1 and 4.2. 

Questions 

1. Which scheme is best, which is sufficient? 
2. What part of the total variance is due to the analytical methodology, 

3 .  Can an assay specification of “not less than 99.0% pure” be upheld? 
4. How high must an in-house limit be set to in order that at least 95% 

and how much is due to variations in the product? 

of all analyzed batches are within the foregoing specification? 

Example 39: The variances were calculated according to Tables 1.13 and 
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1.14, respectively (Eq. 1.3). Use program MULTI to obtain Tables 4.1 and 
4.2. The reason that H I  was found for WWW is that the intrinsic standard 
deviation has become so small that two values now fall out of line: 0.015 
and 0.71; if these are eliminated, the quotient s,,before/sx, after is about 46! 

Evidently, replacing volumetric work by weighing improves the within- 
group variance from 0.192 (VVV) to 0.0797 (WWW, factor of 2.4), and 
the standard deviation from k0.44 to k0.28 (k0.28 is a good estimate of the 
analytical error); much of the effect can be achieved by weighing only the 
aliquot (VWV), at a considerable saving in time. The picture is much more 
favorable still for the between-groups variance: the improvement factor can 
be as large as 34; a look at Figure 4.1 shows why this is so: the short-term 
reproducibility of the fixed-volume dispenser used for transferring 2.0 ml of 
solution MS cannot be much inferior to that of the corresponding weighing 
step W because the within-group residuals are similar for WWW and VVV. 
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Figure 4.2. The top panel gives the histograms for the three sets of results calculated from Fig. 
4.1, and two derivatives, the cumulative number of points (middle), respectively the nonlinear 
NPS-transform. The VVV-outliers on the low side are easily discerned. 

However, some undetermined factor produces a negative bias, particularly 
in samples nos. 3 ,  6, 9, and 10; this points to either improper handling of 
the fixed-volume dispenser, or clogging. The reduction of the within-group 
variance from VVV to VWV is, to a major part, due to the elimination of 

Table 4.1. Decomposition of Variance by ANOVA 

Direction 
WWW VWV VVV of Calculation VVV . f f 

Mean 99.92 100.19 99.81 
VARIANCE: 

7.68 40 
72.58 19 

Total 0.0899 0.136 1.36 t 80.26 59 

Within groups* 0.0797 0.0884 0.192 + 

Between groupsx* 0.11 1 0.235 3.82 -+ 

(*) Analytical repeatability, (**) made up of analytical artifacts and/or production reproducibil- 
ity; f degrees of freedom; the arrows indicate in which direction the calculation proceeds. 
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Table 4.2. Confirmed Hypotheses (MRT: Multiple Range Test) 

Test vvv vwv WWW 

Bartlett HO HO H1 
ANOVA HI HI n.a. 
MRT[#of groups] 10 6 n.a. 

the large residuals associated with samples #3 and #6. The extreme stan- 
dard deviations in WWW are 0.015 and 0.71, F > 2100, which means the 
ANOVA and the MRT tests cannot be carried out. 

The total variance (corresponding standard deviations f0.3, k0.37, resp. 
k1.17) is also improved by a factor of 15, which means the specifications 
could be tightened accordingly. 

The process mean with the VVV scheme was 99.81, that is essen- 
tially indistinguishable from the nominal 100%. The proposed SL is 
“more than 99.0%”; the corresponding z-value (see Section 1.2.1) is 
(99.81-99.00)/2/0192 = 1.85, which means that about 3.2% [use CP =f(z) 
in Section 5.1.11 of all measurements on good batches are expected to fall 
below the specification limit (false negative). The mean of three replicates 
has a z-value of 1.85 . = 3.20 (use Eq. ( l s ) ) ,  giving an expected rejec- 
tion rate of 0.13%. The corresponding z-values and rejection rates for the 
WWW scheme are only minimally better; however, the reliability of the 
WWW and VWV schemes is vastly improved, because the occurrence of 
systematic errors is drastically reduced. The same calculation could have 
been carried out using the t- instead of the normal distribution; because the 
number of degrees of freedom is relatively large (f = 19), virtually the same 
results would be obtained. 

False negative responses of 0.13-3.2% are an acceptable price. What are 
the chances of false positives slipping through? Four alternative hypotheses 
are proposed for the VVV scheme (compare p to SL = 99.0, with p = 0, the 
type I1 error !): 

Table 4.3. Power of Discrimination for a Single Measurement 

Ha P 2 P Power 

Hi: 100 . (1 - 0.323) = 68% 

H2: 100 . (1 - 0.127) = 87.3% 

H 3 :  100 . (1 - 0.0113) = 98.87% 
H4: 97.7 (97.7 - 99.0)/1/0192 2.97 0.0015 100 . (1 - 0.0015) = 99.85% 

98.8 (99.8 - 99.0)/2/0192 = 0.46 0.323 
98.5 (98.5 - 99.0)/1/0192 = 1.14 0.127 
98.0 (98.0 - 99.0)/1/0192 = 2.28 0.0113 
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Interpretation While good batches of the quality produced (= 99.81% 
purity) have a probability of being rejected (false negative) less than 5% 
of the time, even if no replicates are performed, false positives are a prob- 
lem: an effective purity of p = 98.5% will be taxed “acceptable” in 12.7% 
of all cases because the found x,,,, is 99% or more. Incidentally, plotting 
100 . (1 - p )  versus p creates the so-called power-curve, see file POWER.xls 
and program HYPOTHESIS.exe. 

If the much better and still reasonably workable VWV scheme (V = 

0.0884) is chosen, the probabilities for false positives (cf. above) drop to 
0.25, 0.046, 0.0005, and 0.0005; thus p 98.5% will be found “accept- 
able” in less than 5% of all trials. The WWW scheme would bring only 
a small improvement at vastly higher cost: for the above case 0.046 would 
reduce to 0.038; the corresponding power-curves are much steeper, indicat- 
ing a “sharper” cut-off and better decision-making properties. 

Conclusion The VWV scheme will have to be implemented to make pre- 
cision commensurable with the demanding limits proposed by the Marketing 
Department. If the Production Department can fulfill its promise of typically 
99.8% purity, all is well. For the case of lower purities, Quality Assurance 
will have to write a SOP that contains an action Limit for x,,,, at AL = 
99.5%, and an error Recovery Procedure that stipulates retesting the batch 
in question so as to sufficiently increase n and decrease V,. The Production 
Department was exonerated by the discovery that the high between-groups 
variances were analytical artifacts that could be eliminated by the introduc- 
tion of a weighing step. The problem remains, however, that there is no 
margin for error. negligence, or lack of training. 

4.2 NONLINEAR FITTING 

Initial Situation A product contains three active components that up to 
a certain point in time were identified using TLC. Quantitation was done 
by means of extraction/photometry. Trials to circumvent the time-consum- 
ing extraction steps by quantitative TLC (diffuse reflection mode) had been 
started but were discontinued due to reproducibility problems. The following 
options were deemed worthy of consideration: 

1 . HPLC (ideal because separation, identification and quantitation could 
be accomplished in one step). 

2. Diode-array UV-spectrophotometer with powerful software (although 
the spectra overlapped in part, quantitation could be effected in the 
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first derivative mode. The extraction/separation step could be circum- 
vented.) 

3 .  Conventional UV/VIS spectrophotometer (manual measurements from 
strip-chart recorder traces and calculations on the basis of fitted poly- 
nomials; the extraction/separation step remains). 

4. Quantitative TLC (an additional internal standard would be provided; 
the extraction/separation step could be dropped). 

Options 1 and 2 had to be eliminated from further consideration because 
the small company where this was conducted was not producing sufficient 
cash-flow. Despite the attractiveness of photometric quantitation, option 3 
did not fulfill its promise; careful revalidations revealed a disturbing aspect: 
The extractions were not fully quantitative, the efficiency varied by several 
percent depending on the temperature and (probably) the origin of a thick- 
ening agent. Thus, one had the choice of a multi-step extraction, at further 
cost in time, or a large uncertainty that obviated the advantage of the photo- 
metric precision. Option 4 was still beset by “irreproducibility”: Table 4.4. 
contains reflection-mode densitometer peak-height measurements for one of 
the three components from 7 TLC plates; cf. Fig. 4.3. 

Data Normalization Since the general trend for every set of numbers is 
obviously similar, a simple normalization was applied: for each plate, the 
mean over all height measurements at 5 pl/spot was set equal to loo%, yield- 

Table 4.4. Peak Heights Taken from Densitometric Scans for Various 
Amounts of a Given Sample Applied onto Seven TLC Plates Taken from 

the Same Package 

TLC Plate 
Peak-Height 

[mml 1 2 3 4 5 6 7 

2 pl/spot 
2 
4 
4 
5 
5 
7 
7 
10 
10 

42.5 31.5 39.5 
44.5 33.2 39.5 

62 67 74 75 
61 68 69 75 
63 80 85.5 92 67 74.8 93.5 
71 80.5 83 99 75.5 75.5 95 
87 109 
81 114 

124 95 110.8 
153 97 112.8 
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Figure 4.3. Raw (left) and normalized (right) peak heights versus the amount spotted on the 
plates. The average of all 5 pl spots per plate was set to 100% (right); the improvement due 
to the normalization is evident. The thick curve is for Eq. (4.1). The fine curve is for the best 
quadratic parabola, cf. Fig. 3.9. 

ing the reduced height values given in bold numbers in Table 4.5 (see data 
file TLC.dat). This data normalization reduces the plate-to-plate variability 
from k11.6 to k6.4 residual standard deviation and permits a common cali- 
bration curve to be used, see Fig. 4.3. 

Curve Fitting It is immediately apparent that a straight line would be a 
poor approximation, but a polynomial of order 2 or 3 would be easy to fit; 
this was done in the example in Section 3.4. From a theoretical perspective, a 
disadvantage of polynomials, especially the quadratic one, is their nonasymp- 
totic behavior: while one can easily impose the restriction Y ( 0 )  = 0 for the 
left branch, the strong curvature near the focus normally falls into a region 
that physically does not call for one, and at larger concentrations the peak- 
height would decrease. Also, while each xi can unambiguously be assigned 
a single Y, ,  the reverse is not necessarily true.l14 An equation more suited to 
the problem at hand is Y = A . (1 - exp(B . X ) )  in accord with the observation 
that calibration curves for TLC measurements are highly nonlinear and tend 
to become nearly horizontal for larger amounts of sample spotted onto the 
plate. The disadvantage here is that there is no direct method for obtaining 
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Table 4.5. Data from Table 4.4 Normalized to the Average of the 5 pl Spots 
(Bold) on a Plate-by-plate Basis; a Quadratic Regression was Applied to These 

Data, Yielding Eq. (3.5) 

TLC Plate 
Peak-Height 

[mml 1 2 3 4 5 6 7 

2 /.ll/spot 
2 
4 
4 
5 
5 
7 
7 
10 
10 

44.5 44.2 52.6 
46.6 46.6 52.6 

92.5 83.5 87.8 99.8 
89.6 84.7 81.9 99.8 
94.0 99.7 101.5 96.3 94.0 99.5 99.2 average 

106.0 100.3 98.5 103.7 106.0 100.5 100.8 = 100% 
115.6 
121.0 

129.8 133.3 147.4 
160.2 136.1 150.1 

the coefficients a and b (if Y ( x  1 m) were precisely known, this would not 
be a problem). 

Three paths can be advanced: (1) expansion, e.g., Taylor series; (2) trial 
and error, e.g., generating curves on the plotter; and ( 3 )  simplex optimization 
algorithm. (See Section 3.1 .) 

1.  An expansion brings no advantage in this case because terms at least 
quartic in coefficient b would have to be carried along to obtain the 
required precision. 

2. If a graphics screen or a plotter is available a fairly good job can be 
done by plotting the residuals ri = yi - Y versus xi, and varying the 
estimated coefficients a and b until suitably small residuals are found 
over the whole x-range; this is accomplished using program TESTFIT. 

3. If iterative optimization software is available, a result of sufficient 
accuracy is found in short order. This is demonstrated in the following 
discussion. 

In Fig. 4.4, the starting points (initial estimates) are denoted by circles in 
the A ,  B plane; the evolution of the successive approximations is sketched 
by arrows that converge on the optimum, albeit in a roundabout way. The 
procedure is robust: no local minima are apparent; the minimum, marked by 
the square, is rapidly approached from many different starting points within 
the given A, B plane (black symbols); note that a B-value 2 0, an A-value 
2 0 ,  and combinations in the lower left corner (gray symbols) pose problems 
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Exponential Factor 6 
- -1 

I 
1 

-2 5 Lppp ~ 

-1 0 1 2 3 4 
Pre-Exponential Factor A (XI 00) 

Figure 4.4. OptimiLation of parameters The exponential equation (4.1) was fitted to the nor- 
malized data from Table 4.5 

for the algorithm or lead to far-off relative minima. Starting points that first 
lead off in one direction, only to turn around, are marked “C”; starting points 
that lead to traces that cross others are marked “D”. Those that start at “E” or 
“F” lead to other minima. Despite the fact that a unique solution was found 
(Eq. (4. I)), good practice is followed by graphing the reduced data together 
with the resulting curve (Fig. 4.3); the residuals were plotted separately. A 
weighting scheme could have been implemented to counter heteroscedacity, 
but this, in the light of the very variable data, would amount to statistical 
overkill. 

The equation, fitted to data in Table 4.5, is 

Y = A . (1 - exp(B. x)), withA = 176.65,B = -0.16 (4.1) 

In this specific case, the predictive power of the polynomial P2 (see Fig. 
3.9) and the exponential function are about equal in the x-interval of inter- 
est. The peak height corresponding to an unknown sample amount would be 
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divided by that of the standard (5  pl/spot) run on the same plate. If possible, 
each sample and the standard would be spotted several times on the same 
plate, e.g., in alternating sequence, and the mean of the sample respectively 
the standard peak heights would be used for improved precision. The result- 
ing quotient is entered on the ordinate and the unknown amount is read off 
the abscissa after reflection. Despite the normalization, the results are not 
exceptional in terms of reproducibility; thus it is perfectly acceptable to use 
a graphical approximation by constructing upper and lower limits to the cal- 
ibration points with the help of a flexible ruler in order to find confidence 
limits for X .  

As long as the health authorities accept 90-110% specification limits on 
the drug assay, the normalization method presented above will barely suffice 
for batch release purposes. Since there is a general trend toward tightening 
the specification limits to 95-105% (this has to do with the availability of 
improved instrumentation and a world-wide acceptance of GMP-standards), 
a move toward options 1 (HPLC) and 2 (DA-UV) above is inevitable. 

For an example of curve fitting involving classical propagation of errors 
in a potentiometric titration setting, see Ref. 142. 

4.3 UV-ASSAY COST STRUCTURE 

Problem 
in an economical fashion. The following constraints are imposed: 

The drug substance in a pharmaceutical product is to be assayed 

UV-absorbance measurement at a given wavelength, either on a pho- 
tometer, which is known to be sufficiently selective, or on a HPLC 
The extraction procedure and the solvent 

The number of samples to be processed for every batch produced: six 
samples of 13 tablets each are taken at prescribed times after starting the 
tablet press (10 tablets are ground and well mixed (= compound sample), 
two average aliquots are taken, and each is extracted); the additional 
three tablets are used for content uniformity testing; this gives a total 
of 6 . (2 + 3) = 30 determinations that have to be performed. 

Available Lab Experience 

The relative standard deviation of the determination was found to be 
k0.5% (photometer) resp. +0.7% (HPLC'75) for samples and references. 
The relative content varies by nearly f l% due to inhomogeneities in the 
tablet material and machine tolerances. 
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Duplicate samples for the photometer involve duplicate dilutions 
because this is the critical step for precision; for the HPLC the same 
solution is injected a second time because the injection/detection/inte- 
gration step is more error-prone than the dilution. 

Requirements 

The mean content must be 98-102% for nine out of 10 compound sam- 

The individual contents must be 95-105% for nine out of 10 tablets and 

rn The linearity of the method must be demonstrated 

ples 

none outside 90-110% 

Options The analyst elects to first study photometry and place the three 
reference concentrations symmetrically about the nominal value (= 100%). 
The initial test procedure consists of using references at 80, 100, and 120% 
at the beginning of the series, and then a 100% reference after every fifth 
determination of an unknown sample. 

Known Cost Factors for the UV-Method 

A technician needs an average of 10 minutes to prepare every photome- 
ter sample for measurement. 

The necessary reference samples are produced by preparing a stock solu- 
tion of the pure drug substance and diluting it to the required concen- 
trations. On the average, 12 minutes are needed per reference. 

The instrument-hour costs 20 currency units. 

A lab technician costs 50 currency units per hour (salary, benefits, etc). 

The instrument is occupied for 5 minutes per determination, including 

The technician is obviously also occupied for 5 minutes, and needs 

The price levels include the necessary infrastructure. 

changing the solutions, rinsing the cuvettes, etc. 

another 3 minutes per sample for the associated paperwork. 

First Results The confidence interval from linear regression CI(X) was 
found to be too large; in effect, the plant would have to produce with a 0% 
tolerance for drug substance content; a tolerance of about +1% is considered 
necessary, cf. Fig. 2.12 and Section 4.24 (Fig. 4.35). 

Refinements The confidence interval must be small enough to allow for 
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some variation during production without endangering the specifications, so 
the additivity of variances is invoked: Since 90% of the results must be 
within +2% of nominal, this can be considered to be a confidence interval 

$1 = t-factor . J - v ~  I 2%. 

Example 40: Trial calculations are done for Vanalyt = (0.5)2 and Vprod = 
(0.9)2 . . . (l.l)2; the required t-factors for p = 0.1 turn out to be 1.94 . . . 
1.66, which is equivalent to demanding n = 7 . . . 120 calibration samples. 
Evidently, the case is critical and needs to be underpinned by experiments. 
Twenty or 30 calibration points might well be necessary if the calibration 
scheme is not carefully designed. 

Solution 20-30 calibration points are too many, if only for reasons of 
expended time. The analyst thus searches for a combination of perhaps n 
= 8 calibration points and m = 2 replications of the individual samples. This 
would provide the benefit of a check on every sample measurement without 
too much additional cost. An inspection of the various contributions in Eq. 
(2.17) toward the CI(X) in Table 2.9 reveals the following for n = 8 and m 
= 2: 

about 70.9% contribution due to the l/m term, 

about 17.7% contribution due to the l /n  term, and 
about 11.3% contribution due to the l/Sxx term (SIX = 1250, Ax = lo). 

Various calibration schemes similar to those given in Section 2.2.8 were 
simulated. The major differences were (1) the assumption of an additional 
100% calibration sample after every fifth determination (including replica- 
tions) to detect instrument drift, and (2) the cost structure outlined in Table 
4.6, which is summarized in Eq. (4.2) below. The results are depicted graphi- 
cally in Figure 4.5, where the total cost per batch is plotted against the 
estimated confidence interval CI(X). This allows a compromise involving 
acceptable costs and error levels to be found. 

Interpolations at 110% of nominal were simulated; if the interpolations 
are envisaged closer to the center-of-mass, the third term will diminish in 
importance, and the sum of the first two terms will approach 100%. 

Besides the photometric method, a HPLC method could also be used. 
(Cf. the first constraint under the earlier head “PROBLEM.” The HPLC has 
a higher relative standard deviation for two reasons: The transient nature of 
the signal results in a short integration time, and the short pathlength makes 
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for a very small absorption. The available HPLC is equipped with an auto- 
sampler, so that a different Calibration scheme can be implemented: Instead 
of a complete calibration curve comprising n points at the beginning of the 
series, two symmetrical calibration samples, e.g., 80/120% are run at the 
beginning, and after five to 10 determinations a double calibration is again 
performed, either at the same two or at two different concentrations. In this 
way, if no instrument drift or change of slope can be detected during the 
run, all calibration results can be pooled. Overall linearity is thus established. 
Also, S,, increases with every calibration measurement. In the photometer 
case above, the additional 100% of nominal measurement after every 5-10 
determinations does not contribute toward ,SAX. The number of replicate sam- 
ple injections, m, was taken to be 1, 2, 3, 4, or 5. Preparing HPLC samples 
takes longer because vials have to be filled and capped. 

Known Cost Factors for the HPLC Method 

The technician needs 11 minutes to prepare every sample solution and 
13 minutes to prepare a calibration solution. A vial is filled in 1 minute. 

The instrument costs 30 currency units per hour. 

The instrument is occupied for 15.5 minutes per determination, includ- 
ing 30 seconds for printing the report. 

The technician needs 1 minute per determination to load the sample into 
the autosampler, type in sample information, start the machine, etc., and 
20 minutes for preparing the eluent per batch. 

The technician needs only 5 minutes per batch for evaluation, includ- 
ing graphics and tables because the computerized instrument and the 
integrator do the rest. 

The HPLC instrument is more expensive and thus costs more to run; 
because it is used 12 to 16 hours per day, versus only 2 to 5 hours/day 
for the photometer, the hourly rates are not proportional to the initial invest- 
ment and servicing needs. The cost structure given in Table 4.6 can now be 
derived. 

The total costs associated with the 30 determinations are calculated to be 

5.83 . n + 500.0 . m + 10.0 . k 

8.33 . n + 232.5 . m + 10.87 . k + 301.89 

(photometer) (4.2) 

(4.3) (HPLC) 

The number of man-hours expended is equal to the sum over all items in 
the columns marked “operator”. 
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Table 4.6. Cost Components for UV and HPLC Measurements; the Numbers 
Give the Necessary Time in Hours; amortization of the Equipment and 

Infrastructure is Assumed to be Included in the Hourly Rates 

Photometry HPLC 
Item ~~ 

~ Machine Operator Machine Operator 
costs 20 50 30 50 

Prepare calibration solutions - - k/4.6 k15 
Measure calibration points n/12 4 1 2  4 4  n/60 
Prepare samples - 30 . m/6 - 30/5.5 
Measure samples 3 0 .  m/12 30 . 4 1 2  3 0 .  m/4 30/60 
Evaluate results - 30 . 4 2 0  3 0 .  m/120 1/12 

n: number of calibration points; rn: number of replicates per sample; k:  number of calibration 
solutions prepared; costs: currency units per hour. 

A few key results are given in Fig. 4.5. The arrows give the local tangents. 
It is interesting to see that the two curves for the photometer and the HPLC 

nearly coincide for the above assumptions, HPLC being a bit more expen- 
sive at the low end but much cheaper for the best attainable precisions. Note 
the structure that is evident especially in the photometer data: This is primar- 
ily due to the number m of repeat determinations that are run on one sample 

costs 
3000 

2500 

2000 

1500 

1000 

500 

0 

Photometer 

\I,+ 

Precis ion 

HPLC 

Figure 4.5. Estimated total analytical cost for one batch of tablets versus the attained confi- 
dence interval CI(X). 640 (UV) resp. 336 (HPLC) parameter combinations were investigated 
(some points overlap on the plot). 
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(rn = 1 at bottom, YU = 5 at top). One way for reducing the photometer costs 
per sample would be to add on an autosampler with an aspirating cuvette, 
which would allow overnight runs and would reduce the time the expensive 
technician would have to spend in front of the instrument (a time-interval 
of less than about 5 minutes between manual operations cannot be put to 
good use for other tasks). Roughly, three cost regimes can be distinguished: 
Dramatic improvements in precision are to be had practically free of charge 
(nearly horizontal arrow); in order to reduce the confidence interval of the 
result from k l %  to f0.6% relative, HPLC costs would about double on a per 
batch basis (middle arrow); if even better precision is targeted, cost begins 
to soar. This simulation shows that the expected analytical error of f0.7% 
(HPLC) will only be obtained at great cost. Experiments will be necessary 
to find out whether this assumption was overly optimistic or not. A trade-off 
between tolerance toward production variability and analytical error might 
be possible and should be investigated to find the most economical solu- 
tion. 

4.4 PROCESS VALIDATION 

Situation During the introduction of a new tablet manufacturing process, 
the operation of a conditioner had to be validated; the function of this condi- 
tioner is to bring the loaded tablets to a certain moisture content for further 
processing. 

Question Does the conditioner work in a position-independent mode, that 
is, all tablets in one filling have the same water content no matter into which 
corner they were put, or are there zones where tablets are dried to a larger 
or lesser extent that the average? 

Experiment Ten different positions within the conditioner representing 
typical and extreme locations relative to the air inlet/exhaust openings were 
selected for analysis. Eight tablets were picked per position; their water con- 
tent was accurately determined on a tablet-to-tablet basis using the Karl Fis- 
cher technique. Table 4.7 gives an overview of all results: 

Data Evaluation The Bartlett test (Section 1.7.3; cf. program MULTI using 
data file MOISTURE.dat) was first applied to determine whether the within- 
group variances were homogeneous, with the following intermediate results: 

3.32. 
A = 0.1719, B -424.16, C = 1.4286, D 70, E = 3.50, F = 1.052, G = 
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Table 4.8. Variance Decomposition 

Si = 0.1719 . f l  = 70 V1 = 0.00246 Variance within groups 
S2 = 3.2497 .f2 = 9 V2 = 0.36108 Variance between groups 
Sj- = 3.4216 f~ = 79 VT = 0.043311 Total variance 

Example 41: For f = k - 1 = 9 degrees of freedom the x2-value comes 
to 3.50 (uncorrected) resp. 3.32 (corrected); this is far below the critical x 2  
of 16.9 for p = 0.05. Thus the within-group variances are indistinguishable. 

Because of the observed homoscedacity, a simple ANOVA-test (see Table 
4.8) can be applied to determine whether the means all belong to the same 
population. If there was any indication of differences among the means, this 
would mean that the conditioner worked in a position-sensitive mode and 
would have to be mechanically modified. 

Interpretation Because the calculated F-value (0.36108/0.00246 = 148) is 
much larger than the tabulated critical one (2.04, p = O.OS), the group means 
cannot derive from the same population. 

The multiple range test was used to decide which means could be grouped 
together. First, the means were sorted and all possible differences were 
printed, as in Table 4.9. 

Next, each difference was transformed into a q-value according to Eq. 
(1.25). With 70 - 9 = 61 degrees of freedom, the critical q-value for the 
longest diagonal (adjacent means) would be 2.83, that for the top right cor- 
ner (eight interposed means) 3.33, see Table 1.11. For this evaluation sep- 

Table 4.9. Table of Differences Between Means (Rounding Errors May 
Occur, e.g., 1.070500 - 1.069125 = 0.001375 is Given as 1.071 ~ 1.069 = 0.001 

in the Top Left Cell) 

Ordered 
Means 1.071 1.087 1.090 1.107 1.145 1.157 1.159 1.249 1.775 

1.069 0.001 
1.071 
1.087 
1.090 
1.107 
1.145 
1.157 
1.159 
1.249 

0.018 0.021 0.038 0.076 0.088 0.090 0.180 
0.017 0.020 0.037 0.074 0.087 0.088 0.179 

0.003 0.020 0.058 0.070 0.072 0.162 
0.017 0.055 0.067 0.068 0.159 

0.038 0.050 0.052 0.142 
0.012 0.014 0.104 

differences Axji . . . 0.002 0.092 
0.090 

0.706 
0.705 
0.688 
0.685 
0.668 
0.630 
0.618 
0.616 
0.526 
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arate tables would have to be used for different error probabilities p .  The 
conversion to reduced q-values eliminated this inconvenience with only a 
small risk (see Section 1.5.4); this was accomplished by dividing all q-values 
by t(61, 0.05) . h = 1.9996 . h = 2.828; cf. Tables 1.12 and 4.9, and file 
Qred-tbl.dat, yielding reduced critical q-values in the range 1 .OO . . . 1.18. 
(See Table 4.10.) 

The critical reduced q-values pertinent for each diagonal are given in the 
right-hand column: For the diagonal 0.43-0.74-1.17-1 3-1.04-2.11-12.5, 
the tabulated reduced critical qc is 1.09. The number of decimal places was 
reduced here so as to highlight the essentials. 

Which means could be grouped together? A cursory glance at the means 
would have suggested (values rounded) 1.07 . . . 1.16 for one group, 1.25 
resp. 1.78 as second resp. third one. 

An inspection of the bottom diagonal 0.03 . . . 10.6 shows that the two 
largest means differ very much (10.6 >> 1.83 > 1.1), whereas each of the 
other means could be grouped with at least its nearest neighbor(s). The stair- 
case line distinguishes significant from nonsignificant reduced q-values: The 
mean 1.249 is larger than 1.159, and the means 1.145, 1.157, and 1.159 are 
indistinguishable among themselves, and could be grouped with 1.107, but 
not with 1.087 (e.g., 1.35 > 1.09). The values 1.069-1.107 form a homoge- 
neous group, with the value 1.107 belonging both to this and the next group, 
see Table 4.11. 

On the evidence given here, the tablet conditioner seemed to work well, 
but the geometrical positions associated with the means (1.249, 1.775) differ 
from those with the means (1.069 . . . 1.107); indeed, five of these positions 
were near the entry port of the controlled-humidity airstream, and the other 
two were situated in corners somewhat protected from the air currents. The 
1.159 group marks the boundary of the acceptable region. 

Tablet samples were pulled according to the same protocol at differ- 
ent times into the conditioning cycle; because the same pattern of results 
emerged repeatedly, enough information has been gained to permit mechani- 
cal and operational modifications to be specified that eliminated the observed 
inequalities to such a degree that a more uniform product could be guaran- 
teed. The groups are delineated on the assumptions that the within-group dis- 
tributions are normal and the between-group effects are additive. The physi- 
cochemical reasons for the differentiation need not be similarly structured. 

4.5 REGULATIONS AND REALITIES 

SITUATION: Low limits on impurities are a requirement that increasingly 
is being imposed on pharmaceuticals and high-quality chemicals. A spec- 
ification that still commonly applies in such cases is the “2% total, 0.5% 
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Table 4.11. Sample Assignment to Groups 

Group Sorted Means 

1 1.069 1.071 1.087 1.090 1.107 
2 1.107 1.145 1.157 1.159 
3 1.249 
4 1.775 

individual” rule, which is interpreted to mean that any one single impurity 
must remain below 0.5%, while the sum of all impurities shall not exceed 
2.0% w/w. Conversely, the purity of the investigated compound must come 
to 98.0% or higher. In practice, this numerical reconciliation, also known 
as “mass balance,” will not work out perfectly due to error propagation in 
the summation of the impurities, and the nonzero confidence interval on the 
>98% purity figure; thus it is considered improper to measure impurity by 
way of the (100 minus %-purity) difference. Because for the HPLC data both 
the individual peak areas and the result of the addition ( I  00%) are known 
(“~losure,”~~6),  not all information can be used in one calculation. Also, the 
sum of area-% is not proportional to the sum of weight-% because no two 
chemicals have exactly the same absorptivity at the chosen wavelength. 

The Case In 1986 there were semi-official indications that a major registra- 
tion authority might tighten the above requirement on pharmaceutical grade 
chemicals by a factor of 4 to “0.5 weight-% total and an individual upper 
limit on every impurity found in an ‘Accepted Sample”’. The plant man- 
ager, after hearing this, asks the analyst to report whether a certain product 
characterized by a large number of small impurities would comply. 

Review of Data The analyst decides to review the critical HPLC and GC 
impurity methods by retrieving from his files the last 15 or so sets of chro- 
matograms. On the average, 14.5 (range: 11-22) HPLC impurity peaks rang- 
ing from 0.004 to 0.358 area-% are found per chromatogram. Some compo- 
nents are more precisely analyzed by GC, so these results are used. The fact 
that most of these impurities are either insufficiently characterized because 
of the small amounts found, or no clean reference samples exist, means that 
area-% (integrated absorbance) instead of weight-% (integrated concentra- 
tion) are used for the evaluation; this is accepted by the authorities. Also, 
the numbers bear out a large variability for any one impurity from batch to 
batch; a typical impurity might yield 0.1 f 0.02% (n = 16). The “purity” 
given by the main peak averages to 98.7 f 0.14%. From these first results 
the operations manager draws the conclusion that an additional crystalliza- 
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Figure 4.6. Trend of the CV. 

tion step should push the two critical impurities below the 0.1% limit, and 
the sum of impurities to just below 0.5%. 

Experience The analyst is skeptical, and for good reason: Because of the low 
average levels, a higher relative standard deviation must be expected for the 
small peaks than for the large ones, that is, as each impurity is reduced, the ana- 
lytical uncertainty would increase even more and levels, as delineated by the 
CLu, might not appear to become smaller at all (“false positive”). This would 
force the analyst to make multiple purity determinations to keep confidence 
intervals within reasonable limits, and thus incur higher analytical overhead, 
and/or force the plant to aim for average impurity levels far below the present 
ones, also at a cost. The analyst then assembles Figure 4.6: The abscissa is 
the logarithm of the impurity concentration in %, while the ordinate gives the 
logarithm of the CV on the impurity, i.e., loglo( 100 . s,/c,). For comparison, 
RIA data is shown as a dashed line: The slope is about the same! 

The trend loglo(CV) vs loglo(c) appears reasonably linear (compare this 
with Ref. 177; some points are from the method validation phase where var- 
ious impurities were purposely increased in level). A linear regression line 
(B)  is used to represent the average trend (slope = -0.743). The target level 
for any given impurity is estimated by a simple model. Because the author- 
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Figure 4.7. Consequences for the case that the proposed regulation is enforced: The target 
level for an impurity is shown for several assumptions in percent of the level found in the offi- 
cial reference sample that was accepted by the authorities. The curves marked A (pessimistic), 
B ,  and C (optimistic) indicate how much the detected signal needs to be below the approved 
limits for assumptions concerning the signal-to-noise relationship, while the curves marked 1-3 
give the LOQ in percent of this limit for LOQs of 0.02, 0.01, resp. 0.005. The circle where 
curves B and 1 intersect points to the lowest concentration of impurity that could just be han- 
dled, namely 0.031 %. The square is for an impurity limit of O. l%,  for which the maximal signal 
(= 0.087%) would be just a factor of = 4.4 above the highest of these LOQs. 

ity thought it would allow a certain level for each impurity in an Accepted 
Sample (usually that which was used for the first clinical trial if it is a drug), 
the impurity levels in all following batches could not be higher. The model 
assumes a target level TL that is below the allowed impurity level AIL by an 
amount that ensures the risk of being higher is less than p = 0.05. The curves 
shown in Figure 4.7 demonstrate that the TL rapidly drops to the LOD as the 
AIL goes below about 0.1%. Even under the most optimistic assumptions, 
the intersection does not drop below 0.01%. 

target level TL = allowed impurity level AIL - t(,=o.l,f ) . s, (4.4) 

This amounts to stating “the analytical results obtained from HPLC-purity 
determinations on one batch are not expected to exceed the individual limit 
AIL more than once in 20 batches.” Since a one-sided test is carried out here, 
the t(a = 0.1, f) for the two-sided case corresponds to the t(a/2 = 0.05, f )  
value needed. The target level TL is related to the AIL as is the lower end 
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Table 4.12. Accepted and Target Impurity Concentrations (Target 
Concentrations for Impurities, Under Assumption of the Regression Line in 

Fig. 4.7 (B: a = 0.92, b = -0.743, in = 1); If the LOQ of the Method were 0.03%, 
the Target Concentration in the Last Line (0.011) Would be 

Inaccessible to Measurement! 

Accepted Target Target 
Impurity Concentration Concentration 

Level (%) (%I (% of AIL) 

10.0 9.85 98.5 
5.0 4.87 97.5 
3.0 2.89 96.3 
2.0 1.90 95.0 
1 .0 0.9 17 91.7 
0.5 0.430 86.1 
0.3 0.239 79.7 
0.2 0.145 72.5 
0.1 0.054 54.0 
0.05 0.011 23.0 

of the “production tolerance” range to the lower specification limit for the 
“probably inside” case in Fig. 2.12 or batch C to the upper SL in Fig. 2.13. 

Example 42: Assume that a certain impurity had been accepted by the 
authorities at the AIL = 0.3% level; what level must one now aim for to 
assure that one stays within the imposed limit? Eq. (4.4) is rewritten with 
both TI, and CI/2 in % of AIL, x = log(AIL), y = log(( 100 . t . s,,)/AIL), and 
the right-hand expression is replaced by the linear estimate from Fig. 4.6. 

t = t(f = n - l ,p  = 0.1) 

= 100 - 100.  t . $,/AIL 

= 100 - 10”{0.92 - 0.743 . log,,(0.3)} 

= 79.7% result 

Student’s t 

linear estimate 
substitution 
insert linear regression 

y[%] = 100. TL/AIL 

100 - 1OA{a + b . log,,(AIL)} 

parameters 

(4.5) 

For repeat measurements (m = 2, etc.), one has to subtract the logarithm 
of the square root of m from the sum (a + b . loglo(c)). For m = 2 resp. m = 

3,  the result 79.7% would change to 85.7% resp. 88.3%. (See Table 4.12.) 
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Consequences While this may still appear reasonable, lower accepted 
impurity limits AIL quickly demand either very high m or then target levels 
TL below the LOQ, as is demonstrated in Fig. 4.7. If several impurities are 
involved, each with its own TL and AIL, the risk of at least one exceeding 
its AIL rapidly increases ('joint probabilities, see Section 4.24). For k impu- 
rities, the risk is [l ~ (1 - 0.05)k], that is for k = 13, every other batch would 
fail! 

Actually, it would be reasonable for the authorities to replace by 0.1% 
the individual limit concept for all impurities lower than about 0.1% in the 
accepted sample, provided that toxicity is not an issue, because otherwise 
undue effort would have to be directed at the smallest impurities. Various 
modifications, such as less stringent confidence limits, optimistic estimates 
(line (A) in Fig. 4.6), etc. somewhat alleviate the situation the plant manager 
is in, but do not change the basic facts. 

The effect of such well-intentioned regulations might be counterproduc- 
tive: Industry could either be forced to withdraw products from the mar- 
ket despite their scientific merits because compliance is impossible, or they 
might dishonestly propose analytical methods that sweep all but a scapegoat 
impurity below the carpet. 

That these are not idle thoughts is demonstrated by the following exam- 
ple that involves a process intermediate that was offered by two specialty 
chemicals houses; about half a dozen synthesis steps had been performed up 
to this point, all involving solvents of similar polarity. The two steps that 
would lead to the final product would be conducted under somewhat differ- 
ent conditions, but not different enough to ensure that the previous process 
impurities would all be extracted. So, it was important to select a precur- 
sor that would not emburden the process from the beginning. (See Fig. 4.8.) 
Vendor A might have had a better price, but any advantage there could have 
been eaten up by more waste or a poor impurity profile in the final product, 
an uncertainty that could only be laid to rest by testing the two vendor's 
samples in the synthesis and re-running the analysis to see how well the 
individual impurity was eliminated. 

4.6 DIFFUSING VAPORS 

Situation Two different strengths of plastic foil are in evaluation for the 
packaging of a moisture-sensitive product. Information concerning the diffu- 
sion of water vapor through such foils is only sparsely available for realistic 
conditions. To remedy this lack of knowledge, samples of the product are 
sealed into pouches of either foil type and are subjected to the following 
tests: 
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Number of impurities Sum over peaks 
per chromatogram [area-% / chromatogram] 
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Figure 4.8. Comparison of impurity profiles for the same chemical intermediate from two 
different suppliers. The impurity peak-areas for each chromatogram were tallied in 0.02 area-% 
bins for each vendor, the data was normalized by dividing by the number of chromatograms. 
Vendor A’s material has many more peaks in the 0.05-0.2% range, which drives the total 
impurity level to ~ 5 . 2 %  (vs. = 1.9 for Vendor B )  for 20.2%; the number of excess peaks 
above 0.2% does not appear as dramatic, but greatly adds to the total impurity level: = 13.3 
vs. = 2.3%! 

Normal storage (results expected after some months to years) 

Elevated temperature and humidity (accelerated test, approximate 
results expected after 2 weeks) 

Experimental Weight gain of hygroscopic tablets due to moisture absorp- 
tion is taken as a surrogate indicator in lieu of direct moisture transmission 
tests. The pouches are individually weighed with a resolution of 0.1 mg every 
few days and the mean weight gain is recorded versus time. Because the ini- 
tial value is a measurement (as opposed to a theoretical assumption), there 
are IZ = 5 coordinates. Subtraction of the initial weight corresponds to a trans- 
lation in weight-space, with no loss of information. Empty pouches serve as 
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Table 4.13. Weight Gain for two Different Thicknesses of Foil 

Weight Gained in mg 

Day Thin Foil Thick Foil Ratio 

0 0 0 
2 2.0 1.4 0.70 
5 4.1 3.4 0.83 
8 6.5 5.4 0.83 

12 10.2 8.1 0.79 
0.79 k 0.06 

controls (these absorbed such small quantities of water that the water content 
of the plastic foil could safely be ignored). (See Table 4.13.) 

Analysis From the graph of the stress test results, linear regression is seen 
to be appropriate (this in effect means that at these small quantities of water 
vapor the hygroscopic tablets are far from thermodynamic saturation). The 
slopes, in mg of water per day per pouch, are compared: 

Results The uncertainties associated with the slopes are very different and 
nl = 122, so that the pooled variance is roughly estimated as (Vl + V2)/2, see 
case c in Table 1.10; this gives a pooled standard deviation of 0.020: a simple 
t-test is performed to determine whether the slopes can be distinguished. 
(0.831 ~ 0.673)/0.020 = 7.9 is definitely larger than the critical t-value for 
p = 0.05 a n d f =  3 (3.182). Only a test for H I :  t > t, makes sense, so a 
one-sided test must be used to estimate the probability of error, most likely 
of the order p = 0.001 or smaller. 

Example 43: Single-sided t-tables are often not available and many of 
the two-tailed t-tables do not provide values for p < 0.01 (corresponding to 
p < 0.005 for the single-sided case), however, so that interpolation becomes 
necessary: log(t) vs. log( p )  is reasonably linear over the p = 0.1 . . . p = 0.00 1 
interval (check by graphing the data, see program LINREG and data file 
1NTERPOLl.dat). Forf= 4, one finds t = 4.604 a tp  = 0.01, resp. t = 8.610 a t p  
= 0.001; linear interpolation for y = 7.9 yields p = 0.0014 (two-sided), respec- 
tively p = 0.0007 (one-sided); the same result is obtained using the t-approx- 
imations for p = 0.001 and 0.002 in program CALCVAL, option (Student’s 
t). The ratio is 0.673/0.83 1 = 0.8 1, which means the thicker foil will admit 
about 80% of what the thinner one will. The potentially extended shelf-life 
will have to be balanced against higher costs and alternative designs. A very 
similar result is found if the regression lines are forced through the origin (a 
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Table 4.14. Comparison of hloisture Transmission through Foils. 
- 

Regression with a # 0 Regression with a = 0 

bthin: 0.831 k 0.028 0.871 k 0.088 
bthick: 0.673 * 0.003 0.688 k 0.012 

: 0): The ratio of the slopes is 0.79, but due to the high standard deviation 
on the first one (+0.088), the ratios cannot be distinguished. 

Comment The linear regression technique here serves to average the two 
trends before comparing them. Under these ideal conditions it would have 
been just as correct to calculate the ratio of weight gains at every point in 
time, see Table 4.13, last column, and then averaging over all ratios. How- 
ever, if for one foil a nonlinear effect had been observed, the regression tech- 
nique, employing only the linear portion of those observations, would make 
better use of the data. For exploratory investigations like this the results need 
only suggest one course of action amongst alternatives because the only facts 
a regulatory authority will accept are real-time stability data in the proposed 
marketing put-up. (See Section 4.7 and Ref. 178.) 

4.7 STABILITY h la carte 

Pharmaceutical products routinely undergo stability testing; the database thus 
accumulated serves to substantiate claims as to shelf life and storage con- 
ditions. Every year, sufficient material of a production batch is retained to 
permit regular retesting.17* In the following case of Fig. 4.9 that occurred 
many years ago in an obscure and old-fashioned company, stability data per- 
taining to two batches of the same product manufactured 27 months apart 
were compared. The visual impression gained from the graph was that some- 
thing was out of control. Two lab technicians and the hitherto uncontested 
production manager were confronted, and reached as follows: 

1.  “Technician B fabricated data to make himself look more competent.” 
2. “Technician A works sloppily.” 

3 .  “The QC manager ought to keep out of this, everything has worked so 
well for many years.” 

Being 26 months into the program for the later batch (53 months for the ear- 
lier one), the method was checked and found to be moderately tricky, but work- 
able. Technician B (bold circles) did the final tests on both batches. When the 
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Figure 4.9. Product deterioration according to technicians A (left) and B (right) using the same 
analytical method. Technician A’s results are worthless when it comes to judging the product’s 
stability and setting a limit on shelf life. The bold circles indicates the batch 1 result obtained 
by technician B; this turns out to be close to the linear regression established for batch 2, 
suggesting that the two batches degraded at the same rate. 

same slope is used for both sets of data, technician A’s residual standard devi- 
ation (combined error of the method and that of the operator) is several-fold 
higher than that for technician B.  This, together with other information, con- 
vinced the new head of quality control that technician A had for too long gone 
unsupervised, and that statistics and graphics as a means of control were over- 
due. The production manager, who, in violation of the GMP spirit, had simul- 
taneously also served as head of QC for many years, had the habit of glancing 
over tabulated data, if he inspected at all. The evident conflict of interest and the 
absence of an appropriate depiction of data inhibited him from finding irregu- 
larities, even when a moderately critical eye would have spotted them. 

4.8 SECRET SHAMPOO SWITCH 

The quality control unit in a cosmetics company supervised the processing 
of the weekly batch of shampoo by determining, among other parameters, 
the viscosity and the dry residue. Control charts showed nothing spectacular. 
(See Fig. 4.10, top.) The cusum charts were just as uneventful, except for 
that displaying the dry residue (Fig. 4.10, middle and bottom): The change 
in trend in the middle of the chart was unmistakable. Since the analytical 
method was very simple and well-proven, no change in laboratory person- 
nel had taken place in the period, and the calibration of the balances was 
done on a weekly basis, suspicions turned elsewhere. A first hypothesis, 
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Figure 4.10. At the top the raw data for dry residue for 63 successive batches is shown in 
a standard control chart format. The fact that as of batch 34 (arrow!) a different composition 
was manufactured can barely be discerned, see the horizontals that indicate the means DR,_,, 
resp. DR34-63. A hypothesis that a change occurred as of batch 37 would find support, though. 
Cusum charts for base period 1 . . . 63  resp. base period 1 . . , 37 make the change fairly obvious, 
but the causative event cannot be pinpointed without further information. Starting with batch 
55 (second arrow!), production switched back to the old composition. 

soon dropped, stated that the wrong amount of a major component had been 
weighed into the mixing vat; this would have required a concomitant change 
in viscosity, which had not been observed. Other components that do not 
influence the viscosity could have inadvertently been left out, but this second 
hypothesis also proved nonviable because further characteristics should have 
been affected. Finally, a check of the warehouse records showed that the 
Production Department, without notifying Quality Control, had begun to use 
a thickening agent from a different vendor; while the concentration had been 
properly adjusted to yield the correct viscosity, this resulted in a slight shift 
in dry residue (+0.3%), which nicely correlated with what would have been 
expected on the basis of the dry residues of the pure thickening agents. 21 
batches later, the Production Department canceled the experiment (the trend 
is again nearly parallel to that on the left half of the chart). This case very 
nicely shows the superiority of the cusum chart over simple control charts 
for picking up small changes in process mean. 

That improper weighing (first hypothesis) is not a farfetched thought is 
demonstrated by observations of how workers interact with balances. It does 
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not matter whether digital or analog equipment is available: Repetitive work 
breeds casual habits, such as glancing at only a part of a number, or only the 
angle of an indicator needle, instead of carefully reading the whole display. 
A “1” and a “7”, or a “0” and an “8,” do not differ by more than a short 
horizontal bar on some LCD displays. On a particular model of multi-turn 
scales the difference between 37 and 43 kg resides in a “36” or a “42” display 
in a small window; the needle in both cases points to the “2 o’clock” position 
because 1 kg corresponds to 1/6 of a full turn. Mistaking the 4 with the “10 
o’clock” position is also not unknown; the angle of the needle with respect 
to the vertical is the same in both cases. There must be a reason for a GMP 
requirement that stipulates a hard-copy printout of the tare and net weights 
and signatures by both the operator and an observer! 

4.9 TABLET PRESS WOES 

Znitial Situation An experimental granulation technique is to be evaluated; 
a sample of tablets of the first trial run is sent to the analytical laboratory 
for the standard batch analysis prescribed for this kind of product, including 
content uniformity (homogeneity of the drug substance on a tablet-to-tablet 
basis, see USP Section (905)43), tablet dissolution, friability (abrasion resis- 
tance), hardness, and weight. The last two tests require little time and were 
therefore done first. (Note: Hardness data is either given in [kg-force] or [N], 
with 1 kg = 9.81 Newton). 

Results 

Hardness: 6.9, 6.1, 6.5, 7.6, 7.5, 8.3, 8.3, 9.4, 8.6, 10.7 kg 
Weight: 962, 970, 977, 978, 940, 986, 988, 993, 997, 1005 mg 

Conclusion 
weight scatters only about 2%, so a request for more tablets is issued: 

The hardness results are very variable (CV. k 17%), while the 

Results 

Hardness: 7.3, 6.2, 8.4, 8.9, 7.3, 10.4, 9.2, 8.1, 9.3, 7.5 kg 
Weight: 972, 941, 964, 1008, 1001, 988, 956, 982, 937, 971 mg 

Conclusion No improvement, something is wrong with either the product 
or the analytical procedure; measuring hardness and weighing are such sim- 
ple procedures, however, that it is hard to place the blame on the very reliable 
laboratory technician. 

Strategy Since the tablet press is still in operation, an experiment is devised 
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Figure 4.11 (left). Tablet hardness found for the sequence of 120 tablets. On the suspicion that 
there is a dependency by stamp, the data are grouped by stamp (Fig. 4.12 left). (right). Corre- 
lation between tablet hardness and weight. For the residuals that are obtained after correction 
for the tablet weight, see Fig. 4.12 right. 

to test the following question: could the granulate form soft clumps and result 
in uneven flow from the hopper to the cavity? Good flow properties are a 
prerequisite for untroubled production. A suitable plastic tube is connected 
to the exit chute of the tablet press: the tablets accumulate at the lower end 
of the tube strictly in the sequence they come off the press. 

Results The hardness and the weight are measured (for 10 tablets from 
each of the 12 stamps, see HARDNESS.dat, use programs XYZ, XYZCELL, 
LINREG) and are graphed (Fig. 4.11, left). 

Conclusion The spread in both measures is large, and the correlation 
strengthens the notion that the hardness-variability is due to weight-variabil- 
ity. In particular, there are some very light and soft tablets in the lower left 
corner of Fig. 4.11 (right), and a cluster of very heavy ones near the limit 
of hardness such a formula will support. It is known from experience that 
higher weight yields higher hardness values because of the constant tablet 
volume to which the granulation compressed. 

Plan Obtain the intrinsic sH by subtracting the weight-dependent part and 
taking the standard deviation of the residuals. Check the hardness values for 
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Figure 4.12 (left). The hardness data is grouped by stamp. (right). By subtracting the weight- 
dependent portion of the hardness, the residuals are seen to cluster much more closely, partic- 
ularly for those stamps marked with arrows. Because of the limited hardness resolution (0.1 
kg), the symbols for two or more data points can overlap. The vertical bar indicates f s ~ .  

any connection to stamp number. The linear regression is calculated and the 
hardness values are corrected through: 

H’[kg] = Hi - (Wi - W,,,,) . 0.047417[kg . mg-’1. 

Data Reduction and Interpretation With the weight-dependent part of the 
hardness subtracted, see Fig. 4.12 (right), a residual standard deviation S H ,  

= f0.64 (kg) is obtained, being somewhat high, but still reasonable in view 
of the preliminary nature of the experiment. Thus it is improbable that the 
granulation is fully at fault. 

The stamp associated with the extreme hardness values (number 7, Fig. 
4.12, left; use STAMP.dat with program MULTI) is the next suspect: It is 
identified and inspected on disassembly of the tablet press: Due to mechani- 
cal wear, the movement of the stamp assembly is such that an above-average 
amount of granulate drops into cavity number 7, and is thus compressed to 
the limiting hardness supported by the granulate. The hardness for stamps 4, 
8, and 11 tends to be low, and high for 12, but the data is insufficient to come 
to definite conclusions for these tools. The tablets from these stamps “con- 
taminated” what would otherwise been a fairly acceptable product. Because 
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of the small IPC sample size (n = lo), the chances of spotting aberrant tablets 
are not that good, unless curiosity is aroused through hints or suspicions. 

The analysis of the 12 sets of weight data yields Ho for the Bartlett test, 
H I  for the ANOVA test, and the multiple range test proposes five groups 
(two that greatly overlap and three smaller ones, with Stamp #7 almost in 
a group of its own). The analysis of the hardness data fails with Ho in the 
Bartlett test because set #7 values cluster so tightly, probably a result of 
being at the hardness limit. If this set’s data is manipulated to produce a SD 
similar to that of others (use program DATA, option (Edit)), then one ends 
up with one central group and four fringe groups. 

Conclusion The problem areas are tentatively identified; the formulations 
department is asked to improve the flow properties of the granulate and thus 
decrease the weight dispersion. The maintenance department will now have 
to find a proposal for countering the excessive wear on one stamp. Note: On 
more modern, heavily instrumented and feed-back controlled tablet presses, 
the described deviations would have become more readily apparent, and 
mechanical damage could have been avoided. 

4.10 SOUNDING OUT SOLUBILITY 

Situation A poorly soluble drug substance is to be formulated as an 
injectable solution. A composition of 2% w/v is envisaged, while the solu- 
bility in water at room temperature is known to be around 3% w/v. This dif- 
ference is insufficient to guarantee stability under the wide range of temper- 
atures encountered in pharmaceutical logistics (chilling during winter trans- 
port). A solubility-enhancing agent is to be added; what is the optimal com- 
position? Two physicochemical effects have to be taken into account: 

At low concentrations of the enhancer a certain molar ratio enhancer/ 
drug might yield the best results. 
At the limiting concentration the enhancer will bind all available water 
in hydration shells, leaving none to participate in the solution of the 
drug substance. 

Mathematical Modeling A function u = g(u) (Fig. 4.13, right) is found 
in the literature that roughly describes the data y = f(x) but does not have 
any physicochemical connection to the problem at hand (Fig. 4.13, left); 
since the parameter spaces x and y do not coincide with those of u and u, 
transformations must be introduced: 

Since u must be between zero and one, experimental data x from Fig. 4.13 
would have to be compressed and shifted along the abscissa: 
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Figure 4.13. The solubility function expected for the combination of the above-mentioned 
physicochemical effects (left), and a similar mathematical function (right). 

u = c . ( X  + d )  u = u . (1 - u ) ~  y = u . u . (1 - u ) ~  (4.6) 

Three parameters thus need to be estimated, namely the scalar factor a,  
the compression factor C ,  and the shift d. Parameter b was dropped for two 
reasons: (1) the effect of this exponent is to be explored, so it must remain 
fixed during a parameter-fitting calculation, and (2) the parameter estimation 
decreases in efficiency for every additional parameter. Therefore the model 
takes on the form 

where y( ) and x( ) contain the experimental data, a ,  c, and d are to be opti- 
mized for every b, and b is to be varied in the interval 1 . . . 6. This function 
was appropriately defined in a subroutine which was called from the opti- 
mization program. The optimization was carried out for the exponents b = 

1 to 6. Four of the resulting six curves are practically equivalent in the x- 
interval 0 . . . 7, and the other two clearly do not fit the data. 

Contrary to what is suggested in Section 2.3.2, not the simplest model of 
those that well represented the data was chosen, but one with a higher expo- 
nent. (See Fig. 4.14.) The reason becomes apparent when the curves are com- 
pared at x > 8: For the model with b = 1 a sharp drop in drug solubility at x = 

10 is predicted, whereas the b = 6 model suggests a more gradual reduction in 
solubility, more in accord with what is expected from the involved chemistry. 
The issue could only have been decided with an experiment in the 10 I x I 12 
region, which was not carried out. The point of interest was the prediction that 
maximal solubility would be attained for 2 to 3% of the enhancer, and not for 
5%, as had originally, and somewhat naively, been extrapolated from experi- 
ments with a drug concentration of 0.5%. 
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Solubility of Drug 
Substance [% wh] 

Model: 
I y = a +(x + @.(I - c.(x + c$ . 

- 

5 10 15 

Solubility Enhancer Added [% wh] 
Figure 4.14. Solubility data and fitted models for parameters a = 14.8, h = 1, c = 0.0741, d ~ 

3.77. re\p. u ~ 66.1, h = 6, c = 0.0310, and d = 2.14. 

Commercial program packages that either propose phenomenological 
models or fit a given model to data are easily available; such equations, 
along with the found coefficients can be entered into program TESTFIT. It 
is strictly forbidden to associate the found coefficients with physicochemical 
factors unless there is a theoretical basis for a particular model. 

4.11 EXPLORING A DATA JUNGLE 

As a new product is taken from the laboratory, through the pilot, and into 
the production plant, a lot of information will accumulate that helps to better 
understand the product and the associated production process. In general, the 
major characteristics are soon evident and will be exploited to optimize the 
production. Fine-tuning the process can only be done, however, if hitherto 
hidden aspects are revealed. 

Situation A case in point is a purification/drying step before the sample 
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Table 4.15. Extract of Data Table for 43 Batch Analyses see JUNGLE4.dat. 

1 2 3 4 5 6 7 8 9 

S o h  Solv Solv Solv Solv Other Assay Assay Purity 
i A B  C D  E Impur. HPLC Titr. HPLC 

1 4.1 6.9 11.0 13 23 0.6 98.0 98.0 98.7 
2 5.1 6.2 11.3 15 34 0.8 94.9 97.0 98.1 
3 6.3 7.0 13.3 18 46 0.7 94.0 94.0 98.0 

43 6.1 7.39 13.2 16 30 0.2 95.5 95.6 99.4 

xmean 5.94 7.39 13.33 16.1 31.26 0.40 95.52 96.09 98.95 
SX f1.2 k.77 f1.55 k2.7 f14.0 f.25 k2.30 f2.61 f0.56 

for in-process control (IPC) is taken. Some of the analytical parameters that 
were determined were water content in wt-% (Karl Fischer), various residual 
solvents in ppm (GC), the sum of other impurities in area-% (HPLC), the 
content of the major compound (HPLC and titration, as determined by com- 
parison with an external standard), and its purity as determined from area-% 
figures (HPLC). The severity of the drying process had varied somewhat 
over 43 batches, but was likely to be on the mild side, so that an interesting 
question was to determine the ultimate quality that was attainable (too much 
heat would have provoked decomposition), see file JUNGLE4.dat; an extract 
is given in Table 4.15. 

Data Analysis Because of the danger of false conclusions if only one or 
two parameters were evaluated, it was deemed better to correlate every 
parameter with all the others, and to assemble the results in a triangular 
matrix, so that trends would become more apparent. The program CORREL 
described in Section 5.2 retains the sign of the correlation coefficient (posi- 
tive or negative slope) and combines this with a confidence level (probability 
p of obtaining such a correlation by chance alone). 

Prior to running all the data through the program, a triangular matrix of 
expected effects was set up, see Fig. 4.15, by asking such questions as “if the 
level of an impurity X increases, will the assay value Y increase or decrease?’ 
(it is expected to decrease). Furthermore, the probability of this being a false 
statement is expected to be low; in other words, a significant negative event is 
expected (=). The five solvents are expected to be strongly correlated because 
heating and/or vacuum, which would drive off one, would also drive off 
the others. The titration is expected to strongly correlate with the HPLC 
content; because titration is less specific (more susceptible to interferences), 
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the titration results are in general a bit higher. The HPLC purity of the major 
component and the sum of the other impurities, together with the residual 
solvents, should add to loo%, and a strong negative correlation is expected. 
A word of caution must be added here: The common practice of normalizing 
chromatograms to 100% peak area redistributes noise from large to small 
peaks because the absolute noise is relevant, not the S/N ratio; this can distort 
conclusions drawn from the analysis of small peaks, cf. “ c l o ~ u r e ” ’ ~ ~ ;  it would 
be better to do the calculations with peak areas, i.e., dimension [mV . sec]. 
The found correlations are given as percent probability of chance occurrence. 
The effects figure records the probability in terms of the (= - ++) scale. The 
deviation figure compares expectations with effects and shows whether one’s 
thinking was off. A somewhat weaker (“w”) or stronger (“s”) correlation is 
immaterial. Much weaker or much stronger correlations cannot be ignored; 
faulty thinking, flagged by asterisks, should set one’s mind ticking. 

So much for theory: The interesting thing is to ponder what went contrary 
to expectations, and to try to find explanations. It is here that graphical pre- 
sentations are helpful to judge the plausibility of any effect: A correlation, is 
only a correlation, and can come about because of a single point that bucks 
the trend. 

Interpretation It seems as if the assay figures (columns 7, 8) were strongly 
negatively correlated with the presence of residual solvents (rows 3-5, not 
as expected) and to a lesser degree with water. The up to 8% water have a 
direct effect on the assay, unless compensated for, while even 50 ppm of E 



EXPLORING A DATA JUNGLE 213 

102 
100 

9a 

96 

94 

ppm 
50 
40 
30 
20 
10 

Total Impurities[%] 

lo I 

I . .  I 
% I I 

4 

2 Other Impurities - - -  ” 
90 95 100 105 

HPLC Assay [%] 

Figure 4.16 (left). Trendlines for the various components. The three scales are different %, 
ppm, resp. %). (right). Total impurities (columns 1-6, including water of crystallization, ver- 
sus the HPLC assay of the major compound (column 7). The circle marks the hypothetically 
pure compound: 3.2% water of crystallization, but no other impurities. The arrow indicates 
the percentage of impurities expected (for this simple linear model) to remain in the product 
after all solvents and excess water have been driven off. 

are not expected to have an effect on the assay itself; the correlation must 
therefore be due to the process chemistry. Surprisingly, purity is positively 
and not negatively correlated to the solvents. Absolute values of p = 5% 
and less were taken to mean “significant effect” or even “highly significant 
effect”; an absolute p larger than about 20% indicates that this might well 
be a chance result. Three correlations that were plotted are shown in Figs. 
4.16 (right) and 4.17 for illustrative purposes. 

The fact that in HPLC only UV-active components are registered, whereas 
in titration all basic functional groups are detected constitutes a difference in 
specificity (quality) and sensitivity (quantity) of these two methods relative 
to a given impurity. See Fig. 4.17 (left). [Solvent A (water) behaves differ- 
ently from the other four as can be seen from Fig. 4.17 (right). The mate- 
rial was known to exist in a crystal modification that theoretically contains 
3.2% water, and moderate drying will most likely drive off only the excess: 
Indeed, the best-dried batches are all close to the theoretical point (circle, 
arrow in Figs. 4.16-17), and not near zero. This is only partly reflected in 
Table 4.15, column A; for this reason tabular and graphic information has 
to be combined. Solvent B, which is an alcohol, behaves more like water 
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Figure 4.17 (left). HPLC assay (column 7) and titration assay (column 8) are compared: Evi- 
dently titration yields the higher values (solid line vs. dashed theoretical line); the reason is that 
one of the major impurities is of basic nature. The circle denotes the pure compound and per- 
fect selectivity for both techniques. (right). The sum of all organic solvents (columns B-E in 
Table 4.15) is plotted versus the residual water (column A). The drying step obviously drives 
off organic solvents and water to a large degree, depending on the severity of the conditions. 
Organic solvents can be brought down to 30 ppm, while only the excess water can be driven 
off, the remainder being water of crystallization (arrow: theoretically expected amount: 3.2%). 

(A) than the apolar solvents (C-E). All three correlation graphs demonstrate 
that careful drying drives off solvents and excess water, and in the process 
improves purity. 

This technique is also used to ferret out correlations between impurities 
within the same HPLC chromatogram: If several reaction pathways compete 
for reagent, each with Its own characteristic impurity profile, any change in 
conditions is likely to affect the relative importance of the individual path- 
ways. Finding which impurities move in concert helps to optimize a process. 
(See Fig. 4.18). Data file PROFILE.dat contains another example: 11 peak 
areas were determined in each chromatogram for nine production runs. Impu- 
rities 5 ,  6, and 8 appear to be marginally correlated to the others, if at all, 
while the product strongly correlates with impurities 1-4, 7, the solvent, and 
the reagent. Since impurities 5 ,  6, and 8 are far above the detection limit, 
analytical artifacts cannot be the reason. The correlation graph is depicted 
in Fig. 4.28. These examples show that unless the interdependencies between 
various parameters are clearly reflected in the measurements, some interpre- 
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Figure 4.18. Peal-size correlation in an HPLC-chromatogram. The impurity profile of a 
chemical intermediate shown in the middle contains peaks that betray the presence of at least 
two reaction pathways. The strength of the correlation between peak areas is schematically 
indicated by the thickness of the horizontal lines below the chromatogram. The top panel 
gives the mean and standard deviation of some peak areas ( n  = 21); the two groups of peaks 
immediately before and after the main peak were integrated as peak groups. 

tations may (apparently) contradict others. This should be taken as a hint 
that the type of analysis possible with program CORREL is of exploratory 
nature and should be viewed as food for thought. 

4.12 SIFTING THROUGH SIEVED SAMPLES 

Situation There are two vendors for a particular bulk chemical who meet 
all written specifications. The products are equally useful for the intended 
reaction as far as the chemical parameters are concerned; both comply in 
terms of one physical parameter, the size distribution of the crystals, but 
on the shop floor the feeling prevails that there is a difference. Because the 
speed of dissolution might become critical under certain combinations of 
process variables, the chemical engineers would favor a more finely divided 
raw material. On the other hand, too many fine particles could also cause 
problems (dust, static charging). 

Questions 
different? How could such a difference be quantified? 

Are the materials supplied by the two vendors systematically 
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Figure 4.19. Relative (top panel) and cumulative weight of material per size fraction for two 
different vendors (bottom panel; A: left; B: right). The cumulation helps reduce noise. 

Course of Action A laser-light scattering apparatus LLS is used to measure 
the size distributions. The results are given in weight-% per size class under 
the assumption that all material falls into the 15 classes between 5.8 and 564 
pm. For the seven most recent deliveries from each of the two vendors sam- 
ples are obtained from the retained sample storage. The 14 size distributions 
are measured and the average distribution for each vendor is calculated. (See 
Fig. 4.19 and Table 4.16, right-hand columns.) The Euclidean distance for 
each sample is given relative to the Group Average A (*), respectively B (**) 
(564-261 pm in bin 15, 7.2-5.8 pm in bin 1, logarithmic classification) for 
samples 1-7 of each of two vendors. 

As it turns out, one vendor’s material contains almost no particles (0.5%) 
in the 261-564 pm class (bin #15); this means that the %-weight results accu- 
rately represent the situation. The other vendor’s material, however, contains 
a sizable fraction (typically 5%, maximally 9%) in this largest size class; this 
implies that 1-5% “invisible” material is in the size class >564 pm. Evidently 
then, the size distribution curve for this second material is accurate only on 
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a relative basis, but not absolutely; distorted data are a poor foundation for 
a statistical analysis. Thus, there are three ways to continue: 

I .  Use another methodology to determine the amount above 564 pm. 

2. Proceed as if the data were not distorted and carry in mind that any 
result so obtained is biased. 

3. Employ a model that mathematically describes a size distribution of 
this type, adjust the model parameters for best fit, and estimate the 
missing fraction above 564 pm; after correcting the observed frequen- 
cies, continue with a correct statistical analysis. 

The first option is unworkable, though, because this other technology is 
unlikely to have (A) the same cut-off characteristics around 564 pm, or ( B )  
measure the same characteristics (e.g., volume instead of length). The third 
options falls out of favor for the simple reason that such a model is not 
available, and if it were, errors of extrapolation would be propagated into 
any result obtained from the statistical analysis. 

Example 44: It appears that one distribution is sharper than the other; a x 2  
test is applied to the group means to confirm the difference [Eq. (1.50)]: x2 = 

20.6 or 95.7 is found, depending on which distribution is chosen as reference, 
cf. Table 3.5. Since there is no theoretical distribution model to compare 
against, the choice of reference is arbitrary. The critical x 2 (  p = 0.95, f =  14) 
is 23.7, which means that H I  could have to be rejected under one perspective. 
The above-mentioned distortion of the data from the coarser material might 
have tipped the scales; this is a classical case where the human eye, used 
to discriminating patterns, sees something that a statistical test did not. A 
disturbing aspect is the fact that the individual results scatter so much so 
as to obscure any difference found between the means. (See Fig. 4.19.) The 
situation can be improved by regarding the cumulative (Fig. 4.19, bottom) 
instead of the individual frequencies, because through the summation the 
signal/noise ratio is improved. 

Euclidean Distance On the basis of the given evidence, the size dis- 
tributions are different, but this is not fully borne out by the statistical 
test employed. To overcome the impasse, another technique is employed 
that allows each sample to be judged according to its proximity to given 
points. Cluster analysis (finding and comparing “distances” in 15-dimen- 
sional space) shows a difference between the products; the disadvantage is 
that cluster analysis strains the imagination. (Cluster analysis would allow 
any number of vendors to be subjected to a simultaneous comparison, each 
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providing as many batches for size distribution analysis as he wanted.) A fur- 
ther problem is that at the moment no one knows what causes the process 
to run astray; in such a situation it would be inopportune to confront ven- 
dors with highly abstract statistical analyses and ask them to comply with 
undefined specifications. A simple one- or two-dimensional depiction that 
allows the statement “A is OK, and your product is different; batches 9 and 
14 are closest, batch 8 is the worst” would help. In order to rectify this, 
the Euclidean distances separating every point from both the average of its 
group and that of the other group are projected into two dimensions. Four 
things are necessary: 

1. For each of the two groups, the mean over every one of the 15 dimen- 
sions (classes, bins) is calculated (columns A and B in Table 4.16). 

2. Corresponding elements in the two vectors of means are subtracted, 
and the differences are squared and added. The square root of the sum 
(1 5.2 1) is equal to the Euclidean distance in 15 dimensions separating 
the two points that represent the group means. This distance forms the 
base line in Fig. 4.20. 

3. Corresponding elements in the vector representing one particular sam- 
ple and in the appropriate vector of means are worked up as in 2) to 
find the Euclidean distance between point i and its group mean (see 
lines marked with an asterisk (*) in Table 4.16); this forms the second 
side of the appropriate triangle in Fig. 4.20. 

4. In order to find the third side of the triangle, proceed as under 3) by 
replacing one vector of averages by the other. (See lines marked with 
double asterisks (**) in Table 4.16.) 

Example 45: For sample 1, vendor A: 

For point 1: 
Sample data: 9.20, 16.00, 17.50, ... 0.50 
Vector of means 1: 4.87, 13.10, 16.97, . . . 0.56 
Vector of means 2: 0.49, 2.99, 11.81, . . . 0.66 

The baseline is b = 15.2, with b2 = (4.87 - 0.49)2 + . . . (0.56-0.66)* (see pre- 
ceding item 2); side u is a = 6.0, with u2 = (9.20 - 4.87)* + . . . (0.50-0.56)2 
(see preceding item 3); side c is c = 20.3, with c2  = (9.20 ~ 0.49)2 + . . . 
(0.50-0.66)2 (see preceding item 4) 

The corresponding Cartesian coordinates are x = 12.3 and y = 3.7 if the 
group averages are set to X A  = -15.21/2 and XB = +15.21/2, and Y A  = 
Y B  = 0. 
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8. 
Relative contributions from 
Dimensions 1 ... 15 

A .  

Figure 4.20. Euclidean distances of the 14 samples from their group means; the individual 
points can be clearly assigned to either the left (white) or the right (black) group by testing 
against the dashed separation line. The double bars at the top give the group means and SDs 
relative to the baseline b separating the group centers. The Euclidean distances were ordered 
in cumulative fashion in the middle panel and distinguished as being either near or far group. 
The separation is indisputable (zero distance at left, maximal distance at right; the colors black 
and white do not pertain to groups A and B ! )  The bottom panel gives the relative contributions 
of dimensions 1 (left) . . . 15 (right) towards b2; the horizontal bars represent the averages, and 
the squares give the spread for the individual points. 

This illustrative technique suffers from a lack of a statistically objective 
measure of probability. The comparison is done visually by judging the dis- 
tance of the center of a group of seven points from the center line and taking 
into account the diameter of a group of points, or by using the middle panel in 
Fig. 4.20 or the lines marked with an asterisk and a double asterisk in Table 
4.16, and looking for an overlap in near- and far-group Euclidean distances 
in less than, say, one sample out of 10 (the smallest far-group ED = 11.7, the 
largest near-group ED = 6.9, so there is no overlap in this particular case). 

Interpretation Using Euclidean distances, the difference between the ven- 
dor’s samples shows up nicely. (See data file SIEVEl.dat; if some samples 
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of groups A and B had been similar, an overlapping of the two distributions 
would have been seen.) 

Instead of comparing each sample against the group averages, long-term- 
averages or even theoretical distributions could have been employed. Pro- 
gram EUCLID provides additional information: The %-contribution of each 
bin to the total Euclidean distance for both the group averages (horizon- 
tal lines) and the individual samples (squares). These eight dimensions that 
show both the lowest contributions and the smallest variability are natural 
candidates for elimination if the number of dimensions is to be reduced. This 
can be tested by deleting the last eight rows from SIEVE1 .dat (available as 
SIEVE2.dat) and reanalyzing. 

In this particular example, the individual bins all carry the same dimension 
and are mutually coupled through the conditions C(bin contents) = 100%. If 
unrelated properties were to be used in a comparison, of all the employed 
results must be numerically similar if each property is to contribute to the 
Euclidean distance in a roughly comparable manner. As an illustration, cal- 
culations involving group means of, say, 8.3 area-%, 550 ppm, and 0.714 
AU would yield wholly different s than if 0.083, 0.052%, and 714 mAU 
had been used. For this reason, unrelated vectors are first normalized so that 
the overall mean over groups A and B is 1.00 for each bin. An example is 
provided in data file EUCLID.dat, where two groups of data ( n ~  = 6, n g  

= 5 )  are only marginally different in each of eight dimensions, but can be 
almost perfectly separated visually. Normalization is achieved by using pro- 
gram DATA, option (Modify). 

4.13 CONTROLLING CYANIDE 

Situation and Criteria A method was to be developed to determine trace 
amounts of cyanide (CN-) in waste water. The nature of the task means 
precision is not so much of an issue as are the limits of detection and quan- 
titation (LOD, LOQ), and flexibility and ease of use. The responsible chemist 
expected cyanide levels below 2 ppm. 

Experimental A photometric method was found in the literature which 
seemed to suit the particular circumstances. Two cyanide stock solutions 
were prepared, and an electromechanical dispenser was used to precisely 
prepare solutions of 20, 40, . .. , 240 respectively 10, 30, 50, . . . , 250 
pg CN-/100 ml. 10 ml of each calibration solution were added to 90 ml 
of the color-forming reagent solution and the absorbance was measured 
using 1-cm cuvettes. (See Table 4.17 (left and middle panels) and data file 
CYANIDE.dat.) 
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Table 4.17. Absorption Measurements on Cyanide Calibration Solutions 

No. Conc. Absorb. No. Conc. Absorb. No. Conc. Absorb.** 

1 0 0.000 
2 10 0.049 
3 30 0.153 
4 S O  0.258 
5 70 0.356 
6 90 0.460 
7 110 0.561 
8 130 0.671 
9 150 0.761 

10 170 0.863 
11 190 0.956 
12 210 1.053 
13 230 1.158 
14 250 1.245 

15 0 
16 20 
11 40 
18 60 
19 80 
20 100 
21 120 
22 140 
23 160 
24 180 
25 200 
26 220 
21 240 

0.000 28 0 0.0000 
0.099 29 2 0.0095 
0.203 30 4 0.0 196 
0.310 31 6 0.0298 
0.406 32 8 0.0402 
0.504 33 10 0.0501 
0.609 
0.708 
0.803 
0.904 
0.997 
1.102 
1.186 

0.00501 +1 .O% 0.00497 + I  .O% 0.00504 +1.7% slope b 
0.00588 +123% 0.00611 rt113% -0.00033 +160% intercept a 

f0.0068 rf-0.0060 *0.00027 res. std. dev. sres 
0.9997 0.9998 0.9998 coeff. determ. r2 

14 13 6 n 
1.4 1.4 0.1 LOD pg/lOO ml 
3.0 3.0 0.2 LOQ pg/100 ml 

Legend: No: number of measurement, Conc: concentration in f ig CN-/100 ml; Absorb: absorbance [AU]; 
slope: slope of regression line k t . C V  intercept: see slope; res. std. dev.: residual standard deviation .sres: 
n: number of points in regression; LOD: limit of detection; LOQ: limit of quantitation; **: measurements 
using a ?-fold higher sample amount and 5-cm cuvettes-i.e., measured absorption 0 . .  . 0.501 was divided 
by 10. 

Data Analysis The results were plotted; at first glance a linear regression 
of absorbance versus concentration appeared appropriate. The two dilution 
series individually yielded the figures of merit given in Table 4.17, bottom. 
The two regression lines are indistinguishable, have tightly defined slopes, 

Table 4.18. Regression Coefficients for Linear and Quadratic 
Model 

Linear Quadratic Item 

0.005843 -0.0021 25 Constant term 
0.004990 +0.005211 Linear term 

k6.6 mAU f4.5 mAU Res. std. dev. 
-0.0000009126 Quadratic term 
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Figure 4.21. Residuals for linear (left) and quadratic (right) regressions; the ordinates are 
scaled k20 mAU. Note the increase in variance toward higher concentrations (heteroscedacity). 
The gray line was plotted as the difference between the quadratic and the linear regression 
curves. Concentration scale: G25 pg/ml, final dilution. 

and pass through the origin. The two data sets are thus merged and reana- 
lyzed. (See Table 4.18, left column.) This rosy picture dissolves when the 
residuals (Fig. 4.21) are inspected: The residuals No. 8 (1.3 pg/ml) and 27 
(2.4 pg/ml) are far from the linear regression line. The question immediately 
arises, “are these points outliers?” One could then drop one or both points 
from the list, repeat the regression analysis, and determine whether (a) the 
residual standard deviation had become smaller, and (b) whether these points 
were still outside the CL( y). On the other hand, the residuals in the middle of 
the concentration range are positive, those at the ends negative; this, together 
with the fact that a photometer is being used, should draw attention to the 
hypothesis H I  : “curved calibration function.” (Note to the nonchemist: Stray 
light in the photometer dominates at high absorbances, which contributes to 
lower slopes at high concentrations. The chemical work-up can also produce 
lower yields of the chromophore, the light-absorbing part of the molecule, at 
higher concentrations). The curvature is quite evident (cf. Fig. 4.2 l), which 
makes H I  all the more probable. A quadratic regression is applied to the 
merged data set and the residuals are again plotted. The quadratic regression 
Y = a + b . x + c . x 2  is a straightforward extension of the linear regression 
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con~ep t ,6~ . ' ' ~  with programs available at all computing centers, for PCs, and 
even for some hand-held computers. (See Table 4.18, right column.) 

Example 46: There seems to be a clear reduction in the residual standard 
deviation, and the F-test supports this notion: F = (6.6/4.5)2 = 2.15, with F(26, 
26, 0.05) = 1.93. Point No. 8 (see Fig. 4.21) is now only 0.011 AU above the 
parabola, which means it is barely outside the k2 . s,, band; all other resid- 
uals are smaller. From the practical point of view there is little incentive for 
further improvement: the residual standard deviation k4.5 mAU is now only 
about twice the experimental standard deviation (repeatability), which is not 
all that bad when one considers that two dilutions and a derivatization step 
are involved. The scatter appears to increase towards higher concentrations: 
Indeed, this may be so, but to underpin the case statistically one would have 
to run at least eight repeats at a low and another eight at a high concentration 

then the experimental plan would call for nhlgh = nlOw 2 18. 
if Shlgh 2 ' Slow, because FCnt(7, 7,0.05) 3.8. Should shlgh Only be 1.5 . Slow, 

Decisions Because quadratic regressions are more difficult to handle and 
the individual coefficients of a three-parameter model are less well defined 
than those of a two-parameter one in the case of weak curvature, any gain 
from using a polynomial of higher order might well be lost through error 
propagation. The definite course of action was to accurately calibrate a part of 
the given concentration interval and to either dilute samples to fit the range, 
or then to use thicker (5 cm) cuvettes to gain sensitivity. In case this strategy 
should not work, it was decided to also calibrate the 0-10 pg/lOO ml region 
(calibration points #28-33; for results, see Table 4.17. This regression line is 
indistinguishable from the other two as far as the coefficients are concerned, 
but the LOD and LOQ are much lower). The overall operating range thus 
covers 2 ppb (20 ml sample amount, 5 cm cuvette) to over 200 ppm (0.1 ml 
sample amount, 1 cm cuvette) CN- in the sample, a factor of 1 : lo5, which 
is very large. In a screening run the sample is diluted according to a standard 
plan trimmed for speed and ease, and depending on this preliminary result, 
the sample is only then precisely diluted if there is impending danger of 
getting high cyanide levels that would require further treatment of the waste 
water. A simple linear regression is used for the approximately linear portion 
of the calibration function. Another course of action would be to improve the 
chemical work-up and the instrumental measurement procedures to obtain a 
linear calibration to higher concentrations. The profit/loss analysis of further 
method development versus occasional repetition of a dilution would have 
to be investigated. If a programmable sample carousel/diluter/UV-configu- 
ration were used, this repetition could be enacted automatically if an alarm 
limit is exceeded in the first measurement. 
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Since this situation does not impinge on pharmaceutical but on environ- 
mental quality, and perhaps worker safety, other guidelines apply (in the U.S. 
those of the EPA and/or the OSHA). It might come as a surprise to the sci- 
entist that government bureaucracies have the luxury of enacting disparate 
standards and technology, from sampling to specifications, for one and the 
same thing, as in the case of the FDA for innovator (brand name) and imi- 
tator (generic) products. 

4.14 AMBIGUOUS AUTOMATION 

A pharmaceutical specialty is produced in three dosage strengths (major 
component A); “A” and a second component “B’ are controlled by HPLC for 
batch release purposes. It is decided to replace the manual injection of the 
sample solution by an automatic one. It is expected the means will remain 
the same but the standard deviations will be smaller for the automatic injec- 
tion. Cross-validation of the methods is effected by running both methods 
on each of 10 samples. The mean and the standard deviation for each series 
of 10 measurements is given in Table 4.19. 

Table 4.19. Cross-Validation Resultsa 

Manual Automatic 
Injection Injection 

Low Med High Low Med High 

Mean: 
A 
B 

A 
B 

A 
B 

k Absolute 
k Res. S.D./B [%] 

Standard Deviation (k): 

cv (*%): 

Residual Std. Dev. (of B): 

497 750 992 493 753 
360 359 357 361 356 

5.88 5.51 14.6 14.2 11.1 
7.33 5.51 6.36 5.39 7.32 

1.18 0.73 1.47 2.87 1.47 
2.04 1.54 1.78 1.49 2.06 

7.03 4.22 5.66 5.56 4.46 
1.95 1.17 1.59 1.54 1.25 

1010 
355 

23.8 
8.23 

2.36 
2.32 

2.68 
0.75 

aThe best residual SD for the calibration measurements is an indicator of repeatibility (i.e., 
M.75%); the rest of the overall spread of the results (e.g. +2.32%) is due to manufacturing 
variability. Improvements due to automation are underscored, e.g., 1.59 -+ 0.75 
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Example 47: Observations and first interpretation: 

1. It appears that automatic injection actually worsens precision (k5.88 - f14.2, etc.). The relative standard deviation suffers, too: 
k1.18 4 f2.87, etc.; the new variance component corresponds to 
d2.872 - 1.1g2 = f2.6 (2.6, 1.3, and 1.8 for component “A,” 0, 1.4, 
and 1.5 for component “B”). 

2. The residual SD decreased markedly in three cases (7.03 - 5.56, 
5.66 4 2.68, 1.59 4 0.75), remained about the same in the other 
cases; this shows that automation had the desired effect, only it was 
overshadowed by the earlier point 1.  The average decrease in V,,, is 
42%. 

Observation 1 is an illusion due to the fact that the above numbers measure 
the overall spread in one dimension (vertical or horizontal), and do not take 
into account the correlation between the results A and B that is very much 
in evidence in the right side of Fig. 4.22 (automatic injection), also see Fig. 
1.23. The variability can be measured in five different ways (see Table 4.20): 

Calculations 1 and 3 are naive because they ignore the correlation, cf. 
left side of Fig. 1.23. 
Calculations 2 and 4 each assume that one component’s error completely 
dominates the other’s (see Section 2.2. l), which is improbable given 
the fact that both A and B were measured under identical conditions 
and the signal ratios are in the range 1.4 . . . 2.8. If some assumptions 
were made concerning the relative contributions of measurement errors 
s, and sy, the numbers could be sorted out (last paragraph in Section 
2.2.10), but the burden of this additional assumption is not worth the 
trouble considering that the volume error measured under 5) is much 
bigger. 
Calculation 5 measures the SD of the Euclidean distance 
d(xi  -- x,,,,)~ + ( y i  - ymPan)2, and is interpreted as the uncertainty 
associated with the injection volume and the proportionality constant 
k I 1.0 (bubbles in the injection loop can only decrease the effectively 
injected amounts A’, B’ relative to the nominal ones A,  B )  so that A’ = k 
. A resp B’ = k . B,  with k taking on a different value for each injection. 
An internal standard would serve to correct k to 1.00. 

From the preceding discussion, it can be gathered that the automatic injec- 
tion should eventually lead to more reproducible results (the residual stan- 
dard deviation decreases by about 20%), but only if the spread along the 



M
an

ua
l 

B
 [P

SI
 

ln
je

ct
io

i 
39
0 

38
0 

37
0 

36
0 

35
0 

~ - ~ - 

r
i

 
r 

.. 
.. .. 

1
 

L 

i
r

 ..
 

'. 

J
L

 

40
0 

50
0 

60
0 

70
0 

80
0 

90
0 

10
00
 

1
1
0
0
 

A
 [

PS
I 

A
ut

om
at

ic
 

B
 [P

SI
 

ln
je

ct
io

i 
39
0 

I 

38
0 

37
0 

36
0 

35
0 

34
0 

33
0 

32
0 

- 

L
 

i
 

J 

40
0 

50
0 

60
0 

70
0 

80
0 

go
o 

10
00
 

11
00

 

A
 [

PS
I 

F
ig

ur
e 

4.
22

. C
or

re
la

tio
n 

of
 a

ss
ay

 v
al

ue
s 

fo
r 

co
m

po
ne

nt
s 

A
 a

nd
 B

, f
or

 t
hr

ee
 d

os
ag

e 
le

ve
ls

 o
f 

A
, w

ith
 1

0 
sa

m
pl

es
 p

er
 g

ro
up

. 
T

he
 

co
m

er
 s

ym
bo

ls
 i

nd
ic

at
e 

th
e 

?
 10

%
 s

pe
ci

fi
ca

tio
n 

lim
its

 f
or

 e
ac

h 
co

m
po

ne
nt

. 
Fo

r 
m

an
ua

l 
in

je
ct

io
n 

(l
ef

t 
pa

ne
l)

 o
nl

y 
re

la
tiv

e 
st

an
- 

da
rd

 d
ev

ia
tio

ns
 o

f 
1-

2%
 

ar
e 

fo
un

d,
 b

ut
 n

o 
co

rr
el

at
io

n.
 A

ut
om

at
ic

 i
nj

ec
tio

n 
(r

ig
ht

 p
an

el
) 

ha
s 

a 
lo

w
er

 i
nt

ri
ns

ic
 r

el
at

iv
e 

st
an

da
rd

 
de

vi
at

io
n,

 b
ut

 t
he

 d
at

a 
ar

e 
sm

ea
re

d 
ou

t 
al

on
g 

th
e 

pr
op

or
tio

na
lit

y 
lin

e 
be

ca
us

e 
no

 i
nt

er
na

l 
st

an
da

rd
 w

as
 u

se
d 

to
 c

or
re

ct
 f

or
 v

ar
ia

- 
bi

lit
y 

of
 t

he
 in

je
ct

ed
 v

ol
um

e.
 T

he
 p

ro
po

rt
io

na
lit

y 
lin

e 
do

es
 n

ot
 g

o 
th

ro
ug

h 
th

e 
co

rn
er

s 
of

 t
he

 s
pe

ci
fi

ca
tio

n 
bo

x 
be

ca
us

e 
co

m
po

ne
nt

 
B

 i
s 

ei
th

er
 s

om
ew

ha
t 

ov
er

do
se

d 
(2

.4
%

),
 a

na
ly

tic
al

 b
ia

s,
 o

r 
be

ca
us

e 
an

 i
nt

er
fe

re
nc

e 
re

su
lts

 i
n 

to
o 

hi
gh

 a
re

a 
re

ad
in

gs
 f

or
 B

. 
T

he
 

no
m

in
al

 v
al

ue
s 

ar
e 

A
l=

 5
00

, A
, 

=
 7

50
, A

, 
=

 1
00

0,
 a

nd
 B

 =
 3

50
, s

ee
 d

ot
te

d 
lin

es
. T

he
 R

SD
 is

 c
al

cu
la

te
d 

ac
co

rd
in

g 
to

 E
q.

 (2
.1

 3)
. 



228 COMPLEX EXAMPLES 

Table 4.20. Measures of Variability 

Direction Metric Reference Assumptions 

1 vertically Sy, total Ymean sy >> s,, no correlation 
2 vertically sy,res regression line sy >> s, 
3 horizontally sx, total Xmean s, >> sy, no correlation 
4 horizontally s , , ~ ~ ~  regression line s, >> sy 
5 along the diagonal S k  coordinate sx s y  << sinjection 

xmeanlyrnean 

regression line could be reduced. How repeatable could the results poten- 
tially be? The residual standard deviation is only f0.75% to f1.54% relative 
to the mean value B. The additional analytical variability is estimated as 
shown in Table 4.21. 

of the B variance is due to this lack of 
control; it might thus be possible to achieve a repeatability of +1% on both 
components. The fact that the potential precision (max f 1.2%, with IS) for 
the automatic injection is hardly smaller than that achieved manually without 
the benefit of an internal standard (geom. average of 2.04 . . . 1.78 -- f 1.8%) 
shows that skillful work was being done. The question is now why in the 
case of the manual injection, which shows little or no correlation between 
A and B,  repeatabilities of no less than k1.5 ~ 1.8% are observed. There is 
an explanation: The automatic injector is more reproducible in terms of the 
time necessary to turn the valve; this means that the injected volume is less 
smeared out in time and yields a better integrable peak form (cf. Section 
3.3), a notion confirmed by the actual chromatograms. The interpretation for 
the medium and low dosage forms is essentially the same. Note that at high 
levels of component A the repeatability (standard deviation) for A sharply 

This means that something like 

Table 4.21. Potential Precision 

Average Range 
(Manual + Automatic) (Manual/Automatic) 

J 1  .9S2 - 1 .S42 = k1.2 
(1.2/1.95)2 = 0.38 
f1.54 . 2/1-038 = f1.2 

(k1.0.. . f 1.4) 
(0.38 . . . 0.78) 
(f1.2 . . . fo.4) 

Excess variance 
Contribution to variance 
Potential precision of assay for 

component B if the internal 
standard helps to eliminate 
the variance associated with 
the effectively injected volume 
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rises (kll . l  + k23.8), but not so for B; the reason is related to saturation 
effects in the HPLC column. This could be avoided by injecting two separate 
sample dilutions, one optimized for the reproducibility of the A peak, the 
other for the B peak. 

The moral of the story: The satisfaction of having all points inside the 
specification limits should not induce inaction. An internal standard was 
thereupon added to the procedure, and promptly, the dispersion along the 
diagonal in Fig. 4.22 (right) was eliminated. 

4.15 MISTRUSTED METHOD 

An in-process control (IPC) of a bulk chemical was augmented by a heavy- 
metals test because trace quantities of a catalyst were suspected to have a 
deleterious effect on the following synthesis step. Since the identity of the 
metal was known, a simple precipitation as the sulfide was deemed to give 
sufficiently accurate answers in a very short time (proviso: no other heavy 
metal present). A test along the lines of the official pharmacopoeia1 Heavy 
Metals Method (USP (231), Method is conducted wherein a reference 
solution containing 20 pprn of the metal chloride is treated in parallel to the 
sample, and the intensities of the coloration of the suspensions are compared 
3-5 minutes after mixing (the finely divided suspension later coalesces and 
precipitates out of solution). Concentrations much higher than 20 ppm would 
be accommodated by further dilution of the sample. The relative confidence 
interval is judged to be around +25%. 

The four batches in question were found to contain about 20, 40, 20, 
respectively 90 ppm (cf. Fig. 4.23). 

The Production Department was not amused, because lower values had 
been expected. Quality Control was blamed for using an insensitive, unse- 
lective, and imprecise test, and thereby unnecessarily frightening top man- 
agement. This outcome had been anticipated, and a better method, namely 
polarography, was already being set up. The same samples were run, this 
time in duplicate, with much the same results. A relative confidence interval 
of +25% was assumed. Because of increased specificity, there were now less 
doubts as to the amounts of this particular heavy metal that were actually 
present. To rule out artifacts, the four samples were sent to outside laborato- 
ries to do repeat tests with different methods: X-ray fluorescence (XRFlso) 
and inductively coupled plasma spectrometry (ICP). The confidence limits 
were determined to be k10% resp. 53%. Figure 4.23 summarizes the results. 
Because each method has its own specificity pattern, and is subject to intrin- 
sic artifacts, a direct statistical comparison cannot be performed without first 
correcting the “apparent concentrations’’ in order to obtain “presumably true 
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Figure 4.23. Comparison of results on four batches using four different methods. The results 
are grouped according to batch, and within a group, the methods are sulfide precipitation, 
polarography, X-ray fluorescence, and inductively coupled plasma absorption (left to right). 

concentrations.” Visually, it is quite evident, though, that all methods arrive 
at about the same concentrations of catalyst traces, roughly 20,40,20, and 90 
ppm. For all practical purposes, the case could be closed. QC patted its own 
back, secretly acknowledged its streak of luck, and vowed never again to let 
itself be pressured into revealing sensitive results before a double-check had 
been run. 

4.16 QUIRKS OF QUANTITATION 

Situation Suppose a (monovalent) ionic species is to be measured in an 
aqueous matrix containing modifiers; direct calibration with pure solutions 
of the ion (say, as its chloride salt) are viewed with suspicion because 
modifier/ion complexation and modifier/electrode interactions are a definite 
possibility. The analyst therefore opts for a standard addition technique using 
an ion-selective electrode. He intends to run a simulation to get a feeling for 
the numbers and interactions to expect. The following assumptions are made: 
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Assumptions 

The electrode shows linear behavior in the immediate vicinity of the 

The sample has a concentration of about C = 0.5 mM. 
The term EO remains constant over the necessary two measurements (a 
few minutes at most). 
The signal before digitization is sufficiently low-pass filtered so that 
noise is below 1 mV at the digital volt meter (DVM). 
50.0 ml of the sample solution will be provided. Standard additions will 
be carried out using a 10 mM solution of the ion. The amount to be 
added was, by rule of thumb, set to roughly double the concentration, 
for AEMF = 20 mV, a difference that can be accurately defined. 

worlung point on the calibration curve EMF = EO + S . loglo(C). 

Note that a number of complicating factors have been left out for clarity: 
For instance, in the EMF equation, activities instead of concentrations should 
be used. Activities are related to concentrations by a multiplicative activity 
coefficient that itself is sensitive to the concentrations of all ions in the solu- 
tion. The reference electrode necessary to close the circuit also generates a 
(diffusion) potential that is a complex function of activities and ion mobili- 
ties. Furthermore, the slope S of the electrode function is an experimentally 
determined parameter subject to error. The essential point, though, is that 
the DVM-clipped voltages appear in the exponent and that cheap equipment 
extracts a heavy price in terms of accuracy and precision (viz. quantization 
noise;95 such an instrument typically displays the result in a “1 mV,” “0.1 
mV,” “0.01 mV,” or “0.001 mV” format; a two-decimal instrument clips a 
345.678 . . . mV result to “345.67 mV,” that is it does not round up “. . . 78” 
to “. . . 8”). 

The questions to be answered are the following: 

1. How much 10 mM solution must be added to get reliable results? What 
concentration difference must be achieved to get sufficient differences 
in signal and burette readings? 

2. How accurately must this volume be added? 
3. How accurately must this volume be read off the burette? 
4. Must a volume correction be incorporated? 
5. Is any other part of the instrumentation critical? 

A simulation program is written that varies the amount added over a small 
interval around the nominal 2.5 ml and does each of the following: 
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1. Clips the simulated EMFs El  and E2 to 1.0, 0.1, 0.01, resp. 0.001 mV 

2. Varies the last digits of EO to evade artifacts (cf. Ref. 16). 

3. Simulates an incorrect reading of the burette. 

4. Allows for a volume correction. 

resolution to emulate the digital voltmeter in the pH/Ion-meter. 

First, a number of calculations are run without the above four features (*) in 
place (program lines 40, 110-130) to verify the rest of the program. Next, 
each of the features is introduced individually to capture effects, if any. 

Note: In newer versions of BASIC, line numbers are no longer needed. 
Compare this BASIC code to Excel file ELECTRODE.xls to gain a feeling 
for the difference in approach necessary to obtain the same result on software 
platforms geared towards efficient and flexible programming, respectively 
user convenience. 

Answers Concerning the questions posed above, the second one is easily 
answered by adding to or subtracting from V2 small volumetric errors in line 
130. For the bias to remain below about 1%, the volume error must remain 
below 0.03 ml. 

Table 4.22. BASIC Program for Evaluation of ISE Response 

Program Definition of Parameters 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
I30 
140 
150 
160 
170 
180 

v1 = 50 
c1 5E 4 
c 2  = 0.01 
EO = 300 + RND 
s 59 
K = 0 1  
FOR V2 = 2.4 TO 2.55 STEP 0.01 

El ~ E0 + S*LGT(Ct) 

E3 = R*INT(EI/R) 
E4 = R*INT(E2/R) 
v3 = v2 + 0.2 
Q = lO"((E4 ~ E 3 ) / S )  
X = C2*V3/((Vl + V3)*Q - V1) 

* 

c = (Vl*Cl + V2*C2)/(Vl + V2) 

E2 = EO + S*LGT(C) * 

* 

PRINT RESULT and PARAMETERS 
NEXT V2 
END 

Sample volume 
Estimated sample concentration 
Concentration of added stock soln. 
Intercept 
Slope in mV/decade 
DVM resolution in mV 
Added volume is varied 
Dilution factor 
Calculation of reference EMF 
Calculation of new EMF 
Clipping to emulate DVM 
Action on El, E2 
Simulate incorrect reading of V2 
Estimate concentration 

A series of appropriate statements 

"I, V2. V3: volumes; C1, C 2 ,  C: concentrations; EO, E l ,  E2: EMFs (voltages). 
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Figure 4.24. Estimated concentration of ion using the standard addition technique with an 
ion-selective electrode. The simulated signal traces are for DVM resolutions of 1, 0.1, 0.01, 
resp. 0.001 mV (left to right). For each resolution the added volume V2 is varied from 2.4 
to 2.55 ml in increments of V2 = 10 pl. The ordinate marks indicate the 95-105% SLs. The 
expanded traces for 0.1 . . . 0.001 mV resolution are also given. The simulation was run for 
five different values of EO = 300 + RND [mV]. The vertical drops (e.g., A --t B) occur at 
unpredictable values of V2: AV = 10 wl would in this case entail an “inexplicable” AC/Cnom 
of nearly 8%! The traces do not reach the 100% level because a 50 pl error in reading off the 
dispenser or burette was assumed. 

The first question is answered by noting that the exact volume V2 to be 
added is not critical as long as the DVM has “good” resolution (0.01 mV or 
better) and the volume is “correctly” read off (to 10 pl, or better). The volume 
V2 is thus set to 2-3 ml to retain sensitivity. Assume now that the instructions 
to the technician as far as instrumentation is concerned are ambiguous; that 
low-cost DVM in the corner and a plain graduated glass pipette are thought 
to do, and, upon repetition, some inconsistent results are obtained. Closer 
inspection using simulation reveals, however, that there is a systematic pat- 
tern (correlation) between volume added and estimate X (Fig. 4.24), largely 
because the least xignificant digit LSD of this low-resolution instrument cor- 
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Table 4.23. Simulation of ISE Response 

Numerical Results 

EO = 300 (mV) EO = 300 + RND (mV) 

Other Res(DVM) Res(DVM) Res(DVM) Res(DVM) 
Conditions 0.001 mV 0.1 mV 0.001 mV 0.1 mV 

v3 = v2 0.00 f 0.00 0.08 k 0.10 0.00 k 0.00 -0.03 k 0.25 
v3 = v 2  + 0.2 7.19 k 0.00 7.27 k 0.12 7.18 k 0.00 7.21 k 0.25 
v3 = v2 + 0.05 1.81 k 0.00 1.89 f 0.00 1.81 f 0.03 1.80 k 0.23 
v3 = v2 + 0.01 0.37 f 0.19 0.44 f 0.00 0.36 k 0.17 0.36 f 0.25 
V2 = 2 + RND and 0.00 k 0.09 0.08 f 0.24 0.00 rL. 0.00 -0.04 f 0.31 
v3 = v2 

Mean and standard deviations, in % of the nominal concentration, found for simulations under 
various combinations of (a) random variation of EO, (b) volumetric (reading) error in V2, and 
(c) use of a pH/lon-meter with a resolution of 0.1 or 0.001 mV. For the last line the exact 
volume V2 added was varied in the range 2 . .  . 3  ml to simulate actual working conditions, and 
100 repetitions were run. 

responds to the 1 mV position. This is checked by varying V2 over a small 
interval, here from 2.40 to 2.55 ml in steps of 10 pl, a feat that is within the 
capabilities of a moderately-priced dosimeter. The effect is due to the fact 
that the volume correction monotonously changes, while the clipped EMFs 
E3 and E4 are step-functions; the interaction is commonly called a “quan- 
tization” effect or noise.I6 The improvement in resolution from a 0.1 to a 
0.01 mV DVM is very striking in this case, which answers question 5. 

A volume correction is necessary, as can be seen from a numerical exper- 
iment similar to the preceding one: If the increase in volume from V1 to V1 
+ V2 is ignored, a bias of about 7% is produced. 

Finally, the calculations are repeated 100 times (with variation of EO to 
simulate EO-jitter within the resolution window) to obtain statistically reli- 
able means and standard deviations for the diverse combinations of factors 
(Table 4.23). 

Excel file ELECTRODE.xls generates output similar to that of Fig. 4.24, 
with the following parameters to play with: Vl ,  C1, C2, EO, S, R, step size 
AV2, and volume bias V3 - V2; the randomization of EO, the volume cor- 
rection +V2 in (Vl + V2) in line 80, and the digitization of the EMFs in lines 
110 and 120 can be activated. 

Wurning: One should realize that a dishonest analyst can willingly shift 
the result within a range of several percent of the true value, which would 
certainly suffice to make a slightly out-of-specification product suddenly 
“conform” to these limits. This could be accomplished with the following 
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instrument configuration: A burette for delivering V2, a 0.1 or 1-mV-resolu- 
tion of pH-meter, and a computer that immediately translates the actual V2, 
E3, E4, S, and C2 into X ,  and displays X .  The analyst would simply have to 
stop the burette at the right moment to obtain highly “accurate” and “repro- 
ducible” results. If the method development had been properly done, how- 
ever, then the work instructions (“SOPS” in GMP-parlance) would nail down 
the exact pieces of equipment to be used (“Model XYZ or equivalent”), and 
the method validation would have specifically tested for ruggedness against 
such 

1. 

2. 

operator-influenced variables as the titration volume. 

Consequences 

A pH/Ion-meter with a resolution of only 0.1 mV is not sufficient 
because the ensuing quantization noise introduces an apparent devi- 
ation of at least -t0.2%, and, more important in this particular case, 
these systematic effects lead to a bias that is strongly dependent on 
small shifts in EO. (See Fig. 4.24, left side.) 
An electromechanical burette should be used that delivers volumes V2 
with an accuracy of about 0.05 ml, or better. 

The preceding simulation can be varied within a reasonable parameter space; 
the critical experimental conditions should be noted, and appropriate exper- 
iments made to confirm the model. 

4.17 PURSUING PROPAGATING ERRORS 

The salt of a carbonic acid A is contaminated by traces of water and a second 
organic acid B.  The content of the three components is determined as in Table 
4.24. 

The number of replicate determinations and the typical relative standard 
deviations are noted, along with the average analytical response. Note that 
X is given in [%I! How pure is A? The answer is found as follows: 

Table 4.24. Results of an Acid Analysis 
~ ~ 

Component Method Amount Rep1 RSD 

X Water Karl Fischer 0.85% 3 3.5% 
Y Acid B Ion Chromatography 0.1946 mM/g 5 5.0% 
z SumA+B Ti tration 7.522 mM/g 4 0.2% 
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1. Subtract B from the sum, and 

2. Correct the difference for the water content of the sample, Eqs. 
(4.7)-(4.9). 

3 .  Invoke error propagation by differentiating the expression for A with 
respect to X ,  Y,  and Z. [See Eqs. (4.10)-(4.12).] 

4. Sum over the squares of the products of the partial differentials and 
their respective typical errors. [See Eqs. (4.13)-(4. IS).] 

5.  The typical error is here defined as a confidence limit. [See Eqs. 
(4.16)-(4.19).] 

6. The confidence limits of this result are estimated to be J.0.028. [See 
Eqs. (4.2 1)-(4.26) .] 

A’ = (2 - Y) / (1  - X/100) (4.7) 

= (7.522 - 0.1946)/(1 - 0.85/100) (4.8) 

= 7.3902 mM/g (4.9) 

6A/6X = (2 - Y )  . (-1/100)/(1 - X/100)’ (4.10) 

6A/6Y = (- 1)/(1 - X/100) 

6A/6Z = (1)/( 1 - X/100) 

(4.1 1) 

(4.12) 

AA’ = ( (Z  - Y )  . (1/100)/(1 - X/100)2)2 . AX2 (4.13) 

(4.14) 

(4.15) 

+ 1/(1 - X/100)2 . A Y 2  

+ 1/(1 - X/lOO)’ . AZ2 

TE = &MEAN . RSD . t-factor/& (4.16) 

AX : J.0.8500 .0.035 .4.3027/& = f0.0739% (4.17) 

AY = f0.1946 . 0.050 . 2.7764/&= k0.0121 mM/g 

A 2  = f7.5220 . 0.002 . 3.1824/& = k0.0239 mM/g 

(4.18) 

(4.19) 
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AA2 = 0.07392 . ((7.522 - 0.1946) . (l/lOO)/(l - 0.85/100)2)2 (4.20) 

+ 0.01212/(1 - 0.85/100)2 (4.21) 

+ 0.02392/(1 - 0.85/100)2 (4.22) 

(4.23) = 0.000030 + 0.000148 + 0.000583 

( 4% + 19% + 77% ) (4.24) 

(+0.028)2 (4.25) 

AA = f0.028 (4.26) 

Example 48: The result is thus CL(A) = 7.390 f 0.028 mM/g, and should 
be either left as given or rounded to one significant digit in $1: 7.39 f 0.03: 
The %-variance contributions are given in parentheses (Eq. (4.24)). Note 
that the analytical method with the best precision (titrimetry), because of the 
particular numerical constellation, here gives rise to the largest contribution 
(77%). 

4.18 CONTENT UNIFORMITY 

Introduction 
requirements apply: 

In order to assure constant tablet quality, the following 

Out of 20 tablets randomly pulled, one or two may deviate from the 
mean weight by more than 5%, and none may deviate more than 10%. 
The mean weight must be in the 95-105% range of nominal. Note: 
Because with today’s equipment and procedures the drug is generally 
very well dispersed in the granulate, especially if the drug content is 
high, the weight can be used as indicator. Nevertheless, the content uni- 
formity will be determined via assays, at least during the R&D phase, 
in order to validate the procedure. 

The assay is conducted on 10 randomly pulled tablets. Nine out of the 
ten assay results must be within 855115% of the mean, and none may 
be outside the 75-125% range. (See Section (905) of the USP3.) The 
mean content must be within the window given shortly. 

The coefficient of variation must be 6% or less. This figure includes 
both the sampling and the analytical variance. 
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Note on GMPs: The assays are conducted on individual dosage units 
(here: tablets) and not on composite samples. The CU test serves to limit 
the variability from one dosage unit to the next (the Dissolution Rate test is 
the other test that is commonly used). Under this premise, outlier tests would 
be scientific nonsense, because precisely these “outliers” contain information 
on the width of the distribution that one is looking for. The U.S. vs. Barr 
Laboratories Decisio@ makes it illegal to apply outlier tests in connection 
with CU and DR tests. This does not mean that the distribution and seem- 
ingly or truly atypical results should not be carefully investigated in order 
to improve the production process. 

Situation 

Example 49: A tablet weighing 340 mg, of which 50 mg are drug, is to be 
produced. It is known that the Content and Weight Uniformities, expressed 
as SDs, are f2.25 mg, respectively f6.15 mg. Since the weighing operation 
is very accurate and has an excellent repeatability in the 300 mg range (typi- 
cally ki LSD = f0.05 mg or k0.005 mg, that is a resolution of 1 : 6000 or 
even 1 :60000), the variability of the tablet weight must be wholly due to 
processing. The HPLC analysis is found to be fairly precise (-t0.5% or k1.7 
mg, double determination). 

Question How much may the mean content and weight deviate from the 
nominal values and still comply with the requirements? Two approaches will 
be taken: 

1. A purely statistical approach. 
2. A Monte Car10 simulation. 

Statistical Approach The minimal mean weight must be 

wmean 2 SLL + t . s, = 0.95 . 340 + 1.719 . 6.15 = 333.6 mg, which is 
98.1% of the nominal weight; t ( p  = O.l,f= 19) = 1.719. Obviously, the 
upper limit SL, would be calculated analogously. The effective mean 
must then remain in the 333.3-346.4 mg window. The minimal mean 
drug content is similarly found to be 
c,,, 2 SLL + t . s, = 0.85 . 50 + 1.833 . 2.25 = 46.6 mg, or 93.2% of 
nominal. From this it can be seen that there is some leeway in terms of 
required composition and homogeneity: The effective mean must remain 
in the 46.6-53.4 mg window; the sampling variance is approximately, 
~ 1 2 . 2 5 ~  ~ 1 .72 = f l . 5  mg. The true tablet composition could vary in the 
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approximate range drug content/total weight (47 : 346) to (53 : 334) and 
still comply. All the same, it is imprudent to purposely to stray from 
the nominal values SO : 340. 

Simulation Approach The numerical simulations were carried out using 
program SIMGAUSS, see data file TABLET-C.dat for content uniformity, 
respectively TABLET-W.dat for weight uniformity. The mean weights and 
contents were varied over a range covering the nominal values. 

In vectors (columns) 5 and 6 of file TABLET-C.dat, the results of n = 
10 tablets subjected to individual assay are simulated for p = 48 mg and 
u = k2.25 mg. The “observed” means are 47.53 and 48.87 mg (99, resp. 
102% of nominal), and the corresponding “observed” standard deviations 
are 21.71 and k1.84 mg (76, resp. 82% of nominal). All four values are 
within the expected confidence limits 48 k 2.262 . 2.25/& = 46.4 ’ . . 49.6 
mg respectively f1.7 . . . f3.3 mg (use program MSD and a n = 10 data 
file, option (Display Standard Deviation). Here, only two simulations were 
carried out for each p / u  combination; this is enough to make the point, but 
20+ runs would have to be carried out to obtain a representative result. The 
analysis of data file TABLET-W.dat is analogous. 

Example 50: Overall, using vectors 3 in the two data files TABLET-C.dat 
(x,,, = 47.5, s, = 1.6) and TABLET-W.dat (x,,,, = 334.0, s, = 5.6), the 
following conclusions can be drawn (results rounded): 

The mean content of the drug is 2.5 mg (5.1%) below nominal. 
The CV is +3.4%. Note: Had measurements similar to those in vector 4 
been made, the CV of f5.6% would have come close to the k6% limit 
stipulated by the USP 1985, which would have necessitated a retest. 
There are no individual values outside the 85-115% range that would 
signal retest and perhaps rejection. 
The mean tablet weight is 334 mg, or 6 mg (1.8%) below nominal. 
The standard deviation (weight) is f5.6 mg. 
There are no individual values farther than 12 mg (3.6%) from the mean 
weight. 
The (drug assay)/(tablet weight) ratio one should theoretically find 
is (50.00 If: 2.25)/(340.00 k 6.15) = 0.147 f 0.0071. Effectively, 
one finds (47.47 + 1.61)/(333.96 f 5.60) = 0.142 f 0.0054 (k3.8%). 
This is obtained by error propagation as (1.61/333.96)2 + (5.6 . 
47.47/333.962)2 = 0.00542. Since 80% of the variance is due to the first 
term, analytical and sampling errors dominate. The HPLC assa con- 
tributes f1.7 mg, so that the sampling error comes to - 1.612 - 1.72 



240 COMPLEX EXAMPLES 

= f 0  mg; mathematically, this is an impossible situation: A variance 
cannot be negative! The explanation is simple: First, the HPLC preci- 
sion (21.7 mg) is an estimate based on experience with the analytical 
method, and can most probably be traced to the validation report; it 
is to be expected that the analyst who wrote that report erred on the 
conservative side by rounding up all precision figures, so as not to fall 
into the trap of promising precision that could not be upheld in later 
experiments. Secondly, the t-1.61 mg figure originated from a different 
measurement run (a simulation in this case) with a much lower number 
of observations than went into the 21.7 mg figure. Under such circum- 
stances it is easily possible that the relative size of the two numbers is 
reversed. As an aside, the confidence intervals CI(a) expected for s, = 
+1.6/n = 10 and, say, s, = t-I .7/n’ = 50, would be 1.1-2.9 resp. 1.4-2.1, 
which clearly overlap; (use program MSD, data file TABLET-C.dat 
with n = 10, option (Display Standard Deviation), to first obtain CL,/s, 
= 5.26/2.88 = 1.83 and then 1.83 . 1.61 = 2.94, and so on . More 

mg. The two quotients 0.147 and 0.142 are indistinguishable; any sig- 
nificant difference would have implied inhomogeneity, or, in practical 
terms, segregation of drug from the matrix during processing. Note: 
When powders of unequal size-distribution, particulate shape, and/or 
density are well mixed, all it takes is machine vibration and the ever- 
present gravity to (partially) de-mix the components! This phenomenon 
is used in industrial processes to concentrate the commercially intersting 
component from available stock, but is a nuisance in a tableting opera- 
tion. 

realistically, the sampling error is estimated at + 2.252 ~ 1.72 = k1.5 

4.19 HOW FULL IS FULL? 

Applicable Regulations Assume that a cream is to be filled into a tube that 
has “20 g” printed on it. The lot size is 3000 units. The filling equipment’s 
repeatability is known to be = f0.75 g (+3.75%). Two somewhat simplified 
regulations will be investigated that epitomize the statistical and the minimal 
individual fill weight approaches: 

Example 51 

1 .  (European Union EU: test n = 50 units 

la. The mean fill weight must not be less that 20.0 g. The effectively 
found means must meet the requirement x,,,, 2 20.0 - 0.379 . s,. 
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The factor 0.379 corresponds to t/& for p = 0.005 (one-sided), n 1 
50, and f = 49. (See Eq. l.l2a).) 

lb. No more than two units may be below 91% of nominal. In the case a 
retest is necessary (three or four units failing this criterion), no more 
than six out of the cumulated 100 units may fail. 

lc. If five or more units (2 seven units in the retest case) fail the require- 
ment, the product may not carry the coveted “e” logo that signals 
“European Quality Standard.” 

2. (CH: Switzerland; no minimal sample number n) 
2a. The mean fill weight must not be less that 20.0 g. Up to 5% of the 

units filled may contain between 87.5 and 95% of the nominal fill 
weight. Units containing less than 87.5% of the nominal fill weight 
may not be marketed. Systematic bending of procedures to profit from 
these margins is forbidden. 

2b. Overfilling according to given equations becomes necessary if the 
experimental relative standard deviation (CV) exceeds +3% resp. 
3~4.5%. Since a filling error of s, = k0.75 g (+3.75%) is associated 
with the equipment in question, the regulations require a minimal 
mean fillweight of 20.00 + 1.645 . s, - 0.05 . 20.00 = 20.23 g; 20.35 
g was chosen so that a margin of error remains for the line-operators 
when they adjust the volumetric controls. 

2c. The “no marketing” proviso for seriously underfilled units forces the 
filler to either systematically overfill as foreseen in the regulations or 
to install check-balances or other devices to actively control a high 
percentage (ideally 100%) of the containers and either discard or recy- 
cle under-filled ones. 

Data file FILLTUBE.xls.dat contains a set of 20 in-process controls (IPC) 
of n = 50 simulated weighings each. The first 10 vectors are for EU con- 
ditions (p = 20.02 g), the others for Swiss regulations (p  = 20.35 g); u = 
3Z0.75 g. The default settings can be changed. Pressing [F9] initiates a new 
simulation. The results can be captured and incorporated into a .dat file, see 
program DATA, option (Import Data from Excel). For one specific simula- 
tion, the results were as follows. 

EU case: The following means were found: 20.11, 19.96, 19.82, 20.05, 
19.97, 19.98, 20.04, 20.03, 20.14, and 19.94. In each of 4 IPC-runs, one tube 
was found with a fill weight below 91% of nominal. In all 10 IPC-runs, the 
calculated mean was above the 20.00-0.379 . s, criterion. Thus the batch(es) 
conform(s) to regulations and can carry the “e” logo (as a matter of fact, one 
IPC-run of n = 50 would have sufficed, for a sampling rate of 1.7%). If the 
mean (target) fill weight p were reduced to below 19.8 g, the probability of 
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not meeting the above requirements would increase to virtual certainty. This 
can be tested by setting up a series of alternate hypotheses H1 for p1 = 
20.1 . . . 19.0 and determining /3. (See Table 4.3.) Alternatively, change the 
default “mu” in FILLTUBE.xls until most the “OK’ in the “RELEASE’ row 
are turned off. 

Swiss case: The following means were found: 20.32, 20.43, 20.34, 20.60, 
20.35, 20.36, 20.45, 20.40, 20.30, and 20.31. The number of tubes with fill 
weights below the -5% limit was 4, 1, 0, 0, 4, 1, 3, 3, 3, and 3, for a total 
of 22, and none below the -12.5% one. Twenty-two tubes out of 500 tested 
correspond to 4.4%. Since the limit is 5% failures, or 2.5 per 50, fully six out 
of 10 IPC inspection runs at y1 = 50 each did not comply. At a total batch size 
of 3000 units, eventually 1/6 of all packages were tested. Evidently, unless 
the filling overage is further increased, a sampling rate of well above 10% is 
necessary to exclude these stochastic effects, and so the 10 inspections were 
combined into one test of n = 500. 

When investigating filling records, one occasionally stumbles across val- 
ues that seem to be way out of line. Does such a value represent “normal 
operation,” or has some other mechanism taken over, such as the blocking 
of a filling nozzle, poor synchronization in a cutting operation, or delivery of 
improper material? In order to rectify the situation and avoid it in the future, 
it is important that the probable cause can be assigned. 

Many times, there is physical evidence to either bolster a hypothesis or to 
dismiss it. If this should not be so, then the case might be decided by deter- 
mining the probability of a given value belonging to the “normal” population 
(PO). Essentially, as part of the failure investigation one conducts an outlier 
test for the value in question versus a set of values known to belong to this 
population, or better yet, versus the values acquired immediately before and 
after the questionable event. If there is reasonable certainty about what effect 
could have occurred, and data to match, an alternate hypothesis is set up and 
the probability of the value in question belonging to this population (Pl) can 
be assessed. If the populations PO and P1 are well represented by ND(x1, .$) 
and ND(n2, s;), t-values are calculated according to Eq. (1.13). The popu- 
lation for which t is smaller is considered to better explain the observation. 
Should the t-values be relatively similar, the decision might swing the other 
way with small changes in the size of the data sets; in such a case it is better 
to rely on experience and common sense rather than on theory. 

An eye should also be kept on the absolute size of the standard deviation 
before and after a proposed elimination. If the elimination of a question- 
able point results in a standard deviation that is markedly smaller than what 
is common experience for the test at hand, the F-test cannot be used for 
confirmation, unless s2 is replaced by either the $method obtained during the 
validation, or its lower confidence limit. 
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Example 52: Assume that a method typically yields s, = 0.3; for a given 
set of analytical samples the values x() = 99.5, 99.3, 99.4, 99.3, 99.6, 99.4, 
99.5, 99.3, 99.4, and 100.5 are found: s, = 0.105 for the first nine points and 
s, = 0.358 for n = 10; this yields F = 11.56, which makes the 10th point 
look like an outlier. With s2 = 0.3, F is reduced to 1.43, which is completely 
unspectacular. The lower CL(0.3) is about 0.2 (CLL/s, = 0.68 for n = 9), but 
this does not push F beyond 2.9, which is still insignificant at the p 0.05 
level. Thus, the unusually low s,, which might be due to chance or to the 
operation of quantization effects, does not justify the elimination of x10. 

Example 53: If the standard deviation before elimination of the purported 
outlier is not much higher than the upper CL(smethod), as in the case (s, = 
0.358 < CLu(0.3) = 0.57; factor C L ~ / S , ~  = 1.9 for n = 9, see program MSD), 
an outlier test should not even be considered; both for avoiding fruitless 
discussions and reducing the risk of chance decisions, the hurdle should be 
set even higher, say at p I 0.01, so that CLu/s, > 2.5. 

With small data sets or if there is reason to suspect deviations from the 
Gaussian distribution, a robust outlier test should be used. 

The individual values should also be examined, e.g., by using program 
HUBER: Column 12 of file FILLTUBE10.dat is characterized by a relatively 
tight cluster of values, and one value (19.88 g) is somewhat farther removed 
from the mean, namely at (xi - p ) / s ,  = t = -2.39. The probability of such a 
deviation is assessed by using the single-sided Student’s t-table for f = 9: p 1 
O.l/t, = 1.383, p = 0.05/tC = 1.833, p = 0.025/tC = 2.262. The deviation was 
accorded significance (Huber’s k = 5.37). If this “observation” were elimi- 
nated as an outlier, the changes in the median (+0.05 g), the mean (+0.05 
g, p = 0.25), and the standard deviation (-0.079, F = 3.0) are nowhere near 
significance. (Use program TTEST.) This means that the presence of this 
purported outlier only marginally influences the summary indicators xmean 
and s,. The deviation is at 99.4% of nominal and at 97.8% of the “observed” 
mean; thus there was no reason to discard this point particularly. Again, out- 
lier tests are acceptable for research and failure investigation purposes, but 
not in connection with release testing under GMPs. 

The point that needs to be made is that with sample size as small as it is 
here (n = lo), the distribution can strongly vary in appearance from one sam- 
ple to the next, much more so than with n = 100 as in Fig. 1.10; for example, 
vectors C-46 (column 1) and C-55 (column 20) of file TABLET-C.dat are 
the extremes, with standard deviations of k2.88 and k1.21. The correspond- 
ing Huber’s k-values for the largest residual in each vector are 6.56 (this looks 
very much like an outlier, k, = 3.5) and 2.11 (far from being an outlier). The 
biggest k-value is found for vector C-49 (column 8) at 7.49; Fig. 4.25 shows 
the results for this vector as they are presented by program HUBER. 
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Figure 4.25. Detection of an outlier by Huber’s method. Upper panel: Abscissa: Content [mg]; 
dark points: Measurements; (A) I :  Huber’s cut-off at k = 3.5. The median is marked with an 
“up” tic; xnlean is marked with an “up, down” tic. The circled point is the one that is proposed 
for elimination. Lower panel: Abscissa: Data ordered according to Ixj-x,,, I; (B, C) -. . .-: 
Classical p & 30 and fi k 20 cut-offs. (D) M: Huber’s k-value. 

In the upper half of the upper panel, the original data are plotted on the 
content [mg] axis. Since one point is far outside the acceptance range (at 
about +2.46 . s ~ ) ,  eliminating this one yields the modified distribution pic- 
tured in the lower half of this panel. Note that the _+2 . (J and k3 . o values are 
now much closer to the mean than before because s: << s, (the appropriate 
cut-off values are connected by dotted lines). The x; k 3.5 . MAD’ cut-off 
values moved closer together also; one of the remaining n’ = 9 points is just 
outside this new acceptance range. Program HUBER does not automatically 
repeat the elimination procedure to avoid cascades of possibly unwarranted 
eliminations. This example clearly shows that after the first elimination there 
is no justification for identifying further outliers: The long-term experience 
is that a standard deviation of k2.25 mg is typical for this production pro- 
cess, and at n’ = 9 we already have s: = k1.1 << k2.25. Also, note that xmean 
and x, moved much closer together from n = 10 to n’ = 9. 

The lower panel gives the points ordered according to (absolute) devia- 
tions: The abscissa is ordinal, the value with the smallest deviation (x, ~ x, I 
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being plotted at x = 100/N%, the one with the highest deviation at x = 
100%; since the first point to be eliminated would be situated at the right- 
hand end, the abscissa is labeled “% points retained.” The ordinate gives 
Huber’s k-factor (solid line “D’) and the corresponding Student’s t-factor 
(lines) using s,. Huber’s critical k is by default set to 3.5 (Ref. 21, dashed 
horizontal), but can be changed. If a f 2  . u or a f 3  . u cut-off rule is 
to be applied, marks at y = 2 resp. y = 3 on the frame indicate where to 
draw the line. Evidently, in the example given by vector 8, nine points are 
closely clustered and one is far removed; the choice of Huber’s k-factor is not 
critical. 

Example 54: One point is eliminated for 2.97 2 k, 27.48. If no point is 
eliminated (k ,  > 7.49), we have s: = s,, so only one dotted cut-off curve is 
plotted. 

4.20 WARRANTY OR WASTE 

Introduction Pharmaceutical preparations are exposed to all lunds of 
insults during their lifetime, chief among them being temperaure excursions, 
high humidity, light, oxygen, and packaging components. Shelf-lives can be 
as high as 5 years, and because the consumer must be protected from undue 
dangers, the health authorities have issued guidelines178 as to how a product 
must be tested; an excerpt: 

Storage at controlled room temperature (the earth is divided into four 
climate zones for this purpose), with sampling times in intervals of 3 ,  
6, or 12 months. 
Storage under stress conditions according to ICH Guidelines,13* i.e. 
25”C/60% RH, 30”/65% RH, or 40C/75% RH (Conditions I, 11, resp. 
111; temperature controlled to within +2”C, relative humidity to within 
+5%), with sampling intervals of 2 weeks or 1 month. 
Storage in the same primary container as will be used on the market, 
e.g., blister strips for tablets or ovules, tubes for creams, or vials and 
ampules for injectables. 
During the development phase a series of laboratory or pilot-scale 
batches will be subjected to this stability program. As soon as the pro- 
cess is scaled up to production-size batches, the first few, and at least 
one per year thereafter will also go on stability. Submission is only pos- 
sible if the product completes a minimal combination of tests, e g ,  one 
full-size batch for 12 months and two reduced-size batches for 6 months 



246 COMPLEX EXAMPLES 

at Condition I. Despite much harmonization, the health authorities of the 
US . ,  the EU. and Japan have still not agreed on a minimal combination 
of tests for registration. 

Since full analyses are carried out, a lot of data are generated. Every parame- 
ter is reviewed for trends that signal product aging or outright decomposition 
of the active principle; this can be as cosmetic in nature as discoloration or as 
potentially hazardous as buildup of toxic derivatives. If the drug substance 
is an ester, for example, hydrolysis, particularly if moisture penetrates the 
primary packaging material, will decompose the compound into its acid and 
alcohol components. From a pharmaceutical or medical viewpoint, even if 
there is no toxicity issue involved, this will result in a loss of bioavailabil- 
ity. Even this is to be avoided because subpotency introduces therapeutic 
uncertainty and can go as far as lethal undertreatment. 

Situation A cream that contains two active compounds was investigated 
over 24 months (incomplete program if today’s ICH standards are applied, 
which require testing at 0,3,6,9, 12, 18, and 24 months). The assays resulted 
in the data given in file CREAM.dat. Program SHELFLIFE performs a linear 
regression on the data and plots the (lower) 90% confidence limit for the 
regression line. For each full time unit, here months, it is determined whether 
this CL drops below levels of y = 90% resp. y = 95% of nominal. Health 
authorities today require adherence to the 90% standard for the end-of-shelf- 
life test, but it is to be expected that at least for some products the 95% 
standard will be introduced. 

Interpretation Active component A is so stable that a shelf-life in excess 
of 60 months could be assigned (it is unusual for a pharmaceutical to be 
approved for more than 5 years). Component B, however, undergoes hydro- 
lysis (this fact has to be independently established, i.e., by GC/MS tech- 
niques, or equivalents). (See Fig. 4.26.) The data points cover an incomplete 
24-month stability program (T = 0, 3 ,  7, 24). The intercept is at 104.3%, 
an indication for over-dosing, and the slope is = ~ 0.49 [%/month]. The 
linear regression line is extrapolated until the lower 90%-confidence limit 
(two-sided) for Y B  = a + b . x intersects the SL, here at 26 months (arrow), 
the integer value of the real intersection point; this limit is equivalent to the 
95% one-sided CL. In regulatory practice, this would translate to an offi- 
cially approved shelf-life of 2 years. If the specification were raised to SL 
= 95’33, a shelf-life of 18 months might be granted because real-time data is 
available that goes even beyond this time, but only if the authorities do not 
object to overdosing. Without systematic overdosing (cf. Fig. 4.46), the shelf- 
lives drop to 8 resp. 18 months (at SL = 95, resp 90%), which is no longer 
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Figure 4.26. Shelf-life calculation for active components A and B in a cream; see data file 
CREAM.dat. The horizontals are at the y = 90 (specification limit at t = shelflife) resp. y = 95% 
(release limit) levels. The linear regression line is extrapolated until the lower 90%-confidence 
limit for Y B  = a + b . x intersects the SLs; the integer value of the real intersection point is 
used. The intercept is at 104.3%. 

interesting from the commercial point of view. Any new data point outside 
the population-CL [Eq. (2.25)] would raise suspicions; the regression-CL 
delineates the quality of the extrapolation [Eq. (2.16)]. 

The statistical interpretations are “there is a 5% chance that the extrap- 
olation is below 90% at t = 26” and “there is a 5% chance that a further 
measurement at t = 26 months will yield a result below y = 89% of nomi- 
nal.” Every batch in the stability program is subjected to this procedure; the 
batch that yields the shortest shelf-life sets the expiration date. 178 Possible 
solutions are as follows: 

1. If the authorities request an overage-free product, for an SL of 90% 
an expiration date of 18 months results (this would be a pain for the 
Logistics and Marketing Departments because 
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a. most companies consider it unethical to ship any goods to the 
wholesaler with less than 12 months of shelf-life left; 

b. quality control testing and release already take 2 4  weeks, so only 
5 months remain to sell the product; 

c. reducing batch size so inventory is sold within 5 months increases 
production costs and overhead, more frequently exposes the man- 
ufacturer to “out-of-stock” situations, and strains the goodwill of a 
workforce whose production schedules are already being modified 
the moment they are distributed. 

2. Refer the project back to the R&D department for an improvement of 
the formula or the packaging (this can easily cost huge amounts of 
money and delay market introduction by years, especially if alterna- 
tives had not been thought of or had been prematurely deleted from 
the stability program). 

This decision-makmg guideline involving the lower 90% CL is now accepted 
worldwide. In setting up the rule, science and bureaucracy was involved. A 
more complex and scientifically more logical rule could have been made, 
but the lawyer’s penchant for hard and simple-to-enforce rules won out. 

So-called accelerated testing is used to get a feeling for the long-term 
trend without having to wait for years58 (see the next section). 

It is common to have data for several batches available, and pooling that 
would lead to higher degrees of freedom and improved prediction capabili- 
ties. The full procedure is explained in Refs. 58, 178; this very conservative, 
purely statistical approach can create the absurd situation that high-quality 
data is excluded from and low-quality data is included in the pooling.lsl The 
use of the concept of constant power instead of arbitrary criteria is discussed 
in Ref. 181. If data for a large number of batches are available1x2-usually 
late in the life-cycle of a product, just before the next formulation or packag- 
ing improvement is due to be introduced-data sets can be randomly picked 
for pooling.’83 

Because the individual measurements are carried out over a period of 
several years, it is likely that the working- or even the secondary standard 
that is used to calibrate the analytical method is used up or has degraded, 
and thus has to be replaced; for the relationship amongst such standards. 
(See Fig. 4.44.) Laboratory errors occur now and then that are small enough 
to go undetected, particularly if the opportunities for scientific plausibil- 
ity checks are squandered by overly bureaucratic practices (see Fig. 4.49); 
such errors can be modelled by invoking a large-SD Gaussian error in 
a few percent of the Monte Carlo trials. (See file ASSAYAB.xls.) File 
DEGRAD_STABIL.xls combines the effects and allows the results to be 
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viewed in the standard format (assay vs. time on stability), which masks sys- 
tematic errors such as a miscalibration on a given day, and in the calendar 
format, where these things show up. 

4.21 ARRHENIUS-ABIDING AGING 

Introduction During the early stages of development of a dosage form or 
a drug substance one rarely has more than a notion of which temperatures 
the material will be processed or stored at once all has been said, done, 
and submitted. Also, the decomposition of a component might be subject to 
more than one mechanism, often with one reaction pathway dominating at 
lower, and another at higher temperatures. For these reasons, stress tests are 
conducted at a number of different temperatures that, first, are thought to 
bracket those that will eventually be quoted on the box (“store at 25°C or 
below”), and second, are as high as the dosage form will accommodate with- 
out gross failure (popping the vial’s stopper because the water boiled) and 
still deliver results in a reasonably short time (a few weeks). Plots using pro- 
gram SHELFLIFE would in such a case reveal increasingly negative slopes 
the higher the storage temperature. Program ARRHENIUS allows for all 
available information to be put into one file, and then calculates the slope 
for every temperature condition. Given that the basic assumptions underlying 
Arrhenius’ theory hold (zero-order kinetics, i.e., straight lines in the assay- 
vs.-time graph, activation energy independent of temperature, Ref. 58),  the 
resulting slopes are used to construct the so-called Arrhenius-diagram, ie . ,  
a plot of ln(s1ope)-vs.-1/T, where T is the storage temperature in degrees 
Kelvin. If a straight line results (see Fig. 4.27, left panel), interpolations (but 
never extrapolations!) can be carried out for any temperature of interest to 
estimate the slope of the corresponding assay-vs.-time plot, and then there- 
from the probable shelf-life. The Arrhenius analysis is valuable for three rea- 
sons: ( 1 )  detection of deviations from Arrhenius’ theory (this would indicate 
complex kinetics and would lead to a more thorough investigation, but often 
requires the degradation to be followed to low assay levels before it can be 
diagnoseds8), (2) planning future experiments, and (3) supporting evidence 
for the registration dossier. 

Situation and Interpretation A series of peptides was assessed for stability 
in aqueous solutions. The data in files ARRHENX.dat ( X  = 1, 2, or 3) was 
found in a doctoral thesis.184 Figure 4.27 shows one case where a temperature 
range of 50°C was covered. (See also Table 4.25.) 

Since the Arrhenius diagram is linear and the collision parameter A is 
constant over the whole temperature range, the activation energy can be cal- 
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Figure 4.27. Arrhenius analysis: The right-hand panel shows the assay-vs.-time data for an 
aqueous solution of a peptide. The regression lines are for storage temperatures of XO', 73", 
60", 5 0 ,  40", and 30°C. The left-hand panel gives the In(-slope)-vs.-l/T Arrhenius plot. 

culated to be E = 94.8 f 5.6 [KJ/mol] and it can be safely assumed that this 
temperature range is ruled by fairly simple lunetics. 

Example 55: An interpolation for 35°C on the assumption that the same 
sampling plan would apply as for the 80°C results yields an implausibly short 
shelf-life of 50 days (90% level); the reason is that both x,,, and S,, are 

Table 4.25. Results of Arrhenius Analysis 

Item set-1 set-2 set-3 set-4 set-5 set-6 DIM 

Temp. 80 73 60 50 40 30 ["CI 
lOOO/T 2.831 2.888 3.001 3.094 3.193 3.299 [1000/"K] 
Slope --2.014 -1.423 -0.281 -0.115 -0.035 -0.011 [%/day] 

Shelf-life 
In(-s) 0.70 0.35 -1.27 -2.16 -3.34 -4.50 [-] 

90% 4 6 28 76 240 715 [days1 
In@) 33.0 33.3 33.0 33.1 33.1 33.1 [-I 
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very different for the two conditions. In this case the second option given 
in program ARRHENIUS must be used, that is, the individual time-points 
appropriate to a test at 35°C are entered (0, 180, 360, 540, 720, and 900 
days): The estimated shelf-life is now 410 days (90% level; 170 days for 
95% level). This example demonstrates that both a statistical evaluation and 
the program must offer a level of sophistication that is up to the job. Not 
adding the second option would have made the programmer’s job easier, and 
perhaps the too short shelf-life would have just been accepted by the users 
as given because nobody pointed out to them the statistical details surround- 
ing sxx. 

4.22 FACTS OR ARTIFACTS? 

In file JUNGLE2.dat, a simulated data set is presented that obeys these rules: 

All results are clipped to a specific number of digits to simulate the 
operation of digital read-outs of analytical equipment; p is the precision, 
d is dimension, and u is the superimposed ND(0, a*)  noise in Table 
4.26. 
Impurities A, B, and C are in the ppm-range; this would be typical of 
residual solvents or volatile by-products of a chemical synthesis. B and 
C are coupled to A. Impurity C has its noise reduced by in the range 
above 695 ppm, an effect that can occur when a detector is switched to 
a lower sensitivity in anticipation of a large signal. 
Compound D is in the low %-range, and extremely variable, as is 
often the case with impurities that are not specifically targeted for con- 
trol; under these circumstances, less is known about the reaction path- 

Table 4.26. Simulation Parameters 

U d P 

A A =  125 
B B z 15.2 + ( A  -125)/5 
C C < 695 

C 2 695 
D D = 0.3 D 2 0.01 

Color Color = 23 

Titr. 

C = 606 + ( A  - 125): 

PH pH = 6.3 + (C - 600)/500 

HPLC HPLC = 99 - A - B - C - D 
Titr. = 98.3 + (HPLC - 99) 

30 ppm 1 

40 pprn 1 
20 

2 ppm 0.1 

0.5 % 0.01 
0.2 - 0.1 
7 mAU 1 
0.3 % 0.01 
0.4 % 0.05 
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Table 4.27. Probability Categories 

Fraction of Probability-of- 
Results Error Category Interpretation 

~~~ ~~ 

= I /  12 
= 1/12 0.04 I p  < 0.08 Marginally significant 
= 1/6 0.08 I p  < 0.16 Insignificant 
= 2/3 0.16 I p  < 0.50 Essentially random 

0.00 I p < 0.04 Significant to highly significant 

ways that generate or scavenge these compounds than about high-impact 
impurities. Also, there are generally so many target variables in the opti- 
mization of a reaction that compromises are a way of life, and some 
lesser evils go uncontrolled. 
The pH is relatively well-controlled, but coupled to C. 
Color is the result of an absorption measurement, commonly carried out 
at X = 410 nm, to assess the tinge that is often found in crystallization 
liquors that impact an off-white to yellowish aspect to the crystalline 
product. 
The HPLC assay is fully coupled to the impurities A-D on the assump- 
tion that there is a direct competition between the major component 
and some impurity-producing reaction pathways. The basis-value 99 
was introduced to simulate other concentration losses that were not 
accounted for by impurities A-D. 
The Titration result is just a bit lower than the HPLC result and is 
strongly coupled to it. 

This example was set up for a number of reasons: 

To allow exploration using programs CORREL, LINREG, HUBER 
To demonstrate the effect of the size of vectors on correlation 
To smuggle in typical artifacts 

The effect of the size of the compared vectors is shown by taking JUN- 
GLE2.dat, and using program DATA, option (DEL row) to cut down the 
number of rows to, for example, 24, 12, or 6. The probability levels change 
in both directions, e.g., A/C from the category “large square: p < 0.01” to 
the category “small dot: p > 0.16,” that is from highly significant to no sig- 
nificance whatsoever. Whenever there is a large number of measurements 
available, even very tenuous links turn out to be highly significant, and spu- 
rious correlations are to be expected. (See Fig. 2.2.) WARNING: Data explo- 
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Figure 4.28. Correlation graph for file PROFILE.dat. The facts that (a) 23 out of 55 combi- 
nations yield probabilities of error below p = 0.04 (42%; expected due to chance alone: 4%) 
and (b) that they fall into a clear pattern makes it highly probable that the peak areas [%I of 
the corresponding chromatograms follow a hidden set of rules. This is borne out by plotting 
the vectors two by two. Because a single-sided test is used, p cannot exceed 0.5. 

ration without graphical support (program CORREL, option (Graph)) and a 
very critical mindset can easily lead to nonsensical interpretations! Running 
files TABLET-C.dat, TABLET-W.dat, and ND-160.dat through program 
CORREL proves the point: These are lists of fully independent, normally 
distributed numbers, and correlations turn up all the same! Independent of 
n, the distribution in Table 4.27 is found. 

Thus, one must expect about 5-10% apparently significant correlations; 
fortunately, these false positives appear in a random arrangement, so that 
when a really significant connection turns up, the human visual system per- 
ceives a clearly recognizable pattern, for example for file PROFILE.dat. (See 
Fig. 4.28.) 

A further incentive for supplying file JUNGLE2.dat is the possibility of 
smuggling in some numerical artifacts of the type that often crop up even in 
one’s own fine, though just a bit hastily concocted, compilations (see JUN- 
GLE3.dat): 

Rows 1-7, item Titr: 0.5% subtracted; typical of temporary change 
in the production process, calibration procedure, or analytical method, 
especially if values 1-7 were obtained in one production campaign or 
measurement run. 
Rows 9 + 10, items A, B, and C: Factor of 2 introduced to simulate the 
operation of absentmindedness in sample and hardware preparation, or 
computation: An extra dilution step, a sensitivity setting, or transcription 
errors. 
Row 14, item B: Deleted decimal point. 
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Row 38, item Titr: An assay value of 101.1 might be indicative of a 
calibration or transcriptional error if the analytical procedure does not 
admit values above 100.0 (the value can be a realistic result, though, 
if an assay value of close to 100% is possible and a huge analytical 
uncertainty is superimposed). 

Row 45, item pH: A value of 4.8 in a series of values around 6.2 is 
highly suspicious if the calibration of the electrode involves the use of 
an acetic acid/sodium acetate buffer (pK = 4.6) 

When JUNGLE2.dat and JUNGLE3.dat are analyzed with program 
CORREL, a plausible pattern turns up: Impurities A, B, and C and 
the pH are mutually correlated; impurity D is correlated with Titr and 
HPLC. The artifacts in JUNGLE3.dat cause a reduction in the strengths 
of correlation in four bins (three of them over two to four classes), and 
an increase in three bins over one class each. 

4.23 PROVING PROFICIENCY 

In today’s regulatory climate, nothing is taken for granted. An analytical lab- 
oratory, whether in-house or in the form of a contractor, no longer gets away 
with the benefit of the doubt or the self-assured “we can do that for you,” 
but has to demonstrate proficiency. Under the Good Manufacturing Practices 
(GMPs) a series of do’s and don’ts have become established that are inter- 
preted as minimal expectations. Since one never knows today which results 
will be declared “crucial” when the Regulatory Department collates the sub- 
mission file a few years down the road, there is tremendous pressure to treat 
all but the most preliminary experiments as worthy of careful documentation 
under GMP. Besides, some manifestations of modern life-job-hopping and 
corporate restructuring are examples-tend to impair a company’s memory 
to the point that whatever happened more than 6 months ago is lost forever, 
unless it is in writing. For hints on how to proceed, see Section 3.2, “Method 
V alidafon .” 

Setting An established analytical method consisting of the extraction of 
a drug and its major metabolite from blood plasma and the subsequent 
HPLC quantitation was precisely described in a R&D report, and was to 
be transferred to three new labs across international boundaries. (Cf. Sec- 
tion 4.32.) The originator supplied a small amount of drug standard and a 
number of vials containing frozen blood plasma with the two components 
in a fixed ratio, at concentrations termed “lo,” “mid,” and “hi.” The report 
provided for evaluations both in the untransformed (linear/linear depiction) 
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and the doubly logarithmized (logarithmic/logarithmic) format. The three 
files VALIDX.dat were selected from among the large volume of data that 
was returned with the three validation reports to show the variety of prob- 
lems and formats that are encountered when a so-called “easily transferable” 
method is torn from its cradle and embedded in other “company climates.” 
The alternatives would have been to 

Run all analyses in the one and established central laboratory; the logis- 
tical nightmares that this approach convokes in the context of a global 
R&D effort demands strong nerves and plenty of luck. (Murphy’s law 
reigns supreme!) Regional laboratories make sense if the expected vol- 
ume of samples is so large as to overwhelm the existing laboratory, and 
if the technology i s  available on all continents. 
Run the analyses in regional labs, but impose a military-style supply- 
and-control regime; this exposes the “commander” to cultural cross-cur- 
rents that can scuttle his project. 

Problems 

In one new laboratory the instrument configuration was reproduced as 
faithfully as possible: The instrument was similar but of a different 
make. 
The HPLC-column with the required type and grade of filling mate- 
rial (so-called stationary phase) was not available locally in the 2.1 mm 
diameter size set down in the report, so the next large diameter (4.0 
mm) was chosen, in full cognizance that this would raise the detection 
limit by an estimated factor of (4.0/2.1)2 - 3 4 .  For the particular use, 
this was of no concern, however. The problem was encountered because 
the R&D people who developed the method had used a top-of-the-line 
research instrument, and had not taken the fact into account that many 
routine laboratories use robust but less fancy instruments, want to write 
them off before replacing them, and do not always have a laboratory 
supply house around the corner that is willing to deliver nonstandard 
items at reasonable prices and within a few days (some manufactur- 
ers will not, cannot, or are prohibited from delivering to all countries). 
As a sign of our times, some borders are very tight when it comes to 
smuggling X-ray-opaque metal HPLC columns across; to the customs 
officers, the white powder in them looks suspicious. 

An inadvertent, and at first sight trivial shift in conditions raised 
the extraction efficiency from the stated -85% to nearly 100%: This 
together with the different model of detector (optical path!) caused 
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the calibration line slope to become much higher. There was concern 
that saturation phenomena (peak-broadening, shifting of retention times) 
would set in at lower concentrations. 

Because two laboratories were involved, there was a certain risk that this 
foreign contract laboratory in the crucial calibration run would, despite 
cross-validation,26 come up with results for the QC standards that were 
at odds with those in the primary laboratory; this would necessitate 
explanations. 

In a multi-year, multi-laboratory situation it is unlikely that the amount 
of primary standard (PS) will suffice to cover all requests. The next 
best thing is to calibrate a larger amount of lower-quality secondary 
standard (SS) against the PS, and to repeat the calibration at specified 
intervals until both the PS and the SS have been consumed. In this way, 
consistency can be upheld until a new lot of PS has been prepared and 
cross-validated against the previous one. In practice, a working standard 
will be locally calibrated against the SS and be used for the daily method 
calibration runs. (See Section 4.32.) 

Results The raw data consisted of peak height ratios of signa1:internal 
standard, see data files VALID1.dat (primary validation; m : 10 repeats at 
every concentration), VALID2.dat (between-day variability), and VALID3. 
dat (combination of a single-day calibration with several repeats at 35 and 
350 [ng/ml] in preparation of placing QC-sample concentration near these 
values). Fig. 4.29 shows the results of the back-calculation for all three files, 
for both the lin/lin and the log/log evaluations. Fig. 4.30 shows the pooled 
data from file VALID2.dat. 

The data in VALIDl.dat show something that is characteristic of many 
analytical methods: The standard deviation steadily increases, particularly 
above 250 ng/ml, from low concentrations, where it is close to zero, to k0.14 
at 500 ng/ml while the CV drops, from >lo% to about 5%.  The residuals at 
x = 250 ng/ml do not appear to lie on a straight line; this notion is strongly 
reinforced when the data are viewed after double-logarithmic transformation 
(program VALIDLL; see later). Note that the back-calculated values for the 
two lowest concentrations are far above 100%. The same observation in two 
other laboratories where the same method was run confirmed that this non- 
linearity is real. A cause could be assigned after the conventional three-step 
liquid-liquid extraction (aqueous-to-organic, clean-up of organic phase with 
aqueous medium, pH-change and back-extraction into water) was replaced 
with a single-step procedure involving selective extraction cartridges, which 
brought perfect linearity (the higher cost of the cartridges is more than jus- 
tified by the solvent and manpower savings). Obviously the cartridges elim- 
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Figure 4.29. Back-calculated results for files VALIDX.dat. The data are presented sequen- 
tially from left to right. The ordinate is in % of the nominal concentration. Numbers X = 1, 2, 
and 3 indicate the data file. Each bracket indicates a day’s worth of results (sorted by concen- 
tration). The log/log format tends to produce positive deviations at low concentrations, while 
the lin/lin format does the opposite, to the point of suggesting negative concentrations! The 
reason is that the low concentration values are tightly clustered at the left end of the lin/lin 
depiction whereas the values are evenly spread in the log/log depiction, with commensurate 
effects on the position of xmean, the sum S,,, and the influence each coordinate has on the 
slope. The calibration design was optimized for the log/log format. 

inated a component that interfered at low analyte concentrations. The ques- 
tion came up whether the method should be changed. Since this technological 
improvement came after a lot of work had already been done, and this partic- 
ular study late in the product development cycle did not require full exploita- 
tion of the available concentration range and precision, it was decided to 
leave things as they were and not go into the trouble of validation of the 
new, cross-validation of the new against the old, and registration of the new 
method with the health authorities in all the involved countries. Despite the 
obvious curvature, the coefficient of determination r2  was larger than 0.9977 
throughout. 

Back-calculation is achieved by equating the individual calibration sig- 
nal y ( i )  with y*, using Eq. (2.19), and calculating 100 . X( Y*)/Xnominal [%I. 
The estimated standard deviation on X(y*), s,, is transformed to a coeffi- 
cient of variation by calculation of either CV = 100 . s,/Xno,inal or CV = 
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Assay (back calculated) [%I 

200 

100 

0 

-1 00 

LlNlLlN LOGlLOG 

I I I 1 1 1 1 1 1 l  I I 1 1 1 1 1 1 1  I I 1 1 1 1 1 1 1  I I I I 1 1 1 1 1 1  I I 1 1 1 1 1 1 1  I I 1 1 1 1 1 1 1  
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Concentration [ng/ml] 

Figure 4.30. Back-calculated results for file VALID2,dat. The data from the left half of Fig. 
4.29 are superimposed to show that the day-to-day variability most heavily influences the 
results at the lower concentrations. The lin/lin format is perceived to be best suited to the upper 
half of the concentration range, and nearly useless below 5 ng/ml. The log/log format is fairly 
safe to use over a wide concentration range, but a very obvious trend suggests the possibility 
of improvements: (a) nonlinear regression, and (b) elimination of the lowest concentrations. 
Option (b) was tried, but to no avail: While the curvature disappeared, the reduction in n, 
log(.%) range, and S,, made for a larger V,,, and, thus, larger interpolation errors. 

100 . s,/X( y*); the distinction is negligible because any difference between 
Xnominal and X (  y*) that shows up here would have caused alarm above. 

The options (Table) and (Results) repeat the ordinate and abscissa values 
and (see summary in Table 4.28) provide: 

1. The absolute and the relative residuals in terms of concentration X .  
2. The back-calculated values (also in x-coordinates) as absolute and rel- 

ative values. 

3 .  Program VALID adds the symmetric CV, while program VALIDLL 
gives the (asymmetric) low and the high values. 

4. The slope and the intercept with the appropriate relative 95% CLs, the 
residual standard deviation, and r 2 .  
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Figure 4.31. Key statistical indicators for validation experiments. The individual data files are 
marked in the first panels with the numbers 1, 2, and 3, and are in the same sequence for all 
groups. The lin/lin respectively log/log evaluation formats are indicated by the letters u and 
b. Limits of detection/quantitation cannot be calculated for the log/log format. The slopes, in 
percent of the average, are very similar for all three laboratories. The precision of the slopes is 
given as k 100 . t . CV(b)/b in [a]. The residual standard deviation follows a similar pattern 
as does the precision of the slope b. The LOD conforms nicely with the evaluation as required 
by the FDA. The calibration-design sensitive LOQ puts an upper bound on the estimates. The 
X15% analysis can be high, particularly if the intercept should be negative. 

5.  The LOD and the LOQ (in the case of program VALIDLL, these values 

6. For each group of repeatedly determined signals (mj 2 2) the basic 

cannot be calculated) 

statistics are given. 

Fig. 4.31 gives the key indices in a graphical format. 

Observations 

a. The slopes cluster tightly around their respective means, even though 
they are less well defined, see CL(b) in the log/log depiction; The 
slope found for VALID3.dat is definitely higher and very well defined 
(0.007511 * 0.4% > = 0.0052 f 1.3%). The fact that the log/log slopes 
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for VALID2.dat (= 0.862 f 5.6% < 1.00) do not include p = 1 points 
to curvature in the non-transformed depiction. 

b. Some intercepts in the nontransformed depiction do not include p = 0; 
this is due to the curvature at low concentrations which is traceable to 
a lack of selectivity in the extraction process. As was to be expected, 
the coefficient of determination r2  is not very informative. The reduc- 
tion of the heteroscedacity brought about by the log/log transforma- 
tion is not reflected by an improvement in r 2 ,  which decreases from, 
e.g., 0.9991 to 0.9893 (sres cannot be compared because of the units 
involved). 

c. The calibration-design-sensitive concept of calculating limits of detec- 
tion yields LOD-values in the range 1.1-3.5 ng/ml and LOQ-values in 
the range 2.3-7 ng/ml. The dotted curve in the option (Display Valid 
Graph) (see point (5) in the list that follows) suggests a range X15% 
= 9-31 ng/ml, three to four times the LOQ. The LOD according to 
the FDA concept depends on the data set one chooses, values of 1-10 
ng/ml being found (if the standard deviation for DAY-4 and x = 10 
ng/ml, see file VALID2.dat, had been only 5% smaller, XLOD would 
have been 2 instead of 10 ng/ml)! The very tight definition of slope b 
in VALID3.dat pushes the LOD to below 1 ng/ml. 

d. The analysis of the variances is inconclusive: The group SDs for the 
individual days are to all intents and purposes identical to the SDs of 
the pooled data; the same is true for the residual SDs. If there is a 
between-days effect, it must be very small. 

Option (Display Valid Graph) assembles all of the important facts into 
one graph (see Fig. 4.32): 

1. The abcissa is the same as is used for the calibration line graph. The 
ordinate is +30% around Y = a + b . x 

2. At each concentration, the relative residuals 100 . ( y ( i )  - Y(x)) /Y(x)  
are plotted. 

3. At each concentration x; the CV found for the group of m; repeat deter- 
minations is plotted and connected (dotted lines). 

4. At each concentration xj the relative confidence limits k100 . t . 
sy/ymean,; found for the group of mj repeat determinations is plotted 
and connected (dashed lines). Because file VALID2.dat contains only 
duplicate determinations at each concentration, n = 2 and f = 1, thus 
t(f, p = 0.05) = 12.7, the relative CL are mostly outside the +30% 
shown. By pooling the data for all 6 days it can be demonstrated that 
this laboratory has the method under control. 
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Figure 4.32. Graphical summary of validation indicators for file VALID1 .dat. In this depic- 
tion, the typical “trumpet” form (A, B) of the c.o.v./CL curves is seen; the fact that there is a 
spread toward the right-hand edge (C) suggests that the measurement errors grow in a slightly 
over-proportional fashion with the concentration. The narrowing down of the “trumpet” at 
the lowest concentration ( D )  is a sign that due to the proximity to the LOD, the measure- 
ment distribution is not truly Gaussian but has the low side clipped. The data points for the 
lowest concentration ( 10 ng/ml) are off scale (+31.2 ~ +65.9), while the fourth-smallest con- 
centration ( E )  yields negatively biased results (effct of background interference at the lowest 
concentrations due to the extraction’s lack of selectivity, ensuing curvature). If the same plot 
were made for one day’s data from VALID2.dat (rn = 2 at each concentration), the dashed 
CL-curves would be off scale because of the large Student’s t a t f =  1. The curve (offset by 

30) that starts at the lower right comer stops at the point x where the c.0.v. is 15% of the 
estimate Y (F). The LOQ calculated according to Fig. 2.14 appears in the lower left corner 
(G). The curves were obtained as A = f t . CV, B = f 100 . t . d m ,  and F = 100 . 
J ( V y ) / Y  ~ 30, and the points as y = 100 . r J Y i .  

5 .  Beginning at the lower right corner, a dotted curve is plotted that gives 
the CV for the estimated signal Y and m = 1,  namely, the lower edge of 
the graph corresponds to 0%; the value y = 60% would be reached near 
the top left corner, but the curve is not plotted beyond the point where it 
reaches y = 15%; the corresponding x-value, X15%, is given. This result 
is sensitive to the calibration design, just as is the LOD/LOQ concept 
presented in Section 2.2.7, and is achieved through extrapolation to 
below the lowest calibration concentration. The two equations (4.27) 
and (4.28) give the general and the explicit formulation. In case the 
intercept should be negative, X15% can reach very high values. 
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y = 100 . v ' v ~ / Y ( ~ )  in [%I (4.27) 

In contrast to this, the FDA requests a limit of acceptance defined by 100 . 
sy/Y 5 15% for the lowest calibration standard x 2 XLOD. This, of course, 
is insensitive to the calibration design and depends exclusively on the preci- 
sion of the measurements performed at this low concentration; xmin should 
be chosen so that signals in the lower half of the size distribution are not 
overwhelmingly determined by base-line noise. GMPs require that further 
calibration concentrations in this region may only be added with a full six- 
day revalidation, even if it should turn out that the lowest x was initially cho- 
sen too high or too low. The analyst, therefore, is torn between (a) sacrificing 
valuable sensitivity (this can be disastrous for a pharmacokinetic study), (b) 
redoing the whole validation program with an adjusted lowest concentra- 
tion, or (c) adding a series of concentrations designed to cover the suspected 
region of the LOD from the beginning. The danger is that the signal-distri- 
bution is no longer symmetric and residuals tend to become positive. Fig. 
4.31 shows how closely the estimates match. 

4.24 GOTTA GO GAMBLING 

If an individual measurement is out of specifications (OOS), the interpreta- 
tion should logically include at least the following items: The total number 
of repeat measurements, the distance between this measurement and the rest, 
the complexity of the analytical protocol, the plausibility of such a deviation, 
and the (medical) risk associated with analytical noise. In the pharmaceutical 
industry the debate about what to do with 00s results has raged on and off 
for many years, for example see Ref. 185. The Barr ruling, passed by Judge 
Wolin, and what the FDA interpreted into it55 has sent shivers down many 
a spine. It is clear that a balanced solution should be found that customers, 
manufacturers, scientists, and regulators can agree to; perhaps a recently- 
issued draft g~idance '~8 is an omen for the better. At the moment, the regu- 
lators have the upper hand, and they seem to know only two shades of gray: 
black and white. Managers squirm when they think of the difference a blip 
of instrumental noisels6 can make: being a free man, or a jailbird accused 
of fraud. What is the issue, what can be done about it? 
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Shades of Gray When repeat determinations are carried out on a sample 
and one or more of the individual results are outside the specs, the following 
criteria could apply: 

The sample complies if the mean is within or just touches the SL, e.g., 
x,,,, I 105% for a +5% specification range (all observers agree on 
this). In this most liberal interpretation, individual measurements may 
be outside the specification limits, but the amount of dispersion would 
be capped by the understanding that the standard deviation as found 
for the samples may not be larger than the standard deviations resulting 
from the system suitability test and/or the method validation. The clause 
“not larger than” could be defined so as to most easily satisfy legal 
thinlung and/or numerical comparisons (cf. The USP XXIII Content 
Uniformity test which stipulates n = 10 and CV I 6 % ,  and has two sets 
of limits43), or could be defined statistically (F-test, predefined number 
of repeat determinations n 2 nmn in order to prevent misuse with very 
small n. (See Figs. 1.27 and 4.48).) One should of course not employ 
imaginative rounding to gain an advantage, that is effectively “widen” 
the available specification interval, from, say, (95.0 - 105.0) to (94.56 

~ 105.44) by willfully changing the number of decimal places to suit 
the circumstances. It is understood that the right procedure is to round 
to a pre-determined number of digits after all of the calculations are 
performed with a sufficiently large number of significant digits. (See 
Section 1.1 S.)  

The mems resulting from several ( k )  repeat determinations on every 
of ( . j )  samples and/or sample preparations must comply; several such 
sample averages x,,,,,~ would go into the over-all average Xmedn, total. 

In the simplest case of j = 2/k : 2 (duplicate determinations on each 
of two sample work-ups), both sample averages xJ1 and xJ2 would have 
to comply. It could actually come to pass that repeat measurements, if 
foreseen in the SOP, would in this way not count as individual results17x; 
this would cut the contribution of the measurement’s SD towards the 
repeatability by h, 4, etc. For true values p that are less than 2-3 
u from the limit, the OOS-risk would be reduced. 

In the strictest interpretation, each and every measuretnent would have 
to comply. 

Freshman and Industrial Science Settings 

The .simple situation: The analytical method uses an instrument that 
provides an immediate readout of the definitive result, for example 
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a pH-meter. If the operator notices an 00s result, this is only sec- 
onds removed from the preparatory steps leading up to the actual mea- 
surement. Any links to observations of potentially error-causing details 
(insufficient rinsing, dirty spatula, or glassware) are still fresh in mind. 
A plausible case for operator error can be made, even if the observation 
had not yet been written up. 

The complex situation: The analysis involves some instruments (e.g., 
dissolution apparatus, HPLC, balance), dozens of samples, and several 
analysts, and could take days to perform. If nobody notices anything 
particular about the individual snippets of work or any of the results, 
no observations of probable operator error are documented. When the 
supervisor then inserts number after unspectacular number into the for- 
mula, all results turn out to be within specification limits, with the excep- 
tion of one or two that are barely outside. But, no documentation, no 
operator error, just inexplicable OOS, full investigation! 

The simple situation is what the lawyers had in mind when drafting 
the rule, science Hollywood style! The other situation is illustrated with 
files 0 0 S B I S K X . x l s .  (See Example 56.) 

The Strictest Interpretation In the following, the language of the Barr deci- 
sion (see notes at end of this section) is interpreted in the most restrictive 
sense, namely that each and every measurement has to comply with the rule 
“no values outside the limits.” 

The Math As is immediately apparent, a mean cannot coincide with a SL if 
all measurements that go into it must also conform (cf. Fig. 2.13, distribution 
for p = O S ) ,  unless s, = 0. Any attempt to limit the individual measurements 
to the specification interval will result in a narrowing of the available mar- 
gin for error in xmenn, be it manufacturing bias or inhomogeneity. This may 
be acceptable as long as one has the luxury of 90-110% release limits, but 
becomes impracticable if these are reduced to 95-105%. 

The Solution Increasing the number of determinations sounds like a good 
way of reducing the manufacturer’s risk, after all, Equation (1.12) and Fig. 
1.16 show that increasing n reduces the uncertainty of the result. However, 
as conveyed by Fig. 1.2, doing more determinations increases the probability 
of a large deviation from the true mean. The two trains of thought need to 
be combined to define the best strategy available to the manufacturer, even 
if this implies very tight inhouse limits. 
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Assumptions 

European specification limits (assay: 95-105%). 
Zero sampling error: Eq. (1.6) reduces to Vreprod = Vrepeat. 

Independent individual samples/measurements in the sense of Fig. 1 ..5. 
A result that is nearer to the SLu and an accepted risk of 5 %  (alpha/2 
= 0.05 for the single-sided test; use the alpha = 0.1 column in the t- 
table). 
A CV for the population, 100 . s,/xmean, of exactly 1%. 

Questions 

What is the largest true mean p that complies for n = 4 (double sampling, 

How does the situation change if additional samples are taken? 
What happens if intermediate results are rounded’? 

two determinations for each sample)? 

Example 56: Using file 00S_RISK-5.xls, a typical calculation in a pho- 
tometric assay might look like this: 262.3 mg = 0.76.5 AU . 348.34 mg . 
0.98433 AU-’, where the three numbers after the equals sign are the actual 
absorbance and tablet weight and a constant that combines all dilution fac- 
tors and the corresponding measurements for the perfect tablet (0.747 AU 
instrument reading, 340 mg tablet weight, of which 2.50 mg are drug sub- 
stance). The registered specifications are 250 mg * 5%; note that the exact 
tablet weight is not of regulatory interest as long as the assay is within limits, 
but is useful to check for deviations from perfect mixing, and a convenient 
in-process measurement. Five extracts are assayed with the raw data given 
in Table 4.29; the analyst did not note any suspicious events. 

The individual results are 262.3 mg/tablet, etc., for a mean of 260.46 and 
a standard deviation of k1.90 (CV = 0.73%). The CL for the mean are 258.65 
and 262.27. Because the upper specification limit is nearer, the relevant z- 
value is (250 . 1.05 - 260.46)/1.90 = 1.073, and therefore CP = --0.8582. The 
probability of one or more of the five measurements being above 262.5 is 100 
. (1  - (0.8582)’) = 53.4%. The probability that the mean is 00s is calculated 
as follows: zmean = 4 . (262.5 - 260.46)/1.90 = 2.40; ---) CP = 0.9918; 
+ p = 100 . (1 - 0.9918) : 0.82%. This product complies with the SLu 
of 262.5, and the reproducibility is about as good as one can expect for an 
extraction followed by UV-photometry. All the same, the product might have 
to be destroyed because the fourth value is 00s and an obvious laboratory 
error cannot be demonstrated. 

In the foregoing discussion, all numbers were carried along with the maxi- 
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mum number of significant digits, which resulted in one 00s result. Now, 
if the relevant SOP had stated that the individual result had to be rounded 
to four significant digits before being compared against the SLu, the deviant 
“262.55” (actually 262,545) would have become the acceptable “262.5,” and 
no 00s-investigation would have had to be started. There is even some sta- 
tistical merit in restricting the result to three of four significant digits because 
the least accurate measurement does not offer more precision (0.765 AU; the 
balance might read two more: 348.66 mg). 0 0 s - R I S K X x l s  allows setting 
of the number of decimal places. 

Example 57: The three files can be used to assess the risk structure for a 
given set of parameters and either four, five, or six repeat measurements that 
go into the mean. At the bottom, there is an indicator that shows whether the 
95% confidence limits on the mean are both within the set limits (“YES”) or 
not (‘.NO”). Now. for an uncertainty in the drug/weight ratio of 1 8 ,  a weight 
variability of 2%, a measurement uncertainty of 0.4%, and p 3.5% from the 
nearest specification limit, the ratio of 00s measurements associated with 
“YES” as opposed to those associated with “NO” was found to be 0 : 50 (n  = 

4), 11 : 39 ( n  = 5). respectively 24 : 26 (n = 6). This nicely illustrates that it is 
possible for a mean to be definitely inside some limit and to have individual 
measurements outside the same limit purely by chance. In a simulation on the 
basis of 1000 sets of IZ = 4 numbers E ND(0, l), the x,,,, s,, and CL(x,,,,) 
were calculated, and the results were categorized according to the following 
criteria: 

1. “Both CL(x,,,,) in the SI” (yes, No), respectively 
2. “No 00s value involved’ (True, False), e.g.: 

Case 
Case NT (257 events): The xmCan and one of its confidence limits is 
insidethe SL, and no 00s results were detected. This is not men- 
tioned in the guideline, and appears to be accepted by the FDA, but 
poses a risk for the manufacturer if the SD is large in that the prob- 
ability of a retest (e.g., at a customer’s lab) with a mean outside the 
SI is larger than 5%. The largest s, that would still be acceptable 
is 11.5 (x: 90, 90, 110, 110; p ( x  e SI) 2 0.08), about an order of 
magnitude larger than the typical repeatability ! 
Case YF (five events) is the one that is here proposed for acceptance 
because the mean is better controlled than in case NT if the SD is 
reasonably small; then the 00s value is a chance result within the 
ND(0, 1) population. 
Case NF (242 events) comprises all situations combining an 00s 

(496 events) is accepted by everyone. 
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result with a x,,,, that has at least one of its CL outside the SI, 
whether xmean itself is inside or outside the SL; the latter case would 
lead to a rejection anyway. The former case, an 00s value and a 
C1(xmean) straddling the SL, is a risky situation, but does not, statis- 
tically spealung, imply that the product is defective. 

This demonstrates that, even for specification limits at f 2  . o, the probability 
is close to 1% that both CL(xmean) are contained in the SI and s, is reasonable 
(say, smaller than lS), but one of the four values is just outside a SL. These 
simulations were expanded to n = 5 and n = 6,  and the number of data sets 
was increased to 350 000 for confirmation. At n = 6 and SL = f2.5, the 
frequency of such “00s” occurrences of type YF is on the order of several 
percent, since for p = 0 the expectation is CP(2.5) = 0.99379, the probability 
of observation is 6 . (1 - CP) = 0.0373 for the single-tailed situation (one 
SL), resp. 0.0745 for the two-tailed one (symmetrical SL). 

Winners and Losers 
Barr ruling? 

To whose benefit is such a strict interpretation of the 

For manufacturers that try to cut corners, the writing on the wall has 
become clearer, and the customer will be thankful. 

For those who act responsibly, the legal and regulatory compliance 
departments and the health authorities benefit because complex scien- 
tific judgment is reduced to the mechanics of wielding checklists. 

The manufacturing and quality control departments face higher costs 
because they have to eliminate process and measurement variability, 
even if they are already operating at the technological limit. They will 
have to add people to their staffs to run all of the investigations and 
handle the additional paperwork (because malicious intent is suspected, 
peers and supervisors have to sign off at every step to confirm that each 
SOP was strictly adhered to; whether the SOPS made sense, scientifi- 
cally spealung, or were installed to satisfy formalistic requirements is 
of no interest here). 

Marketing will be able to advertise that their product complies with 
tighter limits. (See Fig. 4.35.) 

The customer might now be led to believe that the products are “safer,” 
because biological variability (huge, by comparison), medical practise (it is 
left to the doctor’s discretion to adjust the dose), or compliance (dismal) are 
outside this discussion. 
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Will Science Succumb to Legal Correctness? The strict interpretation is 
unscientific because it distinguishes between natural variability (a statistical 
property of every measurement) that is “legally acceptable” as long as every 
measurement is inside the limits, and natural variability that is called “lack 
of control” because a value is outside some limit. In human terms, this pur- 
ported difference between “skdlful work” and “sloppyness” is not apparent, 
and nature does not split such hairs either. A scientist might not recognize 
an 00s occurrence without doing a calculation, but takes the blame if he 
failed to document “laboratory error”; his scientific training, his experience 
with a product and a method, and his honed skills of judgment tell him that 
there is no laboratory error and the product is good, but these are all declared 
void. 

Since it does not appear that a lower limit was set as to what constitutes 
“OOS,” a similarly legalistic situation holds as when the infamous Delaney 
clause” was on the books: What today still passes as “I 105%” (105.005 . . . 
105.049, assuming an instrumental resolution equivalent to 0. l) ,  will become 
00s if instrumental resolution improves by a factor of 10. 

Is the Judge’s Back Exit a Trapdoor? Continue testing: The Judge left 
the door ajar by adding that retesting is appropriate when analyst error is 
documented or the review of analyst’s work is “inconclusive.” There are 
three problems with this: First, retesting without a priori definition of the 
circumstances is forbidden, second, if the “inconclusive” label pops up too 
often this looks suspicious, and third, retesting could be interpreted by some 
as coming awfully close to the rightly banned practice of “testing a product 
into compliance.” So, careful rephrasing of SOPS so that retesting is allowed 
under certain circumstances is imperative. 

Document till you drop: While it looks as if a good explanation would 
help overcome individual 00s results, daily practice demonstrates that lab 
technicians, not being lawyers, never document, date, and sign __ every move 
or observation they make, largely because this would fill volumes with ever- 
repeating trivia and keep them from doing productive work. Thus, managers 
often are at a loss to explain some scientifically not so terribly exciting num- 
ber, and start to write “this combination of ordinary noise, base-line drift, 
and signal asymmetries tells me that . . . but could be stretched to mean 

*The Delaney Clause was introduced to protect the American consumer from dangerous sub- 
stances. By the “if proven toxic, X is forbidden” logic that did not include any reference to 
medical risk, the inexorable progress of instrumental analysis naturally lead to the situation 
where, in a few years, apple pie would have been declared (if limits had the clause not been 
struck from the books, because it is certain to contain a one part per trillion of some X that is 
toxic at the kg-per-day level. 
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. . . .” Well, that will not necessarily convince the FDA that expects crisp and 
unequivocal answers**. 

An investigation would already be called for if both x,,~ and CL(xmean) 
were inside the limits and a single measurement were outside by just “1” 
in the least significant digit. In FDA coinage, this constitutes “product fail- 
ure”; Judge Wolin used the analytically more appropriate “out-of-specifica- 
tion result”***. Mincing words does not help in this case, though, because 
an 00s result must be classified through investigation as either (1) a lab- 
oratory, (2) a non-process operator, or ( 3 )  a process-related manufacturing 
error. Notice that the only available categories are human errors that result 
in bias: Design and execution of a process; it apparently did not cross any- 
body’s mind that measurement noise is a stochastic component that can 
only marginally be influenced by man. (In this connection, see file PEDI- 
GREE.xls.) In other words, the operator is culpable even if Mother Nature 
throws dice. Since an investigation cannot explain away stochastic variability 
as laboratory error (“Laboratory errors occur when analysts make mistakes 
in following the method of analysis, use incorrect standards, and/or simply 
miscalculate the data.”), the result stands. The same is true for the occasional 
instrumental hiccup, unless there is a smoking gun in the form of a blown 
seal, a thunderstorm-induced brown-out, or some other glaring deficiency. 

Maybe lawyers will come to recognize the stochastic nature of measure- 
ments and pass regulations that take this into account. (It does not help that 
in English the word error is used for both the human and the random form; 
in German, for example, the distinction is Ausfuhrungsfehler/ZufaLlsfehler, 
with only the former carrying a connotation of guilt). The probability of this 
happening is remote, though. 

Otherwise, one is left with the possibility to accept that an individual 00s 
result constitutes “failure,” and must be avoided. This can be done by reduc- 
ing the probability of occurrence of one 00s result out of N measurements 
to some predefined level, e.g., p I 0.05. The acceptable level of risk is man- 
agement’s decision, because they will have to face the press (Wall Street, 
FDA, etc.) if scandal errupts, and approve the budget overruns incurred by 
increased testing and wasted batches. 

This is a quirk of American customs that could become the undoing of natives of other 
countries: Even a knowledgeable and honest person is expected to fire back “yes Sir, no Sir”- 
type answers and the slightest wavering is interpreted as a sign of having something to hide. 
In many countries, though, politeness demands that one does not act assertively, and that one 
make a distinction between government agents and drill sergeants. 

FDA-speak: Until recently the term product failure was used, even if for a perfectly good 
product the deviation was traceable to a mistake in adding up some numbers in the lab. This 
is as preposterously strict as not graduating any student who ever forgot to switch off the 
dormitory light. 

** 

*** 
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Figure 4.33. Probability density for one, respectively five measurements. The areas to the right 
of points R and C are the same; the chances of observing one event this far from the mean 
are 5%. The probability of observing five events to the right of point A are S% (equivalent to 
a 25% chance of observing one event). The upper curve is offset by +0.5. 

In the following example, the practical consequences of choosing the sec- 
ond way are explored. 

Example 58: Fig. 4.33 explains the theoretical basis and Fig. 4.34 depicts 
increasingly sophisticated ways of reducing the risk of having a single mea- 
surement beyond the specification limit. Between two and 10 measurements 
arc performed and the mean is calculated in order to decide whether a prod- 
uct that is subject to the specification limits ( 95 . . . 105% of nominal) can 
or cannot be released. A normal distribution ND(p = variable, s: : 1.00) is 
assumed; the case x,,,, =: 105 is explained; the same arguments apply for 
x,,,, = 95, of course. Tables 4.304.32 give the key figures. 

1 .  The most obvious way is to restrict x,,,, to 1105, as was traditionally 
done. It is evident that for x,,,, = 105 the probability of each mea- 
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Figure 4.34. The confidence limits of the mean of 2 to 10 repeat determinations are given for 
three forms of risk management. In panel A the difference between the true mean (103.8, circle!) 
and the limit L is such that for n = 4 the upper confidence limit (CLu, thick line) is exactly on the 
upper specification limit (105); the compound risk that at least one of the repeat measurements 
yi 2 105 rises from 23 (n = 2) to 72% (n = 10). In panel B the mean is far enough from the SLu so 
that the CLu (circle) coincides with it over the whole range of n. In panel C the mean is chosen 
so that the risk of at least one repeat measurement being above the SLu is never higher than 0.05 
(circle, corresponds to the dashed lines in panels A and B). 

surement xi being above the limit is precisely 50%. This case is not 
depicted. 

2. A reasonable procedure for a QC lab using HPLC is to take two sam- 
ples, work up each one, and inject two aliquots of each solution; a 

Table 4.30. The True Mean p has to be at Least this Far from the Nearest SL 
for CV = 1% 

n 2  3 4 5 6 7 8 9 10 

A 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 
B 4.46 1.69 1.18 0.95 0.82 0.73 0.67 0.62 0.58 
C 1.95 2.12 2.23 2.32 2.39 2.44 2.49 2.53 2.57 
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Table 4.31. The Maximal 00s-Risk [ %] This Implies for any Single 
Measurement as Created by the Assumptions in Table 4.30 

n 2  3 4 5 6 7 8 9 10 

A 12.0 12.0 12.0 12.0 12.0 1 2 0  12.0 12.0 12.0 
B 0.0 4.6 12.0 17.0 20.5 23.1 25.1 26.8 28.1 
C 2.5 1.7 1.3 1.0 0.85 0.73 0.64 0.57 0.51 

limit p I 103.82 (circled line in panel A) then reduces the probability 
of the average x,,,, being larger than 105 to p < 0.05 (use Student’s 
t-table for p -: 0.1 because a one-sided test is being done, t = 2.3534 
for 3 degrees of freedom, o . t/V% = 1 . 2.35/2 = 1.18; 105 - 1.18 
= 103.82; cf. Eq. (1.124. The probability p(x  > 105) is found by first 
determining the z-value as z = 1105 - 103.821/1.00 = 1.18, and then 
looking up the cumulative probability (integral over ND(0, 1) over the 
range -00 to 1.18), which is CP = 0.881, and converting to percent 
(1.000 - 0.881) . 100 = 11.9%. For n = 1 this translates to roughly 
one measurement out of 9, for n = 5 it is every other one! The gray 
background area, which increases from 23% at n = 2 to 72% at n ~ 

10 (scale compressed by a factor of 20 relative to the 95-110% assay 
scale), shows that the risk of an 00s result is 39.8% at n = 4 and 
increases for n = 2 + 10 despite the tightening of the confidence 
interval (bold lines). The laudable intention to reduce the risk of over- 
dosing the patient by increasing the number of repeat determinations 
actually punishes the manufacturer by boosting the risk of a “product 
failure because of higher than allowed potency.” The calculations were 
done for p = 103.82. 

3. If the risk of 00s results is disregarded, a refined strategy would be 
to use a flexible limit, namely p I L for L = 100.56 . . . 104.42, which 
would make the upper confidence limit CLu (x,,,,) coincide with the 
105% specification limit (circled bold line in panel B). The 00s risk 
in panel B is larger than that in A for n > 4. 

Table 4.32. The Joint 00s-Risk [ %] Associated with n Repeat 
Measurements 

II  2 3 4 5 6 7 8 9 10 

A 23 32 40 47 54 59 64 68 12 
B 0 13 40 61 75 84 90 94 96 
C 5 5 5 5 5 5 5 5 5 
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Figure 4.35. The range available for the true mean p as a function of the number of repeat 
measurements and the CV. The case discussed in the text is indicated by thick lines and circles. 
The SL are assumed to be 95 and 105%. For a CV = 2% the 00s risk is above 5% for n > 8, 
and for CV = 2.5%, n is restricted to 2. For SL = 90 . . . 1 lo%, the figure must be split in the 
middle and the upper part shifted by +5%, the lower part by -5%. 

4. The best bet a manufacturer can make is to set an upper limit on 
the 00s risk he is willing to take, e.g., 5%, and combine that with 
a risk-reduction strategy for the release/reject decision by increasing 
the number of repeat determinations to IZ 2 4, see panel C. The penalty 
he pays is that the margin for manufacturing error (high/low dosing 
and/or content uniformity) Ipmax - p m i n I  that still fits within the speci- 
fication interval SI = lSLu - S L L ~  is reduced. Cf. Figs. 2.12 and 2.13.) 
The relevant equation is ptotal = (1 - (1 -Pindivid)n), where (1 -Pindivid) iS 
identified with the CP for an individual measurement being inside the 
limit. Figure 4.35 expands the concept to s, = 0.5 . . . 2.5. The conse- 
quences are absolutely clear: If the analytical method does not achieve 
a reproducibility of 1.5% or better, the standard European assay limits 
for pharmaceutical products of 95-105% cannot be met. An American 
manufacturer still has more room to breathe because the corresponding 
limits are typically 90-110%. 
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Without good “laboratory error” explanations to ward off REJECTED 
labels, batch failure rates are likely to increase under the strict interpreta- 
tion. The health authorities are waiting: The rejection rate is a criterion they 
use to judge the trustworthiness of the companies they inspect and license. 

The FDA did not include outlier tests in the USP for chemical assays, 
but allowed the practice for biological tests. The reason for this could be 
that because of the high precision, n is usually small in chemical testing; 
with n < 3 ,  outlier tests cannot be conducted. It appears that Judge Wolin 
followed this recommendation when deliberating his decision.’8s 

Conclusion It should be possible to design a system of rulesIg7 that allows 
natural variability and all-too-human mistakes to be detected and distinguished 
from fraud, risky products, and defective processes. Precision indices taken 
from validation reports and recent calibration runs should allow the risk of 
product failure to be assessed, even if a single value is outside the limits; out- 
lier tests might have a role in this; nobody should have to feel responsible for 
Mother Nature’s poor habits. As long as controls and corrective mechanisms 
are built in, an operator should be able to acknowledge a mistake and properly 
fix it without feeling the heavy hand of the law on his shoulder.**** Laboratory 
errors are part of life, and by criminalizing the participants the frequency of 
errors goes up, not down, because of the paralysis and fear that sets in. 

JUDGE WOLIN’S INTERPRETATIONS OF GMP ISSUES CON- 

RIES, 2-4-93; available from FDA’s h ~ m e p a g e . ~ ~  “AVERAGING RESULTS 
OF ANALYSIS. Aijeraging can be a rational and valid approach, but as a 
generul rule this practice should be avoided because averages hide the vuri- 
ability among individual test results. This phenomenon is particularly trou- 
bling if testing generates both 00s and passing individual results which 
when averaged are within spec$cation. Here, relying on the average Jig- 
ure without examining and explaining the individual 00s result is highly 
misleading and unacceptable. 

“PRODUCT RELEASE ... the USP standards are absolute and cannot 
be stretched. For example, a limit of 90 to 110 percent of declared active 
ingredient, and teJt results of 89, 90, 91, or two 89s and two 92s all should 
be followed by more testing.” 

TAINED IN THE COURT’S RULING IN USA VS. BARR LABORATO- 

Fear of Fraud: It is illuminating that there are companies that lock the input to a com- 
puter system (specifically a so-called LIMS, a Laboratory Information Management System) 
in such a manner that i t  takes the supervisor’s password and signature to correct a missed 
keystroke, even if this is noticed before the (Enter) key is pressed. If the unwitnessed use of 
the (Backspace) key betrays “malicious intent to falsify raw data,” then every scientist should 
be in jail. 

**** 
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[Author’s comment] Because a general rendition of the “Scientific 
Method’ cannot be cast in legally watertight wording, all possible outcomes 
of a series of measurements and pursuant actions must be in writing before 
the experiments are started. This includes but is not limited to the number of 
additional samples and measurements, and prescriptions on how to calculate 
and present final results. Off-the-cuff interpretations and decisions after the 
fact are viewed with suspicion. 

4.25 DOES MORE SENSITIVITY MAKE SENSE? 

A quality control laboratory had a certain model of HPLC in operation. One 
of the products that was routinely run on the instrument contained two com- 
pounds, A and B, that were quantitated in one run at the same detector wave- 
length setting. At an injection volume of 20 pL, both compounds showed 
linear response. The relatively low absorption for compound B resulted in 
an uncertainty that was just tolerable, but an improvement was sought. 

The problem could have been resolved by running two injections, either 
with different wavelength settings and/or with different dilutions injected, 
but this would have appreciably increased the workload of the technicians 
and the utilization factor of the instrument. Without an additional instru- 
ment, the laboratory would have lost much of its flexibility to schedule addi- 
tional analyses at short notice. Another solution would have been to utilize 
a programmable detector that switches wavelengths between peaks, but that 
only works if the weakly detected component strongly absorbs at some other 
wavelength. 

On checking through instrument specification sheets, the lab’s director 
realized that another model of HPLC had a sensitivity (ASignal/AConcen- 
tration, usually determined as the first derivative of the calibration function 
near the origin) that was about twice as high as that of the first HPLC. By 
switching the product from one instrument to another, he would have the prob- 
lem off of his desk. He ordered a comparison using the method as written, and 
for good measure added some injections at 10 pL. The results can be seen in 
Fig. 4.36. For both compounds, the 10 pL injections seemed to fill the bill: The 
signals had increased to about twice the height. While this was more or less true 
over the 50-100 range for compound B ,  compound A’s calibration curve (here 
approximated by Y = c . A) indicated that a linear interpolation, particularly 
if one contemplated one-point calibrations (dotted line!), would be strongly 
biased. A multipoint nonlinear calibration approach, on the other hand, while 
theoretically feasible, would consume an inordinate proportion of the avail- 
able resources before the reliability of the result came anywhere near what was 
already available on the model 1 instrument. 
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Figure 4.36. Cross validation between two HPLCs: A stock solution containing two com- 
pounds in a fixed ratio was diluted to three different concentrations (1 : 10: 20) and injected 
using both the 10 and the 20 p1 loop on both instruments. The steps observed at Amount = 100 
(gray ellipses) can be explained with effective loop volumes of 9.3 and 20 pl (model I )  and 
14.3 and 20 pl (model 2) instead of nominally 10 and 20 pl. This is irrelevant as both a sample 
and the calibration solution will be run using the same equipment configuration. The curved 
portion of the model 2 calibration function was fitted using Y = A 4; this demonstrates the 
nonlinearity of the response at these high concentrations. The angle between the full and the 
dotted line indicates the bias that would obtain if a one-point calibration scheme were used. 

When the results for the 20-pL injections are included in the analysis, it 
is quite clear that the situation was much more complex than the comparison 
of sensitivities would suggest: 

The chosen concentrations overload the detector of the model 2 instru- 
ment (curvature in the 0-5-10-100 and 0-100-200 range). 

It would be impossible to determine both compounds in the same 
run. 

The selection of an instrument is not just a question of comparing spec- 
ification sheets. Furthermore, since vendors usually include legal word- 
ing in their brochures that allows them to change components (detector 
geometry, plumbing details, electronics, etc.) without notification, even 
two instruments of the same make, model, and nominal performance 
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may be sufficiently different to require revalidation and/or re-optimiza- 
tion. This is all the more true if the method requires the instrument's 
characteristics to be fully utilized. 

4.26 PULL THE BRAKES! 

Three test batches of a chemical were manufactured with the intention of 
validating the process and having a new product to offer on the market. Sam- 
ples were put on stability under the accepted ambient (25"C, 60% relative 
humidity) and accelerated (= stress; 40°C, 75% rh) conditions cf. Section 
4.20. One of the specification points related to the yellowish tinge imparted 
by a decomposition product, and an upper limit of 0.2 AU was imposed 
for the absorption of the mother liquor (the solvent mixture from which the 
crystalline product is precipitated) at a wavelength near 400 nm. 

At t = 0, the only thing that could have been a reason for concern was 
the fact that two batches started with a much higher amount of the impurity 
than the third, see Fig. 4.37, right side. At t = 1 and 2, the stressed samples 
suggested a slowing down of the degradation. These points are underlaid 
by gray ellipses to alert to the fact that the common trend, high at 1, low 
at 2 months for all three samples, could be due to a calibration error. At 
t = 3 it became obvious that all samples had suffered. A quick graphical 
extrapolation pointed to a probable shelf life of only about 6 to 9 months, 
too little to make the product commercially interesting (cf. Section 4.20 for 
calculation of shelf-life). Still, some harbored hope that while the stressed 
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Figure 4.37. Build-up of a decomposition product over time. Two climatic conditions were 
evaluated: The higher the temperature, the more rapid the process. 
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samples might not make it, those stored at ambient would survive to at least 
12 months. Unfortunately, the 6-month samples confirmed the trend, and the 
project died. When the data were routinely put through a shelflife analysis 
(program SHELFLIFE or file SHELFLIFE.xls, data set BUILD-UP.dat), the 
result came out as “4 months” at 40°C and just a month more at 25°C. 

Conclusions Regulators, having learned their chemistry, expect either sim- 
ple mechanisms (e.g., zero-order hydrolysis kinetics under controlled stan- 
dard conditions if the packaging limits the amount of water diffusing through 
to the product), or a good justification for a more complicated degradation 
model. Hoping for some unspecified chemical wonder to avert an unfavor- 
able trend borders on self-delusion, and if it does occur in the end, then one 
is often hard-pressed for an acceptable model or sufficient data to write up 
a plausible explanation. The Marketing Department-unaware that “statis- 
tics” would add a safety margin to any conclusions drawn from the little 
data available-asked for a re-analysis in the belief that there was a way to 
make the numbers pronounce “stable for 12 months”; they had to be politely 
rebuffed. 

What was the influence of the storage temperature? In the right panel, the 
stressed samples degrade faster, at least in hindsight, but the trend was not all 
that clear before the 6-month results became available. A correlation between 
the two storage conditions (left panel) leaves no doubt: A temperature-depen- 
dence is there, and there might even be some form of curvature, but there is 
hardly enough data to confirm any specific theoretical model. The samples 
do not all start the stability program with the same amount of the degrada- 
tion product (difference = 0.07 at t = 0, about half of what accrues over six 
months at 25”C), but the points fall on the same curve. This makes it unlikely 
that the degradation process involved during manufacturing is different from 
that encountered during storage, but it proceeds faster. If the product had sur- 
vived, a test could have been run at the intermediate condition, 30°C/-65% 
rh, to increase the range of acceptable storage conditions. 

4.27 THE LIMITS OF NONLINEARITIES 

Many biologically interesting molecules, for instance hormones, can be 
determined using any of a number of analytical methods, such as GC, GC- 
MS, and RIA. In blood serum and similarly complex matrices, the more tra- 
ditional methods (colorimetry, titration, TLC) suffer from interference and/or 
lack of sensitivity. 

The selectivity issue might be manageable for a single subject, but if 
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dozens of humans or animals are to be monitored, differences in genetic 
makeup and metabolic status could well call for individual adjustments of 
extraction and/or chromatographic conditions, which would drive up costs 
and make the scheme impossible to validate. Immuno-assays, on the other 
hand, while being less precise and perhaps even less specific, offer the dis- 
tinct advantages of working with body fluid from a variety of individuals 
and being fast. The boundary conditions imposed by the problem setting will 
allow a selection to be made on the basis of required accuracy and precision, 
number of samples and allowable turn-around time, available skill base and 
instrumentation, cost limits, etc. 

This example assumes that RIA was chosen. The principle behind RIA is 
the competition between the analyte A and a radioactively tagged control *C 
(e.g., a ‘25J-marked ester of the species in question) for the binding site of 
an antibody specifically induced and harvested for this purpose. The calibra- 
tion function takes on the shape of a logistic curve that extends over about 
three orders of magnitude. (Cf. Fig. 4.38a.) The limit of detection is near 
the BIB0 = 1 point (arrow!) in the upper left corner, where the antibody’s 
binding sites are fully sequestered by “C; the nearly linear center portion is 
preferrably used for quantitation. 

Here the results of 16 calibration runs are presented: For each run, the con- 
centration standards 0, 5 ,  10, 20, 50, 150, and 500 [ng/ml] were done in trip- 
licate, and the four parameters of the R ~ d b a r d ’ ~ ~  equation were determined 
using the 7 values; each (B/Bo) was then run through the inter- 
polation as if it were an unknown’s signal. The results of these back-calcula- 
tions are depicted in Figs. 4.38c,d; the obviously linear function shows that 
the calibration and the interpolation are under control. The limit of detection, 
expected at a concentration of 0.1 before the experiment, was determined for 
each calibration run and is seen to vary between about 0.026 and 0.65, see 
file RIA-Calib.xls; the “broom” shape is not an artifact of the method. Fig- 
ure 4.38d shows the same data as Fig. 4 . 3 8 ~  but in a format more likely 
to appear in a method validation report. In Fig. 4.38b, the precision infor- 
mation is summarized: For the three concentrations 5 ,  20, and 150 ng/ml, 
the %CV for each triplicate determination is given as a dot, and the %CV 
for the back-calculated concentrations are shown as a line. Because of the 
logarithmic scale, the average CV is not found in the middle of a range, but 
closer to the top (horizontal lines). 

The difference, e.g., 5.0 - 1.4 in the column marked “20 ng/ml,” must be 
attributed to the “interpolation error,” which in this case is due to the uncer- 
tainties associated with the four Rodbard parameters. For this type of anal- 
ysis, the FDA-accepted quantitation limit is given by the lowest calibration 
concentration for which CV I 15%, in this case 5 ng/ml; the cross indicates 
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Figure 4.38. Validation data for a RIA kit. (a) The average calibration curve is shown with the 
LOD and the LOQ; if possible, the nearly linear portion is used which offers high sensitivity. 
(b) Estimate of the attained CVs; the CV for the concentrations is tendentially higher than that 
obtained from QC-sample triplicates because the hack transformation adds noise. Compare the 
CV-vs.-concentration function with the data in Fig. 4.6! (c)  Presents the same data as (d), hut on 
a run-by-run basis. (d) The 16 sets of calibration data were used to estimate the concentrations 
(“hack-calculation”); the large variability at 0.1 pg/ml is due to the assumption of LOD =- 0.1. 

the intercept of the CV-line with the 15% level, which is at 4 ng/ml. The 
dotted horizontal in Fig. 4.38a points to the corresponding B/Bo level for 4 
ng/ml. 

When reporting a result above this concentration level (e.g. 73.2 k 4.2), 
one should append a precision statement (“73 f 4,” resp. “73 (-t-6%)”). 

A result below the quantitation limit would be given by “<LOQ.” If the 
data are used in further calculations, a number of either zero or, in this exam- 
ple, five, would be substituted, the rule being that option is chosen which 
makes it harder to prove a hypothesis or lowers the risk of a false statement. 
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Table 4.33. Estimation of CV. 

5 ng/ml 20 ng/ml 150 ng/ml 

Average CV for triplicate calibration 

Average CV for back-calculated 

Estimated CV due to interpolation, e.g. 

measurements 0.91 1.4 2.5 

concentrations 13.0 5 .o 3.4 

J132 - 0.912 13.0 4.8 2.3 

4.28 THE ZEALOUS STATISTICAL APPRENTICE 

An existing HPLC method was modified to assay the active component in 
a line of products that were to comprise, amongst other dosage forms, a gel 
and an emulsion, both containing 2% of the drug. Because there were no 
complicating factors involved, such as excipients that could co-elute with 
the drug substance or give rise to a signal at the chosen wavelength, the 
method was thought to be applicable to both forms. A validation protocol 
was drawn up that involved, along with other tests, ten repeat injections of 
each sample solution. The sample solutions were obtained by thoroughly 
shaking an accurately weighed quantity of gel or emulsion in a given volume 
of a water/alcohol mixture that would easily dissolve the drug and would 
allow the excipients to form a second phase. Vials containing either sample 
or calibration solution were placed on the HPLC’s caroussel along with rou- 
tine samples in a predetermined order so that the evaluation program would 
aquire all of the chromatograms, establish the calibration line’s parameters, 
automatically interpolate the individual sample’s drug content in percent of 
the nominal concentration, and depict the results are tables and in the form of 
an old-fashioned line-printer “plot.” The next morning, the technician imme- 
diately sat down to evaluate the chromatograms: The peak shapes looked fine 
and there was no reason to improve on the base-lines that the signal inte- 
grator’s algorithm suggested. The numbers from the summary table, ordered 
by size, are given in column 2 of Table 4.34. 

The results appear to cluster around the values 101 with the first two 
and the last gel samples falling out of line. The technician reported this to 
his supervisor and the two thereupon decided to cast out “bad results”; by 
recalculating the standard deviation for the seven remaining gel results, they 
easily demonstrated a big improvement in s, (from 0.47 to 0.115) and “con- 
firmed” the bad results as being really bad: The outliers no longer hovered 
around t = 1.4 . . . 2. but stuck out at t‘ = 6 . . . 8. 
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Table 4.34. Content Uniformity of Dosage Form; Results 
After Elimination of Three “Outliers” Are in Italics 

Sample GEL [% of nominal] 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
Mean 
Std. Dev 
CV 
N 
F test 
t test 

100.3 
100.4 
100.9 100.9 
101.0 101.0 
101.1 101.1 
101.1 101.1 
101.2 101.2 
101.2 101.2 
101.2 101.2 
102.0 
101.04 101.10 

0.47 0.115 
0.43 0.11 

10 7 
HI; F = 16.7 (Fcrit,o.os = 4.1) 
HO; t = 0.39 (t,,,t 2.6; p 0.71) 

Example 59: (102.0-101.04)/0.47 = 2.04, (102.0-101.10)/0.115 = 7.8). 
Thus, the interpretation could have been that a fantastic reproducibility had 
been achieved, and that three of the 10 results could not be relied upon 
because of operator error (pipetting, weighing, whatever . . . ). 

The pair set out to write up the first section of the validation report but 
their triumph was short-lived. A dispassionate colleague pointed out one fal- 
lacy and two GMP violations: 

A sample of only 10 repeat determinations is “statistically small,” and 
far-reaching conclusions are hard to draw, particularly as far as the dis- 
tribution of values is concerned. Claiming an extraordinarily high pre- 
cision in the face of the alternative explanation-an average and very 
plausible precision-should raise eyebrows. 
Since the U.S. vs. Barr decision in 1993 (relevant to pharmaceuticals 
and related fields, rules applied by the Federal Food & Drug Administra- 
tion, FDA), outlier tests may no longer be applied to physicochemical 
tests, under the assumption that such test methods, having been opti- 
mized and validated for the particular set of circumstances, rarely pro- 
duce outliers. These tests may not be applied to CU results at all. 
Good manufacturing practices mandate that operators work according to 
pre-set procedures and write down any observed irregularities as they 
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occur; the “laboratory error” clause cannot be invoked without good 
reason, particularly if decisive experiments are under way. 

In retrospect, the zeal came about by the will to deliver “perfect results” and 
the failure to stand back and see the big picture before plunging into the 
details: 

The calibration is as good as can be expected. 
The repeatability patterns look perfectly acceptable. 

A number of lessons were learned: 

Use graphics instead of or as adjunct to tables. 
Know the method and what it can deliver. 
Do not try to wring anything out of the data beyond what can be rea- 

Adhere to protocols and accept the results. 
sonably expected under routine, or at most R&D conditions. 

Pure logic would forbid any attempt to further reduce standard deviations if 
the results already demonstrate excellent proficiency: A CV of around 0.5% 
is about as good as one can hope for in an HPLC method; a CV of 0.1 % can 
then only come about as a chance result or because the instrument’s display 
should offer a digit more. In a poorly designed method, however (e.g., an 
intrinsic method variability of zk6 mAU in connection with an instrumen- 
tal resolution of 10 mAU), this would be expected and would be a reason 
for an investment decision. The quotient of observed-to-expected variability 
should have been looked at more closely. A graphical depiction showing the 
specification limits and the individual results would have helped. (See the 
summary sheet shown in Table 4.35). As experience with the manufacturing 
process and the analytical method accumulate, one glance at the printout will 
tell whether there is a problem or not. 

If one lives by the regulations and does not cast out “outliers,” then a 
comparison between the gel and the emulsion results shows that the stan- 
dard deviations are comparable ( F  = 1.57), but the means are significantly 
different; action is now called her to determine the cause for this discrepancy: 
Manufacturing error, incomplete extraction, or interference by excipients? 

Summary Sheet for HPLC Since all 10 calibration results are very close 
to 100% and no trend is apparent, the HPLC system is regarded as being “in 
control.” 

The routine gel results indicate either a manufacturing bias (overdosing) 
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of about 1%, (A), a calibration error (B) ,  or a superimposed extraneous (non- 
specific) signal (C). Since placebos (dosage form without drug) run under 
the same conditions give a base-line result (peak area = 0), the conclusion 
must be that hypotheses (B, C) do not apply and that most probably a man- 
ufacturing error (A) is the cause. 

The emulsion results can be interpreted either as manufacturing error 
(about 3% underdosing (D)), incomplete extraction ( E ) ,  or inhomogeneity 
( F ) .  Possibly, there is a trend towards an increasingly positive signal (G). 

Possible ExplanationslCourses of Action 

Interpretations A and D can easily be checked by taking additional sam- 
ples from later production runs. If the means seen for many production 
lots tend to concentrate near loo%, then the emulsion results seen here 
would just be chance result on the low side; if the means concentrate 
near some other number, then a formulation error, a manufacturing loss, 
or sample work-up could be to blame. 

Incomplete extraction ( E )  would always result in low values. 

Product inhomogeneity ( F )  for replicate samples pulled from the same 
production lot would show up in sample means that scatter much more 
than the method repeatability (=A=). 

Sample solution instability or incomplete extraction/separation would 
show up if several aliquots from the same sample work-up were put 
in a series of vials that would be run in sequence that would cover at 
least the duration of the longest sequence that could be accommodated 
on the autosample/instrument configuration. For example, if an individ- 
ual chromatogram is acquired for 5.5 minutes, postrun reequilibration 
and injection take another 2.75 minutes, and 10 repeat injections are 
performed for each sample vial in the autosampler, then at least 15 . 
60/(5.5 + 2.75)/10 = 11 vials would have to be prepared for a 5 P.M. 
to 8 A.M. (= 15 hour) overnight run. If there is any appreciable trend, 
then the method will have to be modified or the allowable standing time 
limited. 

Conclusions Concerning an Investigation The effective standing time of a 
given sample, its position in the sequence of samples, and many other details 
are normally not reported in the manufacturing batch records and have to be 
dug out of the analytical raw data. Because it is the thick signed-off reports 
that the data analyst in the statistics department tends to see first-he might 
need help in understanding the method- and instrument-specific notebook 
entries, if he ever learns of them-many investigations come to improper 
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conclusions. It is absolutely essential that the investigators are thoroughly 
familiar with the laboratory, method, and product particulars. 

The raw data should be accessible in summary sheets; the semi-graphical 
format is a big help because it exposes the problematic cases and provides 
a pointer to the notebook entries. 

4.29 NOT PERFECT, BUT WORKABLE 

A pharmaceutical product contains two active principles, A and B,  in three 
fixed combinations. In order to validate the HPLC method, five calibration 
solutions are made up that contain compounds A and B.  The specific concen- 
trations for A are 0.006, 0.012, 0.018, 0.024, and 0.03 mg/ml (LO, respec- 
tively the 10- and the 100-fold thereof (MID, HI), and those for B are 0.05, 
0.1, 0.15, 0.2, and 0.2.5 mg/ml. 

Calibration Each of the solutions is injected once and a linear regression is 
calculated for the five equidistant points, yielding, for example, Y = -0.00064 
+ 1.004 . X ,  r2 = 0.9999. Under the assumption that the software did not 
truncate the result, an r2 of this size implies a residual standard deviation of 
better than 0.0001 ( ~ 0 . 5 %  CV in the middle of the LO range; use program 
SIMCAL to confirm this statement!); the calibration results are not shown 
in Fig. 4.39. 

Repeutability Fiveteen placebo tablets are dissolved in water and spiked 
with the appropriate amount of a stock solution LO and/or HI so as to obtain 
the same concentrations of A and B as for the calibration solutions. Aliquots 
of each of these solutions are injected three times, for a total of 45 results 
of A and 4.5 for B. 

Content Uniformity 
and aliquots of the so obtained solutions are injected. 

Ten tablets per formulation are worked up one by one 

An internal standard is used throughout. 
In Fig. 4.39, results for spiked placebo and for the verum tablets are given 

for compound A (bold lines) and B; all horizontal bars should be at loo%, and 
the vertical lines should be centered at the same height. The gray trendlines, 
particularly for the LO- and HI-range A-values indicate a systematic dif- 
ference in response between the calibration solutions and the spiked placebo 
tablets (extraction efficiency, interference, etc.). For same ranges, the verum- 
tablets assays either underestimate the content of A by 4-.5%, or A is under- 
dosed. For compound A the repeatability figures are as follows (%-of-nom- 
inal, see file Fig4-39.dat), see Table 4.36. 
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Figure 4.39. Variability of back calculated concentrations Concbc. For each concentration 
range five calibration points were measured, over which a separate regression was run (not 
shown). Placebo tablets were spiked to the same concentrations and measured in triplicate 
(short horizontal lines; gray trend lines in background). Ten repeat determinations of actual 
product (vertical bars = Mean k SD) were done. The bold lines pertain to compound A in all 
concentration ranges, the thin lines to compound B (middle concentration range only). 

When the group means (e.g., 101.4, column 3) are subtracted, the resid- 
uals in column 4 result, the standard deviation over which is 0.33 (f= 14). 
The standard deviation within the individual groups of “LO’ measurements 
is 0.52 or lower (number in parentheses); when the squares of these num- 
bers are multiplied by 2 ( f =  2 each) and summed, an overall variance of 
1.52 is found, the same as when 0.33 is squared and multiplied by 14. The 
difference between the numbers 0.33 and 0.76 is due to the variability of 
the group means. When the same treatment is applied to the MID and the 
HI groups, the standard deviations in the next two lines are found. That the 
difference for the HI group is particularly large is no surprise: The means 
drop over the concentration range. The regularity of the pattern is an indi- 
cation that a systematic effect is at work. Because the corresponding pattern 
for compound B falls out of line, too, an explanation involving a calibration 
error is close at hand. The common stock solution or one of the dilution 
steps performed before the spiking of the placebo matrix is a conceivable 
explanation, but since the patterns for compounds A (down) and B (up or 
level) point in different directions, that theory falls flat. Another explanation 
is that Compound A in the formulation HI is at a concentration that is 10-100 
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Table 4.36. Excerpt of Triplicate Determinations of Spiked Placebo 

Within- 
Mean Group 

Concentration Assay (S td.Dev.) Residuals 

0.006 

0.012 

0.018 

0.024 

0.030 

Std. Dev. LO 

Std. Dev. MED 
Std. Dev. HI 
Std. Dev. A 

101.4 
101.5 
101.4 
99.9 
99.9 

100.8 
99.7 
99.9 

100.0 
100.5 
99.7 
99.7 
99.2 
99.3 

100.0 

101.4 
(0.06) 

100.2 
(0.52) 

99.9 
(0.15) 

100.0 
(0.52) 

99.5 
(0.44) 

(0.4) 

(0.7) 
(0.7) 

(1.93) 

-- 0.03 
0.07 

-0.03 
- 0.30 
-0.30 

0.60 

0.03 
0.13 
0.60 

-0.17 

-0.30 
-0.30 
-0.30 
-0.20 
-0.50 

0.33 

0.60 
0.57 
0.50 

times higher than in the other two formulations, and so could contribute to a 
competitive interaction of A and B with the matrix, i.e., in adsorption. The 
question could only be answered through further experimental work, but this 
was not done because the observed irregularities are far within the required 
specification limits. 

The average within-group repeatability of *0.5% most likely describes 
detector noise that leads to misassignments of the integration endpoints and 
peak-area variability, and can be considered acceptable for low-dose prod- 
ucts. 

Example 60: If compound samples that were actually composed of five 
individual tablets had been analyzed instead of the spiked matrix, the CV 
would be expected to be larger than f0.5% on account of the additional 
manufacturing error, but by a factor 4 = 2.2 lower than the content uni- 
formity CV. (Cf. Eq. (1.5).) Since the average CV for CU was found to be 
~ 1 . 7 6 %  (k1.97, 1.28, resp. 1.95%), this would have to be in the region of 
about 1.76/2.2 = k0.8, which is still well within the range of accepted instru- 
mental noise. 
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The following conclusions are drawn: 

The repeatability is limited by instrumental noise. 
The content uniformity is within the accepted range (1.93% is less than 
6% CV; maximum one out of ten values is outside the 85-115% range, 
but within the 75-125% range; no value below 75 or above 125% of 
label claim. 
As long as the specification limits remain at 90-110%, there is no reason 
to improve the method at high concentrations of A; this could be done 
with a view towards a future tightening to 95-105%, but would not at 
the moment impact the regulatory position or improve the medical risk, 
however. 

Note that this case study was calculated on the basis of an old report in 
which all assay values were rounded to the 0.1% position; if the raw data 
had still been accessible, the conclusions would probably have remained the 
same, but some specific numbers could have changed. This situation is very 
common if data trends over several years are investigated. It is not unusual 
that raw data from routine production QC release tests are destroyed a year 
or two after the expiration date of the product because local laws do not 
require longer retention. 

4.30 COMPLACENT CONTROL 

A tablet containing two drug compounds, A and B, is being scaled up from 
kilogram to half-ton batches in preparation for a regulatory submission. The 
applicable specifications and sample work-up methods are 

Assay: 90-110% of label claim (pick 20 tablets at random; grind and 
mix; weigh an amount of powder corresponding to five tablets; dissolve 
compound sample and centrifuge excipients; run a HPLC analysis on an 
aliquot of the supernatant), and 
Content uniformity: Nine out of 10 randomly picked and individually 
analyzed tablets must yield drug contents between 85 and 115% of label 
claim; all 10 results must be within 75-125% of label claim. 

It is to be expected that the compound sample gives a well-defined mean 
drug content due to the large sample size that averages out tablet-to-tablet 
inhomogeneities and also because the large amount of powder taken through 
the work-up reduces any effects that losses might have. 
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Figure 4.40. Content uniformity samples (10 each) taken from the beginning, middle, and 
end of a production run and each assayed for the compounds A and B .  The results were sorted 
according to size; both the slopes and the averages are very similar and well within the allowed 
range. 

The content uniformity results for compounds A and B are shown in Fig. 
4.40: the three data sets from the beginning, middle, and end of the manu- 
facturing run were individually ordered by size and plotted. The results are 
as follows (use program MULTI and data file CU-Assayl.dat; see Tables 
4.37 and 4.38): 

Example 61: The raw data, given as %-of-nominal values with one dec- 
imal place, are found in Table 4.37: For each group of 10 values the mean 
and the standard deviation were calculated. Using these, the t-values for the 
differences IL - mean), with L = 75, 8.5, 115, resp. 125% were determined; 
they are all above 2.9, indicating low risk. The corresponding CP-values 
were calculated; the differences ACP75-85 and ACPl15.125 were added and 
multiplied by 100 to obtain the approximate risk, in %, of finding a result 
between the inner and the outer limits. For a content uniformity test with n 
= 10 tablets, a risk of 0.003872% translates into a deviant result once every 
20-25 trials, or, with six CU runs per batch, every third or fourth batch. 
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Table 4.38. Effect of Raw Data Rounding on Bartlett and ANOVA Tests 

Compound A Compound B Raw Data 

96.23 99.50 96.07 98.75 97.76 96.83 Mean CU, full precision 
2.83 2.93 3.75 2.69 1.62 3.99 SD 

96.18 99.43 95.99 98.70 97.72 96.79 Mean CU, rounded to 1 
2.83 2.93 3.75 2.69 1.63 3.98 SD decimal 

96.24 99.50 96.08 98.74 97.76 96.82 Mean Compound assay, 
2.83 2.92 3.74 2.69 1.61 3.99 SD full precision 

The standard deviations are not distinguishable (Bartlett test). Conclusions are valid for all 
three data sets. All means belong to the same population (ANOVA test). Overall result: 97.5 
k 3.2 (compound assay). 

The six data sets do not differ in variance (Bartlett test) or in means 
(ANOVA), so there is no way to group them using the multiple range test. 
This being so, the data were pooled for compounds A and B, yielding the 
two columns at right (data in CU-Assay2.dat). 

The risk of noncompliance is seen to be negligible. The last row gives 
the results for the compound assays for comparison. 

Table 4.38 repeats the Mean/SD rows of the previous table and com- 
pares these results to those for full-precision content uniformity and the cor- 
responding compound sample assays; because the raw data were normalized 
to %-of-nominal, many more decimal places were available than are quoted 
in Table 4.37; this shows that the rounding procedure must be carefully con- 
sidered, and a reduction of significant digits does exact a price. Fortunately, 
the conclusions that are drawn do not differ. This problem of slight differ- 
ences in the last digit has a very practical aspect, though. Under GMPs, a 
basic requirement is that the data going into submission documents must 
be peer-reviewed for transcription and calculational errors. This is usually 
interpreted to mean a peer witnesses the data acquisition and the supervi- 
sor reviews the calculations (standard practice in pharmaceutical labs), and 
on top of this a QA person checks everything in the submission documents 
against the raw data on a dotted Is & crossed Ts level. The willingness 
to bear responsibility sometimes drops to zero and a report quoting some 
number as “98.7%” is rejected on the grounds that the laboratory note book 
says “98.696%.” Because not all software packages, calculators, or instru- 
ments allow the number of decimal places to be freely chosen, changing one 
component in the equipment train could mean all relevant SOPS have to be 
adapted if one does not want to risk having to come up with long justifica- 
tions for mathematical trivialities. 
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4.31 SPRING CLEANING 

GMP regulations call for an annual product review; essentially, the inten- 
tion is to detect irregularities and emerging trends so the process can be 
fixed before the product drops out of specifications. This is a common- 
sense approach considering the large number of things that can go wrong 
with multistep processes involving dozens of raw materials, elaborate equip- 
ment trains, and a multitude of operators, supervisors, and managers. Such 
a complicated manufacturing process is robust and delivers a product with 
a reproducible quality if and when each element conforms to a given set 
of criteria such as impurity profile, crystal size distribution, stabilizers, 
colorants (chemicals), machine settings, wear, vibration, replacement parts, 
temperature, humidity (equipment, infrastructure), calibration status (analyti- 
cal instruments), and skills (operators). 

Over the life cycle of a product, many changes take place, some of which 
are known and controllable (e.g., upgrading an analytical method, installing 
a new mixing vessel), and some that can only be suspected (e.g., a supplier 
changes his process or modifies the design: The small print says something 
along the lines “the manufacturer retains the right to improve the product 
without notification”). In both cases, the problem boils down to complexity 
that is only incompletely described by a specification sheet. A rough calcu- 
lation illustrates the point. 

Example 62: If a manufacturing process involves two raw materials, each 
defined by three sets of specification limits, and four pieces of equipment 
with one control knob, then a complete validation protocol would ask for 
(Three settings: Lo, Target, Hi)”(2 materials . 3 specs + 4 machines . 1 
control) = 3’’ =: 59 000 experiments, even without repetitions. This prod- 
uct would never reach the market if one did not employ experience and 
scientific rationale to simplify development by testing only the presumed 
critical issues, say a total of three specification points for 33 = 27 experi- 
ments. 

Since both the manufacturer and his suppliers are forced to work by the 
same strategy, each company’s raw materials QC and finished product QC 
laboratories test only for the most obvious characteristics. An undetected 
change in a raw material’s properties might change a product characteristic 
that could also go unnoticed until much later. 

The gradual accumulation of many such changes is likely to show up in 
the quality of the product if enough numbers are compared over a suffi- 
ciently large number of production runs. Anyone undertaking such a review 
must keep an eye out for the effects of human frailty and “mission creep.” 
Accepting a list of numbers at face value can be dangerous. Feeding such 
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a list through some fancy statistics packages without doing a lot of filtering 
beforehand is careless at best. 

The Excel-file PRODUCTE3FG.xls contains an excerpt from a large 
spreadsheet put together over the course of 2 years by the chemists respon- 
sible for a particular synthesis step. A small portion is reproduced in Tables 
4.39 and 4.40. This took care of the first step of the review process, namely 
finding the relevant items in the manufacturing batch records and writing 
them into the spread sheet. Incidently, the trend towards a paperless shop 
floor will not necessarily help: Transcription errors will be down, but the 
items that are acquired on-line, such as temperature-, pressure-, and r.p.m.- 
readings will be so much more easily available that the sheer quantity of 
these apparently relevant and high-quality data will keep people from doing 
what they are best at: Casting a critical eye and seeing connections. 

PRODUCT_BFG.xls consists of the chemist’s table, a reduced table 
obtained by casting out data that is not ammenable to statistical analysis 
such as subjective assessments (“off-white color, characteristic crystal form, 
pungent smell”; STEP#l), and the final table that was freed of all incon- 
sistencies by going back to the original data (STEP#2). Various interesting 
items are highlighted: 

The items and the appropriate dimensions and specifications are given 
in the first three columns. 

A dimension “txt” indicates a subjective description, something that 
obviously cannot be analyzed by statistical means, particularly if two 
individuals use differing terminology (batches 12 and 13). Enforcing 
the use of pre-defined terminology, e.g., by way of pick-lists at the data- 
entry terminal, would have prevented this particular mistake from hap- 
pening but would potentially have provoked a loss of information right 
up front: “If it’s red/blue/green they want, let them have that; something 
could be wrong because I see pink, but I’ll put that in the ‘R’-box.” 
Identity tests have binary character and are completely irrelevant from 
the chemometric point of view: Only gross failure would yield a product 
that would differ from the reference. 

In the two rows for TLC, the legends “total impurities” and “single 
impurity” are reversed. 
The TLC method is good enough to in all cases determine that the impu- 
rity in question is below O.S%, the criterion for product release. How- 
ever, the data cannot be used in a quantitative statistical analysis because 
several levels of LOQ are involved: from “<O.S%” down to “0.05%.” 
All entries would have to be re-coded as “<.5%,” with the total loss of 
information, because otherwise distinctions would be introduced where 
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none existed (does “<0.5%” mean “0.1 . . . 0.5%,” or “<O.l%” next to 
an entry “<O. 1%”?). 

There are errors due to Excel’s automatic time-format: The “4. Jul” and 
the “35889” (Julian date) in batches #11 and #18 can be traced to the 
use of both the Continental (“4,7”, sieve analysis) and the correspond- 
ing Anglo-American notation (“4.7”) in the same table (many people 
get so used to decimal points that they switch back and forth between 
commas and points). Nothing happens as long as the entries remain in 
text mode; when conversions to specific formats are necessary in order 
to do calculations, auto-formatting takes over and in this case decided 
to interpret one notation as a number, the other as a date. In interna- 
tional companies, where a lot of data gets pushed around, one way to 
circumvent renewed data-entry is to export the text-version to a word- 
processor program, edit commas to points, or vice versa, and reimport. 
If column-separation is achieved by inserting commas or semicolons 
(“3.45, 6.87, ...” vs. “3,45; 6,87; .. .”; e.g. *.csv files), one has to be 
careful not to completely garble the message. 

Three different batch sizes were used, namely ~ 4 0 0 ,  4 0 0 ,  respectively 
-1200 kg; in the chemical industry it is standard practice to validate a 
process for the available kettles and then adjust the particular batch size 
(minimum filling so the stirrer bar remains covered, maximum filling 
so no overpressure occurs and vents stay free) to achieve the requested 
tonnage; often, campaigns of batches are run before the equipment is 
cleaned and refitted for the next product, see batch numbers #19 . . . 23, 
followed by #1, . . . . 
The input to batch #23 contains an unwarranted decimal point, which 
causes the yield-figure to go way beyond 100%. 

The sieve analysis notation changed at some point in time, see batches 
#1, #23 and #24 in columns N-P, lines #19 and 21: The “>45 pm” value 
shifts from =92 to ~ 7 % .  The customer had requested an additional spec- 
ification ‘‘<lo6 pm”, which explains the row of dashes in line 19 up to 
column N ;  an appropriate footnote should have been inserted. In con- 
nection with this, the specification in line 21 was changed from “>45” 
to “<45”; correspondingly, all values had to be converted by hand, e.g., 
93 = 100 ~ 7. (See table Step #l.) 

In table Step #I it becomes apparent that 8 rows of data contain no infor- 
mation or information that cannot be interpreted (TLC, heavy metals, 
chloride, residual solvents C, D, and E) and 4 where further clarifica- 
tion is needed (Sieve analysis (as above), HPLC impurities (changing 
LOQ?)). 
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Figure 4.41. Trend analysis over 12 batches of a bulk chemical The qieve analysis shows 
that over time crystals larger than 250 pm were reduced from a weight contribution in the 
range of a few percent of the total to about 1 % in favor of smaller sizes. Impunty C appears 
to follow the trend given by the lead compound for the competing side reaction #l. The very 
low moisture found for sample #3 could be due to a laboratory error because during drying one 
would expect ethanol to be driven off before water. Methanol is always below the detection 
limit 

The resulting table Step #2 retains less than half of the original infor- 
mation. 

Fig. 4.41 (n  = 12 batches) and 4.42 (n = 46 batches) depict what can 
and what cannot be gleaned from a detailed study of such cleaned-up tables: 
Unless a connection is fairly obvious, such as between impurities B and C 
in Fig. 4.42, comparisons can resemble small-talk about the weather, in that 
there is always a subset of data to prove a given pet notion, and another to 
disprove it. Why? Over the course of a few months a series of insignificant 
“changes” in raw materials (a new batch), equipment (higher-capacity steam 
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Figure 4.42. Trend analysis over 46 batches of a bulk chemical produced according to the 
same manufacturing procedure: Small and scaled-up batch size [kg], HPLC and Titration 
assays [%I, resp. individual HPLC impurity levels [%I, versus batch number. The lack of 
full correlation between assays indicates that the titration is insensitive to some impurities 
detected by HPLC. The mass balance, where available, suggests that all relevant impurities 
are quantified. Impurities B and C, for instance, are highly correlated (r2 = 0.884, p = 0.0002). 

line), process (slightly faster temperature ramp), personnel (switch from early 
to late shift), or analytical method (new HPLC column oven) can sufficiently 
modify the situation so that batches can only be compared within groups 
(“campaigns”). The more elements that a system (all of the above and more) 
encompasses, the harder it becomes to keep conditions truly constant over 
any length of time. (See also Section 4.38.) 

The legalistic notion that only validated processes are to be used assumes 
that the chain of events from raw materials to analysis of the final material 
can be validated in globo, something that is patently impossible with the 
given number of adjustable parameters, not to mention unforeseen glitches. 
Doing the validations in bits and pieces (modules “process,” “sampling,” 
“analysis,” “data evaluation,” etc.) certainly helps, but does not cover the 
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Figure 4.43. Yields determined for a large number of batches of four bulk chemicals and 
four drug substances. During the early synthesis steps the yields are variable; 10 batches run 
during one campain of the first compound clump near 95%. The result at about 107% is due 
to analytical variability and/or calibration bias. The final synthesis step of a drug compound, 
for which the aggregate value of a kilogram of material is much higher, has been trimmed for 
maximal yield. 

interaction between the modules. The validation philosophies practiced today 
(FDA: Run three batches at target conditions; European health authorities: 
Also consider Hi/Lo variation of the most important parameters) more or less 
cover the ideal process, but by necessity require a reassessment if anything 
changes. The distinction between “minor” and “major changes” allows for 
some scientific reasoning about the probable outcome without subjecting a 
company to million-$ revalidation campaigns every time a detail changes. 
By necessity, this implies surprises. 

Because of the relatively small number of experiments done on 
commercial-scale equipment before submission, and the often very narrow 
factor ranges (Hi/Lo might differ by only 5-10%), if conditions are not truly 
under control, high-level models (multi-variate regressions, principal compo- 
nents analysis, etc.) will pick up spurious signals due to “noise” and unrec- 
ognized drift. For example, Fig. 4.43 summarizes the yields achieved for 
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cheap intermediates at the beginning of (unrelated) complex syntheses, and 
very expensive final products. The variability in the former reflects yield 
as such (except in the two results above loo%), whereas in the latter it is 
mainly a question of analytical precision. Effort to improve a chain of syn- 
thesis steps is channeled into the areas that add the most to the overall yield, 
waste management, or costs; a comparatively cheap step with a 90% yield 
may have to wait until resources become available for improvements. 

4.32 IT'S ALL A QUESTION OF PEDIGREE 

In all of the above discussions the existence of a calibration standard 
was taken for granted. It was assumed that such a calibration standard is 
extremely pure and is available in such quantities that quality and/or sup- 
plies could not lead to a bottleneck. The analyst could do his experiments in 
a reasonably short time and mostly use one and the same calibration solu- 
tion throughout. The exceptions to this rosy situation were barely hinted at 
in Sections 1.1.4, 1.8.4, 4.7, 4.20, and 4.23, namely that in batch release, in 
stability, and in validation work individual results would have to be com- 
pared over a long time frame or across large distances. (The time factor can 
take its toll within minutes or hours if instrumental drift is a problemlX8; 
flame photometers as used for sodium or potassium determination are a real 
pain in this respect.) For all relative methods (titration, chromatography, non- 
MS spectroscopy, etc.), this implies comparison against a reference. In this 
section, the device the pharmaceutical industry resorts to, the calibration- 
standard hierarchy, is described. In contrast to some high-quality physical 
standards (e.g., the atomic clock for frequency, time, and (short) distances, 
or single-isotopic materials for mass), chemical standards, especially of the 
organic variety, are not so stable as to be beyond doubt. Some of their more 
unpleasant characteristics are as follows: 

Affinity for water or other solvents, leading to a change in weight. 
Partitioning between matrix compartiments and/or container ~ a l l s . ~ ~ ~ ~ J '  
Recrystallization to a thermodynamically more stable form. 
Susceptibility to hydrolysis and/or o~idation.~-" 
An impurity profile that depends on precise experimental conditions. 
Impurities that are hard to detect and/or separate from the main com- 
pound, etc. 

If the chemical moiety in question is a commodity or has been on the 
market for a long time, it is likely that there is a source of high-quality and 
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Table 4.41. Calibration Hierarchy 

Highly Purified Purified Purified 
PRIMARY SECONDARY WORKING 

Quality Level STANDARD STANDARD STANDARD 

Price $15000/g $2000/g $1 00/g 
Available 

Shelf-Life 5-years 0 -20°C 12-months @ 5°C 1-month 0 RT 
Purpose WWLT calibration Within-lab calibration analysis 

quantities mg-to-grams grams kilograms 

aRT: ambient; WWLT: worldwide or laboratory-to-laboratory long-term standard. 
Requalification of standards: against predefined criteria using validated methods at stated inter- 
vals. 

fully documented material, such as the USP-standards. For all proprietary 
chemicals, such as drug substances under development, the owner will have 
to come up with his own standards. These will be at least of two types, 
namely pure compounds (main compound and all known process and degra- 
dation impurities, and possibly metabolic derivatives) and “limit” samples 
(main compound spiked with such amounts of controlled impurities that all 
impurity specifications are just barely met). 

A hierarchy of standards will be established, if only for economical rea- 
sons, see Table 4.41; the quoted prices are for ordinary organic chemicals 
with a molecular weight of up to a few hundred and are intended as a rough 
guide only. The multi-stage cleaning process (e.g., recrystallization + prep- 
scale HPLC) needed to obtain samples that are so clean that full character- 
ization and documentation is justified is so expensive and works only for 
relatively small quantities that it is usually out of the question to supply 
such material to every involved laboratory in amounts sufficient for day- 
to-day calibration. The situation depicted in Fig. 4.44 is that where three 
regional chemical plants produce a bulk chemical according to one and the 
same process, and each purifies a sample of its own material, and submits it 
to the central laboratory for cross-validation against the top-level standard. 
These secondary standards are a lot less expensive and available in much 
larger amounts than the primary standard. The reason for using regional sam- 
ples is that despite the nominal identity of the manufacturing processes, it 
is quite normal that the impurity “fingerprint” betrays local particulars. The 
secondary standards are then used to create local working standards that are 
actually issued to the routine control labs. The assigned expiry dates are 
derived from stability studies run on standard on one level against standard 
at the next higher level. During an actual analysis of a production control 
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Figure 4.44. Calibration standard hierarchy. The first primary standard (PS) A is used to 
calibrate local secondary standards (SS), which themselves serve to calibrate working stan- 
dards (WS). The three levels of standards and the analysis runs are linked through a code 
that includes the PS-generation (letters A, B, etc.), the SS-generation (first number), the site 
(second number), the WS-generation (third number), and the analysis run (fourth number); 
each analysis run includes a calibration and up to a few dozen analyzed samples. Some of the 
links that are established through cross validation are indicated by light gray disks. Four of 
the six possible levels of relationship are indicated by arcs: (1, not shown) within calibration, 
(2) within WS. (3) WS to WS, (4, dashed) SS to SS within the same generation, ( 5 ,  dotted) 
SS to SS between generations, and (6, not shown) PS to PS generation. 

sample, the lot number of the working standard will be noted, and its quality 
is traceable to the primary standard. After a certain time, even the primary 
standard will have expired or have been used up. The next lot of primary 
standard needs to be ready for cross-validation against the previous one. The 
provision of standards has to be planned so that the lineage covers several 
sites for the lifetime of the product (20 or even more years). Even so, qual- 
ity assurance will have to perform direct comparisons between the work- 
ing standards of two or more sites should any discrepancies turn up, such 
as a release at 100.8% of label claim in Factory B followed a few months 
later by a complaint from the local affiliate in country Z to the effect that 
the shipment would have to be returned because 106.3% exceeded both the 
local limit (105%) and the allowed discrepancy relative to the certificate of 
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Standard 
Substance 

Primary Secondary Working Analytical 
Standard Standard Standard Sample 

LabOralON Error 
E = 1 %  
(p -0 .01 )  0 
c = 2 %  
(p’ 0.02) 

D = 3 %  
( p =  0.05) 

Figure 4.45. Divergence of results between related calibration runs. Simulation program 
PEDIGREE.xls simulates the effect of cumulating multiple within-run and between-labora- 
tory analytical uncertainties and the occasional systematic laboratory error. The reference lab- 
oratory is expected to work with a precision of 0.1%; the cross-calibration from primary to 
secondary standard suffers from a transfer error (between-run or between-instrument error) of 
0.5% and, on top of that, a measurement error of 0.2%. The further one moves to the right, 
the larger the errors; a laboratory error of typically 3% could occur with a probability of p 
= 0.05 in the last step and is observed in one case: The bias is +2.23%. The numbers in the 
right column indicate what would be found if the primary standard were tested twice against 
each of the four working standards. The two highlighted results are coupled through six links. 

analysis (say, 1%). Most likely, the reason for the artifact is a degraded stan- 
dard in affiliate Z’s lab, lack of instrument maintenance, or poor work prac- 
tices. 

File PEDIGREE.xls illustrates how a number of determinations on a sam- 
ple, all tied together by a hierarchy of working-, secondary, and primary 
standards, diverge if some simple assumptions about achieved within- and 
between-group precision are made. For good measure, it is possible to assign 
the risk of making a laboratory error and the typical size of it. A sample out- 
put is given in Fig. 4.45. 

Overall, the story shows that a manufacturer must go to extreme lengths to 
establish a satisfactory QA-network; without the effort, statistical evaluations 
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would be worthless and futile, because one would be comparing “apples and 
oranges” despite the same trade name on the packages. Only with a fully 
operational QA-system in place can discrepancies be resolved. 

4.33 NEW TECHNOLOGY RATTLES OLD DREAMS 

A minor constituent in an old product had traditionally been determined 
using UV-spectroscopy after dilution or extraction. While the compound 
(drug substance, DS) was known to be susceptible to hydrolysis, the wide 
specification limits (90-110% of label claim, partially justified by the large 
analytical uncertainty at the low concentration) assuaged all worries, even 
in the face of occasional discrepancies between what was found upon analy- 
sis and what had gone into the product. By a fairly common sleight-of-hand 
that sailed under the “manufacturing losses” claim, namely adding a 3, 5, or 
even 10% overage to the manufacturing formula, Quality Control would find 
values above 100% at release (t  = 0; see arrow in right panel in Fig. 4.46), 
and below 100% towards the end of the official shelf-life ( t  = 36 months). 
Formally, all regulations have to be followed if technically feasible, though 
medically the loss of active drug was not significant because in everyday 
life a cream is not dosed very accurately. The hydrolysis (= degradation) 
products H, H’, and H”, fortunately, did not pose a toxicological risk: 

+ H” Degradation pathway 
(--) UV-activi 

~ Perfect 

1 
I 

Time on Stability Time Time 

Figure 4.46. Insufficient specificity in UV measurements and the concept of manufacturing 
overage. The left panel shows what happens when a UV-active compound DS degrades over 
time to compound H ,  which has a slightly lower molar extinction coefficient E .  Instead of 
observing the decrease to the DS line (down arrow J), H contributes (up arrow 1‘) sufficiently 
to the total signal to make the product appear relatively stable (line DS + H ) .  When the rapid 
decomposition of DS is recognized, one option used to be to tacitly add an overage to the 
manufacturing formula (’? in right panel) to shift the intersection of the trend line with the 
SLL (J in middle panel) towards higher shelf-life. 
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Figure 4.47. Drug assay using HPLC respectively UV Spectroscopy. Correlation of HPLC and 
UV results obtained on four batches of a cream. The vertical error bars each give the mean 
? standard deviation of 6 HPLC determinations; because the Student's t-factor for five d.f. is 
nearly equal to (see Section 1.3.2), the bars can also be interpreted as 95% confidence 
limits. The circles connected by a line indicate the corresponding duplicate UV determina- 
tions. The proportionality line passes through the origin and the center of mass for the four 
coordinates. The drug is slightly overdosed (= 103-104%; the traditional UV assay apparently 
is not as selective as it  should be; an interference adds about 4% to the result. 

After HPLC had become so established that no excuse remained not to 
convert this product from UV to HPLC, the method was applied and results 
for four batches of product were obtained. (See Fig. 4.47.) The concentration 
range covered by these first samples is too small to allow any statement to be 
made concerning the proportionality of UV and HPLC results. Since a man- 
ufacturing overage of 10% was built into the formula, a cluster of points near 
the 110/110 coordiate would be expected. The (higher) UV-results indicate 
that on the order of 1 4 %  of the drug substance must have been lost during 
manufacturing (the physical amount of the high-potency material actually 
brought into the vat is so small that any losses through adsorption to metal 
surfaces have a noticeable effect). The fact that the theoretical correlation 
line y = x does not intersect the vertical error bars marks the =4% difference 
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between the two lines as statistically significant. The chromatograms con- 
firmed what had been suspected all along: The primary degradation product 
H (after the hydrolysis step), while cleanly separated from the main peak by 
HPLC, had in fact been lumped together with the drug substance on account 
of the essentially identical UV-spectrum, see the left panel of Fig. 4.46. A 
thorough investigation of aged samples showed a similar pattern: The small 
loss of activity observed with TLC was due to (1) the extinction coefficient 
of H being somewhat smaller than that of DS so that C(DS + H )  < loo%, and 
(2) the further degradation of the hydrolysis product to compounds H‘ and 
H” that do not exhibit UV activity at the chosen wavelength. The shelflife of 
the product had to be reduced to 24 months to bring it in line with the actual 
content of DS at that age. File DECOMPOSITION.xls allows the extinction 
coefficient, the degradation rate, and the analytical uncertainty to be played 
with. 

The GMP guidelines now require “stability-indicating’’ methods to be 
used when laying claim to a specific shelf-life. This implies both theoreti- 
cal and practical degradation chemistry (combinations of light, pH, tempera- 
ture, moisture, etc.), extensive high-resolution chromatography under a vari- 
ety of separation conditions, and the use of pure degradation products for 
peak-identification/calibration. In this way, self-delusion (poor science at the 
bench or judgment at managerial levels, e.g., Section 4.7) and deceit (e.g., 
Section 4.8) would be obvious. 

This example nicely demonstrates that straight statistics could (1) unsus- 
pectingly lead to wrong conclusions (“DS is quite stable”), or (2) be used on 
purpose to cover up something that was already known or suspected (“pow- 
erful statistical analysis, conclusion must be true”). 

4.34 SYSTEMS SUITABILITY 

Under GMP rules, a system suitability test must be carried out before 
the instrument is used. Relatively frequently, the corresponding SOP states 
something like “three times inject solution X ,  and determine the CV for the 
peak area; if it is larger than 2%, the instrument is out of order.” Figure 
4.48 depicts one result obtained with file SYS-SUITAB.xls: The thick gray 
line gives the calculated SD vs. the number of repeat measurements, and the 
thin lines indicate the corresponding upper confidence limits for p = 0.2 . . . 
0.025 (one-sided test, since s, must be tested against an upper limit). For n = 

3 the CL” is above 4a, which means the CV would have to be <0.5% if the 
imposed limit of 2% is not to be violated too often (by changing the contents 
of cells B3 and E3, the presumed s, and the SLu can be directly defined; 
cell C3 allows the instrument’s digitizer resolution to be set). The gist is that 
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Figure 4.48. The calculated standard deviation and its upper CL. A series of 10 measure- 
ments was simulated, bottom panel), with the newest addition at each step given in bold. The 
corresponding SD is given by the thick line in the top panel, and the 80 . . . 97.5% CLu by 
thin lines. Notice that point 5 ,  which is high, drives the SD up from = 0.9 to = 1.5 (E(u )  = 
1); the 95% CL is at 2.38 . u,  respectively 3.6. The ordinates are both scaled in units of u .  
This depiction, for just one level of p .  is part of the display of program CONVERGE. 

n must be at least 5 or 6 before such a limit becomes meaningful and the 
result does not fluctuate too much. 

Example 63: Assuming the commonly-seen requirement [n = 31 com- 
bined either with [s, < 21 or [R(n) < 21 and measurements x1 = 99.5, x3 = 
101.5, and x:! anywhere in between, a range R(3) I 2 and a s, = 1.00 . . . 
1.15 result; so far so good. Since the 95% CL(s,) are 0.52 . . . 6.28 for 2 . 
p = 0.05 and CJ = 1, the chances of obtaining a s, > 2 on the next try are in 
the range 22 . . . 28% (use Eq. (1.40) or (1.42) with the Excel functions; the 
approximation in program MSD yields 0.52 . . . 6.38)! 

4.35 AN EYE-OPENER 

A frequently observed sin is that measurements are performed absentmind- 
edly, that is, strictly according to SOP, but with all critical senses turned off, 
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Figure 4.49. Assay and content uniformity (CU) results for six batches of a tablet containing 
two drugs. One assay result falls completely out of line while there is general loss of component 
B during manufacturing. 

and each value is appraised on its own. If the SOP then demands a check 
against the specification limits, that test might result in a “PASS” even if 
the data had a story to tell. Assuming a tablet contains two components and 
the tablet weight varies by 1-2%, Fig. 4.49 might result. The assay values A 
and B are strongly correlated, and even the means of the content uniformity 
tests are on the same trend line, which means the mixture is homogeneous. 
Three problems are immediately obvious: 

1. Drug B is about 3% low relative to A, and both are about a further 
I-2% low relative to the nominal content (if the amount of drug in a 
tablet is a small fraction of the total tablet weight, the slightest loss 
of drug to absorption on walls or in the air filters shows up in low 
assays). 

2. One assay falls out of trend by about 4%; this could be a laboratory 
error (see Section 4.32) that, by chance, does not generate an 00s 
result and so goes undetected. This out-of-trend (OOT) result could 
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theoretically be due to a positive (analytical) bias for component B or 
a negative bias (analytical or manufacturing) for component A; because 
the corresponding CU results are in a group at left, the first explanation 
is more likely. 

3. The content uniformity values are even further reduced relative to the 
assays, which is probably due to the sample work-up with very small 
amounts of drug. 

If only one drug had been formulated, then this B vs. A plot would not 
have been possible; part of the information would have been accessible by 
plotting A vs. weight, though, see file ASSAY4B.xls 

4.36 BORING BLISS 

Those guys from QA are a curious lot: They get paid for talung all the fun out 
of life, and if something does happen, they see their bonus go up in smoke. 
Let us look at a thrilling validation report: After the explanations concerning 
the scope of the work and the particular assumptions, there follows a precise 
plan on what is to be done and what the success criteria are. The plan is 
signed off by the author and a clutch of directors from various departments. 
The next sheet, written at a later date and also signed off by many people, 
features a summary of the data and a concluding statement like “Revision 
B of analytical method X-1234 for the assay of component Y in product 2, 
dated 4/1/1999, has been shown to be adequate for the intended purpose, 
and accurate, linear, and precise in conformance with the current GMPs.” 
What does the attachment look like that makes all of these people smile? 

Example 64: There are long lists of numbers. (See Table 4.42 and 4.43.) 
There is a discussion that sets the important results in perspective (state of 
the art, previous methods or revisions, expectations, specification limits). 

The HPLC method for which data are given had previously been shown 
to be linear over a wide range of concentrations; what was of interest here 
was whether acceptable linearity and accuracy would be obtained over a rel- 
atively narrow concentration range around the nominal concentration in the 
product; the specification limits were 90-1 10% of nominal. Three concentra- 
tions were chosen and three repeat determinations were carried out at each. 
Two different samples were prepared at each concentration, namely an aque- 
ous calibration solution and a spiked placebo. All samples were worked up 
according to the method and appropriate aliquots were injected. The area 
counts are given in the second, respectively the fifth column of Table 4.42. 
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The next two columns contain the means, standard deviations, and CVs. The 
linear regressions could now be carried out using either the individual points 
(n  = 9) or the means (n = 3), without any effect on the so obtained slopes 
and intercepts. A closer examination demonstrates that the n = 3 case, while 
saving some time when typing in the data, has serious drawbacks: A lot of 
(expensive) information is thrown out and the number of degrees of free- 
dom is drastically reduced. The confidence limits on both the slope and the 
intercept are much wider (Table 4.42: +75 + *580%, etc.), and the CL(X) 
on the back-calculated data degrade from typically k2% to +8%, even if the 
change from k : 1 to k = 3 repeats is taken into consideration (program 
LINREG, option ( X  = f( y))). The fact that both s,, and r2 improve can be 
traced to the elimination of the within-groups variance. (See Table 1.14.) 
The means are very close, with the spiked samples being a bit smaller on 
average (-0.9% (A = 84), -0.08%, resp. -0.1%); these differences are so 
small that a r-test between the appropriate items yields t 50.65, which cor- 
responds to a probability p 2 27% due to chance errors. The F-tests cannot 
distinguish between the standard deviations at n = 3. Even if a worst case 
is constructed, namely by tahng the difference -0.9% and V ,  = (0.4)2 (Eq. 
1.18) for two groups of n = 9 repeats in columns 3 and 6 in Table 4.43), t 
is only 2.25. 

The linearity is tested by comparing the slopes b50 loo and b~oo 150, 
which are (18420 - 9309)/50, etc., that is, 182.22 and 183.12, resp. 176.54 
and 177.34, that is, there is a barely perceptible curvature; if the interpola- 
tion error AX = f (  y = 1001 Ab) this causes it to be no larger than, say, 1 =1 s,, 
the available concentration range is about 100 - 180/( 182 - 180) . . . 100 + 
180/( I80 - 176) = 10 . . . 145, which certainly covers the interesting interval 
100 & 10. A nonlinear model (polynomial, square root, or exponential) could 
be tried to improve the fit, but one has to consider that the maximal studen- 
tized deviations (y,,,, - Y ) / s y  at c = SO and 100 are of the order (9309 - 

which is already better than the situation schematically depicted in Fig. 2.7. 
387.1 - 179.4. 50)/123 0.4 to (18420 - 387.1 -- 179.4 . 100)/123 = 0.76, 

The conclusions, therefore, are as follows: 

The repeatability (0.92% for n = 10; 0.4 . . . 1.3% for n = 3 )  is acceptable. 

The back-calculated results (99.9 k 0.9%) for both calibration and 
spiked samples are acceptable. 

There is no systematic difference between calibration and spiked sam- 
ples. (Cf. Fig. 3.2.) 

Linearity is acceptable. 
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4.37 KEEPING TRACK OF DISSOLVING TABLETS 

A basic experiment in the pharmaceutical industry is the dissolution rate test 
in which a solid dosage form such as a tablet or a capsule is immersed in sim- 
ulated gastric fluid or an appropriate surrogate to determine the speed with 
which the drug will become available to the body. The basic distinction is 
between immediate-release and sustained-release or delayed-release forms. 
The classical tablet, such as many pain-relief medications, are of the first 
type. The specification will be “80% within 30 minutes,” or similar. The test 
apparatus consists of a glass vessel and a stirrer paddle, the forms of which 
are tightly defined; the stirrer speed, the dissolution medium, and the tablet- 
basket are preset. The commercial instrument might pack six such assemblies 
into one box and provide for flow-through-cell UV photometers, thermostat- 
ting, automatic sampling, vessel-rinsing and filling, and tablet-injection for 
unattended computer-controlled runs. Twelve tablets have to be tested and 
all have to comply, or the test goes into a mandated extension (Stage 11). 

For two experimental formulations the data shown in Fig. 4.50 was 
acquired; for each formulation, there exists a lower and a higher dose. For- 
mulation A obviously rapidly disintegrates and in 20 minutes has set the 
contained drug free, while Formulation B needs at least an additional hour 
for the last 5-10% (the two tablets might have contained, on average, 102 
and = 97%-of-nominal, respectively). 

Example 65: All 30 groups of data were normalized to a mean of 100% 
and the histogram was calculated for the resulting 347 data points (the instru- 
ment rejected 13 readings) to give the distribution shown in Fig. 4.51. The 
central portion can be approximated by one normal distribution and the tails 
by another. The form of the curve and the rather small number of data points 
(40 bins between 90 and 110%) allows for any of a number of parameter 
combinations that all yield similar goodness-of-fit (G0F)-figures, so there is 
no clear “best” approximation: The higher of the two dotted curves is for the 
combination y = 125 . ND( 100, 5.02) + 100 . ND( 100, 1.6’) while the other 
is for y = 70 . ND(100, 5.5’) + 140 . ND(100, 2.12); the means p1 and p.2 
were fixed at 100; the GOF figures are 670 and 276, respectively. The pro- 
portionality coefficients were varied in steps of 5 and the standard deviations 
in steps of 0.05, for a total of 41 769 tested parameter combinations; 32 400 
combinations were found that describe curves with 276 < GOF < 670; 2200 
combinations were within 10% of the best GOF-value! Further refinements 
might be the modeling of the spike (arrow!) with a third exponential, and 
adjustments to the assumed means p1 and p2, but this would be cosmetic 
and would not add any value to the interpretation, which is that the tablet- 
to-tablet variation is still larger than the instrumental uncertainty (= 0.75%) 
and so dominates the picture (stabtotab 2 2/1.62 - 0.752 = 1.4). 
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Figure 4.50. Cumulative dissolution results. Two experimental tablet formulations were tested 
against each other in a dissolution test in which tablets are immersed in a stirred aqueous 
medium (number of tablets, constructional details and operation of apparatus, and amount 
of medium are givens). Eighty or more percent of the drug in either formulation is set free 
within 10 minutes. The slow terminal release displayed by formulation B could point towards 
an unwanted drug/excipient interaction. The vertical bars indicate ymean & sv, with sy = 3% 
A simple linear/exponential model was used to approximate the data for the strength 2 for- 
mulation. Strengths 1 and 3 are not depicted but look very similar. 

Slow Terminal Dissolution 

Strength 2 

1 Experimental Form. A 

I Experimental Form. B 

A group-by-group analysis of' the achieved CVs is given in Fig. 4.52. 
The three strengths of formulation A are quite similar with the exception 
of the points marked "c," where instrumental noise sets the tune. This par- 
ticular picture would also be seen if the solubility of the drug substance 
was a problem (not the case here), because then saturation would buffer any 
content-uniformity effects. Formulation B is striking because of the extreme 
variability seen for the mid- and high-strength dosages at t = 10. This is not 
fully unexpected as at this time the slope in Fig. 4.50 is still very high, but 
the mechanism should also be in evidence for the low-dose form, and should 
still play a role at t = 20, for a smoother transition from "a" to "b." Over-all, 
Formulation A is much preferred to B. 
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Figure 4.51. Distribution of experimental data. Six experimental formulations (strengths 1, 2, 
resp. 3 for formulations A, respectively B )  were tested for cumulative release at five sampling 
times (10, 20, 30,45, respectively 60 min.). Twelve tablets of each formulation were tested, for 
a total of 347 measurements (13 data points were lost to equipment malfunction and handling 
errors). The group means were normalized to 100% and the distribution of all points was 
calculated (bin width: 0.5%, her depicted as a trace). The central portion is well represented 
by a combination of two Gaussian distributions centered on p = 100, one that represents the 
majority of points, see Fig. 4.52, and another that is essentially due to the 10-minute data 
for formulation B. The data point marked with an arrow and the asymmetry must be ignored 
if a reasonable model is to be fit. There is room for some variation of the coefficients, as 
is demonstrated by the two representative curves (gray: coefficients in parentheses, h = peak 
height, s = SD), that all yield very similar GOF-figures. (See Table 3.4.) 

4.38 POKING AROUND IN THE FOG 

In a series of examples scattered throughout the first four chapters, conditions 
outside the laboratory were blamed for difficulties in explaining particular 
results, or obtaining them at all. It seems that all kinds of things could con- 
spire to frustrate the well-intentioned analyst, and unless all of them were 
righted simultaneously, there would be no point in trying to measure at all. 
The GMPs address a wide range of institutions and processes in a factory, 
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Figure 4.52. Coefficients of variation that reflect both tablet to tablet and analytical variability. 
For formulation B,  particularly strengths 2 and 3, the drop in CV with higher cumulative release 
(a  + h)  is marked, cf. Fig. 4.50. When the dissolution rate is high, individual differences 
dominate, while towards the end analytical uncertainty is all that remains. The very low CVs 
obtained with strength 3 of formulation A (M.7-0.8%, data offset by +lo% for clarity) are 
indicative of the analytical uncertainty. Because content uniformity is harder to achieve the 
lower the drug-to-excipient ratio, this pattern is not unexpected. 

and if adhered to, instill a large measure of reliability into analytical re- 
sults. 

Even with everything under control, an analyst is well-advised to keep 
his eyes open so he will have an idea of what artifacts could turn up, and 
can plan to keep irregularities in check. The list of items in Table 4.44 could 
turn up in the checklist of any GMP-auditor worth his salt; a corresponding 
observation would probably trigger his suspicion that there might be further 
weak spots. The table is given here to provide the reader with an idea of the 
human and technical factors that can influence the quality of results, and to 
permit a search for examples that fit a certain category. 
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Table 4.44. Poor Practices 

Examples of Things Refer to 
That Can Go Wrong Possible Consequences Section 

(A) PROCESS & ENVIRONMENT 
Outdated technology: Noncompetitive product. 

Short life cycle. 

Exclusion from high-yield (1) the process is inefficient to start with, 
(2) the product barely meets today’s 

(3) there is no margin for improvement, 
(4) major customers insist on tight 

markets. 

customers loose confidence. 
specifications, Licensing authorities and/or 

High cost of goods. 
specifications, 

(5 )  authorities announce shift to higher 

(6) control methods are imprecise or 
standards, 

unspecific. 
Inadequate facilities and/or 
equipment 
(7) the inability to use controllers or 

data loggers implies inefficient 
installation/optimization, qualifi- 
cation, 

(8) the process cannot be reliably 
reproduced, 

(9) equipment maintenance is compro- 
mised and increasingly expensive, 

(10) the error rate and risk of failed 
batches is high, 

(1 1) there are equipment train incompat- 
ibilities or deficiencies. 

Available skill set does not 
meet requirements: 

Inefficient production and 
faulty products due to 
mismanagement. 

Reduced information flow 
leads to low-quality 
decisions, manual data 
collection introduces 
transcription errors 
expensive rework. 

( 1  2) available workers have “muscles & Products are not designed 
sweat” rather than “fine-tuning” and manufactured with 
mentality, a view towards consist- 

(13) specialists do not consistently ently achieved quality, 
built quality into design, but have “quality” 

4.1 

4.3 1 

4.9 

4.1 

(14) management is not used to han- inflicted on them after 
the fact. dling complex situations involving 

decentralized decision-making, 

from the lab bench are involved 
in technical decisions 

(15) managers who are far removed A total control and account- 
ability strategy will not 
compensate the losses 

agement, or poor design 
and execution; ingraining a 
GMP-mentality takes time, 

4.7 

Organization: incurred through misman- 
(16) traditional hierarchical structures 

along specialties instead of teams 
built around product or process, 
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Table 4.44. (Continued) 

Examples of Things 
That Can Go Wrong 

Refer to 
Possible Consequences Section 

(17) emphasis on seniority rather than 

(18) compartimentalization of work flow 

but pays off by keeping a 
company fit for the future. merit, 

that reduces individual’s involve- 
ment, overview, motivation, 
responsibility, and self-control 
to zero, individual departments act 
without coordination, 

mechanisms instead of identification 
and competence, 

or protected, 

riding significance, e.g., budgets, 
headcount issues; unwillingness to 
admit failure 

(1 9) internal regulations stress control 

(20) Know how is improperly documented 

(21) nontechnical aspects are given over- 

4.8 

4.23 

4.26 

4.28 
4.7 

(B) PRODUCT DESIGN 
( 1 )  important design parameters are 

ignored, management insists on 
course that courts failure, 

(2) the product design is not robust: 
it leaves no margin for error or 
variability in raw materials or 
process; production or analytical 
process require higher-than-standard 
skills, diligence, or controls; 
product is insufficiently protected, 

(3) specifications are incorrectly set, 
miss important aspect, or method 
does not meet requirements; process 
complexity is too high; customer and/or 
regulatory demands strain technology 
to the limit, 

(4) an unrecognized combination of 
hard-to-measure product character- 
istics results in an analytically 
intangible quality aspect that affects 
the process or the customer 
acceptance. 

The product eventually fails 
or becomes too expensive 
to produce. 

Equipment, technology, and 
skill base do not meet 
expectations. 

Loss of control 

4.4 
4.9 
4.33 
2.2.6 
4.1 
4.20 
4.24 

4.12 
4.31 
4.6 

4.12 
4.31 
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Table 4.44. (Continued) 

Examples of Things 
That Can Go Wrong 

Refer to 
Possible Consequences Section 

(C) MANUFACTURING PROCESS 
Variations in feed-stock quality: 
(1) the supplier does not notify customer 

(2) test methods fail to address the real 

(3) specifications are too loose, 
(4) quality control does not detect 

(5) quality assurance does not reject 

of process changes, 

problem, 

change, 

batch. 
Process parameters change from 
batch to butch: 
(6) process not properly optimized, 

(7) there are inadequate parameter 

(8) there is no proper validation, 
(9) the process is insufficiently 

or is not robust, 

limits, 

controlled, 

ment is used. 
(10) wrong or poorly maintained equip- 

Management 
(1 1) training of operators, engineering 

staff, supervisors, management 
is inadequate, procedures could 
be spruced up, 

motivation, compliance, and/or 
discipline, 

(1 3) disrupting time schedules, production 
targets, or management expectations, 

(14) equipment does not support fail-safe 
operations. 

(12) leadership qualities do not ensure 

Highly variable product quality, 
unnecessary costs, losses, 
delays. 

The more uncertainties that 
exist, the more difficult 
the assignment of cause(s) 
to observed effects; 

Reliance on “tweaking” and 
“fire-fighting’’ inhibits transfer 
or outsourcing, and creates 
incessant problems down- 
stream. 

3.1 

4.12 

4.30 

4.3 1 
4.28 
4.4 

4.9 

4.8 

3.5 

4.8 

(D) SAMPLING 3.1 
Sampling plan: Required reliability of results 

Sample is modified before it 

Results are biased, not repre- 

(1) wrong number of samples chosen, 
(2) sampling points/times do not 

address pertinent questions or 
process characteristics, 

cannot be attained. 

is tested. 
1.1.3 
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Table 4.44. (Continued) 

Examples of Things 
That Can Go Wrong 

Refer to 
Possible Consequences Section 

(3) inadequate sampling tools and/ 
or processes, unassignable 

(4) sample storage/transport is 
not properly organized, 

(5) sample amount is too small or 
is lost/wasted, 

( 6 )  operator skills/training/instruction 
are not up to the job. 

(7) unnecessarily extensive sampling 
plans demotivate and lead to 
hastily drawn and carelessly 
handled materials. 

sentative, wrong, or 

Represmtativity: 
(8) bias across species/impurities, 
(9) absorption and losses of analyte, 

( 1  0) reaction not under control, sampling 

( I  I )  collection vessels are not properly 

(1 2) mix-ups and mislabelling cannot be 

( 1  3) there is chaotic record-keeping, 
(14) blanks are not available or chemically 

( 1  5) the spike is not in same compartment 

point not recorded, 

cleaned, 

excluded with certainty, 

different, 

in blank as analyte. 

4.30 
4.33 

3.2 

(E) SAMPLE WORK-UP 
Technique: 

(1 )  does not take variability of 
matrix into account, 

(2) allows side reactions, e.g., 
reequilibration of esters, 

(3) native and spiked analyte is 
in different chemical compartments, 
recovery is not the same, 

(4) recovery is too low, saturation 
effects, 

( 5 )  handling is too difficult, error 
prone, method poorly matched to 
technology, 

(6 )  sample rapidly deteriorates. 

High LOQ, lack of 1.1.3 
selectivity, analyte-ratios 3.2 
distorted, product fails 
specs. 

4.2 

4.29 
4.1 
4.28 
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Table 4.44. (Continued) 

Examples of Things 
That Can Go Wrong 

Refer to 
Possible Consequences Section 

Equipment: 
(7) analyte absorption, contamination, 

or carry-over effects are possible, 
(8) quality of consumables (e.g., paper, 

filters) changes 
(9) insufficient precision 
Reagents: 

(10) purity or potency of reagent varies 
Skills: 

(1 1) loss of sample or contamination 
thereof through sloppy work 

4.30 

4.1 

(F) MEASUREMENT 
Equipment: 
(1) Equipment failed installation-, Distorted peak shapes, high 3.2 

operations-, performance qualifi- noise levels, ghost peaks, 4.25 
cation, saturation and base-line 

(2) maintenance schedule was missed, effects. 4.23 
(3) replacement material or consum- 4.14 

ables change instrument character- 1.2.1 

deteriorate with increasing number Unexplained bias, 4.34 

istics, 
(4) components (e.g., HPLC columns) 3.1 

of analyses, instrument malfunction, 
( 5 )  unaccounted environmental effects 

(e.g., diurnal temperature/humidity 

compliance problems. 

cycles) 

digital displays can lead to faulty 
read-out, e.g., “0” instead of “8”, 
or vice-versa. 

(6) unrecognized failure of digital 

Standards: 
(7) expired lot or inferior quality 

(8) working standard not calibrated 

(9) new lot with different potency or 

material, 

against primary standard, 

impurity profile, 
(10) lot from unapproved supplier. 
(11) no internal standard. 

Calibration: 
(12) suboptimal calibration concept/design 

(number of concentrations, concentra- 
tion range, number of repeat 

Required precision is not 4.32, 
met, unnecessarily high 4.8 
work-load or turn-around 1.8.4 
time, analytical 
uncertainty masks manu- 4.14 
facturing problems. 

4.32 

Lab’s GMP license or 
factory’s marketing 
authorization revoked. 4.14 

4.2 
4.5 
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Table 4.44. (Continued) 

Examples of Things 
That Can Go Wrong 

Refer to 
Possible Consequences Section 

~ ~~~ 

determinations), poor preparation and/ 
or execution, work near LOD. 

(1  3) crucial measurements not done, of 
insufficient accuracy or precision. 

Procedures: 
(14) the validation or the systems suitability 

test failed, outdated methodology, 
(15) there is a lack of in-process controls, 
(1 6) no positive or negative controls, 
(17) no control charts, no or irregular 

( I  8) retesting until “right results’’ are 

Operutors: 
( 19) unskilled or improperly trained/ 

supervised, 
(20) inconsistent habits or lack of 

concentration lead to higher 
variability, 

(21) uncritical acceptance of data “as 
printed,” 

(22) analyst forgets to note exceptional 
circumstances/observations, 
or does not recognize them as being 
such: “I did not think this was important,” 

(23) raw data and comments get lost, 
misfiled. 

(24) operator tweaks uncontrolled parameters 
to keep results within speces, e.g., 
column pressure or eluent make-up 
in HPLC. 

trend analysis, 

found is neither suppressed nor reported. 

4.33 
4.1 

4.33 
4.14 

4.7 

4.16 

1.14 

4.7 

4.24 

(G) DATA PROCESSING 
Review: 3.3 
( I )  plausibility checks are not applied, Loss of information, 4.28 
(2) supervisor does not immediately time, and opportunity. 4.35 

check and OK results, 

be performed with original standard 
solutions, Data base is undocumented 

(3) investigation/reanalysis cannot 

Audit: mixture of good, bad, 
(4) transcription error and tamper-evidence and unreliable numbers. 1.3 

checks are worthless if a scientific 4.31 
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Table 4.44. (Continued) 

Examples of Things Refer to 
That Can Go Wrong Possible Consequences Section 

inconsistency slips through; termino- 
logy is contradictory or misleading. 

Data Clean-Up: 
(5) the data base is not cleaned up 

(6) the wrong documents are forwarded 
or properly formatted, 

to the supervisor/processor 

(7) raw data is not secured against 
tampering, loss, or mix-up, 

(8) data entry is not double-checked, 
(9) automatic data aquisitionl 

treatment is not validated, 
(10) manual steps in semiautomatic data 

migration and/or treatment are 
not audited, e.g., cell formulas and 
macros in spreadsheet applications, 

inappropriate, 

Processing: 

(1 1) the processing concept/model is 

(12) the computer code is not validated, 
( 13) insufficient numerical precision, 
(14) inappropriate software or poor pre- 

sentation of results leads to false 
conclusions being drawn, 

(15) straight statistical interpretation 
may be wide of mark, 

(16) raw data gets lost, becomes inacces- 
sible because electronic data formats 
change. 

Data processing without 
analytical or QA back- 
ground assumes numbers 
to be literally correct 
and can skew interpre- 
tation. 

Data base is corrupted or 
becomes untrustworthy. 

4.22 
4.28 
4.31 

1.5.5 
3.7 

3.8 
1.8.4, 
2.2.9, 
2.3, 4.0, 
4.23, 
4.34, 
1.1.5, 
1.5.2, 
1.8.1, 
2.1, 
2.3, 
4.10, 
4.13, 
4.20, 
4.29, 
4.30 

(H) EVALUATION 
Communication: 

(1) not all parties who need to know or 
who could influence the interpret- 
ation are supplied with the result 
and comments in a form that both 
summarizes the essentials and gives 
detail, 

(2) the program output is not critically 
reviewed, data is overinterpreted, 

(3) the formal statistical report is given 
excessive weight-to the exclusion 
of other information. 

Relevance of result 
is misjudged. 

2.3.2, 
2.4 
3.5, 4.17 
4.21, 
4.28, 
4.33, 
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Table 4.44. (Continued) 

Examples of Things 
That Can Go Wrong 

Refer to 
Possible Consequences Section 

Skills, attitude, experience: 
(4) participants in the discussion do not 

represent/present all relevant aspects: 
parts of the available information are 
filtered out; selective, see-no-evil 
data evaluation, e.g., only means, but 
no SD is given, 

( 5 )  a legalistic reduction to “complies Y / N ”  
compresses the many shades of gray 
contained in a scientific interpretation 
to one bit-black or white-and 
sacrifices a large percentage of the 
available, and expensive, information, 

(6) misinterpretation, e.g., “Ho: no significant 
deviation detected” is equated to “There 
is no effect.” 

Formalistic aspects 
override scientific 
judgment 

4.35 

4.1 
4.28 

4.14 

4.24 

1.9 

(I) DECISION 4.1 
Independelice of reviewing party (QA): 

( 1) partiality (e.g., toward manufacturing, 
Substandard product is 

delivered to customer. 
marketing, finance) allows customer 2.2.6 
focus to be reduced to time and money, 
and quality looses out. 

(J) ACTION PLAN 
(I)  superficial corrective measures are taken, 

but the root causes are not examined 
or woven into long-term plan (e.g., 
training, infrastructure). 

(2) actions are decided upon, but shelved; 
no follow-up. 

(3) corrective actions are not integrated into 
SOP; the same mistake is committed the 
next time around. 

Chance to improve product 
or process is wasted. 
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APPENDICES 

This chapter contains the algorithms necessary for approximating statistical 
tables, some program kernels in BASIC, instructions on how to install the 
VisualBasic programs, and finally, a description of each of the VB programs 
and the Excel files. 

5.1 NUMERICAL APPROXIMATIONS TO 
SOME FREQUENTLY USED DISTRIBUTIONS 

There are various reasons for replacing tabulated values by numerical 
approximations, chief among them to be able to automate the table look-up 
to save time and to present aspects that otherwise would go unnoticed. Com- 
mercial programs like Microsoft Excel feature many of the important statisti- 
cal functions; the file EXCEL_FNC.xls that is provided with this manuscript 
shows how some functions are applied. The algorithms that are employed 
are very accurate, but not accessible as such. For the applications demon- 
strated in this work, appropriate approximations are incorporated into the 
VisualBasic programs that accompany the book. 

To be useful in this context, the algorithms must fulfill the following cri- 
teria: 

A wide range of degrees of freedom must be spanned, over which the 
approximated value changes appreciably. 

Relative accuracies of about 1 % or better should be attained, which suf- 
fices for practical applications. A decision that rests on paper-thin mar- 
gins is best reviewed in a nonstatistical context anyway. 
The programmable calculator or PC that is to be used must be able to 
work with the number of significant digits required by the algorithm; 
rounding the coefficients can appreciably alter the results of an approx- 
imation. 
The use of an algorithm must conserve memory relative to a table- 
oriented approach. Polynomials or similar functions should be used 
because recursive functions tend to converge slowly. 

The following figures of merit are used: 

329 
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LAR: Largest absolute residual rI = I tnpprox ~ ttabulated I 
TAR: Typical absolute residual Y, = I tapprox - ttabuldted 1 tYP 

LRR: Largest relative residual r, = (I tapprox - ttabulated I/ttat,ulated)max 

TRR: Typical relative residual Y, = (I tapprox - ttabulated I /tt&ulated)tYP 

Comment The sequence of digits in each coefficient depends on the pre- 
cision (e.g., three decimal places) and number of tabulated values (34, 50, 
or 64), the form of the optimization software used (Hewlett Packard HP7 1 B 
Curve Fit Module). and the number of coefficients chosen (3 . . . 8). Discrep- 
ancies between the approximated and the real table entries of up to k.LSD 
could be due either to insufficiencies of the algorithm or the rounding of 
table entries. The few LRR that are above 1 %  do not pose a risk for practi- 
cal applications. 

Specific Assignments 

Symbol 
df 

x 2  

f I d 2  

CP 
F 

P 

t 
z 

S 

Explanation 
degrees of freedom (df was chosen here so as not to cause 

Chi square 
cumulative probability in the range 0 . . . l(for z = -- . . . + -) 
Fisher’s F-value 
degrees of freedom in F-test associated with the larger, the 

smaller variance 
probability of error 
sign of z(-  1, 0, +1), respectively expression (CP - 0.5) 
Student’s t 
normalized deviate 

confusion with coefficient f ) 

All other variables, such as “u” or “v”, are for intermediate results. 

5.1.1 The Normal Distribution 

The probability density can be calculated by way of Eq. (1.7). Both a forward 
and an inverse function for the cumulative probability CP are needed: 

For a given deviation z = (x - p) /a,  CP = f ( z )  calculates the cumula- 
tive probability of finding a deviation as large purely by chance; this 
corresponds to the t-test for very large numbers of degrees of freedom. 
The inverse, z = f(CP), is particularly valuable in connection with the 
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Monte Carlo method, because normally distributed random numbers can 
be generated. 

Calculation of CP from z 

Use: Calculate the cumulative probability (CP) for a given normalized 

Assumption: Normal distribution. 
Reference: Ref. 190, Eq. (26.2.19). 
Procedure: Use the algorithm given below; because of the symmetry of 

the function, only the 0 I z I 00 part is defined. 
Accuracy: The algorithm is extremely accurate, no deviation between cal- 

culated and tabulated (four decimals) CP being larger than 0.2% relative 
(LRR, this occurs where both z and CP are very close to zero); typically, the 
deviations are less than 0.00005 absolute (TAR), and less than 0.03% for z 
larger than 0.15 (TRR). 

deviate z = (xi - xmean)/sX or z = (x - p)/a.  

Algorithm: 

u = IzI 
v =  a +  b . u + c  . u2 + d  . u3 + .  . . + g  . u6 

CP = 0.5 . (1 + S  . (1 - u-'~)) 

with 

a = 1.0000000000 

b = 0.0498673470 

c = 0.0211410061 

d = 0.0032776263 

e = 0.0000380036 

f = 0.0000488906 
g 1 0.0000053830 

Example: 

For z = -1.56, CP = 0.0593798 is found (tabulated value: 0.05938). 

For z = +0.80, CP = 0.788144 is found (tabulated value: 0.78814). 
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Calculation of z from CP 

Use: Inverse of above function; given a cumulative probability CP, the 

Assumption: Normal Distribution. 
For the optimization of the coefficients 64 loglO(1 - CP) values (CP: four 

decimal places) for z = 0.00 . . . 3.00 in steps of 0.05, and z = 3.5, 4.0, and 
4.4 were used; see also the comment under Student's t, Table 5.1. 

equivalent normalized deviate z is calculated. 

Reference: None. 
Procedure: Use the algorithm given below; because of the symmetry of 

the function, only the part 0 I CP I 0.5 is defined; cumulative probability 
values CP lower than 0.5 are transformed to their (decadic) logarithm, the 
others are first subtracted from 1 .00. The sign is appropriately set to - 1 or 
+I.  

Accuracy: The algorithm is fairly accurate, no calculated z-value being off 
by more than 0.0166 up to z = 4.4, and with most deviations below 0.006 
absolute. Monte Car10 simulations ( n  = 20 000 events) yield a mean of 0 
and a standard deviation of 1.009; this is close enough for most practical 
purposes. Figures of merit: s,,,: 0.005; LAR: -0.015 for z = 0; TAR: 0.005; 
LRR: 20% at z = 0.05; 2% at z = 0.15; 0.3% at z = 1.5. 

Abbreviations: See Section 5.1. Deviations for z > 3.5 (CP < 0.0003 or 
CP > 0.9997) can be larger than 0.01, but this is irrelevant due to the low 
probability of having to simulate such a z-value; since empirical evidence 
points toward wider-than-ND tails, this is actually a step in the right direc- 
tion. 

Algorithm: 

< 0.5 u = log,,(CP) s = - 1  
2 0.5 u = lOg,O(l - CP) s +I 

with 

u = -0.9069066 

b -3.64591 

c = -2.205586 
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d = -0.9623506 

e = -0.2366192 

f = -0.02921359 

g = -0.001375013 

Example: 

For CP = 0.05938, z = -1.5633 is found (tabulated value: - 1.56). 

For CP 1 0.78814,~ = +0.7982 is found (tabulated value: + 0.80). 

5.1.2 The Student’s t-Distributions 

This empirical one-line function fits into almost any program, especially if 
only one significance level is needed: 

Calculation of Student’s t from df and p 

Use: Calculate Student’s t-values given p and df; Student’s t is used 
instead of the normal deviate z when the number of measurements that go 
into a mean is relatively small and the assumption of p and u being infinitely 
precise has to be replaced by the assumption of a normally distributed mean 
and a x2-distributed s,. 

Assumptions: Empirical polynomial approximation to t-tables. A good 
overall fit was attempted; relative errors of less than 1% are irrelevant as 
far as practical consequences are concerned. The number of coefficients is 
a direct consequence of this approach. Polynomials were chosen in lieu of 
other functions in order to maximize programming flexibility and speed of 
execution. 

Reference: References 191 and 192 came to the authors’ attention in the 
early 1990s; P.M. had independently devised the algorithm in 1974. A some- 
what different equation is used for p = 0.05, 0.025, and 0.005 in Ref. 193. 
The degrees of freedom for which data points were taken are (50 points, 
three decimal places): df 1 1, 2, . . . , 30, 32, 34, . . . , 42, 45, 47, 50, 55, 60, 
70, 80, 90, 100, 120, 500; 10000 is used for 00. 

Procedure, accuracy: Use the algorithm given below; the figures of merit 
are given in Table 5.1. 

Algorithm: 

t = a + b/df + c/df2 + . . . + j/df8 (5.3) 
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Table 5.2. Figures of Merit for the Approximations Given in Table 5.1 

P Sres LAR df TAR LRR% df TRR % 

0.5 
0.2 
0.1 
0.05 
0.02 
0.01 
0.002 
0.001 
0.0001 

0.0003 
0.0008 
0.0014 
0.001 
0.003 
0.007 
0.0006 
0.002 
0.1 

0.0005 
0.004 
0.0048 
0.0047 
0.02 
0.029 
0.0027 
0.011 
0.40 

0.0003 
0.0005 
0.001 
0.0003 
0.0006 
0.004 
0.0004 
0.002 
0.06 

____ 

0.072 12 
0.22 2 
0.20 3 
0.1: 3 
0.15 3 
0.49 3 
0.037 4 
0.12 4 
4.3 1000 

____ 

0.05 
0.03 
0.06 
0.02 
0.02 
0.1 
0.01 
0.03 
1 

Use the coefficients a . . . g(h, j )  given in Table 5.1 where df number of 

Example: for df = 5 ,  p = 0.05: t = 2.5690 is found (tabulated value: 2.5706) 
degrees of freedom at which LAR or LRR is found. 

Calculation of p from Student’s t and f 

Comment: Instead of calculating a critical t, and comparing it to the exper- 
imental one, the experimental t is converted into an estimated error probabil- 
ity, which is then checked against a preset value, e.g., 0.05. The medical and 
social science communities prefer using the second approach. This algorithm 
is theoretically underpinned. 

In several programs subroutine PROBAB is used to find the probability p 
that the result is due to chance alone if a Student’s t-factor and the number 
of measurements is known. 

Assumptions: definition of Student’s t-factor19z 
Procedure, accuracy: calculate p by either of two algorithms, depending 

on whether the number of degrees of freedom df is even or odd. The func- 
tion is very accurate: LAR: -0.0003 at p = 0.5; LRR: 0.5% at p = 0.001. 
Abbreviations: See Section 5.1. 

Example: for t = 3.182 and df = 3: 
Listing: See Table 5.3. 

p = 0.05002 is found (tabulated value : 0.05000) 

5.1.3 F-Distributions 

Use: Calculation of F fromfl andf2 for p = 0.05 and p = 0.025 for the 

Assumption: F-distribution. 
Reference: Ref. 194 

F-test. 
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Table 5.3. BASIC Code for Subroutine PROBAB 

Assignments: 
A-D : 

K: 
F :  

T :  

P :  

scratchpad variables 
index 
degrees of freedom 
Student’s t 
probability of error 

130 

150 

2 0 0  

210 

230 

260 

SUB PROBAB(F, T ,  P )  

RADIANS 

D = A T A N ( T / S Q R ( F ) )  

A = COS (D) 
B = A*A 
I F  I N T ( F / 2 )  # F/2 THEN 150 
A =  1 
I F  F = 2 THEN 130 ELSE C = 1 
FOR K = 2 TO F - 2  STEP 2 

GOSUB 2 3 0  

NEXT K 
A = A*SIN (D) 
GOTO 2 6 0  

I F  F = 1 THEN A = 0 & GOTO 2 1 0  

I F  F = 3 THEN 2 0 0  ELSE C = A 

FOR K 3 TO F - 2  STEP 2 

GOSUB 2 3 0  

NEXT K 
A - A*SIN (D) 
A 1 2* ( D t A ) / P I  

GOTO 2 6 0  

C - C*B* (K-l)/K 
A - A t C  

RETURN 

P - 1  A 
SUB END 

if F = odd then goto 150 
F :  even-numbered 

F :  odd-numbered 

PI = 3 . 1 4 .  . 

subroutine 

calculate probability 

Procedure: The two algorithms FF050 and FF025 permit tabulated F-val- 
ues for the confidence levels p = 0.05 and 0.025 to be approximated with 
high accuracy. The strong curvature of the F = f ( f l  , f * , p )  surface militates 
against simple and flexible functions like polynomials; only two confidence 
levels are available. 

Accurucy: The two programs very accurately approximate the tabulated 
values, the relative deviations (LRR) remaining below 0.01 %, except when 
the equations on lines 10 are used, where they remain below 0.6%. 
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Table 5.4. BASIC Code for the Calculation of F-Values for p = 0.05 

SUB FF050(Fl,F2,F) 
IF F2 > 4 OR F1 > 1 THEN 10 
IF F2 = 1 THEN F = (F1 - .09849)/(.0039292*Fl t .0016579) &RETURN 
IF F2 = 2 THEN F = (F1 - .03646)/( .051294*Fl t .000761) 
IF F2 = 3 THEN F =  (F1 t 1.094)/(.1173*Fl t ,0894) 
IF F2 = 4 THEN F = (F1 t 1.349)/(.1776*Fl t .1271) 

F = (F1 t 1.288)/(.1751*Fl + .1129) 

& RETURN 
& RETURN 
& RETURN 

IF F1 = 1 THEN F = 7.71 - (F2 - 4.032)/(.2581*F2 - ,4076) & RETURN 
10 

- (F2 - 4.119)/(.2511*F2 - .4236) 
- ,552 
t 6.53/(F1 t 11.533) 
t 3.993/(F2 t 11.533) 
- 88.889/(Fl t 11.533)/(F2 t 11.533) 

RETURN 

Examples : 

Forfl = 6, f 2  = 5 ,  andp = 0.05: F,  = 4.960 is found (tabulated value: 4.95). 

Forfl = 6, f 2  = 5 ,  andp = 0.025: F,  = 6.99 is found (tabulated value: 6.98). 

Table 5.5. BASIC Code for the Calculation of F-Values for p = 0.025 

SUB FF025 (Fl, F2, F) 
IF F2 > 4 OR F1 > 1 THEN 10 
IF F2 7 1 THEN F = (F1 - .09582)/( .0009831*Fl t .0004153) & RETURN 
IF F2 = 2 THEN F = (F1 - .00904)/(.025317*Fl + ,000416) &RETURN 
IF F2 = 3 THEN F = (F1 t .9232)/(.07192*Fl t .03836) 
IF F2 = 4 THEN F = (F1 t 1.27)/( .121*F1 t ,0648) 

F = (F1 t 1.739)/(.1197*Fl t .1108) 

& RETURN 
& RETURN 

IF F1 1 THEN F = 12.22 - (F2 - 4.045)/(.1387*F2 - ,2603) &RETURN 
10 

- (F2 - 3.986)/(.1414*F2 - .2864) 
- ,145 
- .0017*F1 

t 0.0615*Fl/(F2 t 30) 
- 2.706/ (F2 + 30) 

RETURN 
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Table 5.6. Coefficients for Approximating X2-Values for Various Confidence 
Levels 

P a b c d 

0.01 
0.025 
0.05 
0.1 
0.9 
0.95 
0.975 
0.99 

0.8304346 
0.7006128 
0.5847010 
0.4359082 

- 1.797326 
-2.401336 
-3.004395 
- 3.80404 I 

0.4 15770 1 
0.5264558 
0.6263386 
0.7 156998 
4.633 139 
5.986627 
7.332854 
9.459484 

0.0963 2204 
0.11061 850 
0.03897389 
0.1145636 

-3.693577 
-5.246916 
-6.74877 

~ 10.17665 

0.057 18995 
- 0.09982465 
-0.0 I341 259 
-0.1 324754 

2.017 129 
3.032807 
4.007 137 
7.61 8876 

P e f’ g 

0.01 
0.025 
0.05 
0.1 
0.9 
0.95 
0.975 
0.99 

-0.05 174064 
0.11871100 
0.047253 19 
0.0976907 

0.8467675 

3.470499 

-0.4866325 

~ 1.214192 

0.021 3863 
-0.05364844 
- 0.0253 1424 
-0.02973045 

0.00104 1404 
0.06028729 
0.134666 
0.8727404 

-0.003553602 
0.008313859 
0.004102034 
0.003078732 
0.0 I305642 
0.01034983 
0.004 11 5038 

-0.09240059 

5.1.4 The X2-Distributions 

Use: Calculation of x 2  from df, e.g., for the determination of CL(s,). 
Assutnprion: x ’-distribution; the curvature of the x 2-functions versus df 

is not ideal for polynomial approximations; various transformations on both 
axes, in different combinations, were tried, the best one by far being a 
logl&’) vs. loglo(df) plot. The 34 X’-values used for the optiniization of 
the coefficients (two decimal places) covered degrees of freedom 1-20, 22, 
24, 26, 28, 30, 35, 40, 50, 60, 80, 100, 120, 150, and 200. 

Reference: None. 
Procedure, accuracy: Use the algorithm below with the coefficients given 

in Table 5.6; the figures of merit are given in Table 5.7. The accuracy of the 
approximations is sufficient for most applications. 

Algorithm: 

(5.4) 
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Table 5.7. Figures of Merit for the Approximations Given in Table 5.6 

P sreS LAR df TAR LRR % df TRR 9% 

0.01 0.19 0.9 200 0.05 2 1 0.05 
0.025 0.1 0.4 200 0.03 0.19 2 0.05 
0.05 0.004 0.16 200 0.05 0.17 2 0.05 
0.1 0.04 0.16 200 0.03 0.7 2 0.1 
0.9 0.3 1.1 200 0.03 2.3 2 0.5 
0.95 0.35 1.4 200 0.05 3.1 2 0.5 
0.975 0.3 1.3 200 0.05 3 2 0.5 
0.99 0.09 0.3 150 0.05 0.3 150 0.08 

Examples: 

For df = 5 andp = 0.025: x 2  = 12.85 is found (tabulated value: 12.83). 

For df = 5 and p = 0.975: x2 = 0.842 is found (tabulated value: 0.83 1). 

5.2 CORE INSTRUCTIONS USED IN SEVERAL PROGRAMS 

The core instructions used in programs MSD, CORREL, FACTOR8, HISTO, 
and MULTI are given in a stripped-down version of BASIC in the follow- 
ing tables to allow the reader to follow the ideas from a different vantage 
point and/or to migrate the program kernels to a programmable calculator. 
Numerical examples are provided to check the calculations. 

The core parts of program &lSJ are given in Table 5.8; Table 5.9 dis- 
plays the results of a numerical example, see file QUOTE-RESULT.xls, and 
compares this to the results obtained using the approximations listed earlier. 

Program CORREL is given in Tabie 5.10; Tables 5.11-13 display the 
results of a numerical example. 

The core part of program FACTORS is given in Table 5.14. 
The core parts of program HISTO and subroutines NPS and SORT are 

Subroutine ANOVA from program MULTI is given in Table 5.18. 
given in Tables 5.15-17. 

5.3 INSTALLATION AND USE OF PROGRAMS 

Section numbers are cross-referenced, e.g., Section 2.2.10. 

Introduction The intention behind the book and these programs is to pro- 
vide the user with a number of statistical tools that are applicable to prob- 
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Table 5.8. BASIC Code for the Core of Program MSD 
~~ 

Assignments 
s x ,  sxx 
XB 
s ,  vx 
R 
TO 
c1.. .c4 

statistical sums 
x-avg = mean = x-bar 
standard deviation, variance 
residual 
Student's t forp= 0.05 
confidence limits for xmean and s, 

Listing 
SUB M S D ( N , X ( )  ,M,S)  

sx = 0 
FOR I : 1 TO N 
SX = sx t X ( 1 )  
NEXT I 
XB = SX/N 

sxx = 0 
FOR I ~ 1 TO N 
R =  X ( 1 )  -- XB 
sxx :- sxx t R*R 
NEXT I 

S = S Q R ( V X )  
VX I SXX/ ( N  ~ 1) 

F - N  ~- 1 
A ~ LGT(F) 
TO = 1.959002 t 2.416196/F 

t 2.544274/F/F t 2.583332/F/F/F 
t 2.598259/F/F/F/F t 0.604703l/F/F/F/F/F 

t .1106185*A*A - .09982465*A*A*A 
t .118711*A*A*A*A - .05364844*A*A*A*A*A 
t . OOj3 13 8 59*A*A*A*A*A*A 

B 1  ~ ,7006128 t .5264558*A 

B 1 :  1 0  B 1  

B2 : -3.004395 t 7.332854*A 
~ 6.74877*A*A t 4.007137*A*A*A 
-1.214192*A*A*A*A t .134666*A*A*A*A*A 
t .OO? 11503 E*A*A*A*A*A*A 

B 2  = 1 0  B2 
C 1  = TO*S 
C2 = C l / S Q R ( N )  
C3 = S X * S Q R ( F / B l )  
C4 = S X * S Q R ( F / B 2 )  

P R I N T X B ,  S ,  X B -  C 1 ,  XB t C1, XB - C 2 ,  XB 
+ c2, c3, " .  . . ' I ,  c4 

SUB END 

calculate mean 
E q .  (1.1) 

calculate 
standard deviation 
E q .  (1.2a,d) 

degrees of freedom (one estimate 
is involved) 

See Section 5.1.2 

lower bound on x2, see 
Section 5.1.4, ( p -  0.025) 

upperboundonX2 ( p =  0.975) 

t * s  of 
the distribution, 
the mean, 
LCL, UCL of the std. dev 
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Table 5.9. Rounding a Result Using File QUOTERESULT.xlsa 

n =  15 
x,,,, = 3.3847 
S, = 0.3191 
t . CV(x): 
f 0.684 

t CV(xrnean): 
k 0.177 

f . s x :  
-0.086, +0.184 

quoted result: 

01 

(14, 0.05) = 2.145 
~ ~ ( 0 . 9 7 5 )  = 5.629 0.3191 . = 0.503 
~ ~ ( 0 . 0 2 5 )  = 26.12 0.3191 . 4- = 0.234 

CL(x): 2.70 . . . 4.07 (distribution) 

CL(xrne,): 3.21 . . . 3.56 (mean) 

CL(s,): 0.234 . . . 0.503 
3.38 f 0.32 

(standard deviation) 
(“n = 15, confidence interval of 
the mean for p = 0.05”) 

Xrnean = 3.4, 
S, = k0.3, 
n =  15 

aFor the approximations given in this chapter, some numbers are marginally different: t = 
2.146, x2 = 5.601 resp. 26.10,f . s,: -0.085, +0.186, CL(s,): 0.234 . . . 0.505. 

lems encountered in the typical analytical lab, and are instructive. The level 
is intermediate in statistical complexity, somewhere between the extremes 
of statistical models that correctly portray only the most simple situations, 
and others that should only be employed by a specialist armed with years 
of experience. Programs, too, come in a variety of forms, from those that 
offer only cryptic prompts and one number results to others that feature the 
full range of statistical tests, exquisite graphic capabilities, and dozens of 
options. Here, the attempt was made to come to terms with data sets of up 
to a few hundred numbers and a few dimensions (variables) using concepts 
that are easy to explain and are intuitively understood. The authors hope to 
have come up with a user-interface that emphasizes the didactically impor- 
tant aspects and is an enabler rather than a burden. 

5.3.1 Hardware/Configuration 

The following minimal hard- and software is necessary: 

A PC with at least 16 MB RAM. 
Windows 95 or NT operating system, or higher. 
A VGA graphics card. 
A Windows-compatible printer. 
At least 5 MB free space on the hard disk. 
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Table 5.10. BASIC Code for the Core of Program CORREL 

Assignments: 
R(,) data array, N rows (samples) , M 

column averages xj 
sum of squared residuals per 

columns ( attributes ) 

column rii on diagonal, 
and sums of products of residuals 
rij in cells above diagonal 

correlation coefficients cij for 
each pair of columns i and j 

probability of the correlation 
being due to chance 

80 

190 

Listing : 
SUB CORREL (N, M, R(, ) ) 

DIM SXY(M,M) ,XB(M) ,R(N,M), 
C ( M , M )  ,N(M,M) 

XB() ~ 0 & N1 = 0 
FOR J : 1 TO M 
FOR I = 1 TO N 
IFNOTR(I,J) T H E N ~ O  
XB(J) = XB(J) t R(I,J) 
N1 = N1 t 1 
NEXT I 
XB(J) = XB(J)/Nl 
NEXT J 

SXY(,) = 0 
N1 = 0 
FOR J1 :- 1 TO M 
FOR J2 :: J1 TO M 
FOR I = 1 TO N 
IF NOT R (1, J1) OR NOT R (I, J21 

THEN 190 

SXY(J1,JZ) = SXY(J1,JZ) 
t (R(1,Jl) XB(Jl))*(R(I,JZ) ~~ XB(J2)) 

N1 = N1 t 1 
NEXT I 
N(Jl,J2) = N1 
NEXT J2 
NEXT J1 
FOR J1 L 1 TO M ~ 1 
FOR J2 = J1 t 1 TO M 

set all elements set to zero 

jump if no value left in list 

column means 

clear matrix 

calculate sums of squares 

calculate correlation sum 
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Table 5.10. (Continued ) 

GOSUB 5 0 0  p is calculated from r2 via t 
NEXT 52 
NEXT J1 

PRINT RESULTS IN MATRIX FORM 
END 

500 C(Jl,J2) = SXY(Jl,J2)/SQR(SXY(Jl,Jl) C(J1,JZ) contains the correlation 
*SXY (52,521 ) 

T = ABS (C (Jl, 52) ) 
*SQR((N(Jl,J2) - 2)/(1 - C(Jl,J2) 
*C (J1, J2) ) ) 

coefficient rjk, which is 
then transformed to a Student’s t 
and from there to a probability p 

F = N(Jl,J2) - 1 
CALL PROBAB (R, T I  P )  
RETURN 
SUB END 

Table 5.11. Data Table X ( , )  and Means 

Raw Data Residuals 

Solv. Assay Assay Solv. Assay Assay 
B Titr. HPLC B Titr. HPLC 

6.9 98.0 98.0 .24 1.08 1.60 
6.2 97.0 94.9 - .46 0.08 -1.50 
7.0 94.0 94.0 .34 -2.92 -2.40 
6.3 96.4 96.7 -.36 -0.52 0.30 
6.9 99.2 98.4 .24 2.28 2.00 

6.66 96.92 96.40 Means 

Table 5.12. Sums of Squares 

K =  1 K = 2  K = 3  

J =  1 0.572 -0.036 0.63 
J =  2 15.168 13.02 
J =  3 14.66 
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Table 5.13. Results of Correlation 

Parameters Correlation Student’s Probability Sign of 
Correlated Coefficient t of Error Slope 

B/ti tr. -0.0122 0.021 49% neg 
BIHPLC 0.2 18 0.39 36% pos 
titr./HPLC 0.873 3.10 1.8% pos 

A resolution of 800 . 600 is necessary (use small font); a resolution of 
1024 . 768 is optimal (use either small or large font); higher resolutions 
can be used with a 17-inch or larger screen (use large font); a resolution 
of 1280 . 1024 distorts the text. 

5.3.2 Software 

In this section, instructions for start-up operations and descriptions of pro- 
grams are given: 

Conventions In the following explanations, square brackets as in [3.56] 
identify text or numbers to be entered literally, respectively keys that are to 
be pressed, such as the [F2] key. Options are signalled by angled brackets, 
e.g. (Open File); “J” = [ENTER]. 

The SMAC software is available at ftp://ftp.wiley.com/public/sciLtech- 
med/SMAC. Follow the instructions posted online for downloading and 
installing the program. 

Starting a Program 
an example to guide the user through the options: 

The following instructions use program LINREG as 

1. Double-click the SMAC-icon (Fig. 5.1) on your desktop that features 
three Gaussian peaks; the main menu screen appears. (See Fig. 5.2.) 
The full-screen background of this and all screens that follow is light 
blue and contains about a dozen renditions, in a range of sizes, of the 
initials “SMAC” the coordinates of which change with every call. 

2. Click on a light-blue program description (item B) for a window that 
lists the main features of the corresponding program; return to the main 
menu by clicking on the red [EXIT] button (C); 

3. Click on the blue cell that contains the program name (LinReg) (A) to 
load and start the LINREG.exe-file. 

Title Screen Each program starts off with a title screen, see Fig. 5.3, that 
repeats the major features, displays the “SMAC” initials, lists the program 
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Table 5.14. BASIC Code for the Core of Program FACTOR 

low/high levels of factors 
measurements 
derived effects 
reduced effects 

M O  model coefficients 

Listing : 
PROGRAM FACTOR 

I N P U T  ‘measured value for factor 1:’ ; Y (1) 

I N P U T  ‘measured value for factor A:’; Y ( 2 )  

I N P U T  ’measured value for factor B: ‘ ; Y ( 3 )  factor low high 
I N P U T  ‘measured value for factor C: ‘ ; Y (4) A 4 0  5 0  deg. C 

I N P U T  ‘measured value for factor AB:‘; Y ( 5 )  B 1 2 ratio 
I N P U T  ‘measured value for factor AC:‘; Y ( 6 )  C 6 7 pH 
I N P U T  ‘measured value for factor BC: ‘ ; Y ( 7 )  

I N P U T  ‘measured value for factor ABC: ‘ ; Y (8) 

E ( 1 )  = ( - Y ( 1 )  t Y ( 2 )  - Y ( 3 )  - Y ( 4 )  t Y ( 5 )  calculate effects 

I N P U T  levels of factors, 
see scheme : 

t Y ( 6 )  - Y ( 7 )  t Y ( 8 )  ) / 4  

E ( 2 )  = ( - Y ( l )  - Y ( 2 )  t Y ( 3 )  - Y ( 4 )  t Y ( 5 )  

- Y ( 6 )  t Y ( 7 )  t Y ( 8 ) ) / 4  

t Y ( 6 )  t Y ( 7 )  t Y ( 8 )  ) / 4  

E ( 3 )  = ( - Y ( 1 )  - Y ( 2 )  - “ ( 3 )  t Y ( 4 )  - Y ( 5 )  

E ( 4 )  = ( t Y ( 1 )  - Y ( 2 )  - Y ( 3 )  t Y ( 4 )  t Y ( 5 )  

- Y ( 6 )  - Y ( 7 )  t Y ( 8 ) ) / 4  

E ( 5 )  = ( t Y ( 1 )  - Y ( 2 )  t Y ( 3 )  - Y ( 4 )  - Y ( 5 )  

t Y ( 6 )  - Y ( 7 1  t Y ( 8 1 ) / 4  

E ( 6 )  = ( t Y ( 1 )  t Y ( 2 )  - Y ( 3 )  - Y ( 4 )  - Y ( 5 )  

- Y ( 6 )  t Y ( 7 )  t Y ( 8 ) ) / 4  

E ( 7 )  = ( - Y ( l )  t Y ( 2 )  t Y ( 3 )  t Y ( 4 )  - Y ( 5 )  

calculate factors 

Note: F = E / R l / R 2 * 2  means that E 
is first divided by the difference 
R 1 ,  then divided by the difference 
R 2 ,  and finally multiplied by 2 .  
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Table 5.14. (Continued) 

ENTER: sy 
P t sy/sqr(8) &Factor t = 4.604 for f = 4 and 

Estimated standard deviation s y  

p = 0.005 (one sided) is 
incorporated in program. 

FOR I = 1 TO 7 

I F  F ( 1 )  > P THEN M(1) = F ( 1 )  significant effect . 
ELSEM(1) ~ 0 insignificant effect. 

NEXT I 

INPUT 'coordinates A,  B ,  C:'; A, B, C 
A ( 9 )  = A -  ( R ( 1 , 2 )  t R(l,l))/2 find coordinates 
B ( 9 )  = B ~ (R(2,2) + R(2,1))/2 relative to 
C ( 9 )  = C - (R(3,2) t R(3,1))/2 

Y - 0  
FOR I ~~ 1 TO 8 

Y Y t Y ( 1 )  

MODEL: obtain coordinates A, B, C 

of center of cube 

NEXT I 
Y = Y/8 

Y :  Y t M(l)*A t M(2)*B t M(3)*C 
Y 

extrapolate from center of 
Y t M(4)*A*B + M(5)*A*C + M(6)'B*C cube to point A, B, C 

Y = Y t M(7) *A*B*C 

name, the authors, the ISBN number, the publisher's name, the copyright 
sign, and the format remark. 

Menu Bar, Pull-Down Windows The first item in the menu bar is the pull- 
down menu (File), which lists the appropriate selections (Open File), (Close 
File), and (Close LinReg). 

(Open File) gives access to the standard file-selection window and then 

(Close File) discards the data being used and all results and closes the 

(Close LinReg) releases the program and returns control to the main 

branches to (Choose Vector). 

presently open file. 

menu. 

The second item in the menu bar is (Data), which lists the selections 
(Round, Column Width), respectively (Choose Vectors). 
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Table 5.15. BASIC Code for the Core of Program HISTO 

Assignments: 
Xi) (length = N) 
U O  (length = NB) 
V O  (length = NB) 
W O  (length= NB) 
XMIN: 
XMAX: 
IL: 
IH: 
W: 

values to be analyzed 
number of observations per bin 
frequency of observation ( % )  per bin 
cumulative frequencies 
smallest x-value 
largest x-value 
number of observations x smaller xmin 
number of observations x larger x,,, 
width of a bin 

Listing : 
SUB HISTO (N, X ( ) 
INPUT "Xmin, Xmax: ';Xl,X2 
INPUT "number of bins : " ;NB 
DIMU(NB) ,V(NB) ,W(NBI 

FOR I = 1 TO NB 
U(I) = 0 
NEXT I 

XMIN = 1E99 
XMAX = -XMIN 
IL = 0 
IH= 0 
sx = 0 
sxx = 0 
W =  (X2 - Xl)/NB 

FOR I = 1 TO N 
x = X ( 1 )  
J = INT ( (X - X1) /W t 1 

IF J > 0 AND J > NB THEN U(J) 
= U ( J )  t 1 

IF X < XMIN THEN XMIN = X 
IF X > XMAX THEN XMAX = X 
IF X < X1 THEN IL = IL t 1 
IF X > X2 THEN IH = IH t 1 
sx = sx t x 
NEXT I 

FOR I = 1 TO NB 
V(1) = 100*U(I)/N 
NEXT I 

set up arrays and variables 
obtain x-range and 
bin number 

set counts to zero 

set extremes to "infinity" 

set counts to zero 

set statistical sums to zero 

bin width 

for all measurements in the list X O  

assign bin number J, 'tl' is necessary 

increment count in bin J 
so that J >  0 

update extremes, if necessary 

update counts of extremes 

calculate statistical sum 

calculate frequencies 
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Table 5.15. (Continued) 

w i i )  = ~OO*IL/N t v ( 1 )  

W(I) - W(I - 1) t V ( 1 )  

FOR I 2 TONB 

NEXT I 

XB = SX/N 

FOR I 1 TON 

SXX - SXX t R*R 
NEXT I 

R -  X(I) ~ XB 

s - SQR(SXX/(N - 1) 
H = N*W/S/SQR(2*PI) 
FOR X XB ~ 3*S TO XB t 3 * S  

STEP S/50 
Y - H*EXP ( -x*x/s) 
PLOT (XB ~ X,Y) and (XB t X,Y) 
NEXT X 

SUB END 

cumulative frequencies, starting with 
bin 1 that is the sum of bin V ( 1 )  and 
all counts to left of xmin 

mean 

re s idual 
sum of squared residuals 

standard deviation 

Normalization factor H; PI = 3.14. . . 
calculate and plot normal distribution 
curve of equal area 

(Round, Column Width) permits the raw data presentation to be adjusted 
by choosing the number of significant digits to which the numbers are 
rounded to, see “Presentation of Numbers” below; the column width is 
automatically adjusted. 

(Choose Vectors) permits two columns (vectors) to be chosen from a 
data table and assigned to specific roles, i.e., abscissa and ordinate see 
Fig. 5.4, E, F. The file name and path is confirmed directly under the 
screen title. The “size-of-file’’ window gives the number of rows and 
columns (A); a scroll bar appears automatically if the screen side is 
insufficient for presenting the whole table. The “rounding” box (D) indi- 
cates the presently active rounding scheme; “Not rounded” is the default 
option. The selection procedure works by clicking on the column in 
question and then confirming the choice; a yellow window (C) above 
the table gives the instructions to be followed. In some programs a sin- 
gle vector is all that is needed, and in others a range of columns has to 
be designated. 

The third item in the menu bar is (Options), which lists the program- 
specific selections, here (Font), (Scale), (Specification Limits), (Select p), 
(LOD), (Residuals), (Interpolate Y = f ix)),  (Interpolate X =- f l y ) ) ,  (Clear 
Interpolation), respectively (Weighted Regression). 



INSTALLATION AND USE OF PROGRAMS 349 

Table 5.16. BASIC Code for Subroutine NPS 

Assignments: 
1, J indices 
X O  data vector 
H scaling factor for ordinate 
A, P intermediate results 
FNZ function to transform %-probabilityvalues to 

NPS-scale; xis the independent variable 
in the polynomial. (See Section 5.1.1. ) 

Listing : 
SUB NPS(N,X()) 

CALL SORT (N, X ( )  ) 

H; -0.5*FNZ(l/N) 

FOR I 1 TON ~ 1 
Y = H*FNZ (I/N) 
PLOT Y versus X (I) 
NEXT I 

DEF FNZ (P) 
IF P < 0.5 THEN X = LGT (P) & S = -1 
ELSE X = LGT(1 - P) & S = 1 

Y = A t B * X t C * X " 2 +  . . .  G*X"6 
FNZ = S*Y 
DEF END 

SUB END 

sort x-values in ascending order 

scaling factor; use function FNZ below 

calculate coordinate of i-th 
point and plot 

use function z = f ( p )  Eq. (5.2) defined 
in Section 5.1.1 

polynomial only defined f o r  p = CP < 0.5, 
since function is symmetrical about CP 
= 0 . 5 ;  Sgives sign. 

Table 5.17. BASIC Code for Subroutine SORT 

Assignments: 
Xi) data vector 

SUB SORTX(N, X()) 

FOR I 1 TON - 1 
FOR J = 1 TON - I 
IF X(J) > X(J t 1) THEN SWAP X(J), X(J t 1) 
NEXT J 
NEXT I 

SUB END 

The statement "SWAP A, B" can be 
replaced by 3 statements "C = B" ; 
\>B = A!,; <\A = Cr, 
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Table 5.18. BASIC Code for the Core of Subroutine ANOVA 

Assignments: 
R ( ,  ) 

S 0 
N O  
N 
M 
N 1  

X B O  
XGM 

data vector 
sums of values 
number of values in group 
number of values in largest group 
number of groups 
total number of values 
group means 
grand mean 

Listing : 
SUE(ANOVA(N, M ,  R ( , ) )  

DIM R I N , M ) ,  S ( M ) ,  N ( M ) ,  X B ( M )  
N 1  = 0 

FOR J : 1 TO M 
su 0 

S ( J )  ~ 0 

N(J) = 0 

FOR I = 1 TO N 

I F  NOT R ( 1 , J )  THEN 120 
S ( J )  = S ( J )  t R ( I , J )  

N ( J )  = N ( J )  t 1 

1 2 0  NEXT I 
N1 = N 1  t N(J) 

1 5 0  SU= SU t S ( J )  

X B I J )  : S ( J ) / N ( J )  

NEXT J 

XGM : SU/N1 

SGM : 0 

S X X -  0 

FOR tJ ~ 1 TO M 

SGM: SGM t N ( J ) * ( X B ( J )  ~ XGM)* 

( X B ( J )  ~ XGM) 

FOR I ~~ 1 TO N 
I F N O T X ( 1 , J )  T H E N 2 6 0  

SX:X= SXX t ( R ( I , J I  
~ X B I J ) ) * ( R ( I , J )  

~ X B I J ) )  

2 6 0  NEXT I 
NEXT J 

S T  = SGM t SXX 

jump if no value in list 

grand total 
group mean 

grand mean 

sum of weighted squared 
deviations of group means from 
grand mean 

sum of squared residuals. See 
E q .  ( 1 . 3 0 )  

See E q .  (1.31) 
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Table 5.18. (Continued) 

F1 N1 - M 
F 2 = M - 1  

sum of variances = total 
variance. See Eq.  (1.33) 

PRINT SXX, F1, SXX/Fl 
PRINT SGM, F2,  SGM/F2 
PRINT ST, Nl - 1, ST/(Nl - 1) 

SUB END 

for example of print-out see 
Table 1.9 t 11 

Figure 5.2. The MainMenu. 
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(Font) gives access to the installed fonts and text size; a simple font like 
Arid with a 8 or 10 point size is best; fancy fonts tend to obscure the 
message and large fonts make it difficult to inspect a large table. 

(Scale) allows the user to select a specific area of the x, y-plane for 
display. Tic-mark intervals can be tailored to the application; tics are 
always displayed such that one tic coincides with the origin (x = 0 or 
y = 0). The default scale adds 5 %  to the x- resp. y-ranges on all four 
sides. (See Figs. 5.5 and 5.6.) 

(Specification Limits) allows (vertical) dashed lines to be added to 
illustrate the Accept/Reject decision points that the Quality Assurance 
Department uses in product release. 

(Select p )  allows the confidence level to be changed ( p  = 0.25,0. 1,0.05, 
0.025, 0.01, 0.005, or 0.001 (two-sided tests, default p = 0.05). 

(LOD) calculation determines the limits of detection and quantitation 

Features 
- Choose any 2 vectors and define either as abscissa X or 

as ordinate Y 

- Calculate linear regression and display graph points, 
regression line, upper and lower 95% confidence limits CL  
for regression line 

- Display key results number of points N, intercept a ,  
slope b, both with 95 % confidence limits, coefficient 
of determination r2, residual standard deviation 

- Interpolate Y=f(x), * 95% CL for any x. 
interpolate X=f(y*,k). L 95% CLfor any mean y" from k 
determinations 

- Calculate and display the residuals, add specification 
limits, print all results and table of values 

- Determine the limit of detection LOD and limit of 
quantitation LOO according to the interpolation at level 
y = a + CL of the regression line and its lower CL. this is 
sensitive to the calibration-point pattern! 

Figure 5.3. The Title Page 
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Figure 5.4. The presentation of the values contained in a data file. A: program and file names; 
B: size of file; C: instructions on how to proceed; D: currently active rounding option; E. 
abscissa vector; F: ordinate vector. 

according to the calibration-sensitive model described in Section 22.7; 
the associated assumptions and the calculations are displayed in (LOD 
Explanations). 

(Residuals On/Off) permits the residuals to be superimposed at a chosen 
ordinate and with a given magnification relative to the ordinate scale. 

(Interpolate Y = Ax))  requests the user to either enter a specific x-value 
into the green box (Fig. 5.6, item D), followed by J , or to use the mouse 
pointer to indicate where the interpolation is to take place (depress left 
button and slowly pull mouse). The corresponding results are contin- 
uously updated in the table. The confidence interval of the result Y is 
indicated by a bold bar sitting on top of the dashed interpolation line. 
Clickmg on the pale yellow [Print] button sends the numerical results 
to the selected printer; there is the option of sending a [Form Feed] 
immediately or after a few interpolations have been done. 

0 (Interpolate X = y ) )  works similarly, only that in addition to the mean 
measurement y* the number of repeats k has to be entered, followed by 
J ; the default is k = 2. 
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Figure 5.5. The Scale Selection Page. A: extreme values in data set; B: currently active scale 
(= default scale of extremes +/ - 5% when first opened); C: tic-mark spacing, initially set by 
default. 

(Clear Interpolation) refreshes the screen without the interpolation 

(Weighted Regression) requires the user to define a signal-dependent 
model of the measurement error, e.g., s y  = a + b . x, which is then 
used to calculate the weighting factors 1 / V y  at every abscissa x,. For 
an example on how to enter the model, see “Algebraic Function,” 

The item (Display) allows the user to chose between the graph and the 
corresponding table of data, see Fig. 5.7. 

The last item in the menu bar is (Output), which contains the selections 
(Setup Printer), (Setup Print Job), (Print Graph and Main Results), (Print 
Table of Detailed Results), and (Copy to Clipboard). 

results. 

(Setup Printer) gives access to the standard printer-selection window, 
which includes the setting of the paper size and orientation. 

(Setup Print Job) permits the following to be defined (See Fig. 5.8.): 
paper margins, size of rectangular area to which the graph is mapped, 
units (mm, cm, inch), and line width. In this way, graphics can be repro- 
ducibly scaled to be exactly superimposable because the axis and tic 
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Figure 5.6. The LinReg Graph. A: the regression line with the 95% CL; B: residuals expanded 
by a factor of 10; C: LOD and LOQ; window D: option for entering specific numerical values 
for y* and k,  and for sending the interpolation results to the printer; E: numerical results of 
the specified interpolation; F: other results. 

labels are written into a reserved margin between this rectangle and the 
defined paper margins. If selected too large, the size of the rectangular 
area defaults to the maximum possible given the size of the paper, the 
margins, and the space for axis labels (see “Limit” number given below 
the input box). 

(Print Graph) sends the graph and the associated results to the selected 
printer. 

(Print Results) sends the table of raw data and derived results to the 
selected printer. 

(Copy to Clipboard) provides the selection (Graph), (Results), and 
(Values). (See Fig. 5.9.) One of the three can be selected and sent to 
the clipboard. After changing to another application, such as Microsoft 
Word, the contents of the clipboard can be retrieved; use the [Alt] [Tab] 
keys for rapidly switching between active programs. After returning to 
the SMAC program, select the next output. 
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Figure 5.7. The Output Option (Table of Values). A: option identification and data path; B: 
data set identity and size, derived Student’s t, selected p ;  C: abscissa and ordinate values; D: 
estimated Y =Ax); E: absolute residuals; F: relative residuals; G: mean over absolute residuals 
and residual standard deviation. 

Other options are discussed in the context of the presentation of the indi- 
vidual programs. 

Data Input, Data Editor After each numerical input an editor is called that 
accepts both Anglo-American and Continental numbers ([NN,NNN.NN], 
respectively [NN’NNN,NNE-l2], with or without an exponent or a sepa- 
rator). Text is not accepted. 

Data Storage All numbers arrived at either through simulation (e.g., pro- 
gram SIMGAUSS) or transformation (e.g., division, square root, logarithm 
in program DATA) are clipped to five significant digits; this is reasonable in 
view of the fact that measurement precision is rarely better than the 1 : lo3 
or I : 104 level. 

Presentation of Numbers All numbers are presented in the Anglo-Ameri- 
can decimal point format, [NNNN.NNN], that is, without commas to sepa- 
rate groups of three digits. A custom-designed procedure displays a number 
with the preset number of significant digits as long as the chosen number 
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Figure 5.8. The Print Job Page. A: user units; B: paper margins in user units (for axis labels); 
C: physical size of paper (cannot be changed here, cf. (Set up Printer)); D: physical size of 
graph’s abscissa in user units (box around graph area, does not include axis labels); E: idem 
for ordinate; F: select line width. 

of decimal places suffices, otherwise the display switches to scientific for- 
mat to conserve the number of significant digits. If X significant digits are 
requested, then the display will ordinarily include up to X + 5 symbols (sign, 
numbers, decimal point, and exponent). 

Numerical Accuracy Double precision arithmetic is used throughout; this 
in principle limits the number of significant digits to 15. (See Table 1.1.) If 
many operations are involved in obtaining a final result, as in most statistical 
procedures, truncation will take its toll, and on the order of 8 to 10 digits 
would remain reliable. Since the measurements that go into a calibration 
rarely are accurate and precise enough to warrant more than 4-5 significant 
digits, and the algorithms that are used to eliminate table look ups, see Sec- 
tion 5.1, are accurate to about 2 4  digits, all results are purposely rounded to 
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Figure 5.9. The Copy to Clipboard 
Page in the (Output) Option. 

a final 2-5 digits, which suffices in practical situations. In this way, the user 
is not misled by superfluous digits and is fored to think about the statements 
that can be made, and those that cannot. Note that if the selected number 
of decimal places exceeds that necessary to present a certain number of sig- 
nificant digits, zeros are added. Rounding, as described in “Presentation,” 
affects only the output; all calculations are done using full precision. 

Algebraic Function Programs LINREG, SIMCAL, SIMGAUSS, SIMI- 
LAR, and TESTFIT provide a formula editor module for entering an alge- 
braic function, much in the way a program is entered in some scientific cal- 
culators, see Fig. 5.10. The module permits 24 lines to be entered that consist 
either of a number, a parenthesis, or an operator. At the end of each line, a J 
closes that line, the cursor jumps to the next one, and the signs just entered 
are added to the function window in the lower left corner. The mouse pointer 
can also be used to advance to the next line. Empty lines are permissible. 
Errors at this stage can be corrected by clicking on the line in question and 
editing the contents. An [OK] at the end initiates the parsing of the statement 
and as a control the value for Y A F ~ ( X  = 2) appears in the lowest window. 
[Continue] returns control to the evaluation program and a line is plotted 
across the screen that shows the function YAF -f(x) just entered (the scales 
are the same as those of the abscissa and ordinate). In the case of a sy = f ( x )  
function, see programs LINREG and SIMILAR, YAF = 0 is shifted to coin- 
cide with the lower edge of the graph. Because standard deviations must be 
positive, the user is requested to enter the method repeatability ( s y ,  short- 
term stability of signal); the calculated sy = Y is then limited to be Y 2 SF 
in these programs. 

An example of an algebraic function is 

Y = 0.023 + 0.0034*(~ - 5 )  -I- 0 .00002*~~ ,  
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Table 5.19. Syntax for the Algebraic Function 

Operator Example Syntax Explanation 

+ + J  
- J  
* J  

/ J  
log J (J a J) J 
In J (J a J )  J 
10” J (J a J) J 
exp J (J a J) J 
sqr J (J a J) J 
“2 J ( J a J ) J  

addition 
subtraction 
multiplication 
division 
logarithm to base 10 
natural logarithm 
exponent to base 10 
exponent to base e 
square root 
square 

The [ENTER] sign J indicates the end of the line. Note that the first operator cannot be put 
into row 1, but needs to be preceded by a factor, such as 1 J * J on the first two lines. After 
the caret “”” in lo”, a blank must be added. 

which would be entered in the following fashion, starting with the top row 
(empty lines are ignored): 

[O.O23]J[+] J [0.0034] J [“I J [(I J [XI J [-51 J [)] J [+I 
J [0.00002] J [*I J [“2] J [(I J [XI J [)] J 

When the “Function” and the “Result for x = 2” windows have been 
inspected and found to be in order, click on [Continue] to return to the main 
program. The last few instructions of the function could, of course, have 
been entered as [0.00002] J [*I J [XI J [*I J [XI J. 

The available operators are as shown in Table 5.19 and Fig. 5.10. 

Graphics Much energy was expended on presenting the situation (location 
and scatter of data points), and with it the relationship between results and 
specification limits in a graphical format. Autoscaling is the rule, but there 
is always the possibility of changing the data-driven scale to one that allows 
for cross-comparisons between various experiments. The display consists of 
the box containing the graphical depiction; the tic marks and their labels, the 
axis labels, a title, and supplimentary information are outside. 

The box is the scalable entity, which is assigned to a defined rectangular 
area on the printer, see (Setup Print Job). 

0 The tic mark intervals can be chosen within certain boundaries (from 
1/50 to 100% of the numerical range); tic marks are so arranged that 
they start from the origin, and not the lower end of the axis range. 
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Figure 5.10. The Algebraic Function. A: instructions and available operators; B: a sample 
function; C:  the parsed function; D: the [OK] button that initiates the parsing operation; E: the 
evaluation at x -= 2; F: the [Continue] and [Exit] buttons. 

The axis labels-header and dimension-are given by the data, see pro- 

The title identifies the type of graph. 

The supplimentary information comprises the file name and the vector 

gram DATA, option (Edit). 

number(s), and important results, but not the data table as such. 

Tables In general, a table of the data being used is provided. Depending on 
the particular program, this may be expanded to include means and standard 
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deviations, interpolations, references, equations, the results of other calcula- 
tions, and explanations. 

Output Formats Graphics and tables are available in the following formats: 

On the screen. 
As hardprints on a Windows-compatible printer (only little color is used, 
so that a monochrome printer will also do a good job). 
As clipboard objects (*.bmp format) for export to text and graphics soft- 
ware. 
As *.dat files (some programs, like DATA and SIMILAR, create or add 
to data files). The data structure is such that a *.dat file can easily be 
imported into Excel by invoking (Open*.*) and choosing the (Separated 
by Comma) option. 

If the user presses [Print Screen], the contents of the whole screen, including 
buttons, icons, and status bar will be dumped to the clipboard. 

Errors The authors have spent much time to eliminate the bugs that 
inevitably creep in whenever someone undertakes a programming task. The 
data entry and calculation modules were equipped with error-trapping rou- 
tines that guard against all kinds of mishaps, like letters in number fields 
and divisions by zero. Colleagues were enlisted to test the result for rugged 
and fail-safe operation, and user friendliness. Despite best intentions, it is 
likely that some errors will still be found. Some of these will not be due to 
carelessness on the authors' part: The sheer complexity of the operating sys- 
tem, uncontrollable configurations (hardware, device drivers, user-supplied 
data files with really queer numbers, software that is operational in the back- 
ground), and some residual bugs in VB5.0 can occasionally conspire to drive 
the system over the brink, even if no programming error is in evidence; con- 
trol will then revert to the Main Menu. The suggestion is then to shut down 
all unused applications or even to reboot the PC. 

5.4 PROGRAM AND DATA FILE DESCRIPTION 

The following programs and associated data files are provided with the book. 

5.4.1 Program Flow, User Interface 

Most programs are structured along the following sequence of steps: 

1. Title Page: display name, version, and features of program. 
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2. Select the menu item (Open File), or (Start) if no data file is needed. 
3. Display the standard Open-File window; load file. 
4. Display the data table, with scroll bars, if necessary. 
5 .  Select one or more columns (vectors) for analysis. 
6. Select data analysis options. 
7. Display a graphical depiction. 
8. Display tables of data or results. 
9. Modify graph. 

10. Select output options. 
11. Select other data in same file or other file. 
12. Close program. 

A consistent style was developed that is apparent across all programs: 

The appearance of the programs is modeled on the familiar Windows 
surface to reduce the number of hurdles the reader encounters. For 
instance, loading a data file is accomplished by means of the standard 
Open-File window. 
The full-screen background is light blue and features the “SMAC” ini- 
tials in varying positions and sizes so that a uniform non-distracting 
background is achieved, even if the active window does not fill the full 
screen. Use of color was restricted to visually distinguishing classes of 
information (pastel colors), and to prompt the user (yellow explanation 
and pale yellow input fields (data)). 
The title page is divided into a left side, in shades of blue, that gives 
bibliographical information and the program name; the right side lists 
the major features. 

rn Across the top there is a menu bar with the usual Windows-type 
pull-down menus arranged from left to right in the order Files, Data 
Selection, Data Manipulation, Extras/Options, Output, or similar. Those 
options that are allowed or make sense in a given context are activated. 
Requests for numerical input make use of the standard Windows- 
type gray box with the question that is to be answered, the white 
area into which the data is written, and the appropriate confirmatory 
Yes/No/Cancel buttons. 
Option windows, such as for the selection of scales or printer options, 
are made up of one or more light blue rectangles with white windows 
for numerical input or selection of options. 
Numbers can appear outside the white data entry windows for informa- 
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tion, but cannot be changed. Examples are the selected paper size in the 
“Set up Print Job” field, or the default scale in the “Extreme Values” 
field. 

The raw data table is displayed with the numbers on a white background 
and the headers and index on a gray one; a yellow How-to-Procede 
panel gives instructions, respectively confirms choices; two white panels 
display the file size and the presently selected rounding option. 

Messages, comments, or instructions are displayed wherever appropri- 
ate. 

5.4.2 Data File Structure 

The SMAC data format is identical for all programs: numbers are written 
with decimal points and are separated by commas; the format can be 
imported into word-processing and spread-sheet programs under the *.dat 
or the *.txt option. 

Data in Excel can be imported into program DATA; Headers and dimen- 
sions can be added afterwards. 

Table 5.20. Data File Structure 

N, M 
H$, D$ 

(# of rows, # of columns, separated by a comma); two integer numbers. 
(M records containing a column heading H$ and a column 

dimension D$, separated by a comma); the text strings 
H$ and D$ can be any length, but beyond 10-15 characters 
the table becomes awkward to read; the square brackets 
are added automatically when the file is generated or edited 
in program DATA. 

(table entries, i = 1 . . . N rows, j = 1 . . . M items/row, separated 
by commas). 

Note: the array R(Z, J )  contains the values; “I”  is the number, that is 
the i-th measurement; “J” is the item or dimension number. For 
a program based on linear regression (LINREG, VALID, SHELFLIFE), 
since the array R(,) must have M 2 2 columns, it is up to the user to 
decide which column will be identified with abscissa X (index K ) ,  
and which with ordinate Y (index L); R(Z, K )  is the independent 
variable X ,  R(Z,L) is the dependent variable Y. K (and L, if necessary) 
are established by clicking on the column(s) after the file has been 
selected. When any program is started, the available data in the 
chosen file will be shown for review. 

R(i, j)  
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5.4.3 VisualBasic Programs 

History The first edition provided the program source code (GW-BASIC for 
DOS 3.X and higher), which allowed the reader to adapt the programs to his 
own needs, such as through modification of the input routine. The programs 
had been conceived for wide distribution and did not make use of any features 
that were not part of the basic PC configuration. Thus, color was only used if 
the distinction was also visible on monochrome screens, still a common fix- 
ture around the turn of the last decade, and special tricks to speed calculations 
or to manage proportional fonts were avoided to prevent inexplicable crashes. 
In the meantime, Windows 95+ has surplanted the older standards, and Visu- 
alBasic has become available. The programs have been upgraded and now use 
the available features for maximal comfort and flexibility: 

Because the programs are compiled (*.exe format), they can be run on any 
PC under Windows, but by the same token, they can no longer be tinkered 
with. For most users, this will not constitute a disadvantage, as even the 
authors of very well designed and documented source code occasionally run 
into problems when attempting to change some “minor” detail. Those who 
habitually tweak every screw they run into are aware that the old GW- or 
Q-Basic world was a much simpler place than today’s universe of objects, 
mainly because the barebones syntax was easily memorized. 

The practice of using a single data base format compatible with all pro- 
grams has been retained, as has the possibility to import spreadsheets from 
Excel. 

The following programs were written in VisualBasic 5 .O Beginner’s Edi- 
tion and were compiled. A consistent set of variables was defined. Modules 
were designed for wide applicability. The algorithms described in Section 
5.1 were incorporated wherever necessary. 

ARRHENIUS Section 4.21 

Purpose From a series of assays done on samples stored at different tem- 
peratures over various lengths of time, the assay-vs-time trend is calculated 
for every temperature. These slopes and the actual storage temperatures [“K = 
C + 273.161 are used to construct an Arrhenius Activation-Energy diagram, 

from which the decomposition rate at any temperature within the investigated 
interval can be estimated, and a shelf-life can be assigned. Note that zero- 
order decomposition kinetics are assumed (a zero-order reaction proceeds at 
a constant rate, i.e., independent of the remaining concentration); when this 
assumption is violated, the activation energy changes with temperature, and 
the Arrhenius diagram becomes nonlinear. The data format is demonstrated 
in file ARRHENl.dat, which was taken from a PhD thesis (Ref. 184). 
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Features 

Performs linear regressions for every data set (= storage temperature). 
Plots the Arrhenius diagram: slopes f CL versus 1/T. 
Tabulates assay-vs-LinReg residuals. 
Tabulates LinReg statistics and activation energies. 
Estimates shelf-life for a given temperature. 

CALCN Section 1.6 

Purpose Estimate the minimal number of determinations that are necessary 
to assure that the resulting mean and its confidence limits are inside given 
specification limits. 

Features The allowed range is defined by two specification limits, the 
experimental mean and standard deviation are assumed, and the probabil- 
ity of error a is preset. The calculation is done using Eq. (1.37) in Section 
1.6. 

(Select Probability of Error) allows a choice amongstp = 0.25, 0.1, 0.05, 

(Set Experimental SD) requests the estimated repeatability. 
(Set Specification Limits) permits the SL to be set at will, or symmet- 

(Display Values) provides the distance lxmean-Ll and the corresponding 

0.025, 0.01, 0.005, and 0.001 (one-sided tests, default p = 0.025). 

rically relative to a nominal value. 

Xmean,min and Xmean,max for n 2, 3 ,  . . . 9 30. 

CALCVAL Section 5.1 

Purpose: Graphically depict the approximations x 2  = f ( p ,  df), F = 

f ( f l t f2 ,p) ,  Student’s t = f(df, p ) ,  p = f ( t ,  df), CP = f ( z ) ,  PD = f ( z ) ,  and z 
= f (CP). 

Features 

(Select) allows the function to be picked; the graph is automatically 
depicted together with a list of selected values. Drawing the mouse 
pointer slowly in a horizontal direction with the left button depressed 
activates an interpolation engine; the coordinates are displayed on the 
bottom line of the list. Since the selected screen resolution (e.g., 800 x 
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600, 1024 x 768, etc.) imposes a raster that prevents many abscissa val- 
ues from being picked by the cursor, a green input window is provided 
that allows a specific abscissa value to be entered. 

(Display Values) presents a table of values. 

(Display Accuracy) presents a list of typical and extreme absolute and 
relative errors incurred when using the approximation; note that the 
listed errors are in part due to the algebraic approximation as such, and 
in part to the finite number of digits of the tabulated values. 

CONVERGE Section 1.4 

Purpose Illustrate what happens when a series of measurements is evalu- 
ated for mean and standard deviation each time a new determination becomes 
available: the mean converges towards zero and the SD towards 1.0. The 
CL(x,,,) and the CL(s,) normally enclose the expected values E(x)  = p = 

0, respectively E(s,) = (T = 1. Due to the stochastic nature of the measured 
signal, it can happen that confidence limits do not bracket the expected value; 
this fact is highlighted by a bold line. 

The program also serves as a reminder that under both GMP rules and sci- 
entific propriety an investigator has to first set down the experimental design 
(e.g., number of determinations, evaluation procedure), before starting his 
measurements. Only in this way can doubts be dispelled that the investiga- 
tor kept on measuring until he found results that support his preconceived 
notions. 

Features 

Assume a normal distribution ND(0, 1).  

rn (Select Probability of Error) sets p .  

rn (Choose Number of Measurements) sets N .  

(Display Values) shows the simulated values and the evaluation. 

CORREL Section 4.11 

Purpose Find correlations in a data table; the data table is organized into M 
columns, each of which corresponds to a dimension, e.g., concentrations of 
impurities, pH, absorbance at various wavelengths, etc. Each row corresponds 
to a sample, e.g., a batch of material analyzed according to M methods. 
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Features 

0 Calculate mean and standard deviation for every column. 

0 Calculate the correlation coefficient Y for every combination of columns, 
and display the results in a triangular matrix (an absolute value just 
under 1.00 indicates a strong correlation between the measurements in 
columns i andj; a minus sign indicates that the slope is negative). 

0 Using the correlation coefficients, calculate the Student’s t factors, and 
display these (the larger this value, the more probable the correlation; 
values below about 2 are insignificant). 

0 Using the Student’s t factors and the number of degrees of freedom, 
calculate the probabilities p that correlations are due to chance alone 
(error probabilities); these are interpreted as follows: 

- p above about 0.1-0.2: insignificant. 

- p in the range 0.05-0.1 : weak. 

- p in the range 0.02-0.05: significant. 

- p below about 0.02: highly significant. 

Negative slopes are flagged: an “N” is to be interpreted in the sense 
that the slope is negative, and J decreases as Z increases; positive slopes 
remain unmarked. 

0 Suspected correlations are displayed by calling option (Display Correla- 
tion Graph Pairwise); the coordinates can be marked either with a circle 
(default), or with the appropriate index so that “outliers” can be readily 
identified. 

Any interpretation must take the physical or chemical situation into due 
consideration: 

1. A correlation can indicate a mechanism that links Z and J ;  if Z is, say, a 
concentration (the independent variable), the absorbance J is the depen- 
dent variable, but not vice versa! 

2. A correlation could also be due to a mechanism that links a third, 
known or unknown, factor to the two observables Z and J; an increase 
in the concentration of a complexing agent, say, could lead to increased 
solubility ( I ) ,  and at the same time shift an UV-absorption feature by 
a few nanometers ( J ) .  

3. Spurious correlations are often observed, e.g., 
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- When only a small number of observations, N ,  is available. 

- If uncontrolled forces are at work, or important data has not been 
collected. 

- When coincidences apply, for example, when the time between 
injections is such that the main peak co-elutes with a late peak from 
a previous injection. 

4. Lack of correlation can mean just that, or could be due to the fact that 
the observations did not span a sufficiently broad range of (controlled) 
experimental conditions. 

Because the results of all correlations are viewed simultaneously, patterns 
can emerge that are much more powerful indicators of hidden action than 
any single correlation would be. 

CUSUM Section 1.8.5 

Purpose A technique to detect deviations from random scatter in the resid- 
uals (symmetrical about 0, frequent change of sign): Cumulative sum of 
residuals detects changes in trend or average. Here, an average is subtracted 
to yield residuals; these residuals are then summed over points 1 . . . k . . . N ,  
with the sum being plotted at every point x ( k ) .  Two uses are possible: 

1. No averaging has taken place (option 5 in the menu): the individual 
average is equal to the over-all mean ymean, which is displayed as a 
horizontal line; this corresponds to the classical use of the Cusum tech- 
nique. By this means, slight shifts in the average (e.g., when plotting 
process parameters on control charts) can be detected even when the 
shift is much smaller than the process dispersion, because the Cusum 
trace changes slope. 

2. If a data set was first appropriately treated in program SMOOTH and 
the smoothed coordinates were saved, the difference between raw and 
smoothed values (use subtract function in DATA) can be analyzed: 
essentially, Cusum now detects how well the smoothed trace repre- 
sents the measurements. For example, if peak shapes are to be filtered 
(see data file SIMl.dat) and too wide a filter is used, the smoothed 
trace might “cut corners”; as a result, the Cusum trace will change 
slope twice. the Cusum trace can be shifted vertically, and an expan- 
sion factor can be chosen. Ordinate rescaling is done automatically. 



PROGRAM AND DATA FILE DESCRIPTION 3 69 

Features 

(Select Mean) allows the reference mean to be entered as a number or 
by way of a range L . . . K, with ymean,rmge = C ( y , ) / N ,  i = L . . . K and 
N =  K - L + 1. 

Purpose Create a new SMAC data file or editimodify an existing one; 
import (parts of) an existing Excel spread sheet and convert to SMAC for- 
mat. 

Features 

(File) (New): A new data file can be generated by defining the number 
of columns and rows and then filling the table either in a column-by-col- 
umn or a row-by-row sequence; if the option (Leave Empty) is chosen, 
the file is stored “as is.” The array size is limited to n . m 5 lo5, but 
also by the available memory. 
(Input Data) leads to the same options 
(Instructions) and (Import Data from Excel) allow a portion of an Excel 
spreadsheet to be copied into a SMAC-data file; the necessary steps are 
as follows: (1) open the Excel file, mark the range to be copied and 
press [Copy]; (2) open DATA and create a new or open an existing data 
file; (3) select (Input Data) (Import Data from Excel) and position the 
cursor on an appropriate cell, e.g. cell (1,l). The imported data replaces 
any data that was in that cell range. If the imported cell range needs 
more columns or rows than are presently available, the data array is 
correspondingly increased in size. Headers and dimensions can be added 
later. 
An existing data file can be loaded for modification. 
(Modify Table): Once a data table is established, it can be manipu- 
lated in various ways: The option offers Add/Delete Row/Column, and 
Change Entry; choose the option and click on the appropriate item. If 
many rows or columns need to be added or deleted, it is easier to read 
the data file into Excel, do the modifications there, and reimport it using 
the (Import from Excel) option. 
(Change Item): the content of individual cells can be edited by clicking 
on the cell and entering a new number in the yellow box, followed by J ; 
empty cells that are ignored by all programs are created by just pressing 
J without entering a new value. 
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(Delete), (Add): columns or rows can be selectively deleted, or new ones 
can be added (column M + 1, row N + 1). 
(Transform): the content of a given column (=vector) can be mathemati- 
cally modified in various ways, the result being deposited in the (N + 
1)” column. The available operators are addition of and multiplication 
with a constant, square and square root, reciprocal, log(u), In(u), I O U ,  
exp(u), clipping of digits, adding Gaussian noise, normalization of the 
column, and transposition of the table. More complicated data work-up 
is best done in a spreadsheet and then imported. 

(): The table can be printed and/or saved. 

EUCLID Section 4.12 

Purpose, Scheme of Calculation Comparison of two sets of objects 
(groups A and B, for a total of (K2 ~ K1 + 1) + (L2 - L1 + 1) 5 M 
objects); each object is profiled by determining its response to measure- 
ments in N dimensions. These measurements are averaged within each 
group to establish typical profiles. A “distance” is established between thp_ 
A and the B averages by calculating the Euclidian distance in N-space: D = 

~/(x, .xh)* + ( y ,  ~ y b ) 2  + . . . , where x, y ,  etc. are the means for dimensions 
1 . . . N ,  for example a concentration, a pH, an absorbance. The Euclidian dis- 
tances between every object or sample and the group averages A and B are 
calculated analogously; the triangle A-B-S is projected onto the screen, the 
side A-B being the base. The scatter and clustering of the upper vertices (S) 
is analyzed: If two distinct groups are formed, then the hypothesis that the 
objects can be separated into two groups gains credence. 

Features 

A table of M columns ( M  objects) and N rows (dimensions) is assigned 
to groups A and B by entering the column numbers A1 . . . A2, respec- 
tively B1 . . . B2; the ranges for A and B may not overlap, but need not 
be the same size or use all of the available M columns. 

The group averages A and B are formed for every dimension. 

The differences between the group averages are calculated and displayed 

The N-space Euclidian distances for every object relative to the group 

The contribution every dimension makes toward the total distance A-B, 

for every dimension. 

averages A and B are calculated and plotted. 

is plotted. 
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Note: If the N dimensions yield very different numerical values, such 
as 105 f 3 mmol/L, 0.0034 k 0.02 meter, and 13200 f 600 pg/ml, the 
Euclidian distances are dominated by the contributions due to those dimen- 
sions for which the differences A-B, A S ,  or B-S are numerically large. In 
such cases it is recommended that the individual results are first normal- 
ized, i.e., x’ = (x - xmean)/sx, where x,,,, and s, are the mean and stan- 
dard deviation over all objects for that particular dimension X ,  by using 
option (Transform)/(Normalize) in program DATA. Use option (Transpose) 
to exchange columns and rows beforehand and afterwards! The case pre- 
sented in sample file SIEVEl.dat is different: the individual results are wt- 
% material in a given size class, so that the physical dimension is the same 
for all rows. Since the question asked is “are there differences in size dis- 
tribution?,” normalization as suggested above would distort the information 
and statistics-of-small-numbers artifacts in the poorly populated size classes 
would become overemphasized. 

FACTOR8 Section 2.4.2 

Purpose To determine, from eight initial experiments performed under cer- 
tain conditions, whether the three controlled parameters have an effect on the 
measurement, and which model is to be used. This factorial approach to opti- 
mization is an alternative to the use of multidimensional simplex algorithms; 
it has the advantage of remaining transparent to the user. 

Features 

The low/high values for the three parameters are entered. 

The eight measurements corresponding to the experimental conditions 
1, a, b, c, ab, ac, and abc are entered. “1” means all three parameters 
are set “low,” while “abc” connotes the opposite. 

The model is Y = m( 1) + m(2)*a + nz(3)*b + . . . m(7)*a*b*c. 

The model is fit; effects, specific effects, model coefficients, and resid- 
uals are displayed. 

The assumed residual standard deviation, i.e., the precision of measure- 
ment, can be varied to study its effect. 

By brute-force iteration, the highest Y within the cube spanned in 3- 
space is located with a resolution of a few percent of the parameter 
ranges. The cube’s center is accordingly moved, and the model is reeval- 
uated; in this fashion a track of steadily higher Y-values in the immediate 
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vicinity of the initial cube is displayed. Thus the direction to be taken 
for further experiments is indicated. 

The model can be evaluated for any combination of a,  6, and c. 

HISTO Section 1.8 

Purpose 
compare this distribution to the normal distribution. 

Determine the distribution of many repeat measurements and 

Features 

0 The overall x-range (which scales the plot) and that part of the x-range, 
which is to be subdivided into B classes (bins) can be individually 
defined; essentially, this means that the plotted window can be adjusted 
to be the same for comparing several histograms, while bins need only 
be defined in that part of the x-axis where the measurements are con- 
centrated. The optimal number of bins is suggested as B -- 6, but can 
be adjusted. 
No autoscaling is available; that, while convenient, exposes the individ- 
ual plot limits and bin boundaries to the vagaries of measurement and 
sampling noise; the user is forced to actively select lower and upper 
bounds on the subdivided x-range, and the number of bins, to come up 
with bin boundaries that make sense. 

An area-equivalent Gaussian (“normal”) distribution curve can be super- 
imposed. 

0 Display and/or print tables that contain bin number, number of events, 
individual, cumulative % population, and the normalized bin boundaries 
(7 - (6b-xnlean)/.s~), x ’-components, well as various statistical indicators 
(extreme values, number of events outside bin-range, mean, SD). 

The cumulative percentage points can be plotted on a distorted %-axis 
(so-called “normal probability scale”) that yields a straight line for per- 
fectly ND data. 

(Stack): a selected range of columns is automatically mapped into a 
stack of histograms on common x- and y-scales; the vertical offset 
between histograms corresponds to the largest frequency found in all 
bins. 

HUBER Section 1.5.5 

Purpose Check a vector for outliers. 
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Features 

Select a column from a data file and calculate mean, median, and stan- 
dard deviation. Display the original data together with x,,,, x,, and 

Calculate all deviations ( x ( i )  - x,), and sort according to absolute size; 
calculate the median average deviation MAD; calculate cut-off limits for 
outliers according to Huber21 by assuming the recommended value for 
Huber’s k (3.5). Different values for this multiplier can be selected. 

Xmean f sx. 

Display the cut-off limits and the clipped data set. 

Display xmean, x,, and s, before and after elimination. 
The f 2  and 1-3 sigma cut-off limits of the conventional outlier-detection 
models are plotted. 
Use the sorted absolute deviations above and plot the critical Huber’s k 
for each x ( i )  versus the percentage of points retained (cumulative num- 
ber of ordered absolute deviations); this yields insight into the sensitivity 
of the clipping process to changes in Huber’s k (solid line, points). Note 
that a scale for k = 1, 2,  . . . , etc. is given on the left side. 
Plot analogous critical z-values for the mean/SD before resp. after elimi- 
nation of points (dotted lines). Since the standard deviation will decrease 
on elimination of suspected outliers, the dotted sensitivity curve for 
“after elimination” will be higher than the one for “before”. Huber’s 
k changes, too, but to a lesser degree. (See Fig. 1.1.) 

The first points to be eliminated are defined by the largest (absolute) 
deviate from the median, Ixi - ~ , l ” ~ ,  respectively by the largest (abso- 
lute) deviate from xmean, ]xi ~ x,,, I m a x .  Since these deviations are mea- 
sured relative to the median and the mean, which do not always closely 
coincide, the first point to be eliminated need not be the same for the 
two rules. Huber’s rule can be used with asymmetrical distributions. 

HYPOTHESIS : Section 1.9 

Purpose Display the type 1 error ( a )  and the type I1 error (6)  both as 
(hatched) areas in the ND(~REF,  uiEF) and the ND(~TEsT, ‘ T $ ~ ~ ~ )  distribution 
functions and as lines in the corresponding cumulative probability curves. 

Features 

Freely choose p .  

The means and SDs can be freely chosen to repeat any combination of 
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reference measurement and test measurement (hypothesis Ho applies if 
the REF and TEST measurements are indistinguishable, hypothesis H I  
if the two can be distinguished). 

The following tests can be conducted: REF < TEST, REF <> TEST, and 
REF > TEST. 

Display and print the graphics. 

Display the estimated error /3 numerically. 

INTERSECT Section 2.2.11 

Purpose Calculate the intersection of two linear regression lines and esti- 
mate the 95% confidence limits on the intersection coordinate. (See Fig. 
2.19.) 

Features 

Select the abscissa and ordinate vectors for the first, then those for the 
second data set (the two sets can actually be located in separate files); 
the two data sets need not have the same size. 

The linear regression parameters are calculated independently for each 
set. 

The x,,teraect/ylnteraect coordinate is calculated. 

The abscissa interval containing the intersection point is scanned from 
left to right in 500 steps and the two C L ( Y )  distributions at each 
point (resolution: y-range/ 100) are multiplied to obtain the volume 
J J  PDYI(x,y) . PD~2(x,y) . 6x . 6y (approximated by CC PDy~(x,y) . 
PD&,y) . Ax . Ay), which is equated with 100%; the points at which 
the cumulative overlap function reaches 2.5, respectively 97.5% are the 
results. 

The intersection coordinates and the 95% CL(xlntersect) values are dis- 
played as numbers and in the graph. 

The cumulative-overlap curve is displayed with the 95% CL(x1ntercect) 

values, which need not be symmetrical with respect to xIntersect. 

LINREG (Standard unweighted and 
weighted linear regression): Section 2.2 

Purpose 
display and print results, do interpolations, determine limits of detection. 

Perform a linear regression analysis over the selected data points; 
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Features 

(Choose Data) choose any two columns from the M-column data file to 
represent the abscissa X respectively the ordinate Y; automatically 

- Perform an unweighted linear regression. 

- Approximate Student’s t for N -  2 degrees of freedom and p = 0.05. 

- Display the regression line and its confidence limits. 

(Interpolate) provides the options Y = f ( x )  and X = f (  y), including con- 
fidence limits on the results; the interpolation result is displayed in the 
graph and the table. 

(LOD) calculate and display the limits of detection and quantitation 
LOD, LOQ.86,87 [Note: This form of calculating the LOD or LOQ was 
chosen because the results are influenced not only by the noise on the 
baseline, but also by the calibration design; from the educational point of 
view this is more important than the consideration whether any agency 
has officially adopted this or that LOD-model. For a comparison, see 
Figs. 2.14, 2.15, and 4.311. 

Calculate and display the residuals ( yi - Y ) ,  where Y = A + B . x,. 

Select and display specification limits on the acceptable X-range, as 
when doing assays; 

(Select Probability of Error) gives the choice o fp  = 0.0001, 0.001,0.002, 
0.01, 0.02, 0.1, 0.2, or 0.5. (See Table 5.1.) 

(Weighted Linear Regression) Section 2.2.10: the user must define a 
functional dependence of the repeatability (defined as a standard devi- 
ation) of the measurements sy on the independent variable x, such as sy 
= a + b . x (typical for gas chromatography, where the relative standard 
deviation (in [%I) of the measured peak area is often constant over a 
very large concentration range; the constant “a” represents the intrinsic, 
concentration-independent repeatability of the instrument). Appropriate 
functions can be fitted using the output of the results table of programs 
VALID and TESTFIT. See “Algebraic Function.” 

- The sy =Ax) function is depicted across the bottom of the graph. 

- The position of the “center of gravity” xmean, weighted/Ymean, weighted is 
given by crosshairs. 
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M X  (Mean, Standard Deviation): Sections 1.1, 1.3.2, 1.7.2 

Purpose 
and their confidence limits, and compare with specification limits. 

For a given vector, calculate the mean and the standard deviation, 

Features 

Calculate mean x,,, and the two-tailed confidence limits. 

Calculate the standard deviation s, and the (asymmetrical) confidence 

Display (graphically and as a table) the mean and its confidence limits 

Display (graphically and as a table) the standard deviation and its con- 

limits. 

as a function of p .  

fidence limits as a function of p .  

The following approximations are used: 

Student’s t for N -- 1 degrees of freedom and various p (0.0001, 0.001, 
0.002, 0.01, 0.02, 0.05, 0.1, 0.2, and 0.5). 

The X2-tables for N -  1 degrees of freedom and various p (0.001/0.999, 
0.005/0.995, 0.01/0.99, 0.025/0.975, 0.05/0.95, and 0.1/0.9; this cor- 
responds to two-tailed confidence limits for (Y = 0.002, 0.01, 0.02, 0.05, 
0.1, resp. 0.2). 

MULTI Sections 1.5.3, 4.4 

Purpose Test several sets of data for deviations from the null hypothe- 
sis Ho (“all data sets belong to the same population, that is, the individual 
means do not differ from the grand mean, and the individual standard devi- 
ations do not differ from the overall standard deviation”). It is assumed that 
the individual data sets consist of a number of repeat measurements of one 
observable, such as (1)  repeat moisture or temperature measurements at sev- 
eral locations, or (2) hourly concentration determinations of a given chemical 
species in several reaction vessels that are being run in parallel, ( 3 )  the same 
reaction in the same vessel on different days, or (4) content uniformity mea- 
surements on the, say, 20 buckets of tablets that make up one batch. If the 
standard deviations do not significantly differ (Bartlett test), continue with 
the simple ANOVA test to find whether the data set means belong to one or 
more populations. If more than one population is involved, find which data 
set means can be grouped into homogenous subpopulations (multiple range 
test). It is possible that one and the same data set could be grouped into two 
subpopulations that partially overlap. 
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Features 

Each data set fills a column; if data sets are of unequal length, N is 
determined by the largest set (program DATA; nonexistent entries are 
entered in DATA by just pressing J , and are ignored by MULTI. 

After the chosen data file is read into MULTI, sequential columns K 
through L are selected for analysis; K and L must be within the bounds 
1 . . . M ,  and L must be larger than K. If the columns one wants to 
analyze are separated by other data, use program DATA to first copy 
the unwanted column to column M + 1 by invoking the option (Add) 
and selecting the constant to be zero and then deleting the unwanted 
column. 

The heading, dimension, means x,,,,, standard deviation sx, RSDs 100 
. s,/x,,,, and number of determinations NJ are displayed for every 
column j = K . . . L. 

The following three tests can be individually called, but execution is 
blocked if the preceding test has not been performed. 

(Bartlett Test) yields an uncorrected and a corrected X2-value, which are 
compared to the critical x2  forfl degrees of freedom and p = 0.05. The 
interpretation is given. If at least one standard deviation is significantly 
different from the others, the program stops here. If this happens because 
one column yields a standard deviation of nearly zero, check whether 
a signal converter with insufficient digital resolution is the cause. This 
effect can be studied with program CONVERGE, where a digitizer sim- 
ulation can be adjusted so that all values collapse on just one or two 
adjacent levels. In the laboratory, the equipment will have to be modi- 
fied. To at least get an idea of what results could be extracted from the 
data set if it were not corrupted, use DATA option (u = u + Noise) to 
superimpose a ND(0, u 2 )  distribution, with u chosen to correspond to 
about to 1 LSD. 

(ANOVA) if the standard deviations are indistinguishable, an ANOVA 
test can be carried out (simple ANOVA, one parameter additivity 
model) to detect the presence of significant differences in data set 
means. The interpretation of the F-test is given (the critical F-value for 
p = 0.05, one-sided test, is calculated using the algorithm from Section 
5.1.3). 

(Multiple Range Test) yields a triangular matrix of differences Ax,,,,, lJ 

(difference in x,,, for every possible combination of x,,,,, with 

The triangular matrix of differences Ax,,,,, ll is converted into a triangu- 
xme,n,j 1. 
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lar matrix of q-values using the values x,,,,, (, x,,,,,~, N , ,  and N , ;  since 
tables of q-values are rarely given in statistics textbooks, especially for 
p-values other than 0.05, the q-values are converted to “reduced’ q-val- 
ues by division through the appropriate Student’s t and square root of 
2. (See Table 5.1.) This permits a delineation of subpopulations on the 
basis of a critical reduced q, which MULTI looks up in a table and inter- 
polates, if necessary. The chance of misinterpretation would be small, 
even if the statistical probability of error p were changed from p = 0.05 
to some other value (0.02, 0.1, etc.) by multiplying all q,d-values by 
the appropriate factor t(f, p = O.OS)/t(f, p ) .  

The subpopulations of data sets that can be distinguished are given as 
lists of x,,,, values; the number of lines corresponds to the number of 
subpopulations. 
A graph is displayed that contains the individual data points, and the 
associated means x,,,, and standard deviations s,; the data sets are 
arranged left to right in the same order as they appear in the data file. 

A second graph, with the data sets ordered according to increasing x,,,,, 
depicts the means and standard deviations, and, as stacked horizontal 
lines, the range of means spanned by the individual subpopulations. 
The tables of differences-of-means respectively of reduced q values are 
displayed with the corresponding ordered x,, arranged at the top and 
down the left margin. 

SHELFLIFE Section 4.20 

Purpose Determine the shelf-life of a product (viz. a pharmaceutical) by 
evaluating analysis results as a function of storage time. The points at which 
the lower 95% confidence limit of the population and a horizontal at Y% 
of the nominal content intersect determines the acceptable shelf-iife as pro- 
mulgated by the FDA in their “Guidelines for Submitting Documentation 
for the Stability of Human Drugs and Biologics, February 1987”. The CL 
is calculated using either the Student’s t-factor for 90% (two tailed) or 95% 
(single tailed). By default, results are given for y = 90% and 95% of nomi- 
nal, but can be requested for any other specification limit, too. The program 
is a modification of the LINREG program: 

Features 

The x- and y-ranges are handled as in all other programs. Notice, though, 
that shelf-lives above 5 years are uncustomary in the pharmaceutical 
industry. 
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An algorithm for calculating the symmetrical (two-tailed) t-factors for 
p = 0.1 is incorporated; its use corresponds to the statement that “the 
probability that measurements on a future batch, given the linear trend 
already established, will inadvertently be found to be below the spec- 
ification limits of Y% of nominal, at a shelf-life that would lead one 
to expect a residual content at or above the specification limit, is p = 
0.05.’’ 
The equation for the confidence limit is Y = A + B . x f t . 
JV,,,. (l/N + (x - x ~ ~ ~ ~ ) ~ / S ~ ~ ) ,  where x is time. Minus sign: for main 
component: plus sign: for impurity. 

SIMCAL Section 2.2.6 

Purpose Generate a data set that superimposes normally distributed noise 
on a linear calibration model to study the effects of the adjustable parameters. 
A whole calibration-measurement-evaluation sequence can be optimized 
for quality of the results and total costs. 

Features 

(Experimental Design). 

- Set the number of calibration solutions (concentrations). 
- Set the number of repeat determinations per calibration standard. 
- Set the number of repeat determinations per unknown. 

(Distribution of Calibration Concentrations): 

- Define the calibration concentrations as being spaced linearly, log- 

- Choose the endpoints of the calibration range; the calibration con- 
arithmically, or arbitrarily within the concentration range. 

centrations are now displayed in the green field. 

(Instrument Characteristics} 

- Set the intercept and slope of the instrument’s calibration function. 
- Set the number of decimal places displayed to simulate the action of 

digital signal acquisition; 1 would mean the result of a measurement 
is clipped to the first decimal. 

(Measurement Noise): Define the measurement noise as being constant, 
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proportional, or an arbitrary function of x; choosing the (Arbitrary) 
option activates the algebraic function module to define a SD = f(x) 
function that will also be used in case a weighted regression is selected. 

The preceding items must be set; headers and dimensions for the two 
axes can be defined; if there is information concerning the LOQ, e.g., from 
a previous validation, that can be entered, too (for display only). 

(Accept): Run interpolations and obtain confidence limits of the esti- 
mate; other options as with LINREG. 

(Display Table of Detailed Calibration Results): The simulated calibra- 
tion points (xr, yl), the estimates Y = f ( x l ) ,  and both the absolute and 
relative residuals are given. 

(Display Calibration Check Graph): The calibration points as obtained 
under (Accept) above remain as is, but a renewed measurement yes, I of 
these same samples as “unknowns” is simulated; vertical lines indicate 
the CL(X) that would be determined for these X = f(ycs, ,,,). The vari- 
ability so observed mimics the within-calibration repeatability. Use the 
button [New Check] to repeat the simulation. 

(Display Calibration Check Table): Numerical results for the above 
item, including the back-calculated values in [% of nominal] format. 

(Cost Factors): Define a cost-accounting model that includes consum- 
ables, labor, write-off, workload, and frequency of recalibration to esti- 
mate the cost per result. 

(Data) (Change Assumptions): Assumptions can be changed at any time. 

(Data) (Create New File): Define a new file, in which calibration designs 

(Data) (Add Data to Existing File): Add the simulated abscissa- and 
ordinate-values to a file that can be saved for analysis by other programs. 

can be stored. 

SIMGAUSS Section 1.4 

Purpose Generate data sets using mixed detenninistic/stochastic models 
with N = 1 . . . 1000. These data sets can be used to test programs or to 
do Monte Carlo studies. Five different models are predefined: sine wave, 
saw tooth, base line, GC-peaks, and step functions. Data file SIMl.dat was 
generated for N = 200. 
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Features 

(Select Function) offers the choice among the above-mentioned func- 

(Change Waves) allows for one to ten repetitions of the basic wave form 

0 (Change Random Noise) asks for the CV. 

tions and a user-defined one. (See “Algebraic Function”.) 

within the window 1 . . . N. 

SIMILAR (SIMulate statistically simILAR 
data sets): Section 3.5 Monte Carlo Technique 

Purpose Take an existing data file that comprises at least a column X (inde- 
pendent variable) and a column Y (dependent variable). Choose either a func- 
tion or real data to model statistically similar data sets. 

Features 

(Select Type of SD for Noise): After an abscissa and an ordinate are 
picked, there is the option of a fixed sy or a user-defined function sy = 
f ( x ) .  (See “Algebraic Function.”) 
(Select Data Calculation) allows to either use the existing ordinate val- 
ues as basis: 

y ’ = y + N D ( 0 , a 2 ) w i t h i =  1 ... N 

or to define an equation Y = f ( x )  that then will serve as model (cf. “Alge- 
braic Function” and program SIMGAUSS): 

y ’=Y(x)+ND(0 ,a2 )wi th i=1  . . .  N 

Both algebraic functions, noise and model, can be modified at any time, 
so the final table can contain simulated data sets for various combina- 
tions of noise and model; both functions are displayed. 
(Calculate New Data) generates a statistically similar ordinate value for 
each xi by superimposing ND(0, s2) noise on the model or previous 
data; this option can be repeatedly accessed. 
(Add data set to file): The currently active set of simulated ordinate 
values can be attached to the existing data table as column M + 1. Create 
a number of such columns ( X ,  Y ,  Y’, Y”, Y”’ . . .). Use the modified data 
files as if several series of measurements had been acquired and test the 
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intended statistical program and the interpretation scheme for robustness 
(ruggedness): If, despite the stochastic variability, similar results and the 
same interpretation are always found, the evaluation procedure is robust. 
A second set of measured values that cannot be distinguished from the 
first set or its simulated statistical look-alikes cannot be interpreted to 
be different. 

SMOOTH Section 3.6 

Purpose 
to improve presentability or to extract a “trend.” 

Construct a smoothed trace over a (large) series of observations 

Features 

Ordinate values are assigned by choosing a column number in the 
data table; abscissa values can either be chosen similarly, or can be 
assigned sequential numbers (“index,” which makes them equidistant 
on the x-scale). The moving average MA and Savitzky-Golay SG fil- 
ters assume equidistance for correct application. Note: If this condition 
is only mildly violated (Ax changes little, Ay near zero), not much 
harm is done. The residuals and the derived residual standard devia- 
tion are strongly affected if the abscissa distances between successive 
points (Ax) changes appreciably from one interval to the next and AY 
is much larger than the noise level, because the smoothed coordinates 
(w, u )  would then have to be interpolated. 
The coordinates are automatically sorted according to ascending x if x 
is not an index. 

(Box-Car) averaging with a box width (filter width, window) in the 
range I I W I N ;  W = 1 just connects the points, while W = N cal- 
culates the overall xmean. The mean for each box will be displayed as a 
horizontal line. 
(Moving Average) a filter width in the range 1 I W I N is possible, W 
being restricted to odd values. Both the x- and the y-values are averaged 
in the filter window and the means are assigned to u(i) respectively u(i); 
the trace is plotted using these smoothed coordinates u/u .  The residuals, 
however, are calculated as r = y ( i )  - u( i )  without interpolation, under 
the assumption that the filtered u(i) does not appreciably vary locally; 
if it is suspected that this condition is not met, it is suggested that the 
filtering be done using the Index i = 1 . . . N instead of a column from 
data table (option “column = 0 for abscissa”). 
(Savitzky-Golay) filter widths in the range 5 I W I 11 are pos- 
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sible; smoothing can be carried out using polynomial filters of order 
2 (quadratic parabola) or 3 (cubic parabola). Differentiating filters and 
filter widths above 11 were not implemented because such applications 
only make sense if very large numbers of measurements are available; 
if such data series are acquired, it is recommended that dedicated pro- 
grams optimized for speed be used. The SG filter coefficients are gener- 
ated in situ according to Ref. 162. Whereas the usual implementation of 
the SG-filtering algorithm allows only for a smoothed trace in the range 
x(INT(WI2) + 1) . . . x(N - INT(W/2) - 1)  (the ordinate in the center 
of the filter is estimated); analogous filters are also calculated here that 
allow the estimation of the smoothed trace at the ends of the range, i.e., 
x(1) . . . x(INT(W/2)). Thus the smoothed trace includes all N points. 

The original (x, y )  and the filtered (u, v) data, together with the appro- 
priate residuals ri = y ;  - v;, are displayed and printed. 

The residuals relative to the smoothed trace (to ymean, if no smoothing 
has been done) are plotted; a vertical shift and an expansion factor can 
be chosen. 

Interpolation on the smoothed trace can be carried out for any x within 
the bounds of the trace; the result of the interpolation is displayed and 
printed in numerical format and is indicated by cross hairs on the screen. 

Interpolation on the smoothed trace can be carried out for any y; multiple 
intersection with the trace are possible; the results of the interpolation 
are displayed and printed in numerical format (list) and are indicated 
by cross hairs on the screen. 

TESTFIT Section 4.13 

Purpose 
as follows: 

There are a variety of uses for this program, chief of them being 

Testing the adequacy of a model with respect to its complexity by visu- 
ally checking for trends in the residuals, e.g., is a linear regression suf- 
ficient, or is a quadratic polynomial necessary? 

The quantitation of the goodness of fit between a model and a data set 
by calculation of the residual standard deviation. 

Testing the robustness of a (best) model (and second-best contenders) by 
evaluating sets of statistically similar data created with program SIMI- 
LAR; if the derived decisions remain unaffected by measurement noise, 
the model is adequate. 
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Features 

(Define Function): Change the model to fit the data. (See “Algebraic 

(Residuals) plot the residuals ri = f . ( yi - Yi)/Yi at a chosen Y,,, and 

Function.”) 

with a scale expansion$ 

Znterpretation The model can only be improved upon if the residual stan- 
dard deviation remains significantly larger (F-test!) than the experimental 
repeatability (standard deviation over many repeat measurements under con- 
stant conditions, which usually implies “within a short period of time”). 
Goodness of fit can also be judged by glancing along the horizontal (residual 
= 0) and looking for systematic curvature. 

TTEST Section 1.5.2 

Purpose For a given set of results (two means, their standard deviations 
and numbers of determinations: X I ,  x2, sxl, sx2, n1, n2) the F-test is per- 
formed; depending on the outcome (s,, significantly different from s12, or 
indistinguishable) and the identity or nonidentity of nl and 112, different forms 
of the t-test are carried out. Because cases exist where different authors pro- 
pose similar but not identical  equation^^^,^^,^^ for treating the same data, 
ambiguous situations can arise; this is due to varying and sometimes unstated 
assumptions as to what represents a large number (n  > 200, for example), 
whereupon some authors simplify equations by replacing (n - 1) by (n), on 
the assumption n >> 1, while others do not, see Eqs. (1.14)-(1.16), Table 
1.10. One variation of an equation that is given in more than one textbook 
is included despite the fact that it probably contains a transcription error (“n 
+ 1”47,49 instead of “n - l”46). Equations and references can be displayed 
and printed. 

Features 

(Enter Data Manually) opens an empty table for manual input of the 
two means, standard deviations and numbers of determinations. 

(Read Data from File) provides a convenient access to data sets that are 
already in a data file; this file needs to contain at least two columns of 
data; the mean, the SD, and N are automatically calculated for the two 
data sets that were selected. 

(New Data Sets) or (Change Data Manually) can be used to modify the 
means, standard deviations, or numbers of determinations. 
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(Choose New Vectors in File) allows to select new data sets in the open 
file. 
(References) gives a list of references for the employed equations, cf. 
Table 1.10. 

(Equations) gives these equations in a common format; because not all 
t-test procedures return the same number of degrees of freedom or the 
same t-value, the interpretations can slightly differ. For each of the four 
combinations of N1 (=, #) N2 and V1 (=, #) V2 all equations that apply 
are used and the corresponding results and interpretations are displayed. 

VALID Sections 3.2, 4.23 

Purpose 
tions were performed for most concentrations. (See VALID 1 .dat.) 

Same as program LINREG; it is assumed that repeat deterrnina- 

Features 

The mean, the standard deviation, and the confidence limits of the pop- 
ulation at each concentration with multiple measurements are calculated 
and tabulated. 
Option (Valid) presents a graph of relative standard deviation (c.o.v.) 
versus concentration, with the relative residuals superimposed. This 
gives a clear overview of the performance to be expected from a lin- 
ear calibration Signal = A + B . Concentration, both in terms of (rela- 
tive) precision and of accuracy, because only a well-behaved analytical 
method will show most of the residuals to be inside a narrow “trumpet”- 
like curve; this trumpet is wide at low concentrations and should narrow 
down to C.O.V. = f5% and rel. CL = +lo%, or thereabouts, at medium to 
high concentrations. Residuals that are not randomly distributed about 
the horizontal axis point either to the presence of outliers, nonlinearity, 
or errors in the preparation of standards. 
The back-calculation feature in option (Display Values) gives each mea- 
surement as the absolute estimate X (  y(i)) and normalized to the nominal 
concentration; the normalized results should all be around 100%. The 
symmetrical limits f S D  are also given. 
The other features are identical to those of program LINREG. 

VALIDLL Sections 3.2, 4.23 

Purpose VALIDLL is identical in concept and features to VALID, the dif- 
ference being that the use of a log-log depiction is assumed. Linear (i.e., 
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nontransformed x( ): 1, 2, 5, 10, 20; y( ): 1.3, 2.1, 4.9, 10.7, 18.9) data are 
read. Thereafter, the data set is logarithmized and the linear regression is 
calculated. 

Features 

interpolations are done by entering transformed values ( y"" = 16.5 - 
ylOg = 1.28), the results are displayed transformed (xl"g = 1.238 f 0.161) 
and back-transformed (XIi" = 17.3 + 7.8/-5.4); back-transformed con- 
fidence limits are nonsymmetrical. 
LOD and LOQ are not calculated. 

X y Z  Section 2.4 

Purpose 
that complex relationships can be studied. 

Plot pseudo-three-dimensional (isometric) presentations in order 

Features 

Select any vector to be the left-to-right axis (X-axis). 
Select any vector to be the front-to-back axis (Y-axis). 
Select any vector to be the vertical axis (Z-axis). 
Autonormalize every vector to the range 0 . . . I00 so that a cube results. 

Depict every coordinate by a small circle. 
Mark the footprint of every coordinate on the X-Y plane. 
Mark every axis with the corresponding header. 

Rotate about Z-axis in one degree steps in the range -90 . . . +90" for 
better view. (Use the mouse pointer to grab and rotate the bold azimuth 
line in the plan view in the insert!) 
(Display Values) gives the X-, Y-, and 2-coordinates and the X ' -  and 
Y '-projection coordinates for each point. 

XYZCELL Section 2.4 

Purpose 
presentation. 

Condense large amounts of 3-D data into an easy-to-understand 

Features 

The (scaleable) x- and y-ranges are mapped into an n-by-n array of cells, 
with n = 10 = default. 
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( ) Each data point is assigned to the appropriate cell, where the follow- 

The distribution of points on the x,y-plane is displayed, along with the 
ing statistics are calculated: number of values, z,,,, and s,. 

following: 

- The zmean for each occupied cell (dark bar). 
- The s, for each occupied cell (light bar). 
- The number of data points in each cell. 

The z-range that is displayed in each cell and the SD-scaling factor can 
be separately adjusted for optimal overview. 

5.4.4 DATA FILES for VisualBasic Programs 

The following files, among others, are provided as instruction aids and exam- 
ples: 

ARRHENl.dat: 
24, 24, resp. 3 months. (See Ref. 184.) 

A product was put on stability at 25", 30", and 40°C. for 

ARRHEN2.dat: 
60", 73" and 80°C for between 10 and 298 days. (See Ref. 184.) 

A peptide solution was put on stability at 30", 40", 50", 

ARRHEN3.dat: Another peptide solution was also put on stability at 30", 
40", 50", 60", 73" and 80°C for between 10 and 298 days. (See Ref. 184.) 

ASSAYLdat: As part of a cross-validation of a modification of a given 
analytical method, 20 samples were run on either method. There is at least 
one result that is out of trend (OOT), and another two to three are indicative 
of laboratory errors. 

ASSAY2.dat: As part of a large validation program, 40 samples were 
pulled from a production batch. One measurement points to either a gross 
inhomogeneity or an analytical error; the trend of the others could indicate 
variations in the manufacturing process. 

A a . d a t :  Sixty-nine subjects were exposed to three different medications 
containing the same drug substance in a test of equivalence; each had blood 
samples withdrawn at defined time points after administration so as to obtain 
a curve of plasma level of drug vs. time. The area under such a curve is a 
measure for the amount of medication the subject's body absorbed through 
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the gut wall. These AUC values demonstrate the huge differences between 
subjects and within a subject (say, day-to-day effect) that is encountered in 
biological tests (“biovariability”). These three medications were accepted as 
being “bioequivalent.” The contrast to the well-behaved systems a chemist 
is used to is evident. 

BUILD-UP.dat: (Fig. 4.37) Three batches of an experimental chemical 
were put on stability for 6 months at 25‘C, respectively 40°C and were UV 
tested at t = 0, 1 ,  2, 3, and 6 months for a key degradation product. The SL 
is 0.2 AU. 

CALIB.dat: Calibration measurements at eight concentrations (double 
determinations) using a GC; peak area measurements in [mV*sec] vs. weight 
in [mg]. 

COAT-WEB.dat: During the validation of a coating process a certain 
length of web was sampled on a 15 (length) x 10 (width) raster; the coating 
weights are given. The hypothesis was tested that there would be a differ- 
ence between the left and the right side of the web, and that along the length 
there would be a periodic change because the huge rollers would not be per- 
fectly cylindrical in shape and parallel to each other. Use MULTI on this 
and on a transposed version of this array (COAT-WEB-.dat) to test for dif- 
ferences between groups, and CORREL to test for correlations between any 
two groups (especially neighboring ones). 

CREAM.dat: A batch of cream containing two drug substances was put 
on stability and tested for at t = 0, 3, 7, and 24 months. Active component 
1 remains stable, while AC2 degrades so fast that a shelf-life of only 26 
months can be demonstrated for SL = 90%. Use with SHELFLIFE. 

C U A S S A a . d a t :  (Fig. 4.40) A tablet production process was being val- 
idated; samples were pulled from the beginning, the middle, and the end of 
the production run; Components A and B were analyzed. The requirement 
is that the means do not significantly differ and that the CV remains below 
6%. 

CYANZDE.dat: Section 4.13 Two calibration series over the same range, 
and one over a short range (three groups of columns Concentration/Signal), 
and a fourth group that combines all of the above data; the data can be fitted 
to a parabola Y = -0.002125 + O.O05211*X - 0.0000009126” x”2 with a 
residual standard deviation of 14.5 mAU. Use with LINREG, TESTFIT. 
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EDZT.dat: A 6-row-by-25-column table containing integer numbers in ran- 
dom and not-so-random sequences; a few empty cells are included. Use this 
file to play with the editing functions contained in program DATA. 

FACT0R.dat: Fig. 3.5, Table 3.2 
is given. 

The data used in the calculated example 

FZLLTUBE.dat: Section 4.19 Tubes must be filled to a nominal 20 g; 10 
simulations are provided each for the EU and the Swiss Guidelines; the aver- 
age fill weights are 19.7 g and higher; n = 50 tubes per sample. 

HARDNESS.dat: Section 4.9 One-hundred-twenty tablets were taken off 
a press in the order they emerged, and hardness and weight were individually 
determined; one column features the stamp number (cf. STAMP.dat); another 
column gives the weight-corrected hardness values. N = 120, M = 5 ;  use with 
programs LINREG, XYZ, and XYZCELL. 

HZSTO.dat: Section 1.8 
(ND) signal to be used for programs HUBER, MSD, and HISTO. 

19 repeat measurements of a normally distributed 

HPLCl.dat: Eight impurities were measured by the area-% technique; nine 
batches of a raw material were tested; file can be used with any program 
except EUCLID. 

HPLC2.dat: Eight impurities were tested over 14 runs; file is to be used 
with program EUCLID to determine whether the 14 samples belong to two 
different groups. (See also file SIEVE.dat.) 

HUBER.dat: 
HUBER. 

Two vectors of n = 9 each are given for testing program 

ZNTERPOLl.dat: For five different probabilities p the corresponding Stu- 
dent’s t f o r f =  4 is listed, together with the log/log coordinates, in which 
the relationship is nearly linear. 

ZNTERPOL2.dat: 
probability. 

Same as INTERPOL1 .dat, but with only three levels of 

ZNTERSECTl.dat, ZNTERSECT2.dat: Section 2.2.11 A titration that 
changes the conductivity of the electrolyte solution is followed; the mea- 
surements are assigned to one of two branches for which the intersection of 
the linear regression lines defines the equivalence point. Program INTER- 
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SECT estimates the 95% CL of the intersection to be 79.3 f 2.1 ml for data 
set 1NTERSECTl.dat resp. 10.5 k 0.2 ml for data set INTERSECT2.dat. 

JUNGLEl.dat: Section 2.1 Three parameters (impurity content, HPLC 
assay, and titration assay) were measured on five batches of a raw material. 

JUNGLE2.dat: Section 4.22 Eight parameters are measured per batch; the 
parameters are partially linked. N = 48 batches are simulated. Use with COR- 
REL to find these links. 

JUNGLE3.dat: Section 4.22 
artifacts added. 

Same as JUNGLE2.dat, but with very specific 

JUNGLE4.dat: Section 4.11, Table 4.15 
on a total of 43 batches of a chemical intermediate. Use with CORREL. 

Nine parameters were determined 

LRTEST.dat: Synthetic data for program LINREG. 

MOISTURE.dat: Section 4.4 At 10 selected locations inside a dryer sam- 
ples of eight tablets each were drawn to determine water content by the Karl 
Fischer method; using MULTI, the hypothesis Ho is tested that all 10 sample 
means and standard deviations are indistinguishable. 

Ma.da t :  
of different size and distribution. 

Test file for MSD (HISTO, HUBER) that contains four data sets 

ND260.dat: Fifteen columns that each contain 160 random numbers. To 
be used with MSD, HISTO, CORREL,, SMOOTH to abtain a baseline, 
against which to compare real data sets; the ruggedness of evaluations can 
be checked through comparisons with sets of random numbers. 

PACK sort.dat: A set of 3444 weighings of a product coming off a pack- 
aging line; the smoothing routine is explained in Fig. 1.29. The second vector 
contains the residuals ri = yi - Ysmoorhed. 

PARABOLA.dat: Thirteen EMF vs. temperature measurements that con- 
form to the equation Y = -20.63 + 0.6395*X ~ O.O07295*(X - 3 1.09)^2, to 
be used with TESTFIT and LINREG. 

PKG CLASS.dat: One hundred items’ weights are given; in Vectors 2 and 
3 the items are classified as either “Hi” or “Lo,” to be used with SMOOTH, 
MSD, HISTO, HUBER, and CUSUM. 



PROGRAM AND DATA FILE DESCRIPTIONS 391 

PROFILE.dat: The area-% results for the main compound and 10 impu- 
rities are given for nine samples of a bulk chemical; use with CORREL to 
ferret out classes of impurities that presumably are involved in common syn- 
thesis pathways. 

QRED-TBL.dat: Table 1.7 Reduced critical q-values (division of q-values 
for p = 0.05 by the appropriate Student’s t-factor and SQR(2)), as used with 
the multiple range test in MULTI. 

RIA PREC.dat: Two hundred thirty-eight calibration data sets were col- 
lected and analyzed for repeatability (within group CV) and plotted against 
the mean concentration. In a double-logarithmic plot the pattern seen in Fig. 
4.6 appears. 

RND_I_IS.dat: A triangular matrix of random numbers that serves the 
same purpose as ND-lbO.dat, but introduces the vector length as a factor. 
Use with MSD or HUBER. 

SHELFLIFE.dat: The content (% of nominal) of two active components 
in a dosage form was assayed at various times (0-60 months) during a phar- 
maceutical stability trial to determine the acceptable shelf-life of the for- 
mulation; the point at which the lower 90% confidence limit of the linear 
regression model intersects the 90%-of-nominal line gives the answer. Use 
with SHELFLIFE or LINREG. 

SIEVEl.dat: Section 4.12 A crystalline raw material is purchased from 
two different suppliers on the basis of the same specifications; crystal size 
distribution was relatively loosely defined, so that both vendors’ materials 
passed specs. Production trials with seven batches from each vendor resulted 
in products of unequal properties: sieve analysis was carried out on retained 
samples using a laser light-scattering technique, yielding %-content for each 
of 15 classes. Analysis of the vendor-averaged sets by the conventional x 2 -  
test yielded no conclusive answer due to the high within-vendor-group vari- 
ability. Using EUCLID, the 15-point data set for each sample was projected 
from 15-space into the plane defined by the three Euclidean distances A-B, 
A S ,  and S-B, where A, B, and S are the coordinates in 15-space of the 
vendor-averages A and B respectively the individual sample S.  Two nonover- 
lapping groups of points could be distinguished that confirmed the impres- 
sion gained during the casual inspection of the 14-column by 15-row table. 

SZEVE2.dat: Section 4.12 This file is identical to the first seven rows of 
file SIEVE1 .dat, that is, the eight rows (dimensions, measurement channels) 
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that contribute nearly nothing towards the distance between the group centers 
have been eliminated. 

SZMl.dat: Section 1.4 Five data sets of 200 points each generated by SIM- 
GAUSS; the deterministic time series sine wave, saw tooth, base line, GC- 
peak, and step function have stochastic (normally distributed) noise super- 
imposed; use with SMOOTH to test different filter functions (filer type, 
window). A comparison between the (residual) standard deviations obtained 
using SMOOTH respectively HISTO (or MSD) demonstrates that the straight 
application of the Mean/SD concept to a fundamentally unstable signal gives 
the wrong impression. 

SMOOTH.dat: A 26-point table of values interpolated from a figure in Ref. 
162, to demonstrate the capability of the discussed extended Savitzky-Golay 
filter to provide a smoothed trace from the first to the last point in the time 
series. 

STAMP.dat: Section 4.9 For 120 tablets (see HARDNESSdat) the indi- 
vidual weights and hardness values are arranged in columns of 10, by stamp 
( N  = 10, M = 24). Use with MULTI, CORREL, or XYZ. 

STEP2.dat: A time series of 200 points consisting of the original signal (a 
step-function at t = 0) and the simulated response. (See. Fig. 1.5.) Use with 
SMOOTH or TESTFIT. 

TABLET C.dat: Section 4.18 Simulated drug content uniformity measure- 
ments; 10 different means, starting from 46 mg, with two samples of 10 
tablets each at every weight. N = 10, M = 20. To be used with HUBER, 
HISTO. but also CORREL to test for spurious correlations in table of ran- 
dom numbers and with MSD to test for conformance with limits. 

TABLET W.dat: Section 4.18 Similar to TABLET-C.dat, but with tablet 
weights, starting at 330 mg, and N = 20 tablets per sample. N = 20, M = 

20. 

m . d a t :  Section 4.2 The raw data shown in Fig. 4.3. 

m . d a t :  Section 2.2 A set of five calibration points (Absorbance vs. %- 
of-nominal Concentration) to be used with LINREG, see example used in 
Chapter 2, starting with Table 2.2. 

m . d a t ,  m . d a t ,  UV q.dat: The same data as in UV.dat, but in dupli- __ 
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cate, triplicate, respectively, quadruplicate, so that the effect of increasing N 
can be studied for constant s,, and S,,/N. 

VALZDl.dat: Section 4.23 A set of repeat determinations (m = 10) at con- 
centrations that are logarithmically spaced (10, 25, 50, 100, 250,500 ng/ml); 
to be used with programs LINREG, VALID, and VALIDLL. 

VALZD2.dat: Section 4.23 A set of duplicate determinations carried out on 
each of six successive days, with logarithmically spaced concentrations (1, 
2, 5, 10, 20, 50, 100, 200, and 500 ng/ml); M = 7, N = 18. 

VALZD3.dat: Section 4.23 A set of replicate determinations on each con- 
centration (1, 2, 5,  10, 20, 50, 100, 200, and 500 ng/ml), and multiple deter- 
minations at 35 and 350 ng/ml. N = 46, M = 2; all measurements were carried 
out on one day. 

VAR CV.dat: Section 4.34 Five sets of simulated calibration measure- 
ments (in triplicate) at six concentrations under the assumption of a CV of 
1, 2, 5 ,  10, respectively 15%. 

VOLUME.dat: Section 1.1.2 A set of five precision weighings of a water- 
filled 100 ml flask; the weights in grams were converted to milliliters using 
the standard density-vs.-temperature tables. Use with MSD to test the effect 
of truncation errors on the calculation of the standard deviation. (See Table 
1.1.) 

m . d a t ,  m . d a t ,  WWW.dat: Raw data shown in Fig. 4.1. 

WEZGHT.dat: Thirty high-precision calibration measurements carried out 
on each of two analytical balances (LSD: 0.01 mg) in the course of less than 
one hour using the calibration weight "30 g", cf. Ref. 25. 

w;L1p.dat: Section 2.2.10 A set of peak area vs. concentration results of 
a gas chromatography calibration. Use with LINREG to test the effect of 
a weighting scheme. The originally estimated dependence of the standard 
deviation of determination vs. concentration is described by the equation SD 
= 100 + 5"x. 

XYZCELL.dut: Section 2.4 Fifty six stability measurements were taken 
on a series of product batches during a program that included storage at 
4", 25", 31", 40°, and 41°C and sampling at 0, 1, 3, resp. 6 months; the 
assay of the drug substance is given in %-nominal, and the concentrations 
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of two degradants are in % relative to the drug substance. The data table 
has to be rearranged for 2-D analysis using Excel. The storage conditions 
“ 3  1” and “41””C were used as isothermal models for “real-life” temperature 
conditions over the course of a “typical” year that would feature standard 
controlled storage conditions (e.g., 1So-2SoC) for most of the time and short 
excursions up to 40” or SO”C, as could occur during transport. 

5.4.5 EXCEL Files 

The following applications were programmed in EXCEL and are being pro- 
vided in the Excel 97 format to assure maximum compatibility. The intention 
was to provide accessible examples of how the statistical functions avail- 
able in Excel can be put to use in demonstration and teaching situations. 
Most applications make use of the Monte Car10 simulation technique; press- 
ing [F9] recalculates all values. Repeatedly pressing [F9] gives the user an 
impression of how real measurements can vary from one measurement run 
to the next without changing their statistical properties. Wherever possible, 
the basic assumptions were formulated as parametrized models. For instance, 
analytical drift and bias might have a typical value and a probability of occur- 
rence assigned, so that unique conditions obtain for every simulated run. 

The files are password- and write-protected; only the numbers in the 
colored cells can be changed. The output was optimized for a screen with 800 
x 600 resolution. In order that those who use higher resolutions can adapt 
the graphics to full-screen size, the password is here divulged: “smac.” 

ASSAY ABxls: Figs. 4.39 and 4.49 The model assumes a dosage Form, 
e.g., a tablet, the weight of which systematically (effective mean in B2) and 
stochastically (CV in B3) differs from the nominal weight of 100. The com- 
position of the drug is such that the concentration of the two active com- 
ponents A and B systematically (C2, D2) and stochastically (C3 and D3) 
deviate from the nominal concentrations (= 100%). Thus the actually mea- 
sured results for each dosage unit are proportional to B2 . C2, resp. B2 . D2, 
with a CV approximately by d B 3 2  + C32, respectively 2/B32 + D32, if all 
goes well. A systematic error (bias, calibration error) defined by ND(0, (s, 
= F3)2) is superimposed with a probability as given in E3. The six repeat 
results A,  B, and weight will normally be compared against the specification 
limits, here suggested by the graph boundaries 90 . . . 110. If all results con- 
form, many analysts will not bother to look for correlations or out-of-trend 
(OOT) values, as can easily be done by plotting each assay value against the 
tablet weight (boxes at left), or, if two active components are present, one 
against the other (big box). If the distribution in the big box looks like an 



PROGRAM AND DATA FILE DESCRIPTIONS 395 

elongated ellipse along the diagonal, then the weight variation is where cor- 
rective efforts should go. Should an individual value dance out of line, then 
the corresponding analytical method be looked at. An ellipse that is offset 
from the diagonal signals either over- or underdosing of a component, or 
analytical bias. Pressing [F9] initiates a new simulation. 

CONVxls: Fig. 1.20 This Excel spread sheet is similar in concept to pro- 
gram CONVERGE.exe, but shows simulation results for 5 groups of 8 data 
points. On the left side of the graph the data are depicted for an analog instru- 
ment. On the right side the same data is treated as if a digital instrument had 
been used, with a digitization step that is set as a fraction of the standard 
deviation. Each CI is given as a vertical bar, with the estimate for xmean 
respectively s, appearing as a small gap at the appropriate vertical position. 

DECOMPOSITIONxls: Fig. 4.32, 4.39, Sections 2.2.6, 2.4, 3.1 The 
decomposition of a parent compound to its daughter can occur during pro- 
cessing or storage; if the former is the case, then the reduced assay values will 
not further diminish during storage, and the daughter product will remain at 
low levels. If degradation sets in or continues during storage, then this should 
be picked up in the stability study. The model assumes that an analytical 
method is used that does not distinguish between parent and daughter com- 
pounds except by way of the proportionality factor (slope of the calibration 
line), as is the case when chemically similar compounds are measured by 
UV spectrophotometry. The characteristic (and perhaps unobserved) degra- 
dation rate is given by the number in B11; the analytical error is characterized 
by ND(0, (s = C11)’). The daughter’s chromophore has an extinction coeffi- 
cient E that is somewhat smaller than that of the parent compound: E D  = D11 
. c p .  The measurement of the daughter is assumed to be beset by the same 
error as is the parent compound. The actually observed light blue triangles 
(regression line is gray) are defined by the linear combination according to 
Lambert-Beer’s Law: Aobc = factor . ( c p  . ~p + CL) . E L ) )  + ND(0, 2 . si). 

DEGRAD STABILxls: Section 1.8.4 The analysis of stability reports 
often suffers from the fact that the data for each batch of product is scruti- 
nized in isolation, which then results in a “see-no-evil’’ attitude if the numeri- 
cal values are within specifications. The analyst is in a good position to first 
compare all results gained under one calibration (usually a day’s worth of 
work) irrespective of the products/projects affected, and then also check the 
performance of the calibration samples against experience, see control charts, 
Section 1.8.4. In this way, any analytical bias of the day will stand out. For 
this purpose a change in format from a “Time-on-Stability” to a “Calendar 
Time” depiction is of help. 
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The file contains a real-life data set and a simulation model. The model 
allows for staggering of the on-stability time-points of the four batches (use 
multiples of 3 or 6 months!, gray cells), an individual degradation rate for 
each batch (purple cells), a random manufacturing bias (blue cells) and a 
random analytical error (pale yellow cells). For each analytical run, a cali- 
bration bias can be built in (yellow, light green cells; Keep the time shifts 
in mind!). There is also the possibility of introducing a variation of the ana- 
lytical method at a certain time, which again brings a method-related bias to 
bear (white, dark blue, dark pink cells). 

ELECTRODExls: Fig. 4.24 The operation of an ion-specific electrode 
with a slope of 59.16 mV per decade for mono-valent ions (29.58 mV/dec 
for di-valent ions) is simulated under the assumption that a digital volt meter 
with a resolution of, say, 0.1 mV is used. The sample volume and the con- 
centration of the metered titration solution are known. Normally, one would 
add a few milliliters of the concentrated titration solution and do the calcu- 
lation spelled out in lines 140-150 in Table 4.22; here, because the sample 
concentration is known, the result can be normalized to it. The operation 
of short-cuts (volume correction), unknowns (volume bias, deviation of true 
slope from theoretical), and equipment shortcomings (digitization) can be 
studied. 

00s RISK N.xls: Section 4.24 A basic model of risk-assessment is pre- 
sented in three variations: N = 4, 5 ,  respectively 6 repeat determinations 
per result. At the top of the screen the ideal dosage form, e.g., a tablet, 
is described by the signal (e.g., UV absorbance), the total weight, and the 
weight due to the active component itself (pale green cells). The calcula- 
tion of the result is Drug = Absorbance . Weight . Factor, where the Factor 
is derived from the measurement of an ideal tablet, or, in practice, from 
the weight-corrected absorbance of a close-to-ideal tablet preparation. The 
vagaries of real life are entered into the colored cells, i.e.: variability of the 
drug-to-total-weight ratio (light blue cell), the variability of the tablet weight 
(light green cell), the measurement noise (pink cell), and a weight bias (yel- 
low cell, due to improper equipment adjustment). The assay result can be 
rounded to a specific number of decimals (grey cell) before being inserted 
into the calculation. The symmetrical specification limits are in the blue cell. 
Due to the weight bias one of the SLs is closer to the calculated mean that the 
other, and is given in cell H10. The four to six simulated absorbances, tablet 
weights and assay values are given in the box, together with the respective 
means, and CVs; the percent-deviation of the mean signals from nominal is 
given below the box. Each calculated assay value is then compared against 
the SLs and declared to be either “in compliance” or “00s.” If an 00s 
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result is detected, the percent deviation from the appropriate SL is given at 
right. The normalized differences IA ~ SLl/sA, where A = assay, are used to 
estimate the cumulative risk of having at least one 00s result among the 
N = 4, 5, or 6 repeats (lower left box). When the CL(mean) are within the 
specification limits, the box at the lower right displays a green YES, other- 
wise a red NO (SLL 5 (E20 ? t . E 2 1 / 4 )  I SLu). Hereby it becomes 
evident that averages, and their confidence limits, obtained from four to six 
repeats can be within specifications even if a single result is just outside 
these limits; regulatory-wise, such an average would be regarded as being 
out of compliance! 

PEDIGREExls: Figs. 4.44 and 4.45 The cumulation of random and sys- 
tematic errors in the hierarchy of calibration standards is investigated. The 
model assumes a Gaussian analytical error coupled with transfer errors and 
laboratory bias. The light blue cells serve to define the reproducibility of the 
measurements. Each transfer from one laboratory to another is assumed to 
also involve an error (yellow cells) due to differences in equipment and/or 
work practices. In each laboratory it is possible to commit calibration or 
other bias-inducing errors (pale pink cells); this happens at random under a 
defined probability of occurrence (pink cells). Each simulation run results 
in specific, normally distributed errors being assigned to each of the assays 
and transitions. Below the pale pink cells a random number of rectangular 
distribution is determined for each of the laboratory tests in the pedigree dia- 
gram above; if the random number is smaller than the error probability in the 
pink cell above it (e.g., 0.02384 in cell H27 is less than 3/100 in cell H23) 
a chance error of magnitude ND(0, s2 )  is assigned to the analysis simulated 
in the corresponding cell (s = H27, analysis in cell H7, in this case). This 
chance error then appears in the white cell underneath the affected one. The 
eight representative samples in column I convey an idea of what kind of true 
values p could be declared to be indistinguishable from the standard mate- 
rial. In concrete terms, the problem crops up when one factory produces a 
product using one standard and another factory tests it using their own stan- 
dard, which too is tied to the same standard material. If a tested sample result 
is more than X standard deviations from the mean, three asterisks show up 
in the cell next to it (the X . SD criterion in cell J25 could be used as an 
outlier test). 

POWERxls: Fig. 1.34, Sections 1.9, 4.1 A test distribution (e.g., ND(2.8, 
0.52), light green cells, bold green line for distribution, thin green line for CP) 
and the reference distribution (bold blue distribution, thin blue CP curve; e.g. 
ND(0, l), yellow cell and line for power = 1 - 0) can be defined. The cursor (red 
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cell) marks the cut-off for which the risk alpha (dark blue, to right of cursor) is 
known. With this information, the corresponding areac (risks) under the green 
curve to the left of the cursor can be estimated (light green cell 11). Change 
position and width of the test distribution to evaluate risk 0. 

PROB REJECTxls: Section 3.6, Fig. 1.29 In a production environment 
there are often several superimposed processes that yield measurement series 
like that depicted in the lower panel: there is drift that unexpectedly changes 
slope, there is bias and measurement noise, and there are operators who take 
corrective action. The model includes the probability of drift occurring and 
a feed-back loop that permits both positive and negative coefficients. The 
operators can be ordered to react if a single value exceeds a set limit, or 
only if 2, 3 ,  or more successive values do so. The program calculates the 
two-sided (asymmetric) total probability of a value being 00s and depicts 
this in the upper panel on a log(p) scale. The red horizontal is the upper 
limit on the total risk as set in cell B20. 

QUOTE RESULTxls: Section 1.1.5 The calculated mean (yellow cell A2) 
and standard deviation (light blue cell A3) are entered together with the sam- 
ple size N (blue cell Al)  and the risk of error a (light green cell A4). The 
program calculates the confidence limits for the population, the mean, and 
the standard deviation. The spread between the upper and lower CL(s,) is 
used to determine the number of significant digits that can be displayed. The 
results given in the gray box should be quoted without terminal zeros. Pos- 
sible interpretations are given at right. 

SHELFLZFExls: Section 4.20 The yellow area in the left upper comer can 
be used to enter up to 10 data points (the unneeded cells should be cleared), 
for which the regression line is calculated. The thin green lines above and 
below the trendline indicate the zone within which new measurements must 
be regarded as belonging to the population; any measurement outside this zone 
should be investigated. The bold yellow curve represents the lower confidence 
limit of the red trend line. The interpretation is that at the time point where this 
curve intersects the specification limit, the probability of the trend being below 
the SL is 5%.  This definition is used by the FDA to set the shelf-life of a med- 
ication. The program can also be used to study degradation products, because 
if a SL is entered that is less than 50%, the sign of the slope (cell B 18) changes 
and not a lower but an upper CL is presented. 

SYS SUZTABxls: Section 1.1.4 A series of 10 measurements is simulated 
under the assumption ND(0, (s = B2)2); in column 1, only the first two are 
shown, in column 2 the first three, and so on. In the upper panel the cor- 
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responding standard deviations for N = 2, 3, . . . etc. are given by the bold 
green line. The horizontal lines are for E(s,) = 1 and the SL(s,) = 2 . (cell 
E2). The least significant digit can be set in cell C2 in order to simulate the 
operation of a digital instrument. Besides the calculated SD, four other lines 
(light blue, dark blue, gold, resp. dark green) give the upper CL(s,) for p = 
0.2 . . . 0.025. This program illustrates the width of the confidence interval 
for a standard deviation for a low number of repeat measurements, and the 
large changes induced by the addition of a single additional measurement. 

EXCEL FNC.xls The following functions are shown: 

Generation of random numbers belonging to the ND(0, 1) (Monte Car10 

0 Transformation of CP to z. 
Generation of Student’s t. 
Generation of PD and CP curves. 

Technique). 

TECHNICAL TIDBITS 

The genesis of this book is a fair reflection of the development of electronic 
tools in the past quarter of a century. The text, the calculations, and the graph- 
ics improved in leaps and bounds; the authors take some pride in this, but 
suffered with each introduction of a new software package or release. 

Ancient History Some of the programs (LinReg, Histogram) go back to 
our first laboratory exercises in data evaluation with chemistry undergradu- 
ates at the ETHZ in 1973: FORTRAN IV was run at the computer center, 
data entry was on punched cards, and output was in the form of “text graph- 
ics” (cf. Table 4.35); the introduction of a HP-9830 desktop computer, with 
all of 1760 bytes of memory (sic!), BASIC programming, a I-line display, 
a printer, and a plotter (total cost twice as high as an assistant professor’s 
annual before-taxes salary) was pure luxury and finally made graph paper 
obsolete. Later, everything was transferred to a HP-85. The first company 
PCM worked for did not know computers existed, so he bought a HP-71B 
BASIC-programmable pocket calculator fitted with 22K RAM, a curve and 
a math ROM, and a disc drive. A ThinkJet matrix printer was used to graph 
the majority of the figures at a resolution of 320 x 320 pixels respectively 
0.25 mm/O.Ol inch per line pair (after data entry, it took some 3-5 min- 
utes of processor time to generate a single graph, formatted as 32 strings of 
40 user-defined characters each). Total cost: one-third of his monthly take- 
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home pay. In no time, the kernels of most of the programs presented here 
were available and were used on a daily basis. Comfort was at a rock-bottom 
level and entailed memorizing all promts (one to three letter displays) and 
the corresponding option lists. 

First Edition Soon after PCM’s transfer to Cilag A. G. in 1986, work began 
in earnest. Text was sketched out at night and typed into Quality Control’s 
Wang 01s- 140 terminal in lieu of going out for lunch. Printouts were avail- 
able every 2 weeks in the next building. Graphics continued to be done on 
the HP-7IB, with a sprinkling on Symphony and Lotus 1-2-3. The programs 
provided with the book were written on the GW-BASIC platform contained 
in MS-DOS 3.0 on a Sharp 286. 

Second Edition Shortly after submission of the first edition, the text was 
migrated to WPS.O/DOS on a 386, and then to WPS.l/Windows 3.11 on a 
486. The accompanying programs were continuously improved, first on a Q- 
BASIC and then on a QuickBasic platform. When-surprise-Wiley asked 
for a revision, practicality demanded a renewed adaptation of the home PC to 
company standards, so as not to have to switch back and forth between stan- 
dards every day: the text was prepared on Microsoft Word 7.0 running under 
Windows 95 on a 200 MHz Pentium I1 machine. Graphics were prepared in 
a more roundabout way: whenever precise X Y  coordinates were involved, an 
Excel Spreadsheet was prepared, viz. Figs. 1.14-17, and the coordinates were 
saved as a .WK3 file. Some calculations were more easily done in QBASIC, 
vi7. Figs. 1.2, 1.5, or 1.12, with results written to .csv files that were then 
read into Excel. These .WK3 files were then imported into Lotus 1-2-3, and 
the resulting graphics were saved in .cgm format, which could be imported 
into VISIO 4.0. VISIO has two advantages, namely the ease of manipulating 
graphical elements (symbols, text, etc.), and the Imagestream driver to cre- 
ate the final .tif-format images that Wiley prefers. More direct routes from 
Excel to VISIO or .tif ended in inexplicable losses of control over such things 
as line widths or positions of text boxes. The only Sigmaplot .jnb file (cf. 
Fig. 2.21) had to be printed, scanned, stored as a .pcx file, and imported into 
VISIO for conversion to .tif format. 

CopyrightlTrudemurks The following products are named: 

Core1 Draw 
FORTRAN IV 
Hewlett Packard HP-7 1 B BASIC Curve ROM 
Hewlett Packard HP-71B BASIC Math ROM 
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Hewlett Packard HP-71B ThinkJet matrix printer 
Hewlett Packard HP-7 1B BASIC-programmable pocket calculator 
Hewlett Packard desktop computer models HP-9830 and HP-85 
Imagestream TIF Export 2.0.3 
Intel 386, 486, and Pentium I1 CPUs 
Lotus 1-2-3 spread-sheet 
Microsoft Excel 7.0 
Microsoft GW-Basic 3.23 
Microsoft Q-Basic 1.1 
Microsoft VisualBasic 5.0 
Microsoft Windows 3.11 0s 
Microsoft Windows 0s 95 
Microsoft Word 97 
QuickBasic 

Sigmaplot 
Symphony spreadsheet 
VISIO 4.0 
Wang 01s- 140 word processor 
Wordperfect 5 .O, 5.1 word-processing program 

Sharp PC-5541 286 

GLOSSARY 

The following terms and abbreviations are repeatedly used: 

Symbol Explanation 

a 
AL 
alpha (a) 
assay 

b 
beta (0) 
C.O.V. 
Chi2 ( x 2 )  
CHN 

intercept 
action limits 
probability of type I error 
determination of content of, for example, active principle 

(= drug compound) 
slope 
probability of type I1 error 
coefficient of variation; cf. RSD 
statistical indicator of similarity, x '-tables 
elemental analysis for C(arbon), H(ydrogen), and 

N(itrogen) 
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f (. ’ .) 
FWHM 
GC 
GLP 
GMP 
GOF 
HO 
HI 
HPLC 
ICP 
IHL 
indicesL, 
Inf (m) 

ISE 
k 
k ,  m 
k ,  z 

LAR 
LLS 
LOD 

LRR 
LSD 
m 
MAD 
MC 

n 

LOQ 

mu (P I  

confidence interval of quantity in parentheses, equal to 

confidence limits of the estimate in parentheses 
cumulative probability 
coefficient of variation; cf. RSD 
differential, as in 6x/6t 
difference between measured values, e.g., in paired t-test 
digital voltmeter 
expected value 
electromotive force, e.g., as found in pH electrodes 
test statistic, F-test 
degrees of freedom (in Chapter 5 “df” is used instead off 

to avoid confusion with the polynomial coefficient f 
algebraic function 
full width at half maximum, width of a peak 
gas chromatography 
good laboratory practices 
good manufacturing practices 
goodness of fit, e.g., x 2  
null hypothesis 
alternative hypothesis 
high-pressure liquid chromatography 
inductively coupled plasma spectrometry 
in-house limits 
“lower and upper, as in SLL,, SLu, CLL, or CLu 
infinity, either --oo or +m 

ion-selective electrode 
normalization factor in weighted regression 
number of repeat measurements 
safety factors in detection of outliers (Huber’s k ,  classical 

largest absolute residual 
laser-light scattering 
limit of detection 
limit of quantitation 
largest relative residual 
least significant digit 
number of groups 
median absolute deviation, Huber’s outlier test 
Monte Carlo numerical simulation technique 
true value of mean 
number of measurements, sample size 

the distance between CLL and CLU 

u 

z )  or calculation of LOD ( z )  
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number of samples, first series 
number of samples, second series 
normal distribution with p = 0, u 2  = 1 
probability density 
test statistic in multiple range test 
critical q-value 
quality control/quality assurance, department or function 
correlation coefficient 
range of n values 
coefficient of determination 
residual 
relative standard deviation 
standard deviation of the mean difference 
specification interval 
true value of standard deviation 
specification limits 
standard operating procedure 
residual standard deviation 
total sum of squares 
standard deviation of a distribution 
standard deviation of a mean 
sum of squares 
weighted sum of squares 
sum of squares 
weighted sum of squares 
sum of squares 
weighted sum of squares 
Student’s t-value, test statistic in t-test 
typical absolute residual 
time constant 
critical t-value 
typical relative residual 
ultraviolet part of spectrum 
variance of first series or within group 
variance of second series or between groups 
variance of the intercept a 
variance of the slope b 
variance of the mean difference 
pooled variance 
residual variance 
variance of x 
variance of the estimate X = ( y - a)/b 
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VY 
W ,  

X 
x( 1 
XGM 

x 1 

XV 
X m  

Xmax 

Xmean 

Xmean, w 

Xmin 
XRF 
Y 

Yl 

Z 

Y* 

APPENDICES 

variance of the estimate Y = a + b . x 
weight assigned to individual measurement 
estimate. as in X = f (y) 
array or vector of values 
grand mean 
ith n-value 
element in array x(,) 
median 
largest value x, 
mean or average over several xi 
weighted mean 
smallest value xi 
X-ray fluorescence 
estimate, as in Y = f ( x )  
(average) value measured for unknown 
measured value 
standardized deviate in ND 
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