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Preface

When I wrote the first edition of Applied Mathematics for Physical Chemistry in
1974, 1 knew of only one other book of this type that was currently available; it was
written by Farrington Daniels, published many years earlier and entitled Mathemat-
ics for Physical Chemistry. It covered basic algebra and calculus and had very little
of the advanced mathematics needed to handle so-called modern physical chemistry,
which includes quantum chemistry (atomic and molecular structure), spectroscopy,
and statistical mechanics. I had found after teaching physical chemistry for a few
years that the three semesters of calculus required of our chemistry majors as a pre-
requisite for taking physical chemistry was just not enough mathematics to do these
areas justice. Moreover, I had found that I was taking valuable physical chemistry lec-
ture time to teach my students basic math skills. Not only were students not getting
the needed advanced mathematics from the prerequisite mathematics courses, but
many of them had difficulty applying the mathematics that they did know to chemi-
cal problems. I would like to say that over the past years things have improved, but I
find that students are just as unprepared today as they were twenty years ago when
the first edition of this book was published. There is still a need for a book such as
this to be used along with and to supplement the basic two- or three-semester course
in physical chemistry. .

Like the first edition, this second edition is in no way intended to replace the
calculus courses taken as prerequisite to the physical chemistry course. This text is a
how to do it review book. While it covers some areas of mathematics in more detail
than did the first edition, nevertheless, it concentrates on only those areas of mathe-
matics that are used extensively in physical chemistry, particularly at the undergrad-

vii
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uate level, Moreover, it is a mathematics textbook, not a physical chemistry textbook.
The primary concern of this book is to help students apply mathematics to chemical
problems, and like the first edition, the problems at the ends of the chapters are de-
signed to test the student’s mathematical ability, not his or her ability in physical
chemisiry. [ have found that this book is particularly suited to students who have been
away from mathematics for several years and are returning to take physical chem-
istry. Also, students starting graduvate school, who may not have had an adequate
preparation in advanced calculus, have found this book to be useful.

The first five chapters concentrate on subject matter that normally is covered in
prerequisite mathematics courses and should be a review. While it is important to re-

view general and special methods of integration, more emphasis has been placed in

this edition on using integral tables for doing standard integration. Like the first edi-
tion, and in keeping with its original intent, mathematical rigor was kept at a mini-
mum, giving way to intuition where possible.

The latter half of the book is devoted to those areas of mathematics normally
not covered in the prerequisite calculus courses taken for physical chemistry. A num-
ber of chapters have been expanded to include material not found in the first edition,
but again, for the most part, at the introductory level. For example, the chapter on dif-
ferential equations expands on the series method of solving differential equations and
includes sections on Hermite, Legendre, and Laguerre polynomials; the chapter on
infinite series includes a section on Fourier transforms and Fourier series, important
today in many areas of spectroscopy; and the chapter on matrices and determinants
includes a section on putting matrices in diagonal form, a major type of problem en-
countered in quantum mechanics.

Finally, a new chapter on numerical methods and computer programming has
been included to encourage students to use personal computers to aid them in solv-
ing chemical problems. While the programs illustrated in this chapter utilize a more
up-to-date form of BASIC, they easily can be modified to other programming lan-
guages, such as C. This new chapter concentrates on numerical methods, such as nu-
merical integration, while at the same time showing students how to write simple pro-
grams to solve numerical problems that would require long periods of time to solve
with the use of only a hand calculator.

No book can be updated without the critical input from professors and students
who either used the first edition or would be candidates for using an updated edition.
I specifically wish to thank Julie Hutchison, Chapel Hill, North Carolina; Willetta
Greene-Johnson, Loyola University, Chicago; Lynmarie A, Posey, Vanderbilt Uni-
versity; Joel P. Ross, St. Michael’s College; Sanford A. Safron, Florida State Univer-
sity; and William A, Welsh, University of Missouri for their careful and critical re-
view of the first edition of the text and their many helpful suggestions for the second
edition. A special note of thanks is due to my friend and colleague Professor William
Porter of the Physics Department here at Southern Connecticut State University for
keeping my mathematics honest over these past thirty years.

Preface ix

I thank my editor John Challice, editorial assistant Betsy Williams, total con-
cept coordinator Kimberly Karpovich, copyeditor Trace Wogmon, and the many in-
dividuals at Prentice Hall and ETP Harrison whose valuable ideas and comments
have helped to improve immensely the quality of this book.

Finally, I wish to thank my son Stephen Barrante, who designed the cover for
this edition and who is just beginning his career in graphics design, my wife Marlene,
and our family for their patience and encouragement during the preparation of this
book.

I welcome comments on the text and ask that these comments or any errors
found be sent to me at barrante @ penet.com.

JAMES R. BARRANTE
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Coordinate Systems

1-1 INTRODUCTION

A very useful method for describing the functional dependency of the various prop-
erties of a physicochemical system is to assign to each property a point along one of
a set of axes, called a coordinate system. The choice of coordinate system used to de-
scribe the physical world will depend to a great extent on the nature of the properties
being described. For example, human beings are very much “at home” in rectangu-
lar space. Look around you and note the number of 90° angles you see. Therefore, ar-
chitects and furniture designers usually emiploy rectangular coordinates in their work.
Atoms and molecules, however, live in “round” space. Generally they operate under
potential energy fields that are centrally located and therefore are best described in
some form of “round” coordinate system (plane polar or spherical polar coordinates).
In fact, many problems in physical chemistry dealing with atoms or molecules can-~
not be solved in linear coordinates, Thus, as chemists, we need to be familiar with
polar as well as linear coordinates. We shall see, however, that things we are accus-
tomed to studying in linear coordinates, such as waves, look very different to us when
described in polar coordinates. But, once we have come to terms with polar coordi-
nates, we will find that they are no more difficult to use than linear coordinates. We
begin our discussion with a general treatment of linear coordinates.
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1-2 CARTESIAN COORDINATES

In the mid-seventeenth century the French mathematician René Descartes proposed
a simple method of relating pairs of numbers as points on a rectangular plane surface,
today called a rectangular Cartesian coordinate system. A typical two-dimensional
Cartesian coordinate system consists of two perpendicular axes, called the coordinate
axes. The vertical or y-axis is called the ordinate, while the horizontal or x-axis is
called the abscissa. The point of intersection between the two axes is called the ori-
gin. In designating a point on this coordinate system, the abscissa of the point always
is given first. Thus, the notation (4, 5) refers to the point whose abscissa is 4 and
whose ordinate is 3, as shown in Fig. 1-1.

The application of mathematics to the physical sciences requires taking these
abstract collections of numbers and the associated mathematics and relating them to
the physical world. Thus, the x’s and y’s in the above graph could just as easily be
pressures or volumes or temperatures describing a gas, or any pair of physical vari-
ables that are related to each other.

An example of a Cartesian coordinate system that is used extensively in phys-
ical chemistry is illustrated in Fig. 1-2, Here, the ordinate axis represents the variable
pressure, while the abscissa represents the variable volume. Since both pressure and
volume must be positive numbers, it is customary to omit the negative values from
the coordinate system. Any curve drawn on this coordinate system represents the
functional dependence of pressure on volume and vice versa. (Functions are de-
scribed in Chapter 2). For example, the curve shown in the diagram is a repre-
sentation of Boyle’s law, PV = k, and describes the inverse proportionality between
pressure and volume for an ideal gas. The equation describing this curve on the graph

O U

Figure 1-1  Graph of the point (4, 5).

Section 1-2 Cartesian Coordinates 3

Boyle’s law
PV =k

Pressure

Figure 1-2  Pressure versus volume for
Volume an ideal gas.

.

could just as easily have been written yx = k. However, not apparent in either equa-
tion (PV.= k or yx = k) is the fact that this inverse relationship rarely applies to real
gases, except at high temperature and low pressure, and then only if the temperature
of the gas is held constant. It is a knowledge of facts such as these that continues to
distinguish the science of physical chemistry from that of “pure mathematics.”

Coordinate systems are not limited to plane surfaces. We can extend the two-
dimensional rectangular coordinate system described above into a three-dimensional
coordinate system by constructing a third axis perpendicular to the x-y plane and pass-
ing through the origin. In fact, we are not limited to three-dimensional coordinate
systems and can extend the process to as many coordinates as we wish or need—
n-dimensional coordinate systems—although, as we might expect, the graphical rep-
resentation becomes difficult beyond three dimensions, since we are creatures of
three-dimensional space. For example, in wave mechanics, an area of physics de-
scribing the mechanical behavior of waves, we usually describe the amplitude of a
transverse wave by using an “extra” coordinate. Therefore, the amplitude of a one-
dimensional transverse wave—say, along the x-axis—is represented along the y-axis,
illustrated for a simple sine wave in Fig. 1-3. (Keep in mind that the wave itself does
not move in the y-direction. The wave is a disturbance, or series of disturbances, trav-
eling, in this case, only down the x-axis. We should not confose the motion of the
wave with the motion of the medium producing the wave.) A two-dimensional
transverse wave in the xy-plane, such as a water wave moving across the surface of a
lake, requires a third coordinate, call it the z-axis, to describe the amplitude of the
wave—still easy to represent graphically, and certainly within the realm of our expe-
rience. Many problems in quantum wave mechanics, however, require us to describe
three-dimensional waves. In order to describe graphicaily the amplitude of a three-
dimensional transverse wave, we need a fourth coordinate. This presents a problem
to creatures of three-dimensional space, and a number of ingenious ways have been
devised to get around the problem. One way is to use the density of points on a three-
dimensional graph to represent the amiplitude of the wave.
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Figure 1-3  One-dimensional sine wave traveling down x-axis.

In any of the coordinate systems described above, it is useful to define a very
small or differential volume element

dv =dqi dqydgydqs...dq, (1-1)

where dg, is an infinitesimally small length along the ith axis. In the three-dimensional
Cartesian coordinate system shown in Fig. 1-4, the volume element is simply

dt = dx dy dz (1-2)

1-3 PLANE POLAR COORDINATES

Many problems in the physical sciences cannot be solved in rectangular space. For
this reason, we find it necessary to redefine the Cartesian axes in terms of what nor-

dy

dz

dx

dr = dx dy dz

Figure 1-4 Differential volume ele-
x ment for a Cartesian coordinate system,

Section 1-4 Spherical Polar Coordinates 5

{r.6)

Figure 1-5 Plane polar coordinates.

mally are referred to as “round” or “curvilinear” coordinates. Consider the diagram
in Fig. 1-5. It is possible to associate every point on this two-dimensional coordinate
system with the geometric properties of a right triangle. Note that the magnitude of x
is the same as the length of side b of the triangle shown, and that the magnitude of y
is the same as the length of side a. Since

ind=2 and coso=2 (1-3)
r r
we can write
x=b=rcosf and y=ga=rsind (1-4)

Therefore, every point {x, y) can be specified by assigning to it a value for r and a
value for 4. This type of graphical representation is called a plane polar coordinate
system. In this coordinate system, points are designated by the notation (v, #). The
Equations (1-4) are known as transformation equations; they transform the coor-
dinates of a point from polar coordinates to Cartesian (linear) coordinates. The re-
verse transformation equations can be found by simple trigonometry.
sind

Y tand or 6 =tan~! (Z) (1-5)

x rcosf x
and

r= (2 + Y (1-6)

1-4 SPHERICAL POLAR COORDINATES

One extension of the plane polar coordinate system to three dimensions leads to the
spherical polar coordinate system, shown in Fig. 1-6. A point in this system is
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Figure 1-6 Spherical polar
X coordinates.

represented by three numbers: 7, the distance of the point from the origin; 6, the angle
that the line  makes with the z-axis; and ¢, the angle that the line OA makes with the
x-axis. Since

p |
cosp=1S, sing=2, and sinf =2 1-7
a a r

and since the length of ¢ is numerically equal to x, d to v, and b to z, we can write
X=acos¢=rsinfcos¢ |
y=asin¢ =rsindsin ¢ (1-8)
z=vrcos 8

The reverse transformation equations are found as follows:

X e w =tan¢ or ¢ = tan_l (2) (19
X

x  rsing cos ¢
r=x2+y2 4+ 2 (1-10)

1 Z

(x2 437 + 22)172 (A

z
cosf =—- or O =cos”
r
The differential volume element in spherical polar coordinates is not as easy to
determine as it is in linear coordinates. Recalling, however, that the length of a cir-
cular arc intercepted by an angle 8 is L = g, where  is the radius of the circle, we
can see from Fig, 1-7 that the volume element is

dv = 12 sin @ dr d8 d¢ (1-12)

Section 1-56 , The Complex Plane 7

dr

dt = r? siné drdd d¢

z y
A 4
rsing de
dr 7 do rsin®
| __rsing___ \
r
d
Ny S
@
> ¥ > x

Fighre 1-7 Differential volume element in spherical polar coordinates.

1-5 THE COMPLEX PLANE

A complex number is a number composed of a real part x and an imaginary part iy,
where i = +/—1, and normally is represented by the equation z = x + 7y. A real num-
ber, then, is one in which y = 0, while a pure imaginary number is one in which x =
0. Thus, in a sense, all numbers can be thought of as complex numbers.

It is possible to represent complex numbers by means of a coordinate system.
The real part of the complex number is designated along the x-axis, while the pure
imaginary part is designated along the y-axis, as shown in Fig. 1-8. Since x = rcos 8
and y = r sin 8, any complex number can be written as

z=x+iyv=rcosf+risinf=r(cos@+isind) (1-13)
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z=x+iy

Figure 1-8 The complex plane.

Moreover, since every point in the plane formed by the x- and y-axes represents a
complex number, the plane is called the complex plane. In an n-dimensional coordi-
nate system, one plane may be the complex plane,

The value of r in Equation (1-13), called the modulus or absolute value, can be
found by the equation

r= 2+ yH? =g (1-14)

The angle 8, called the phase angle, simply describes the rotation of z in the complex
plane. The square of the absolute value can be shown to be identical to the product of
z = x + iy and its complex conjugaté z* = x — iy. The complex conjugate of a com-
plex number is formed by changing the sign of the imaginary part.

7'z = (x —ip)x +iy) =x* 4+ ¥ = |z (1-15)

To find another useful relationship between sin 8 and cos @ in the complex
plane, let us expand each function in terms of a Maclaurin series. (Series expansions
are covered in detail in Chapter 7.)

, g 8 g

Sm9=9—§+§*ﬂ+““‘ (1-16)
92 94 96

COS9=1—§+E—a+—"' (1—17)

9
cosf@ +isinf =14+if —~ — — — . (1-18)

Problems 9

But this is identical to the series expansion for £

e”=1+M—%§—§;n (1-19)
Hence, we can write
' e =cos@+ isind (1-20)
and
z=ré’ (1-21)
It can be shown by the same method used above that
e ¥ =cosH —isiné (1-22)
and
ZF=re (1-23)
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PROBLEMS

1. What is the sign of the abscissa and ordinate of points in each of the quadrants of a two-
dimensional coordinate system? Relate these to the sign of sin 6, cos 6, and tan 6 in each
quadrant.

2. Determine the values of r and § for the following points:

(@ (2,2) @ & -1 ® (-2,0
(b) (1, +/2) (&) (-3,-2) (h) (0, -5)
(¢} (1,5) ® 20 @ (12, -6)
3. Determine the values of x and y for the following points:
(a) r=1.11,8=54°22" () r=6.006=145°
() r=100,6=0 ) r=250,6=270°
(€} r=3.16,8= 225° (g) r=3.00,6=35°
@ r=+3,0=90° (h) r=5.00,8= 71°34
4. Determine the values of r, 8, and ¢ for the following points:
@ 1,1L0 (© (2.0, -1 (e) (3,6, -12)

(b} 3,2,1) d) (-1,0,4) ® ©,0, -4
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5. The cylindrical coordinate system can be constructed by extending a z-axis from the ori-
gin of a plane polar coordinate system perpendicular to the x-y plane, A point in this sys-
tem is designated by the coordinates (r, 8, 7). What is the differential volume element in
this coordinate system?

6. Determine the modulus and phase angle for the following complex numbers:

(a) 3 © 242 (€) —4-4
(b} 6 )y 1 -3 M —4+5

7. Show that e~ = cos& — i sin6.

. Show that cos6 = %(e"‘9 +e ") and sind = E‘I-.(em — e,

9, Find the values of m that satisfy the equation ¢ = 1. (Hinz: Express the exponential in

in terms of sines and cosines.)

Show that A ¢® + B ¢~%, where A and B are arbitrary constants, is equivalent to the sum

A’ sin kx + B’ cos kx, where A’ and B’ are arbitrary constants.

1L. A space-time diagram is a two-dimensional coordinate system in which position is plotted

ot one axis (usually the y-axis) and time is plotted on the other (usually on the x-axis). A
line on this coordinate system, called a world line, represents motion of a particle through
space and time. Construct world lines on a space-time diagram showing the following:
(a) a particle at rest relative to the observer C

(b) a particle moving slowly relative to the observer

(c) a particle moving very fast relative to the observer

(d) Would a vertical line be possible on this coordinate system?

o

10

+

Functions
and Graphs

2-1 FUNCTIONS

Physical chemistry, like all the physical sciences, is concerned with the dependence
of one or more variables of a system upon other variables of the system. For exam-
ple, suppose we wished to know how the volume of a gas varies with temperature,
With a little experimentation in the laboratory, we would find that the volume of a gas
varies with temperature in a very specific way. Careful measurements would show
that the volume of a gas V, at any temperature ¢ on the Celsius scale obeys the spe-
cific law

Vi=V(1+ap) (2-1)

where V,, is the volume of the gas at 0°C and « is a constant known as the coefficient
of expansion of the gas. This equation predicts that there is a one-to-one correspon-
dence between the volume of a gas and its temperature. That is, for every value of ¢
substituted into Equation (2-1), there is a corresponding value for V.

. Let us define a collection of temperatures as a mathematical set 7 = {t, 8, 13,
44, . . .} and the corresponding volumes as another set V= {V,, V,, V3, V,, . . .]. A
mathematical set is defined as a collection of numbers, each member of the set called
an element, s0 we see that our collection of temperatures and volumes satisfies this
definition. If there is associated with each element of set T at least one element in the
other set V, then this association is said to constitute a function from T to V, written
frt — V.. That s, the function takes every element in set T into the corresponding
element in set V. We see that Equation (2-1) satisfies this condition. Since V, is a func-
tion of r—that is, the value of V depends on the value of +—the above expression can

11



12 Chapter 2 Functions and Graphs

be written f:t — f(t), where V, = f(). Remember that f(z), read “f of 1,” does not
mean f is multiplied by ¢, but that f(¢) is the value of V(1 + o) at ¢. Hence, we can
write

JO =Vo(l + i) (2-2)

A function, then, is defined as a correspendence between elements of two mathemat-
ical sets. _
In the above example, V, was considered to be a function of only a single vari-
able ¢. Such an equation, V, = f(r), can be represented by a series of points on a two-
dimensional Cartesian coordinate system. Physicochemical systems, however, usu-
ally depend on more than one variable. Thus, it is necessary to extend the definition
of function given above to include functions of more than one variable. For example,
we find experimentally that the volume of a gas will vary with temperature accord-
ing to Equation (2-2) only if the pressure of the gas is held constant. Thus, the vol-
ume of a gas is not only a function of temperature, but also is a function of pressure.
Careful measurements in the laboratory will show that for most gases at or around
room temperature and one atmosphere pressure the law relating the volume of a gas
simultaneously to the temperature and the pressure of the gas is the well-known ideal

gas law
RT

V= - = f(r, P (2-3)
where R is a constant. Equation (2-3) implies that there is a one-to-one correspon-
dence between three sets of numbers: a set of volumes, V= {V;, Vo, V5, Vi .. 1 2
set of temperatures on the absolute temperature scale, T'= {7, 15, 75, Ty, . . .}; and a
set of pressures, P = {P, P, P;, Py, .. .}. These three sets can be represented graph-
ically on a three-dimensional coordinate system by plotting V along one axis, T along
a second axis, and P along the third axis. Such graphs of P, V, and T commonly are
called phase diagrams.

2-2 GRAPHICAL REPRESENTATION OF FUNCTIONS

As we saw above, one of the most convenient ways to represent the functional de-
pendence of the variables of the system is by the use of coordinate systems. This is
because each set of numbers is easily represented by a coordinate axis, and the graphs
that result give an immediate visual representation of the behavior. In this section we
shall explore several types of graphical representation of functions. We begin with
functions that describe a linear dependence between the variables.

Equations of the First Degree. Equations that define functions showing
a linear dependence between variables are known as equations of the first degree, ot
first-degree equations. These functions describe a dependence commonly called the

Section 2-2 Graphical Representation of Functions 13

direct proportion, and the equations are called first-degree equations because all the
variables in these equations are raised only to the first power, First-degree equations
have the general form

Sy =mx+b (2-4)

where m and b are constants. As an example of a first-degree equation, consider the
equation °F = %”C + 32, illustrated in Fig, 2-1. This familiar equation describes the
temperature of a system on the Fahrenheit scale and its refationship to the tempera-
ture on the Celsius temperature scale. Note that, indeed, the equation is that of a
straight line. From the graph we can determine the significance of the constants m and
b in Equation (2-4). Let us consider the latter, b = 32. We can see that the line crosses
the °F-axis at the point where the value of °C is zero. If we substitute zero for °C
into the equation °F = %"C + 32, we obtain °F = 32. But this is just the value of b
in the equation, Hence, (0, b) are the coordinates of the point where the line crosses
the ® F- or y-axis, and thus b is called the y-infercept. It also may be of interest to con-
sider the value of °C for which °F = f(°C) = 0. This point represents the point
where the line crosses the °C- or x-axis, and is known as the zero of the function. Re-
arranging Equation (2-4) gives

b
O=mx+b or x=—— (2-5)
°F
A
240 -
200 -

(°C3,"F3)

(°C,.°F))

—1 | 1 1 | | 1 | 1 |

»°C
—100 —80 —60 —40 20 40 60 B0 100

—120

—160

Figure 2-1 Graphof °F = 2°C 1 32.
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(x, ) Ay

(x, ) Ay

(x, ¥}

by A » ¢  Figure2-4 Variation of slopc as a
Ax function of x,

for the values of x. Dividing both sides of the equation by a and rearranging the equa-
tion gives

b
e —x=—= (2-11)
a .
Next, adding b*44* to both sides of the equation to complete the square gives
b b? b ¢

2
X — _ = - — = 2-
+ax+4a2 4a> a 2-12)

'+ b\2 B2 —dac
x =
2a 4492

Taking the square root of both sides of the equation gives

or

b\ VT4
XA )= e 2-13)
2a 2a
or
—b 4 /b? —4ac
= (2-14)

which is the well-known quadratic formula.
Sometimes the zeros of the equation, called the roots, can be determined by the
factoring method. For example, consider the equation

~3+2=0 (2-15)

Section 2-2 Graphical Representation of Functions 17

which can be factored into the terms
(x—Dx—-2)=0 (2-16)
The roots of the equation now can be found by solving the equations
(x—1)=0 and (x-~2)=0 2-17)

whlch gives x = 1 and x = 2, Substituting a = 1, b = —3, and ¢ =2 into the quadratic
formula, Equation (2-14), vields the same results.

In cases where the equation defining a particular physical situation is a second-
degree equation (or even one of higher order), there arises a problem that is not present
when one simply considers the pure mathematics, as we have done above. Since qua-
dratic equations necessarily have two roots, we must decide, in cases where both roots

- are not the same, which root correctly represents the physical sitvation, even though

both are mathematically correct. For example, consider the equilibrium equation
A+B=C+D

Assume that initially the concentrations of A, B, C, and D are each 1 molar. Suppose
we wish to determine the equilibrium concentrations of A, B, C, and D given that the
equilibrium constant in terms of molar concentrations, K, equals 50. If we assume
that at equilibrium the concentration of C'is (1 + x) molar, then the equilibrium con-
centrations of A, B, and D must be (1 — x), (1 — x), and (1 + x) molar; respectively.
Substituting these values into the equilibrium constant equation

_ oW
)
we have
_ (1+x)(1+x) i
50 = —~————(1 ey (2-18)

Rearranging Equation (2-18) gives the quadratic equation
49x? — 102x + 49 =10 C(2-19)

Substituting the values a = 49, # = —102, and ¢ = 49 into Equation (2-14) yields the
two solutions x = 1.3 and x = 0.75.

We now must decide which value of x is physically correct. If we choose x =
1.3, the equilibrium concentrations of A and B wili be negative numbers, which phys-
ically does not make sense. Thus, the physically correct value for x must be .75, giv-
ing for the equilibrium concentrations of A, B, C, and I»: 0.25M, 0.25M, 1.75M, and
1.75M, respectively. We see, then, that although both roots were mathematically cor-
rect, only one root made sense physically.
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Exponential and Logarithmic Functions. Exponential functions are
functions whose defining equation is written in the general form

fxy=a (2-20)

where a > 0. An important exponential function that is used extensively in physical
chemistry, and indeed in the physical sciences as a whole, is the function

fxy=¢ (2-21)

where the constant e is a nonterminating, nonrepeating decimal having the value, to
five significant figures,
emﬁm(1+x)1/*—1+i+l+l+- .
i S TR TR T
= 27183

This function is illustrated in Fig. 2-5. Note that all exponentials have the point (0,1)
in common, since a® = 1 for any a. Also note that there are no zeros to the function,
since the function approaches zero as x approaches —oo. The expression lim,
means that (1 + x)'* approaches a value of 2.7183 as x approaches 0, and is read “in
the limit that x approaches zero.” The physical significance of the constant e will be
discussed in Chapter 3.

There is a direct relationship between exponential functions and logarithmic
functions. The power or exponent to which the constant a is raised in the equation
v = a'is called the logarithm of y to the base a and is written

log,y=x (2-22)

The logarithmic function log, y = x is illustrated in Fig. 2-6. Note, as in the case of
exponential functions, that the point (0,1) is common to all logarithmic functions,
since log, 1 = 0 for any a. Logarithms have many useful properties and are an im-
portant tool in the study of physical chemistry. For this reason the general properties
of logarithms are reviewed in Chapter 3.
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Figure 2-5 Graph of y = &*.
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Figure 2-6 Graph of log, y = x.

Circular Functions. A circle is defined as the locus of all points in a plane
that are at a constant distance from a fixed point. Circles are described by the equation

(—aP+ (y— b =P 2-23)

where ¢ and b are the coordinates of the center of the circle (the fixed point) and 7 is
the radius. A unit circle is one with its center at the origin and a radius equal to unity.

4y = 2-24)

Consider, now, the triangle inscribed in the unit circle shown in Fig. 2-7. Let us
define three functions: sine (abbreviated sin), which takes the angle @ into the y-
coordinate of a point (x, ¥), cosine (abbreviated cos), which takes the angle ¢ into the
x-coordinate of the point (x, ), and tangent (abbreviated tan}, which is the ratio of ¥

et

Figure 2-7  Graph of the unit circle
x4+ yl =1.
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il TABLE 2-1 DEPENDENCE OF r ON @ FOR THE FUNCTION r= Acos ¢ .
il 8 g g A y
! i i {degrees) r (degrees) r (degrees) r 1\
i 0 1.0004 135 —07074 270 0
30 0.8664 150 —0,8664 300 0.5004
45 0.7074 180 —1.0004 315 0.707A
60 0.5004 210 ~0.8664 330 0.866A4 /_\ r
90 0 225 —0.707A 360 1.0004 | >4 [ .1
120 —0.5004 240 —0.5004 B X se | 27
2 2
to x. Thus,
sinf? =y
cosf =x (2-25)
sin @ b
tand = Y _ (a} {b)
cosd
Figure 2.8 Graphs of » = A cos 6 plotted in (a) linear coordinates and (b) polar coordi-
These functions are called circular or trigonometric functions. Note that Equa- nates.
tions (2-25) are just the transformation Equations (1-4) with » = 1. It is interesting to ) ) ) )
compare the graphs of functions, such as sin € and cos 8, in linear coordinates (coor- If_ we plot this function from X = —3tox =43, we obta‘m the graph ShOWf} In
dinates in which @ is plotted along one axis) to those in plane polar coordinates. Con- ' Fig. 2-9. The roots to the equation are the ‘_’31“33 of x for W'hldf y=0,orthe points
sider, for example, the equation r = A cos 8, where A is a constant. Such an equation on graph where the graph crosses the x-axis. Careful examination of the graph will
can be used to describe the wave properties of p-type atomic orbitals in two dimen- show that the roots are x = _2-09’ x = —0.74, x = +047, and x = +1.36. In
sions, The functional dependence of r upon @ can be seén in Table 2-1.
When » versus 6 is plotted in linear coordinates [shown in Fig. 2-8(a)], the typ- y
ical cosine curve results, On the other hand, when r versus @ is plotted in polar coor-
dinates [shown in Fig. 2-8(b)], the more familiar shape of the p-orbital can be seen.! 6r
It is important to note that both graphs are equivalent, the shapes of the curves de- _
pending merely on the choice of coordinate system.
41
2-3 ROOTS TO POLYNOMIAL EQUATIONS I
2 -

We saw in the previous sections that the zeros of the function (the roots) can be found

easily if the equations are first- or second-degree equations. But how do we find the

roots to equations that are not linear or quadratic? Before the age of computers this ¢ g
was not a simple task. One standard way to find the roots of a polynomial equation -3
without using a computer is to graph the function. For example, consider the equation

L y=x*+x—-32—x+1

‘ f 'In polar coordinates, negative values of r have no meaning, so we are actually plotting Irl = A cos 6. Fig.29 Graphofy=x*+ — 3% —x+ 1.
|
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:: Chapter 11 we shall discuss numerical methods of finding roots to polynomial equa- 7. :Ra.dioac'tivc decay is .aﬁrst—order process in which the concentration of the radioactive ma-
| tions using a computer. terial C is refated to time ¢ by the equation
: ] C= Cge_k‘
IR
il SUGGESTED READINGS where C, and k are constants (e is the exponential), Given the following data, determine the
3 ‘ 1. BrabrEy, GERALD L., and Smrrn, Kare J., Calculus, Prentice-Hall, Inc., Upper Saddle values of Cy and k by plotting the data in such a way that a straight line results.
River, NJ, 1995. ] |10|20|30|40l50I60|70
. 2. SurLvirvan, MicHaeL, College Algebra, 4th ed., Prentice-Hall, Inc., Upper Saddle River, NJ, c , o I 67 I 6 ’ | I , |
‘ 1996. . K 6.5 5.8 5.0 4.4 38
it 3. VarBERG, DaLE, and PurceLr, Epwin J., Calculus, Tth ed., Prentice-Hall, Inc., Upper Sad- 8. Using the graphical method, determine the roots of the following equations:
it dle River, NJ, 1997, @ y=x+2—-2x-1
4. WasHminaToN, ALLYN ., Basic Technical Mathematics, 6th ed., Addison-Wesley Publishing ) y=x*—32+1
Co., Boston, 1995. @) y=x'+20 = 21112 — 2x 4 0.111
' () y=1x5—6x* + 922 — 4
PROBLEMS
! 1. Determine the zeros of the following functions:
(a) y=5x—35 H y=sinx
{(b) 3(y — 1) = —6bx (g) r=cost
(©) y=x2—2x—8 (hy pH = —log;, (H")
@) y=4x-3x -1 i 2+y'=4
il (€) y=x>—3.464x+ 3 B x-2P+0r+42=9
2. Plot the following functions in plane polar coordinates from 0 to 2 (remember that in polar
coordinates, negative values of r have no meaning):
{a) r=3 d)y r=3cos @
{b) r=06/36 () »=3sin 8 cos &
| {€) r=3sind - (f) r=3cos?0 -1
‘ 3. Plot the following functions in Cartesian coordinates:
\ (a) y=4 (&) y=—2x2+4x+4
i (b) y=4x-3 ® y=0©-H"
| (©) 5= 38 (@) = 4e*
1 (@ Y =sind (Oto2m) (h) ¢ =sinfcosd (0to2m)
4. Plot the following functions choosing suitable coordinate axes:
(ay Ex = %mv2 {constant ru)
I | (b) V = —e?/r (eisaconstant, not the exponential)
1;1 (€) F=¢2 / #2 (e is a constant, not the exponential)

(d) [A] = [A]y e ([A]; and k are constants; e is exponential}
(e) 1/[A] =kt +C (kand C constants)

0 k, =Ae ™7 (E, R, and A constants)
5. Plot the functions in Problem 4 choosing coordinates so that a straight line results.
6. Evaluate [f(x + A} — f(x))/h for the following:

@) f(x)=1/x (©) flxy=4x"—4

(b) fix) = 1/x? @) fx) =11 +x)




Logarithms

3-1 INTRODUCTION

In the previous chapter we defined a logarithm as the exponen? or power x to which
a number g is raised to give the number y, where a > 0. That is, if a* =y, thenlog, y =
x (read “log of y to the base ™). Since the equations .

a=y and log,y=x

are equivalent, we can use this fact to derive several useful properties of logarithms.

3-2 GENERAL PROPERTIES OF LOGARITHMS

PropucTRuLE.  The logarithm of the product of two numbers m and n is equal
to the sum of the logarithms of m and n.

log, mn =log, m + log, n (3-11?
Proof Letm = a* and n = &. Then, x = log, m and y = log, n. Now
mn=a*a =a**+y (3-2)
Taking the logarithm to the base a of Equation (3-2),

log, mn = log, a* " =x +y =log, m + log, n

24
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Quotient RuLe.  The logarithm of the quotient of the two numbers m and n is
equal to the difference of the logarithms of m and n.

log, (%) =log, m —log, n 3-3)

Proof. Let m = a* and n = . Then, x = log, m and y = log, n. Now

m a* _
T=5 = a%=y (3-4)

log, (%) = log, a¥ M =x - y=log,m—log, n

Power RuLe.  The logarithm of m raised to the power n is equal to n multi-
plied by the logarithm of m. :

log, (m)y" =nlog, m (3-5)
Proof. Let m = a*. Then, x = log, m. Now
mt = (@) = g™ (3-6)
Taking the logarithm to the base a of Equation (3-6) gives

log, (m)* =log, a™ =nx=nlog, m

3-3 COMMON LOGARITHMS

In the previous examples we did not specify any particular value for the base a: that
is, the above rules hold for any value of @. In numerical calculations, however, we
find that it is convenient to use logarithms to the base 10, since they are directly re-
lated to our decimal system of expressing numbers and also are linked to what nor-
mally we refer to as scientific notation, in which we express numbers in terms of pow-
ers of 10 (e.g., 6.022 x 10%). Such logarithms are called common logarithms, and are
written simply as log y. The relationship between exponents of the number 10 and
common logarithms can be seen in Table 3-1.

TABLE 3-1 RELATIONSHIP BETWEEN y = 10 AND log,, y = X

10°=1 logl=0 1003010 — 3 log 2 = 0.3010
10' =10 log 10 =1 1004771 = 3 log 3 = 0.,4771
102 = 100 log 100 = 2 10°9%42 — g log 9 = 0.9542
10° = 1000 log 1000 = 3 1013010 — 20 log 20 = 1.3010
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In general, a logarithm is composed of two parts: a mantissa, a positive num-
ber that determines the exact value of the number from 1 to 9.999 . . . , and a charac-
teristic (multiplier) that can be positive or negative and determines where the decimal
point is placed in the number. It is equivalent to expressing all numbers in scientific
notation, for example, 12200 as 1.22 x 10*. The number 1.22 is equivalent to the
mantissa of the logarithm, and 10%, which tells us where the decimal point is placed,
is equivalent to the characteristic of the logarithm. In fact, if we determine the
logarithm of 12200, we see that it is equal to the logarithm of 1.22 plus the loga-
rithm of 104

log (12200) = log (1.22) -+ log (107) = 0.0864 + 4 = 4.0864

Here, 0.0864 is the mantissa and 4 is the characteristic. It is important to note that the
number of significant figures in a number is related to the mantissa of the logarithm
and not the characteristic. The number 12200 has three significant figures, and it is
the mantissa that reflects that fact. The characteristic 4 in the logarithm tells us only
where the decimal point is placed.

A negative characteristic designates a number lying in arange 0 < N < 1. To
emphasize the fact that this logarithm is made up of a negative characteristic and a
positive mantissa (mantissas are never negative), the minus sign is placed above the
characteristic. Thus, log 0.020 = log (2.0 x 107%) is expressed as 2.3010. Such alog-
arithm is called a heterogeneous logarithm. It is possible to combine the negative
characteristic with the positive mantissa to form a homogeneous logarithm. Calcula-
tors and computers automatically do this. When this is done, the negative sign is
placed in front of the logarithm, 2.3010 = —1.6990. The importance of the homo-
geneous logarithm to physical chemistry must be emphasized. All logarithmic data
and certain physical quantitics, such as pH, are expressed in homogencous form.
Likewise, all graphical axes involving logarithms are expressed in homogeneous
form, since logarithms expressed in heterogeneous form could never be scaled con-
veniently on a graphical axis.

Before the age of hand calculators, common logarithms were used quite exten-
sively to do many types of calculations which today would seem rather trivial, such
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3-4 NATURAL LOGARITHMS

Ip Chapter 2 we introduced a function f(x) = ¢* as being an exponential function par-
ticularly important to the study of physical chemistry. Logarithms taken to the base ¢
are kfnown as natural logarithms and are designated In y = x. Before going into the
physical significance of the natural logarithm, it might be useful to consider the rela-
tionship between natural and common logarithms. Consider the equation

y=¢ -7
Taking the logarithm to the base 10 of Equation (3-7) gives
logy=loge&f=xloge (3-8)
However, x = In y. Substituting this into'E_quation (3-8) gives
logy=Inyloge=1Inylog (2.718)
But log (2.718) = 0.4343. Therefore,

logy=043431Iny

or Iny=23031ogy : 39

The physical significance of the natural loganthm can best be explained with
the following example. The fractional change in any variable x of a system can be
written Ax/x, where Ax represents some finite change in x. Consider a variable of a
system y that changes to a new value y 4+ Ay. The fractional change in the variable is

Ayly. If the change in the variable is small, then the change in the natural logarithm
of the variable is

Alny=In(y+ Ay) —Iny

+ A
y y

] as determining the roots of a number. (Find the square root or the fifth root of 4,669 ‘
‘ without the use of a calculator!) In fact, determining the logarithm of a number itself Dividing both sides of the equation by Ay gives

I‘I required wading through tables of numbers. But the calculator has changed all that,

I and today we easily can determine the common log of any number by simply press; Alny — _1_ n (1 + AX )
ing a key on the calculator. We find, however, that while today it may not be neces- Ay Ay ¥
sary to use logarithms to multiply numbers together or to find the roots of numbers, Ay 1/ay
they are still important, since a number of important chemical concepts, such as pH = (1 + —)

‘1:‘| and optical absorbance, are defined in terms of the common or base-10 log. Soitis Y

important for students of physical chemistry to become fam111ar with the log key {and ] 2 n (1 + _/—\_}i ) Y8y

the inverse or antilog key) on their calculators. : ' Sy ¥
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Remember from Chapter 2, however, that the exponential e is defined as

lim,_g(1 + x)'/*. If we let x = Ay /y, we see that

y/ Ay
lim (1 + ﬂ) =lim(l +x)* =e
Ay—0 ¥ x—0}

(3-10)
1 1
Alny _ =1
Ay ¥ y
since In e = 1. Rearranging Equation (3-10) gives
&y =Alny (3-11)
y

In general, then, we can state that in the limit that the change in any variable x is: van-
ishingly small, the fractional change in the variable Ax/x is equal to the change in the
natural logarithm of the variable.

lim (ﬁ) =Aln x (3-12)
Ax—=0 X

Equation (3-12) can be used to show another very important property of nat-
ural logarithms. When the change in any variable is very small and the rate of change
of the natural logarithm of the variable x is constant, then the rate of change of th_e
variable itself is directly proportional to the variable itself. This type of change is
called an exponential increase or decrease and is typical of what pormaliy are cglled
first-order rate processes. The rate of change of the natural logarfthm of the variable
can be expressed as A In x /At, where ¢ is time. Thus, we can write

Alnx
At

Substituting for Equation (3-12), we have

. Ax
lim — =k
ax—0 x At
X
lim — =kx
Ax—0 At
where Ax/At represents the rate of change of the variable. p
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PROBLEMS

1. The apparent pH of an aqueous solution is defined by the equation pH = —log,, (H*). Find
the apparent pH of the following solutions:
(@ (H*Y)=1.00x 10-'M (d) (H") = 1.416M
(b) (HDY = 0.111M (e} (H) =544 x 10 M
(©) (HH=19433 x 10°M ) (HYH=12.0M
2. Given the following values for the apparent pH, find (H*) in the following solutions:

(a) pH = 0 (d) pH = 7.555
(b) pH = 2.447 (¢) pH= —0.772
(¢) pH = 5.893 () pH=12.115

3. Find the pH of a sclution of HCI in which the HCI concentration is 1.00 x 10-%M.

4. The work done in the isothermal, reversible expansion or compression of an ideal gas from
volume V; to volume V, is given by the equation

Va

= —nRTIn=

w nRT In v,
where r is the number of moles of the gas, R is the gas constant = 8.314 J/mol - K,and T
is the absolute temperature. Find the work done in the isothermal, reversible expansion of
1.00 mole of an ideal gas at 300K from a volume of 3.00 liters to a volume of 10.00 liters.

5. The entropy change associated with the expansjon or compression of an ideal gas is given
by the equation

T v
AS:nCuln}:?- +nR1n?2-

where # is the number of moles of the gas, C, is the molar heat capacity at constant volume,
Tis the absolute temperature, and V is the volume. Find the change in entropy attending the
expansion of 1,00 mole of an ideal gas from 1.00 liter to 5.00 liters, if the temperature drops
from 300K o 284K. Take C, = %R and R = 8.314 J/mol - K.

6. Itis well known that the change in entropy for an adiabatic reversible expansion of an ideal

gas is equal to zero, Using the equation given in Problem 5, find the final temperature when
an ideal gas at 300K expands adiabatically from 1.00 liter to 5.00 liters. Take C, == %R and
R = 8.314 J/mol - K.

7. Radioactive decay is a first-order kinetics process which follows the integrated rate equation

4 _ 4

In—— =
(Ao

where (A} is the concentration of A at time ¢, (A), is the concentration of A at t = 0 (the ini-
tial concentration of A), and % is a constant, called the rate constant. The fraction of ¥C
found in a sample of wood ash from an archeological dig was found to be 9,664, How old
is the wood ash, given that k = 1.24 x 107* yr- for the isotope 1*C.



Differential
Calculus

4-1 INTRODUCTION

Physical chemistry is concerned to a great extent with the effect that a change in one
variable of a system will have on the other variables of the system. For example, how
will a change in the pressure or temperature of a system affect its volume or energy?
Differential calculus is the mathematics of incremental changes. It is based primarily
on the mathematical concept known as the derivative. The derivative of a variable y
with respect to a variable x, where y must be a function of x, is defined as

d A
Y im 22

= — 4-1
dx  Ax-0 Ax @D

where Ay and Ax denote changes in the variables y and x, respectively. Thus, the de-
rivative of y with respect to x is simply the change in f(x) with respect to the change
in x, when the change in x becomes vanishingly small. If y is not a function of x, then
the derivative does not exist (i.e., is equal to zero).

It is important to emphasize that, while mathematically it might be a more or
less straightforward procedure to take the derivative of a function once the equation
describing the functional dependence is known, it is the job of the scientist to deter-«
mine how one variable of a system depends on other variables and to find the equa-
tion refating them, Some scientists are exceptionally good at doing this and win Nobel
prizes, and the rest of us keep on trying. This is why it is so important, not only to un-
derstand the mathematics, but also to learn and understand the science. For example,
students insist on describing the isothermal (constant temperature)} expansion of a gas
held by piston-cylinder arrangement (see Fig. 4-3) against a constant external pres-
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sure as an isobaric (constant pressure) process. If a gas, ideal or otherwise, expands
at constant temperature, its pressure has to change (Boyle’s law for an ideal gas!).
There is no functional dependence between the external pressure on the gas (part of
the surroundings) and the volume of the gas (part of the system). No derivative ex-
ists. Only in the very special case of the reversible expansion or compression of a gas,
which we will discuss in a subsequent section, can they be related, and then only in-
directly.

The derivative of a function may be taken more than once, giving rise to second,
third, and higher derivatives, denoted d 2y/dx?, d*y/dx?, and so on, respectively. Note
that the second derivative, for exarnple, is the first derivative of the first derivative,

d(d)_dy
dx \dx] ~ dx?

the third derivative is the first derivative of the second derivative,

d {dy dy
dx \dx2 ] dx3
and so on. The process of taking derivatives of functions is called differentiation.
There are many uses for differential calculus in physical chemistry; however,
before going into these, let us first review the mechanics of differentiation. The func-
tional dependence of the variables of a system may appear in many different forms:;
as first- or second-degree equations, as trigonometric functions, as logarithms or ex-
ponential functions. For this reason, consider the derivatives of these types of func-
tions that are used extensively in physical chemistry. Also included in the list below

are rules for differentiating sums, products, and quotients. In some cases, examples
are given in order to illustrate the application to physicochemical equations.

4-2 FUNCTIONS OF SINGLE VARIABLES
d
1. a(c) =40, where ¢ is any quantity not dependent on x,

d
2. —(ex) =c¢, where ¢ is any quantity not dependent on x.

dx
Examples:
dpP P
P=kT; —=k=—=
® ar T

d
(b) y=mx+b; _y=m
dx

3. Eu(x") =nx""!, where n is any real number.
X
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I !: Examples: . Examples;
| @ P= & — kvl dP _ — (—DAV 2= _k __F (a) & =Ae™, where A, i, and m are constants. The constant § = 4/—1.
IS vV dv V2 14 do -
(I 2P 2% 3~ imAL
— = (=DDAV = — )
dv? V3 a*e 2, d*d 2
I — =-—m?Ae™ or — =_—m?d
Il 4, dV d¢* . de?
(0 V= qgmr’ = =0 ( )J” =4mr’ (b) (A) = (A), e, where (A), and k are constants.
1 dE d(A)
(c) Ex= imvz, =k = (2) ( )mu = mv 7 —k(Aje”
—AH 8 d (] )= L
(d) nP = RT + ¢, where AH, R, and ¢ are constants. ) nx x
it df dg
ik d(inP) _ AH 9. — [f(g( x)] = -
(i dT R1? Examples.
ol dr 1 (a) ® =3cos?6 — 1.
et (©) () dA 2 (A) Letu:cosﬂ;d—uz—siné‘.
[ (i dé
It d .
il 4, d—(sinax) = acosax, wherea isa constant. & =3u2—1, @ = 61
! x du
' _ dd _dd d
Examples: m-rx 4y o i 0 ﬁ = —businf = —6¢cos 6 sind
(@ y=Asin—; — =A4 (—) i : ]
a dx a a 2172
(b)Y y = A sin (2rvf), where 7 and v are constants. _ b y= [ 52 =({1-x%
d . du _
d_)t) = AQmv) cos(2mvt) Letu= (1 —x?; I = 2xandy=ul?
d . dy 1 ap dy _dy du
S, T (cos ax) = —asinax, where ais a constant. du ‘“5“ ‘dx  du dx
. 1 24—3/2 x
Examples: = —5(1 — x9NV H(2x) = m
dyr nm nwx  d*y nirn?\ | nmx
(a) i A — cOs —— - : JZ =" A = sin — (©) n=ny e #¥ where n,, E, and k are constants.
. . J
! dy . Letu = EAT, S = - £
(b} ¥y = A cos (2mvi); ; = — A2 v)sin 2avt) dar kT
i d
ii‘ 6. E(tanx):seczx n=nge"; g—z=—no e
I ill i d ) dn  dn du E E
Al 7. — (*) = ae®*, where a is a constant. = . = —pge AT | e EAT
‘ 2x &)= et wherea dT ~ du dr ¢ (kT2) (kTZ) ¢
|
1Ak
| ‘
| ‘ ‘i‘l(\
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(D y= Ae““‘z, where A and ¢ are constants.

d
Letu = x% g

dx

dy -
— A —au; = A an
y e I ade
:—% = % . j—j = —aAe™™ (2x) = —2ax Ae™®"
d df dg
T (fO +g00) = 2=+ -
Example: n P = —% +b6InT +¢, where g, b, and ¢ are constants.

dlnP_ a b

ar  T? T
d . dg df
Ix (flx)-g) = f(x)a T8

Examples:
(a) y =sinxe™, where m is a constant.
Letf(x) =sinx and g(x)=¢e™.

d .
% = cosx and »C-i»% =me™*
d—y = msinxe™ + cos xe™
dx
dy
by F=—n2nrlL o where %, 7, and L are constants.
¥
dy
Letf(r)=—n2nrL and g(r)= e
daf dg d%y
@ = nmLload oo =12
dy dy dy
== L _poplZE
dr 7 2”rLdr2 TR

©) E= szc% (Ing), where kis a constant.

Let f(T) =&T? and g(T):(—id?(lnq).
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df dg  d°
a1 = 2kT  and T = I7 (Ing)
dE d? d
— =kT?2—=( 2T —(1
T 173 (Ing) + dT( ng)

@) Yx) =e " 2y(x)
2 d d2

Let u = _rL e Y _ —1. Therefore, y(x) = e*y(x).

2 dx A
dyr L4y Ldi
dx ¢ dx ve dx
dy dYy ii_y_eud_u+ JA2u. du ,du Jdue dy
dx? dx?  dx dx
2 42 d
&y _ g 228y _xe—xZ/ZEX

PR T Ca i G | G

— ye V1 4 gyl —.xe"fz/z—d—y

dx? dx? dx
—epdy o opdy +xlye PP _ ygsh
dx?
b 4 (f(x) ) _ s g - fwg
dx \ 50 ()
Example: y = tanx = i
cosx
Letf(x) =sinx and g(x) = cosx.
d
—j—i—v =cosx and ﬁ = —sinx
'd_y _ cosx(cosx)+ (sinx)(sinx) 1 sec?
dx cos? x " cos?x

4-3 FUNCTIONS OF SEVERAL VARIABLES—PARTIAL
DERIVATIVES

In all the cases given above, the functions that were differentiated contained only one
independent variable. Most physicochemical systems, however, normally contain
more than one independent variable. For example, the pressure of an ideal gas is
simultaneously a function of the temperature of the gas and the volume of the gas.
This can be expressed in the form of an equation of state for the gas

RT

P=fT. V)= (4-2)
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where R is a constant. Since both variables can change, let us consider two ways to
treat this sitoation. In this section we shall consider the case where only one of the in-
dependent variables changes while the other remains constant. The derivative of P
with respect to only one of the variables T or V while the other remains constant is
called a partial derivative and is designated by the symbol 8. The partial derivative
of P with respect to V at constant T can be defined as

8V)T = Ao AV

(4-3)

and the partial derivative of P with respect to T at constant V can be defined as

3P) . AT+ AT, VY- f(T, V)
aT ), AT 0 AT

@4

The small subscripts T and Vin the expressions { )yand ( )y indicate which variables
are to be held constant.

The rules for partial differentiation are the same as those for ordinary differen-
tiation (found in Section 4-2), with the addition that the variables held constant are
treated the same as the other constants in the equation. Hence, at constant T

RT oP —RT
P=—;: e = — 4-5
1% (BV)T V2 “-5)
and at constant V
RT aP R
14 arJy vV

Functions of two or mote variables can be differentiated partially more than
once with respect to either variable while holding the other constant to yield second
and higher derivatives. For example,

a {aP ?P

(ﬁ (ﬁ)) - (_3T2)V @
5 (9P 2P

(a_v (a_f)) = (W) )

Equation (4-8) is called a mixed partial second derivative. If a function of two or more
vatiables and its derivatives are singlevalued and continuous, a property normally at-
tributed to physical variables, then the mixed partial second derivatives are equal.

That is,
3 {oP 3 [oP
(W (ﬁ)V)T - (ﬁ (W)T)V @9)

and
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P _ 9P
avaT | \aTav (4-10)

To illustrate that partial differentiation is, in fact, no more complicated than or-
dinary differentiation, consider the following examples.

(E) 1 fady _-m
"\om /, V' \av ), V2

v v
b) Ve=rnrih; { —) =2rrh; || ="
(b) 43 (Br)h nrh; (% )r wr

OE as
o (3),=7 (),

Take the second derivative of E with respect to V at constant T.

(5 5),) (5 (2),) ()

JE a8
(d) (W)T =T (W)T — P, where P = f(T, V).

or

Examples

(a) d =

<|3

Take the derivative of E with respect to 7" at constant V.
Since both T and (35/9V) are functions of T, the first term in the ex-
pression must be differentiated as a product.

(77 Ge),) (7 G2),). < (), GR)- (B9,

Since (9T/3T) = 1, we can write
E 38 as ap
=T +[(=) - [=
aTav arav AU aT J v

4-4 THE TOTAL DIFFERENTIAL

We now consider the second case in which independent variables of a system may be
varied, and the effect of this on the dependent variable. In the previous section we
allowed only one variable to change at a time. In this section we shall consider the
effect of allowing all variables to change simultaneously. Consider, again, the exam-
ple P = f(T, V). Let AP represent the change in pressure brought about by a simul-
taneous change in temperature and volume.
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AP=f(T+ AT, V+ AV) - f(I, V) {4-11)
Adding and subtracting (T, V -+ AV) to Equation (4-11) yields

AP =f(T + AT,V + AV)— f(T,V + AV)
+ f(T,V+AV)— f(T,V)

Multiplying the first two terms in Equation (4-12) by AT/AT and the second two
terms by AV/IAV gives

AP=[f(T+AT,V+/_\V)—f(T,V+AV)]AT

(4-12)

AT (4-13)
+ f(T,V+Av)—f(T,V)]AV
AV
Taking the limit as AT and AV go to zero gives
T+ AT, VY- f{,V
lim AP = limo[f( * AT)‘ A )]AT
AP—0 AT— ) (4_14)
T, V+AV)— f(T,V
- i [f( + AV) = f{( :]AV
AV >0 AV

The terms in the brackets are just the partial derivatives (3P/8T }y and (9P/dV)r . Re-
placing AP, AT, and AV with dP, dT, and dV to indicate vanishingly small changes,
we can write

P
dpP = i‘i) dT+(?—») dv (4-15)
\aT /), av /),

where the expression dP represents the total differential of P. The terms (8P/3T), dT
and (3P/8V)y dV are called partial differentials. The combination of the partial dif-
ferentials yields the iotal differential of the function. In general, then, if a variable u =
£ (xy, X, X3, . . ), where Xy, X3, X3, . . . are independent vau'ia_bles,1 then

9
du = (E"i) iy + (3—”) dxs + (wi) dxs + - (4-16)
ax X203, 32/ 5,z X3 X)X,

To illustrate the physical significance of Equation (4-16), consider the folllow- ®
ing example. The volume of a cylinder is a function of both the radius of the cylinder
r and the height of the cylinder / and is given by the equation

V=F(r, b)=nrh (4-17)

'We find that Equation (4-16) will still hold even if all the variables are not independent.
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Any change in either r or 2 will result in a change in V. The total differential of V,

then, is
av av
dV=— | d —_— 4.1
(ar)h r+(ah)rdh ( 8)

Let us examine what each term in the expression means physically. For each incre-
mental change in r, dr, orin k, dh, the volume changes. However, the manner in which
the volume changes with 7 is different from the manner in which it changes with A.
We see this by differentiating Equation (4-17) partially.

%) =2nrh and g-vu) = 7r?
ar ), oh /.

dV = 2arh dr + nr? dh 4-19)

Hence,

We see, then, that there are at least two ways to consider the volume of the
cylinder and changes in that volume. The quantity 27k dr is the volume of a hollow
cylinder of thickness dr, shown in Fig. 4-1. The total volume of the cylinder can be
thought of as summing together concentric cylinders of volume 2wrk dr until the ra-
dius r is reached. Hence, any change in the radius of the cylinder will affect the vol-
ume by adding or subtracting concentric cylinders.

On the other hand, the quantity 7+ dh represents the volume of a thin plate of
thickness dh, shown in Fig. 4-1. Thus, the total volume of the cylinder also can be
thought of as summing together these plates until the height 4 is reached. Any change
in the height will affect the volume by adding or subtracting plates. The sum of these
two effects results in the total change in the volume of the cylinder,

Figure 4-1  Partial differentials of a cylinder,
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R 4-5 DERIVATIVE AS A RATIO OF INFINITESIMALLY SMALL A N
I !“ CHANGES

A Il In Section 4-1 we defined the derivative of y = f (x) with respect to x as a ratio of the
' ‘ | change in y to the change in x as the change in x becomes vanishingly smalil. We might
ask at this point why such small changes are so important to the study of physical
iill chemistry. What is the physical significance of the derivative?
R To help answer these questions, consider the following example. The internal
“ energy of a system is known to be a function of the temperature of the system, that
| ‘ is, E = f(1). We saw in Chapter 2 that when we graph variables, such as E versus T,
i the relationship between changes in the two variables at some point (F, T) on the
‘ l curve is given by the slope of a line drawn tangent to the curve at that point. This re-
' lationship on an E versus T curve is called the heat capacity of the system and is de-
noted by the symbol cy. The subscript V is necessary, because we find that E also is a
el il function of the volume V, and for this discussion we are considering V to be a con-
stant. Thus, the heat capacity at constant volume cy is the slope of the tangent line
drawn to the E versus T curve at the point (E, T).
N Consider, now, some finite change in energy AE = E, — E, with respect to a
1 | finite change in temperature AT = T, — T, A little experience will show us that
il the change in energy with respect to the change in temperature will represent the
‘ ‘ slope of the curve only when the relationship between £ and T is linear, as shown in

Fig. 4-2(a). Under these circumstances, it is necessary that ¢, be constant with tem-
perature. We find experimentally, however, that ¢y is rarely constant with tempera-
lil ture, and, therefore, AE/AT is a poor approximation-to the slope of curve when E T
-313 1 does not vary linearly with temperature, s shown in Fig. 4-2(b). Note that the ratio ©
! AE/AT, given by the line ab, is quite different from the tangent to the curve at the
L ‘ | point a, designated as the slope. We see, though, that as we allow AT to become

| : hat ; Al Figure 4-2 Internal energy as a function of t
smaller and smaller, the ratio AE/AT, givenby lines aby, aby,and abs,approaches y oo

‘ I‘ the slope of the curve at point 4, illustrated in Fig. 4-2(c). In fact, in the limit that AT
i goes to zero, the ratio AE/AT exactly equals the slope of the curve at the point a. But
this is just the definition of the derivative. That is,

itesimall).f larger than the opposing force. if we do not define the process this way, the
1nteltmed1atcl states will not be equilibrium states and the process will not be re-
versible. To.lllustrate this, consider the following example. Suppose we had a cylin-
‘ 1. AE dE 1 . der fitted w11th a frictionless piston holding one mole of an ideal gas at some initial
i | Jlim AT AT slope of the curve Ei'essutre, wl) ume, and temperature, P, V|, and T, as shown in Fig, 4-3, Suppose that
i o . e external pressure and the gas pressure are both initially at 1 atmosphere. Next, the
il ‘ Thus, we see that one useful properFy of the derivative is that it represents [.he slope piston is pinned in place and the external pressure is now dropped to 0.5 atmospheres
of the curve (actually, the slope of a line drawn tangent to the curve) at any point along, When the pin is removed, the gas will expand suddenly, pushing the piston out to z;
| the curve. ‘ - new volume V, until the gas pressure drops to 0.5 atmospheres. In doing so, the gas
i Another example of the importance in physical chemistry of infinitesimally will do a certain amount of work, w = —P,, AV= —0.5 AV, on the surrounds
small changes is found in the concept of reversibility. Aveversible process is one that, If we assume that the cylinder is isolated from the surroundin,gs so that no healtnegxf .

after taking place, can be reversed, exactly restoring the system to the state it was in
before the process took place. To be reversible, the process must take place along a
path of which all intermediate states are equilibrium states. Such a process must be
defined as one in which the driving force at each step along the process is only infin-

ergy can be transferred to the gas from the surroundings, then, according to the First
Law of Thermodynamics, the temperature of the gas must drop to some new value

52 in order to account for the work done by the gas. The gas is now in a new state P,
2 and Tz. ‘
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Figure 4-3° System consisting of a gas
in a cylinder closed by a weightless
piston,

If the above process were reversible, then we should be able to compress the
gas from V, back to Vy, exactly restoring the system to the state that it was in before
the expansion took place. The problem here is that in order to compress the gas to the
volume V,, where the gas pressure was 1 atmosphere, we must use an external pres-
sure of at least 1 atmosphere. And since PV work depends on the external pressure, it
will take twice the work on the gas to compress it to volume V) than the work pro-
duced by the gas when it expanded. This energy must go somewhere, and in this case
it goes into raising the temperature of the gas. The final temperature of the gas when
it reaches the volume V, will be higher than it was before the original expansion took
place. The system is not restored 1o its original state and the process is not reversible.

Let us now repeat the above expansion, but this time let us assume that the ex-
ternal pressure on the gas at every point in the expansion is only infinitesimally
smaller than the gas pressure. That is,

Pext:Pgas—dP

For all practical purposes, we can consider that throughout the expansion the exter-
nal pressure equals the gas pressure, As the gas expands from volume V), to volume
V,, the gas pressure will drop from 1 atmosphere to 0.5 atmospheres, as it did in the
above example. The external pressure, however, also will do the same at every point
in the expansion. Moreover, since the external pressure and the gas pressure differ by
only an infinitesimal amount, the expansion should take an infinite amount of time to
take place, allowing equilibrium to be established at each point in the expansion.
Again, assuming that the cylinder is isolated from the surroundings, the gas tempet-
ature will drop to some new value T, (which is not the same as the 75, above) to ac-
count for the work done by the gas on the surroundings as it expands. To reverse the
process, we now compress the gas to its original volume by making the external pres-
sure only infinitesimally larger than the gas pressure. That s, '

Pext=Pgas+dP

Because the external pressure at each point in the compression differs only infinites-
imally from the external pressure at that point in the expansion, the work done in com-
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pressing the gas is exactly equal, but opposite, to the work done by the gas in the
expansion, lUpon reaching the original volume V/,, the temperature of the gas will be
restored to 1t§ original temperature 7). The system is restored to its original state and
the process is truly reversible. Thus, by employing infinitesimally small changes

thoughout a process, each intermediat i
. , e step is allowed to reach equilibri
process is reversible, auiibrivm, and the

4-6 GEOMETRIC PROPERTIES OF DERIVATIVES

In the previous section we introduced the idea that in the limiting case the derivative
represent.s an instantaneous rate of change of two variables. Hence, for example. if
y =f{x) is plotted on a two-dimensional Cartesian coordinate syste’m then & I;de.; is
t?le slope of the curve at any point (x, y) on the curve. With the excepti(;n of thg func-
tion y(x)' = constant, functions either increase or decrease as the value of x increases
By looking at the derivative (or slope) evaluated at the point (x, v), we can determine;
whether the function £ (x) is increasing or decreasing as x increase; without having to
graph- the function. If dy/dx is positive, then £ (x) increases as x increases. If & /dfc i
negative, then f(x) decreases as x increases. e
Certai.n functions, such as parabolas (Fig. 4-4), or functions of higher order,
such as.cublc functions (Fig. 4-5), have either a maximum or a minimum value 1,°
both. Differential calculus can be used to help us determine the point or points alc,)l?
the curve where maxima or minima occur. Since the slope of the curve must be zeri

at these points, the first derivative also must b
at th nts, ; e zer0. For example, the
in Fig. 4-4 is described by the equation ’ parsbolashown

y=2-3x+4+72

Figure 4-4 Graph of the function
y=2x%—3x 4+ 2.
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—4 -

Figure 4-5 Graph of y =2x> — 6x + 2.
Taking the first derivative gives

@)‘:41'—3
dx

Setting the first derivative equal to zero and solving for x, we have
0 3
4x -3 = or x = 3

Substituting this value of x into the equation, we have y = 0.1'375, whi(‘:h gives the min-
imum point on the curve. To determine whether the curve is a maximum or a mini-
mum at this point without having actually to graph the curve, we can substitute value(s1
for x that are both greater or smaller than x = 0.75 into the equat'lon -for the curve an

note the behavior of y. A simpler way to test whether the functlon is a maximum or
a minimum is to look at the second derivative of the function evaluated at the point

of zero slope.

2 -
If Q <0, then the function is a maximum .
dx? ’
d*y . .-
If —= =0, then the function is a minimum
dx?
2 . . . .
if ay =0, then a point of inflection occurs. (A point of infiection is a
dx? change from a curve that exhibits a maximum to a curve that

exhibits a minimum, or vice versa.)
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Consider the cubic function shown in Fig. 4-5.
v=2x*—6x+2
Taking the first dertvative and setting it equal to zero yields

& 62— 6=0 or x2—1=0
dx

which indicates that there are two values of x for which the slope is equal to zero,

Solving this equation, we see that x = +1, —1. Taking the second derivative of the
cubic equation gives
dzy
—_— = 12)6
dx?

Forx = +1, d*v/dx® = 12, which indicates that the cutve is a minimum at this point.
Forx = —1, d*y/dx® = —12, which indicates that the curve is a maximuim at this point.
Note that a point of inflection occurs at x = 0

Examples

1. The total volume in milliliters of a glucose-water solution is given by the
equation

V= 1001.93 + 111.5282m + 0.64698m?

where m is the molality of the solution. The partial molar volume of glucose,

Vewcose, i8 the slope of a V versus m curve, (8V/8m). Find the partial molar
volume of glucose in a 0.100m solution of glucose in water,

Solution.  Taking the derivative of the V versus m curve gives

av
Vglucose == ]115282 -+ 12940?1’1
Im

Substituting the concentration m = 0,100 into this equation gives the partial
molar volume of glucose '

Vglucose = 111.6576 ml

2. The probability of a gas molecule having a speed ¢ lying in a range between
cand ¢ + dc is given by the Maxwell distribution law for molecular speeds:

m
2nkT

‘ 2o
P.dc=4xn ( ) eTMmEIART 2 e

where m, k, and T are constants. Find an expression for the most probable
speed.
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Solution. The most probable speed occurs at the point where the proba-

bility distribution function P, is a maximum. Thus, to determine the most
probable speed, we must maximize the function £, with respect to c.

i 2p2kT 2
=4 e " c
Fe=4n (anT)

Taking the derivative of P, with respect to ¢ and setting it equal to zero gives

32 2me
dP, m —mc? /T 2 ,~m /T ) -0
P (Z:frkT) [e eyt cte ( AT }

We can divide through the equation by dm(m/2mkT)*?e "< /%T (2c),
which leaves

1 cm_

2%T
, 24T T
-

. In the consecutive reaction A — B — C, the molar concentration of B fol-

lows the first-order rate law given by the equation

@9{2 [evk.: — e—k;:]

(B) = gy

where (A),, the initial concentration of A, and the specific rate constants, k,
and k,, are constants. Find the value of ¢ for which (B) is a maximum.

Solution. Taking the derivative of (B) with respect to ¢ and setting it equal
to zero gives

d(B) _ (A)ki

dr ky—k

[—k;e""” + kze_"z‘] =0

Dividing through by (A)k/(k, —

- —kyt
k2€ kot kle k

k), we have

Taking the natural logarithm of this equation gives
Inks — kot =Inky — kgt
Ink; —Inky = (kg — ki ¢
_ In(ka /K1)
" k-
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4-7 CONSTRAINED MAXIMA AND MINIMA

There are a number of problems in physical chemistry for which it is necessary to
maximize (or minimize) a function under specific restrictive conditions. For exam-
ple, suppose we wished to maximize some function f(x, y) subject to the restriction
that another function of x and y, ¢(x, y}, always equals zero. We can do this by a
method known as Lagrange s method of undetermined multipliers. In order to maxi-
mize f (x, y) by this method, consider the total differentials

daf = (a—f) dx + (ﬂ) dy (4-20)
ax ¥ ay .

dop = (B_d)) dx +(8¢) dy=0 (4-21)
ax-y ay/, 7

(Since ¢(x, y) = 0, d¢p = 0.) Equations (4-20) and {4-21) can now be combined by
solving Equation (4-21) for dy and substituting this back into Equation (4-20). Hence,

_ @),
HON

oo |32 3 (%)
- |22

Note that this procedure effectively removes the explicit y-dependence in Equa-
tion (4-23); hence, the function £ can now be treated as a function of the single vari-
able x. Thus, the function reaches a maximum at the point where df /dx = 0. This gives

(4-22)

and

(4-23)

or

= =} (4-24)
where A is a constant called an undetermined multiplier. Rearranging Equation (4-24),
we obtain two equations

a 9 :
—f—l—¢=0 and — —A—=0
ox dx dy dy
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or
D Foigy=0 and (f—rd)=0 (425)
ax dy

which, along with the equation ¢(x, y) = 0, allows us to determine the point of the
maximum and A.

We find from experience that the extension of Lagrange’s method to include
more than one restriction requires that there must be at least one more independent
variable than there are restrictions. Thus, for more than one restriction, we have

F(x,y,z,...) =f(x,y,z,...)_au(x’y,z,_._)
— B,y )=

where f(x, v, z, . . .) is the function to be maximized, u(x, y, z, . . .yand v(x, ¥, Z, . . .)
are the restrictions, and o and 8 are undetermined multipliers. The condition for con-
strained maximization or minimization of f(x, y,z, .. .) is

aF oF aF

-— =0, =0, —=0,... 4-27
ax oy dz ¢ )

(4-26)

Examples

1. Find the dimensions of a rectangular area for which the area is a maximum
and the circumference is a minimum.

Solution. The area of a rectangle is A = ab. The circumference of a rec-

tangle is C = 2(a + b). We wish to maximize A while we minimize C. Let

¢ = C — 2(a + b) = 0. Therefore, Fquation (4-26) for this problem is
Fla, bY=ab — A = ab — AC + 2A(a + b) '

and the condition for maximization of A is

aF aF
— =10 d —=0
da Y
Taking the partial derivatives gives

IF aC aF aC
0F 3% 10h=0 and S —a-A 2=
da ba and o =a—Agy T 0

But, since C is a minimum, 3C/da = 8C/db = 0. Therefore, we can write.
b+2v=0anda+2,=0
or
a=>h

The rectangular shape with the maximum area and the minimum circum-
ference is a square.
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2. A problem in statistical mechanics requires maximizing the. function

n
Fflnp,ny,ma, ..y =nlnn— Zn,-lnn,-

n;=0

subject to the conditions that

Zn;:n and Zn,-E,-zE
Solution, Let
u(ﬂl,ﬂz,m,n-):Zni ~n=0
and '
vin,na,ns, .. ) =Y mE—E=0
Thus,

F(ni,ny,n3,...)=nlnn— in,- Inn; —a(Zni —-n)

n;wO

—B (Zn;E; - E)

where ¢ and B are undetermined multipliers. The condition for constrained
maximization of nlnn — 3| _on; Inn,is

OF _ o OF o
any  B8mp T o B_W_O,Jzo,l,z,l'”

Taking the derivative of F with respect to each »; in the sum, and recalling
that »; In n; must be differentiated as a product and that 7 and £ are constants,

we have
aF 1
B_njz_nj — | —inn; —a—BE; =0

Inn=—-1—a— BE;
Taking the antilog of this equation gives
ny = e~ 1+ ePE,
But n =Y n;. Therefore, n = ¢ {17 3" ¢=#E; which gives Boltzmann’s
distribution equation

1 e PE;
n o Y e Pl
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The function rnlnn — Y, _on; Inn; will be @ maximum when {fy y=rsindcos¢; ywithrespecttog
) as 1 {aH ,
no o—PEn n o BE n oBE2 | 6:3) (ﬁ)p = T (ﬁ)‘u; § with respect to P at constant T
" Ze‘ﬁEf o Ze*‘ﬂEf’ " 2 (h) ﬁ _ Ly L V 1; 5 with respect to T at constant P
ap),~Tl\ar ) "] pe onsta
SUGGESTED READING Note that (3H/0P ) is also a function of T.
1. BrabpLEY, GeraLr L., and Smith, Kary J., Calculus, Prentice-Hall, Inc., Upper Saddle (i) D=sindcosfcos¢; D withrespecttod
River, NJ, 1995. . CiHAA -I-CZBHgB +2cacpHagn .
2. VARBERG, DALE, and PurceeL, Epwin J., Calculus, Tth ed., Prentice-Hall, Inc., Upper Sad- O E= T2 5 S ;  E with respect to ¢,
dle River, NI, 1997. €y +Cp H2cacpdan
k) ¢= Ze—&/ki’; g with respect to
PROBLEMS M q =Ze’E‘/"T; qwithrespecttoT
1. Differentiate the following functions (assuming the lowercase letters to be the variables 3. Determine the slope of each of the foilowing curves at the points indicated:
and all uppercase letters to be constants): (a) y=x%atx=3
(@) y=4x + 7x* — 10x + 6 (k) w=NIN—nnn M) y=x+4x* —3x+2atx=2
_ {€) y=dlndxatx=1
— _ y2 — L e
Bb) y=41—x o S—h”Ae (d y=xlxatx=35
© y=22—9— 14 () Ing =2+ elns © r=20cosfat0=n
B2 (., 27 () r=10sindcosfatf =~
(@) r=3tan26 m e=—{z"—=>z 2
: A 8 @ y=@?—5"ax=3
. . Nmx 1 s .
(e) v=x% (0} ¢ =2Asin - (h) 5= EAI att = 20 seconds, where A (acceleration) = 9.80 m/s? is constant,
) np —AH K @) C,=2590+33.00x10737—-304 x1077T? ar T=300K
®) r=Asinfcosd ® Inp=—0-—+ (i) InP=—AH/RT+BatT=300K, where AH = 30,820J/mol, R = 8.314 J/mol - K,
. ' AG and B = 2.83 are constants.
® y=x"Vi-¢ W Ink=-—- (k) (4) = {A)e ¥ at?= 5.0 hours, where (A), = 0.01M and k = 5.08 x 10~ hr~' are
o A B : constants.
() »=x1 — &* ) sin 4x ) u= T 4. Determine whether each of the following functions contains a méximum value, minimum
3 M value, or both. Evaluate each function having maximum or minimum values at those
i) y=— (s} d=— points. Specify any points of inflection.
- A1 Afixjc U-er (@) y=4x>—5x+4
G) y=In(l —~ey t) ¢=4e (b) vy =22+ 3x2 — 36x + 16
2. Evaluate the following partial derivatives: (¢} v=sin3x
(a) PV =nRT, P withrespecttoV (d) v =Ae™, A andm constants.
wla . T ran12 o6
M | P+ VT (V —nb) =nRT; P withrespectio V () U(r)=4e (7) - (7) , where e and o are constants.
1 .
© P=%; o with respect to T -{(f) ‘/’=§(1+Slﬂ9)+~/§0059
62 ) 7
@ H=a+bT+cT?+ ;; H with respect to T ® E= 2 \F TR where ¢ and a are constants.
© r=+GZ+y2128); rwithrespecttoz {(h) Pp=2r""2(kTy ¥2e~E*TEVL,  where x, k, and T are constants.
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h

11

1

12.

Chapter 4 Differential Calculus
. 2Y |, ,mx
(i) P(x)=[=]sin®*— betweenx=0andx=a.
a a
(Hint: sin T Oonlyatx=0andx=a.)
a

2
B
gy v = —NoA«Z-r— + —, where No, A, , and B are constants.
r

The rate constant for a chemical reaction is found to vary with temperature according to
the Arrhenius equation

k= Ae~Ed/RT

where A, E,, and R are constants. Find an expression that describes the change in & with
respect to the change in T.

The density of an ideal gas is found to vary with temperature according to the equation

PM

T RT

where P, M, and R are considered to be constants in this case. Find an expression that de-
scribes the slope of a p versus T curve,

. Find the partial derivative of P with respect to T for a gas obeying van der Waals’ equation

2
n-a
(P-F“"}?) (V—nb)-_-nRT

Find the partial derivative of P with respect to V for the gas in Problem 7.

. A certain gas obeys the equation of state

i P(V—nb)=nRT
where in this case » and R are constants. Determine the coefficient of expansion of this gas
a=(1/V)eV/aT)p.
The volume of an ideal gas is simultaneously a function of the pressure and temperature

of the gas. Write an equation for the total differential of V. Using the ideal gas law for
1 mole of gas, PV = RT, evaluate the partial derivatives in the equation.

The vibrational potential energy of a diatomic molecule can be approximated by the Morse
function

U(r) = A(l — ¢~ By

where A, B, and r, are constants. Find the value of r for which U is a minimum. .

The equation for describing the realm of spacial possibilities for a particle confined to a
one-dimensional “box” in the state n = 1 is

()—\/E'nE
Yix) = 081 a

where a is the length of the “box.” Find the value of x for which ¥(x) is a maximum.

Problems 53

13. The probability distribution function describing the probability of finding an electron in

the 1s-orbital of the hydrogen atom a certain distance r from the nucleus is given by the

equation
1 3
P(ry=4 (—) e~ i,
dy

Show that this distribution function reaches a maximum at the point when 7 = a,, the Bohr
radius.
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Integral
Calculus

5-1 INTRODUCTION

There are basically two major approaches to integral calculus, One approach is to
consider the integral as an antiderivative and infegration, the process of taking inte-
grals, as the inverse of differentiation. The other approach is to consider the integral
as the sum of many similar, infinitesimal elements. The first approach allows us to
mathematically generate integrals. The second approach allows us to assign a physi-
cal meaning to the integral. Introductory courses on integral calculus spend a tremen-
dous amount of time on the first approach, teaching all the various methods for gen-
erating integrals. While this is important, and perhaps at some point should be
learned, in practice it is rarely used, most of us referring to tables of integrals to do
our integrating. Thus, in this text we shall emphasize using tables of integrals for per-
forming the mechanics of integration. However, some general and special methods
of integration are included, primarily because some functions are not always in a form
found in the integral tables.

In the previous chapter we studied the mathematics associated with dividing'a
function into many small, incremental parts and determining the effects of the incre-
mental changes on the variables of the function. In this chapter we shall consider the
reverse process. Knowing the effect of the individual changes, we wish to determine
the overall effect of adding together these changes such that the sum equals a finite
change. Before considering the physical significance and the applications of integral
calculus, let us briefly review the general and special methods of integration.

54
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5-2 INTEGRAL AS AN ANTIDERIVATIVE

In Chapter 4 we considered the differentiation of the function y = f(x), symbolized
by the equation

dy _df(x) ,
==l (5-1)
or, in differential form,
dy = f'(x) dx (5-2)

where f' (x) denotes the first derivative of the function f(x) with respect to x. In this
section we shall pose the following question: What function f(x), when differentiated,
yields the function f”(x)? For example, what function f (x), when differentiated, yields
the function f'{x) = 2x7 Substituting f' (x) = 2x into Equation (5-2) gives

dy=2xdx or j—=2x

This function, f(x), for which we are looking is called the integral of the differential
and is symbolized by the equation

ﬂn=ffmm (5-3)

where the symbol f is called the integrai sign.' The function that is to be integrated,
f(x), is called the integrand.

It is not too difficult to see by inspection in this case that if £ (x) = 2x, then f(x)
= x2, since if one differentiates x2, one obtains the derivative JF (x) = 2x. The term
fx) = x* is not the complete solution, however, since differentiation of the function
fy=x*+C, where Cis a constant, also will yield /" (x) = 2x. Hence, there is always
the possibility that the integral may contain a constant, called the constant of integra-
tion, and this constant always is included as part of the answer to any integration. Thus,

y:[Zxdx:xz—i-C

5-3 GENERAL METHODS OF INTEGRATION

Let us now consider several general methods of integration. Listed next are the stan-
dard integrals for most of the functions important to physical chemistry. For a com-
plete Table of Integrals, see Appendix II.

'The integral sign evolved from an elongated  that originally stood for “summation,”
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dulx) =ux)+C

The integral of the differential of a function is equal to the function itself.

2 fa du = afdu = qu + €, where ais aconstant.

Since g is a constant, it can be brought out of the integral sign.

un+l
3. [u”dux +1+C, where n £ —1.

H
Examples:

4
(@) fx3dx=x—4—+c

(b) -ég dT, where AH and R are constants.
RT?

H
AH dT_éli Ldeﬂ T*ZdT_t—A—-—T”l-&-C
g2 TR ) T? R R
AH
=———+C
RT +
4. ]d_u_—_fdlnuzlnu+c
u
Examples:
1
() ﬁ:l d—x:—lnx+c
3 - 3J x 3

d4) _ [ "
® f @

In(A)= —kt+C
() [RT2
P = AH—i—C
InP = RT

5. [[f(x)+g(x)] dx:jf(x)dx+fg(x)dx

The integral of a sum is the sum of the integrals.
Example:

C
f(a+bT+%)dT=fadT+bedT+f?dT

=aT+gT2+clnT+C

Section 5-4 Special Methods of Integration 57
1
6. fe”‘" dx = ~™ 4+ (¢
m
1
7. f smkx dx = — Z coskx + C, where kis a constant,

1 .
8. f coskx dx = I sinkx -+ C, where kis a constant.

5-4 SPECIAL METHODS OF INTEGRATION

Many of the functions encountered in physical chemistry are not in one of the gen-
eral forms given above. Moreover, in many cases they are not in one of the forms

found in the Table of Integrals given in Appendix II. For this reason, we include sev-
eral special methods of integration.

Algebraic Substitution. We find that certain mathematical functions can
be transformed into one of the general forms in Section 5-3 or into one of the forms
found in the Table of Integrals by some form of algebraic substitution.

Examples

(a) Evaluate f 2x(1 — x*) dx.

Let us attempt to transform this integral into the form " du. Let u =
(1 — x%). Then du = —2x dx. Hence,

1
fzxu—x2)5dx=—/u5du=—%u6+c=—g(1—x2)6+c

: AE
b ~AE/kT
(b) Evaluate fe T dT.

AE AE '
Let u = I Then du = — dT. Hence,

kT? ‘
A
fe"AE/kT (ka;) dT = fe“ du=¢"+ C = 2B 4 ©
dv
(¢) Evaluate f .
V —nb

. . du
Let us attempt to transform the integral into the form [ —_
"

Letu = V — nb. Then du = dV. Hence,

dv
f = EE=Inu-#—C:ln(V—mb)—i—C
V —nb u
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(d) Evaluate f sin® x cos x dx.
Let 4 = sin x. Then du = cos x dx. Hence,

1 1 .
fsinzxcosxdx=fu2du=§u3+C=§sm3x+C

Trigonometric Transformation. Many trigonometric integrgls can be
transformed into a proper form for integration by making some form of tngonomet—
ric transformation using trigonometric identities, For example, to evaluaie the inte-
gral [ sin® x dx, we must make use of the identity

sin®x = %(1 — cos 2x)

Thus,

1
fsin%dx:/%(l—cost) dx:%fdx—ifcoshdx

Integrating each term separately gives

sin2x 4+ C

Bl

f sinx cosx dx =

R e

Again, integration of integrals of this type are more practically done by using the

Table of Integrals (Appendix II}.

Example

Evaluate the integral f cos’ 2x dx

Integration of this function can be accomplished using Integral (88) from the
Table of Integrals. Here, ¢ = 2 and b = 0.

1
fcos3 (ax+b)dx=lsin(ax+b)—§;sm3 {ax + b)Y+ C
a

1 1.
[ cos® (2x) dx = 5 sin (2x) — z sin® 2x) + C

Partial Fractions. Consider an integral of the type

f z%—), where a and b are constants
a—Xx — X

Section 5-6 The Integral as a Summation of Infinitesimally Small Elements 59

This type of integral can be transformed into simpler integrals by the following
method. Let A = (¢ — x) and B = (b — x). Then

A B AB AB  AB
Therefore, ) . | |
E_(B—A)(X_B)
1 1 1 1
(a—x)(b—x)‘(b—a)((a—x)_(b—x))
or

f dx 1 [ dx _/ dx]
@-nE-x) G-al) @—x (b —x)

which can be integrated to give

dx 1
f(a—x)(b—x) = (b_a)[.‘ln(“—x)+1n(b—x)]+c

1 I b —x)

- @ ¢

5-5 THE INTEGRAL AS A SUMMATION OF iNFINITESIMALLY
SMALL ELEMENTS

In the previous sections we have considered integration as the purely mathematical
operation of finding antiderivatives. Let us now turn to the more physical aspects of
integration in order to understand the physical importance of the integral.

Consider, as an example, the expansion of an ideal gas from a volume of V, to
a volume V; against a constant external pressure P, illustrated on the indicator dia-
gram shown in Fig. 5-1. We should emphasize a very important point about this in-
dicator diagram. The plot seen in the indicator diagram is not a graph of P,,, as a func-
tion of V. There is no functional dependence between the external pressure on the gas
and the volume of the gas. The diagram simply shows what the external pressure is
doing on one axis and what the volume is doing on the other axis. Both can vary in-
dependently. We find from physics, however, that work done by the gas does depend
on both the external pressure and the volume change, and for this expansion the work
is w = —Po (V, — V), which we see is just the negative of the area under the P,
versus V diagram.? By measuring this area, we can determine the work done by the
gas without the need to consider the specific details of the expansion,

*The minus sign is necessary here because, by modern convention, work done by the system on the
surroundings is defined as being negative. This contrasts with historical convention by which work done
by the system on the surroundings was defined as being positive.
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ext

ext F-----

Figure 5-1 Indicator diagram showing
Vv PV work done by a gas expanding
against a constant external pressure.

Consider, next, a more complicated case in which the external pressure

changes, in some fashion, as the volume changes. Again, we understand that the ex-
ternal pressure is not changing as a function of volume. To emphasize this peint, let
us assume that the external pressure actually goes up as the volume changes, illus-
trated by the indicator diagram shown in Fig. 5-2. (A gas could be expanding against
atmospheric pressure which perhaps is increasing over the period of time that the ex-
pansion takes place.) The work done in this case is still the area under a P, versus V
curve. Measurement of this area, however, is much more difficult than it was when
the external pressur¢ was constant.

PEX(
4
I
g U _A
4
N —
Pyompooooooi
P|/
g
» V  Figure 5-2 Indicator diagram showing
Vi - V2 PV work done by a gas expanding
AV against a variable external pressure.
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‘We can approximate the area under the curve shown in Fig, 5-2 by dividing the
area into four rectangles of equal width AV. The approximate area under the curve,
then, is just the sum of the four rectangles

Agpprox = PLAV + Py AV + P AV 4 PL AV

4 :
=Y PAV G-4)
i=1

If we extend this process even further—that is, if we divide the area under the
curve into more and more rectangles of smaller and stnaller AV—the sum approaches
a fixed value as N approaches infinity. Without proof, we shall define this limiting
fixed value of the above summation as the true area under the curve in the interval be-
tween V) and V. Hence, we can write

N
A= Jim ; P AV (5-5)
However, since as N approaches infinity, AV approaches zero, we also can write

N
A= lim ; P AV (5-6)

But, by definition
N v

A]ji/%; P, AV = fV] P dv (5-7)

where the symbol f;’ is read “the integral from V, to V,,” and V| and V, are called
the limits of integration. Hence,

Va

A= f Pexe dV (5-8)
. Vl

The integral in Equation (5-7) is called a definite integral, because it has a fixed value

in the interval between V, and V,. We see, then, that the integral is the summation of

an infinite number of infinitesimally small slices or elements of area.

5-6 LINE INTEGRALS

Having defined the integral as representing the area under a curve, we now ask
whether it is possible to evaluate the integral described in Equation (5-8) using the
analytical methods described in Section 5-3. For the case of P, versus V the answer
is no. The reason for this is as follows. Integrals of the general type

X2
A =[ y dx (5-9)
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are called line integrals, because such integrals represent the area under the specific
curve (path) connecting x; to x,. Such an integral can be evaluated analytically (ie.,
by finding the antiderivative) only if an equation, the path, y = f(x} is known, since
under these circumstances the integral fzz f(x) dx contains only one variable. If y is
not a function of x (as in the case of P, versus V), or if y is a function of x, but the
equation relating y and x is not known or cannot be integrated (as in the case of
y= e~®"), or if y is a function of more than one variable that changes with x, then
the line integral cannot be evaluated analytically, and one must resort to a graphical
or numerical method of integration in order to evaluate the integral (see Chapter 11,
Section 11-4, and Chapter 12, Section 12-6).

We sometimes can get around this problem by imposing special conditions on
y. For example, the integral in Equation (5-8) can be evaluated analytically if we as-
sume that the external pressure is a constant, since, if P.,, is constant, it can be brought
out of the integral.

Vs Va
A Zf PexthiPextf dV = Pext(VZ__ Vl)
Vi Wi

work = —A = — ext (VZ - Vl)

which is the area described in Fig. 5-1. Note that the definite integral is evalvated by
first finding the indefinite integral, and then simply substituting the upper limit and
then the lower limit into the indefinite integral, and subtracting the two. In the defi-
nite integral, the constant of integration C vanishes.

A second way to evaluate the integral in Equation (5-8) is found in the concept
of reversibility. If the expansion of the gas is reversible, then for all practical purposes
the external pressure is equal to the gas pressure, Py = Py, This gives

Va ¥
A= f Py dV = f Py (T, V) dV
¥ Wy

Even under these circumstances, however, evaluation of the integral is still not pos-
sible, because, while Py, is a function of V, it is also a function of temperature, and
for each variation of temperature with volume (which describes a specific path from
V, to V,), the integral will have a different value. But if we further stipulate that the
temperature is constant, then the integral can be evaluated. For an ideal gas under
isothermal conditions, we can write '

Va Vy ) V: uRT : #
A zf P dV =f Pyas AV =f av
Vi Vi Vi V ’

| 1

Y2 gy V:
= nRT[ — =aRT(nV, —InV)) =nRTIn 72
v 1

work = —A = —nRTIn E
Vi
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Example

The change in enthalpy as a function of temperature is given by the equation
T
AH = C,drT {per mole)
n
Find the change in enthalpy for one mole of a real gas when the temperature of
the gas is increased from, say, 298.2K to 500.0K,

Solution. 'We first recognize that the integral above is a line integral. This in-
tegral cannot be evaluated unless C,, as a function of 7 is known. We could as-
sume that C, is a constant and evaluate the integral that way, but.over such a
large temperature range the approximation would be poor. Another approach
would be to determine the integral numerically. (Numerical methods are cov-
fared in Chapter 11.) One analytical approach is to expand C, as a power series
in temperature, (Power series are covered in Chapter 7.) While this is not the

exact functional relationship between C, and T, we find that this approach gives
good results.

Co,=a+bT+cT? -
The constants a, &, and ¢ are known for many common gases. Substituting this
into the AH equation gives

I
AH = (@ +bT +cTH AT

h

which now can be integrated to give
b
AH = a(Ty=T) + 5T — 1) + g(T; — T3

We see, then, that the change in enthalpy of the system is found by summing
over the entire temperature range, one infinitesimal contribution C, dT at a time.

5-7 DOUBLE AND TRIPLE INTEGRALS

In Chapter 4 we saw that functions could be differentiated more than once. Let us con-
sider the inverse of this process—the determination of multiple integrals. The volume
of a cylinder is a function of both the radius and the height of the cylinder. Thatis,V =
F(r, ). Let us suppose that we allow the height of the cylinder, &, to change while
holding the radius, r, constant. The integral from k = 0 to & = A, then, could be ex-
pressed as

h
fo fr, k) dh (5-10)
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But the value of this line integral depends on the value of the radius, r, and hence the
integral could be considered to be a function of r.

A
glry= f fir, b}y dh (5-11)
0

If we now allow r to vary from r = 0 to r = r and integrate over the change, we can
write

r r ph
[ grydr = [ f fr, k) dh dr {5-12)
which is read, “the double integral of f(r, # ) fromh=0to h = handr=0tor=r"
To evaluate the above double integral, we integrate fo f(r, k) dh first while
holding r a constant, which gives us g(r). Then we integrate fo (r) dr next while

holding 4 constant. Such a process is known as successive partial integration. For ex-
ample, let us evaluate fo fo 2nr dh dr. First,

A
gy = [ 2rr dh = 2mrh
0

Next, we integrate

r ¥
f glrydr = ] 2rrk dr = wrih
0 0

which one recognizes as the volume of a cylinder.
The above argument can be extended to the triple integral. For example, let us

evaluate the triple integral
z ¥y x
fjfdxdydz (5-13)
¢ Jo Jo

First, evaluate f; dx = x. Substituting this back into Equation (5-13) gives

z py
f f x dydz
0 Jo

Next, evaluate foy x dy = xy. Substituting this back into Equation (5-13) gives

I
f xydz #
0

z
[ xydz =xyz
0

which is the volume of a rectangular box x by y by 2.

Integrating this gives

Problems 65
ProeLem. The differential volume element in spherical polar coordinates is

dV = r*sin 6 d¢ db dr. Given that ¢ goes from 0 to 27, 6 goes from 0 to 77, and r goes
from O to r, evaluate the triple integral

ropx 2n
=f [ f r?sind de do dr
0 JO 0

2n
/ r?sing dg = 2mr?siné
0

Solution,

T
f 2nrlsing do = 4nr?
0

f drr?dr = z_}an =V
0 3
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PROBLEMS

L. Evaluate the following integrals (consider all uppercase letters to be constants):

@ f 4x® dx ® f P dv

1
(h) fﬁdxl (B fm—dp
(c) fsinSxdx (h) [Mudv

() f @ + 5)%x dx @ f [

(e) f4e" dx )] fcos e W) dt

2. Evaluate the lfollowing integrals using the Table of Integrals found in Appendix I, as
needed (consider all uppercase letters to be constants): ,

(a) f e dx @ f (et - 22t 4y X3 dx
(b) / % — AY) dx (€) f sin2 ( Y72 4y

A
© f(xz_AZ)I/Z dx ® fsin2 Nrmx v dx

A
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dx
(@) f(4—x)(3—x)

Chapter 5

o [ ()

(h) fexcosxdx (0) [(i—f-&-‘—:‘-+§+%) dt
i) f sin? 2z Wt) dt ® f S 4

@ fcos3¢sin¢ d @ f A

(k) f cost ¢ do (r) f A dr

1) [ sin® (3x + 4) dx (s) f e /KT de

M=_ K dt
o [ /

{m) [x cos2x dx

. Evaluate the following definite integrals using the Table of Indefinite and Definite Inte-

grals found in Appendix II, as needed:

T;
(a) ’ (a + bT + cT? + %) dT; a,b, c, and d constants
T

P
(b) % dP; R and T constants

2
© f do
0

(d) ﬂ dT, AH and R constants
RT? :

" nza R, and T constants
(e f Vs Ve dV: a b 'n R, an

() f sin® O cosH d@
{g) 22 sin? — dx, n, 7, and a constants
a
h) f —ax® gy g constant
) f e~ fdop gy g, constant
0
et 2
Gy f e~ 3 4y k, and T constants

o0
(k) f (2] + De~?U* D) 4 F,  aconstant
1)

?\
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4. Consider the ideal gas law equation P = nRT/V, where in this case n, R, and T are assumed
to be constant. Prepare a graph of P versus V, choosing suitable coordinates, for n =
1 mole, R = 0.0821¢ . atm/mol - K, and T = 298 K from a volume of V = 1.00 liters to a
volume of V = 10.0 liters. Consider now the area under the P versus V curve from V =
2.00 liters to V = 6.00 liters. Determine the approximate area graphically by breaking up
the area into four rectangles of equal width AV; compare your answer to that found by an-
alytically integrating the function between these limits of integration.

5. Evaluate the following multiple integrals using the Table of Integrals, as needed:

(a) f f yx* dx dy

(b) f f % + ¥ dx dy

{©) /fylnxdxdy

() ffflenyez"dxdydz
72 p2

(e)f frcosadrda
2n

L] f ffrsm()drd@dqﬁ

n

mw(£+ﬂ+ﬁ)
® f f f dny dnydn;; a b, ¢, h,m,k and T constants

The equation of a straight line passing through the origin of a Cartesian coordinate system
is y = mx, where # is the slope of the line. Show that the area of a triangle made up of this
line and the x axis betweenx =0and x = gis A = iay

b

7. The Kirchhoff equation for a chemical reaction relating the variation of AH of a reaction

with absolute temperature is

where AC, represents the change in the heat capacity at constant pressure for the reaction.
Expressing AC, as a power series in 7,

AC,=a+ bT+ ¢T?

derive an equation for AH as a function of temperature, {Hint: Write the above derivative
in differential form.)

8. The Gibbs-Helmholtz equation for a chemical reaction is

IAG/T)| _ AH
T ],
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10.

11.

12.

Chapter 5 Integral Calculus

where AG is the Gibbs free energy change attending the reaction, AH is the enthalpy
change attending the reaction, and 7 is absolute temperature. Expressing AH in a power
series in T,

AH=a+bT +cT?

where ¢, b, and ¢ are experimentally determined constants, derive an expression for AG
as a function of temperature.

. Find the probability of finding a particle confined to a field-free one-dimensional box in

the state n = 1 at x = £/2 in a range L/2 & 0.05 L, where L is the width of box, given

L/2+0.05L

i
Probability = sin® _l'.i dx

™~

L/2-0.05L
Find the probability of finding an electron in the 1s-state of the hydrogen atom at r = g
ina range a, = 0.005 gy, where g, is the Bohr radius, given
ag+0.003ag

e /a0, gy

1 3
Probability = 4 (—
ag
ap—0.005ay

Find the expectation value (x) for an electron in the Is-state of the hydrogen atom, given

that
3 oo
1
(x)y=4 (-—) fe'2r/““r3 dr
ag
5 .

The differential volume element in cylindrical coordinates is dV = r d6 dr dz. Show that
if r goes from D to r, @ from 0 to 27, and z from 0 to /, the volume of a cylinderis V =
mrh,

HY = EV

Differential
Equations

6-1 INTRODUCTION

The equation

dy d®y dy d"y
f(x”"dx'a;‘z’m---’dxn =0 ©D

v'vher'e y = f(x) is known as a differential equation. The order of the differential equa-
tion is the order of the highest derivative that appears in the equation. Hence,

d3y 6
& =0

is an example of a third-order differential equation.
A linear differential equation is one having the form

n

dn—ly
dxn—1

d
Ao+ A (x)

d
T +o An_l(x)d—ii + ALY +BO =0 (62)

where Ag(x)} # 0. A third-order linear differential equation, therefore, would have
the form

& 2

¥y d’y dy .
AO(X)"&‘; + Al(x)m + Az(x)a + As(x)y + B(x) =0

69
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[tis customary to divide through the equation by Ay(x), giving the equation

Aoy dly A d®y | A dy | As(x) B(x)

Ao da® T Aoy dn? T Aoy dx | g T Agwy =0 @)
or
By L2y
ax? + N(x)_ + P(x)‘— + QX+ R{x)=0 (6-4)

When the variable R(x) equals zero, Equation (6-4) is known as the reduced equation,

d3y
d—+N( )"-~—+P(x) +Q(x)y— (6-3)

If a function and its derivatives are substituted into Equation (6-1) and satisfy the
equation, then the function is said to be a solution to the differential equation.

6-2 LINEAR COMBINATIONS

Suppose that u(x) and v(x} are two solutions to Equation (6-5). We easily can show,
then, that a linear combination of the two solutions
¢ = cu(x) + cu(x)
where ¢; and ¢, are arbitrary constants, also is a solution to Equation (6-5). If we sub-
stitute ¢ and its derivatives into Equation (6-5), we obtain the equation
d3u d3 2 2

d<u d
193 +Cz +clN(x)—+czN(x) >

+ clP(x)—— + CzP(x)— +o Q@+ 2@ =0
dx dx
Collecting terms gives
u d%u du
. - N —n RS
€1 (dx3 + (JC)de + P(x)dx + Q(x)u)
(6-6)

d3 2
+e (d3+N() +P<) +Q(x)v)

However, since both u(x) and v(x) are solutions to Equation (6-5), each term in paren-
theses in Equation (6-6) is identically equal to zero and the equation is identically sat-
istied. Thus, ¢ also is a solation to the equation.

i
!

T T T g g - e e e g T -

.4
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In general, then, if u,(x), #,(x), u3(x), . . . are solutions to a linear differential

equation, then a linear combination of these solutions, ¢ = ¢ iy + c,t; + cattz + - - -,
also is a solution,

6-3 FIRST-ORDER DIFFERENTIAL EQUATIONS

A first-order linear differential equation is one having the general form

d_y + 0+ R(x)=0 6-7)
dx

The reduced form of this equation can be solved by simple integration, using a tech-
nique known as separation of variables. We put all the y variables on one side of the
equation and all the x vartables on the other side:

d
d—y +0(x)y=0
X .
Do) dx
y
fd—'y =4 —0(x)dx
y

}ny=HfQ(x)dx+C

Taking the antilogarithm of this equation gives
y=ae fo0 e _ (6-8)
where A = ¢is a constant.

Examples

L. The rate of a certain chemical reaction is found to be proportional to the con-
centration of reactant at any time ¢ Find the integrated rate equation de-
scribing such a process.

Solution. The rate of the reaction can be described by the derivative
—d(A)/dt, which gives the rate of decrease of the concentration of reac-
tant A. Therefore, -

d(A)

T T A
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where k is a constant of proportionality. Separating variables gives

5i,@=—f.kdtx—kfa"!‘
)@

In(A) = —kt + C

We can evaluate the constant of integration by assuming that at f = 0, (A) =
{A)g, some initial concentration of A, which gives C = In (A),. Therefore, we
can write

In (A) = —kt + In (A),

or
(A) = (A)e™™

which describes the exponential decay typical of a first-order process.

. Any phase change of a substance taking place at constant pressure and tem-

perature can be described by the Clapeyron equation

dP  AH
dT — T(V; — V)

where AH is the enthalpy change attending the phase change, and V, and V;
are the molar volumes of the initial and final phases, respectively. Find the
integrated form of this equation for the vaporization of a liguid, assuming
the vapor to be a perfect gas.

Solution. For a liquid-vapor phase change,. the Clapeyron equation
becomes

dP  AHu

daT ~ T(V; - V)
where P is the vapor pressure of the liquid at any temperature 7. We assume
that V, is much greater than V), which allows us to drop V, from the equa-
tion, and since the vapor is assumed to be a perfect gas, then V, = RT/P. Sub-
stituting this back into the Clapeyron equation gives

dP _ PAHy,
dT =~ RTZ

Separating variables and assuming A H, is constant, we have

dP _ AHy, {dT
P R 72

which integrates to give the Clausius-Clapeyron equation

AHuyp
= - C
InP RT -+
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Consider, now, the nonreduced equation written in the form

d
=+ 0@y = F() (6-9)
X
Equation (6-8) can be used to help us solve Equation (6-9). We observe that
d d
LS QW | _ of Qdx &Y +ef 0@z 5y (6-10)
dx dx

Therefore, if we multiply Equation {6-9) through by ef 20x e have
d
ef Q(x)dxd_z n ef QWX 1y = ef QWM £ (6-11)

which now can be integrated. Integration of the left side of Equation (6-11) is found
using Equation (6-10). Hence, we have

ef Q(x}dxy — [efQ(x)dxf(x) dx +C (6-12)

f Qx)dx

The term e is known as an integrating factor.

Example

. . k k
In the consecutive reaction A —» B —> C, where k; and k, are rate constants,
the concentration of B, (B), follows the rate equation

d(B) -

—— = ki(Ae ™" — k(B)

dt

Here (A), represents the concentration of A at t = (. Find the integrated rate
equation describing the concentration of B as a function of time,

Solution. 'We first put the rate equation in the form given by Equation (6-9)

d{(B

% +ka(B) = ki(A)pe™
The integrating factor for this equation is ef kadt  ghat, Multiplying through by
the integrating factor gives

Jur 4B)

o kae® (B) = ki (A)ge*re M?

The left side of the equation integrates to give ¢*'(B). The right side of the
equation is easily integrated if we combine the exponentials.

ekzr(B) — kl(A)ofe(kz—kl)f dt
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which gives

k1(A)o
(ky — k1)
Again, the constant of integration can be determined by assuming that at z = 0,

(B) = 0. With this and some algebraic manipulation, we obtain the final
equation

¢ (B) = et 4 ¢

_w —kt =kt
B = -t (e )

6-4 SECOND-ORDER DIFFERENTIAL EQUATIONS
WITH CONSTANT COEFFICIENTS

One type of linear differential equation that is extremely important to the study of
physical chemistry, and indeed to the physical sciences as a whole, is the second-
order linear differential equation with constant coefficients, having the general form

d’y . dy
— +A—+By=R 6-13
) + P + By ({c (6-13)
where A and B are constants. Consider, first, the reduced equation, where R(x) = 0.
d?y dy
—— 4+ A= +By=0 . 6-14
dx? + dx +By ( )

A trivial solution to this equation—and, in fact, to all reduced equations, irrespective
of order—is y = 0. Let us guess a nontrivial solution as!

y =™ £0 (6-15)

where m is a constant. Taking the first and second derivative of Equation (6-15), we
have

d
—yzme’"x and —= =m’¢
dx

Substituting these into Equation (6-14) gives
mie™ + Ame™ + Be™ = ()
Since e™* # 0, we can divide through by it, giving
m?+Am+B=0 (6-16)
'One acceptable way to solve a differential equation is to guess a solution (in German called an

Ansarz) and to substitute the solution and its derivatives into the differential equation to see if it satisfies
the equation.
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Equation (6-16) is called the auxiliary equation. Hence, y = €™ is a solution to Equa-
tion (6-14}, provided there is an m such that

—A-+ AT 4 )
m= _H_ZJ (6-17)

Depending on the sign and/or the magnitude of constants A and B, the roots to Equa-
tion (6-16) may be real, imaginary, or complex. Let us consider the solutions to the
differential equation in each of these cases,

Real Roots. Consider, first, the case in which the roots to the auxiliary equa-
tion are real, say m = ta. Thus,
y=e* and y=e*

are each solutions to Equation (6-14), called particular solutions. A general solution
to Equation (6-14), when the roots to the auxiliary equation are real, is found by tak-
ing a linear combination of the two particular solutions.

y=ce®+ e (6-18)

where ¢, and ¢, are arbitrary constants, We see, then, that when the roots to the aux-
iliary equation are real, the solution to the differential equation is real and is the com-
bination of an exponential increase plus an exponential decay.

Imaginary Roots. Consider, next, the case in which the roots to Equa-
tion (6-17) are pure imaginary, say, m == +-ib, where i = +/—1 (see Chapter 1). Thus,
V= eibx and Yy = e~ ibx
are two particular solutions to Equation (6-14). Again, a general solution is found by

taking a linear combination of the particular solutions
y = e + ce (6-19)

Recall from Chapter 1 that the exponentials e# and ¢~ can be related to sine
and cosine functions. Without proof, then, another form of the general solution to
Equation (6-14), in the case where the roots to the auxiliary equation are imaginary, is

¥y = ¢f sin bx 4 ¢ cos bx (6-20)

Since, generally, sine and cosine functions describe waves, it is not surprising that so-
lutions to wave equations have the form given by Equations (6-19) and (6-20).

Complex Roots. Consider, now, the case in which the roots are complex,
say, m = a x ib. In this case we have the two particular solutions

'y1 — Y ang g, = plamibix
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A general solution is, therefore,

(a+ib)x +Cze(a—ib)x

y=ce
= Cleaxesz 4+ Czeaxe—lbx
— eax(clelbx + Czeﬂch)

Double Roots, There is a possibility that the two roots to the auxiliary equa-
tion may be real and equal. In this case, the general solution is

v = cje” + cyxe™ {6-21)

Examples

dy  dy
I. Solve ) A4a +4y =0,

To find the auxiliary equation, substitute y = ™ and its derivatives into the
equation. This gives
m?—4m+4=0
(m—~27%=0
which has the real, double roots m = 2, 2. The general solution to the equa-
tion is
¥ = ce¥ + cpxe®
d*y
2. Solve —= +5y =0.
dxi Y .
Substituting y = ™ and its derivatives into this equation gives
m+5=0
which has the imaginary roots m = &i~/5. The general solution to the equa-
tion is

y = Cleiﬁx +628—£«/§x

or in the sine-cosine form
y = | sin+/5x 4 ¢} cos v/3x

2 2
3. Solve d_v,[r + Mdf =0, wherem,m, h, and E are constants.
dx? h?
Let ¥ = ¢". Substituting this and its derivatives into the equation gives the
auxiliary equation
., 8a’mE 0
R
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. . . . [8mimE . 87imE
which has the imaginary roots n = +i Py and n = —i PO

Choosing the sine-cosine form of the solution, we have

I872mE [872mE
Y = Asin ]rh;n x4+ Bcos ﬂh;n X

where A and B are constants.

6-5 GENERAL SERIES METHOD OF SOLUTION

In certain cases, differential equations cannot be solved by the simpie method out-
lined in Section 6-4. For this reason, consider another important method for solving
differential equations, called the series method of solution. Generally, this method is
used for equations that are not reduced and for equations where the coefficients are
not constant. To see how it works, let us introduce the method on a very simple re-
duced equation.

Consider the equation
d’y
— =0 6-22
o3 tHY | (6-22)

where £ is a constant. We easily can show, using the method outlined in Section 6-4,
that two particular solutions of Equation (6-22) are sin 8x and cos Bx. Let us assume,
however, that the solution to Equation {6-22) is a series of the form

00
Y = @k e x +a x4 =Y e a0 (6-23)
i=0

where « represents the Jowest power that x can have in the summation. Taking the first
and second derivatives of this equation gives

dy & _
= Z (K€ + m)aex = and
X nz=1
d’y &
T3 =2 (et n =Dk +n)a x

n=2

Substituting the second derivative and y back into E_quation (6-22), we have

o0 o0
2 Getn =Dl +maex ™D + B2 ) aax® =0 (624)
n=2 R0

Equation (6-24) must hold for every value of x, and thié will be true only if every co-
efficient of the power of x is identically equal to zero. Since » cannot be negative, the
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lowest power of x in the first summation in Equation (6-24) is x%~2), where n = 0.
Substituting this into the first summation gives

(¢« — Dra,=0 (6-25)

Equation (6-25) is called an indicial equation. Since a, # 0, (k — D == 0, which
gives

k=101
We can combine the summations in Equation (6-24} if we replace n in the first

summation with » -+ 2, giving?

oQ oQ
D+ DK A+ Dagarax®™ + 2 aex® =0

n=(0 =)

o
> fectn+ D6 7+ 2acinin + Bl n |54 = 0
n=>0
Since x**+" =£ 0, the term in {) must equal zero, giving
_ﬁzax+n
k+n+Dk+n+2)

Getnt+2 = {6-26)
Equation (6-26) is called a recursion equation or recursion formula; it connects the
coefficients of the series. We see in this case that we have two series expansions: one
for which « = 0 and one for which ¥ = 1. Let us look at the ¥ = 0 expansion. Under
these circumstances,

Unid = —__—ﬁza,,,
n+Dnr+2)
weL0 , _Ba
2 24
With a, = 1, we have

which we recognize as the series expansion for cos fx, a particular solution of Equa-
tion (6-22). Substituting x = 1 into Equation (6-26), and letting &, = #, it is easy to
show that the series which results is the series expansion for sin Bx, another particu-
lar solution to Equation (6-22).

ZAdding two more terms to an infinite sum is the same as adding zero.
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6-6 SPECIAL POLYNOMIAL SOLUTIONS TO DIFFERENTIAL
EQUATIONS

Hermite’s Equation. Consider the differential equation

dy dy
— —2x— 4+ 20y =0 6-27
dx? xdx + ey ( )

Equation (6-27) is known as Hermite’s equation. The roots of the indicial equation in
this case are « = 0, 1 {see Section 6-5), which gives rise to the recursion formula

B 20k +n) — 2o .

T k+An+ D +n+ )"

a4z

For « == 0, we have

2 4! 6!

For x = 1, we have

— 2y — —

3! 5!

The general solution to Equation (6-27) is the superposition of these two particular
solutions. The appropriate choice of a,

g

leads to a set of solutions known as the Hermite polynomials of degree n.

H,(x) = (2x)" — "—“’J—”(zx)""’
: (6-28)

| nln— 1)(,; D=3 pom

ay = (-1

Example

The Schrédinger equation describing a simple one-dimensional harmonic os-
cillator is

&y 8nim 1,
— & - = ¥ =20 6-29
dx? h? (E ka ) (6-29)

where 7, m, h, E, and k are constants. Show that this equation can be solved
using Hermite polynomials.
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Solution. Let

8nimE dmimk
— 2 _
= and f°= i
Substituting these into Equation (6-29) gives
d*y 2 2
e +E—-xHY =0

We now make a change of variables by letting £°== ./Bx.
By _ (20 (#6)_ (o
az ~\aez a2 ) =P 5

a>yr
d—w[l‘fz*(ﬁ‘lﬂ"”:” €30

We now let v (£) =‘e*“=E */2y(&). Taking the second derivative of this function
_[see Chapter 4, Section 4-2, item 11, Example (d)], and substituting it and Y
into Equation (6-30) gives

dy d e
2 (51)y0

which is just Equation (6-27), Hermite's equation, the solutions of whicﬁ are
the Hermite polynomials.

This gives

Laguerre’s Equation. Consider the differential equation

d?y

dy
X 1 —xy—= =
x2+( x)dx+ay 0 (6-31)
where « is a constant. This equation is known as Laguerre’s equation. The indicial

equation for Laguerre’s equation has a single root, « = 0, which gives rise to the re-
cursion formula

n—uao

Gyl = man (6-32)
The series solution is therefore
_ alg—1) ,
y—ao(l—ax+Wx —) (6-33)
Again, suitable choice of a,,
ag = (— l)n n!
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leads to the Laguerre polynomiais of degree n.

2 2(p - 1)

o + (-"1)"11!) (6-34)

A differential equation closely related to Laguerre’s equation is the equation
d? d
il a+1-02 y@-ky=0 (6-35)

dx? dx
where k is an integer > 0. This equation is produced when Equation (6-31) is differ-
entiated k times and y is replaced by the kth derivative. Solutions to this equation are
usually represented as

&

= mL,,,(x) =L:(x)

y
and are called the associated Laguerre polynomials of degree (n — k).
A third form of the Laguerre equation, important in the wave-mechanicai solu-
tion of the radial part of the hydrogen atom, is the equation

diy _dy k-1 x k-1
— 4+ 2= - - = - =0 6-36

TR TIT TT TaT Twm |? (6-36)
This equation can be transformed into one having the same form as Equation (6-35)
by letting y = =%~y Substituting y and its derivatives into Equation (6-36)
yields the equation

d%v

dv
k - —_ — =3 6-37
x_dx2 +&k+1 x)dx +n—kp=0 ( )

which we see has exactly the same form as Equation (6-35). Thus, v = L*, and a par-
ticular solution to Equation (6-36) is

y = e H 2Nk (6-38)
This function is called the associated Laguerre function.

Example
The radial part of the Schrodinger equation for the hydrogen atom is

2
1d(r2dR)+ 2,w(E+ e )we(ejn R() =0

rZdr dr 2 dmwegr r
where 7, 1, R, &g, and £ are constants, Show that selutions to this equation are

the associated Laguerre polynomials.

Solution. To transform the radial equation into a form that resembles La-
guerre’s equation, let us first expand the equation.
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2
1d (rzd_R)+I:2uE+ 2ue e(e+1)]R( '—o

r2dr dr B? dme,r r?

Next, we define two new constants

2ull 2
azz—u— and f = e

dme o
Substituting these into the equation, we have

1d /[ ,dR 2B L(E+1)
rzdr( dr)+[ma g r r2

] R(r) = (6-39)

We next make a transformation of variables, p = 2ar.

dR dp dR dR d d
— = —.— =2¢—. Likewise, — =20—
o drdp o i Likewise e ad,o

Substituting these back into Equation (6-39) gives

do? d { p* dR ,  4Ba? 5 (e + 1)

Dividing through the equation by 4,

1\ d { ,dR 1 B LE+D
— 1= —Z 4B R(o) =
(pz)dp( dp)+[ T T TR ] @

Next, ekpanding the derivative d/dp, and remembering that the derivative
must be differentiated as a p_roduct, we have

1 [ #r _ar 1 B e(z+1)]
~ | oS 425 +[——+—~ R(p) =0
p[ dp*  dp | 4 p p*

Finally, multiplying through by p,

d*R dR T L+ 1)
T, D —
PRk PRl ith

} R(p) =0 (6-40)

which we see has exactly the same form as Equation (6-36). The solutions to
Equation (6-40), then, are
R(py = p'e™? LMp), k=20 +1

where L*{ p) are the associated Laguerre polynomials.
Legendre’s Equation. Consider, now, an equation having the general form

& d
(l—xz)ﬁ——Zxd—i e+ Dy =0 (6-41)
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where £ is a constant. This equation is known as Legendre s equation. Series solution
of this equation leads to the indicial equation having roots « = 0, 1, and the recursion
formula

(kK +m)k+n+1)—£EL+1)

(k+n+Dk+n+2)

Gny2 = ay (6-42)

Like Hermite’s equation, we have a choice of even or odd solutions. When « = 0, the
significant series solution to Legendre’s equation is

b [] _ e(e; Do, te- 1)(e4J'r DE+3 o, ] o

(6-43)

When « = 1, the significant series solution is
[ U-DE+D 5 E-DE-DE+FDE+D s ]
y=|x- +- |

3! 5!

(6-44)
As in the previous special equations, series solutions to differential equations
are of particular interest when the series converges to a polynomial. In the case of Le-
gendre’s equation the “nuts and bolts” of finding the conditions for convergence are
involved and beyond the scope of this text. Students interested in the procedure are
referred to the readings listed at the end of the chapter. It is sufficient to say that the
general series solution, which is a linear combination of Equations (6-43) and (6-44),
reduces to a polynomial when £ is an even or odd, positive or negative integer, in-
cluding zero. Under these conditions, the resulting polynomlals Py, called the Le-

gendre polynomials, have the form

1-3.5...2£-1) 4t EE-1 ,_,
— X
£ 22 -1)
£ — DL~ (€ — S)xg““ o
2428 — 1)(28—3)
An equation closely related to Legendre’s equation, and important in the solu-
tion to problems involving rotational motion, is

FPy(x) =

(6-45)

2

i .
1_x2)y:0 (6-46)

(1— )——2 j—+(£(£+1)—

where £ and m are integers. This equation is known as the associated Legendre’s
equation and has the particular solution

dm
y = (1= Pux) (6-47)
This solution is known as the asseciated Legendre function, or the associated spher-

ical harmonics, becavse it is related to the allowed standmg waves on the surface of
a sphere.
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Example

The ®(#) equation, an angular part of the Schrodinger equation describing the
hydrogen atom, can be expressed as

L4 (ne®@ Y rlee+ 1 m’ Q) =0
— —— [ sin@— - Q(0) =
snodo \ " dé Sin’ o

where £ and m are integers. Show that solutions to this equation are the associ-
ated Legendre polynomials,

Solution. We can put the above equation in the form of the associated Le-
gendre’s equation if we let x = cos 8. Therefore, sin?§ =1 — cos’0 =1 — x.
Also,

d®—dx d®— s'n6d® and i——sinad
46 a6 dx "W a0 dx

Substituting these into the & equation gives

2
4 (u _x2>d£3) ; [em n--2 ]@(x) =0

dx 1—x2

Expanding the derivative d /dx, remembering that (1 — x%) d©/dx must be dif-
ferentiated as a product, we have

da*e de m*
(1 sz)m - Zxa + (E(ﬂ +1)— m) Bx)=0

which is just the associated Legendre’s equation.

6-7 EXACT AND INEXACT DIFFERENTIALS

The expression M(x, y) dx -+ N(x, y) dy is said to be an exact differential if there ex-
ists a function F(x, y) for which

aF oF
JF = (_) dx + (_) dy=M(x,y)dx + N y)dy  (6-48)
ax /, Iy J,

If F(x, y) does not exist, M(x, y) dx + N(x, y) dy is not exact and is called an inexact

differential.

Euler's Test for Exactness. If M(x, y) dx + N(x, ¥) dy is exact, then

(?ﬁ) =M(x,y) and (B_F) :N(x!y)
ax J, ay /
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Taking the mixed second derivatives gives

92F _(BM) 2K anN
aydx |\ By : axdy ) \lax y
9F  3'F
dy ax  dx 8y

(1) -2
8y )y BX)J, 9

is a necessary condition for exactness. Equation (6-49) is known as Euler’s (read
“oiler’s”) test for exactness.

However, since

then

Example
Show that the expression

dF = 3x%* dx + 3y dy
is exact.

Solution.  Since M(x, y) = 3x%° and N(x, y) = 3y*%>, then dM/3y = 9x%y? and
AN/Bx = 9x%y2. Thus, dM/dy = dN/dx, Euler’s test is satisfied, and the differen-
tial is exact.

The equation (9F/8x), = M(x, y) can be wriiten in a more general form

F(x,y) =fM(x,y) dx + K(y)

where K(y) is independent of the variable x. Taking the partial derivative of F(x, y)
with respect to y gives

(BF) 9 fM( d +8K Nt y)
=T X, X - = f
. 0y o’ ay Y

3y

or

aK—N( ) an( )d 6-50

ay ~ V-5 x,y)dx (6-50)

Integrating Equation (6-30) gives
) .
K(y)=f[N(x,y)—(—3\;[M(x,y)dx] dy

which gives

F(x,7) =fM(x,y> dx-i—f[N(x,y)-%fM(x,y) a'x] dy (651
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Example
Show that the equation
dF =3x%% dx + 2x% dy

is exact and determine F(x, v).

Solution.
M(x,y) =3x"y* and N(x,y) =2xy
aM
E—-Gx y and — =6x"y
aM  ON
3y  dx

Euler’s test is satisfied and the differential 4F is exact. Now,

fM(x, y)dx = f szyz dx = xay2
and

d
— M =23
5y / (x,y)dx =2x"y

K()’)=f[N(I,y)-%fM(x,y)dx] dy

= [(2x3y +2¢3wdy=cC

Therefore,

which gives

Fa,y)=xy*'+C

In Chapter 5 we introduced the concept of the line integral as representing the
area under a curve (or path) taking some function £(x) from x; to x,. Exact and inex-
act differentials are directly related to line integrals and occupy a significant place in
physical chemistry. If di is an exact differential, then the line integral f du, which
represents the sum of the infinitesimal elements du taking the function u from #; to
u3, depends only on the limits of integration. That is, if du is exact, then

Hy
/ diu =y — | = Au
Lul

When u represents a physical variable describing a system, then that variable is said
to be a state function, since the function depends only on the initial and final states of
the system and not on the path taking the system from state #, to u,.
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If, on the other hand, du is an inexact differential, then | [ "f du = u, which is
a quantity that depends on the specific path taking u, to ,. The physical variable rep-
resented by u is not a function of state, and unless the functional relationship between
the variables x and y in du is known, the integral fu“lz du cannot be evaluated. For
example, we saw in Chapter 5 that the work done by the expansion of a gas against
an external pressure is a function of both the external pressure on the gas (part of the
surroundings) and the volume of the gas. We can write this as a total differential

dw = M(Poy, V) dPoy + N (Poy, V) dV = — Py dV

Clearly, dw is not an exact differential, since M(P,, V) = 0 and N(P,,, V) = —Py,
and Euler’s test for exactness is not satisfied. The integral f dw = f P, d V can-
not be evaluated, unless the dependence of the external pressure upon the volume of
the gas is known. There is, however, no necessary relationship between the external
pressure and the volume of the gas; therefore, an infinite number of paths exist taking
the gas from P, VT to P, V,T,. Each path is associated with a specific amount of work.

Another important property of exact differentials is that the integral of an exact
differential around a closed path must be equal to zero. That is, if we integrate an exact
differential, such as the differential for energy dE, from some initial energy state E,
around a closed cycle ending up again at state E,, then

E
f dE=¢‘dE=E1—E1=0 (6-52)
LJE

Such an integral is called a cyclic integral. Equation (6-52) can be thought of as the
consummate test for a state function.

6-8 INTEGRATING FACTORS

In certain cases an inexact differential can be made exact by multiplying it by a
nonzero function called an integrating factor. For example consider the differential
equation

du = 2y* dx + 4xy* dy (6-53)
Applymg Euler’s test for exactness, we obtain the equations

oM
— =8y and B—N = 4—y3
oy ax

Clearly, Euler’s test for exaciness is not satisfied, and the differential du is not exact.
If we multiply Equation (6-53) by x, we obtain the equation

dF = 2xy" dx + 4x3 dy (6-54)
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Note now that

a—ﬂi = 8xy* and ﬂ = 8xy°

Jdy ax

and the differential is exact. The factor x in this case is an integrating factor, since it
transformed the inexact differential du into the exact differential 4F, Moregover, since
dF is an exact differential, Equation (6-54) is said to be an exact differential equation
and can be solved for F(x, ¥) by the method outlined in the previous section.

6-9 PARTIAL DIFFERENTIAL EQUATIONS

A partial differential equation is one containing partial derivatives and, therefore,
more than one independent variable. An example of a partial differential equation is
Py Bu

T gy T =0 (659

where u = f(x, ¥). Since u is a function of two variables x and y, the partial differen-
tial equation cannot be solved by direct integration. Before a solution can be foand,
the variables x and y must be separated; but that may not always be possible. One way
to separate variables is to assume that the solution is a product of functions of single
variables. Let us attempt this type of solution on Equation (6-53). Let

wlx, y)y = f(X)8() : (6-56)
Taking the partial derivatives of Equation (6-55), we have
u af 9%u 3rf
ol g()’)a and Pl 8()’)@
du dg 9%u 3g
oy T Wy M e T
Substituting these into Equation (6-553) gives

8()’)%1—]; + f(x)g% + f(xg(y)y =0
Dividing through by f(x)g(y) gives
1 92 1 a2
W%+@5§+1:0 (6-57)
Rearranging Equation (6-57), we have |
1 #%f 1 d%g

S A S 6-58
7 x| g 8y ©>9)

- - ~ - —~— - —r — — ~— - — —— 1

Section 6-9 Partial Differential Equations 89

Notice that the first term in Equation (6-58) is only a function of the variable x,
and the second term in the equation is only a function of the variable y. Hence, the
two variables x and y have been separated. Further note that these two terms

1 3 1 37
—_— _J; and — —‘g
flx) ax g(y) dy
must each equal a constant for the following reason: If we assume that f'(x) is the vari-
able, and differentiate partially with respect to x, then we must hold g(y) and its de-

rivatives constant, but that means that ( 1/f(x)){5%f/3x%) also must be constant, since a
variable cannot be equal to the sum of two constants. Therefore,

1 d&%f 1 d%
— "= =k and —=—% =
fmde ~ " goray T
where k| + &, = —1. The equations
1 d*f 1 d’g
— — _fy=0 and — -2 _f;=0
Fode T M Ly T

can be solved by methods outlined in previous sections of this chapter. Once f (x) and
£(y) are known, the solution to Equation (6-55) is u(x, y) = f(x)g(y).

PromieEm. Separate the Schrodinger equation describing the hydrogen atom
into three equations: an R(r) equation, a &(#) equation, and a ®(¢) equation.

19 {,09 18 (. o8y 1 %y
2 ar (r 8r)+ r2sind a6 (Sma 39)+ r2sin? @ a2

) X (6-59)
+ ”(E+ ‘ )w(r,a,qb):o

n? dmwegr
where 7, &y, i, (t, and e are constants.

Solution.  Assume a product solution ¥(r, 8, ¢) = R(nN®(A)®(¢). Evaluating
the derivatives, we have :

ay R 9y 36 Py 3
G = 0O, = RO@) . and 297 = R(r)®(9)87’2

Substituting these into Equation (6-59) gives

@(9)<I>(¢)i(r2%) R(r)fb(qb)i( 3@) R(NG®) 3*d

§inf — e
2\ ar F2sing 90\ ag r2sin2f ¢’

2u ( e? )
+ 5 [E+ R(NBEHE)P@) =0

B2 dreor
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Dividing through by R(r}@(6)®(¢), we have
R(r)r2 dr ar B(f) r?sing 30 99

e 2 2
TN SR S =0
O(¢) risin’e 8¢  h A sr

(6-60)

Next, we multiply through Equation (6-60) by 7* sin® 6.

in® | ' L) 1 3
sin“ 6 & (rzaR)+ sind 3 (sinB—) 4

Ry or \ or ) 0@ 08 Y () 3>
2pr? sin? 6 et
S |E =0
+ K2 ( + dregr

Notice that this isolates the ¢ term. By the same arguments used above, the ¢ term
must equal a constant, call it —m?. Therefore,

1 4o R

D(p) dp?

and

in® i 90\  2ur?sin®é e?
sin"6 3 ,ﬂ?fg + 31n9i(sine_)+ wr . E+ o
R(r) or ar ®(0) a0 a6 [/ 4 eor
since the sum of these two terms equals zero. Dividing through this equation by sin?4
will separate the equation into r terms and £ terms.

1 o9 f,0R 1 1 8 ( 8@)
—_— P+ ———— | sinf—
R(r) or ar @(9) sin@ 96 06

2ur? e? m?
Ll — =
* n? (E T 431'80r) sin® &

Letting the combined r terms equal a constant £ + 1), we have

2 2
L a4 rzd_ﬁ)+2“; E+-—S—)=te+D
R{r) dr dar h dmegr

which we recognize as Laguerre’s equation. The combined 6 terms will equal

&4+ D
de 2
L. 14 (sine—) - = D)
©(6) sind 4o 46 sin“ 8

which we recognize as the associated Legendre’s equation.

Problems N
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PROBLEMS

1. Solve the following linear differential equations:

d
@ Zi3zy=0
dx
dy
b)) — —-3y=
(b) i
d*y  _dy
— +2 =0
(c) ) + 7 +y
d’y _dy
d) ——-6—4+9y=0
@ dx? dx +2y
dzy
e) —=+9y =40
© —5+9
dx
1ty i ki(a —x) —kox; ki, ky, and g are constants.
(g) s = —a¢; ais constant.
dr :
d(A) .
th) —— = —kdt; kisconstant.
(A)
(i) —1 d—-—2¢ z is constant.
= —m ; m .
o(@) d¢?
d2y
(§) m—% = —ky; mand k are constants.
dr?
d? 8nlmE
(k) -—z + iw =1{; E,m, and h are constants.
dx? h?

2. Test the following differentials for exactness: -
(a) dF =2xy*dx + 2yx* dy

(b) dF =8xdx
() dF=12x%dx+ax*dy
(dy dF =5dx
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1
(@ dF =—dx— > dy
vy

O dF=xydc+x’dy

R RT
(g) dP= n_v_ dT — % dV; nand R are constants.

(hy oV =mnrtdh+ 2nrhdr

nRT

i) dg=nC,dT + v dV; n, C,, and R are constants.

PM M

. __PM

W dp=—gmdl+ 37
2

(&) dE=nC, dT + 2 5

dP; M and R are constants.

dVi n, C,, and a are constants

Show that the differential dg — nC, dT + (rRT/V) dV, where n, C,, and R are constants,
can be made exact by multiplying by an integrating factor 1/7. The resulting differential
dS is called the differential entropy change.

. Show that if sin 3x and cos 3x are particular solutions to the differential equation

dZ
— +9y =0
dx?
then a linear combination of the two solutions also is a sclution.

Bessel’s equation is an important differential equation having the general form
d* dy
28 o2
+x-=+(x =0
o Tt @®—ch)y
where ¢ is a constant. Find the indicial equation for the series solution to this equation.
A one-dimensional harmonic oscillator is described classically by the equation
d2y

d2+4ﬂuy=0

Show that a solution to this equation is y = A sin 27v¢, where A, r, and v are constants.

The differential equation describing the spacial behavior of a one-dimensional wave is
d? f
I — ) =
T f () =

where A is the wavelength. Find the general solution to this equation.

. Boundary conditions are special restrictions imposed on the solutions to differential

equations. The boundary conditions for a plucked string bound at both ends between x =
0 and x = L, and described by the equation given in Problem 7, are that f(x) goes to O at x
= 0 and x = L. Show how these boundary conditions affect the solution to the equation in
Problem 7.

10,

11.
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. Show that if we let x = cos 6, the solution to the associated Legendre’s equation [Equa-

tion (6-47)] is y = cos 6, when £ = 1 and m = 0, andisy=sin 4, whenf =1and m = 1.

Show that if we let x = cos 8, the solution to the associated Legendre’s equation [Equa-
tion (6-47)]is y = 2(3cos 8 —1),when £ =2 and m = 0.

The Schrédinger equation for a particle in a three-dimensional box is

2y a2y 9%y ImE
ax2+3y +32 - =0

}wrhere E, m, and % are constants and ¥ = f(x, y, z ). Separate the equation to an equation
In x, an equation in y, and an equation in z by assuming that

Ylx, v, 7) = f(x)g(h(z)



Infinite
Series

7-1 INTRODUCTION

We saw in preceding chapters that it is sometimes useful to express a function as a
sum of terms called a series, For example,
e"—1+x+£+£+x—4+
- 26 24

or

% x’

Sy =X T 120 T 5040

The three dots at the end of each of the above examples signify that the number of
terms in the series is endless. Therefore, such a series is called an infinite series.

Suppose we have a sequence of terms u,, u,, t3, . . . and that we let S, be the
sum of the first # terms. That is, ‘

Sn:u1+u2+u3+"'+un ) (7'1)

If, as n approaches infinity, the sum S, approaches a definite, finite value, then the se-
ries is said to be convergent. On the other hand, if, as n approaches infinity, S, does
not have a definite, finite value but increases without limit, then the series is said to

94

Section 7-2 Test for Convergence and Divergence 95

be divergent. Several examples of convergent series and their sums are:

1 1 1 & (=1)!
S=locdo——d—e = =In2
23737 Z_; x
1 1 1 > 1
S__ —_ J—
+6+12+20+ ;x(x 0
> 1
S=14+a+d’+a +---=xz=;a‘=1*a; la] < 1
> a
_ 2 3 _ _ .
S=a+2a"+3a +---—;xax_m, la] <1

7-2 TEST FOR CONVERGENCE AND DIVERGENCE

There are several ways in which to determine whether a series is convergent or di-
vergent. Two of these methods, comparison tests and the ratio test, are outlined
below. Others may be found in general calculus texts.

Comparison Tests. The first way to test whether a series converges or di-
verges is to compare it to one of the series, called comparison series, listed below.
Consider the following series:

(1) The series
atar+artar+..-+ar"+. ..

converges when r < 1 and diverges whenr > 1.

(2) The series
' 1 1 1 1

+ Y T + 7] +- + -+

converges when p > 1.
(3) The series

I+ 1 + ! + 1 + -+ ! +
2 3 4 n
always diverges.
(4) The series

1 1 1
s+ @ine+rn T @rn-Datm

where a > 0, always converges.
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I each term in an unknown series is less than or equal to a corresponding term in a Since each term in the known series is greater than each term in this divergent
comparison series that is known to converge, then the unknown series converges. series, the unknown series must diverge.

, However, if each term in an unknown series is equal to or greater than a correspond- [

: ing term in a comparison series that is known to diverge, then the unknown series di- ) Ratio Test. Another method used to determine whether a series is convergent

verges. In order to illustrate this method, consider the following examples: or divergent is the so-called ratio test. Consider the ratio of the (n + 1)st term to the

nth term in the infinite series u, + u, + us + - - -. We find that if

! Examples !
;’| R R . ui’H‘l
(a) Determine whether the series ) nl_lglc o <1
il 111 | _ L
| ‘ 1+ 3 + 3 + 7 + .- the series converges. On the other hand, if
1 converges or diverges. | fm %41
!- i =00 Uy
| }
| Solution. To solve this problem, let us compare this series with series (2) and the series diverges. If, however,
] ‘ series (3) above. If we let p = 1 in series (2), we have series (3) ’
Un
i | Y
: 2 3 475 ) "
| s s , . ) the test fails and another method must be used.
E, which is divergent. However, each term in the unknown series is less than each
‘ : i term in this s.eries,' which seems to indicate that the series is not divergent. If ) Example
‘!H‘ we let p = 2 in series (2), we have )
Ak ) Determine whether the series
M 1 1 I
li _ .
‘i‘! 1+4+§+16+"' ) ! 1 2 3 4
¥

; o , 2 722 T o4
: i which is convergent. However, each term in the unknown series is not less than
I

: each term in this series. Clearly, then, there must be some value of p lying be-
| _’ii tween 1 and 2 that will give a series having terms that are greater than the cor-
3 responding terms in the unknown series. Since p will be greater than 1, and this
ok series must converge, the unknown series also must converge.

converges or diverges.

' Solution. In this series, the general term is u, = n /2" . Hence,

n+1
1 (b) Determine whether the series \ Ukl = n
L2030 41 5 - -
) y Uyt _ n+1 _2:_'_ — i n+1
converges or diverges, : a0 | e e e
Solution. To solve this problem, let us first rewrite the series as . However. sifice
1+2+6+24+1204--- | lim n+1 1
Now, let us compare this series with series (1) in whicha = 1 and r = 2. | nsoo! 2n | 2

1+42+4+84+16+--. ' and this is less than 1, the series must converge.
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7-3 POWER SERIES REVISITED

One of the most useful mathematical tools in applied mathematics is the power se-
ries, an infinite series having the form

o0
2
do + ax + axx +a3x4+---+anx"~+~~-=2 anx”
=0

Power series, like other infinite series, can be either convergent or divergent; how-
ever, whether a series converges or diverges depends on the value of x.

We can determine the value of x for which a series converges or diverges by
applying the ratio test. We find that the series converges for all values of x in the

interval
ap—1

[x] < lim
n—00 | (I,

and that the series diverges for all other values of x

-1

|x] = lim
n—oo | d,

At the endpoints of the interval, that is, at

Gp—1

jx} = lim

r—o0 | gy

the test fails.
Examples
(a) Determine for which valli:es of x the series

o0
Zanx"+1 =apx +axi o+ = x 4232133+
n=0

converges.

Solution. In this case, gy = 1, a; = 2, g, = 3, and so on. Hence,
a,=n+1 and ag,,==n

Thus,
. an—1
lim

=00

-

dp

The series converges for | x | < 1, that is, in the interval —1 < x < +1. Likewise,
the series diverges for | x | > 1, thatis, for x < —1 or x> +1. When x = 1, the

Section 7-4 Maclaurin and Taylor Series 29

series becomes
1+24+34+4454+---

which diverges. When x = —1, the series becomes
—142-34+4-5+4-.-

which also diverges. Hence, the interval of convergence does not include the
endpoints.

(b} Power series solutions to differential equations are particularly interesting
when the series converges to a polynomial. For example, we can use the ratio
test to determine the interval of convergence for Legendre’s equation.

Solution. One will see from Equation (6-43) that

Uny2
Un

Api2
an

x2

But from the recursion formula for Legendre’s equation, we see that

Qny2
an

Lim =1
R—> 0O

Therefore, the interval of convergence for Legendre’s equation is when x* < 1
orl x| < 1. Thus, in the interval —1 < x < 1, the solutions to Legendre’s equa-
tion are significant. Moreover, we find that if £ in Legendre’s equation is a pos-
itive or negative integer (including zero), the Legendre polynomials will re-
main finite for all the allowed values that the cosine of an angle can have
{(including the endpoint values x = cos & = £1),

7-4 MACLAURIN AND TAYLOR SERIES

In this chapter we consider several methods of expanding functions in infinite series.
Two, which are particularly useful in physical chemistry, are the power series known
as the Maclaurin series and the Taylor series. Let us consider the Maclaurin series first.
Suppose that a function f{x) can be expanded in a power series '
fx) =ag+ ax + & + azx’ + -+ (7-2)

Further, suppose that the function has continuous derivatives of all orders. Let us
evaluate f(x) and its derivatives atx = 0.

Fx) =ap+ ax + apx” +azx® + - FO) = aq

1) = ar + 2(Dazx + GYDasx® + -5 f O =@

) =2Ma + G2y Mazx +- -5 f'0) =2la,

frix)y =nla, + (0 + Dagx + -5 {0y =nla,
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Substituting these values for the coefficients back into Equation (7-2) gives

Fx)=fFO)+ f(0x+

f"(0)

T bt

%x" N )

which is known as the Maclaurin series. To illustrate the use of this series, let us ex-
pand the function f (x} = sin x in a Maclaorin series.

Fx) =sinx
f(x) =cosx
F(x) = —sinx
efc.
o %
Sin x = X — 5 =+ 5 -

f@=0
foy=1
ff=0
x'?
ﬂ_l_—...

ProeLeEm. Expand the function In (1 + x) in a Maclaurin series.

Sx)=In(1 +x)

oy 1

f(x)-~——1+x
y _ —1
7=y

etc.

2

1n(1-|-x)=x—x—+

2

X

fh=0
FO)=1
f”(O)ﬂ -1
3
? _+ N

Consider, now, a function f (x) that can be expanded in the series

f=ag+ax—a)+ealx—a)’+eax-a)P+.-- (7-4)

where « is some constant. Assume, as we did above, that the function f(x ) has con-
tinuous derivatives of all orders. Let us now evaluate this function and its derivatives

at x = q, rather than at x = (.

f(x):co+cl(x—a)+c2(x—a)2+c3(x—a)3+~-;f(a):cg
Ff@ =c+20x—-a)+3ax—al+---; fla)y=q
S @) =20+ B2 Meslx —a) + -+ f{a) =21,

frx) =nle, + (n+ Dl yx — a) + -

- fay=nlg,
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Substituting these values for the coefficients back into Equation (7-4) gives

@ @)

2
e —al e

x—a)"+--
{(7-5)

f)y = f@+ f@yx —a)+
which i1s known as a Taylor’s series.

ProsLem. Expand the function f (x) = ¢* in powers of (x + 2). Since f{x) = &
and (x + 2) = (x — @) or g = —2, we have

flxy=¢* fl@y=e

f)=e fllay=e?

ffxy=e fla)y=e?
etc.

f(x):e“2[1+(x+2)+%(x+2)2+é(x+2)3+---]

7-5 FOURIER SERIES AND FOURIER TRANSFORMS

One of the most common mathematical tools in chemistry and physics is the Fourier
transform. Fourier transforms are mathematical manipulations that reorganize infor-
mation. They arise naturally in a number of physical problems. For example, a lens
is a Fourier transformer. The human eye and ear act as Fourier transformers by ana-
lyzing complex electromagnetic or sound waves.

A Fourier transform is performed with the use of a Fourier series, expressed
in its most general form as the sum of sine and cosine functions

. 1
fay= Zn ,dn sinnx + Sho+ En by cOS nx (7-6)
where
1 {7 1 f7
a, = — f(x)sinnxdx and b, = — flxycosnxdx - (1-7)
TJo .

The coefficients are found from the orthonormal behavior of sine and cosine func-
tions, which we will discuss later in the chapter. Fourier series differ from power se-
ries expansions in at least two important ways. First, the interval of convergence of a
power series is different for different functions; the Fourier series, on the other hand,
always converges between —m and 4. Second, many functions cannot be expanded
in a power series, whereas it is rare to find a function that cannot be expanded in a
Fourier series.

It is sometimes useful to change the range of the Fourier series from (—x, ) to
(L, L). This is accomplished by replacing the variable x in Equation (7-6) with
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wx/L, giving

,oarx 1 nTx
flx) = Zn:an sin ——= + ~by + Zn:bn cos —= (7-8)
where now
1 ftL +L
wm=7 [ f@sin f?dx wd b=y [ fooeos MTxdx (7-9)

We saw in Chapter 1 that a sum of sine and cosine functions also can be represented
as a complex exponential. It is easy to show, therefore, that another form of the
Fourier series is

+oo
fx = Z cpe "L (7-10)

where ¢, = 3+ f_+LL F(x)e w2/l gy Note that, in this case, the coefficients are com-
plex. This series, however, will represent only functions that are periodic. It is possi-
ble, though, to modify Equation (7-10) to represent functions that are nonperiodic,
Let k = nn/L. Now, let us see what happens if we allow L to go to infinity. As L gets
larger and larger, k changes in smaller and smaller increments with each change in n:
Ak={(n/L) An.In the limit that Ak goes to zero, k becomes a continuous variable and
the coefficients ¢; can be described as a function of &, ¢(k). Therefore,

+00
flx)y= Lli_{l;g ;cne’””x”‘ An
2 Le(k) eikxAk-
i1

16 = fim, 2
But this is just the definition of the iﬁtegral. Letting Le(k)/m = g(k)/~/2n, we have

1 +o0 )
= et dk 7-11
£ \/z_ﬂf_mg()e (7-11)
and ] +00 .

g(k)=E . Fx)e ™ dx (7-12)

Equation (7-11) is called the Fourier integral, and f(x) and g(k) are called Fourier

transforms of ong another.

ProsLem. Find the Fourier transform of the function

0; x < —nL
2
f(x) =1 sin __sz; —nL < x < nlL
0; x >nl
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The Fourier transform of this function is

1 l o dpx
(k) = — sin ——— e~ gx
d 2 Jont L
Note that since the function equals zero outside the range (—nL, nL), we need only to
integrate from —nrl to + nlL, rather than from —oo to +oo. If we let ¢ = —ik and

b =27/L, this integral becomes fe™ sin bx dx, which can be found in the Table of
Integrals in Appendix IL Therefore, we have

gk) = L ( ! ) [e“(a sinbx — bcos bx)]+"L

2z \a* t b2 —nL
+nL
1 1 . 2mx 2T 2mx
= ——— | —— —ikx —fksin == [ == “tr
gk) \/Z_yr(a2+b2) e (z sin — (L)cos L)
—nl

Substituting the limits of integration into the integral, we have

1 1 ; 2
glk) = Wi (m) gkl (—ik sin27n — (%) Ccos 2nn)
V2r

—eknl (—ik sin(—27#n) (2%) cos(—27rn))

But sin(27n) = 0 = sin(—27x) and cos(2 wn) = cos(—2xn) = 1. Therefore, we can

write
1 i . 27 . 2T
= — | — ikl | 27 +iknLl | 2%
glk) ﬂ(a2+b2)[e (L)+e (L):I

___1_ 1 27N L | kel
g(k)—Jz_:r(a2+b2)(L)[e +te

From Chapter 1, [e* — e=#L] = 2i sin (nkL). Also a? + b2 = 42 _ g2 — #2H12
Substituting these into the equation for g (k) gives

(A2 L
g(k)=42h/_”

m sin(nkL)

Simpler forms of the Fourier series are possible. For example, if the function

to be expanded is an odd function about x = 0, that is, f (x) = —f(~x), then the b co-
efficients in Equation (7-6) vanish and the Fourier series becomes

f&) =) a,sinnx _ (7-13)
n=] X .
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where
2 i3
ay = / fx)sinrnxdx (7-14})
T Jo

Likewise, if the function f (x) is an even function about x = 0, that is, f (x) = F(~x),
then the a coefficients in Equation (7-6) vanish and the Fourier series becomes

. . 0
F@)=35bo+ ;bn cos nx (7-15)
where
2 K3
by, = —[ f(x)cosnxdx (7-16)
T Jo

Consider, now, another set of functions that can be used as the basis set for a
Fourier expansion. The wave-mechanical solutions to a particle confined to a one-di-
mensional box between x = 0 and x = L are

2 . nmnx
h= 2t o

where n is a positive integer (not including zero). These solutions have at least two
very important properties. First, the solutions are said to be normalized. The condi-
tion for normalization is

f Vi dr =1 . (7-18)

: all spuce
where y* denotes the complex conjugate of ¥ and dr is the differential volume el-
ement. Second, any two different solutions are said to be orthogonal. The condition
for orthogonality is

[ wrwde=o (7-19)

il space
Taken together, these conditions are said to form a complete orthonormal set, some-

times designated as
R ; l,i=j
f Vi dt = &3 5!’;':{0, it (7-20)
all spave

The term &;; is calted Kronecker delta.
We can use this complete set as the basis set for a Fourier series expansion of
any function in the interval from 0 to L. For example, let us expand the function f {x)
= 3x in a Fourier series, using the solutions of the particie in the box as the basis set.

flx)= ;anllfn = Zﬂ:an@sin MTX (7-21)
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To find the coefficients, we make use of the orthonormal properties of yr. Let us mul-

tiply through Equation (7-21) by ¥* and integrate over all space (in this case from
Oto L),

L L L
/0 vk f(x)dx=f Yo Y nndx =f D ant v dx
0 7 0 7y

But the integral of a sum is the sum of the integrals.

L L
n/(;zanw;wndx=z:an£ w:,'/’ndx

Every integral in this summation will vanish, except when n = m, in which case the
integral is equal to 1, Thus, we can write

L L
. :f ¥ F(x)dx -_—1/—2-f £ sin 22F gy (1-22)
0 L Jy L

For the function f(x ) = 3x, Equation (7-22) is

2 L
am=3,f~L~fo xsin%dx
/2 12
= =3,/ =] — | (-1)"
é L(nn)( )

Using these coefficients, we now expand the function in a Fourier series

which integrates to give

6L
f@) =30 (=1 sin

H

fay==

6L(_nx 1 . 27x 1 . 37x )

sin

T

A graph of the first five terms of this series, along with a graph of the original func-
tion (dashed line) between x = 0 and x = L, is shown in Fig. 7-1. (Since the function
is plotted in fractional units of L, the graph actualy is from x = 0 to x = 1.) Note that
even with only five terms in the Fourier series, the series does a pretty fait job of fol-
lowing the actual function. Of course, more terms in the series will give a better fit.
The series does struggle to fit the function as x approaches L, since the actual func-
tion is discontinuous at that point, while the series goes to zero. This, however, is nor-

mal when one attempts to approximate a nonperiodic, discontinuous function with a
sum of sine waves.
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3F

Figure 7-1 Graph of first five terms of the Fourier series expansion of the function f (x)
= 3u, along with graph of the actual function (dashed line).
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PROBLEMS

1. Using the comparison tests, determine whether each of the following series are conves-
gent or divergent:

(@ l+34+54+7+94+--

3 3 3 3 3
®2+2'6T8 o
R S S

12 - 2(3) () 4(5)

11
d — 4 —
@ 1+= +6+12+ +-

i
1 —
© +2-+3+4-+y+

(f) 2+3+4+£+6+
17273747577

Problems

3.9 27 81
T+ 4+ 2+ g
(® 1+ +4+8-fm+

1 1 1 1
hy -+ — -
()4+12+3+108+324+

34
T

i1 1 1
1 L
4} +3+42+5 i

W =+

2 TEtatEt

+-.-.

1 1 1 1

(a)5+22 ?+?+?+m
32 3% 3 35

b)) 3+ -+ 4+ 1 4.

() sttty st

1,2 3 4 5
C - — — - —
()2+3+4+5+6+

22 2P 2
(d) 2+2—2+¥+E+5—2

22 32 g2 32

pratpt

4.
@)l+
® 3+ +7+ 7+

ey 2 2
) 5+ 3 + 2 tst

11 1 1 1
h) — + — + — 4+ — 4 .
()m+6f+m+1ﬂ+1m+
1 34
M 1+-4+ = 4

2tptEta
1 22 32 g2 3

. Determine the interval of convergence for the following power series:

@ l+x+x2+x+...

b) 1-2x+3x%*—4x*+—...

x2 x3
(c) 1+x+2+§+
2 3 4
X X X
d) -+ _F .
@ x—=+= e
4 .6
© 1-x+= -2 4
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- Using the ratio test, determine whether the following series are convergent or divergent:
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h

13

o

oL

9.

10,

1

[

Chapter 7 infinite Series
1 1 1
® x- §x3+§x5—§x7+--~
x3 x5 xT
@ x-—gtg-—F+—

1 1
W) == 30 D24 5= P = D b=
2 3 4

AR T A
24

@ 1+ 8 16
M 1+E+D+E+2P +x+22 4+

Expand the following functions in a Maclaurin series:
1
1+x
1

(b) T
© A+x'7?
(d) In(l —x)
® e
0 &
(g) cosx
(h) (x+1)°
Show that, for small values of Xp, In(1-Xp) = —Xp.

(a)

Show that, for small values of 6, sinf = 8.

Show, by expanding sin x in powers of (x — a), that the series converges most rapidly as
x approaches a. :

4
Evaluate the integral / e~ dx by expanding the function in a Maclaurin series (first 8
0

terms).

) 2, nmx
Show that the solutions to the particle in the one-dimensional box, ¥, =,/ — sin —,

L L
are orthogenal and normalized,
Find the Fourier transform of the function

0; X < —7
fxy=1x —-w<x<=nx
; I>%

Find the Fourier transform of the step function

0; x < —L
fxy= %; —L<x<lL
0;

x>1L
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12. Of the Fourier transforms that occur throughout mathematics, chemistry, and physics, per-

13.

haps the most striking are those that occur in the areas of diffraction. For example, we can
use a Fourier transform to reorganize the information found in an X-ray diffraction pat-
tern and retransform it back into an *“image” of a crystal. Consider the following one-di-
mensional crystal structure problem:

Fy = +52.0 F3 = 4258
F1=-200 Fq4=-89
F,=-145 Fs =172

For a centrosymmetric wave (that is, a wave that is symmetric about the region of space
in which it exists), the Fourier series is

fxy= R+ Z F, cos2nnx (n=1toc0)
n

where F; represents the Fourier coefficients given above. Plot f(x) fromx = 0tox = 1 in
steps of 0.05 and show that the first six terms approximate a one-dimensional unit cell
containing two atoms, one at x = 1/3 and the other at x = 2/3.

The step function

—-1; ~-w=x<0
mz{

+1; Q<x<m -

can be described by the Fourier series f(x) = Z a, sinnx, where
n

2 T
Gp = —[ Fx)sinnx dx
T Jo

Plot the actual function from —x to 4+ and compare it to a plot of the Fourier series con-
taining the first five nonzero terms,
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Scalars
and Vectors

8-1 SCALARS

A scalar is defined as a quantity that remains invariant under a coordinate transfor-
mation. For example, consider the two points (4, 5) and (1, 2) located on the coordi-
nate system shown in Fig. 8-1(a).: The distance between the two points, S, can be
found using the equation

S=Va—x2+m-nP=vVR+32 =32

Suppose, now, we allow the coordinate axes to be rotated about the origin
through an angle of 45°, giving the new coordinate system shown in Fig. 8§-1(b). The
coordinates of the two points in this new coordinate system are ( —\/5/2, 9ﬁ/ 2)and
(—+/2/2,3+/2/2). (See Chapter 10, Section 5.) The distance between the two points
can be found by again using the preceding equation; thus,

§' = G = 5P + (5 = ) = YO+ (=32 =372

Note that although the coordinates of the points changed under the coordinate trans-
formation, the distance between the two points remained unchanged. Thus, the dis-
tance between two points is a scalar quantity. Other examples of scalars are mass,
temperature, and speed (not velocity).
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- 4.5

(a) )]

Figore 8-1 Invariance of scalar under coordinate transformation.

8-2 VECTORS AND THEIR ADDITION

Quantities that do not remain invariant under a coordinate transformation are called
vectors. A vector is defined as a quantity having both magnitude and direction. Thus,
velocity, which is a vector, has a magnitude, known as speed (10 m/s), and a direc-
tion (10 m/s along the x-axis). This is easily verified when one considers that to
change from going, say, 20 miles per hour in a northerly direction to 20 miles per hour
in a westerly direction (constant speed), a force must be applied to the wheels of the
car. Since a force is always associated with an acceleration, and an acceleration is a
change in velocity with respect to time, the velocity of the car must change even
though the speed is constant.

Since vectors are guantities having both magnitude and direction, the sum of two
or more vectors also must include these properties, One method of adding vectors is
to use the so-called parallelogram rule. Consider two vectors A and B, represented by
arrows on the coordinate system shown in Fig. 8-2(a). It is customary to let the length
of the arrow represent the magnitude or absolute value of the vector (a scalar quantity)
and the direction of the arrow to represent the vector’s direction. To add A and B, we
simply construct a parallelogram, as shown in Fig. 8-2(b). The sum of the two vectors
A and B, then, is the length and direction of the diagonal of the parallclogram.

Unit Vectors. Once we know how to add vectors, we find it much more
useful to represent a vector in terms of unit vectors lying along the axes of the coor-
dinate system. (It is not necessary that the unit vectors lie along the coordinate axes
in all coordinate systems.) Let us define i, j, and k as unit vectors, vectors having a
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4
e

A
B
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X

)] )]

Figure 8-2 Vector addition by the parallelogram method.

magnitude (absolute value) of unity, lying along the x-, y-, and z-axes of a Cartesian
coordinate system.' Using the method of addition described above, we find that any
vector A can be described as the sum of multiples of these unit lengths, i, j, and k.
Thus, we can write

A =ia, + ja, + ka, (8-1)

where a,, a,, and a, are the scalar muitiples. In terms of the scalar multiples, the mag-
nitnde or absolute value of the vector and its direction can be found using the trans-
formation equations for plane polar coordinates [Equations (1-5) and (1-6)], if the
vector is confined to the x-y plane, or the transformation equations for spherical polar
coordinates [Equations (1-9), (1-10), and (1-11)], if the vector lies in three dimen-
sions. In three dimensions we have

|Al = (a2 + & +ap'?

a

6 = cos ! ——r i
(@2 taital)il?

from the z-axis
: (8-2)
¢ = tan”! (a_y) from the x-z plane

a:

Example

Determine the magnitude and direction of the vector A(3, 4, 3) = i(3) +
j(4) + k(3), illustrated in Fig. 8-3.

'Some texts designate the unit vectors as i, j and k (read “i-hat,” “j-hat,” and “‘k-hat”).

Section 8-2 Vectors and Their Addition 113
2
A
F L A
I~ k(3)
i) \\l 1 1 | Ll 5y
¢ -~ ‘\‘-~ -

Figure 8-3 Vector A(3, 4, 3) =i(3) + j(4) + k(3).

Solution:

Al = V32 + 4 13 = V34

1

§ = cos™ = 59.04° from z-axis

3
/34
4
¢ = tan~! (5) = 53.13° from x-z plane
To consider the sum of two vectors by a nongraphical method, we must con-

sider the component vectors along each axis separately. Consider, as an example, two
vectors A and B lying in the x-y plane

A=i1)+j@ and B=i(2)+j(1)

The sum of the two vectors is simply the algebraic sum of the scalar multiples
along each component axis. That is,

A+B=i(a; +b) +ilay +by)
= i(l+2+j2Z+1)
= 13) +13)

We see that, indeed, A + B is a new vector C == i(3) + j(3). Td find the mag-
nitude and direction of C, we use the transformation equations for plane polar coor-

dinates
IC] = V3 +32 =32

3
# = tan™! (—) = 45° from the x-axis
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A general expression for the addition of vectors in two dimensions is, therefore,
Al+Ao+As+ =13 a+iy g (8-3)

and for three dimensions it is

A+ A+ A+ =1) at+i) atk) e (8-4)

Example
Find the sum of the three vectors A(1, 1, 2), B(—1, 2, =3), and C(2, —1, Q).
Solution.

A =i(1) + (1) +Kk(2)
B=i(—1)+j2) + k(-3)
C =i +j-1)

Ya=1-1+4+2=2
Zay=1+2—1=2

Y a=2-3=-1

A+B+C=i2)+j2)+ k(-1
Magnifude = /22 + 22 4 (-1)2 =3

-1
8 = cos™! (T) = 109.47° from z-axis

Thus,

2
¢ =tan™" (5) = 45° from x-y plane

8-3 MULTIPLICATION OF VECTORS

There are at least two ways to multiply vectors. The first way is to find the scalar or
“dot” product between the two vectors. The second way is to find the vector, or “cross”
product, between the two vectors. We shall consider scalar multiplication first.

Scalar Multiplication. The scalar, or “dot” product, is defined by the
equation
A-B=|A||B|cosfsp (8-5)

where 04z is the angle between A and B. This product (read “A dot B”) is called
the scalar product because the result of this multiplication yields a scalar. To see this,
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consider first the scalar products between the unit vectors i, j, and k. Since the angle
between any two unit vectors in Cartesian coordinates is 90°, and the magnitude of
the vectors is unity, we can write

iri=1 jri=1
i-j=0 j k=0 (8-6)
i-k=0 k-k=1

Such vectors obeying Equation (8-6) are said to be orthogonal. In general, we
can state that if two vectors g; and g are orthogonal unit vectors, then

1fori=j

Ofori # j @-7)

q; q) = 5,'}' where 5” = {

We recognize 8;as Kronecker delta (see Chapter 7). :
Consider, now, the scalar product between two vectors A = ia, + ja, + ka,and
B = ib, + jb, + kb,

A - B = (ia, + ja, + ka,) - (ib; +jby +Kkb;)
=acbi-i+achyi-jtabi-kK+aybj-i+aybyj-j+abj k
+ abk-i+abk - j+abk -k
Taking into account Equations (8-6), we have
A-B=ab,+ab,+ab, (3-8)

which, indeed, is a scalar.

Example
Find the scalar product between the vectors A(1, 3, 2) and B(4, —4, 1).

Solution.
A=i(1)+j3) + k(2)
B =i(4) + j(—4) + k(1)
A'B=1(4) 4+ 3(—4)+ 2(1) = -6
Vector Multiplication. The vector or “cross” product is defined by the
equation
A X B = |A||B|Csinfap (8-9)

where 8,5 is the angle between A and B, and C is a unit vector perpendicular to the
plane formed by A and B. This product is called the vector product because the result
of the multiplication is a vector. To obtain the direction of A X B (read “A cross B”),
the “right hand rule” can be used. This rule states that if the fingers of the right hand
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A

AXB

Figure 8-4  Vector product A X B per-
pendicular to the plane formed by vee-
tors A and B,

rotate A into B through the smaller angle between their positive senses, the thumb
will point in the direction of the cross product, shown in Fig. 8-4.
With this in mind, let us determine the vector product between the unit vectors
i,j,and k.
ixi=0 iXj=k ixj=0 (8-10)
jxk=i kxk=0 kxi=j

From these, we can obtain an expression for the vector product between vectors A
and B.

A X B =(ia, + ja, + ka,)) X (ib, + jb, + kb))
=abixXitabixXj+abiXk+tabjxXitab,jXj
b ab i X k+abk X i+ abk X j+abk X k
Taking into account Equations (8-10), we have
A X B=iab, —ab)+ jlah, —ab)+klab, —ah,) (8-11)

A convenient way to remember A X B is to express it in the form of a determinant
(see Chapter 9):

i j k
AXB=|a, a a
by by, b,

Example
Determine the vector product between the vectors A(4, 3, 2) and B(—1, 2, —3).
Solution.
A=i4)+j3) + k(2)
B =i(—1) +j(2) + k(-3)
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i k
AxXxB=| 4 3 2
-1 2 =3

A X B =i[3(=3) — 2(2)] — j[4(=3) — (—=1)2)] + k[4(2) — (- 1)(3)]
= K(—13) + j(10) + k(1)

8-4 APPLICATIONS

In this section we shall consider examples that demonstrate the application of vector
analysis to physicochemical systems. The subject of vector operators is discussed in
Chapter 10.

1. The interaction between the magnetic moment of a nucleus, p, and a magnetic
field, H, is given by the equation

E=—-p+‘H

Let us determine the components of energy associated with the interaction
along the x-, y-, and z-axes. Since

W=, + e, + K,

H=iH, + jH,+ kH,
then

w-H=pH +upuH +pH,
Also, since
E=E +E+E
we can write
E,=—-uH, E,=—pH, and E =-—pH

Note that although both g and H are vectors, energy is a scalar.
2. The torque exerted on a nucleus having a magnetic moment p in a magnetic
field H is

T=-pxH
Torque, however, is the rate of change of angular momentum, dL/dt, where
L =iL, +jL, + KL,
and
dl. . dL, .dLy dL,

s Ly 1k
ar Ve TR
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Let us determine the torque on the nucleus along the x-, y-, and z-axes. Since

dL
= - X H
ar . ®
i j K
MXHZ My Hy Mg
H, H, H,

nXH = i{Msz - ,(,LZHy] — e Hy — g, Hy] + k[ﬂxHy — wy ]
= i[ﬂsz =ty Hy ] + g,y — g H,] + K[, Hy — l—Lny]
-nxH= i[.u'zHy = pyH] + L Hy — po Hy] + k[Mny ~ by Hyl

dL, dL
dr = U Hy — puyHy,

dL
-Zi?y- = pH, — pi, H;, and d—; = p Hy — pyHy
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PROBLEMS
1. Determine the magnitude and direction of the following vectors:
(@ A(,3) @ A1, 1,3
(b} A2, 2) (g) A2,3,4)
{c) A3, —% (h) A(-1,2,-1)
{d) A{—2,0) ) A(-1,-1,-3)
(e) A(—1,—6) gy A(1,0,-1)
2. Determine the magnitude and direction of the following sums:
@ A(L3H+BE 1) ) A(1, 1, Y+ B(2,3,4)
by A(—1,2)+ B2, 2) (e) A(-2,3,4)+ B(-1, -4, —-6)
{c) A3, -1+ B0, 4 ) A(2,0,3)+B(-3,6,-9)
3. Find the following scalar products:
{a) A(1,3)-B@3, 1) (@ A1, 1, 1H)-B(2,3,4)
by A(—L, 2)-B(2,2) (e) A(—2,3,4)-B(—1, -4, —6)
© A(3,—-1)-B(0,4) & AC,03)B(-3,6 -9
4. Find the magnitude and direction of the following vector products:

(a) A(1,3) x B3, 1)
(b) A(—1,2) X B(2,2)
(© A(3,—1) x B(0,4)

@ A(1,1,1) x B(2,3,4)
€ A(=2,3,4) x B(—1, -4, —6)
) A{(2,0,3) x B(-3,6, -9)

!
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. Show that

A+B+O)=A+B)+C

. Show that scalar multiplication is commutative and vector multiplication is not. That is,

A‘B=B-A but AXB£BxA

. Show that

A-A= |42

- Angular momentum is given by the equation L = r X p, where r = ix + Jy + kzis the ra-

dius of curvature and p = ip, + Jjp, + kp, is the linear momentum. Assuming that
L=il, +jL,+ kL,

find the components of angular momentum in the x-, y-, and z-directions.

, Show that the vectors A = %ql + %qz + %q3 + %q4 and B = %ql - %qz + %q3 - %q4,

where q,, gy, g4, and q, are unit vectors, are orthogonal.
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Matrices and
Determinants

9-1 INTRODUCTION

In certain areas of physical chemistry, it is convenient to utilize a two-dimensional
array of numbers called a marrix. Matrices may be either square, containing an equal
number of horizontal and vertical lines, or they may be rectangular. The horizontal
lines of the matrix are called rows, while the vertical lines are called columns. A ma-
trix with m rows and n columns is represented by the expression

anl a3 o A

a21 daz  da3 -+ G2p
A= . . . .

il mz Om3 '+ Opn

where a; = a,), a2, @13, . . . are known as the elements of the matrix. Such a matrix is
called either a matrix of order (s, n) or an m x n matrix. The simplest forms of ma-
trices are the row matrix B and the column matrix C:.

Cl

2
B=(bl bg b3 bn) and C=

Cn

Matrices have some very useful properties and an algebra all their own. However,
before going into these, let us first concentrate on one specific type of matrix, the
square matrix.
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9-2 SQUARE MATRICES AND DETERMINANTS

As mentioned, a square matrix is one having an equal number of rows and columns.
The number of rows or columns in a square matrix is called the order of the matrix.
Hence, a third-order matrix is one having three rows and three columns.

Associated with every square matrix is a real number called the determinant of
the matrix. The determinant of a second-order matrix is defined as

a b

D:cd

‘ =ad — bc (9-1)

where a, b, ¢, and d are the elements of the matrix. It is important to note that the
matrix itself has no pumerical value. Only the determinant of the matrix can be as-

signed a specific value, To illustrate the use of Equation (9-1), consider the following
examples:

Examples
(a) Evaluate the determinant 4 ; ‘
Solution:
31
‘4 2.=3(2)—4(1)=2
(b) Evaluate the determinant -1 _2 ‘
Solution:
5 6
}_1 _4J = 5(—4) — (—1}(6) = —14
(¢) Evaluate the determinant sin ¢ CF)SG .
—cosf  sind
Solution:

sinf cos@| ., 24
’—cos() sine‘_sm f+cosc 8 =1
In order to evaluate determinants of orders higher than order 2, we use the
method of cofactors, described as follows. Consider the determinant

a11 diz a3
D=|ay an an
a3 a3; a4
The cofactor of element a;; is equal to (—1)** multiplied by the determinant that is

formed by eliminating the ith row and the jth column from the original determinant.
The determinant then is expanded by summing together the elements multiplied by



ay
D= any
[2%]1

cofactors.,

Example

O =

|
el e - ¥
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dipp dp3
dzy  dz3 | = a1l
a3z 433

Evaluate the determinant

Solution.

Matrices and Determinants

a2 a3
dzy a3

21
az  dsz

1 4 3 2
6 1 1 3
-1 4 5 6|

1 2 -3

Expanding by cofactors, we have

their cofactors for any row. Hence, using the first row, for example, we can write

dz dn

a13
a3 a3

Similar expressions are possible using the elements of the second row or third row as

If each new determinant that results in the expansion by cofactors is one of
higher order than 2, then the process is repeated for each of these determinants until
the resulting determinants are of order 2. Since, in this example, the resulting deter-
minants are of order 2, we have

D = ay(aptns — aan) — ap(ayasy — da1ay) + a3y as — asay)

? g 11 3 6 1 3
s ool=wle s —s|-w|-1 5 -6
- - 2 2 -3
> 12 -3
61 3 6 1 1
+3|L1 4 -61—@) -1 4
2 1 -3 21 2
5 —6| |4 —61 _|a 5 5 —6
=15 St et 3
1 -6 15 4 —6
+4|”) _3|—12‘ ; 2’-1—18‘1 3‘,
1 6| -1 4 45 15
-3, —3‘+9 2 1‘_121 2‘*2’ 2 2‘
~1 4
—% 2 1'

= 1(=3) — 1(=6) + 3(3) — 24(=3) + 4(15) — 12(—12)
+ 18(—6) — 3(15)+9(=9) — 12(3) + 2(~12)

—2(=9) = 12
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9-3 MATRIX ALGEBRA

Let us turn now to several rules that govern the properties of matrices and their de-
terminants. These rules are presented without proof.

1. Ifthe corresponding rows and columns of a square matrix are interchanged, the
determinant of the matrix remains unchanged.

air dyiz ais air da an
a1 dx dxp|=|d12 dyp dip
ds; dzp amn a3 4y dsz

2, If any two rows or columns of a determinant are interchanged, the sign of the
determinant changes.

aip ap a3 a4y dz
a1 4 an|=-—|ay dyy an
az a3z axn ai31 di3 dyn

3. If any two rows or columns of a square matrix are identical, its determinant is
zero.

ap an an
a1 ay axp|=10
aszy di3p das

4. Ifeach element in any row or column in a determinant is multiplied by the same
number k, the value of the determinant is multiplied by k.

an diz  amn an diz dan
kagy kap kap|=klan apn axn
@3] a3 25k] @3] az a3

5. Ifeach element in any row or column in a determinant is mudtiplied by the same
number k and the product is added to a corresponding element in another col-
umn, the value of the determinant remains unchanged.

aiy +kaiz ap aps ait a1z da
aun +kap apn as|=lan ap an
an t+kay ay axn a1 an an

6. Two matrices are added by the addition of their elements.

@ apy by b _ fau+bu an+bp
a2 dp by by a1+ b an+by
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7. Two matrices are multiplied according to the following method.:

air @2 an biy bz bis
aa1 axp A by b by | =
a3 aym 033 by b3y b

agi by + a2 by v ax by au bz +am b+ as b an b+ ag bas + a3 ba

an by Faz by taiz by enbiatanbntanbn au b +apgbs a3 b
as; by +asz byy Fasa by a3t bz +am b+ ax by a3 by +asz oy +az bas

We find from experience that matrix multiplication is defined only if the num-
ber of columns of the first matrix equals the number of rows of the second matrix.
Moreover, if A is an m x r matrix with elements a; and B is an r x n matrix with el-
ements b,, then the resulting product C = AB will be an m x n matrix with elements

cij = Z aiibyj

k

ifr

It is important to note that, of the seven rules given above, this seventh rule should be
stressed as the most basic matrix property, since as a natural consequence of this
method of multiplication, we find that matrix multiplication is not necessarily com-
mutative. That is, AB does not necessarily equal BA. This basic property of matrices
ultimately led Werner Heisenberg and Max Bom to what we now refer to as the
Heisenberg uncertainty principle.

Examples
@ (1 2)(5 8\ (1®+2D 1@ +2®)_ (19 22
3 4 7 8) 3(5)+4(7) 3(6) + 4(8) 143 50
(b) (dn alz)(m):(fln 6112) (Cl 0)=(011€1+61262)
a1 O C2 @) anz e 0 as ¢1 + a2
) (& “2)(2):(% %2)(2 8)=(a1ci+azcz)

A special type of matrix multiplication occurs when the matrices have nonzero
elements in blocks along the diagonal. For example, consider the multiplication of
the matrices

oo O =
o B e B Jf SN S0}
o OIS @
wm = oo
oo OO
o O O W
oo OO W
o oo o
el Y = el ]
[FSINT Lo o i e
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In this special case each set of blocks can be multiplied separately: -
1 2V(-3 -3)_(5 -3
3 4 4 0/ \7 -9
®)(2) = (16)

(5 ) (2 2)=(% )

giving the answer

5 -3 0 0 0
7 -9 0 0 0
0 0 16 0 o©
0 0 0 0 11
0 0 0 -26 23

Amatrix having nonzero values for elements along its diagonal and zero for all
other elements is known as a diagonal matrix. When the nonzero values along the di-
agonal are equal to unity, the matrix is called a unit marrix. Hence, a 3 x 3 unit matrix

1 0 0
I=10 1 0
001

We can show by matrix multiplication that if A is any matrix, then
1A=A
‘ If A is a square matrix and the determinant of A does not equal zero, then A is
said to be nonsingular.! If A is a nonsingular matrix, then there exists an inverse ma-
trix A~! such that : '
AT'A=AA =1

The inverse of a matrix can be found by solving the equation A~'A = 1. Examples of
a nonsingular matrix and its inverse are

(70) = (40)

'A singular matrix is defined as one whose determinant is equal to zero. -
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9-4 SOLUTIONS OF SYSTEMS OF LINEAR EQUATIONS

Consider the following set of linear equations

Section 9-4 Soiutions of Systems of Linear Equations

previous section Dx; remains unchanged.

a X + axz + dpaxs +

;1% 4 GyXy + ApzXs +

et ax, =0
e dyk, =€

(9-2)

Q%) F Xy + Gl - F Xy = Gy

We can easily show that the set of Equations (9-2) can be represented by the product
of two mafrices

ay;p a2 a3 - die X1 4]
dy) 4y dzy v O X2 2

= ’ (9-3)
] Qup2 dpy ' dpe Xn Cn

The determinant of the coefficients is

ap] diz 413 - Al

ax , axp dp v G
D =

dpy Uy ap3 -+ Oy

From Rule 4 in the previous section, we can write

anxy a1z a1z - Gip

dnXxy axp G 4y
Dx1 =

ap1X1 dp2 gy - gy

If we now multiply each element in column 2 by x,, each element in column 3 by x,,
and so on, and add these to column 1 in determinant Dx,, then by Rule 5 in the

apxy +apx: + -+ apXe Q12 413 Qin
anx) & anxy + -+ dwmXy Gn  an a2n
Dxt =
QX1 + Ap2X2 +--+ GpnXp Gp2  Qp3 tyy
Substituting for column 1 the Equations (9-2), we have
€1 41z di3 - Qi
€y dax dupy - Qg
Dx1 = = Dl
Cp Op2 dp3 e GQpp

By the same argument used for column 1, we can write Dx, = Dy, Dxy = D5, and so
on, where I); is determinant D in which the elements in column { have been replaced

by ¢y, €2, €3, €4, ..., etc. Hence, if D # 0, we have the solutions to the set of equa-
tions
D, D, D3 d
X=—, Xp=—, X3=—, andsoon
1= 1= 5 1T

This method of solving sets of linear equations is known as solution by Cramer’s rule.

Example
Sclve the following equations using Cramer’s rule:
x+y+z=2
3x+yv—2z=-5
2x—y—3z=-5

Solution. 'We first set up the determinants:

G| 2 1
D=[3 | -2/=-5 Dj=|-5 1 -2/=-5
2 -1 -3 -5 -1 -3

1 2 1 1 .
Dy=|3 -5 =-2|(=10 Dy =3 1 —5({=-15
2 -5 -3 2
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-5 10 —15
= =1 E -] = =73
eI Y=75 SR

Consider, now, a special set of linear equations that are all equal to zero.

apx; + oapxy; +apxs + -+ oapx, = 0
GuX + GXa + apiz o+ -0 gy, = 0

(9-4)

an1Xy + A,0X75 + @3y + o+ QueXy = 0

Writing these equations in matrix form, we have

a4 diy v+ Qe X1
dy dyp Az Ay A2
=0
ul dpz Qpy -+ lap X
or
Ax=10

If we tried to solve this set of equations using Cramer’s rule, we would obtain a trivial
set of solutions x; = x, = x; = - - - = x, = 0. If we wish a nontrivial set of solutions,
that is, a set of solutions for which x is not equal to zero, then A must be singular. Re-
call that a singular matrix is one whose determinant is equal to zero. Let us explore
this idea further by looking at the chdracteristic equation of a matrix.

9-5 CHARACTERISTIC EQUATION OF A MATRIX

Consider a set of linear equations, such as those described in Section 9-4, written in
matrix form as

Ac = Ac {9-5)

where A is a set of scalar constants, called the efgenvalues of matrix A, and ¢ is a col-

umn matrix, a vector (see Chapter 8) called the eigenvector, belonging to matrix A. The

only effect that matrix A has on matrix ¢ is to multiply each element of matrix ¢ by a

constant scalar A, It is easy to show, then, that ¢ and Ac are parallel vectors in space.

Thus, the constant scalar factor A changes the length of the vector, but not its direction.
Equation (9-5) can be written as

(A—X)c=0 (9-6)
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We saw in Section 9-4, however, that in order not to obtain a trivial set of solutions
to the linear equations represented by Equation (9-6), thatis, ¢; = ¢y =¢3 =+ - - = 0,
it must be true that the matrix (A —X) be singular; that is, det (A —1) = 0. Writing the
determinant (A — 1) in explicit form, we have

an — A a2 e Ay
az an—Aiy --- azn 0 ©-)
Ayl Ay St gy — A

The determinant shown in Equation (9-7) is called the secular determinant, and the
linear equations represented by Equation (9-6} are called the secular equations. We
can solve this n x n determinant using the method of cofactors, which will yield an
nth order polynomial

AMtad " b ad P+ g,k +a, =0 (9-8)

Equation (9-8) is called the characteristic equation of matrix A. The roots to Equa-
tion (9-8) are called the eigenvalue spectrum of matrix A. For every eigenvalue 1,
there exists a corresponding eigenvector c;. Therefore, if there are n eigenvalues, then
there 15 not one eigenvalue equation, but » eigenvalue equations

Ac1 = A1€1
ACZ = 1262
AC3 = l3C3 (9_9)
Ag, = Apc,

where each ¢, vector is a column matrix. Equations (9-9) can be represented by a sin-
gle matrix equation

AC=CA 9-10)
or
daip a4y v dia Cl1 €12 - Cin
a1 daz - g Cz| Ca2 - (7]
dyl duz cr dpp Cpt Cn2 - Cpp
it €12 cr Cia A; O 0
0

a1 €n v+ 1 0 A

Cnl Cnz '+ Cpn 70 0 - A
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If det C # 0, that is, if C is nonsingular, then there exists an inverse C !, and multi- ) We find, using the method of cofactors, that the characteristic equation of
plying through Equation (9-10) by C~! gives ) the matrix is
3
—2x =0
C'AC = C~!CA=A 9-11) ) o

which has the roots x = 0, ++/2. Each root corresponds to a specific eigen-

We see, then, that we can diagonalize matrix A by compounding the eigenvectors into value (energy state in this case): E; = o + /28, E, =0, E3 = o — ,\/5,3. To

a matrix. Finding the eigenvectors that diagonalize a matrix to give its eigenvalues is ) find the coefficients associated with each energy state, we substitute each en-
one of the major types of problems found in quantum mechanics. More will be said ' ergy, in turn, into the secular equations and selve for the coefficients. For ex-
about eigenvalues and their relationship to operators in Chapter 10, ample, substituting £; = e + +/28 into the secular equations
1
Example . _ | (—E)c, + B =0
Pe, + (@—E)e, + Bes =0

A problem in simple Hiickel molecular orbital theory requires putting in di-
|- agonal form the matrix describing the set of secular equations, an example of
‘ : which is ! gives ¢; = (1/+/2)c; and ¢; = ¢;. Note that because all three secular equations
Ak are not independent, we can determine only the ratio of the coefficients and not

| Be, + {a—E)e =0

a—E B 0 cl | their values. If the eigenvectors are normalized, however, then we have another
B o—-E B e | = equation connecting the coefficients
0 ﬁ «—FE 3

3 < 2 _
| | o . =
H in order to determine the eigenvalues E. Here o and # are integrals, called the Therefore, in this example, ¢, + ¢,2 + ¢;2 = 1. Substituting the values given

Coulomb integral and resonance integral, respectively. This problem differs above into this equation gives ¢, = ¢, = 1/2 and ¢, = +/2/2. Coefficients for
somewhat from the general description given above in that, in this case, all the the other eigenvalues can be found in a similar manner.

values of E may not necessarily be distinct, When the eigenvalues are not all

distinct, it may not be possible to put the matrix in true diagona) form. More-

over, in a Hiickel molecular orbital problem, ail of the secular equations are not SUGGESTED READING

independent. This presents a special PTOblem with Whic_h we must deal. In the ‘ 1. Nacig, R. Kent, and Sars, Enwarp B., Fundamentals of Differential Fquations and Bound.-
example shown here, though, all the eigenvalues are distinct. In order not to ob- ary Value Problems, 2nd. ed., Addison-Wesley Publishing Co., Boston, 1996.

tain a trivial solution to the secular equations, that is, ¢; = ¢, = ¢; = 0, it must 2, SuLLivan, Micnager, College Algebra, 4th ed., Prentice-Hall, Inc., Upper Saddle River, NJ,
be true that the square matrix be singular. That is, . 1996.

I 3. WasHivaToN, ALLYN I, Basic Technical Mathematics, 6th ed., Addison-Wesley Publishing

«—F 8 Co., Boston, 1995,

0 ) ;
g a—E B |=0 .
0 B a—E PROBLEMS

. . . . . L . 1. Evaluate the following determinants:
This determinant is most easily solved if we divide through the determinant

by 8% and let (@ — E)/8 = x. \ 1

2 6 1 4 -3
@ |5 4‘ ® | —1‘ © 1y 1
o—FE .
1 0 , : 10 x 1 secf tand
) A o—E : ¥ 10 ; @) 1‘ (©) 1 x ® tanf secf
1 =0=|1 1
p B 01 123 42 -1 x 10
0 | a—E : @) 3 01 h [-1 6 3 |1 x 1
B -1 4 2 -1 5 —1 01 x
i |
|
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4 3 1 -1 x b 0 0
|61 0 -3 b x b 0
Wiy 5 2 22 ®lo b % b

8 6 -5 0 0 0 b x

2. Solve the following determinants for x:
x 1 x =2 2x 4
11
x 1l T ;lc 00
(d) ; J'lc =2 © |, 5 5 0/=°
* 1 0 0 x
3. Add the matrices:
11 4 3 4 0 —4 3
-1 01 2 + 6 3 -7 5
-1 2 4 -3 -1 1 —-1 0
6 3 5 -5 2 6 7

4, Perform the following matrix multiplication:

1 4 6 —3 1 0Y[4 -1
(@) (3 2)(#3 1) (b) (0 1)(2 3)

3 0 3 11 1
(c) (4 ~1 —1)(—2 1 6)

A1 2 s 3 4§

I 4 1 0 —4 3 1 8 4
() (o 1 2) (6 3 4) (e) (—2 3 0)(

2 4 3/\2 6 7 : 5 -1 —1

5. Given the two matrices
1 1 4 6 i 0
A=312 —6 10 and B=1|4 2 —1
4 -1 -1 8 —4 3

show that AB # B A,
6. Solve the following sets of equations using Cramer’s rule:

(a) . x +y =3 (b) x 42y 43z =-35
4x =3y =35 -x -3y +z =-14
2 +y 4z = 1

10.

1.

12.

Problems

(c) x 42y —z +t =2
x =2y 4+z =3 =6 (d) xsiné +ycosd
2x +y 42z +t =-4 —xcosf  +ysing
Ix 3y +z -2t =10

. Show that only a trivial solution is possible for the set of equations:

x+y=0
x—y=0

1 060
E=]10 10
0 01

x
will transform the vector ( ¥ ) into itself.

. Show that the matrix

z
-1 0 0
C; = 0 -1 0
0 01
X —-X
will transform the vector [ y | into { —y |.
z z

Prove that the inverse of the matrix

. Show that the matrix

1
_1 v L By
2 2 2 2
G=| V3 1 ol ® GGl=[ 3 LI
2 2 2 2
0 0 1 0 0 1

Put the following matrix in diagonal form:

A=

N
&l'—
o8

S’

Show that the eigenvectors

v
b3
SIS

= x'
’
=¥

133

will diagonalize matrix A in Problem 11. (Hint: show by matrix multiplication that

C~'AC = A, where A is the diagonal form of A.
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13. Show that ¢ and Ae, where X is a scalar, are parallel vectors in space.

14. Solve the following set of secular equations for E in terms of « and . Determine the re-
lationship between the coefficients ¢,, ¢,, and ¢, for each value of F, and using the fact that
Y¢? = 1 (that is, that the eigenvectors must be normalized), find the values of ¢, ¢,, and
¢4 for each value of E.

(¢ —EJey + Beo Bey =0

Be + (@ —E), + fey =0
Be + Be; + (@ —E)g =0

10

Operators

10-1 INTRODUCTION

An operator is a symbol that designates a process that will transform one function
into another function. For example, the operator D, = 3/3x applied to the function
f(x) designates that the first derivative of f (x) with respect to x should be taken. Some
other examples of operators are

A AfX) =fx+h) — f(x)
X W) =HG) + L)+ A+ -
I MFG) =f(x) - folx) - folx) - - -

If two or more operators are applied simultaneously to a function, then the
operator immediately adjacent to the function will operate on the function first, giv-
ing a new function; the next adjacent operator will operate on the function next and
s0 on. For example, consider the application of the operators D, =o /ox and
D, = 3/dy to the function f(x, y) = x*y*

D, D, (x’y%) =D, (2xy) = 627y
On the other hand,
D, D, (x*y®) =D, 3x%?) = 6x2y

When the result of the two operations is independent of the order in which the
operators are applied, as in the above example, the operators are said to commute.

135
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That is,
DDy f(x,y) =D, D, f(x,y)
or
0, D, - D, D] f(x, ) =0 (10-1)

Here the brackets { ] are known as commutator brackets, and the expression in the
brackets, itself an operator, is called the commutator of the operators. It is important
to note that the function f (x, ¥) has not been algebraically factored out of the left-hand
side of Equation (10-1). Equation (10-1) is an operator equation and signifies that
when the operator []A)x ﬁy - f)y ﬁx] acts on the function f (x, y), it produces the num-
ber zero.

In general, then, we can say that two operators A and B commute if, and
only if,’

[AB-BA] f(x) =0 (10-2)

If the commutator does not equal zero, then the order in which the operators are ap-
plied must be taken into account.
Certain operators, such as differential operators, may be applied to a function
more than once. For example, applying the operator D, = 3/8x to the function f(x)
twice yields
P N daf dif
D.D =D fx) = —— = —=
LD, f) =0 f) = -om = o5
which we see is just the second derivative of f(x} with reépect to x.
One must be careful, however, in interpreting the square of an operator, espe-
cially when the operator contains more than one term. For example, consider the op-
erator

b] d sinf 9

The operator f)i implies D, operating on D,: however, this is not found by simply
algebraically squaring D,. On the contrary,

ﬁi = (cos&i — sinf i) (cosﬂ—a— — __sme i)

ar r 0o ar r 08

92 d /12d sing 9 9
— 2 — — 1 — v e — — —
= CO8 931*2 cosf)sm@ar (rae) ST (cos@ar)

'Equation {10-2) may be written in an abbreviated form [Aﬁ - ﬁA] = 0, oreven [A, ﬁ] =0, pro-
vided it is understood what the abbreviated form implies.
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Note in the first term that cos #(3/8r) operates on cos 8{3/dr); however, since cos §is |
treated as a constant when one differentiates partially with respect (o 7, it can pass
through the operator 8/8r giving

cos? 6(3/ar)(8/r)

On the other hand, when cos 8{(6/9r) operates on — ﬂ % only the constant —sin 8
r

can pass through the operator 8/3r. The partial derivative /38 is not a constant. Hence,
the differentiation must be written as

—-cost?siné‘i li
dr \ r 36

The expression in parentheses must be differentiated as a product. Therefore, we have

. | 3 1 82 19
2 _ el ;
D; = cos Garz ~ cosdsind (—

rarod  rlae
- sinf cosf i siné 9 + sing f 0 8 9
r 80 or ar | T\ %
— cos?h 8% 2cosfsing 32 + 2sinfcosé 3
B ar2 r ar 90 2 ag
sin®9 9 sin?6 32
r or r 982

10-2 VECTOR OPERATORS

One will recall from basic courses in physics that the components of force in the x-,

y-, and z-directions, F,, F,, and F, are related to the potential energy V(x, y, z) by the

equations 3

For=—UVix,y,2)
ax

3
Fy = —gv(x, ¥, 2)

]
F,=~—V(x,,2)
3z

Since the total force is a vector

F =iF, + jF, + kF,
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we have

' av. 8V av .
e (i o + Konm 10-3
F (1 P +j3y + az) (10-3)

Equation (10-3), however, can be written in operator form

a ] ]
=—(i—+j—+4+k— | V=-VV
F (lax +‘]3y+ az)

where V'V (read “del V “) is known as the gradient of the scalar V, and

8 i} 9
=i—+j—+k— 10-4
v lax +']3y + Jz ( )
is known as the gradient operator. Note that V in this example is a scalar, but 'V op-
erating on V produces a vector V'V, Hence, force is the negative gradient of the po-
tential energy.

It is possible to use V in a scalar product with another vector A. Such a prod-
uct ¥ - A is a scalar called the divergence of A. If ¢ be any scalar, we find that the
divergence of the gradient of ¢ in Cartesian coordinates is
3% 3¢ 3

. = Vz = Eammne s 10_5
vV V¢ ¢ ax2+ay2+8z2 (10-3)
The scalar operator V2 (read “del squared”) is known as the Laplacian operator:

32 32 32 ’
Vie —+—+— 10-6
dx2 + gy2 + 972 (10-6)

10-3 EIGENVALUE EQUATIONS REVISITED

We considered in Chapter 9 a matrix description of a set of linear equations written -

Ac=Ac

where A is a set of constants called the eigenvalues of the matrix A and ¢ is a vector.
We recognize the A matrix to be an operator, since its effect is to multiply each ele-
ment in the ¢ matrix by the constant A. We find that eigenvalue equations are not re-
stricted to matrix mathematics and find general use in many areas of applied mathe-
matics, In fact, we can define as an eigenvalue equation any operator equation having
the general form '

Ap = a¢ (10-7)

where A is an operator whose operation on a function ¢, called an eigenfunction of
the operator, produces a set of constants, the eigenvalues, multiplied by the function ¢.
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For example, the differential equation

% ( emx) = me™*
is an eigenvalue equation.

It is possible for operators to have several eigenfunctions. For example, the
functions e™, e=™, ¢™*, ¢ ", sin mx, and cos mux are all eigenfunctions of the oper-
ator D? = 3%/3x?. Some, however, will be unsuitable in a problem because of cer-
tain restrictions on the functions, known as boundary conditions.

We can solve eigenvalue equations by methods outlined for differential and
partial differential equations in Chapter 6. Consider the following examples.

Examples

(a) Show that the functions ¢ = ¢~ are eigenfunctions of the operator
D? = 9%/3r2. What are the eigenvalues? .
If ¢ = e " are eigenfunctions of D?, then they should satisfy the
eigenvalue equation

D¢ = ko
where the constants & are the eigenvalues. Differentiating ¢ with respect to
¥, we have
f)qb = —age ™

f)2¢ maze—ar =a2¢

Thus, we see that the functions ¢ = e~ satisfy the eigenvalue equation and
that & = a2 are the eigenvalues.

It is important to stress that for a function to be an eigenfunction of
an operator, the operator, upon acting on the function, must reproduce the
exact same function, Thus, we see that sin mx is not an eigenfunction of the
differential operator d/dx, since the operator acting on sin mx produces a
set of constants multiplied by cos mzx, a different function.

(b) Show that the Schriidinger equation in one dimension
2
Ix2 + ?(E Vi =0
where %, ¢4, and E are constants, is an eigenvalue equation. What are the
eigenvalues? (Hint: In this equation, both d%dx? and V are operators.)

Let us begin by putting the Schridinger equation in eigenvalue equa-

tion form A¢ = ap.

d*  2uEYy  2uVy

e e =0
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nt dy
—— — L _Ey+Vy=0
24 dx? v

or

72 dy
EEY iyy=E
2u dx? TV v

n? d?
—_—— 4 V|¢¥=E
(= -

Thus,

The operator in parentheses is known as the Hamiltonian operator and nor-
matly is designated by the symbol H. Hence, we can write the Schrédinger equation
in eigenvalue form as

fy = Ey
where the constants F are the eigenvalues. )

The Hamiltonian operator illustrates a general property of operators. if D
is the sum of two or more operators, D= ﬁl + ﬁg + ﬁ3 + -+, then f)f(x) =
B+ Dy + D5+ ) f () =Dif(x) + Do f () +Dafl) +- .

10-4 HERMITIAN OPERATORS

The eigenvalue problems found in physical chemistry, particularly those in the area
of quantum mechanics, are all described by an eigenvalue equation having the gen-
eral form

L(u) + Awu =0 | (10-8)

Generally, the operator L is a second-order differential operator that operates on the

function u, the constants X are the eigenvalues, and w is a weighting factor. Second-
order differential operators of the form

R L L L
"= fdx2 8 ax "
, e P df .
where £, g, and k are functions of x, are said to be self-adjoint if g = = If the dif-
X
ferential operator is not self-adjoint, it can be made self-adjoint by multiplying it by
a factor [ " ax dx. For example, the Legendre’s equation is already self-adjoint.

Hermite’s equation can be made self-adjoint by multiplying it through by e,
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Self-adjoint operators, such as those described above, are found to obey an
important rule: If 1 and v are two acceptable functions of g, then an operator P is said
to be Hermitian if

f w*Pv de = f vP*u* dr {10-9)
all space all space

where the * denotes the complex conjugate.

Example

Show that the momentum operator p, = —i%(d/8q) is Hermitian.

" ]
[u*pqv dg = —ihfu*w—v dg
dg
Solution. Integrating the right-hand side by parts, we have
. dv . du*
ﬁzh[u*% dg = —ih [[u*v]endpoims - f v » a’q]

We assume that # and v vanish at the endpoints. Thus, the expression in brack-
ets is zero, which gives

A . du* N
f”*pq” dg = +ih {fv BL; dq} =fvp;u* dg

The operator p, is Hermitian.

A very important property of Hermitian operators is that the eigenvalues of Her-
mitian operators are always real. To see this, consider the eigenvalue equation

by = py (10-10)
where P is a Hermitian operator. It also must be true that
Pyt =pryt {10-11)

We now muitiply Equation (10-10) by ¥*, Equation (10-11) by v, and integrate over
all space, which gives

[wovar=p [wva
[ivrae=p [y ar

Since _
f PP dr = f Pyt d

Therefore, it must be true that p* = p; the eigenvalues are real. _

~
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10-5 ROTATIONAL OPERATORS : ) ¥ ¥
A A
We saw in a previous section that operators can take matrix form. In the eigenvalue )
problem, the matrix operator affects the magnitude or length of a vector, the eigen- ' j
vector, without changing its direction. Consider, now, another type of matrix opera- ) (62, ¥2) 1. 31) (%, ¥2) 1, 1)
tor that changes the direction of a vector, but not its magnitude. Such an operator is ' r r ¢
called a rotational operator, since its effect is to rotate a vector about the origin of a ! P o

coordinate system by an angle 4. As we shall see, it does this by, in essence, rotating )
the coordinate system back through the angle 6.

Consider, as a simple example, a vector r extending from the origin of a Carte- '
sian coordinate system to the point (x;, v}, as shown in Fig. 10-1(a). Suppose that we )
wish to rotate this vector through an angle 6 to another point (x,, y,). We can do this
either by rotating the vector itself through the angle 8 [Fig. 10-1(b)], or by rotating
the coordinate system back through the angle 8 [Fig. 10-1(c)]. ) (@ ®)

The coordinates (x;, y;) can be related to the coordinates {x,, y,) by simple P
trigonometry. We see from Fig. 10-1(b) that

8=180° —(a+ H=180° -~ B

X, =rcosa

vy =rsino |
X, = —rcos B \
¥, =rsin g )
B = 180° — (6 + &) o ,
We now must make use of some important trigonometric identities: - )

sin(A+ B)=sinAcos B+ cosAsinB )
sin{A ~B)=sinAcosB—cosAsinB

{10-12)
cos(A+ B)=cosAcos B —sinAsinB .

P oy . . )
i cos (A — B) =cos Acos B +sinA sin B : Figure 10-1 Rotation of a vector through an angle 6.

Hence, ‘

sin = sin [180° ~ (0 + )] = sin 180° cos (8 + &) — cos 180° sin (6 + &) ’ By the same method used above, we can show that

= sin (# + o) = sin 8 cos o + cos & sin « X =%, 008 6 — yy sin ¢

. X1
where we recognize y
1

|
However, i These equations can be written in matrix form as
y; = rsin B = sin 8 (v cos @) + cos & (r sin «) E 2y = 0939 —sin® *1 (10-13)
i ¥z sin & cosf J \ »m
Thus, i

. X2
Yo = %, §in 6+ ¥, €08 8 ) as the original vector and (yz) as the rotated vector.

.
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The matrix

coséd —sind

sin@ cosé
is a rotational operator, since it rotates a vector about the origin in two-dimensional
space, This operator also can be thought of as a transformation operator, since it trans-

forms the coordinates of a point (x;, ¥,) into a point (x,, y,) by a rotation of the coor-
dinate axes back through an angle 6.

Examples

(a) Rotate the vector r(3, 4) through an angle of 180° and find the new direc-
tion of the vector.
Since sin 180° = 0 and cos 180° = —1, we have for the rotational

operator
cosg -—sinfy (-1 0
sin  cos¢ /) \ 0 -1

Allowing this operator to operate on r(3, 4) gives

(o )(3)= ()

which produces a new vector ¥(—3, —4). It is easy to verify that the differ-
ence in direction between r(—3, —4) and r(3, 4) is 180°.
(b) Find the new coordinates of the point (3, 4) after a rotation of the point
about the origin by 90°.
Since sin 90° = 1 and cos 90° = (), we have

cos  —sinf Y (0 —1
sin cos¢/J \1 O

Allowing this operator to operate on the point (3, 4) gives

0 -1 3y (-4
(t %)()-(3)

Rotational operators are useful in describing the symmetry of molecules. A des-
ignation known as Schoenflies notation uses the symbol C, (where 7 = 360/0) to de-
note a particular rotational operator. For example, an operator that rotates a molecule
through an angle of 90° is called a C, operator. A molecule is said to possess C, sym-
metry if a C, operation leaves the molecule unchanged. Similar matrix operators for
other types of molecular symmetry also are possible.

Consider the water molecule shown in Fig. 10-2, If we apply a C; rotational op-
erator to a water molecule such that it rotates the molecule through an angle of 180°
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Rotation

180°

Figure 10-2 Rotation of a water molecule through an angle of 180°.

about the axis shown in the figure (dashed line), the molecule remains unchanged.
{The hydrogen atoms are assumed to be indistinguishable). We say, then, that the
water molecule possesses a C, axis of rotation. By assigning an x- and y-coordinate
to each hydrogen atom (the oxygen is placed at the origin), we can easily show this
to be the case.

10-6 TRANSFORMATION OF V2 TO PLANE POLAR
- COORDINATES

Many problems in classical and quantum mechanics require the use of the V2 oper-
ator in coordinates other than Cartesian coordinates, the coordinate system in which
it has its simplest form. In this section we shall demonstrate the transformation of W2
to plane polar coordinates. We choose plane polar coordinates as an example because,
in this transformation, all the essentials of transforming V2 are demonstrated; and
yet the transformation is less lengthy than transformation to, say, spherical polar co-
ordinates. For those interested, the essentials of the transformation of Vio spheri-
cal polar coordinates are given in Appendix IIL

The Laplacian operator in two dimensions is given by the equation .
a2 a2

Vie — 4 =
#xt  ay?

Recall from Chapter 1 that the transformation and reverse transformation equations
to plane polar coordinates are

x =rcosf r=(x2—1—y2)1/2
. y
y=rsing tan9=(—)
x
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The transformation of the first derivative operators &/dx and 3@y can be found by
using the chain rule

g dra 96 0 da gr 0 36 0

ax " oxor Toxoe ™ 3y T dyar Tayoe (10-19

We now determine the transformation derivatives from the reverse transforma-
tion equations.

ar 1 . ap x  rcost
ax 3 YT = 2 = —— =cosé
Likewise,
ar ino
— =sin
ay ®

Finding 86/9x and 36/3y is a little more involved. Alittle trick, to keep from hav-

ing to differentiate the inverse tangent, is to differentiate the tan 6 equation rather than’

solve the equation for 6. Remembering that d (tan §) = sec? 8 d6, we can write

sec?6 df = — 2 dx
2

d6 _ rsin®

cos28  rlcosi@
a6 sin 6
ax  r

Likewise, using the same procedure, we find

a6 . cosf
ay Ty
The first derivatives are therefore
9 _. i_sinéﬂ and a_s,.aa cosf 9
ax or roo8 By_m 8r+ r 90

To find the Laplacian operator, we must now operate each first derivative op-
erator on itself.

i_ii_ cosBa sing a 98 sinf@ 2
ax2  dxox ar r 06 cos ar  r 80

8? a3 ing i
= cos’0— +cosd— —&w —ﬁi cost?i
ar? ar r

B sinf 9 sinf 3
r e r 08
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3 iné 3

To perform the operation cos 93— (—ﬂ— 5@-), for example, the —~sin & will pass
r r

through the 3/3r operator; however, the (1/r)(9/96) term must be differentiated as a

product. This gives

3 sind o ) 1 8 1 a
cosﬁw(— ——) ——31n9c039|:;8r 28 —ﬁga]

sin# cos® 92 N sinf cosf
r ar 88 r2 30

The same thing must be done for the other terms in the 82/3x? equation. This gives

9? .. 8 2sinfcosé 3 2sinfcosh I
— =co8 0 — — + vy
ax? ar? r dr a9 r? 80 (10-15)
sinff 8  sin’f 8%
rooor r? 392
Using the same procedure, for 82/3y* we have
92 .. @ 2sinfcosd 9% 25inf cos6 8
G et T e T 2w
J g (10-16)

cos2@ 8  costo §°
roar r: 96?

Adding Equations (10-15) and (10-16) gives

V2_32 ¥ 189 8 18
T ox2 8yt T rdr  8r2 ' r2p82

SUGGESTED READING

1. NacLE, R. KenT, and SArr, EDwarD B., Fundamentals of Differential Equations and Bound-
ary Value Problems, 2nd ed., Addison-Wesley Publishing Co., Boston, 1996.

PROBLEMS

1. Perform the following operations:

5
@ ) s . (©) AE
n=0

5
R ) 3 3 A _i
(b) ;}( 1"x (@) De(’y), Dr = o
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5

(h) D, Zx"

n=0

4
M ]_[ Tl
r={

0 ()00

(&) DZ(x2y%)
) D,D,(x*y%

(2 ﬁzﬁyﬁx (xzyzzz)

2. Determine whether the following pairs of operators commute:
(a) I:f)yw f)z] (© [f)x: A]
® [b Y] @ [¥./]
ach ¥y 3%
3. Showthat V-V = — + — + —
w tha ¢ = 5+ I
4. Show that V(@) = v Vo + Vi

. Aninterpretation of the Heisenberg uncertainty principle is that the operator for linear mo-

mentum in the x-direction does not commute with the operator for position along the
x-axis. If

N a N
pr=—th— and X=x
X

(where % = h/27m is a constant and i = /—1) represent operators for linear momentum
and position along the x-axis, evaluate the commutator

[PxX — &DP.]
and show that it does not equal zero. (Hint: Apply the operators & and Py to an arbitrary
function ¢x(x), keeping in mind that x¢(x) must be differentiated as a product.}
Show that ¥ = sin ax is not an eigenfunction of the operator dfdx, but is an eigenfunction
of d/dx?,

. Show that the functions & = Ae™¢, where A, i, and m are constants, are eigenfunctions of

the cperator
- a
M, =—ih—
de
What are the eigenvalues? Take % = /2 to be constant and i = +/—1.
Show that the function
2 . mmx
¥ =,/—sin—
a a
where n and a are constants, is an eigenfunction of the Hamiltonian operator in cne di-
mension
. n? gt
H=—-——
2m dx?

What are the eigenvalues? Take i = A/2m and m to be constants.
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9. Show that the function ¢ = xe® is an eigenfunction of the operator

10

h

11.

12.

13

14,

o 4 _2a
dx? x

where a is a constant. What are the eigenvalues?
Using the two-dimensional rotational operator
cosf —sinh
sind cosf
find the new coordinates of the point after rotation through the angle
(a) (2, 2) through 30°.
(b} (4, 1) through 45°.
(c) {—4, —3) through 180°.
(d) (3, 2) through 60°,
(e) (1, —3) through 240°,
The BF; molecule is a planar molecule, the fluorine atoms lying at the comers of an equi-
lateral triangle. By assigning x- and y-coordinates to each fluorine atom (the boron atom
being placed at the origin), show that a two-dimensional C; operation perpendicular to the
x-y plane and through the boron atom will transform the molecule into itself. (Hint: Place
one B-F bond along the y-axis.)
The differential operator for angular momentum is given by the expression

M = —ih(r X V)
where F is a constant, r = ix + jy + kz and

5 a8
goil i 8
o Ty T

Assuming M =iM, + jﬂ;ly + klﬂfz, find the components of this operator M, Hy,
and M.

Transform the components of angular momentum Mx, My, and MZ, found in Problerﬁ 12,
to spherical polar coordinates.

Derive an expression for the total squared angular momentum operator
M? = M2+ M2+ 01}

using the ﬂxpressmns found in Problem 13. Remember that the operator M 2 ; is M, oper-
ating on M,, and is not found by merely squaring M, (see Section 10-1).
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Numerical Methods
and the Use

of the Computer

11-1 INTRODUCTION

During the twenty years since the first edition of this text was written, the computer
has become an integral part of the physical sciences and, indeed, a major part of our
life in general. Yet, despite its general importance and relevance, including a chapter
on computer methods in a text such as this is a risk, because the mathematics found
in this text is timeless, while the computer methods are not. There is always the
chance of dating a text when it includes subject matter that is so fluid. We find today,
however, that most students do not use the computer for the purpose for which it orig-
inally was designed—that is, to compute. A primary reason for this is that when per-
sonal computers first became available each was hardwired with a programming lan-
guage, and a major part of learning to use the computer was to learn how to write
programs for it. Today most computers, which are much more powerful than those
early models, are not supplied with a programming language, and if one wishes to
learn how to program the computer, one must purchase a programming language as
a separate piece of software.

In this chapter we shall concentrate on how to write programs allowing a com-
puter to do calculations that are particularly useful in physical chemistry. Many stu-
dents who own computers use them for word processing, spreadsheets, and graphics
design. There are many excellent texts available that cover these subjects, so they will
not be covered in this chapter. Students are encouraged to continue to use their com-
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puters for these purposes, and much spreadsheet software will do some of the types
of computing that we will discuss in this chapter. But there is a whole area, new to
many students, that should be explored and that is the area of computer programming.

There are a number of programming languages available for programming a
computer, and the language chosen depends to a great extent on what the program is
intended to do. When the first edition of this text was published, the applicable lan-
guage for scientific programming was FORTRAN (FORmula TRANslation). With
the popular use of the personal computer, the FORTRAN language was replaced by
BASIC (Beginners All-purpose Symbolic Instruction Code), and while a number of
langnages have been developed in recent years to supplant BASIC, it is still one of
the best for doing numerical calculations: It is simple and to the point, and it w1II be
the language used in this chapter.

Before we get started discussing programming methods, itis necessary to point
out that a computer should not be used as a calculator. Programming a computer to
do a single calculation P = nRT /V does not make much sense, since it probably would
take less time to punch the data directly into a calculator Programmmg a computer
to calculate V in van der Waals’ equation

(%)
P+ — | (V—nb) =nRT

by successive approximations, or to do a Fourier analysis of a wave, does make sense,
because these are time-consuming procedures if done on a calculator; the computer
can do them in the blink of an eye. So we see that computer program calculations are
most useful when they involve reiterative calculations, or when they involve a calou-
lation involving a large number of steps.

As mentioned above, the programming langnage we are going to use in this
chapter is BASIC—in particular, FUTUREBASIC 11 for Macintosh computers,!
There are many dialects of BASIC on the market; the particular language will depend
on the make and model of the computer being used. In this chapter, every attempt will
be made to be as general as possible. Even if you prefer a different language (C and
C** are becoming more and more popular), you should be able to make the transfor-
mation from BASIC to your language of preference. Also, it is not possible in a text
such as this to cover all aspects of programming. You should refer to the particular
manual that comes with the programming software. The major purpose of this chap-
ter is to point you in the right direction, and to convince you that writing computer
programs is enjoyable and not that difficult. :

'FUTUREBASIC 11 is a registered trademark of Staz Software, Inc., 3 Leisure Time Drive, Dia-
mondhead, MS 39525-3215.
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11-2 PROGRAMMING A COMPUTER
Variables

Avariable is an area of memory set aside to hold various kinds of information, (Dif-
ferent kinds of information are called types.) Variable names can be letters, words, or
numbers, but the names must conform to the following rules. In FUTUREBASIC II
the name can be up to 240 characters long, but only the first 15 characters are signif-
icant. The name must begin with an alphabetic character. Certain characters are ille-
gal in a pame, including: » , . "~+*@->=<][ () {} ? '. Also, certain words that
are BASIC commands are illegal as variable names. Refer to your manual to get a
complete list: some of the common ones are obvious: STN, COS, TAN, SOR, WHILE, IF,
THEN, FOR, NEXT, and $0 on. '

Most BASIC languages use the following symbols to indicate the type of
variable: :

String Variable. String variables are used to store alphanumeric data. The
symbol for a string variable is §. A string variable can have a range from © to 255 char-
acters (don’t confuse the size of the variable with the size of the name). Some exam-
ples of string variable names are: name$, x$, and element$. String variables usually
describe those variables that are names or words, such as the elements on the periodic
chart, the name of a compound, or words. Strings of numbers also can be defined as
string variables—NUMS = "100", or EXPR$ = "50"— but numbers defined as string
variables cannot be manipulated mathematically, For example, if we were to write in
a program, PRINT NUM$ + EXPRS, the computer would print 10050,

Integer Variable. Integer variables are used to describe variables that are
integers, Two types of integer variables are possible, The first is simply called “inte-
ger,” with symbol %. An integer % has a numerical range of +32,767. The second type
is called “long integer,” with symbol &. A long integer has a range of +-2,147,483,647.
Examples of integer names are: myT.ist%, I%, lengths, and so on.

BCD {Binary Coded Decimal) Floating Point Variable. There are at
least two floating point precisions that can be configured, when writing programs, to
return up to 240 significant digits. The first type is called a single-precision variable,
with-symbol !. Single-precision variables have a range of 10%%* and, generally, are
configured to return a number with 6 significant digits. The second type is cafled a
double-precision variable, with symbol #. Double-precision variables have a range of
10+16%% and are usually configured to retarn a number with 12 significant digits. For
most calculations, single-precision variables are used, since they use much less mem-
ory. For those of you familiar with “bits” and “bytes,” the BCD variable memory re-
quirement is (digits + 1)}/2 = bytes required per floating point vatiable. Thus, the
greater the number of significant figures asked of the variable, the more memoty it

Section 11-2 Programming a Computer 153

uses. Examples of names of single- and double-precision variables are; x! =1.111,
dspacing! =2.1567, pi# = 3.1415926, and R! = 0.08206.

Mathematics

Math Operations. Listed below are some of the common math operations
used in BASIC, Some will be familiar to you (being similar to those operations we
use in algebra) and some will not,

Operator Definition
+ addition
- subtraction
* multiplication
/ division
. exponentiation
> greater than
< less than
>= greater than or equal to
<= less than or equal to
<> not equal to

Examples of the math formats are:
Algebra: A+ 2(C)—4 BASIC: ar+21*C1-41

Note that multiplication and division take precedence over addition and subtraction;
the multiplication or division will be performed first.

Algebra: A (f)
: y

Algebra: (C—m)+ 5>  BASIC: (C! -m#)+bi~2
Algebra: ' x(—y) - BASIC: x!*-y!

When a number is entered without designating its variable type, miost BASIC
dialects recognize it as an integer. Thus, an expression 1/4 will produce a value of
zero, but 174t will produce a value of 0.25.

BASIC: ar+(x!/y1}

Math Functions. Listed below are some of the math functions common to
most BASIC dialects:

Function Returns

INT{expr) expression as integer (drops all digits past decimal point
without rounding up)

-
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nes(expr)  absolute value of expression

sIN(expr) sine of angle expressed in radians
cos{expr)  cosine of angle expressed in radians
TaN(expr) tangent of angle expressed in radians
ATN(expr)  arctangent of angle expressed in radians
SQR(expr)  square root of absolute value of argument
LoG(expr)  natural logarithm of expression
ExP(expr)  exponential ¢®*/"

Additicnal special math functions can he found in the various programs described in
this chapter.

Scientific Notation. Scientific notation is expressed in BASIC by using &
for the power of 10. Thus, Avogadro’s number would be 6. 022E+23. The Boltzmann
constant would be 1.38E-23, Constants and variables will be expressed in scientific
notation when the value is less than 0.01 or greater than 8 digits to the left of the dec-
imal point.

Examples of some of the mathematical functions described here will be given
in the special programs listed below (Section 11-3).

Program Statements

Program statements are typed from the keyboard in a manner similar to using a type-
writer or word processor, Newer versions of BASIC do not recommend numbering
statements, although most will still allow it. More than one program statement can be
placed on a line by using a colon; for example,

x1=3.0446: ¥%=5: Pi#=3.1415926: A!=x!*¥%/Pi#

Comment statements can be added in most versions of BASIC and will not be

considered by the compiler as part of the program. Most dialects require some type

of denotation at the beginning of the statement designating it as a comment statement
and not part of the program, Check your programming manual for the proper symbol.
In FUTUREBASIC II the symbol is '. Examples are:

'Program to calculate d-spacings in a powder diffraction pat-
tern

vi=3,1416!*radius!~2: 'This gives the volume.
'Main Program

Input-Output Statements

Input-output statements are methods of getting your data into the computer and re-
trieving data from the computer, The common method of introducing data from the
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keyboard is to use the INPUT statement. When the program reaches an INPUT state-
ment, a question mark prompt will be displayed on the screen. Several pieces of data
can be introduced with a single INPUT statement by using commas. Prompt strings
also can be specified. For example,

INPUT x!
INFUT h,k,1

or, with a prompt string (note the syntax),

INFUT"Input the Miller indices";h,k,1
INPUT"Do you wish to continue - ves or no?";AS

Other methods of introducing data by using loops or from a file will be discussed later
in the chapter. '

The PRINT statement is the most common method of displaying data on the
screen. The PRINT statement can be used with or without a print string. For example,

PRINT x!
PRINT h,k,1
PRINT h;k:1

or, with a print string (note the syntax),

FRINT"The d-spacing is ";dspacing!
PRINT"slope = ";m!, "y -intercept = ";b!

When a semicolon is used in the print statement, the cursor on the screen will
not move to a new line and will not advance. Subsequent printing continues imme-
diately after the last item printed. When a comma is used, the cursor will not move to
a new line but will advance to the next tab stop which can be set with DEF TagB. The
default is usually about 5 spaces. A PRINT statement alone causes the cursor to ad-
vance to a new line. For example,

PRINT name$:PRINT:PRINT addresss -

Data also can be output to a printer, The method by which this is accomplished
depends on the dialect of BASIC being used, the computer, and the printer. Older ver-
sions of BASIC required actually formatting the printer so that the data would end up
at the right position on the page. This is still possible, but is usually not required. Most
of the later versions of BASIC recognize the LERINT statement as the statement to
output to the printer. Check your manual—and remember to turn on the printer. One
example statement is

INPUT"radius of circle";RA!
Area! = 3.1416*RA!*RA!
LPRINT"Area of circle = ";Area!
CLOSE LPRINT
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Loops

There are many types of loops in computer programming that do a number of things,
from simple counting to complex logical routines. The ability of the computer to do
calculations that loop back on themselves, to do them quickly, and then to make de-
cisions about these calculations is where the computer shows its greatest power over
being a mere calculator. Before discussing various types of loops, let us first consider
a major change in the newer forms of BASIC. In the older forms of BASIC, each
statement in the program was numbered and GOTO statements could be used to jump

around the program at will, This method even allowed one to jump out of a loop be-

fore the loop was completed. While the GOTO statements made it easier to design pro-
grams, since very little logic in the layout of the program steps had to be followed, it
drastically slowed down the execution of the program. Newer BASIC compilers re-
sist the use of GOTO statements in the construction of programs, and some program-
mers will smugly suggest that the use of GOTO statements in a program is a sign of a
weak mind. Thus, in newer forms of BASIC the program steps are not numbered, and
the logic of the program (the manner in which the program executes) must be built
into the layout of the program steps. This requires a little more time in the program
design, but, as a result, the program runs much more quickly and takes advantage of
the high speed of the newer computers.

To illustrate how the speed of the computer and the efficiency of the program
affect the use of a computer in doing calculations, consider the following personal
example. This author has written programs to solve X-ray-diffraction crystal-
structure problems using older forms of BASIC on what today is considered “slow,”
1-megahertz computers that took as long as a few seconds to do one calculation. At
times the program required as many as 40,000 of these calculations; so we would
punch in the data and then leave the computer for a few days until it completed all its
caleulations. We considered ourselves fortunate, since doing the same calculations
with a calculator would have taken months. With newer, high-speed computers, and
more efficient programs, these same calculations are done in a fraction of second,

and the total calculation can be completed in less than an hour. The speed of the com--

puter and the efficiency of the program design is extremely important.

FOR-NEXT Loops. One of the simplest loops is a FOR-NEXT loop, essen-

tially a counting loop. The program cycles around the loop a prescribed number of
times. While in the loop, however, one can do a large number of things, An example
of a simple counting loop is

FOR I =1 TO 20
PRINT I
NEXT I

Executing this little loop will cause the computer to count from 1 to 20.
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Other examples are:

(@ J=0
FOR I=1 TO 20
J=J+1
PRINT J
NEXT I

This routine illustrates an important difference between algebra and computer
logic. The statement J = J + 1 is algebraically impossible; the computer, how-
ever, does not see it as an algebraic expression, Initially, before the loop starts,
J is defined as zero. A zero is stored in the memory allocated for J. When the
statement J = J + 1 comes up, the computer takes the old J (J = 0 and adds 1
to it, producing a new J, and this new value now is stored in the memory for J.
Each time the program cycles through the loop, the computer takes the J value
stored in the memory and adds 1 to it, producing a new J. The J counts from 1

to 20.
(b) J1=0
FOR I = 0 TO 10 STEP 2
JI=J!+1
J!=SQR(J!}
PRINT J!
NEXT I

Notice here that the loop counts from 0 to 10 in steps of 2. The value of J, how-
ever, changes by 1. It is also possible to step backward, say, from 10 to 0, using
STEP -. Also, Jis defined as a single-precision variable rather than as an inte-
ger, since it'is the square root of J that is being calculated.

It is possible to put loops inside loops. This process is called nesting. For
example, suppose we wished to print out all the possible permutations of Miller
indices h, k, and 1 from O to 6. We can do this with nested FOR-NEXT loops. The
steps are:

FOR h = 0 TC &
FOR k = 0 TO 6
FCR1 =0TC 6
PRINT h;k;1
NEXT 1
NEXT k
NEXT h
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WHILE-WEND Loops. A wdTLE-WEND loop is a loop that causes the com-
puter to make a decision. The syntax of a WHTLE-WEND loop is

WHILE Expr
(Statements here will be executed until Expr is false)
WEND

An example of a WHILE-WEND loop is:

In$="no"

WHILE In$="no"
INPUT"%x? ";x!
PRINT"Is the value of x correct - yes or no?"
INPUT In$

WEND

The In$ is defined as "no", and the WHITE-WEND loop is executed as long as In$ =
mov. After entering a value for x!, you are given an opportunity to change Ins. If
you type in "no", you are given the opportunity to change the value of x!. If you type
in "ves", you exit the loop and the program continues.

Other examples of WHTTE-WEND loops will appear later in the chapter as parts
of programs or routines.

DO-UNTIL Loops. A Do-UNTTL loop is very similar to a WHILE-WEND loop.
The syntax is

DO
(Statements here will be executed until Expr is false)
UNTIL Expr '

The major difference between a DO-UNTIL loop and a WHIT.E-WEND loop is that in the
DO-UNTIL loop the statements between the DO and the UNTIL are executed at least

once, whereas in the WHILE-WEND loop the loop will exit immediately at WEND if Expr

is false. An example of a DO-UNTIL loop is

I=20

Do

I =1I+1
PRINT I
UNTIL I = 10

The program output will count to 10,
IF-THEN Logic

IF-THEN-ELSE. An 1F-THEN-FLSE statement is one that causes the com-
puter to decide whether an expression is true or false, but unlike the Jooping state-
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ments above, the decision is made only once. The syntax is
IF Expr is true THEN do this [ELSE do this]

The ELSE part of the statement is optional. If the ELSE part is not used, the statement
simply is called an IF-THEN statement. Some examples of IF-THEN-ELSE statements
follow:

{(a) FOR I = 1 TO 10
IF I = 5 THEN PRINT "yes" ELSE PRINT "no"
NEXT I

The program output would be:
o, nc, no, no, yes, no, no, no, no, ne

(b) flag = 1
IF x<>0 THEN flag=0

Closely related to the T¥-THEN-ELSE statement is the LONG TF-XELSE-END IF
statement. The LONG IF is known as a branching statement. The syntax is

IONG IF Expr

(statements to be executed)
[XELSE]

(statements to be executed)
END TIF

Like the TF-THEN-ELSE statement, the XELSE is optional. A flow chart of the
statements is shown in Fig. 11-1. An example of the use of a LONG IF statement is

Wames="acid"
INPUT"Input the type of compound - acid or base?";cmpd$
LONG IF cmpdS=xName$ ' '
PRINT"The pH of the solution is less than 7."
XELSE
PRINT"The pH of the solution is greater than 7.*
END IF

Special Routines

Truncating Numbers. Generally, just as with a calculator, a computer will
present numbers to more significant figures than are justified or wanted. It may be
necessary to output.data variables to only a specific number of significant digits, and

-
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[ Statements to execute
LONG IF Expr l if Expr is true END IF [—™

Statements to execute

. A : I
if Expr is true END IF

LONG IF Expr

XELE

Statements to execute
if Expr isfalse

Figure 11-1 Flow chart showing LONG IF-XELSE-END IF logic.

most BASIC dialects have commands that will allow you to truncate a number to a
specific number of places past the decimal point. However, there is also a simple little
routine that will allow us to do this, illustrated here by a specific example. Suppose
we wish to express the variable A! = 34.778287 to the nearest hundredth (i.e., 2 places
past the decimal point). The program steps to do this are:

Al = A!*100
Al = Al+0.5
Al = INT(A!)
Al = A!/100

The logic behind the steps is as follows. The first step takes a! and maultiplies
it by 100, giving a new a! = 34.778287 * 100 = 3477.5287. Because the INT state-
ment will not automatically round up a number, we do so artificially by adding 0.5 to

produce a new A1=3477.8287+0.5=3478.3287. Next, we use the INT(Expr) com-
mand to change A! to an integer A! = INT(3478.3287) = 3478 (note that the -

INT( Expr) command drops all numbers past the decimal point without rounding up).

Finally, we divide 2! by 100 to produce a new A! expressed to the nearest hundredth:

Al =3478/100 = 34.78. If we had wanted to express A! to the nearest .001, we would
first have multiplied by 1000 and then divided by 1000 at the end.

Arrays. Animportant programming requirement for many scientific-type cal-
colations is the ability to subscript variables, and the use of arrays in computer pro-
gramming is a way to meet that requirement. The most commeon variables in scientific
calculations are one-dimensional, x; [syntax x1(I)] and two-dimensional, x; [syntax
x!(1,J) ], but larger multidimensional arrays also are possible. The dimension of the
array is always given using a DIM statement in one of the first few lines of the program
(illustrated below); this allows the computer to set aside memory for the array. The
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ultimate size of an array will depend on the amount of memory in the computer, since
arrays use a considerable amount. Most of the common variable types can be used in
arrays. Examples of the syntax are: A!(10), myArray%(100), Address$(30),
x!(4,30), vy1(10,6,100}. Thus, if we wished to define the x and y variables used as,
say, 20 points on a graph, these would be one-dimensional arrays x!(20) , y!{20). We
could input these points with a FOR-NEXT loop. The programming steps are:

DIM x1{20),y1(20)

FOR I = 1 TG 20
PRINT I
INPUT xH(I),yU(I)
PRINT

NEXT T

For a two-dimensional array, we could use nested loops:

DIM A1{100,4)
FOR I =1 TC &C
FOR J =1 TO 4
INPUT AUI,J)
NEXT J
NEXT I

Sort Routine. It is sometimes useful in programs to be able to arrange a set
of numbers in either increasing or decreasing values, Below is a simple little routine
that will arrange a set of subscripted variables in decreasing order. With a little mod-
ification, the routine can be made to arrange the set in increasing order. Let us assume
that we have a set of N variables, W,, which are randomly distributed and that we wish
to arrange these variables in descending order. The routine to do this is

FOR J=1 TO (N-1)
FOR I=1 TO (N-J)

LONG IF WHI)<=W!(I+1)
TE!=W!{I)
WHI)=W!{I+1)
WH{I+1)=TE!

END IF

NEXT 1
NEXT J

We will leave it, as an exercise, for you to explain the logic behind this routine.
How would you modify the routine to arrange the variables in ascending order?

Saving Variables to a File. Saving variables to a file is specific to the di-
alect of BASIC used. Generally, the commands are the same, but you should check
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the manual for the programming language being used. In FUTUREBASIC II, the
commands to save variables to a file are:

DIM G!{50}

OPEN "R",1, "myFile"

FCR I=1 TC 45
WRITE #1,G1(I)

NEXT I

CLOSE #1

The first step in the file routine opens a specific file with the name "my#ile",
The routine will search the folder with the program for this file. If the file does not
exist, the routine will create it. The k" designates that this is a random file for input
and ocutput. Other designations are "I~ for input enly, "o for output only, and "2~
for append (which positions the pointer at the end of the file). The "1" in the OPEN
statement is the file ID number. This allows more than one file to be opened at the
same time. The WRITE #1 statement indicates that the variables following the WRITE
#1 statement are to be written to file #1. The CLOSE #1 statement closes file #1. This
routine will save the 45 values of g! as specific records in a file, named "myFile", in
a folder on the disk where the program is found. The DIM statement is necessary be-
cause G! is an array.

To retrieve data from a file, the file must exist in the folder that houses the pro-
gram. If the file does not exist or is not in the proper folder, the computer will indicate
this with an error statement. To retrieve the data stored in the above file, the follow-
ing statements are used:

DIM G!(50)
OPEN "R", 1, "myFile"
FOR I=1 TO 45

READ #1,GY{I)
NEXT I
CLOSE #1

It is sometimes not possible to know how many variables are stored in a file and .
yet necessary to subscript them in an array. To read a file having an unknown num-
ber of stored variables, we use the WHILE (NOT EOF (File ID) ) -WEND loop. This will
cause the routine to keep reading the file until it runs out of data. An example is

DIM symbl$ (25), AAI(25)
OPEN "R",1, "scatterFile"
I=0
WHILE (NOT EOF(l1))}

I=I+1

READ #1,symbl${I};6,AA!(I)
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DEF TRUNCATE (symbl&(I))
WEND
N=I
CLOSE #1

Values for symb1$ and Aat will be read into the computer, each one subscripted with
an array number I. Note that the variables symb1% and aat had to have been put into
the file using a WRITE #1 statement having exactly the same format as the READ #1
statement. When the file runs out of variables, the last array number will be desig-
nated N. Now it will be known how many values of symbl1$ and aa! were in the file.

Note also two additional features of the above example. When reading or writ-
ing string variables from or to a file, it is necessary to indicate the string length (the
greatest number of characters that will be in any of the string variables stored). The
syntax is var$; stringlen, In a WRITE statement, the program will reserve this
length for every string variable whether it is needed or not. When we read these val-
ues back into the program from the file, we do not need all the trailing unused spaces.
The DEF TRUMCATE command will strip the trailing spaces from the var$. For exam-
ple, in the above routine we reserved six spaces for every symbl1${I) entry. Let us say,
for example, that one entry is synk1$(1)="ADDR" and another is symbl$(2)="8T",
Neither uses all six spaces. If we read these back from the file without the DEF TRUN-
CATE statement, symbl1${1) will be 2DDR_ _ and symbl&(2) will be sT_ _ _ _. The

DEF TRUNCATE statement will drop the trailing spaces, giving symbl$(1)=ADDR and
symbl $(2)=5T.

11-3 PROGRAMMING EXAMPLES

In this section we shall consider a number of programming examples. Some of the
programs are quite useful in themselves, but that should not be the major reason for
studying this section. Most people learn to program by looking at other programs. You
should examine the programs in this section with the idea of picking them apart and
using various parts in programs that you are writing, For example, you will see sev-
eral illustrations of how to introduce your data into a program and a number of ex-
amples of loops and how they are used. Pull the programs apart and use the parts. The
statements are quite general and commen to most BASIC dialects.

Successive Approximations

Let us write a program to calculate ¥V in van der Waals’ equation using the method of
successive approximations. The van der Waals’ equation

nla

"
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is a cubic in volume. We can approximate a solution to van der Waals’ equation by
dropping the n’a/V? from the equation and solving the equation for V. This gives

_ nRT

1'% + nb

This volume is then used as V in the n%a /V? term in the equation

RT
yo "RT L,

()
which again is sclved for a new volume V, The process is repeated until there is no
appreciable change in the new calculated volume.

The Program. We first input our data as single-precision variables. Recall
that the PRINT statement after each INPUT statement skips a line between each input
statement when the program is run. The input statements are:

INPUT "number of moles";mcles!:PRINT
INPUT "pressure"; press!:PRINT

INFUT "temperature";temp! : PRINT
INPUT"constant a";vanA! :PRINT
INPUT"constant b";vanB!:PRINT

Next we perform the calculation. The first calculation finds the initial approxi-
mate value of V. Then this value of V is continuously used in a WHILE-WEND loop until
we are satisfied that the new volume is not significantly different from the previous
volume. To keep the WHILE-WEND loop going, we set a string variable A3 to "YES". As
long as a$ is equal to "vES" the loop will continue to execute, calculating volumes
from previous volumes. Each time, we are given an opportunity to change A$ to "No".
When we are asked if we wish to continue the loop, we type in either a "yes" or a
"no". It does not matter whether we type the "yes" or "no" in uppercase or lower-
case letters, because the command A% = UCRASES{AS) always insures that the string
variable will be uppercase. When a$ becomes "No", we exit the loop.

Vol!={moles!*0.08206*temp! /press! ) +moles! *vanB!

AS="YES"

WHILE AS$="YES"
term!=press!+(moles!*moles! *vanA!/ (Vol!*Vol!))
Vol!=(moles!*0.08206*temp! /term! ) +moles ! *vanB!
PRINT Vol!
PRINT "Do you wish to make another determination?®
INEUT "yes or no?";AS
AS=UCASES (AS)

WEND
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In FUTUREBASIC II the total program will look like this:

'Program to Calculate Volume from van der Waals' Equation
WINDOW 1, "van der Waals Volume", (0,0)- {400,300)
INPUT "mumber of moles”;moles! :PRINT
INPUT "pressure";press!:PRINT
INPUT "temperature";temp!:PRINT
INPUT"constant a";vanA! :PRINT
INPUT"constant b";vanB! : PRINT
Vol!=(moles!*0.08206*temp! /press!) +moles! *vanB!
A = “YES”
WHILE AS="YES"
term!=press!+ (moles!*moles!*vanA!/ (Vol!*Vol!}))
Voll=(moles!*0.08206%temp! /term! ) +moles! *vanB!
PRINTVoL !
PRINT"Do vou wish to make another determination?”
INPUT"yes or no?";AS$
AS=UCASES (AS)

WEND

PRINT"Final Volume = ";Vol!:PRINT
INPUT"Press any key to quit";dumrmys
END

FUTUREBASIC II requires that a window be created in order to display the
data. Not all BASIC dialects have this requirement. All data and input prompts are
displayed in the window. The size of the window, given by (0, 0) - {400,300}, is cho-
sen at the programmer’s convenience. Also, without the last INPUT statement before
END, the program will not pause after displaying the "Final volume", but will end
immediately and clear the screen,

Linear Regression

One of the best methods for obtaining physical constants from experimental curves

is by the method of least squares. Although this method can be used for curves of

higher order, we shall consider the method only for first-degree or linear equations.
Recall from Chapter 2 that a linear equation is one having the form

y=mx+b

where m is the slope of the line and b is the y-intercept. Let us assume that for every
point {(x;, y;} in a series of points there is a deviation from linearity due to experimen-
tal error of

si=y;—mx;—b
2

The square of this deviation o; = 57 1s
0; = ¥} — 2mx;y; — 2y;b + m*x} + 2mx;b + b

-
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and the total squared deviation is the sum of the squared deviations:

o= o= ¥y Y 2muy— Y 2yb
+ Zmzx?+22mxib+2b2

‘The method of least squares requires that the best straight line drawn through
the series of points be one in which o is a minimum with respect to m and b. That is,

(11-1)

do do

am _ ah
Taking the partial derivatives, we have

a_a=_22xiyi+22mxf+22xib=0 (11-2)

dm

3_2=—Zzy,-+22mx,-+22b=0 (11-3)

Equations (11-2) and (11-3) are two equations that can be solved simultane-
ously for m and & using Cramer’s rule. To set up Equations (11-2) and (11-3) for
Cramer’s rule, write the equations as

(Note that the } 2 means we add 2 for each data point.) Using Cramer’s rule, we
see that

_ Zinz 32 X2y 32
D= T 2x, 22 , D= T 2y, T2 | and
Do |22 Yaxy,
: X 2% 32w
m:—l and b=2§
D

The Program. In this program we shall demonstrate another way of intro-
ducing data into a program. We begin by inputting the x and y values. The x and y val-
ues will be introduced into the program as a one-dimensional array. Remember that
most BASIC dialects require one to input the size of arrays at the beginning of the
program ysing a DIM statement. This allows the computer to reserve memory for each
member of the array. Let us assume that we will never need more than 100 data points
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in this program. If more are needed, the DIM statement can always be changed. The x
and y values will be input as single-precision variables. Forgetting to dimension an
array will normally result in an *out of memory" error statement from the computer.
The input statements are as follows:

DIM x!(100),y (100}
PRINT"Input number of data points"
INPUT N
PRINT:PRINT"Input x and vy values for each point."
BRINT
FOR I=1 TO N
PRINT"Input =(";L;"),y(";1;")"
INPUT x NI}, v (I}
NEXT I
Ins = ""
WHILE InS<>"YES"
CLs
FOR I=1 TO N
PRINT I,x!(T),yv!(T}
NEXT I
PRINT:PRINT"Are these values correct - yes or no?'
INPUT In$
InS=UCASES(Ins)
LONG IF In$<>"YES"
INFUT"Input point number ";I
INPUT" Input new point values ";xNI),yNI)
END IF
WEND

There are several useful programming tips here; let us see if we can sort them
out. We first input the number of data points on the graph. Next, using a FOR-NFXT
loop, we input each x and y value. Examine the PRINT statement in the first FOR-NEXT
loop. Everything within the "* will be printed as is, and the semicolon will not ad-
vance the cursor; so on the screen for I = 11t will print as "Input x(1),y{1) ". The
computer program will assign an I value from 1 to N for each x and y value, If we
make an error inputting the data, we continue until all the data has been entered. We
now use a WHILE-WEND loop to allow us to correct any of the x and y values. The cLs
statement clears the screen. The program then lists all the x and y values and asks us
whether we are satisfied with the data. It gives us an opportunity to change the string
variable Tn$ to "YES". If we type in "yes" or "YES", we will exit the WHILE-WEND
loop and the program will continue. If we type in anything except "YES", the program
will ask us for a point number / and the new values for x;and y;. The WHILE-WEND loop
will recycle, listing all the points, and ask us if we now are satisfied with the data. We
can correct as many points as we wish.
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The next part of the program deals with the least squares calculation. Let us lis
the statements first and then explain what they do: ‘

Al=0: B!=0: C!=0: HI=0: J!=0
FOR I=1 TC N
Al=Al+2!
Bl=B!+2!*x! ({I)
CI=CI421*xX1 (I} *x! (1)
HI=H!+21*y! (1)
JI=Ji+21*x ] (T) *y! (TI)
NEXT T
DET!=A!*C!-B!*B!
bDET!=H!*C!-B!*J!
nDET!=A1*J!-B! *H!
b!=ADET! /DET!}
m!=BDET! /DET!
PRINT:PRINT"For the line y = mx+b"
PRINT"m = ";m!
PRINT"b = ";b!

We first define five single-precision variables as beirig equal to zero. Then,
using a FOR-NEXT loop for the N data points, we determine the summations found in
the determinants required for a Cramer’s rule solution to simultaneous equations for
m and b, For example, as a! cycles through the loop, it adds 2 each time for N times.
aA! determines ) 2. Likewise, B! determines ) 2x;, and so on. Once the sums are
determined, we calculate the determinants D, D, and D), which allows us to calcu-
late m and b. The total program in FUTUREBASIC 11 is:

'Program to Find Best Straight Line Through a Set of Points
WINDOW 1, "Least Squares Determination®, (Q,0)-(400,300}
DIM x!{100),y!{(100)
PRINT"Input number of data points"
INFUT N
PRINT:PRINT"Input x and y values for each point."
PRINT
FOR I=1 TO N

PRINT"Input x(";I;"),y(";I;")}"

INPUT xUI),yv!'I)
NEXT T
Ing=""
WHILE InS$<>"YES"

CLS

FOR I=1 TO N

PRINT I, x1I),viI)
NEXT I
PRINT:PRINT"Are these values correct - yes or no?"
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INPUT In$
In$=UCASES$({Ins)
LONG IF InS<>"YES"
INPUT"Input point number ";I
INPUT"Input new point values *;x!(I},yvHI)
END IF
WEND
Al=0: B!=0: CI=0: H!=0: JI=0
FOR I=1 TO N
A'=Al+21
B!=B1+2!*x T}
Cl=Cl+21*x (1) *x 1(I)
HI=H!42 1%y {T)
JI=J+21*x (I} *y {I)
NEXT I
DET!=A!*C!-B!*B!
bDET ! =H!{*C!-B!*J!
wDET | =A!*J|-B! *H!
b!=bDET! /DET!
m!=mDET! /DET'!
PRINT:PRINT"For the line y = mx + b"
PRINT"m = ";m!

PRINT'b = ";b!
INPUT"Press any key to end program.";dummry$
END

11-4 NUMERICAL INTEGRATION

In Chapter 5 we defined the geometric interpretation of the definite integral as repre-
senting the area under the curve between the limits of integration. There are at least
two situations where analytical integration is not possible, and yet it would be useful
to know the area under a curve. The first is where the equation of the curve is not
known. In these cases, some form of graphical integration (described in Chapter 12)
can be performed. The second case is where the equation of the curve is known, but
the function cannot be integrated analytically, such as the function ¢***’. In these
cases, some form of numerical approximation to the area, called guadrature, can be
used. A large number of numerical methods of integration have been developed, and
many of them are particularly suited to the computer. In this section we shall consider
a few of the more popular methods.

Integration by the Trapezoid Method
One of the simplest and most straightforward methods of integration involves divid-

ing the interval between the limits of integration into a number of equal subdivisions
and then extending vertical lines from the abscissa of the coordinate system to the



170 Chapter 11 Numerical Methods and the Use of the Computer
y
T
AT
e
—» y  Figure 11-2 Integration using the
a b trapezoid method.

curve. The points where these lines intersect the curve are connected together by
straight lines forming a series of trapezoids, as shown in Fig. 11-2. The sum of the
areas of the trapezoids closely approximates the area under the curve,

The area of a trapezoid is A = %w(c + d), where w is the width of the base
and ¢ and 4 are the lengths of each side. If we assume that ¥ = f(x) represents the
equation of the curve, then the area of one of the trapezoids is

A= %Ax[f(xl) + ()] (11-4)

The sum of the areas of two adjacent trapezoids is

A=Ax [f(’“) + fx2) n £ (x2) 4+ f(xg)jl
. i : 2 (11-5)
= Ax [@ + fl) + f(;s)]

We see, then, that when the curve is divided into » intervals, the total area under the

curve between a and b is

b
A= Ax [%—Ff(xl)+f(x2)+...f(xn_1)+_ﬂ_l:l

5 (11-6)

The Program. Let us now consider a program to determine the definite
integral

y= f sinx dx = 2.000
0

using the trapezoid method. Note that most BASIC dialects require angles to be
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expressed in radians. The FUTUREBASIC II program is:

'"Program for numerical integration using the trapezoid method
WINDOW 1, "Numerical Integration by Trapezoid Method”, (O, 0)-
(400,300}
PRINT"Input the limits of integration"
INFUT a!, b
PRINT
PRINT"Input the number of intervals between limits of integra-
tion"
INPUT n
DELx!=(bl!-a!)/n
FA!=SIN{a!) '
FB1=SIN(b!)}
x!=al+DELx!
sum!=0
FOR I=1 TO (n-1}
y!=SIN(x!)
x!=x!+DELx!
sum! =sum! +vy!
NEXT I
Area!=DELx!* (sum!+0.5*FA!+0.5*FB!)
PRINT"Area=";Areal!
INPUT"Press any key to end";dummy$
END

Using 100 intervals, the program produces a value for the area of 1.9998 that is very
close to the actual value.

Integration by Simpson’s Rule

The trapezoid method approximates the area under the curve by a sum of trapezoids.
That is, the points of intersection between the vertical lines and the curve are con-
nected by straight lines. Modifications to the trapezoid method concentrate on how to
alter the trapezoids so that they more closely approximate the shape of the curve. The
Simpson’s rule method utilizes parabolas or second-degree equations to close off the
top of each segment. Without proof, the Simpson’s rule formula for the summation
of the parabolic segments is

A= % [f@+r®+4[f@0+ )+ + Fra)]

(11-7)
+2[f ) + Flx) + o+ fOn)]]
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Circumscribed area

r—“

Area to be
determined

Figure 11-3 Curve illustrating Monte

| |
i aAX 7 Carlo method.

Note that each f(x) value alternates between being multiplied by 4 and by 2. A pro-
gram to approximate the integral using Simpson’s rule will be very similar to that
written for the trapezoid method.

Monte Carlo Method

The Monte Carlo method is a method of numerical integration that is becoming more
and more popular as computers become faster. To find the area under a curve using
the Monte Carlo method, the area in question is circumscribed by a rectangular area
of known value, as shown in Fig, 11-3. Then it is determined whether points (x, y),
randomly chosen within this area, fall above or below the curve and within the lim-
its of the integration a and b. The probability that a point falls below the curve is equal
to the number of points that actually fall below the curve, divided by the total num-
ber of points in the area ¥ AX. The area under the curve, then, is

Area = Probability x Total rectangular area ¥ AX

This method works well provided a large number (several thousand) of points

are tried. Because of the large number of calculations that must be performed, the

speed of the computer becomes an important part of the decision whether to use this
method of numerical integration.

The Program. The primary part of a program to perform numerical inte-
gration using the Monte Carlo method is a random number generator. Most dialects
of BASIC have some type of random number generator. Some are trué random num-
ber generators and some are pscudo-random number generators because the latter
generate the same set of “random” numbers each time they are used, In FUTURE-
BASIC I, the command RANDCM at the beginning of the program tells the compiler to
use the computer’s clock to “seed” the random number generator. In this way, a new
set of random numbers is generated each time the random number generator is used.
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The command to activate the random number generator is RND (Expr$) . The gener-
ator will generate an integer from 1 to Expr%. For example,

RANDOM
FOR J=1 TO 5
I=RND (100)
PRINT I
NEXT J

The program output would be similar to

23,4,44,89,61

You should refer to your programming manual to see how your particular random
number generator operates.

As in the previous cases, a program to integrate a function numerically using
the Monte Carlo method cannot be written entirely in a general form, since the func-
tion has to be written into the program each time. Also, the limits of integration and
the size of the circumscribed area must be set for each function integrated this way.
Baut a good majority of the program is general enough to be carried over from pro-
gram to program. In FUTUREBASIC 11, a program to integrate a function such as

a/2
y=[ sinx dx = 1.000
0

numerically using the Monte Carlo method follows, Nete that the limits of integra-
tion are from O to 1.571 (n/2 in radians), and that the maximum value of y is sin(1,571)
= 1.000. (The fact that the area equals the maximum value of y is accidental.)

'Program to Integrate a Function Numerically Using the Monte
Carle Method
WINDOW 1, "Numerical Integration Using Monte Carlo Method",
{Q,0)-(400,300)
RANDOM
count=0
FOR K=1 TO 10000
I=RND (1000)
xPick!=I/5001: 'This will pick a non-integer x wvalue from 0
to 2,00
J=RND(1000)
yPick!=J/500!: 'This will pick a non-integer y value from 0
to 2.00
LONG IF xPick!<=1.571
y!=SIN(xPick!}
LONG IF yPickl<=y!
count=coumnt+l
END IF
END IF
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NEXT K

Prob!=count/10000!

Areal!=4,00*Prob!:'The circumscribed area is 2 x 2 = 4
PRINT"Probability=";Prob!

PRINT"Area = ";Area!
INPUT"Press. any key to end";dummy$
END

The total number of points in the circumscribed area is chosen to be 10,000.
This is set up in a FOR-NEXT loop. Each point, given by xpick! and ypick!, is found

from the random number generator. A circumscribed area of 2.00 x 2.00 will com-

pletely surround the sine wave from 0 to 7/2. The first LONG TF statement checks to
see if the xPick! value is within the limits of integration. If it is, the program calcu-
lates a true y value. The second LONG IF checks to see if the yPick! value is above
or below this true y value. If it falls below the true value, that point lies in the area
under the curve and is counted. After the loop is completed, the count value repre-
sents the total number of points under the area. From this, the probability and the area
under the curve can be determined. This program, with 10,000 picks, gives an inte-
grated area of 1.02, which is close to the actual area. .

11-5 ROOTS TO EQUATIONS

In Chapter 2 we described finding the roots to polynomial equations graphically. Be-
fore discussing numerical methods for determining the roots to equations, we should
point out that there is a very fast “brute force’”” computer method of finding these roots;
it is not very elegant and is essentially a graphing method. Many computer spread-
sheets will perform the standard math and trigonometric calculations found in equa-
tions. To find the roots to an equation y = f(x), simply put in a series of x values and
let the spreadsheet do its thing. Look for those values of x where the value of y changes
sign. Those values of x should be close to the roots of the equation. This procedure
can be used with the fumerical methods described below to refine the values of x.
There are several numerical methods for findings roots to equation, some better
than others. We shall consider only two methods in this section. Those interested in

a more complete selection are referred to the readings listed at the end of the chapter.”

Method of “Regula Falsi”

The method of “Regula Falsi” is a method of finding a root to an equation (a point
where the graph y = f(x) crosses the x-axis) by successive approximations. This method
works well in conjunction with, and as a refinement of, the graphical method. Two
values of x, say, x; and x,, are selected from the graph on either side of the zero and
the corresponding y values are determined. If x, is near the desired root, then a better
approximation to the root is

x=x + Ax
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where
- G —x)nl (11-8)
[yl + 1y

The process is continued until no further change in the value is obtained within the
desired number of significant figures,

Example

Find a root to the equation y = x* + x* — 3x2 — x 4 1 near x = 0.5. (A graph of
this equation is shown in Fig. 2-9.) Let x; = 0.45 and x, = 0.50. Then y, =
0.0746 and y, = —0.0625.

_ (.50 — 45)].0746|

Axy =
1= 70746 + 1.0625]

=0.0272; x =0.45+0.0272 =0.4772

A second approximation, with x; = 0.4772 and y, = 1.65 x 1074, gives essen-
tially no change.

Newton-Raphson Method

The Newton-Raphson method is based on the premise that a line drawn tangent to a
curve described by y = f(x) at the point x; will intersect the x-axis at a point x, hav-
ing a value closer to the root than x;. This is illustrated in Fig. 11-4. The slope of a
line tangent to & curve at a point x; is the derivative y’(x,) = dy/dx. From the diagram
we see that

y'(x1) = tanf = _n
{xz — x1)
or
xp =y + 25 (11-9)
¥ (x1)

For the Newton-Raphson method to work, it is necessary that the process con-
verge on the root within a reasonable number of reiterations. This does not always
occut; in fact, in some cases we find that the process actually diverges from the root.
For this reason, it is advisable to put into any computer program utilizing this method
a counter that will automatically terminate the program after some reasonable num-
ber of reiterations have been tried.

Example

Find the root to the polynomial y = x* + x* — 35 — x + 1 near x = —2.5. First,
we must determine y’(x).

V(@) =403 + 3% —6x — 1
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» x  Figure 11-4 Illustration of the New-
N % oxn N ton-Raphson method.

The first approximation is x = —2.5, y = 8.188, y' = —37.25. Note that, be-
cause the initial guess is negative, Equation (11-9) must be modified to x, =
Xy — ¥(x Yy'(x;). Therefore, x = —2.28. Using this value for x in the second ap-
proximation, we obtain x =— —2,16. Using this value for x in the third approxi-
mation, we obtain x = —2.10. Further approximations do not change x
appreciably. '
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PROBLEMS

1. Write a program to calculate the average value and the standard error associated with a set
of experimental data points {see Chapter 12).

-2, Write a program to find the best fit of a second-degree equation, y = ax* + bx + ¢, over a
set of data points by using the method of least squares. The deviation for each point is
8=y — a;cf2 — bx; — ¢, which will lead to selving three simultaneous equations using
Cramer’s rule.

3.

=,

v g0

10.
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Consider the one-dimensional Fourier series given below:
Fy=+52.0 Fy= 4258

F=-200 Fy=-89

F2=’—““14.5 F5=—7.2

For a centrosymmetric wave (a wave that is symmetrical about the region of space in which
it exists), the Fourier series is

Fxy=F+ Z Eycos2nnx

Write a computer program that will produce values of f(x) from x = 0 to x = 1 in steps of
0.01. Remember that most BASIC dialects require angles to be in radians.

Using the program for numerical integration by the trapezoid method, write a program for
nuimerical integration using Simpson’s rule. Try your program on some known functions
that can be integrated analytically, such as y = x2.

Using the Monte Carlo method, determine the integral

+1 2
A =f e ¥ dx
-1

Compare your answer to that found by using the trapezoid method or Simpson’s rule.

Integrate the following using the trapezoid method, Simpson’s rule, and the Monte Carlo
method and compare the results. Express your answers to at least 4 significant figures.

4 /2
(a) [ Vx4 1dx (© f cosx dx
0 - Jo

4 2
(b) / —dx {d) f e ¥ dx
1 X 1

. Write a program to find the root of an equation using the method of “Regula Falsi.”
. Write a program to find the root of an equation using the Newton-Raphson method,

In the program for calculating Vin van der Waals’ equation by successive approximations
(see the *Successive Approximations™ subsection of Section 11-3}, the program was ter-
minated by issuing & “yes” or “no” command from the keyboard. Modify the program so
that the program itself will terminate antomaticaily when a new value of V is not appre-
ciably different from the previcus value of V.

The molar heat capacity, C,, of silver metal is found at temperatures from 20K to 100K to be:

C,(J. mol~' . K1) T(K) C,(J-mel™*- K™ T(K)
1.672 .20 16.29 70

4.768 30 17.91 80

8.414 40 15.09 o0

11.65 50 20.17 100

14.35 60
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Find the change in the enthalpy of silver from 20K to 100K using the trapezoid method,
given :

100
AH:f CpdT
20

11. The molar heat capacity, C,,, of platinum metal is found at temperatures from 5K to 30K
to be:

C, (I - mol™' - K1) T(K)
0.1014 5
0.2185 10
0.6438 15
1.444 20
2.673 25
4.136 30

Find the change in the entropy of platinum metal from 5K to 30K using Simpson’s rule,

given
30
o)
AS = f Ldr
5 T

12, From the data given in the paper by J. O. Hutchens, A. G. Cole, and J. W. Stout, J. Amer.
Chem. Soc., 82, 4813 (1960), determine 5° for crystalline /-alanine by numerical integra-

tion, given
298
C
50 = f —Lar
o T

12

Mathematical
Methods
in the Laboratory

12-1 INTRODUCTION

Most physical chemistry laboratory experiments are concerned with measurements.
There is a basic difference, however, between experiments performed at the under-
graduate level and those performed in physical chemistry research laboratories. At
the undergraduate level, students perform experiments that have a known outcome.
Generally, these experiments have been performed many times over a number of
years by numerous students. In research laboratories, on the other hand, scientists
usvally perform experiments on unknowns. There are no laboratory instructors from
whom a research scientist can obtain the correct answer to an experimental measure-
ment to see if he or she has performed the measurement correctly. Thus, it is itmpor-
tant for students of physical chemistry, who hope someday to become proficient re-
searchers, to learn how to determine the reliability of their experimental data. One
common way to help determine the reliability of experimental data is to perform the
experiment more than once. It is known that when a measurement is made more than
once, the results scatter around some average value. We shall see in the next few sec-
tions that this experimental scatter can be used to help determine the probability that
the average value is the “true” value. Before going into this, however, let us first re-
view simple probability theory.

179
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12-2 PROBABILITY

The probability of any item having a specific characteristic is the number of
iterns having that characteristic divided by the total number of items in the assembly.
For example, if we had a barrel containing 50 apples, 40 apples being red and 10 ap-

ples being green, the probability of picking a green apple from the barrel (assuming
an even distribution) is

10
p= 50 020 or 20%

Let us relate this definition of probability to a hypothetical series of measure-
ments. Suppose that we measure on a beam balance the mass of a block of aluminum
and that we perform this measurement over and over for a total of 50 measurements,
In this example, we are going to assume that the actual mass of the metal does not
change (i.e., pieces do not break off, nor does the block get dirty from handling); as-
sume also, to illustrate a point, that the measurements spread over a larger range than
we would most probably see if we used a good laboratory balance. The results of the
50 measurements are listed in Table 12-1. These data also are plotted as bar graphs in
Fig. 12-1,

Note that the general shape of the graphs does not depend on whether »; or 1, /N
is plotted versus m;. We find, however, that the shape of the graphs, particularly the
height of the bars, does depend on the difference between the measured values Am.
For example, if we had measured the mass to the nearest 0.005 grams rather than to
the nearest 0.01 grams, the 50 measurements would have been distributed over 13 data
points (from 8.810 to 8.870) rather than over the 7 data points, causing the height of
each bar to be reduced.

To make the graphs more comparable, then, let us plot n;/(Am - N) rather than
/N versus m;. Such a graph is illustrated in Fig. 12-2. Since the shape of this graph
no longer depends on Am, let us allow Am to approach zero and greatly increase the

TABLE 12-1 MASS OF BAR OF ALUMINUM METAL

Measured Valtue, m; Relative
€3] Frequency, », Frequency, ni/N
8.81 2 0.04
8.82 2 0.04
£.83 1 0.22
8.84 17 0.34
8.85 14 0.28
8.86 3 0.06
8.87 1 0.02
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21 - 0.35 - _
18 - 0.30 | N
15 - 0.25 |-
n 12 a ny 020 |
N
9 - 0.15
6 - 0.10 |-
3k —l—' 0.05 l

8.81 8.83 885 887 8.81 883 8.85 8387

m; ey

(a) (b)

Figure12.1 Distribution of measurements: (a} frequency versus measured values; (b) rel-
ative frequency versus measured values.

number of measurements, N. Hence, we can write

im — e = el = P (12-1)
A N Am = Nam =™

where dr, is the number of measurements lying between m; and m; + dm. The f-u?lc-
tion P () is represented by the dashed line in Fig. 12-2. According to our definition

35+ o~

881 8.83 885 887
m;

Figure 12-2 ‘Distribution of measured values showing the error probability function P(m).
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of probability, the probability that any measurement will have a value lying between
m; and m; + dm is equal to the number of measurements lying in that range between
m; and m; + dm, which is dn,, divided by the total number of measurements N,

1 dl’t,'
N dm

a’n,-

Probability = S ( )dm = P(m)dm (12-2)

Thus, the function P(m) is called the error probubility function and represents the dis- -

tribution of the probability over the measured values. Such a distribution is called a
probability aggregate. Every measured value is an element of that aggregate.

12-3 EXPERIMENTAL ERRORS

Let us now relate what we found in the previous section to experimental errors. As
we said earlier, when a measurement is made more than once, the results scatter about
an average or mean value. We can define the mean value as

1

This scatter is due to at least two types of error. The first type of error is called ran-
dom error and is due to the fact that various measuring devices have inherent limits
in the precision' to which they can be read. The second type of error is called sys-
tematic error and is due to such things as uncalibrated instrumentation, human reac-
tion times, and so on.

While it is possible to discuss the random errors associated with measurements,
in reality we cannot determine what they actually are. We can, however consider how
far each measured value is from the mean value. We define this deviation from the
mean, called a residual, as

. n=m, — m (12-4)

If the errors are only random errors and a large number of measurements are
taken, the measurements should fall on a normal distribution curve, such as one de-
scribed in the previous section. We will show that under these conditions the mean
value is the best value with a higher precision than any single value. If the errors
encountered are mainly systematic errors, no statistical treatment of data can coms-
pensate for them. When the errors are entirely random errors, the error probability

"The precision of a measurement is the relative esror between that messurement and other similar
measurements performed with the same measuring device. This should be contrasted to the accuracy of
the measurement, which is the relative error between that measurement and the “true” value of the quan-
tity being measured. It should be pointed out that a set of very precise measurements is not necessarily ac-
curate. For exaimple, if a student were to measure the temperature of a constant-temperature bath several
times using a thermometer that had not been calibrated, the results could be very precise but, since the ther-
mometer was not calibrated, very inaccurate,
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P(r)

5 Ry PRy g

Figure 12+3  Brrot probability function
showing standard error and probable
r CITOL,

function, plotted as a function of residual, r, rather than measured value, has the form

P(r) = PNl (12-5)

o2
where o is a parameter known as the standard error or estimated standard deviation.
In terms of the residuals, the standard error has the form

/1 2
, ET‘ 12-6
o 5 - (12-6)

Note that the probability that a single measurement will have a deviation from the
mean lying in the range between r and » + dr is P(r) dr, and this is just the area of the
small rectangle of width dr shown in Fig. 12-3. Since the total area under the proba-
bility distribution curve must represent the probability of finding the error lying be-
tween —oo and 400, and this must be 100% or 1, we can write : -

+o0
f Plrydr =1 (12-7)
—Q
Equation (12-7) is called the normalization equation, since it insures that this integral
is equal to unity. If we assume that the error in a single measurement and the resid-
ual are essentially the same, then the probability that a measurement will have asso-
ciated with it an error no larger than o is found to be 68.3% of the total area under
the probability curve (illustrated in Fig, 12-3),

Of the many types of parameters used to express uncertainty due to random
error, the probable error is the most popular. The probabie error, ¢, is defined as hav-
ing a value such that the probability that an.gror in a measurement chosen at yandom
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will be less than g is equal to the probability that it will be greater than g. That is, there
is a 50% probability that the error will lie in the range from —g to +¢. Stated math-
ematically,

T
f ! Prydr = % (12-8)

q

This integral, which can be evaluated by means of a series, gives the following ex-
pression for the probable error of a single measurement

1
=0.675,) —— 2=0. -
q Vw7 217 = 06750 (12-9)

Let us evaluate the standard error and probable error for the data given in
Table 12-1, The mean value of the 50 measurements is 8.84. Using this value, we find
the 50 residuals and from them determine ¥r? = 0.0072, This gives

o = \/——(0 0072) = 0.012

and
g = 0.675¢0 = 0.008

Another of the various parameters commonly used by chemists to measure the
reliability of a measurement is called the gverage error

=— Z |7;! (12-10)

Its advantage is that it is much easier to calculate than is the standard deviation or the
probable error. ‘

We said above that when errors are mainly random etrors, the mean value is the
best value with a higher precision than that of any single measurement. We find that
the error associated with the mean value, Q, is inversely proportional to the square
root of the number of measurements taken:

Q=gq/vN (12-11)

Thus, the probable error of the mean is

— I 2
0 =0.675 KN(N " > or (12-12)

Applying this equation to the set of data given above, we find

0.008
Q0 =——=0.001
/50

Section 12-4 Propagation of Errors 185

Hence, we see that while any single measurement in the series is reliable to £0.01 g,
the mean value has a reliability to £0.001 g.

m = 8.840 + 0.001 g

12-4 PROPAGATION OF ERRORS

Experiments in physical chemistry rarely involve a direct measurement of the phys-
ical property in question. For example, in order to determine the density of an object,
we normally measure the mass and the volume of the object and relate these to the
density. In fact, in many cases we even do not measure the volume of the object di-
rectly. Thus, in experiments such as these, the errors are associated with the measured
values, the mass and the volume, and not with the density, Yet, it would be useful to
know the reliability of the density, given specific errors in the mass and volume.

Suppose that some physical property P is a function of several measurable
quantities x;, x,, x3,....

P=f(x,x0,x3,...) (12-13)

Further suppose that each of these guantities, measured once or a number of times to
determine a mean value, has an error Q associated with it. Let (; be the probable error
associated with x;, O, be the probable error associated with x;, and so on. We saw in
Chapter 4 that any small change in the variables x,, x5, x3, . . . will cause a change in
P given by the equation

oP oP
dP = (a )dxl + ( )a'x2 +- (12-14)

Let us assume that the small changes in the variables are the probable errors in these
variables. Hence, the probable error in P, Q,, can be expressed as

Qp—‘ ‘Q1+‘ ’Q2+ (12-15)

where the partial derivatives are evaluated at the mean values, if the x variables are
measured more than once.

We find, however, that Equation (12-15) does not take into account that errors
in a series of variables tend to cancel each other out. If we square Equation (12-15),
we obtain the equation

Q= (3P) 0 + (3:) 0% 4. +2(§Pl)( )Q1Q2+

(12-16)
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Because probable errors tend to cancel each other out, the cross-terms in Equa-
tion (12-16) vanish, giving the equation

G- (Z) g+ (2 gt
Qp=\/(ap) 0} + (3P) Q%+ (12-17)

where each partial derivative is evaluated at the mean if the x variables are measured
more than once. Equation (12-17) allows us to propagate errors through the equations
used to calculate the final result.

- To further illustrate the use of Equation (12-17), consider the following exam-
ple. Suppose we measure the mass of a liquid delivered by a 10 ml pipette, using a
stoppered weighing bottle and an analytical balance. Let us assume that the probable
error in any mass determined on this particular balance is £0.0005 g, Assume that the
mass of the weighing bottle is 19.9314 - 0.0005 g and that the mass of the weighing
bottle and liquid is 28.1038 £ 0.0005 g. The mass of the liquid therefore is

My =Miyp =~ Mp = 28.1038 — 199314 = 8.1724 g

or

Since the mass of the liguid was not measured directly, we must determine the prob-
able error in the mass of the liquid using Equation (12-17).

Qu, =‘/(aaml )z%ﬁﬁ(amz) 0
H+p

Evaluating the partial derivatives
) amg Bm;
=1 d — | = —1
( 8m;+b ) an ( amb ) .

= /(1)2(0.0005)2 + (—1)2(0.0005)2 = 40.0007

Thus, we have

and
my = 8.1724 4 0.0007 g

Note that the error in the mass of the liquid is larger than the errors in the mass
of bottle plus liguid and in the mass of the bottle. This is reasonable, since the mass
of the liquid was found by performing two measurements on the balance. On the other
hand, the eiror in the mass of the liquid is less than the sumn of the errors in the mass
of the bottle pius liquid and mass of bottle. This shows that errors are not purely ad-
ditive and tend to cancel each other out.
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We now determine the density of the liquid by dividing the mass by the vol-
ume. Let us assume that the error in the 10 ml pipette is -£0.02 ml. The density of the
liquid is

m 81724
D=5 = ~oos = 081724 g/ml

What is the error in the density? To how many significant figures are we justified in
expressing the density? Using Equation (12-17), we have

oom () e ()

Evaluating the partial derivatives,

aD _ 1 and aD m
am) TV av vz
Thus, we can write

13\2 m\2
Qp = (V) (0'0007)2+(“Tﬁ) (0.02)?

1 \? 8.1724 \
_ N .
= \/(10 00) (0.0007)° + ( (10‘00)2) (0.02)2 = £0.002

Therefore, the density of the liquid can be expressed as
D = 0.817 4: 0.002 g/ml

12-5 PREPARATION OF GRAPHS

‘We saw in Chapter 2 that one of the most useful ways to display the dependence of
one function upon another is to use a graph. Many computer spreadsheets have ex-
cellent graphing capabilities, and you are encouraged to use them whenever possible.
{Computer methods are discussed in Chapter 11.) However, in many situations you
still will have to prepare graphs “from scratch,” and in doing so, you should use the
following approach. First, start with a good grade of graph paper. Engineering graph
paper divided 10 x 10 to the centimeter is suitable for most physical chemistry
experiments. Other types of graph paper, such as semilog (one axis linear, one axis
logarithmic) and log-log (both axes logarithmic} also are available.

Choose a suitable set of coordinate axes and draw these in over lines presently
on the graph paper. Be sure to clearty mark and number the main divisions along each
axis and to choose a correct scale so that the data does not run off the graph. Label
each axis and include the units of the measured values in parentheses after the label—
for example, P (atm), V {cc), or T (°C). It is customary also to include a title that
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3 4

(a) ()

Figure 12-4  Graphical representation of a typical set of data points: (a) incorrect method
of connecting points; (b} correct method of drawing sinooth curve through a set of points,

describes the data being plotted (for example, Pressure versus Volume for CO, Gas),
or for the equation of the curve being plotted (for example, In k = — E,/RT + In A),
The experimental data points should be plotted on the graph paper using a sharp,
hard-lead pencil or a pin. Circle each point for clarity. It is customary to choose the
size of the circle to represent the uncertainty in the experimental point (this, however,
is not always convenient),

Once the set of points has been plotted, you then must decide how they should
be connected together. It is tempting, for the inexperienced student, to connect the
points together by a series of short, straight lines (“follow the dots™), as shown in
Fig. 12-4(a). You must keep in mind, however, that experimental data normally are
continuous; hence, the data points should be connected by drawing a smooth curve
through them. This should be done first by sketching lightly through the points with
a hard-lead pencil. Do not sketch these curves frechand. If the set of points is supposed
to be linear, use a straightedge to draw the line; if the set is supposed to fall on a curve,

use a French curve, a plastic device containing several irregular curves that can be

used as a template. It is not necessary that the curve pass through all the points. It is

more important that the curve follow smoothly the trend of the points, as illustrated in .

Fig. 12-4(b}. Do not be afraid to erase if you are not satisfied with the curve. Once the
best curve has been drawn through the points, then you may trace over the curve with
ink (again using the straightedge or French curve) and erase the penciled lines with a
soft eraser. Some laboratory texts suggest not passing the curves through the circles,
but only up to their outer edge, since the curve will obscure the experimental points.

12-6 TANGENTS AND AREAS

We find that many experiments in physical chemistry require us to extract informa-
tion from the slopes of curves. Moreover, it is not always possible to plot data in such
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Tangent lire

Intercept of chords

Figure 12-5 Construction of tangent line by method of chords.

a way that straight lines will result (which, of course, would make the determination
of the slope very easy). Recall that the slope of a curve at a point is the slope of a line
drawn tangent to the curve at that point, If the equation of the curve is known, we can
determine the slope from its first derivative. If the equation is not known, then the tan-
gent must be constructed or determined by some numerical method using a computer.
{Numerical methods are discussed in Chapter 11.)

One method of constructing tangents to curves is known as the method of
chords. With a compass placed at the point in question on the curve, strike off two
arcs on either side of the point, as shown in Fig. 12-5. Next, draw chords through the
intersection of the arcs with the curve and extend the chords until they intersect. A
line drawn from the intersection of the two chords to the point on the curve is a good
approximation of the tangent to the curve at that point.

It also may be necessary in some experiments to determine graphically the areas
under curves. Generally, this is the case in spectroscopy experiments where the in-
tensity of a spectral line is equal to the area under the curve, It is commonly done in
gas chromatography also, where the area under the chromatographic peak is directly
proportional to the amount of substance causing the peak. There are several accept-
able ways to do this. One method, known as the Riemann sum approximation, is to
divide the area into a series of rectangles, as shown in Fig.12-6, and measure the area
of each rectangle. The rectangles are chosen so that the small triangular areas above
the curve approximately equal the small triangular areas below the curve.

Another method, which is quite accurate if done correctly, is to cut out the area
and determine its mass on an analytical balance; then this mass is compared to the
mass of a known area on the same graph paper. For this method to work, it is impor-
tani that a good grade of graph paper, having a uniform thickness, be used.

A quick method for determining the area under a curve is to use a planimeter,
an instrument designed to give the area when the planimeter is mechanically run
about the boundaries of the area. Although this method is fast, it is not very accurate
if the area to be determined is small. '
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A

A

- Figure 12.6 Determination of areq

P under curve by the Riemann sum ap-
proximation, (Rectangles are chosen so
that the trigngular areas above the curve
approximately equal the triangular areas
below the eurve, Obviously, the smaller
the rectangles, the closer the match
between area of the rectangles and

g the actual area under the curve.)

Many commercial instruments that display data graphically, such as magnetic
resonance spectrometers, have built-in electronic integrators that will automatically
give the areas under curves. As more and more commercial instrumentation becomes
computer interfaced, the task of analyzing the data produced by the instrumentation
will become easier.

PROBLEMS

1. Determine the probability of throwing a 2, 3, 4, 5, 6, 7, and 11 with a pair of honest dice,
2. From the following set of data,

Measurement  Frequency

5.61 ' 2
5.62 11
5.63 18
5.64 30
5.65 35
5.66 21
5.67 14
5.68 9
5.69 4
determine:

(a) arithmetic mean

(b) statdard error of a single measurement
(¢) standard error of mean

(d) probable error of a single measurement
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{e¢) probable error of meaﬂ
(f) average error

. The volume of a cylindrical capillary tube is given by the expression V = wr2h, where r

is the radius of the capillary tube and % is the height. If the radius of the capillary is found
to be 0.030 em with a probable error of £0.002 cm and the height of the capillary is found
10 be 4.0 cm with a probable error of 0.1 cm, what is the volume of the capillary tube and
its probable error. What measurement must be made to a higher precision to decrease the
probable error in the volume?

. A student determines the volume of a pycnometer by filling the pycnometer with water and

determining its mass. If the mass of the pycnometer plus water is 45.3218 g with a proba-
ble error of £0.0005 g, the mass of the pycnometer is 25.1011 g with a probable error of
=£0.0005 g, and the density of water at 25°C is 0.997044 gfcc, what is the volume of the py-
cnometer and its probable error? (Assume the error in the density of water to be negligible.)

The molar mass of a vapor is determined by filling a bulb of known volume with the vapor
at a known temperature and pressure and measuring its mass. This method is known as the
Dumas methoed. If the vapor is assumed to be an ideal gas, then, from the ideal gas law,

mRT
M="——"
PV

where M is the molar mass, m is the mass of the vapor, R is the gas constant, T'is the absolute
temperature, P is the pressure, and V is the volume. Given that

m = 1.0339 + 0.0007 ¢

T=2740+05K

P = 1.036 = 0.001 atm

¥V = 0.1993 £ 0.0001 liters

R = 0.082051- atm - mol~! - K (no prebable error)

determine the error in the molar mass.

. On millimeter graph paper (using an expanded scale), plot the curve y = x* — 322 + x + 1

from x = —1 to x = +1. Using the method of chords, find the slope of the curve at x = 0.
Compare the slope found by this method to that found by differentiation.

. On uniform graph paper (using an expanded scale), plot the curve y = %xz from

x = 0to x = 4. Determine the area under the curve from x = 1 to x = 3 by cutfing out the
area and determining its mass on an analytical balance. Next, determine the area by break-
ing up the area into small rectangles and determining the totat area of the rectangles. Com-
pare the areas found by these two methods to the actual area found by integration.

. Prepare a graph of the data given in Problem 11-10 and determine the change in enthalpy

of silver by graphical integration.

. Prepare a graph of the data given in Problem 11-12 and determine the change in the entropy

by graphical integration.
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| TABLE OF PHYSICAL CONSTANTS

Constant Symbol Value (SI Units)

Avogadro’s number A 6.022169 x 103 mol™!

Boltzmann constant k 1.380662 x 10~2 J-K~!
Electron rest mass m, 9.109558 x 10~ kg

Electron charge e 1602191 x 107" C

Faraday constant 4 9,648670 x 10* C - mol™’

Gas constant R 831434 x 10° J-mol~" - K-t
Permittivity of vacuum E0 8.854188 x 1072 C?-J-'.m
Planck’s constant h 6.626196 x 1073 J -5

Proton rest mass m, 1.672614 x 1077 kg

Rydberg constant Ry 1.096776 x 10" m™’

Speed of light in a vacuum ¢ 2997925 x 108 m-s~!
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sin®"“ (ax + b) cos (ax + b) . f
See (128} if » is even; (109) if n is odd. | - ft:ot"_2 {ax+b)dx, n=2
1. dx . ! ‘ See (123) if n is even; (124) if » is odd.
sin (ax + b) cos” (ax + )  a(n—~ 1) eos"! (ax + b) i x
dx , { 126. [ secxdx=1n [tan (3+3)|+c=misecx +tanxi+c
+ . , ifp>1 | 2 4
sin (ax + b) cos" 2 (ax + b) |
See (135) if n is even; (109) if » is odd. ‘ 127. fsecz xdx=tanx +C
; i +b) 1 1
1 12, [ Snex - c=1 B+ C i
f; fcosz(ax+b) Y res@igp (T gRclrtht 128, fsec(ax+b)dx=alln tan(ax;b+g-) +C
8 , j
. 2 ! )
sin“ (ax + b) 1], ax+b m : 1
113, fmdx=“;|}m(ax+b)—l“ t‘m( 3 "f'z)]"'c l 129, fsecz(ax+b)dx=ztan(ax+b)+c
i |
i
i |
\'! ;
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1
130. f sec’ (ax + b) dx = > |:sec (ax + b) tan (ax + b)
ax+b n
In |ta - C
+In |tan ( 5 + 4) i| +
1 sin (ax -- b}
131. " P dx =
fsec (@x+b)dx an — 1} cos"! (ax +b)
+ q sec” 2 (ax +b) dx, n=2
n—
See (129)if n is even; (130} it n is odd.
132. fsecx tan x dx =secx +C
133, [cscx dx=1In ‘tan (%)} +C=In|esex —cotx|+C
134, fcscz xdx=—-cotx+C
1 b
135, fcsc (ax +b)dx = P In [tan (axz-l- )\ +C
1
136. /csc2 (ax +b) dx = —— oot (ax +b) + C
1
137, f s’ (ax +b) dx = P [—csc {ax + b) cot (ax + b)
b
+ In |tan (ax;— )[l +C
: -1 b
138. f es¢ (ax + b) dx = b f“x +8)
a(n — 1) sin"! (ax + b)
—+ % esc" 2 (ax +b)dx, n=2
n —
See (136} if # is even; (137) if n is odd.
139. fcsc xecotx dx =-—-¢csex+C
140, farcsin Y dx = x arcsin * +yfat —x2+C
a a

141

142.

2
. f (arcsin a)c)2 dx = x (arcsin cuc)2 —2x 4+ =y 1—aZx?aresingx + C
a

fx arcsin ax dx = ﬁ [(2a2x2 — 1) arcsin ax + ax+y/1 — azxz] +C
a

143,

144.

145

146.

147.

148.

149.

150

151

182.

153,

154.

155.

156.

157.

158.

159.

160.

Appendix il Table of Integrals

1—+/1—a2x?

ax
x x

farccos—dx =xarccos — — a2 —x24+C
a a

2
. f (arccos ax)® dx = x (arceos ax)® — 2x — /1 — a2x? arceos ax + C
a

arcsin ax
X

+C

arcsin ax
f — dx=aln
X

farctanzdx=xarctan£—Eln(a2+x2)+c
a a 2
farccotfdx=xarccot£+gln (az+x2)+C
a a 2
x+\/x2—az’+C
x+\/x2-a2;+c

X X
farcsec—dx:xarcsec——aln
a a

X X
farccsc —dx =xarcese —+aln
[+ a

Logarithmic Functions
A flnlxldx:xlnlxl—x+C

. floga x| dx = x log, |x|-i—l-l’f;+c, ifa#la>0

ax +b

[ln|ax+bidx= Injax +b|—x+C

f(ln X dx=x@nxh?—2xImjx|+2x+ C

ax

f(ln lax + &))" dx =
See (152).

b
: (n lax + B)* ~ n ] (In |ax + b))" L dx

2 2
x x
1 = -
fx n x| dx > In x| n +C

dx
—=In |l C
fxlnlxl n|n|xl|+
In x| 1 .
XPInx|dx = xPP | — e —— |+, if -1
f pr1 (1 P7

(n |x|)? 1 p+l : _
f . dx_p+1(ln|x|) +C, ifp#—1
fsin (In|x)dx = %[sin (In |x]) — cos (In {x])] 4 C

/cos (In |x|) dx = g-[sin (In x|} 4 cos (In |x])] +C
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161,

ok
=
Had

—, S, S, S

164,

165.

166.

167.

168.

169.

170.

171.

172,

173.

174.

175.

o
b |
bl

177.

Appendices
Exponential Functions
edx=¢+C
e dx zée‘”+C

1
xe‘”‘dxmﬁ-e“"(ax—l)+c
43

1 m _
A ey = SxMetF — Z f ymle® gy o m=2
a a

See (163).

— e, S, S, S S, S

mﬂ
*

(ax)? +(ax)3 .
2020 33

e (a sin bx — b cos bx)
a? +b?
™ {a cos bx + b sin bx)

ax —_
e coshx dx = Z 152 +C

x:ln|x|+ax+ -+C

e™* sinbx dx =

<N
=

=x—Inj1+e*|+C

—

+

1.3
=

dx x 1
e — — —— 12 :
qer b B bpln#ae +b|+C, ifb#0,p#0

dx L arctan | e?*_ |5 +C, ifab=>0
= eP* 1]
aeP b€ pab p)T o R

eﬂ X

e In |bx| dx = ! e In [bx| — 1/ dx
a a x

wa
o
o)
—
-
o
Lh
Pt

ax

at dx =
Ina
bx

“blna
bx

+C, ifa>0a#l

-]
&

Y

t

+C, a=0,a#1

xa ab*

m_m+c, ifa>0,a#1

xa dx =
Hyperbolic Functions
. 1
sinh ax dx = - coshax +C

1 1
sinb? ax dx = — sinh 2ax — ~x +C
4q 2

. 1
cosh ax dx = - sinh ax + C

178.

179,

180.

181.

182.

183.

|
/
/
/
/
/

Appendix li Tahble of integrals
cosh? ax dx = ——l—sinh2ax+ l.J:+C
T 4a 2

1
tanh ax dx = p In [cosh ax|+ C
tanh? ax dx = x — ~ tanhax + C

a

1

cothax dx = " in |sinh ax| + C

1
cothzaxdx=x—acothax+c

1
sechax dx = Earctan(sinhax)+C

184, fsechzaxdx=ltanhax+c .
a

185.

186.

187.

188,

/
/
|
/

] 1
esch ax dx = —— In |cothax + cschax| + C = = In |tanh -‘-‘i’i|+c
a a
esch? ax dx = —}- cothax +C
a
sech ax tanh.:ucabu::—l sechax + C
a

1
ceschax cothax dx = ——cschax +C
a

B. Definite Integrals

o
:

J

S— 5—, S, &, &, &~

mt’.‘_‘urz dx = ! (”)1/2
T 2\a
00 .
2 ,—ax’ 1 ”)1/2
dr=—(Z
x-e X 2 \z
o0
M —ax? _].3.5...(2n_1) /2
roe dx = 2n+lgn (Z)
o0 2
X d - —
xe X 2a
o0 3 2 1
—ax _
x’e dx = )
oo In+l ,~ax? n! 1
X e dx = E W
-] n!
n o —ax _ '
x e dx = ;m
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o0 2 o
— 2
8. f x%e“xdx=2f XM e=ex gy
—oo 0

s 43
9, [ xtlemax® gy _ g

oC

Il TRANSFORMATION OF V2 TO SPHERICAL POLAR
COORDINATES

"The Laplacian operator has its simplest form in Cartesian coordinates
2 3t @t

Vis —+ =+
ax2  ay?  og?

The transformation and reverse transformation equations from Cartesian to spherical polar co-
ordinates are
x =rsinfcos ¢ rz(xz—&-yz+z:2)”2

. . z
y=rsin 0 sin ¢ €080 = —5—————

G2+ 247
z=rcosf tanz;b:Z

X

We now must determine the transformation derivatives:

dr 1 2 2 a2 o
ax__i(x + y° +z%) 2x—;~_—smﬂcos¢

Likewise,
or = siné sin or = cosé
idp— .
By siné sing; oz cos

A simple way to find 86/dx without having to differentiate the inverse cosine is to differentiate
cos 8 directly.

) 1
—sinf df = —z (5) o y2 + zz)_3/2(2x) dx = —% dx
r

cos ¢ cosf
bt

—df =

96 cosgcost

ax r
By the same method, we have
36  singrcosf a6  —sin@
—=——-"and — =
dy r - dz r

To find 3¢/8x we differentiate the tangent ¢ divectly.

sec? ¢ dop = —% dx
X
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do _ r $in @ sing dx
cos?¢  r2Zsin?@cost¢
i sin ¢
ax ~ rsind
Likewise,

B oo,

0
dy rsing 9z

The transformation equations for the first derivatives are found using the chain rule.

o5 ara 493  9p B

8x  dxor  8x a0  ox 09
cos¢cosd sing @
r 88 rsind ¢

9 _drd wi+@a
ay @yar ayds dydg

] ) d
F = schos¢~é~; -

sing cosf 4 + cos¢ i
r 99  rsinf a¢

3 ara 909 dp 0

Bz ozdr 0700 0z 9
] 9 sinf 2

L= cosf— — 222
52 Y T T e

]
% = siné S'lIldJ; +

To find the second derivatives of these operators, we now must operate each operator on
itself. Remember that when sin 8 cos ¢ 30 operates on {cos ¢ cos 6/r) 806, only the cos ¢ cos &
passes through the 8/dr operator. The term (1/r)(8/06) must be differentiated as a product.

a8 _ sin29cos2¢-—éf— ., siné cosfcos?p 3*  sinBcos@eos’e B
ax dx ar2 r ar ag r2 ag
singpcosgp 92 singcos¢ @ c0s 6 cos® ¢ sin 6 3t
h r ar d¢ 5 RV + r a0 ar
cos? ¢ cos? @ 3 + cos® ¢ cos? @ _32_ _ sinfcosb cos? ¢ K
r or 2 ag? 2 a6
sin¢ cos ¢ cos a2 sing cosdcos?d 9 sin¢ cos ¢ 32
B r2sin@ 80 d¢ lsinle 0@ r 3¢ dr
sinfg &  singcosgcosf 82 sin ¢ cos® 8
r ar r?sing dgp Br r2sind 86
sin ¢ 8% singcose 3
2sin2g 8¢ | rlsin’9 09




208 Appendices

sinfcos@sin¢p 3 sinfcosbsiniep 3
¥ arag r? a9
singcosg 92 singcosg 8 cos@sin® ¢ sing  9°
o ardg 2 9 r 38 or
N sin® ¢ cos? 6 K N sin? ¢ cos? @ ..‘?i _ sindcosfsin’g 3
r or 2 362 r2 30
sing cos¢pcosf® 52 _singcospcos?H 9 singcosg 92
r2sin® 30 d¢ r2sinfg 3¢ r 3¢ ar
cos? ¢ 3 singcosgeosd 32 cos? pcosd a
rooor r2sing d¢ ar r2sing 98
cosp 3% singcosg 9
r2sin20 062 P2sinl@ ap

2

P .
= sin“ @sin” ¢p—
¢3r2

)
oy dy

+

39 _ 29£ _sinfcos® 3%  sinfcos® 3  sinfcosd 52
dz 0z ar? ¥ ar 26 2 38 r or ag
sin8 9 sin?8 92 sindcosd 9

r or 2 362 AT

+

Adding the second derivatives,

02 & 3 % 24 14 cosb 8 1 32

— + —— e —— — — JE— I
ax2  ay? 322 2 rar + 2862  r2sing 36 + r2sin? g d¢pl

or, as it usually is expressed,
a2 2 13 3 1 3 ] 2
LS S D W U I R DS B Y
ax2 3y az2 T 2o (r ar) + rlsin@ 86 (s1n986) + #25in® @ d¢?

IV STIRLING’S APPROXIMATION

Thropghout mfmy areas of physical chemistry, and particularly in the area of statistical me-
chanics, factorials are used extensively, One will recall that N factorial, written N 1, is defined as

N = (I3} (N — 1(N) ‘ {Iv-1)
whereO!l=1land 1! = 1.
Let us consider, now, an expression for the natural logarithm of & 1.

INl=Inl+In2+1a3+...4+InN
N
InN!= Z In x V2
x=1
If N is very large, however, this summation can be replaced by the integral

N
InN! = [ Inx dx (IV-3)

. Appendix IV Stirling’s Approximation 209

which, when integréted by parts, gives
lanlenx—xl:’*—-NlnN—N+l (IV-4)
However, if ¥ is much larger than 1, we can write .
InN!Z= NInN - N forlarge N (IV-5)

Equation (IV-5) is known as Stirling’s approximation and can be used to approximate In N'!
when N is a very large number.

A much more accurate expression for approximating N !, particularly for nonintegral
values of N, can be found using gamma functions. This approach, which is beyond the scope
of this text, leads to Stirling’s formula

N
N!'=+2zN (—Ai) (Iv-6)

e

which again is valid as N becomes very large. Taking the logarithm of this equation gives
1
1nN!§N1nN—N+-2-1n 2z N) forlarge N {IV-7)

Equation (IV-6) gives better results for smaller values of N.

Let us compare the abilities of Equations (IV-4), (IV-5), and (IV-6) to approximate a rel-
atively small number for N: 601. The actual value is 8.32 x 10%., Equation (TV-4) gives a value
for 60! = 1.16 X 10®, Equation (IV-5) gives an even poorer approximation for 60! = 4.27 x
108, Equation (IV-6) gives a value for 60! = 8.31 x 10%, Clearly, for an ¥ value as small as
60, Equation (IV-6) gives the best results. As ¥ gets much larger, however, all three equations
work better and better. In chemical statistics, where N usually represents the number of mole-
cules in a macroscopic system, 10%, all equations reduce to Equation (IV-5).



CHAPTER 1

2. (2) r=2v2 6=45
by r=4+/3, 8 =5474°
{©) r=5.10, 9 = 78.69°
(d) r=4.12, ¢ =345.96°
(&) r =361, 8=213.69°
3 () x=0647, y =050
() x=1.00, y=0
() x=-223, y=-2.23
() x=0, y=+3
4. (a) r=4/3, 0=5474°, ¢ = 45°
(b) =374, §="T450°, ¢ = 33.60°
(©) r=224, 8 =116.57°, ¢ = 0°
5. dr =rdf@drdz
6. (2) |z1=3,0=0°
) |zl =6, & =90°
(€} lzl=2v2, 0 =45°
9. 0, £1, £2,...

[/t

CHAPTER 2

L(@ x=1
by x=0.5

{c) x=4,-2
(d) x=1,-025
&) x=+/3,3

_x(x +h)
—2x—h
b)) ——— T
®) 22(x2 4+ 2xh + £2)
7. Co =230,k = 0.0138 time™'
8 (a) x=1.247, -1.802, —0.445
(by x = £0.618, £1.618

CHAPTER 3

1. (a) 7.000
(b) 0955
(cy 8.025

2. (a) (HY) = 1.000M
() (H")y=3573 % 103 M
(€) (HY)=1279%10"5M

210

(f)
(g)
(h)
6]

(&)

®
(h)
(d)
(€)
(f)

(d)
(e)
63

)
(g)
(h)
@)
G
{©)

(@)

©
@

{d)
(e}
(®
(d)
(&
(f

Answers

r=200,6 =0

r =200, 8 = 180°
r=35.00, 8 =270°
r=13.42, § = 333.43°

x=-491, y =344

x=0, y=-250

x=246, y =172

x= 158 y=474

r=412, 8 =14.04°, ¢ = 180°
r=1375, 6 = 150.78°, ¢ = 243.43°
r=4.00, 8 = 180", ¢ = undefined

|z = 3.16, & = 288.43°
[z} = 44/2, 6 = 225°
lz| = 6.40, @ = 128.68°

x=nnw,n=10,%1,+£2,...

@ =n+ 1)-’25,n=0,i1,:t2,...
(H*) = 1.00M

x=x2

nong

A2x + 1)

-1
(I+x+m(1+x)

x = 1.425, 0.053, —1.000, —1.479
x==1,+1,:42

—0.151
1.264

—1.079

2786 x 1078 M
5.916M

7.674 % 10712 M

. pH = 6.98

work = —3003 J
AS = 1270 WK
Hh=103K

.t =3300yr

Nemew

CHAPTER 4

L @ 12x%2414x-10
(b}

€} 4x -9

(d) 6sect29

&) 2x%e?* 4+ Ix2eP
(f) Afcos?# — sin? 0}

4
© —xe +4x3y1 =&

2/T—¢
(h) 4x%(1 — e*)cosdx — x5¢% sindx + 6x7(1 — &) sindx
. 3x3 3x2
O S E T G
o &
() —m
k) —1-—lnn;

1
) —3nz + ;e'3’

A 141
(m) -5 +1+Ins

E? 27
(n) —:‘l_ (22 "-8'”)

Nm Nnx
{o) 24 (——L—)cos(—L—)
) AH
@ Ri?
AG
R1?
12A 6B
® —mta

M
8 -=

v2

W A e-E,v’Rr (__E__)

(@

Re?

apP nRT
2@ (37), =

aprP nRT 2nla
® (5%), =7t 7T

Answers
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212 Answers
dp
© G;)
aH d
(d) (ﬁ) =b+42T — }'—
ar z
© (8_z) (x2+y + 22172

( ) = ~rsinfsing
@ 5 _ 1 o
& aP aT T \ 3P 3T

® 3?5 1 9H 1 BH) LA aV)
arop T \atar) T2 (aP T2 T(EF »

aD
(i) — = cos¢fcos® @ — sin? 8]
8
( dE ) _ (BcaHaa +2cgHan) — E(2cq + 2cp8az)

dcg Ci +C§ +2cacpSap

n 4 _ —E{ kT
( ) E; kT Z

1 ~E kT
o aT T ZE‘e

)

3 (@) slope=6 (g) slope=15
(b) slope =25 (h) slope = 196 m/s
©) slope=4 (i} slope =31.2 x 1073
(d) slope = 2.609 (G) slope = 0.0412
(e} slope=0 (k) slope = —3.94 x 10~*
(f) slope = —10

4. (a) minimum at (0.625, 2.438)
(b) maximum at (-3, 97)
minimum at (2, —28)
point of inflection at(—0.5,34.5)

(c) maximaat x = (2n + 1)£,y = sin(2n + 1)%,:: =0,2,4,6,...

m1n1maatx—(2n+1)—,ym31n(2n+l)g—,nwl 3.5,7,.

(d} no minimum ot maximum
(&) minimumat r = 21/Sq [(r) = —
(f} maximumat 9 = 19.47°, ¢ = 2.000

2
(g) minimum at 7 = 1,688, E = —2.848%

a
(h) maximumat F = %kT

(i) maximum at x = g, P(x) =

1
. L nB
minimum at » =
0 ()

|2

n—1

-

dk E, _EJRT
e —— = — ] Ae a
S oT (RTZ)
6 dp _PM
4T RT?
; BP) _ nR
) (BT v V—nb
ap nRT nta
 (3L) o tRT_ 20
v T (V—Hb) 12
% o= T TFP
RT R
. =—-= —dr
10. 4V 7 P+ 5d
1. r=ry
12, x=a/2
CHAPTER b
4
1. () f(x)x§x3+C

b)) fxy)=-1/x4+C

© flx)= —-]- cos3x +C

O fuy=Pv+C
(g} f(p)=RThp+C

m)ﬂm=lMﬁ+C

Answers

25 2 Q2
@ flxy= —x +1007 + = 7 +C o fy=-—]+C
€ fx) =4de +C O O = 5 sin@rWH +C
1
2. (o) y=—Ze“‘"+C
b y= % 3—-A2x+C
©) y=%[x\/(x2——Az)—A2ln X+ (xZuAZ)]+C
@ y=32* = 1xS+xt4C
Y= 73
_x A ,(2Nnx)
(e) Y=o~ sl —, 2
x? A . {2Nmx A (ZN:rx)
=73 T i=N - +C
® 4 4”Nxsm( A ) SNznzcos A
® y=2T 4
g vy m
(h) y=%e"(cosx+sinx)+c
1
(i y—% ansm(‘le)-l-c
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0
k)

(4]

(o)
(p)

(1)

(s)
®

{b)
(c)
{d)

(e)
)

(8)

m

W

(k)

(n) ¥

(q)

Answers

1 4
yz—»—zcos ¢+C

3_6“ + 3sin20 + cos? 8 sin 6 c
8 16 4 +

Y=

1,
Yoo T sm5(3x + 4)cos(3x +4) + E}i - —-S— sin2(3x +4)

16 96
5
- sin(3x + 4)cos(3x +4) + €

(m)y—xzsian 1s'n2x+x 2 C
=3 2 i Ecos X+

(4 - x)
=] c
n(3”x)+
—AH B C
= ——— Al ol v 1 ’
¥y : + nf+21‘+61‘ +C
y=Ct+C

1
’= [(n— 1)(a—x)"-i] e

1
y===ear4 1)+ C
a

—kTe ™ 4 ¢
In(A) = —kt + C

b
alfy ~ Ti) + §(T22 -T2 + %(T; -7 +d1n—?—
1

Py
:l'l}__’i

nRTlnM+ 2a (i - _1-)

V=g T\ T W
1
3
03 3 613
6 4nin?
IS AL
4a (E)
a3
4
22T
m2
l/a
1 3.2
gx y+C

1
3(x3}f+xy3) +C

1
-iyz(x Inx—x)+¢

Answers 215

xte?r g 1.
) [ —T(2x—l):|(ylny—y)z+c

2
&) 2

4 .3
6] i

b
(@) %C(zmmm

b
7 AH=aT+ET2+§T3+d

8. AG=a~bTInT —cT?+¢T
9. 0.198
10. 0.0063

3
1. 2
2%

CHAPTER 6

1L (@ y=Ae™
(b) y= Ae¥
® y=c1e*+erxe™

() y=cie¥ +cpxe™

{e) y = A ei3x + B e'—'ilt

) 1

0 k| +ka
3 (2) Exact

(b) Exact

(c) Exact

(d) Exact

(e) Exact

() Inexact
5 & —cha. =0

2nx

kA f(x)=Asin?+BcosT

Infkya — (k) + k)1 =t +C

8. =—2i£; n=1273,4,...
n

CHAPTER 7

1, (a) divergent
(b} divergent
(c) convergent
(d) convergent
(e) convergent

(&) =A™
) In(4) = —kt+C
(i) ®=Aeimty jeime

0] y=Asin1ff-:+Bcos1f£t
nt m

. [8n2mE {8n2mE

(k) ¥ = Asin h—2x+Bcos % x

(g) Exact
(h) Exact
(i) Inexact
() Exact
(k) Exact

() divergent
(g) divergent
(h) convergent
(i) divergent
(i) convergent
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2. (a) convergent
(b) divergent
(c) test fails
(d) divergent
(&) convergent

@ -1<x<l

b) —1<x=<1
(c} all values of x
@ —1<x=<1

(e) all values of x
4o (@) I—x+xi—xP+ ...
by 1+2x+3x% +4x% ...

1 1
© l4sx— -2+ —x*—+-..
@ —x—x¥2-x%3—xYa—...

)
(&)
(h}
6y
)]
0
(2
(h)
0]
)]
(e}
()

(g
(h)

convergent

divergent

convergent

divergent

test fails

—-l=x=<1

all values of x

D<x=<2

2<x<2

“J<x<-1

L—x2qx¥ar— b3 — ...
i+xlha+ (x 1na)2/2! + (x lna)3/3! + e

1— 222t 4+ x%81 — 5861 4 — ...
14+ 3x4+3x2 453

2i :
10, g0 WorTE {km coskm — sinkm)
sinkl
11. gk) = L
CHAPTER 8
1 (&) |[Al= 3.16
0 =T71.57°
(b) |A|=2.83
0 =45°
© |4]=5.00
8 = 306.87°
(d) |A|=2.00
8 = 180°
(e) |Al=6.08
6 = 260.53°
() |A| =3.32
8 =25.37°
¢ = 45°
2, (a) |C|=35.66
0 = 45°
) [C]=4.12
8 =T75.97°
(¢} |C! =4.24
f = 45°
) |C| =707
8 =45°
¢ = 53.13°
3. (a} 6 (cy —~4
b) 2 @y 9
4. (a) |C| =38
8 = 180°
¢ = undefined

(g) A =539
6 = 42.08°
¢ = 56.32°
(hy |A| =245
§ =114.08°
¢ = 116.57°
(i} |A|=3.32
8 = 154.63°
¢ = 225°
) 14l =141
8 = 135°
=0

(e) IC|=3.74

8 =122.33°
. ¢ = 198.43°
i [Ci=8.54

g = 134.63°

¢ = 99.47°

(e —34
Hh —33
) [Cl=6
g =180°
¢ = undefined

Answers
© IC)=12 (e} |C|=19.52
8=0 6 = 55.70°
¢ = undefined ¢ =262.87°
@ [Cl=+6 (O 1€ =23.43
§ = 65.91° & = 59.20°
& = 296.57° ¢ = 153.43°
8. Lx:ypz"ZPy Ly=zp: —xp, Le=xpy—yp:
CHAPTER 9 .
1 (@ ~2 @ x2-1 M x> -2
b -5 1 () +352
c) —4 (@ 18 () x* —3x28% 4+ p*
@1 ) -93
2. () x==%1 d) x=0%/3
b) x =42 € x=00+t/3
(©) x=+5
51 0 6
3 53 -6 7
*1-23 3 -3
08 9 12
4. (2 (b} {©

(% ) (3 73)

12 15 18
3 -1 =7
12 23 38

G O]
26 14 ~18 x+8y+4z
10 15 7 —2x 4+ 3y
18 —14 ~43 Sx—y-z

42 =13 1t 3 0 34
5. |68 -50 36 Vs 4 -7 37

12 6 —2

6. (@) x=2,y=1
() x=1,y=3z7=—4
© x=l,y=1z=-2,t=-3
) x=x'sind — y' cosd
¥y = ¥ sinf + x'cosd

4 0
woa=(d )

4 E|=a+28, Ez=E3=a-§

12 29 -1

1
For Ei: ¢ =C2=C3=ﬁ
For E. 1 ! c 0
2L =—F,00=——F7,0=
2 V2
1 2
ForEs cij = — =03, 00 = ==
V6 N
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218 Answers

CHAPTER 10

L@@ t+x+x2+08+xt4x°
B 1—x+x2~s?4xd—s5°
) AE=E; —E,

@ 3x%

(e 2y}

) 12432

(@) Bxyz

() 1421+ 3% 457 + 524
) xo!-xil-xplex3l.xy!

. -1 0 a -a
o (% )()=(3)
2. (a) commute
(by commute
. cigenvalues = mhk
9. eigenvalues = o2
10. (a) (0.732,2.732)
(b} (2.121,3.53%5)
) @3

. _ 3 ]
1. M, = —ih (}'32 —ZE;)

{3 2
W TERE"

e |

12

!} il
——

R : g2 ?
13, M2=—-'L(a +eot b +

a2 a9

CHAPYER 12

1. (a)
®h) —
) =

1
(d) 3

2 a
sindba—g + cot Gcosqﬁgg)

a8 F]
- a— O sind—
cos¢39+cot snn¢8¢)

)

(c) commute
(d) donot commute

(d) (—0.232,3.598)
() (~3.008,0.634)

(e)

]

5= glo

@

2. (a) 5.6494 (d) 0.012
(by £0.02 (e) 0.001
(¢) £0.0M () 0.014
3. V=0.0113£0.0015cc; radius must be measured to a higher precision.
4. V= 20.2806 + 0.0007 cc
5

. M= 112.58 + 0.25 g/mol

Answers
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A

Abscissa, definition of, 2/
Absolute value, definition of, 8
Antiderivatives, definition of, 54
Antjlogarithm, definition of, 26
Areas: :
under curves, 5961
graphical determination of, 188
numerical determination of, 169-174
Arithmetic mean, 182
Associated Legendre function, 83
Associated spherical harmonics, 83
Auxiliary equation, 75
Average error, 184

Base of logarithms, 24
Boundary conditions, 92, 139
Boyle’s law, graph of, 3

Cc

Calculus:
differential, 30-53
integral, 5468
Cartesian coordinates, 2—4
definition of, 2 .
differential volume element, 4 -
n-dimensional, 3
three-dimensional, 3
two-dimensional, 2
Characteristic equation of a matrix, 128-131
Characteristic of a logarithm, 26
Circles; C
equation of, 19
graph of, 19
Cofactors, method of, 121
Column matrix, 120
Commutation. See Commutator
Commutator, 136
Commutator bracket, 136
Comparison test, 95

Index

Complex conjugate, definition of, 8
Complex numbers, definition of, 7
Complex plane, 7-9
definition of, 8
graph of, 8
Computer:
arrays, 160
loops, 156
programming, 163-169
terms:
DEF TRUNCATE, 163
DIM, 160
DO-UNTIL, 158
FOR-NEXT, 156
IF-THEN, 158
INPUT-OUTPUT, 154
LPRINT, 155
WHILE (NOT EOF({)), 162
WHILE-WEND, 158
variables, 152 :
Constant coefficients, linear differential -
equations with, 74
Constrained maxima and minima, 47
Convergence: :
of infinite series, 94, 95
interval of, 99, 101
Convergence and divergence, tests for,
95-99
Convergent series, sums of, 94
Coordinate systems, 1-10
Cartesian: i
definition of, 2
* differential volume element, 4
n-dimensional, 3
three-dimensional, 3
two-dimensional, 2
curvilinear, 5
cylindrical, 10
plane polar, 4-5
definition of, 4 :
reverse transformation equations, §
transformation equations, §

221
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Coordinate systems (continued)
spherical polar, 5-7
definition of, 5
differgntial volume element, 6
reverse transformation equations, 6
transformation equations, 6
Cosine, definition of, 19
graph of:
linear coordinates, 21
polar coordinates, 21
Cramer’s ryle, 127
Cross product, 115
Curves, areas under, 61, 169, 188

D

Definite integral. See Integrals
V2 operator, 138
transformation to plane polar
coordinates, 145
transformation to spherical
polar coordinates, 206
Derivatives:
definition of, 30
functions of several variables, 35
functions of single variable, 31
geometric properties of, 4346
mixed partial second, 36
partial, definition of, 36

physical significance of, See Derivatives,

‘geometric properties of
relationship to slope, 40, 43
second, 31, 44

Descartes, René, 2
Determinants, definition of, 121
secular, 129
Differential calculus, 30-53
Differential equations, 69-93
definition of, 69
first order, 71
lineat, 69
order of, 69
partial, 88
reduced, 70
second order, constant coefficients, 74
series method of solution, 77

special potynomial solutions:
associated Laguerre polynomials, 81
associated Legendre polynomials, 83
Hermite polynomials, 79
Laguerre polynomials, 81
Legendre polynomtals, 83
with constant coefficients, 74
general methods of solution, 74
general solutions, 75
imaginary solutions, 75
particular sotutions, 75
real solutions, 75
Differential volume element:
Cartesian coordinates, 4
definition of, 4
spherical polar coordinates, 6
Differentials:
exact, definition of, 84
significance of, 86
inexact, definition of, 84
partial, 38
of a cylinder, 39
total, 37-39
Differentiation:
definition of, 31
functions of several variables, 35
functions of single variable, 31
Direct proportion, 13
Divergence:
of infinite series, 94
of a vector, 138
Dot product, 114

Eigenfunctions, 138
Eigenvalue equation, 138
Eigenvalue spectrum, 129
Eigenvalues, 128, 138
Eigenvectors, 128, 138
Elements:

of a matrix, 120

of aset, 11 -
Equations:

auxiliary, 75

differential. See Differential equations

eigenvalue. See Eigenvalue equations
exponential, 18
defining equation, 18
graph of, 18
zero of, 18
first degree, 12
defining equation, 13
graph of, 13
slope of, 14
zero of, 13
Hermite’s, 79
indicial, 78
Laguerre’s, 80
Legendre’s, 82
linear. See First degree equations
logarithmic, 18
defining equation, 18
graph of, 19
polynomial, finding roots of, 20, 174
quadratic. See Second degree equations
recursion, 78 '
second degree, 15
defining equation, 15
graph of, 15
slope of, 15-16
zero of, 15-17
secular, 129
simultaneous. See Simultaneous equations
Error: '
average, 184
probable, 183
propagation of, 185
random, 182
standard, 183
systematic, 182
Error probability function, 182
Estimated standard deviation, 183
Exact differentials. See Differentials, exact
Exactness, test for, 84
Expansion by cofactors, 121
Exponential e, definition of, 18
Exponential equations, 18
Exponential functions. See Functions,
exponential

Index

Euler’s relations for complex
exponentials, 9, 10
Euler’s test for exactness, 84

F

Factorials, 8
First degree equations, 12
defining equations, 13
graph of, 13
slope of, 14
zero of, 13
Formula, recursion, 78
Fourier series, 101-106
Fourier integral, 102
Fourier transforms, 101-106
French curves, 188

Functional dependence of variables, 11,

Functions:

circular, 19

graph of, 19
constrained maxima and minima, 47
definition of, 11
differentiation of, 30-53
exponential, 18

graph of, 18

zero of, 18
graphical representation of, 12-20
linear, 12

graph of, 13

slope of, 14

zero of, 13
logarithmic, 18

graph of, 19
maximization of, 43
minimization of, 43
quadratic, 15

graph of, 15

slope of, 15-16

zero of, 15-17
trigonometric, 20

Functions of state, 86

G

Gradient operator, 138
Graphical representation of data, 187

223
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Graphs:
method of least squares, 165
preparation of, 187

H

Hamiltonian operator, 140

Heat capacity, definition of, 40
Heisenberg uncertainty principle, 124, 148
Hermite polynomials, 79

Hermitian operators, 140

Heterogeneous logarithms, 26
Homogeneous logarithms, 26

Imaginary numbers, 7
Inexact differentials. See Differentials,
inexact
Infinite series, 94—109
comparison, 95
convergence of, 9499
tests for, 94-99
definition of, 94
divergence of, 94-99
tests for, 9499
Fourier, 101-106
Maclaurin, 99
power. See Power series
Taylor, 99
Integral calculus, 54-68
Integrals:
as an antiderivative, 55
as area under curve, 59-63
cyclic, 87
definite:
definition of, 61
evaluation of, 61
table of, 205
definitton of, 55
double, 63
Fourier, 102
geometric interpretation of, 5963
indefinite, table of, 192
line, 61-63, 86
partial, 63-64
triple, 63

Integral sign, 55
Integrand, 55
Integrating factors, 73, 87
Integration:
definition of, 54
general methods of, 55 |
partial, successive, 64
special methods of:
algebraic substitution, 57
partial fractions, 58
trigonometric transformation, 58
as a summation, 59-61
Interval of convergence, 99,101

K
Kronecker delta, 104

L

Lagrange’s method of
undetermined multipliers, 47
Laguerre polynomials, 81
Laplacian operator, 138
Least squares determination, 165
Legendre polynomials, 83
Line integrals, 61-63, 86
Linear combinations, 70
Linear differential equations. See
Differential equations, linear
Linear equations, 12
simultaneous, solutions of, 126
Linear functions. See Functions, linear
Linear regression, 165
Logarithmic equations, 18
Logarithmic functions. See Functions,
logarithmic ’
Logarithms, 24-29 }
base e. See Logarithms, natural |
base 10. See Logarithms, common ’
characteristics, 26 }
common, 25-26 ‘
relationship to natinral, 27 |
general properties of, 24-25 |
power rule, 25
product rule, 24
quotient rule, 25

heterogeneous, 26
homogeneous, 26
mantissas, 26
Napierian. See Logarithms, natural
natural, 27-28
relationship to common, 27
significance of, 27-28

Maclaurin series, 99
Mantissa, 26
Mathematical sets, 11
Matrices:
addition of, 123
general properties of, 123
multiplication of, 124
putting in diagonal form, 128-131
Matrix:
characteristic equation of, 128
column, 120
definition of, 120
determinant of, 121
diagonal, 125
elements of, 120
inverse, 125
nonsingular, 125
order of, 121
row, 120
singular, 125
square, 121
unit, 125
Matrix algebra, 123-125
Maxima and minima, 4344
constrained, 47
definition of, 43
Maximization of functions, 43—44
Method of chords, 189
Minimization of functions, 4344
Modulus. See Absolute values, definition of
Monte Carlo methed, 172

N-factorial:
approximation of, 208
definition of, 8

Index 225

Newton-Raphson method, 175
Normalization, 104
Numerical methods:
integration:
trapezoid method, 169
Monte Carlo method, 172
Simpson’s rule, 171
linear regression, 165
roots to equations:
Newton-Raphson method, 175
Regula Falsi method, 174

0

Operators:
addition of, 140
commutation of, 136
definition of, 135
differential, 135
eigenfunctions of, 138
gradient, 138
Hamiltonian, 140
Hermitian, 140-141
Laplacian, 138
rotational, 142145
self-adjoint, 140
transformation, 144
vector, 137
Ordinate, definition of, 2
Origin, definition of, 2
Orthogonality:
of functions, 104
of vectors, 115

P

Parabolas, definition of, 15
Partial derivatives. See Derivatives, partial
Partial differentials. See Differentials, partial
Phase angles, definition of, 8
Physical constants, table of, 192
Plane polar coordinates, 4--5
definition of, 5
graph of, 5
reverse transformation equations, 5
transformation equations, 5
Planimeter, 189
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Vector operators, 137-138
Vector product, 115
Vectors:

Point of inflection:
definition of, 44
test for, 44

i Successive partial integration, 64
| Systematic errors, 182

transformation properties of, 110
Second degree equations, 15

Power series:

definition of, 98

Fourier, 101

interval of convergence, 99, 101

Maclaurin, 99

Taylor, 99
Probability, definition of, 180
Probability aggregate, 182
Probable error, 183

of the mean, 184

of a single measurement, 184
Propagation of errors, 185

0]

Quadratic equations. See Second degree
equations

Quadratic formula, 16

Quadratic functions. See Functions,
quadratic

R

Radioactive decay, 23, 29

Random error, 182

Ratio test, 97

Real numbers, 7

Rectangular coordinates. See Cartesian

coordinates

Recursion equation, 78

Recursion formula, 78

Reduced differential equations, 70

Residuals, 182

Reversibility, 40, 62

Reversible process. See Reversibility

Right hand rule, 115-116

Roots. See under Zeros

Rotational operators, 142-145
relationship to symmetry, 144—145

Round space. See Space, round

Row matrix, 120

S

Scalar product, 114
Scalars:
definition of, 110

defining equations, 15
graph of, 15
slope of, 15-16
zero of, 15-17
Secular determinant, 129
Secular equations, 129
Self-adjoint operators, 140
Separation of variables, 71
Series. See Infinite series; Power series
Series expansion of functions. See Fourier
series; Maclaurin series; Taylor
series
Sets. See Mathematical sets
Simpson’s rule, 171
Simultaneous equations, solutions of, 126
Sine, definition of, 19
Slope:
determination of using
differential calculus, 43
of linear functions, 14
of quadratic functions, 15
variation of (graph), 16
Space:
rectangular, 2
round, 4, 5
Spherical polar coordinates, 5-7
definition of, 5
differential volume element, 6
graph of, 6
reverse transformation equations, 6
transformation equations, 6

_Square matrix, 121

Standard deviation, See Standard error
Standard error, 183
of the mean, 184
State functions, 86
Stirling’s approximation, 208
Straight lines, 12
equations for, 13
method of least squares. See Linear
regression
Successive approximations, 163, 174

T

Tangent, definition of, 19
determination of using differential
calculus, 4346
graphical determination of, 188
Taylor series, 101
Total differentials. See Differentials, total
Transformation of coordinates, 5, 6,
142-145
Transformation of V%
to plane polar coordinates, 145-147
to spherical polar coordinates, 200
Trapezoid method of integration, 169
Trigonometric identities, 142

U

Undetermined multipliers, 47
definition of, 47
Unit circle, definition of, 19
Unit vectors, 111
cross product, 116
dot product, 115

Vv

Variables:
BCD floating point, 152
fractional chzmgé, 27
functional dependence of, 11, 30
integer, 152°
separation of, 71
string, 152

absolute value of, 112
addition of, 111-114
applications of, 117-118
definition of, 111
magnitude of, 112
scalar multiplication of, 114
unit, 111
vector multiplication of, 115
Volume elements. See Differential volume
element
Volumes, by triple integration, 63

w

Work:
area under a curve, 59, 62
pressure-volume, 41, 59, 62, 87
World line, 10

X

x-axis, definition of, 2

Y

y-axis, definition of, 2
y-intercept, 13

Z

Zeros:
of exponential functicns, 18
of linear functions, 13
of quadratic functions, 15-16





