

DESIGN and USE
of RELATIONAL

DATABASES
in CHEMISTRY

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

DESIGN and USE
of RELATIONAL

DATABASES
in CHEMISTRY

TJ O’ Donnell

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487‑2742

© 2009 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid‑free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number‑13: 978‑1‑4200‑6442‑1 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher can‑
not assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy‑
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978‑750‑8400. CCC is a not‑for‑profit organization that pro‑
vides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

O’Donnell, T. J.
Design and use of relational databases in chemistry / T.J. O’Donnell.

p. cm.
Includes bibliographical references and index.
ISBN 978‑1‑4200‑6442‑1 (hardcover : alk. paper)
1. Chemistry‑‑Databases. 2. Chemistry‑‑Data processing. 3. Relational

databases. I. Title.

QD455.3.E4O46 2009
542’.85‑‑dc22 2008040765

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents
Preface..xi
Acknowledgments.. xiii
Biography...xv

Chapter 1	 Introduction.. 1

Chapter 2	 Relational Database Fundamentals... 5
2.1	 Introduction... 5
2.2	 Tables, Rows, and Columns.. 5
2.3	 External and Internal Representations of Data.................................... 7
2.4	 Advantages over Spreadsheets... 8

2.4.1	 Size and Speed.. 8
2.4.2	 Multiple Users... 8

2.5	 Relationships among Tables.. 9
2.5.1	 One-to-Many Relationships.. 9
2.5.2	 One-to-One Relationships... 11
2.5.3	 Many-to-Many Relationships... 12

2.6	 Entity Relationship Diagrams.. 12
2.7	 Uniqueness.. 14
2.8	 Sequences... 14
2.9	 Keys.. 15

2.9.1	 Primary Keys... 15
2.9.2	 Foreign Keys.. 15

2.10	 Constraints.. 16
2.11	 Indexes... 16
2.12	 Joining Tables.. 16
2.13	 Normal Forms... 17

2.13.1	 First Normal Form.. 17
2.13.2	 Second Normal Form... 18
2.13.3	 Third Normal Form.. 19
2.13.4	 Summary of Normal Forms.. 20

References.. 20

vi	 Contents

Chapter 3	 Structured Query Language (SQL).. 21
3.1	 Introduction... 21
3.2	 Databases, Schemas, Tables, Rows, and Columns............................. 21
3.3	 Create.. 22
3.4	 Insert... 23
3.5	 Select... 24
3.6	 Update and Delete.. 25
3.7	 SQL Functions... 26

3.7.1	 Regular Functions.. 26
3.7.2	 Aggregate Functions.. 27

3.8	 Domains, Triggers, and Views.. 28
3.9	 Unions, Intersections, and Differences.. 29
References.. 30

Chapter 4	 Relational Database Management Systems......................... 31
4.1	 Introduction... 31
4.2	 Standard SQL.. 32
4.3	 A Sampling of Differences.. 32
4.4	 Server and Client.. 33
4.5	 Compatibility.. 35
References.. 35

Chapter 5	 Client and Web Applications.. 37
5.1	 Introduction... 37
5.2	 Command Line Programs... 37
5.3	 Web-Based Applications.. 38
5.4	 Client Applications... 39
5.5	 SQL Interfaces in Various Languages.. 41

5.5.1	 Perl.. 43
5.5.2	 Python.. 44
5.5.3	 PHP... 44
5.5.4	 Java.. 45

References.. 46

Chapter 6	 Data Storage, Searching, and Manipulation........................ 47
6.1	 Introduction... 47
6.2	 General Schema Design Decisions... 47
6.3	 Sample Schema for Tracking Chemical Samples............................... 49
6.4	 Schemas for PubChem Data... 53

6.4.1	 BioAssay Data... 54
6.4.2	 Substances.. 56
6.4.3	 Compounds... 58

6.5	 Data Constraints and Data Integrity... 60
6.6	 Developing Complex SQL... 63

Contents	 vii

6.7	 Subselect Statements.. 66
6.8	 Views.. 67
References.. 70

Chapter 7	 Computer Representations of Molecular Structures......... 71
7.1	 Introduction... 71
7.2	 SMILES Representation of Molecular Structure................................ 72
7.3	 Extensions to SQL for Chemical Structures....................................... 72
7.4	 SMARTS Representation of Molecular Searches............................... 74
7.5	 SMILES and SMARTS Quirks... 76

7.5.1	 Hydrogen Atoms.. 76
7.5.2	 Aromaticity.. 77
7.5.3	 Tautomers... 77
7.5.4	 Valence... 80
7.5.5	 Chirality... 80
7.5.6	 Isotopes.. 81
7.5.7	 Salts and Mixtures.. 81
7.5.8	 InChI and Canonical SMILES... 82

7.6	 SMILES and Inorganic Structures.. 82
7.7	 Other SMILES Extensions... 82
7.8	 Input and Output of Molecular Structures... 83
7.9	 Useful SQL Extensions... 85
7.10	 SMILES as an SQL Data Type... 86

7.10.1	 Domains... 86
7.10.2	 Triggers.. 87

7.11	 Summary... 88
References.. 88

Chapter 8	 Molecular Fragments and Fingerprints................................ 91
8.1	 Introduction... 91
8.2	 Fragments.. 91

8.2.1	 Fragment Keys.. 92
8.2.2	 MACCS Keys and Other Fragment Keys.............................. 95

8.3	 Fingerprints... 95
8.4	 Similarity Measures... 96
8.5	 Computing Fragment-Based Properties.. 96
References.. 98

Chapter 9	 Reactions and Transformations.. 99
9.1	 Introduction... 99
9.2	 Reaction SMILES... 99
9.3	 Transformations.. 100

9.3.1	 Unimolecular Transformations.. 101
9.3.2	 Multi-Component Transformations..................................... 104

viii	 Contents

9.4	 Canonical Reaction SMILES.. 106
References.. 107

Chapter 10	 PostgreSQL Extensions... 109
10.1	 Introduction... 109
10.2	 Composite Data Types... 109
10.3	 Composite Data Type for Experimental Values................................111
10.4	 Array Data Types for Two- and Three-Dimensional

Coordinates..115
10.5	 Functions in Other Languages..117

10.5.1	 Plpgsql...117
10.5.2	 Plperl, Plpython, Pltcl..118
10.5.3	 Core Chemical Functions...119
10.5.4	 C Language Functions... 120

10.6	 Object RDBMS... 121
References.. 121

Chapter 11	 Three-Dimensional Molecular Structure Tables..............123
11.1	 Introduction... 123
11.2	 Using Tables Instead of Files... 123
11.3	 Molfile and Other Common File Formats... 124
11.4	 Processing SDF Files... 125
11.5	 Using Tables Instead of Files in Client Programs............................ 131
11.6	 File Import, Export, and Conversions.. 132
11.7	 Functions Using Three-Dimensional Atomic Coordinates............ 133
11.8	 Conformations.. 135
11.9	 Other Representations of Three-Dimensional Molecular

Structure.. 136
References.. 136

Chapter 12	 More on Client and Web Interfaces to RDBMS................ 137
12.1	 Introduction... 137
12.2	 Store All Possible Data in the RDBMS... 139
12.3	 Advanced SQL Techniques... 140

12.3.1	 Placeholders in SQL Statements..141
12.3.2	 Bind Values in SQL Statements.. 142

12.4	 Web Applications.. 143
12.5	 R Programs.. 147

12.5.1	 Hierarchical Clustering... 147
12.5.2	 Linear Models... 148

References.. 153

Chapter 13	 Applications.. 155
13.1	 Introduction... 155

Contents	 ix

13.2	 Compound Registration.. 155
13.3	 Experimental Chemical and Biological Data Integration................162
13.4	 Data from External Sources.. 164
13.5	 Utilities..167

13.5.1	 molgrep.. 168
13.5.2	 molcat... 168
13.5.3	 molview.. 169
13.5.4	 molarb.. 170
13.5.5	 molrandom.. 170
13.5.6	 molnear.. 171
13.5.7	 molsame... 171

References.. 172

Appendix... 173
A.1	 Introduction... 173
A.2	 Symbols and Bonds from Simplified Molecular Input Line

Entry System (SMILES).. 173
A.3	 Normalizing Data... 175
A.4	 SQL Functions..176

A.4.1	 Public166keys...176
A.4.2	 Orsum..176
A.4.3	 Tanimoto...176
A.4.4	 Euclid.. 177
A.4.5	 Hamming... 177
A.4.6	 Nbits_set.. 177
A.4.7	 Amw... 177
A.4.8	 Tpsa... 181

A.5	 Tables Used in Functions... 182
A.5.1	 Amw... 183
A.5.2	 Tpsa... 183
A.5.3	 Public166keys.. 183

A.6	 Core Function Implementation for PostgreSQL............................... 188
A.6.1	 PerlMol/plperlu... 188
A.6.2	 FROWNS/plpythonu.. 191
A.6.3	 OpenBabel/python... 197

A.7	 C Language PostgreSQL Functions... 203
A.8	 Database Utilities Dbutils.. 205
A.9	 Loading Files into Simple Tables.. 206

A.9.1	 Smiloader... 207
A.9.2	 Sdfloader.. 208

References.. 210

Index... 211

Preface
When I first encountered databases, I thought of them as simple repositories
of large amounts of data. Anytime a project required data stored there, I
exported what I needed into flat files for further work. After all, most com-
putational chemistry tools available then were designed to read and write
files. Sometimes the database contained structured information that was
not easy to represent in flat files, so I created computer program objects
and data structures to do so. For example, in a project requiring a web
interface for users of a chemical stockroom, I duplicated the relationship
among compounds, samples, cabinet, and shelf locations in data structures
in my perl programs. Instead of using methods that are built into a rela-
tional database system, I imported the entire set of tables into my program
in order to work with them. After learning enough about relational data-
bases to read complex sets of tables, I came to see the benefits of having
data organized in relational tables. I also came to see the benefit of using
the database to access only the required data and only when necessary.

Today, I have turned my habit around. When I have a set of chemical
structures or data files, my first task is to organize them in a relational
database. After all, the tools I now use are designed to read and write
tables in a database. Rather than creating folders to keep project files,
I create a schema of tables with rows holding chemical structures and
data imported from the files. For example, the PubChem project provides
information on millions of compounds in the form of hundreds of chemi-
cal structure files and associated experimental data files. While PubChem
provides excellent Web tools to search this data, for local use I developed
a schema to hold the structures and data in related tables. One possible
schema for this is shown in Chapter 6 of this book.

Relational databases are not just for storage and organization of infor-
mation. While they have always provided useful tools to search data, I
now realize how the extensibility of a database increases its usefulness by
using various procedural languages operating within the database. I have
converted most of my essential tools into database functions. Whenever
possible, these tools operate on whole tables rather than processing them
using arrays and iterators. It seems now that I am inside the database

xii	 Preface

looking out, rather than the other way around. Of course, there will always
be a need for data processing outside the database, especially for programs
that require hours, day, or weeks to complete their work. However, most
of my everyday work with chemical information benefits greatly from
the organization, data integrity, and extensibility inherent in a relational
database.

Acknowledgments
The work in this book would not have been possible without the support of
many people and organizations. The PostgreSQL community has created
and maintains the world’s most advanced open-source relational database.
Matthew Stahl and OpenEye Scientific Software have supported my work
in chemical relational databases by providing me access to their OEChem
library. Geoffrey Hutchison and Noel O’Boyle helped me with OpenBabel,
which has benefited from the contributions of Craig James. I thank Ivan
Tubert-Brohman for PerlMol, Brian Kelley for FROWNS, and Andrew
Dalke for discussions on FROWNS. Dave Weininger, Daylight Chemical
Information Systems, Inc., their annual MUG meetings, and Jack Delany’s
early work on chemical data cartridges have been inspiring. I thank Tom
Doman for years of collaborative work. He and Kerry Fowler have encour-
aged me and helped me with discussions about topics in this book and
about other matters, chemical and not. Many good suggestions and feed-
back on the book were offered by Maya Binun, David Goodsell, and Robin
Hewitt, who still laughs at how enthusiastically I have adopted relational
databases. Mike Richards has been a great help with SQL questions. He
and Joseph Cohen at Senomyx make better use of relational databases
than anyone I know. I am indebted to all my bosses and mentors over the
years, including Pierre LeBreton, Tom DeFanti, Art Olson, Yvonne Martin,
and Jim Snyder. I thank all of my colleagues and clients over the years
who have come to me with interesting projects that stretched my limits.
The independent coffee house owners and baristas of San Diego made my
work on this book an enjoyable social and caffeinated experience.

Biography
TJ O’Donnell earned his Ph.D. from the University of Illinois at Chicago
in 1980 for work involving quantum chemical computations and pho-
toelectron spectroscopy. While working at Abbott Laboratories in the
early 1980s, he developed one of the early molecular modeling systems
that incorporated interactive three-dimensional computer graphics. Since
1987, he has worked as an independent consultant in the field of computa-
tional chemistry, primarily in drug design groups in the pharmaceutical
industry. In 2005, he formed gNova, Inc. to include consulting and sales of
chemical database software. He now resides in San Diego, California.

1

chapter 1

Introduction
The goal of this book is to convince you that relational databases are the best
way to store, search, and even operate on chemical information. Whether
the database contains a hundred structures or ten million, a relational
database provides ways to ensure data integrity, to formalize relationships
among the data, and to extend the database when new data become avail-
able or when new ways of operating on data become of interest.

Some readers of this book will have a background in chemistry and
wish to see how databases might assist their work. Some readers will
already have a background in programming and databases. After reading
this book, you should have the ability to understand an existing relational
database schema or design a new schema containing tables of data and
chemical structures. You will learn how to take advantage of database
extension “cartridges” that provide ways of properly storing and search-
ing chemical structures, not just numerical or textual data. You will see
how you can download and install a fully functioning database with free
and open-source chemical extension cartridges. You will also see how the
database can be accessed on a computer network using existing applica-
tions or ones that you wish to write.

There are many books that describe relational database manage-
ment systems (RDBMS) and the structured query language (SQL) used
to manipulate the data. Understanding SQL is important, and this book
contains an introduction to SQL. However, the focus is on the concepts
of relational data. One goal is to show how a proper integration of a new
molecular structure data type yields a powerful, extended relational data-
base for use in chemistry. For those of you new to relational databases, it
is expected that the SQL introduction will suffice for your understanding
of the concepts in this book. For those of you already familiar with SQL,
it is hoped that you will see how the extensions described here provide a
powerful, integrated way to handle molecular structures within the data-
base. In either case, there are plenty of practical SQL examples contained
in this book.

Much of this book is a discussion of computer languages. SQL is a
type of programming language. Becoming fluent in SQL helps make the
most of a relational database. SMILES, SMARTS, and SMIRKS are chemi-
cal computer languages that express many fundamental aspects of chemi-
cal structure. Becoming fluent in all these languages will help you create

2	 Design and Use of Relational Databases in Chemistry

and maintain robust and powerful chemical relational databases. And
all four languages begin with S! Finally, you will see how you can use
your familiarity with perl, python, or C to implement new functions in
the database.

Much chemical data is stored in computer files, some of which have
little or no structural organization. Some data files are more structured,
perhaps in tabular form or as an Excel spreadsheet. There are many simi-
larities between spreadsheet files and relational tables in a database.
However, storing data in a relational database offers many advantages
not possible when data is stored in files. The greatest advantage comes
from the proper design and use of tables themselves. Chapter 2 shows
how to design and use tables to store and search numerical or text data.
The reason for using multiple tables is explained and the use of relation-
ships among tables is examined. Finally, the entity-relationship diagram
is shown as an aid to designing and understanding a database of tables.

An introduction to SQL is provided in Chapter 3, but with an emphasis
on examples relevant to chemical information rather than business infor-
mation, which is often used in other books. Chapter 4 discusses some of
the RDBMS that are available, namely Oracle, MySQL, and PostgreSQL.
All of them use SQL to insert, delete, update, and select data. Chapter 5
shows ways in which client programs, including Web-based applications,
are used to connect to the database server. Chapter 6 examines ways in
which RDBMS are typically used to handle numerical and textual chemi-
cal information using relational tables. An example of using data files
from the PubChem project is included.

Chapter 7 introduces ways in which RDBMS can be used to handle
chemical structural information using SMILES and SMARTS represen-
tations. It shows how extensions to relational databases allow chemical
structural information to be stored and searched efficiently. In this way,
chemical structures themselves can be stored in data columns. Once
chemical structures become proper data types, many search and compu-
tational options become available. Conversion between different chemical
structure formats is also discussed, along with input and output of chemi-
cal structures.

Chapter 8 shows ways in which molecular fragments can be used
to speed up searches for chemical structures. Both path-based and frag-
ment-based methods are discussed. Several types of molecular similarity
are explained using bit-string fingerprints representing the presence or
absence of various fragments. Finally, it is shown how tables of fragments
along with parameter values for these fragments can be used to compute
theoretical molecular properties.

Chapter 1:  Introduction	 3

In Chapter 9, chemical reactions and transformations are discussed.
Using SMIRKS to represent chemical transformations, reaction specifica-
tions can be stored in the database. Structures can be transformed and
combined (reacted) to produce new structures.

New SQL functions and data types can be used to extend a relational
database. This is explained in Chapter 10 using PostgreSQL as an exam-
ple. Ways in which three-dimensional molecular structures can be stored
are examined in Chapter 11. This chapter also advocates using an RDBMS
instead of molecular structure files and shows how this transition might
be accomplished.

Chapter 12 discusses more fully the ways in which client programs
can interface with the database. The intent is to show how you might inte-
grate a relational database into an existing suite of programs or design
and implement a new computer system for chemical information.

Chapter 13 shows sample applications that might be developed to
produce a registry of compounds for use within a company or project. A
set of utility functions is discussed that allows molecular structure files to
be imported into a database and used in various ways.

The Appendix to this book contains a complete set of SQL statements
conforming to the examples used in the book. This book describes a core
set of molecular structure functions and builds upon that. The methods
used to build the core tools are completely contained in this book, mostly
in the form of SQL functions and tables of data. Three different ways
in which the core functionality can be implemented are shown in the
Appendix. These are all based on the free and open-source PostgreSQL
database and use free and open-source perl or python modules. There
are also commercial chemical cartridge extensions to PostgreSQL and
Oracle that may even more closely suit your needs. The methods in this
book most closely parallel the methods available in the PostgreSQL exten-
sion cartridge CHORD from gNova, Inc. However, most of the methods
described, except perhaps for those using bit strings (which are not sup-
ported in Oracle), could be implemented using any of the commercial
toolkits or cartridges.

The Web site at http://www.gnova.com contains an implementa-
tion of every function in this book. There is also a database of structures
and data. Using this resource, it is possible to try any of the techniques
described in this book. Throughout the book, many practical examples
of experimental, theoretical, and structural chemical data relations are
described. The examples are available online, allowing you to connect to a
live database and experiment with various search and display options.

5

chapter 2

Relational Database Fundamentals

2.1 � Introduction
A relational database provides a way to store large amounts of data in
tables that are either independent or related to one another. These tables
have some similarities to spreadsheets, such as those used in Excel or
OpenOffice. However, there are many advantages to storing data in rela-
tional tables. The purpose of this chapter is to provide guidelines for
database design to ensure the creation of clear, extensible, and efficient
database tables. There are many books with much more detailed informa-
tion about database design, rules, and theory. After reading this chapter,
you will be familiar with the concepts of tables, rows, columns, schemas,
entity-relationship diagrams, primary keys, foreign keys, indexes, unique-
ness, sequences, constraints, and joining tables.

The tables are formally called relations, referring to the mathematical
set theory used in the original work on relational databases.1 In database
theory, rows are called tuples and columns are called attributes of a tuple.
The focus of this book is practical, so the common terms table, row, and
column are used. The detail of using the SQL language to perform these
operations is left to a later chapter of this book.

2.2 � Tables, Rows, and Columns
A table is a collection of data in rows and columns. As with tables in a
scientific publication, each row typically represents some entity, such as
a molecule, and each column represents some attribute of the entity, such
as the name, molecular weight, ionization potential, or other theoretical
or experimental data measurement. A table in a publication is laid out
for clarity to the reader. Spreadsheet programs typically include ways to
control the layout and look of the table. Display and layout features are
irrelevant in a relational database.

A table in a relational database is intended to provide a consistent
way to organize large amounts of data, constrain the data in meaningful
ways, and extend the tables when new data becomes available. It does
not contain any formatting or display information. Programs that access
the database provide any display or formatting of the data in the table.

6	 Design and Use of Relational Databases in Chemistry

Client programs are discussed in later chapters of this book. The struc-
tured query language (SQL) designed for creating, selecting, deleting, and
updating the database is discussed in Chapter 3.

A relational table has a name, chosen when it is created. Although any
name is possible, the name typically reflects the nature or source of the
data contained in the table. Each column must also have a name. Consider
Table 2.1, called EPA since it was constructed from data provided by the
Environmental Protection Agency.2 This table is readily understandable
to any chemist. Each row contains information about one compound and
each column contains a molecular attribute or property. In order to make
it part of a relational database, a minimum of two things must be speci-
fied for each column: the column name and the column data type. In this
example, the column names are Name, Formula, MW, logP, and MP corre-
sponding to the compound name, molecular formula, molecular weight,
octanol-water partition coefficient, and melting point. The column name
in a relational table is arbitrary but is usually representative of the data
contained in the column.

The nature of the data in each column must be specified by providing
a data type. The data type must be one of a fixed set of types available
in the relational database management system (RDBMS) being used. A
discussion of several common RDBMS follows in Chapter 4. Some of the
frequently used data types are

Integer for whole numbers•	
Numeric for possibly fractional numbers•	
Text for character strings•	
Date for dates•	
Time for time-of-day values•	
Timestamp for values containing both date and time•	

Table 2.1  Sample Table of Chemical Compound Data from EPA

Name Formula MW logP MP

Formaldehyde CH2O 30.03 0.35 −92
Guanidine hydrochloride CH6ClN3 95.53 −3.56 182.3
Dexamethasone C22H29FO5 392.47 1.83 262
Cortisone acetate C23H30O6 402.49 2.1 222
Phenobarbital C12H12N2O3 232.24 1.47 174
Oxyphenonium bromide C21H34BrNO3 428.41 0.17 191.5
Metharbital C9H14N2O3 198.22 1.15 150.5
Mesantoin C12H14N2O2 218.26 1.69 135
Meperidine C15H22ClNO2 283.80 3.03 187.5
Vitamin D2 C28H44O 396.66 10.44 116.5

Chapter 2:  Relational Database Fundamentals	 7

In the above example, Name and Formula are text and MW, logP, and MP
are numeric. The order of the columns is fixed once it is specified when
the table is created. The rows, however, are independent of each other.

There is no inherent internal order in which rows are stored in a
table, regardless of the order in which they were inserted. When rows are
selected, however, the order in which they are returned can be specified by
sorting or other operations. If rows are selected without specific ordering
instructions, the order is undefined and may change each time the rows
are selected. An application must never rely on having the rows in a table
returned in the same order, even if an ordering operation is performed.
For example, it may be that the row for Phenobarbital is followed by the
row for Phenobarbitone when the rows are sorted alphabetically by name.
But if a row for Phenobarbitol is ever added to the table, it will appear after
Phenobarbital when the selected rows are sorted by name.

2.3 � External and Internal Representations of Data
A data type is necessary to allow the RDBMS to accurately convert the
data from an external representation, most often text in a file, to an inter-
nal representation of the data. For example, the external representation
of a numeric value is a text string containing at least one numeral, and
possibly a plus or minus sign or a decimal point. A text value may contain
any valid text character, usually only printable characters from the ASCII
set. The internal representation of the data is dependent upon the par-
ticular RDBMS and hardware being used. It is not necessary to know the
exact internal representation of the data. The important thing to consider
is which data type accurately represents the data for your purposes.

There are rules governing the conversion from the external representa-
tion. These prevent improper data from being stored in the database. This
is an important advantage over data stored in a typical computer file. It
makes it impossible to store a nonnumeric value in a numeric column. For
example, if a column is defined as numeric, an error would occur if the
string “>2.97” were attempted to be inserted into that column of the table.
Another advantage of enforcing these rules is that operations on the data
in the columns can rely on the correct type of the data, not having to take
special measures to handle nonconforming values. This applies to opera-
tions using SQL or operations performed by an external program that has
selected data from the table. This data type concept will become especially
important when new molecule data types are introduced in Chapter 7.

The internal representation of data is not entirely unimportant. When
the float data type is used, the data are typically converted to the internal
floating-point representation used by the computer on which the RDBMS
is installed. This may have unintended consequences because of the
rounding that occurs, especially if several mathematical operations are

8	 Design and Use of Relational Databases in Chemistry

performed on the data in these columns. While it may be more computa-
tionally efficient to use the float data type and it may take less space in the
database, the numeric data type is recommended for most scientific data,
unless rounding errors are of no importance. There is also a double data
type that lessens any rounding errors, but it does not prevent them.

Sometimes, there is no value available for a particular column or a par-
ticular row. Rather than inventing a special value to represent this, such as
99999 for numeric or ““ for text, the relational database provides a special
null value. This should be used when a value is unknown or unavailable.
When actual data becomes available, the null value can be updated.

2.4 � Advantages over Spreadsheets
The advantages of using data types discussed above apply to all relational
tables regardless of size or complexity, but they are missing from spread-
sheet programs, or are difficult to implement. Spreadsheet programs allow
the data in a column to be formatted according to rules, such as for dates
or numbers. However, these rules are simply formatting rules and are not
enforced for all data input into a particular column. This reflects that the
emphasis in typical spreadsheet programs on display rather than data.
There are other valuable checks (see Constraints below) on data correct-
ness that are easily implemented in relational tables but are impossible or
clumsy when using spreadsheets.

2.4.1 � Size and Speed

Table 2.1 could be easily and efficiently stored as a spreadsheet file. If the table
grows to millions of rows, the ability of spreadsheet programs to update,
sort, and otherwise manipulate the data would be severely impacted, or
even impossible. A relational database has no inherent limit on the number
of rows a table may contain because its rows are independent of one another.
Even in a relational database, selecting or searching a table containing mil-
lions of rows takes longer than searching a table containing hundreds of
rows, but the operation scales predictably. For example, if every row must be
searched to select the ones desired, the operation will scale linearly.

In a relational database, data in a column may be indexed. This is
explained in a later section of this chapter. If the relational table contains
an index, many operations on the table can be greatly accelerated. Indexing
is not possible in most spreadsheet programs.

2.4.2 � Multiple Users

Only one person at a time can effectively use a spreadsheet, especially
if it is being updated. Relational databases are designed to be used by

Chapter 2:  Relational Database Fundamentals	 9

multiple simultaneous users, even when tables are being updated. When
necessary, particular tables or rows can be locked temporarily while being
updated to prevent any accidental overwriting by two users. There are
also many ownership and privilege options available in an RDBMS. These
allow only some users to select data or to update data in the tables. These
features are absent from spreadsheet programs.

2.5 � Relationships among Tables
In a spreadsheet program, each table is essentially independent from
other tables. This encourages the user to grow one table by tacking on new
data columns as new data becomes available. This approach is also pos-
sible in a relational database and might even be more efficient than using
multiple tables. However, it is better to organize information in separate
tables and define relationships among the tables. A set of tables, with its
associated rows and columns along with a definition of the relationships
among them, is called a schema.

2.5.1 � One-to-Many Relationships

Consider the EPA Table 2.1. There is no need to use separate tables to store
this information. But, suppose that the need to store data on the water-
octanol partition coefficient (logP) grew. For example, multiple measure-
ments of logP might become important. These could be values measured
at different temperatures or theoretical estimates of logP. It might be
tempting to add other columns, named, say, logP1, Temp1, logP2, Temp2,
clogP1, clogP2, and so forth. When additional columns such as these are
added to a table, the table is said to violate normal form. Normal form is
discussed more fully later in this chapter. It is better to create a new table
to contain only the logP data.

This new logP table could in principle contain columns Temp1, logP2,
Temp2, logP2, clogP1, clogP2, and so forth, but this is still not “the rela-
tional way” to store the data. Instead, consider the nature of the informa-
tion to be stored in order to define which column the table will contain. Of
course, the logP value itself is essential and must be one of the columns.
The temperature is another important piece of information. Finally, the
method used to measure or compute the value must be recorded. So the
logP table would consist of three columns, logP as a numeric value, tem-
perature as a numeric value, and method as text. Using these three col-
umns and multiple rows, it is possible to store any number of values for
logP along with the temperature and method. Notice that there may be
multiple rows for any one compound.

The original table can now have the logP column removed, but how
will the data in the logP table stay associated with the proper rows of the

10	 Design and Use of Relational Databases in Chemistry

original table? It might be possible to use the name column, requiring
adding a name column to the logP table as well. Typically, a new column is
added to each table containing a unique and arbitrary integer to establish
the connection or relationship between the tables. In this case, the column
could be called simply cid for compound id. The resulting tables are like
Table 2.2 and Table 2.3.

Using a separate table to store logP information allows new values
to be added as new rows in the logP table rather than as new columns in
the original table. If one compound becomes particularly interesting and
multiple measurements are made, these are easily stored in the logP table.
Even hundreds or thousands of measurements of logP for one compound
are no problem.

Table 2.2  epa.compound Table,
Revised to Use Unique Compound id Column

Name Formula MW cid MP

Formaldehyde CH2O 30.03 1 −92
Guanidine hydrochloride CH6ClN3 95.53 2 182.3
Dexamethasone C22H29FO5 392.47 3 262
Cortisone acetate C23H30O6 402.49 4 222
Phenobarbital C12H12N2O3 232.24 5 174
Oxyphenonium bromide C21H34BrNO3 428.41 6 191.5
Metharbital C9H14N2O3 198.22 7 150.5
Mesantoin C12H14N2O2 218.26 8 135
Meperidine C15H22ClNO2 283.80 9 187.5
Vitamin D2 C28H44O 396.66 10 116.5

Table 2.3  epa.logP Table
Using Unique Compound id

Related to epa.compound Table

Temp cid logP Method

25 1 0.35 exp
40 1 0.73 exp

1 0.55 theory
1 –0.11 theory

25 5 1.47 exp
25 6 0.17 exp
25 7 1.15 exp

7 1.2 theory

Chapter 2:  Relational Database Fundamentals	 11

This kind of relationship between two tables is called a one-to-many
relationship because for any one compound in the epa.compound table,
there could be many rows in the logP table, related by the cid column.
Once this type of relationship is established between two tables, it eas-
ily accommodates other tables of data. For example, if several molecular
weight values for each compound were to become necessary, a new table
for molecular weight could be created that would use the same compound
id to relate to the compound table. The column used to relate two tables is
called the key column. In this example, it would be called a primary key
in the epa.compound table and a foreign key in the epa.logP table. Keys
are discussed further in a later section of this chapter.

One-to-many is the most common type of relationship in relational
databases. One-to-one relationships as well as many-to-many relation-
ships are also possible and useful.

2.5.2 � One-to-One Relationships

One-to-many relationships are common, but one-to-one relationships are
everywhere. For example, in epa.compound Table 2.2, each compound
has one formula. It would be possible to create a separate table for for-
mulae, in which case there would be a one-to-one relationship between
the epa.compound table and the epa.formula table. There is no funda-
mental need to separate molecular formulae into a separate table, simply
because there is a one-to-one relationship. The relationship is based on
understanding the nature of the data, namely understanding that a com-
pound can have only one molecular formula. Nevertheless, data such as
molecular formulae is sometimes stored in a separate table, for conve-
nience, for clarity, or because it was added at a later date after the table
was constructed.

Before breaking the original table into two tables, each compound
also had just one logP. This was simply because not enough logP data
had been collected or because multiple logP values were not yet of inter-
est. In considering the design of a database schema, it is important to
understand when a one-to-one relationship is an inherent attribute of
the data. Consider the other two columns of the epa.compound table,
molecular weight and melting point. It is possible to have multiple melt-
ing points, say, at different pressures, for each compound. It is also pos-
sible to have different molecular weights for different isotopes of each
compound. If your needs dictate it, you should create a new table for
melting points and molecular weights. If your needs are met by storing
only one melting point and molecular weight per compound, leave these
as columns of the epa.compound table. The rule of thumb is as follows:
If there is a one-to-many relationship between two types of data, store
the data in separate tables.

12	 Design and Use of Relational Databases in Chemistry

2.5.3 � Many-to-Many Relationships

In the tables discussed earlier, the experimental or theoretical values were
clearly attributable to one structure or compound. In some cases, say, for
molecular weight, there was a one-to-one relationship with the compound.
In the case of logP shown above, there were many values of logP and the
separate table of logP values exhibited a one-to-many relationship with com-
pounds. Consider the case of compound vendors. There are many vendors
that supply any one compound and each vendor supplies many compounds.
This situation is referred to as a many-to-many relationship between com-
pounds and vendors. A separate table is created to define the unique vendors
and the corresponding vendor ids. Along with the unique compound table,
a third table is defined that contains only compound ids and vendor ids.
The set of rows in this third table with a particular compound id indicates
which vendors supply that compound. And the set of rows with a particular
vendor id indicates which compounds that vendor supplies.

Many-to-many relationships are much easier to understand when
visualization tools are used. Entity relationship diagrams (ERD) help
visualize one-to-one, one-to-many, and many-to-many relationships.

2.6 � Entity Relationship Diagrams
The definition of the tables and relationships in a database schema are
completely described using the SQL language. This is discussed in a later
chapter of this book. Using ERD is an excellent way to create and com-
municate a database schema. These can then be used to write the SQL
necessary to create the tables in the database. There are many software
tools available to create ERD and most of these can automatically output
the proper SQL necessary to create the schema’s tables and relationships.
Some software tools even allow reverse engineering of existing schemas
to create ERD. It is a good idea to begin working with ERD as early in the
design process as possible.

The EPA schema described above in epa.compound and epa.logP
can be represented as the ERD shown in Figure 2.1. In this figure, two
tables are represented: epa.compound and epa.logP. The column names
and data types for that column are listed. The PK symbol next to the cid
column in epa.compound denotes that it is a primary key column. The FK
symbol on the cid column of epa.logP denotes that it is a foreign key. The
line joining the two tables shows the one-to-many relationship between
the cid columns. The “crow’s feet” symbol on the right side of the line near
the epa.logP table shows that there are (possibly) many entries in the logP
table for each compound, that is, for each unique cid in the epa.compound
table. The circle, or zero symbol near the crow’s feet indicates that there
may be zero entries in the logP table for some compounds. The asterisk

Chapter 2:  Relational Database Fundamentals	 13

symbol after the cid data type means that these values cannot be null,
since they act as primary and foreign keys. Other ERD diagram software
may indicate keys and not-null values using other symbols, although
the crow’s feet symbol is a standard way of representing relationships
between tables in most ERD software.

Many-to-many relationships are regularly encountered in chemical
databases. In the case of many compound vendors and many compounds,
the ERD in Figure 2.2 shows how three tables can be used to define a
many-to-many relationship. The many-to-many type of relationship will
be seen in other examples in later chapters. In Figure 2.2, the vendor table
contains only as many rows as there are vendors. The compound table
contains only as many rows as there are compounds. Each row in these
tables contains the information available for each compound or vendor.
No information is repeated in other rows or tables. The vendor_compound
table contains many more rows, one row for each compound offered by
each vendor. This table is the largest in this schema, yet it contains only
integers, which are easily indexed and efficiently stored.

epa.compound epa.logP
name temp

method
logP

formula
MW

MP
PK cid*

FK cid*

TEXT
TEXT
NUMERIC

NUMERIC
INTEGER TEXT

NUMERIC

NUMERIC
INTEGER

Figure 2.1  Entity relationship diagram showing the one-to-many relationship
between compounds and logP.

vendor_compound

compound

vendor
name

location
phone

cas
PK cid*

TEXT

name TEXT

TEXT
TEXT

TEXT
INTEGER

PF cid* INTEGER
PF vid* INTEGER PK vid* INTEGER

Figure 2.2  Entity relationship diagram showing the many-to-many relationship
among compounds and vendors.

14	 Design and Use of Relational Databases in Chemistry

2.7 � Uniqueness
In the table epa.compound, the name column is unique, meaning that no
two rows have the same name. This might be coincidentally true for any
column of any table, but in some cases the nature of the data requires that
one column be defined as unique. Before declaring that a column in a table
be unique, it is essential to understand the nature of the data. For example,
the molecular weight is not a unique value as many structures share the
same molecular weight, although the small set of data in table epa.com-
pound happens to have only unique values of molecular weight. Molecular
formula is also not a unique property of a molecular structure. It might be
argued that name is not unique and indeed that are much better ways
to uniquely identify molecular structure. However, since the purpose of
Table 2.2 is to provide a primary table to store each molecular structure, it
is advisable to have one unique column to prevent duplication of rows and
possible confusion if the same structure is entered multiple times.

By defining the cid column in the epa.compound table, we artificially
create a column that is unique. This cid is unique in the epa.compound
table, but not unique in the epa.logP table. This is simply because the nature
of the data in the EPA schema requires that each compound be “registered”
in the epa.compound table, but it may have many logP values associated
with it. Of course, many other tables analogous to epa.logP, for example,
epa.solubility or epa.toxicity, could be added as those data become avail-
able or important in the database. The use of multiple tables, at least one
of which defines the set of unique compounds of interest, is a hallmark of
chemical relational databases. The use of multiple independent tables is
one of the major advantages of RDBMS, allowing for easy extensibility.

2.8 � Sequences
The cid column of table epa.compound is a simple integer, starting with 1
and increasing up to the number of compounds. The purpose of this col-
umn is to provide a unique key allowing tables in the schema to be related
to one another. Any unique value would suffice, but integers are typically
used because computers can store integers compactly and manipulate them
efficiently. Any method of creating unique integers to be stored in the cid
column would work, but most RDMS proved a convenient way to generate
unique integers. The sequence function can be used to generate integers
starting with 1 (or another chosen value) and increasing by 1 (or another
chosen nonzero value). Every time a value is chosen from the sequence, that
value becomes unavailable, ensuring a set of unique integers. There can be
any number of sequences in the RDBMS. One typically defines a sequence
that is associated with a unique column and not used for other purposes.

Chapter 2:  Relational Database Fundamentals	 15

2.9 � Keys
The importance of using one column of a table as a key was introduced
in tables epa.compound and epa.logP discussed above. In these tables, the
column named cid was defined as a key column. The term key is used to
denote the column by which two or more tables are related to one another.
This key column allows otherwise complex tables to be split into two or
more tables.

2.9.1 � Primary Keys

A primary key column in a table is also a unique column. There is often
one central table in a schema by which the other tables in a schema are
related to each other. In the EPA schema discussed here, epa.compound
is the central table and the cid column is the unique, primary key. The
purpose of the epa.compound table is to provide a central registry of com-
pounds that are of interest in the schema. The key column is typically
defined using a sequence to ensure uniqueness.

2.9.2 � Foreign Keys

In the table epa.logP, the column named cid is also used. Its purpose is
to relate the logP values to the compounds in the epa.compound table to
which they refer. The cid column in epa.logP is clearly not unique since
the table may contain multiple values of logP for any one compound and
therefore uses the same cid value multiple times. Other tables analogous
to epa.logP would use a column named cid in an identical way. A key col-
umn such as this, which is not unique and which relates to a primary key
column in another table, is called a foreign key. The name of the foreign
key column need not be the same as the name of its related primary key.
The foreign key column is not defined by the sequence used to define the
primary key, although it necessarily shares values with the primary key.
The primary key column might be considered as “responsible” for the
unique values relating the tables to each other. The foreign key columns
are dependent upon the primary key.

There are many ways in which primary and foreign key columns
can be used. A foreign key might also be unique, for example, in a table
epa.casid that stores the Chemical Abstracts identifier. A table might con-
tain two foreign keys, each of which relates to a primary key in different
tables. A table might also contain both primary and foreign keys, each
relating to keys in different tables. Proper use of entity-relationship dia-
grams becomes increasingly important as the complexity of the database
schema and the table relationships grows.

16	 Design and Use of Relational Databases in Chemistry

2.10 � Constraints
Uniqueness as discussed above is one kind of constraint that may be
imposed upon the data values in a column. There are other kinds of con-
straints that are also useful. In a sense, just defining a column as an inte-
ger type constrains the values in that column to be integers. It may also be
desirable to further constrain values to be positive. For example, in a col-
umn of molecular weight, such a constraint helps guarantee that nonsense
values cannot be entered. It is even possible to define a constraint such
that the molecular formula column could be used to compute a molecular
weight consistent with the value stored in the molecular weight column.
Judicious use of column constraints is one of the ways of ensuring the
integrity of the data in the database. The exact nature of constraints and
how they are specified in SQL is discussed in a later chapter.

2.11 � Indexes
A column index can be created in order to speed access to the data in the
column. For example, molecular weight might be an important column
used in most searches of a mass spectroscopy database. If every row of
the table has to be examined to determine if the value is between, say, 100
and 200, this would be slower than searching only those rows known to
contain these values. One technique used to index columns of numerical
data is to presort the values into a relatively small number of bins. The
index records which rows belong to which bin. When searching for values
between 100 and 200, only rows that belong to the appropriate bin need
to be examined.

It is not necessary to do any sorting or other operations on the data
to create the index. Every RDBMS has built-in indexing capabilities that
apply to numerical, text, or even other data types. Most implementations
of numerical indexing do not necessarily rearrange the table rows in a
sorted order. The exact method used to create the index is not usually of
interest to the database designer.

One very important use of the index is to speed up access to key col-
umns. It is recommended to create an index on the primary and foreign key
columns. This is important because it speeds up the methods used to relate
the rows between the tables. This method is called joining the tables.

2.12 � Joining Tables
When data is selected from a table, the purpose is to provide a subset
of the table that is of interest. For example, rows may be selected where
the molecular weight is below 500 and/or the logP is below 5. The result

Chapter 2:  Relational Database Fundamentals	 17

is itself a table with the chosen rows and columns from the table being
searched. When data is stored in separate tables, the tables are conceptu-
ally (or perhaps actually, depending on the RDBMS) joined together into
a larger table using the key columns to ensure the proper rows are com-
bined with each other. In the EPA examples above, epa.logP rows would
be joined with epa.compound rows where the columns cid have identical
values. The result would be a table, for example, containing the name,
molecular weight, and logP for selected compounds. For compounds with
multiple logP values, there would be multiple rows each with a differ-
ent logP value, but with the same name and molecular weight (and same
compound id).

Efficiently joining tables requires careful consideration of primary key
and foreign key columns, uniqueness, and indexing. While it is not neces-
sary to use a primary key and its related foreign key column when joining
tables, that is a very common, useful, and efficient way to join tables.

2.13 � Normal Forms
There are many existing rules in SQL that prevent problems that can-
not be prevented when using flat files. For example, a column of integers
can only contain integers. In database theory, there are additional rules
or suggestions designed to ensure that data tables operate properly and
efficiently. One set of rules is referred to as normal form or normalization.
These rules are not enforced by SQL, but it is a good idea to use these
rules. This section will consider only the first three normal forms. Each
form is more involved and more restrictive. There are at least six normal
forms, but it is rare to encounter normalizations higher than three.

2.13.1 � First Normal Form

A table is said to be in first normal form if each row has the same number
of columns, each column has a value, and there are no duplicate rows.
Because an RDBMS uses a table defined with a fixed number of columns, it
is always true that each row contains the same number of columns. If one
allows that null is a value, then every column will have a value. It should
be obvious that repeating a row in a table is wasteful, but also potentially
confusing and prone to error. For example, if two rows in a table of logP
contained the same name and logP, one row may have the logP changed
at some point. Then which row would be the correct row? This condition
also illustrates the final aspect of first normal form: There should be at
least one column, or combination of columns, that could function as a key
that uniquely identifies the row. This is the name column or compound id
column in the above examples. The data in this column must be unique.

18	 Design and Use of Relational Databases in Chemistry

It is not required that such a column actually be used as an SQL key, but
it is wise to do so. In this way, the SQL uniqueness constraints can help
to ensure that the table is in first normal form. While this one column
must be unique, it is entirely possible and even likely that some other data
values will not be unique. For example, there are expected to be many
compounds that coincidentally have the same logP. This does not violate
first normal form.

Another way to think about first normal form is to simply consider
what the table is intended to contain. If it contains data about structures,
then there must be a unique way to identify those structures, for example,
by name. For a table that contains information about structures, it must
contain only information about structures. It must contain simple values
that are associated with that structure, for example, molecular weight or
logP. It must not contain complex information about its data values, such
as the method used to determine logP.

In the above example, there were cases where multiple logP values for
a single compound became important. If these were inserted into the table
of structures, this would violate first normal form. So they were removed
to a second table related to the first. When there are multiple values, there
should be a separate table that contains information about those values.
The table of structures must not be used to contain information about its
data values but only information about structures.

2.13.2 � Second Normal Form

A table in second normal form must have data values that depend only on
the key column that was identified while making sure the table satisfies
first normal form. Using the EPA Table 2.1 example, suppose additional
logP values needed to be recorded because measurements were made
at various temperatures. If a logP_temp column were added, this would
accommodate multiple logP values and the pair of columns, logP and
logP_temp, taken together would be unique. But each logP value would
depend on the logP_temp column, not just on the key column. This vio-
lates second normal form. The solution shown above in which logP values
were removed to a separate table is the correct way to normalize to both
first and second normal form.

One might be tempted to encode information into one column. For
example, the logP values could be forced to fit into one column by encod-
ing temperature along with the logP value, for example “1.55(25C).” While
this would formally satisfy second normal form, this is a really bad idea.
It would force the logP column to have to be a text column, thus eliminat-
ing the ability of the RDBMS to ensure numeric values of logP. It would
further force users and database developers to follow new syntax rules
and write functions to parse fields from within a column.

Chapter 2:  Relational Database Fundamentals	 19

2.13.3 � Third Normal Form

In third normal form, data values in a column are not intentionally repeated.
For example, the separate logP table was created to satisfy first and second
normal form. But it violates third normal form because the method values
“exp” and “theory” are used repeatedly throughout the table.

The correct way to conform to third normal form is to create yet another
table, here called method. Table 2.4 shows such a table. Table 2.5 shows how
the logP table would be modified to use the method id instead of the text
strings “exp” or “theory.” Notice that this can solve one remaining problem
with both Tables 2.3 and 2.5: there are two rows for compound 1 and method
2. This can arise when a new theoretical method becomes of interest in a
project. Rather than inventing a new string, for example “theory2,” it is a
simple matter to add a new method to the method table in Table 2.4. Here
it would be method 3. The logP table would be altered so that the appropri-
ate rows for compound 1 would use method 2 and method 3. Furthermore,
the method table can be made much more informative, perhaps explain-
ing something about the experimental or theoretical methods, rather than
just using cryptic handles such as “exp” and “theory” in Table 2.3. A more
complete logP method table is shown in Table 2.6.

Some authors advocate analyzing schemas of tables up to normal
form 3 and then backing off to second normal form in order to increase
efficiency. With increasing capabilities of computers and RDBMS, this

Table 2.4  logP Method Table
Containing Text Descriptions

Id Description

1 Experimental
2 Theoretical

Table 2.5  logP Table Using Method
id in Place of Text Methods

Temp cid logP Method_id

25 1 0.35 1
40 1 0.73 1

1 0.55 2
1 −0.11 2

25 5 1.47 1
25 6 0.17 1
25 7 1.15 1

7 1.2 2

20	 Design and Use of Relational Databases in Chemistry

may not be necessary. The advantage of creating a method id and using
a method table gives great flexibility and allows accurate and detailed
description of each method.

2.13.4 � Summary of Normal Forms

The following are not formal definitions of normal form, but it is hoped
they will serve as reminders of the important reasons that these normal
forms were originally suggested.

First normal form: Each table should contain only data about a unique
entity. Each row should have a unique identifier. If data tables violate first
normal form, a careful reconsideration of which information belongs in
which table should be undertaken. A structure table should be about struc-
tures, a logP table about logP values, and a method table about methods.

Second normal form: Each row should contain only one value for each
column. If multiple values of a data item are needed, a related table should
be created for those values. Do not encode data “fields” into a data col-
umn. Create separate columns for each “field” and in a separate table, if
necessary.

Third normal form: Do not repeat data values needlessly. Be wary
of using codes, such as “exp” for experimental data values. But do not be
afraid to violate third normal form at first and correct it when necessary.
The Appendix shows a possible method for correcting violations of third
normal form that might be encountered when importing data from
another source, or for correcting violations that have crept into data tables
over the lifetime of the database.

References
1.		 Codd, E.F. 1970. A relational model of data for large shared data banks.

Communications of the ACM, 13(6):377–387.
2.		 U.S. Environmental Protection Agency. 2007. Estimation Program

Interface (EPI) suite. http://www.epa.gov/oppt/exposure/pubs/episuite.
htm (accessed April 21, 2008).

Table 2.6  More Complete
logP Method Table

Id Description

1 Hansch, C. et al. (1995)
2 BioByte clogP
3 gNova glogP v2.3

21

chapter 3

Structured Query
Language (SQL)

3.1 � Introduction
In Chapter 2, the concept of relational tables was introduced. In this
chapter, the most common way of working with tables in an RDBMS is
introduced. The SQL language provides ways to create tables, insert data,
select data, delete data, update data, join tables, create table schemas,
define functions, etc. SQL has many other features, not all of which are
covered here.

3.2 � Databases, Schemas, Tables,
Rows, and Columns

The word database is used informally to refer to any collection of data.
For example, one might call a file of e-mail addresses a database. There
is a more formal definition of a database in an RDBMS. Information in
an RDBMS is structured in a sort of hierarchy. An RDBMS contains data-
bases, which contain schemas, which contain tables, which contain rows,
which contain columns. A schema is a collection of tables. Rather than
have tens or hundreds of tables in your database, the tables can be orga-
nized into schemas for clarity and convenience. In one sense, a schema
is just a type of name space that allows a richer naming convention. For
example, a database might contain several tables of structures. It might
be convenient to use the table name structure to contain these structures.
Rather than try to fit all the various structures together into a single table,
or use coded table names such as nci_structures, pubchem_structures, or
vendor_structures, separate schemas could be created. The fully qualified
table names would then be nci.structure, pubchem.structure, and vendor.
structure. The tables are segregated from each other by virtue of belong-
ing to a separate schema, yet they are shown to be similar by sharing the
same table name structure. Tables in different schemas are not isolated
from each other; for example, they can be joined as readily as tables that
belong to the same schema.

22	 Design and Use of Relational Databases in Chemistry

Schemas can also be used to contain functions, which are discussed
later. For example, if there were several functions to compute the logP of a
structure, it might be convenient to segregate the functions into separate
schemas with fully qualified function names such as xlogp.logp, clogp.
logp, or gnova.logp. In many ways, schemas function like folders or direc-
tories of files. In PostgreSQL, the default schema is called public. Any
table or function created without specifying a particular schema belongs
to the public schema. In Oracle, schema names have traditionally been
associated with user names, but this is not part of the SQL standard nor is
it required by Oracle.

A database can be thought of as a collection of schemas. It is possible to
have many databases managed by one RDBMS, but each database is inde-
pendent of any other. SQL was not designed to facilitate access to data in
different databases. Recently, methods such as dbSwitch1 or dblink2 have
made it possible to link together different databases. However, these are
not considered here because they do not conform to the SQL standard and
are implemented is various ways in different RDBMS. In the examples
in this book, all schemas, table, functions, etc., are contained within one
database.

3.3 � Create
To create a schema named achemcompany, use the following SQL
command:

Create Schema achemcompany;

To create a table using SQL, the name of the table is required along
with the names and data types of the columns making up the table.
Consider the following SQL command:

Create Table achemcompany.structure (
 smiles Text,
 id Integer,
 mw Numeric(6,2),
 added Timestamp(0));

This creates a table of four columns in the schema achemcompany.
The column named smiles is intended to store the SMILES representa-
tion of a chemical structure, the id column will store an integer identifier
to be used for joining other tables, the column mw will store the molecular
weight with a precision of 2 digits to the right of the decimal point, and
the column named added will record when this structure was entered
into the table. As defined above, any character string could be entered
into the smiles column, any integer into the id column, and any valid

Chapter 3:  Structured Query Language (SQL)	 23

timestamp into the added column. There are ways to improve the integ-
rity of the data in this table, using uniqueness constraints, sequences,
and user-defined functions to ensure proper SMILES syntax. These are
discussed in later chapters. A simple entity-relationship diagram for this
table is shown in Figure 3.1.

SQL is case-insensitive. Table names structure, STRUCTURE, or
Structure each refer to the same table. Likewise, the command Create
is the same as the command CREATE or create. If you wish to use case-
sensitive names for table, schema, or column names, use double quotes,
for example:

Create Table "aChemCompany".structure (
 smiles Text,
 "ID" Integer,
 "MW" Numeric(6,2),
 added Timestamp(0));

The data in the table is stored exactly as entered, preserving upper and
lower case. SQL command keywords, such as Create and Integer, are
arbitrarily shown in this book with an initial capital letter when SQL com-
mands are shown.

3.4 � Insert
Data is inserted into a table using the SQL insert command. For example:

Insert Into achemcompany.structure (id, smiles, mw, added)
 Values (1001, 'CC(=O)OC', 74.09, current_timestamp);

Notice that single quotes are required for text values and that the built-
in SQL function current _ timestamp can be used to supply a valid
timestamp. The order of the columns need not be the same as the order
used in the create command. However, the order of the data in the
Values clause of the Insert command must correspond exactly with
the order of the columns as named in the command. There is a short-cut
syntax of the Insert command that does not require column names. It
should be avoided in favor of the syntax example above. There are other

structure

smiles
id
mw
added

TEXT
INTEGER
NUMERIC
TIMESTAMP

Figure 3.1  Simple entity relationship diagram for structure table.

24	 Design and Use of Relational Databases in Chemistry

ways of getting large amounts of data into tables, using the SQL Copy
command or bulk-loading programs. These are not discussed here, but
examples of using the Copy command are shown in Chapter 11 and the
Appendix.

A sample table made using the above SQL Create and Insert com-
mands is shown in Table 3.1. Note that more rows have been added to this
table, not just the single row added with the Insert command above.

3.5 � Select
Once data is inserted into a table, chosen rows and columns can be
selected. For example, the following SQL command:

Select smiles,mw From achemcompany.structure Where mw < 100;

selects smiles and molecular weight from all rows that have molecular
weight below 100. The Where clause of the SQL command can be quite
complex, involving many comparisons of many columns from many
tables.

An essential use of the Select command is to select data from dif-
ferent tables using the joining capabilities of RDBMS. Suppose there is
another table of assay data defined using

Create Table hiv1.prot_inh (
 id Integer,
 ic50 Float,
 ki Float,
 tested Timestamp(0));

When data is inserted into this table, the proper id from the structure
table is associated with the experimental data. In order to select structures
with chosen inhibition constant Ki the hiv1.prot_inh table is joined with
the achemcompany.structure table. For example:

Select smiles,ki
 From achemcompany.structure Join hiv1.prot_inh
 On hiv1.prot_inh.id = achemcompany.structure.id
 Where ki < 0.5;

Table 3.1  A Simple Structure Table

Smiles id mw Added

CC(=O)OC 1001 74.09 2007-06-20 13:35:32
NCC(=O)OC 1002 89.11 2007-06-20 13:38:05
C(N)CC(=O)OC 1003 2007-06-20 13:38:21

Chapter 3:  Structured Query Language (SQL)	 25

Both tables are named in the SQL command, the chosen Ki limit is given
and the Join condition On hiv1.prot _ inh.id = achemcompany.
structure.id ensures that the proper rows of each table are joined. Note
that the hiv1.prot _ inh table resides in a schema different from the
achemcompany.structure table. Of course, this is not a requirement
but is done for convenience and clarity during the design of the database.
It is possible to leave out the schema name in the On clause because there
is no ambiguity of table names. It is also possible to include the schema
and table name along with the columns named smiles and ki. It is sim-
ply a matter of programming style. However, the schema name must be
used for the table names in the From clause. Figure 3.2 illustrates the two
tables and the relationship between them using the column named id.

There is an alternative form of SQL that is commonly used to Join
tables. This alternative form is so common, especially in older SQL, that
it must be mentioned here. The following SQL accomplishes exactly the
same join described above, but uses a different syntax.

Select smiles,ki From achemcompany.structure, hiv1.prot_inh
 Where hiv1.prot_inh.id = achemcompany.structure.id And ki < 0.5;

Notice that the Join keyword is not used, but rather just a comma sepa-
rates the two tables being joined. The Join condition becomes a part of
the where clause. The former syntax using the Join keyword will be used
in examples throughout this book.

3.6 � Update and Delete
Once data has been inserted into a table, it may become necessary to
update it. Suppose, for example, that a compound molecular weight had
been entered incorrectly, or not at all for some particular compound. The
following SQL command would update one row in the structure table.

Update achemcompany.structure Set mw=103.14 where id=1003;

Notice the use of the Where clause, similar to its use in the Select state-
ment. It is important to use Where with Update. Otherwise every row of

structure hiv_prot
smiles

tested

ic50
mw
added

PK id*
FK id*TEXT

NUMERIC
TIMESTAMP

INTEGER

TIMESTAMP
NUMERIC
NUMERIC
INTEGER

ki

Figure 3.2  Entity relationship diagram for structure and hiv_prot tables.

26	 Design and Use of Relational Databases in Chemistry

the table will be updated! This is almost never intended, but can be useful
when necessary.

The following SQL command will delete one row from the struc-
ture table.

Delete from achemcompany.structure where id=1002;

Again, it is important to use a Where clause in the delete statement to specify
precisely which rows are to be deleted and to prevent accidental deletion.

There are many other SQL commands besides Create, Insert,
Update, Delete, and Select. For example, the Alter command mod-
ifies tables, columns, schemas, and other aspects of the database. There
are many books that describe the SQL language. Most are specific to one
particular RDBMS, such as PostgreSQL or Oracle. Many examples in this
book will work in PostgreSQL, Oracle, MySQL and any other RDBMS
that follows the SQL standard. However, some examples use data types
and functions that differ among the various RDBMS. In those examples,
PostgreSQL is used. In other words, all examples in this book will oper-
ate correctly using PostgreSQL. Most examples will work with Oracle and
MySQL as well. Similarities and differences among various RDBMS are
discussed in Chapter 4.

3.7 � SQL Functions
There are many SQL functions available to perform common operations
on data values. For example, sqrt, sin, and abs operate on numerical
data. Text data can be operated on using functions such as substring,
lower, and trim. These functions are explained in any book on SQL,
although many of them are self-explanatory. This section will show how
to create new functions for use in SQL. These functions may be written
using SQL itself, or using the various procedural languages such as plsql,
plpgsql, or plpython, depending on which RDBMS is being used.

There is another class of functions called aggregate functions. There
are several standard SQL aggregate functions, such as sum, max, and avg.
These are called aggregate functions because, rather than operating on a
single value such as sqrt, they operate on multiple values. The result is an
aggregate value such as a sum, maximum, or average of the multiple input
values. This section shows how to use the standard SQL aggregate functions
and explains how to create new aggregate functions for use with SQL.

3.7.1 � Regular Functions

One type of SQL function is simply a collection of SQL statements. The
input data type must be defined along with the data type of the result of

Chapter 3:  Structured Query Language (SQL)	 27

the function. For example, the following SQL function converts pressure
in atmospheres to kilopascals.

Create Function convert.atm_to_kpa(Numeric) Returns Numeric
 As 'Select $1 * 101.325;' Language SQL;

Once this function is created, it can be used just like any standard SQL
function. This function uses PostgreSQL syntax.

As with tables, functions are associated with a schema within the
database. In the above example, the schema named convert is used in
order to conveniently locate conversion functions in a common schema.
A function name can be fully qualified using its schema name, as in the
following example.

Select bp, convert.atm_to_kpa(bp_press) as "kPa" from epa.properties;

The result is a table of boiling points and the corresponding pressure con-
verted to kiloPascals from the pressure value stored in atmospheres in the
table epa.properties.

Of course, more elaborate functions could be written, using SQL or
one of the procedural languages available for the RDBMS being used. Plsql
or plpgsql allow all of the SQL commands as well as structured program-
ming constructs such as loops and if-then-else branching not available in
SQL itself. When using languages other than SQL, keep in mind that the
differences among various RDBMS is greater for the associated procedural
languages than for SQL proper. The appendix of this book contains many
examples of SQL functions written using SQL, plpgsql, plpython, and C.

3.7.2 � Aggregate Functions

Aggregate functions operate on a group of values rather than individ-
ual values as ordinary (or scalar) functions do. SQL has several standard
aggregate functions, for example, sum, average, and max. The following
SQL would likely return multiple rows.

Select ic50 From hiv_inh;

The following SQL would return just one row.

Select avg(ic50) From hiv_inh;

Another use of an aggregate function depends on the use of the Group
by clause of SQL. The following SQL will return multiple rows.

Select id, avg(ic50) From hiv_inh Group By id;

28	 Design and Use of Relational Databases in Chemistry

Each row will have the average ic50 for each compound id in the table.
It is possible to define a new aggregate function. One such function,

Orsum, is shown in the Appendix. This function operates like the sum
aggregate function, which produces the numeric sum of each member of
the group (aggregate) specified in the SQL statement in which it is used.
Orsum returns the logical OR of each bit string value, producing an aggre-
gate bit string value representing bits that are set to 1 in any member of
the group. This is used in the fingerprint and fragment key functions dis-
cussed later in this book.

3.8 � Domains, Triggers, and Views
There are other features of SQL that are useful for chemical relational data-
bases. Domains, triggers, and views are objects that belong to a schema
just as tables and functions. These are also discussed in later chapters that
focus on practical uses.

An SQL domain is an extension of one of the built-in data types, but
includes an optional check constraint. For example:

Create Domain smiles As Text Check (valid(Value));

defines a Domain named smiles that is represented internally using the
SQL Text data type. It must also satisfy the constraint that it is a valid
SMILES. The valid(Value) function must return true or false. The argu-
ment Value passes the text string to the valid function. If the valid
function returns false, an SQL error will be reported and the value will
not be allowed. An example of the valid function using SMILES is given
in a later chapter.

An SQL trigger is also useful to ensure that only valid data appears
in a table. For example:

Create Trigger standardize Before Insert Or Update On atable
 For Each Row Execute Procedure standardize();

defines a Trigger named standardize, which causes a procedure named
standardize to execute before any row is Inserted or Updated in the
table named atable. This trigger may actually correct invalid data, if pos-
sible. Several examples of trigger functions are given in later chapters.

An SQL view is very similar to a table. It has rows and columns of
defined data types just as a table. A view is defined by selecting particular
rows and columns from one or more tables, using an SQL select statement.
For example:

Create View test_set (logp, temp) As
 Select logp, temp From literature_data Where ref Like 'Hansch%1995%'
 And temp Is Not Null;

Chapter 3:  Structured Query Language (SQL)	 29

creates a view called test _ set, which is a subset of the table named
literature _ data. The test_set will only contain rows with octanol-
water partition coefficients reported by Hansch in 1985 and having a tem-
perature reported. The test _ set view can be used as if it were a table
in other Select statements. It is not possible to update or delete rows
from a view. Several examples of views are given in later chapters.

3.9 � Unions, Intersections, and Differences
The results of a Select statement are in the form of a table. This can be
a subset of a single table, or the result of joining several tables. The exact
set of rows is chosen by using various Where clauses. The use of Boolean
operation such as and, or, and not allows a sort of union (or), intersection
(and), and difference (not). For example:

Select logp From logp Where temp = 25 And
 ref Like '%Hansch%' Or ref Like '%Yalkowsky%';

produces a different set of rows than the following:

Select logp From logp Where temp = 25 And
 (ref Like '%Hansch%' Or ref Like '%Yalkowsky%');

The careful use of the Boolean operations and, or, and not along with
parentheses will produce the desired set of rows from any table. When
data are in separate tables that are related to one another, this approach
also works well when the two tables are joined together using the SQL
Join clause.

When data are selected from tables that are not related to one another,
a different approach is used. The SQL operators union, intersect, and
exclude allow set operations on tables or the sets of rows resulting from
a select statement. For example:

Select logp,temp from logp Where ref Ilike '%Hansch%' And temp = 25
 Union
Select logp,temp From merck Where temp Is Not Null;

produces a set of rows from two unrelated tables, logp and merck. It is nec-
essary that the number and data types of the columns from each select
statement be identical. Any number of Select statements may be com-
bined using this method. The union, intersect, and except operations
can be mixed in any order, using parentheses as necessary to effect the cor-
rect overall Boolean operation. It is possible to use this method to combine
results selected from the same table or from related tables. In those cases,
it is possible to craft two different SQL statements—one using intersect,

30	 Design and Use of Relational Databases in Chemistry

union and exclude operations and the other using and, or, and not
where clauses—that yield the same result. One or other of the two state-
ments may be preferred for speed of execution, clarity of expression, or ease
of extensibility.

References
	 1.	 Dar, S., Hecht, G., and Shochat, E. 2004. Industrial sessions: Database appli-

cations: dbSwitch™: Towards a database utility. In Proceedings of the 2004
ACM SIGMOD International Conference on Management of Data SIGMOD,
ed. Weikum, E., König, A.C., and Deßloch, S. Association for Computing
Machinery, pp. 892–896.

	 2.	 PostgreSQL 8.2 documentation. 2008. Dblink. http://www.postgresql.org/
docs/current/static/dblink.html (accessed April 21, 2008).

31

chapter 4

Relational Database
Management Systems

4.1 � Introduction
There are many relational database management systems (RDBMS) avail-
able. A full comparison of every feature of every RDBMS is beyond the
scope of this book. Such comparisons quickly become outdated. A search
using Google or Wikipedia is a good place to start if you want to make a
comparison. A comparison of Oracle, MySQL, and PostgreSQL is avail-
able from the Computing Division at Fermilab.1 As with any compari-
son, be sure to note which versions of each database are being compared.
Comparisons are most valuable when the most recent version of each
database is considered. Besides objective feature comparisons such as the
above, other considerations are important. Sometimes a particular data-
base is already being used at a particular company or research institution.
This can be a great advantage, considering that support and advice of col-
leagues is often quick and highly relevant.

Much of this book discusses ways in which the RDBMS can be used
and even extended to handle chemical structures correctly, quickly, and
conveniently. Extensions of the capabilities of PostgreSQL are simply
called extensions. Oracle uses the term data cartridge. There are chemical
extensions or cartridges available for PostgreSQL, Oracle, and MySQL.

PostgreSQL is a free and open-source RDBMS that traces its roots to
Ingres, one of the first RDBMS created. It strongly conforms to the ANSI-
SQL-92/99 standards. There are several independent companies that
offer support for PostgreSQL. There are commercial products that use
PostgreSQL as an underlying database. CHORD, a commercial chemical
cartridge for PostgreSQL, is sold by gNova.2 PgChem, an open-source car-
tridge for PostgreSQL, is available at SourceForge.3 RDKit also contains an
open-source cartridge for PostgreSQL.4

Oracle is a commercial RDBMS. It strongly conforms to the ANSI SQL-
92/99 standards. It is the most widely used RDBMS. The Oracle company
sells and supports the Oracle RDBMS. There are many other companies
that also offer support for Oracle RDBMS. There are several commercial
chemical cartridges available for use with Oracle.5

32	 Design and Use of Relational Databases in Chemistry

MySQL is an open-source RDBMS. It conforms in part to the SQL 92/99
standards. The MySQL company sells and support the MySQL RDBMS.
There are other companies that support MySQL and offer products that
use MySQL as the underlying database. Tharun Kumar Allu describes a
small molecule chemical database cartridge extension for MySQL.6

4.2 � Standard SQL
SQL was first standardized by ANSI in 1986. Updated standards are
referred to as SQL92, SQL99, and SQL2003. Most RDBMS conform to the
SQL92 standard, including some features from later standards. Most
also provide additional features not addressed in standard SQL at all.
Sometimes the differences among the RDBMS are simply minor syntax
differences, but sometimes there are more fundamental differences.

No RDBMS conforms exactly and completely to any SQL standard.
For this reason, books on SQL almost always concentrate on one particu-
lar RDBMS. One notable exception documents every SQL command and
details differences across different RDBMS.7 While that book discusses
differences in detail, this book discusses concepts of RDBMS in general,
so that any RDBMS could be used to implement the methods described
here. When specific SQL examples are given however, the SQL statement
uses PostgreSQL syntax. Many times this is identical to the syntax for
other RDBMS, or there is only a minor difference.

Some of the more advanced methods described in this book require
a more specific use of the RDBMS. The choice made for this book is
PostgreSQL. In cases where a particular feature of PostgreSQL is used,
a note is added to alert the reader. For example, the array data type in
SQL2003 is implemented in PostgreSQL very differently than in Oracle.
The list _ matches function described in a later chapter of this book
returns an array of integers that denote which atoms in a structure match
a substructure query. The integration of this function into SQL would be
handled quite differently in PostgreSQL, Oracle and MySQL.

4.3 � A Sampling of Differences
It is not feasible to detail every difference among the various RDBMS.
There are several commonly encountered differences that merit some
attention here.

The text data type can be defined using the keyword text, accord-
ing to the SQL99 standard. This is implemented in both PostgreSQL and
Oracle, although one rarely sees this in Oracle. Instead, the varchar or
varchar2 keyword is used. In PostgreSQL, the character varying or
text keyword is common, as well as varchar. At first glance, this differ-
ence may seem minor: changing one keyword to another is a simple thing

Chapter 4:  Relational Database Management Systems	 33

to do except for a large and complex database application. But another
difference requires more careful consideration.

In Oracle, the string data type requires a specification of the maxi-
mum length of the text, for example varchar2(1000). This is possible,
but unnecessary in PostgreSQL where the string data types can be of
unlimited size. Depending on the point of view, it may seem liberating to
be unconcerned about maximum text length, or it may seem dangerous to
allow text of arbitrary length. Another consideration in using the text data
type is how the null value is treated.

In standard SQL, a text column may contain data, or not. The null
value is used to denote that no value is contained in that column of any par-
ticular row. The null value can be used in SQL statements, for example:

Select smiles from nci.structure where name is null;

In Oracle, an empty text string is considered equivalent to the null
value. In PostgreSQL, an empty string is a valid, nonnull value. Neither
approach is more correct than the other, but it may require some program-
ming adjustments when moving from PostgreSQL to Oracle, or the other
way around.

Aside from standard SQL, RDBMS typically include a procedural lan-
guage that builds upon SQL. Oracle calls this plsql. PostgreSQL calls this
plpgsql. These languages include loops and conditionals that are not part of
the SQL standard language. Unfortunately, the differences among the pro-
cedural languages are much greater than the differences among the various
RDBMS implementations of the SQL standard language. One advantage
offered by PostgreSQL is a wider variety of procedural languages, namely
plpython, plperl, and pltcl. In addition, PostgreSQL allows the SQL lan-
guage to be extended using C language functions. These functions operate
just like internal standard SQL functions. The standard internal function
library is a rich source of coding examples for user-defined C functions.8

4.4 � Server and Client
The RDBMS is installed and runs on a computer that functions as a
database server. Any SQL commands are executed on the server by the
RDBMS. Functions written in SQL or in any of the procedural languages
mentioned above are also executed by the RDBMS. This has the advantage
that the data tables used by these SQL commands or procedural functions
are under the control of the server. This is the most efficient way to access
the data. The disadvantage is that the server may have many requests
to handle from many users. Another way to operate on data tables is
indirectly, using a client program typically (although not necessarily) run
from another computer.

34	 Design and Use of Relational Databases in Chemistry

A client program communicates with the RDBMS server using a TCP
port. The details of that communication are not important for the pur-
poses of this book. Various client program libraries handle those details.
The advantage of using a client program is that any number of client
computers can be used to spread the workload. The disadvantage is that
data from the server must be delivered to and from the client computers,
resulting in some inefficiency.

As with any client/server architecture, the efficiency concerns are not
easy to accurately predict. Consider a simple example where one wishes
to find all data values less than 1.0. A simple SQL command would accom-
plish this, but would run on the server. Only the resulting subset of data
would be delivered to the client. Using an extreme approach, a client
would require the entire data set and then select the values less than 1.0.
Which approach is more efficient depends on many things: the size of
the data set, the size of the subset less than 1.0, the relative efficiencies
and loads of the server and client, and the speed and latency of the data
channel linking the server and client. For another operation that is more
complex than selecting values less that 1.0, the degree of complexity is an
important consideration. Clearly, there is no simple “one size fits all” solu-
tion to deciding whether to use a server or client program.

The standard way of sharing data between a client and an RDBMS
server is to use the SQL language. Many computer languages, such as
perl, python, java, and C have standard libraries or methods that use SQL
to read and write data to and from their internal data types and data struc-
tures. Many other computer programs, such as Excel, OpenOffice, and R
have SQL “hooks” to allow transfer of data to and from an RDBMS server.
This can be a great advantage when the computer client program already
provides most of what is required. For example, if the goal of a project
is to provide users with an Excel spreadsheet of data, why not use Excel
directly? If a project already uses a number of numerical analysis pro-
grams written in R, why not use R’s ability to interface with the RDBMS?
If most of the programmers on a particular project are fluent in java, why
not use jdbc (a standard javan RDBMS interface)? Later chapters of this
book present specific examples of client programs that use SQL.

There is a smaller set of tools that are typically run on the server. Any
SQL commands and any procedural language functions are run on the
server. In principle, there is complete flexibility of the server side tools,
since in principle any computer program can be written in any computer
language. Later chapters of this book show how the RDBMS server itself
can be extended using server side programming to handle chemical
information. These extensions may directly solve the needs of a particular
project, but more importantly they increase the flexibility of the RDBMS
to handle chemical information. Client programs can use the results of
chemical searches and other computations as well.

Chapter 4:  Relational Database Management Systems	 35

4.5 � Compatibility
There are many client programs available that allow one to access data in
an RDBMS. Some work properly only with one particular RDBMS, while
others strive for compatibility various RDBMS. Sometimes there are dif-
ferent versions of the same program, each intended for use with a differ-
ent RDBMS. Many computer languages have modules that allow access to
data in an RDBMS. Most have modules that include an abstraction layer
that allows programming without regard to the exact RDBMS being used.
An underlying layer then implements the particulars of interfacing with
each RDBMS. These issues are discussed more fully in Chapters 5 and 12,
along with examples using various computer languages.

References
	 1.	 Fermilab Computing Division. 2005. Comparison of Oracle, MySQL and

PostgreSQL DBMS. http://www-css.fnal.gov/dsg/external/freeware/
mysql-vs-pgsql.html (accessed April 21, 2008).

	 2.	 O’Donnell, T.J. 2005. CHORD extension to PostgreSQL. http://www.gnova.
com (accessed April 21, 2008).

	 3.	 Schmid, E. 2004. Pgchem::tigress extension to PostgreSQL. http://pgfoundry.
org/projects/pgchem/ (accessed April 21, 2008).

	 4.	 Landrum, G. 2006. RDKit: Cheminformatics and Machine Learning Software.
http://rdkit.sourceforge.net/ (accessed April 22, 2008).

	 5.	 Daycart. 2008. http://www.daylight.com (accessed April 21, 2008); Jchem car-
tridge. http://www.chemaxon.com (accessed April 21, 2008); CambridgeSoft
Oracle cartridge. http://www.cambridgesoft.com (accessed April 21, 2008);
MDL Isentris. http://www.symyx.com (accessed April 21, 2008)

	 6.	 Kumar, T. 2005. Small molecules database cartridge. http://www.unm.
edu/~tharun/smdb.html (accessed April 21, 2008).

	 7.	 Kline, K. 2004. SQL in a Nutshell, 2nd Edition, Sebastopol, CA: O’Reilly.
	 8.	 PostgreSQL 8.2 documentation. 2008. C-language functions. http://www.

postgresql.org/docs/8.2/static/xfunc-c.html (accessed April 21, 2008).

37

chapter 5

Client and Web Applications

5.1 � Introduction
Once a database has been installed, there are many ways to interact with it.
The primary way is using structured query language (SQL), either directly
or indirectly. Some client programs connect to the database server directly
and allow the user to type in SQL commands and display the results with
minimal processing. Some programs are more elaborate, providing a Web-
based interface or other GUI (graphical user interface). These applications
typically provide some amount of postprocessing of SQL output. In some
cases, many operations can be carried out without direct knowledge of
SQL. These will certainly help the novice database user, but may also sat-
isfy many of the needs of more experienced users and developers.

Sometimes these general-purpose applications are not sufficiently
specific to the needs of database users. In that case, custom applications
can be written. Many programming languages have extensions that allow
data to be selected from the database and read into data structures for
further operations. This chapter considers ways of using ODBC (Open
Database Correctivity), JDBC for Java, Perl::DBI (Database Interface), pg
and pgdb for Python, and PDO for PHP.

5.2  Command Line Programs
Command line programs are one simple way to interact with the data-
base server. Each RDBMS provider supplies a command line program. For
example, PostgreSQL supplies psql, Oracle supplies sqlplus, and MySQL
supplies mysql. These command line shells allow the user to type in SQL
commands. The results are displayed, usually with minimal formatting.
There are other non-SQL commands that are unique to each RDBMS. For
example, the PostgreSQL psql command \d mytable will describe the
nature of the table named mytable, showing the names and data types
of the columns. The corresponding Oracle plpsql command is describe
mytable. For simple inquiries, command line SQL shells such as these
are very useful.

Here is a sample SQL command and output from the psql command
line client for PostgreSQL.

38	 Design and Use of Relational Databases in Chemistry

> select sid, activity_outcome, "log_gi50_M" from pubchem.nci_h23
 limit 10;
 sid | activity_outcome | log_gi50_M
-------+------------------+------------
 67107 | 1 | -4
 67121 | 2 | -7.287
 67122 | 1 | -4.688
 67213 | 1 | -4
 67217 | 1 | -4
 67294 | 1 | -5.339
 67379 | 1 | -4
 67383 | 1 | -4
 67432 | 1 | -4
 67525 | 1 | -4.743
(10 rows)

For routine database maintenance such as backup, each RDBMS pro-
vider typically supplies other command line programs. For example,
PostgreSQL provides the pg_dump program that outputs a file of SQL
commands containing the definition and data contained in each table,
schema, etc., in the database. This file becomes a backup of the database,
which can be restored using the psql command to execute the SQL com-
mands in the file.

Depending on the level of familiarity with command shell programs,
these can become the primary method of working with a database.
Programs can be written in any language to produce SQL commands that
are then passed to the SQL command shell. However, for browsing and
formatting data, other methods will probably be more suitable.

5.3  Web-Based Applications
Because of the flexibility and familiarity of Web browsers, Web-based
applications have become very popular and powerful. There are many
Web-based interfaces to RDBMS. For example, phpPgAdmin1 is a popu-
lar Web application for PostgreSQL. PhpMyAdmin2 is popular with users
of MySQL. These applications allow one to connect to a chosen database
server, browse the schemas and tables in the database, and enter SQL
commands. The output from SQL commands, especially table output, is
formatted nicely. Other operations, such as creating, altering, or dropping
tables and schemas, are also provided. These use an HTML form inter-
face, with text boxes, radio buttons, check boxes, and other form elements
familiar to all uses of the Web.

One advantage of Web-based applications is that the Web browser can
be run on virtually any desktop or laptop computer. The database server
itself can be located elsewhere, use a different operating system, and be
maintained by others. In addition, the Web server can reside on yet a third

Chapter 5:  Client and Web Applications	 39

computer. Of course, the Web browser, Web server, and database server
might even be on a single laptop. The flexibility of this approach makes it
easy to start simply and expand portions of the system as required.

Figure 5.1 shows a sample Web page from phpPgAdmin. The left
frame is interactive, allowing the user to view and select various database,
schemas, tables, functions, etc. The right frame typically shows table data,
results of SQL commands, or interactive Web forms allowing operations
on the database.

Figure 5.2 shows a typical RDBMS installation. The server is a Linux
server using PostgreSQL, Oracle, or MySQL as the RDBMS, apache as the
Web server, php as a Web application language, and psql, plsql or mysql
as an SQL command shell. The client might be a Linux, Windows, or Mac
laptop or desktop computer. It would use a Web browser, such as Firefox,
Explorer, or Safari. A telnet client program would allow using the SQL
command shell. Other applications, perhaps using ODBC or JDBC could
also be used on the client. These types of applications are discussed in the
next section of this chapter.

5.4  Client Applications
Other client applications are also available for use with an RDBMS.
Compared to Web-based applications, client applications are more spe-
cific to the particular client desktop or laptop computer. For example,
PgAdmin3 is used to interact with PostgreSQL. Various versions of

Figure 5.1  Typical Web page using phpPgAdmin.

40	 Design and Use of Relational Databases in Chemistry

PgAdmin are available to be run on Linux, Windows, Mac, and other cli-
ents. Oracle users typically use Oracle’s SQL Developer or Toad (Toad also
works with MySQL). SQL Developer4 is a Java application that uses JDBC
to mediate the communication to the database. A typical user need not
be concerned with this, but a later chapter of this book discusses ways to
construct new client applications using JDBC, ODBC, and other methods
to communicate with the RDBMS. Toad is a Windows only application
with a free version and a full-featured pay version.5

It is also possible to use Excel to select data from an RDBMS using
ODBC. The ODBC connection is first set up using the server name, database
name, and user login information. Then a dialog window is used to select
the desired rows and columns from the database. The returned values are
inserted into the Excel table. Figure 5.3 show a sample session using Excel to

Figure 5.3  Excel Data/Get External Data/New Database Query.

Linux server Laptop client

telnet

Apache Web
browser

application
ODBC, JDBC

PHP

psql, plsql, mysql

PostgreSQL
Oracle
MySql

Figure 5.2  A typical client-server installation for an RDBMS.

Chapter 5:  Client and Web Applications	 41

process an SQL request for data from a table. This opens a dialog window
by which the user selects columns and rows from tables in the database. It
is also possible to have saved queries that users can select. In either case, the
rows and columns of data are inserted into the Excel spreadsheet. Figure 5.4
shows the results in Excel after selecting the desired columns. Once this
data is available in Excel, any further operations or formatting is possible.

Another useful client program is R.6 It is used for statistical analysis of
data and has some nice graphical capabilities as well. There is an add-on
to R that uses ODBC to communicate with an RDBMS server.7 Consider
the following R program.

require("RODBC");
channel = odbcConnect("PostgreSQL30", uid="reader", pwd="something");
sql = "Select logp, xlogp From xlogp.test_set";
df = sqlQuery(channel, sql, max=0);
plot(df);

When this is run, the plot shown in Figure 5.5 is produced. With virtually
no programming other than a simple SQL statement, a plot of two col-
umns of data from a table can be produced using R. Of course, once this
data is read into an R dataframe, many other complex statistical opera-
tions can also be performed. Some of these are discussed in Chapter 12.

Many other useful client programs allow input of data using SQL. For
example Spotfire8 and Pipeline Pilot9 allow data to be read for an RDBMS
using ODBC.

5.5  SQL Interfaces in Various Languages
When developing a client application, one or more computer languages
will be chosen. The purpose of this section is not to advocate one language

Figure 5.4  Excel spreadsheet with selected data.

42	 Design and Use of Relational Databases in Chemistry

over another, but to show examples of how an SQL interface is accom-
plished in several common computer languages. In each of these exam-
ples, it is assumed that there is an existing PostgreSQL database available
on a server named rigel. This database contains a schema named nci that
contains a table named structure. The table has at least the columns smiles
and cas, which are used in these examples. The database in these exam-
ples is named book and the user is named reader. In each of the examples,
a database connection is established. This requires the name of the host
database server, the database name, and the user name and password.
The exact syntax of the statement creating the connection is different in
each computer language.

In each example, a simple SQL statement is used to select rows that match
a particular substructure. The rows are then simply fetched and printed.
These examples should serve as a starting point to understand how client
programs communicate with an RDBMS server using SQL. The examples
can also server as a basis for other more complex client programs.

Selecting rows from a table is only one common operation needed
for a client program to work with an RDBMS. In addition to a simple SQL
select statement, other more complex select statements will become neces-
sary as more complex client programs are developed. It is also important
to see how to properly use the SQL Insert statement. Rather than showing
examples in several computer languages, the use of more complex SQL
statements is discussed in Chapter 12.

logP

xl
og

P

6

6

5

4

3

2

1

0

543210

Figure 5.5  Plot using R of computed versus experimental logP values.

Chapter 5:  Client and Web Applications	 43

5.5.1  Perl

Perl is a general-purpose computer language with no built-in capability
to interface with an RDBMS. However, there are readily available mod-
ules that enable Perl to use all of the common RDBMS. Two modules are
needed. One is a general database interface called DBI. This allows one
to write applications without having to deal with details specific to any
particular RDBMS. The other module, DBD is specific to the particular
RDBMS being used. There are several different DBD modules, for example
DBD::Pg for PostgreSQL and DBD::Oracle. A simple way to install these is
using CPAN, the comprehensive perl archive network. On a linux system,
the following commands will install the two modules necessary to use
perl to access a PostgreSQL database. These should be run as the linux
super user by using the sudo command, or logging in as super user.

sudo cpan -i DBI
sudo cpan -i DBD:Pg

Once these modules are installed, the following perl script will select
some rows and columns from a PostgreSQL database.

use DBI;
use DBD::Pg;
#these variable must be set to values appropriate for your site
my $dbname = "book";
my $username = "reader";
my $password = "something";
my $host = "rigel";

my $dbh = DBI->connect("dbi:Pg:dbname=$dbname; host=$host",
 $username, $password);
my $sql = "Select smiles,cas from nci.structure where
 matches(smiles,'c1ccccc1C(=O)NC')";
my $sth = $dbh->prepare($sql);
my $rv = $sth->execute;
while (my @row = $sth->fetchrow_array()) {
 print join "\t",@row;
 print "\n";
}
$dhb->disconnect;

The variable $dbh is referred to as a database handle. It is created by con-
necting to the database using the DBI->connect function. This state-
ment is typically executed only once, although it is possible to connect to
multiple databases or to connect and disconnect as needed. The variable
$sth is referred to as a statement handle. It is typically used several times,
once per SQL statement. The statement is prepared and then executed.
The results are fetched and processed as required. There are many DBI

44	 Design and Use of Relational Databases in Chemistry

functions to fetch results from an SQL statement. These are not consid-
ered here further, but are described elsewhere.10,11

5.5.2  Python

Python is a general-purpose computer language with no built-in capabili-
ties to access an RDBMS. There are modules that extend python to allow
interaction with an RDBMS, for example, pygresql12 for PostgreSQL or cx_
oracle for Oracle. Once pygresql is installed, the following python script
will fetch some rows and columns from a PostgreSQL database.

import pg
conn = pg.connect(dbname='book', host='rigel', user='reader')
sql = "Select smiles,cas from nci.structure where
 matches(smiles,'c1ccccc1 C(=O)NC')"
for (smi,cas) in (conn.query(sql).getresult()):
 print smi, cas
conn.close()

The connect function opens the connection to the RDBMS using the
appropriate database name, host name, username, and password. The
query and getresult methods execute the SQL statement and get the
results. There are other methods available to get results, but these are dis-
cussed elsewhere.13

5.5.3  PHP

PHP is a general-purpose computer language often used as a CGI program
serving as part of a Web application. The interface to an RDBMS is compiled
into PHP. When PHP is installed, the appropriate version must be selected
to allow interaction with the necessary RDBMS. Of course, it is possible to
compile PHP from source, specifying the options to include RDBMS sup-
port. PHP supports interaction with many RDBMS, including Oracle14 and
PostgreSQL.15 Once the proper version of PHP is installed, the following
php script will fetch some rows and columns from a PostgreSQL database.

 <?php
$dbconn = pg_connect("host=rigel dbname=book
 user=reader password=something");
$sql = "Select smiles,cas from nci.structure where
 matches(smiles,'c1ccccc1C(=O)NC')";
$result = pg_query($dbconn, $sql);
while ($row = pg_fetch_array($result)) {
 print $row['smiles'] . "\t" . $row['cas'] . "\n";
}
pg_close($dbconn);
?>

Chapter 5:  Client and Web Applications	 45

There are other methods to execute SQL queries and fetch results, but
these are described elsewhere.16

5.5.4  Java

Java is a general-purpose computer language that includes the java.sql
package.17 This package is part of the standard java distribution from
Sun and provides a generic interface to an RDBMS. JDBC (Java Database
Connectivity) is a separate driver that enables communication between
java.sql and a variety of RDBMS. The driver is in the form of a jar file. A
separate driver is needed to enable java communication with each dif-
ferent RDBMS. The PostgreSQL JDBC driver18 is used in the following
example. It must be downloaded and installed in order for the following
example to work properly.

import java.sql.*;

public class JDBCDemo {
 public static void main(String[] args) {
 try {
 // Connect to the database
 Class.forName("org.postgresql.Driver");
 String url = "jdbc:postgresql://rigel/book";
 Connection con = DriverManager.getConnection(url, "reader");
 // Execute the SQL statement
 Statement stmt = con.createStatement();
 ResultSet resultSet = stmt.executeQuery("SELECT
 smiles,cas from nci.structure where gnova.
 matches(smiles,'c1ccccc1C(=O)NC')");
 System.out.println("Got results!");
 // Loop thru all the rows
 while(resultSet.next()) {
 String smi = resultSet.getString("smiles");
 String cas = resultSet.getString("cas");
 System.out.println(smi + "\t" + cas);
 }
 stmt.close();
 }
 catch(Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }
}

Once this is compiled, it can be run as follows, being sure that the
PostgreSQL JDBC jar file is in the class path. The exact location of the jar
file may be different than in the example here.

java -cp .:/usr/share/java/postgresql.jar JDBCDemo

46	 Design and Use of Relational Databases in Chemistry

There are other methods available to prepare SQL statements and to
fetch results. These are described in the standard java.sql documentation,
in on-line tutorials,19 and in various books.20,21

References
	 1.	 PhpPgAdmin. 2008. http://www.phppgadmin.com (accessed April 18,

2008).
	 2.	 PhpMyAdmin. 2008. http://www.phpmyadmin.net/ (accessed April 18,

2008).
	 3.	 PgAdminIII. 2008. http://www.pgadmin.org (accessed April 18, 2008).
	 4.	 Oracle SQL Developer. 2008. http://www.oracle.com/technology/prod-

ucts/database/sql_developer/index.html
	 5.	 Toad DBA Suite for Oracle. http://www.quest.com/toad-dba-suite-for-

oracle/ (accessed April 18, 2008).
	 6.	 The R Project for statistical computing. 2008. http://www.r-project.org/

(accessed April 18, 2008).
	 7.	 RODBC database interface module. 2008. http://cran.r‑project.org/web/

packages/RODBC/index.html (accessed April 18, 2008).
	 8.	 Spotfire. 2008. http://spotfire.tibco.com/ (accessed April 18, 2008).
	 9.	 SciTegic platform. 2008. http://www.accelrys.com/products/scitegic/

(accessed April 18, 2008).
	 10.	 Perl DBI module. http://search.cpan.org/~timb/DBI/DBI.pm (accessed

April 18, 2008).
	 11.	 Matthew, N., and Stones, R. 2005. Beginning databases with PostgreSQL: From

novice to professional. 2nd ed. New York: Apress.
	 12.	 PyGreSQL – PostgreSQL module for Python. 2006. http://www.pygresql.

org/ (accessed April 18, 2008).
	 13.	 PyGreSQL programming information. http://www.pygresql.org/pg.html

(accessed April 18, 2008).
	 14.	 Oracle OCI8 functions. 2008. http://us2.php.net/oci (accessed April 18,

2008).
	 15.	 PostgreSQL functions. 2008. http://us3.php.net/pgsql (accessed April 18,

2008).
	 16.	 Pg_fetch_result function. 2008. http://us.php.net/manual/function.pg-

fetch-result.php (accessed April 18, 2008).
	 17.	 Package java.sql. 2003. http://java.sun.com/j2se/1.4.2/docs/api/java/sql/

package-summary.html (accessed April 18, 2008).
	 18.	 PostgreSQL JDBC driver. 2008. http://jdbc.postgresql.org/ (accessed April

18, 2008).
	 19.	 Creating complete JDBC applications. 2008. http://java.sun.com/docs/

books/tutorial/jdbc/basics/complete.html (accessed April 18, 2008).
	 20.	 Bales, D.K. 2001. Java programming with Oracle JDBC. Sebastopol, CA:

O’Reilly.
	 21.	 Melton, J. and Eisenberg, A. 2000. Understanding SQL and Java together: A guide

to SQLJ, JDBC, and related technologies, San Francisco: Morgan Kaufmann.

47

chapter 6

Data Storage, Searching,
and Manipulation

6.1 � Introduction
A schema is a collection of tables and functions in a database. There is
no single schema that will satisfy the needs of every chemical database
user. It might be possible to use an existing schema, perhaps one from this
book, and modify it to suit the needs of a particular project. It might be
necessary to examine the needs of the project and develop an entirely new
schema. The purpose of this chapter is to give examples of useful schemas
and to provide enough background to allow the design of new schemas.

In Chapter 2, the usefulness of relational tables was introduced.
Sample data from the U.S. Environmental Protection Agency was used
to show the advantage of storing each type of data in a separate table.
The data in each table remain related to the proper chemical compound
through the use of a unique chemical id, which functions as a unique key
relating multiple tables. This technique will be used extensively in this
and following chapters. The separation of data into multiple tables also
facilitates cases where a compound may have multiple data values, also
known as one-to-many relationships. This chapter will show examples
of how many-to-many relationships are handled. It will also show more
examples of how the choice of data types affects the operation of the data-
base and the applications that use it.

6.2 � General Schema Design Decisions
When designing a schema to hold chemical information, it is crucial to
first consider how the data will be used. One approach is to interview
potential users of the database to determine what questions need to be
answered on a regular basis. For example, users of a chemical compound
tracking system will typically need to know the following:

Where is compound X now?•	
Which compounds does chemist Z have checked out?•	
Has compound Q already been registered?•	
How many samples of compound Y have been prepared?•	

48	 Design and Use of Relational Databases in Chemistry

It is essential that the schema of tables be created in a way that can eas-
ily answer such questions. During the design of a schema, it is useful to
prepare structured query language (SQL) queries that will provide the
answers to these questions. If it proves difficult or awkward to use the
schema to answer these questions, the schema must be redesigned. Do not
underestimate the importance of time and effort spent during the design
of a database schema.

Another task in selecting or designing a schema is to determine which
operations need to be performed. For example, in a compound-tracking
system, compounds need to be registered and samples of compounds
need to be taken (checked out). For a schema to function well, it should be
relatively simple to update or insert data into the tables of the schema to
record these activities.

It is worthwhile to also consider how important each question or opera-
tion is, or perhaps how frequently it will be required. Be sure to determine
which operations are essential to the smooth functioning of the system and
which questions need to be answered quickly. In other words, prioritize the
requirements since it will rarely be possible to satisfy all the requirements
without some compromise. Finally, consider questions or operations that
might not be needed immediately but will possibly be required in future.

Once these questions and operations are stated, one needs to consider
the items of information that must be stored in the tables of the schema.
These will typically be words or concepts used in the set of questions posed
during the design of the schema. For example, in a chemical compound-
tracking database, some items would be samples, compounds, chemists,
locations, and checkout and registration events. Sometimes these items are
simple, such as molecular weight or a chemist’s name. These can be repre-
sented using simple SQL data types, such as numeric or text. Often, these
items are complex, such as location or sample. These items are represented
by defining a set of columns (a table) that contains simple SQL data types,
or possibly even references to other complex data types. The compound-
tracking example is considered in detail in a later section of this chapter.

Of course, it will be important to store the chemical structure itself.
Clearly, a complete chemical structure cannot be represented using basic
SQL data types, such as numeric or text. While a compound name (text)
might be considered a good representation of molecular structure, there
are better ways to represent molecular structure. In this chapter, a com-
pound will simply be identified with a unique compound id serving as
a foreign key to a more complete representation of structure in another
table. The following chapters will show ways that chemical structures can
be fully integrated into the tables of a database. This chapter concentrates
on the proper use of chemical data and ways in which multiple relational
tables can be used.

Chapter 6:  Data Storage, Searching, and Manipulation	 49

The vast majority of chemical information consists of text or numeri-
cal data associated with a particular compound, or perhaps a mixture of
compounds. Some chemical data cannot yet be associated with any par-
ticular structure, or has been measured for compounds whose structure is
not yet known. It is important to consider these possibilities when design-
ing a schema of tables to store chemical information.

6.3 � Sample Schema for Tracking
Chemical Samples

These are the operations that are required by users of this compound
tracking system:

Register a sample and record the chemical compound(s) it contains.•	
Checkout the entire sample, or subsamples, recording the person •	
(chemist), location (lab), and date and time.
Return a sample to a location.•	

These are the questions that need to be routinely answered by users of
this schema:

Which sample(s) contain a particular compound?•	
Where is and who has any or all samples of a particular compound?•	
Where has a particular sample been since it was registered?•	
Which compound(s) are contained in a particular sample?•	
What is the molecular weight of a particular sample?•	

These are possible future requirements:

Location may need to be expanded to identify particular shelves, •	
cabinets, or drawers.
Samples may need to be tracked as controlled substances.•	

These are the items that need to be stored in the schema:

Sample•	
Compound•	
Chemist•	
Location•	
Time and date•	
Molecular weight•	
Checkout•	

50	 Design and Use of Relational Databases in Chemistry

Some items are simple; for example, molecular weight is a numeric value
and time and date can be represented using the timestamp SQL data type.
Other items are more complex, for example, compound location. For com-
plex items, one must consider the components of that data that can be
represented using the available SQL data types. For example, compound
location could simply be stored as a text string. If compound location is
needed only in reports, a text string is a good solution. However, in some
applications, the location needs to be more flexibly defined. It might be
necessary to include a stockroom, a laboratory, a cabinet, etc. Rather than
store this in a single encoded text string, it is much better to define a set
of data columns to hold this information so that it can be readily searched
and updated. This defines a new complex data type composed of built-in
data types, such as numeric, text, or date. Defining a table and its set of
columns and defining the new data type does this. A general rule is to
avoid encoding information in a single column. Rather, design a table (or
new data type) to hold the individual components of the data.

Figure 6.1 shows an entity-relationship diagram for a compound-track-
ing schema. The table named registry defines the sample. The sam-
ple _ id is used to relate other tables in the schema. This sample _ id is a
unique integer that may not be null and will serve as a primary key for this
table and as a foreign key for other tables. In the figure, these attributes are
encoded in the diagram using the asterisk (not null), PK (primary key), FK
(foreign key), and PF (primary foreign key). When a sample is first entered,
a new sample _ id must be used. This will be enforced by the RDBMS
because it is declared to be unique. For convenience, many RDBMS pro-
vide a serial data type, or sequence-generating functions, that provides
the next integer in a series. However, the person or computer program
responsible for making the initial entries in the registry table might also
ensure that the sample _ id is unique among the other sample _ ids in
the table. In addition, a date is stored in the column named registered
and may not be a null value. Finally, a parent _ sample _ id is stored.
This will be used when partial samples, rather than an entire container of
the sample are checked out. This is still called a foreign key even though the
primary key to which it is related is contained in the same table. Initially,
the parent _ sample _ id will be set equal to the sample _ id, indicat-
ing it is the primary entry for this sample. When a sample is taken, a new
sample _ id will be generated and its parent _ sample _ id will be set
equal to the sample _ id from which this subsample is taken. The regis-
tered date will also be stored for this subsample.

The next table to consider is the checkout table. When a sample is
taken, either the parent sample or a subsample, data are recorded in the
checkout table. A sample _ id is recorded, the checked _ out date is
recorded, a valid location _ id from the alocation table is chosen,
and a valid chemist _ id from the chemist table is chosen. Note that

Chapter 6:  Data Storage, Searching, and Manipulation	 51

al
oc

at
io

n
ch

ec
ko

ut

ch
em

ist

re
gi

st
ry

co
m

po
sit

io
n

st
ru

ct
ur

e

an
am

e
PK

 l
oc

at
io

n_
id

*
FK

 s
am

pl
e_

id
*

TE
XT

an
am

e
TE

XT

sm
ile

s
m

w
TE

XT
NU

M
ER

IC

at
yp

e
TE

XT

IN
TE

GE
R

IN
TE

G
ER

FK
 l

oc
at

io
n_

id
*

IN
TE

G
ER

FK
 c

he
m

ist
_i

d*
IN

TE
G

ER

PK
 c

he
m

is
t_

id
*

IN
TE

G
ER

PF
 s

am
pl

e_
id

*
IN

TE
G

ER
PF

 c
om

po
un

d_
id

*
IN

TE
G

ER

PK
 c

om
po

un
d_

id
*

IN
TE

G
ER

FK
 p

ar
en

t_
sa

m
pl

e_
id

IN
TE

G
ER

PK
 s

am
pl

e_
id

*
SE

RI
A

L

ch
ec

ke
d_

ou
t

TI
M

ES
TA

M
P

re
gi

st
er

ed
TI

M
ES

TA
M

P

Fi
gu

re
 6

.1
 E

nt
it

y
re

la
ti

on
sh

ip
 d

ia
gr

am
 fo

r
a

ch
em

ic
al

 s
am

pl
e

tr
ac

ki
ng

 s
ch

em
a.

52	 Design and Use of Relational Databases in Chemistry

the same sample _ id may be recorded multiple times in the check-
out table. Each entry with the same sample _ id would have a different
timestamp and likely a different location _ id and chemist _ id. This
provides a record of where this sample has been from the time it was first
registered to the last time it was checked out.

Why have a separate table for chemists, rather than simply storing
chemist _ name in the checkout table? The alternative would be to have
a column for chemist _ name in the checkout table. The advantage of
storing chemist _ name in the checkout table is only that a separate
chemist table is not needed. The disadvantage is that the same chemist
name will be repeated in many rows of the table, possibly spelled differ-
ently or with varying upper and lowercase letters. In addition, the length of
chemist _ name in each row will consist of many characters. The advan-
tages of a separate chemist table are many. The chemist _ id is an integer,
much shorter than a chemist _ name. Each chemist name is stored only
once and can be corrected easily when necessary. Additional information
(additional columns) about each chemist can be added to the chemist table
at any time without disturbing the checkout table. Other tables can be cre-
ated that relate to the chemist table if that becomes necessary. Finally, it is
forbidden to store an invalid chemist _ id in the checkout table because
of the foreign key constraint relating the checkout and chemist tables.

Why have a separate table for alocation related by location _ id
rather than columns location_name and location _ type in the check-
out table? The reasons stated above for using a separate chemist table
apply here, but there are even more important advantages for the alocation
table. While interviewing users of this schema, the location of each sample
was seen to be of high importance. Yet, they were reluctant to define exactly
what was meant by compound location and suggested that it might change
in future. For example, while it might suffice today to know a sample was
in lab 215 or in coldroom 12, in the future it might be necessary to know in
which cabinet or which drawer a compound is located. Keeping the location
information in a separate table allows the definition of location to be altered
or expanded without having to modify the checkout table. A single loca-
tion _ id still relates the checkout table to the alocation table.

The last two tables to consider are the astructure table and the
composition table. Each sample might be composed of multiple chemi-
cal compounds, or might even be of unknown chemical composition. The
astructure table has a unique entry for each compound of interest,
with a unique compound _ id, a SMILES string identifying the structure
of the compound, and a molecular weight. SMILES is a text representa-
tion of chemical structure that is explained more fully in Chapter 7 of
this book. Other attributes of a chemical compound could also be stored
in the astructure table. It is also possible to create new tables having
compound _ id as a foreign key relating to the astructure table.

Chapter 6:  Data Storage, Searching, and Manipulation	 53

The purpose of the composition table is to provide the ability to store
the information that a sample consists of one or many compounds. There
might be many rows in composition, each with the same sample _ id
and different compound _ ids. Or there may be a single entry in the
composition table indicating that a sample contains only one com-
pound. Finally, there may be no entry in composition for a sample _ id
indicating that the sample is of unknown composition.

This schema can be expanded in many ways. For example, other
information about the sample can be added, such as whether the sample
is a liquid, crystal, solution, etc. If necessary, a table might be used to store
the sample _ ids of toxic or radioactive compounds, or of compounds
monitored by some governmental regulatory agency. Rather than trying
to foresee all possibilities and add columns to the sample table, it is much
simpler and more robust to add new tables as new information becomes
available or necessary.

A general rule is this: Keep each table as simple as possible, with the
fewest number of columns, each of which is essential to describe the entity
(e.g., sample, compound, or chemist). Assign a unique integer id column
and use that id in relationship to other tables containing more informa-
tion or related information.

6.4 � Schemas for PubChem Data
In the previous section, a schema was described for a compound tracking
system based on user specifications. The designer is free to create new
schemas and tables to fit the user specifications. Sometimes, an existing
system needs to be analyzed in order to fit into an RDBMS model. Often,
the system will have been implemented using several sets of files, with
various programs implementing relationships among these files and the
data in them. In this case, the structure of the schemas and tables is “sug-
gested,” or even required by the structure of the existing data.

The U.S. National Institutes of Health PubChem project contains infor-
mation on millions of chemical compounds.1 The data are divided into
three main sections. PubChem Substance contains structures supplied by
depositors. PubChem Compound contains unique structures with com-
puted properties. PubChem BioAssay contains bioactivity assay results
supplied by depositors. The data in these three sections are recorded inde-
pendently, yet there are chemical relationships among these sections. For
example, information available as a PubChem BioAssay is associated with
a particular substance for which the data were collected. A substance may
be a single compound or a mixture of several compounds.

In order to find structures and data in PubChem, there are search
tools available online.2 This may suffice for your needs. The data are also
available in the form of SDF files and csv (comma-separated values) files.

54	 Design and Use of Relational Databases in Chemistry

This section will show how these files can be used to populate a schema of
tables designed for PubChem data. While your chemical information may
not correspond exactly to this schema, it should be instructive to see how
the PubChem schema is designed and used.

6.4.1 � BioAssay Data

PubChem BioAssay is available as hundreds of different files.3 The files
are named, for example, 1.csv.gz, 1.descr.xml, 2.csv.gz, 2.descr.xml. The
xml files are descriptions of the data contained in the corresponding csv
file, which results when the csv.gz file is unzipped. For example, the file
1.descr.xml contains the information: “Growth inhibition of the NCI_H23
human Non-Small Cell Lung tumor cell line is measured as a screen for
anti-cancer activity” as well as information about the various columns of
data in the 1.csv file. This information is used to define a table to hold the
data in the 1.csv file. Figure 6.2 shows a representation of the table, named
nci_h23. Using additional information in the 1.descr.xml file and using
the capabilities of the RDBMS to incorporate comments on tables and col-
umns, the following SQL defines the nci _ h23 table.

Create table pubchem.nci_h23
(
	 "sid" Integer,
	 "ext_datasource_regid" Integer,
	 "cid" Integer,
	 "activity_outcome" Integer,
	 "activity_score" Integer,
	 "activity_url" Text,

nci_h23
sid
ext_datasource_regid
cid
activity_outcome
activity_score
activity_url
assaydata_comment
assaydata_revoke
log_gi50_M
log_gi50_ugml
log_gi50_v
indngi50
stddevgi50
logtgi_m
logtgi_ugml
indntgi
stddevtgi

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
TEXT
TEXT
TEXT
NUMERIC
NUMERIC
NUMERIC
INTEGER
NUMERIC
NUMERIC
NUMERIC
INTEGER
NUMERIC

Figure 6.2  Entity-relationship diagram for nci_h23 data table.

Chapter 6:  Data Storage, Searching, and Manipulation	 55

	 "assaydata_comment" Text,
	 "assaydata_revoke" Text,
	 "log_gi50_M" Numeric,
	 "log_gi50_ugml" Numeric,
	 "log_gi50_v" Numeric,
	 "indngi50" Integer,
	 "stddevgi50" Numeric,
	 "logtgi_m" Numeric,
	 "logtgi_ugml" Numeric,
	 "logtgi_v" Numeric,
	 "indntgi" Integer,
	 "stddevtgi" Numeric
);
Comment on table pubchem.nci_h23 is 'Growth inhibition of the

NCI_H23 human Non-Small Cell Lung tumor cell line is measured as
a screen for anti-cancer activity. Cells are grown in 96 well
plates and exposed to the test compound for 48 hours. Compounds
are tested at 5 different concentrations and three endpoints are
estimated from this dose response curve: GI50, concentration
required for 50% inhibition of growth; TGI, the concentration
required for complete inhibition of growth; and LC50, the
concentration required for 50% reduction in cell number. These
estimates are done by simple linear interpolation between the
concentrations that surround the appropriate level. If a
compound doesn't cause inhibition to the appropriate level, the
endpoint is set to the highest concentration tested.';

Comment on column pubchem.nci_h23."sid" is
'PubChem Substance ID SID';

Comment on column pubchem.nci_h23."ext_datasource_regid" is 'Space
holder for PubChem external datasource RegID, empty by default';

Comment on column pubchem.nci_h23."cid" is 'Pubchem Compound ID';

It is important to include comments when defining tables in a schema.
Comments on only the first few columns are shown in the given exam-
ple. Whenever information is available from the data source, it should be
incorporated as comments. When defining tables using your own data, it
is advisable to use comments to include a thorough description of each
table and each column of data.

Once this pubchem.nci _ h23 table is defined, the data in the csv file
can be copied into the table, typically using the SQL copy command. For
example:

Copy pubchem.nci_h23 From Stdin Delimiter ',';

After unzipping 1.csv.gz and removing the first line containing col-
umn names rather than data, the file can be used with the copy command
above to copy data into the pubchem.nci _ h23 table.

All of the other xml and csv data files from PubChem BioAssay can be
used in a similar way to define other tables in the pubchem schema. Many
of the assays use the same column names and descriptions as the above

56	 Design and Use of Relational Databases in Chemistry

pubchem.nci _ h23 schema. This table definition can be used, changing
just the table name and the comment on the table.

The structure of this table and the data in it can be viewed online using
the phpPgAdmin Web application.4 While it is possible to simply browse
this table, it is more useful to search for data of interest. This applies to
data in any table, of course. Simple SQL statements to carry out searches
can be entered using the SQL link on the upper right. For example, the
following SQL statement finds rows where the substance is considered to
be active.

Select sid, activity_outcome, "log_gi50_M", log_gi50_ugml From
 nci_h23 Where activity_outcome = 2;

This may be of use, but more likely some information about the actual
substances and structures is needed, not just the substance id.

6.4.2 � Substances

The substances in PubChem are available as a set of sdf files. The data
in these files can be read by a wide variety of programs.5 The one most
directly useful here produces a file of SQL commands to create a table
and copy data into it. This sdf2sql program* is available online.6 Using the
PubChem file Substance_00000001_00025000.sdf.gz, the output of sdf2sql
produces the following:

Create Table substance (
 Title text,
 BONDANNOTATIONS text,
 CID_ASSOCIATIONS text,
 COMPOUND_ID_TYPE integer,
 EXT_DATASOURCE_NAME text,
 EXT_DATASOURCE_REGID text,
 EXT_DATASOURCE_URL text,
 EXT_SUBSTANCE_URL text,
 GENBANK_NUCLEOTIDE_ID text,
 GENBANK_PROTEIN_ID text,
 GENERIC_REGISTRY_NAME text,
 PUBMED_ID text,
 SUBSTANCE_COMMENT text,
 SUBSTANCE_ID integer,
 SUBSTANCE_SYNONYM text,
 SUBSTANCE_VERSION integer,
 TOTAL_CHARGE integer,
 XREF_EXT_ID text);
Copy substance (

*	 Another approach is to store the properties from the sdf file in a separate table, rather than
as columns in the substance table. This is examined more fully in Chapter 11.

Chapter 6:  Data Storage, Searching, and Manipulation	 57

 Title,
 BONDANNOTATIONS,
 CID_ASSOCIATIONS,
 COMPOUND_ID_TYPE,
 EXT_DATASOURCE_NAME,
 EXT_DATASOURCE_REGID,
 EXT_DATASOURCE_URL,
 EXT_SUBSTANCE_URL,
 GENBANK_NUCLEOTIDE_ID,
 GENBANK_PROTEIN_ID,
 GENERIC_REGISTRY_NAME,
 PUBMED_ID,
 SUBSTANCE_COMMENT,
 SUBSTANCE_ID,
 SUBSTANCE_SYNONYM,
 SUBSTANCE_VERSION,
 TOTAL_CHARGE,
 XREF_EXT_ID)
 From stdin delimiter ',';
1,\N,449635 1,0,MOLI,MOLI000002,\N,\N,\N,\N,\N,\N, MOLI - NCI
 Molecular Imaging Agents\nFGCV,1,MOLI000002,1,0,MOLI000002
2,2 11 5\n20 34 5\n25 31 6\n28 55 5\n5 13 6\n58 59 6\n8 33 5,\N,0,
 MOLI,MOLI000003,\N,\N,\N,\N,\N,\N,MOLI - NCI Molecular Imaging
 Agents\n[99mTc]-P2S2-BBN(7-14),2,MOLI000003,1,0,MOLI000003

The column names in the Create statement are taken directly from the
data tags in the input sdf file. The data types are guessed after analysis of
data in the file. This sample includes only two lines of actual data from the
13,036 entries in the file.

Once this substance table is in place, it is now possible to select in a
single SQL statement any substance data along with nci _ h23 data. The
previous statement can be modified as follows:

Select
 sid, ext_datasource_name, substance.ext_datasource_regid,
 activity_outcome, "log_gi50_M", log_gi50_ugml
From
 pubchem.nci_h23
 Join pubchem.substance On substance.substance_id = nci_h23.sid
Where activity_outcome = 2;

Notice the use of the Join keyword and the additional table name
pubchem.substance in the From clause. This is necessary because
data from this table is being selected. The additional columns selected
are ext _ datasource _ name and substance.ext _ datasource _
regid in the Select clause. Any columns of interest in the substance
table could be selected. Note that since there is a column named ext _
datasource _ id in both tables, it is necessary to specify that the column
substance.ext_datasource_regid is desired. Finally, the clause On nci _
h23.sid = substance.substance _ id indicates that these columns are
related to each other and must be used in the Join.

58	 Design and Use of Relational Databases in Chemistry

Figure 6.3 shows the relationship between the pubhcem.nci _ h23
and pubchem.substance tables in the form of an entity-relationship
diagram (ERD). The primary key substance.substance _ id and the
foreign key nci _ h23.sid are indicated and imply their use in an On
clause when these two tables are joined.

6.4.3 � Compounds

The third set of files from the PubChem repository describes chemical
compounds. These are distributed as sdf files and are identified using a
unique compound id. There are also multiple properties associated with
each compound. Using the sdf2sql file utility described above, the table
pubchem.compound is created. The compound table can then be used to
locate compounds by searching any of the columns of data; for example,

Select * From pubchem.compound Where iupac_name Like '%aldehyde%'
And heavy_atom_count < 20;

would select small aldehydes. When used in conjunction with the bio-
logical assay data and substance table, the compound table becomes even
more useful.

From the examples in the previous section, it is clear how the sub-
stance id relates pubchem.substance to biological assay data and how
substance data can be selected using the substance id. How can the
compound table be used to select compound data for substances appear-
ing in one of the biological assay data tables? In other words, how is the

nci_h23
FK sid*
 ext_datasource_regid
 cid
 activity_outcome
 activity_score
 activity_url
 assaydata_comment
 assaydata_revoke
 log_gi50_M
 log_gi50_ugml
 log_gi50_v
 indngi50
 stddevgi50
 logtgi_m
 logtgi_ugml
 indntgi
 stddevtgi

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
TEXT
TEXT
TEXT
NUMERIC
NUMERIC
NUMERIC
INTEGER
NUMERIC
NUMERIC
NUMERIC
INTEGER
NUMERIC

substance
 title
 bondannotations
 cid_associations
 compound_id_type
 ext_datasource_name
 ext_datasource_url
 ext_substance_url
 genbank_nucleotide_id
 genbank_protein_id
 generic_registry_name
 pubmed_id
PK substance_id*
 substance_comment
 substance_synonym
 substance_version
 total_charge
 xref_ext_id

TEXT
TEXT
TEXT
INTEGER
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
INTEGER
TEXT
TEXT
TEXT
INTEGER
TEXT

Figure 6.3  Entity-relationship diagram for pubchem.substance and pubhchem.
nci_h23 tables.

Chapter 6:  Data Storage, Searching, and Manipulation	 59

relationship between pubchem.substance and pubchem.compounds
handled?

The column pubchem.substance.cid _ associations is taken
directly from the sdf files supplied by PubChem. It has all the neces-
sary information, but it is not in a proper form for a relation between
pubchem.substance and pubchem.compounds. This is because too
much information has been crammed into this column. For example, the
cid _ associations for substance _ id 22 contains the data “449653
1 449655 2 6540406 2”. This means that there are three compound ids asso-
ciated with this substance id. In other words, there is a many-to-many
relationship between compounds and substances. While it would be pos-
sible to parse the cid _ associations column when the compound id is
needed, it is better to have a clear relationship between substance ids and
compounds ids. It is better because it enforces and preserves the relational
integrity (or referential integrity) between these data. It also makes select-
ing data from all three data sources quicker and easier.

Another complexity is that the compound associations are classified
using a small number, for example the 1 and 2 in the cid _ associations
quoted above. These classifications might be called primary when the
number is 1, secondary when 2, etc. Trying to apply a parsing rule for data
encoded in a column is prone to error. There is no easy way to enforce the
format of data in this column.

There are several approaches to creating the relation between com-
pound and substance. One is to create an integer column, say, pubchem.
substance.cid that would contain only the primary compound id from
the column cid _ associations. This column becomes a foreign key
related to the pubchem.compound.cid column. This would form a proper
relation between the tables, but would neglect the secondary cid _ asso-
ciations. If those are of no interest, this approach is an excellent choice.

Another approach is to create multiple columns: one for the primary
compound id and others for the secondary, tertiary, etc. compound ids.
Each of these integer columns could serve as a foreign key and form a
proper relation to the pubchem.compound.cid column. This approach is
not recommended because the maximum number of compound ids in the
cid _ associations column is not known and could increase as more
data is added. In addition, the type of association, primary, secondary,
etc. would have to be neglected, stored in another column, or somehow
encoded in the new column names. This approach has too many draw-
backs to be acceptable.

The proper way to create a relation between pubchem.substance.
substance _ id and pubchem.compound.cid is to create a new table
that acts as an intermediary. This is a typical approach to handling many-
to-many relationships. This table must include a column for the com-
pound id and a column for the substance id. There can be as many rows

60	 Design and Use of Relational Databases in Chemistry

as necessary to provide all compound ids for any substance id. Adding
a column for compound association type allows that information to be
included as well. Figure 6.4 is an ERD showing how all the PubChem tables
are related. The search from the previous section can now be expanded to
include compound data.

Select
 n.sid, sc.compound_id, sc.compound_type, c.openeye_can_smiles,
 s.ext_datasource_name, s.ext_datasource_regid,
 n.activity_outcome, n."log_gi50_M", n.log_gi50_ugml
From
 compound c
 Join substance_compound sc On sc.compound_id = c.cid
 Join substance s On s.substance_id = sc.substance_id
 Join nci_h23 n On n.sid = s.substance_id
Where activity_outcome = 2
Order By sid;

Note two additional Join clauses, each with the appropriate On clause nam-
ing the columns that relate the tables being joined. The additional columns
compound _ id, compound _ type, and openeye _ can _ smiles are
from the compound table. No columns are actually selected from the sub-
stance _ compound table. That table is simply used to affect the many-
to-many relationship between the substance and compound tables.

6.5 � Data Constraints and Data Integrity
Several constraints on data have already been discussed. When a column is
defined to be numeric, it is forbidden to insert anything other than a num-
ber into that column. There are constraints of this type on every standard
SQL data type. This ensures a type of data integrity. When data is selected
from a column with data type timestamp, the user of the data, whether
a person or a computer program can be sure the data represents a valid
timestamp. This type of data constraint also prevents errors from creeping
into the database due to errors on data input. For example, the string ‘Nan’
would not be allowed in a column of type numeric. While some computer
systems and languages freely use the string ‘Nan’ to represent (on output)
“not a number,” an RDBMS would reject this and never allow anything
other than a valid number (or possibly a null) in a numeric column.

Another commonly used constraint is the uniqueness constraint.
In previous examples, the column compound _ id was defined to be a
unique integer. When the uniqueness constraint is used in a table holding
a collection of compounds, it ensures that there can never be more than
one compound with a particular compound _ id. This is essential if other
data about a compound are stored in other tables that use compound _ id
as a foreign key. Notice that this does not prevent two identical compounds

Chapter 6:  Data Storage, Searching, and Manipulation	 61

FK
 s

id
*

 e

xt
_d

at
as

ou
rc

e_
re

gi
d

 c

id

 a
ct

iv
ity

_o
ut

co
m

e

 a
ct

iv
ity

_s
co

re

 a
ct

iv
ity

_u
rl

 a

ss
ay

da
ta

_c
om

m
en

t

 a
ss

ay
da

ta
_r

ev
ok

e

 l
og

_g
i5

0_
M

 l

og
_g

i5
0_

ug
m

l

 l
og

_g
i5

0_
v

 i

nd
ng

i5
0

 s

td
de

vg
i5

0

 l
og

tg
i_

m

 l
og

tg
i_

ug
m

l

 i
nd

nt
gi

 s

td
de

vt
gi

IN
TE

G
ER

IN
TE

G
ER

IN
TE

G
ER

IN
TE

G
ER

IN
TE

G
ER

TE
XT

TE
XT

TE
XT

N
U

M
ER

IC
N

U
M

ER
IC

N
U

M
ER

IC
IN

TE
G

ER
N

U
M

ER
IC

N
U

M
ER

IC
N

U
M

ER
IC

IN
TE

G
ER

N
U

M
ER

IC

PK
 c

id
*

 iu
pa

c_
op

en
ey

e_
na

m
e

 iu
pa

c_
ca

s_
na

m
e

 iu
pa

c_
na

m
e

 iu
pa

c_
tr

ad
iti

on
al

_n
am

e

 n

ist
_i

nc
hi

 ca
ct

us
_x

lo
gp

 ca
ct

us
_e

xa
ct

_m
as

s

 o

pe
ne

ye
_m

w

 o

pe
ne

ye
_c

an
_s

m
ile

s

 o

pe
ne

ye
_i

so
_s

m
ile

s

 ca

ct
us

_t
ps

a

 t
ot

al
_c

ha
rg

e

 h

ea
vy

_a
to

m
_c

ou
nt

IN
TE

G
ER

TE
XT

TE
XT

TE
XT

TE
XT

TE
XT

N
U

M
ER

IC
N

U
M

ER
IC

N
U

M
ER

IC
TE

XT
TE

XT
N

U
M

ER
IC

IN
TE

G
ER

IN
TE

G
ER

nc
i_

h2
3

 ti
tle

 b
on

da
nn

ot
at

io
ns

 c
id

_a
ss

oc
ia

tio
ns

 co
m

po
un

d_
id

_t
yp

e

 ex

t_
da

ta
so

ur
ce

_n
am

e

 ex

t_
da

ta
so

ur
ce

_u
rl

 e
xt

_s
ub

st
an

ce
_u

rl

 g

en
ba

nk
_n

uc
le

ot
id

e_
id

 g
en

ba
nk

_p
ro

te
in

_i
d

 g
en

er
ic

_r
eg

ist
ry

_n
am

e

 p

ub
m

ed
_i

d
PK

 su
bs

ta
nc

e_
id

*

 su

bs
ta

nc
e_

co
m

m
en

t

 su

bs
ta

nc
e_

sy
no

ny
m

 su
bs

ta
nc

e_
ve

rs
io

n

 to

ta
l_

ch
ar

ge

 x

re
f_

ex
t_

id

TE
XT

TE
XT

TE
XT

IN
TE

G
ER

TE
XT

TE
XT

TE
XT

TE
XT

TE
XT

TE
XT

TE
XT

IN
TE

G
ER

TE
XT

TE
XT

TE
XT

IN
TE

G
ER

TE
XT

su
bs

ta
nc

e
co

m
po

un
d

su
bs

ta
nc

e_
co

m
po

un
d

PF
 c

id
*

PF
 su

bs
ta

nc
e_

id
*

as
ss

oc
ia

tio
n

IN
TE

G
ER

IN
TE

G
ER

IN
TE

G
ER

Fi
gu

re
 6

.4
 E

nt
it

y-
re

la
ti

on
sh

ip
 d

ia
gr

am
 fo

r
al

l t
h

re
e

se
ts

 o
f P

u
bC

he
m

 d
at

a,
 s

ho
w

in
g

pr
im

ar
y

an
d

 fo
re

ig
n

ke
ys

 r
el

at
in

g
co

m
p

ou
nd

s,

su
bs

ta
nc

es
, a

nd
 b

io
lo

gi
ca

l a
ss

ay
 d

at
a.

62	 Design and Use of Relational Databases in Chemistry

from being entered, each with a different compound _ id. The next chap-
ter shows how using uniqueness constraints and SMILES can ensure that
a compound occurs only once in a table.

The foreign key constraint is used routinely in a schema (or sche-
mas) with many related tables. Usually one table is defined to hold the
primary unique key, for example, compound _ id. Other tables are then
defined using compound _ id as a foreign key. This requires that every
compound _ id in the foreign key table have a corresponding entry for that
compound _ id in the primary key table. This use of primary and foreign
keys forms the foundation on which the table relations and joins among
relational tables are defined. The foreign key constraint can also ensure
that data in the primary table cannot be accidentally deleted, since this
would leave the rows in the foreign key table(s) orphaned with no corre-
sponding primary key. The foreign key constraint does not require that the
values be unique. There may be many rows with the same compound _ id
in a table where compound _ id is defined as a foreign key. For example,
consider a table ic50 with compound _ id as a foreign key. There may be
many measures of ic50 for the same compound _ id all stored in the same
table ic50. There may also be many other tables of experimental and theo-
retical data using the same compound _ id to store various data.

It is also possible to define other constraints on data in tables. For
example, molecular weight might be stored as a numeric value. While
the standard SQL numeric constraint applies, it might be desirable to also
constrain molecular weight values to be positive values. This can be read-
ily done after the column is defined using the following SQL.

Alter Table compound Add Constraint mw_check Check (mw > 0);

More elaborate constraints are also possible. For example, the chemical
abstracts (CAS) number is composed of three integers. In order for a CAS
number to be valid, the first integer must have no more than six digits,
the second must have two digits, and the third integer is a checksum.
For example, the CAS number for caffeine is 58-08-2. The values 58 and
08 are arbitrarily assigned by Chemical Abstracts, and the 2 is the proper
checksum computed as (8*1 + 0*2 + 8*3 + 5*4) % 10, where % represents
the modulo function. The following function will validate a CAS number
based on input of the three integers.

Create Function valid_cas(integer, integer, integer) Returns boolean
 As 'Select $1 < 1000000 And $2 < 100 And $3 < 10 And
 $3 = (
 ($2 % 10 * 1) +
 ($2 / 10 * 2) +
 ($1 % 10 / 1 * 3) +
 ($1 % 100 / 10 * 4) +

Chapter 6:  Data Storage, Searching, and Manipulation	 63

 ($1 % 1000 / 100 * 5) +
 ($1 % 10000 / 1000 * 6) +
 ($1 % 100000 / 10000 * 7) +
 ($1 % 1000000 / 100000 * 8)
) % 10;' Language SQL;

This function, in conjunction with a CAS number-parsing function can be
used to define a check constraint on a column of CAS numbers as follows.

Alter Table compound Add Constraint cas_check
 Check (valid_cas(caspart(cas,1), caspart(cas,2), caspart(cas,3));

The definition of caspart is not shown here, but could be written in any
language supported by PostgreSQL. The caspart function would parse
the CAS number into each of its three integer parts.

The point of this exercise is not to emphasize any particular impor-
tance of CAS numbers. In some applications, they may be stored simply
as a string for reference, or even be of no interest at all. On the other hand,
a corporate compound _ id number may be very important. Often cor-
porate ids are compound strings, for example, encoding the occurrence
of various salts, or the acquisition of the compound from some external
source. Functions similar to those shown above would be required to
implement a check constraint.

It is a good idea to apply sensible constraints on data in order to ensure
data integrity. These constraints can prevent errors and simplify the pro-
cessing of data stored in the database. While there is some overhead using
a check constraint, it applies only when the data are inserted or updated.

6.6 � Developing Complex SQL
Many SQL statements are simple. Some statements can grow in size and
become slightly more complex. For example, one might select dozens of col-
umns from a table using a sizable, but simple select statement. Some of
the columns might include a where clause, but this is not the kind of com-
plexity that requires careful thought when constructing the SQL statement.
On the other hand, a select statement can become quite complex, involv-
ing joining many tables with associated where clauses. It is very common
to forget a join condition resulting in many more rows than anticipated.
Rather than try to write complex SQL statements in one attempt, it is worth-
while to approach this systematically, as if writing a computer program.

Traditional computer languages combine sequential shorter state-
ments or program lines to produce a result. Of course, it is possible to write
such functions using SQL or using a variety of procedural languages such
as plpgsql or plperl. But even a single SQL statement can become com-
plex enough that it requires “writing” as if it were a function or program.

64	 Design and Use of Relational Databases in Chemistry

Rather than individual program statement or lines, SQL combines clauses
into one statement to produce a result. A simple select statement might
look like this:

Select id,smiles,mw From atable Where mw < 500;

This would return the id, smiles and molecular weight for the com-
pounds of interest. One added complexity might require the use of paren-
theses to specify the correct match. For example:

 Select id,smiles,mw,logp From atable Where
 (logp > 0 And mw < 500) Or
 (logp < 0 And mw < 580);

This kind of complexity is straightforward and will not be considered
further.

When the desired data is in two different tables, a join is required.
It is often helpful to begin to develop complex SQL statements by consid-
ering one table at a time. For example, data from the nci _ h23 table of
pubchem schema was considered earlier in this chapter. The experimen-
tal data to be selected from that table was the substance id (called sid in
the table), activity _ outcome, log _ gi50 _ M and n.log _ gi50 _
ugml. This is accomplished by the simple SQL

Select
 n.sid, n.activity_outcome, n."log_gi50_M", n.log_gi50_ugml
From
 nci_h23 n
Where activity_outcome = 2
Order By sid;

Notice that a table alias n is used to refer to the table nci _ h23. This
shorthand notation will make it easier to express complex SQL when more
and more table joins are used. This statement is spread over several lines
with indentation in order to locate and modify SQL clauses more easily.

Along with these experimental results, information about the sub-
stance is desired. This information is in the substance table, indexed by
substance _ id. The SQL statement discussed previously is modified
as follows.

Select
 n.sid, n.activity_outcome, n."log_gi50_M", n.log_gi50_ugml,
 s.ext_datasource_name, s.ext_datasource_regid
From
 nci_h23 n
 Join substance s On s.substance_id = n.sid
Where activity_outcome = 2
Order By sid;

Chapter 6:  Data Storage, Searching, and Manipulation	 65

Finally, data about the compounds for each substance is also needed.
The compound _ id is contained in the substance _ compound table.
The SQL is extended to become

Select
 n.sid, n.activity_outcome, n."log_gi50_M", n.log_gi50_ugml,
 s.ext_datasource_name, s.ext_datasource_regid,
 sc.compound_id, sc.compound_type
From
 nci_h23 n
 Join substance s On s.substance_id = n.sid
 Join substance_compound sc On sc.substance_id = s.substance_id
Where activity_outcome = 2
Order By sid;

The data about the compounds is contained in the compounds table that
is indexed by compound _ id. The SQL now becomes

Select
 n.sid, n.activity_outcome, n."log_gi50_M", n.log_gi50_ugml,
 s.ext_datasource_name, s.ext_datasource_regid,
 sc.compound_id, sc.compound_type,
 c.openeye_can_smiles
From
 nci_h23 n
 Join substance s On s.substance_id = n.sid
 Join substance_compound sc On sc.substance_id = s.substance_id
 Join compound c On c.cid = sc.compound_id
Where activity_outcome = 2
Order By sid;

Notice that each line in the select clause contains columns from only
one table. Likewise, each line in the from clause contains one new table
name with each table (after the first one) preceded by the join keyword.
Each column uses a table name (a table alias) for brevity. Now that all
the tables are properly joined, the columns selected can be arranged in
any order desired. Some columns can also be removed from the select
clause. The compound _ id and sample _ id may not be of interest in
the final result, since these arbitrary values are used only to maintain rela-
tions among the tables. Finally, any additions to the where clause can be
added as desired.

The above approach works well when tables are joined using keys
intended to relate tables to each other, as compound _ id and sub-
stance _ id here. The use of the join ... on construct is typical of
tables joined using keys. Sometimes tables are intentionally joined with-
out an on condition. When this is done, every row of each table is com-
bined with every row of the other, potentially producing a large number

66	 Design and Use of Relational Databases in Chemistry

of rows being selected. Unless you intend to join every row of each table,
be sure each join clause contains an on condition.

There are other ways to construct an SQL statement that will select
exactly the same rows and columns from these tables. These are just
syntactical differences or stylistic differences. The methods shown here
is just one suggestion. Depending on which RDBMS is used, different
approaches may be more or less efficient.

6.7 � Subselect Statements
In the SQL examples discussed previously, tables were joined with each
other using the on condition to correlate the appropriate rows and a final
where clause to restrict the selection of data. Without using the on condi-
tion, every row of one table would be joined with every row of the other,
resulting in more rows than desired. Sometimes, one wishes to join all rows
from one table with all rows from another to result in all possible combina-
tions of rows. Unless the tables are relatively small, this may still result in
more rows than desired. For example, in a table of nci.structures con-
taining only 250,000 structures, combining all rows with each other would
result in 62,500,000,000 rows! Even if a where clause is used to restrict the
number of selected rows, it is inefficient (and unnecessary) to produce com-
binations in this way.

For example, one may wish to combine amines and carboxylic acids
for consideration in a combinatorial chemistry experiment. The following
SQL would produce 96 rows.

Select amine.smiles As amines, acid.smiles As acids
 From nci.structure amine, nci.structure acid
Where matches(amine.smiles, 'C[N!H0!R][C;D4]')
And matches(acid.smiles, 'CC(=O)[OH]')
Limit 96;

However, each of the 96 rows contains the same amine. Table 6.1 is a sub-
set of the rows resulting from the above SQL.

What might be desired instead is a test set of 8 amines and 12 acids
for a total of 96 rows. This can be accomplished if the amines are selected
separately from the acids, each in a select statement of their own. The fol-
lowing SQL will accomplish this.

Select amine.smiles As amines, acid.smiles As acids From
(Select smiles From nci.structure
 Where matches(smiles, 'C[N!H0!R][C;D4]') Limit 8) amine,
(Select smiles From nci.structure
 Where matches(smiles, 'CC(=O)[OH]') Limit 12) acid;

Chapter 6:  Data Storage, Searching, and Manipulation	 67

Table 6.2 shows the first few rows selected by this SQL statement. This
is the result that was desired: a total of 96 compounds consisting of a com-
bination of 8 amines and 12 acids. These separate select statements are
typically called subselect clauses of an SQL statement. They are enclosed
in parentheses and named uniquely. They function as if they were tables
themselves, but are actually subsets, or subselects of a table. There can be
any number of subselects in an SQL statement and the subselect clause
itself can be more complex than shown above. For example, one might also
restrict the selected amines by molecular weight, vendor, or other criteria.

6.8 � Views
As discussed in Chapter 3, a view is a subset of a table defined by a select
statement. This is quite similar to the subselect statement discussed above.
Such subselect statements are sometimes also called in-line views. Here we
discuss the use of views as a persistent way to store subselect statements
for use in SQL statements.

For example, a training _ set and a testing _ set could be
selected at random from a single table of values as follows:

Table 6.1  Selected Amines and Acids from nci.structure Tables

Amines Acids

CC(C)(C(=O)O)NC(=O)N(CCCl)N=O c1cc(oc1)C(=O)C(=O)O
CC(C)(C(=O)O)NC(=O)N(CCCl)N=O CC(CCC(=O)O)N
CC(C)(C(=O)O)NC(=O)N(CCCl)N=O CCC1C2CCC3=CC(=O)CCC3C2CCC1(C)C(=O)O
CC(C)(C(=O)O)NC(=O)N(CCCl)N=O C1CC(OC1)CCC(=O)O
CC(C)(C(=O)O)NC(=O)N(CCCl)N=O CC(C)(C(=O)O)NC(=O)N(CCCl)N=O
CC(C)(C(=O)O)NC(=O)N(CCCl)N=O CCNC(CC(=O)N)C(=O)O
CC(C)(C(=O)O)NC(=O)N(CCCl)N=O CCc1ccc(cc1)NC(=O)C=CC(=O)O
CC(C)(C(=O)O)NC(=O)N(CCCl)N=O C(=O)(C(=O)O)N
CC(C)(C(=O)O)NC(=O)N(CCCl)N=O C=COC=C.C(=CC(=O)O)C(=O)N
CC(C)(C(=O)O)NC(=O)N(CCCl)N=O CC(=O)O
CC(C)(C(=O)O)NC(=O)N(CCCl)N=O CCCCCCC(C(=O)O)N
CC(C)(C(=O)O)NC(=O)N(CCCl)N=O c1cc(cc(c1)Cl)C(C(=O)O)N
CC(C)(C(=O)O)NC(=O)N(CCCl)N=O CC(C(=O)O)NC(=O)C(F)(F)F
CC(C)(C(=O)O)NC(=O)N(CCCl)N=O CC(C)CC(C(=O)O)N.C(CC(C(=O)O)N)CN
CC(C)(C(=O)O)NC(=O)N(CCCl)N=O CC(CCC(C(=O)O)O)N
CC(C)(C(=O)O)NC(=O)N(CCCl)N=O COc1ccc(cc1CC(=O)O)F
CC(C)(C(=O)O)NC(=O)N(CCCl)N=O CCOC(=O)NNCC(=O)O
CC(C)(C(=O)O)NC(=O)N(CCCl)N=O c1ccc(cc1)COC2CCC(CC2)(CC(=O)O)C(=O)O
CC(C)(C(=O)O)NC(=O)N(CCCl)N=O CCCC(C(=O)NCC(=O)O)NC(=O)OCc1ccccc1
CC(C)(C(=O)O)NC(=O)N(CCCl)N=O c1ccc2c(c1)CN3C(=O)CCC3(C2=O)CCC(=O)O
CC(C)(C(=O)O)NC(=O)N(CCCl)N=O C(C(C(C(=O)O)N)O)O

68	 Design and Use of Relational Databases in Chemistry

Select logp From properties Where md5(logp) > md5(logp+1);
Select logp From properties Where md5(logp+1) < md5(logp);

Here, the md5 function is a hash function available in PostgreSQL. It is
used as a method to partition the logp values in the properties table
into two arbitrary sets of about the same size. The less than operator
ensures exactly two sets, and the use of the md5 function ensures that
the sets are arbitrary and of about the same size. Note that using md5
results in arbitrary but not random sets. In other words, each time the
select statements above are run, exactly the same sets will result, as
long as no new rows are inserted. Rather than use this SQL statement
every time the test set is desired, a test _ set view and training _
set view can be defined as:

Create View test_set As Select smiles, logp From properties
 Where md5(logp) > md5(logp+1);
Create View training_set As Select smiles, logp From properties
 Where md5(logp+1) < md5(logp);

The view test _ set and training _ set can now be used as if they
were actual tables. If there are other criteria desired to define a test set or

Table 6.2  Amines and Acids from nci.structure Tables Selected in Groups
of 8 Amines and 12 Acids. Only three acids are shown in this truncated table.

Amines Acids

CC(C)(C(=O)O)NC(=O)N(CCCl)N=O c1cc(oc1)C(=O)C(=O)O
c1cc(ccc1C(=O)NC2(CC2)N3CCOCC3)Cl c1cc(oc1)C(=O)C(=O)O
CCC(C)(NC)P(=O)(OCC)OCC c1cc(oc1)C(=O)C(=O)O
Cc1ccccc1N=C(C(=C)Cl)NC(C)(C)C c1cc(oc1)C(=O)C(=O)O
CNC1(CCCCC1)C(=O)O c1cc(oc1)C(=O)C(=O)O
CCOC(=O)NC(C)(C)CO c1cc(oc1)C(=O)C(=O)O
CC(C)(C)NCCS c1cc(oc1)C(=O)C(=O)O
CC(C)C(C(=O)OC)(NC(=O)C)S c1cc(oc1)C(=O)C(=O)O
CC(C)(C(=O)O)NC(=O)N(CCCl)N=O CC(CCC(=O)O)N
c1cc(ccc1C(=O)NC2(CC2)N3CCOCC3)Cl CC(CCC(=O)O)N
CCC(C)(NC)P(=O)(OCC)OCC CC(CCC(=O)O)N
Cc1ccccc1N=C(C(=C)Cl)NC(C)(C)C CC(CCC(=O)O)N
CNC1(CCCCC1)C(=O)O CC(CCC(=O)O)N
CCOC(=O)NC(C)(C)CO CC(CCC(=O)O)N
CC(C)(C)NCCS CC(CCC(=O)O)N
CC(C)C(C(=O)OC)(NC(=O)C)S CC(CCC(=O)O)N
CC(C)(C(=O)O)NC(=O)N(CCCl)N=O CCC1C2CCC3=CC(=O)CCC3C2CCC1(C)C(=O)O
c1cc(ccc1C(=O)NC2(CC2)N3CCOCC3)Cl CCC1C2CCC3=CC(=O)CCC3C2CCC1(C)C(=O)O
CCC(C)(NC)P(=O)(OCC)OCC CCC1C2CCC3=CC(=O)CCC3C2CCC1(C)C(=O)O

Chapter 6:  Data Storage, Searching, and Manipulation	 69

training set, those can be used in the definition of the view, in place of or
in addition to the md5 function used above.

A view is not limited to a subset of any one table. A view can be cre-
ated using a complex SQL statement involving a join of multiple tables.
Using the pubchem example above, a view might be created as:

Create View nci_h23_set1 As Select
 n.sid, n.activity_outcome, n."log_gi50_M", n.log_gi50_ugml,
 s.ext_datasource_name, s.ext_datasource_regid,
 sc.compound_id, sc.compound_type,
 c.openeye_can_smiles
From
 nci_h23 n
 Join substance s On s.substance_id = n.sid
 Join substance_compound sc On sc.substance_id = s.substance_id
 Join compound c On c.cid = sc.compound_id

This view can be used to simplify selections. For example, the SQL statement

Select compound_id, "log_gi50_M" From nci_h23_set1
 Where activity_outcome = 2 Order By sid;

is much easier to read (and maintain) than the analogous, lengthy state-
ment in the previous section of this chapter. Even if the entire set repre-
sented by the view nci _ h23 _ set1 is never used, the definition of the
set is very useful. The definition of the view can be changed at any time to
allow for more columns from the original tables or to accommodate any
other change to the definition of the view.

The view itself is not stored as a copy of the subset of the table.
Rather, the view is a dynamic representation of the subset that changes
as rows of the corresponding tables are updated, inserted, or deleted.
A view is analogous to a program or a function that is executed when
necessary to provide a result. It is stored in a schema in the database
and can be used anywhere in an SQL statement that a table can be used.
However, it is not possible to insert rows into or to update rows of a
view. Instead, the original table or tables containing the data must be
updated.

When a view is used, the selection contained in the view is executed
each time the view is used. This can be time-consuming. It is possible
to create a new table that is a real copy of the view. This is sometimes
called a materialized view. This can speed up SQL statements that use
the view. There is an automated procedure in Oracle to maintain mate-
rialized views, with the frequency of the copy set by the user. There is
currently (April 2008) no automatic procedure in PostgreSQL to main-
tain materialized views, although there are suggestions for how to do
this.7

70	 Design and Use of Relational Databases in Chemistry

References
	 1.	 PubChem Compound. http://www.ncbi.nlm.nih.gov/sites/entrez?db=

pccompound (accessed April 18, 2008).
	 2.	 PubChem Text Search. http://pubchem.ncbi.nlm.nih.gov/ (accessed

April 18, 2008).
	 3.	 PubChem BioAssay. http://www.ncbi.nlm.nih.gov/sites/entrez?db=

pcassay (accessed April 18, 2008).
	 4.	 What is phpPgAdmin. 2008. http://phppgadmin.sourceforge.net/ (accessed

April 18, 2008).
	 5.	 O’Boyle, N., 2007. Pybel—Hack that SD file. http://baoilleach.blogspot.

com/2007/07/pybel-hack-that-sd-file.html (accessed April 18, 2008).
	 6.	 O’Donnell, T.J., 2008. Sdf2sql program. http://www.gnova.com/software.

html (accessed April 18, 2008).
	 7.	 Materialized views. http://snapshot.projects.postgresql.org/ (accessed April

18, 2008).

71

chapter 7

Computer Representations
of Molecular Structures

7.1  Introduction
There are many ways to represent molecular structures. A drawing is per-
haps the most common and useful. It is easy to store drawings of molecules
in a computer, but a stored drawing does not constitute a useful computer
representation. What is needed is a computer representation that allows
structures to be stored and searched in chemically useful and meaningful
ways. This is sometimes accomplished by storing a connection table con-
taining atom and bond information. Additionally, two- or three-dimen-
sional coordinates are often stored. These data can be stored in files or
data structures in some computer language. This chapter introduces ways
of representing molecular structures that take advantage of the relational
model of data in a relational database management system (RDBMS).

According to standard valence bond theory,1 the essential components
of a molecular structure are the atoms and bonds composing the molecule.
Two atomic properties are required—the atomic symbol or atomic num-
ber and the formal charge on the atom. Other atomic properties might be
useful in many applications but are not considered as essential for the dis-
cussion in this chapter. The two atoms participating in a bond define the
bond. A bond type, namely single, double, or triple, completes the defini-
tion of a bond. It is frequently convenient to use the notion of aromaticity2
to further classify bonds and even the atoms composing that bond. The
concept of a hydrogen bond is not considered here.

Files, such as SDF molfiles3 or PDB4 files are commonly used to rep-
resent molecular structures. The data in these files contain information
about the atoms, atom charges and aromaticity, and bonds between the
atoms. It is possible to define a relational table where each of the data
fields in the file is stored in a separate column. One could write structured
query language (SQL) to store and search data in such tables, but there is
a more succinct way to represent the same information.

72	 Design and Use of Relational Databases in Chemistry

7.2 � SMILES Representation
of Molecular Structure

SMILES (Simplified Molecular Input Line Entry System) was invented by
Weininger5 to facilitate the representation and manipulation of molecular
structures using computers. It uses standard atomic symbols to represent
atoms and the symbols – for single bond, = for double bond, and # for
triple bond. Hydrogen atoms can be represented explicitly but are almost
always represented implicitly using normal conventions of valence bond
theory. Single bonds need not be explicitly written. For example, pro-
pane is C–C–C or simply CCC. Methylamine is CN, and C#N is hydrogen
cyanide. Propene is C=CC. For more complex structures with branched
bonds, parentheses are used. For example, CC(C)O is isopropyl alcohol,
whereas CCCO is propanol.

Notice that there are several ways in which SMILES could be writ-
ten for the same structure, even the simplest ones. For example, hydro-
gen cyanide can be written as C#N or N#C, propene is either C=CC or
CC=C. More complex structures can have three or many more SMILES
that represent the same structure. If there were one standard way to write
SMILES, then standard SQL text comparisons could be used to locate any
particular structure. SMILES would become a uniquely spelled “name”
for each unique structure. Canonical SMILES does just that. Using rules
about which atoms should come before other atoms in the spelling of each
SMILES, a unique name for each molecular structure can be provided.6

Once there is a unique, canonical SMILES available, this can be stored
in a text column and a direct lookup for a specific structure can be done
using the SQL = operator. If canonical SMILES is stored in a text column
named cansmi, one can locate isopropyl alcohol using the SQL clause
Where cansmi = 'CC(C)O'. And because text data can be indexed in SQL,
this lookup is extremely fast. In addition, SQL uniqueness constraints can
be used to enforce data integrity when using canonical SMILES.

The rules for canonical SMILES are complex and not further discussed
here. There are many computer programs and structure-drawing applica-
tions that recognize and produce SMILES and canonical SMILES. There
are also many programs that can interconvert molecular structure files
and SMILES. To make full use of canonical SMILES in relational tables, it
is not sufficient to use external programs such as these to process SMILES.
There needs to be a way to integrate SMILES processing into the database
and into SQL itself. This can be accomplished using SQL extensions.

7.3 � Extensions to SQL for Chemical Structures
Standard SQL data types, such as integers, float, and text, are useful
for storing scientific data, such as counts, measurements, and names.

Chapter 7:  Computer Representations of Molecular Structures	 73

Operators, such as +, *, || and functions such as sqrt, round, and upper
can be used with these data types. SQL has the ability to search data,
using functions such as =, <, and the like. The goal of the SQL extensions
is to enable SMILES to be handled as readily as any standard data type.
This requires that SQL be extended to validate and standardize, or canon-
icalize SMARTS. In addition, these SQL extensions provide functions
and operators to allow comparisons and searches of molecular structures
stored as SMILES.

Complete molecular structures can be stored as canonical SMILES in
a text column. A structure can be located using an SQL clause such as
where cansmi = 'CC(C)O'. But, writing an SQL clause like this requires
knowing the standard way of spelling the canonical SMILES for the
search structure. External programs could be used to generate the canoni-
cal SMILES, but extending SQL to generate the canonical SMILES is a bet-
ter approach. First, consider how text data is typically used in a relational
database.

Suppose a text column is used to store researcher’s names. A good
database design requires that data be represented in some standard
way. In this case, upper and lower case standardization might be used.
One common standard requires that the data be stored in lowercase.
When an SQL search clause is written, the lowercase string would be
used. For example, where name = 'einstein' would find rows stor-
ing data about einstein, but where name = 'EINSTEIN' would find
no rows. It is burdensome to rely on users or programmers to always
type the search name in lower case. When taking input from various
sources, mixed upper and lower case data will invariably be encoun-
tered. The lower function of SQL makes using the lowercase standard
easy. For example, Where name = lower('Einstein') or Where name
= lower('EINSTEIN') would each find the intended rows.

If canonical SMILES are stored in a text column, a direct lookup is pos-
sible. But relying on users or programmers to know the canonical spelling
of every potential search query is not advised. To use canonical SMILES
in a way analogous to the lowercase example above, a cansmiles SQL
function is proposed. Using this function, it becomes possible to use either
the clause where cansmi = cansmiles('C#N') or where cansmi =
cansmiles('N#C'). Either of these SQL clauses would find the hydrogen
cyanide rows in a table that stores canonical SMILES in a column named
cansmi. A new function, such as the cansmiles function described here
is commonly called an SQL extension, since it extends the capabilities of
standard SQL. The cansmiles (or equivalent) function is available in
database extensions from gNova,7 Daylight,8 and others.9 The Appendix of
this book shows how to create a cansmiles extension function using the
open source database PostgreSQL and open source python or perl mod-
ules. A related function, named valid returns true or false depending on

74	 Design and Use of Relational Databases in Chemistry

whether the smiles argument is a valid smiles regardless of whether it is
canonical or not.

The cansmiles function should also be used to insert each SMILES
when a table is created. For example:

Insert Into structures (cansmi) Values cansmiles('CC(O)C');

This ensures that the same standardization is used for storing the data
and for searching the data. It is not sufficient to rely on the various exter-
nal programs that can read and write canonical SMILES. Each program
will have a canonical SMILES method that is self-consistent, but it is
likely not identical to other programs’ methods. There is, unfortunately,
no universally agreed-upon method to produce canonical SMILES. Once
one method is chosen to implement the cansmiles SQL extension, it is
essential for data integrity to use that method for all database operations
requiring canonical SMILES.

The cansmiles function can also be used to enforce an SQL con-
straint that the cansmi column must contain valid canonical SMILES.
SQL constrains like this are commonly used to maintain data integrity.
For example, the SQL clause check (cansmi = cansmiles(cansmi))
can be used in the initial creation of the table. One might also consider
using an SQL trigger to handle an insert or update to a column that is
required to contain canonical SMILES.

If any structures contain stereochemical atomic centers, consider
using the isosmiles function instead of the cansmiles function. The
isosmiles function and isomeric SMILES are discussed in a later section
of this chapter.

Of course, it is possible to use any SMILES to represent a structure
instead of the canonical SMILES. This makes it easier to use various
external methods and programs for creating or drawing input SMILES.
But unless canonical SMILES is used, the direct lookup capability is lost,
or at least made less efficient. For example, one could store any SMILES
in a text column named smiles. A search using the SQL clause where
cansmiles(smiles) = cansmiles('CC(O)C') would work just fine, but
is less efficient than storing the canonical SMILES in the first place. In
some cases, it is desirable to store other SMILES spellings of each struc-
ture in addition to the canonical SMILES. This is a perfectly good practice,
but these additional SMILES columns should be considered as alternate
spellings of the standard canonical SMILES.

7.4 � SMARTS Representation
of Molecular Searches

Using canonical SMILES is a very powerful technique for molecular struc-
ture storage and lookup. However, it is sometimes necessary to perform

Chapter 7:  Computer Representations of Molecular Structures	 75

a substructure search and not just a direct structure lookup. For example,
the simplest molecule containing the cyano group is hydrogen cyanide.
Although the canonical SMILES for hydrogen cyanide is C#N and for
acetonitrile is CC#N, it is not possible to find all structures that contain a
cyano group simply using the SQL clause where smiles like '%C#N%'.
In any one SMILES, the cyano group is not always spelled C#N. For exam-
ple, the canonical SMILES for thiocyanic acid is C(#N)S and not SC#N,
even though both C(#N)S and SC#N represent thiocyanic acid.

Another SQL extension is needed that can understand the molecular
structural nature of the SMILES string and treat it like more than just a
text string. Suppose there is a function matches(A,B) that returns true
when structure A contains structure B. Both these structures could be rep-
resented as SMILES and the matches function itself would understand
the molecular nature properly. Then matches('C(#N)S', 'C#N') would
be true as would matches('SC#N', 'N#C'), as intended. The matches
function can be used to find all cyano-containing structures in a table
using an SQL clause such as where matches(cansmi, 'C#N').

Sometimes the desired substructure is not as simple as a cyano group.
For example, to search for di-halogen-substituted carbons, one could use
an SQL clause where matches(cansmi, 'FCF') or matches(cansmi,
'FCBr') or …. This would continue this for all possible combinations of
all the halogens. This is tedious. Weininger10 proposed yet another lan-
guage, SMiles ARbitrary Target Specification (SMARTS), to succinctly
specify substructural searches. A SMARTS for di-halogen-substituted
carbon is [F,Cl,Br,I]C[F,Cl,Br,I]. The comma-separated atomic symbols
within brackets allows any one of the atoms in the list. So the SQL clause
where matches(cansmi, '[F,Cl,Br,I]C[F,Cl,Br,I]') will accomplish
the search for di-halogen substituted carbons. There are many other oper-
ators and symbols defined for SMARTS. These allow specification of the
hydrogen atom count, heavy atom count, charge, bond types, and other
aspects of atoms and bonds in substructure searches.

The matches(A, B) function is properly defined having A represent a
structure using SMILES and B represent substructures using SMARTS. Of
course, B may also be a SMILES.* In this case, matches will be true when
B is a substructure of A. All structures in a table for which CC(O)C is a sub-
structure can be found by using the SQL clause Where matches(cansmi,
'CC(O)C'). All these structures are properly called superstructures, yet the
search itself is commonly called a substructure search, because it is a search
by substructure. Notice what happens if the arguments are reversed as in
matches('CC(O)C', cansmi). All rows having cansmi as a substructure
of CC(O)C will be found. These are called fragments of CC(O)C, although
they could properly be called substructures of CC(O)C.

*	 Convince yourself that any valid SMILES is also a valid SMARTS, but not vice versa.

76	 Design and Use of Relational Databases in Chemistry

The matches(A,B) function returns true when SMARTS B matches
SMILES A. It is sometimes useful to know how many times B matches A.
For this, a new function is defined: count _ matches(A,B). It returns an
integer, possibly 0. For example, count _ matches('CC(O)C', 'C') returns
3. The SQL clause where count_matches(cansmi, ‘[F,Cl,Br,I]’) > 2 will find all
structures having more than 2 halogen atoms. In later chapters, examples
will show how this function can be used to compute molecular properties
and screen structures that conform to Lipinski’s Rule of 5.11

Another useful SQL extension function is list _ matches(A,B).
This returns an array of integers telling which atoms in SMILES A were
matched by SMARTS B. For example, list _ matches('CC(O)C', 'C')
returns the array {1,2,4}. This list can be used for additional processing of
the matches SMILES, for example, to color the matched atoms in a draw-
ing or viewing application.

7.5 � SMILES and SMARTS Quirks
SMILES may be a friend, but like all friends they have quirks that one comes
to accept. The following quirks should be carefully considered before creat-
ing a large database of structures. A simple decision made early in the design
can prevent troublesome changes that might otherwise be required.

7.5.1 � Hydrogen Atoms

One important issue is how SMILES and SMARTS process hydrogen atoms.
SMILES is almost always used without explicitly showing the hydrogen
atoms. This is possible in almost all organic structures because of the pre-
dictable valence and bonding patterns of almost all organic structures.
For example, propane is CCC. It is possible to write it as C([H])([H])([H])
C([H])([H]) C([H])([H])([H]), or even [CH3][CH2][CH3], but this is almost
never done because it is lengthy, requires more computer processing, and
does not provide any more real information than just CCC. The situation
for SMARTS is not that simple.

When CC is used as a SMILES, it means exactly ethane, exactly [CH3]
[CH3]. When CC is used as a SMARTS, it will of course match ethane,
but will also match any structure having a C–C single bond, regardless
of how many H atoms are also bonded to each C. This may be exactly
what was intended, but SMARTS can be more exact in what is meant.
For example, the SMARTS [CH][CH0] will only match structures having a
C–C single bond where one C has exactly one H atom and the other C has
none. When brackets are used for a C atom in SMILES, the assumptions
normally made about the valence and hydrogen count of the atom are not
used. The SMILES [CH][CH0] is a strange molecule indeed and is likely
an error if it is encountered.

Chapter 7:  Computer Representations of Molecular Structures	 77

A common problem arises when one uses explicit H atoms in a
SMARTS. For example, the SMARTS C([H])[CH0] contains an explicit H
atom. It will only match SMILES that also contain an explicit H atom.
Most every database has zero such SMILES. For this reason, it is impor-
tant to emphasize that the SMARTS C([H])[CH0] does not represent the
same substructure as [CH][CH0]. Unless one carefully designs a database
to include explicit H atoms in every SMILES, explicit H atoms should not
be used in SMARTS. This includes uses of H in, for example, C[H,F,Cl].
This will not match SMILES that contain CH, unless that SMILES was
stored with an explicit H atom.

7.5.2 � Aromaticity

Benzene is typically thought of as a combination of two equivalent reso-
nance structures. These could be written as the SMILES C1=C–C=C–C=C1
and C1–C=C–C=C–C=1. In order to have just one representation for ben-
zene and other aromatic systems, SMILES handles these aromatic systems
specially, treating the atoms in an aromatic ring as a special aromatic type
and the bonds as a special aromatic type. The lowercase symbol is used
to denote an aromatic atom in SMILES and SMARTS. The SMILES for
benzene then becomes c1ccccc1. A bond between aromatic atoms is an
aromatic bond, unless otherwise spelled out. For example, biphenyl can
be written as c1ccccc1–c1ccccc1.

This internal aromatic handling is not done for SMARTS. For example,
matches('c1ccccc1', 'C1=C–C=C–C=C1') will be false. This becomes a
problem when using input from an external program, such as a sketching
program that may provide SMILES or SMARTS for an aromatic system in
one of the many possible resonance forms. To get around this, convert the
SMILES or SMARTS using cansmiles, which will aromatize the appro-
priate atoms. For example, matches('c1ccccc1', cansmiles('C1=C–
C=C–C=C1')) is true. However, cansmiles will fail if its input is not a
proper SMILES, for example, if it contains an atom list such as [F,Cl,Br].

7.5.3 � Tautomers

While the several resonance forms for aromatic systems are neatly solved
using aromatic atom types in SMILES, the issue of multiple tautomers
cannot be handled as neatly. This is a good thing. After all, it is quite
possible to distinguish two different tautomers experimentally and mea-
sure different properties that may need to be stored in a database. On the
other hand, it is not possible to distinguish two different resonance forms
experimentally. Every equivalent resonance form for a structure ought to
be considered to be the same structure. Resonance is simply a theoretical
concept.

78	 Design and Use of Relational Databases in Chemistry

It is sometimes necessary to be able to recognize one structure as a
tautomer of another. This could be because a user entered one tautomer
and expects to find data for other tautomers, especially in cases where the
tautomers are in approximately equal abundance under normal labora-
tory conditions. It may even be that data is stored for a compound before
knowing to which tautomer the data refers. In many cases, experimental
data will be measured for a mixture of tautomers, yet it will be assigned
to one tautomer. There is no simple solution for handing tautomers in
SMILES or in a relational database. If two or more structures are tau-
tomers of each other, this might be recorded in another table related to the
table containing the SMILES.

There are several algorithmic approaches to handling tautomers. In
one approach, all possible tautomers are enumerated12–14 based on a theo-
retical understanding of valence bond theory. This leads to a large number
of structures, many of which are not expected to be stable or observable.
This large number of tautomers of each structure would have to be stored
in a database or generated when needed. Neither of these solutions seems
practical. In another approach, a set of rules or transformations for com-
monly encountered tautomers is applied.15,16 This leads to a smaller num-
ber of tautomers. Because they are generated from chemically known
transformations, they form a more reasonable set. These two methods are
useful when attempting to estimate certain physical properties of struc-
tures, such as pKa or logP.

Finally, there are algorithms available for simply recognizing when
two structures are tautomers. This is sufficient to locate all isomers in a
database. In general, two structures are considered to be structural iso-
mers if they share the same molecular formula. Tautomers are a special
type of structural isomer in which the connectivity of the atoms, as well
as the molecular formula, is the same. For example, butane (smiles:CCCC)
and isobutane (smiles:CC(C)C) are strucural isomers but not tautomers.
Butyraldehyde (smiles:CCCC=O) and but-1-en-1-ol (smiles:CCC=CO) are
structural isomers as well as tautomers. A direct comparison of the molec-
ular formulae readily shows the structural isomerism. There is a text graph
representation that can allow easy detection of tautomers.

SMILES is a graph representation of a molecular structure contain-
ing atom and bond information. Typically, hydrogen atoms are also sup-
pressed and inferred by rules of typical valence states of heavy atoms. If
the bond information and aromaticity of atoms are removed from SMILES,
the bonding framework is preserved, but the precise electronic structure
is lost. This is sometimes called a simple molecular graph to distinguish
it from SMILES. For example, CCCCO is the simple graph for butyralde-
hyde as well as its tautomer but-1-en-1-ol. But the simple graph for butane
is CCCC while that for isobutane is CC(C)C. These are not tautomers and
this is shown by their different simple graphs. It should be clear that two

Chapter 7:  Computer Representations of Molecular Structures	 79

tautomers must have the same simple graph. Yet, this is not sufficient. For
example, C1CCCCC1 is the simple graph for cyclohexane as well as ben-
zene. Yet they are not tautomers. This is because they do not contain the
same number of hydrogen atoms. If the simple graph of a structure is com-
bined with the count of the hydrogen atoms, an equal comparison of these
strings will reveal when two structures are tautomers. Table 7.1 illustrates
the various examples discussed here. It is useful then to have a simple
graph function to help determine whether two structures are tautomers.
The Appendix shows two implementations of an extension function to pro-
duce a simple graph using FROWNS/plpython and OpenBabel/plpython.

Table 7.1  Differences and Similarities among SMILES and
Graphs for Similar Structures

Structure SMILES Graph graph.hcount

H3C

H2
C

C
H2

CH3
CCCC CCCC CCCC.H10

H3C

CH3

CH3H
C

CC(C)C CC(C)C CC(C)C.H10

H3C
H2

H2
C

C
C
H

O
CCCC=O CCCCO CCCCO.H8

H3C

H2
C

H
C

C
H

OH
CCC=CO CCCCO CCCCO.H8

H2C

H2C

H2

CH2

CH2

C

H2
C

C1CCCCC1 C1CCCCC1 C1CCCCC1.H12

CH

CH

HC

HC

H
C

H
C

c1ccccc1 C1CCCCC1 C1CCCCC1.H6

80	 Design and Use of Relational Databases in Chemistry

7.5.4 � Valence

The valence of an atom in an organic molecular structure is almost always
typical. Most all carbon atoms have valence 4, oxygen atoms 2, and nitro-
gen atoms 3. However, some nitrogen atoms might be represented as
having valence 5. For example, nitromethane is written as CN(=O)=O
showing a valence of 5 for the nitrogen atom. However, it is possible to
represent nitromethane as C[N+](=O)[O-] in which nitrogen retains it
“normal” valence of 3. The rules of SMILES impose no valence require-
ments and either representation is acceptable and correct. The rules for
canonical SMILES also do not modify the valence, only the order in which
the atoms appear in a SMILES.

If canonical SMILES are used in a table to facilitate direct lookup of
molecular structure, it is necessary that only one unique name be used for
any one structure. Similarly, if one is searching for structure-containing
nitro groups, it is necessary that all nitro groups be represented using the
same valence conventions. For these reason, it is essential to make a deci-
sion about the use of SMILES in certain cases, such as nitro groups. Sulfur
and phosphorous atoms also must be considered carefully since they are
commonly found with “unusual” valence.

It is possible to use SMIRKS transformations to modify SMILES
to conform to a standard valence model. For example, if a SMILES for
nitromethane is entered in the charge separated form C[N+](=O)[O-], it
can be transformed to the other form CN(=O)=O. Chapter 9 discusses
transformations and gives examples that will help resolve issues with
structures that can be represented equally well using two distinct valence
forms.

7.5.5 � Chirality

It is possible to represent chirality in SMILES. This is essential to correctly
define the appropriate enantiomer or stereoisomer. Many databases will
contain isomers. It is possible to relate the various isomers of a structure
by using their common canonical SMILES. This might be done by relaxing
the uniqueness constraint on the cansmi column in a structure table,
or by adding another table of stereoisomers that is related to the master
table. Chirality may be used in SMARTS as well.

The cansmiles function will not preserve any stereochemical infor-
mation in the input SMILES. This is done so that the canonical SMILES
for all stereoisomers is the same. It may be preferable to keep each isomer
as a unique entry in a database. The isosmiles function preserves the
stereochemical information while also reordering the atoms in the same
way as the canonical SMILES.

Chapter 7:  Computer Representations of Molecular Structures	 81

When searching a database, if an isomeric query is used, only struc-
tures with the identical stereochemistry will be found using either a
direct lookup or the matches function. If a nonchiral query is used, the
direct lookup will find matching nonchiral structures, including canoni-
cal SMILES. When a nonchiral query is used in the matches function,
structures of all chirality will be found. There is no one best method for
dealing with a database containing many chiral molecules. It is impor-
tant to carefully consider how to design and search such a database.

7.5.6 � Isotopes

It is possible to specify the isotope of any atom in a SMILES string. This
is generally not necessary because the most common isotope is simply
assumed. But if, for example, a database contains information about 13C,
this can be readily encoded into the SMILES using [13C] instead of simply
C. The [13C] atom is considered different from the normal C atom in a
SMILES. A direct lookup using canonical SMILES will not locate isotopes
of the same structure. A substructure search using the matches function
will locate isotopes. This is because the match function uses SMARTS to
specify the desired substructure.

Isotopes can be used in SMARTS. If no isotope number is speci-
fied in SMARTS, any isotope of the atom will match. For example,
select matches ('N[13C]', 'C') will return true. However, select
matches('SNC','[13C]') will return false. When a specific isotope is
mentioned in SMARTS, then only that isotope number will match.

7.5.7 � Salts and Mixtures

Compound mixtures of structures, which include salts, may be encoded
using SMILES. A period between two SMILES means that the compound
SMILES represents two or more noncovalently bonded structures asso-
ciated with each other, such as in a salt. For example, sodium benzoate
can be represented as c1ccccc1C(=O)O.[Na], or possibly c1ccccc1C(=O)[O–].
[Na+]. It may be necessary to define a set of rules about whether to rep-
resent salts using charged atoms or neutral atoms. Even with such a rule
in place, one component of this mixture may be considered the important
compound and the other component the counter-ion or secondary com-
ponent. In some cases, the counter-ion is obviously the smaller of the two
components. This is not always true. Another approach is to define a set of
typical counter-ions. This set may include large groups, such as acetate or
even bigger ions. Creating a table of typical counter-ions can help identify
the primary and secondary components in mixtures.

82	 Design and Use of Relational Databases in Chemistry

7.5.8 � InChI and Canonical SMILES

Canonical SMILES is a powerful tool for encoding a molecular struc-
ture as a character string, especially for use in relational database tables.
Unfortunately, there is no universally accepted algorithm for produc-
ing canonical SMILES. For example, the canonical SMILES produced by
OpenEye may not be the same as that produced by Daylight, ChemAxon,
or ChemDraw. This is generally not an issue, as long as the same software
is consistently used for creating, storing, and searching canonical SMILES.
If there were one universal canonical SMILES “name” for a molecular
structure, it would be possible to use this canonical SMILES in any web
document. This would greatly help lookups across the web, allowing a
simple string search to find exact molecular structures.

Recently, a universal string representation method was proposed and
published. The International Chemical Identifier,17 or InChI™, is a defini-
tion and set of methods maintained by the International Union of Pure
and Applied Chemistry. It promises to provide a truly universal character
string representation of molecular structure. Whether it will replace the
widely used SMILES is yet to be seen.

7.6 � SMILES and Inorganic Structures
All the examples in this chapter have been organic structures. SMILES is
not limited to storing organic structures. Every atom in the periodic can
be equally well represented. However, the “organic atoms” are handled
specially in SMILES. Every atom in a SMILES can be represented using
the atomic symbol in brackets, for example [C], [U], or [Na]. But the atoms
B, C, N, O, S, P, F, Cl, Br, and I can be used without brackets. When used
without brackets, SMILES assumes the lowest normal valency for these
atoms. For example, formaldehyde is written as C=O, but carbon mon-
oxide is written as [C]=[O] or [C]=O. It could be argued that the correct
SMILES for carbon monoxide is [C+]#[O−]. But this argument diverges
into valence bond theory, which will not be further discussed here. See
also the section above about valence in SMILES.

7.7 � Other SMILES Extensions
Some external programs do not use the aromatic model for SMILES and
prefer using the so-called kekule form of the SMILES. This is not a canoni-
cal SMILES but can be useful for export to a drawing program, if users
prefer to see alternating double bonds in aromatic ring systems. A kekule
SMILES might even be necessary for some programs, which do not han-
dle aromatic atoms in the same way as described here. The keksmiles
function computes one of the many valid resonance structures for an

Chapter 7:  Computer Representations of Molecular Structures	 83

aromatic system. Of course, for structures that have no aromatic systems,
the keksmiles is identical to the SMILES input to the function. This func-
tion might be used, for example to select keksmiles(cansmi) from a
table for processing by an external drawing program.

Some external programs may also need more information about
exactly how many hydrogen atoms are attached to each heavy atom. The
impsmiles function will produce a SMILES that contains the implicit
hydrogen atom count. For example, impsmiles('CC(C)O') returns [CH3]
[CH]([CH3])[OH].

As discussed above, hydrogen atoms are handled differently from
other atoms in SMILES and SMARTS. When searching for structures
matching CC all structures will be found that contain ethane as a sub-
structure. Of course, this does not mean [CH3][CH3], but rather any two
single-bonded carbon atoms with any number of H atoms attached. One
could be more specific and search for, say, [CH][CH] to require exactly one
H atom on each carbon.

Now consider a more complex case—one where a user draws in a phe-
nyl ring as a substructure search. The drawing program would produce
c1ccccc1. If c1ccccc1 is used, any structure containing a phenyl ring will be
found. The user might have intended to allow all possible substitutions in
all positions on the ring, and indeed this would find those structures. If
a user sketched in an R group (represented as * in SMILES), most draw-
ing programs would produce c1ccccc1*, unless the user painstakingly
set the hydrogen count on every other atom of the ring. Most likely, the
user intended to require H on all positions, except the one with the *. The
intended SMILES would be [cH]1[cH][cH][cH][cH]c1* instead of c1ccccc1*.
To facilitate the hydrogenation of SMILES strings, the impsmiles func-
tion works nicely. It produces a SMILES containing all necessary hydrogen
atoms, paying attention to those atoms which have a * atom attached to
them. For example, impsmiles('c1ccccc1*') returns [cH]1[cH][cH][cH]
[cH]c1*. The resulting SMILES functions very nicely as a search SMARTS
for use in the matches function.

7.8 � Input and Output of Molecular Structures
As with all data in an RDBMS, there is an external and internal repre-
sentation of data. This was discussed in an earlier chapter for standard
data types, such as text and numeric. For molecular structures, there is of
course no SQL standard. When building a database containing molecular
structures, a decision should first be made: which internal representation
will be used and which external representation.

This chapter focused primarily on SMILES and canonical SMILES. It
is feasible and common to use SMILES as the internal representation of
molecular structure. Using the SQL functions described in this chapter,

84	 Design and Use of Relational Databases in Chemistry

many useful features would become available, such as canonicalization,
and searching. As described here, the SMILES would not truly be an SQL
data type because it is actually represented as a text string. There are ways
to extend SQL even further to make SMILES a data type equal in every
way to other standard SQL data types. This is discussed in a later section
of this chapter.

Another choice for the internal representation of molecular structure
is a molfile. It would be possible to construct SQL functions like those
described in this chapter that would operate on this type of data. One
disadvantage of molfiles is their greater size compared with SMILES.
One advantage is that it is possible to store atomic coordinates, which
is not possible with SMILES. There are other molecular file formats, but
these are substantially the same as a molfile, except perhaps for specific
atom types that may be of use in some database applications.

The recommendation here is to use SMILES to store molecular struc-
ture itself. If other features of the molecule or atoms need to be stored,
other data types and columns can be added to the row describing the
molecule. It is the “SQL way” to not encode a lot of information into one
data type. When using a molfile as the structural data type, too much data
is encoded in a single data type. The individual data items must be parsed
and validated. Errors creep into the data, due to missing, extra, or invalid
portions of the molfile. Ways of storing atomic coordinates, atom types,
and molecular properties are discussed Chapter 11.

The external representation of molecular structure is a less rigorous
definition. For example, there are many programs available that can con-
vert to and from SMILES and molfiles. These can be used when a molfile
(the external representation) needs to be imported as a SMILES (the inter-
nal representation) into the database. Similarly, a SMILES can be easily
exported as a SMILES or converted to a molfile or other file format. It is
useful to have these conversion functions as SQL extensions.

Consider the extended SQL functions smiles _ to _ molfile and
molfile _ to _ smiles. Having these functions available as SQL exten-
sions allows one to export a molfile from a table containing SMILES. For
example:

Select smiles, smiles_to_molfile(smiles) from atable;

outputs a SMILES string and a molfile as a text string. Similarly, the
function molfile _ to _ smiles could be used to convert a text string
representation of structure to SMILES. If the advice here is followed, a
column of molfiles would not be the internal representation of molecu-
lar structure. Nevertheless, the advice here should not be construed as
a recommendation against ever using molfiles. Having a column for
SMILES as well as a column for molfiles will fit the needs of many data-
base designers.

Chapter 7:  Computer Representations of Molecular Structures	 85

7.9 � Useful SQL Extensions
Several new SQL functions have been introduced here. These functions
make it possible to store molecular structures in an RDBMS as text strings.
They also allow these strings to be manipulated and searched in a chemi-
cally meaningful way. This greatly expands the usefulness of an RDBMS
for chemical applications. Table 7.2 summarizes these functions using
SQL notation for defining functions. Much of the rest of this book will
describe more useful functions and describe ways of using and extending
these ever further.

The Appendix of this book shows three complete implementations of
these functions using PostgreSQL and PerlMol, FROWNS, and OpenBabel
modules. Each of these three modules is free and open source. Using these
functions is an excellent way to become familiar with the concepts in this
chapter. It is possible to extend these functions even further to take advan-
tage of other features of PerlMol, FROWNS, and OpenBabel to satisfy the
needs of many molecular modeling projects. However, each of these three
modules has limitations. Before embarking on a large complex database
project, a thorough examination of the limitations of PerlMol, FROWNS,
and OpenBabel should be done. One important distinction between these
three modules is how they generate canonical SMILES. Each one generates
valid canonical SMILES, but each produces different canonical SMILES.
This is simply due to differing algorithms for canonically ordering atoms.
As discussed earlier, there is no universal canonical SMILES.

Table 7.2 summarizes the core functions used throughout the rest of
this book. There are several commercially available chemical extensions
to SQL. There may not be an exact correspondence of functions from these
vendors to functions in Table 7.2.

Table 7.2  Core Chemical SQL Extension Functions

Function Input type Output type Description of output

valid Text Boolean Tests whether SMILES is valid
cansmiles Text Text Canonical form of SMILES
isosmiles Text Text Isomeric form of SMILES
keksmiles Text Text Kekule form of SMILES
matches Text,text Boolean Tests whether SMILES (arg #1)

matches SMARTS
count_matches Text,text Integer Number of times SMARTS

matches SMILES (arg #1)
list_matches Text,text Integer

array
Atoms in SMILES (arg #1),
which match SMARTS

smiles_to_molfile Text Text Molfile formatted string
molfile_to_smiles Text Text SMILES

86	 Design and Use of Relational Databases in Chemistry

7.10 � SMILES as an SQL Data Type
The standard SQL data type Text has been used to store SMILES. This is
appropriate because every SMILES is a valid text string. But not every text
string is a valid SMILES. Without additional information about SMILES,
the RDBMS cannot enforce any rules about which text strings ought to be
in a column intended to contain SMILES.

7.10.1 � Domains

The SQL domain allows one to define which values are to be allowed in a
particular column of a table. A domain is created by stating the underly-
ing built-in SQL data type used to store the domain data type. In addition,
a check constraint function may be used to allow or forbid certain values.
This can be used to great advantage for SMILES and canonical SMILES.
Using a domain improves the ability of the RDBMS to maintain the integ-
rity of the data contained in its tables.

The following SQL defines a domain data type smiles.

Create Domain smiles As Text Check (valid(Value));

The use of the keyword Value is required. Value refers to the value of the
data element, here the SMILES. Once this domain is created, it can be used
as a data type in the creation of a table. For example:

Create Table atable (id Integer, smi smiles, mw Numeric);

When a value is inserted into this table, the valid function will be called
by the RDBMS. If the function returns true, then the value will be allowed
into the column smi. Otherwise, an SQL error will be reported and the
value will not be allowed.

Using a domain like this, the smiles data type behaves much like a
standard data type. When one attempts to insert an invalid number into
a numeric column, an SQL error is reported and the value is not inserted.
This fundamental behavior of an RDBMS is readily extended to SMILES
using a domain.

The check constraint used in the creation of a domain is similar to the
check constraint used in the creation of a table. For example, it would be
possible to simply

Create Table atable (id Integer, smi Text Check(valid(smi)));

This would ensure that the column smi could contain only a valid SMILES.
If this is the only table in which a SMILES column is used, this approach

Chapter 7:  Computer Representations of Molecular Structures	 87

is excellent. If a SMILES column is an important part of the database and
is used in many tables and functions, creating a domain to define a valid
SMILES is the better solution.

 It might also be useful to define a canonical SMILES domain. This
could be done as follows:

Create Domain cansmiles As Text Check (cansmiles(Value)=Value);
Create Table ctable (id Integer, cansmi cansmiles, formula Text);

This is not recommended. Instead, a trigger is a better way to handle
canonical SMILES.

7.10.2 � Triggers

Using a domain ensures that only appropriate data can be inserted into a
column. If an attempt is made to insert invalid data, an error is reported.
The user is then responsible for correcting the value, if possible and try-
ing the insert again. The SQL trigger mechanism automates this process.
The following SQL will not only ensure that the cansmi column contains
canonical SMILES, it will correct problems where possible.

Create Table ctable (id Integer, cansmi Text Check
 (cansmi=cansmiles(cansmi)), formula Text);
Create Function canonicalize() Returns Trigger As $EOSQL$
 Declare
 cansmi Text;
 Begin
 cansmi = cansmiles(NEW.cansmi);
 If cansmi != NEW.cansmi Then
 NEW.cansmi = cansmi;
 End If;
 Return NEW;
 End;
$EOSQL$ Language plpgsql;
Create Trigger canonicalize Before Insert Or Update On ctable
 For Each Row Execute Procedure canonicalize();

This canonicalize function uses NEW to refer to the row being inserted
or updated. NEW.cansmi refers to the value under question. The canoni-
cal SMILES is computed and compared to NEW.cansmi. If they are not the
same, the NEW.smi value is replaced by the canonical SMILES value and
the NEW row is returned. This NEW row is used by the RDBMS in place of
the original row. The create trigger command causes this operation to be
put into effect in the RDBMS.

Why use the domain to define a smiles data type, but use a trigger for
canonical SMILES? First, SMILES is either valid or not. It is not feasible to

88	 Design and Use of Relational Databases in Chemistry

write a function to correct an invalid SMILES, so a trigger to do so would
not be effective. A domain is defined with a simple Boolean check con-
straint to allow or disallow a value. This is just what is need for a smiles
domain and smiles data type. On the other hand, canonical SMILES is just
a type of SMILES. It is very common that a user will attempt to insert a
valid SMILES into a canonical SMILES column. This should be forbidden,
but there is a function, cansmiles that can produce a valid canonical
SMILES from a valid SMILES. A trigger is a good solution to this common
situation. The check constraint on a cansmiles column doubly ensures
that only canonical SMILES is allowed into that column.

There is another reason to avoid using a cansmiles domain: There is
an interaction between the use of domains and triggers. A domain check
constraint takes priority over the trigger. In other words, if one attempts
to insert an invalid canonical SMILES into a column defined using the
cansmiles domain, the insert may fail, even though there is a trigger on
the table. This is because the check constraint of the domain forbids the
insert before the trigger is applied by the RDBMS. The recommended
solution to this is to define the cansmi column using the Text data type,
use a check constraint on that column and a trigger on the table con-
taining the cansmi column.

In summary, the domain check occurs first, then the trigger and
finally the column constraint check. So, whenever a trigger is used to
attempt to correct a value being inserted or updated, a domain check
constraint should not be used. Instead a column check constraint should
be used.

7.11 � Summary
The use of a few new SQL functions can greatly enhance the way chemi-
cal structures are used in a relational database. These functions allow the
SMILES text string to store structures and canonical SMILES to create a
unique text representation of a specific chemical structure. SMARTS text
strings are used to search SMILES strings in a way comparable to how
regular expressions are used to search ordinary text strings. Functions
that convert to and from SMILES and common chemical structure file for-
mat expand the kinds of chemical data the database can handle. Finally,
the use of domains, triggers, and column check constraints can improve
the integrity of the data in a database.

References
	 1.	 Pauling, L. 1939. The nature of the chemical bond and the structure of molecules

and crystals, 3rd ed. Ithaca, NY: Cornell University Press.
	 2.	 Sainsbury, M. 1992. Aromaticity. New York, Oxford University Press, Inc.

Chapter 7:  Computer Representations of Molecular Structures	 89

	 3.	 Molfiles. 2008. http://en.wikipedia.org/wiki/MDL_Molfile (accessed
April 18, 2008).

	 4.	 PDB Documentation. 2008. http://www.wwpdb.org/docs.html (accessed
April 18, 2008).

	 5.	 Weininger D. 1988. SMILES, a chemical language and information system, 1.
Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci.
28:31–36.

	 6.	 Weininger, D., Weininger, A., and Weininger, J.L. 1989. SMILES 2. Algorithm
for generation of unique SMILES notation. J. Chem. Inf. Comput. Sci.
29:97–101.

	 7.	 O’Donnell, T.J. 2008. CHORD. http://www.gnova.com/ (accessed April 18,
2008).

	 8.	 DayCart®: Chemical intelligence for an Oracle environment. 2007. http://
daylight.com/products/daycart.html (accessed April 18, 2008).

	 9.	 O’Shea, M.D. 2008. Chemoinformatics chemistry data cartridges. http://
www.strychnine.co.uk/oracledatacartridges.html (accessed April 18, 2008).

	 10.	 SMARTS tutorial. 2008. http://www.daylight.com/dayhtml/doc/theory/
index.html (accessed April 18, 2008).

	 11.	 Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J. 2001.
Experimental and computational approaches to estimate solubility and per-
meability in drug discovery and development settings. Adv. Drug Del. Rev.
46:3–26.

	 12.	 Sayle, R. and Skillman, G. 2002. Hooked on protonics. http://www.eyesopen.
com/about/events/presentations/acs02/tsld018.htm (accessed April 18,
2008).

	 13.	 Sayle, R. and Delany, J. 1999. Canonicalization and enumeration of tau-
tomers. http://www.daylight.com/meetings/emug99/Delany/taut_html/
index.htm (accessed April 18, 2008).

	 14.	 ChemAxon. Calculator plugins. 2008. http://www.chemaxon.com/mar-
vin/help/calculations/calculator-plugins.html#tautomer (accessed April
18, 2008).

	 15.	 ScienceServe. 2008. Tautomer. http://www.scienceserve.com/Software/
molnet/tautomer/index.htm (accessed April 18, 2008).

	 16.	 Oellien F., Cramer, J., Beyer, C., Ihlenfeldt, W., and Selzer, P.M. 2006. The
impact of tautomer forms on pharmacophore-based virtual screening, J.
Chem. Inf. Model. 46(6):2342–2354.

	 17.	 Stein, S.E., Heller, S.R., and Tchekhovski, D. 2003. An open standard for chemi-
cal structure representation: The IUPAC chemical identifier. In Proceedings of
the 2003 International Chemical Information Conference, ed. H. Collier, 131–143.
Nimes, France: Infonortics.

91

chapter 8

Molecular Fragments
and Fingerprints

8.1 � Introduction
Simplified Molecular Input Line Entry System (SMILES) is a simple, yet com-
plete description of molecular structure that considers the atoms and bonds
in a molecule. Using unique canonical SMILES, an indexed table lookup of a
structure can be quickly done. For example, the SQL to lookup phenol is:

Select cansmi From atable Where cansmi=cansmiles('c1ccccc1O');

When the table contains unique canonical smiles in an indexed column
cansmi, and the cansmiles function provides the proper canonical
SMILES for phenol, this lookup is extremely fast.

It is often necessary to find all structures that contain a given substruc-
ture. Consider the substructure search to find all structures that contain
the phenol group. Using the matches function described in a previous
chapter, the SQL to carry out such a substructure search is:

Select cansmi From atable Where matches(cansmi,'c1ccccc1O');

This cannot make use of the index on the column cansmi. Every row of
the table must be examined to see if the matches function succeeds. This
is a time-consuming process compared to a direct, indexed lookup.

8.2 � Fragments
One way to speed up a substructure search is to use a reduced representa-
tion of molecular structure and a corresponding alternative to the matches
function. If this reduced representation of molecular structure is suffi-
ciently simple and if the alternative matches function is sufficiently fast,
they can be used as a filter to quickly decide which rows need more careful
examination using the full matches function. Other rows for which the
reduced representation does not match can be quickly passed over.

One might use molecular formula as a simpler representation of molec-
ular structure. Ignoring H atoms, the molecular formula for phenol is C6O.

92	 Design and Use of Relational Databases in Chemistry

Every structure containing phenol as a substructure must have a molecu-
lar formula with 6 or more C atoms and 1 or more O atoms. Structures with
fewer C or O atoms can be immediately ruled out as possible matches for
phenol. Of the remaining structures, there will be some that satisfy the
molecular formula comparison yet do not match phenol. The more time-
consuming matches function will be used only for the final determination.
Overall, the process of finding substructure matches will be faster. Exactly
how much faster depends on the number of rows that can be quickly ruled
out using the faster molecular formula comparison. It also depends, of
course, on how fast the molecular formula comparison can be done.

One way to do a quick molecular formula comparison is to store the
molecular formula not as a string representation, such as C6O, but as a
column of integers. Each row in a table of molecular structures would con-
tain SMILES, but the table would also have additional columns containing
the count of each atom type. These columns could be indexed to speed up
the molecular formula comparison. The SQL used to search for structures
containing phenol becomes as follows:

Select cansmi From atable Where C_count>=6 and O_count>=1
 And matches(cansmi, 'c1ccccc1O');

The columns C _ count and O _ count would have been precomputed
when the row for each molecular structure was added to the table.

Because every molecular structure is composed of atoms, the atom
counts corresponding to molecular formula form a complete set of molec-
ular fragments. However, the atom counts are not a very discriminating
filter. Another approach is to construct a set of molecular fragments that
are complex enough to discriminate various structures from one another
yet simple enough to be used for fast filtering before using the full matches
function.

Constructing a useful set of molecular fragments requires knowledge
of the types of structures that will appear in the database. This will be
discussed in a later section of this chapter. First, consider how such a set of
fragments can be used to filter structures during a substructure search.

8.2.1 � Fragment Keys

Suppose a representative set of N fragments has been defined. A bit
string* containing N bits can be used to represent the presence or absence
of each fragment in any molecular structure. This alternative representa-
tion of molecular structure is called a fragment key. It can be used as a filter

*	 The bit or bit varying data type in standard SQL will be used in the examples in this and fol-
lowing chapters. Oracle does not support this data type. PostgreSQL syntax will be used.

Chapter 8:  Molecular Fragments and Fingerprints	 93

during a substructure search. For example, the following SQL might be
used to locate structures containing the phenol group.

Select cansmi From atable Where (fkey&key('c1ccccc1O')=fkey)
 And matches(smiles,'c1ccccc1O');

In this example, the function named key returns a bit string denoting the
presence or absence of each of the N fragments. The column fkey con-
tains the bit string for each structure, precomputed using key(cansmi).
The SQL clause where fkey&key('c1ccccc1O')=fkey will be true only
when all bits set to 1 in fkey are also set in key('c1ccccc1O'). In other
words, that clause will be true only when the structure (the row with that
fkey) contains all the fragments that phenol contains. That is necessary
but not fully sufficient for the cansmi of that structure to match phenol.
The final matches function must be used to return the proper set of sub-
structure matches. However, since the comparison of bit strings using the
& operator is much quicker than the matches function, the bit string com-
parison acts as a quick filter. The more time-consuming match function
is evaluated only for those structures that pass the quicker bit string test.
The computation of the fkey using the key function is time-consuming
for a large table of structures, but it need be done only once and stored in
a row with the corresponding SMILES.

The key function used above can be written using SQL, along with a
table of fragments. As a simple example, the fragments shown in Table 8.1
are used. This table could be created using the following SQL.

Create Table fragments (description Text, smarts Text, abit Integer);

The column named smarts contains the SMiles ARbitrary Target
Specification (SMARTS) pattern defining the fragment. The column named

Table 8.1  Simple Fragment Keys
Defined Using SMARTS

Description Smarts abit

Phenyl c1ccccc1 1
Aliphatic alcohol C[OH] 2
Alcohol [C,c][OH] 3
Aromatic alcohol c[OH] 4
Aliphatic ether COC 5
Ether [C,c]O[C,c] 6
Aromatic ether cOc 7
Ketone O=[CH0](C)C 8
Carboxylic acid O=[CH0](C)[OH] 9
Aldehyde O=[CH1]C 10

94	 Design and Use of Relational Databases in Chemistry

abit represents which bit in the key will be set if the structure contains
that fragment. The column named description is a brief description of
the fragment. Consider the result of the following SQL.

Select abit from fragments Where matches ('c1ccccc1O', smarts);

The result is two rows:

1
3

because phenol is matched by only two SMARTS from the table fragments,
namely those with abit=1 (phenyl) and abit=3 (alcohol). A slight modifica-
tion shows how a bit string can be created.

Select B'1'::bit(50)>>abit-1 from fragments
 Where matches('c1ccccc1O', smarts);

This arbitrarily assumes the final result will be 50 bits, suitable for a
table of fragments having 50 or fewer rows. The result of this SQL is:

1000
001000

The first row is a bit string of length 50 having bit #1 set; the second row
has bit #3 set. This is getting closer to the desired single value key having
both bit #1 and bit #3 set. How can these rows be combined into a single
bit string with bit #1 and bit #3 set? An aggregate function similar to sum
would provide the correct result. But there is no standard SQL aggregate
function such as this that operates on bit strings. The Appendix to this
book shows the definition of such a function, called orsum. Using that
function, the final definition of the key function is:

Create Function key(text) Returns bit varying As $$
 Select orsum(B'1'::bit(50)>>abit-1) from fragments
 Where matches($1, smarts);$$ Language SQL;

The result of Select key('c1ccccc1O') is the single value:

101000

This is the fragment key for phenol. The key function can be used to com-
pute and store values of the fragment key in tables of molecular structures.
It can also be used to compute values of fragment keys for substructures
to be used as a prescreen during a full substructure search using the
matches function.

Chapter 8:  Molecular Fragments and Fingerprints	 95

8.2.2 � MACCS Keys and Other Fragment Keys

One popular set of fragments has been published by MDL.1 It is commonly
known as the MACCS public 166 keys. The Appendix shows a table of 164
rows, analogous to the fragments table defined and used in the example in
the previous section. Using this table and a slight modification to the key
function defined above, a public166keys function can be easily defined.
That function is also contained in the Appendix.

Any other set of useful fragments can be created and used as a frag-
ment key to prescreen rows in a table during a substructure match. The
public166keys table contains entries for every element in the periodic
table, although the bulk of the table is designed to distinguish various
organic compounds from one another. In a database containing a majority
of other types of compounds, a different set of fragment keys is appro-
priate. The point here is not to provide the best set of fragment keys or
even to recommend one set over another, but rather to illustrate a general
method for computing fragment keys using simple SQL and a relational
database table to define the fragments. The advantage of this approach is
that the algorithm and code to produce the fragment key is not contained
in some external program. It is an integral part of the database with the
fragment table clearly exposed for verification, modification, and use in
other ways.

8.3  Fingerprints
Another approach for generating bit string keys does not use a table for
fragments at all. Instead, it uses an algorithm to fragment each structure
and record each fragment as a bit pattern. Rather than assign each frag-
ment to a particular bit number as is done in the fragment key tables
above, some method of encoding each fragment is used. One approach is
to use the SMILES string that represents the fragment and apply a hash
function2 to produce a fingerprint.

One method for producing these fragments first considers each atom
as a fragment of size one, similar to the molecular formula approach
described above. Then considering atoms bonded to each atom produces
two-atom fragments. Multiple-atom fragments are then produced. Using
this approach exhaustively and following every bond of every atom would
produce every possible fragment of every possible size for each structure.
This would be a large number of fragments, even for reasonably sized
structures. The number of bits required to store this information would
be correspondingly large. At some point, the size and complexity of the
bit string representation would make the prescreening process too slow
to be useful. To avoid that possibility, an upper limit on the size of each
fragment is imposed.

96	 Design and Use of Relational Databases in Chemistry

One popular fingerprint algorithm3 produces fragments as
unbranched chains of atoms. This approach is typically called a path-based
method because the algorithm follows continuous paths of bonded atoms.
Another algorithm prefers branched fragments of each atom, creating
ever-expanding neighborhoods of atoms around each central atom. This
is typically called a circular fingerprint.4

Regardless of the method used to fragment the structure, the hashed
fingerprint of each fragment is combined with hashed fingerprints for other
fragments from the same structure to produce an overall fingerprint for the
structure. This bit string is used in an equivalent way to the fragment keys
above to prescreen rows of structures during a substructure match. The
Appendix shows two functions to compute a fingerprint bit string.

8.4 � Similarity Measures
Besides using fingerprints or fragment keys as a prescreen to speed up
substructure matches, they can be used in other ways. The bit patterns
for two molecular structures can be compared by considering bits they
have in common due to common fragments. Bits not in common are due
to fragments in one structure not appearing in the other structure. There
are many ways to combine the counts of common bits, differing bits, and
bit string length to produce a numerical measure of the similarity of one
structure to another. One popular method is called Tanimoto.5 Given a fin-
gerprint or fragment key for structures A and B, the Tanimoto index is the
ratio of the number of bits A and B have in common to the sum of the num-
ber of bits set for A plus the number of bits set for B minus the number of
bits in common. An SQL definition for the Tanimoto index is as follows:

 Create Function tanimoto(bit, bit) Returns Real As
 'Select nbits_set($1 & $2)::real /
 (nbits_set($1) + nbits_set($2) - nbits_set ($1 & $2))::real; '
 Language SQL;

The & (logical AND) operator and the ~ (logical NOT) operator are used
along with a nonstandard SQL function nbits _ set. This function and
other related similarity functions are contained in the Appendix. The
suitability of fragment keys, path-based or circular fingerprints, for any
particular purpose is the subject of ongoing research.6

8.5 � Computing Fragment-Based Properties
The methods shown above to compute fragment keys can be extended to
compute fragment-based properties of molecules. The use of a relational
table to define the fragments makes the computation suitable to using
SQL to define the function. Rather than having the fragment parameters

Chapter 8:  Molecular Fragments and Fingerprints	 97

buried in an external computer program, exposing them in a table makes
it easier to maintain, verify, and expand the parameter set.

The simplest molecular property is molecular weight. The obvious frag-
ments to use for this are atoms. It is a simple matter to define the SMARTS
fragments for any atom. Table 8.2 shows the definition for a few common
atoms. The full table for the first 103 atoms is shown in the Appendix.

The following function is analogous to the fragment key function
above. It uses a relational table to define fragments, a function to match
SMILES and SMARTS (in this case count _ matches), and an aggregate
SQL function to tally the results over all matched fragments.

Create Function amw(character varying)
 Returns Numeric As $EOSQL$
 Select sum(weight*count_matches($1,smarts)) From amw;
 $EOSQL$ Language SQL;

This function is not a very efficient method to compute molecular weight
compared with a compiled C program, for example. The advantage is that
the function is contained within the database and is expressed using a
relational table that exposes the important parameters of the computation.
The following function could be used when creating a table containing
SMILES, or used when necessary, for example, to compute the molecular
weight of phenol.

Select amw('c1ccccc1O');
Select amw(smiles) from structure;

Table 8.2  Atomic Weights for Some
Common Atoms and Associated SMARTS

SMARTS Weight Symbol

[#1] 1.01 H
[#6] 12.01 C
[#7] 14.01 N
[#8] 16.00 O
[#9] 19.00 F
[#15] 30.97 P
[#16] 32.06 S
[#17] 35.45 Cl
[*;h1] 1.01 H1
[*;h2] 2.02 H2
[*;h3] 3.03 H3
[*;h4] 4.04 H4
[*;h5] 5.05 H5
[*;h6] 6.06 H6

98	 Design and Use of Relational Databases in Chemistry

Another useful fragment-based function computes the polar surface area
of a molecule using the method described by Ertl, Rohde, and Selzer.7 The
SMARTS and partial surface areas for the fragments described by Ertl are
shown in Table A.3 in the Appendix. That table is created as

Create Table tpsa (psa Numeric, smarts Text, description Text);

The following function computes the tpsa value using the tpsa table.

Create Function gnova.tpsa(text)
 Returns Numeric As $EOSQL$
 Select sum(psa*count_matches($1,smarts)) From tpsa;
$EOSQL$ Language SQL;

This function could be used to add a column of tpsa to any table contain-
ing SMILES.

There are other fragment-based methods8,9 published that could be
implemented using the approach described here. As long as the fragments
can be defined using SMARTS and the molecular property is a simple sum
(or product or other aggregate function), a relational table of fragment values
can be used. Using the match or count _ matches functions from Chapter
7, an SQL function can be easily written to compute the property value.

References
	 1.	 Durant, J.L., Leland, B.A., Henry, D.R., and Nourse, J.G., 2002. Reoptimization

of MDL keys for use in drug discovery, J. Chem. Inf. Comput. Sci., 42(6):
1273–1280.

	 2.	 Hash function. 2008. http://en.wikipedia.org/wiki/Hash_function
(accessed April 18, 2008).

	 3.	 Fingerprints—Screening and Similarity. 2007. http://daylight.com/
dayhtml/doc/theory.finger.html (accessed April 18, 2008).

	 4.	 Bender, A., Mussa, H.Y., Glen, R.C., and Reiling, S. 2004. Molecular similar-
ity searching using atom environments, information-based feature selection,
and a naive Bayesian classifier. J. Chem. Inf. Comput. Sci. 44(1):170–178.

	 5.	 Tanimoto, T.T. 1957. IBM Internal Report, November 17.
	 6.	 Hert, J., Willett, P., Wilton, D.J., Acklin, P., Azzaoui, K., Jacoby, E., and

Schuffenhauer, A. 2004. Comparison of fingerprint-based methods for virtual
screening using multiple bioactive reference structures. J. Chem. Inf. Comput.
Sci. 44(3):1177–1185.

	 7.	 Ertl, P., Rohde, B., and Selzer, P. 2000. Fast calculation of molecular polar
surface area as a sum of fragment-based contributions and its application to
the prediction of drug transport properties. J. Med. Chem. 43:3714–3717.

	 8.	 Wildman, S.A. and Crippen, G.M. 1999. Prediction of physicochemical
parameters by atomic contributions. J. Chem. Inf. Comput. Sci. 39: 868–873.

	 9.	 Andrews R., Craik, D.J., and Martin, J.L. 1984. Functional group contribu-
tions to drug-receptor interactions. J. Med. Chem. 27(12): 1648–1657.

99

chapter 9

Reactions and Transformations

9.1 � Introduction
The use of Simplified Molecular Input Line Entry System (SMILES) as a
string representation of chemical structure makes possible much of what
has been discussed in earlier chapters of this book. A chemical reac-
tion could be represented as a collection of SMILES, some identified as
reactants and some as products. It is possible to define a table to do this,
or perhaps use some arrays of character data types, but a syntax exten-
sion of standard SMILES allows reaction to be expressed easily. SMIRKS
is an extension of SMILES and SMiles ARbitrary Target Specification
(SMARTS). It is used to represent chemical transformations. SMIRKS can
also be used in a transformation function to combine SMILES reactants to
produce SMILES products.

This chapter describes some of the aspects of SMIRKS and shows how
it can be integrated into a relational database using new structural query
language (SQL) functions. It discusses ways in which chemical transfor-
mations and reactions can be used to improve the robustness and useful-
ness of a chemical relational database.

9.2 � Reaction SMILES
Reaction SMILES is an extension to standard SMILES used to represent a
specific reaction. It uses punctuation to distinguish reactants from products.
For example, the reaction SMILES CC(=O)O.CN>>CC(=O)NC.O represents
the reaction of acetic acid with methylamine to form N-methylacetamide
plus water. As with standard SMILES, explicit H atoms are typically not
shown, although they may be. For example, the same reaction can repre-
sented as [CH3]C(=O)[OH].[CH3][NH2]>>[CH3]C(=O)[NH][CH3].[H]O[H].
The punctuation >> is used to separate reactants from products, and the
period is used to separate reactants or products from each other. There are
no rules in reaction SMILES that enforce correct reaction stoichiometry or
other aspects of actual chemical reactions.

Reaction SMILES can be used to store and search chemical
reactions using the same functions described earlier for standard
SMILES. For example, cansmiles('CC(=O)O.NC>>CC(=O)NC.O') returns

100	 Design and Use of Relational Databases in Chemistry

CC(=O)O.CN>>CC(=O)NC.O and matches('CC(=O)O.CN>>CC(=O)
NC.O','CC(=O)O') returns a true value. The SQL

Select rxnsmiles From a table Where matches(rxnsmiles,'CC(=O)O');

selects all the reaction smiles that involve acetic acid (or its derivatives)
from a table that stores reactions.

Reaction SMILES represents a specific reaction between specific reac-
tants yielding specific products. As such, it can be very useful to store a
library of reactions of interest. These might be a record of reactions that
have been carried out at a company, a set of reaction plans in an academic
research group, or even a set of hypothetical reactions that might never
succeed in the laboratory. There is another extension of SMILES called
SMIRKS that is more general and can represent a class of reactions.

SMIRKS mixes elements of SMARTS with SMILES. A more complete
definition of SMIRKS is available at daylight.com.1 Several authors discuss
the graph theory underpinnings of SMIRKS.2 The reaction SMILES above,
CC(=O)O.CN>>CC(=O)NC.O, could be generalized to allow acid chlorides
as well as carboxylic acids. This would be CC(=O)[O,Cl].CN>>CC(=O)
NC.[*]. The use of the SMARTS [O,Cl] allows oxygen or chlorine. The sec-
ond product, which was water in the initial example, is expressed simply
as [*] since it could be either Cl or O. When SMIRKS is used, it cannot be
considered a type of SMILES and therefore cannot be used in the matches
function or other functions requiring SMILES. However, SMIRKS can be
used to transform a given set of SMILES according to the rule specified in
the SMIRKS: in other words, to carry out the transformation in silico.

9.3 � Transformations
The word reaction is typically used to represent a specific reaction as well
as a general transformation. In this chapter, the word reaction is used to
mean a specific reaction represented using reaction SMILES. The word
transformation is used to indicate a change in a set of reactants to products.
SMIRKS is the language used to specify precisely how this transforma-
tion is to be carried out.

In order to carry out a transformation, it is necessary to know pre-
cisely which bonds are to be broken and which are to be made. While
this information is implicit in the SMIRKS above and can be understood
by any chemist, a more specific set of instructions is necessary in order
to make the transformation possible using a computer. Numbering the
atoms of the reactants and the corresponding atoms in the products accom-
plishes this. This produces an atom mapping. Many sketching programs
can do this automatically or with some additional input from the user.
Using the example shown previously, an atom-mapped SMIRKS would

Chapter 9:  Reactions and Transformations	 101

be [C:1]([O,Cl:5])=[O:2].[N:3][H:4]>>[N:3][C:1]=[O:2].[*:5][H:4]. Figure 9.1
shows a depiction of this SMIRKS reaction. Notice that the second prod-
uct, which was water in the initial example, is now expressed as [*:5][H:4].
This [*:5] is necessary because the second product could be either water or
HCl. The use of [H:4] completes the full accounting of every atom involved
in the transformation. Hydrogen atoms not involved in the transforma-
tion need not be explicitly specified. This atom-mapped SMIRKS has also
left out 2 extra carbon atoms, one attached to each reactant in the original
example. These carbons properly belong to the specific reaction SMILES
discussed above, but they do not participate in the transformation and
need not be specified in the SMIRKS.

9.3.1 � Unimolecular Transformations

Before considering how SMIRKS can be used to carry out transforma-
tions with multiple reactants, first consider simpler unimolecular trans-
formations. These are discussed separately because of the important use
of unimolecular transformations to enforce the consistent use of SMILES
throughout the database. This improves the integrity of the data in a
chemical sense, rather than a relational database sense as discussed pre-
viously. The root of the issue is this: There are multiple ways to repre-
sent the same molecular structure due to the limitations of valence bond
theory. In valence bond theory, upon which SMILES is based, atoms have
formal charges, most often zero. The bonds between atoms are shared
pairs of electrons and may consist of multiple shared pairs giving rise to
double, triple, or possibly even higher-order bonds between atoms. This
simple theory, while quite powerful and applicable to a majority of chemi-
cal structures, leads to certain ambiguities.

It is generally conceded that simple valence bond theory cannot
adequately explain the bonds between the carbon atoms in benzene.
This classic conundrum is often resolved by stating that there is a sort of

1

52

3 4

3

1

2

5 4

Rxn

+ +

N
C

OO [O,Cl]

C

N H A HRxn

Figure 9.1  Atom-mapped reaction of an amine with an acid or acid chloride.

102	 Design and Use of Relational Databases in Chemistry

mixing, or resonance of states. These two states can be represented using
SMILES as C1=CC=CC=C1 and C1C=CC=CC=1. SMILES resolves this issue
by introducing an extension to simple valence bond theory, namely an aro-
matic bond. The atoms on either end of the bond are referred to as aro-
matic atoms and are represented using the lowercase atomic symbol. So
benzene becomes c1ccccc1 with implied aromatic bonds between the aro-
matic atoms instead of implied single bonds between nonaromatic atoms.
Canonical SMILES performs this aromatization as well as reordering the
atoms into canonical order. A separate unimolecular transformation is not
necessary.

A more difficult issue arises for atoms that have different valence
states. For example, nitrogen is typically considered to have a valence
state of 3. The valence state of an atom is defined as the sum of the bond
orders to the atom, minus the formal charge. So, ammonia has three
single bonds and the nitrogen has valence state 3. Hydrogen cyanide
has a triple bond to the nitrogen, again resulting in a valence state of
3. A nitrogen atom with a single bond and a double bond also yields a
valence state of 3. Finally, the ammonium cation has four single bonds,
but with a +1 formal charge on the nitrogen, yielding a valence state of
3. In some cases, it is desirable to consider nitrogen to have a valence
state of 5. One common example is the nitro group, an example of which
is CN(=O)(=O) in nitromethane. In this representation, the nitrogen has
a valence state of 5. However, one might also use the SMILES C[N+]
(=O)[O−], which shows nitrogen in the more common valence state 3.
Which SMILES is better? Unfortunately, there is no generally agreed-
upon answer. Some prefer the charge-separated form because it reflects
the more common valence state of nitrogen. Others prefer the former
SMILES because it does not introduce formal atomic charges. In a sense,
the answer is unimportant and is just a theoretical argument. Yet in a
real-world database, it is important to have a consistent representation of
any unique molecular structure.

One way to resolve this issue in a database is to require one particular
form for the nitro group. Putting the burden on the chemist who inputs the
structures is possible, but when hundreds or thousands of structures need
to be imported, say from a vendor or other library, examining and cor-
recting hundreds of individual structures is not feasible. Using a SMIRKS
transformation can easily solve this problem.

Suppose it is decided that the valence 5, noncharge-separated repre-
sentation of the nitro group is to be used throughout the database. The
SMIRKS [O:2]=[N+:1][O‑:3]>>[O:2]=[N+0:1]=[O+0:3], when applied to any
charge-separated nitro group will transform it into the proper form. This
is accomplished by creating another new SQL function, xform(smiles,
smarts). As with the cansmiles and matches functions, this is an
extension to standard SQL. Some form of this transformation function is

Chapter 9:  Reactions and Transformations	 103

available in the chemical cartridges or extensions from several software
vendors. The xform function is not contained in the core functionality
shown in the Appendix.

Using the nitro transformation, the following SQL

Select xform('C[N+](=O)[O-]', '[O:2]=[N+:1][O-:3]>>[O:2]=[N+0:1]=
 [O+0:3]');

returns the SMILES CN(=O)=O. This approach can be used for any num-
ber of transformations in order to standardize the SMILES in any table of
the database. Aside from nitro groups, there are other common variations
in SMILES due to valence bond variations. Table 9.1 presents several of
these and the SMIRKS that can be used to standardize them to a common
form. These are just examples and need to be considered carefully for any
application. With a table such as this, the following SQL could standard-
ize an entire table of SMILES.

Update rxntest Set smiles=xform(smiles,smirks) From std_smirks;

where std _ smirks is the name of the table. Of course, whenever updat-
ing an entire table, great care should be taken that there are no unintended
side effects. For example, the oxo-enol transformation is not favored by
some chemists and is actually a tautomerization and not a valence bond
issue.

It might be useful to prevent nonstandard SMILES from ever being
inserted into a table. One way to do this is by using an SQL constraint.
For example, an attempt to insert nonstandard SMILES into the following
table would cause an SQL error.

Create Table atable (smiles Text Check (is_std_smiles(smiles)));

Another approach is to always use a function to insert SMILES into the
table. For example:

Insert Into atable Select make_std_smiles(smiles);

Table 9.1  Example SMIRKS for SMILES Standardization

Name SMIRKS

nitro [NX3+:1](=[O:2])-[O-;X1:3]>>[N+0:1]
(=[O:2])=[O+0:3]

oxo-enol [C:1]=[C:2][OH1:3]>>[H][C:1][C:2]=[Oh0:3]
sulfuro [SX4+:1](=[O:2])-[O-;X1:3]>>[S+0:1]

(=[O:2])=[O+0:3]
azide [NX1H0:1]#[NX2H0:2]=[N:3]>>[N-:1]=[N+:2]=[N:3]

104	 Design and Use of Relational Databases in Chemistry

Examples of the is _ std _ smiles and make _ std _ smiles func-
tions are not shown here because neither of these approaches is ideal. In
the first case, using a check constraint, the nonstandard SMILES would
not be inserted, but the user would still be responsible for standardiz-
ing the SMILES and attempting the insert again. The second case using
a function is better, but it would still be possible to accidentally insert a
SMILES directly without the make _ std _ smiles function.

A better way to ensure chemical integrity of the SMILES is to use the
SQL trigger mechanism. An SQL trigger allows a function to intercept
data before it is inserted or updated and modify it if necessary.

Consider the following SQL, which uses PostgreSQL syntax.

Create Table atable (smiles text, id integer);
Create Function standardize() Returns Trigger As $EOSQL$
 Declare
 std_smiles Text;
 smirks Text;
 std Record;
 Begin
 For std In Select * from std_smirks Loop
 std_smiles = xform(NEW.smiles, std.smirks);
 If std_smiles != NEW.smiles Then
 NEW.smiles = std_smiles;
 End If;
 End Loop;
 Return NEW;
 End;
$EOSQL$ Language plpgsql;

Create Trigger standardize Before Insert Or Update On atable
 For Each Row Execute Procedure standardize();

The standardize function checks whether any smirks in the std _
smirks table, when used in the xform function, results in a modifica-
tion of the input SMILES stored in NEW.smiles. If the xform function
does return a transformed SMILES, then that transformed value is used
in place of the value the user attempted to insert. Finally, the trigger is
created using the standardized function to possibly modify any SMILE
before inserting or updating a table.

9.3.2 � Multi-Component Transformations

SMIRKS allows one to express a multicomponent transformation as well
as unimolecular transformation as discussed previously. The following
SMIRKS shows how to transform a combination of an acid chloride and
an amine into an amide.

[C:1][C:2]([O,Cl:3])=[O:4].[C:5][N:6][H:99]>>[C:5][N:6][C:2]([C:1])=[O:4].[*:3][H:99]

Chapter 9:  Reactions and Transformations	 105

The unimolecular form of the xform function will not properly work
with this SMIRKS. Instead, an alternate form that requires an array of
SMILES is used. The following SQL

Select xform(ARRAY['CC(=O)Cl','CNC'],
'[C:2]([O,Cl:3])=[O:4].[N:6][H:99]>>[N:6][C:2]=[O:4].[*:3][H:99]');

returns CC(=O)N(C)C.Cl. With this xform function, it is possible to eas-
ily create combinatorial libraries from tables of reactants in the database.
The following SQL will produce 100 products by combining 10 secondary
amines and 10 acid chlorides from the table nci.structures.

select amine.smiles, acid.smiles, xform
 (ARRAY[amine.smiles,acid.smiles],
 '[H:99][N:1].[C:2](=[O:4])[Cl:3]>>[N:1][C:2]=[O:4]') from
(select smiles from structure where
 matches(smiles,'C[NH1]') limit 10) amine,
(select smiles from structure where
 matches(smiles,'C(=O)Cl') limit 10)acid;

This SQL statement can be expanded in many different ways to satisfy many
different requirements. For example, an additional where clause in the sub-
select statements could limit selection of reactants by molecular weight, cost,
availability, etc. The type of amine or acid chloride could also be selected
by changing the SMARTS in the matches function. For example, aromatic
amines could be selected by using matches(smiles, 'c[NH1]').

It is possible to create a table containing many different SMIRKS and
select the appropriate one by name. For example:

select amine.smiles, acid.smiles,
 xform(ARRAY[amine.smiles,acid.smiles], smirks) from
(select smiles from structure where
 matches(smiles,'C[NH1]') limit 10) amine,
(select smiles from structure where
 matches(smiles,'C(=O)Cl') limit 10) acid,
smirks_lib where smirks_lib.name='Schotten-Baumann';

Many other uses of the xform function are possible. Because the function
is an extension of SQL, it can be easily used with all the other features of
the SQL language and capabilities of an RDBMS.

There is no limit on the number of reactants or products that can be
used in SMIRKS. The Ugi reaction3 is a four-component condensation reac-
tion combining an aldehyde, amine, carboxylic acid, and an isocyanide.
The SMIRKS representing this transformation is [*:1][C:10](=[O:11]).[*:2]
[N:20]([H:21])[H:22].[*:3][C:30](=[O:31])[O:32][H:33].[*:4][N+:40]#[C‑:41]>>[*:3]
[C:30](=[O:31])[N:20]([*:2])[C:10]([*:1])[C+0:41](=[O:32])[N+0:40]([H])[*:4]. In
previous examples, every reactant atom was accounted for in the product.

106	 Design and Use of Relational Databases in Chemistry

In this case, reactant atoms that do not actually appear in the product are
simply not mentioned in the product side of the SMIRKS. This is a useful
feature of SMIRKS, allowing some reactant atoms to “disappear.” This is
convenient with hydrogen atoms, water oxygen atoms, and sometimes
with other atoms. Depending on how the product SMILES will be further
processed, it may be desirable to use this feature in order to retain only
the main product. In addition, an unmapped hydrogen atom appears
in the product on the [N:40] atom coming from the isocyanide. It is not
important, and indeed probably not clear from the mechanism, exactly
which hydrogen atom this is. For the purposes here, it is not crucial to
exactly map that product hydrogen atom to a particular reactant hydro-
gen atom.

If the before-mentioned SMIRKS is stored in the smirks_lib table, then
the following SQL

select xform(
 ARRAY['CCC=O','CN','c1ccccc1C(=O)O','[C-]#[N+]C1=CCCCC1'], smirks)
 from smirks_lib where name='Ugi4CC';

will return CCC(N(C)C(=O)c1ccccc1)C(=O)NC2=CCCCC2. This transfor-
mation can be drawn as shown in Figure 9.2.

9.4 � Canonical Reaction SMILES
Reaction SMILES is a syntactical extension of regular SMILES. Since it
is composed of regular SMILES punctuated with periods and the >>

O N

HN

O

N

O
NH2

HO

O

Figure 9.2  Four-component Ugi reaction.

Chapter 9:  Reactions and Transformations	 107

symbol, each reactant and product can have a canonical representation.
The overall reaction SMILES also has a canonical representation that is
not necessarily the combination of the canonical SMILES of the reactants
and products. The SQL extension function cansmiles correctly computes
the canonical reaction SMILES. This can be used as a unique representa-
tion of a reaction in the same way that a regular SMILES can be used as a
unique representation of a chemical structure.

Because SMIRKS is a combination of SMILES and SMARTS and
because there is no canonical representation of SMARTS, there is no
canonical representation of SMIRKS. SMARTS can be considered as a set
of instructions on how to match substructures of SMILES. SMIRKS can
similarly be considered as a set of instructions on how to identify reactive
atoms and combine or alter them in order to carry out a specific transfor-
mation of a set of SMILES.

References
	 1.	 SMIRKS tutorial. 2007. http://www.daylight.com/dayhtml_tutorials/lan-

guages/smirks/index.html (accessed April 18, 2008).
	 2.	 Yadav M., Kelley, B.P. and Silverman, S.M. 2004. The potential of a chemical

graph transformation system. In Graph Transformations: ICGT 2004 Proceedings,
ed. H., Ehrig, G., Engels, F., Parisi-Presicce and G., Rozenberg, 83–95. Berlin:
Springer Verlag.

	 3.	 Ugi, I., 1962. The α-addition of immonium ions and anions to isonitriles
accompanied by secondary reactions. Angewandte Chemie International Edition
in English 1(1):8–21.

109

chapter 10

PostgreSQL Extensions

10.1 � Introduction
The basic capabilities of an RDBMS are accessible using the structured
query language (SQL) language. These capabilities include the basic data
types, such and numeric, text, date, etc. and basic functions and opera-
tors, such as length, sqrt, = and like. It is possible to extend the capa-
bilities of the database and of SQL by defining new data types and new
functions. These integrate neatly into the syntax of SQL and allow the new
data types and functions to be easily used in ways similar to the standard
SQL data types and functions. The PostgreSQL relational database man-
agement systems (RDBMS) allows the use of various computer languages
to create new functions, including a procedural language plpgsql native
to PostgreSQL. The plpgsql language is analogous, but substantially dif-
ferent than the sqlplus language used in the Oracle RDBMS. Of course,
it is possible to simply use SQL to define new data types and functions
as well. In this chapter, the focus is on PostgreSQL and the various lan-
guages available to extend its functionality.

Chapter 3 showed how SQL could be used to write a function to con-
vert pressure data values expressed in atmospheres to kilopascals. Other
functions were used in check constraints on a column containing CAS
numbers. This chapter will show how new data types can be defined.
This will require functions to define the method for input parsing and
the method to output data values. There will also be functions to define
operations on the new data types, enabling searches to be integrated eas-
ily with standard SQL syntax.

10.2 � Composite Data Types
A composite type is defined in terms of existing data types. For example,
the following SQL defines a new data type for concentration values.

Create Type conc As (val float, unit text);

This definition is similar to how a table is defined with its columns having
names and data types. It might be possible to collect all concentration val-
ues into one table, but concentration values are very common and used in

110	 Design and Use of Relational Databases in Chemistry

many different ways. They are likely to appear in many tables of a chemical
database. Defining a new data type that can store both the concentration
values and its units can be very helpful. It keeps the value and the units
tightly coupled rather than stored in separate columns of a table.

Consider the following table creation for biological data.

Create Table assay1 (id integer, ki float, ki_unit text,
 ic50 float, ic50_unit text, ec50 float, ec50_unit text);

It is essential to keep the association of ki _ unit with ki in order to
accurately express the value. It is also important that units for one data
value are not accidentally associated with those for a different column.
Naming the corresponding columns as above (ki and ki _ unit, ec50
and ec50 _ unit) helps, but using a composite data type actually enforces
the correct association. This is another example of how database integrity
can be increased. When the conc data type is used, this table becomes:

Create Table assay1 (id integer, ki conc, ic50 conc, ec50 conc);

The units of ki are kept associated with the ki values inside the conc
data type.

When using a composite data type, the external representation of the
value is different than the basic SQL data types. The components are rep-
resented as usual for number and text data types, but parentheses are
used to associate the component values. For example, (1.74,nM) is the
external representation of the conc value 1.74 nanoMolar. The following
SQL produces sample output for an arbitrary compound id.

Select ic50, ec50 From assay1 Where id = 47665;
 ic50 | ec50
-----------+-----------
(12.4,nM) | (1.33,uM)
(10.9,nM) | (2,uM)
(15.,nM) | (1.5,uM)

The individual components of the composite data type are also accessible
using SQL. In this way, the output format can be altered and the individ-
ual components can be used anywhere in an SQL statement. For example,
the following SQL produces sample output as shown below.

Select (ic50).val as "ic50(nM)", (ec50).val||(ec50). unit as ec50
From assay1 where (ic50).val < 10 and (ic50).unit = 'nM';
ic50(nM) | ec50
-----------+-----------
 8.5 | 1.23nM
 0.7 | 250uM
 1.4 | 87uM

Chapter 10:  PostgreSQL Extensions	 111

10.3 � Composite Data Type
for Experimental Values

In most databases, a single value is used to represent an experimental
measure. In many cases however, that value is meant to represent an upper
limit or lower limit. For example, when measuring an IC50, the assay is
sometimes limited in sensitivity and results are reported, for example as
<0.15. If only the value 0.15 is stored, this would be indistinguishable from
results where the value was measured to be equal to 0.15, or >0.15. This
situation is typically handled by creating another column containing a
symbol, < or > or null. When this is done, it complicates the search of
these values because two columns must be considered and there is no
built-in SQL function to perform the search required. This situation can
be handled neatly by introducing a new SQL data type that incorporates
a data value and a flag to denote < or > values.

The following SQL defines the type range, creates a sample table,
and shows a selection of data from the table. Populating the table with
data is not shown here.

Create Type range As (op Text, val Float);
Create Table rangetest (smiles text, ic50 range, name text);
Select * from rangetest;
smiles | ic50 | name
----------------+-------------+--------------------------
BrC(Br)C(Br)Br | (=,10) | 1,1,2,2-tetrabromoethane
OCCSCCCCCCCC | (<,10) | 2-(octylthio)-ethanol
NCCCCCCCC | (>,10) | n-octylamine

The = is used to denote exact values. As with the conc values described
above, keeping the value and the operator together in the same composite
data type is preferred over keeping them in separate columns, especially
when multiple value-operator pairs exist in the same table.

The external representation of this data type uses parentheses. This can
be awkward, so the following input and output functions are defined.

Create Function range_parse(text) Returns range As $$
Select Case
 When substring($1, 1, 1) = '<' Then ('<',substring($1, 2))::range
 When substring($1, 1, 1) = '>' Then ('>',substring($1, 2))::range
 When substring($1, 1, 1) = '=' Then ('=',substring($1, 2))::range
 Else ('=',substring($1, 1))::range
 End;
$$ Language SQL;

Create Function range_text(range) Returns Text As $$
Select Case
 When ($1).q = '=' Then (($1).v)::Text
 Else (($1).q||($1).v)::Text
 End;
$$ Language SQL;

112	 Design and Use of Relational Databases in Chemistry

These help in using the range data type, for example:

Insert Into rangetest (ic50) Values (range_parse('<27.5'));
Select range_text(ic50) from rangetest;
 ic50 |
-------+
 10 |
 <10 |
 >10 |
 <27.5 |

It is always possible to use the ordinary external representation of the
range data type using parentheses, but using range _ format and
range _ text conforms to more common representations of data like
these. It is possible to automate the range to text conversion even more,
using the create cast SQL command, as follows.

Create Cast (range as text) With Function range_text(range)
 As Implicit;

When this is done, the range _ text function is implicitly called whenever
necessary. So, the following SQL would produce the same table as shown
above.

Select ic50::text from rangetest;

Since the range data type is not a standard SQL data type, the standard
SQL operators cannot be used with this data type. However, new opera-
tors can be defined using SQL functions. Since the range data type is so
similar to the float data type, implicit conversion to float is appro-
priate. This automatically allows many of the standard SQL operators to
work with exact(=) range values.

Create Function range_float(range) Returns Float As $$
 Select Case When ($1).q = '=' Then ($1).v End;
$$ Language SQL;
Create Cast (range as float) With Function range_float(range)
 As Implicit;

As with the range _ text conversion, the range _ float conversion
allows range values to be converted to float, whenever possible. This
makes the following SQL work without explicit definition of the sqrt
function for range data types.

Select ic50, ic50::text, ic50::float, sqrt(ic50) from rangetest;
ic50 | ic50 | ic50 | sqrt
---------+----------+----------+------------------
(=,10) | 10 | 10 | 3.16227766016838
(<,10) | <10
(>,10) | >10
(>,27.5) | <27.5

Chapter 10:  PostgreSQL Extensions	 113

Since the range _ float function only interprets exact(=) range values
as float, null is returned whenever a range value contains < or >. So any
function like sqrt, will also return a null value. Since range values can
now be implicitly interpreted as float, many useful functions, such as
sqrt, max, and avg and operators such as +, − and * become available
for range data. These return the expected value for exact ranges, but
null for < and > values.

The < and > operators of SQL can also be used with range data. However,
since the conversion from range to float returns null for range data
containing < and >, the following SQL only selects exact range values.

Select ic50::text, ic50::float, sqrt(ic50) from rangetest
 Where ic50 > 10;

If the table contains range values, such as 20 or 30, these will be correctly
selected. However, if the table also contains range values such as >10, >20,
and >30, these will not be selected using the above SQL.

In order to properly compare range values it is necessary to define
functions that operate directly on the range data type, rather than indi-
rectly after the implicit conversion to float. The following functions
define how two range values should be compared for equality, less than,
greater than, etc.

Create Function range_cmp(range, range) Returns Integer As $$
Select Case
 When ($1).q = ($2).q And ($1).v = ($2).v Then 0
 When ($1).q = '=' And ($2).q = '=' And ($1).v < ($2).v Then -1
 When ($1).q = '=' And ($2).q = '=' And ($1).v > ($2).v Then 1
 When ($1).v = ($2).v And (
 (($1).q = '<' And ($2).q = '=') Or
 (($1).q = '<' And ($2).q = '>') Or
 (($1).q = '=' And ($2).q = '>')) Then -1
 When ($1).v = ($2).v And (
 (($1).q = '>' And ($2).q = '=') Or
 (($1).q = '>' And ($2).q = '<') Or
 (($1).q = '=' And ($2).q = '<')) Then 1
 When ($1).v < ($2).v And (
 (($1).q = '<' And ($2).q = '=') Or
 (($1).q = '<' And ($2).q = '>') Or
 (($1).q = '=' And ($2).q = '>')) Then -1
 When ($1).v > ($2).v And (
 (($1).q = '>' And ($2).q = '=') Or
 (($1).q = '=' And ($2).q = '<') Or
 (($1).q = '>' And ($2).q = '<')) Then 1
 Else Null
 End;
$$ Language Sql;
Create Function range_eq(range, range) Returns Boolean As $$
 Select ($1).q = ($2).q And ($1).v = ($2).v;
$$ Language SQL;
Create Function range_ne(range, range) Returns Boolean As $$
 Select ($1).q != ($2).q Or ($1).v != ($2).v;

114	 Design and Use of Relational Databases in Chemistry

$$ Language SQL;
Create Function range_lt(range, range) Returns Boolean As $$
 Select range_cmp($1, $2) = -1
$$ Language SQL;
Create Function range_le(range, range) Returns Boolean As $$
 Select range_cmp($1, $2) != 1
$$ Language SQL;

Create Function range_gt(range, range) Returns Boolean As $$
 Select range_cmp($1, $2) = 1
$$ Language SQL;
Create Function range_ge(range, range) Returns Boolean As $$
 Select range_cmp($1, $2) != -1
$$ Language SQL;

These functions could be used in SQL, but it is even more convenient to
define SQL operators that use these functions.

Create Operator = (Leftarg = range, Rightarg = range,
 Procedure = range_eq, Commutator = =, Negator = !=);
Create Operator != (Leftarg = range, Rightarg = range,
 Procedure = range_ne, Commutator = !=, Negator = =);
Create Operator < (Leftarg = range, Rightarg = range,
 Procedure = range_lt, Commutator = >, Negator = >=);
Create Operator > (Leftarg = range, Rightarg = range,
 Procedure = range_gt, Commutator = <, Negator = <=);
Create Operator >= (Leftarg = range, Rightarg = range,
 Procedure = range_ge, Commutator = <=, Negator = <);
Create Operator <= (Leftarg = range, Rightarg = range,
 Procedure = range_le, Commutator = >=, Negator = >);

Then, the following SQL selects the correct data from the table.

Select ic50::text, ic50::float, sqrt(ic50) from rangetest
 Where ic50 > range_parse(10);
 ic50 | ic50 | sqrt
---------+-----------+-----------------
 >10 | |
 20 | 20 | 4.47213595499958
 >20 | |
 30 | 30 | 5.47722557505166
 >30 | |
 99.3 | 99.3 | 9.96493853468249

Notice the use of range _ parse(10). This is necessary to force the com-
parison to be done using two range values. If the clause Where ic50 > 10
were used, the SQL parser might choose to convert the range value ic50
to float, rather than convert the constant 10 to range.

Chapter 10:  PostgreSQL Extensions	 115

10.4 � Array Data Types for Two- and
Three-Dimensional Coordinates

For every standard SQL data type available in PostgreSQL, there is a cor-
responding array data type. While it is possible to define a composite data
type for coordinates, consider using the array data type. For example:

Create table ctest (smiles text, name text, coord float[][3]);

The column coord is a two-dimensional array of float values. The exter-
nal representation of array data uses curly braces. For example:

Insert Into coordtest (smiles,name,coord) Values
('CN1C=C(C)C(=O)NC1=O','1-methylthymine', '{
{-0.5223,-1.2374,0.2579},
{-1.8677,-1.3917,0.1177},
{-2.7245,-0.3893,-0.2291},
{-2.2127,0.8622,-0.4679},
{-0.8652,1.0783,-0.3284},
{0.0270,0.0456,0.0406},
{-3.9604,-0.6494,-0.3168},
{0.1995,-2.2271,0.5751},
{1.4782,0.3157,0.1674},
{-3.0687,1.9631,-0.8370}}');

The first dimension refers to the atom number and the second dimension refers
to the Cartesian coordinates of the atom. So, the following SQL would select
the smiles and the coordinates of the first two atoms of 1-methylthymine.

Select smiles, coord[1:2] From coordtest Where name='1-methylthymine';

Arrays are indexed starting with 1, rather than with 0 as is done in some
computer languages. Notice that there are no array upper bounds speci-
fied for the first dimension of coords in the table creation. This allows each
row to have a different number of atoms. The array _ upper function
can be used to return the actual dimension used in any array.

The array _ upper function requires two arguments: the name of the
array and the index for which the upper limit is requested. The function call
array _ upper(coord,1) would return the number of atoms. The func-
tion call array _ upper(coord,2) would return 3. Even though the sec-
ond index upper limit was specified as 3 in the table creation above, this was
done for clarity and because the array was intended to hold 3-D coordinates.
PostgreSQL does not enforce this upper limit. In fact, it would be possible to
insert two-dimensional coordinates into the coordtest table. However, it is
not allowed to mix two- and three-dimensional coordinates within any one
array. Once the first atoms coordinates are given the insert statement, each
succeeding atom must have the same dimensionality of coordinates.

116	 Design and Use of Relational Databases in Chemistry

It may be desirable to keep 3-D and 2-D coordinates in separate tables.
However, it is possible to mix them in the same table. The following SQL will
insert 2-D coordinates for 1-methylthymine into coordtest as created above.

Insert Into coordtest (smiles,name,coord) Values
('CN1C=C(C)C(=O)NC1=O','1-methylthymine', '{
{-0.0000,-0.8250},
{0.7145,-0.4125},
{0.7145,0.4125},
{0.0000,0.8250},
{-0.7145,0.4125},
{-0.7145,-0.4125},
{1.4289,0.8250},
{-0.0000,-1.6500},
{-1.4289,-0.8250},
{0.0000,1.6500}}');

The array _ upper function can be used to determine the actual dimen-
sions of an array. The following SQL would select only the 2-D coordi-
nates arrays from the coordtest table.

Select smiles, coord from coordtest where array_upper(coord,2) = 2;

Each row in the coordtest table represents a molecule. The smiles col-
umn is a string of atom symbols and bonds and the coord column is an
array of atom coordinates. How is it possible to keep the ordering of atoms
in the smiles string in sync with the ordering of atom coordinates in the
coord array? When the coordinates are initially entered from the external
source, they are likely to be in a common chemical file format. The pro-
gram that converts from that file format to SMILES would have to output
the atom coordinates in the same order as the atoms in the SMILES.

In order to keep the appropriate SMILES associated with the corre-
sponding coordinates, consider using a new data type. For example:

Create Type mol (smiles Text, coord Float[][3]);

This type could be used in a table that might also contain a canonical
smiles column, or even other variants of SMILES if desired.

Create Table moltest (amol mol, name Text);

When this table is initially populated, the amol.smiles and amol.coord
would be taken from the conversion program, as would the name.

Insert Into moltest (amol,name) Values (
('CN1C=C(C)C(=O)NC1=O','{
{-0.5223,-1.2374,0.2579},

Chapter 10:  PostgreSQL Extensions	 117

{-1.8677,-1.3917,0.1177},
{-2.7245,-0.3893,-0.2291},
{-2.2127,0.8622,-0.4679},
{-0.8652,1.0783,-0.3284},
{0.0270,0.0456,0.0406},
{-3.9604,-0.6494,-0.3168},
{0.1995,-2.2271,0.5751},
{1.4782,0.3157,0.1674},
{-3.0687,1.9631,-0.8370}}'),
'1-methylthymine');

There are many ways in which coordinates might be stored and used in a
chemical relational database. These are considered more fully in Chapter 11.

10.5 � Functions in Other Languages
The functions in this book have so far used only SQL. Most of these have
used standard SQL although some have made use of PostgreSQL exten-
sions to SQL. PostgreSQL also allows functions to be written in other
languages. The plpgsql procedural language extends standard SQL with
common programming language constructs such as variables, if–then–
else constructs, for and while loops, and exception handling. The plperl
and plpython procedural languages are also available, but offer no spe-
cial advantages, except of course to those programmers proficient in those
particular languages. Finally, functions can be written in the C language.
Since PostgreSQL itself is written in C, these functions use the very same
data structures and functions as the RDBMS itself. Therefore, functions
written in C offer the greatest advantage for speed and efficiency.

10.5.1 � Plpgsql

Creating a function in plpgsql is done in a way similar to the previous exam-
ples using the SQL language. The following function creation shows some
of the useful features of plpgsql and differences from the SQL language.

Create Function center(xmol Mol) Returns Float[3] As $$
Declare
 centrum Float[3] := Array[0., 0., 0.];
 natoms Integer := array_upper((xmol).coord, 1);
 i Integer;
Begin
 For i In 1 .. natoms Loop
 centrum[1] = centrum[1] + (xmol).coord[i][1];
 centrum[2] = centrum[2] + (xmol).coord[i][2];
 centrum[3] = centrum[3] + (xmol).coord[i][3];

 End Loop;
 centrum[1] = centrum[1] / natoms;

118	 Design and Use of Relational Databases in Chemistry

 centrum[2] = centrum[2] / natoms;
 centrum[3] = centrum[3] / natoms;
 Return centrum;
End;
$$ Language plpgsql;

This function takes one argument of the composite data type mol. Notice
that the argument(s) may be named in the function definition. Here, using
(xmol mol) allows the variable xmol to be used as the name of the input
argument instead of $1. The function returns an array of three floats com-
puted as the center (average coordinate) of the input mol. There are two main
sections to every plpgsql function. The Declare section contains variable
names, their type, and initial values. The Begin section contains the code
that performs the necessary operations. There should always be a Return
statement. Using the moltest table defined above, the SQL statement

Select center(amol) From moltest Where name='1-methylthymine';

returns {-1.35168,-0.163,-0.10205}.
There are many other features of plpgsql that make it useful. There are

variables that can hold entire rows of a table, loops that iterate over rows
returned from a select statement, methods of handling errors, and ways of
executing dynamically generated SQL strings. These are described in the
on-line documentation1 and books on PostgreSQL.2

10.5.2 � Plperl, Plpython, Pltcl

There are several other procedural languages supported by PostgreSQL.
Among these are perl, python, and tcl. None of these languages is inher-
ently better than the others. It may be better to write functions using these
languages for several reasons. One of the reasons for using a given lan-
guage is a familiarity with the language. This might occur when a research
group has been developing code in one particular language for years. A
more compelling reason to use one language arises when there already
exists a set of modules that compute the desired results. For example, there
is a set of perl modules called PerlMol for molecular chemistry.3 Consider
how this can be used to write an extension functions for PostgreSQL.

Plperl is not actually different than perl. It simply defines a protocol
for passing and returning arguments to and from a plperl function. This
means that arguments passed to a plperl function use the PostgreSQL
string external representation. For text and numeric arguments, this pres-
ents no problem, since perl routinely uses string representations, even for
numerical data.

The following plperl function will compute a molecular formula from
an input SMILES.

Chapter 10:  PostgreSQL Extensions	 119

Create Or Replace Function MF(text) Returns Text As $EOPERL$
use Chemistry::File::SMILES;
use Chemistry::File::Formula;
my ($s) = @_;
my $mol = Chemistry::Mol->parse($s, format => 'smiles');
return $mol->print(format => formula);
$EOPERL$ Language plperlu;

Notice that the mechanism for passing arguments is identical to an ordinary
perl function – using the @_ variable. The return value is simply a string.

Executing functions written in an interpreted language like perl or
python is slower than using a compiled language. The cansmiles func-
tion written in plperl and using PerlMol (see Appendix) is many times
slower than the cansmiles function available in CHORD from gNova,
Inc. However, PerlMol is open source and contains many useful functions
for processing molecular structures. On the other hand, the SMILES and
SMARTS representations in PerlMol do not include stereochemical centers
and have other limitations compared to the OpenEye OEChem library used
in CHORD. As always, there are trade-offs involved in any decision about
which computer languages and libraries to use for a particular project.

Another important consideration in selecting a procedural language
for functions is the time it takes to develop the function. It is generally
true that developing code in Perl or Python is faster than using a compiled
language like C. It is also more complicated to handle input arguments
and return values from C functions in PostgreSQL.

10.5.3 � Core Chemical Functions

Chapter 7 introduced several core functions that serve as a foundation for a
very useful chemical extension of an RDBMS. The CHORD cartridge from
gNova, Inc. implements those functions and others. The previous section
discussed a PerlMol implementation of some of the core functions. There
are many other useful functions in the PerlMol modules. It is easy to build
a very powerful extension of PostgreSQL using plperl and PerlMol. The
Appendix shows how all of the functions described in Chapter 7 can be
implemented using plperl and PerlMol. The Appendix also shows another
open source implementation using plpythonu procedural language and
the FROWNS toolkit.4 The third implementation of the core functions
shown in the Appendix uses plpythonu and OpenBabel.5

Table 10.1 summarizes the core functions that are implemented using
PerlMol, FROWNS, and OpenBabel. The fingerprint fp function is not
included in the core functions as defined in Chapter 7, but it is a very
useful function for computing similarities of molecular structures and
for speeding up structure matching using the matches function. The fin-
gerprint function fp is not implemented using PerlMol. The isosmiles

120	 Design and Use of Relational Databases in Chemistry

function is not implemented using PerlMol or FROWNS. The keksmiles
function is not implemented using FROWNS.

10.5.4 � C Language Functions
It is possible to write PostgreSQL functions in C. Because PostgreSQL itself
is written in C, any extension functions can take advantage of the internal
representation of RDMBS data. In fact, examples on which C functions
might be based are the very functions used by the PostgreSQL RDMBS
for processing standard SQL data. This puts any C functions on an equal
footing with any built-in SQL functions. For this reason, C functions are
the best choice when issues of speed are important.

The CHORD6 chemical cartridge is a commercial product from
gNova, Inc. It is written using C functions and the OEChem toolkit from
OpenEye. It provides the core functions discussed in this book, such as
cansmiles, matches, count _ matches, list _ matches, smiles _
to _ molfile, molfile _ to _ smiles, and xform. CHORD makes it
possible to efficiently process RDBMS tables containing many millions of
chemical structures.

Unlike the procedural languages discussed above, C language func-
tions are compiled separately. The code itself is not included in the SQL
create function command. Instead, the create function command
refers to a compiled object such as shared object (.so) file located in some
directory on the server running the RDBMS. For example, the CHORD
oe _ smiles function is defined as follows.

Create or Replace Function oe_smiles(Text, integer)
 Returns Text As 'gnova', 'oe_anysmiles'
 Language 'c' Immutable Strict;
Comment On Function oe_smiles(Text, integer)
 Is 'smiles to smiles of various types';

Table 10.1  Core Extension Functions

Function Name Returns Arguments

valid Boolean smiles
cansmiles Text smiles
isosmiles Text smiles
keksmiles Text smiles
matches Boolean smiles, smarts
list_matches Integer[] smiles, smarts, imatch, istart
count_matches Integer smiles, smarts
molfile_to_smiles Text molfile text
smiles_to_molfile Text smiles text
fp Bit smiles, nbits, maxpath
contains Boolean bit, bit

Chapter 10:  PostgreSQL Extensions	 121

This defines the SQL function oe _ smiles, which is realized by calling
the C function oe _ anysmiles in the shared object file gnova.so. The
definition of the input arguments and return values is done in the same
way as for a function written in any other procedural language.

There is an open-source extension of PostgreSQL called pgchem.7 It
uses C functions and OpenBabel. It implements some of the core functions
described in Chapter 7. The names of the functions are not the same as the
names used here. Using pgchem, it should be possible to perform most of
the operations represented by the core functions described in this book.

The Appendix contains a simple C language function to return the
number of bits set in a bit data type. The PostgreSQL Web site documenta-
tion contains examples of C language functions.

10.6 � Object RDBMS
PostgreSQL is generally referred to as an Object Relational Database
Management System (ORDBMS). The use of the word object implies objects
in the sense of an object-oriented computer language. While not intended
to be fully object-oriented in the same sense as a computer language, an
ORDBMS shares the essential aspects of objects. These include composite
data types, methods (functions), and inheritance.

This chapter has shown how composite data types can be of great use
in chemical databases. The components of a composite data type are either
basic SQL data types, or other composite data types. This is the same way
an object is defined in an object-oriented computer language. This level of
abstraction can help simplify the development of complex databases.

Another important aspect of objects is the methods that operate on
them. An ORDBMS calls these functions, but the effect is the same. As
shown in this chapter, the functions defined for new data types enable
them to be integrated in the SQL language and handled just like standard
SQL data types. This can be by casting the data type, for example, to allow
range data to be treated as float. New functions that operate exclusively
on range data can be defined, such as range _ cmp. The ability to define
operators of new data types enhances their usability and integration into
SQL even more.

An ORDBMS is a kind of hybrid of a traditional RDBMS and a fully
object-oriented OODBMS. The range of types of DBMS and their advan-
tages and disadvantages is discussed elsewhere.8–10

References
	 1.	 Plpgsql. 2008. http://www.postgresql.org/docs/8.2/static/plpgsql.html

(accessed April 18, 2008).
	 2.	 Stones R. and Matthew, N. 2005. Beginning databases with PostgreSQL.

Berkeley: Apress.

122	 Design and Use of Relational Databases in Chemistry

	 3.	 Tubert-Brohman, I. PerlMol—Perl Modules for Molecular Chemistry. 2006.
http://www.perlmol.org/ (accessed April 18, 2008).

	 4.	 Kelley, B. FROWNS. 2002. http://frowns.sourceforge.net/ (accessed April
18, 2008).

	 5.	 Open Babel: The Open Source Chemistry Toolbox. 2008. http://openbabel.
sourceforge.net/ (accessed April 18, 2008).

	 6.	 O’Donnell, T.J. CHORD. 2008. http://www.gnova.com/ (accessed April 18,
2008).

	 7.	 Schmid, E.-G. 2004. Pgchem::tigress extension to PostgreSQL. http://
pgfoundry.org/projects/pgchem/ (accessed April 18, 2008).

	 8.	 Grimes, S. 1998. Modeling object/relational databases. http://www.dbmsmag.
com/9804d13.html (accessed April 18, 2008).

	 9.	 Object-relational database. 2008. http://en.wikipedia.org/wiki/Object-
relational_database (accessed April 18, 2008).

	 10.	 Devarakonda, R. S. 2001. Object-relational database systems—The road
ahead. http://www.acm.org/crossroads/xrds7-3/ordbms.html (accessed
April 18, 2008).

123

chapter 11

Three-Dimensional Molecular
Structure Tables

11.1  Introduction
In this chapter, various ways are discussed in which tables might be used
to store three-dimensional molecular structures. In these tables, each row
represents a structure. The columns contain molecular properties, which
may consist of arrays of atom properties. In previous chapters, the use of
new data types was introduced to improve the way some data are stored
and searched. Array data types were suggested as a way of storing atomic
coordinates for a molecule. In this chapter, other ways will be shown in
which molecular structures can be stored and searched in a relational
database management system (RDBMS). These include the use of sim-
plified molecular input line entry sytem (SMILES) and entire files from
external sources, such as molfiles or structure data files (SDFs). Methods
are shown to input, output, convert, and search molecular structures from
within the database. The structured query language (SQL) statements
shown are valid in PostgreSQL but may not be valid using other RDBMS.
For example, the array data type is implemented differently in Oracle
compared with PostgreSQL.

11.2 � Using Tables Instead of Files
Computer files are routinely used to store chemical information. It might
seem that there is no practical alternative, since computer files are ubiqui-
tous and deeply ingrained into our ways of thinking about computers and
information. A file is an excellent way to temporarily store information
in order to move it from one computer to another, for example, by e‑mail,
ftp, or http. Keeping a library of even just hundreds of files of molecu-
lar structures can be inefficient and confusing. Maintaining a schema of
molecular structure tables in an RDBMS is efficient, structured, and reli-
able. Overcoming limitations of using many single files to store molecular
structures have been attempted. For example, an SDF can store multiple
molecular structures using a special symbol ($$$$) to separate structures
within the file. It is also possible to store data about each structure by
adding records to the file. But these additions to the file only increase its

124	 Design and Use of Relational Databases in Chemistry

complexity and complicate (or even break) existing programs that need to
read and write such files. For example, PDB files can be difficult to read and
write, since there are many flavors of this “standard” file format with vari-
ous additions to satisfy the needs of various computer programs. There
are dozens of other molecular file formats, each with its own format.

One solution to the multitude of file formats for molecular structures
is to provide a common program to read and write each file type.1 A good
example is Babel or OpenBabel.2 A common data structure, internal to the
program, serves as a hub for storing and processing the molecular struc-
ture. Components can be added to allow new file formats to be read and
written. This approach shares some features with the RDBMS approach.
Each molecular file format corresponds to an external representation of
the molecular structure and the internal data structure corresponds to
the internal representation. In the RDBMS approach, the various file for-
mats are also the external representation of molecular structure, but the
common data structure is a schema with tables holding the molecular
structure information. The purpose of this chapter is to propose ways to
move away from file formats entirely, preserving only the ability to read
files formats for legacy data. A later section of this chapter will show how
molecule tables in an RDBMS can effectively be used instead of molecular
structure files by client programs.

11.3 � Molfile and Other Common File Formats
The molfile or sdf file format is a very common way to store molecular
structures. This can be considered as an external representation of a
molecular structure data type. There are many other common file formats
in use and only the essential features common to all of them will be con-
sidered here. The essential aspects of molecular structure contained in
these files are atomic number or atomic symbol, formal atomic charge,
bonded atom pairs, and bond orders. These are the minimum attributes
necessary to define an unambiguous valence bond molecular structure.
Other atom properties, such as atom types might also occur in these files,
but these are specific to particular modeling programs and will not be dis-
cussed here. Sometimes molecular properties are also stored in these files.
A way to store these properties in relational tables is discussed.

It would be possible to create tables using columns to store the atomic
symbols and bond information found in molecular structure files, reflect-
ing the column style format of the file itself. Instead, a SMILES representa-
tion of this valence bond information is preferred. SMILES is a compact text
string containing the same information as the columns of atom symbols and
bonds. It can also be used directly in the search functions described in ear-
lier chapters. It is desirable to parse the molecular properties in molecular
structure files in order to store them in data columns for possible searching

Chapter 11:  Three-Dimensional Molecular Structure Tables	 125

using SQL. The properties are not stored as columns in the structure table.
Instead, a separate table is created related to the structure table through the
use of a structure id primary key. If necessary, the entire molecular struc-
ture file can be stored as a text string. This might serve as a repository of
these files. It should be stored in a separate table related by use of a foreign
key to a main structure table containing a unique primary key.

Although SMILES is an entirely equivalent way of storing a connec-
tion table of atoms and bonds, it is sometimes desirable to create a tradi-
tional connection table, for example, when an external program requires
it. The extension functions smiles _ to _ symbols and smiles _ to _
bonds accept a SMILES string and produce an array of either symbols
or bonds. These are discussed in a later section of this chapter. Several
implementations of these functions are shown in the Appendix.

It may also be desirable to store the atomic coordinates read from
these files. The purpose of parsing the coordinates from the file and put-
ting them into a separate column is to enable use of the coordinates from
within the database. If the column is properly defined as a numeric or
float column, this will also ensure that the coordinates are proper num-
bers. If there is no need for atomic coordinates, it is not necessary to cre-
ate a column for these. Later sections of this chapter will discuss ways in
which these atomic coordinates might be used in SQL functions.

In a molecular structure file, an atom record typically contains all of the
information about that atom: the atomic number or symbol, the charge, coor-
dinates, etc. When such a file is parsed into a SMILES string and an array of
coordinates, it is important to be able to associate the proper coordinate with
the proper atom. The use of canonical SMILES ensures this. Because canoni-
cal SMILES defines a unique order of the atoms in a molecule, that order is
used to store the coordinates. Later sections of this chapter will discuss ways
in which atomic coordinates might be stored in columns of a table.

There are many programs available to parse the various molecular
structure file format. OpenBabel is an open-source program that can read
many file formats and produce a SMILES representation of molecular
structure. There are many other commercial products that can do this as
well. In the following examples, the OpenBabel/plpythonu implementa-
tion of molfile parsing will be used. This was introduced in Chapter 10.
The code to define the necessary functions is shown in the Appendix.

11.4 � Processing SDF Files
A common way of distributing structural and chemical data is in the form
of an SDF file. An SDF file is a collection of compounds stored in molfile
format and separated with a record containing the string $$$$. Many com-
pound vendors make their libraries available this way. Many research
publications include SDF files of structures and data. In the following

126	 Design and Use of Relational Databases in Chemistry

example, SDF files were obtained from QSAR world,3 a Web resource that
curates dozens of data sets used in quantitative structure activity relation-
ship (QSAR) studies. The VLA-44 Integrin antagonists were selected. This
file contains structures and data for 94 compounds.5

One way to organize tables in a database is to define a new schema to
contain related tables. Here, we will create a schema name vla4. Using an
expansion of the example from the previous chapter, the following three
tables are suggested as a starting point. The entity relationship diagram
in Figure 11.1 illustrates the vla4 schema.

Create Schema vla4;
Create Table vla4.sdf (id Integer, molfile Text);
Create Table vla4.structure (id Integer, name Text, cansmiles Text,
 coord Float[][3], atom Integer[]);
Create Table vla4.property (id Integer, name Text, tvalue Text,
 nvalue Numeric);

The column structure.id is a unique integer relating the structure,
sdf and property tables. The sdf.molfile column contains the mol-
file for each structure as defined by the vendor. The structure.name
and structure.cansmiles columns contain the name and canonical
smiles parsed and computed from the molfile. The structure.coord
column will contain an array of atomic coordinates. The structure.
atom column will contain an array of atom numbers from the file in
canonical order to correspond to the atom order in the canonical SMILES.
The OpenBabel/plpythonu extension functions molfile _ mol and
molfile _ properties will be used to parse the vendor SDF molfiles
and populate these tables. The molfile column of the sdf table is first
populated from the SDF file, using the following perl script.

structure

sdf

property
name

molfile

name
tvalue
nvalue

cansmiles
coord

atom
PK id*

PF id*

FK id*

TEXT

TEXT

TEXT
NUMERIC[]
INTEGER

INTEGER

INTEGER[]

TEXT
TEXT

NUMERIC
INTEGER

Figure 11.1  Entity relationship diagram for VLA4 schema.

Chapter 11:  Three-Dimensional Molecular Structure Tables	 127

print <<EOSQL;
Create Schema vla4;
Create Sequence vla4.structure_id_seq;
Create Table vla4.sdf (id Integer
 Default Nextval('vla4.structure_id_seq'), molfile Text);
Create Table vla4.structure (id Integer Primary Key
 Default Nextval('vla4.structure_id_seq'), name Text, cansmiles
Text,
 coord Numeric[][3], atom Integer[]);
Create Table vla4.property (id Integer References vla4.structure (id),
 name Text, tvalue Text, nvalue Numeric);
Copy vla4.sdf (molfile) From Stdin;
EOSQL

while (<stdin>) {
 if (/\$\$\$\$/) {
 print;
 } else {
 s/\r//; chomp; print; print "\\n";
 }
}

The script contains a few SQL statements needed to create the schema
and tables. Notice that a named sequence, val4.structure _ id _ seq
is created. This is used to create a new structure.id whenever a new
row is added to either the vla4.sdf or vla4.structure table. The
structure.id column is chosen as the primary key. The SDF file is read
from standard input and separated into individual molfiles using the $$$$
delimiter. The output from this script, named loader, is piped into the
psql command as follows.

perl loader <vla-4.sdf | psql mydb

The vla4.structure table is chosen to contain the primary key instead
of the vla4.sdf table. This allows the vla4.sdf table to be dropped at a
later time without upsetting the relational integrity of the overall schema.
It would be possible to define the vla4.sdf.id column as a foreign key to
the vla4.structure.id column when the tables are created. However,
if that were done it would not be possible to insert into the vla4.sdf
file without a corresponding row in the vla4.structure table. After the
vla4.structure table is populated (see below), a foreign key constraint
will be added to the vla4.sdf table.

At this point, the vla4.sdf table has been created in the database
named mydb. The molfile column contains the molfile for each structure
in the sdf file. The sdf.id column contains a unique integer that can be
used to relate the vla4.property table. Notice the use of the default
value nextval('vla4.structure _ id _ sql') in the SQL statement
that creates the vla4.sdf table. This causes the sdf.id column to contain

128	 Design and Use of Relational Databases in Chemistry

a unique serial integer each time a row is inserted. The structure.id
uses the same sequence, so that it may be kept in relational integrity with
the vla4.sdf table. Eventually, the sdf.id column will become a pri-
mary foreign key having a one-to-one relationship with structure.id.
This ensures that there must be exactly one sdf row for each structure
row. The property.id column has a foreign key constraint related to the
primary key column vla4.structure.id. This ensures relational integ-
rity among the tables in this vla4 schema.

The next step is to parse the molfile data into separate columns of the
table. The molfile _ mol function expects a molfile and returns a com-
posite data type named mol. This data type is defined as:

Create Type openbabel.mol As (name Text, cansmiles Text, coords
 Float[][3], atoms Integer[]);

This composite type is created when the openbabel schema and its asso-
ciated functions are created using the code contained in the Appendix.
The atoms integer array is a map of the ordering of the atoms as they
occur in the input file and the order as they occur in the canonical Smiles.
This is not used here, but may be useful for other purposes. It is not neces-
sary to issue the create type SQL command again during the loading
of the data from the vla-4.sdf file. The data type may be used through-
out the database, once it is created. It does not belong only to the schema
openbabel, it simply resides there because its use is associated with
functions in that schema. If this data type is used throughout the data-
base, it might be moved to a more public schema.

The following SQL distributes the data returned from the molfile _
mol function into the columns of vla4.structure.

Insert Into vla4.structure (id, name, cansmiles, coords, atoms)
Select id, (openbabel.molfile_mol(molfile)).* from vla4.sdf;

Notice that the individual elements of the composite data type value
returned by the openbabel.molfile _ mol function must be used.
For example, (openbabel.molfile _ mol(molfile)).cansmiles
refers to the cansmiles element of the composite value returned by mol-
file _ mol function. The function return value (openbabel.mol-
file _ mol(molfile)).* refers collectively to all the elements of the
composite data type. The function return value openbabel.molfile _
mol(molfile) refers to the single composite data value itself. This cannot
be used in the insert statement shown before, since the insert requires
5 data values: id, name, cansmiles, coords, and atoms. At this point,
the table vla4.structure looks like the sample shown in Figure 11.2.
Only the first 30 rows are shown and the data in each column is truncated
for this preview.

Chapter 11:  Three-Dimensional Molecular Structure Tables	 129

Next, the foreign key constraint is added to the vla4.sdf table. This
ensures relational integrity between the vla4.sdf table and the vla4.
structure table. The following SQL is used.

Alter Table vla4.sdf Add Constraint sdf_id_fk Foreign Key (id)
 References vla4.structure (id);

Finally, any properties contained in the molfile will be stored in a sepa-
rate table containing the text value copied from the file as well as a
numeric value for the property, if that is appropriate for the property.
There will be a one-to-many relationship between the structure and
property table, allowing any number of properties to be stored for each
structure. The function openbabel.molfile _ properties is shown
in the Appendix. It expects a molfile and returns a composite data type,
defined as follows.

Create Type openbabel.named_property As (name Text, value Text);

This composite type is created when the openbabel schema and its asso-
ciated functions are created using the code contained in the Appendix. It
is not necessary to issue this SQL command again during the processing
of the data from the vla-4.sdf file.

The following SQL is used to parse the molfile column from the
vla4.structure table using the openbabel.molfile _ proper-
ties function. The name and value fields of the composite data type
are inserted into the vla4.property table, along with the appropriate
id selected from the vla4.structure table along with the molfile
column.

Figure 11.2  Sample output from phpPgAdmin showing how coordinates and
atom indexes are stored as arrays.

130	 Design and Use of Relational Databases in Chemistry

Insert Into vla4.property (id, name, tvalue)
 Select id, (molfile_properties).name, (molfile_properties).value From
 (Select id, openbabel.molfile_properties(molfile) From vla4.sdf) atmp

This insert statement is a bit more complex than the one that inserted
rows into the vla4.structure table. In that table, only one row was
returned from the molfile _ mol function. The molfile _ properties
function returns multiple rows for each molfile, when there are multiple
properties for each molfile. The second select statement above (the one
in parentheses and identified with the name atmp) selects all the rows for
each molfile. The first select statement selects all the columns from each
returned row from molfile _ properties. These are then inserted into
the vla4.property table.

Finally, the nvalue column of the vla4.property table can be populated
when possible. This column stores the numerical value of the property.
Since not all values are numerical, this column may have null entries. The
purpose is to enable efficient use of numerical data when appropriate,
for example, to select by value, sort, apply mathematical functions, etc.
The following SQL will update the nvalue column when possible with
a numeric value. The tilde operator in the where selects text values that
match the regular expression. The expression shown here allows integers,
decimal values, and scientific notation using E or e for the exponent, for
example 6.023E23.

Update vla4.property Set nvalue = tvalue::numeric
 Where tvalue ~ E'^[+-]?[0-9]+(\\\\.[0-9]*)?([Ee][+-]?[0-9]+)?\$';

It is possible to create additional columns in the property table, for exam-
ple to contain an integer representation of the data value if that is consid-
ered necessary.

Once the data from the molfiles are extracted and loaded into the
val4.sdf table, the table could be deleted. The vla4.sdf table might
also be retained as a backup of the original sdf file, easily accessible from
within the database for further processing. In either case, the vla4.sdf
table will not create any overhead while using the vla4.structure or
vla4.property tables. It will merely use space in the vla4 schema, in
the same way that a backup copy of the original sdf file would use space
in a folder on the computer’s disk.

It may seem that some information will have been lost if the original
molfile is discarded. For example, the list of atomic symbols and bonds is
not stored directly in the vla4.structure table. The cansmiles string,
however, does contain this information. It may be necessary for some pur-
poses to extract this information, for example, when an external program
does not read SMILES but instead requires a list of atomic symbols and
bonds. This is discussed more in the next section. A connection table can

Chapter 11:  Three-Dimensional Molecular Structure Tables	 131

be generated from SMILES using the functions smiles _ to _ symbols
and smiles _ to _ bonds. These functions are shown in the Appendix
using both the FROWNS and OpenBabel toolkits. The following SQL pro-
duces a connection table in the form of an array of atom symbols and bond
orders and indices.

select smiles,smiles_to_symbols(smiles), smiles_to_bonds(smiles)
 from nci.structure where cas = '1467-70-5';
smiles | smiles_to_symbols | smiles_to_bonds
----------------------+------------------------+----------------------------
c1cc(oc1)C(=O)C(=O)O | {C,C,C,O,C,C,O,C,O,O} | {{1,2,4},{2,3,4},{3,4,4},…}

The smiles _ to _ symbols and smile _ to _ bonds functions return
arrays of values. In the sample output above, the smiles _ to _ bonds
output has been truncated for easier viewing. Some client programs may
expect this information as separate rows, as if they were records in a file.
These arrays may be cast into that form by using a plpgsql function that
returns elements of an array as rows. This is shown in the next section.

11.5 � Using Tables Instead of Files
in Client Programs

If an RDBMS is used to store molecular structures, this change requires
modifications to existing computer programs that read molecular struc-
ture files. The modifications are confined simply to the portions of the com-
puter programs that read and write files. These portions become functions
that use SQL to access an RDBMS. Chapter 5 introduced methods for client
programs to access data stored in RDBMS tables using SQL. This section
shows how an existing program that reads and writes molfiles can be read-
ily modified to use an RDBMS. First, however, it is necessary to describe
the schema and tables used to store molecular structures. It is important
that these tables can accommodate not only information from molfiles, but
also information from other molecular file formats in common use.

Consider the vla4 schema described above. It might be possible for the
client program to read the molfile data directly from the vla4.sdf file, but
the goal is to use the data in the vla4.structure and vla4.property
tables. Recall that these tables, or ones like them in another schema, could
have been created from files other than molfiles. These tables could also
have been populated with other client programs that no longer use files at
all, but instead store molecular structure data in RDBMS tables.

A traditional client program reads from a molecular structure file and
performs some computation that depends on the molecular structural data.
This read(file) function reads particular columns or fields from the file. A
different function would be necessary for each type of file format. A tradi-
tional client program can be modified to read molecular structure data from

132	 Design and Use of Relational Databases in Chemistry

an RDBMS table by substituting another function for the read function. The
getdata(name, table) function would select data from an RDBMS table. The
following python code snippet shows one example of such a function.

 def getdata(self, name, table):
 _insql = "select smiles_to_symbols(cansmiles) as symbols, coords
 from %s where name=''%s''" % (table, name)
 _sql = "select * from symbol_coords('%s') as (symbol text, x
 numeric, y numeri c, z numeric)" % (_insql)
 for (_sym, _x, _y, _z) in ((self.conn).query(_sql).getresult()):
 (self.symbols).append(_sym)
 (self.coords).append((_x, _y, _z))
 self.natoms = len(self.symbols)
 return

This method is part of a class containing self.natoms, self.symbols,
and self.coords. The final piece to be explained here is the plpgsql func-
tion symbol _ coords. This function, shown in the Appendix, accepts
an SQL statement that selects an array of symbols and an array of coordi-
nates. These are then returned as rows in order to “read” them as if they
were records in a file. The following command shows the first few rows
output from the symbol _ coords function called using the command
line psql function in a way similar to the getdata method above.

select * from
 symbol_coords('select openbabel.smiles_to_symbols(cansmiles) as
 symbols, coords from vla4.structure where name=''BMCL-1051-38''')
 as (symbol text, x numeric, y numeric, z numeric);

symbol | x | y | z
--------+---------+---------+-----
 O | -4.067 | 1.6258 | 0.0
 C | -3.4418 | 1.1875 | 0.0
 O | -3.4418 | 0.3625 | 0.0
 C | -2.7273 | 1.6 | 0.0
 C | -2.7273 | 2.425 | 0.0
 C | -3.4418 | 2.8375 | 0.0

Once methods like these are in place, they readily replace traditional read
statements. RDBMS access methods are available for almost every pro-
gramming language, not just python as in this example. These were dis-
cussed in Chapter 5.

11.6 � File Import, Export, and Conversions
The purpose of this book is not to provide another method for intercon-
version of molecular file formats. The focus of this chapter it to provide
enough background information to allow the database designer to create

Chapter 11:  Three-Dimensional Molecular Structure Tables	 133

a schema of tables that can effectively represent molecular structure with-
out regard to its external file format representation. It is often necessary
to import a molecular structure stored in some particular file format.
The extension functions molfile _ to _ smiles, mofile _ mol, and
molfile _ properties accomplish this for molfiles. It is sometimes
desirable to export a molecular structure using some particular molecular
file format. The core extension function smiles _ to _ molfile will cre-
ate a string representation of a molfile. The implementations of this func-
tion shown in the Appendix do not make use of the coordinates. It would
be possible to create an import and export function for each molecular file
format of interest. Using the OpenBabel implementation of the core exten-
sion functions would be an excellent starting point for such an exercise.

11.7 � Functions Using Three-Dimensional
Atomic Coordinates

The previous section shows how molecular structures stored in an RDBMS
can be made available to client programs that traditionally read molecu-
lar structure files. The advantage of storing molecular structures in an
RDBMS is that the information can be used from within the database, as
well as by external clients. For example, it would be possible to search a
table of molecular structures for three-dimensional overlap, much like it
might be searched for substructure match. Of course, such search func-
tions need to be written and installed as extensions to an RDBMS, just like
the matches functions was done for substructure searches. This section
shows some possible ways this might be accomplished.

There are many methods to overlap one molecule’s three-dimensional
coordinates onto another molecule’s. Perhaps the simplest method simply
finds the center of one molecule and translates the other molecule to that
central coordinate. The following functions can be used to do this. The
align function takes two arrays of coordinates and returns the difference
between the two centers. This difference can be applied to either molecule
to align it with the other. The functions center and difference are util-
ity functions.

Create Or Replace Function align(amol float[][3], float[][3])
Returns float[3] A s $$
 Select difference(center($1), center($2));
$$ Language SQL Immutable;

Create Or Replace Function center(amol float[][3]) Returns float[3]
As $$
Declare
 centrum Float[3] := Array[0., 0., 0.];
 natoms Integer := array_upper(amol, 1);
 i Integer;

134	 Design and Use of Relational Databases in Chemistry

Begin
 For i In 1 .. natoms Loop
 centrum[1] = centrum[1] + amol[i][1];
 centrum[2] = centrum[2] + amol[i][2];
 centrum[3] = centrum[3] + amol[i][3];

 End Loop;
 centrum[1] = centrum[1] / natoms;
 centrum[2] = centrum[2] / natoms;
 centrum[3] = centrum[3] / natoms;
 Return centrum;
End;
$$ Language plpgsql Immutable;

Create Or Replace Function difference(float[3], float[3]) Returns
float[3] As $$
 Select ARRAY[$2[1] - $1[1],
 $2[2] - $1[2],
 $2[3] - $1[3]];
$$ Language SQL Immutable;

The align function might be used as follows, to align all structures in a
table to a reference structure selected by name.

Select ref.name as ref, others.name, align(ref.coords, others.coords) from
(Select name, coords from vla4.structure where name = 'BMCL-805-1') ref,
(Select name, coords from vla4.structure) others;

The align function can be expanded in many ways. For example, instead
of simply finding the center of each molecule, a substructure could be
used. This might be defined as a SMARTS match that is expected in each
of the molecules to be aligned. This would be a natural outcome of a sub-
structure search. In order to create an array of coordinates for a subset of
a molecule, the following function could be used.

Select ref.name as ref, others.name, align(ref.coords, others.coords) from
(Select name, subset(cansmiles,'CSC', coords) as coords
 from vla4.structure where name = 'BMCL-805-1') ref,
(Select name, subset(cansmiles, 'CSC', coords) as coords
 from vla4.structure Where matches(cansmiles, 'CSC')) others

This SQL statement is similar to the previous SQL statement, except that
the subset function is used to select only those elements of the coords
array for atoms that match the target of interest, here the substructure
CSC. The subset function is defined as follows.

Create Or Replace Function subset(smiles text, smarts text, coords
float[][3]) Returns float[][3] As $$
Declare
 scoords Float[][3];

Chapter 11:  Three-Dimensional Molecular Structure Tables	 135

 atoms Integer[];
 i Integer;
 j Integer;
 nmatch Integer;
Begin
 Select gnova.list_matches($1, $2, 1, 1) into atoms;
 if atoms Is Null Then
 Return Null;
 End If;
 nmatch = array_upper(atoms, 1);
 i = atoms[1];
 scoords = coords[i:i][1:3];
 For j In 2 .. nmatch Loop
 i = atoms[j];
 scoords = scoords || coords[i:i][1:3];
 End Loop;
 --Return scoords[2:nmatch+1];
 Return scoords;
End;
$$ Language plpgsql Strict Immutable;
Comment On Function subset(text, text, float[]) Is
'Return subset of molecule''s atomic coordinates for atoms matching
SMARTS';

There are a great many more elaborate methods that might be used to align
three-dimensional molecular structures. Each of these could be imple-
mented as new SQL functions and used in SQL statements like the ones
above to produce the alignment to be applied to each structure of interest.

11.8 � Conformations
When a project involves three-dimensional structures, it often includes
multiple conformations for any particular structure. In previous sections
of this chapter, an array of three-dimensional coordinates was stored for
each structure. When a project needs multiple conformations, another
table is needed to accommodate this. Instead of a coords column in a
structure table, a conformations table will be used. The unique cid
column in the structure table will function as a primary key related to
a cid foreign key column in the conformation table. The entity relation-
ship diagram in Figure 11.3 illustrates this. This effectively allows many
conformations for any structure. Each one has an energy and comment

structure conformation

comment
energy
coords

smiles
PK cid*

FK cid*
TEXT

name TEXT

INTEGER
TEXT

NUMERIC[]
NUMERIC

INTEGER

Figure 11.3  Entity relationship diagram for structures and conformations.

136	 Design and Use of Relational Databases in Chemistry

associated with it, as well as an array of coordinates. If more information
is needed for conformations, additional columns can be added. Enough
information must be stored in the conformation table to allow a meaning-
ful selection. This might include a method, date, or any other identifying
information.

In order to select conformations using the vla4 schema described
earlier, the following SQL might be used.

Select structure.cansmiles, structure.name,
 conformation.energy, conformation.coords
 From vla4.structure Join vla4.conformation Using (id)
 Where name = 'BMCL-1051-14';

This applies the same technique used throughout this book to join two
related tables to select data from either table. This statement will select all
the conformations for the named compound. Of course, further selection
criteria could be added as desired to select the required conformation(s).

11.9 � Other Representations of Three-Dimensional
Molecular Structure

While atomic coordinates form the fundamental structure of a molecule,
many methods prefer to represent a three-dimensional structure as a sur-
face or a shape. Of course, these are ultimately computed from the atomic
coordinates and perhaps atomic partial charges. It may be possible to rep-
resent these molecular surfaces or shapes as an array of three-dimensional
coordinates. These could be stored as a column in the database analo-
gous to the array of atomic coordinates. It might be necessary to create
another data type, perhaps a composite data type, to store molecular sur-
faces or shapes. Once these representations are stored, they can be used
in new SQL functions to assist in searching based on molecular surface
or shape.

References
	 1.	 O’Donnell, T.J., Rao, S.N., Koehler, K., Martin, Y.C., and Eccles, B. 1990. A

general approach for atom-type assignment and the interconversion of
molecular structure files. J. Comp. Chem. 12(2):209–214.

	 2.	 OpenBabel. http://openbabel.sourceforge.net/ (accessed April 18, 2008).
	 3.	 QSAR World. http://www.qsarworld.com/ (accessed April 18, 2008).
	 4.	 Porter, J.R., Archibald, S.C., Brown, J.A. et. al. 2003. Dehydrophenylalanine

derivatives as VLA-4 integrin antagonists. Bioorg. Med. Chem. Lett. 13(5):
805–808.

	 5.	 VLA4 dataset. http://www.qsarworld.com/qsar-datasets-porter.php
(accessed April 18, 2008).

137

chapter 12

More on Client and
Web Interfaces to RDBMS

12.1  Introduction
Most of the emphasis in this book has been on ways of using structured
query language (SQL) and relational database management systems
(RDBMS). Using functions written in SQL and other languages greatly
extends the capabilities of existing RDBMS for handling molecular struc-
tures. Because the RDBMS is run as a server, a client program is necessary
to interact with the RDBMS. Chapter 5 introduced several common client
programs to do this. When developing a more complex system, existing
applications may not satisfy the needs of the project. In that case, it becomes
necessary to develop new client programs to interact with the RDBMS.

This chapter discusses ways in which more complex client applica-
tions can be written. These programs use SQL to select, insert, delete, or
update tables in the database. Depending on the computer language used
for the client program, a variety of interface libraries is available.

One advantage of using client programs is that they are independent
of the RDBMS. For example, a client program written in Perl and using
Perl::DBI could run equally well using an Oracle or PostgreSQL RDBMS to
store the tables. Of course, there are some differences in SQL syntax among
the various RDBMS. It is also possible to use certain unique features of
one RDBMS that are not available in others. However, with some care, it is
quite possible to write client programs that can easily run correctly when
interfaced with most any RDBMS. Another advantage of using client pro-
grams is that they can be run on any client. This frees the database server
to spend more of its resources on the database itself.

One disadvantage of using client programs is that data must be trans-
ferred to and from the server. Depending on how much data is required,
this can cause a client program to run less efficiently than a server func-
tion run as an extension of the RDBMS.

Most new client programs will benefit from a judicious use of both
new server-side SQL functions and new client functions. It is wise to care-
fully consider which operations are best done on the RDBMS server and
which are done using a client program. There are several suggestions to
consider in designing the best system for a project.

138	 Design and Use of Relational Databases in Chemistry

The following suggestions may help design and implement a better
system for a project needing a client interface.

Try to use SQL as much as possible.•	
Consider extending SQL with new functions.•	
Do not implement the same functionality in different clients.•	
Only transfer data the user needs to see.•	
Make good use of existing libraries.•	

Try to use SQL as much as possible. There are many useful features of
SQL that can do much of what is needed when handling sets of data. For
example, it would be wasteful to have a client program request an entire
table in order to select certain rows. The SQL select statement is designed
to efficiently search rows of a table. SQL can also sort selected rows using
the order clause. When it is necessary to combine results from different
queries, consider using the set operations of SQL, such as intersect and
union rather than combining selected sets in the client program. There
are other less obvious ways of using SQL to compute results. For example,
the method used to compute polar surface area described in Chapter 8
makes use of SQL’s ability to join tables and sum data in chosen columns.
Not every computational chemistry method is amenable to use with SQL.
For example, it is unlikely that a quantum mechanical energy could be
efficiently computed using SQL compared to using a client.*

Consider extending SQL with new functions. This might be consid-
ered the fundamental suggestion in this book. There are many useful
functions built into SQL, but sometimes a simple extension function can
allow an SQL operation to run completely on the database server without
having to pass data to the client. For example, to sort selected rows by and
value in a column requires only simple SQL. If the data needed to sort the
rows is not part of data being selected, consider writing a function that
will provide the value to be sorted. For example, if it were necessary to
sort by the number of atoms in a molecule, a natoms(smiles) function
could be used in the order clause of SQL.

Do not implement the same functionality in different clients. If many
different clients require the same functionality, it is better to encapsulate
that in one central location—namely the RDBMS. For example, if it is nec-
essary to compute molecular weight, it is better to have a server-side func-
tion do this in a consistent way rather than to implement such a function
in each of the languages used for client applications. This may be more
obvious for functions like fingerprints that are more difficult to re-imple-
ment in various languages. Moreover, it is essential that fingerprints be

*	 Since SQL join bears many similarities to matrix multiplication, this is not as crazy an
idea as it may sound.

Chapter 12:  More on Client and Web Interfaces to RDBMS	 139

computed identically for identical molecules. Putting that functionality
into the RDBMS itself and making it accessible through SQL is the best
way to do this.

Only transfer data the user needs to see. There is always a need to
transfer some data to and from the server. When a user enters data from a
file or other source, it must be transferred to the database server in order
to be inserted into the database. Similarly, when a user needs to see data
values or a structural depiction, it must be transferred to the client appli-
cation. However, if the data only needs to be processed by the client and
then transferred back to the server, be sure to transfer only required col-
umns. Also consider again writing a server function to process the data
as required.

Make good use of existing client programs and libraries. There are
many client programs that may already do what is required. Some exam-
ples of these were given in Chapter 5. There are also many client programs
or libraries that may help in developing client applications using SQL to
access the RDBMS. A discussion of these libraries for various languages
follows. There is no inherent advantage to using any particular computer
language to write a client program. If a particular project already has parts
written in one language, it is probably best to continue new code develop-
ment in that language. But if one language has features desirable for the
application, that language may be the best choice. For example, many peo-
ple prefer php for writing Web client applications that are run using CGI.
If more interaction is necessary in the Web application, consider using a
java applet. When the crucial parts (the data tables and functions) of the
system are stored in a central location (the RDBMS), it becomes less impor-
tant which language is used for client applications.

12.2 � Store All Possible Data in the RDBMS
Before looking at specific examples of client programs, consider how and
where data are typically stored and processed. Most computer data are
stored in files. These are sometimes called flat files. This implies that there
is no imposed structure in the files. The programs accessing the data infer
any structure. On the other hand, data stored in an RDBMS table is highly
structured. This requires some thought before the data is inserted into
the table, but the benefit of structuring the data is great. When new data
is received, it is likely to be in the form of a file, perhaps an e‑mail attach-
ment, a spreadsheet file, a CD, or download from a Web site. It is tempting
(and common) to store these file on the computer and to process data in
these files directly. It is much more advantageous if the data is put into an
RDBMS as soon as possible. Consider the following scenario.

A colleague or coworker has just sent a file of molecular structures.
They may need some feedback about which structures are desirable for

140	 Design and Use of Relational Databases in Chemistry

a particular purpose, say, for possible purchase or for screening in some
assay. Suppose the data are in the form of a molfile. If the structures and
data in the file are added to an RDBMS having chemical extensions, the data
become immediately more useful. The act of importing the molfile, say, to
a table containing smiles, name, id, and columns of molecular data will
immediately ensure several things. First, it will ensure that the molecular
structure is valid and can be represented as simplified molecular input line
entry system (SMILES). It will ensure that the data values required to be
numeric truly are numeric. If there are chemical data types implemented
in the RDBMS, constraints using those data types can be applied. The more
chemical functionality there is in the RDBMS, the more information about
the structures will become validated and easily available.

There are other advantages to importing structural data into the
RDBMS as soon as possible. Depending on what other tables are in the
RDBMS, it will now be easy to discover which structures are already con-
tained in other tables of the RDBMS. The data in the new table will be
easily accessible to other users and client applications. Once a decision
has been made about which new structures are of interest, these can be
readily moved to other tables in the RDBMS for further work (purchasing,
testing, synthesis, etc.).

Another advantage of using an RDBMS to store chemical data is
simply one of organization. It is very common to have dozens of files of
molecular structures. One typically tries to remind oneself where the file
came from, when it was received, what the purpose of the file is, etc. Using
encoded names for the files or the folders containing the files is a typical
approach. This quickly becomes unwieldy and confusing. On the other
hand, if RDBMS tables are created to contain these data, sensible column
and table names can be created to store information otherwise encoded in
file and folder names. In addition, the generous use of table and column
comments helps make sense of large amounts of data.

In short, it is possible and desirable to use an RDBMS to replace many,
if not all, of the ways in which computer files are used. There are many
advantages to using an RDBMS to store chemical data compared with
using flat files. In spite of the familiarity of using file operations (open,
read, write) in most client programs, these are easily replaced by SQL
operations on the data in the RDBMS. In fact, many operations typically
carried out by client programs can be done entirely within the RDBMS
using chemical extensions and procedural languages to write new SQL
functions.

12.3 � Advanced SQL Techniques
Chapter 5 introduced ways in which client programs can be used with
an RDBMS server. Some existing client programs, such as Excel and R,

Chapter 12:  More on Client and Web Interfaces to RDBMS	 141

have methods to access data on an RDBMS server. Some Web applica-
tions, such as phpPgAdmin are specifically designed to interact with
an RDBMS. When a new client program is needed, most computer
languages offer a library that allows interaction with a server RDBMS
using SQL. Chapter 5 introduced some simple examples in several lan-
guages. In those examples, a constant SQL string was used. In an actual
client program, the SQL necessary to access the RDBMS will often need
to be different, depending on input from the user. One obvious way to
accomplish this is to use standard string operations to build a string
from various SQL fragments, substituting the user-supplied values
where necessary. This is entirely appropriate in many situations, but
there are more efficient ways to use SQL and the various SQL modules
and packages.

12.3.1 � Placeholders in SQL Statements

Consider the following example using Perl to insert data into a table.

my $dbh = DBI->connect("dbi:Pg:dbname=$dbname;host=$host", $username,
$password);
while (($id, $ic50, $ed50) = &get_data()) {
 my $sql = "Insert Into test_assay (id, ic50, ed50)
 Values ($id, $ic50, $ed50)";
 my $sth = $dbh->prepare($sql);
 my $rv = $sth->execute;
}

The get _ data function is not detailed here, but would return three val-
ues, perhaps from user input, a file of data, or an instrument. The detail
to notice in this example is that the call to $dbh‑>prepare is made once
for every set of data values. The DBI prepare function is relatively inef-
ficient. There is a more efficient way to insert multiple rows. The following
code uses placeholders in the SQL statement.

my $sql = "Insert Into test_assay (id, ic50, ed50) Values (?,?,?)";
my $sth = $dbh->prepare($sql);
while (($id, $ic50, $ed50) = &get_data()) {
 last if ($id < 1);
 my $rv = $sth->execute($id, $ic50, $ed50);
}

In this example, the prepare function is executed only once. The SQL
statement passed to the prepare function contains placeholders to rep-
resent values that will be made available once the statement is actually
executed. The placeholder is simply a question mark. The arguments to
the execute function provide three new values during each execution of
the loop. This runs faster than the previous example.

142	 Design and Use of Relational Databases in Chemistry

The technique of using placeholders in prepared SQL statements is com-
mon in java as well. The following code snippets show examples in java.

PreparedStatement st = con.prepareStatement("Insert Into test_assay
(id,ic50,ed50) Values (?,?,?)");
while (true) {
 data_values = get_data();
 if (data_values[0] < 1) break;
 st.setInt (1, (int) data_values[0]);
 st.setDouble(2, data_values[1]);
 st.setDouble(3, data_values[2]);
 st.executeUpdate();
}

In this code snippet, the connection would already have been established
and stored in the variable con. The con.prepareStatement method
recognizes the use of the placeholder. The st.setInt and st.setDouble
methods are more specific than in the perl example, requiring the integer
or double data type.

The final language example shows how php supports SQL placeholders.

$sql = "Insert Into test_assay (id,ic50,ed50) Values ($1,$2,$3)";
$stmt = pg_prepare($dbconn, "test_assay_insert", $sql);
while ($data_values = get_data()) {
 if ($data_value[0] < 1) break;
 $rv = pg_execute($dbconn, "test_assay_insert", $data_values);
}

The placeholders here are $1, $2, and $3 instead of question mark.
Another difference using php is the use of a statement name, here test _
assay _ insert. This is used to uniquely identify the statement being
prepared. The same name is used again when that statement is to be exe-
cuted. Despite these differences, the principle is the same. The SQL state-
ment is prepared once using placeholders and executed as many times as
necessary to insert all data.

Placeholders are commonly used to insert or update tables using SQL.
It is not possible to use a placeholder at any place in an SQL statement.
For example, it is not possible to use a placeholder to represent a column
or table name. It is only possible to use a placeholder in an SQL statement
where a value to be inserted or updated would be used.

12.3.2 � Bind Values in SQL Statements

When a client program selects data from an RDBMS table using SQL, there
are several methods that can be used. The following Perl code illustrates
some of these methods.

Chapter 12:  More on Client and Web Interfaces to RDBMS	 143

my $sql = "Select smiles,cas from nci.structure where gnova.
matches(smiles,'c1ccccc1C(=O)NC') limit 20";
my $sth = $dbh->prepare($sql);
my $rv = $sth->execute;
while (my @row = $sth->fetchrow_array()) {
 print join "\t",@row;
 print "\n";
}

In this code snippet, the SQL statement is prepared and executed and each
row is fetched into an array and then printed. It is also possible to fetch all
rows at one time, for example, using the following code snippet.

my $sth = $dbh->prepare($sql);
my $rv = $sth->execute;
my $data = $sth->fetchall_arrayref();
while (my $row = shift(@$data)) {
 print join "\t",@$row;
 print "\n";
}

After the SQL statement is executed, an array reference is returned using
fetchall _ arraryref. The individual rows from this array are then
printed. Some care needs to be taken when using fetchall _ arrayref
when a large number of rows are returned. In that case, not all rows may
be returned and the function will need to be called again until all rows
are returned. The documentation for the DBI perl module discusses this
more fully.1

In this final example, the use of bind variables is illustrated.

my $sth = $dbh->prepare($sql);
my $rv = $sth->execute;
$sth->bind_columns(\$smiles, \$cas);
while ($sth->fetchrow_array()) {
 print "$smiles\t$cas\n";
}

The bind _ columns function requires as many perl variables as there
are columns in the select statement. The names used here are indicative
of the columns selected, making the code more understandable. The use
of bind _ columns is also very efficient.

12.4 � Web Applications
Writing a Web application to help such users search or update a database
is more than simply offering a text box for them to type in SQL state-
ments. The focus of section is not to show how a full Web application can
be developed that uses SQL and an RDBMS server. There are some useful
SQL functions that can benefit any Web application.

144	 Design and Use of Relational Databases in Chemistry

Consider a Web application to allow a user to sketch in a structure,
perform a substructure search, and fetch experimental data for the result-
ing structures. The general structure of the program is:

Present the Web form.•	
Provide for structure input (drawing).•	
Provide for table search requirements.•	
Process the Web form.•	
Construct the appropriate SQL.•	
Connect to database and select results.•	
Present results to user.•	

Graphical input and output is essential to any chemical Web application.
One common method to provide this is using Marvin or another sketch-
ing tool. Rather than have each application generate the javascript needed to
present the sketcher or viewer, consider storing this code in the database and
selecting it when needed. The marvin _ sketch function returns javascript
that will cause a marvin sketch applet to appear on a Web page.

Create Or Replace Function marvin_sketch() Returns Text As $EOSQL$
Select '
<script LANGUAGE="JavaScript1.1">
msketch_name = "MSketch";
msketch_begin("/marvin", 200, 200);
msketch_param("background", "#EEFFDD");
msketch_param("menubar", "false");
msketch_param("molFormat", "smiles");
msketch_param("importConv", "-a");
msketch_param("detach", "hide");
msketch_end();
function get_smiles() {
 smi = MSketch.getMol("smiles:a");
 return smi;
}
</script>
'::Text;
$EOSQL$ Language SQL;

This SQL function can then be used by any application that needs to
include a Marvin sketcher. For example, a php application would include
this code.

<HTML>
<HEAD>
<TITLE>Sample PHP web app example</TITLE>
<SCRIPT SRC="http://www.chemaxon.com/marvin/marvin.js"></SCRIPT>
</HEAD>
<BODY>
<?php print marvin_sketch(); ?>

Chapter 12:  More on Client and Web Interfaces to RDBMS	 145

</BODY>
</HTML>
<?php
 function marvin_sketch() {
 $dbconn = pg_connect("host=localhost dbname=book user=reader");
 $res = pg_exec($dbconn, "select marvin_sketch()");
 $row = pg_fetch_array($res);
 pg_close($dbconn);
 return $row["marvin_sketch"];
 }
?>

The marvin _ sketch SQL function can be called from any client
program using database access methods described in Chapter 5. The
marvin _ sketch program can be modified to allow specification of the
sketch applet size, loading an initial SMILES, or any other option pro-
vided by the Marvin sketch applet.

Most Web applications that search a database will need to know the
names of the columns in a table. Rather than coding this into the application,
consider writing an SQL function to provide this information. The following
SQL function returns the names of the columns in a particular table.

Create Or Replace Function get_fields(text,text) Returns Setof
Record As $EOSQL$
Declare
 col_types Record;
Begin
 For col_types In
 SELECT attname::text, typname::text
 FROM pg_attribute
 Join pg_class On attrelid = pg_class.oid
 Join pg_namespace On relnamespace = pg_namespace.oid
 Join pg_type On atttypid = pg_type.oid
 Where attnum > 0
 And nspname = $1
 And relname = $2
 Loop
 Return Next col_types;
 End Loop;

End;
$EOSQL$ Language plpgsql;

This function is specific to PostgreSQL, using system catalog tables. It can
be used in a Web application as in the following php example.

<HTML>
<HEAD>
<TITLE>Sample PHP web app example</TITLE>
<SCRIPT SRC="http://www.chemaxon.com/marvin/marvin.js"></SCRIPT>
</HEAD>

146	 Design and Use of Relational Databases in Chemistry

<BODY>
<FORM>
<?php
 print marvin_sketch();
 print "<p><input type=submit value=search>";
 print "pubchem.nci_h23";
 foreach (get_columns('pubchem', 'nci_h23') as $key => $value) {
 print "
<input type=checkbox name=${key}>${key}\n";
 }
 ?>
</FORM>
</BODY>
</HTML>
<?php
 function get_columns($schema,$table) {
 $dbconn = pg_connect("host=localhost dbname=book user=reader");
 $sql = "select * from get_fields('${schema}', '${table}') as
(colnam text, typnam text)";
 $result = pg_query($dbconn, $sql);
 $columns = array();
 while ($row = pg_fetch_array($result)) {
 $colnam = $row['colnam'];
 $columns[${colnam}] = $row['typnam'];
 }
 pg_close($dbconn);
 return $columns;
 }
?>

This expands on the previous example, adding the get _ columns php
function and the creation of the form and checkboxes showing the col-
umn names in the html body.

It is beyond the scope of this book to present an entire Web applica-
tion. The purpose of this discussion is to show how creating and using
SQL functions can facilitate the creation of Web applications. The final
example shows how SMILES stored in a database can be formatted for
display using Marvin. The marvin _ view SQL function is defined as:

Create Or Replace Function marvin_view(text, text) Returns Text As
 $EOSQL$
Select '
<script LANGUAGE="JavaScript1.1">
msketch_name = "MView";
mview_begin("/marvin", 200, 200);
mview_param("colorScheme", "atomset");
mview_param("mol", "' || $1 || '");
mview_param("AtomSet0.1", "' ||
array_to_string(list_matches($1, $2),',') ||'");
mview_end();
</script>
'::Text;
$EOSQL$ Language SQL;

Chapter 12:  More on Client and Web Interfaces to RDBMS	 147

This function takes a SMILES and a SMiles ARbitrary Target Specifications
(SMARTS). The SMARTS is used to locate a substructure within the
SMILES and color the atoms that are matched.

12.5 � R Programs
R is a program used to compute statistical results for sets of data. One of
the commonly used data types in R is the data frame. This has many simi-
larities to tables of data in a relational database, or tables resulting from
an SQL select statement. Using the RODBC module, R can communicate
with a RDMBS using SQL to read data into a data frame form and to write
a data frame to an RDBMS table.

12.5.1 � Hierarchical Clustering

The following example shows how R can be used to carry out a clustering
analysis using data stored in an RDBMS.

require("RODBC");
channel = odbcConnect("PostgreSQL30", uid="reader",
case="postgresql");
sql = "Select
 Case When a.id < b.id Then tanimoto(a.gfp,b.gfp)
 Else null
 End
 from xlogp.test_set as a, xlogp.test_set as b";
tani = sqlQuery(channel, sql, max=0);
n = sqrt(length(tani[,1]))
tanimoto = as.dist(matrix(tani[,1], nrow=n, ncol=n));
fit = hclust(1.0-tanimoto, method="ward");
plot(fit);
fit = hclust(1.0-tanimoto, method="single");
plot(fit);
close(channel);

The SQL statement above computes the Tanimoto similarity between all
pairs of compounds using fingerprint bitstrings stored in the column
gfp. The tanimoto function is described in Chapter 8 and shown in the
Appendix. This SQL statement uses the Case conditional clause. This is
done in order to avoid computing elements unnecessarily. The matrix of
similarities is symmetric and the diagonal elements are exactly 1. The
sqlQuery R function reads the rows of the similarity matrix into an R
data.frame named tani. This is coerced into a matrix of the correct
number of rows and columns using the matrix function and further
coerced into a distance R object. The R distance object is the lower half
of a symmetric distance matrix. Since the tanimoto similarity is used,
the distance (or dissimilarity) is represented by 1.0 minus the tanimoto

148	 Design and Use of Relational Databases in Chemistry

value. Finally, the hclust R function is called using (1.0 – tanimoto). In
this example, two methods are used: ward and single. Figure 12.1 shows
the output from the plot function using ward clustering.

The use of the R functions is described elsewhere.2,3 The point of
this example is not to explain how to do clustering, but rather to show
how easily data is read into R from an RDBMS. The full power of the
SQL language and the extension functions, such as tanimoto here allows
great flexibility in creating data frames for R. With very little change in
the above code, various methods of clustering can be tested. With simple
changes in the SQL statement above, other similarity measures, such as
euclid or hamming can be investigated.

12.5.2 � Linear Models

R contains a useful linear models function to carry out regression analysis
to fit a set of parameters to experimental data. The example here estimates
logP values using a set of fragments and coefficients, such that

	 glogp = ∑ Ci * Ni	 (Formula 12.1)

where glogp is the estimated logp value for a molecule, Ni is the number
of times the each fragment is contained in the molecule, and Ci is the coef-
ficient resulting from the linear models fit. The fragments are defined as
a set of SMARTS4 to be matched against the molecule using the count _
matches function described in Chapter 7. The following R script shows
how this is accomplished.

require("RODBC");
channel = odbcConnect("PostgreSQL30", uid="reader",
case="postgresql");

get experimental logp from training_set
sql = "Select logp from xlogp.training_set order by id";
logpval = sqlQuery(channel, sql, max=0);
ntrain = length(logpval$logp);

get smarts
sql = "select smarts,train_freq from xlogp.simplex
 where train_freq > 1 order by train_freq desc";
smarts = sqlQuery(channel, sql, max=0);

match each smiles in the training_set to each fragment smarts
sql = "Select count_matches(smiles,smarts) as matches from
 (select smarts, train_freq from xlogp.simplex
 where train_freq > 1) as smarts,
 (select smiles, id from xlogp.training_set order by id) as train
 order by train_freq desc, smarts, id";

Chapter 12:  More on Client and Web Interfaces to RDBMS	 149

Cl
us

te
r D

en
dr

og
ra

m

1
- t

an
im

ot
o

hc
lu

st
 (*

, “
w

ar
d”

)

Height12 10 8 6 4 2 0

129
119
128126 125 12794 118 122

120
124

121
117 123

101
133
134

95
130

131
135
138
137
132
136

114
112
115
107
111
102
106
113

99
109
108
110
103
104

93
96

92
100
105

116
97

91
98
10
11
14
15
16
17

31
6
7
5

4
22
40
41

42
12
13

32
33
34
19
20
218

943444647
45591
23

252627
23
24

68
73

18
29
30

89
88
8786
8385

82
80
8481

78
79
48

585756
52
5336
35
3839

50
61
60
49
63
54
555162

28
37
90

64 76
75
74
72
69
69

65
66
71
70
77

Fi
gu

re
 1

2.
1 

R
 g

ra
ph

ic
al

 r
ep

re
se

nt
at

io
n

of
 W

ar
d

 c
lu

st
er

in
g

of
 1

.0
-t

an
im

ot
o

d
is

ta
nc

es
 b

et
w

ee
n

co
m

po
u

nd
s.

150	 Design and Use of Relational Databases in Chemistry

count = sqlQuery(channel,sql,max=0);
m = matrix(count$matches, nrow=ntrain)

fit the experimental logP values to the matched fragment counts
logpfit = lm(data.frame(logpval, m));
summary(logpfit);
plot(fitted(logpfit), logpval[[1]], main="simplex smarts",
 ylab='experimental value', xlab='predicted value');

create data frame of smarts and coefficients and store in a table
dt = data.frame(c(NA,as.vector(smarts$smarts)), coef(logpfit), summ
ary(logpfit)$coefficients[,2]);
names(dt) = c('smarts', 'contribution', 'error');
sqlSave(channel,dt,table='simplex_coefficients');
close(channel);

The first SQL statement fetches the logp values from a data table. The
second SQL statement fetches a set of smarts from pre-defined atom-
based fragments. The third SQL statement joins the table of smarts with a
table of smiles comprising a training set and produces rows of counts of
the number of times each smarts matches each smiles. The resulting rows
are recast as a matrix containing rows as training_set smiles and columns
as atom fragment smarts. This is combined with the logP values into a
data frame passed to the lm linear models function. The results of this
computation are printed by the summary function as shown below.

Call:
lm(formula = data.frame(logpval, m))

Residuals:
 Min 1Q Median 3Q Max
-2.971987 -0.375804 0.003851 0.405040 2.389759

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.262592 0.075253 -3.489 0.000496 ***
X1 0.293660 0.018785 15.633 < 2e-16 ***
X2 0.318086 0.011834 26.880 < 2e-16 ***
X3 -0.309212 0.051247 -6.034 1.94e-09 ***
X4 0.552701 0.027245 20.287 < 2e-16 ***
X5 0.324572 0.012368 26.242 < 2e-16 ***
X6 0.176798 0.045332 3.900 9.97e-05 ***
X7 -0.400717 0.033560 -11.940 < 2e-16 ***
X8 -0.313073 0.029472 -10.623 < 2e-16 ***
X9 -0.523223 0.040330 -12.974 < 2e-16 ***
X10 -0.688122 0.042941 -16.025 < 2e-16 ***
X11 -0.375329 0.034512 -10.875 < 2e-16 ***
X12 -0.058134 0.024444 -2.378 0.017497 *
X13 0.723824 0.031660 22.863 < 2e-16 ***
X14 0.008709 0.064691 0.135 0.892918

Chapter 12:  More on Client and Web Interfaces to RDBMS	 151

X15 0.267072 0.036639 7.289 4.63e-13 ***
X16 -0.892674 0.052076 -17.142 < 2e-16 ***
X17 0.404528 0.033359 12.126 < 2e-16 ***
X18 0.630511 0.105706 5.965 2.94e-09 ***
X19 0.316583 0.062433 5.071 4.37e-07 ***
X20 0.572682 0.160138 3.576 0.000358 ***
X21 -0.562239 0.069181 -8.127 8.05e-16 ***
X22 0.963970 0.057549 16.750 < 2e-16 ***
X23 -0.468030 0.085574 -5.469 5.15e-08 ***
X24 -0.216260 0.117513 -1.840 0.065886 .
X25 -0.241297 0.175739 -1.373 0.169909
X26 0.423008 0.079224 5.339 1.05e-07 ***
X27 0.554696 0.137816 4.025 5.93e-05 ***
X28 0.518312 0.087593 5.917 3.90e-09 ***
X29 1.375563 0.106891 12.869 < 2e-16 ***
X30 -0.224964 0.155949 -1.443 0.149320
X31 0.662818 0.187787 3.530 0.000427 ***
X32 -0.175770 0.196201 -0.896 0.370441
X33 0.825725 0.300047 2.752 0.005982 **
X34 -1.174430 0.304675 -3.855 0.000120 ***
X35 0.020394 0.371856 0.055 0.956269

Residual standard error: 0.6645 on 1817 degrees of freedom
Multiple R-Squared: 0.8104, Adjusted R-squared: 0.8068
F-statistic: 221.9 on 35 and 1817 DF, p-value: < 2.2e-16

This summary shows statistics on how well the counts in matrix m fit the
experimental logp values. It also lists the coefficients to be used in the
above equation to estimate glogp. Finally, these coefficients, along with
the standard errors and SMARTS are stored in a data frame, dt. This data
frame is stored in the database as a table named simplex_coefficients. The
plot function produces a graph of the predicted versus experimental val-
ues as shown in Figure 12.2.

The simplex _ coefficients table can now be used in the follow-
ing SQL statement to compute a glogp value for the molecule represented
by the SMILES c1ccccc1C(=O)NC.

Select sum(contribution*count_matches('c1ccccc1C(=O)NC',smarts))
 -0.262592 as glogp from simplex_coefficients

The SQL aggregate function sum and the multiplication in the above
statement effectively carry out the computation according to Formula 12.1
shown earlier. The constant value 0.262592 is the intercept from the lm fit
shown above. A glogp function can be defined as follows.

Create Function glogp(text)
 Returns Numeric As $EOSQL$ Select
 (sum(contribution*gnova.count_matches($1,smarts))
 -0.262592)::numeric(5,3) From simplex_coefficients;
$EOSQL$ Language SQL;

152	 Design and Use of Relational Databases in Chemistry

This function can then be used to easily estimate a logp value for any
valid SMILES. For example, the following SQL computes the same result
as the select statement above.

Select glogp('c1ccccc1C(=O)NC');

And the following estimates logP for an entire table.

Select smiles, glogp(smiles) from structure;

simplex smarts

predicted value

ex
pe

rim
en

ta
l v

al
ue

88880–2

8

6

4

2

0

–2

–4

Figure 12.2  Predicted versus experimental values of logp using R linear models
fit.

Chapter 12:  More on Client and Web Interfaces to RDBMS	 153

References
	 1.	 Perl DBI fetchall_array. http://search.cpan.org/~timb/DBI/DBI.

pm#fetchall_arrayref (accessed April 18, 2008).
	 2.	 The R Manuals. 2008. http://cran.r-project.org/manuals.html (accessed

April 18, 2008).
	 3.	 Venables, W. N. and Ripley, B.D. 2002. Modern Applied Statistics with S. 4th ed.

New York: Springer.
	 4.	 O’Donnell, T.J. 2006. Using relational databases for physical property predic-

tion. The 232nd ACS National Meeting, San Francisco, CA, September 10–14,
2006.

	 5.	 Renxiao Wang, R., Fu, Y., and Lai, L. 1997. A new atom-additive method for
calculating partition coefficients. J. Chem. Inf. Comput. Sci. 37:615–621.

155

chapter 13

Applications

13.1 � Introduction
There are many uses for a chemical relational database. Some of these
have been mentioned in earlier chapters. In this chapter, three general
types of applications will be discussed. The purpose is not to present
complete working applications, but to indicate important issues to con-
sider when designing such applications. Sample schemas are proposed.
The use within each application of the core functions described earlier is
discussed. Each of these applications might be developed as a Web appli-
cation or a client application on a user’s desktop. Any computer language
might be used, although the ability to connect to an RDBMS is essential.

13.2 � Compound Registration
Every chemical company or research organization has a collection of com-
pounds of interest. These may be compounds synthesized by chemists
employed at the company, compounds purchased from chemical ven-
dors, compounds on which research has been carried out, or any other
collection of compounds. When a new compound becomes of interest, it
is important to know whether that compound has already been entered
into the system, or a new entry needs to be made. The use of canonical
SMILES as a unique name for each structure makes this an easy task.
One essential table in a compound registration system is a table of unique
structures. Such a table could be defined as follows.

Drop Schema registration Cascade;
Create Schema registration;
Set search_path=registration;
 -- search_path directs following into the registration schema
Create Table structure (
 smi Text Unique Not Null,
 cansmi Text Not Null,
 id Serial Primary Key,
 fp Bit Varying);
Create Function add_new_structure() Returns Trigger As $EOSQL$
Begin
 NEW.smi = isosmiles(NEW.smi);
 NEW.cansmi = cansmiles(NEW.smi);

156	 Design and Use of Relational Databases in Chemistry

 NEW.fp = fp(NEW.smi);
 Return NEW;
End;
$EOSQL$ Language plpgsql;
Create Trigger add_new_structure Before Insert Or Update On
structure For Each Row Execute Procedure add_new_structure();
Create Index cansmi_index On structure (cansmi);

The first statement creates a new schema to contain these tables. The
schema name is arbitrary but might be chosen to be the name of the com-
pany or research organization. Next, the structure table is defined to
contain a smiles column of type text. This column is defined to be
unique and not null. The uniqueness constraint here ensures that no
duplicate compounds can be entered. The id column is defined using
the serial data type. This ensures that a unique integer number will be
associated with each structure. This id will be used in other tables within
this schema to relate data in those tables to compounds in the structure
table. The cansmi column will be used to contain canonical simplified
molecular input line entry system (SMILES). The fp column will be used
to contain a bit string fingerprint of the structure. The cansmi and fp
column can be used when searching for compounds in this table.

The next statement defines a trigger function that will be used when-
ever data is inserted or updated in this table. This function performs three
important functions. First, it modifies the SMILES to be inserted into the
smi column so that it contains the result of the isosmiles function. The
isosmiles function is similar to the cansmiles function, except that it
retains any stereochemistry that might be contained within the SMILES.
If two stereoisomers are entered into this table, each will have a unique
isosmiles value, but the same cansmiles value. In this way, they can
be kept distinct, but their identical canonical SMILES shows them to be
stereoisomers. The trigger function also computes the fingerprint and
inserts it into the table when the SMILES is inserted or updated.

The use of the uniqueness constraint and the trigger ensures integ-
rity of the data in this table. However, it does not automatically correct all
problems. For example, if the insertion of invalid SMILES is attempted,
an error will be generated and the SMILES will not be inserted. It is the
responsibility of the application program to deal with this error. If the
application is a batch style application, there error must certainly be logged
so that it can be dealt with at a later time. If it is an interactive application,
the user is informed of the error and asked to re-enter the structure. If the
SMILES is valid, the isosmiles, cansmiles, and fp function should not
fail. However, if there is some fault in those functions, the overall insert
or update will not occur. For this reason, it might be desirable to log any
error that occurs. These errors might be available in the log file of the
RDBMS server, depending on how that server is configured. Alternatively,

Chapter 13:  Applications	 157

a table of failed SMILES can be maintained. This can be accomplished by
modifying the add _ new _ structure function as follows.

Create Table error_log (smi text,
 attempt timestamp(0) Default current_timestamp);
Create Function add_new_structure() Returns Trigger As $EOSQL$
Begin
 NEW.smi = isosmiles(NEW.smi);
 NEW.cansmi = cansmiles(NEW.smi);
 NEW.fp = fp(NEW.smi);
 Return NEW;
Exception
 When OTHERS Then
 Insert Into error_log (smi) Values (NEW.smi);
 Return Null;
End;
$EOSQL$ Language plpgsql;

The use of the exception clause traps errors in any of the isosmiles,
cansmiles, or fp functions. The creation of the error _ log table is
shown above to contain these errors for later inspection and correction.

The id column is defined as a primary key. This causes an index to be
created, which will facilitate joining the structure table with other tables
yet to be created. The smiles column is defined to be unique, which also
automatically creates an index. This column will not be used as a key, but
the unique index will allow fast lookups on this table if a particular struc-
ture is desired. The final definition of this schema creates an index on the
cansmiles column. This will not be a unique index, but it will allow fast
lookup of structures by canonical SMILES.

Searching for structures in the structure table can be done in many ways,
but several important methods are discussed here. First, a structure can be
located directly using the following structured query language (SQL).

Select id, smi from structure Where cansmi=cansmiles
 ('c1ccccc1C(=O)NC'));

The actual value of the SMILES, here c1ccccc1C(=O)NC would come from
the user, perhaps using a drawing widget or other method. The use of
the cansmiles function assures that the SMILES string value will corre-
spond to a value stored in the cansmiles column. Recall that the cansmi
column was populated using the cansmiles function in the trigger func-
tion shown above. If the SMILES input by the user is an isomeric SMILES,
the SQL above will locate all isomers. Related stereoisomers all share the
same canonical SMILES. If it is desired to locate only the isomeric SMILES,
the following SQL could be used.

Select id, smi From structure Where smi=isosmiles('F[C@H](C)Cl'));

158	 Design and Use of Relational Databases in Chemistry

If a substructure search is desired, it is wise to use the fingerprint stored
in the fp column to reduce the number of structures that must be scanned
using the matches function. The following SQL will locate all structures
that contain the specified substructure.

Select id,smi From structure Where
 contains(fp, fp('c1ccccc1C(=O)NC')) And
 matches(smi, 'c1ccccc1C(=O)NC'));

The addition of the contains function allows a quicker comparison of
the fingerprint of the desired substructure with the fingerprints stored in
the table. The matches function is then used only for structures which
have passed this initial test. Since the matches function is slower than
the contains function, the overall speed of the search is faster than if the
fingerprint comparison were not done.

It might be tempting to add additional columns to the structure table
to hold defined properties of each structure. Not all properties of a struc-
ture are appropriate for a table of structures. Some properties, for example,
molecular weight and molecular formula are fixed properties of a structure
with a unique value. These might be added as columns to the structure
table. However, they could also be kept in another table related to the struc-
ture table. Consider also how often these values will be needed or if they
will be searched. It is possible to easily compute these properties when
needed, using SQL functions that take a SMILES argument.

Other properties are not unique, for example, chemical names. These
should be stored in a separate table with one row for each value. For
example, the entry in the pubchem database contains 10 synonyms for the
SMILES C1(C(C(C(C(C1O)O)OP(=O)(O)O)O)O)O as shown in Table 13.1.
Each of these should be entered as a separate row in a table of names
along with a column containing the compound id. A simple table of this
type would be created using the following SQL.

Create Table names (cid integer References structure (id), name text);

The cid column is a foreign key referencing the id column of the structure
table. This prevents any names from being entered that do not have a cor-
responding entry in the structure table. It also associates the name with the
proper structure. As shown in earlier chapters, names, and smiles can be
selected from the tables in this schema using the following SQL.

Select smi, name From structure Join names On (id=cid);

Any number of other tables can be added to this schema. Each should be
related to the structure table using the compound id. Aside from simply
registering compounds, it might be required to store experimental data

Chapter 13:  Applications	 159

about structures in the database. Most properties, such as experimental
values may have multiple values depending on how they were measured.
Experimental values belong in a separate table where information about
those values can be stored as well as the values themselves. For example,
the date of the measurement, uncertainties, methods, as well as multiple
values might be stored. When storing multiple values for any one struc-
ture, each value is stored as a separate row in the table with the same
structure id. The reasons for doing this were discussed in Chapter 2 in
the section on normal forms. It is possible to create additional tables in the
same schema, but this is not necessary. It might be useful to create another
schema for each type of experimental data, for example for each assay or
project. The way to store experimental data is discussed in a later section
of this chapter.

This approach for creating a registry of compounds might be
expanded in many ways. One important thing to consider is how tau-
tomers are handled. For some tautomers, a set of rules can be devised.
In principle, all tautomeric forms of any compound are valid and detect-
able chemical entities. But for some compounds, one tautomeric form is so
dominant, or the other forms are of so little interest, that one form can be
chosen as the standard tautomer. For example, all nitro groups could be
stored as charge-separated, for example C[N+](=O)[O−] or as CN(=O)=O.
Unless your projects are concerned with the very topic of tautomerization
in nitro groups, this is usually an arbitrary choice. It is usually helpful
to enforce a standardization rule to create a unique set of structures that
can be accurately searched. Rather than forcing users to remember the
rules, a table of transformations is used to change structures entered with
the “wrong” form into the standard form. This could be done using the
transformation and reaction functions discussed in Chapter 9. In order
to accomplish this, the add _ new _ structure trigger function shown
above could be expanded as follows.

Table 13.1  Sample of 10 Synonyms
in pubchem for inosotol 1-phosphate

Name

1-L-MYO-INOSITOL-1-P
1D-myo-inositol 3-monophosphate
1D-myo-inositol 3-phosphate
1L-myo-inositol 1-phosphate
D-myo-inositol 3-phosphate
L-myo-inositol 1-phosphate
inositol 1-phosphate
myo-inositol 1-monophosphate
myo-inositol 1-phosphate

160	 Design and Use of Relational Databases in Chemistry

Create Function add_new_structure() Returns Trigger As $EOSQL$
Declare
 std_smiles Text;
 smirks Text;
 std Record;
Begin
 For std In Select * from std_smirks Loop
 std_smiles = xform(NEW.smi, std.smirks);
 If std_smiles != NEW.smi Then
 NEW.smi = std_smiles;
 End If;
 End Loop;
 NEW.smi = isosmiles(NEW.smi);
 NEW.cansmi = cansmiles(NEW.smi);
 NEW.fp = fp(NEW.smi);
 Return NEW;
Exception
 When OTHERS Then
 Insert Into error_log (smi) Values (NEW.smi);
 Return Null;
End;
$EOSQL$ Language plpgsql;

The std _ smirks table would contain the standard transformations.
Chapter 9 shows a sample table of standard SMIRKS transformations. This
table could be expanded at any time to include more standardizations as
they become necessary without having to modify the trigger function to
deal with these additions.

Other types of tautomers are not so easy to standardize. Some tau-
tomers are not arbitrarily different ways of “spelling” a SMILES. These tau-
tomers are readily isolated chemical entities for which different chemical
properties can be measured. For example, dihydroxynapthelene exists in
two forms1 as shown in Figure 13.1. When the dihydroxy form (Oc1ccc(O)
c2ccccc12) is registered, it must be assumed that the dihydroxy form is
intended rather than the diketo form (O=C3CCC(=O)c4ccccc34) of the com-
pound. However, it is possible to detect that a tautomer of a compound is
already present in the database. Using the graph function described in

CH

CH
C
H

HC

HC

H
C

CH2

CH2

C
H

HC

HC

H
C

OH

OH

O

O

Figure 13.1  Two enantiomeric forms of dihydroxynapthelene.

Chapter 13:  Applications	 161

Chapter 7, it is clear that these two structures have the same simple graph
and are therefore tautomers. The following SQL returns true.

Select graph('Oc1ccc(O)c2ccccc12') = graph('O=C3CCC(=O)c4ccccc34');

In order to facilitate tautomer detection, a column of graphs of each struc-
ture could be stored and searched whenever a new structure is entered. The
user entering the structure could be asked if the tautomeric form already
in the database is perhaps the intended form for this structure. Even if the
new tautomeric form is entered as a new compound, the tautomer relation-
ship between the two structures will be recorded by virtue of them hav-
ing the same graph. The process of creating and comparing graphs can be
added to the add _ new _ structure trigger shown above. The modified
function and the modified table and associated index is shown below.

Create Table structure (
 smi Text Unique Not Null,
 cansmi Text Not Null,
 grf Text Not Null,
 id Serial Primary Key,
 fp Bit Varying);
Create Index grf_index On structure (grf);
Create Function add_new_structure() Returns Trigger As $EOSQL$
Declare
 std_smiles Text;
 smirks Text;
 std Record;
Begin
 For std In Select * from std_smirks Loop
 std_smiles = xform(NEW.smi, std.smirks);
 If std_smiles != NEW.smi Then
 NEW.smi = std_smiles;
 End If;
 End Loop;
 NEW.smi = isosmiles(NEW.smi);
 NEW.cansmi = cansmiles(NEW.smi);
 NEW.grf = graph(NEW.smi);
 NEW.fp = fp(NEW.smi);
 Return NEW;
Exception
 When OTHERS Then
 Insert Into error_log (smi) Values (NEW.smi);
 Return Null;
End;
$EOSQL$ Language plpgsql;

This addition does not correct the issues with tautomers, but it does allow an
easy way to detect tautomers in the database. Note also that alerting the user
is the responsibility of the client program and is not performed in this trigger
function or in any of the other constraints in the registration schema.

162	 Design and Use of Relational Databases in Chemistry

There is some overhead in the use of indexes, constraints, triggers,
etc. as discussed here. The overhead is incurred when rows are inserted
or updated in the table. However, the value of this approach is that the
data in the table are well validated and can be searched more reliably
and efficiently. Direct lookups of canonical or stereo SMILES is simple
and quick because of the index on these columns. Using the fingerprint
column speeds up substructure search. Tautomers can be readily selected
using the column of simple graphs.

It might be helpful to delay the creation of the indexes when the
schema is first created and its tables populated. This is especially true if
millions of compounds are to be entered at one time. However, if there are
duplicate structures and the table contains even two rows with the same
isosmi, it will not be possible to create a unique index on the isosmi
column until only a unique set of isosmi values exists. The creation of
a unique index does not fix nonunique values. It simply prevents non
unique values. In order to find duplicate structures in a table, the follow-
ing SQL can be used.

Select isosmiles, count(isosmiles) from structure
 group by isosmiles having count(isosmiles) > 1;

The use of the group by clause causes all identical values of isosmiles
to be grouped together and processed by the aggregate function count.
For duplicate values of isosmiles, the count will be greater than 1. The
above SQL statement will select these isosmiles.

13.3 � Experimental Chemical and
Biological Data Integration

The first section of this chapter showed how a schema of tables could be
used to create a compound registry. Using that schema, this section will
show how experimental data can be integrated with compound data. A
separate schema will be used to store the experimental data. In fact, several
schemas will be created in order to segregate data tables for separate assays
or projects. This is not essential, but is handy for browsing data tables in a
large database. Schemas are analogous to folders in a file system.

Each set of experimental data will likely have to be considered separately.
Some measurements may require several columns, while other will require
only one. Some measurements may have measured or estimated uncertain-
ties, while others may be more indefinite, such as “active” or “inactive.” All
measurements will have a date associated with them and this should be
stored. Many experimental values will be noninteger numbers. These may
be stored using the numeric data type or float or double, depending on the
accuracy needed and whether computations on these values will be carried

Chapter 13:  Applications	 163

out from within the database. For example, the numeric data type does not
truncate or round the input values and keeps as many significant figures
as there are in the external representation of the number when it is entered.
Using the float or double internal representation will result in slight
rounding of some input values. Computations carried out with float val-
ues are more efficient that computations using numeric values. So, if the
values in the table will be used with many mathematical functions, such as
sqrt, average, standard deviations, etc. and if extreme accuracy is
not crucial, using a float data type may be preferred.

A table of experimental data could be defined as follows.

Create Schema hiv;
Create Table hiv.protease (id Integer References registry.structure,
ic50 Float, ec50 Float, updated Timestamp Default current_timestamp);

This table is intended to hold results of assays testing compounds in reg-
istry.structure for activity as human immunodeficiency virus (HIV) pro-
tease inhibitors. As new assays are added, the test results can be added
to newly created tables with similar definitions. For example, there might
be tables for HIV reverse transcriptase inhibitors stored in a table named
hiv.rt. Other assay results might be stored in new schemas, for example,
fpr.htfc for high-throughput flow cytometry results for the formyl pep-
tide receptor (FPR), or fpr.ca for FPR cell adhesion assay results. Each of
these tables would have columns of data named and typed appropriately
for each assay. Each table would have a column containing a compound
id that references compounds in the registry.structure table.

It is not possible to propose a schema with tables that can accommo-
date experimental results of any type. It is important to consider the needs
of each project and assay so that appropriate tables can be created with
the necessary data types and constraints. One common feature of any
table of experimental data is a column containing a reference to a chemi-
cal compound or compounds involved in the experimental measurement.
While the examples so far have considered only one compound for each
test result row, it is important to consider how results will be handled
when multiple compounds are involved in each experimental measure-
ment, or when multiple measurements are made for the same compound
with samples prepared at different time or perhaps in different ways. A
common way to handle these situations is to use the concept of a sample.

A sample can be defined as a preparation consisting of one or more
compounds and one or more solvents. It might also be necessary to con-
sider separate batches of any compound, obtained at different times from
different vendors or synthesized at different times. Using samples and
sample ids instead of compounds and compound ids is a more accu-
rate reflection of the actual experimental situation and can record more

164	 Design and Use of Relational Databases in Chemistry

information about how the measurements were made. In order to accom-
modate the use of samples, it is necessary to create a sample table and use
sample ids in the experimental data tables in place of compound ids. A
sample table could be created as follows.

Create Sequence uniq_samples;
Create Table sample (id Integer Default Nextval('uniq_samples'),
 cid Integer References registry.structure (id),
 prepared Timestamp(0) Default current_timestamp,
 Unique (id, cid));

This introduces a new way in which sequences are used within a database.
In previous chapters, the Serial data type was used to create a column of
unique integers. When the Serial data type is used, a sequence is auto-
matically created and the default value of the column is set to be the next
value in the sequence. In this way, a unique set of integers is ensured. In the
above example, more control is needed over the use of sequence values in the
sample.id column. This is because this table may contain several rows with
the same sample id, each with a different compound id. The sample con-
sists then of all compounds in the sample table having the same sample id.

When a new sample is inserted into the sample table, only the
sample.cid need be specified. The default value for id will cause a new
sample.id to be taken from the uniq _ samples sequence. The default
value for sample.prepared will cause the current time to be inserted
into that column. If a further specification of the same sample needs to be
made, the following SQL will suffice to add compound id 55.

Insert into sample (id, cid) Values (currval('uniq_samples'), 55);

The currval function uses the current value of the sequence. This can be
repeated as many times as necessary to complete the definition of the
sample with that sample.id.

The final clause in the create statement above demands that the combi-
nation of sample.id and sample.cid be unique. This allows many rows
with the same sample.id. Each sample can contain many compounds. It
also allows many rows with the same sample.cid. Each compound can
be a part of many samples. It forbids the same sample.id from contain-
ing the same compound (sample.cid) more than once.

13.4 � Data from External Sources
When creating a schema of tables for projects underway at your company
or research institution, there is complete freedom to define the tables as
necessary to accommodate the data correctly. Sometimes it is necessary
or desirable to import data from an external source. In this case, a careful

Chapter 13:  Applications	 165

understanding of the data values and relationships among them is nec-
essary. Often the data will be made available in flat files with little or no
structure. It is important to review these files and create a schema of tables
appropriate for these data. Chapter 6 showed how this might be done for
data obtained from the PubChem project.2 The concepts of unique com-
pound ids and sample ids was used there, along with a separate schema
for assay results containing references to sample ids. Chapter 11 showed
an example of importing data on VLA-43 Integrin antagonists with a sim-
pler data organization. In both cases, these were imported into new schema
designed to fit those data. It may be desirable to integrate newly imported
data into existing schemas in the database. For example, if the new data
contains information about compounds already in the registry tables, that
relationship should be recorded. Similarly, if the imported data contains
compounds not already in the registry, they could be added to the registry.

The following SQL function returns a compound id that can be used
when processing data to be imported from an external source. The func-
tion returns the structure.id of an existing compound, or creates a new
entry in the structure table for a new compound if necessary and returns
that new structure.id.

Create Or Replace Function registry.compound_id (Text) Returns
Integer As $EOSQL $
Declare
 cid Integer;
Begin
 Select id Into cid from structure Where smi = isosmiles($1);
 If cid Is Null Then
 Insert into structure (smi) Values ($1);
 Select id Into cid From structure Where smi = isosmiles($1);
 End If;
 Return cid;
End;
$EOSQL$ Language plpgsql;

This function is placed into the registry schema and would be called as
in the following example.

Select registry.compound_id('SCCS');

As compounds are processed from the external source, say from an sdf
file, each value of the SMILES would be passed to the compound _ id
function and the resulting id would be used in the column of the new
table that references the registry.structure id column.

As compounds are added to the registry from various sources, it may
be necessary to record where these compounds came from. This intro-
duces another generally useful feature in a registry of compounds. An

166	 Design and Use of Relational Databases in Chemistry

arbitrary collection of structure ids is often useful. As compounds are
added from an external source, they form such a collection. A chemist
may create other collections for any purpose. The following tables record
lists of registered compounds.

Create Table list_description (id Serial, details Text);
Create Table lists (id Integer References list_description (id),
 cid Integer References structure (id));

The list _ description table is updated when a list is created. In
the case of importing compounds from an external source, the list _
description.details column might contain the file name, URL, and
any other information about the source of the compounds. As each com-
pound is processed using the compound _ id function, the compound
id is added to the lists table using the list _ description.id and
the compound id. It is possible for a compound to be contained in the
registry.lists table many times. This reflects the fact that the com-
pound is used in many lists, available from many sources, imported from
many external sources or of interest in many projects. Figure 13.2 shows
an entity relationship diagram incorporating the tables discussed here.
There will be many other tables of experimental data in other schemas
that are related to the registry.structure table.

registry.namesregistry.structure

namesmi
cansmi
grf

fp
PK id*

FK id*TEXT
TEXT

TEXT

BIT VARYING
INTEGER

TEXT
INTEGER

registry.lists
PF id* INTEGER
PF id1* INTEGER

registry.error_log
smi TEXT
attempt TIMESTAMP

registry.list_description
details

PK id*
TEXT
INTEGER

Figure 13.2  Entity relationship diagram for schema containing tables for a com-
pound registration system.

Chapter 13:  Applications	 167

13.5 � Utilities
In any project, there will be collections or files of compounds that need
to be processed. This chapter and previous chapters have shown ways in
which these can be usefully imported into a database. Traditionally these
files are processed in some way without being imported into a database.
There are many utility functions to carry out operations such as locating
structures within a file, finding nearest neighbors, clustering compounds,
displaying common substructures, etc. These often take the form of com-
mand line tools, or methods within a programming environment such as
python. If these tools are collected together and placed as functions in an
RDBMS, these utilities can be used from within the database. They can
also be used as command line tools, or integrated into a programming
environment. This section will show how some of these operations can be
carried out as command line utilities.

Every one of these utilities will first require that a file of structures be
loaded into a table in the database. Two methods are shown here: import-
ing a SMILES file and a mol file. Other file types could be added as needed,
extending the core functions described earlier using molfile _ mol or
molfile _ to _ smiles as a model. OpenBabel is a good choice because
of its support of many file formats.

A SMILES files is readily imported into the database using the follow-
ing perl script smiloader. The output of this command is a set of SQL
commands interspersed with lines in the input SMILES file. The file is
minimally processed. The script expects the name of a schema in which
the tables will be created. The entire perl script is shown in the Appendix.
It is used at the linux command line as follows. The schema name here is
drugs, the first argument to smiloader.

perl smiloader drugs <drugs.smi | psql mydb

The SQL output is piped to the psql command that process the commands.
The schema and tables are created in a database named mydb in this exam-
ple. If no database name is given, psql assumes a database with the same
login name as the user. The table created by smiloader contains four col-
umns: name text, id integer, isosmiles text, and fp bit varying.

Loading a SDF file is similar, although additional tables are created to
accommodate the data items in the file and to contain the original file. The
sdfloader script is used as in the following example.

perl sdfloader vla4 <vla-4.sdf | psql mydb

Figure 13.3 shows an entity relationship diagram for the tables created by
the sdfloader script. Once files have been loaded into the database, the
dbutils shell script is run to define several utility functions that oper-
ate on these tables. The dbutils script is listed in the Appendix. This

168	 Design and Use of Relational Databases in Chemistry

script defines the following commands: molgrep, molcat, molview,
molarb, molrandom, molnear, and molsame. These are described
individually below.

13.5.1 � molgrep

The molgrep utility takes two arguments: the name of the schema con-
taining structures previously loaded, and a SMILES or SMARTS string.
The result is a list of SMILES and names from structure table, which
match the SMARTS string or which contain the SMILES as a substructure.
For example:

molgrep drugs 'c1ccccc1C(=O)NC'

prints the following subset from the drugs.structure table.

OC(=O)c1ccccc1Nc1cccc(c1)C(F)(F)F|flufenamic
Fc1ccc(cc1)C(=O)CCCN1CCC(O)(CC1)c1ccc(Cl)cc1|haloperidol
CCN(CC)CCNC(=O)c1ccc(N)cc1|procainamide
CCCCNc1ccc(cc1)C(=O)OCCN(C)C|tetracaine

13.5.2 � molcat

The molcat utility takes one argument: the name of the schema into
which structures were loaded using the smiloader or sdfloader util-
ity. It prints the SMILES and names of all the structures in the structure
table in that schema. For example:

molcat vla4

propertystructure

namename
cansmiles
coords

atoms
isosmiles
fp

PK id*
FK id*

TEXT
TEXT

TEXT

NUMERIC[]
INTEGER
INTEGER[]

BIT VARYING

TEXT
tvalue TEXT
nvalue NUMERIC

INTEGER

sdf
molfile TEXT

PF id* INTEGER

Figure 13.3  Entity relationship diagram for table created by sdfloader.

Chapter 13:  Applications	 169

13.5.3 � molview

The molview utility takes two arguments: the name of the schema con-
taining structures previously loaded, and a SMILES or SMARTS string.
Like the molgrep command, the result is a list of SMILES and names that
match the SMARTS string or that contain the SMILES as a substructure.
However, the results are formatted using HTML and javascipt to call the
Marvin applet to display the structures. The atoms in each structure that
match the SMARTS or SMILES argument are colored. If no SMILES or
SMARTS argument is given, the structures in the entire table are output.
The command

molview vla4 'c1ccccc1C(=O)' >mtest.html

results in the following display in a Web browser. Note that the Marvin
applet1 must be downloaded and made available to the Web server being
used. Figure 13.4 shows the output as viewed in a Web browser.

CH3

CH3 CH3

CH3

H3C H3C

OH

HN

HN HN

HN

FF
F

F

N

N N NN

N

O O

O

O

O

OH

O

N

NH
HO

S

O

O
O

O

O

O

N
S

NH
HO

O

CI CI

CI CI

CICI

H
N

H
N

O

O

O

Figure 13.4  Structures displayed using Marvin and output from molview utility
command.

170	 Design and Use of Relational Databases in Chemistry

13.5.4 � molarb

The molarb utility returns an arbitrary set of structures from the struc-
ture table in a schema. There are many sets that can be devised. Each one
is identified by a set number. Each set consists of one half of the table of
structures. The structures in the table are segregated into two arbitrary
sets based on the structure id number by using the md5 function to hash
the id number with the set number. The molarb utility takes three argu-
ments: the name of the schema containing structures previously loaded,
and two numbers. The first number is the number of structures desired in
the output. The second number is the set number desired. Each time the
molarb utility is used on the same table, the same set number produces
the same set of structures. If a random set of structures is desired, use
the molrandom utility. Sample output from the molarb utility is shown
below.

> molarb vla4 5 2
OC(=O)C(Cc1ccc(cc1)NC(=O)c1c(Cl)cncc1Cl)NC1=C(N2CCOCC2)C(=O)C1=O|BMCL-1051-36
OC(=O)C(Cc1ccc(cc1)NC(=O)c1c(Cl)cncc1Cl)Nc1ncnc(Cc2ccccc2)c1|BMCL-1595-09
CCCSc1ncnc(c1)NC(Cc1ccc(cc1)NC(=O)c1c(Cl)cncc1Cl)C(=O)O|BMCL-1595-06
Clc1ncnc(c1)NC(Cc1ccc(cc1)NC(=O)c1c(Cl)cncc1Cl)C(=O)O|BMCL-1595-01
COc1cc(NC(Cc2ccc(cc2)NC(=O)c2c(Cl)cncc2Cl)C(=O)O)nc(n1)S(=O)(=O)
 C|BMCL-1595-15
> molarb vla4 5 8
OC(=O)C(Cc1ccc(cc1)NC(=O)c1c(Cl)cncc1Cl)NC1=C(NCc2ccccc2)C(=O)
 C1=O|BMCL-1051-30
COc1nc(OC)nc(n1)NC(Cc1ccc(cc1)NC(=O)c1c(Cl)cncc1Cl)C(=O)O|BMCL-1591-4A
COc1nc(OC)nc(n1)NC(Cc1ccc(cc1)OCc1c(Cl)cccc1Cl)C(=O)O|BMCL-1591-25
COc1nc(OC)nc(n1)NC(Cc1ccc(cc1)NC(=O)c1c(Cl)cccc1Cl)C(=O)O|BMCL-1591-24
OC(=O)C(Cc1ccc(cc1)NC(=O)c1c(Cl)cncc1Cl)Nc1ncnc(Cc2ccccc2)c1|BMCL-1595-09

13.5.5 � molrandom

The molrandom utility returns a random set of structures from the
structure table in a schema. The set consists of one half of the table of
structures. The structures in the table are segregated into two arbitrary
sets based on structure id and by using the md5 function to hash the
structure id with a random number. This has the same result as using a
random number for the set number used in molarb, described above. The
molrandom utility takes two arguments: the name of the schema contain-
ing structures previously loaded, and the number of structures desired.
Sample output from molrandom is shown below.

> molrandom vla4 5
OC(=O)C(Cc1ccc(cc1)NC(=O)c1c(Cl)cncc1Cl)NC1=C(NCCCC(F)(F)F)C(=O)
 C1=O|BMCL-1051-20
OC(=O)C(Cc1ccc(cc1)NC(=O)c1c(Cl)cncc1Cl)NC1=C(N2CCSCC2)C(=O)
 C1=O|BMCL-1051-37
CCCS(=O)(=O)c1ccnc(NC(Cc2ccc(cc2)NC(=O)c2c(Cl)cncc2Cl)C(=O)O)
 c1|BMCL-1595-29

Chapter 13:  Applications	 171

COc1nc(nc(n1)N(CC)CC)NC(Cc1ccc(cc1)NC(=O)c1c(Cl)cncc1Cl)C(=O)
 O|BMCL-1591-17
C=CCNC1=C(NC(Cc2ccc(cc2)NC(=O)c2c(Cl)cncc2Cl)C(=O)O)C(=O)
 C1=O|BMCL-1051-18

13.5.6 � molnear

The molnear utility outputs a set of structures that are similar to a given
structure. It takes three arguments: the name of the schema containing a
table of structures, a SMILES string representing the reference structure, and
a similarity index number between 0.0 and 1.0. The fingerprint in the struc-
ture table and the fingerprint of the reference structure are compared using
the tanimoto function. The tanimoto function is described in the appendix.
Sample output from the molnear command is shown below.

> molnear vla4 'c1ccccc1C(=O)NC' 0.2
COc1nc(nc(n1)N(C)C)NC(Cc1ccc(cc1)NC(=O)c1c(Cl)cncc1Cl)C(=O)
 O|BMCL-1591-16|0.201439
COc1nc(nc(n1)N(CC)CC)NC(Cc1ccc(cc1)NC(=O)c1c(Cl)cncc1Cl)C(=O)
 O|BMCL-1591-17|0.2
CCCNc1nc(OC)nc(n1)NC(Cc1ccc(cc1)NC(=O)c1c(Cl)cncc1Cl)C(=O)
 O|BMCL-1591-18|0.201439
OCCNc1nc(OC)nc(n1)NC(Cc1ccc(cc1)NC(=O)c1c(Cl)cncc1Cl)C(=O)
 O|BMCL-1591-19|0.201439
COc1nc(OC)nc(n1)NC(Cc1ccc(cc1)NC(=O)c1c(F)cccc1C(F)(F)F)C(=O)
 O|BMCL-1591-23|0.223022
COc1nc(OC)nc(n1)NC(Cc1ccc(cc1)NC(=O)c1c(Cl)cccc1Cl)C(=O)
 O|BMCL-1591-24|0.244094
COc1nc(OC)nc(n1)NC(Cc1ccc(cc1)N(C)C(=O)c1c(Cl)cncc1Cl)C(=O)
O|BMCL-1591-26|0.202899
OC(=O)C(NCC(=O)c1c(Cl)cncc1Cl)Cc1ccc(cc1)NC(=O)c1c(Cl)
cncc1Cl|BMCL-1591-3|0.237288
COc1nc(OC)nc(n1)NC(Cc1ccc(cc1)NC(=O)c1c(Cl)cncc1Cl)C(=O)
O|BMCL-1591-4|0.202899
Clc1ncnc(c1)NC(Cc1ccc(cc1)NC(=O)c1c(Cl)cncc1Cl)C(=O)
O|BMCL-1591-9|0.201439
Clc1ncnc(c1)NC(Cc1ccc(cc1)NC(=O)c1c(Cl)cncc1Cl)C(=O)
O|BMCL-1595-01|0.201439
Clc1ccc(nc1)NC(Cc1ccc(cc1)NC(=O)c1c(Cl)cncc1Cl)C(=O)
O|BMCL-1595-25|0.215385

13.5.7 � molsame

The molsame utility outputs structures that are in common between two
structure tables. It takes two arguments: the names of the two schemas
containing a structure table. Sample output is shown below.

> molsame drugs pubtest
CN(C)CCCN1c2ccccc2Sc2ccc(Cl)cc12|chlorpromazine
Clc1ccc2N(C)C(=O)CN=C(c3ccccc3)c2c1|diazepam

172	 Design and Use of Relational Databases in Chemistry

Fc1ccc(cc1)C(=O)CCCN1CCC(O)(CC1)c1ccc(Cl)cc1|haloperidol
CN(C)CCCN1c2ccccc2CCc2ccccc12|imipramine
CCC1(C(=O)NC(=O)NC1=O)c1ccccc1|phenobarbital
CCN(CC)CCNC(=O)c1ccc(N)cc1|procainamide
OC(CNC(C)C)COc1cccc2ccccc12|propranolol
CCCCNc1ccc(cc1)C(=O)OCCN(C)C|tetracaine
COc1cc(Cc2cnc(N)nc2N)cc(OC)c1OC|trimethoprim
Coc1ccc(CCN(C)CCCC(C#N)(C(C)C)c2ccc(OC)c(OC)c2)cc1OC|verapamil

The pubtest schema was created using the first 25,000 substances from
pubchem, namely Substance_00000001_00025000.sdf available from the
PubChem project.5

References
	 1.	 Kündig, E.P., García, A.E., Lomberget, T., and Bernardinelli, G. 2006.

Rediscovery, isolation, and asymmetric reduction of 1,2,3,4-tetrahydronaph-
thalene-1,4-dione and studies of its [Cr(CO)3] complex. Angew. Chem. Internat.
Ed. 45(1):98–101.

	 2.	 Pubchem at http://ncbi.nih.gov/pubchem/ (accessed April 18, 2008).
	 3.	 Porter, J.R., Archibald, S.C., and Brown, J.A. 2003. Dehydrophenylalanine

derivatives as VLA-4 integrin antagonists. Bioorg. Med. Chem. Lett.
13(5):805–808.

	 4.	 Marvin. http://www.chemaxon.com/ (accessed April 18, 2008).
	 5.	 FTP directory /pubchem at ftp.ncbi.nih.gov. 2008: pubchem. ftp://ftp.ncbi.

nih.gov/pubchem/ (accessed April 18, 2008).

173

Appendix

A.1 � Introduction
This Appendix contains structured query language (SQL) functions and
tables too large or complex for the explanatory nature of the earlier chap-
ters. These functions and tables are practical, rather than explanatory. They
all follow PostgreSQL syntax. Some of them require the core functions
described in Chapter 7 of this book, for example, match, cansmiles, and
count _ matches. Those functions are available in the CHORD product
from gNova, Inc. This Appendix also contains a PerlMol implementation,
a FROWNS implementation, and an OpenBabel implementation of the
core functions for PostgreSQL.

A.2 � Symbols and Bonds from
Simplified Molecular Input Line
Entry System (SMILES)

If SMILES is used to store molecular structures in a relational database
management system(RDBMS), it may be necessary to extract the symbol
and bond information for some client programs that expect a connection
table. The smiles _ to _ symbol and smiles _ to _ bonds function
shown in the next sections allow the symbol and bond information in
a SMILES to be extracted as an array. Some client programs may prefer
to process this information in rows, as if they were records in a file. The
following plpgsql functions can be used to present the array elements as
rows. Two functions are shown: ctable (connection table) and symbol_
coords. The symbol _ coords function requires an array of coordinates
in addition to the symbols.

174	 Design and Use of Relational Databases in Chemistry

Create or Replace Function ctable(text) Returns Setof Record As
 $EOSQL$
-- Called with $1 as SQL selecting integer[] as bonds
-- Example caller:
-- select * from
-- ctable('select smiles_to_bonds(cansmiles) as bonds
-- from vla4.structure where name=''BMCL-1051-38''')
-- as (atom1 integer, atom2 integer, bond_order integer);

 Declare
 bonds Record;
 b Record;
 i Integer;
 Begin
 For b In Execute $1 Loop
 For i in 1 .. array_upper(b.bonds,1) Loop
 Select b.bonds[i][1], b.bonds[i][2], b.bonds[i][3] Into bonds;
 Return Next bonds;
 End Loop;
 End Loop;
 End;
$EOSQL$ Language plpgsql;

Create or Replace Function symbol_coords(text) Returns Setof Record
 As $EOSQL$
-- Called with $1 as SQL selecting text[] as symbols, numeric[] as
 coords
-- Example caller:
-- select * from
-- symbol_coords('select smiles_to_symbols(cansmiles) as symbols,
-- coords from vla4.structure where name=''BMCL-1051-38''')
-- as (symbol text, x numeric, y numeric, z numeric);

 Declare
 sym_coord Record;
 sc Record;
 i Integer;
 Begin
 For sc In Execute $1 Loop
 For i in 1 .. array_upper(sc.symbols,1) Loop
 Select sc.symbols[i], sc.coords[i][1], sc.coords[i][2],
 sc.coords[i][3]
 Into sym_coord;
 Return Next sym_coord;
 End Loop;
 End Loop;
 End;
$EOSQL$ Language plpgsql;

These functions are called with a string argument. This argument is an
SQL statement that is expected to provide the required information. For
ctable, this is an array of bonds. For symbol _ coords, these are an array
of symbols and an array of coordinates for each atom.

Appendix	 175

A.3 � Normalizing Data
When a data value is repeated multiple times in a column in a database, it
is said to violate third normal form. For example, a table of values for logp
might contain a column named ref having literature references. The value
‘Hansch, et. al. (1995)’ might be repeated many times. It is easy to spot this,
and easy to correct it as well. The following SQL can be used to help put a
table of logp values and references into third normal form.

-- New table to hold all references identified by unique id
Create Table literature_refs (refid Serial, reference Text);
-- Populate table with unique references found in logp table
Insert Into literature_refs (reference)
 Select Distinct ref From logp Group By ref;
-- Create column in logp to hold reference id instead of reference
Alter Table logp Add Column refid integer;
-- Populate logp table's reference id column with appropriate values
Update logp Set refid =
 (Select refid From literature_refs Where ref=reference);
-- No need for reference column anymore
Alter Table logp Drop Column ref;

This will create a table literature_refs that will hold all the unique values
of references that exist in the table logp. The comments in the above code
should explain the steps in this process. Once the literature _ refs
table is complete, a full reference can be obtained during a search of logp
using SQL like this.

Select cas, reference From logp Join literature_refs Using (refid);

A brief excerpt from a literature _ refs table is shown in Table A.1. It
was constructed using this technique and nicely illustrates an advantage
of normalizing a table in this way.

Table A.1  Sample Rows from Reference
Table Showing How Spelling Anomolies

Can Be Easily Identified

Refid Reference

 2 ABRAHAM MH ET AL. (1994)
 3 ABRAHAM,MH ET AL. (1994)

 84 CHEM INSPECT TESTING INST (1992)
 85 CHEM INSPECT TEST INST (1992)
 86 CHEM INSPEXT TEST INST (1992)

 131 EL TAYAR,N ET AL. (1985)
 132 EL TAYAR,N ET AL. (1991)
 133 EL TAYER,N ET AL. (1985)

176	 Design and Use of Relational Databases in Chemistry

Spelling anomalies can be easily identified and corrected, assigning
the refid of the correct spelling to those that are incorrect. Of course, the
original table from which the references came would have to be updated
as well to contain the refid for the correct spelling. Concerning spelling
and accuracy mistakes, there is little help that a programmatic approach
can offer here. A healthy database needs to be well curated. Notice how-
ever that putting tables in third normal forms brings such troubles to light
and makes correcting them relatively straightforward.

A.4 � SQL Functions
Several SQL functions are discussed in the earlier chapters. This section
shows the code needed to define these functions and make them available
for use in a PostgreSQL database.

A.4.1 � Public166keys

This function returns a length 166 fragment key. The input text string ($1
in the function body) is a SMILES, as expected by the matches function.
The table of fragments is based on the MACCS 166 public keys1 and is
shown in Table A.5.3 of this Appendix.

Create Function public166keys(character varying)
 Returns bit(166) As $EOSQL$
 Select orsum(bit_set(0::bit(166),abit))
 From public166keys Where matches($1,smarts);
 $EOSQL$ Language SQL;

A.4.2 � Orsum

This is an aggregate function, analogous to the standard SQL aggregate
function sum. While sum operates on numeric values, orsum operates on
bit strings, or-ing together each input value to provide the result. This
example uses the PostgreSQL bit data type and the native function bitor
to or together two bit strings.

Create Aggregate orsum (
 Basetype = bit,
 Sfunc = bitor,
 Stype = bit
);

A.4.3 � Tanimoto

The tanimoto function is used to compute the Tanimoto similarity of
two bitstrings. The input bit strings would have been computed with the
public166keys function or another equivalent fragment key or finger-
print function.

Appendix	 177

Create Function tanimoto(bit, bit)
 Returns Real As $EOSQL$
Select nbits_set($1 & $2)::real /
(nbits_set($1) + nbits_set($2) - nbits_set($1 & $2))::real;
$EOSQL$ Language SQL;

A.4.4 � Euclid

The euclid function is used to compute the Euclidian distance of two
bitstrings. The input bit strings would have been computed with the
public166keys function or another equivalent fragment key or finger-
print function.

Create Function tanimoto(bit, bit)
 Returns Real As $EOSQL$
Select sqrt((nbits_set($1 & $2) + nbits_set(~$1 & ~$2))::real /
 length($1))::real;
 $EOSQL$ Language SQL;

A.4.5 � Hamming

The hamming function is used to compute the hamming similarity of
two bit strings. The input bit strings would have been computed with the
public166keys function or another equivalent fragment key or finger-
print function.

Create Function tanimoto(bit, bit)
 Returns Real As $EOSQL$
Select ((nbits_set($1 & ~$2) + nbits_set(~$1 & $2))::real /
 length($1))::real;
$EOSQL$ Language SQL;

A.4.6 � Nbits_set

The nbits _ set function returns the number of bits set to 1 in a bit
string. This function is written here using python. Another C language
version of this function is shown later in this Appendix.

Create Or Replace Function nbits_set(bits bit) Returns Integer
 As $EOPY$
return bits.count('1');
$EOPY$ Language plpythonu Immutable;

A.4.7 � Amw

This function computes the average molecular weight of an input SMILES
structure. It uses the table of atomic weights and SMARTS shown in Table
A.2. It relies on the count _ matches function described in Chapter 7.

178	 Design and Use of Relational Databases in Chemistry

Table A.2  Average Atomic Weights for
Molecular Weight Computation

Smarts Weight Symbol

[#1] 1.01 H
[#2] 4.00 He
[#3] 6.94 Li
[#4] 9.01 Be
[#5] 10.81 B
[#6] 12.01 C
[#7] 14.01 N
[#8] 16.00 O
[#9] 19.00 F
[#10] 20.18 Ne
[#11] 22.99 Na
[#12] 24.31 Mg
[#13] 26.98 Al
[#14] 28.09 Si
[#15] 30.97 P
[#16] 32.06 S
[#17] 35.45 Cl
[#18] 39.95 Ar
[#19] 39.10 K
[#20] 40.08 Ca
[#21] 44.96 Sc
[#22] 47.88 Ti
[#23] 50.94 V
[#24] 52.00 Cr
[#25] 54.94 Mn
[#26] 55.85 Fe
[#27] 58.93 Co
[#28] 58.69 Ni
[#29] 63.55 Cu
[#30] 65.39 Zu
[#31] 69.72 Ga
[#32] 72.59 Ge
[#33] 74.92 As
[#34] 78.96 Se
[#35] 79.90 Br
[#36] 83.80 Kr
[#37] 85.47 Rb
[#38] 87.62 Sr

Appendix	 179

Table A.2  Average Atomic Weights for
Molecular Weight Computation (Continued)

Smarts Weight Symbol

[#39] 88.91 Y
[#40] 91.22 Zr
[#41] 92.91 Nb
[#42] 95.94 Mo
[#43] 98.00 Tc
[#44] 101.07 Ru
[#45] 102.91 Rh
[#46] 106.42 Pd
[#47] 107.87 Ag
[#48] 112.41 Cd
[#49] 114.82 In
[#50] 118.71 Sn
[#51] 121.75 Sb
[#52] 127.60 Te
[#53] 126.91 I
[#54] 131.29 Xe
[#55] 132.91 Cs
[#56] 137.34 Ba
[#57] 138.91 La
[#58] 140.12 Ce
[#59] 140.91 Pr
[#60] 144.24 Nd
[#61] 145.00 Pm
[#62] 150.36 Sm
[#63] 151.96 Eu
[#64] 157.25 Gd
[#65] 158.93 Tb
[#66] 162.50 Dy
[#67] 164.93 Ho
[#68] 167.26 Er
[#69] 168.93 Tm
[#70] 173.04 Yb
[#71] 174.97 Lu
[#72] 178.49 Hf
[#73] 180.95 Ta
[#74] 183.85 W
[#75] 186.21 Re
[#76] 190.20 Os

180	 Design and Use of Relational Databases in Chemistry

Create Function amw(character varying)
 Returns Numeric As $EOSQL$
 Select sum(weight*count_matches($1,smarts)) From amw;
 $EOSQL$ Language SQL;

Table A.2  Average Atomic Weights for
Molecular Weight Computation (Continued)

Smarts Weight Symbol

[#77] 192.22 Ir
[#78] 195.08 Pt
[#79] 196.97 Au
[#80] 200.59 Hg
[#81] 204.38 Tl
[#82] 207.20 Pb
[#83] 208.98 Bi
[#84] 209.00 Po
[#85] 210.00 At
[#86] 222.00 Rn
[#87] 223.00 Fr
[#88] 226.03 Ra
[#89] 227.03 Ac
[#90] 232.04 Th
[#91] 231.04 Pa
[#92] 238.03 U
[#93] 237.05 Np
[#94] 244.00 Pu
[#95] 243.00 Am
[#96] 247.00 Cm
[#97] 247.00 Bk
[#98] 251.00 Cf
[#99] 252.00 Es
[#100] 257.00 Fm
[#101] 258.00 Md
[#102] 259.00 No
[#103] 260.00 Lr
[*;h1] 1.01 H1
[*;h2] 2.02 H2
[*;h3] 3.03 H3
[*;h4] 4.04 H4
[*;h5] 5.05 H5
[*;h6] 6.06 H6

Appendix	 181

A.4.8 � Tpsa

This function computes the polar surface area of an input SMILES struc-
ture. It uses the table for tpsa fragment SMARTS and fragment partial
polar surface areas shown in Table A.3. It relies on the count _ matches
function described in Chapter 7.

Create Function gnova.tpsa(character varying)
 Returns Numeric As $EOSQL$
 Select sum(psa*count_matches($1,smarts)) From tpsa;
$EOSQL$ Language SQL;

Table A.3  Fragments Definitions and Partial Surface Areas

psa Smarts Description

23.79 [N0;H0;D1;v3] N#
23.85 [N+0;H1;D1;v3] [NH]=
26.02 [N+0;H2;D1;v3] [NH2]-
25.59 [N+1;H2;D1;v4] [NH2+]=
27.64 [N+1;H3;D1;v4] [NH3+]-
12.36 [N+0;H0;D2;v3] =N-
13.6 [N+0;H0;D2;v5] =N#
12.03 [N+0;H1;D2;v3;!r3] -[NH]- not in 3-ring
21.94 [N+0;H1;D2;v3;r3] -[NH]- in 3-ring
4.36 [N+1;H0;D2;v4] -[N+]#

13.97 [N+1;H1;D2;v4] -[NH+]=
16.61 [N+1;H2;D2;v4] -[NH2+]-
12.89 [n+0;H0;D2;v3] :[n]:
15.79 [n+0;H1;D2;v3] :[nH]:
3.24 [N+0;H0;D3;v3;!r3] -N(-)-
3.01 [N+0;H0;D3;v3;r3] -N(-)- in 3-ring

11.68 [N+0;H0;D3;v5] -N(=)=
3.01 [N+1;H0;D3;v4] =[N+](-)-
4.44 [N+1;H1;D3;v4] -[NH+](-)-
0 [N+1;H0;D4;v4] -[N+](-)(-)-

17.07 [O+0;H0;D1;v2] O=
23.06 [O-1;H0;D1;v1] [O-]-
9.23 [O+0;H0;D2;!r3;v2] -O- not in 3-ring

12.53 [O+0;H0;D2;r3;v2] -O- in 3-ring
13.14 [o+0;H0;D2;v2] :o:
14.14 [n+1;H1;D2;v4] :[nH+]:
20.23 [O+0;H1;D1] [OH]-
4.93 [n+0;H0;D3;$(n-*)] -[n](:):
4.41 [n+0;H0;D3;$(n(:*)(:*):*)] :[n](:):

182	 Design and Use of Relational Databases in Chemistry

A.5 � Tables Used in Functions
Many of the examples in this book and the functions in this Appendix
rely on tables of data to operate. This technique of storing data separately
from the function definition makes modification of the data very simple.
It also uses all of the data integrity features of a relational database. Data
in these tables can be used in various ways, not only in the functions for
which they were intended.

Table A.3  Fragments Definitions and Partial Surface Areas (Continued)

psa Smarts Description

4.10 [n+1;H0;D3;v4;$(n(:*)(:*):*)] :[n+](:):
3.88 [n+1;H0;D3;v4;$(n-*)] -[n+](:):
8.39 [n+0;H0;D3;v5;$(n=*)] =[n](:):

11.3 [#8+1;H0;D2] 28.5 – 2*8.6
Nonstandard valency

12.8 [#8+1;H1;D2] 28.5 - 2*8.6 + 1.5
nonstandard valency

11.3 [#8;H0;D2;v4] 28.5 – 2*8.6
Nonstandard valency

2.7 [#8;H0;D3;v4] 28.5 - 3 *8.6
nonstandard valency

2.7 [#8+1;H0;D3;v3] 28.5 – 3*8.6
Nonstandard valency

7.4 [NH+0;v5;D3] =N(-)-
30.5 - 8.2*3 + 1.5
nonstandard valency

14.10 [#7;v2;D2] 30.5 – 2*8.2
-[N]-
Nonstandard valency

15.6 [NH+0;v5;D2] 30.5 - 2*8.2 + 1.5
-N#, =N=
nonstandard valency

35.00 [NH3] 30.5 + 3*1.5
Nonstandard valency?

2.68 O=[N+][O-] 17.07 - 23.06 - 3.01 + 11.68
(O=) - ([O-])- - (-N(-)-) + (N(=)=)
fix to make charge-separated spelling work

33.03 N=[N+]=[N-] 23.79 + 13.6 – 4.36
(N#) + (=N#) - (-[N+]#)
fix to make charged-separated spelling work.

Appendix	 183

A.5.1 � Amw

Table A.2 is a table of average molecular weights for each of the first 103
atoms in the periodic table. Because most SMILES do not contain explicit
hydrogen atoms, an additional 6 rows are included to match atoms with
1–6 implicit hydrogen atoms. The function amw defined above uses this
table to compute average molecular weight.

A.5.2 � Tpsa

Table A.3 shows SMARTS for fragments described by Ertl, Rhode, and
Selzer.2 It contains the SMARTS definition of the fragment and the frag-
ment partial polar surface area. This table is used in the tpsa function to
compute the polar surface area for a molecular structure.

A.5.3 � Public166keys

Table A.4 shows commonly used fragment keys: the MACCS public166-
keys. This table is used with the public166keys function above to produce
a bit string key for use in filtering before substructure searching and for
similarity computations. The table consists of SMARTS patterns3 used to
identify each of 166 substructures.

Table A.4  SMARTS and Bit Position for public166keys

SMARTS abit Description

[!0*] 1 ISOTOPE
[Ge,Sn,Pb,As,Sb,Bi,Se,Te,Po] 3 GROUPIVA,VA,

VIA PERIODS 4-6
[Ac,Th,Pa,U,Np,Pu,Am,Cm,Bk,Cf,Es,Fm,
Md,No,Lr]

4 ACTINIDE

[Sc,Y,Ti,Zr,Hf] 5 GROUPIIIB,IVB
[La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,
Tm,Yb,Lu]

6 LANTHANIDE

[V,Nb,Ta,Cr,Mo,W,Mn,Tc,Re] 7 GROUPVB,VIB,VIIB
[!#6]~1~*~*~*~1 8 QAAA@1
[Fe,Co,Ni,Ru,Rh,Pd,Os,Ir,Pt] 9 GROUPVIII
[Be,Mg,Ca,Sr,Ba,Ra] 10 GROUPIIA
~1~~*~*~1 11 4MRING
[Cu,Ag,Au,Zn,Cd,Hg] 12 GROUPIB,IIB

184	 Design and Use of Relational Databases in Chemistry

Table A.4  SMARTS and Bit Position for public166keys (Continued)

SMARTS abit Description

[#8]~[#7](~[#6])~[#6] 13 ON(C)C
S-S 14 S-S
[#8]~[#6](~[#8])~[#8] 15 OC(O)O
[!#6]~1~*~*~1 16 QAA@1
C#C 17 CTC
[B,Al,Ga,In,Tl] 18 GROUPIIIA
~1~~*~*~*~*~*~1 19 7MRING
[Si] 20 Si
C=C(~[!#6])~[!#6] 21 C=C(Q)Q
~1~~*~1 22 3MRING
[#7]~[#6](~[#8])~[#8] 23 NC(O)O
[#7]-[#8] 24 N-O
[#7]~[#6](~[#7])~[#7] 25 NC(N)N
[#6]@=[#6](@*)@* 26 C$=C($A)$A
I 27 I
[!#6]~[CH2]~[!#6] 28 QCH2Q
[#15] 29 P
[#6]~[!#6](~[#6])(~[#6])~* 30 CQ(C)(C)A
[!#6]~[F,Cl,Br,I] 31 QX
[#6]~[#16]~[#7] 32 CSN
[#7]~[#16] 33 NS
[CH2]=* 34 CH2=A
[Li,Na,K,Rb,Cs,Fr] 35 GROUPIA
[#16&R] 36 SHETEROCYCLE
[#7]~[#6](~[#8])~[#7] 37 NC(O)N
[#7]~[#6](~[#6])~[#7] 38 NC(C)N
[#8]~[#16](~[#8])~[#8] 39 OS(O)O
[#16]-[#8] 40 S-O
C#N 41 CTN
F 42 F
[!#6&!H0]~*~[!#6&!H0] 43 QHAQH
[!#6!#7!#8!#15!#16!#9!#17!#35] 44 OTHER
C=C~[#7] 45 C=CN
Br 46 BR
[#16]~*~[#7] 47 SAN
[#8]~[!#6](~[#8])~[#8] 48 OQ(O)O
[!+0] 49 CHARGE
C=C(~[#6])~[#6] 50 C=C(C)C
[#6]~[#16]~[#8] 51 CSO

Appendix	 185

Table A.4  SMARTS and Bit Position for public166keys (Continued)

SMARTS abit Description

[#7]~[#7] 52 NN
[!#6&!H0]~*~*~*~[!#6&!H0] 53 QHAAAQH
[!#6&!H0]~*~*~[!#6&!H0] 54 QHAAQH
[#8]~[#16]~[#8] 55 OSO
[#8]~[#7](~[#8])~[#6] 56 ON(O)C
[#8R] 57 OHETEROCYCLE
[!#6]~[#16]~[!#6] 58 QSQ
[#16]!:*:* 59 Snot%A%A
S=O 60 S=O
~[#16](~)~* 61 AS(A)A
@!@*@* 62 A$A!A$A
N=O 63 N=O
@!@[#16] 64 A$A!S
c:n 65 C%N
[#6]~[#6](~[#6])(~[#6])~* 66 CC(C)(C)A
[!#6]~[#16] 67 QS
[!#6!H0]~[!#6!H0] 68 QHQH
[!#6]~[!#6!H0] 69 QQH
[!#6!H0]~[!#7]~[!#6!H0] 70 QNQ
[#7]~[#8] 71 NO
[#8]~*~*~[#8] 72 OAAO
S=* 73 S=A
[CH3]~*~[CH3] 74 CH3ACH3
!@[#7]@ 75 A!N$A
C=C(~*)~* 76 C=C(A)A
[#7]~*~[#7] 77 NAN
C=N 78 C=N
[#7]~*~*~[#7] 79 NAAN
[#7]~*~*~*~[#7] 80 NAAAN
[#16]~*(~*)~* 81 SA(A)A
*~[CH2]~[!#6!H0] 82 ACH2QH
[!#6]~1~*~*~*~*~1 83 QAAAA@1
[NH2] 84 NH2
[#6]~[#7](~[#6])~[#6] 85 CN(C)C
[CH2]~[!#6]~[CH2] 86 CH2QCH2
[F,Cl,Br,I]!@*@* 87 X!A$A
[#16] 88 S
[#8]~*~*~*~[#8] 89 OAAAO
[!#6!H0]~*~*~[CH2]~* 90 QHAACH2A

186	 Design and Use of Relational Databases in Chemistry

Table A.4  SMARTS and Bit Position for public166keys (Continued)

SMARTS abit Description

[!#6!H0]~*~*~*~[CH2]~* 91 QHAAACH2A
[#8]~[#6](~[#7])~[#6] 92 OC(N)C
[!#6]~[CH3] 93 QCH3
[!#6]~[#7] 94 QN
[#7]~*~*~[#8] 95 NAAO
~1~~*~*~*1 96 5MRING
[#7]~*~*~*~[#8] 97 NAAAO
[!#6]1~*~*~*~*~*~1 98 QAAAAA@1
C=C 99 C=C
*~[CH2]~[#7] 100 ACH2N
[R!r3!r4!r5!r6!r7] 101 8MRINGORLARGER
[!#6]~[#8] 102 QO
Cl 103 CL
[!#6!H0]~*~[CH2]~* 104 QHACH2A
@(@*)@* 105 A$A($A)$A
[!#6]~*(~[!#6])~[!#6] 106 QA(Q)Q
[F,Cl,Br,I]~*(~*)~* 107 XA(A)A
[CH3]~*~*~*~[CH2]~* 108 CH3AAACH2A
*~[CH2]~[#8] 109 ACH2O
[#7]~[#6]~[#8] 110 NCO
[#7]~*~[CH2]~* 111 NACH2A
~(~*)(~*)~* 112 AA(A)(A)A
[#8]!:*:* 113 Onot%A%A
[CH3]~[CH2]~* 114 CH3CH2A
[CH3]~*~[CH2]~* 115 CH3ACH2A
[CH3]~*~*~[CH2]~* 116 CH3AACH2A
[#7]~*~[#8] 117 NAO
~[CH2]~[CH2]~.*~[CH2]~[CH2]~* 118 ACH2CH2A>1
N=* 119 N=A
[!#6R].[!#6R] 120 HETEROCYLICATOM>1
[#7R] 121 NHETEROCYCLE
~[#7](~)~* 122 AN(A)A
[#8]~[#6]~[#8] 123 OCO
[!#6]~[!#6] 124 QQ
!@[#8]!@ 126 A!O!A
@!@[#8].*@*!@[#8] 127 A$A!O>1(&..)
~[CH2]~~*~*~[CH2]~* 128 ACH2AAACH2A
~[CH2]~~*~[CH2]~* 129 ACH2AACH2A

Appendix	 187

Table A.4  SMARTS and Bit Position for public166keys (Continued)

SMARTS abit Description

[!#6]~[!#6].[!#6]~[!#6] 130 QQ>1
[!#6!H0].[!#6!H0] 131 QH>1
[#8]~*~[CH2]~* 132 OACH2A
@!@[#7] 133 A$A!N
[F,Cl,Br,I] 134 X(HALOGEN)
[#7]!:*:* 135 Nnot%A%A
O=*.O=* 136 O=A>1
[!#6R] 137 HETEROCYCLE
[!#6][#6H2]*.[!#6][#6H2]* 138 QCH2A>1
[OH] 139 OH
[#8].[#8].[#8].[#8] 140 O>3
[CH3].[CH3].[CH3] 141 CH3>2
[#7].[#7] 142 N>1
@!@[#8] 143 A$A!O
!::*!:* 144 Anot%A%Anot%A
~1~~*~*~*~*1.*~1~*~*~*~*~*1 145 6MRING>1
[#8].[#8].[#8] 146 O>2
~[#6H2]~[#6H2]~ 147 ACH2CH2A
~[!#6](~)~* 148 AQ(A)A
[CH3].[CH3] 149 CH3>1
!@@*!@* 150 A!A$A!A
[#7H] 151 NH
[#8]~[#6](~[#6])~[#6] 152 OC(C)C
[!#6][#6H2]* 153 QCH2A
[#6]=[#8] 154 C=O
~!@[CH2&!R]~!@ 155 A!CH2!A
[#7]~*(~*)~* 156 NA(A)A
[#6]-[#8] 157 C-O
[#6]-[#7] 158 C-N
[#8].[#8] 159 O>1
[CH3] 160 CH3
[#7] 161 N
a 162 AROM
~1~~*~*~*~*1 163 6MRING
[#8] 164 O
[R] 165 RING
(*).(*) 166 FRAGMENT

188	 Design and Use of Relational Databases in Chemistry

A.6 � Core Function Implementation
for PostgreSQL

Some of the functions described in this book are discussed in an abstract
way as chemical extensions to an RDBMS. There is a commercial imple-
mentation of these and other functions in the CHORD product of gNova.
This section shows three open-source implementations of the core func-
tions. It is necessary to install these additional modules and brief directions
are supplied here. It is also necessary to add the plperl and/or plpython
procedural languages to the PostgreSQL RDBMS. These are not installed
by default, but this is easily done using the createlang linux command
or the create language SQL command. The createlang command is
part of the installation packages for PostgreSQL.

createlang plperl
createlang plpythonu

A.6.1 � PerlMol/plperlu

PerlMol is a module add-on to the perl language that facilitates working
with molecular structures using SMILES, SMARTS, and molfiles, as well
as other functionality. PerlMol is available from CPAN, the Comprehensive
Perl Archive Network. In order to install PerlMol, it is recommended to
use the command cpan -i PerlMol as superuser in order to install the
modules into the system perl library. This will install all the necessary
modules for the following functions, as well as other parts of PerlMol that
may be useful.

The following code will define the core functions described in Chapter
7 of this book. The isosmiles function is not included here because of limi-
tation of PerlMol. These functions apply only to the PostgreSQL RDBMS.

Create Or Replace Function valid(text) Returns Boolean As $EOPERL$
use Chemistry::File ':auto';

#-- return true if input smi can be parsed
my ($smi) = @_;
my $mol = Chemistry::Mol->parse($smi, format => 'smiles', fatal => 0);

if ($mol->atoms(1)) {
#-- $mol has at least one valid atom
 return true;
} else {
 return false;
}

$EOPERL$ Language plperlu;

Appendix	 189

Create Or Replace Function cansmiles(text) Returns Text As $EOPERL$
use Chemistry::File ':auto';

#-- return canonicalized version of input smi
my ($smi) = @_;
my $mol = Chemistry::Mol->parse($smi, format => 'smiles');

return $mol->sprintf('%S');
$EOPERL$ Language plperlu;

Create Or Replace Function keksmiles(text) Returns Text As $EOPERL$
use Chemistry::File ':auto';

#-- return kekulized version of input smi
my ($smi) = @_;
my $mol = Chemistry::Mol->parse($smi, format => 'smiles',
 kekulize => 1);

return $mol->sprintf('%s');
$EOPERL$ Language plperlu;

Create Or Replace Function smiles_to_molfile(text) Returns Text
 As $EOPERL$
use Chemistry::File ':auto';
#--use Chemistry::3DBuilder qw(build_3d);

#-- convert smi to molfile format
my ($smi) = @_;
my $mol = Chemistry::Mol->parse($smi, format => smiles);

#-- compute 3D coords
#--build_3d($mol);
return $mol->print(format => sdf);
$EOPERL$ Language plperlu;

Create Or Replace Function molfile_to_smiles(text) Returns Text
 As $EOPERL$
use Chemistry::File ':auto';

my ($smi) = @_;
my $mol = Chemistry::Mol->parse($smi, format => sdf);

return $mol->print(format => smiles);
$EOPERL$ Language plperlu;

Create Or Replace Function matches(text, text) Returns Boolean
 As $EOPERL$
use Chemistry::File::SMILES;
use Chemistry::File::SMARTS;
use Chemistry::Ring 'aromatize_mol';

190	 Design and Use of Relational Databases in Chemistry

#-- return true if smi is matched by sma
my ($smi, $sma) = @_;
my $mol = Chemistry::Mol->parse($smi, format => smiles);
aromatize_mol($mol);
my $patt = Chemistry::Pattern->parse($sma, format => smarts);

if ($patt->match($mol)) {
 return 't';
} else {
 return 'f';
}
$EOPERL$ Language plperlu;

Create Or Replace Function count_matches(text, text) Returns
 Integer As $EOPERL$
use Chemistry::File::SMILES;
use Chemistry::File::SMARTS;
use Chemistry::Ring 'aromatize_mol';

#-- return how many times smi is matched by sma
my ($smi, $sma) = @_;
my $mol = Chemistry::Mol->parse($smi, format => smiles);
aromatize_mol($mol);
my $patt = Chemistry::Pattern->parse($sma, format => smarts);

my $nmatch = 0;
while ($patt->match($mol)) {
 ++$nmatch;
}
return $nmatch;
$EOPERL$ Language plperlu;

Create Or Replace Function list_matches(text, text, integer)
 Returns Text[] As $EOPERL$
use Chemistry::File::SMILES;
use Chemistry::File::SMARTS;
use Chemistry::Ring 'aromatize_mol';

#-- return list of atoms in smi matched by sma
#-- return nshow'th match; all matches if nshow=0
my ($smi, $sma, $nshow) = @_;
my $mol = Chemistry::Mol->parse($smi, format => smiles);
aromatize_mol($mol);
my $patt = Chemistry::Pattern->parse($sma, format => smarts);

#---- map atom ids (returned from $patt->atom_map below) to atom
 numbers in mol
my %atom_number;
my $iatom = 1;
foreach ($mol->atoms) {
 $atom_number{$_} = $iatom;
 ++$iatom;
}

Appendix	 191

my @match_list = ();
my @matches = ();
my $nmatch = 0;
while ($patt->match($mol)) {
 $nmatches = @matches = $patt->atom_map;
 for (my $i=0; $i<$nmatches; ++$i) {
 $matches[$i] = $atom_number{$matches[$i]};
 }
#-- braces make this a postgresql array
 $match_list[$nmatch] .= "{" . (join ",", @matches) . "}";
 ++$nmatch;
}
return undef unless ($nmatch > 0);

if ($nshow > 0 && $nshow <= $nmatch) {
 return "$match_list[$nshow-1]";
} else {
#-- braces make this a postgresql array (of arrays)
 return "{" . (join ",", @match_list) . "}";
}
$EOPERL$ Language plperlu;

Create Or Replace Function list_matches(text, text) Returns Text[]
 As $EOSQL$
-- Convenience function to return first match
 Select list_matches($1, $2, 1);
$EOSQL$ Language SQL;

In order to install these functions into a database named mydb, the follow-
ing command would be used. Assume that the code above is stored in a
file named perlmol-core.sql.

sudo -u postgres psql mydb <perlmol-core.sql

It is necessary to install these as the PostgreSQL superuser, here postgres,
or as any another PostgreSQL superuser. This is because the “untrusted”
language plperlu is used. The language plperlu must be used because of
the perl use statements in these functions. It might be more accurate to
say “unrestricted” language, since plperlu can use all the functionality of
perl. More information about the differences between plperl and plperlu
is available.4

A.6.2 � FROWNS/plpythonu

FROWNS5 is an open source python module loosely based on Andrew
Dalke’s PyDaylight.6 It includes methods that operate on SMILES,
SMARTS, and molfiles as well as other functionality, including finger-
prints. Once FROWNS is installed, it can be used within any python pro-
gram. Using the plpythonu procedural language available in PostgreSQL,

192	 Design and Use of Relational Databases in Chemistry

FROWNS python modules are used to show a second way in which the
core functions might be implemented. The following plpythonu code
extends PostgreSQL with most of the core functions described in Chapter
7. The isosmiles and keksmiles functions are not included here because of
limitations of FROWNS.

Create Schema frowns;
Grant All On Schema frowns to public;

Create Or Replace Function frowns.valid(smi Text) Returns Boolean
As $EOPY$
from frowns import Smiles
try:
 mol = Smiles.smilin(smi)
 return True
except:
 return False
$EOPY$ Language plpythonu Immutable;

Create Or Replace Function frowns.cansmiles(smi Text) Returns Text
As $EOPY$
from frowns import Smiles
mol = Smiles.smilin(smi)
return mol.cansmiles()
$EOPY$ Language plpythonu Immutable;

Create Or Replace Function frowns.smiles_to_symbols(smi Text)
Returns Text[] As $EOPY$
from frowns import Smiles
mol = Smiles.smilin(smi)
return "{" + ",".join((a.symbol for a in mol.atoms)) + "}"
$EOPY$ Language plpythonu Immutable;

Create Or Replace Function frowns.smiles_to_bonds(smi Text) Returns
Integer[][2] As $EOPY$
from frowns import Smiles
mol = Smiles.smilin(smi)
iatom = 0
return "{" + ",".join(\
 ["{" + ",".join((str(b.atoms[0].index+1),str(b.atoms[1].
index+1),str(b.bondtype))) + "}" for b in mol.bonds] \
) + "}"
$EOPY$ Language plpythonu Immutable;

Create Or Replace Function frowns.smiles_to_molfile(smi Text, name
Text, coords Numeric[][]) Returns Text As $EOPY$
from frowns import Smiles
just get the molfile format right.
stereochemistry missing; charges only appear in CHG records
mol = Smiles.smilin(smi)
(x,y,z) = (0.0, 0.0, 0.0)
if name is None:

Appendix	 193

 tname = ""
else:
 tname = name
if coords is not None:
 tcoords = eval((coords.replace('{','[')).replace('}',']'))
molfile = [];
molfile.append(tname)
molfile.append(' gNova FROWNS smiles_to_molfile')
molfile.append(smi)
atoms = mol.atoms
bonds = mol.bonds
molfile.append("%3d%3d%3d%3d%3d%3d%3d%3d%3d%6d V%4d" % (len(atoms),
len(bonds), 0, 0, 0, 0, 0, 0, 0, 999, 2000))

oddball mapping of charges
#cmap[-3] = 7
#cmap[-2] = 6
#cmap[-1] = 5
#cmap[0] = 0
#cmap[1] = 3
#cmap[2] = 2
#cmap[3] = 1
cmap = [7,6,5,0,3,2,1]
for a in atoms:
 if coords is not None:
 (x,y,z) = (tcoords[a.index][0], tcoords[a.index][1], tcoords[a.
index][2])
 molfile.append(" %9.4f %9.4f %9.4f %-2s%3d%3d%3d%3d%3d%3d%3d%3d%3
d%3d%3d%3d" % (x,y,z, a.symbol, 0,cmap[3+a.
charge],0,0,0,0,0,0,0,0,0,0))

for b in bonds:
 molfile.append("%3d%3d%3d%3d%3d%3d%3d" % (b.atoms[0].index+1,
b.atoms[1].index+1, b.bondtype,0,0,0,0))

for a in atoms:
 if a.charge:
 molfile.append("M CHG%3d %3d %3d" % (1, a.index+1, a.charge))
molfile.append("M END")
molfile.append("$$$$")
return "\n".join(molfile)
$EOPY$ Language plpythonu;

Create Or Replace Function frowns.smiles_to_molfile(smi Text, name
Text) Returns Text As $EOSQL$
 Select frowns.smiles_to_molfile($1, $2, null);
$EOSQL$ Language SQL;

Create Or Replace Function frowns.smiles_to_molfile(smi Text)
Returns Text As $EOSQL$
 Select frowns.smiles_to_molfile($1, null, null);
$EOSQL$ Language SQL;

194	 Design and Use of Relational Databases in Chemistry

Create Or Replace Function frowns.molfile_to_smiles(molfile Text)
Returns Text As $EOPY$
from frowns import MDL
from frowns import Smiles
from frowns.mdl_parsers import Generator
import StringIO
import sys
#fd = StringIO.StringIO(molfile + "\n$$$$")
fd = StringIO.StringIO(molfile)
reader = MDL.sdin(fd)
mol, text, error = reader.next()
fd.close()
if not mol:
 print "Error parsing molfile"
 print error + text
 return None
else:
 # sometimes mol.cansmiles emits [C] when C is proper, this seems
to fix that
 return frowns.Generator.INDEX
 #return (Smiles.smilin(mol.cansmiles())).cansmiles()

#raise ValueError("Error parsing molfile")
return None
$EOPY$ Language plpythonu Immutable;

Drop Type frowns.named_property Cascade;
Create Type frowns.named_property As (name Text, value Text);
Create Or Replace Function frowns.molfile_properties(molfile Text)
Returns Setof frowns.named_property As $EOPY$
from frowns import MDL
import StringIO
fd = StringIO.StringIO(molfile + "\n$$$$")
for mol, text, error in MDL.sdin(fd):
 if not mol:
 print error + text
 return None
 else:
 #mol.fields["cansmiles"] = mol.cansmiles()
 return mol.fields.items()

print "Error parsing molfile"
#raise ValueError("Error parsing molfile")
return None
$EOPY$ Language plpythonu Immutable;

Create Or Replace Function frowns.matches(smi Text, sma Text)
Returns Boolean As $EOPY$
from frowns import Smiles
from frowns import Smarts
mol = Smiles.smilin(smi)
pat = Smarts.compile(sma)
match = pat.match(mol)

Appendix	 195

try:
 assert match
 return True
except:
 return False
$EOPY$ Language plpythonu Immutable;

Create Or Replace Function frowns.count_matches(smi Text, sma Text)
Returns Integer As $EOPY$
from frowns import Smiles
from frowns import Smarts
mol = Smiles.smilin(smi)
pat = Smarts.compile(sma)
match = pat.match(mol)
try:
 assert match
 imatch = 0
 for path in match:
 imatch += 1
 return imatch
except:
 return 0
$EOPY$ Language plpythonu Immutable;

Create Or Replace Function frowns.list_matches(smi Text, sma Text,
imatch Integer, istart Integer) Returns Integer[] As $EOPY$
from frowns import Smiles
from frowns import Smarts
mol = Smiles.smilin(smi)
pat = Smarts.compile(sma)
try:
 match = pat.match(mol)
 assert match
except:
 return '{null}'
all_matches = list()
nmatch = 0
for path in match:
 nmatch += 1
 matches = [a.index+1 for a in path.atoms]
 pgarray = "{" + ",".join([str(i-1+istart) for i in matches]) + "}"
 if (nmatch == imatch):
 return pgarray
 all_matches.append(pgarray)

return "{"+ ",".join(all_matches)+ "}"
$EOPY$ Language plpythonu Immutable;

Create Or Replace Function frowns.list_matches(Text, Text) Returns
Integer[] As $EOSQL$
 Select frowns.list_matches($1, $2, 1, 0);
$EOSQL$ Language SQL Immutable;

196	 Design and Use of Relational Databases in Chemistry

Create Or Replace Function frowns.list_matches(Text, Text, Integer)
Returns Integer[] As $EOSQL$
 Select frowns.list_matches($1, $2, $3, 0);
$EOSQL$ Language SQL Immutable;

Create Or Replace Function frowns.fp(smi Text, nbits Integer,
maxpath Integer) Returns Bit As $EOPY$
from frowns import Fingerprint
from frowns import Smiles
mol = Smiles.smilin(smi)
numints = nbits / 32
fp = Fingerprint.generateFingerprint(mol, numInts=numints,
pathLength=maxpath)
return "".join([str(bit) for bit in fp.to_list()])
$EOPY$ Language plpythonu Immutable;

Create Or Replace Function frowns.fp(smi Text) Returns Bit As
$EOSQL$
 Select frowns.fp($1, 512, 7);
$EOSQL$ Language SQL Immutable;

Create or Replace FUNCTION frowns.contains(Bit, Bit) Returns
Boolean As $EOSQL$
 Select $2 = ($1 & $2);
$EOSQL$ Language SQL Immutable;
Comment On FUNCTION frowns.contains(bit, bit)
 Is 'does first bit string contain all the bits of second';

-- get all info from molfiles in one record for insert into a table
-- see frowns.sql for an example of using frowns.molfile_mol() to
-- insert into a table
Drop Type frowns.mol Cascade;
Create Type frowns.mol As (name Text, cansmiles Text, coords
Numeric[][], atoms Integer[]);
Create Or Replace Function frowns.molfile_mol(molfile Text) Returns
frowns.mol As $EOPY$
from frowns import MDL
from frowns import Smiles
import StringIO
fd = StringIO.StringIO(molfile + "\n$$$$")
for mol, text, error in MDL.sdin(fd):
 if not mol:
 print error + text
 return None
 else:
 # sometimes mol.cansmiles emits [C] when C is proper, amol seems
to fix that
 amol = Smiles.smilin(mol.cansmiles())
 return (mol.name, amol.cansmiles(), \
 "{" + ",".join(["{"+str(a.x)+","+str(a.y)+","+str(a.z)+"}" \
 for a in mol.canonical_list[0][1]]) + "}" , \
 "{" + ",".join([str(a.index+1) \
 for a in mol.canonical_list[0][1]]) + "}")

Appendix	 197

print "Error parsing molfile"
#raise ValueError("Error parsing molfile")
return None
$EOPY$ Language plpythonu Immutable;

Create Or Replace Function frowns.graph(smi Text) Returns Text As
$EOPY$
from frowns import Smiles
try:
 mol = Smiles.smilin(smi)
except:
 return None

hcount = 0
for b in mol.bonds:
 b.bondorder = b.bondtype = 1
 b.aromatic = 0
for a in mol.atoms:
 hcount += a.hcount
 a.aromatic = 0
 a.charge = 0
 nbonds = len(a.bonds)
 if a.valences:
 a.imp_hcount = a.hcount = a.valences[0] - nbonds

return mol.cansmiles() + '.H' + str(hcount)
$EOPY$ Language plpythonu Immutable;

Assume that the code above is stored in a file named frowns-core.sql. In
order to install these functions into a database named mydb, the following
linux command would be used.

sudo -u postgres psql mydb <frowns-core.sql

It is necessary to install these as the PostgreSQL superuser, here postgres,
or as any other PostgreSQL superuser. This is because the “untrusted” lan-
guage plpythonu is used. It might be more accurate to say “unrestricted,”
since plpythonu can use all the functionality of python.

A.6.3 � OpenBabel/python

OpenBabel7 is program used to interconvert molecular structures from
one file format to another. The underlying C++ functions allow operations
on SMILES, SMARTS, and molfiles, as well as other functionality includ-
ing fingerprints. There is a python wrapper for OpenBabel toolkit. Using
this module and the plpythonu procedural language in PostgreSQL, the
following functions implement the core functions.

Create Schema openbabel;
Grant All On Schema openbabel to public;

198	 Design and Use of Relational Databases in Chemistry

Create Or Replace Function openbabel.valid(smi Text) Returns
 Boolean As $EOPY$
import openbabel
try:
 obc = openbabel.OBConversion()
 mol = openbabel.OBMol()
 obc.SetInFormat("smi")
 return obc.ReadString(mol, smi)
 return True
except:
 return False
$EOPY$ Language plpythonu Immutable;

Create Or Replace Function openbabel.cansmiles(smi Text) Returns
 Text As $EOPY$
import openbabel
obc = openbabel.OBConversion()
mol = openbabel.OBMol()
obc.SetInAndOutFormats("smi", "can")
if obc.ReadString(mol, smi):
 mol.SetTitle("")
 for a in openbabel.OBMolAtomIter(mol):
 a.UnsetStereo()
 for b in openbabel.OBMolBondIter(mol):
 b.UnsetWedge()
 b.UnsetHash()
 b.UnsetUp()
 b.UnsetDown()
 return obc.WriteString(mol,1)
else:
 raise ValueError("Error in input smiles")
 return None
$EOPY$ Language plpythonu Immutable;

Create Or Replace Function openbabel.isosmiles(smi Text) Returns
 Text As $EOPY$
import openbabel
obc = openbabel.OBConversion()
mol = openbabel.OBMol()
obc.SetInAndOutFormats("smi", "can")
if obc.ReadString(mol, smi):
 mol.SetTitle("")
 return obc.WriteString(mol,1)
else:
 raise ValueError("Error in input smiles")
 return None
$EOPY$ Language plpythonu Immutable;

Create Or Replace Function openbabel.keksmiles(smi Text) Returns
 Text As $EOPY$
import openbabel
obc = openbabel.OBConversion()
mol = openbabel.OBMol()
obc.SetInAndOutFormats("smi", "smi")

Appendix	 199

if obc.ReadString(mol, smi):
 mol.SetTitle("")
 mol.Kekulize()
 return obc.WriteString(mol,1)
else:
 raise ValueError("Error in input smiles")
 return None
$EOPY$ Language plpythonu Immutable;

Create Or Replace Function openbabel.smiles_to_symbols(smi Text)
 Returns Text[] As $EOPY$
import openbabel
obc = openbabel.OBConversion()
mol = openbabel.OBMol()
obc.SetInAndOutFormats("smi", "mol")
if obc.ReadString(mol, smi):
 tbl = openbabel.OBElementTable()
 return "{" + ",".join((tbl.GetSymbol(a.GetAtomicNum()) for a in
 openbabel.OBMolAtomIter(mol))) + "}"

else:
 raise ValueError("Error in input smiles")
 return None
$EOPY$ Language plpythonu Immutable;

Create Or Replace Function openbabel.smiles_to_bonds(smi Text)
 Returns Integer[] As $EOPY$
import openbabel
obc = openbabel.OBConversion()
mol = openbabel.OBMol()
obc.SetInAndOutFormats("smi", "mol")
if obc.ReadString(mol, smi):
 bonds = []
 for b in openbabel.OBMolBondIter(mol):
 if b.IsAromatic():
 bo = 4
 else:
 bo = b.GetBO()
 bonds.append("{%d,%d,%d}" % (b.GetBeginAtomIdx(),
b.GetEndAtomIdx(), bo))
 return "{" + ",".join(bonds) + "}"

else:
 raise ValueError("Error in input smiles")
 return None
$EOPY$ Language plpythonu Immutable;

Create Or Replace Function openbabel.smiles_to_molfile(smi Text)
 Returns Text As $EOPY$
import openbabel
obc = openbabel.OBConversion()
mol = openbabel.OBMol()
obc.SetInAndOutFormats("smi", "mol")

200	 Design and Use of Relational Databases in Chemistry

if obc.ReadString(mol, smi):
 return obc.WriteString(mol)
else:
 raise ValueError("Error in input smiles")
 return None
$EOPY$ Language plpythonu Immutable;

Create Or Replace Function openbabel.molfile_to_smiles(molfil Text)
 Returns Text As $EOPY$
import openbabel
obc = openbabel.OBConversion()
mol = openbabel.OBMol()
obc.SetInAndOutFormats("sdf", "can")
if obc.ReadString(mol, molfil):
 mol.SetTitle("")
 return obc.WriteString(mol,1)
else:
 raise ValueError("Error in input molfile")
 return None
$EOPY$ Language plpythonu Immutable;

Create Or Replace Function openbabel.matches(smi Text, sma Text)
 Returns Boolean As $EOPY$
import openbabel
obc = openbabel.OBConversion()
mol = openbabel.OBMol()
obc.SetInFormat("smi")
if obc.ReadString(mol, smi):

 pat = openbabel.OBSmartsPattern()
 if pat.Init(sma):
 return pat.Match(mol)
 else:
 raise ValueError("Error in input smarts")
 return None

else:
 raise ValueError("Error in input smiles")
 return None
$EOPY$ Language plpythonu Immutable;

Create Or Replace Function openbabel.count_matches(smi Text, sma
 Text) Returns Integer As $EOPY$
import openbabel
obc = openbabel.OBConversion()
mol = openbabel.OBMol()
obc.SetInFormat("smi")
if obc.ReadString(mol, smi):

 pat = openbabel.OBSmartsPattern()
 if pat.Init(sma):
 if pat.Match(mol):
 return len(pat.GetUMapList())

Appendix	 201

 else:
 return 0
 else:
 raise ValueError("Error in input smarts")
 return None

else:
 raise ValueError("Error in input smiles")
 return None
$EOPY$ Language plpythonu Immutable;

Create Or Replace Function openbabel.list_matches(smi Text, sma
 Text, imatch Integer, istart Integer) Returns Integer[] As $EOPY$
import openbabel
obc = openbabel.OBConversion()
mol = openbabel.OBMol()
obc.SetInFormat("smi")
if obc.ReadString(mol, smi):

 pat = openbabel.OBSmartsPattern()
 if pat.Init(sma):
 if pat.Match(mol):
 i = 0
 all_matches = list()
 for p in pat.GetUMapList():
 i += 1
 pgarray = '{' + ','.join([str(a-1+istart) for a in p]) + '}'
 if i == imatch: return pgarray
 all_matches.append(pgarray)
 return '{' + ','.join(all_matches) + '}'
 else:
 return None

 else:
 raise ValueError("Error in input smarts")
 return None

else:
 raise ValueError("Error in input smiles")
 return None
$EOPY$ Language plpythonu Immutable;

Create Or Replace Function openbabel.list_matches(Text, Text)
 Returns Integer[] As $EOSQL$
 Select openbabel.list_matches($1, $2, 1, 0);
$EOSQL$ Language SQL Immutable;

Create Or Replace Function openbabel.list_matches(Text, Text,
 Integer) Returns Integer[] As $EOSQL$
 Select openbabel.list_matches($1, $2, $3, 0);
$EOSQL$ Language SQL Immutable;

202	 Design and Use of Relational Databases in Chemistry

Create Or Replace Function openbabel.fp(smi Text) Returns Bit As
 $EOPY$
import pybel
mol = pybel.readstring("smi", smi)
fp = mol.calcfp()
fpx = ['0' for i in range(1024)]
for b in fp.bits:
 fpx[b-1] = '1'
return "".join(fpx)
$EOPY$ Language plpythonu Immutable;

Create or Replace FUNCTION openbabel.contains(Bit, Bit) Returns
 Boolean As $EOSQL$
 Select $2 = ($1 & $2);
$EOSQL$ Language SQL Immutable;
Comment On FUNCTION openbabel.contains(bit, bit)
 Is 'does first bit string contain all the bits of second';

-- get all info from molfiles in one record for insert into a table
-- see openbabel.sql for an example of using openbabel.molfile_
 mol() to
-- insert into a table
Drop Type openbabel.mol Cascade;
Create Type openbabel.mol As (name Text, cansmiles Text, coords
 Numeric[][], atoms Integer[]);
Create Or Replace Function openbabel.molfile_mol(molfil Text)
 Returns openbabel.mol As $EOPY$
import openbabel
obc = openbabel.OBConversion()
mol = openbabel.OBMol()
obc.SetInAndOutFormats("sdf", "can")
if obc.ReadString(mol, molfil):
 title = mol.GetTitle()
 mol.SetTitle("")
 cansmi = obc.WriteString(mol,1)
 pat = openbabel.OBSmartsPattern()
 if pat.Init(cansmi):
 if pat.Match(mol):
 map = (pat.GetUMapList())[0]

 return title, cansmi, \
 "{" + ",".join(["{"+str(a.x())+","+str(a.y())+","+str(a.z())+"}" \
 for a in [mol.GetAtom(i) for i in map]]) + "}" , \
 "{" + ",".join([str(i) for i in map]) + "}"

print "Error parsing molfile"
#raise ValueError("Error parsing molfile")
return None
$EOPY$ Language plpythonu Immutable;

Drop Type openbabel.named_property Cascade;
Create Type openbabel.named_property As (name Text, value Text);

Appendix	 203

Create Or Replace Function openbabel.molfile_properties(molfil
 Text) Returns Setof openbabel.named_property As $EOPY$
import pybel
mol = pybel.readstring("sdf", molfil)
return mol.data.iteritems()

print "Error parsing molfile"
#raise ValueError("Error parsing molfile")
return None
$EOPY$ Language plpythonu Immutable;

Create Or Replace Function openbabel.graph(smi Text) Returns Text
 As $EOPY$
import openbabel
obc = openbabel.OBConversion()
mol = openbabel.OBMol()
obc.SetInAndOutFormats("smi", "can")
try:
 obc.ReadString(mol, smi)
except:
 return None

hcount = 0
for a in openbabel.OBMolAtomIter(mol):
 hcount += a.ImplicitHydrogenCount() + a.ExplicitHydrogenCount()
for b in openbabel.OBMolBondIter(mol):
 b.SetBondOrder(1)
 b.UnsetAromatic()
for a in openbabel.OBMolAtomIter(mol):
 a.UnsetAromatic()
 a.SetFormalCharge(0)

return obc.WriteString(mol, 1) + '.H' + str(hcount)

$EOPY$ Language plpythonu Immutable;

Assume that the code above is stored in a file named openbabel-core.sql.
In order to install these functions into a database named mydb, the follow-
ing linux command would be used.

sudo -u postgres psql mydb <openbabel-core.sql

It is necessary to install these as the PostgreSQL superuser, here postgres,
or as any another PostgreSQL superuser. This is because the “untrusted”
language plpythonu is used. It might be more accurate to say “unre-
stricted,” since plpythonu can use all the functionality of python.

A.7 � C Language PostgreSQL Functions
C language functions require more work than functions written in other
languages. As with all C programs, they must first be compiled. The

204	 Design and Use of Relational Databases in Chemistry

shared object file output by the complier is then placed in the PostgreSQL
library. The following code implements the nbits _ set function that
returns the number of bits set in a bit string. This function is also shown
in a python version earlier in this Appendix.

#include "postgres.h" /* general Postgres declarations */
#include "fmgr.h" /* for argument/result macros */
#include "executor/executor.h" /* for GetAttributeByName() */
#include "utils/varbit.h"

/* These prototypes just prevent possible warnings from gcc. */

Datum nbits_set(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(nbits_set);
Datum
nbits_set(PG_FUNCTION_ARGS)
{
/* how many bits are set in a bitstring? */

 VarBit *a = PG_GETARG_VARBIT_P(0);
 int n=0;

 /*
 * VARBITLENTOTAL is the total size of the struct in bytes.
 * VARBITLEN is the size of the string in bits.
 * VARBITBYTES is the size of the string in bytes.
 * VARBITHDRSZ is the total size of the header in bytes.
 * VARBITS is a pointer to the data region of the struct.
 */
 int i;
 unsigned char *ap = VARBITS(a);
 unsigned char aval;
 for (i=0; i < VARBITBYTES(a); ++i) {
 aval = *ap; ++ap;
 if (aval == 0) continue;
 if (aval & 1) ++n;
 if (aval & 2) ++n;
 if (aval & 4) ++n;
 if (aval & 8) ++n;
 if (aval & 16) ++n;
 if (aval & 32) ++n;
 if (aval & 64) ++n;
 if (aval & 128) ++n;
 }
 PG_RETURN_INT32(n);
}

Suppose this code exists in a file bits.c. The following linux commands
will process this file and make it useable as a new PostgreSQL function.

> gcc -shared -o bits.so -I/usr/include/postgresql/8.2/server bits.c
> cp bits.so /usr/lib/postgresql/8.2/lib/bits.so

Appendix	 205

The directories named in these commands are valid for version 8.2 of
PostgreSQL running on a Ubuntu linux machine. They may be valid
for other distributions of linux, but may need to be adjusted for another
installation.

Finally, the function is defined using the following SQL.

Create Or Replace Function nbits_set(bit)
 Returns integer AS 'bits', 'nbits_set' Language c Immutable Strict;
Comment On Function nbits_set(bit) Is 'number of bits set';

In functions written in other languages, the code appears in the create com-
mand, whether it is written in SQL, plpgsql, plperl, or plpython. For C lan-
guage functions, the name of the shared object, here bits.so, and the name
of the c function, here nbits _ set are named in the create command.

A.8 � Database Utilities Dbutils
Several utility functions are discussed in Chapter 13 that can be used from
the linux command line. These are molgrep, molcat, molview, molarb,
molrandom, and molnear. They operate on tables named structure that
contain columns of SMILES, fingerprints, and names. Schemas containing
tables like these can be created using the smiloader and sdfloader
functions described in the next section. This section lists the shell script
that defines the molgrep and other commands.

#! /bin/bash
take your pick of options to psql
PSQL='psql -t -A -P fieldsep=,'
PSQL='psql -H'
PSQL='psql -t -A'
schema where core chemical functions are: gnova,openbabel,frowns,
 perlmol
FUNC="openbabel"
_molgrep() {
$PSQL -c "Select isosmiles,name from \"$2\".structure where $FUNC.
 contains(fp, $FUNC.fp('$3')) and $FUNC.matches(isosmiles, '$3')"
}

_molcat() {
$PSQL -c "Select isosmiles,name from \"$2\".structure"
}

_molview() {
echo "<script src='/marvin/marvin.js'></script>"
if ["$3" == ""]; then
 $PSQL -c "Select marvin_view(isosmiles) from \"$2\".structure"
else
 $PSQL -c "Select marvin_view(isosmiles,'$3') from \"$2\".structure"
fi
}

206	 Design and Use of Relational Databases in Chemistry

_molarb() {
$PSQL -c "Select isosmiles,name from \"$2\".structure order by
 md5(id+$4) limit $3"
}

_molrandom() {
$PSQL -c "Select isosmiles,name from \"$2\".structure order by
 md5(id+$RANDOM) limit $3"
}

_molnear() {
$PSQL -c "Select isosmiles,name,tanimoto(fp, $FUNC.fp('$3')) from
 \"$2\".structure where tanimoto(fp, $FUNC.fp('$3')) > $4"
}

_molsame() {
$PSQL -c "select isosmiles,name from \"$2\".structure where
 isosmiles in (select isosmiles from \"$2\".structure intersect
 select isosmiles from \"$3\".structure)"
}

ME=./dbutils # could be /usr/local/bin/dbutils
cmd="$0"
if ["$cmd" == "bash"]; then
 alias molgrep="$ME _molgrep"
 alias molcat="$ME _molcat"
 alias molview="$ME _molview"
 alias molrandom="$ME _molrandom"
 alias molarb="$ME _molarb"
 alias molnear="$ME _molnear"
 alias molsame="$ME _molsame"
else
 $1 $*
fi

The file containing these shell commands should be created and called
dbutils. In order to define the molgrep and other commands, the com-
mand source dbutils is issued. After that, the commands molgrep,
molcat, molview, molarb, molrandom, and molnear become available.
The use of these commands is discussed in Chapter 13.

A.9 � Loading Files Into Simple Tables
Most of this book is devoted to explaining how to design schemas to best
suit the needs of a project involving chemical structures. This section is
intended to bridge the gap between using files and using a complex schema
of tables in a relational database. Sometimes it helps to simply get molecu-
lar structure files into the database, and decide later how best to integrate
them into new or existing schemas. This section shows two utilities that
create a simple schema that can be used for many purposes, such as those

Appendix	 207

discussed in Chapter 13. There are two perl scripts shown here: one to load
a SMILES file and one to load an sdf file. Each creates a new schema named
by the user. Each creates a table named structure containing SMILES, iso-
meric SMILES, canonical SMILES, names, and fingerprints within that
schema. The sdfloader function creates two additional tables named
sdf and property. The table sdf contains the minimally processed input
file, simply split into separate structures, one per row. The property table
contains the names and values of the data items for each structure. The
unprocessed text value of each data item is stored as well as the numeric
value, if it is possible to convert the text value to a number.

The previous section shows a number of utility functions that operate
from the linux command. Those utilities were intended to be used with
the tables created using the smiloader and sdfloader scripts shown
here. It is also possible to use the data in the tables created by these scripts
to create other tables and schemas that are more suited to the needs of a
particular project. Any of the other functions described in this book can
also be used with these tables.

A.9.1 � Smiloader
#! /usr/bin/perl

$schema = $ARGV[0];
die "Schema name required\nusage: loader schema\n" unless
($schema);

print <<EOSQL;
Drop Schema If Exists $schema Cascade;
Create Schema $schema;
Create Sequence $schema.structure_id_seq;
Create Table $schema.structure (id Integer Primary Key Default
Nextval('$schema.structure_id_seq'), name Text, smiles Text,
isosmiles Text, fp Bit Varying);
Copy $schema.structure (smiles,name) From Stdin;
EOSQL

while (<stdin>) {
 s/\r//; chomp;
 ($smi,$name) = split;
 print "$smi\t$name\n";
}

print <<EOSQL;
\\.
set search_path=openbabel;
Update $schema.structure Set fp=fp(smiles),
isosmiles=isosmiles(smiles) Where valid(smiles);
EOSQL

208	 Design and Use of Relational Databases in Chemistry

This script can be used as follows.

perl smiloader drugs <drugs.smi | psql mydb

A.9.2 � Sdfloader
#! /usr/bin/perl

$schema = $ARGV[0];
die "Schema name required\nusage: loader schema\n" unless
($schema);

print <<EOSQL;
Drop Schema If Exists $schema Cascade;
Create Schema $schema;
Create Sequence $schema.structure_id_seq;
Create Table $schema.sdf (id Integer Default Nextval('$schema.
structure_id_seq'), molfile Text);
Create Table $schema.structure (id Integer Primary Key Default
Nextval('$schema.structure_id_seq'), name Text, isosmiles Text,
cansmiles Text, fp Bit Varying, coords Numeric[][3], atoms
Integer[]);
Create Table $schema.property (id Integer References $schema.
structure (id), name Text, tvalue Text, nvalue Numeric);
Copy $schema.sdf (molfile) From Stdin;
EOSQL

while (<stdin>) {
 if (/\$\$\$\$/) {
 print;
 } else {
 s/\r//; chomp; print; print "\\n";
 }
}

print <<EOSQL;
\\.
set search_path=openbabel;
Insert Into $schema.structure (id, name, isosmiles, coords, atoms)
 Select id, (molfile_mol(molfile)).* from $schema.sdf;

Update $schema.structure Set cansmiles=cansmiles(isosmiles) Where
valid(isosmiles);
Update $schema.structure Set fp=fp(cansmiles) Where
valid(cansmiles);

Alter Table $schema.sdf Add Constraint sdf_id_fk Foreign Key (id)
References $schema.structure (id);

Insert into $schema.property (id, name, tvalue)

Appendix	 209

select id, (p).name, (p).value from
 (select id, molfile_properties(molfile) as p from $schema.sdf)
atmp;

-- This regexp may not catch all numeric values
Update $schema.property Set nvalue = tvalue::numeric
 Where tvalue ~ E'^[+-]?[0-9]+(\\\\.[0-9]*)?([Ee][+-]?[0-9]+)?\$';
-- You may choose to name colums to be converted to numeric
--Update $schema.property Set nvalue = tvalue::numeric
-- Where Name = 'IC50_uM';
EOSQL

This script can be used as follows.

perl sdfloader vla4 <vla-4.sdf | psql mydb

There are many sources of sample structure files. The examples used
in this book come from the pubchem project8 and the QSAR world proj-
ect.9 There are SMILES files available from the National Cancer Institute
of the National Institutes of Health.10

The drugs.smi file is used in several places in the previous chapters.
This file contains the SMILES shown in Table A.5.

Table A.5  SMILES and Names Used in Sample Table Named Drugs

CN1C2CCC1CC(C2)OC(=O)C(CO)c3ccccc3 atropine
c1cc(ccc1C(C(CO)NC(=O)C(Cl)Cl)O)N(=O)=O chloramphenicol
c1c2c(cc(c1Cl)S(=O)(=O)N)S(=O)(=O)N=CN2 chlorothiazide
CN(C)CCCN1c2ccccc2Sc3c1cc(cc3)Cl chlorpromazine
Cc1c(nc[nH]1)CSCCNC(=NC#N)NC cimetidine
CN1c2ccc(cc2C(=NCC1=O)c3ccccc3)Cl diazepam
CC(=O)OC1C(Sc2ccccc2N(C1=O)CCN(C)C)c3ccc(cc3)OC diltiazem
CN(C)CCOC(c1ccccc1)c2ccccc2 diphenhydramine
c1ccc(c(c1)C(=O)O)Nc2cccc(c2)C(F)(F)F flufenamic acid
c1cc(ccc1C(=O)CCCN2CCC(CC2)(c3ccc(cc3)Cl)O)F haloperidol
CN(C)CCCN1c2ccccc2CCc3c1cccc3 imipramine
CCN(CC)CC(=O)Nc1c(cccc1C)C lidocaine
CCC1(C(=O)NC(=O)NC1=O)c2ccccc2 phenobarbital
c1ccc(cc1)C2(C(=O)NC(=O)N2)c3ccccc3 phenytoin
CCN(CC)CCNC(=O)c1ccc(cc1)N procainamide
CC(C)NCC(COc1cccc2c1cccc2)O propranolol
CCCCNc1ccc(cc1)C(=O)OCCN(C)C tetracaine
COc1cc(cc(c1OC)OC)Cc2cnc(nc2N)N trimethoprim
CC(C)C(CCCN(C)CCc1ccc(c(c1)OC)OC)(C#N)c2ccc(c(c2)OC)OC verapamil

210	 Design and Use of Relational Databases in Chemistry

References
	 1.	 Durant, J.L., Leland, B.A., Henry, D.R., and Nourse, J.G. 2002. Reoptimization

of MDL keys for use in drug discovery. J. Chem. Inf. Comput. Sci.
42(6):1273–1280.

	 2.	 Ertl, P., Rohde, B., and Selzer, P. 2000. Fast calculation of molecular polar
surface area as a sum of fragment-based contributions and its application to
the prediction of drug transport properties. J. Med. Chem. 43:3714–3717.

	 3.	 Yang, J.J. 2006. Private communication.
	 4.	 PostgreSQL. Trusted and untrusted PL/Perl. Plperl. http://www.postgresql.

org/docs/8.0/interactive/plperl-trusted.html (accessed April 18, 2008).
	 5.	 Kelley, B. Frowns ChemoInformatics System. 2002. http://frowns.source-

forge.net/ (accessed April 18, 2008).
	 6.	 Dalke, A., PyDaylight II. 2000. http://www.daylight.com/meetings/

mug00/Dalke/index.html (accessed April 18, 2008).
	 7.	 Open Babel: The open source chemistry toolbox. http://openbabel.org/

wiki/Main_Page (accessed April 18, 2008).
	 8.	 PubChem text search. http://pubchem.ncbi.nlm.nih.gov/ (accessed April

18, 2008).
	 9.	 Porter, J. 2003. VLA4 dataset. http://www.qsarworld.com/qsar-datasets-

porter.php. (accessed April 18, 2008).
	 10.	 National Cancer Institute. Downloadable structure files of NCI open data-

base compounds. 2007. http://cactus.nci.nih.gov/ncidb2/download.html
(accessed April 18, 2008).

211

*, 12; see also Asterisk symbol; ERD
[, 82; see also Bracket symbol; SMILES
], 82; see also Bracket symbol; SMILES
., 81; see also SMILES period separator
~, 96; see also NOT operator
&, 96; see also AND operator
2-dimensional data type 115-116; see also

Data type
3-dimensional
	 atomic coordinates 123
	 data type 115-116; see also Data type
	 structure 3, 123

A

Abs function 26
Add_new_structure
	 extension function 161
	 trigger 159-160
	 tautomer 161
Aggregate function 26-27
Align function 133-134
Amw function 97, 177, 183
AND operator & in SQL 96
Apache web server 39-40
Aromaticity
	 molecular structure 71
	 SMARTS 77
	 SMILES 77, 82
	 SMIRKS 102
Array
	 atomic coordinates 116, 126, 133
	 atomic symbol 174
	 conformation 136
	 data type 32, 115, 123, 129; see also Data

type
	 index 115
Array_upper function 115-116
Asterisk symbol 12; see also ERD

Atom ordering, see SMARTS; SMILES;
SMIRKS

Atomic coordinates 129
	 3-dimensional 123
	 align function 133-134
	 array 115-116, 126, 133, 174
	 canonical order 126
	 center function 133
	 conformation 135-136; see also

Conformation
	 difference function 134
	 float 125
	 functions 133-136
	 numeric 125
	 SMARTS alignment 134
	 SMILES 173
	 subset function 134
	 table 125
	 table access 132
Atomic number 71, 124-125
Atomic symbol
	 array 173-174
	 molecular structure 71
	 SMILES 82
Atomic valence
	 SMARTS 76
	 SMILES 80
	 SMIRKS 102
Atomic weight
	 molecular weight 177
	 SMARTS 97
	 table 97, 178-180
Average function 27
Azide SMIRKS transformation 103

B

Babel file conversion 124
Bash shell, see Shell script

Index

212	 Index

Bind_columns 142; see also Perl::DBI
Biological data 162
Bit string
	 as pre-screen 94
	 fingerprint 95
	 fragment key 92
	 function example 176
	 nbits_set function 177
	 orsum function 94
	 public166keys 183
	 SQL data type 147
	 SQL syntax 94
Bond
	 bond order in molecular structure 71
	 explicit single bonds in SMARTS 76
	 hydrogen bonds 71
	 implicit bonds in SMARTS 76
	 SMARTS 76
	 SMIKRS 100
	 SMILES 72, 82
Bracket symbol 82; see also SMILES
Butyraldehyde and but-1-en-1-ol tautomer

78

C

Canonical SMILES
	 atomic coordinates 126
	 canonical order 126
	 canonical order in SDF file 128
	 canonicalization algorithm 85
	 canonicalize function 87
	 canonicalize trigger 87
	 cansmiles function, see Cansmiles

function
	 chirality 80
	 constraint, SQL 74
	 definition 72
	 fingerprint 91; see also Fingerprint
	 isotopes 81
	 InChI 82; see also InChI
	 lookup 73
	 reaction SMILES 106
	 SMIRKS 107
	 SDF file 207
	 SMILES 157
	 smiles_to_bonds function 131
	 smiles_to_symbols function 130
	 table 125
	 trigger, SQL 87
Cansmiles function 85, 120
	 CHORD 119
	 FROWNS 192

	 OpenBabel 198
	 PerlMol 189
	 SMILES 73-74, 77, 80
	 SMIRKS 99, 107
Cartridge
	 CHORD 3, 119-120
	 core function 119
	 FROWNS 119
	 function 119
	 gNova 31
	 OpenBabel 119
	 PerlMol 119
	 pgchem 121, 31
	 RDBMS 31
	 RDKit 31
CAS number 15, 62
Case clause 147; see also SQL
Center function
	 atomic coordinates 133
	 plpgsql 117-118
CGI program
	 client program 139
	 php 44
Character varying data type 32; see also

Data type; SQL
Check
	 constraint 62
	 domain 86
	 keyword 28
ChemDraw 82
Chemical Abstracts number, see CAS

number
Chirality 80; see also Isomer; SMILES
CHORD 3, 119-120
Circle symbol 12; see also ERD
C language
	 extension function 203
	 function installation 204-205
	 function 121
	 nbits_set function 204
	 PostgreSQL functions 117, 120, 203
	 shared object 120, 204
	 speed 120
Client program 3, 39
	 abstraction layer 35
	 CGI 139
	 client-server model 33-34, 137
	 computer languages for 35, 139
	 command-line 37
	 efficiency 143
	 Excel 34, 40-41
	 functions 138
	 java 34

Index	 213

	 JDBC 40
	 MySQL 40
	 ODBC 39-41
	 Open Office 34
	 Oracle 137
	 Perl 34, 141
	 php 139, 145
	 phpPgAdmin 141
	 Pipeline Pilot 41
	 plsql 40
	 PostgreSQL 137
	 psql 40
	 Python 34
	 RDBMS 33
	 R 34, 147, 150
	 RODBC 147; see also R
	 Spotfire 41
	 SQL 42
	 SQL developer 40
	 suggestions 138
	 toad 40
	 web-based 38
	 web interface 137-139
Clustering 147-149
Column 21
	 check constraint, SQL 86
	 comment 55
	 data type 6
	 fingerprint 156-158
	 fragment key 93
	 insert, SQL 23
	 key 11
	 name 6
	 order 7, 23
	 relational database 5
	 SMARTS 151
	 SMILES 146, 156
	 unique 14, 18
Combinatorial chemistry 66-67, 105
Command-line program 37-38
	 psql 167
	 telnet 39
	 utility 167, 205
Comment 54-55
Composite data type 109-110
	 component 111
	 conversion function 114
	 elements 128
	 examples 111, 113
	 experimental value 111
	 function 112-114
	 IC50 111
	 mol 128

	 molecular structure 136
	 molecule 116
	 molfile 129
	 operator 112-114
	 range 112
	 SDF file 128
	 select 112-114
Compound
	 amw function 177
	 compound registration list 166
	 compound id, see Compound id
	 molecular weight 177
	 registry 15
	 registration, see Compound

registration
	 sample 163
	 tracking schema 48-50
Compound id
	 compound_id function 165
	 foreign key 158
	 PubChem compound 59
	 sample id 163
	 schema 48
	 SMILES 165
	 unique 10-13, 165
Compound registration
	 application 155
	 compound list 166
	 compound_id function 166
	 entity relationship diagram 166
	 error log 166
	 example 155
	 list_description 166
	 primary keys 15
	 registration schema 155, 165
	 tautomer 159
Computer language
	 C, see C language
	 client program, see Client program
	 Perl, see Perl
	 plperl, see Plperl
	 plpgsql, see Plpgsql
	 plpython, see Plpython
	 plsql, see Plsql
	 Python, see Python
	 R, see R
	 SMARTS, see SMARTS
	 SMILES, see SMILES
	 SMIRKS, see SMIRKS
	 SQL, see SQL
Concentration data type 110
Conformation
	 array 136

214	 Index

	 atomic coordinates 135-136
	 energy 135
	 entity-relationship diagram 135
	 molecular structure 135
	 primary key 135
	 unique id 135
Connection, database
	 RDBMS 41-44
	 Perl 43
	 Python 44
	 php 44
Constraint 16
	 CAS number 62
	 check 62
	 corporate id 63
	 foreign key 62
	 integrity 60
	 overhead 162
	 primary key 62
Contains function 120
	 FROWNS 196
	 OpenBabel 202
Conversion functions
	 composite data type 114
	 data file 132
	 data type 112
Coordinates, see Atomic

coordinates
Copy 24-25
Core function
	 cartridge 119
	 extension function 120
	 FROWNS 191
	 OpenBabel 197
	 PerlMol 188
	 PostgreSQL extension 188
	 table 120
Counter ion 81; see also SMILES
Count_matches function 98,120
	 extension function 85
	 for molecular properties 148-149
	 FROWNS 195
	 OpenBabel 200
	 PerlMol 190
	 R 148-149
	 SMARTS 76
	 TPSA 181
CPAN (Comprehensive Perl Archive

Network)
	 PerlMol 188
	 Perl 43
Create 22, 57
	 function 26

	 language 188
	 type 128
Crow’s feet symbol 12-13; see also ERD

D

Data
	 cartridge 1
	 encoded 18
	 formatting 5
	 integrity 1, 16
	 National Cancer Institute 209
	 National Institutes of Health 209; see

also PubChem
	 relationship 1
Database 5, 21-22; see also RDBMS
	 advantages 8
	 handle 43-44
	 integrity, see Integrity
	 normal form, see Normal form
	 relationships, see Relationship
Data column
	 molecular structure 84
	 precision 22
Data frame, see R
Data integrity 60, 176
	 SMILES 72, 86-87
Data representation 7
Data type 7
	 2- and 3- dimensional coordinates 115-

116
	 array 115, 123, 129
	 character varying 32
	 column 6
	 composite 109-110; see also Composite

data type
	 concentration 110
	 conversion function 112
	 coordinates 115
	 date 6
	 domain 28
	 efficiency 8
	 external representation 111-112
	 float 7, 24, 163
	 integer 6, 24
	 molecule 116
	 non-numeric 7
	 numeric 6-7, 162-163
	 range 111
	 schema 48
	 serial 164
	 size limit 33
	 SMILES 86

Index	 215

	 spreadsheet 8
	 table 8
	 text 6
	 time 6
	 timestamp 6, 23-24
	 units 111
	 varchar 32
Date data type 6; see also Data type
Daylight, see SMILES
Dblink 22
DbSwitch 22
Dbutils 167, 206
Delete, see also SQL
	 row 25
	 row in view 29, 69
	 where clause 26
Describe table 37
Difference function 134
Dihydroxynapthalene tautomer 160
Domain 28
	 check constraint 86
	 SMILES 86
	 trigger interaction 87-88
Drawing programs 82-83, 100
Drug compounds 209

E

Efficiency
	 bind_columns 143
	 client program 143
	 data type 8
	 Perl::DBI 143
	 PDF file 124
	 RDBMS 33-34, 139
	 SDF file 123
	 select 143
	 server-client 139
Energy, see Conformation energy
Environmental Protection Agency, see EPA
Entity-relationship diagram, see ERD
EPA (Environmental Protection Agency)
	 6, 10, 13, 47
ERD (entity-relationship diagram) 15, 23, 25
	 asterisk symbol 12
	 circle symbol 12
	 compound registration 166
	 conformation 135
	 crow’s feet symbol 12-13
	 example 60
	 PubChem Substance 58
	 PubChem table 60-61
	 relationship 12

	 schema 50-51
	 SDF file 126
	 sdfloader 168
	 software 12-13
	 symbols 12
Error
	 compound registration error log 166
	 normal form correction 176
	 RDBMS 156
	 error_log table 156
Euclid function 177
Excel
	 client program 34, 40-41
	 spreadsheet 5
Exception clause, see plpgsql
Exclude clause, see SQL
Execute
	 executeQuery java method 45
	 executeUpdate java method 142
	 Perl::DBI function 43, 141
Experimental data
	 assay 163
	 composite data type 111
	 logP, see LogP
	 PubChem, see PubChem
	 schema 162
Explicit atoms, see SMARTS; SMILES;

SMIRKS
Export, see File export
Extension
	 functions, see Extension functions
	 PostgreSQL 109
	 RDBMS 109, 31
	 SQL 85
Extension functions 88, 138
	 add_new_structure function 161
	 C language 203
	 cansmiles function 85
	 core functions table 120
	 count_matches 85
	 glogP function 151
	 isosmiles function 85
	 keksmiles function 85
	 list_matches function 85
	 marvin_sketch function 144-145
	 matches function 85
	 molfile_properties function 133
	 molfile_to_smiles function 85, 133
	 OpenBabel 128
	 PostgreSQL 119
	 smiles_to_molfile function 85, 133
	 validation 85
External data 164-165

216	 Index

External representation
	 data type 111-112
	 molecular structure 83, 124
	 molfile 84

F

Fetchrow_array function 43; see also
Perl::DBI

Fetchall_arrayref function 143; see also
Perl::DBI

File
	 conversion function 132
	 export 132
	 import 132, 167, 206-207
	 Babel conversion 124
	 molecular file format 84, 116
	 OpenBabel conversion 124
	 processing utility 167
	 SMILES 167
	 SQL table 139-140
	 versus table 123, 131
Fingerprint
	 algorithm 95
	 bit string 95
	 circular 96
	 column 156-158
	 fragment 95
	 FROWNS 196
	 function 28, 119
	 hash function 95
	 matches function 158
	 molecular 2
	 molecular similarity 96
	 molnear 171
	 OpenBabel 202
	 path-based 96
	 SDF file 207
	 similarity 96
	 SMILES 95
	 speed 162
Float
	 atomic coordinates 125
	 data type 7, 24, 163; see also Data type
	 rounding error 7
Foreign key 12, 15
	 compound id 158
	 constraint 62
	 example 58
	 index 16
	 join 17
	 PubChem Substance 58
	 PubChem table 59

	 schema 48, 50
	 SDF file 127
Fp function 120
	 FROWNS 196
	 OpenBabel 202
Fragment key
	 bit string 92
	 column 93
	 function 28
	 in substructure search 93
	 molecular similarity 96
	 public66keys 95
	 similarity 96
	 SMILES 93
Fragment
	 atoms 92
	 fingerprint 95
	 fragment-based molecular properties

96-98
	 in substructure search 92
	 key 92
	 matches function 91
	 molecular formula 91
	 molecular structure 2, 148
	 pre-defined 92
	 public166 keys 176
	 similarity 96
	 SMARTS 75
	 surface area 181
	 table 93
	 TPSA 181
From clause 25; see also SQL
FROWNS
	 cansmiles function 192
	 cartridge 119
	 contains function 196
	 core chemical function 191
	 count_matches function 195
	 fingerprint 196
	 fp function 196
	 function 191
	 graph function 79
	 installation 197
	 list_matches function 195
	 matches function 194
	 module 85
	 mol data type 196
	 molfile_mol function 196
	 molfile_to_smiles function 194
	 named_property data type 194
	 plpython 191
	 SMILES 191
	 smiles_to_bonds function 192

Index	 217

	 smiles_to_molfile function 192-193
	 smiles_to_symbols function 192
	 valid function 192
Function 3, 26-27; see also Extension

functions
	 abs 26
	 aggregate 26-27
	 argument data type 26
	 average 27
	 C language 121
	 C language, installation of 204-205
	 cartridge 119
	 client 138
	 composite data type 112-114
	 computer language 117; see also

Computer language
	 create 26
	 extension 138; see also Extension

functions
	 FROWNS 191
	 group by, use with 27
	 if-then-else 27
	 input data type 26
	 loop 27
	 max 26-27
	 md5 68
	 min 26
	 OpenBabel 131-133, 197
	 orsum 28
	 PerlMol 188
	 plpgsql 117
	 plpython 119
	 PostgreSQL 117
	 procedural language 27
	 public166keys 176
	 RDBMS 137
	 result data type 26-27
	 schema 22, 27
	 server-side 137-138
	 shared object 120
	 sin 26
	 sqrt 26
	 sum 26-27
	 table, use with 182
	 TPSA 181
	 utility 205

G

GetConnection method 45; see also Java
Getresult method 44; see also Python
Get_columns function 146; see also Php
Get_fields function 145

GlogP function 151-152
gNova 3
	 cartridge 31
	 CHORD 119
	 SMILES 73
Graph representation 78
Graph function
	 FROWNS 79
	 OpenBabel 79, 203
	 tautomer 160-161
Graphics 42, 149, 152; see also R
Group by clause 27; see also SQL
GUI (Graphical User Interface) 37

H

Hamming function 177
Handle, see Database
Hash function, see Fingerprint
Hierarchical clustering, see R
HIV example data 163
HTML 38, 169
Hydrogen atoms, see SMARTS; SMILES;

SMIRKS

I

IC50 composite data type 111; see also
Composite data type

Import
	 data file 132, 167, 206, 207
	 external data 164, 165
	 molfile 167, 207
	 SDF file 167, 207
Impsmiles function 83
In-line view 67
InChI (International Chemical Identifier) 82
Index 13
	 array 115
	 method 16
	 SMILES 72, 91, 157
	 SQL 16, 157, 162
Inhibition constant 24
Inorganic compound SMILES 82
Insert
	 column name in insert 23
	 row in view 69
	 select, with 130
	 trigger, with 28, 156
	 value 23
Installation
	 dbutils 206
	 FROWNS 197

218	 Index

	 OpenBabel 203
	 PerlMol 191
Integer data type 6, 14, 24; see also Data

type
Integrity
	 data 1, 16
	 database 111
	 RDBMS 140
Internal representation 7
	 molecular structure 83, 124
	 molfile 84
	 SMILES 83
Intersect 29, 138; see also SQL
Isomer
	 in matches function 81
	 SMILES 80-81
	 trigger 159
Isomeric SMILES, see SMILES
Isosmiles function
	 extension function 85
	 OpenBabel 198
	 SMILES 74, 80
	 SQL 120
Isotope 81
Is_std_smiles function 103

J

Java
	 class path 45
	 client program 34, 40
	 createStatement method 45
	 database connection 45
	 example 142
	 executeQuery method 45
	 executeUpdate method 142
	 getConnection method 45
	 JDBC interface 34, 37, 45
	 placeholder 142
	 prepareStatement method 142
	 program example 45
	 resultSet object 45
	 resultSet.getString method 45
	 setDouble method 142
	 setInt method 142
	 Statement object 45
Javascript 144, 169
JDBC, see Java
Join clause, see also SQL
	 Boolean operations, with 29
	 computational tool, as 138
	 multiple 63-65
	 PubChem Substance table 57

	 select 25
	 where clause in SQL 66
	 table 136, 16-17, 21, 24-25

K

Keksmiles function
	 extension function 85
	 Kekule structure 82
	 OpenBabel 198
	 PerlMol 189
	 SMILES 82-83
	 SQL 120
Key 65
	 column 11
	 foreign 12, 15-17
	 fragment 92
	 function 93
	 primary 11-12, 15-17
	 primary foreign key 50
	 unique 14-15

L

Linear models, see R
Linux 39-40
List_matches function 85, 120
	 FROWNS 195
	 OpenBabel 201
	 PerlMol 190
	 SMARTS 76
LogP 6
	 computed value 148, 150-151
	 estimate 148, 150-152
	 experimental 9
	 fitting to experiment 148
	 glogP function 151-152
	 linear models 150
	 method 19
	 multiple value 11, 18
	 R program 148
	 sample data 10
	 SQL function 148
	 temperature 9, 18
	 theoretical 9
Loop 27, 118
Lower function 73; see also SQL
Lowercase atomic symbol 77; see also

SMILES

M

MACCS key, see Public166keys

Index	 219

Macintosh 39
Make_std_smiles function 103
Many-to-many relationship 12-13
	 example 59
	 PubChem table 59
Marvin 144-146, 169
Matches function 105, 158
	 extension function 85
	 fingerprint 158
	 fragment 91
	 FROWNS 194
	 isotope 81
	 molecular formula 91
	 OpenBabel 200
	 PerlMol 189
	 SMARTS 75, 81
	 SMILES 91
	 SMIRKS 100
Materialized view, see View
Max function 26-27; see also SQL
Md5 function 68, 170; see also Function
Melting point 6, 10-11
Min function 26; see also SQL
Mol data type
	 composite data type 128
	 FROWNS 196
Molarb utility 168, 170, 206
Molcat utility 168, 205
Molecular formula 6, 10, 91
Molecular properties, see Properties
Molecular structure
	 3-dimensional 123
	 aromaticity 71
	 atomic number 71
	 atomic symbol 71
	 attributes 124
	 biological data integration 162
	 bond order 71
	 composite data type 136
	 conformation 135
	 data column 84
	 external representation 83, 124
	 file format 84
	 formal charge 71
	 fragment 148
	 hydrogen bonds 71
	 internal representation 83, 124
	 molfile 124
	 PDB file 71
	 representation 71, 136
	 schema 48, 123, 206
	 SDF file 71
	 shape 136

	 similarity 147
	 SMILES identifier 72
	 SMILES representation 124-125, 151
	 table 23-24, 123-126
Molecular weight
	 atomic weight 177
	 compound 177
	 function 97
	 molecular properties 97
	 multiple value 11
	 MW column 6, 10
	 SMILES 177
Molfile, see SDF file
Molfile_mol function 128
	 FROWNS 196
	 OpenBabel 202
Molfile_properties function 133
Molfile_to_bonds function 173
Molfile_to_smiles function 120
	 extension function 133
	 FROWNS 194
	 molfile 84
	 OpenBabel 200
	 PerlMol 189
	 SMILES 84
	 utility 167
Molfile_to_smiles function 85
Molgrep utility 168, 205
Molnear utility 168, 171, 206
Molrandom utility 168, 170, 206
Molsame utility 168, 171-172, 206
Molview utility 168-169, 205
Multi-component transformation, see

Transformation
Multi-user 8, 9
MySQL 31
	 client 40
	 mysql program 37
	 RDBMS 2
	 SQL standard 26

N

Name
	 column 6
	 schema-qualified 22
	 SDF file 207
	 table 6
Named_property data type
	 FROWNS 194
	 OpenBabel 202
NaN (Not a number) value 60
Naphthalene tautomer 160

220	 Index

National Cancer Institute 209
National Institutes of Health 209
	 PubChem schema 53
	 PubChem BioAssay; see PubChem

BioAssay
	 PubChem Compound; see PubChem

Compound
	 PubChem Substance; see PubChem

Substance
Nbits_set function
	 bit string 177
	 C language 204
Nitro group 80, 103
Non-numeric data type 7
Normal form 20, 159
	 correction 175
	 error correction 176
	 first normal form 17
	 literature references 175
	 normalizing data 175
	 plpgsql example 175
	 second normal form 18
	 table 9
	 third normal form 19
	 unique value 175
NOT operator ~ in SQL 96
Null value 8, 13, 33
Numeric
	 atomic coordinates 125
	 constraint 60
	 data type 6-7, 162-163
	 plperl 118
	 versus text data type 130

O

Object RDBMS 121
ODBC 39-41
OEChem
	 CHORD 119-120
	 OpenEye 119
	 SMILES 82
One-to-many relationship 9, 11-12
One-to-one relationship 11-12, 128
Open Office 5, 34
Open-source software 1, 31
OpenBabel 85
	 cansmiles function 198
	 cartridge 119
	 contains function 202
	 core chemical function 197
	 count_matches function 200
	 extension function 128

	 file conversion 124
	 fingerprint 202
	 fp function 202
	 functions 131-133, 197
	 graph function 203, 79
	 installation 203
	 isosmiles function 198
	 keksmiles function 198
	 list_matches function 201
	 matches function 200
	 molfile 125
	 molfile_mol function 202
	 molfile_to_smiles function 200
	 named_property data type 202
	 pgchem 121
	 plpython 125, 197
	 schema 128, 197
	 SMILES 125
	 smiles_to_bonds function 199
	 smiles_to_molfile function 199
	 smiles_to_symbols function 199
	 valid function 198
OpenEye, see OEChem
Operator
	 composite data type 112-114
	 SQL AND & 96
	 SQL NOT ~ 96
Oracle 31, 40
	 client program 137
	 php connectio 44
	 RDBMS 2, 3
	 schema 22
	 SQL standard 26
	 sqlplus program 37
	 user name 22
	 view 69
Order clause 7, 138; see also SQL
Orsum
	 aggregate function 28, 94, 176
	 bit string 94
Oxo-enol tautomer SMIRKS 103

P

Partial surface area, see TPSA
Path-based fingerprint, see Fingerprint
PDB file 71, 124
PDO 37; see also Php
Period separator, 81; see also SMILES
Perl, see also Perl::DBI
	 client program 34, 141
	 computer language 2-3
	 CPAN 43, 188; see also CPAN

Index	 221

	 example 141, 143
	 script example 43
	 sdfloader 207-208
	 SQL 43
Perl::DBI
	 bind_columns 143
	 connect method 43
	 disconnect method 43
	 efficiency 143
	 execute method 43, 141
	 fetchall_arrayref function 143
	 fetchrow_array method 43
	 Perl:DBD 43
	 placeholder 141
	 prepare function 43, 141
PerlMol
	 cansmiles function 189
	 cartridge 119
	 core chemical function 188
	 count_matches function 190
	 CPAN 188; see also CPAN
	 function 188, 188
	 installation 191
	 keksmiles function 189
	 list_matches function 190
	 matches function 189
	 module 85
	 molfile_to_smiles function 189
	 plperl 118, 188
	 schema 188
	 SMARTS 119, 188
	 SMILES 119, 188
	 smiles_to_molfile function 189
	 smiloader 207
	 valid function 188
Pg module 37, 44; see also Python
Pgchem 31, 121
Pgdb 37; see also Python
Pg_close 44; see also Php
Pg_connect 44; see also Php
Pg_execute 142; see also Php
Pg_fetch_array 44; see also Php
Pg_prepare 142; see also Php
Pg_query 44; see also Php
Phenobarbital 7
Phenobarbitol 7
Phenobarbitone 7
Phosphorous valence in SMILES 80
Php 40
	 CGI program 44
	 client program 139, 145
	 database handle 44
	 get_columns function 146

	 oracle connection 44
	 placeholder 142
	 PDO 37
	 pg_close method 44
	 pg_connect method 44
	 pg_execute function 142
	 pg_fetch_array method 44
	 pg_prepare function 142
	 pg_query method 44
	 PostgreSQL connection 44
	 script example 44
	 web application 144
PhpMyAdmin 3
PhpPgAdmin
	 client program 141
	 example 39, 56, 129
	 web application 38
Pipeline pilot 41
Placeholder 141-142
Plperl 118
	 numeric 118
	 PerlMol 118, 188
	 plperlu 191
	 PostgreSQL 117
	 SMILES 118
Plpgsql 26
	 center function 117-118
	 exception clause 157
	 normalizing data 175
	 loop 118
	 PostgreSQL 117
	 procedural language 109
	 row 118
	 smiles_to_bonds function 174
	 symbol_coords function 174
Plpython 26
	 FROWNS 191
	 function 119
	 OpenBabel 125, 197
	 plpythonu 191
	 PostgreSQL 117, 191
	 procedural language 79, 191
Plsql 26, 40
Polar surface area, see TPSA
PostgreSQL 31, 40
	 built-in functions 120
	 C language function 117, 120, 203
	 client program 137
	 core chemical function 188
	 extension 109
	 function 117-119
	 get_fields function 145
	 Object RDBMS 121

222	 Index

	 php connection 44
	 plperl 117
	 plpgsql example 117
	 plpython 117, 191
	 procedural language 117
	 psql program 37
	 RDBMS 2-3
	 SQL standard 26
	 superuser 191, 197, 203
	 view 69
Prepare method 43, 141; see also Perl::DBI
PrepareStatement method 142; see also Java
Pressure conversion function 27
Primary key 11-12, 15-17
	 conformation 135
	 constraint 62
	 example 58
	 foreign key 50
	 PubChem Substance 58
	 schema 50
	 SDF file 127
	 SQL 157
Procedural language 33
	 comparison 119
	 database 109
	 function 27
	 plperl 118
	 plperlu 191
	 plpgsql 109
	 plpython 79
	 plpythonu 191
	 PostgreSQL 117
	 RDBMS 188, 63
	 unrestricted 191, 197, 203
	 untrusted 191, 197, 203
Product, see Reaction
Properties
	 fragment-based 96-98
	 molecular weight 97
	 polar surface area 98
	 SDF file 207
	 table 123-127, 158
	 TPSA 98, 181
	 chemical properties table 159
	 molecular 2, 124-125
	 molfile 129-130
	 SDF file 127
Psql
	 client 40
	 command-line program 167
	 example 208, 209
	 PostgreSQL 37
	 smiloader 208

PubChem 2, 165
	 entity-relationship diagram 60-61
	 foreign key 59
	 many-to-many relationship 59
	 on-line tool 53
	 relational integrity 59
	 schema 59-61, 64
	 substance 172
PubChem BioAssay
	 anti-cancer example 54-55
	 CSV data file 55
	 NCI_H23 54
	 schema 53-54
	 SDF file 54
	 table 54-55
	 XML file 55
PubChem Compound
	 compound id 59
	 PubChem substance 58-59
	 schema 53-54
	 SDF file 58
	 sdf2SQL 58
	 substance id 58, 59
	 table 58
PubChem Substance
	 entity-relationship diagram 58
	 example 57
	 file distribution 56
	 foreign key 58
	 join table 57
	 primary key 58
	 schema 53-54
	 SDF file 56
	 select 57
	 substance id 57
	 table 56, 57
Public schema 22
Public166keys
	 bit string 183
	 fragment 176
	 fragment key 95
	 function 176
	 MACCS key 95, 176
	 SMARTS 183
	 similarity 177
	 SQL function 176
	 table 95, 183-187
Pygresql 44; see also Python
Python
	 client program 34
	 close method 44
	 computer language 2, 3
	 connect method 44

Index	 223

	 getresult method 44
	 pg module 37, 44
	 pgdb 37
	 pygresql 44
	 query method 44
	 script example 44

Q

QSAR world 209
Quotes 23; see also SQL

R

R
	 client program 147, 150, 34
	 computer language 147
	 data frame 41, 147, 150-151
	 example 147-148, 150
	 graphics 42, 149, 152
	 Hierarchical clustering 147
	 linear models 148, 152
	 lm function 151
	 logP 148, 150
	 matrix 147
	 regression analysis 148
	 RODBC 147
	 SMARTS matching 148
	 summary function 150-151
	 Ward’s clustering 148-149
Random compound selection 68, 170
Range data type 111-112; see also Data type;

SQL
RDBMS (Relational Database Management

System) 1, 6, 21; see also Database
	 cartridge 31
	 chemical functionality 140
	 client-server 33-35, 137
	 commercial 31
	 comparison 26, 31
	 compatibility 35
	 connection, see Connection
	 differences 26-27
	 efficiency 33, 34, 139
	 error log 156
	 extension 31, 109
	 function 137
	 handle 43-44
	 integrity 111, 140, 176
	 JDBC interface 34
	 multiple 22
	 MySQL 2
	 ODBC 39-41

	 object oriented 121
	 open-source 31
	 Oracle 2-3
	 PostgreSQL 2-3
	 procedural language 63, 109, 188
schema 9, 47
	 server 2, 33
	 similarity 26
	 theory 5
RDKit 31
Reactant, see Reaction reactant
Reaction SMILES, see SMIRKS
Reaction 3, 99
	 mechanism 106
	 reactant SMIRKS 99, 106
	 stoichiometry 99
	 product SMIRKS 99, 106
References 20, 30, 35, 46, 70, 88-89, 98, 107,

121-122, 136, 153, 172, 210
Registration, see Compound registration
Registry, see Compound registration
Regression analysis, see R
Regular expression in SQL 130
Relation 5
Relational database, see RDBMS
Relational integrity 59, 128
Relationship 1
	 entity-relationship diagram 12
	 many-to-many 12-13
	 one-to-many 9, 11-12
	 one-to-one 11-12
	 table 9, 10
Resonance 77, 102
ResultSet object 45; see also Java
ResultSet.getString method 45; see also

Java
RODBC 147; see also R
Rounding error 7
Row 21
	 delete 25
	 duplicate 14
	 order 7
	 plpgsql 118
	 relational database 5
	 update 25

S

Safari Web browser 39
Salts 163; see also SMILES
Sample
	 compound 163
	 sample id 164-165

224	 Index

	 table 163
	 unique 164-165
Schema 21, 156
	 analysis 47-53
	 chemical structure 48
	 compound tracking 48-50
	 data type 48
	 database 9, 47
	 design 47-53
	 domain 28
	 entity-relationship diagram 50-51
	 experimental data 162
	 foreign key 48-50
	 function 27
	 molecular structure 123, 206
	 name 22
	 OpenBabel 128, 197
	 Oracle 22
	 PerlMol 188
	 primary key 50
	 PubChem 53-54, 64
	 public 22
	 registry 165
	 requirements 47-53
	 schema-qualified name 22
	 SDF file 53, 126
	 SMILES identifier 52
	 table 52-53
	 trigger 28
	 view 28
	 VLA-4 integrin 126
SDF file 71
	 composite data type 129
	 external representation 84
	 import 167, 207
	 internal representation 84
	 molecular structure 124
	 molfile_to_smiles function 84
	 OpenBabel 125
	 properties 129-130
	 smiles_to_molfile function 84
	 canonical atom order 128
	 canonical smiles 207
	 composite data type 128
	 efficiency 123
	 entity-relationship diagram 126
	 fingerprint 207
	 foreign key 127
	 import 167, 207
	 loading 127
	 molecular properties 207
	 molecular structure 71
	 molfile 125

	 name 207
	 one-to-one relationship 128
	 primary key 127
	 processing 125
	 properties 127
	 PubChem 53, 56, 58
	 relational integrity 128
	 schema 53, 126
	 sdf table 207
	 SMILES 207
	 structure id 128
	 table 130-131, 140
	 unique id 127
Sdf2sql 56, 58
Sdfloader utility 168, 207-208
Select 24
	 complex 63
	 composite data type 112, 114
	 efficiency 143
	 exclude 29
	 from clause 25
	 intersect 29
	 join 25
	 PubChem 57
	 union 29
	 schema name 25
	 tables, multiple 57, 63
	 where clause 25
Sequence 14
Serial data type 156, 165
Server 2, 33
Server-side function 137-138
Set operation 29
SetDouble method 142; see also Java
SetInt method 142; see also Java
Shape 136
Shared object 120, 204; see also C language
Shell script 167, 206
Similarity
	 Euclid function 177
	 fingerprint 96
	 fragment key 96
	 Hamming function 177
	 molecular structure 147
	 molnear function 171
	 public166 keys 177
	 RDBMS 26
	 Tanimoto index 96
	 Tanimoto function 176
Simple graph, see Graph
Sin function 26
SMARTS 1,2
	 alignment 134

Index	 225

	 atomic coordinates 134
	 aromaticity 77
	 atomic weight 97
	 chirality 80
	 CHORD 119
	 column 151
	 count_matches function 76
	 explicit atoms 76-77
	 explicit single bonds 76
	 fragment search 75
	 hydrogen atoms 76-77
	 implicit atoms 76-77, 83
	 implicit bonds 76
	 implicit valence 76
	 impsmiles function 83
	 isotope 81
	 list_matches function 76
	 lowercase atoms symbol 77
	 matches function 75, 81
	 molecular search 74
	 molgrep function 168
	 molview function 169
	 PerlMol 119, 188
	 public166keys 183
	 quirks 76
	 R 148
	 substructure search 75
	 superstructure search 75
	 syntax 75
	 versus SMILES 75
SMILES 1
	 alternate SMILES 74
	 ambiguity 72
	 aromaticity 77, 82
	 atom isotope 81
	 atom ordering 74, 116
	 atom symbol array 173
	 atomic coordinates 173; see also Atomic

coordinates
	 atomic symbol 82; see also Atomic

symbol
	 atoms 72
	 bonds 72
	 bracket symbol 82
	 canonical, see Canonical SMILES
	 cansmiles function, see Cansmiles

function
	 ChemAxon 82
	 ChemDraw 82
	 chirality 80
	 CHORD 119
	 column 72, 146, 156
	 column check constraint 86

	 compound id 165
	 computer language 1
	 constraint, SQL 74
	 counter ion 81
	 data integrity 72, 86-87
	 data type, SQL 86
	 Daylight 73, 82
	 domain, SQL 86
	 double bonds 82
	 drawing programs 82-83
	 drug compound 209
	 explicit atoms 76-77
	 extension, SQL 73
	 file 72, 83, 167
	 fingerprint 95
	 fragment key 93
	 FROWNS 191
	 hydrogen atoms 76
	 implicit atoms 76, 83
	 impsmiles function 83
	 InChI 82
	 index 72, 91, 157
	 inorganic compound 82
	 internal representation 83
	 isomeric 56, 74, 157-159, 162
	 isomers 80-81
	 isosmiles function 74, 80
	 keksmiles function 82-83
	 Kekule structure 82
	 lookup 91, 162
	 lowercase atom symbol 77
	 marvin_view function 146
	 matches function 91
	 mixture 81
	 molecular representation 124-125, 151
	 molecular weight 177
	 molfile_to_smiles function 84
	 nitro group 80
	 OpenBabel 125
	 OpenEye 82
	 organic atoms 82
	 period separator 81
	 phosphorous valence 80
	 quirks 76-83
	 reaction SMILES 99, 106
	 resonance 77
	 salt 81
	 SDF file 207
	 simple graph representation 78
	 smiles_to_bonds, see Smiles_to_bonds

function
	 smiles_to_molfile, see Smiles_to_

molfile function

226	 Index

	 smiles_to_symbols, see Smiles_to_
symbols function

	 SMIRKS 99
	 standardization 102-103
	 stereoisomer 156
	 sulfur valence 80
	 symbol_coords, see Symbol_coords

function
	 syntax 72
	 tautomer algorithm 78
	 tautomer 77-78, 159, 160
	 trigger, SQL 87
	 unique 62, 72, 156-157, 72
	 valence 80
	 valence bond theory 78
	 validation 86
	 versus SMARTS 75
Smiles_to_bonds function 173-174
	 canonical SMILES 131
	 FROWNS 192
	 OpenBabel 199
Smiles_to_molfile function 84-85
	 core chemical functions 120
	 export file 133; see also File export
	 FROWNS 192, 193
	 molfile 84
	 OpenBabel 199
	 PerlMol 189
Smiles_to_symbols function 173
	 canonical SMILES 130
	 FROWNS 192
	 OpenBabel 199
Smiloader utility 167, 207-208
SMIRKS 1, 99
	 aromaticity 102
	 atom numbering 100
	 atom-mapped 100-101
	 atom ordering 100-101
	 atomic valence 102
	 azide transformation 103
	 bonds 100
	 canonical reaction SMILES 107
	 cansmiles function 99, 107
	 combinatorial chemistry 105
	 computer language 1
	 depiction 101
	 drawing programs 100
	 explicit atoms 101
	 hydrogen atoms 101
	 matches function 100
	 multi-component transformation 104
	 nitro group 80, 103
	 oxo-enol tautomer 103

	 product atoms 106
	 product 99, 106
	 reactant 99, 106
	 reaction mechanism 106
	 reaction SMILES 99
	 reaction, non-participating atoms 101
	 resonance structure 102
	 SMILES and SMARTS comparison 100
	 SQL constraint 103
	 standardize function 104
	 sulfuro transformation 103
	 table update 103
	 table 106
	 transformation 99, 100, 102
	 trigger 104
	 Ugi reaction 105-106
	 unimolecular transformation 101
	 valence bond theory 101
	 xform function 102-103, 105
Speed
	 C function 120
	 fingerprint 162
	 spreadsheet 8
	 table 8
Spotfire 41
Spreadsheet 2, 5, 8-9
SQL 1
	 advanced techniques 140
	 AND operator & 96
	 ANSI-standard 31
	 array 32, 115-116; see also Data type
	 array_upper function 115-116
	 bind value 142
	 bit string 94, 147; see also Data type
	 boolean operation 29
	 Case conditional clause 147
	 case-sensitive 23
	 cast 112
	 character varying data type 32; see also

Data type
	 clause 64
	 column, see Column
	 column name in insert 23
	 column order 23
	 command-line program 37; see also

Plsql; Psql
	 complex statement 63-65
	 composite data type, see Composite

data type
	 computer language 2, 21
	 constraint, see Constraint
	 copy command 24, 55
	 create language 188

Index	 227

	 create table 22, 57; see also Table
	 create type 109-110, 128; see also

Composite data type
	 data integrity 60
	 data type, see Data type; Composite

data type
	 delete 25
	 domain, see Domain
	 ERD, see ERD
	 error log 156; see also Error
	 exclude 29
	 extension 85
	 extension function 88, 138
	 float, see Float
	 foreign key, see Key
	 from clause 25
	 function, see Function; Extension

functions
	 group by 27
	 index, see Index
	 insert, see Insert
	 integer data type 6, 24; see also Data

type
	 interface 41-42
	 intersect 29, 138
	 join, see Join
	 key, see Key
	 keyword 23
	 lower function 73
	 MySQL 26
	 NOT operator ~ 96
	 null value 33
	 numeric data type 60; see also Data

type
	 Oracle 26
	 order clause 138
	 overhead 162
	 placeholder 141-142
	 PostgreSQL 26
	 primary foreign key, see Key
	 primary key, see Key
	 procedural language, see Procedural

language
	 quotes 23
	 regular expression matching 130
	 row, see Row
	 schema, see Schema
	 select, see Select
	 serial data type 156
	 set operation 29
	 standard 22, 26, 31-32
	 SQL2003 32
	 SQL92 32

	 SQL99 32
	 sqldeveloper 40
	 statement design 63-66
	 sub-select statement 66; see also View
	 sum function 138
	 table, see Table
	 trigger, see Trigger
	 union 29, 138
	 uniqueness, see Unique
	 unrestricted join 66; see also Join
	 update 25, 156
	 upper function 73
	 valid function 120
	 varchar data type 32; see also Data type
	 view, see View
	 where clause 25-26, 63
Sqlplus 37; see also Oracle
Sqrt function 26
Standardization
	 SMILES 102-103
	 standardize function 104
	 trigger 28
Statement object 45; see also Java
Std_smirks table 160
Stereoisomer, see SMILES
Stoichiometry, see Reaction
Structure, see Molecular structure
Sub-select statement 66-67; see also View
Subset function 134
Substructure search 92-93; see also

SMARTS
Superstructure search, see SMARTS
Sulfur in SMILES 80
Sulfuro transformation SMIRKS 103
Sum function 26-27, 138
Summary function, see R
Superuser, see PostgreSQL
Surface area, see TPSA
Symbols
	 asterisk in ERD 12
	 bracket in SMILES 82
	 circle in ERD 12
	 crow’s feet in ERD 12-13
	 period separator in SMILES 81
Symbol_coords function 131
	 plpgsql 174
	 SMILES 173

T

Table 21
	 access speed 16
	 alias 64-65

228	 Index

	 atomic coordinates 125, 132
	 atomic weight 97, 178-180
	 canonical SMILES 125
	 chemical properties 159
	 comment 54-55
	 comparison to spreadsheet 2
	 create 22, 57
	 data types 8
	 describe 37
	 drug compounds 209
	 fragment 93
	 functions, use with 182
	 joining 16-17, 21, 24-25, 136
	 modifying 38
	 molecular properties 123-127, 158
	 multi-user 8-9
	 name 6
	 normal form 9
	 relational 2, 5
	 relationship 9-10
	 schema 52, 53
	 size 8
	 speed 8
	 subset 29
	 update using SMIRKS 103
	 views 29
	 versus file 123, 131
Tanimoto function
	 molnear 171
	 similarity 176
	 SQL 96, 147, 176
Tanimoto index 96, 149
Tautomer 79
	 add_new_structure function 161
	 algorithm 78
	 butyraldehyde and but-1-en-1-ol 78
	 compound registration 159
	 dihydroxynapthalene 160
	 example 160
	 graph function 160-161
	 naphthalene 160
	 SMILES 77-78, 159-160
	 table 161
	 trigger 159-161
Telnet command-line program 39
Test set selection 67-68
Text
	 data type 6, 32
	 versus numeric data type 130
Time data type 6; see also Data type
Timestamp data type 6, 23-24, 60; see also

Data type
Toad 40

Topological surface area, see TPSA
TPSA (Topological surface area) 98, 181-183
Training set selection 67-68
Transformation, see Reaction
Trigger 87; see also SQL
	 add_new_structure 159-160
	 canonical SMILES 74, 87, 156
	 domain comparison 88
	 fingerprint 156
	 insert 28, 156
	 isomer 156, 159
	 overhead 162
	 schema 28
	 SMILES 87, 156
	 SMIRKS 104
	 SMILES 28
	 tautomer 159, 161
	 update 28, 156
Tuple 5

U

Ugi reaction 105-106; see also SMIRKS
Unimolecular transformation, see Reaction
Union 29, 138; see also SQL
Unique
	 column 14, 18
	 compound id 10, 12-13, 165
	 conformation id 135
	 constraint 62, 72
	 integer 14
	 key 14-15
	 normal form 175
	 sample id 164, 165
	 SDF file 127
	 SMILES 62, 72, 155-157
Units 110-111
Unrestricted join 66; see also SQL join
Update 156
	 row 25
	 trigger 28
	 view 29, 69
	 where clause 26
Upper function 73
User name 22; see also Oracle
Utility
	 command-line 167, 205
	 dbutils 167
	 file processing 167
	 function 205
	 molarb 168, 170, 206
	 molcat 168, 205
	 molgrep 168, 205

Index	 229

	 molnear 168, 171, 206
	 molrandom 168, 170, 206
	 molsame 168, 171, 206
	 molview 168, 169, 205
	 sdfloader 207, 208
	 shell script 167
	 smiloader 167, 207

V

Valence bond theory 71
	 SMILES 78
	 SMIRKS 101
Valence, see atomic valence
Valid function
	 FROWNS 192
	 OpenBabel 198
	 PerlMol 188
	 SMILES 86
	 SQL 120
Validation
	 CAS number 62
	 extension function 85
	 SMILES 86
Value keyword, see Domain
Varchar data type 32; see also Data type;

SQL
View 28
	 delete row 29, 69
	 dynamic 69
	 in-line 67
	 insert row 69
	 materialized view 69
	 multiple-table 69
	 Oracle 69

	 PostgreSQL 69
	 schema 28
	 sub-select statement 67
	 table subset 29
	 test set 68
	 training set 68
	 update row 29, 69
VLA-4 integrin
	 sample data 165
	 schema 126-127

W

Ward’s clustering, see R
Web application
	 advantages 38
	 client program 139
	 HTML form 38
	 javascript 144
	 Marvin 144
	 php 144
	 phpMyAdmin 38-39
	 phpPgAdmin 39
Web browser 39-40
Web interface 2, 137; see also Client

program
Web server 39
Web site 3
Where clause 25-26, 63; see also SQL
Windows 39

X

Xform function 103-105
XML file 55; see also PubChem BioAssay

	Front cover
	Contents
	Preface
	Acknowledgments
	Biography
	chapter 1. Introduction
	chapter 2. Relational Database Fundamentals
	chapter 3. Structured Query Language (SQL)
	chapter 4. Relational Database Management Systems
	chapter 5. Client and Web Applications
	chapter 6. Data Storage, Searching, and Manipulation
	chapter 7. Computer Representations of Molecular Structures
	chapter 8. Molecular Fragements and Fingerprints
	chapter 9. Reactions and Transformations
	chapter 10. PostgreSQL Extensions
	chapter 11. Three-Dimensional Molecular Structure Tables
	chapter 12. More on Client and Web Interfaces to RDBMS
	chapter 13. Applications
	Appendix
	Index
	Back cover

