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Preface

He used to talk so much and so fast that — the following day — he was hardly able to
remember what he had said — much less analyze it.

¥. Klyuchevsky, old Russian historian

A wide range of condensed matter properties includimg viscosity, ionic
conductivity and mass transport belong to the class of thermally activated
processes and are treated in terms of diffusion. Its theory seems to be quite
well developed now [1-5) and was applied successfully to the study, of ra-
diation defects [6-8], dilute alloys and processes in highly defective solids
[9-11]. Mobile particles or defects in solids inavoidably interact and thus
participate in a series of diffusion-controlled reactions [12-18]. Three basic
bimolecular reactions in solids and liquids are: dissimilar particle (defect)
recombination (annihilation), A + B — 0; energy transfer from donors A to
unsaturable sinks B, A + B — B and exciton annihilation, A + A — 0.

This theory, as orniginated from the early work of Smoluchowski [20],
nowadays has numerous applications in several branches of chemistry, such
as colloidal chemistry, aerosol dynamics, catalysis and the physical chemistry
of solutions as well as in the physics and chemistry of the condensed state
[21-24}. Until recently, its branch called standard chemical kinetics {12,
15, 16] based on the Jaw of mass action seemed to be quite a complete
and universal theory. However, because of their entirely phenomenological
character, theories of this kind always operate with the reaction rates K
which are postulated to be time-independent parameters.

Since the 1960s the first attempts were undertaken to develop a more rig-
orous theoretical formalism employing different techniques: the hierarchy of
equations for many-particle distributton functions [25-28], field theory [29-
32], and multiple scattering [33, 34]. Both theoretical studies and computer
simulations [35—40] carried out in the 70s—80s have clearly demonstrated
the principal shortcoming of the Smoluchowski-type theories (which are the
basis of the standard chemical kinetics): they are two-particle approaches and
thus neglect any effects related to fluctuations in the reactant densities. As an
example of the limitations of these over-averaging theories we would men-

tion the formation of such quite complex spatial structures as fractal clusters
and reactions‘in restricted geometries [41, 42]. A very general review of a
role of fluctuations in physical, chemical and biclogical processes has been
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presented recently in review articles [43, 44]. The aim of our book is to
consider the kinetics and peculiarities of fluctuation-controlled bimolecular
reactions.

The treatment, done for the first time in the 70s at the intermediate
mesoscopic level (concentration distributions are continuous but fluctuat-
ing) by Balagurov and Vaks [45] and Ovchinnikov and Zeldovich [46] for
the A+ B — B and A + B — 0 reactions, respectively, has demonstrated
thetr considerable deviations from the generally-accepted laws of the stan-
dard chemcal kinetics resulting in an essentially non-Poisson spectrum of
density fluctnations. Such a mesoscopic level of theory as well as macro-
and microscopic approaches are discussed in detail in the book for the two
above-mentioned kinds of fundamental bimolecular reactions in condensed
matter, corresponding, e.g., to Frenkel defect recombination (annihilation)
and energy transfer, respectively as well as for a third type of reactions of
exciton annihilation. We will demonstrate that careful analysis of the kinetics
of these simple bimolecular reactions, based on the second step in the cut-
off of the infinite hierarchy of equations for many-particle densities, reveal
their capability for self-organization (cooperative phenomena) which could
be described in terms of the correlation length and critical exponents in the
very same way as 1s done in statistical physics.

Among the important conclusions arising from this new formalism, we
mention that, in contrast to what one might intuitively assume, similar parti-
cles (reactants), imitially distributed at random and non-interacting with one
other, after some reaction time become aggregated into domains containing
particles of one kind only, A or B. Pattern formation results from the lateral
interaction of similar particles (A-A and B-B) via their reaction with parti-
cles of another kind (A-B). This leads to a time-dependence of the reaction
rate, not at short reaction times during the transient process (which is well
known in chemical kinetics) but at long times. It occurs because similar pat-
ticle aggregation leads to greater mean distances between dissimilar particles
and thus hinders their reaction rate and concentration decay in time. This new
theory reveals such previously hidden parameters as the ratio of diffusion
coefficients, Da /{Da + Dg), the spatial dimension d, and the initial particle
concentrations, n;(t = 0).

In the 70s, a new class of static long-range reaction in irradiated hquids,
glasses and solids, called tunnelling recombination was discovered [47, 48].
Tunnelling: recombination has a purely quantum-mechanical nature and re-
sults in the reaction between dissimilar particles separated by distances as



: :'i .J.\.";_:l':. . .
43% pigh Rups

Preface XI

large as 20-30 A, despite the fact that at sufficiently low temperature these
particles are immobile. We will discuss how tunnelling reactions manifest
themselves in self-organisation phenomena.

A number of quite different techniques have been presented in the last few
years for studying self-organisation phenomena in the bimolecular reactions
in condensed matter. At present those are covered in the review article [49]
and Proceedings of the conference [50] only; we discuss their advantages and
shortcomings, and the principal approximations involved (in particular, that
by Kirkwood). Where possible, analytical results are compared with computer
simulations, since very limited experimental data are known at present in
this field. Those that do exist are also considered and the conditions for the
experimental observation of cooperative effects under study are predicted
theoretically. We hope that this book may stimulate new experimental studies
in this very important field.

Until recently, only complex reactions with dozens of intermediate prod-
ucts were known to produce self-ordering effects characterized by a forma-
tion of spatio-temporal structures [51]; they were studied mainly in terms
of the universal theory developed in the 1970s and known as synergerics
[§2-54]. A formation of these structures in active extended media is now of
great interest for multidisciplinar studies in physics, chemistry and biology.
Synergetics studies quite general laws determining the processes of creation,
migration and recombination (decay) of particles (excitations) of arbitrary na-
ture leading to the pattern formation [55]. Considerable success mn this field
has been achieved by making use of a stochastic description of irreversible
processes far from equilibrium [18, 52--54, 56]. Among the main subjects of
these studies are condensed media and diffusion-controlled reactions therein.
The studies by means of stochastic methods are based on the standard ap-
proach of Markov chains with transition probabilities which are non-linear
functions of stochastic variables [25, 26, 28, 52, 53]. As is known from sta-
tistical physics, the corresponding infinite set of coupled equations cannot
be solved exactly. An approximate description of many-particle problems in
terms of synergetics usually leads to a finite set of several non-linear partial
differential equations. Their non-linearities anse from the same causes as in
the Boltzmann equation, and often these equations have more than a single
solution.

Self-organization manifests itself only in systems far from equilibrium
and consisting of a large number of objects, whose cooperative behaviour
is sometimes'considered in terms of the non-equilibrium critical phenomena
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(phase transitions) [53, 55, 57-62]. At present there are several comple-
mentary approaches to the physics of open systems far from equilibrium. A
simple phenomenological description in terms of Langevin or Fokker-Planck
equations was presented in [63]. Unfortunately, the structure and stationary
distribution functions and the associated fluctuation-dissipative theorem are
in general unknown, so these often represent an unwarranted extrapolation
from some underlying deterministic approximation. An alternative scheme
1s provided by the stochastic master equations. Their additional linearization
shows that the mentioned above phenomenological approach could be se-
riously in error. However, it 15 practically impossible to obtain systematic
approximations in the vicinity of the critical points (see, however, [64, 65]
where the exact Fokker—Planck or Langevin descriptions were derived from
the master equation by means of the developed there “Poisson transforma-
tion”). Up to now the scaling and RG approaches [66—70] have not been used
systematically because of the absence of a simple Landau-Ginsburg-type de-
scription. Their use requires modification of the statement of the problem,
since only a rather limited class of stochastic problems defined by a set of
the probability transitions could be solved by these methods alone, The for-
malism presented i [64, 65] seems to be in keeping with generalization of
the scaling and RG approaches.

Recent stochastic studies of the role of reactant density fluctuations in the
brmolecular kinetics revealed an unexpected appearance of microscopic pat-
terns characterized by a short-range and intermediate-range order, thus not
violating the homogeneity of a system, rather than the long-range ordered
structures which are the usual object of studies in synergetics. The effects
in which we are interested are to be accounted for by the violation of the
large number law [52] when the description of a system in terms of average
quantities is no longer sufficient. It is so because the self-organizing systems
are characterized by anomalous fluctuations which govern the behaviour of
the average quantities and qualitatively change their time development. For
the reactions controlled by reactant motion, coherent behaviour of the fluc-
tuations is typical, i.e., the existence of spatial correlation of closely spaced
reactants in a system. An analogy between the fluctuations in a system far
from the equilibrium and such critical phenomena as the phase transitions at
equilibrium has been pointed out more than once [54, 55]. It is well known
that the fluctuation terms cannot be neglected in the equations for average
quantities in the vicinity of instability points, since after a long enough time
the non-Poisson fluctuation spectrum determines the behaviour of the aver-
age quantiiies [69, 71]. Here one cannot neglect a perturbation which equals
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the deviation of the fluctuation spectrum from the Poisson one and thus in-
creases in time. For systems with asymptotically unstable solutions (e.g., the
well-known Lotka—Volterra model 1n 1ts stochastic statement with interacting
populations [52-541]) the fluctuation dispersion cannot be neglected. Thus the
cut-off of the infinite hierarchy of equations for the distnibution functions,
which is of our interest, permits to obtain the approximate solution which is
valid only at short reaction times. Higher-degree approximations are of key
importance and often allow us to “discover” the latent degrees of freedom
(e.g., dispersions) characterizing the kinetic behaviour of a system. Recent
pioneering studies [43, 46] in fact discovered a new class of self-organization
phenomena.

The key questions arose 1n this book are — are three above mentioned
simplest bimolecular reactions complex enough to expect the appearance of
self-organization or not? What 1s a marginal complexity for siep reactions
with several products?

For example, the standard synergetic approach [52-54] denies the possibil-
ity of any self-organization in a system with with two intermediate products
if only the mono- and bimolecular reaction stages occur [49]; it 1s known
as the Hanusse, Tyson and Light theorem. We will question this conclusion,
which in fact comes from the qualitative theory of non-linear differential
equations where coefficients (reaction rates) are considered as constant val-
ues and show that these simplest reactions turn out to be complex enough
to serve as a basic models for future studies of non-equilibrium processes,
similar to the famous Ising model in statistical physics. Different kinds of
auto-wave processes in the Lotka and Lotka—Volterra models which serve
as the two simplest examples of chemical reactions will be analyzed in de-
tail. We demonstrate the universal character of cooperative phenomena in the
bimolecular reactions under study and show that it is reaction itself which
produces all these effects.

The considerable progress made in the studies of simple bimolecular re-
actions (which has led to such fundamental conclusions) was achieved by a
more rigorous mathematical treatment of the problem, avoiding the use of
the simplest approximations which linearize the kinetic equations. We fo-
cus main attention on the many-point density formalism developed in [26,
28, 49] since in our opinion it seems at present to be the only general ap-
proach permitting treatment of all the above-mentioned problems, whereas
other theorﬂtical methods so far developed, e.g., those of secondary quan-
tization [19, 29-32], and of multiple scattering [72, 73], as well based on
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the electrostatic analogy [74] could be applied to particular problems only.
For example, the diagrammatic perturbation technique, being based on the
analogy between the master equation and the quantum field theory with non-
Hermitian Hamiitonian describing Bose particles, could be applied only to
the steady-state of a system with particle source [32, 75, 76]. Morcover, this

-approach allows us to clarify the analogy between the kinetic equations de-

rived for description of bimolecular diffusion-controlled reactions [25, 77]
and those commonly used in the self-organization theory and its applications.
We will use widely the analogy between our problems and physics of critical
phenomena and treat Kinetics under study in terms of correlation lengths and
critical exponents.

We restrict ourselves to the case of classical particles and we thus disre-
gard all quantum effects. The particle motion (if any) occurs by thermally-
activated hops in continuum medium.
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Chapter 1

Guide to the Book

1.1 WHAT IS THIS BOOK WRITTEN FOR?

1.1.1 What is absent in the book

“What is that?’ — “It is a compass to travel the world.”
(““Was haben Sie hier?” — “Ein Kompal}, um durch die Welt zu reisen™)

Lichtenberg

In this book we summarize the state of the art 1n the study of peculiarities
of chemical processes in dense condensed media; 1ts aim 1s to present the
unique formalism for a description of self-organization phenomena m spa-
tially extended systems whose structure elements are coupled via both matter
diffusion and nonlocal interactions (chemical reactions and/or Coulomb and
elastic forces). It will be shown that these systems could be described in
terms of nonlinear partial differential equations and thercfore are complex
enough for the manifestation of wave processes. Their spatial and temporal
characteristics could either depend on the initial conditions or be indepen-
dent on the initial as well as the boundary conditions (the so-called autowave
processes).

The thorough readers familiar with books on synergetics would expect
to see after such an introduction several standard and bright illustrations of
the spatio-temporal pattern formations in irreversible processes hike a test
tube with separated red and blue reactants, spiral waves on the surface of
a solution etc. To their disappointment, we do not consider here the spatial
structures violating system’s homogeneity (because of the reasons explained
below); the illustrations like Fig. 1.1 [1] and further figures also should not
be interpreted in the traditional synergetic manner. All kinds of autowave
motions considered in the book - both single minning waves and periodic
spherical waves — are not directly observable macroscopic material motions
but these are more internal synchronous motion processes called below cor-
relation dynamics. The experimentally observabie quantity is the concentra-
tion dynamics, 1.€., the change of reactant macroscopic concentrations which




2 Guide to the book Ch. 1

Fig. 1.1. Three stages in the island formation of A atoms with attractive NN interactions and
coverage nia = 0.4 ()t = O (b} t = 1000 MCS5; (¢) t = 5000 MCS (MCS = 1 Monte Carlo
step). Shown are 100 x 100 Sections of the 500 x 500 lattice used in the calculations,

could be monotonic or oscillatory functions of time. To stress this peculiarity
of the problem under study, we have called earlier this process microscopic
self-organization [2], 1n order to focus reader’s attention on the fact that our
systems reveal the short- and intermediate-range rather than long-range order
in their structure elements. (It should be mentioned here that even in these
systems the spatial scale defining the distinctive correlation length can in-
finitely increase thus making a classification of systems into microscopically
and macroscopically ordered to be sometimes quite uncertain.)

1.1.2 What you will find in this book

Il is not an art to express something briefly if one has something to say as Tacitus.
But if one 15 wrting a book while having nothing to say thus transforming the truth
with its ex nihile nihil to a lie - this I call a merit.

(Es ist keine Kunst, etwas kurz zu sagen, wenn man etwas zu sagen hat wic Tacitus.
Allein wenn man nichts zu sagen hat und schreibt dennoch ein Buch und macht die
Wahrheit mit threm ex nihilo nihil fit zu Lignerin, das heiBich Verdienst)

Lichtenberg

We understand very well that any book inavoidably reflects authors’ inter-
ests and scientific taste; this fact is, first of all, usually seen in the selection
of material which in our case is very plentiful and diverse. For instance,
Chapter 2 gives examples of different general approaches used in chemical
kinetics (macroscopic, mesoscopic and microscopic) and numerous methods
for solving particular problems. We focus here on the microscopic approach
based on.the concept of active particles (structure elements, reactants, de-
fects) whose spatial redistribution arises due to' their diffusion affected by
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the dynamic interaction of particles through the long-range potentials. In
due course, macroscopic and mesoscopic approaches operating with average
quantities — local or macroscopic concentrations defining the concentration
field — are sketchen omitting details.

The authors of this book started working on chemical kinetics more than
10 years ago focusing on investigations of particular radiation — induced
processes in solids and hiquids. Condensed matter physics, however, treats
point (radiation) defects as active particles whose individual characteristics
define kinetics of possible processes and radiation properties of materials.
A study of an ensemble of such particles (defects), especially if they are
created in large concentrations under irradiation for a long time, has lead us
to many-particle problems, common in statistical physics. However, the stan-
dard theory of diffusion-controlled reactions as developed by Smoluchowski
[3] turned out to be not suited for the case of complex spatial distributions of
defects created by high-energy radiation. Attempts to generalize this theory
undertaken by a number of authors were not gquite successful.

It is clear that a complete treatment of the recombination kinetics requires
careful incorporation of mutual particle distribution, including fluctuations in
their local concentrations due to diffusion and reaction. At present the role
of fluctuations in reactant concentrations in chemical kinetics is well known
[4]; 1t 1s intensively studied in the theory of self-organized nonequilibrium
systems. However, these studies are based on macroscopic and mesoscopic
classes of models. In other words, these models focus on fluctuations of
quantities as a total number of particles in a whole system or of concentrations
within cells; these cells are assumed to be large enough to consider numbers
of particles therein as macrovariables, but on the other hand small enough
to consider spatial particle distribution as inhomogeneous. The distinctive
teature of these models is a treatment of the reactions inside cells exactly
as in the standard chemical kinetics, i.¢., in terms of the law of mass action
with the constant reaction rate multiplied by a product of concentrations. This
class of models neglects the real mechanism of defect recombination events,
using only the average recombination characteristics, i.e., the reaction rate.

Therefore, we tried to develop the adequate mathematical formalism of
the fluctuation-controlled chemical kinetics based on a concept of active
particles. Simultaneously, the mesoscopic theory of concentration field fluc-
tuations was developed by a number of investigators (see Chapter 2) having
more qualitative character. Undoubtedly, these two approaches ~ microscopic
and mesoscopic — overlap, since a lot of fundamental results like asymptotic




4 Guide to the book Ch. |

law of concentration decay at long times are not sensitive to details of particle
interaction. Nevertheless, we prefer to use here microscopic (ever simplest)
models allowing us to get numerical estimates for actual systems (defects)
rather than to make very general and uncertain conclusions. When presenting
results of calculations for reactant concentration dynamics and formation of
the relevant spatio-temporal particle structures, we discuss not only the gen-
eral formalism but also details of the derivation and methods of the solution
of the basic microscopic kinetic equations for various model problems.

A careful study of the fluctuation-controlled kinetics performed in recent
years has led us to numerous deviations from the results of generally-accepted
standard chemical kinetics. To prevent readers from getting “lost” in details
of different formalisms and the ocean of equations presented in this book, we
present in this introductory Chapter a brief summary, explain the necessity of
developing the fluctuation kinetics and demonstrate its peculiarities compared
with techniques presented earlier. We will use here the simplest mathematical

formahism and focus on basic ideas which will be discussed later on in full
detail.

1.2 ORDER AND DISORDER

1.2.1 The order parameter

Order leads to all virtues! But what leads to order?
{Ordnung fithret zu allen Tugenden! Aber was fihret zur Ordnung?)

Lichtenberg

The history of the study of macroscopic systems containing huge numbers
of elements demonstrates clearly the necessity of developing and specifying
the fundamental concept of an order parameter [5, 6]. For clarity, we consider
here dense gases and liquids in thermodynamical equilibrinm as standard
systems whose properties are well known. Despite the fact that sometimes
the concepts of equilibrium order and disorder for these systems are not
very convincing and require the use of additional analogs with other (e.g.,
magnetic) systems, it suits well to the scope of our book.

It 1s convenient to begin with a simple one-component system having three
phases — gas, liquid and solid. At the primitive level these phases differ by
a denstty. n2, 1.€., the number of particles per unit volume. If we fix now for
simplicity the pressure in this system, in the thermodynamical equilibrium,
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Fig. 1.2, Phase diagram of a simple solid.

the density is a function of the temperature T only, n = n(T"), and could be
treated as an order parameter. For a multicomponent system one has sev-
eral densities and the density becomes the multicomponent order parameter,
n = n({T). When the temperature decreases, n, as a rule, increases and
changes monotonously, (The well-known exceptions are water near 0°C and
phase transitions, respectively). We consider here neither the mechanism of
the equilibrium structure formation which is based on the Boltzmann order-
ing principle (this problem was discussed more than once [4, 7]), nor the
subtle concept of entropy and its connection with the ordering. For a certain
combination of the pressure p and the temperature T’ two phases (e.g., solid
and liquid) can coexist in equilibrium with each other. When passing the
temperature point T = T, = 7.(p), the (hidden) heat is released and the
density changes abruptly. This process is called the first-order phase transi-
tion. The gas—liquid equilibrium curve shown in Fig. 1.2 has very interesting
property: it ends at some point called critical.

1.2.2 The critical point

... Catholics and other peopie.
(Die Katholiken und die andern Menschen)

Lichtenberg

The cntical point is one of many examples of higher-order phase transitions
including the second-order transitions in ferromagnetics and ferroelectrics
and A-transition in liquid He. Unlike the first-order transition, the heat of the
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1}
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Fig. 1.3. Density near the critical point in the gas-liquid system.

phase transition is not released here (despite the fact that the specific heat
reveals a certain singularity: its diagram looks like the Greek letter \); the
density also changes smoothly. Such higher-order phase transitions are also
called critical phenomena (or order—disorder transitions) [6, 8, 9]. Below
we use these transitions as a test system for iflustrations of the problems of
chemical kinetics.

Let us consider now the gas-liquid system ncar the critical point (Fig. 1.3).
At T < 1; both phases coexist, their densities ny, (liquid) and ng (gas) could
be formally written as ny, = n¢+9n/2, ng = n.— dn/2, where n. is density
at the critical point. Note that in the physics of critical phenomena the order
parameter 1s often defined subtracting the background value of ., i.e., as
the order parameter the difference of densities, én = ny. — ng, could be nsed
rather than these individual densities themselves. Such an order parameter
15 zero at T" > T, and becomes nonzero at 7' < T.. Another distinctive
feature of the order parameter is that for all simple systems the algebraic law
on o (T, — T)? holds, where 3 is constant.

It 1s usetul to check whether this kind of relations is valid for other systems
like ferromagnetics and ferroelectrics too. Here the order parameters are the
magnetization M and the polarization P, respectively. At high temperatures
(T > T.), and zero external field these values are M = 0 (paramagnetic
phase) and P = 0 (paraelectric phase) respectively. At lower temperatures
close to the phase transition point, however, spontaneous magnetization and
polarization arise following both the algebraic law: M, P o (T, — T)".
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Fig. 1.4. Schematic behaviour of the order parameter in the vicinity of the critical point,

A more complicated but solvable problem is a definition of the order
parameter for antiferromagnetics, binary alloys, superconductors etc. The di-
mensionless units 7'/7¢ and n/ng (Fig. 1.4) allow us to present the behaviour
of the order parameter n = n{T") in a form universal for many quite different
systems. Moreover, in some cases even quantitative similarities hold which

concerns in particular the value of the exponent 5. (The value of n = Q
characterizes always disordered phase.)

1.2.3 The molecular field theory and the equation of state

The former borders of science arc now its middle.
(Wo damals die Grenzen der Wissenschaft waren, da ist jctzt die Mitte)

Lichtenberg

First-principle calculations of the thermodynamic properties are more or
less hopeless enterprise. One of the most famous phenomenological ap-
proaches was suggested by van der Waals [6, 8, 9]. Using the dimensionless
pressure m = p/p., the density v = n/n. and the temperature 7 = T/T., the
equation of state for the ideal gas reads m = 8v7/(3 ~ v} —3v%. Its r.h.s. as a
function of the parameter - has no singularitiecs near v = 1 (v =7 =7 = 1
is the critical point) and could be expanded into a series in the small param-
eter n = (n — n.)/n. with temperature-dependent coefficients. Solving this
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equation after expansion at p = p, with respect to the order parameter one
gets p o (T, — T)'/?, i.e., one obtains a value of the exponent 3 = 1/2. For
a given pressure the equation of state for a multicomponent system (defining
again the multicomponent order parameter n as a function of the temperature
T') has the general form F(n,T} = 0, where the non-linear (vector) function
F' could be expanded into a series in the order parameter n.

The van der Waals equation discussed above was derived in the same
spirit as the so-called molecular field introduced by Weiss [8] in the theory
of ferromagnetism. In this theory, magnetic interaction of dipoles can be for-
mally expressed as resulting from some internal magnetic field depending on
the nearest dipole orientation. In the Weiss approach the fluctuating internal
field is replaced by the mean (molecular) field thus making this many-particle
problem solvable. It 1s important to note here that the exponent F obtained
from the van der Waals equation remains the same not only for all other
model equations of state of real gases capable to describe the critical point,
but also for other physical systems (e.g., ferromagnetics) provided that the
equation defining the temperature dependence of the order parameter n was
derived in an approximation similar to the molecular field.

An important step in developing the mean-field concept was done by Lan-
dau [8, 10]. Without discussing the relation between such fundamental quan-
tities as disorder—order transitions and symmetry lowering, we just want to
note here that his theory is based on thermodynamics and the derivation of
the temperature dependence of the order parameter via the thermodynamic
potential minimization (e.g., the free energy A(n,T)} which is a function
of the order parameter. It is assumed that the function A(n, T} is analyt-
ical in the parameter n and thus near the phase transition point could be
expanded into the series in 7; usually it i1s a polynomial expansion with
temperature-dependent coefficients. Despite the fact that such a thermody-
namical approach differs from the original molecular field theory, they are
quite similar conceptually. In particular, the r.h.s. of the equation of state
for the pressure of gases or liquids and the extemal field in ferromagnetics,
respectively, have the same polynommal form.

It is known that the “classical” molecular field theory discussed above is
not suited for describing a close vicinity of the critical point. Experimen-
tally obtained values of the parameter 3 (called the critical exponent) are
essentially less than Gy = 1/2 predicted by the mean-field theory. On the
other hand, the experimental values of 3 = (.33-0.34 turn out to be univer-
sal for many different systems (except for quantum liqmid—helium where (3
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is larger than the just quoted value). Obviously, this fact reflects some uni-
versal properties of different systems undergoing phase transitions whereas

deviation from the value of § predicted by mean-field theory demonstrates
its limitation.

1.2.4 The order parameter in chemical kinetics and the kinetic law of mass
action

Doubt everything at least once, even if 11 is the sentence “two by two is four”,
(Zweifle an allem wenigstens einmal, und wire es auch der Satz: zwei mal zwei
ist vier)

Lichtenberg

Before continuing studies of the gas—liquid systems, let us first analyze the
foundations of chemical kinetics in terms of the order parameter [11]. The
standard chemical kinetics 18 based on the description of the homogeneous
system of reacting particles by a set of first-order differential equations with
respect to reactant concentrations or densities of particle numbers. In a gen-
eral case of the multicomponent system characterized by the multicomponent
order parameter r» the rate of its change 1s assumed to be a function of n
only: n = F(n). In other words, the state of the chemical system at any
time ¢ 1s assumed to be characterized uniguelly by its order parameter. One
of the main goals of chemical kinetics is to determine the time development
of the order parameter, n = n(t). Another assumption of chemical kinetics
is the kinetic law of mass action [11, 12], which specifies the form of the
function F'(n) and is based on the intuitive and at first glance self-evident
microscopic model of the chemical reactions. It assumes that thermal motion
of particles leads to their collisions; non-elastic collisions result m particle
transformations (reactions). It seems to be obvious that the number of col-
lisions of particles of two kinds, A and B, is proportional to the product of
their densities na and ng, 1.€., it is governed by the quantity Ananp, where
k 1s a proportionality coefficient. (It was one of the basic 1deas of chemi-
cal kinetics from its early days [13].) Restricting ourselves to the so-called
bimolecular processes (pair collisions only), the law of mass action defines

uniquelly the function F(n) as a polynomial of second order; the reaction
constant £ could be obtained by experiment.

Let us discuss critically the assumptions made above. For the gas—liquid
system the statement that the order parameter is a function of the tempera-
ture, n = n(T), is quite comrect. (Both the experimental and the theoretical
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definition of this dependence are problematic.) Despite the fact that the or-
der parameter is time-dependent, n = n(t), this dependence is postulated
here in the form of the non-self-evident differential equation n = F(n).
Thus, the theory of ireversible processes [9], which attempts to describe
the time development, seems to be far from its completion. A development
of a macroscopic theory — that is thermodynamics of irreversible processes
— 18 also problematic: the conditions under which parameters determining
the time-development of irreversible processes are functions of macroscopic
quantities only (like the density n) are not clear. However, especially on the
statement just quoted the equation n = F(n) rests! Moreover, there exist
exactly solvable models in chemical Kinetics showing the insufficiency of
macroscopic parameters thus arguing for the necessity of an improvement
of the law of mass action. In the chemical physics of gas-phase reactions
this postulate was questioned the last years only. The existence of this prob-
lem was realized also in condensed phases where delivery of reactants each
to other i1s diffusive and too slow for smoothing of nonuniform particle
distribution in the reaction volume. This results in the formation of local
inhomogeneities in the spatial distribution of the reactants, thus making a

. use of macroscopic reactant densities as a single order parameter obviously
‘ | incomplete.

= pmea T

1.2.5 The standard chemical kinetics as mean-field theory

‘ Weaknesses do not harm us anymore, as soon as we know them,
| ‘ {Schwachkeiten schaden uns nicht mehr, sobald wir sic kennen)

: I Lichtenberg

The above mentioned assumptions of standard chemical kinetics have a
| certain analog with the mean field theory, 1.e., both use the order parameters
i only and assume validity of the polynomial expansion in this parameter as
o it is shown in Fig. 1.5.
Fa In particular, it is useful to define the critical point through F(n. ) = 0
(the stationary state). Since multicomponent chemical systems often reveal
quite complicated types of motion, we restrict ourselves in this preliminary
treatment to the stable stationary states, which are approached by the system
without oscillations in time. To illustrate this point, we mention the simplest
reversible and irreversible bimolecular reactions like A4+ A — B, A4+B — B,
A + B-—= C. The difference of densities n(f) = n(t) — n. can be used as
the redefined order parameter i (Fig. 1.6). For the bimolecular processes the
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Fig. 1.5. A schematic analogy between gas-liquid system and chemical kinetics,

n=n(t)-n. ~ exp(-kte)
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Fig. 1.6. The order parameter in the chemical system nearby the steady-state point
{density relaxation).
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approach to the steady-state is characterized by one of the two basic laws: it
is either exponential, n o exp(—ki®), or algebraic, nn < t~%: in both cases
the standard kinetics predicts the same “classical” value of ag = 1.
Pioneering papers [14, 15] (see also reviews [2, 16]) as well as theoreti-
cal studies done in the last years argue convincingly that the exponent « is
less than «yg; this conclusion is confirned by numerous computer simulations
[17]. This shows that basic principles of chemical kinetics have to be criti-
cally analyzed — in analogy to careful studies done in physics of equilibrium
systems in the vicinity of the critical points. The deviation from standard
chemical kinetics could be expected not only in the asymptotic laws of the
steady-state approach, but also in types of a possible system’s motion. As it
is known, complex chemical systems reveal often auto-oscillating processes
with both retaining and spontaneous breaking of the system’s homogeneity as
well as more complicated chaotic motions. Appearance of these complicated
motions s closely related to the complexity of the system; its measure is a
type of non-linearity of the relevant kinetic equations and the number of com-
ponents in the order parameter giving number of degrees of freedom. When
going beyond the limitations of the mean-field theory, we in fact take into
account additional degrees of freedom neglected in its simplified analysis.

1.3 HOW MANY PARTICLES ARE NECESSARY TO CREATE A MANY-PARTICLE
PROBLEM?

1.3.1 What defines a heap?

“Who is there?" — “It’s just me.” — “Oh, that’s too much!”
("Wer 1st da?” — “Nur ich.” — “Oh, das ist tiberflilssig genug!)

Lichtenberg

The transition from a macroscopic description to the microscopic level
1s always a complicated mathematical problem (the so-called many-particle
problem) having no universal solution. To illustrate this point, we recommend
to consider first the motion of a single particle and then the interaction of two
particles, etc. The problem is well summarized in the following remark from
a book by Mattuck [18] given here in a shortened form. “For the Newtonian
mechanics of the 18th century the three-body problem was unsolvable. The
general theory of relativity and quantum electrodynamics created unsolvable
two-body and single-body problems. Finally, -for the modem quantum field
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theory even vacuum (no bodies) turns out to be unsolvable problem. That
is, if we are interested in exact solutions, even a single-body is already too
many...” Despite the fact that methods of quantum field theory are widely
spread 1n statistical physics and chemical kinetics, the situation is not yet
dramatic. However, a really hard problem is to clarify the number of particles
whose interaction has to be taken into account for an adequate description
of many-particle (cooperation) phenomena, in which each particle affects the
behaviour of all the rest particles. It is natural to try to restrict ourselves to
considering two particles only as a minimal ensemble since in many cases a
pair problem can be solved analytically.

Let us consider again a gas-phase system as the simplest illustration. Exper-
imental data for not very dense gas are usually treated in terms of the equation
of state p/(nkgT) = 1+nB2(T)+n?B3(T) +- - - (the so-called virial expan-
sion or expansion in a series of density powers n). Here the B, (T") are called
virial coefficients: they depend on the temperature only. Consider now a pair
of particles and ascribe to it the Boltzmann factor exp(—U(r)/(kgT')), where
U(r) is their potential energy. It is known from statistical physics [9] that
upon neglecting three- and higher-order particle collisions the second virial
coefficient can be expressed via the Boltzmann factor given above, More-
over, further terms of the virial expansion can also be formally written down,
thus considering collisions of any number of particles, using systematically
an expansion in the functions f = exp(—U(r)/(kgT)) — 1 (the so-called
Mayer's group expansion).

For some time it was believed that the virial expansion allows to describe
the critical point, but this hope failed. The point is that at high densities typ-
ical for the liquid phase, the most important terms of the expansion are those
which describe the formation of a large cluster of interacting particles (the
many-particle effect) whereas an approach based on the system’s treatment
as an ensemble of interacting pairs fails. From the point view of such a pair
approach, formation of the ordered crystalline structure is a complete puzzle.

1.3.2 A pair problem

The shorter the sergeant the bigger the proud.
(Die kleinsten Unteroffiziere sind die stolzesten)

Lichtenberg

In the chemical kinetics a pair problem is the first preliminary step in
studying the many-particle problem; its results cannot be overestimated and
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extrapolated automatically for dense systems. On the other hand, this pair
problem is of independent interest, e.g., for radiation-induced chemical pro-
cesses. As it 18 known, high-energy irradiation (e.g., ions or neutrons) creates
tracks in solids, whose structure depends on incident-particle energy, particu-
lar material etc. In the imiting case (or under electron beam- or X-irradiation)
we have just an ensembie of pairs of complementary defects called also
Frenkel pairs (vacancy—interstitial) [16] which are well-correlated in space.
The kinetics of their recombination is of great interest for radiation physics
of real matenials and serves as the first step in understanding relaxation pro-
cesses 1n tracks. It 1s also important for studying the mechanisms of radiation
damage and effects of different kinds of irradiation.

1.3.3 Random walks and encounters

And with the wine no longer in bottles but in their heads, they went out to the street.
(Und mit dem Wein, der nun nicht mehr in den Bouteillen, sondern im Kopf war,
gingen si¢ auf die Stralle)

Lichtenberg

Let us consider now just a pair of immobile point particles A and B
which are chemically interacting with each other (that is, a given pair AB
transforms into another pair A’B’). This pair reaction could be described by
the simplest decay law: exp(—t/7), their lifetime 7 = 7(r) is defined by their

a) b)
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Fig. 1.8. A drunken gentleman undergoing random walks.

relative distance . It is convenient to introduce the reaction rate per unit time
o(r) = 7~ !(r). The first complication of this trivial problem comes from
an incorporation of particle motion. Assuming that the medium is viscous,
particle could be treated as undergoing the Brownian motion characterized
by the diffusion coefficients Dy and Dg. In crystals this motion transforms
into walks on the lattice (Fig. 1.7), where particle hops with equal probability
to one of the nearest lattice sites. As it 18 known, particle motion after many
such random walks could be treated in terms of the diffusion equation. (Note
that some modern experiments have demonstrated necessity to go beyond
the diffusion approximation.) The distinctive feature of diffusion is the linear
dependence of the mean square displacement of a particle as a function of
time, the diffusion coefficient is just a co-factor of time. One of the Chapters
of Haken’s book “Synergetics” [7] has subtitle: “How far a drunken man can
walk”, since random chaotic walks of a toper shown in Fig. 1.8 remind us
the Brownian motion of a particle.

1.3.4 The model A+ B — B reaction

“How are you getting on?” — the blind man asked the lame.
-~ "As you can see” — was his answer.

(“Wie geht’s?” sagte ein Blinder zu einem Lahmen,
"Wie Sie sehen”, antwortete der Lahme)

Lichtenberg

Let us consider the analogy between an unpredictable toper and the Brow-
nian motion of a particle A, adding now a policeman B to accompany him
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Fig. 1.9. Reaction A + B — B and its visualization.

(Fig. 1.9). Assume first that the policeman 15 standing immobile on his post
but he grasps a toper when they collide (lattice walks) or it catches police-
man’s eye restricted by some distance ry (the trapping radis in the contin-
vous medium). We are interested in the following problems: (1) whether a
toper will be always grasped; (11) what 1s the probability not to be caught if
a toper start walking at a given distance [ from the policeman; (ii1) how the
results will be changed if the policeman also starts to move (his Brownian
walks could be caused only by a dense London fog). The situation described
above could be described by the A+ B — B reaction (particles A are trapped
by unsaturable sinks B); another example 1s the energy transfer from mobile

excited molecules A to energy acceptors B which rapidly emit light and are
again ready to get next excitation.

1.3.5 The Smoluchowski equation

The American who was the first to discover Columbus made a had discovery.
(Der Amerikaner, der den Kolumbus zuerst entdeckte, machte eine bése Entdeckung)

Lichtenberg

The above-described pair problem is treated by the Smoluchowski equation
[3, 19] — see Fig. 1.10. It operates with the probability densities (Fig. 1.11}
and contains the recombination rate o(r) which is a function of coordinates
and the parameter D = DD, characterizing particle motion. Knowledge of the
probability density to find a particle at a given point at time moment ¢ gives
us (by means of a trivial integration over reaction volume) the quantity of
our primary interest — survival probability of a particle in the system with
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SCHRODIRGER EQUATION

a r _ hz 2 2 2
lhﬁiﬁ{ (L) = -3’ F(Y,t) + U{xr)¥(r,t)

¥{¥,t) - PROBABILITY AMPLITUDE

SMOLUCHOWSKI EQUATION

—Ew(r,t) = D?zw{r,t) - o(riw(r,t}

w{r,t) - PROBABILITY DENSITY

DRIFT IN THE POTENTIAL

%Ew(r,t) = Dv[?w(r,t) + Eiﬁi%lvU(r)] - o{r)yw(r,t)}

Fig. 1.10. A comparative analysis of the Schrodinger and Smoluchowski equations.

a trap. In terms of mathematics, the Smolichowski equation is guite similar
to the Schrodinger equation describing motion of a quantum particle having
mass m in the potential U (7). Analogously to the Schrédinger equation, one
can study numerous kinetic problems for different choices of o(r). Another
complication comes if one replaces the isotropic diffusion coefficient for
anisotropic. In this case the diffusion coefficient I is no longer a numerical
parameter but a tensor D).

New difficulties arise when we try to take into account the dynamical
interaction of particles caused by pair potentials U {r); mutual attraction (re-
pulsion) leads to the preferential drift of particles towards (outwards) sinks.
This kind of motion is described by the generalization of the Smoluchowski
equation shown in Fig. 1.10. In terms of our “illustrative” mode! of the
chemical reaction A + B — B the drift in the potential could be associ-
ated with a search of a toper by his smell (Fig. 1.12). An analogy between
Schrédinger and Smoluchowski equations is more than appropriate; indeed,
it was used as a basis for a new branch of the chemical kinetics operating
with the mathematical formalism of quantum field theory (see Chapter 2).
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w(r,t)

I

~ Fig. 1.11. The probability density obtained as a solution of the Smoluchowski cquation.

Fig. 1.12. Reaction A + B — B with the particle interaction and its visualization.

1.3.6 Symmetry of particle mobilities and space dimension

A fool imagining that he is a king does not differ from a real king, except that the

former is a negative king and the latter is a negative fool. Neglecting minus signs,
the two arc equal.

(Ein Narr, der sich ejnbildet, ein Fiirst zu secin, ist von dem Firsten, der in der Tat ist,
durch nichts unterschieden, als dal jener ein negativer Fiirst und dieser ein negativer
Narr ist. Ohne Zeichen betrachtet, sind sie gleich)

Lichtenberg

The Smoluchowski equation demonstrates the principal feature of the stan-
dard chemical kinetics: the latter is defined by a coefficient of the relative
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diffusion ) = Ds + Dg; for a fixed value of DD no matter, which of particles
undergoes the Browman motion! This result seems to be self-evident: irre-
spective who of two i1s performing random walks — a policeman or a toper —
their approach (reaction) arises due to their relative motion. Another principal
consequence of the Smoluchowski equation is related to the space dimension
d, and the question is: what is the difference between reaction kinetics in the
bulk (d = 3), on the surface (d = 2) or in thin capillars (d = 1)? Since we
consider here diffusion-controlled kinetics, the question is addressed mainly
to the pecuhanty of diffusion in different dimensions.

Many years ago Polya [20] formulated the key problem of random walks
on lattices: does a particle always return to the starting point after long
enough time? If not, how its probability to leave for infinity depends on a
particular kind of lattice? His answer was: a particle returns for sure, if it
walks in one or two dimensions; non-zero survival probability arises only for
the three-dimensional case. Similar result is coming from the Smoluchowski
theory: particle A will be definitely trapped by B, urespectively on their
mutual distance, if A walks on lattices with d = 1 or d = 2 but it survives
for d = 3 (that is, in three dimensions there exist some regions which are
never visited by Browmian particles). This illustrates importance in chemical
kinetics of a new parameter d which role will be discussed below in detail.

1.3.7 Survival probability

A. —“You became very old”. B. — “It happens, when one lives long”,

(A. — “Sie sind sehr alt geworden”. B. — “Ja, das ist gewonlich der Fall,
wenn man lange lebt™)

Lichtenberg

Now let us try to extrapolate a solution of the Smoluchowski equation
for the case of more than two particles. The simplest complication is well
seen from the following example: consider a particle B participating in the
A + B — B reaction and surrounded by many particles A, say, randomly
distributed with the density n4. Since particles A are point-like and are
assumned not to interact, this many-particle problem could be reduced to a
pair problem of a fate (survival) of some particular particle A*, irrespectively
of other A particles. That is, we can consider survival probability of A placed
at the beginning at some distance ! from a trap; the result obtained should
be averaged over the initial distribution of particles. In other words, if one
knows the “law” of catching a single toper by policeman, a general law for
a group of tnpers could also be easily found.
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Fig. 1.13. A drunken man surrounded by policemen.

1.3.8 Diffusion asymmetry

When I am standing, I have one opinion, but when I am lying 1 have another one.
{(Ich babe oft die Meinung, wenn ich liege, und eine andere, wenn ich stehe)

Lichtenberg

At first sight, the problem just discussed seems to be symmetric, i.e.,
should be true also for a problem of the catching a single toper by a group
of policemen — Fig. 1.13; that is all we need is to solve a pair problem.
However, 1t 15 not the case except that the toper is immobile, D = 0 (the
toper 1s dead-drunk). In the latter particular case the problem indeed could be
analytically solved: at long time the probability that the toper did not meet
the policemen is proportional to exp(—kt®) with the exponent «r equal to the
“classical” value of unity ford > 2but o = 1/2ifd=1.

In the opposite case of Dg = 0 the problem turns out to be principally
many-particle and cannot be reduced to a pair situation, as before. This prob-
lem was solved for the first time by Balagurov and Vaks quite recently, in
1973 [14]. The probability to avoid policemen again turns out to be expo-
nential, exp(—kt®), but now with the value of the & “non-classical” for any
dimension: a = d/(d + 2)!

It should be stressed that the probability for randomly walking toper not
to be caught is greater than for immobile one (surely for a fixed D = Dy +
Dg). The impression is created that a walking toper evades policemen and
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somehow watches closely after them! This example demonstrates perfectly
an unexpected asymmetry in the diffusion coefficients (mobilities) which 1s
entirely ignored in standard chemical kinetics. A reasonable question arises:
how many particles are necessary indeed to take into account for what we call
many-particle effect? For the one-dimenstonal case and particular A+-B — B
reaction the problem could be solved exactly and the answer 1s very simple:
it is enough to investigate three-particle evolution in time — configurations
of the BAB-type (particle A placed between two B’s). Complete solution of
a problem could be obtained then considering an ensemble of such three-
particle configurations which differ by the distance between two B particles
and position of A between them. For higher-dimensions the problem, strictly
speaking, is not longer reduced to the three-particle one.

1.3.9 Ensembles of particles

The history of a century is made of the histories of single years. In order to describe the
spirit of a century, one cannot plug together the histories of hundred single years.

(Die Geschichte eines Jahrhunderts st aus den Geschichten der einzelnen Jahre zusam-
mengesetzt. Den Geist eines Jahrhunderts zu schildern, kann man nicht dic Geister
der hundert einzelnen Jahre zusammenflicken)

Lichtenberg

The next reasonable step in studying our “chemical games” is to consider
ensembles of A’s and B’s (e.g., topers and policemen), when they are ran-
domly and homogencously distributed in the reaction volume and are char-
acterized by macroscopic densities of a number of particles. The peculiarity
of the A + B — B reaction is that the solution of a problem with a single
A could be extrapolated for an ensemble of A’s (in other words, a problem
is linear in particles A). As it was said above, it is analytically solvable for
Da = 0 but tums out to be essentially many-particle for Dg = 0. It is use-
ful to analyze a form of the solution obtained for the particle concentration
na(t) in terms of the basic postulates of standard chemical kinetics (i.e., the
mean-field theory).

For immobile particles A the density of traps ng enters into solution in
such a way that the kinetic law of mass action holds formally (the con-
centration decay is proportional to the product of two concentrations) but

replaces the constant reaction rate (the coefficient of this product) for the
time-dependent function. Therefore, an exactly solvable problem of the bi-
molecular A 4+ B — B reaction gives us an idea of the generalization of the
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mean-field theory — a use of the equation 2 = F(n, t} instead of n. = F'(n)
where dependence of the function F' on the particle densities obeys the law
of mass action but with time-dependent coefficients of the polynomial expan-
sion. Such a perspective of a formal introduction of some function of time
does not sound inspiring if it is not found from the independent microscopic
analysis. The more so, since some particular results obtained for the same
A + B — B reaction put under question the realization of this idea even in
principle. As it is known, for immobile B particles [14] and long times the
decay kinetics contains the specific combination n¢, which has nothing to
do with the iaw of mass action! If we even assume that it results from the
dependence of the expansion coefficients on the particle density, it would
mean that our universal approach to the kinetics description fails.

Up to now we neglected dynamical interaction of particles. In a pair prob-
lem it requires the use of the potential U (r) = Upg(r) specifying the A-B in-
teraction; in an ensemble of different particles interaction of similar particles
described by additional potentials Usa(7), Ugg(r), could be essential. How- -
ever, Incorporation of such dynamic interactions makes a problem unsolvable

analytically for any diffusion coefficients, analogously to the situation known
in statistical physics of condensed matter.

1.3.10 Model of the A + B — 0 reaction

Such people should be forced to wear buttons with a figure “zero™ to highlight them.
(Solche Leute sollte man Knopfe mit dem Buchstaben Null tragen lassen, damit man
sie kennte)

Lichtenberg

In the examples considered above traps B were assumed to serve as sinks
of the infinite capacity. Its simple modification for the case of saturable
traps (the policeman who caught some toper is no longer on his post but
is bringing him to the police station) leads us immediately to the new class
of reactions known as A + B — C (C is a neutral reaction product — the

- policeman bound to a toper is out of his duty) or A+B — 0 (reaction product

leaves the system). This latter reaction is typical for the so-called Frenkel
defects in solids when complementary defects A and B (interstitial atoms
and vacancies) annihilate each other, thus giving no products and restoring
the perfect crystalline lattice.

Another example gives us the reactions on the catalyst surface, considered
in the last Chapters of this book, where products depart to the gas phase. In
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all cases symbol ‘0’ used for products reflects new situation and immediately
makes a problem unsolvable for any particle mobilities.

1.3.]1 The Smoluchowski theory of the diffusion-controlled reactions

We are familiar with the art to make a new book from several old oncs.
(Wir verstehen die Kunst, aus ein paar alten Biichem ein neues zu machen)
Lichtenberg

Let us return now to the attractive idea of using the solution of a pair
problem for the evidently non-solvable exactly kinetics in many-particle sys-
tems. Such an approach was realized for the first time by Smoluchowski in
his theory of diffussion-controlled reactions. He has considered an ensemble
of particles A with density na surrounding a single sink — particle B at the
origin. Irrespective of the particle mobilities, the kinetics is governed by the
coefficient of relative diffusion I} = Da + Dg. Due to the presence of a trap,
the spatial distribution of A’s could be characterized by their time-dependent
local concentration C(r,t); C{r,0) = na and r is a distance from a trap —
Fig. 1.14. The time evolution of concentration is assumed to obey the same
Smoluchowski equation as in Fig. 1.15 but with the modified boundary con-
dition — C(00,t) = na = n%. It means that at long distances concentration
remains constant, n3, i.e., the reservoir of A’s is unexhaustable which, strictly
speaking, is not adequate to the problem under study.

C,(r.t)

T

e

Fig. 1.14. Concentration front in the Smoluchowski theory.
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THE SMOLUCHOWSKI APPROACH TO BIMOLECULAR KINETICS
(REACTIONS A+BSB  AND A+Bo0)

gcr,t) = pvic(r,t) - o(r)C(c,t) | — BASIC EQUATION

| C{r,0)

il
=

- INITIAL CONDITION

C{w,t) = n° - BOUNDARY CONDITION

K(t) = "11?“ j o(riC(xr,t)dv - REACTION RATE

' A

(aifn*{t} = -K(t)n, (t)n_(t) - KINETIC LAW OF MASS ACTION

Fig. 1.15. The Smoluchowski approach to the himolecular kinetics.

Solution of this problem could be easily obtained. Of the main interest
is the expression for the flux of particles A, ja(t), falling to a sink B.
This flux is proportional to the particle density n3, j(t} = K(t)nY, where
the time-dependent co-factor K (¢} is the so-called effective reaction rate.
It characterizes the trapping rate by a single B per concentration unit of
A’s. Note that at long reaction time, { — co, K (¢} strives for the steady-
state, Ko = K (c0), only in the three-dimensional case. Thus, for the above-
discussed “policeman—toper” game the steady-state value of the reaction rate,
found by Smoluchowski, 1s Ko = 4w Drg where r is the trapping (reaction)
radius. This relation for Ky is extremely widely used in literature, even in
the cases when it is for sure inadequate; say, in low dimensions (d = 1, 2)!
Here K (t) is non-stationary and always decays in time never reaching the
steady-state value. According to Smoluchowski, the dependence K = K (t)
15 defined uniquelly by the reaction probability within a pair, o(r), and the
coefficient of the relative diffusion.

This value of K (t) is silently transferred in the Smoluchowski approach to
any bimolecular reactions, including three basic processes discussed above:
A+B — B, A+B — Oand A+ A — B (for the first time it was applied to the
latter reaction describing the colloid formation in liquids). Such an approach
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retains the law of mass action and defines therein the time-dependent reaction
rate as a solution of the diffusion equation. In other words, this method
1s nothing but an attempt to generalize the basic equation of the chemical
kinetics in the form n = F(n,t), but it fails if one is interested in non-
clementary bimolecular reactions, e.g., in chains of several reactions. This
situation reminds Bohr’s theory of atom which gave a good description of
hydrogen atom but still could not be generalized for many-electron atoms
which has stimulated development of the completely new universal approach
called gquantum mechanics. It is clear that in the Smoluchowski approach
both mentioned asymmetry in reactant mobilities and dynamic interaction of
similar particles cannot be treated just in principle. However, in many cases
this method, despite its intuitive derivation, gives physically quite reasonable
results. It 1s interesting that this approach was used without any theoretical
justification for a half of a century until studies by Waite |21] and Leibfried
[22].

They have demonstrated that the Smoluchowski approach could indeed
be derived rigorously as a cut-off of the set of rigorous kinetic equations
discussed in Chapter 4. However, the accuracy of this approximation and the
range of applicability of the Smoluchowski approach remained unclear until
recently [16].

1.4 INTERMEDIATE ORDER

1.4.1 Classical ideal gas and the Poisson distribution

A strange noise, as if a whole regiment sneezed simultaneously.
(Ein sonderbares Gerausch, als wenn cin ganzes Rcgiment auf einmal niesetc)

Lichtenberg

Let us try to understand deeper the nature of the order parameter, As
usually, we start with a gas as a simplest one-component system. An impor-
tant role in theoretical physics belongs to a model of classical ideal gas in
which molecules (particles) obey the laws of Newtonian mechanics and do
not interact with each other. .

Consider physically small volume v. Due to discreteness of the matter
distribution in space a number of particles N, in a given volume is a random
variable; N, = 0,1,2.... However, on the average each volume contains
(Ny) = nv particles. Define now microscopic, local density of the particle
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number within the small volume v centered at 7 as 7i(7'}) = N, /v. It describes
natural inhomogeneity in the particle distribution arising due to their thermal
motion (the so-called density fluctuations). The macroscopic particle density
is just its mean value, n = (n(7)).

It is useful to find a quantity that could serve us as a measure of these
density fluctuations. Its simplest characteristic 18 the dispersion of a number
of particles N in some volume V; ie., (N?) — (V)2 The distinctive feature
of the classical ideal gas is a simple relation between the dispersion and
macroscopic density: (N2} — (N)* = (N) = nV. Moreover, all other fluc-
tuation characteristics of the ideal gas, related to the quantity (N™), could
also be expressed through (N) or density n. Therefore, in the model of
ideal gas the density n is the only parameter charactenizing the fluctuation
spectrum. Such the particle distribution is called the Poisson distribution. It
could be easily generalized for the many-component system, e.g., a mixture
of two ideal gases. Each component is characterized here by its density, na

and ng; density fluctnations of different components are statistically inde-
pendent, {INaNg) = (Na)}{Np).

1.4.2 Chemical kinetics and non-Poisson fluctuations

The hypotheses of some innovators do not contradict our experience but I suspect that
one day our experience will contradict them.

(Die Hypothesen einiger Neuemn laufen noch nicht gegen die Erfahrung, aber ich fiirchte,
die Erfahrungen werden einmal gegen sie laufen)

Lichtenberg

The spatial distribution of a gas mixture with such properties can serve
us as the simplest microscopic model of the standard kinetics; however, real
chemical systems can differ considerably from the properties of i1deal gases.
It could be easily illustrated by the same bimolecular A + B — B reaction
(e.g., in terms of the policeman—toper game). If the trapping radius 1s 7q, the
fluctuations in a number of particles, N and Ng, in small volumes separated
inside sphere of such a radius ro are no longer statistically independent;
if particle B is placed in the origin, the probability of finding dissimilar
particle A not far from it will be much less than for a free A particle. In
other words, such closely spaced dissimilar particles are mutually correlated,
which is characterized by the inequality (Na Np) # (Na)(Ng). Considering
as a simplest model system another bimolecular reaction, A + A — 0 (one-
component system) which is characterized similarly by the trapping radius 7y,
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we come to the same conclusion that similar particles A are also spatially
correlated; if some particle is in the origin, no other particles can stationary
exist mn its vicinity, within the sphere of the radius ry. It contradicts obviously
the ideal gas propertics. Therefore, distribution of similar particles in the
chemical system does not obey the Poisson distribution, (N?) — (N)2 # (N},
This situation reminds more the real gas model, where particles (molecules)
are considered as rigid spheres; a large amount of such particles cannot be
placed mto small volume purely due to geometrical restrictions.

1.4.3 The intermediate order parameter

Order 15 a daughter of thoughts,
{Ordnung ist eine Tochter der Uberlegung)

Lichtenberg

Before analyzing in detail particle distribution in real systems, let us in-
troduce more informative and flexible system’s characteristics rather than
dispersion, (N2} — (N)2, which is only an integral property of the fluctua-
tion in a number of particles in a given small volume. Another, differential
and more transparent fluctuation characteristic could be defined in the fol-
lowing way. Consider again one-component system, put some particle at the
origin and count a number of particles in a small volume v at the distance r
from it. Their numbers N, = 0, 1,2, ... are random variables, but presence
of a particle at the origin (even due to its finite size) puts some restrictions
on particle distribution within volume v (the so-called effect of the excluded
volume). That 1s, defining now the microscopic density 7i(r) = N, /v, we no
longer have the equality (7i(r)) = n, but some function of r, {7i(r)} = C(r).

When drawing the dependence C = C(r), we see how at long r the influ-
ence of the central particle is diminishing, i.e., asymptotically C{o0) = m.
The function C{r) characterizes somehow ordering in the system. At long
relative distances it is naturally called long-range order, described by the
order parameter n = C(o0o). At shorter distances C(r) # n characterizes
the intermediate order. Such an approach could be easily applied not only to
continuous, but also to the discrete (lattice) systems, €.g., magnetic dipoles
centered on the lattice sites. For these systems the vector 7 entering the
function C'(r') has a discrete spectrum of values; its minimum value corre-

sponds to the nearest neighbours where C(r) characterizes the short-order
parameter [8].
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1.4.4 Transformation and propagation of the ordering

I knew people who were drinking in privacy but were drunk in public.
(Ich habe Leute gekannt, die haben heimlich getrunken und sind offentlich besoffen
gewesen)

Lichtenberg

In the case of classical ideal gas C(r) = n, ie., the intermediate order
coincides with the long-range one! Before discussing real systems of in-
teracting particles, remind ourselves that an ideal gas does not necessarily
consists of classical particles only, the ideal gas model could be extended also
for quantum noninteracting particles. In quantum statistics particles differ by
the symmetry propertics of their wave functions; they are etther asymmetric
with respect to the permutation of particle coordinates (fermions obeying the
Fermi-Dirac statistics) or symmetric (bosons and Bose—Einstein statistics)
respectively. The first case takes place for particles with non-integer spins
whereas the second — for those with integer spins.

Symmetry or asymmetry of wave functions introduce also certain ordering
into the system of ideal particles. An 1interesting question 1s how 1t 1s re-
flected in their spatial distribution (Fig. 1.16). This problem could be solved

- S ——
e
—

C(r)
|

T

Fig. 1.16. The intermediate order in ideal gas: (i) ideal classical gas (full line); (i1) 1deal Fermi
T gas (broken line); (iii) ideal Bose gas (dotted line).
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exactly and the intermediate ordering indeed is observed at short relative
distances. For fermions C'(r) < n, i.e., the presence of some particle at the
origin decreases probability of finding other particles nearby due to their ef-
fective “repulsion” (a kind of the excluded volume effect). In contrast, for
bosons C(r) > mn, i.e., particles reveal a kind of “attraction”. These examples
demonstrate different kinds of ordering in the system of quantum particles
and show how abstract order in wave-function symmetry transforms into the
transparent spatial ordering of particles. |

Consider now the system of interacting particles. In low-density systems
(diluted gas) a pairs approximation works well and the Boltzmann distribution
is valid giving C(r) = nexp(—U(r)/(ksT)). If molecules are treated as rigid
spheres with the diameter R, we have for the pair potentials U(r} = co,
Cr)=0,aar < Rand U(r) = 0, C(v) = n, if r > R. Such kind of
ordering could be called elementary, it arises due to excluded volume effect
caused by finite sizes of particles. As we increase density of particles in
the system, the pair approach becomes gradually incorrect. The intermediate
order parameter C(r) changes and the transformation of the elementary order
into intermediate one occurs; the latter is characterized by the distinctive scale
larger than R, including appearance of maxima and minima in the C'(r) curve
as shown in Fig. 1.17. This example shows how the ordering is propagated
in space.

C(r)

T

“Fig. 1.17. The intermediate order in a dense system of rigid balls.
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The use of more realistic potentials, including both repulsive and attractive
contributions, results in the more smooth intermediate order curves C(r). As
previously, they reveal oscillations thus reflecting the specific law of mutual
particle distribution in dense systems.

1.4.5 Spatial particle correlations and correlation functions

To turn into a bull is not yet suicide.
(Sich in einen Ochsen verwandeln ist noch kein Selbstmord)

Lichtenberg

The definition of the intermediate order parameter through the density
C'(r) is not quite convenient, especially for many-component systems. In the
latter case one has to specify the central-particle type, as well as the nature
of analyzed particles. A reasonable question raises — what is the difference
between mean density of particles A at the distance r from the central par-
ticle B and vice versa. It shows the necessity to introduce more symmetric
definition of the intermediate order where two spatial points under analy-
sis separated by the distance r were treated equivalently. Such an approach
treats the intermediate order in the molecular system as correlation of its
parts. Consider the two points 77 and 7 (with the relative separation T)
which are surrounded by small non-overlapping volumes and calculate the
mean value of the product of microscopic densities (n(7})7(72)). Since the
mean value of the microscopic density 1s the macroscopic density, let us sep-
arate the dimensional co-factor through the relation (7 (7} )7(7)) = n?x(r),
where information on the long-range order is given by n? whereas a func-
tion x(r) is the joint correlation function depending on the relative distance r
only and characterizing the intermediate order. It could be easily shown that
for one-component system new and old definitions of the intermediate order
are very simply related: C(r) = nx(r); the long-range order corresponds
to the asymptotics of the correlation function y(oo) = 1. Many-component
system 1s charactenized in quite a similar way by a set of the correlation
functions: yaa(r), xge(r) and xag(r) = xpa(r). It is generally assumed
that mean-fied theories operating only with the long-range order parameters
neglect the fluctuations of the order parameter. However, an approach using

some fluctuation characteristics (in particular, the joint correlation functions)
takes also into account the order parameter fluctuations.
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1.5 CRITICAL PHENOMENA

1.5.1 Spatial correlations and the order parameter

He used to give blessings on Sundays and often punishments already on Mondays.
(Er teilte des Sonntags Segen und oft schon des Montags Priigel aus)

Lichtenberg

Let us consider now behaviour of the gas-lignid systemn near the critical
point. It reveals rather interesting effect called the critical opalescence, that
1s strong increase of the light scattering. Its analogs are known also in other
physical systems in the vicinity of phase transitions. In the beginning of our
century Einstein and Smoluchowski expressed an idea, that the opalescence
phenomenon is related to the density (order parameter) fluctuations in the
system. More consistent theory was presented later by Omstein and Zernike
[23], who for the first time introduced a concept of the intermediate order
as the spatial correlation in the density fluctuations. Later Zemike [24] has
applied this idea to the lattice systems.

As 1t is known [5], the intensity of the scattered light gives us an informa-
tion about the system’s disorder, e.g., presence therein of pores, impurities
etc. Since macroscopically liquid is homogeneous, critical opalescence arises
due to local microscopic inhomogeneities — an appearance of small domains
with different local densities. In other words, liquid is ordered inside these
domains but still disorded on the whole since domains are randomly dis-
tnbuted in size and space, they appear and disappear by chance. Fluctuations
of the order parameter have large amplitude and involve a wide spectrum of
the wavelengths (which results in the milk colour of the scattered light).

Of the greatest interest in this critical scattering phenomenon are studies
at the long wavelengths; according to the Omstein—Zemike theory [23], a
linear size of ordered domains increases infinitely, when one approaches to
the critical point. This prediction is drawn from the analysis of the asymptotic
behaviour of the joint comelation function x(r). Despite the fact that its
asymptotic value always equals to unity, x{c0) = 1, the intensity of the
scattered light is defined by an integral containing the factor x(r)—1, ie,
the effect is governed by an approach of x(r) to the asymptotic value. It has
been shown that near the critical point this approach obeys the algebraic law.

It should be reminded, that in gases under low pressure the corre-
lation function is defined practically by the Boltzmann factor x(r) =

exp(—U(r)/(ksT)). At high densities the potential U(r) should be replaced
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with the effective potential W (r), characterizing the cooperative way of the
interaction propagation. The algebraic law for the correlation function just
mentioned means that the same is true for the effective potential too. Poten-
tials of this kind are characterized in mechanics by the infinite action radius.
Note that nevertheless the original two-particle potential U (r) could be short-
range one, i.e., change of the asymptotic behaviour of the effective potential
turns out to be typical many-particle effect. When leaving the vicinity of the
critical point, the effective potential W (r) could be characterized by a finite
action radius — the so-called correlation radius of fluctuations, € = £(T). It
should be stressed once more that the correlation length ¢ defines the dis-
tinctive spatial scale of the correlation in the local density fluctuations. In
other words, it gives a typical size of the domain inside which local density
1s nearly constant. Surely, such domains differ in their sizes, including those
domains which are compared to the correlation length, but large domains are
more stable and important.

In particular, in magnetics the correlation length characterizes a size of
the domain where all dipoles are oriented in the same direction: it results in
the local magnetisation (which is compensated by other domains with dif-
ferent dipole onientation). The divergence of the correlation length allows us
to give a new definition of the cntical point: £(T.) = co. Despite the fact
that the Omnstein—Zernike theory takes into account fluctuations in the order
parameter, in some respects it shows distinctive features of the mean-field
approach: an idea of averaging the fluctuating characteristics is just applied
here to the higher level of approximation, corresponding to the joint correla-
tion functions. As a result, this theory is capable to describe qualitatively the
effect of critical opalescence, but fails to analyze comectly the vicinity of the
critical poimnt. Analogously the long-range order parameter, the correlation
length reveals the algebraic law as a function of the temperature increment
but with an incorrect exponent.

New aspects of the problem arise when studying the temporal behaviour
near the critical points. The general statement is as follows: the relaxation
time with respect of any external perturbation of the system becomes anoma-
lously long. It is clear that such anomaties result from long-range fluctuations
of the order parameter thus reflecting existence of the ordered domains with
the linear size £. Due to their large sizes, these domains slowly decay and
are created by thermal motion of particles; the long wavelength exitations
are the most stable.

The existence of the correlation length £ gives a proof to the hypothesis
of the scale invariance [8, 91; in the vicinity of the critical point physical
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effects are governed namely by large-scale (but not small-scale) fluctua-
tions. According to this hypothesis, the critical phenomena are characterized
by the correlation length £ only; all other length scales, including that of
the microscopic interaction of the structure elements in the system, become
unimportant. The divergence of the correlation length at the critical point,
£(T:) = oo, leads also to the divergence of all other quantities whose dimen-
sion could be expressed through the length dimension.

The concept of scale invanance makes also clear such important feature
of the critical phenomena, as dependence of the critical exponents on the
space dimension d (as well as on certain symmetry properties of the system).
Indeed, if due to scale imvarniance details of particle interactions become
unimportant, the leading role should belong to the fundamental properties of a
system — space dimension d and dimension of the order parameter (dependent
on a number of components and their relation). As it was mentioned above,
the behaviour of the correlation functions x(7) is determined by the effective
propagation of interactions in the many-particle system. It 1s easy to imagine
that m one-dimensional case due to a topology of the system the propagation
of the correlation, as some signal, could be trivially interrupted by any noise
event in the chain but it hardly can happen in three dimensions; here a

signal is distnibuted simultaneously in several directions which guarantees
its propagation.

1.5.2 Fluctuations of the order parameter in chemical reactions

The rain was so heavy that it made all pigs clean and pcople - dirty.
(Es regnete so stark, daf alle Schweinc rein und alle Menschen dreckig wurden)

Lichtenberg

Consider now the fluctuations of the order parameter in the system pos-
sessing the chemical reaction; this problem could be perfectly illustrated by
computer simulations on lattices. We start with the bimolecular A4+ B — 0
reaction discussed above, and first of all froze particle diffusion. Let the re-
combination event happen instantly when a pair AB of dissimilar particles
occupies the nearest lattice sites (assume lattice to be squared). Immobile
particles enter into reaction as a result of their creation with the equal prob-
abiliies in empty lattice sites; from time to time a newly created particle
A(B) finds itself nearby pre-created B(A) and they recombine. (Since this
recombination event 1s instant, the creation rate is of no importance.) This
model describes, in particular, Frenkel defect accumulation in solids under
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irrachation. We are mnterested both in the values of steady-state particle con-
centrations under saturation (known within accuracy of their natural fluctu-
ations) and spatial distribution of particles. Without discussing here the first
problem (to be considered in Chapter 7 on a full scale), let us analyze just
structure evolution of the system of particles [1].

An instant recombination (disappearance) of a pair AB of the nearest
neighbours produces the simplest element of the ordering: such nearest pairs
are absent at any time moment. (This statement of the problem has no other
length (geometrical) parameters.) We shall clarify now, how this element
of ordering 1s propagated and transformed into the intermediate ordering.
The two possible cases are illustrated in Fig. 1.18 [1]. In the former case a
whole lattice 1s completely covered by particles A and B and ordered, i.c.,
it 1s divided mto two square domains containing only particles A and B,
respectively. In the latter case the lattice is initially empty. Irrespective the
initial conditions, at long times results of computer simulations are essentially
the same: the lattice is divided into two big domains of the complicated shape
(their positions and shape can vary); each domain consists of a single-kind
particles. In other words, one observes the reaction-induced segregation of
dissimilar particles. Sizes of these domains could be characterized by the
correlation length £ = £(1); as it is seen from Fig. 1.18, in the steady-state
it 1s close to the linear size of the simulated system.

The presented stationary distributions of particles could be statistically de-
veloped; the corresponding correlation functions x(r) are shown in Fig. 1.19.
It shows that the ordering within AB pairs not only propagated to the longer
distances (at v < £ a number of AB pairs is less than that for a random
distribution of particles) but also changed — non-interacting similar particles
are now spatially correlated as if they efficiently attract each other, which
has clear analogy with quantum ideal boson gas discussed above.

The existence of the (quasi) steady-state in the model of particle accumu-
lation (particle creation corresponds to the reaction reversibility) makes its
analogy with dense gases or liquids quite convincing. However, it is also
useful to treat the possibility of the pattern formation in the A+ B — 0
reaction without particle source. Indeed, the formation of the domain struc-
ture here in the diffusion-controlled regime was also clearly demonstrated
[17]. Similar patterns of the spatial distnbutions were observed for the irre-
versible reactions between immobile particles — Fig. 1.20 [25] and Fig. 1.21
[26] when the long range (tunnelling) recombination takes place (recombi-
nation rate o(r) exponentially depends on the relative distance = and could



Critical phenomena 35

3 P57 113 O FEREAT:

e

IETRTN B ECHECRINAAT TN

o e . s

LE b
i

S
"'-==Ezﬁﬁ!fu Hj

_
TEN, giird B oot e
baiin LT LN

IEImnuﬂ“lg_L:&H. . |r W]
. s I -

Fig. 1.18. Distribution of A and B particles on the surface in the annihilation reaction
A + B — 0. For clarity, the distributions of A’s and B’s have been separated and are shown
in the left-hand column and in the right-hand column of the figure, respectively. The results
shown correspond to constant and equal fluxes of A and B. The simulation were carried out
on a 100 x 100 square lattice. (a) The A and B distribution are complementary, A narrow
lane of empty sites separates between them. (b) The long-time (near steady-state) structure of
the overlayer developing from the initial condition in {a). (c) The long-time overlayer pattern
e developing from an initially empty lattice.
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Fig. 1.19. The radial pair correlation function of the steady-state overlayer generated by the
A + B — O annihilation reaction, with no particle diffusion. Averaged over five simulations.
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Fig. 1.20. Distribution of A and B particles (initially 1000 of each kind on chain with
L = 10000 sites) during a numcerical simulation. Each vertical line represents one A (up)
- or B (down} particle.
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Fig. 1.21. Spatial distribution of A and B particles during a reaction process with ry = 5

on a 1000 x 1000 square lattice (with periodic boundary conditions) after starting with 10°
particles of each kind. The distributions are shown for {a) t = 10, (b) ¢t = 10%, (c) ¢t = 10",
and (d) ¢t = 107,

be characterized by some action radius rq — see Chapter 3 for more details).
In this case we observe only certain quantitative difference with Fig. 1.18 —
in the irreversible reaction the steady-state means absence of any particles,
1.e., their density decreases monotonously and domains are rather loose. It
should be stressed, however, that small densities of particles do not prevent
their segregation; therefore the correlation in density fluctuations in a System
of interacting particles is governed by mechanism which differs from that
known for thé equilibrium gas-liquid system. In the irreversible reaction its
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non-equilibrium nature 1s a source of the ordering, which has been demon-
strated more than once in the self-organization phenomena [4]. The analysis
of the time development of the decay of particle density has indicated clearly
that their critical exponents are dependent on the space dimension d; there-
fore, chemical reactions are similar to the stationary systems near the critical
points,

Undoubtedly, it means that the chemical kinetics being a kind of the mean-

field theory, should be improved through an introduction of the fluctuations
in the order parameter.

1.5.3 Dynamical interaction between particles

Father: — My daughter, do you known that Selomon says “If bad boys attract you, don't
follow them.” Daughter: — But what should I do, if good boys attract me?

{Der Vater: — mein Tochterchen, du weif, Solomon sagt: “Wenn dich bosen Buben
locken, so folge ihnen nicht.” Die Tochter: — Aber Papa, was muB ich dann tun,
wenn mich die guten Buben locken?)

Lichtenberg

New aspects of the problem anse when we consider dynamical interac-
tion of particles (along with their chemical interaction, i.e., the reaction). This
dynamical interaction can both stimulate bringing together dissimilar reac-
tants (e.g., for oppositely charged particles with the Coulomb attraction) as
well as to prevent their approach (for similarly charged particles). Note that
namely dynamical interaction of particles introduces directly the temperature
into the kinetics; before it affected kinetics only indirectly through diffusion
coefficients. Of special interest here are correlations of similar particles -
the effect neglected in the Smoluchowski approach for the rwo-component
systems. It should be reminded that this diffusion-controlled theory was de-
veloped originally for the smdy of particle coagulation in one-component
system. Examples of such structures are plotted in Fig. 1.22 and Fig. 1.23
[27], where the chemical reaction does not occur. In the lattice statement of
a problem the dynamical interaction of particles is described in terms of the
transition probabilities between nearest sites; they are defined through energy
of pair interactions of particles with nearest neighbours,

Figure 1.24 shows a more complicated process of the A + B — 0 reaction
simulation, being divided into several intermediate stages. At the first stage,
similarly to Figs 1.22 and 1.23, particles A are randomly created with cer-
tain density na and then, in a course of their diffusion and attraction, produce
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Fig. 1.22. Typical distribution of A atoms on the lattice at: (A) ¢ = 0 (random distribution),
(B) £ = 5000 MCS of A diffusion; A atoms are aggregated in long lived islands, In both cases
na = 0.2. Shown are 100 x 100 Sections of 500 x 500 square lattice used in the calculations.
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Fig. 1.23. The same as Fig. 1.22 but with n, = 0.4.
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Fig. 1.24. Scveral stages of the aggregation and reaction process for the A + B — 0 system.

The coverages of the A and B atoms are na = ng = 0.2, Shown are 40 x 40 Sections of

the 100 x 100 lattice used in the calculation. (a) The configuration afier A adsorbtion and

10 000 MCS of diffusion. (b) Shortly after adsorbtion of B into available sites. (¢) Following

10000 MCS of mutual diffusion and segregation. (d) The configuration while the reaction 1s 1n

progress (after a temperature ramp). “The contact regime” has almost ended (boundary atoms
have reacted) and further reaction will be diffusion-initiated.

some typical pattern with A-rich domains. At the second stage, 1n their turn,
particles B are randomly created with the same density ng = na. (Reaction
between particles is forbidden.) Introduction into the system of particles B
produces new kinds of particle interactions (within BB and AB pairs). The
third stage (diffusion of B’s without reaction) leads to the pattern (domain)
formation of particles A and B. Finally, when reaction of nearest particies A



Critical phenomena 41

and B 1s allowed at the fourth stage, the resulting distribution differs greatly
from that known for a mixture of ideal gases; this is why a further reaction

of diffusion-controlled kinetics does not obey the laws of standard chemical
kinetics.

1.5.4 Correlation analysis and fluctuation-controlled kinetics

One man could be tried in Britain for bigamy but was saved by his advqnate proving
that his client had three wives.

(In England wird ein Mann der Bigamie wegen angeklagt und von seinem Advokaten
dadurch gerettet, dabl er bewies, sein Klient habe drei Weiben_‘)

Lichtenberg

How could we take into account the fluctuations of the order parameter?
Let us return to the well-studied example of the gas-liquid system. A general
equation of the state of gases and liquids proved in statistical physics [9]
has a form p = nkgT — n*G(x) where G(x) is some integral containing
the interaction potential of particles and the joint correlation function x(r).
Therefore, the equation for the long-range order parameter n contains in
itself the functional of the intermediate-order parameter x(v).

The “only” problem necessary for developing the condensation theory is
to add to the above-mentioned equation of the state the equation defining
the function x(r). Unfortunately, it turns out that the exact equation for the
joint correlation function, derived by means of basic equations of statistical
physics, contains three-particle correlation function x®, which relates the
correlations of the density fluctuations in three points of the reaction vol-
ume. The equation for this three-particle correlations contains four-particle
correlation functions and so on, and so on [9]. This situation is quite under-
standable, since the use of the joint correlation functions only for description
of the fluctuation spectrum of a system is obviously not complete. At the
same time, it is quite natural to take into account the density fluctuations in
some approximate way, €.g., treating correlation functions in a spirit of the
mean-field theory (i.e., assuming, in particular, that three-particle correlations
could be expanded in two-particle ones).

On this way we arrive at Born—Green—Ivon, Percus—Yevick and hyper-
chamn equations [3, 9], all having a general form &(x, Vx,n,T) = 0. These
non-linear integro-differential equations are close with respect to the joint
correlation function, and Percus—Yevick equation gives the best approxima-
tion amongst known at present. An important point is that the accuracy of
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the method used for deriving the equation for y{r) cannot be estimated in
the framework of the same method, but only using the so-called computer
experiments (simulations). Two basic approaches for studying properties of
large clusters of particles are called the molecular dynamics method and
Monte-Carlo method.

Due to high accuracy of numerical methods, statistical physics of gas—
liquid systems is in a good shape, but theory in general still has unsolved
problems. In particular, attempts to describe phase transition to the condensed
phase face serious problems demonstrating inadequate theoretical treatment
used at present for the spectrum density fluctuations. Indeed, the joint corre-
lation function being nothing but the radial distribution function, is unable to
predict anise of a new type of order corresponding to the crystalline lattice.
Its geometric characteristics (lattice parameter and crystalline symmetry) are
very likely hidden in the neglected correlation functions of the higher order.
Using concept of the correlation functions, statistical physics permits sys-
tematic improvement of results, which however is restricted in practice by
computational facilities available,

However, a question arises — could similar approach be applied to chemical
reactions? At the first stage the general principles of the system’s description
in terms of the fundamental kinetic equation should be formulated, which
incorporates not only macroscopic variables — particle densities, but also their
fluctuational charactenistics — the correlation functions. A simplified treatment
of the fluctuation spectrum, done at the second stage and restricted to the joint
correlation functions, leads to the closed set of non-linear integro-differential
equations for the order parameter n and the set of joint functions (7, t).
To a full extent such an approach has been realized for the first time by the
authors of this book starting from [28]. Following an analogy with the gas—
liquid systems, we would like to stress that treatment of chemical reactions
do not copy that for the condensed state in statistics. The basic equations of
these two theories differ considerably in their form and particular techniques
used for simplified treatment of the fluctuation spectrum as a rule could not
be transferred from one theory to another.

It 15 convenient to divide a set of fluctuation-controlled kinetic equations
into two basic components: equations for time development of the order pa-
rameter n (concentration dynamics) and the complementary set of the partial
differential equations for the joint correlation functions y(r,t) (correlation
dynamics). Many-particle effects under study arise due to interplay of these

two kinds of dynamics. It is important to note that equations for the concen-
tration dynamics coincide formally with those known in the standard kinetics

-
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GAS-LIQUID SYSTEM

CHEMICAIL SYSTEM

EQUATION OF STATE DYNAMICS OF CONCENTRATIONS
d - _
F(n,x,T) = 0 afn = F(n,Xx)
JOINT CORRELATION DYNANICS OF CORRELATIONS
& 2
®{x,.9%.n,T) = 0 X = DVTx + &(x,Vx,n)

Fig. 1.25. Correlation analysis in the gas-liquid system and in chemical kinetics.

(the kinetic law of mass action). The “only” difference is that in the latter
theory the coefficient before the concentration product (the reaction rate) is
assumed to be a constant value whereas in a new theory it is a functional of
the intermediate order parameters y{r,t) which values change in time due
to evolution of the spatial distribution of particles. Fig. 1.25 illustrates an
analogy n the description of gas—liquid and chemical systems.

1.5.5 The Waite—-Leibfried theory

To attach a beard to the holy father - do you call this to reform?
(Dem Papst cincn Bart machen, heiBit das reformieren?)

Lichtenberg

The said allows us to understand the importance of the kinetic approach
developed for the first time by Waite and Leibfried [21, 22]. In essence, as is
seen from Fig. 1.15 and Fig. 1.26, their approach to the simplest A+B — 0
reaction does not differ from the Smoluchowski one! However, coincidence
of the two mathematical formalisms in this particular case does not mean
that theonies are basically identical. Indeed, the Waite—Leibfried equations
are denived as some approximation of the exacr Kinetic equations; due to
a simplified treatment of the fluctuational spectrum a complete set of the
joint correlation functions x(r,t) for all kinds of particles is replaced by
the only function xagr(r,t) describing the correlation of chemically reacting
dissimilar particles. Second, the equation defining the correlation function
X = xap(r, ) is linearized in the -function x(r,t). This is analogous to the
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THE WAITE-LEIRFRIED APPROACH
TO THE BIMOLECULAR KINETICS
(REACTIONS A+BsB AND A+B-0)

g—tx(r,t} = DVéx(r,t) - o(rix(c,t) J - BASIC EQUATION
| 2{xr,0) = 1 ~ INITIAL CONDITION
2{w,£) = 1 - BOUNDARY CONDITION
K(t) = [ o{rlx(r,t)dv - REACTION RATE
g?nﬁft] = -K(t)n, (t)n_(t) - KINETIC LAW OF ACTING MASS

Fig. 1.26. An idea of the Waite-Leibfried approach.

Omstein—Zernike theory of the critical opalescence which operates also with
a linear equation for the joint correlation function.

A new principal element of the Waite—Leibfried theory compared to the
Smoluchowski approach is the relation between the effective reaction rate
K (t) and the intermediate order parameter ¥ = xag(r,t). In its turn, the
Smoluchowski approach is just an heuristic attempt to describe the simplest
irreversible bimolecular reactions A4+ B -+ B, A+B-—>Band A+B — 0
and cannot be extended for more complicated reactions. The Waite—Leibfried
approach 1s not limited by these simple reactions only; it could be applied to
the reversible reactions and reaction chains. However, in the latter case the
particular linearity in the joint correlation function x = yag(r,#) does not
always mean linearity of equations since additional non-linearity caused by
particle densities can arise.

For a long time in chemicat kinetics the preference was given exclusively
to analytical methods of problems solution; these methods were used mainly
for searching the steady-states of linear equations describing the correlation
functions. However, nowadays when we know very well that the many-
particle effects — the main problem studied in this book — are closely related
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to the non-linearity of the kinetic equations, much more attention is paid to
the numerical solution of these equations and thus the linearization procedure

used by Waite and Leibfried is now more of historical rather than practical
interest.

1.5.6 Kinetic phase transitions

To convert a fool into a genius or beech fireweod into oak is probably the same trouble
as to convert lead into gold.

(Dummképfe in Genies zu verwandeln oder Biichenholz in Eichen ist wohl so schwer
als Blel in Gold)

Lichtenberg

It is useful to discuss the incorporation of the fluctuational degrees of free-
dom into the kinetics of chemical reactions from the pomt of view of the
self-organization theory. As it is known, the standard chemical kinetics could
be also applied to the spatially nonuniform systems where the mean value of
the local density (n(7)) = C(7,t) does not coincide with the macroscopic
density n(t). For the diffusion-controlled processes the necessary general-
ization of the kinetic equations is adding of the relevant diffusion terms,
provided the structure of reaction terms remains the same. That is, the poly-
nomial expansion of the non-linear terms in equations 1s retained; individual
terms of the expansion obeys the kinetic law of mass action. The typical
form of the kinetic equations 1s given in Fig. 1.27 (the terms V' can arise
if the external field is applied). Compare these equations with those for the
correlation dynamics 1n the fluctwation-controlled kinetics. Restricting outr-
selves exclusively to the bimolecular processes, the pattern formation here is
described by a set of nonlinear partial differential equations of the second or-
der. In a chemical system the complex and interesting for us spatio-temporal
particle structures can arise only for a large number of degrees of freedom
(or number of components of the order parameter n}. For the same sys-
tems equations descnibing the fluctuation-controlled processes have much
greater degree of non-linearity which argues for their ability for describing
the spatio-temporal structures under much weaker restrictions imposed on
the order parameter n (e.g., number of its components). Note that the joint
correlation functions are called 1n physics of gas—liquid systems the radial
distribution functions since they depend on a modulus of the vector 7 only.
This is why the auto-wave processes, which are expected to be described in
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SELF-ORGANIZATION THE SAME

IN SPATIALLY INHOMOGENEOUS SYSTEMS IN HOMOGENECQUS SYSTEMS

STANDARD KINETICS FLUCTUATION=-CONTROLLED KINETICS
a8 2 gfn = F(n,x)
EEC = DVTC + {C,9C) 3 2
FEx = DV x + P{(x,.%x,n)

Fig. 1.27. Seif-organization in spatially homogeneous and inhomogeneous media,

terms of a set equations for the correlation dynamics, will be quite specific
radial waves of correlations.

Let us consider for the illustration the following process. Sites of a square
lattice are occupied (completely or partially) by particles B. These particles
decay, B — 0, with the lifetime g leaving their sites empty. In their tum,
particles A are created with the constant rate p in empty sites, 0 — A. If
by a chance any A turns out to be the nearest neighbour of any B, it is
transformed instantly into another particle B, i.e., the catalytic process of
particle transformation, A + B — B + B takes place. Using the time scale
corresponding to ¢ = 1 — p, we find that the process is governed by a single
parameter p. It 1s also clear that in the presented statement of the problem
contact of any A with some B particle can result in the transformation of not
a single A, but a whole cluster consisting of several nearest A particles. In
other words, the wave of chemical transformation arises (Fig. 1.28) and the
problem is reduced to the well-known site percolation [5]. From the point
of view of standard chemical kinetics this model is nothing but extension of
the so-called Lotka model (the step reaction 0 > A, A+B — 2B, B —» 0)
for the discrete lattice system and has a simple solution. It is shown that
small number of components of the order parameter and weak non-linearity
lead (at long times) to a stable steady-state solution despite the fact that the
approach to this steady-state can reveal character of the damped oscillations
(under certain parameters of a problem).

Let us try now to predict qualitatively possible behaviour types of this
chemical system as a function of the parameter p. For very large values of
p ~ 1 most of lattice sites are covered by particles B and empty sites for
A’s arise only due to decay of some B’s. Newly created A’s are densely sur-
rounded by particles B and are transformed immediately into them, A — B.
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Fig. 1.28. Wave of chemical transformations taking place when newly created particle A falls
into site marked by square in (a). Empty circles are A particles, whereas full circles are
B particles.

Therefore, we can expect existence of the steady-state with a high density of
B’s but very small density of A’s.

Consider now the opposite case of p < 1. Since the creation rate of new
particles A 15 very small, it does not compensate the decay of B’s whose
density decreases down to a very small value, (However, the existence itself
of B particles, even in small concentrations, is of vital importance for the
future waves of A particle transformations.) If particles B were absent, the
concentration of A’s after time ¢ would be ny = pt. It is also clear that even
at small densitics na large cluster of these particles could be formed as a
result of the statistical fluctuation. Touch of this cluster by some particle B
will create a local wave of the A — B transformations which is propagared
for a finite distance and thus retains finite number of particles B in the system.

It is important to note that for small densities na a number of such clusters
1s also small.
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One of the well-established principal results of the percolation theory [5]
says that there exist some marginal value of density n. (dependent on the
lattice type; in particular, n, = 0.59 for the square lattice) such that as
na = Tic, the probability that a given atom A beloungs to the infinite cluster
1s non-zero. It means that a touch of any B to this A-rich cluster creates
a transformation wave propagating throughout a whole crystal. Since the
critical density 7. is rather high, the catalytic transformation inside some
infinite cluster will affect with time not only particles of a given cluster
but also other particles A entering other finite-size clusters. As a result,
density of particles B will increase abruptly to the high value whereas that
of particles A will decrease. When the system consists mainly of particles
B, their native decay will be predominant process reducing B concentration.
At the next stage the next oscillation in particle concentrations, as described
above, takes place etc.

What 1s described above 1s an idea of the so-called chemical clock, that
is a reaction with periodic (oscillating) change of reactant concentrations; its
period could be estimated as 9t > n./p. In the condensed matter theory a
leap in densities 1s interpreted as phase transitions of the first order. From
this point of view, the oscillations correspond to a sequence in time of phase
transitions where the two phases (i.e., big clusters of A’s containing inside
rare and small clusters of B’s and vice versa) differ greatly in their structures.

The transition from a stable steady-state solution observed at large p to the
oscillatory regime assumes the existence of the critical value of the parameter
pc, which defines the point of the kinetic phase transition: as p > p., the
fluctuations of the order parameter are suppressed and the standard chemical
kinetics (the mean-field theory) could be safely used. However, if p < p.,
these fluctuations are very large and begin to dominate the process. Strictly
speaking, the region p ~ p. at p > p, is also fluctuation-controlled one since
here the fluctuations of the order parameter are abnormally high.

What was said above is illustrated by Fig. 1.29 and Fig. 1.30 corresponding
to the cases p > p; and p < p. respectively. To make the presented kinetic
curves smooth, in these calculations the transformation rate A — B was taken
to be finite. To make results physically more transparent, the effective reaction
rate K (¢) of the A — B transformation is also drawn. The standard chemical
kinetics would be valid, if the value of K (¢) tends to some constant. However,
as it 15 shown in Fig. 1.30, K(t) reveals its own and quite complicated
time development; namely its oscillations cause the fluctuations in particle
densities, The problems of kinetic phase transitions are discussed in detail in

the last Chapter of the book.
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Fig. 1.30. Oscillations observed in the Lotka model. Control parameter p = 0.1.
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1.5.7 Conclusion

If you have a couple of trousers, sell one and buy this book.
(Wer zwel Paar Hosen hat, mache eins zu Geld und schaffe sich dieses Buch an)

Lichtenberg

The scope of this book 1s as follows. Chapter 2 gives a general review of
different theoretical techniques and methods used for description the chem-
ical reactions in condensed media. We focus attention on three principally
different levels of the theory: macroscopic, mesoscopic and microscopic; the
corresponding ways of the transition from deterministic description of the
many-particle system to the stochastic one which is necessary for the treat-
ment of density fluctuations are analyzed. In particular, Section 2.3 presents
the method of many-point densities of a number of particles which serves
us as the basic formalism for the study numerous fluctuation-controlled pro-
cesses analyzed in this book.

Chapter 3 deals with the pair problem in terms of the Smoluchowski
equation.

The consistent derivation and analysis of the Waite—Leibfried equations is
presented in Chapter 4. We show that this theory is the linear approximation
of the exact many-particle formalism. Its relation to the Smoluchowski theory
is also established.

Chapter 5 deals with derivation of the basic equations of the fluctuation-
controlled kinetics, applied mainly to the particular bimolecular A+ B — 0
reaction. The transition to the simplified treatment of the density fluctuation
spectrum 1s achieved by means of the Kirkwood superposition approximation.
Its accuracy is estimated by means of a comparison of analytical results for
some “test” problems of the chemical kinetics with the relevant computer
simulations. Their good agreement permits us to establish in the next Chapters
the range of the applicability of the traditional Waite—Leibfried approach.

The theory of irreversible diffusion-controlled reactions is discussed in
Chapter 6; the effects of particle Coulomb and elastic interactions are an-
alyzed in detail. The many-particle effects (which in principle cannot be
explained in terms of the linear theory) are demonstrated. Special attention
is paid to the pattern formation and similar particle aggregation in systems
of interacting and noninteracting particles.

In its turn, Chapter 7 deals with reversible reactions between both immo-
bile and mobile particles in the systems with particle sources. This theory
is of great importance for describing the process of the radiation (Frenkel)

i
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defect accumulation in solids. The self-organization phenomena and reaction-
induced dissimilar particle segregation are analyzed in detatl.

Lastly, non-elementary several-stage reactions are considered in Chap-
ters 8 and 9. We start with the Lotka and Lotka—Volterra reactions as simple
model systems, An existence of the undamped density oscillations is estab-
lished here. The complementary reactions treated in Chapter 9 are catalytic
surface oxidation of CO and NH3; formation. These reactions also reveal
undamped concentration oscillations and kinetic phase transitions. Their ad-
equate treatment need a generalization of the fluctuation-controlled theory for
the discrete (lattice) systems n order to take correctly into account the ge-
ometry of both lattice and absorbed molecules. As another illustration of the
formalism developed by the authors, the kinetics of reactions upon disorded
surfaces is considered.

We would like to conclude this introductory Chapter by the following
general comment. Most of the papers dealing with the fluctuation-controlled
reactions, focus their attention on the simplest bimolecular A + B — B and
A + B — 0 reactions. To our mind, main results in this field are already ob-
tained and the situation 1s quite clear. In the nearest future the most prospec-
tive direction of kinetic theory seems to be many-stage catalytic processes;
the first results are discussed m Chapters 8 and 9. Their study (stimulated
also by the technological importance) should be continued using in parallel
both refined mathematical formalisms of the fluctuation-controlled kinetics
and full-scale computer simulations.

The authors are greatly indebted to Georg Christoph Lichtenberg (1742—

1799) for his epigraphs used in this Chapter; we share a hope expressed in
the last of his quoted statements.
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Chapter 2

Basic Methods for Describing Chemical
Kinetics in Condensed Media:
Continuum Models

2.1 MACROSCOPIC APPROACH

The cognition process consists in the replacement of rough mistakes
by more refined mistakes.

Wittgenstein

2.1.1 Standard chemical kinetics: systems with complete reactant mixing

2.1.1.1 Basic equations of formal kinetics

There exist three qualitatively different levels for describing the kinetics
of particle (reactant) migration and interaction in solids and liquids: micro-
scopic, mesoscopic and macroscopic [1]. In the first, the microscopic level,
the individual particles are considered as basic structural elements. The. state
of a whole system at any moment ¢ is defined by all particle coordinates
and this state changes due to particle migration or dynamc interaction (via
Coulomb, elastic (for defects mn solids) or van der Waals forces), as well as
due to the birth and death (recombination) processes. To describe the spatto-
temporal structure of a system consisting of interacting particles, we naturally
can use well-developed formalism of statistical physics. For the sake of sim-
plicity, in this Chapter we restrict ourselves to a continuous treatment of
diffusion; the effects of finite hop lengths are discussed mm Section 3.1. In
this respect the homogeneous system consisting of interacting particles is
similar to the condensed media without long-range order (dense gases, lig-

uids or glasses). The only principal peculiarity is that the number of particles
is varied due to the birth—death processes.

The simplest way widely used for describing the recombination process is
called formal chemical kinetics [2—-6]. Here a system of particles is considered

!
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as structureless, the only parameters used are macroscopic concentrations

ni(t). The relevant kinetics is described by a set of ordinary differential
equations

dn;(t)
dt

— i(nlﬂ"'!nﬁ)? ?":1&"':31 (2]1)

where s 1s a number of reactant kinds, whereas the actual expression for F,
which in general are nonlinear functions of macroscopic concentrations, is
defined by actual process under study and comes from the law of mass action
[7, 8]. The most realistic models of birth—death and migration process are
based on the binary (two-particle) approximation. The equations of formal
kinetics in the case of mono- and bimolecular reactions read

dn;(t)
dt

= aln;(t) + b"n; (t)nk (1), (2.1.2)

where a“" are the reaction rates for the monomolecular contribution, whereas

b7 % those for the bimolecular part. In equation (2.1.2) summation runs over
repeated indices.

The more complicated phenomenological approach also uses frimolecular
and higher-order reaction stages, which strictly speaking is nothing but a
shortened form to describe a set of mono- and bimolecular reactions with a
large number of intermediate products [7]. Unlike the linear terms in equa-
tion (2.1.2) whose meaning 1s self-evident (the elementary decay processes),
the bilinear terms need more attention. In fact they arise due to a qualitative
pattern, the law of mass action, [7] in which particles undergoing thermally
activated hops collide from time to time with each other inelastically which
leads to their transformation into other particles (reaction products). It is clear
that a number of both elastic and inelastic collisions of particles of the jth
and kth kind are propemenal to the product of their concentrations n; and

ng. These reaction rates b? are nothing but phenomenological parameters
which obviously cannot be obtained in the framework of the structureless
pattern considered here.

2.1.1.2 Simplest bimolecular reactions in condensed media

The mathematical technique of formal chemical kinetics is very useful for
qualitative estimates and general analysis of processes in condensed matter.
The treatment of a problem begins usually with the analysis of the reaction

-
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scheme and the corresponding set of kinetics equations (2.1.2). In the simplest

case bgk = () and equations (2.1.2) describe monomolecular reaction, A — B
(e.g., radiative decay of excited molecules),

dna(t)
df

— —kna(t), (2.1.3)
whose solution 15 exponential

na(t) = na(0)e ™ = na(0)e /™. (2.1.4)

It contains the phenomenological parameter & called reaction rate. (The par-
ticle lifetime 0 = 1/k.)

An example of monomolecular reaction is the radiative decay of trplet
self-trapped excitons in alkali halide crystals which are produced by UV-
irradiation [9]. On the other hand, high-energy irradiation of solids of ar-
bitrary nature -- both metals and insulators — results in creation of comple-
mentary radiation defects, are called also Frenkel defects — vacancies and
interstitial atoms. At sufficiently high temperatures, the latter start to migrate
through short-range hopping between the nearest interstitial positions and
recombine vacancies approaching to within certain critical radius ro called
annihilation radius — restoring perfect crystalline lattice, A+ B — 0.

Such simplest bimolecular reaction, A + B — C, obeys the equation

dna(t) dng(t
”dﬁt( ) ”jt( ) _ —Kna(t)ngs(t), (2.1.5)

with the solution, setting dn = np(0) — na(0),

1 +dn/nalt)  snke
4 on/ma(0) (2.1.6)

From equation (2.1.5) we obtain in the case of equal concentrations, 74 () =
ng(t) = n(t)

(0 2
1 +n{(0)Kt’ (2.1.7)

n{t) =

which gives the algebraic time dependence at long time t > 1/(n{(0)K)

n(t) oc t L. (2.1.8)
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If one of the reactants 15 1n excess, ng(0} > na(0), we get from equa-
tion (2.1.6) at long time exponential decay law

na(t) = na(0)e "BOKL (2.1.9)

This case is called degenerate bimolecular or pseudo-first order reaction.

Another example of simple bimolecular reaction is mobile exciton annihi-
latton which 1s well studied in molecular crystals; A + A — 0 (zero means
that usually we are not interested what is happening with reaction products)
[10]. In this case the kinetic equation is obvious

dna(t)
dt

= — Kni(t), (2.1.10)

with the solution very similar to that of equation (2.1.7)

na(0)
1 + n4{(0)Kt

na(t) = (2.1.11)

A general phenomenon is observed in many solids that due to interaction of
the electronically excited particles (donors) D* with acceptors A the energy
transfer occurs: D* + A — D + A* [11, 12]. Its probability depends on
the actual kind of interaction (dipole—dipole or triplet—triplet transfer). When
molecules are mobile, their reaction rate K 1s defined by their mobility, i.e.,
energy transfer becomes diffusion-controlled [13].

The latter reaction is widely used as a proving ground for new theories.
Particles B (called also scavengers) are unsaturable energy sinks and thus
after rapid light emission can absorb it anew. In this case the reaction scheme
15 A + B — B (concentration of B’s remains constant ng) which could be
described by the following kinetic equation

drnia (t)
di

= _Kna(t)ng, (2.1.12)

whose solution 1s exponential
na(t) = na(0)e "8 (2.1.13)

The conclusion itself suggests that from the point of view of formal chem-
ical kinetics both energy transfer and the Frenkel defect recombination with

0 /-l'
<
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unequal concentrations obey the same exponential time decay law, see equa-
tions (2.1.9) and (2.1.13).

The basic feature of these kinetic equations is the assumption that reaction
rate K 1s a constant, 1.., time-independent parameter due to which all spatial
dependencies resulting from real particle motion or interaction are completely
ignored. This would be the case if relative spatial distribution of dissimilar
reactants remained the same in a course of reaction. We demonstrate below
that it 1s not always the case.

2.1.1.3 Qualitative study of ordinary differential equations

Chemical processes in condensed media often cannot be reduced to simple
mono- and bimolecular reactions simply because chains of reaction take
place. Therefore their kinetics 15 described by a set of ordinary differential
equations (2.1.1) which are generally nonlinear due to bimolecular stages.
Independent variables n;(t), ¢ = 1,...,s (intermediate reactions products)
define a number of equations under study.

Solutions 72;(f) of the set (2.1.1) depend on the initial conditions only
because reaction rates are constant.

For a qualitative description of kinetics, of great interest are both asymp-
totical (t — o0) solutions independent on initial conditions and how partic-
ular solutions approach them, Complicated systems can reveal several such
asymptotic solutions. Initial conditions define a choice of one of several possi-
ble asymptotic solutions. A general scheme for investigating a set of ordinary
differential equations was very well described in a number of monographs
[4, 7, 14-16]; 1t includes:

(1) Search for the stationary points, i.e., solution of a set of equations

Fi(ny,...,ng) =0, i=1,...,s. (2.1.14)

Obviously, if as ¢ — oo the stationary solution dn;(t)/dt = 0 exists, indeed
the asymptotic solution n;(co) of (2.1.1) is one of the solutions n? of the
set (2.1.14). Here we have an example of a simple but very important case
of a stable stationary solution. Other stationary points cannot be ascribed
to the asymptotic solutions, i.e., n] # n;(co0), but they are also important
for the qualitative treatment of the set of equations. Note that striving of
the solutions for stationary values is not the only way of chemical system
behaviour as t — oo: another example is concentration oscillations [4, 7
16]. Their appearance in a set (2.1.2) depends essentially on a nature of

A
~




58 Basic methods for describing chemical kinetics Ch. 2

stationary points, mentioned above. An asymptotic solution of the oscillating
type is connected with the concept of the limit cycle. Complicated chemical
systems reveal also irregular or chaotic concentration oscillations [8].

(i1) Determination of the singular point type. For this purpose new variables
~ deviations from stationary values are determined by

xi(t) = ni(t) — nd. (2.1.15)

In the vicinity of the stationary point {n?} non-linear functions F; m (2.1.1)
could be expanded into the Taylor senes

_ 3R,
- anj

aF;
Ti +

B i
’ J _ anjaﬂk

LT+ (2.1.16)

0
T

(
mn"
3

Since in the vicinity {n{} z; < 1, we restrict ourselves to the case of linear
system: thus the substitution of (2.1.15) and (2.1.16) into (2.1.1) and neglect
of non-lincar terms yields

dz;(t) - -
ét = flz;(t), (2.1.17)
where
b 2 2.1.18
fg, anj n? ( )

When restricting ourselves to mono- and bimolecular stages, (2.1.2) we arrive
at

= b+ 601 + 8y, @119

where 4, 1s the Kronecker delta. We search the solution in the vicinity of the
stationary peint in a form x;(¢) o ¢, In a qualitative theory of differential
equations the key problem is to determine the eigenvalues of the coefficient
matrix (2.1.18), since substitution of x;(¢) into (2.1.17) yields

] — 8i¢] = 0. (2.1.20)

If the real parts of all eigenvalues ¢;, Reg; < 0 are negative, according to the
Lyapunov theorem [14, 15] the stationary point n{ is asymptotically stable

o
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and ny = n;(oc). If at least one Reg; > 0, the stationary point is unstable,
ng # ni(co).

The best studied is the case of a second order system (s = 2). Since in this
book we consider systems with a maximal number of intermediate products

5 < 2, let us illustrate what was said with two examples. (For s > 2 the
qualitative analysis 1s much less obvious.)

2.1.1.4 The Lotka model

The study of mechanisms of auto-oscillating chemical reactions based on
(2.1.1) has a long history. In his pioneering paper published in 1910, Lotka
[17] suggested a mathematical model for damped concentration oscillations.
Furthermore, 1t has been shown [18, 19] that a simple modification of this
mode] permits the description of undamped oscillations too. In fact, the Lotka
model (now half-forgotten) 1s a fragment of a wide class of mathematical
models [7, 16], used for describing auto-oscillating chemical reactions [7]
(for more details see Chapter 8).

The Lotka model 1s based on the following reaction chain

E-5 A,

A+B-%028, (2.1.21)

B, p

Here E is the mfinite reservoir of matter. It is assumed that in an open system
concentration ng 1s constant and E is linearly transformed into A followed
by an autocatalytic transformation of A into B and its decay. The product P

does not affect the reaction rate. The model (2.1.21) is described by a set of
equations

Tatt) — p— Kna(Ona(t) 2122)
dnjt(t) = Kna(t)ns(t) — Bna(t), (2.1.23)
with D= k(]‘nE.

A biological interpretation of the model could be easily formulated in
terms of prey animals A and predators B living on them. Let na(t) be a

population density of prey animals who stimulate reproduction of predators
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|| Fig. 2.1. A stable node. Four solutions of the Lotka model, eguations (2.1.22)—(2.1.23) with
| the distinctive parameter X p,’fiﬁz = 2 arc presented. The starting point of each trajectory is
marked with a black circle.
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Fig. 2.2. A stable focus. The solution of the same equation as presented in Fig. 2.1, but with
the parameter Kp/3° = 1/16.




Macroscopic approach 61

by dividing a medium with a spontaneous production of food E for them. The

decay is B Pip modelling the natural decay of the predator population.
The use of (2.1.14) gives the Lotka model a single solution for the sta-
tionary point

p
ni =% ng = -, (2.1.24)

The characteristic equation (2.1.20) reads

K
£2 +%—s+pK=0, (2.1.25)

and 1ts roots are

P o\ 2 1/2

E1o = —-%—ﬂ— + (%ﬁ) —pK] . (2.1.26)
If pK > 4/3° holds, the roots are real and &), < 0. That is, the stationary
point (2.1.14) 1s asymptotically stable.

The way in which the solution n;(t) approaches its stationary value n? =
ni(oo) for a system with two degrees of freedom can be easily illustrated
in a phase space (na,ng) after eliminating time ¢ — Fig. 2.1. This type of
singular point is called a stable node.

When pK > 44% holds, the singular point remains stable, Reegyr < 0,
but the roots (2.1.16) have imaginary parts: Ime; = —Ime,. In this case
the phase portrait reveals a stable focus — Fig. 2.2. This regime results in
damped oscillations around the equilibrium point (2.1.24). The damping pa-
rameter pK /3 1s small, for large 3, in which case the concentration oscillation
frequency is just w = /pK .

The Lotka model 1s an example of a rough system: deviations of concen-
trations from their asymptotic values (2.1.24) occur independently on chosen

parameters p, K, 3, i.e.,, small variations of these parameters cannot affect
the way a system strives for the equilibrium state.

2.1.1.5 The Lotka—Volterra model

The better known Lotka—Volterra model [18, 19] unlike (2.1.21) is based
on two autocatalytic stages

,./) .
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E+ A" 2A

A+ B2 2B, (2.1.27)

B AP

Here the infinite food E supply 1s assumed. Its biological interpretation 1s
similar to the Lotka model: predators B live on prey animals A, both are
reproduced by division.

The scheme (2.1.27) is described by the following set of equations

d"”"’;*t(t) — oma(t) — Kna(t)ns(t), (2.1.28)
d”jt(t) = Kna(t)na(t) — Bns(t), (2.1.29)

with o = kgng.
The singular point seen in the first quadrant of the phase plane (na,ng)

g o
nh = = ngy = m (2.1.30)

corresponds to the characteristic equation

e +af=0 (2.1.31)

having the roots

€1,2 = Xiwy, wp = (Ofﬁ)lﬁ- (_2,1.32)

This type of a pattem of singular points is called a centre — Fig. 2.3. A cen-
tre arises in a conservative system; indeed, eliminating time from (2.1.28),
(2.1.29), one arrives at an equation on the phase plane with separable van-
ables which can be easily integrated. The relevant phase trajectories are
closed: the model describes the undamped concentration oscillations. Every
trajectory has its own period 7' > 2x /w defined by the initial conditions. It
means that the Lotka-Volterra model is able to describe the continuous fre-

quency spectrum w < wy, corresponding to the infinite number of periodical
trajectories. Unlike the Lotka model (2.1.21), this model is not rough since

."“’I
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Na/ny

Fig. 2.3. A centre. Three solutions of the Lotka—Voltcrra equations (2.1.28)—(2.1.29) are pre-
sented; the distinctive parameter v/ = 1. The starting point of each trajectory is shown by
a black circle.

there is no fluctuation damping here: any perturbations of parameters «, 3,
K result in a system’s selected orbit and change of frequencies become irreg-
ular. This is why at present oscillations in the Lotka—Volterra model (2.1.27)
are interpreted as a noise [16] — unlike the so-called chemical clock with well
defined frequencies and amplitudes of the concentration oscillations [20].

2.1.1.6 Synergetic aspects of the chain of bimolecular reactions

In the case of a chemical clock, the asymptotic (£ — oc) solution depends
on time, there are not only singular points but also singular trajectories. An
example is the stable limit cycle — Fig. 2.4, i.e., a closed trajectory to which
all phase trajectories existing in its vicinity strive.

Of interest is the study of conditions under which such a limit cycle
emerges in a system. The chemical clock serves as an example of the so-
called temporary structures study which was stimulated by a fundamental

problem of order emerging from chaos. In the last decade it became a cen-
tral part of a new discipline called synergerics [1, 21, 22).

!
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Fig. 2.4. A stable limit cycle.

Note here, without proof, one of the synergetic theorems about limit cycles
(14, 15]: a stable limit cycle contains at least one singular point or the
unstable node of focus-type exists.

Such singular points shown 1n Figs 2.5 and 2.6 did not emerge in the above
discussed examples. It has a universal reason since according to the quite
general Hanusse theorem [23] (see also [16]) dealing with unstable singular
points, the limit cycle surrounding unstable node or focus cannot arise in
a system with two intermediate products if only the mono- and bimolecular
reaction stages occur.

Its proof is trivial and in fact 1s based on a restriction imposed on coeffi-
cients (2.1.19) of the relevant characteristic equation.

Therefore, systems with two intermediate products treated 1 terms of
kinetic equations (2.1.2) reveal at £ — oo only the stationary solutions
ni{co}. To observe non-trivial time behaviour of concentrations (meaning
auto-oscillations or temporary structure), either more freedom degrees (ac-

companied with lost transparency of the qualitative analysis) or greater non-
linearity are required according to this theorem.

-~
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Fig. 2.5. An unstable node is obtained as a formal solution of the Lotka equations
(2.1.22)(2.1.23) with time inversion, £ — —t, and parameter pk /3* = 2. Note that these
equations cannot be associated with a set of mono- and bimolecular reactions.
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Fig. 2.6. Unstable focus is obtained as in Fig. 2.5 but for the parameter pK /3% = 1/2.
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This is namely the main reason why trimolecular models (e.g., Brusselator

[16]) being often physically non-transparent but having only two intermediate
stages have attracted such great attention in synergetic studies.

As an 1llustration, consider the following trimolecular model [24]:

E-2L A,
C+AB4+D,
2A + B2 34,

AXLp

(2.1.33)

which corresponds to a set of kinetic equations

dna(t)
df

dnp(f)
dt

= king — (kanc + ks)na(t) + kang (t)ne(t), (2.1.34)

= kynena(t) — ksns (£)ne(t). (2.1.35)

The trimolecular stage 2A+B SEREYY gives cubic non-linearity kyn (¢)ng(t)
in (2.1.34), (2.1.35). From the point of view of a vanety of different type
of solutions, the model (2.1.33) turns out to be ideal for the mvestigation of
temporary structures in chemical systems. At the same time, physical reason-
ability of the trimolecular stage 1s not evident. Of key importance here are
the shortcomings of mono- and bimolecular stages in describing the chemical
clock in a system with a rigidly fixed number of intermediate products rather
than the wide spread of these trimolecular stages in real situations. This lim-
itation 1s lifted, however, for a greater number of intermediate products. It
could be well demonstrated by the Lorenz model [25] (see also [26]) that
three degrees of freedom in a system with quadratic non-linearity is enough
for emerging complex chaotic behaviour.

From the point of view of the Hanusse theorem just discussed, a system
with two intermediate stages and mono- and bimolecular reactions are not
capable to reveal any temporary, spatial and spatio-temporal structures. How-
ever, results obtained in the past few years permit reconsideration of such an
absolute point of view.

Spatial homogeneity of a system (needed for making use of the formal
chemical kinetics) is secured, first of all, by complete particle mixing. On

-
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the other hand, despite the fact that homogeneous distribution of interacting
particles could be produced for the uniform external source, the perfect re-
actant mixing cannot be reached in principle: the stochastic interaction and
recombination of particles by itself can create spatial correlations of reactants
thus leading to emergence of microscopic structures which, nevertheless, do
not violate the global macroscopic homogeneity of solids and liquids. How-
ever, until recently, these effects of non-uniform reactant distributions were

completely neglected in the chemical kinetics [20]. Let us consider this point
in more detail.

2.1.2 Smoothing out of local density fluctuations

2.1.2.1 Balance equations

Described in Section 2.1.1 the formal kinetic approach neglects the spatial
fluctuations in reactant densities. However, in recent years, it was shown
that even formal kinetic equations derived for the spatially extended sys-
tems could still be employed for the qualitative treatment of reactant density
fluctuation effects under study in homogeneous media. The corresponding
equations for fluctuational diffusion-controlled chemical reactions could be
derived in the following way. As any macroscopic theory, the formal kinetics
theory operates with physical quantities which are averaged over some phys-
ically infinitesimal volumes vg = A3, neglecting their dispersion due to the
atomistic structure of solids. Let us define the local particle concentrations

Ny(7)

C; (F: t) — vo y (2.1.306)

where N;(7') is a number of i-kind particles in volume vy centered at 7, Next
we can use the balance equations [16, 27]

oCi(r, 1 -,
é: ) = —V (7, t) + F; (2.1.37)

where };(F ,t) is the diffusive flux, F; is the particle production rate. Following
the first Fick law [2, 3, 27] this flux is

J(F 1) = —D;VCi(F,1). (2.1.38)

Due to macroscopic homogeneity of the systems under study, the diffusion
coefficients [J; are assumed to be coordinate-independent. (Incorporation of

oy
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the anisotropic diffusion coefficient was performed by [28-31]. In this case

the scalar I); in equation (2.1.38) should be replaced by a tensor.) In the case
of particle production

Fy = F(C,...,C,) = alC;(7,t) + bI*C;(7, )Ch(7, 1) (2.1.39)
equation (2.1.37) could be written in a form

acta(::’__t) = Divg(}'@-(ﬁ f) -+ Fi(cl; SN :GS): i = [? ey 8 (2] 40)

All local concentrations C; of particles entering the non-linear functions
F; 1n equation (2.1.40) are taken at the same space points, 1n other words,
the chemical reaction 1s treated as a local one. Taking into account that for
extended systems we shouldn’t consider distances greater than the distinc-
tive microscopic scale Ag, the choice of equation (2.1.40) means that inside
infinitesimal volumes vy particles are well mixed and their reaction could be
described by the phenomenological reaction rates earlier used for systems
with complete reactant mixing. This means that Ag value must exceed such
distinctive scales of the reaction as contact recombination radius, effective
radius of a dynamical interaction and the particle hop length, which imposes
quite natural limits on the choice of volumes v, used for averaging.

The Hanusse theorem [23] discussed in Section 2.1.1 was later generalized
for the case of diffusion by Tyson and Light {32]. Therefore, the mono- and
bimolecular reactions with one or two intermediate products are expected to
strive asymptotically, as £ — co, for the stationary spatialiy-homogeneous
sohation C(7, 00) = n;{co) corresponding to equations (2.1.2) for a system
with the complete particle mixing.

Another problem arises: what is the kinetics of the approach to this sta-
tionary state. There are two cases:

(1) If the diffusing particles act to smooth concentration inhomogeneities
quicker than chemical reaction occurs, the asymptotic laws under question are
defined completely by the kinetic equations derived for the case of complete
particle mixing. Many similar semiqualitative methods have been used more
than once [33-44]. They have demonstrated the principal importance of the

diffusive approach of reactants in the kinetics of bimolecular processes in
condensed media.

The defimition (2.1.36) of local particle concentrations as quantities aver-
aged over small volumes vy does not mean, however, their equivalence to

-
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the macroscopic concentrations n;(t), since the latter are averaged over the
volume of a whole system:

——— e

Oi(?:’, t) = ’ﬂ,i(t). (2.1.41)

The point here is that the procedure of averaging over small volume vy does
not exclude the long-range fluctuations of a number of reactants in a system.

(11) Even when reactants are distributed in a whole reaction volume at
random (as 1t occurs in classical perfect gases), their Poisson distribution
does not contradict spatial inhomogeneities in particle densities governed by
the relation well known in the statistical physics:

(N; = N;)? = N, (2.1.42)

(bars denote averaging over arbitrary volume). This unavoidable statistical
inhomogeneity 1s enough to affect the reaction rate.

2.1.2.2 Diffusion equations and diffusion length

Chenucal reactions are classified usually as diffusion-controlled, whose
rate 1s limited by a reactant spatial approach to each other, and reaction-
controlled (kinetic stage), whose rate is limited by a reaction elementary
event. For systems with ideal reactant mixing considered in Section 2.1.1,
there is no mechanism of reactant mutual approach. On the other hand, the
Kinetic equations (2.1.40) distinguish between reaction in physically infinites-
imal volumes and the distant reactant motion in a whole reaction volume. In
the absence of reaction particle diffusion is described by equation

AC(7, 1)
ot

= DV?C(7,t). (2.1.43)

For the initial condition C(7,0) = 4(F — 7), (particle is placed at t = 0
at point 7, 8(7'} is the Dirac function) the solution of (2.1.43) is ¢ (7, t) =
G(7,79; t), where

G(F,7o;t) = (dnDt) M exp [ — (7 7o)’ (2.1.44)
e 4Dt o

1s Green’s function of the diffusion equations (2.1.43). Equation (2.1.44)
gives the probability density to find particle at moment ¢ at coordinate

-
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provided the particle started motion from point rp. The solution of (2.1.43)
with an arbitrary initial condition C(7,0} is also expressed through (2.1.44):

CEFt) = / C (7, 0)GI(7, o; £) dy. (2.1.45)

The exponent entering (2.1.44) could be rewritten as

_(F 7o)’
EXp ( 4% : (2.1.46)
where
Ip =V Dt (2.1.47)

1s the so-called diffusion length. When integrating (2.1.45), the exponent
(2.1.46) differs essentially from zero on a spatial scale I = |7 — 7l < Ip
only; 1.e., the length [p defining the linear size of the region (sphere), to
which boundaries at moment ¢ perturbation is spread. The smoothing out of
inhomogeneities in concentration distribution occurs rather slowly. This is
especially the case for large-scale (long-wavelength) fluctuations in concen-
tration distribution: thus, for a region with a distinctive size [ this process
requires smoothing time I*/D.

These peculiarities of the diffusion task are valid for any spatial dimension
d, in which case (2.1.44) should be generalized as

G(r, Ty, t) = (4?;;]_'),5)—5,’2 expl — (7= 7o)" . (2.1.48)
4Dt

The expression for the diffusion length remains the same.

2.1.2.3 Local and full equilibrium

Following Zeldovich and Ovchinnikov [33], let us consider the role of
reactant diffusion in establishing equilibrium in a reversible A & B + B
reaction. In terms of formal kinetics, it is described by the equations

dng(t)
di

= kona(t) — klnﬁ(t), 2na(t) + np(t) = const.  (2.1.49)
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Its steady-state solution (2.1.49) obeys the law of mass action

ng(00)

na (00)

= KP(T):'

where K (T) = ko/k; is the temperature (T} dependent equilibrium con-
stant. The law of mass action could also be presented in the following form

np{co) = (KP(T)RA(DO))UZ. (2.1.50)

Let us consider a hypothetical experiment: assume that particles A are
kept at such a low temperature that there is no dissociation and the fluc-
tuational distribution in a system obeys (2.1.42). Then the reaction volume
is monotonously heated up to the temperature when dissociation begins to
occur and the dependence ng = np(¢) is monitored. According to (2.1.49),
the approach to equilibrium is exponential, i.e.,

kt

ng(t) — np(co) cxe” (2.1.51)

with £ = ;{!{}/2 + 2]431?1]3(00)
However, this passage in fact involves several stages. At the first stage a
system strives to a local equilibrium

Cu(7,t) = (Kp(T)CA(F 1) /2 (2.1.52)

according to the law of mass action and since diffusion had no time to
change the concentration distribution. Such kinetics of local chemical equi-
librium formation seems to be quite rapid. The second stage is associated
with the formation of an equilibrium fluctuation spectrum (2.1.42), After time
t, diffusion tends to produce equilibrium fluctuations in domains with linear
sizes Ip which equals the diffusion length (2.1.47). That is why (2.1.42) is
valid only inside these domains rather than in whole system’s volume.

Let us divide the whole volume into blocks with a distinctive size Ip as it
18 shown in Fig. 2.7. Denote an average over block volume by a bar:

Ca = Ca(7, 1), Cg = Cg(7,1), (2.1.53)

whereas an average over an ensemble of blocks — by (- - -}. Thus macroscopic
concentrations are

na(t) = (Ca),  ma(t) = (Ta). ' (2.1.54)
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E_' ..- '..

Fig. 2.7. Domain structurc of the solution of the diffusion problem; the distinctive size of the
domain equals £ = I (the so-called ditfusive length).

Let us make double averaging of (2.1.52): over block volume and then
over an ensemble of blocks. We find

ng(t) = < (Kp(T)Ca (7)) > (2.1.55)
Writing down

CA(F, 1) = na(t) + 6CA(F ), BCA(F,t) < nalt), (2.1.56)
we arrive at |

. 5CA (7, )]
C ) ~ ) + 50’?}; 9 _ | 152 I (4.7)
Z?IA (t) SﬂA (t)

Making average, we take into account that {3Ca(7,#)) = 0. In each block
(2.1.42) 1s valid, 1.e.,

ol 1 == Na Ch
[CA(F:t)_CA]E:-ﬁ(NA—NA)Q:_i:_‘E

=T (2.1.58)

On the other hand, an average over an ensemble of blocks 1s equivalent to
that over a whole system which is suggested to be so large that one can
neglect fluctuations of macroscopic quantities. In particular,
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(CTa)®) ~ ((Cr ) = ni(t). (2.1.59)
Calculation of (2.1.55) gives

np(t) = (Kp(T)na(t)) '/ (1 - gn:(t)v) (2.1.60)

provided 2n,(t) +np(t) = const. Since V = I}, = (Dt)3/2, with the help of
(2.1.60) we find that the asymptotic law for reactant density approach to the
equilibrium (2.1.50) 1s

ng(t) — np(oo) « (Dt)~3/2, (2.1.61)

which differs essentially from the exponential law (2.1.51) obtained earlier
for the kinetic control. A similar conclusion was drawn by Zeldovich and
Ovchinnikov [34] for other reversible reaction, A + B 2 C. These observa-
tions demonstrate once more that late stages of any bimolecular reactions are
diffusion-controlled, i.e., reaction rate is defined by complementary reactant
migration each to the other.

2.1.2.4 Irreversible A+ B — C reaction. Fluctuations of the concentration
difference
Let us consider now the irreversible A + B — C reaction in the case of
equal reactant concentrations, ny = np, following Ovchinnikov and Zel-
dovich [35]. The reaction kinetics obeys the equations

ONGR
c%(;‘, ) _ DAVACA (7, t) — kCA(F, t)Cy (T, 1), (2.1.62)
dCH (7, t ) . .
Ba(;" ) _ D V2Cy(7,t) — kCa(7,t)Ca (7, 1). (2.1.63)

Due to 1nevitable floctuations — both thermodynamical or related to the SYS-

tem’s prehistory, quantities Ca (7, ¢} and Cg(7,t) are not identical but their
volume averages coincide:

Ca(F,t) = Cg(7,t) = na(t) = np(t) = n(t).

The distinctive feature of the A + B — C reaction is existence of the con-
stant quantity z = na(t) — np(t) = na(0) — ny(0). Assuming that reactants
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have equal diffusion concentration difference Dy = Dg = D, introduce the
quantity

Z(7,t) = Ca(r,t) — Cg(T, t), (2.1.64)
then subtract (2.1.63) from (2.1.62) thus arriving at the equation

dZ(F,¢

-~ ) _ DV Z(7 1), (2.1.65)

In other words, the kinetics of smoothing out of Z(r, ) fluctuations is gov-
erned by a simple linear diffusion equation which solution and, in particular,
the Green function, are well known. Similarly to (2.1.43), (2.1.45) we can
now write down

Z(F,t) = j Zo(T0)G (T, 7o; ) dip, (2.1.66)

where Zy(7) = Z(7,0).
The equation for the function complementary to Z(7,1), i.e.,

U(7t) = Ca(7,t) + Ca(F, 1) (2.1.67)
reads as
r k
an(jz,t) = DV-EU(F,t) + 3 [ZZ(F’, t) — UZ(F, t)] . (2.1.68)

Let us consider now the extreme case of an instant reaction, k — oc. In this
case particles A and B do not coexist in physically infinitesimal volumes.

The solution of (2.1.68) comes from putting there the cofactor of £ to zero,
1.e.,

U7, t) = |Z(F, 1), (2.1.69)

In other words, the reaction kinetics at & — oo is entirely determined by
diffusive encounter of reactants since in the degenerate problem, described
by (2.1.65) and (2.1.69), a role of diffusion 1s self-evident. Equation (2.1.69)
means that whole volume is indeed divided into blocks characterized by a
sign of Z(¥,1): for Z(¥,t) > 0, Ca(7r,t) = Z(7,t), Cp(7,t) = O and vice
versa.

i
—_—
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Fig. 2.8. Same as in Fig. 2.7 for the bimolecular reaction A +B — C (na = np).

Averaging the Ca(7,t) = (Z(7,t) + |Z(7, )|} /2 over volume and using
the condition Z(7,t) = 0, one gets

1
n(t) = na(t) = SIZ@ 0. (2.1.70)

For the long reaction times, I > Ay, this new scale dominates over all
other dimensions of the process and thus we can consider a model where
the whole reaction volume is divided into such alternating blocks with linear
sizes Ip, and each of them contains either A or B particles predominantly
(Fig. 2.8). |

It means physically that striving to survive as long as they could, similar
particles (A’s or B’s} are forming dynamical aggregates which are more stable
against recombination with particles of another kind than random mixture
of isolated single particles A and B. Due to this aggregation (we stress that
stmilar particles do nof interact as it occurs e.g., in colloid formation) average
distance between dissimilar particles becomes essentially greater than for
random distribution and the reaction rate thus is reduced as compared to the
case of complete reactant mixing (well stirred system).

Diffusion stimulates the dissimilar particle approach to each other and
reaction between them, in this process, as it was said above, diffusion acts
to smooth out density inhomogeneities, but on the other hand, the reaction
creates them and often the latter trend is predominant.

Let us focus now our attention on (2.1.70). Assume that initial distribu-
tion of reactant concentration satisfies the thermal equilibrium (2.1.42). Then
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averaging ZZ(7) over volume could be done similarly to (2.1.58)

Z2() = ((Ca(7,0) - Cx) - (Ca(7,0) - T)))°
=2n(0}/V. (2.1.71)
When deriving (2.1.71), statistical independence of fluctuations of both re-

actant concentrations 1s used. An average quantity entering (2.1.71) could be
expressed as

(CA(7,0) = Cx )” + (Ca(7,0) — Cp ) —
—~2(Ca(7,0) = C)(Cs(7,0) - C3 ).

An initial distribution Zy(7 } is assumed to be random variable with the Gauss
distribution

W = cexp [- 2?11(0) f zg(f')dv] , (2.1.72)

where ¢ 1s normalization constant. Equation (2.1.72) agree with (2.1.71).
Using the itegral representation

ly| = %fm ¢7*(1 = cos(y)d¢ (2.1.73)
T Jo

we can write down | Z(7, )| in a from

_2 / T (1 = cos[Z(r, 1)) de. (2.1.74)
T Jo

Thus averaging in (2.1.70) is reduced to the average of the exponential with
the distnbution (2.1.72)

{exp [ICZ[T t)

/exp [1CfG (7,71 £} Zp( *rl)dV;] W d{Zs}, (2.1.75)

where d{Zp} denotes functional integration. In fact, it is performed over
independent real and imaginary parts of the Fourier expansion components

-
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of the random variable Zp(r'), as it has been demonstrated by Toussaint

and Wilczek [45] employing quite similar technique. The functional integral
entering (2.1.75) could be exactly calculated:

(exp [iCZ(7,1)]) = exp [( — (*n(0)/2) / G* (7,7 1) dVl] . (2.1.76)

Substituting (2.1.76) into (2.1.74) and integrating over (, we obtain the
asymptotics of n{#) as £ — oo to be [33]

n(t) o< (D)4, 2.1.77)

The conclusion suggests itself that the decay law n{t) « t~! obtained earlier
in terms of standard chemical kinetics (2.1.8) is replaced by a slower decay.

As it was first noted by Zeldovich [33] it 1s not easy to distinguish ex-
perimentally between exponents 1 and 3/4 (equations (2.1.8) and (2.1.77)).
The approach just presented cannot be applied to charged reactants since
their electrostatic attraction cuts off spatial fluctuation spectrum at the Debye
radius.

From a formal point of view (2.1.77) could be generalized for an arbitrary
space dimension d. To do it, it is enough to replace in (2.1.76) the Green
function (2.1.44) into (2.1.48), which results in

n{t) o« (Dt)~%4, (2.1.78)

At last, note logical inconsistency of the method presented. Non-uniform
concentration distribution, corresponding to the Poisson fluctuation spectrum
(2.1.42), is mtroduced through initial condition imposed on Z(r,t) — see
(2.1.71), (2.1.72). However, equation (2.1.42) disagrees with the starting ki-
netic equation (2.1.40): the solution of the latter in the absence of reaction,
F; =0, is Ci{7,t — o) = n;{0). Consequently, we can find dispersion of a
number of particles within an arbitrary volume:

(N, — N; 2 =0. | (2.1.79)

Therefore, the standard chemical kinetics overestimates the diffusive smooth-

Ing out of imtial density inhomogeneities as compared to the thermal fluctu-
ation level (2.1.42).
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Equation (2.1.78) holds for large diffusion lengths Ip, Ip > [, where

! = n(0)” /4 is the mean initial distance between reactants. This condition
is met if n{¢) < n(0}). On the other hand, (2.1.78) is derived providing
very large reaction rate (kK — oo) at the kinetic stage which permitted to
detect more slow diffusion terms acting to smooth fluctuations. However, for
d > dy = 4, (2.1.78) predicts more rapzd decay law than (2.1.8)! This is why
(2.1.78) holds for space dimensions d < dg = 4, i.e., the marginal dimension
dy is observed in this problem. The same conclusion was drawn by Kang
and Redner [46, 47] in terms of a scaling formalism.

The approach discussed could be generalized for the case of unequal con-
centrations. In this case Z(#,t) = —dn, én = ng(0) —na(0) = 0 and instead
of (2.1.70) we have

1
na(t) = 5 (120l - on) (2.1.80)

whereas (2.1.71) 1s replaced by the dispersion of the fluctuating quantity
Zo(T)

2n(0)
v

[ZG(F) - mr - (2.1.81)

with Zy(7') = —dn, n(0) = (na(0) + np(0))/2.
The Gaussian distribution (2.1.72) could also be generalized for the case
when the mean value of the fluctuating value is not zero:

W = cexp [— znl( o f (ZD(F) - Zg(#))z dV] . (2.1.82)

Equation (2.1.82) agrees with (2.1.81).

Averaging over distribution (2.1.82) can be performed analytically using
the representation (2.1.74); the functional integral could be calculated exactly.
After transformations one gets

na(t) = %]:Q‘z cos{(on] (1 — exp(—f(z)) dc, (2.1.83)

where f = (87 Di)=9/2,
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As dn = 0,(2.1.83) transforms into the relevant equation derived above
for equal concentrations revealing the asymptotics (2.1.78). If én # O,

(2.1.83) demonstrates exponential decay at ¢ — oo (pre-exponential cofactor
is missed)

26n2

na(t) o« exp [—W(sﬂmﬁﬁ] . (2.1.84)

Equation (2.1.84) predicts more slow decay as compared with the chemical
kinetics (kinetic stage — (2.1.9)) unless d < 2. That is, marginal dimen-
sion dy = 2 occurs, The distinctive featare of (2.1.84) defining the range
of its applicability is cofactor dn?. Taking into account that (2.1.83) is valid

as Ip > I, where [ = n(O)'”E, the exponential kinetics (2.1.84) becomes
gssential as I > lgnﬂ, lsn = dn~1/4, In another extreme case the pre-

exponential factor predominates resulting in the asymptotics na(t) o t~%4,
as is observed for equal concentrations. That is, the crossover takes place
(transition from power asymptotics to the exponential). Note that Schnorer,
Sokolov and Blumen [48] have obtained these results employing the combi-
nation theory.

2.1.2.5 Moment method

Let us consider now two small volumes vy centered at 1 and 5, respec-
tively. The number of i-kind particles therein, N;(7|) and N;(3 ), are stochas-
tic quantities which averaged over vy are N;(r1) = N;(T3) = n;{t)vg = N;.
Define now the correlation functions of similar particles [36, 37]

Si(r, t) = (Ci(71,t) — ng(£)) (Ci(7, 1) — ny(t)) (2.1.85)

as well as that fof the dissimilar particles (¢ # j)

Sij(r t) = (Ci(71, t) ~ n; (1)) (Cj(F2, t) — ny(8)). (2.1.86)

Here the average 1s taken over a whole volume with a fixed ¥ = 7] — &
distance. Due to the system’s homogeneity and isotropy the S; and S;; are
functions of r = || only. We illustrate below how the equations for the
correlation functions could be derived from the set of equations (2.1.40) and

the averaging procedure. First, let us define the initial conditions for S;(r, 0)
and S;;(r,0}.



80 Basic methods for describing chemical kinetics Ch. 2

For non-overlapping volumes, r > Ay, the fluctuations in particle numbers
are statistically independent and thus

1 — —
Si(r,0) = = (N;(71) — N; ) (Ni(72) — N; ) = 0. (2.1.87)

Yy

For completely overlapped volumes, » = 0, we use (2.1.42) which yields

5,(0,0) = % - ”’;(O). (2.1.88)
0 0

Taking mto account the statistical independence in coordinates of dissimilar
particles, we arrive at

Se,.;j (r,0) = 0. (2.1.89)

In the limiting case vy — O equations (2.1.87), (2.1.88) could be formally
expressed via the Dirac 4-function

Si(r,0) = n; (0)8(7). (2.1.90)

Let us illustrate the moment method with the A + B — C reaction. In the
stoichiometric case, na(t) = np(t) = n(t) averaging of equations (2.1.62),
(2.1.63) over volume gives

dn(t)
dt

= —k (n’(t) + 5(0,1)), (2.1.91)

where S{r,t) = Sag(r,t). Equation (2.1.91) can be also rewritten in a form

d?;it) = —K(t)n(t), (2.1.92)

quite similar to (2.1.5) of the formal chemical kinetics but now having the
time-dependent effective reaction rate

K(t) =k (1 + ‘ig)(’t;)) . (2.1.93)
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Neglecting third-order momenta, the joint correlation functions (2.1.85),
(2.1.86) become [36, 37]

35;:} ) (Da + Dp)V*S(r, 1) —
— kn(t) (25(r,t) + Sa(r,t) + Sp(r, 1)), (2.154)
25, a(;' Y 2D, V28, (r,t) - 2kn(t) (S(r,) + Su(r, ).

v =A,B. (2.1.95)

The limiting case vg — 0 used in deriving the initial conditions (2.1.90)
for S;(r,t) is not quite correct since the short-wavelength fluctuations with
A < Ag become no longer valid. We can avoid them, considering instead
o-function m (2.1.90), which defines S;(r,0), something less singular, It is
important, however, that equation (2.1.90) well-suited for description of the
long-time reaction asymptotics are governed namely by the long-wavelength
fluctuations.

The solution of equations (2.1.92), (2.1.94) and (2.1.95) for equal reactant
concentrations, Dy = Dp was obtained in [36, 37] . They demonstrated

that as ¢ — oo, the reaction rate tends to zero, K(t) — 0, whereas the
concentration

n(t) ~ (—5(0,£))'/*. (2.1.96)

They have also estimated that §(0,t) o t73/2, ie,, n(t) x t—3/4,

’ﬁ 2.1.2.6 Irreversible A+ B — B reaction. Survival in cavities

"fﬂ In the case of A+ B — B reaction fluctuations in the concentration differ-
‘;%% ence, Z (7, t_), play no essential role and the asymptotic behaviour of n.a (t)
as t — oo 1s defined by the space fluctuations in B reactant concentration

(49-51]. |

The point is that a system of B’s reactants always has a small number
of large volume cavities plotted schematicaly in Fig. 2.9. Reactants A, if
found therein, have large lifetimes limited by their migration to the cavity

boundaries. Note that namely these A particles define long-time asymptotics
of the reaction.
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Fig. 2.9. Particle A is a cavity formed by the recombination spheres around particles B.

To illustrate this idea, let us consider a simple model. Let there be a cavity

V' of an arbitrary shape. The concentration distribution C (7, %) obeys the
diffusion equation

ACA(F, )
at

= DV2CA(7,1). (2.1.97)

Reaction with B particles on the cavity boundary could be described in terms
of a completely absorbing boundary

Ca(@B)|__ =0, (2.1.98)

where S 1s the internal surface of the cavity. It should be stressed that in this
formalism only A particles are assumed to be mobile, 1.e., D = D4, Dg = 0.
In the opposite case, Da =0, the problem can be solved exactly and there
are no fluctuation effects under study. An intermediate case 1s estimated by
[52].

The solution of (2.1.97) with the boundary condition (2.1.98) could be
expressed by a series:
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Ca(Fyt) = Y Uy(F)e ", (2.1.99)
j

where g; are eigenvalues of the equation
eU(F)+ DVU(F)} =0 (2.1.100)

with the boundary condition

U(r) . 0. (2.1.101)
As it follows from (2.1.99), the decay of A’s concentration inside the cavity
is defined by the exponential e™%°*, where =, is the lowest eigenvalue of
(2.1.100). For a given cavity volume ¥V minimal £y value corresponds to the
spherical cavity. In this case g5 = D(=?/{?), where { is the sphere radius.
The average of Ca(7,t) over V as £ — oo could be estimated to be

Ca(t) = na(0)e " (2.1.102)

To estimate na(t), (2.1.102) has to be averaged over all kinds of cavities,
1.e., over { or V. The probability of finding a cavity with volume V in a system
of B’s particles with concentration ng is known as the Perren formula

W(V)dV =~ nge V" dV. (2.1.103)

The averaging (2.1.102) over { gives
na(t) =(Ca(t))
4 w2 Dt

>0
= 4715 (0)np f 12 dlexp ( — —7lPng — 7 ) (2.1.104)
)

3

The integral could be easily estimated by means of the steepest descent
method which gives

s .
na(t) x exp (——jﬂsﬁ (ZHB)Z”S(Dt)Sﬁ) : _ (2.1.105)

In (2.1.105) the power cofactor being dependent on the approximations used
(e.g., spherical cavities) is omitted. Note that according to (2.1.105), na (%)
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decay is slower than it is expected from formal chemical kinetics, (2.1.13).
Ovchinnikov and Zeldovich [50] extended (2.1.105) for the A+ B — C reac-
tion, provided na(0) < ng(0}. This condition means that the concentration
of B particles remains practically constant.

For the arbitrary space dimension d the relation gg o< D/I? is still valid.

- Taking into account that V' 4, (2.1.105) could be generalized:

na(t) o exp (—C(Dt)'af(aﬂ)) , (2.1.106)

where ¢ 1s constant.

2.2 THE TREATMENT OF STOCHASTICITY ON A MESOSCOPIC LEVEL

A truth is so dclicate that any small deviation from it comes you to a mistake, but

this mistake is also so delicate that after small retreat you find yourselves in a truth
again,

B. Pascal

2.2.1 The stochastic differential equations and the Fokker—Planck equation

2.2.1.1 Stochastic differential equations

As was shown 1n Section 2.1, in some cases thermal fluctuations of reactant
densities affect the reaction kinetics. However, the equations of the formal
chemical kinetics are not suited well enough to describe these fluctuations:
in fact they are introduced ad hoc through the initial conditions to equations.
The role of fluctuations and different methods for incorporating them into
formal kinetics equations were discussed more than once.

One of the simplest methods to generalize formal kinetics is to treat reac-
tant concentrations as continuous stochastic functions of time, which results
in a transformation of deterministic equations (2.1.1), (2.1.40) into stochas-
tic differential equations. In a system with completely mixed particles the
macroscopic concentration 7n;(t) tarms out to be the average of the stochastic
function ¢;(t)
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Here ¢;(t) are solutions of the stochastic differential Ito—Stratonovich equa-
tion [26, 34, 99]

de; (t) = F}(C], ey Cs) dt + Gij de(t), (2.2.2)

where the coefficients G;; = Gy;(cy, . - ., ¢5) are functions of concentrations,
whereas dW;(t) is the Winer process which depends on s variables. The
second term in (2.2.2) describe fluctuations in particle production, which
generally speaking, depends on concentrations. However, when this is not
the case, equation (2.2.2) could be written in the Langevin-like form

dei(t
%% = Fi(c1,- .-, ¢5) + @i(t), (2.2.3)

here ;(t) stochastic forces are usually expected to be normally distributed
and d-correlated in time.

Use of the stochastic differential equation (2.2.2) as the equation of motion
instead of equation (2.1.1) results in the treatment of the reaction kinetics as a
continuous Markov process. Calculations of stochastic differentials, perfectly
presented by Gardiner [26], allow us to solve equation (2.2.2). On the other
hand, an averaged concentration given by this equation could be obtained
making use of the distribution function f = f(c¢y,...,cs;t). The latter is
nothing but solution of the Fokker—Planck equation [26, 34]

d _ o 1 2?* -
af(clﬁ ceo :Cﬁft) — _a;; (Fl-f) + 5 aCfaCj [(GG )‘ijf]’ (2.2.4)

where 7 is a transposed matrix of coefficients. (In interpreting stochastic
differential equation (2.2.2), we followed Ito.) Despite the stochastic differ-
ential equations like (2.2.2) and the Fokker—Planck equation (2.2.4) which
are equivalent, in practical applications they turn out to be complementary
since due to different approximations used for their solution they differ also
in the applicability range.

Shortcomings of the above described approach are self-evident: the fluctu-
ations entering equation (2.2.2) are independent of the deterministic motion,
the passage from the deterministic description given by equation (2.1.1) to
the stochastic one needs a large number of additional phenomenological pa-

rameters determining G;;. To define them, the fluctuation-dissipative theorem
should be used. |
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On the other hand, the stochastic treatment in terms of equation (2.2.2)

is applied to the macroscopic values c;(t) characterizing a system. As is

‘_ generally-accepted, thermal fluctuations of macroscopic quantities being very

‘ small are not of great interest. The only exception when fluctuations appear to

l be important (which leads to an untrivial result) is the case when the solution

-of a set of equations Fi(cy,...,cs) = 0 finds itself near the bifurcation point

|w [26, 34, 90]. This 1s why we are going to consider now the spatially-extended
‘ systems [26, 67, 63].

| 2.2.1.2 Explosive instability of a linear system

h;‘ To illustrate new effects which could be observed employing this tech-
|“ nique, consider a simple model [67, 118]. Start from the chemical kinetics
“| equation

| dn(t)

iche —kon(t) + kn(t). (2.2.5)

The first term here 18 proportional to the kinetic coefficient kg and describes

particle decay, whereas the second — their reproduction. Solution of (2.2.5)
‘ 18
|

n(t) = n(0)e™ 7, (2.2.6)

: where v = ko — &, and 15 defined by the sign of ~: for v < v = 0, we
'1\ ] face infinite reproduction (an explosion), but for v > ~; a system is stable
i (particles disappear).

‘ Assume now that the kinetic coefficients ky, k& are exposed to random
" variations. Let us discuss how can it affect the margin of instability .
f

Putting

k — ko= —vy+g(t), | (2.2.7)

where g{(t) is the fluctuating contribution, we arrive at stochastic equation
instead of ordinary differential equation (2.2.5):

de(t)

S —velt) + g(t)c(d). (2.2.8)
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Fig. 2.10. The random function c(t) (full linc) is a solution of (2.2.8); their mean solution
n{t) is shown by the dotted line.

Figure 2.10 qualitatively illustrates the random solution (%) of (2.2.8). Taking
into account that for the random value {g(¢)} = 0 and assuming that the
Gauss distribution holds:

(g(t)g(t1)) = 2hé(t — 1), (2.2.9)

we can solve differential equation (2.2.8), interpreting it after Stratonovich.
The general solution (2.2.8) could be given in a form

| c(t) = n(0)yexp ( — vt + W(t)), (2.2.10)

where W (t) is a stochastic Winer process, g(t) = dW (¢)/dt, with statistical
characteristics

(W(t)) =0,  (W*(t)) = ht. (2.2.11)
Taking into account the identity

{exp(W (1))) = exp(ht) | (2.2.12)
we find the first moment of the stochastic process

n(t) = (c(t)) = n(0)e V. (2.2.13)

(
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Therefore, the explosive instability boundary is shifted as compared with
(2.2.6); now vy = h.

2.2.1.3 Spatially extended systems

Let us start with the generalized balance equations (2.1.37). The stochastic
differential equations arise due to a formal adding of the fluctuating particle
sources. In a general case both the fluctuations of the diffusion flux

3i(7t) = —DiVCi(F, t) — Gi(F 1), (2.2.14)

where the second term is the vector Langevin source, and the fluctuations

of the particle production ¢’(7, ) could be taken into account leading to the
following kinetic equations

oC; (7, t)
ot

= D;V*Ci(7,t) + Fi(C;, ..., Cs) + @7, 1), (2.2.15)
with
i(F,t) = @) (7, 1) + V@i (7 1). (2.2.16)

These fluctuations are assumed to be local, i.e., uncorrelated in space and
d-correlated in time. It is generally-accepted for a stochastic variables that

((,DE(’F, t)cp?(ﬁ, t1)> = hiéijﬁ(F— r1)0(t — ). (2.2.17)

Equation (2.2.6) could also be generalized for the situation when the sources
are concentration-dependent [67, 68]. As an illustration, let us generalize

solution (2.2.8) of the explosive instability, Chemical reaction is described
by the following equation

AC(F, ¢
at

) = DV2C(F,1) - 1O, 1) + 9(7 O 1), 2:2.18)

where random field g(r,{) has the Gauss distribution with the mean value
(g(7,t)) = 0 and the correlation function

{g(F, t)g(71,£1)) = 2H(F — 71)8(t — t). (2.2.19)
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Equation (2.2.18) is interpreted after Stratonovich. The correlation length
H(r) in (2.2.19) was taken in the exponential form [67], e.g.,

H(r) = hexp [— %(%)2}

and 1s characterized by the correlation radius ro. The marginal instability ~,
in (2.2.18) depends on h, ratio D/r; as well as space dimension d.

Therefore, the simplest procedure to get the stochastic description of the
reaction leads to the rather complicated set of equations containing phe-
nomenological parameters h;{equation (2.2.17) ) with non-transparent phys-
ical meaning. Fluctuations are still considered as a result of the external
perturbation. An advantage of this approach is a useful analogy of reaction
kinetics and the physics of equilibrium critical phenomena. As is well known,
because of their nonlinearity, equations (2.1.40) reveal non-equilibrium bi-
furcations [78, 113]. A description of diffusion-controlled reactions in terms
of continuous Markov process — equation (2.2.15) — makes our problem very
similar to the static and dynamic theory of critical phenomena [63, 87].
When approaching the bifurcation points, the systems with reactions become
very sensitive to the environment fluctuations, which can even produce new
nonequilibrium transitions [18, 67, 68, 90, 108]. The language developed in
the physics of critical phenomena can be directly applied to the processes in
spatially extended systems.

The stochastic differential equation (2.2.15) could be formally compared
with the Fokker-Planck equation. Unlike the complete mixing of particles
when a system is characterized by s stochastic variables (concentrations
¢i(t)), the local concentrations in the spatially-extended systems, C(7,t),
depend also on the continuous coordinate 7, thus the distribution function
F(Ch,...,C;t) tumns to be a functional, that is real application of these
equations 1s rather complicated. (See [26, 34] for more details about presen-

tation of the Fokker-Planck equation in terms of the functional derivatives
and problems of normalization.)

In recent years the diagrammatic technique of the perturbation theory found
wide application m solving the stochastic differential equations, e.g., see a
review article by Mikhailov and Uporov [68].

——
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2.2.1.4 The A+ B — C reaction. Stochastic particle generation

Let us apply general stochastic equations (2.2.13) to the simple A+B — C
reaction with particle creation — the model problem discussed more than once
([84] to [93]). A relevant set of kinetic equations reads

Lt o - - 229
aCAa(;J ) = D Vng(ﬁ t) - kCA(T'.- t)GB(Ta t) -+ CPA(T! t)? (2.2.20)
-,-:r - t
: Ba(:? ) = DpV*Chy (7,1) — kCA(F, t}CB(r, 1) + 9a(7,t).  (2.2.21)

The most general method to solve the set (2.2.20), (2.2.21) seems to be their
transformation in terms of different-order correlations. Let us present reactant
concentrations as a sum of the mean value and fluctuating term

C; (7, t) = ni(t) + 6C; (7, 1). (2.2.22)
Let us define the joint concentration correlators through
Sii(r,t) = (8C;i(71, 1)6C;(72, 1)), (2.2.23)

where r = |7} —73|. Higher-order-correlators contain a corresponding number
of the fluctuating values 8C;(7, ¢) in the averaged product (2.2.23). Averaging
of a set (2.2.20), (2.2.21) results in equations for the mean values n;(t) where
joint correlations (2.2.23) are also involved. Equations for them arise multi-
plying the basic equations (2.2.20), (2.2.21) by fluctuating values 8C; (7, t)
with further averaging. In doing so, we get equations for joint correlators
S;;(r,t) containing third-order correlators, etc. Therefore, we face the stan-
dard problem of decoupling correlators in order to reduce formally exact but
infinite set of equations to the approximate but finite set. In practice only
joint correlators are used [83].

To avoid bulky calculations, we restrict ourselves by the following prob-
iem statement: particles A and B have equal diffusion coefficients, Dy =
Dg = D, fluctuating particle sources in ;(7,%) in (2.2.20), (2.2.21) are
characterized by Poisson statistical properties:

{ea(Tt)) = {pB(7,t)) =, (2.2.24)

(5‘:‘?1& (Fa t)ﬁipﬂ (FI , b1 )> - <5{PA (F: f)) <5‘PB ('Fl ) tl)) - 0? (2225)
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<6(t'9A (F} t)CSIPA (Fla tl )) — <5(FB ('Fa t)‘&PB ('F] 1 tl )>
=pd(r — 7)d(t — t;), (2.2.26)

where dip; (7, t) = @i (7,¢) — p.

Equation (2.2.24) means homogeneous generation of particles A and B
with the rate p (per unit time and volume), whereas (2.2.25) comes from
the statistical independence of sources of a different-kind particles. Physical
analog of this model is accumulation of the complementary Frenkel radiation
defects in solids. Note that depending on the irradiation type and chemical
nature of solids (metal or insulator), dissimilar Frenkel defects could be
either spatially correlated in the so-called geminate pairs (see Chapter 3) or
distributed at random. We will focus our attention on the latter case.

As 1t has been done in Section 2.1.2, let us introduce the concentration
difference Z(7,t) = Ca(7,t) — Ca(7,t) , obeying the equation

dZ(7, 1)
ot

= DV?Z(7,t) + d¢(F, ), (2.2.27)

with 6p(7,t) = @a(F,t) — @B(7,t). Statistical properties of dp(7, 1) are
defined by (2.2.24) to (2.2.26). |

This equation is linear and could be solved exactly, whereas the comple-
mentary equation for U(7,t) = Ca(7,t) + Cg (7, t) is non-linear, We restrict
ourselves to those problems whose solutions could be expressed through
Z(F, t).

Fourier components 7 (E, t) of (2.2.27) have correlators

(Z(F,)Z(~ki,t1)) = 6 —Le exp (— DRt — ty]). (2.2.28)

As k — 0, (2.2.28) is large and can be interpreted as large-scale segregation
of A and B particles, i.e., formation of loose aggregates containing predomi-
nantly similar particles, A or B only. Note that it is a purely statistical effect
since similar particles are assumed not to interact! More details for calcu-

lating joint correlators and dissimilar particles confirming aggregation effect
are available from the papers [57] to [83].

Calculating the correlator at the same time moment

— — _ 2p
(Z(k,t)Z(—k,t)) = Pz (2.2.29)
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shows that the total fluctuation spectrum
/ (Z(k,t)Z(—k,t))dk = / (Z%(7,t))dr (2.2.30)

becomes divergent in the small & region in one- and two dimensions d = 1, 2.
This means that aggregate size 18 macroscopic and comparable with the size
of a system itself, From the formal point of view the integral (2.2.30) diverges
also for large k. This kind of divergence takes place also for the fluctuation
spectrum (2.1.72) considered by us m Section 2.1.2 and describing so called
white noise. Divergence at large k is due to the extrapolation of diffusion
equation on the space scale smaller than the distinctive scale Ay. In fact one
has to restrict himself by the components in the Fourier transformation with
k = kpax < 1/Ao and to introduce in (2.2.30) the upper integration limit
kmax. This large-k peculiarity does not affect results of Section 2.1.2, since
an asymptotic reaction law is defined entirely by a long-wavelength part of
spectral region (1.e., by small k).

The fluctuation spectrum just discussed differs considerably from (2.1.72).
Let us estimate a role of simtlar particle aggregation in their decay kinetics
after the source is switched off at time ¢ = (. Decay 1s described by (2.1.62),
(2.1.63) (Da = Dg). For concentration difference (2.1.64) we have the initial

condition Z{7, 0} = Zy(7'). In this case the fluctuation spectrum corresponds
to (2.2.29):

. L9
{Zo(k ) Zo(~F)) = B%" (2.231)

As 15 noted 1n Section 2.1.2, one has to distinguish the kinetic stage, at
which n(t) o t7!{na(t) = ng(t)) and the diffusive stage replacing it at
longer times. For the latter we can use an estimate similar to (2.1.70):

n(t) = %(|Z(F, )]} (2.2.32)

Its calculation with the fluctuation spectrum (2.2.31) could be performed
employing the scheme used in Section 2.1.2, which results 1n [84]

1 d}_i; l;’Z
n(t) = - [ (2§ % f exp(—ZDkzt)—b—k-g] - (2.2.33)
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In the d = 3 case we arrive at
ﬂ(t) x pl/'ED—Sﬁlt—l/’f-l' (2.2.34)

Note that its asymptotics (2.2.34) gives essentially slower decay than (2.1.77)
observed for the Poisson initial distribution. In the d = 2 case the integral
in (2.2.33) should be cut off at ky, oc S~1/2 where S is surface square;
practically complete disappearance of particles takes place after ¢+ ~ S/D.
Consider briefly the applicability of (2.2.34). Use of (2.2.34) for the initial
fluctuation spectrum continues infinitely: similar particle aggregation takes
a very prolonged time. Under finite excitation time, the peculiarity (2.2.31)
at small k 1s not pronounced, (2.2.34) is not universal and it plays the role
of the intermediate asymptotics and holds at ¢ <f,,,, which depends on the
irradiation time.

Stochastic aggregation does not emerge for oppositely charged particles,
when electroneutrality holds due to conditions na(t) = ng(t) = n(t), par-
ticle charge ey = —ep = €. Let us introduce, following the Debye—Hiickel
method, the self-consistent potential ¢ through Poisson equation

4e

Ap = — [CA(7,t) — Ca(F,t)] (2.2.35)

where A is the Laplace operator, € 1s a static dielectric constant. The equations
(2.2.20) and (2.2.21) have to be modified by adding force terms due to
diffusion drift in the potential ¢ which is defined according (2.2.35) through
the concentration difference Z(r,¢)(provided Dy = Dg).

The relevant calculations performed by Ovchinnikov and Burlatsky [84]
showed that — in line with general physical ideas — the peculiarity of the
fluctuation spectrum at small & disappears due to Coulomb repulsion. Auto-

matically it transforms the long-time asymptotics into that known in formal
kinetics (2.1.1).

2.2.2 The birth—death formalism and master equations

2.2.2.1 The Chapmen—Kolmogorov master equation

The approach developed in Section 2.2.1 is based on the independent
treatment of the deterministic motion of a system and density fluctuations
therein. The reaction description in terms of random process seems to be
more consistent and logical. Equations (2.1.2) which were used above for a



04 Basic methods for describing chemical kinetics Ch. 2

system with complete mixing of particles in a volume V could be rewritten
through numbers of particles

dN;{t) b
dt Nj(t) + 1%

—L N (£) Ni(8). (2.2.36)

Since the formal chemical kinetics operates with large numbers of particles
participating in reaction, they could be considered as continuous varables.
However, taking into account the atomistic nature of defects, consider here-
after these numbers V; as random integer variables. The chemical reaction
can be treated now as the birth—death process with individual reaction events
accompanied by creation and disappearance of several particles, in a line with
the actual reaction scheme [16, 21, 27, 64, 65]. Describing the state of a sys-
tem by a vector N = Ny, ..., Ng, we can use the Chapmen—-Kolmogorov
master equation [27] for the distribution function P(IN,1)

dP(N, 1)
ot

—Z (N | NYP(Ny,t) — W(N' | N)P(N,t)] . (2.2.37)

Entering this equation transition probability W (N | N') of the Markov pro-
cess depends on the states IN, IN’ only. For mono- and bimolecular reactions
these transition probabilities are not zero if vectors IN and N’ differ by sev-
eral projections only. ‘To specify W(IN | IN') in equation (2.2.37), one has
to start from the equations (2.2.36) for the formal kinetics accompanied with
some probabilistic arguments.

To illustrate this approach, let us consider the A+ A — B reaction. In this
case the equation analogous to (2.1.10) reads (provided N = N = N)

dN(t) _
dt

where k = K/V.

A number of collisions in the N-particle system is proportional to
N(N — 1) rather than N* entering equation (2.2.38). The only transition
has non-zero probability — which takes away particles from a system

—~kN2(t), (2.2.38)

W(N —2| N) = _’;-N(N _ . (2.2.39)
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The master equation reads

dP(N,t)
ot

=W(N|N+2)P(N+2,¢)—
— W (N —2| N)P(N,1). (2.2.40)

Defining the average (N) = N(t) with the help of distribution function
P(N,t), (N} =>_ NP(N,t), one gets

dN(2)

— = RNV -1)). (2.2.41)

Returning now to the concentration n(t) = N(t)/V, and finding the disper-
sion of a number of particles in volume V,

on = (N — (\N))?), (2.2.42)
we finally get the kinetic equation

dn(t)
dt

— —Kn(t) + 35 [(N) — o] (2-2.43)

Its obvious peculiarity as compared with the standard chemical kinetics, equa-
tion (2.1.10), is the emergence of the fluctuational second term in r.h.s. The
stochastic reaction description by means of equation (2.2.37) permits us to
obtain the equation for dispersions o3, which, however, contains higher-order
momenta. It leads to the distinctive infinite set of deterministic equations de-
scribing various average quantities, characterizing the fluctuational spectrum.

In terms of the master equation for the Markov process the formal kinetics
is nothing but the mean-field theory where the fluctuation terms like that on
the rh.s. of equation (2.2.43) are neglected. Strictly speaking, the macro-
scopic description, equation (2.1.2), were correct if the fluctuation terms
vanished as V' — oo. In a general case the function P(N,t) does not satisfy
the Poisson distribution [16, 27]; in particular, 0%, # (N).

2.2.2.2 Generating function

An efficient method permitting us to avoid the standard procedure of de-

riving, with the help of (2.2.37) the infinite set of equations for random value,
dispersions and their higher momenta is the presentation of (2.2.37) in a form
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of the generating function. For a single random variable with the distribution
function PN, ) the generating function F'((,t) is defined by the relation

oo
F(¢,t)y =Y (NP(N,1). (2.2.44)
N=0
In terms of the method of the complex vanable functions, P(N,t) could be

expressed through F((,1):

1 d
P(N,t):_ F(C’t)CNil’

27

(2.2.45)

where the point { = 0 falls into integration region. However, it 1s important to
stress here that there 1s no need to use (2.2.45) since all statisticat calculations
could be carried out with the help of the generating function.

The normalization condition imposed on the distribution function gives
the following condition for the generating function:

a0

Y PN =F(=1,8=1 (2.2.46)

N=0

The mean value could be calculated as

oF
(N) = ég’t)lc : (2.2.47)
whereas dispersion
= F((,t — . 2.2.48
A= st FOn| |7 2.248)

To illustrate what was above said, consider the simple bimolecular process
E— A, A+ A =B, (2.2.49)

described in terms of the formal kinetics by the equations (na(f) = n(t))

= p — Kn*(t). (2.2.50)
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A
A

kK/2N(N-1)  k/2(N+2)(N+1)

Fig. 2.11. Possible transitions on a sile lattice and the corresponding transition rates.

Passing now to a new variable N (¢t} = n{#)V, we can rewrite it in a form

%EEQ = ko — kN2(1), (2.2.51)

where ky = pV, & = K/V. It has a single stationary state

No = v/ko/F, (2.2.52)

which is asymptotically stable. The basic kinetic equation in a given case
reads

2 (N + 1N+ 2)P(N +2,8) -
~ 5 (N = UNP(N,1). (22.53)

From a formal point of view, (2.2.53) describes random walks on a one-
dimensional lattice of enumerated sites. Unlike standard problems with con-
stant transition probabilitics between sites, in (2.2.53) these probabilities de-
pend on a site number and are essentially non-linear. Figure 2.11 shows

possible transitions in the model under consideration and the relevant tran-
sition rates.
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To derive an equation for the generation function, one has to multiply
(2.2.53) by ¢ and to sum over N which yields

AF(C, k Q2F(C,
éﬁ 9 _ ko(¢ —DF(S, 1) + 5 (1= ¢) ac(;g 25

(2.2.54)

This is a partial differential equation of the second order. The stationary
solution Fp(() of (2.2.54) satisfies the equation

d’ Fo(¢)

T ANGFH(¢) =0, (2.2.55)

(1+¢)

where Ny 1s defined by (2.2.52). To solve (2.2.55), two boundary conditions
should be specified. One of them comes from (2.2.46): Fo(( = 1) = 1.
The second one, especially for complicated processes in which the genera-
tion function 1s a solution of higher-order partial equation, is less evident.
When defining the generation function (2.2.44), |{| cannot exceed unity, oth-
erwise convergence of a series for F'((,{} becomes questionable. This is
why the boundary conditions should be defined at points satisfying || = 1.

That at { = 1 i1s found less evident treatment [66] for ( = —1 leads to
B(=-1)=0.
A solution of (2.2.55) subject to these boundary conditions is
L {4Nyd)
F = 9 , 2.
0(¢) T, (4No) (2.2.56)

where I; 1s the Bessel function of imaginary argument, ¥ = ((+1)/2. Using
(2.2.47), (2.2.48), one can calculate mean value and dispersion, also taking
into account that in a microscopic system Ny > 1. Employing asymptotic
expansion of the Bessel functions for large arguments, one gets

1
(N) =Ny + 2 + O(1/Np). (2.2.37)
In other words, description of kinetics in terms of a simpler equation (2.2.51)
in the stationary state turns out to be correct with great accuracy. However,
the fluctuation dispersion

ok = %‘T—? +0(1) ~ @ +0(1) (2.2.38)
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is not consistent with the Poisson distribution. It demonstrates that even
simple models based on the basic kinetic equation (2.2.37) reveal a non-
Poisson distribution function of fluctuations of random values N.

2.2.2.3 The Lotka-Volterra model

More interesting aspects of stochastic problems are observed when pass-
ing to systems with unstable stationary points. Since we restrict ourselves to
mono- and bimolecular reactions with a maximum of two intermediate prod-
ucts (freedom degrees), s = 2, only the Lotka—Volterra model by reasons
discussed m Section 2.1.1 can serve as the analog of unstable systems.

This model is based on the reaction scheme (2.1.27) and the kinetic equa-
tions (2.1.28) and (2.1.29) which in variables Na{t}) = na(t)V, Np(t) =
ng(t)V read

VAR — oA (t) - kNANa). (2.2.59)
Woll) — kNA®)Na(t) — AN (1) (2.2.60)

where k£ = K/V. Stationary and periodic solutions of (2.2.59), (2.2.60) are
not asymptotically stable. The stationary point of this system is a centre (see
Section 2.1.1), a set of equations is not rough. This is why one can expect that
passage from the deterministic treatment of (2.2.59), (2.2.60) to stochastic
one, based on (2.2.37), can cardinaly affect the system’s stability.

In the probabilistic description of this model [16, 67—69] the distribu-
tion function P{IN,1); N = N,, Np, is used. To perform the transition to
(2.2.37), the transition probabilities W (IN | N') should be specified. In the
case of A + E — 2A reaction, this probability is

W(Na+1,Ng | N) = aN,. (2.2.61)
For the A + B — 2B reaction, we have

W(Na — 1,Ng + 1| N) = kNaNjg. (2.2.62)
Lastly, for the B — P reaction

W(Na, Ng — 1 | N} = 8Np. (2.2.63)

—_——
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Summing up (2.2.61) to (2.2.63) we arrive at the basic kinetic equation

dP(N,¢t)
dt

=a(Npy — 1)P{Na — 1, Ny, t) — &NAP(N,t) +-

+k(NA + 1) {Ng — 1)P(Np + 1, Ny — 1,13) —
“kNANBP[:N,f) -+
+ B(Ng + 1)P(Na, Ng + 1,t) — BN P(N,t). (2.2.64)

From a formal point of view it describes random walks on a square lattice
with the non-linear transition probabilities. All possible kinds of transitions
and their probabilities are given in Fig. 2.12.

Using (2.2.64), we obtain equations for mean values Na(t) = (N4) and
Np(t) = (Ng)

dNa(i
d’ﬂ;( ) _ aNa(t) — k(NaNg), (2.2.65)
d N (¢
dﬁt( ) _ k{NaNg) — BNg(£). (2.2.66)
(NANp+1)
kNsNp |
B(Np+1)
(Na-1,Np) v NI "% | (Natl,Ng)
BNB
Tk(Na+1)Mg-1)

(NA‘!NB-'I )

Fig. 2.12. Possible transitions in the Lotka~Volterra model.

e
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Since random values N and Ng are not statistically independent, the con-

dition (NaNp) = (Na){Vg) does not hold and hence (2.2.65) and (2.2.60)
do not coincide with the deterministic equations {2.2.59), (2.2.60).

Let us define the correlation function (8 NoA6Np), where 6N; = N; — (N;),
and new time-dependent reaction rate

(ONAONg) )
Ny (t)NB (t) '

k*=k*(t) =k (1 + (2.2.67)

With its help a set (2.2.65), (2.2.66) could be rewritten in a form similar to
(2.2.59), (2.2.65)

dﬁ; ";(t) = aNa(t) — K* Na(t) N3 (t), (2.2.68)
dp‘iﬁ ) _ k* Na(t)Ng(t) — BNg(t). (2.2.69)

As was noted 1in Section 2.1.1, the concentration oscillations observed in
the Lotka—Volterra model based on kinetic equations (2.1.28), (2.1.29) (or
(2.2.39), (2.2.60)) are formally undamped. Perturbation of the model param-
eters, in particular constant k, leads to transitions between different orbits.
However, the stability of solutions requires special analysis. Assume that in a
given model relation between averages and fluctnations is very simple, e.g.,
(0NadNg)} = f({Na}, (IN)), where f is an arbitrary function. Therefore k*
in (2.2.67) 1s also a function of the mean values Ny (¢) and Ng(t). Models
of this kind are well developed in population dynamics in biophysics [70].
Since non-linearity of kinetic equations is no longer quadratic, limitations
of the Hanusse theorem [23] are lifted. Depending on the actual expression
for f both stable and unstable stationary points could be obtained. Unstable
stationary points are associated with such solutions as the limiting cycle; in
particular, solutions which are interpreted in biophysics as catastrophes (pop-
ulation death). Unlike phenomenological models treated in biophysics [70],
in the Lotka—Volterra stochastic model the relation between fluctuations and
mean values could be indeed calculated rather than postulated.

Stmulation of the random walks on a site lattice is presented in Figs 2.13
and 2.14; they show that stochastic trajectories deviate systematically from
the stationary solution [16]. Alongside those which correspond to the damp-
ing oscillations, above mentioned catastrophes are also observed and char-
acterized by Ng = 0, and Ny — o00. These results demonstrate indirectly

f
{
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Fig. 2.13. The random trajectory in the stochastic Lotka-Volterra model, equation (2.2.64).
Parameters are: ow/k = G/k = 20, the initial values Ny = N = 20. When the trajectory
coincides with the Ny axis, prey animals A are dying out first and predators second.
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Fig. 2.14. As in Fig. 2.13 but the trajectory touchcs the N, axis (dcath of predators and the
infinite increase in the population of the prey animals).
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considerable mportance of fluctuations. It is shown analytically [69] that
(2.2.64) has only a single and trivial solution: P(Na, Ng) = dn, 00N .0 -

Analysis of equations for second momenta like (N5 Ng), ((5NA)3) and
{(6Ng)*) shows that all their solutions are time-dependent. In the Lotka—
Volterra model second momenta are oscillating with frequencies larger than
that of macroscopic motion without fluctuations (2.2.59), (2.2.60). Oscilla-
tions of £* produce respectively noise in (2.2.68), (2.2.69). Fluctuations in
the Lotka—Volterra model are anomalous; second momenta are not expressed
through mean values. Since this situation reminds the turbulence in hydro-
dynamics, the fluctuation regime in this model is called also generalized
turbulence [68]. The above noted increase in fluctuations makes doubtful the
standard procedure of the cut off of a set of equations for random values
momenta.

The generating function of (2.2.64) could be constructed analogously to
the definition (2.2.44);

20
F(Ca, (B t) = D (2o P(Na, Nu,t). (2.2.70)
Na,Ng=0

The corresponding equation for the generating function

oF (C‘g_’f“’t) — ala(Ca — 1)% F(Ca, Gy i) +
2
+RGa(Go ~ )3z, F (G t) -
_ B(Ga — 1)% F(Ca, G ). (2.2.71)
-B

Since variables (4 and (g are not separated in (2.2.71), random values N and
Np are always correlated. On the other hand, this peculiarity of the equation
does not permit to solve it exactly and thus asymptotic expansion has to
be used. Equation (2.2.71) has no other stationary solution except trivial
F{Ca,¢s) = 1, corresponding to P(Na,Ng) = én, 0 Ong 0- Al asymptotic
solution (2.2.71) is sought in the V' — oo limit (system’s volume is a large
parameter), when one can assume [16], that

F(Ca, (B, t) = exp(V¥((a, Ca, t)), (2.2.72)

where W({a, (g, t) is a value of the order of unity.
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2.2.2.4 The Lotka model
In terms of the determunistic approach the Lotka model (2.1.21) 1s de-
scribed by a set of equations

dNa(t)

25D — ko — KNA(E) N (1), (22.73)
W) kNA()No(2) — BN (1) (22.74)

where k = K/V, kg = pV. When passing to the stochastic language, one can
use results obtained earlier for the Lotka—Volterra model. Here the A+E —
2A reaction is replaced by E — A, the corresponding transition probability
is

W (Ns+1,Ng | N) = kq. (2.2.75)

Figure 2.15 demonstrates a scheme of transitions. The corresponding basic
kinetic equation is

dP(N,t)
dt

— kgP(NA — 1,NB,t) — kgP(N}If) +
—I—k(NA + 1)(NB — I)P(NA + 1, Ng — l,f) —
—AIN‘JLNBP(N,t)—I—
+ 8(Ng + 1)P(Na, Ng + 1,t) — BN P(N,t). (2.2.76)

Results of the stochastic simulations for the Lotka model are presented in
Fig. 2.16.
The equation for generating function reads

aF(CA} CB'.I f)

= ko(¢a — 1}F°(Ca, (B E) +

ot
a?
+ k(p((p — CA)aCAaCB F(Ca,CB,t) —
(s — l)a% F(Ca, G £). _ 2.2.77)

Equations (2.2.76), (2.2.77) of the Lotka model are not analyzed so far.
We suggest the readers to solve this problem as a home exercise. Despite
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(Na,Np+l)
™ v 9
kNaNg
B(Ne+l)
ko [ k
(Nﬁ'l :NB) ¢ >—u : > T (NA+1 ;NB) |
PNE
$
k(Na+1){Ng-1}
® & o
(NA';NB'I )

Fig. 2.15. Possible transitions in the Lotka model.
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Fig. 2.16. The random trajectory in the stochastic Lotka model, cquation (2.2.76). Parameters

are ko/B = 3/k = 10, the initial values Ny = Np = 10. When the trajectory touches the

N4 axis, the predators B are dying out and the population of the prey animals A infinitely
Increases.
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the fact that 1n terms of a formal kinetics approach the Lotka model is
an example of a rough system (fluctuations are damped), as we noted in
Section 2.1.1, for large 3 parameters damping could be done as small as
one desires. When taking into account the fluctuation effects, the damping of
macroscopic variables could turn out to be not enough to suppress “noise”
emerging due to a motion of second momenta of random values, ie., k&
oscillations in a set of the equations

dNA(t

;;( ) =k — k* Na(t)Ng (), (2.2.78)
dNg(t

d‘-:;( ) _ k* Na(t)Ng(t) — BNg(t). (2.2.79)

The variable £* 1s defined by (2.2.67). Therefore one can expect that de-

pending on actual parameters kg, & and /3, both stationary and non-stationary
fluctuation distribution could exist.

2.2.2.5 Non-equilibrium critical phenomena

These examples clearly demonstrate the role of non-Poisson fluctuations of
a number of reactants in a system. In the vicinity of the bifurcation point of
equations (2.1.2), the asymptotical instability of their periodic and stationary
solutions 18 observed and the fluctuation dispersion can infinitely increase
in time deviating from Poisson regime [27]. Therefore, after prolonged time
the fluctuations govern time behaviour of average quantities (concentrations).
The role of perturbation here 1s related to the non-Poisson part of the fluctu-
ation spectrum: one cannot neglect the higher-order momenta (dispersions)
in systems with asymptotically unstable solutions. The cut-off of the infinite
set of coupled equations, typical for the problem with non-linear transition
probabilities W (N | N’), leads to approximate solutions which are valid
at short times only. One can see here the extremely interesting analog be-
tween instabilities observed in non-equilibrium kinetic processes (reactions)
and the equilibrium critical phenomena [16, 71, 72]. For systems far from
the critical point the macroscopic averages and fluctuations are incomparable
in their magnitudes, but near the critical point the large-number law fails: it
1s fluctuations which now govern the behaviour of average quantities (con-
centrations n;(¢)) and thus a system can no longer be treated in terms of
these average quantities only {16, 20].
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Since a number of particles involved in any reaction event are small, a
change in concentration is of the order of 1/V. Therefore, we can use for the
system with complete particle mixing the asymptotic expansion in this small
parameter 1/V. The corresponding van Kampen [73, 74] procedure (see also
[27, 75]) permits us to formulate simple rules for deriving the Fokker—Planck
or stochastic differential equations, asymptotically equivalent to the mitial
master equation (2.2.37). It allows us also to obtain coefficients G;; in the
stochastic differentiai equation (2.2.2) thus hiquidating their uncertainty and
strengthening the relation between the deterministic description of motion
and density fluctuations.

The bottleneck of this approach i1s obvious: the expression for transition
probabilities through collective variables of a whole system (total number
of particles) means that rather rare fluctnations are taken into account only,
whereas their spatial correlations are neglected (1.e., different parts of a sys-
tem interact being separated by a distinctive distance — the correlation length).

12.2.2.6 Spatially-extended systems

A more refined approach 1s based on the local description of fluctuations in
non-equilibrium systems, which permits us to treat fluctuattons of all spatial
scales as well as their correlations. The birth—death formalism 1s applied
here to the physically infinitesimal volume vy, which is related to the rest of
a system due to the diffusion process. To describe fluctuations in spatially
extended systems, the whole volume is divided into blocks having distinctive

sizes Ap (g = A%, d = 1,2,3 is the space dimension). Enumerating these
cells with the discrete variable 7 and defining the number of particles N;(7)
therein, we can introduce the joint probability of arbitrary particle distribution
over cells. Particle diffusion is also considered in terms of particle death in
a given cell accompanied with particle birth in the nearest cell.

The cell sizes are expected to exceed any molecular (atomic) scale so that
a number of particles therein are large, V;(r'} >> 1. The transition probabil-
ities within cells are defined by reaction rates entering (2.1.2), whereas the
hopping probabilities between close cells could easily be expressed through
diffusion coefficients. This approach was successfully applied to the non-
linear systems characterized by a loss of stability of macroscopic structures
and the very important effect of a qualitative change of fluctuation dispersion
as the fluctouation length increases has also been observed [16, 27]. In particu-
lar cases the correlation length £ could be the introduced. The fluctuations in
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volumes having size less than £ obey the Poisson distribution. To character-
ize this situation, Nicolis and Prigogine [16] introduced the concept of local
equilibrium. The large-scale fluctuations demonstrate well pronounced non-
equilibrium character quite different from the Poisson distribution. It is the
emergence of fluctuations which makes a system to change its macroscopic
state which has clear analogy with the equilibrium critical phenomena.
Applying these methods to systems in the vicinity of the non-equilibrium
critical points, the conclusion was drawn [72] that the mesoscopic approach
contains excess information about spatial particle distribution: the details of
how the whole system’s volume is divided into cells become unimportant
as £ — oo. The possibility to employ expansion in inverse powers of vy —
similarly to a complete mixing case — was also discussed. Asymptotically it
leads to the Focker-Planck equation equivaient to the Langevin-like equation.
Summing this Section up, we would like to note that in the approach dis-
cussed here the introduction of stochasticity on a mesoscopic level restricts
the applicability of a method by such statements of a problem where subtle
details of particle interaction become unimportant. First of all, we mean that
kinetic processes with non-equilibrium critical points, when at long reaction
time the correlation length exceeds all other spatial dimensions. This limita-

tion makes us constder in the next Section 2.3 the microscopic level of the
kinetic description.

2.3 MICROSCOPIC TREATMENT OF STOCHASTICITY

Everything should be done as simple as possible but not simpler.

A. Einstein

2.3.1 Many-point densities

2.3.1.1 Statistics of many-particle systems

To describe quantitatively the spatial structure of many-particle systems,
the statistical physics methods widely used for condensed systems could
naturally be considered as an adequate tool for reactions. An analog of a
homogeneous stem of the interacting particles are condensed media without
long-range order (e.g., dense gases, liquids, glasses) [76, 77]. Their only
principal difference is that 1n a system with reaction a number of particies is

varying.



L

Microscopic treatment of stochasticity 109

For the preliminary treatment, let us consider the simplest one-component
system, e.g., thermodynamically equilibrium hquid, having a fixed number
of particles. Introduce the microscopic density of a particle number defining
it with the help of the Dirac é-function:

A) =) o(F — ), (2.3.1)

where 7; are particle coordinates. The Gibbs distribution 1s used in an ensem-
ble averaging (...). In a homogeneous equilibrium system the mean value

(A(r)) =n (2.3.2)

is just macroscopic particle density. Take some arbitrary volume V and calcu-
late the dispersion of the density fluctuations. The mean number of particles

()= [

Fluctuation dispersion 0% = (N — (N))*) = (N?) — (N)? could be ex-
pressed through mean squared of V:

) =( [awar [0
_ / / RERG)) drdi (23.4)

s

Let us consider mean value (n{7)n(7")). Mulnplymg n(7) and 7n(7"), we
can present a product of sums like (2.3.1) in a form

=Y " 6(F — F)S(F — %) +

+ ) S(F =) — 7). (2.3.5)
i#]

Using the well-known d-function property:

§(F — m)d(F — ;) =8(F - 7)I(F — 7%), (2.3.6)
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we can express the mean of (2.3.5) as

REVRE)) = nd(7 — 7) + pa (|7 — 7). (2.3.7)

As it 15 seen from the derivation, only the second, non-singular term

pg 7— 7 < Z §{r — 7)o" “F})>, (2.3.8)

1#]

is related to the spatial particle correlation. The first term emerges due
to repeated registration of the same particles. Since physical effects arise
due to particle interaction, a singular “self-action” term enters mean val-
ues. In particular, the internal system’s energy is a functional of py(r). As

|7 — 7| — oo, microscopic densities become statistically independent (cor-
relation weakening) and thus

(A(@R () = (RFE)HNRF)) = n?. (2.3.9)

Therefore py(co) = n?. It 1s convenient to eliminate dimension-dependent
concentration co-factor n?, defining the joint correlation function

D) = p';(;)' (2.3.10)

Returning now to (2.3.4), after substitution (2.3.7) into (2.3.10) we get

(N = nV + n? f] 2] ) dFd#” (2.3.11)

The fluctuation dispersion reads

o% = nV + n? /f 2) (IF —7'|) — )dfrd?:" (2.3.12)

For large volumes V' — oo, (2.3.12) can be simplified

. s

FNN} =1 +n/(x(2)(r) — 1) d7. (2.3.13)

Since the function x{*(r) emerges (in calculations) usually in a form of
x@ (r)—1, in the condensed system’s statistics under the correlation function
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Fig. 2.17. A pattern of joint correlation function in a homogeneous condensed system.

one often means h(r) = x¥(r) — 1 with the asymptotics h(cc) = 0. The
qualitative behaviour of the correlation function of dense gases and liquids
is given in Fig. 2.17.

The joint correlation function x%)(r) characterizes short and intermediate
orders in particle spatial relative distribution. However, what is observed in
diffraction experiments 1s not the jomnt correlation function but the corre-
sponding structure factor [77]

Sk) = S(E) =1+ nfh(r) exp ( — iE‘F') dr. (2.3.14)
Relation (2.3.14) could be inverted
1 20
2} () = _ *
x(r)y=1+ 27r3n'r_/0 {S(k) — 1} sin(kr)k dk. (2.3.15)

Taking into account (2.3.14), (2.3.13) can be rewritten as

. .

P

&% = S(0). (2.3.16)

Since the Poisson fluctuation spectrum results in 0%, = (V), the second term
in r.h.s. of {2.3.13) defines the deviation of fluctuations from the Poisson
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one. This deviation 15 more pronounced near the critical points [76, 78]
characterized by anomalous fluctuations. The contribution of integral into
(2.3.13) depends not on a deviation of the correlation function ¥ () from
its asymptotical limit {unity) which for large r is small but mainly in the
way x'2)(r) approaches to the asymptotic limit. An estimate of its behaviour
near the critical point after Omstein and Zernike [79] is

5(0)
k) — 2.3.
which corresponds to the correlation function at large r
1 T
h{r) o — €Xp ( — E) (2.3.18)

The variable £ is called the correlation radius. Near the critical point £ — oo
and A(r) decays according to the power law.

In systems with variable number of particles, where random process of
migration and recombination is Markov process, it is convenient to develop
another scheme of introducing the correlation functions, avoiding singular
expressions hke (2.3.1) and (2.3.7).

To do it for the statistical description of a system of reactants, let us
consider as an example a mixture of two kinds of particles, A’s and B’s,
and two non- overlapping volumes dV; = dV, = dV, dV — 0, centered at
) and 7 respectively — Fig. 2,18, Numbers of particles N, (7;) (v = A, B)
within dV7, dV; arc stochastic variables, N, () = 0,1,2,.... The ensemble
average at a given moment £ is

(N, (7)) = dN,. (2.3.19)

Due to the spatial homogeneity it is independent of 7; allowing us to intro-
duce the simplest spatial characteristics — macroscopic densities of particles
(concentrations)

- e

__dN,
- dv e

ni(t) (2.3.20)

Since reactant concentrations are observable, they define what is called the
temporal structure of a process [4, 16].
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dv,
W
y Ny (1,)
il
T
& v,
»
O- Nv(1,)
| Py

Fig. 2.18. A scheme of the statistical description of the spatially distributed system.

Since concentrations do not characterize the relative spatial distribution
of particles (spatial correlations), they yield a structureless description of a
system. If there were no spatial correlations, we would armnive at the relation

(NL(F)NL(7)) = (N (7)) (N, (72)) = dN, dN,,. (2.3.21)
This 1s why the quantity

2) _ (N (1) NL(72)) '
X (r,t) == (2.3.22)
m dN,dN,,

can serve as a measure of the joint particle correlation. We call the quan-
tity XE,EJ (r,t) the joint correlation functions — similar (v = u) or dissim-
ilar (v # u), respectively. These functions depend on a relative distance
T = |F| = |F] — 73| only due to space homogeneity and isotropy. The natural
boundary condition we put on them means neglect of correlations at large
distances

xB(o0,t) = 1. (2.3.23)

These joint correlation functions have transparent physical interpretation [78):
mean density of a number of v-kind particles at a distance ~ from a given
p-kind particle (placed at origin of coordinates) is nothing but

Co(r,t) = nu(t)x2 (r, t). - (2.3.24)
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In the same way triple and higher-order densities could be defined, e.g.,

@) _ (N (F)Nu(P)NA(7))
Xupi dN,dN.dN)

(2.3.25)

The infinite set of the correlation functions x(m), m = 1,2,... gives a
complete statistical description of the spatial structure of a system consisting
of interacting particles.

It was Ziman [77] who has noted that there is little hope, at least at
present, to develop an experimental technique permitting the direct measure-
ment of these correlation functions. The only exception are the joint densi-
ties x,(,ﬂ (r,t), information about which could be learned from the diffrac-
tion structural factors of inhomogeneous systems. On the other hand, optical
spectroscopy allows estimation of concentrations of such aggregate defects
in alkali hahde crystals as £, (n = 1,2,3,4) centres, i.e., n nearest anion
vacancies trapped n electrons [80]. That 1s, we can find x(m), m =1 to 4,
but at small r only. Along with the difficulties known in interpretating struc-
ture factors of binary equilibrium systems (gases or liquids), obvious specific
complications arise for a system of recombining particles in condensed media
which, in its turn, are characterized by their own structure factors.

Therefore, the joint correlation functions xﬁz (r,t), being at least poten-
tially observable, are more a theoretical than an experimental tool for the de-
scription of interacting particles in condensed media. Both these joint func-
tions and macroscopic concentrations n,(t) determine the lowest level to
characterize the spatio-temporal structure of a system.

Sometimes it 1s usetful to introduce many-particle densities. For example,
two-point density 18

(N (F1)NL(72))
_—— , 2.3.2
Taking mnto account the definition (2.3.22), we obtain
pvp = T (B ()X (7, 1), (2.3.27)

These two languages differ by concentration co-factors only, the advantage
of the many-particle densities is the compactness of the kinetic equations
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derived below. To reduce a number of indices, let us denote the joint densities
of similar particles as

X, (r,t) = x@(r, 1), (2.3.28)

whereas those for dissimilar particles

Y(Ta t) = Xf]; (T! t) = ng;(r: t). (2.3.29)

The correlation function of similar particles, X,,, could be easily related to
the simplest characteristics of spatial particle fluctuations, namely, dispersion

of a number of particles within arbitrary volume V. The mean number of v-
kind particles inside V is just

(N,) = n, (£)V. (2.3.30)

whereas the quantity

<(NV _ (NynE)
(Ny)
+

=1 LEt) //I; [X!_,.(lﬂ — 'r_"gl) — l] dr| drs (2.3.31)

yields a measure of the particle density fluctuations. If there were no corre-
lation of the similar particles, X, (r,t) = 1, and rh.s. of equation (2.3.31) is
also a unity, we have the Poisson fluctuation spectrum [78]. On the contrary,
any deviation from it results in the non-Poisson spectrum. The conclusion
suggests that even the lowest level for describing spatio-temporal structure
of the bimolecular recombination kinetics we mentioned above (use of con-
centrations, 14 (t), ng(t), and joint densities X, (r, t), Y(r,t)) also takes into
account the fluctuation effects we are interested in.

Since these characteristics are time-dependent, let us assume particle birth—
death and migration to be the Markov stochastic processes. Note that making
use of the stochastic models, we discuss below in detail, does not contradict
the deterministic equations employed for these processes. Say, the equa-
tions for n,(t}), X,(r,t), Y(r,t) given in Section 2.3.1 are deterministic
since both the concentrations and joint correlation functions are defined by
equations (2.3.2), (2.3.4) just as ensemble average quantities. Note that the
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complete set of coupled equations for correlation functions is infinite. To
handle 1t one has to cut 1t off restricting it by a reduced description of a sys-
tem, e.g., ny(t), Xu(r,t), Y (r,t). In those cases when the microscopic level
turns out to be too complicated, the mesoscopic language could be used (see
Sections 2.1.2 and 2.2).

Note here that the relation between mesoscopic and microscopic ap-
proaches is not trivial. In fact, the former is closer to the macroscopic treat-
ment (Section 2.1.1) which neglects the structural characteristics of a system.
Passing from the micro- to meso- and, finally, to macroscopic level we loose
also the mitial statement of a stochastic model of the Markov process. In-
deed, the disadvantages of deterministic equations used for rather simplified
treatment of bimolecular kinetics (Section 2.1) lead to the macro- and meso-
scopic models (Section 2.2) where the stochasticity is kept either by adding
the stochastic external forces (Section 2.2.1) or by postulating the master
equation itself for the relevant Markov process (Section 2.2.2). In the former
case the fluctuation source 1s assumed to be external, whereas in the latter
kinetics of bimolecular reaction and fluctuations are coupled and mutually
related. Section 2.3.1.2 1s aimed to consider the relation between these three
levels as well as to discuss problem of how determinicity and stochasticity
can coexist.

2.3.1.2 Cell formalism

Following the approach discussed in Section 2.2.2, let us divide the whole
reaction volume V' of the spatially extended system into V equivalent cells
(domains) {81]. However, there 1s an essential difference with the mesoscopic
level of treatment: in Section 2.2.2 a number of particles in cells were ex-
pected to be much greater than unity. Note that this restriction is not imposed
on the microscopic level of system’s treatment. Their volumes are chosen to
be so small that each cell can be occupied by a single particle only. (There is
an analogy with the lattice gas model in the theory of phase transitions [76].)
Despite the finiteness of vy coming from atomistic reasons or lattice dis-
creteness, at the very end we make the limiting transition vg — 0, N = oo,
vodV =V, to the continuous pattern of point dimensionless particles.

Any cell centered at some 7 is characterized by its occupancy number v(7)
depending on the actual reaction under study: for A+B — 0, () = A, B
and 0 — Fig. 2.19. Now any diffusion or reaction event could be described in
terms of time-development of these occupancy numbers. Say, the diffusion
motion results in replacement of the configuration A(+)0() for O(7)A(7),
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O

¢ o

Fig. 2.19_. A scheme illustrating the cell formalism. Symbeols of empty cclis (0) arc omitted.

where 7, 7' are the coordinates of the nearest cells. The recombination event
similarly means that A(7)B(7") — O(7)0{7’). The new point here is that —
unlike Section 2.2.2 — non-local character of elementary events is taken into
account since the relative distances in real space become important here.

The physical state of a system with a varying number of particles is defined
uniquely by a set of the population numbers v(7},...,v(fny) = {v(7)}}n.
Assuming the reaction 1s the Markov process, let us mtroduce the distribution
functions (DF’s) P({v(7')} n;t) yielding a complete probabilistic description
of the problem. The recurrent relation

Y P({u(™)},:t) = P{v(M},._;t) (2.3.32)

Y(Tm)

permits us to find the DF’s of lower order. The master equation of
the Markov process could be presented either through equation for the
N-cell DF P({v(7)}n;t) or via the set of equations for partial DF’s
P{v(F)}mit),m = 1,2,... [81). The passage to the continuous model is
quite trivial. Consider m points with coordinates {7}, = 7, ..., Tm and m/’
points with coordinates {7}, = 7,..., 7/ ,. Define now for the reactions
A+B — 0, A+ B — B the many-particle densities p,, ' ({7 } i {7 }nri T)
through the limiting transition vy — 0 for an average

(T NaG) T Na (7))

(rm+4+m’)
Yo

(2.3.33)

which can be calculated by means of the DF just given above. All coordinates
in equation (2.3.33) are different. Since each cell contains no more than a
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single particle, A or B, it is easy to check that p,, o ({7 }n; {7/ }rrs t) 18
indeed the lhmit of expression

Pm,m/ ({F}m; {7} t)
= lim vy "V P ({AGF) Y {B(F Y} t) (2.3.34)

]—}'U

Therefore, the limiting transition vy —» 0 permits us to transfer the set of
equations for DF’s into that for the many-particle densities. The many- parti-
cle densities containing coinciding coordinates, say, ¥ and 7', are considered
as the non-singular limit |7 — 7/| — 0 of equation (2.3.34), carried after
the limit vg — 0. This is due the definition of the initial DF’s which do not
contain coinciding coordinates. This definition permits us to exclude singular
terms, similar to né(r¥ — 7') in (2.3.7). Introducing, by analogy with (2.3.1),
microscopic particle densities n4 (7, t) and ng (7, £), many-point density could
be defined as the mean value

<H Tia (75, 1) HnB rj,t)> (2.3.35)

j=I1

where self-action singular terms are excluded.

2.3.1.3 Master equation
Let us consider now other terms of the kinetic equattons.
(1) Particle recombination. For the A + B — 0 reaction one gets

2 P{AG )i ABG) i )

-"

3 S 0~ P ((AF) i (B 1) —

i=1 j3=1

™m

= 22 Yol ) PUAG s (BE i) -

1=1
m"—i—l

- Z Z”(Fmﬁ N ?:;)P({A(F)}m-l-l;{B(F)}m’;t), (2.3.36)

F‘rn-l-—l j=l
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where o(F — ') = o (|7 — 7'|) is the recombination rate of particles A with
B at ¥ and 7. The first term in equation (2.3.36) describes all the possible
ways in which m particles A can recombine with 7 particles B, whereas the
other terms describe the recombination of particles B with A (and vice versa)
not belonging to a set of (s +m') particles. When dividing equation (2.3.36)

by uém+m ) we arrive at
apm_’m’ e il — —f
ot > D o= ) pman
i=1 j=1
T
- /J('Fi = o 1) P17y —
i=1}
mf
as f (Pt — 7Py L Qo1 (2.3.37)
j=1

The physical sense of individual contributions into (2.3.37) using the joint
density p; 1 is illustrated in Fig. 2.20.

The limitation in equation (2.3.36) that vectors ¥, and 7, , ; cannot
coincide with {7}, {7’} becomes unimportant in the continuous ap-
proximation containing integrals instead of cell sums. The above mentioned
changes in the DFs due to recombination correspond exactly to those done by
Dettmann [82]. In the case of the A+ B — B reaction one must omit the last

O O

(a) (b)

Fig. 2.20. Change p,, » due to particle recombination. (a) Reaction of two dissimilar particles
from the (m,m’)-group. (b) Reaction of one of the particles from the (m,m’)-group with
the surrounding particles.
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term in equations (2.3.36) and (2.3.37) since particles B do not disappear:

DDy m  m
== 2D ol = o -

i=1 j=1

m
- / (75 = T 1) Pt 41 AT 4 1. (2.3.38)
=1

(11} Particle creation. When considering creation of single particle A or

B as well as pairs AB by irradiation in unoccupied cells, one gets for the
reaction 0 - A+ B

0 S ey
= P({AG) s (B o1

f

= Z Zw — FYP({AF) Yo {BEY i) +

1._131

+ 30 D 0l — FIP(AG) s (B )i 0)1) +

e

T 1—1

+ZZ‘P(T— DPUAT i (BE) Y 00N ). @339

Here (7 — 7'} = (|7 — 7|} is the probability to create a particle A at 7
and B at 77 at time units, {A{7)}! indicates that A(7;) should be replaced
by O(7;) in the populatmn numbers {A( }}m. In the himiting case vy — 0

we assume (7 — 7') = vipf(F — 77}, where p is the irradiation intensity,
f(¥) = f(r) is the initial distribution function of particles in just created
geminate pairs,

/f(r) dr = 1. (2.3.40)

For the reaction 0 — A one gets

e P{AG) i B} )

= _qu»(ﬁ)P({A(F)}L;{B(F’)}mf:t), (2.3.41)
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with ¢(7") = wvyp. Equations (2.3.39) and (2.3.41) contain the DFs where one
or two population numbers v(7) = O(7).

Let us rewrite equation (2.3.32) in the form

P({AGF)}m: {BG) b3 O(F)3 )
= P({A(7)}ms {B(7") }mr3 ) —
— Y PUAG ) s {BG ) s (7 1) (2.3.42)

v{r)=AB

When dividing equation (2.3.42) by vﬂm ™) and taking into account equa-
tion (2.3.34), we can rewrite its right-hand side in the form p,, ;v — O(wp),
where Q(wp) tends to zero when uy — 0. In other words, the population

number v(7) = 0(r) in equations (2.3.39) and (2.3.41) could be omitted.
Equation (2.3.39) now reads

It

d 3 i o
p’”"” ZZPJ’ = T3 Pm—1,m -1 ({7 s {7 }5 1) +

™m

+p2pm—lm {T}m’{ }m’ t)

1.—]

+prmmm1 ({7 }ms ('Y 10), (2.3.43)

where {7}, indicates that the vector ; is omitted in this vector set. The first
term on rh.s. of equation (2.3.43) takes into account all the ways to form a
group of {m +m’) particles, whereas the second and third terms arise if one
of reactants does not enter this group. Equation (2.3.41) becomes

0 Lm m e o
pat: :pzpm—limr({?’ :n;{r"}m;;t), (234—4)

1=1

Equation (2.3.43) corresponds also to that in [82].
(i1t) Particle motion. Diffusion is described by

!

af)m 2
At — DA Z V; i Pr,m! + DB Z v pm,m" (2-3*45)

=1 j=1
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where Da, Dp are diffusion coefficients. Equation (2.3.45) can also be ob-
tained when describing diffusive motion as a random walk in a lattice in the
limiting case vg — 0. Many-particle densities change due to diffusion as a
product of concentrations taken at the corresponding spatial points.

In the case of dynamical interaction the pair potentials Uaa(r), Upg(r) and
Uag(7) should be incorporated into equation (2.3.43). It could be done using
the Smoluchowski equation [27, 83, 84] for a particle drift in the external
potential W (r) and expressed in terms of single particle DF (or concentration
of such non-interacting particles)

dg(7, 1)
ot

r, t

_ v (v o+ L2 gwimy), (2.3.46)
kg T

where kg is the Boltzmann constant, 7' i1s temperature. The natural gener-

alisation of equation (2.3.46) in the case of many-particle system under our

study is

a"”’“’” ——-Zv A - Zijfﬁfm (2.347)

where the diffusion fluxes are defined similarly to equation (2.3.46) [85, 86]

T Do Vipmm + P W, (2.3.48)
’ kpnT

v ; p

JTEfm;:—DB (vjpm,mw ;‘;’;; V’W’" ) (2.3.49)

In two last equations the mean force potential W' _,is introduced, for which

VWﬁnm;—ZV UAA +ZV UABUH )
V£l =1
4 /Pm+1m Vilaa (|7 — F1]) 8Fmar +
J  Pmm
+ [p:,m + Vi UAB(EI' m’—l—iD d?‘m 41 (2.3.50)
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The potential W, is defined similarly. As it is seen from equation (2.3.50),
the mean force acting on a particle A at coordinate 7 has both the contribution
from direct interactions within a group of (m + m/)-particles and indirect
interactions (integral terms). If the particle creation and recombination terms
were absent, the steady-state solution of equation (2.3.47) would correspond

to putting the fluxes frﬁfm, and fﬂ[_fjm, equal zero. The corresponding set of

the mtegro-differential equations

Vipmm + ST Wi =0, (2.3.51)
B
Pm,m’ ' .

coincide exactly with the Ivon’s equations [76] well known in the statis-
tical physics of dense two-component gases and liquids. Therefore, equa-
tions (2.3.47) allow us to describe correctly the formation of the equilibrium
state in a system consisting of dynamically interacting but nonreacting par-
ticles.

The complete set of equations for many-particle densities is nothing but a
sum of contributions due to the three kinds of processes described above:

apm,m*’
ot

apm,m"
ot

apm,m" . apm,m’

ot at | T

e

.|_

Cr

(2.3.53)

diff

A structure of the obtained set of equations derived by us in [81, 86] is very
close to the famous BBGKI set of equations widely used in the statistical
physics of dense gases and liquids [76]. Therefore, we presented the master
equation of the Markov process in a form of the infinite set of deterministic
coupled equations for averages (equation (2.3.34)). Practical use of these

equations requires us to reduce them, retaining the joint correlation functions
only.

2.3.1.4 Superposition approximation

The analogy just mentioned with the BBGKI set of equations being quite
prominent still needs more detailed specification. To cut off an infinite hier-
archy of coupled equations for many-particle densities, methods developed
in the statistical theory of dense gases and liquids could be good candidates
to be applied. However, one has to take into account that a number of the
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standard approximate methods, e.g., the Percus—Yevick or hyper-chain ap-
proximations, are applicable for systems with the Gibbs distribution and are
based on the distinctive Boltzmann factor like exp(—U{(r)/(kgT}), where
U(r) is the potential energy of interacting particles. The basic kinetic equa-
tion (2.3.53) has nothing to do with the Gibbs distribution. The only ap-
proximate method “neutral” with respect to the ensemble averaging 1s the
Kirkwood approximation [ 76, 77, 87].

Despite Kirkwood’s superposition approximation i1s widely used, the range
of its applicability established earlier in statistical physics from a comparison
with the molecular dynamics [76, 77] should be checked anew before it is
applied to the kinetics of reactions. Making use of Kirkwood’s superposttion
approximation leads to a closed set of several integro-differential equations
not containing any small parameters [76]. It 15 clear that an accuracy of the
approximations employed cannot be found in the framework of the same
method, but only when comparing the results obtained with computer sim-
ulations or seldomly available exact solutions of particular problems. For
instance, in the statistical physics of dense gases and liquids the diagram-
matic approach argues for the so-called hyperchain approximation whereas
the best results have been obtained by means of the Percus--Yevick approxi-
mation [76]. It once more clearly demonstrates that results are not necessarily
better if we use more terms 1n corresponding diagrammatic expansion which
is typical for non-convergent or semi-convergent series.

All superposition approximations mentioned above are based on the 1dea
of multiplicative expansion, when m-reactant (m-point) distribution func-
tions pm(l,...,m), with arguments being the generalised coordinates, are
expressed through the correlation forms al™):

Inp' (1) =al')(1),
in (1,2} =aP (1) + e (2) + 2 (1,2),
In p3(1,2,3) =aP (1) + a1 (2) + V(3) +
+aP(1,2) +a®(2,3) + P (3,1) +
+a.(3)(1,2,3)?
(2.3.54)

where each of these expressions defines a new correlation form al™). By
omitting the correlation formis a™) with m > my, all distribution functions
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pm with any m could be expressed through p,,,, m’ < mgy and we thus
arrive at the superposition approximations. It is assumed that the correlation
forms (™D are small as compared to the a(™), but no distinctive small
parameters are employed here. The Kirkwood superposition approximation
corresponds to the choice

1, 2)92(21 3){)2(3-,. I )
pr(1}p1(2)p1(3)

In 1its turn, the choice of my = 3 leads to the approximation (Ziman 1979,

[77))

03(1,2,3) = 22!

(2.3.55)

pa(1,2,3,4) = p1(1)p1(2)p1 (3) 1 (4) x (2.3.56)

93(1:2: 3)P3(1 y 2, 4)[-’3‘3(1, 3: 4)93(21 3, 4)
92(1& 2)}92(1: 3)92(11 4)92(2! 3)92(23 4)p2(3= 4) '

As was demonstrated by Kikuchi and Brush [88], using the Ising model
as an example, an increase of my in the expansion in the a!™ form secures
the monotonic approach of the calculated critical parameters to exact results,
except for the critical exponents which cannot be reproduced by algebraic
expressions. It 1s important to note here that the superposition approximation

- permits exact {or asymptotically exact) solutions to be obtained for models

reveahing the critical point but not the phase transition. This should be kept
in mind when interpreting the results of the bimolecular reaction kinetics
obtained using approximate methods.

An alternative way to study many-particle effects is based on the correla-
tion forms in the additive expansion [76]

p(1)=btV (1),
p2(1,2) =6 (161 (2) 4 (1, 2),
p3(1,2,3) =6 (1pM (2160 (3) +
+ b(‘>(3)b(z>(i,2) + 61 (2)6(3, 1) + 60 (1)6P (2,3) +
+53(1,2,3),

(2.3.57)
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Unfortunately, this expansion cannot be used as a basis for the development
of approximate methods since — unlike the superposition approximation —
in the case of considerable spatial correlation, neglect of the forms (™),
m > myg leads to the correlation functions not satisfying the proper boundary
conditions and increase of myp does not lead to the convergence of results. A
comparison of the two kinds of expansion of the many-particle distribution
function demonstrates that the superposition approximation even for small
mg corresponds to the choice in the additive expansion of 4™ £ 0 with any
m. Therefore, in terms of the latter expansion the many-particle correlation
forms ™ are not neglected in the superposition approximations but are no
longer independent.

Incorporation of the superposition approximation leads inevitably to a
closed set of several non-linear integro-differential equations. Their non-
linearity excludes the use of analytical methods, except for several cases
of asymptotical automodel-like solutions at long reaction time. The kinetic
equations derived are solved mainly by means of computers and this imposes
limits on the approximations used. For instance, we could derive the kinetic
equations for the A4+ B — C reaction employing the higher-order superposi-
tion approximation with mg = 3,4, ... rather than mg = 2 for the Kirkwood
one. (How to realize this for the simple reaction A + B - B will be shown
in Chapter 6.) However, even computer calculations involve great practical
difficulttes due to numerous coordinate variables entering these non-linear
partial equations.

A general expression for the superposition approximation (2.3.55) has to
be specified for a reaction under study. For instance, let us do it for the
actual case of the bimolecular reaction employing many-particle densities
Pm,m - Single-particle densities are nothing but macroscopic concentrations
{(particle densities):

pro(f1:t) = nal(t),  po1(71;t) = na(t). (2.3.58)

Taking into account (2.3.27)—(2.3.29), two-particle densities could be ex-
pressed easily through the joint correlation functions

p2.0(71, 72 t) = i () Xa (|71 — 71, £), (2.3.59)

po2(7, 75 1) = ng () Xn (Ir] — 75|, 1), (2.3.60)

p11{(T1: 71 t) = na(Bns ()Y (|71 — 77|, £). (2.3.61)
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Three-particle densities p, . with (m+m’) = 3 could be expressed through
the Kirkwood approximation as products of single-particle (2.3.58) and two-
particle (2.3.59)—(2.3.61) densities:

pg,l(Fi,Fg;Ff;t) #ni(t)ng(t)XAUﬂ — Fgl,t) X

xY (i1 — 7, )Y (|7 — 7], 2). (2.3.62)

Equation (2.3.62) comresponds to the three-particle correlation function
(2.3.25)

Xaas = Xa(lfi — 7l )Y (17 — 7], ) Y (|7 — 7], £)- (2.3.63)

Kuzovkov and Kotomin [89-91] (see also [92, 93]) were the first to use
the complete Kirkwood superposition approximation (2.3.62) in the kinetic
calculations for bimolecular reaction in condensed media. This approximation
allows us to cut off the infinite hierarchy of equations for the correlation
functions describing spatial distribution of particles of the two kinds and to
restrict ourselves to the treatment of minimal set of the kinetic equations
which realistically could be handled (Fig. 2.21). In earlier studies [82, 84,
91, 94-97] a shortened superposition approximation was widely used

p2,1(F1,72;7]; )

= na(tne (@)Y (|7 — 71, )Y (|72 — 71, 1), (2.3.64)

or
Xans = Y (|7 — 7, 8)Y (|7 — 7], t). (2.3.65)

In equations (2.3.64) and (2.3.65) — unlike (2.3.62) and (2.3.63) - spatial
correlations of similar particles are neglected:

Xa(r,t) = Xg(r,t) = 1. (2.3.66)

Use of (2.3.64) for diffusion problems without particle generation leads to
the linear equation for the cotrelation function of dissimilar reactants Y (r, t),
which greatly simplifies the solution of kinetic equations (Chapter 6). The

approximation (2.3.56) was applied for the first time to the study of kinetic
processes i [98, 99].
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m+m’=l -> Na, Np

m+m=4 -> y (4)

Fig. 2.21. The idea of the cut off of the infinite hierarchy of cquations for the correlation
functions by means of the Kirkwood superposition approximation,

The applications of the many-particle densities will be demonstrated on
a full scale in further Chapters. It should be only said here that the many-
particle density formalism being combined with the shortened Kirkwood
superposition approximation, equation (2.3.64), results in the well-known
equations of the standard kinetics for both neutral [83] and charged particles
[100] giving just another way of their derivation. On the other hand, the use
of the “full-scale” (complete) Kirkwood’s approximation, equation (2.3.62),
permits us to take into account the many-particle (cooperative) effects [81,
91, 99-102] we are studying in this book.

2.3.1.5 Many-point densities and probability densities

Note that willing to stress the relation between many-particle densities and
master equation for the Markov process, we followed the formalism presented
by us [81] rather than that used in the pioneering papers by Waite [84, 94, 95]
and Leibfried [96], as well as in more recent studies [82, 97, 103—-105] where
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equations similar to our equations (2.3.37), (2.3.43) were derived. They used
the probability densities wy, p/ ({7 }m; {7} £) to find at time £ m particles
of the A kind at points {7'},, and m’ B particles at {7'},,. By means of
some mathematical manipulations based on combinations one can construct
from w,;, v physically observable particle densities p,y, ;e [82].

A method to derive kinetic similar to (2.3.37), (2.3.43) has certain
shortcomings. Say, Waite [84, 94, 95] has neglected the undistinguishabil-
ity of similar reactants and related symmetry of the probability densities
W, m! ({7 }ms {7 }mr; t) with respect to the permutation of coordinates in
{7 }m (or {7'},n0). Accordingly, his approach is often called “asymmetric”
unlike 1ts “symmetric” counter-partner presented by Leibfried [96] who has
demonstrated that the incorporation of the fact that similar particles are undis-
tinguishable in the case of initially correlated (geminate) pairs change both
the relevant kinetic equations and their solution. The symmetric approach
does not use an additional equation for time development of geminate pairs
as the asymmetric one does. (For more details and discussion of this point
see [105] and {81, 91, 106]}.) Note that the described formalism of the master
equation for the Markov process argues for the symmetric approach. When
deriving equation (2.3.43), Dettmann [82] enumerated particles at their birth
moments which gives excess information and, in principle, can lead to some
paradoxes (see for details [81]).

2.3.2 The field-theoretical formalism

2.3.2.1 Probability densities and quantum-mechanical analogy

The probability densities w,, o ({7} {7 e £} were used in Sec-
tion 2.3.1 in the many-particle density formalism just as an intermediate and,
as follows from Section 2.3.1, not necessary step to derive equations (2.3.53).
However, it was learned in the last years that a form of the corresponding
master equation for w,y, v suggests an idea how to use its analogy with the
field-theoretical formalism developed in quantum mechanics and to derive a
novel approach to the recombination kinetics of classical particles [35, 43,
107-114].

Let us consider a mixture of classical mobile particles A and B participat-
ing in the A + B — 0 reaction occurring in a continuous neutral medium,
Assume also that uncorrelated particles are created with rate p and recombine
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with probability (7). Thus one arrives at equation [113]
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