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Preface

Chemistry is concerned with reactions, structures, and properties of matter.
The scope of this is immense. Alone the chemistry of the solid state cannot be
treated in a single monograph to any depth. The course of processes in space
and time, and their rates in terms of state variables is the field of kinetics. The
understanding of kinetics in the solid state is the aim of this book.

In contrast to fluids, crystals have a greater number of control parameters:
crystal structure, strain and stress, grain boundaries, line defects (dislocations),
and the size and shape of crystallites, etc. These are all relevant to kinetics.
Treatments that go beyond transport and diffusion in this important field of
physical chemistry are scarce.

In the previous monograph Solid State Reactions (Verlag Chemie, 1975), 1
attempted to base the understanding of solid state kinetics on point defect
thermodynamics and transport theory. In the meantime, a spectacular progress
in experimental (in-situ) methodology, the growth of materials science (in
which practical needs predominate), and a closer acquaintance of chemists with
formal theories of non-equilibrium systems have been observed. The question
thus arose: Should there be yet another revision of Solid State Reactions,
following those of 1978 and 1981, or should a new and more comprehensive
monograph be written? The answer is this new book. It stresses a deeper con-
ceptual framework on the one side and the unifying aspects of solid state
kinetics, despite their multitude and diversity, on the other side. The growing
diversity is reflected in fields such as radiation chemistry and mechanochemis-
try (tribochemistry), for example.

In order to systematize the multitude of solid state processes and their inter-
actions, it seems more important to shape the physico-chemical concepts for
relevant limiting cases than to report on many complex reactions in a qualita-
tive manner. This is also reflected in the preponderance of inorganic systems.

Chemical Kinetics of Solids covers a special part of solid state chemistry and
physical chemistry. It has been written for graduate students and researchers
who want to understand the physical chemistry of solid state processes in fair
depth and to be able to apply the basic ideas to new (practical) situations.
Chemical Kinetics of Solids requires the standard knowledge of kinetic text-
books and a sufficient chemical thermodynamics background. The fundamental
statistical theory underlying the more or less phenomenological approach of
this monograph can be found in a recent book by A.R.Allnatt and A.B.
Lidiard: Atomic Transport in Solids, which complements and deepens the theo-
retical sections.

A large part of Chemical Kinetics of Solids was written while I enjoyed the
hospitalities of the Theoretical Chemistry Department at Oxford University,
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the CNRS Bellevue Laboratoire Physique des Materiaux (Meudon, France),
and the Department of Physical Chemistry at the Polish Academy of Science
(Warsaw). The Volkswagenstiftung made the sabbatical leave possible by a
generous stipend. Also, the help of the Fonds der Chemischen Industrie has to
be mentioned here with gratitude.

Criticisms, encouragement, and the sharing of ideas and time by many
coworkers and friends are gratefully acknowledged. The great influence of the
late C. Wagner, and in particular of A.B. Lidiard (Oxford) is profoundly
appreciated. B. Baranowski (Warsaw), K.D. Becker (Hannover), P. Haasen
(Gottingen), M. Martin (Hannover), and Z. Munir (Davis, Cal.) read parts of
the manuscript and gave generous advice and suggestions. The graphic work
benefited from the skills of C. Majoni. Last but not least, the book would not
have been written without the invaluable help of A. Kiihn.

Buntenbock, December 1994 H. Schmalzried
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Symbols and Definitions

The following list is meant to 1) compile frequently used symbols and 2) define
frequently used quantities. If the same symbol has different meanings, it is
stated in the text.

If the vector character of a quantity is stressed, the corresponding symbol
is set boldface. If only the absolute value matters, the boldface is omitted. The
symbol ~ over a letter designates a tensor (e.g., B). A basic concept is the struc-
ture element (= SE). A crystal is composed of SE’s which are characterized by
their chemical identity, their sublattice site, and their electric charge. Regular
SE’s define the perfect crystal. Irregular SE’s are point defects in imperfect
crystals and include vacancies or interstitials. The general symbol of a SE is §:
S denotes the chemical unit (element or molecule), g the electric charge, and x
the sublattice. V denotes a vacant site. Often the electric charge g is referred
to the perfect crystal (excess quantity, - = positive, * = negative, X = neutral).
The corresponding SE notation is called the Kroeger-Vink notation. When
useful, the IUPAC manual Quantities, Units and Symbols in Physical Chemistry
was used with respect to the notation. Discrepancies in some instances stem
from the fact that different symbols are used in different subject fields.

A area [em?]

a;  activity of chemical component i (= e“i=#/ KTy

b; mobility of particles of sort i (= v, /K))

¢,  concentration of component i (= n;/V [mol/cm’])
D;  (self)diffusion coefficient of particles of component i
D; tracer diffusion coefficient of particles of component i

D (chemical) interdiffusion coefficient

e,  charge of electron (= 1.6-107" C)

e electron in crystal

e,  electron in a conduction band state

E modulus of elasticity, Young’s coefficient [Pa]
E  electric field vector (= -V ¢)

fi activity coeftficient of component i (= a, / N;)
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Symbols and Definitions

correlation factor, jump efficiency in non-random walk motion
Faraday constant (= 96485 Coulombs per equivalent)
Helmholtz energy (U-T5)

Gibbs energy (H-TS)

partial molar Gibbs energy of component i (= y;)

standard Gibbs energy change of reaction

shear modulus (sometimes G, to distinguish it from Gibbs energy) [Pa]
Gibbs energy per particle i (= G, /Ny)

Planck constant (= h - 21 = 6.626- 107 [Js])

electron hole in crystal

hole in a valence band state

enthalpy

electric current density (= j;-z;- F)

flux density of particles of sort i [mol/cm? s]

Boltzmann constant (= 1.38- 10 [JK'])

(reaction) rate constant in kinetic rate equations

wave vector, or k = 4/ 2xn

force vector

transport coefficient, generalized conductance of component i
Debye-Hiickel screening length

mass of particle

amount of substance (number of moles) [mol]

number of moles of component i

fraction (mole, site, number of state) of component ¢
Loschmid (Avogadro) number (= 6.02-10% mol™)

partial pressure of component i (= N;- P in ideal gas)
pressure (= Z p;)

(excess) electric charge, characterizing a SE

molar gas constant (= Ny k = 8.314 [JK™ mol™'])

entropy
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Symbols and Definitions XV

structure element

time

transport number of component i (= 0;/Z 0;)
temperature [K]

electrochemical mobility of i (= v,/E)

energy, internal energy

voltage (difference, change) (= ¢,—¢)
velocity (average drift) of particles i (v, = velocity vector)
volume (V,, = molar volume)

partial molar volume of component i

vacancy with charge g on sublattice x (= SE)
thermodynamic force on species i

number (z; = number of particles i)

valence number of particles i

partition function

phase denotation

surface energy, interface energy

deviation from reference value, normally from stoichiometric composition
relative permittivity (dielectric constant)

absolute permittivity of vacuum (dielectric constant) (= 8.854 - 107"
[As/Vem))

space coordinate (§,, &, &)

thickness

order parameter

electrochemical potential (= u;+z;- F- ¢)

wave length

chemical potential of particles i (= G; = (aG/ani)p,T\”j#”l. =u; +RTIn a;)
standard value of y;, usually referred to pure substance { with a; = 1
frequency, transition rate [s"'], sometimes denoted w/2s

Poisson ratio in theory of elasticity
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e}

density of mass, charge, particles, etc., specific quantity

o electrical conductivity (= X ;)
o entropy production rate
T time interval, especially relaxation time

@ electric potential (V¢ = - E)

w angular frequency



1 Introduction

In this first chapter, we will outline the scope of this book on the kinetics of chemical
processes in the solid state. They are often different from the kinetics of processes
in fluids because of structural constraints. After a brief historical introduction,
typical situations of non-equilibrium crystals will be described. These will illustrate
some basic concepts and our approach to understanding solid state kinetics.

1.1 Scope

Chemical reactions are processes in which atoms change positions while their outer
electrons rearrange. If two atoms are going to react, they have first to meet each
other. This means that they have to come close enough that forces between their
outer electrons become operative. The prerequisite for the meeting of different in-
dividual atomic particles in an assemblage is their mixing on an atomic scale.
Although this mixing can easily be visualized in gases or liquids, the mixing of solids
(for example of crystals) at atomic dimensions is less obvious. There was even a say-
ing long ago that solids do not react with each other. Such a statement, however, con-
tradicts our experience since the arts of ceramics and metallurgy, in which reacting
solids were involved, have been cultivated for thousands of years.

Normally, crystals do not exhibit convective flow and, therefore, mixing by convec-
tion at atomic dimensions is not possible. As a consequence, diffusive transport and
heterogeneous reactions are the only processes which can be anticipated at this point.

The amazing evolution of solid state physics and chemistry over the last 30 years
induced an intensive study of various solid state processes, particularly in the context
of materials science. Materials have always been an important feature of civilization
and are the basis of our modern technical society. Their preparation is often due
solely to reactions between solids. Solid state reactions are also often responsible for
the materials’ adaptation to a specific technical purpose, or for the degradation of
a material.

In retrospect, one can understand why solid state chemists, who were familiar with
crystallographic concepts, found it so difficult to imagine and visualize the mobility
of the atomic structure elements of a crystal. Indeed, there is no mobility of these
particles in a perfect crystal, just as there is no mobility of an individual car on a
densely packed parking lot. It was only after the emergence of the concept of
disorder and point defects in crystals at the turn of this century, and later in the twen-
ties and thirties when the thermodynamics of defects was understood, that the idea
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of the mobility of atomic structure elements became clear and the reactivity of solids
became a logical possibility.

Kinetics describe the course in space and time of a macroscopic chemical process.
Processes of a chemical nature are driven by a system’s deviation from its
equilibrium state. By formulating the increase of entropy in a closed system, one can
derive the specific thermodynamic forces which drive the system back towards
equilibrium (or let the system attain a steady non-equilibrium state).

The production of species i (number of moles per unit volume and time) is the
velocity of reaction, #;. In the same sense, one understands the molar flux, j;, of
particles / per unit cross section and unit time. In a linear theory, the rate and the
deviation from equilibrium are proportional to each other. The factors of propor-
tionality are called reaction rate constants and transport coefficients respectively.
They are state properties and thus depend only on the (local) thermodynamic state
variables and not on their derivatives. They can be rationalized by crystal dynamics
and atomic kinetics with the help of statistical theories. Irreversible thermodynamics
is the theory of the rates of chemical processes in both spatially homogeneous
systems (homogeneous reactions) and inhomogeneous systems (transport processes).
If transport processes occur in multiphase systems, one is dealing with heterogeneous
reactions. Heterogeneous systems stop reacting once one or more of the reactants are
consumed and the systems became nonvariant.

Solid state kinetics is distinguished from chemical kinetics in the fluid state in so
far as the specific solid state properties (crystal lattice periodicity, anisotropy, and
the ability to support a stress) influence the kinetic parameters (rate constants, trans-
port coefficients) and/or the driving forces. Even if external stresses are not applied,
such processes as diffusion, phase transitions, and other reactions will normally
result in a change in the stress state of the solid, which in turn directly influences
the course of the reaction. Since the yield strength of a solid (which is the limit of
stress when plastic flow starts and dislocations begin to move) is easily reached
through the action of the chemical Gibbs energy changes associated with solid state
reactions, not only elastic deformations but plastic deformations as well occur fre-
quently. While elastic deformations affect both kinetic parameters and driving
forces, plastic deformations mainly affect transport coefficients.

In addition to stress, the other important influence on solid state kinetics (again
differing from fluids) stems from the periodicity found within crystals. Crystallogra-
phy defines positions in a crystal, which may be occupied by atoms (molecules) or
not. If they are not occupied, they are called vacancies. In this way, a new species
is defined which has attributes of the other familiar chemical species of which the
crystal is composed. In normal unoccupied sublattices (properly defined interstitial
lattices), the fraction of vacant sites is close 10 one. The motion of the atomic struc-
ture elements and the vacant lattice sites of the crystal are complementary (as is the
motion of electrons and electron holes in the valence band of a semiconducting
crystal).

Since irregular structure elements (point defects) such as interstitial atoms (ions)
or vacancies must exist in a crystal lattice in order to allow the regular structure
elements to move, two sorts of activation energies have to be supplied from a heat
reservoir for transport and reaction. First, the energy to break bonds in the crystal
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must be supplied in order to allow for the formation of the irregular structure
elements. Second, energy must also be supplied to allow for individual and activated
exchanges of atoms (ions, regular structure elements) with neighboring vacancies.
Since these energies are of the same order of magnitude as the lattice energy, trans-
port and reaction of atoms and ions in solids do not occur unless the temperature
is sufficiently high that the thermal energy becomes a noticeable fraction of these
bond energies. Gibbs energy changes in reacting systems, the gradients of which are
the driving forces for transport, are comparable in solids and fluids. Hence, the
Gibbs energy change per elementary jump length of an atomic structure element is
always very small compared to its thermal energy (except for reactions in extremely
small systems). This is the basic reason for the validity of linear kinetics, that is, the
proportionality between flux and force. It also suggests that the kinetics of
solid —solid interfaces are particularly prone to be nonlinear.

Are the formal solid state kinetics different from the chemical kinetics as presented
in textbooks? One concludes from the foregoing remarks that if vacancies are taken
into account as an additional species and if all structure elements of the crystal are
regarded as the reacting particle ensemble, one may utilize the formal chemical
kinetics. However, it is necessary to note the restrictions and constraints that are
given by the crystallographic structure in which transport and reaction take place.
Also, the elastic energy density gradient has to be added to all the other possible driv-
ing forces. Finally, the transport coefficients, in view of crystal symmetry, are ten-
sors. In order to emphasize the differences between crystals and fluids, we mention
that in coherent (and therefore stressed) multiphase multicomponent crystals the
(nonuniform) equilibrium composition depends on the geometrical shape of the
solid. The kinetic complexities that stem from these facts will be discussed in much
detail in later sections.

The subject of kinetics is often subdivided into two parts: a) transport, b) reaction.
Placing transport in the first place is understandable in view of its simpler concepts.
Matter is transported through space without a change in its chemical identity. The
formal theory of transport is based on a simple mathematical concept and expressed
in the linear flux equations. In its simplest version, a linear partial differential equa-
tion (Fick’s second law) is obtained for the irreversible process. Under steady state
conditions, it is identical to the Laplace equation in potential theory, which encom-
passes the idea of a field at a given location in space which acts upon matter only
locally, ie. by its immediate surroundings. This, however, does not mean that the
mathematical solutions to the differential equations with any given boundary condi-
tions are simple. On the contrary, analytical solutions are rather the exception for
real systems [J. Crank (1970)].

Two reasons are responsible for the greater complexity of chemical reactions:
1) atomic particles change their chemical identity during reaction and 2) rate laws
are nonlinear in most cases. Can the kinetic concepts of fluids be used for the
kinetics of chemical processes in solids? Instead of dealing with the kinetic gas
theory, we have to deal with point defect thermodynamics and point defect motion.
Transport theory has to be introduced in an analogous way as in fluid systems, but
adapted to the restrictions of the crystalline state. The same is true for (homoge-
neous) chemical reactions in the solid state. Processes across interfaces are of great
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importance in solids and so their kinetics should be discussed in depth. Finally, reac-
tion rate constants and transport coefficients are interpreted theoretically, the
underlying conceptual fundamentals are to be found in the dynamics on an atomic
scale, and in quantum theory.

This monograph deals with kinetics, not with dynamics. Dynamics, the local
(coupled) motion of lattice constituents (or structure elements) due to their thermal
energy is the prerequisite of solid state kinetics. Dynamics can explain the nature and
magnitude of rate constants and transport coefficients from a fundamental point of
view. Kinetics, on the other hand, deal with the course of processes, expressed in
terms of concentration and structure, in space and time. The formal treatment of
kinetics is basically phenomenological, but it often needs detailed atomistic model-
ing in order to construct an appropriate formal frame (e.g., the partial differential
equations in space and time).

Chemical solid state processes are dependent upon the mobility of the individual
atomic structure elements. In a solid which is in thermal equilibrium, this mobility
is normally attained by the exchange of atoms (ions) with vacant lattice sites (ie.,
vacancies). Vacancies are point defects which exist in well defined concentrations in
thermal equilibrium, as do other kinds of point defects such as interstitial atoms.
We refer to them as irregular structure elements. Kinetic parameters such as rate
constants and transport coefficients are thus directly related to the number and kind
of irregular structure elements (point defects) or, in more general terms, to atomic
disorder. A quantitative kinetic theory therefore requires a quantitative understand-
ing of the behavior of point defects as a function of the (local) thermodynamic pa-
rameters of the system (such as 7, P, and composition, ie., the fraction of chemical
components). This understanding is provided by statistical thermodynamics and has
been cast in a useful form for application to solid state chemical kinetics as the so-
called point defect thermodynamics.

After the formulation of defect thermodynamics, it is necessary to understand the
nature of rate constants and transport coefficients in order to make practical use of
irreversible thermodynamics in solid state kinetics. Even the individual jump of a
vacancy is a complicated many-body problem involving, in principle, the lattice dy-
namics of the whole crystal and the coupling with the motion of all other atomic
structure elements. Predictions can be made by simulations, but the relevant methods
(e.g., molecular dynamics, MD, calculations) can still be applied only in very simple
situations. What are the limits of linear transport theory and under what conditions
do the (local) rate constants and transport coefficients cease to be functions of state?
When do they begin to depend not only on local thermodynamic parameters, but
on driving forces (potential gradients) as well? Various relaxation processes give the
answer to these questions and are treated in depth later.

If we regard the crystal as a solvent for structure elements, and in particular for
mobile point defects, remembering that particles involved in chemical reactions have
to come together before they can react, then all chemical reactions in the solid state
can be characterized by transport steps (f) and by reaction steps (7). Which of these
steps controls the reaction kinetics? Designating dg as the Gibbs energy dissipated
per elementary step (Jump or reaction) of the single atomic particle in the reacting
ensemble, the process is said to be transport controlled if 6g,<8g, (<kT) and
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linear transport theory can then be applied. This means, for example, that in
homogeneous diffusion controlled solid state reactions (e.g., point defect relaxation
processes), the reaction rate constants can be expressed in terms of point defect diffu-
sion coefficients. However, it does not mean that linear rate equations will always
be found. If, for example, the rates, ¢;, are second order in c¢; (due to the
bimolecular nature of the process), a linear rate law cannot be expected to hold until
the reaction has progressed very close to the system’s equilibrium state, where second
order deviations from the equilibrium concentration can be neglected. Nevertheless,
linear transport theory holds and the reacting system is always in local equilibrium
(ie., dg<kT).

Another solid state reaction problem to be mentioned here is the stability of
boundaries and boundary conditions. Except for the case of homogeneous reactions
in infinite systems, the course of a reaction will also be determined by the state of
the boundaries (surfaces, solid—solid interfaces, and other phase boundaries). In
reacting systems, these boundaries are normally moving in space and their geometri-
cal form is often morphologically unstable. This instability (which determines the
boundary conditions of the kinetic differential equations) adds appreciably to the
complexity of many solid state processes and will be discussed later in a chapter of
its own.

The general and basic kinetic problems will be introduced in the first five chapters
of this monograph. Thereafter, distinct solid state processes found in classical hetero-
geneous solid state reactions (including nucleation and early growth), in the oxida-
tion of metals, and in phase transformations of solids will be analyzed and treated
in the subsequent chapters. While these problems have been treated in one way or
another before, other chapters give a detailed (and as far as possible quantitative)
discussion of modern aspects of solid state kinetics. These include internal reactions,
internal oxidation and reduction, relaxation processes in crystals, the behavior of
multicomponent single-phase and heterogeneous systems in thermodynamic poten-
tial gradients, reactions at and across interfaces, and the kinetics of special solids
(e.g., silicates, hydrides, solid electrolytes, layered crystals, polymers). Finally,
modern experimental methods for the study of solid state kinetics will be treated to
some extent, stressing in-situ methods.

By necessity, the treatment of solid state kinetics has to be selective in view of the
myriad processes which can occur in the solid state. This multitude is mainly due to
three facts: 1) correlation lengths in crystals are often much larger than in fluids and
may comprise the whole crystal, 2) a structure element is characterized by three
parameters instead of only by two in a liquid (chemical species, electrical charge,
type of crystallographic site), and 3) a crystal can be elastically stressed. The stress
state is normally inhomogeneous. If the yield strength is exceeded, then plastic defor-
mation and the formation of dislocations will change the structural state of a crystal.
What we aim at in this book is a strict treatment of concepts and basic situations
in a quantitative way, so far as it is possible. In contrast, the often extremely com-
plex kinetic situations in solid state chemistry and materials science will be analyzed
in a rather qualitative manner, but with clearcut thermodynamic and kinetic con-
cepts.
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1.2 Historical Remarks

Kinetics is concerned with many-particle systems which require movements in space
and time of individual particles. The first observations on the kinetic effect of in-
dividual molecular movements were reported by R. Brown in 1828. He observed the
outward manifestation of molecular motion, now referred to as Brownian motion.
The corresponding theory was first proposed in a satisfactory form in 1905 by A.
Einstein. At the same time, the Polish physicist and physical chemist M. v. Smolu-
chowski worked on problems of diffusion, Brownian motion (and coagulation of
colloid particles) [M. v. Smoluchowski (1916)]. He is praised by later leaders in this
field [S. Chandrasekhar (1943)] as a scientist whose theory of density fluctuations
represents one of the most outstanding achievements in molecular physical
chemistry. Further important contributions are due to Fokker, Planck, Burger,
Fiirth, Ornstein, Uhlenbeck, Chandrasekhar, Kramers, among others. An extensive
list of references can be found in [G.E. Uhlenbeck, L.S. Ornstein (1930); M.C.
Wang, G.E. Uhlenbeck (1945)]. A survey of the field is found in [N. Wax, ed.
(1954)].

Although Brown made his observations on liquids, the diffusional motion in
crystals occurs similarly and, in fact, the discrete jump lengths in crystals simplify
the treatment to some extent. According to Chandrasekhar, Pearson [K. Pearson
(1905)] formulated the problem for the first time in general terms in this way: “A
man starts from a point 0 and walks / yards in a straight line; he then turns through
any angle whatever and walks another / yards in a second straight line. He repeats
this process » times. I require the probability that after these n stretches he is at a
distance between r and (r+dr) from his starting point 0.”

How can jumping motion of structure elements in crystals be achieved? Ancient
schools taught their students that crystalline solids would not react with each other.
This statement was always disproved by the experience of potters and blacksmiths
and by observations on geological events. Early reports on diffusion in solids are ap-
parently due to [W. Spring (1878)]. Roberts-Austen observed diffusion of Au in Pb
before this century, but there was no explanation. An important step in the shaping
of a correct picture was made in the early twenties by the Halle group of Tubandt
in Germany, to which W. Jost belonged as a graduate student. He later wrote a
monograph with the first quantitative treatment of solid state reactions [W. Jost:
“Diffusion und chemische Reaktion in festen Stoffen” (1937)]. In Tubandt’s group,
it was found that one could perform the same electrical transference experiments
with ionic crystals at sufficiently high temperatures as Hittorf had done already in
1853 with aqueous solutions of dissolved salts (electrolytes). Since this transference
could not occur in a perfectly ordered crystal, the only reasonable explanation was
that the crystal lattice was disordered, that is, imperfect. What was the nature of
these imperfections? Smekal [A. Smekal (1925)] proposed “Lockerstellen”, which
was primarily a semantic way out. Jost argued that any proposal for a solution of
this problem that did not comprise the whole bulk of the crystal but only localized
distorted regions (Lockerstellen) would lead to intolerably large transport velocities
of the species transferred in the electrical field along these distortions.
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At about this time, J. Frenkel published a most seminal theoretical paper [J.
Frenkel (1926)]. He suggested that in a similar way as (neutral) water dissociates to
a very small extent into protons and hydroxyl ions, a perfect “lattice molecule” of
a crystal (such as AgBr, which crystallizes in the Bi-structure) will dissociate its
regular structure elements, Ag,,, into silver ions which are activated to occupy
vacant sites in the interstitial sublattice, V;. (The notation is explained in the list of
symbols.) They leave behind empty regular silver ion sites (silver vacancies) symbol-
ized here by Vj,. This dissociation process can be represented in a more chemical
language (Kroeger-Vink notation) in Eqn. (1.1)

Aga, +Vi=Agi +Vi, (1.1)

The resulting equilibrium concentrations of these point defects (vacancies and in-
terstitials) are the consequence of a compromise between the ordering interaction
energy and the entropy contribution of disorder (point defects, in this case). To be
sure, the importance of Frenkel’s basic work for the further development of solid
state kinetics can hardly be overstated. From here on one knew that, in a crystal, the
concentration of irregular structure elements (in thermal equilibrium) is a function
of state. Therefore the conductivity of an ionic crystal, for example, which is caused
by mobile point defects, is a well defined physical property. However, contributions
to the conductivity due to dislocations, grain boundaries, and other non-equilibrium
defects can sometimes be quite significant.

Continued progress in solid state physical chemistry was made by Wagner and
Schottky [C. Wagner, W. Schottky (1930); W. Schottky, H. Ulich, C. Wagner (1929)]
as a part of their classic work on thermodynamics. They introduced the concept of
the crystalline compound (e.g., binary AgBr) as an ordered solid solution phase with
a finite, although often extremely small, range of homogeneity. Deviations from the
exact stoichiometric composition correspond to the existence of point defects. In
Frenkel’s line of reasoning, Wagner and Schottky were able to quantify the non-
stoichiometry of a binary (or higher) compound as a function of state in thermody-
namic equilibrium. It depends on all the independent state variables which, from a
practical standpoint, are normally chosen to be P, T, and the chemical potentials of
the independent components. With this concept in mind, it was possible to ‘titrate’
point defects in a crystal by a component vapor pressure in the same way as the
chemist titrates aqueous electrolytes. The inflection point of the defect concentration
vs. chemical potential curve marks the stoichiometric composition of the crystalline
compound with respect to this component.

The concepts required for a quantitative treatment of the reactivity of solids were
now clear, except for one important issue. According to the foregoing, point defect
energies should be on the same order as lattice energies. Since the distribution of
point defects in the crystal conforms to Boltzmann statistics, one was able to esti-
mate their concentrations. It was found that the calculated defect concentrations
were orders of magnitude too small and therefore could not explain the experimen-
tally observed effects which depended on defect concentrations (e.g., conductivity,
excess volume, optical absorption). Jost [W. Jost (1933)] provided the correct solu-
tion to this problem. Analogous to the fact that NaCl can be dissolved in H,O
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despite its high lattice energy, since the energy gain due to polarization almost
balances the lattice energy, the energy gain due to polarization of the environment
about point defects diminishes their formation energy appreciably. With this
background, Mott and Littleton [N. F. Mott, M. J. Littleton (1938)] and later Lidiard
and co-workers [A. B, Lidiard, M. J. Norgett (1972)] improved the early estimates in
a proper way. The powerful computers of today help to obtain reliable theoretical
numbers of point defect energies [C.R. A. Catlow (1989)] and thus the concentra-
tions of irregular structure elements.

Since thermal disorder reflects a dynamic equilibrium, the (almost random) mo-
tion of atomic structure elements is already included in this dynamic concept.
Therefore, the mobility of crystal components can be explained quantitatively, and
particularly with regard to its dependence on the component chemical potentials. In
a linear transport theory, one shows that chemical potential gradients act in the same
way on mobile structure elements as do external forces, which results in a drift of
atoms (ions) and in diffusional fluxes. With this understanding, Carl Wagner first
worked out the kinetic theory of metal oxidation [C. Wagner (1933)] and later the
basic formalism for a kinetic treatment of heterogeneous solid state reactions of the
type AX+BX = ABX,, which is the formation of double salts [C. Wagner (1936)].
Today we regard this work as an example of a successful application of irreversible
thermodynamics to the solid state. The stringent presuppositions which crystallogra-
phy requires are fulfilled and local equilibrium is established during the reaction, a
condition not necessarily true for other solid state reactions.

In 1937, Jost presented in his book on diffusion and chemical reactions in solids
[W. Jost (1937)] the first overview and quantitative discussion of solid state reaction
kinetics based on the Frenkel-Wagner-Schottky point defect thermodynamics and
linear transport theory. Although metallic systems were included in the discussion,
the main body of this monograph was concerned with ionic crystals. There was good
reason for this preferential elaboration on kinetic concepts with ionic crystals. First-
ly, one can exert forces on the structure elements of ionic crystals by the application
of an electrical field. Secondly, a current of 1 mA over a duration of 1s (=1 mC,
easy to measure at that time) corresponds to only 108 moles of transported matter
in the form of ions. Seen in retrospect, it is amazing how fast the understanding of
diffusion and of chemical reactions in the solid state took place after the fundamen-
tal and appropriate concepts were established at about 1930, especially in metallurgy,
ceramics, and related areas.

A second historical line which is of paramount importance to the present
understanding of solid state processes is concerned with electronic particles (defects)
rather than with atomic particles (defects). Let us therefore sketch briefly the history
of semiconductors [see H. J. Welker (1979)]. Although the term ‘semiconductor’ was
coined in 1911 [J. Konigsberger, J. Weiss (1911)], the thermoelectric effect had al-
ready been discovered almost one century earlier [T. J. Seebeck (1822)]. It was found
that PbS and ZnSb exhibited temperature-dependent thermopowers, and from to-
days state of knowledge use had been made of n-type and p-type semiconductors.
Faraday and Hittorf found negative temperature coefficients for the electrical con-
ductivities of Ag,S and Se. In 1873, the decrease in the resistance of Se when
irradiated by visible light was reported [W. Smith (1873); L. Sale (1873)]. It was also



1.2 Historical Remarks 9

with Se that rectifying properties were observed for the first time [W. Siemens
(1876)]. Later on, copper oxides played an important role in the research on rec-
tifiers, as highlighted by the introduction of the ‘Schottky-barrier’ [W. Schottky, W.
Deutschmann (1929)]. Since 1925, semiconductor research has become an important
issue for the development of the modern technical civilization. After World War 11,
the number of research papers grew accordingly, particularly on Si, Ge, and I11-V
compounds.

From the theorist’s point of view, the work of Sommerfeld on the ‘Electron
Theory of Metals’ was most seminal. It was eventually reviewed on a quantum
mechanical basis in a famous article in the “Handbuch der Physik”, Vol. XXIV/2
[A. Sommerfeld, H. Bethe (1933)]. Two years before, Heisenberg had introduced the
‘electron hole’. A.H. Wilson worked on the theory of semiconductors, and it was
understood that at 7= 0 K their valence band was completely filled with electrons,
whereas the conduction band was empty. At 7>0 K, electrons are thermally excited
from the valence band into the conduction band.

The classical phenomenological theory of rectifiers and transistors was given by
[C. Wagner (1931); W. Schottky (1938); 1. W. Davidov (1938); W. Shockley (1949)].
One understood that if a p-n junction is appropriately biased, the electronic carriers
drift toward the barrier layer and, by flooding it, they lower the blocking resistance.
The opposite effect is found by reversing the polarity. In 1958, the theory of wave-
mechanical tunneling led to the discovery of the tunnel diode. The computer in-
dustry stimulated the miniaturization of electronic devices, and the present time is
characterized by worldwide contributions by many technical and research teams. The
main goal is always the control of electron currents by electrical means. Integrating
the circuits makes their functioning extremely fast.

The essential difference between treatments of chemical processes in the solid state
and those in the fluid state is (aside from periodicity and anisotropy) the influence
of the unique mechanical properties of a solid (such as elasticity, plasticity, creep,
and fracture) on the process kinetics. The key to the understanding of most of these
properties is the concept of the dislocation which is defined and extensively discussed
in Chapter 3. In addition, other important structural defects such as grain bound-
aries, which are of still higher dimension, exist and are unknown in the fluid
state.

As early as 1829, the observation of grain boundaries was reported. But it was
more than one hundred years later that the structure of dislocations in crystals was
understood. Early ideas on ‘strain-figures’ that move in elastic bodies date back to
the turn of this century. Although the mathematical theory of dislocations in an
elastic continuum was summarized by [V. Volterra (1907)], it did not really influence
the theory of crystal plasticity. X-ray intensity measurements [C. G. Darwin (1914)]
with single crystals indicated their ‘mosaic structure’ (ie., subgrain boundaries)
formed by dislocation arrays. Prandtl, Masing, and Polanyi, and in particular [U.
Dehlinger (1929)] came close to the modern concept of line imperfections, which can
move in a crystal lattice and induce plastic deformation.

In 1934, three papers were published which clearly described the dislocation in the
sense of our current understanding [E. Orowan (1934); M. Polanyi (1934); G.1.
Taylor (1934)]. Figure 1-1 shows a sketch of Taylor’s dislocation, indicating its edge-
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Figure 1-1. Schematic model of atomic positions before, during, and after the passage of an edge
dislocation [G. 1. Taylor (1934)].

character and its relation to the gliding of the upper part of the crystal relative to
the lower part.

Burgers [J. M. Burgers (1939)], motivated by Volterra’s work, was led to introduce
another type of dislocation, also a limiting case of a line distortion in a crystal, the
so-called screw dislocation. The screw dislocation in particular (as was emphasized
by Frank and Read [see W.T. Read (1953)]) proved to be most important not only
in explaining crystal growth processes but also in predicting grain boundary energies.
It was not before 1950 that individual dislocation lines were observed by electron
microscopy.

1.3 Four Basic Kinetic Situations

The purpose of the final sections of this introductory chapter is to adapt several
kinetic concepts to the solid state so that in subsequent chapters we are familiar with
some basic language, symbolism, and conceptual tools. All the quantities introduced
are defined in the list of symbols.

1.3.1 Homogeneous Reactions: Point Defect Relaxation

A common example of a homogeneous solid state reaction is the formation of so-
called Frenkel point defects in an almost stoichiometric binary ionic crystal (e.g.,
AgBr). This thermal disorder reaction can be described as follows: Silver ions
(Agag) leave their regular lattice sites (to a small extent) due to thermal activation,
which forces them on to empty interstitial (i) sites (Ag;j), leaving behind vacancies
(Viyg) in the regular silver ion sublattice (Fig.1-2). At equilibrium, a definite
equilibrium concentration of these point defects is established. A change in 7 or P
leads to a new equilibrium distribution. The course of this equilibration is a defect
relaxation process and the corresponding chemical reaction, in terms of the atomic
structure elements, has already been formulated in Eqn. (1.1).

Aga,+V; = Agl+ Vi, (1.1)
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Note that the balances of matter, sites, and charge are obeyed. According to standard
kinetics, we formulate the rate equation of this defect equilibration process and
denote, for simplicity sake, Ag; by i, Vi, by V and Ag,, by Ag. Let us designate the
frequency of a site exchange between a vacancy and an ion on a different sublattice
as v. According to a bimolecular rate equation, the time derivative of the concentra-
tion is

Ci:V.CAg'NVi_V'Cj'NV (12)
or of the corresponding mole fraction
N =9 (Npg"Ny) =7+ (N;* Ny) (1.3)

Each product in brackets on the right hand side gives the average fraction of silver
ions occurring with a vacancy as a neighbor. Site and charge balances are

Nag+Ny =13 Ny+N=1; N=Ny (1.4)

and since Ny, N, <1, Eqn. (1.3) yields

N, = - <1—§-Ni~N\,> (1.5)
A%

At equilibrium, N; =0 and N, (eq) = Ny (eq) = N°. Therefore, the ratio (¥/¥) is

equal to 1/(N0)2 and
o N N
N, = V- (1 —N_O-—Ng> (1.6)

We refer the actual defect fraction to the equilibrium value as a reference state by
setting N; = Ny = N+ 8. Equation (1.6) then reads

. 27 R
6= _0'<5+F> (1.7)
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For sufficiently long times (i.e., d—0), the integration of Eqn. (1.7) yields

2-v
5()=d)-e N (1.8)
so that we can define the Frenkel defect relaxation time as
R = N%(2v) = 1/QN°-¥) . (1.9)

1.3.2 Steady State Flux of Point Defects in a Binary Compound

The Gibbs phase rule states that the (local) thermodynamic state of a binary com-
pound is unambiguously determined by three state variables such as P, 7, and g (k
being a component index). Therefore, if one fixes y, (at a given P, T) on opposite
surfaces of the compound crystal (e.g., AX) at two different levels, all (local)
equilibrium functions of state attain different values at the two surfaces. Since point
defect concentrations are also functions of state, different point defect concentra-
tions exist at the two crystal surfaces. Mobile point defects will start to move down
their concentration gradient until a steady state is established in the frame of the
crystal lattice. A common situation is given in Figure 1-3. Drifting cation vacancies
are equivalent to a cation counter-flux in the opposite direction, as shown in Figure
1-3. Note that the arrows indicate only the extra jumps to the left, while the random
thermal motion is disregarded. Anions are assumed to be immobile.

Let us analyze this transport situation. In a linear theory, the flux of, for example,
vacancies of A in the AX compound is given by

Jv=cyvy=cy-(by Ky) (1.10)
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D022
. @2 ~00o00 <0 |,
~ | 22 22D 4
(pf(?]) D D222 (ﬂ;”)
P22 902222
Q? 222 2D
200 2222
22022222 %"
T AX T
oxidation reduction Figure 1-3. The flux of cation vacancies

in a transition metal oxide AX exposed
to an oxygen potential gradient. Note
that only the cation sublattice is
depicted schematically.
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if there are no other restrictions. From irreversible thermodynamics we know that the
acting force Ky is —Vuy(= —RT-VIn Ny, as long as vacancies have small concen-
trations and do not interact with each other). Inserting Vuy in Eqn. (1.10), one ob-
tains Fick’s first law by setting by R T = Dy. Dy is the vacancy diffusion coeffi-
cient, and the relation between b and D is called the Nernst-Einstein relation. Dy is
constant for noninteracting, ideally diluted vacancies at low concentrations. There-
fore, we have from Eqn. (1.10)

cy—cy
Al

jV: _Dv'VCV: _DV (11])

where A€ is the sample thickness. The steady state represented by Eqn. (1.11) implies
that Acy is constant (and independent of A&). Since we have fixed u, (&) and
Us(E") at the corresponding surfaces, we wish to express uy in terms of u, (or
uy,) This can be done by formulating the equilibrium condition for the A vacancy
formation reaction,

Ay =A+(V4+h") or (A -Vy)=A+h" (1.12)

where A, is the (regular) structure element and A denotes the chemical component
A. h" denotes an electron hole which is formed to maintain electroneutrality
(Ny = Ny). From the site balance we know that Ny =1, and therefore the
equilibrium condition of Eqn. (1.12) states that the gradient in the chemical potential
of component A is (in view of Vy, = Vuy due to Ny = Np-<1)

Viga=-2-Vuy= —2-RT-VInNy (1.13)

Equation (1.13), integrated across the crystal, gives
CHATHA

cy=cCye 2RT (1.14)

where the primes denote the two opposite surfaces. Substituting Eqn. (1.14) into
Eqgn. (1.11) yields

' Du-c? _H'A‘MX
Jv = __VA.Q_e Mr) (1.15)
A¢
or
. Dy-cy
jy= ==Y u\—ui»RT (1.16)
\% Aé A A

The difference of the component potentials (ua —#'x) can be established in two
ways: 1) by reservoirs of component A with different activities and 2) by reservoirs
of component X (4X,) with different activities (partial pressures). Note that
A+5X;=AX, so that us+3-ux, :ygx or duA+%-d,qu = 0. Since the cation
vacancy (and cation) flux concerns only the cation sublattice, and the anions are im-
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mobile and not involved in the transport reaction, the AX crystal is not shifted in
case (1), that is, if the fluxes are driven by Au, of the A reservoirs. However, in case
(2), the AX crystal as a whole is shifted by the vacancy flux in the direction of the
oxidizing surface with the higher pyx . This can be seen if one formulates the sur-
face equilibria which correspond to Eqn. (1.12)

14Xy = [Xx+Vil+h* (1.17)
From the equilibrium condition of Eqgn. (1.17), one derives
7 Vux,=2'RT-VInNy (1.18)

in accordance with Eqn. (1.13). The shift of the crystal can be read from Eqn. (1.17).
At the oxidizing side the defect combination, [Xx + V4] is added to the crystal (the
bracketed structure elements in Eqn. (1.17)), while at the reducing side, the opposite
reaction occurs. The combination [Xy + V4], which corresponds to a ‘lattice mole-
cule’ (see Section 2.2.1), is subtracted here from the crystal surface, one for every
vacancy that passes across the crystal from &' to &

The defect inhomogeneity in the AX crystal which is imposed by the different
component activities at £’ and " results, in principle, in an inhomogeneity of the
elastic state of the crystal. Elastic stresses influence the chemical potential uy and
thus their gradients provide a driving force for the flux. This is not taken into
account here, but will be considered in Chapter 14.

1.3.3 The Kinetics of an Interface Reaction

Interfaces separate two phases such as a and B. An interface reaction can mean 1)
component fluxes cross the stationary interface or 2) the interface moves due to a
chemical reaction between the phases o and f at the interface (phase boundary).
Catalytic reactions are excluded from this discussion.

In order to describe interfaces kinetically, we choose the equilibrium state of the
interface as the reference state. In (dynamic) equilibrium, the net fluxes of compo-
nents k vanish across an interface. Since the mobilities of the components in the
interface are finite, there can be no driving forces acting upon component & at
equilibrium. For isothermal and isobaric crystals with electrically charged structure
elements, this means that An, = 0 ( denoting the (charged) reversible carrier of type
). The explicit form of this equilibrium condition is

—z;F- A% = Ay, (1.19)

and signifies that a jump in the electrical potential exists across an interface at
equilibrium. It is easy to verify that the imposition of the equilibrium condition
An;=0(i=1,2,...,n) for each individual charged component (/) comprises, along
with the condition of electroneutrality, the equilibrium for the electroneutral com-
ponents.
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Figure 1-4. The A/AX interface during flow of A-cations across the boundary (£ = 0) into the
(semiconducting) compound AX. Point defect relaxation reaction between 0< &< & reads
Vii+A* = A,. &y = width of relaxation zone.

However, if An;# 0 across a stationary interface, a flux of charged species i
results, which can be written in a linear theory as

Ji= =l An, (1.20)

where /; is the interface ‘conductivity’ of species i. It is the understanding of /; (a/f)
which is the most difficult part of any kinetic theory of interfaces. Consider the very
simple model illustrated in Figure 1-4. Metal A (anode) is in contact with the Schott-
ky disordered AX crystal. Schottky disorder means that equivalent fractions of cat-
ion and anion vacancies are present. Let us assume that D;<Dy (i = A{, V = V}).
Under load, the electrical flux in the form of an ion flux is injected into the inter-
stitial sublattice. This means that jy (¢ = 0) = 0. Since the flux of defects consists of
a diffusive term and a field term, we have

. F'CV
Jvy= —Dy-| Vecy-— Vo (1.21)
v 3 < VTRT )
and, therefore, at £ =0
i. — 0 iAU
cvzc(\),'eRT(w w):c%-eRT (1.22)

where AU is the change in the interfacial voltage drop relative to its equilibrium
value, and c¢$ =cy(eq) at &= o. For interstitials i, we have in analogy to

Eqn. (1.21)
ji: '—Di' VCJ"FB'V(Q = —Di’ VCi+ﬁ'VCV (123)
RT Cy E=0

The second part of Egn. (1.23) is obtained from Eqn. (1.22). From the requirement
of electroneutrality and the definition of a (linearized) defect recombination zone of
width &z, Eqns. (1.22) and (1.23) yield
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_2:DirAcy _ AZ-Di-cQ,'< —-Au_1>

Ji(0) =
R ¢r

(1.24)

and z;- £ j;(0) is the steady state electrical current across the interface, driven by the
applied voltage AU. If we set &y equal to the length V2-7x-D;, where 7 is the
relaxation time of Schottky defects for attaining equilibrium, Eqn. (1.24) yields for
AU<RT/F

. 2:Di-¢Y F-AU .
Ji0) = - ==X T 22 = (e > &)
l/2'TR'Di RT

This is the kinetic equation for a simple A/AX interface model and illustrates the
general approach. The critical quantity which will be discussed later in more detail
is the disorder relaxation time, 73. Generally, the A/AX interface behaves under
steady state conditions similar to electrodes which are studied in electrochemistry.
However, in contrast to fluid electrolytes, the reaction steps in solids comprise in-
homogeneous distributions of point defects, which build up stresses at the boundary
on a small scale. Plastic deformation or even cracking may result, which in turn will
influence drastically the further course of any interface reaction.

(1.25)

1.3.4 Kinetics of Compound Formation: A+B = AB

Let us begin the discussion of the last example of solid state kinetics in this introduc-
tory chapter with the assumption of local equilibrium at the A/AB and AB/B inter-
faces of the A/AB/B reaction couple (Fig. 1-5). Let us further assume that the reac-
tion geometry is linear and the interfaces between the reactants and the product AB
are planar. Later it will be shown that under these assumptions, the (moving) inter-
faces are morphologically stable during reaction.

Figure 1-5. Heterogeneous solid state reaction: the formation
of compound AB.

[A AB BWhO

Since the product compound separates the reactants spatially (Fig. 1-5), the reac-
tion can only continue if either A, B, or both A and B are able to diffuse across the
reaction layer and form additional AB at the respective interfaces. The increase in
layer thickness, A¢, is then given as

AE = Vg (I/al + /) (1.26)
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where Vg designates the molar volume. Each flux of A and B can be written as the
product of a transport coefficient (L;) and a driving force (X;) as, for example,
given in Eqgn. (1.27).

. Apa

Jja= —LaVus=—-L
A A A A Aé

(1.27)

The right hand side is the result of integration. As long as local equilibrium prevails,
the average value, L,, of the transport coefficient, taken across the reaction layer,
is determined by the thermodynamic parameters at the interfaces A/AB and AB/B,
and thus is independent of the reaction layer thickness A&. If one inserts Eqn. (1.27)
into Eqn. (1.26), a parabolic rate law is found

AEW) =V2- Vg (La- Dt + Ly Autg)- Ve (1.28)

and since A, = Aug = AG%g, we have finally

AE(1) = V2 Vpp  AGRp (La+Lp) Vi (1.29)

The increase A¢ will occur at interface A/AB if L,/Lg<1, and it will occur at
AB/B if L,» Ly (Fig. 1-5). We conclude that parabolic rate laws in heterogeneous
solid state reactions are the result of two conditions, the prevalence of a linear
geometry and of local equilibrium which includes the phase boundaries.

Up to this point it has been tacitly assumed that A and B move independently
across the reaction product. This can be true for intermetallic compounds, but not
for ionic crystals in which there is always a flux coupling due to the condition of elec-
troneutrality. Let us formulate this coupling condition in a general way in the form

Jatajp=0 (1.30)

where ¢ represents the coupling parameter. From Eqns. (1.26) and (1.30) one con-
cludes that again the reaction kinetics is parabolic. The parabolic rate constant, how-
ever, is different from that given in Eqn. (1.29). Since for fluxes in ionic compounds
the driving force is V; (the gradient of the electrochemical potential), Eqn. (1.30)
is really the equation that determines V ¢, the gradient of the (inner) electrical poten-
tial in AB. The formal relations are somewhat lengthy and will be given explicitly
in a later section.

In the last four sections, we have illustrated some basic kinetic concepts. We will
repeatedly meet the underlying kinetic situations in the following chapters. In one
way or the other, they will serve as starting points when we later analyze and discuss
more complicated kinetic problems in greater depth.
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2 Thermodynamics of Point Defects

2.1 Introduction

Solid state reactions occur mainly by diffusional transport. This transport and other
kinetic processes in crystals are always regulated by crystal imperfections. Reaction
partners in the crystal are its structure elements’ (SE) as defined in the list of sym-
bols (see also [W. Schottky (1958)]). Structure elements do not exist outside the
crystal lattice and are therefore not independent components of the crystal in a ther-
modynamic sense. In the framework of linear irreversible thermodynamics, the
chemical (electrochemical) potential gradients of the independent components of a
non-equilibrium (reacting) system are the driving forces for fluxes and reactions.
However, the flux of one independent chemical component always consists of the
fluxes of more than one SE in the crystal. In addition, local reactions between SE’s
may occur.

Therefore, we have the following situation in the transport theory of crystals. One
can, in principle, measure all the fluxes of individual SE’s. One can also unam-
biguously determine the forces that act upon the independent chemical components.
However, it is difficult to visualize the fluxes of the chemical component in a crystal
lattice and the meaning of driving forces for SE’s is not immediately obvious.

It is the purpose of this chapter to deal with these conceptual matters that are
specific to solid state chemistry and to provide the thermodynamic basis for an ap-
propriate kinetic theory. In addition, practical situations will be analyzed and ap-
plications will be discussed for the sake of illustration.

Chemists and physicists must always formulate correctly the constraints which
crystal structure and symmetry impose on their thermodynamic derivations. Gibbs
encountered this problem when he constructed the component chemical potentials
of non-hydrostatically stressed crystals. He distinguished between mobile and im-
mobile components of a solid. The conceptual difficulties became critical when,
following the classical paper of Wagner and Schottky on ordered mixed phases as
discussed in chapter 1, chemical potentials of statistically relevant SE’s of the crystal
lattice were introduced. As with the definition of chemical potentials of ions in elec-
trolytes, it turned out that not all the mathematical operations (8G/0r;) could be
performed for SE’s of kind / without violating the structural conditions of the crystal
lattice. The origin of this difficulty lies in the fact that lattice sites are not the
analogue of chemical species (components).

' Frequent use of the term ‘structure element’ suggests that we abbreviate it as ‘SE’ in the follow-
ing chapters.
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Nevertheless, the chemical potentials of SE’s are frequently used instead of the
chemical potentials of (independent) components of a crystalline system. Obviously,
a crystal with its given crystal lattice structure is composed of SE’s. They are charac-
terized much more specifically than the crystal’s chemical components, namely with
regard to lattice site and electrical charge. The introduction of these two additional
reference structures leads to additional balanced equations or constraints (beside the
mass balances) and, therefore, SE’s are not independent species in the sense of
chemical thermodynamics, as are, for example, (#~ 1) chemical components in an »n-
component system.

With the introduction of the lattice structure and electroneutrality condition, one
has to define two elementary SE units which do not refer to chemical species. These
elementary units are 1) the empty Ilattice site (vacancy) and 2) the elementary elec-
trical charge. Both are definite (statistical) entities of their own in the lattice reference
system and have to be taken into account in constructing the partition function of
the crystal. Structure elements do not exist outside the crystal and thus do not have
real chemical potentials. For example, vacancies do not possess a vapor pressure.
Nevertheless, vacancies and other SE’s of a crystal can, in principle, be ‘seen’, for
example, as color centers through spectroscopic observations or otherwise. The elec-
trical charges can be detected by electrical conductivity.

Since the state of a crystal in equilibrium is uniquely defined, the kind and number
of its SE’s are fully determined. It is therefore the aim of crystal thermodynamics,
and particularly of point defect thermodynamics, to calculate the kind and number
of all SE’s as a function of the chosen independent thermodynamic variables.
Several questions arise. Since SE’s are not equivalent to the chemical components of
a crystalline system, is it expedient to introduce ‘virtual’ chemical potentials, and
how are they related to the component potentials? If immobile SE’s exist (e.g., the
oxygen ions in dense packed oxides), can their virtual chemical potentials be defined
only on the basis of local equilibration of the other mobile SE’s? Since mobile SE’s
can move in a crystal, what are the internal forces that act upon them to make them
drift if thermodynamic potential differences are applied externally? Can one use the
gradients of the virtnal chemical potentials of the SE’s for this purpose?

It has long been known that defect thermodynamics provides correct answers if
the (local) equilibrium conditions between SE and chemical components of the
crystal are correctly formulated, that is, if in addition to the conservation of
chemical species the balances of sites and charges are properly taken into account.
The correct use of these balances, however, is equivalent to the introduction of
so-called ‘building elements’ (‘Bauelemente’) [W. Schottky (1958)]. These are prop-
erly defined in the next section and are the main content of it. It will be shown that
these building units possess real thermodynamic potentials since they can be added
to or removed from the crystal without violating structural and electroneutrality con-
straints, that is, without violating the site or charge balance of the crystal {see, for
example, M. Martin ef al. (1988)].

In a book on kinetics, the purpose of understanding the thermodynamics of point
defects (= irregular SE’s) is the elucidation of their role as carriers in the elementary
steps of mass transport. For any given values of P, 7, and component chemical
potentials, their equilibrium concentrations can be calculated if the magnitudes of
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their Gibbs energies of formation are known. As long as chemical processes in the
solid state obey the rate equations of (linear) irreversible thermodynamics, point
defect thermodynamics can be applied on a local scale, although the (local) concen-
trations of the components are continuously changing with time. This is true in so
far as point defect relaxation processes are sufficiently fast and therefore the trans-
port coefficients (which are determined by mobilities and local concentrations of
point defects) are still functions of state. This means that local point defect concen-
trations are still fully determined by £, 7, and the local composition of the (indepen-
dent) chemical components.

2.2 Thermodynamics of Crystals

In this section, we will outline point defect thermodynamics and quantify the con-
siderations of the introduction.

2.2.1 Phenomenological Approach

Consider a crystal which is in equilibrium having # chemical components (k =
1,2,...,1n). We can define (at any given P and T) a Gibbs function, G, as a
homogeneous function that is first order in the amount of components

n

G= ) wn 2.1
k=1

where u, denotes the chemical potential and 7, the number of moles of component
k. From the first and second laws of thermodynamics, we derive

n
dG= Y, we-dn,—S-dT+V-dP (2.2)
k=1
and therefore, at a given P and T

n R
Y omeduye=0; Y Nedug=0 (2.3)
k=1 K=1

which is the Gibbs-Duhem equation. It reduces the number of independent chemical
potentials u; to (n—1). From Eqn. (2.2), the chemical potential of component & is
given as the partial molar Gibbs energy

oG
My = <——> (2.4)
ank "% n,
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For a nearly stoichiometric n component compound p, we obtain, in accordance with
Eqn. (2.1),

n 0 n AGO 0 0 n 0
Y Newe=G, o, o Y, Nk'lnak:TTgs AG,=G,— Y Nyup (2.5
k=1 k=1 k=1

where a, is the activity of k. Neglecting the small fractions of point defects, it is
often expedient to refer the fractions NV, to the number of lattice sites for compo-
nent & in the ideal compound, or to the number of unit cells in the compound lattice.

The immediate question is: How does one add a single component & from an ex-
ternal reservoir to the crystal according to Eqn. (2.4) without violating any structural
constraints, that is, the fixed relations between the numbers of sublattice sites?
We denote a particular sublattice containing atoms (ions) of component k by »x
(*=1,2,...,K) and write the exchange reaction between external reservoir
(= buffer #) and crystal sublattice as

k(B)=k(x) (2.6)

Since we can exchange k(£) equally with either sublattice » or A, for example, we
also have exchange between sublattices

k()=k(A) (2.7)
The equilibrium condition requires that

Ui(py = Hipoy = M oy (= 1) (2.8)

Therefore, according to Eqgn. (2.4) we have

n

dG = Z ,le(){)'dnk (29)
k=1
K
and, because dn, = ), dng,
x=1
K n
dG= Y Y Mooy Ak ) (2.10)
x=1k=1
so that
oG
Hicpey = ( > (2.11)
8”/((}{) A0y # My

Note that this differentiation is more specific than the differentiation of Eqn. (2.4).

The addition of a particle k on the sublattice », however, is possible only in two
cases: 1) when vacancies are available in sublattice » or 2) when a potential » site
on the crystal surface is filled by adding &(f) with the simultaneous formation of
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vacancies on all other sublattices in such a way that the proportions of lattice sites
in the various sublattices (as dictated by crystallography) are retained. In this second
case, the number of unit cells of the crystal lattice has been increased by one. If we
designate z, as the number of sites in sublattice a (a = x, 4, . ..), the ratio in ques-
tion is

% —m,, (2.12)
Z;

where m,, ; is normally a simple rational number. With K sublattices, we have K1
equations of type (2.12), which constitute the structural constraints.

Structure elements are symbolized by S7. S denotes either the particles of com-
ponents £ or a vacancy V, and ¢ is the effective electrical charge relative to a perfect
crystal. It is usual to indicate effective charges by (see also list of symbols)

X = neutral
""" = singly, doubly, and triply negatively charged structure element

= singly, doubly, and triply positively charged structure element

Using these definitions, we can rewrite the exchange reaction (2.6) between buffer
and crystal as

k(B)+V) = kX (2.13)
or
k(B)=lk;=V;] (2.14)

The corresponding equilibrium condition between component k£(f) and two SE’s
yields, instead of Eqn. (2.8)

e = Miey = Mk =V ] (2.15)

where k() = [k —V, ] is called the ‘building element’. If we now assign (virtual)
chemical potentials to the individual SE’s, Eqn. (2.15) becomes

M = Hioy = By —Hyx (2.16)

Instead of Eqn. (2.10) we then have

K n
dG= Y ¥ (s —py:) dngg, 2.17)
x=1k=1
so that the (measurable, see Eqn. (2.15)) chemical potential of the building element
k(x) is
oG

By = Mg x —Hvx = ( > (2.18)

ank(}() MM, ity

K%+ kA +x
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From Eqn. (2.18), we conclude that there is no experiment to determine the in-
dividual SE’s chemical potential. The definition of the virtual chemical potential of
a SE is implicit in Eqn. (2.16).

Using the symbol k,x(or V,x) for £ (or V)S), we can rewrite Eqn. (2.17) and
cast it in the following form

dG = ),

4

[ Z ruk,x'dn/c,)f+HV,){'ng,;{_(ﬂV,;{'d”V,){ + Z ﬂ\’,}{.dnk,)():| (2.19)
k *

From the crystal structure constraint, Eqn. (2.12), we can derive

e = m o e m, (2.20)

”_A e Z”x n

where m,, is the fixed ratio of lattice sites x to the total lattice sites. With the help
of Eqn. (2.20) we can reformulate Eqn. (2.19) as

dn
dG = Z Z Ui dny =iy — 2.21)
x i Z
with the definition
U= Y @)ty = YTy, (2.22)

which allows the definition of M as a new building element
M=Ym,V, (2.23)

If z corresponds to the number of lattice sites comprised by the formula unit of a
compound (e.g. AB,O,), we call M a ‘lattice molecule’. At equilibrium, M has a
constant chemical potential #3;, which we may set equal to zero by definition.
Equation (2.21) then reduces to

dG = Z Z fui,)('dnz’,}( » (2.24)
X

While Eqn. (2.24) justifies the introduction of virtual chemical potentials of SE’s
including vacancies, it also assumes that the ‘lattice molecule’ M, according to
Eqn. (2.23), is in equilibrium with all the vacancies V,,, x=1,...,K.

The above conclusions have been reached without consideration of the electrical
charge ¢ on the structure elements. In ionic crystals, however, most of the SE’s
possess an effective electrical charge. Let us therefore consider an exchange reaction
of electrical charge between two SE’s, such as the redox reaction

R LR (2.25)
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Equation (2.25) gives, after rearrangement,
ki =kt =j, =) (2.26)

Accordingly, the electrical unit is e = 1/g-(k,) —k,9), and its chemical potential
can be formulated as

Mooy = 1/q (Wi ;o= Mia ) (2.27)
In equilibrium, we have
Uepy = Heiy =« (= u.) (2.28)
and thus
Hia s = Micx 5 =G He (2.29)

Application of Eqn. (2.24) to all SE’s, including those which are charged, gives

dG = Z Z (:ui,k_:ue'q{,x)'d”i,}r (230)

X I

If one takes into account the electroneutrality condition of the crystal, which is
Y Y gy ni, =0, Eqn. (2.30) yields
x o

dG =Y X p;,dny, 2.31)
X {

where the summation goes over all structure elements (i,x), be they charged or
neutral.

The results of the discussion on the phenomenological thermodynamics of crystals
can be summarized as follows. One can define chemical potentials, u;, for com-
ponents k& (Eqn. (2.4)), for building units (Eqn. (2.11)), and for structure elements
{Eqn. (2.31)). The lattice construction requires the introduction of ‘structural units’,
which are the vacancies V,,.. Electroneutrality in a crystal composed of charged SE’s
requires the introduction of the electrical unit, e. The composition of an # compo-
nent crystal is fixed by (n—1) independent mole fractions, N,, of chemical com-
ponents. (n—1) is also the number of conditions for the definition of the component
potentials g, as seen from Eqn. (2.4). For building units, we have (n— 1) indepen-
dent composition variables and n-(K—1) equilibria between sublattices x, so that the
number of conditions is #-K—1, as required by the definition of the building element
potential Ug - FOr structure elements, the actual number of constraints is larger
than the number of constraints required by Eqn. (2.18), which defines ). This
circumstance is responsible for the introduction of the concept of ‘virtual’ chemical
potentials of SE’s.

So far we have not specifically addressed crystals with non-localized electronic
charge carriers. Their energy states are grouped in the conduction and valence bands.
Using the previous notation of building elements, when we add the building element
¢' to an empty state, &, of the conduction band, we have, in accordance with
Eqn. (2.14),

e’ =[e.—¢&.] (2.32)
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and the corresponding equation for the electron hole in the valence band is
—e'=—[e,—¢&]=h" (2.33)
In (electronic) equilibrium
Me(ey = Her = ~ Hp* = Ue (2.34)

Note that u, is defined by Eqn. (2.27). For non-localized band electrons and holes
we therefore have

Ut e = 0 (2.39)
Adding dn, negative charges to a crystal means that

dn, = dng —dnye + ), dnegy (2.36)

X

The strict definition of the building element potential x.. is then given by

oG
. <_> (237)
O Pty Mo e ), iy,

Let us conclude with a short remark on the concentration dependence of the
phenomenological potentials x; and, in particular, when point defects are involved.
It is common and convenient to split the chemical potentials into two parts: 1)
u?(P, T), which does not depend on the composition variables »;, and 2) the com-
position dependent term R 7-Ing;, which for ideal solutions (¢; = N;) is simply
R T-In N,;. For non-ideal solutions, one introduces the excess term R7:Inf;=RT-
Ing;—RT-In ;. Let us write In f; as a power series of the form

Infi=lnfl+ Y N-e+ Y ¥ N-N-ePP (2.38)
J J ok

where f; is the activity coefficient. We will apply Eqn. (2.38) to crystals with inter-
acting point defects and let the summation go over all point defects including i. For
small point defect concentrations, the linearized form of Eqn. (2.38) is appropriate.
The ¢V are called interaction parameters. /7 is f; (V;—0), in the limit of an infinite-
ly dilute solution. Comparing Eqn. (2.38) with the Taylor expansion of In f;, viz.

dln f;
ln i = ln i + "N' 239
fi=nfi+ % on, (2.39)

it is seen that

NURLELY) (2.40)

ON;

J
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Multiplication by R T gives the respective interaction energy terms. With the help of
the Maxwell relations 8°G/dn;dn,; = 8°G/dn,dn; one shows that ¢ = ¢{). More
details can be found in [C. Wagner (1952)].

Mole fractions may not always be the most suitable composition variables for
SE’s. This is due to crystal structure conditions and the fact that a crystal is built
from sublattices, », on which SE’s are distributed in the sense of thermodynamic
(sub) systems [H. Schmalzried, A. Navrotsky (1975)]. This point, however, concerns
the subject matter of the next section.

2.2.2 Remarks on Statistical Thermodynamics of Point Defects

Statistical thermodynamics can provide explicit expressions for the phenomenologi-
cal Gibbs energy functions discussed in the previous section. The statistical theory
of point defects has been well covered in the literature [A.R. Allnatt, A.B. Lidiard
(1993)]. Therefore, we introduce its basic framework essentially for completeness, for
a better atomic understanding of the driving forces in kinetic theory, and also in
order to point out the subtleties arising from the constraints due to the structural
conditions of crystallography.

Although the statistical approach to the derivation of thermodynamic functions
is fairly general, we shall restrict ourselves to a) crystals with isolated defects that do
not interact (which normally means that defect concentrations are sufficiently small)
and b) crystals with more complex but still isolated defects (i.e., defect pairs, asso-
ciates, clusters). We shall also restrict ourselves to systems at some given (P, 7)), so
that the appropriate thermodynamic energy function is the Gibbs energy, G, which
is then constructed as

G=Ghr(m)+ Y nig—TSeoni 5 n= YL 1 (2.41)
SE

where G is the Gibbs energy of the perfect crystal, g; is the (additional) Gibbs
energy associated with the formation of SE i in the real crystal with its defects (the
summation goes over all SE’s), and S_,,; is the configurational part of the crystal
entropy.

From the above assumptions about the defects, we can state that a) g; = 0 for all
regular SE’s, b) g;> 0, but independent of concentration, for all irregular SE’s, and
¢) the configurational entropy of the (single) defects in one sublattice is

Seoni = k-In 2 = k-In <—— (2.42)

(Te)

where z; , = n; .- Ny. If there is more than one sublattice in the crystal, one has to
sum the corresponding configurational entropies. In writing Eqn. (2.42), it has been
assumed that irregular SE’s have no internal degrees of freedom and that they retain

H (Zi,)()! >
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the point symmetry of the lattice. Otherwise, we would have to count the individual
degenerate states. Since we are interested in the kinetic driving forces and therefore
need the (gradients of the) chemical potentials and their dependence on concentra-
tion, we have to derive the u; functions from Eqn. (2.41) under the restrictions im-
posed by the conservation laws for mass, charge, and crystal lattice sites. The cor-
responding balance equations can always be written in the form

Y. B;*n; = constant (2.43)
(05

The B, are numerical factors. In the case of the electroneutrality condition, 3, is the
effective charge on SE type /. Note that the equilibrium crystal is characterized by
8G = 0, subject to the constraints of Eqn. (2.43).

The simplest situation is met if we consider a one-component system (A) with
vacancies only. Since there are no equations like that in Eqn. (2.43), we can readily
obtain u, and uy from Eqn. (2.41) by differentiation and noting that n = n, +ny.
Thus,

Ua = ' +RTIn(1 —Ny)
(2.44)
Uy =ul+gy+RT-InNy =uY+RT-InNy

where u°= BG(,);,T/Gn. Equation (2.44) explains the meaning of the standard
chemical potentials of A and V. At equilibrium, uy = 0 and, therefore,

_ Ky
Ny=¢e RT (2.45)
Furthermore,
Gpn= % Nij=(1-Ny) (u’+RTIn (1-Ny)) (2.46)

The other thermodynamic functions (H, U, F, etc.) can be derived from G as usual.
For example, the partial enthalpy of vacancies is found to be

hy = _M (2.47)
9(1/RT)

A second example will now be discussed in order to illustrate the application of
the internal equilibrium condition in combination with structural constraints. Let us
regard a crystal AX, such as AgBr, having Frenkel disorder in the cation sublattice
{see Fig.1-2). Structure elements which must be considered here are A,, Xx, Va,
Vi, A,. The structural constraint reads

Mo, +Ny, =nx 5 Ny +na =2nx
Constructing G as in Eqn. (2.41) but imposing the equilibrium condition 8Gp =0

and using Lagrange’s method of undetermined multipliers (44, 4;) in order to meet
the structural constraints, we obtain
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oG
—— 4+ =0, u, = Up, = —In (2.48)
I’IAA
0G
+2,a=0, uy +RTInNy =ul (2.49)
anVA A A A
from which it follows that
uy —ul, GY
Ny =e RT =e RT, GYy=uy —ul, (2.50)

Analogous relations can be derived for NAV Therefore, one concludes that

—uy, = ua —uy (2.51)

i, ,
and we may recall that [A, —V ] or [A;—V,] were the definitions of the A building
element in Section 2.2.1 (see Eqn. (2.18)).

We now proceed to more realistic and complicated systems by considering crystals
in which the point defects interact. If the interaction is due to forces between nearest
neighbors only, then one may calculate the point defect concentrations by assuming
that, in addition to single point defects, e.g. 1; and i,, pairs (or still higher clusters)
of point defects form and that they are in internal equilibrium. These clusters are
taken to be ideally diluted in the crystal matrix, in analogy to the isolated single
defects. All the defect interactions are thus contained in the cluster formation reac-
tion

i +i, =1, (2.52)

with subscripts 1 and 2 denoting different (or the same) atomic defects, subscript ¢
denoting the associate or cluster. In this way, the problem is similar to the single
point defect problem as formulated in Eqns. (2.41)—(2.50). The evaluation of the
term T-S.o.; = R7-1n 2 by combinatorial calculations, however, may prove to be
very cumbersome due to site exclusion requirements [H. Schmalzried, A. Navrotsky
(1975)]. For example, not only is it not possible for a second single point defect to
be placed on the site of a first one, but it also cannot be placed on a nearest neighbor
site without becoming a defect pair by definition. If the defect pair can exist in ex-
tended states (for example, if there is a relative energy minimum when separated at
the second nearest neighbor distance), then calculating S.,,; by combinatorial
methods is even less straightforward. Nevertheless, the clustering problem is most im-
portant in solid state kinetics, since clusters and single defects have different mobili-
ties. Clusters are precursors to phase changes and to the precipitation of second
phases in the matrix crystal.

A more practical discussion is given in Section 2.3. At this point, let us mention
the Mayer cluster expansion technique originally applied to the imperfect gas [J. E.
Mayer, M. Mayer (1940)] but to which Allnatt and Lidiard [A.R. Allnatt, A.B.
Lidiard (1993)] have drawn attention in the present context. In this approach, In Q
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is evaluated as the sum of an ideal lattice gas contribution (without the restriction
of excluded sites) with a power series in defect fractions (in formal analogy to virial
coefficients). The power series describes the excluded site corrections. Thus, one ob-
tains the following expression for the configurational entropy (/N = site fractions)

. 1
Scont = —R- { Z N, (ln&’1> +£ Z Z N/-'NS'BI'S] (2.53)

r ros

where y, and B, are dimensionless parameters characteristic of the defects and
structure. y, is equal to the number of distinct orientations of the isolated defect of
kind r in the lattice. B,; embodies the restrictions if certain sites cannot be occupied.
Other interaction models, for example the so-called regular solution model, the
Bragg-Williams approach, and the Debye-Hiickel theory, will be discussed in due
course. See also [A.B. Lidiard (1957); A.R. Allnatt, A.B. Lidiard (1987)].

It has been mentioned that mole fractions are not always the most convenient
composition variables since they often do not take into account particular features
and conditions of the crystal structure. Normally, statistical considerations require
composition variables which refer to the number of sites in a sublattice rather than
to the number of component atoms. Let us discuss a simple example. Component
B is dissolved in the interstitial lattice of crystal A. Ny = np/(ny +ng) does not have
an immediate statistical meaning. However, if we know from the crystal structure
condition that the number of interstitial sites per A-lattice site is m;, then the frac-
tion

| N
Rp= B - . B (2.54)
Mt 1 I—NB

is that which must be dealt with in evaluating the statistics of the solid solution.
Moreover, if we knew that each B on sublattice i would block b; neighboring sites,
a still more relevant variable is

Yo = Ny _ Ny
b mi’”A‘bi'”B mi—NB'(1—bi)

(2.55)

From calculations like those which correspond to an evaluation of Eqns. (2.41) f7.,
one concludes that the activity of B, in the limit of a dilute solution, is directly pro-
portional to xg.

Utilizing the framework of interaction parameters as introduced in the previous
section (see Eqns. (2.38)—(2.40)), one finds upon some algebraic rearrangements

(B) 1+bi 1+bi
ER’ = =
mi—NB‘(1+bi) YA

(2.56)

Note that the introduction of structural conditions and site exclusions suffices to ob-
tain (apparent) interaction parameters, which differs from the concept of the Mayer
cluster expansion approach.
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2.3 Some Practical Aspects
of Point Defect Thermodynamics

In principle, there are only three different types of point defects: vacant lattice sites
on regularly occupied sublattices, interstitials on regularly unoccupied sublattices,
and irregular (foreign) atoms (ions) present either in the interstitial sublattice or
substituted for regular SE’s. At thermal equilibrium, all possible kinds of point
defects exist in finite (although often very small) concentrations, given by the Gibbs
energy minimum. In metallic systems and in molecular crystals, there is no coupling
of the various point defect concentrations through the condition of electroneutrality
as there is in ionic crystals. Normally, point defects in ionic crystals possess effective
electrical charges (relative to the ideal crystal lattice). For example, whereas an in-
terstitial cation is frequently positively charged, a cation vacancy is often negatively
charged. Since the numbers of positively and negatively charged equivalents of all
irregular SE’s must be equal, one can group them into various neutral combinations.
The concentration of the combination with the lowest energy of formation often sur-
passes by far the concentrations of all the others. In such a case, it is appropriate
to introduce the point defect disorder type for a crystal. The defects that constitute
a disorder type are named ‘majority defects’. Excess electrons and electron holes, if
localized, are obviously defects in this sense. Even if excess electrons (holes) are not
localized, they can compensate the electrical charges of ionic point defects for the
sake of electroneutrality.

Let us now discuss some details of practical relevance. From the Gibbs phase rule,
it is evident that crystals consisting of only one component (A) become nonvariant
by the predetermination of two thermodynamic variables, which for practical rea-
sons are chosen to be P and 7. In these one-component systems, itiseasy to recognize
the (isobaric) concentration dependence of the point defects on temperature. From
the definition of the vacancy chemical potential for sufficiently small vacancy mole
fractions Ny, namely uy = uy (P, T)+RT-In Ny, together with the condition of
equilibrium with the crystal’s inert surroundings (gas, vacuum), one directly finds

(A =0 (vac)
Ny=e RT (.57

Equation (2.57) can be compared with Eqn. (2.50). Noting that the standard value
of the vacancy chemical potential of a crystal is only slightly dependent on 7, Ny
is in essence exponentially dependent on (1/7)). This Arrhenius-type of temperature
dependence is also found for the interstitials, since in view of the site-preserving for-
mation reaction A, +V, = A;+V,, the equilibrium condition for this defect forma-
tion reaction shows that

Un, =AUV~ 1y, (2.58)

The chemical potentials of the regular SE’s A, and V; have been set (to a good
approximation) equal to their standard potentials (N = 1), so that U, and py are
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directly related to each other. In order to quantify the (isothermal) P dependence,
which is an important issue at high pressures (the crystal compressibilities are on the
order of 107° bar '), the defect formation volume, AVy, has to be known in order
to add the integral fAVd-dP term to the defect formation Gibbs energies.

Defect thermodynamics is more complicated when applied to binary (or multi-
component) compound crystals. For binary systems, there is one more independent
thermodynamic variable to control. In the case of extended binary solid solutions,
one would normally choose a composition variable for this purpose. For compounds
with very narrow ranges of homogeneity (ie., point defect concentrations), however,
the composition is obviously not a convenient variable. The more natural choice is
the chemical potential of one of the two components of the compound crystal. In
practice one will often use the vapor pressure (~ activity) of this component.

Two limiting cases must be distinguished. Point defect disorder caused by thermal
activation is either larger or smaller than the change of point defect concentration
due to the change in component chemical potential (inside the narrow homogeneity
range of the compound). The first disorder type (thermal concentration larger) is
called intrinsic, the second one (thermal concentration smaller) is called extrinsic.

Let us first discuss intrinsic disorder types where the number of moles of the com-
ponents is almost constant and independent of the component activities. Thus, the
majority point defect concentrations are also (almost) independent of the compo-
nent activities. It follows that only two types of (intrinsic) defect formation reactions
are allowed

B4y =i+ (2.59)
i, +iy(+...)=M (2.60)

The first reaction is a site exchange reaction and so does not alter the number of lat-
tice sites. The second reaction describes the formation of a complete lattice molecule
M. An example of the first type of reaction (exchange reaction, Eqn. (2.59)) is the
so-called Frenkel defect formation reaction in AX (e.g., in silver halides, see Fig. 1-2)

A +Vi=A+V) (2.61)

The equilibrium (Y v;u; = 0) and electroneutrality (NA:N\,zNg) conditions
lead to 5 0

(N =Ky ; Kp=e RT (2.62)

An example of the second type of intrinsic reactions is the so-called Schottky
defect formation reaction in AX (e.g., alkali halides)

Ap+Xy = Vi + Vi +AX (2.63)

The equilibrium and electroneutrality conditions lead to an equation with the same
form as Eqn. (2.62) where N% = Ny, = Ny, . In contrast to Eqn. (2.61), however, the
sites of a new lattice molecule AX have been added to the crystal which, for example,
has consequences for the pressure dependence of N?:.
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If majority point defect concentrations depend on the activities (chemical poten-
tials) of the components, extrinsic disorder prevails. Since the components k are
necessarily involved in the defect formation reactions, nonstoichiometry is the result.
In crystals with electrically charged regular SE, compensating electronic defects are
produced (or annihilated). As an example, consider the equilibrium between oxygen
and appropriate SE’s of the transition metal oxide CoO. Since all possible kinds of
point defects exist in equilibrium, we may choose any convenient reaction between
the component oxygen and the appropriate SE’s of CoO (e.g., Eqn. (2.64))

1:0,= 08 + Vi, +h" (2.64)

in order to formulate the equilibrium condition. Along with the condition of electro-
neutrality, we obtain

i/4
Ny=Ny, =N <§%) (2.65)
OZ

as the law of mass action. The superscript © indicates an arbitrary reference state.
We have again assumed ideal behavior of the irregular SE’s (in view of their low con-
centrations) and have chosen V¢, as the appropriate point defect in reaction (2.64)
since Vi, is known to be a majority defect. This means that all other defect concen-
trations (except the charge compensating electron holes) can be neglected in the
balance equations, for example, in the charge-balance, which then reads Ny, =
N,-. If the singly ionized cation vacancy V¢, is the majority atomic defect, then the
regular oxygen ion sublattice of CoO is almost undisturbed. Thus, we may represent
cobaltous oxide more correctly as Co,_sO, with ¢ being the cation deficit (6 =
N\,&0 = N,+). The nonstoichiometry ¢ increases with increasing oxygen potential ac-
cording to Eqn. (2.65). Since N, increases in the same way, it is possible to control
the electrical conductivity (o~ N.) of this semiconducting oxide by the oxygen
pressure of the surrounding atmosphere. We can control the diffusion coefficient of
the cobalt ions in an analogous way because cation diffusion occurs by site exchange
of a vacancy with its neighboring cobalt ions.

Several additional remarks are appropriate. The disorder type of a pure, strictly
stoichiometric crystal is always intrinsic. Starting from J = 0, small changes in com-
ponent activities leave the concentration of the majority defects approximately con-
stant. The concentrations of all other (minority) defects are, however, activity depen-
dent and can easily be calculated if the corresponding defect formation equilibria
are formulated similar to Eqns. (2.64) and (2.65). Entering into the extrinsic regime
means that one of the (intrinsic) minority defects now becomes a majority defect,
as can be seen from Figure 2-1 (a so-called Kroeger-Vink diagram). If we plot the
nonstoichiometry J versus the component potential, then the stoichiometric com-
position, d = 0, will be indicated by an inflection point [H. Schmalzried (1981 a);
H. Schmalzried (1981b), p.42ff.].

We have seen that it is possible to control electron (and electron hole) concentra-
tions by the chemical potential of a component of the crystalline compound within
a finite range of homogeneity. This observation leads to an effect that is known as
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extrinsic | ontrinsic | extrinsic
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? : | |
(n p,) / Figure 2-1. Point defect fractions N, and
X ! nonstoichiometry ¢ for A,;_;X at given P and
| T (Kroeger-Vink diagram) a) as a function of
~ the X component chemical potential, b) the
Y, — =0 B same information in form of a ‘titration curve’.

valence control by doping. Let us assign the electron holes (h*) in Eqn. (2.64) to the
Co’* cations in Co;_;0. When we dissolve (at a fixed oxygen potential) additional
heterovalent cations into cobaltous oxide, the binary crystal becomes a ternary one
and its charge balance is further regulated by the redox couple Co®* /Co®*. For ex-
ample, we can add Li* ions in the form of the component Li,O. By adding more
L1,O than the existing concentration of V¢, charge compensation is essentially
achieved by the balance NV ;- = N+, which is the aforementioned valence control
by doping. More systematically it is the dependence of the electronic (majority) point
defect concentration on the chemical potential (activity, concentration) of a further
crystal component (here Li,O).

Let us briefly reconsider the meaning of ‘component’. For AX, elements are the
obvious components. For higher systems, such as AB,O, (spinel), we have various
choices. The only requirement for the selection of appropriate components is that
any composition in the system’s range of homogeneity be established by the chosen
three independent species. A trivial choice would be the three elements A, B, O.
Another more practical choice is AO, B,0;, and O(QO,). This choice is, in fact, the
most practical one because the easiest way to prepare a nonstoichiometric spinel is
by reacting the proper amounts of AO and B,0O; in an atmosphere with a predeter-
mined O, activity. The formulation of extrinsic defect formation reactions depends
directly on the choice of the independent components. The results, however, which
relate defect concentrations to component potentials are independent of the specific
choice of the components in view of all existing internal defect equilibria.

It can be seen from Eqn. (2.65) and equivalent relations that phenomenological
point defect thermodynamics does not give us absolute values of defect concentra-
tions. Rather, within the limits of the approximations (e.g., ideally dilute solutions
of irregular SE’s in the ‘solvent’ crystal), we obtain relative changes in defect concen-
trations as a function of changes in the intensive thermodynamic variables (P, T,
ty). Yet we also know that the crystal is stoichiometric (i.e., d = 0) at the inflection
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point of the nonstoichiometry function d(u,). Wagner [C. Wagner (1971)] evaluat-
ed and exploited this idea in order to experimentally determine absolute defect con-
centrations.

A theoretical calculation of absolute point defect concentrations requires that the
defect formation energies and entropies be known. The early estimates of defect
energies [W. Schottky (1935)] were made in order to explain the occurrence of dif-
ferent disorder types in ionic crystals having the same crystallographic structure
(Frenkel disorder in silver halides; Schottky disorder in alkali halides). It has already
been mentioned that the introduction of lattice energies [M. Born, J.E. Mayer
(1932)] into Eqn. (2.62) yielded much lower Schottky defect concentrations than ob-
served. By taking polarization effects into account, defect energy calculations on
ionic crystals can be successfully performed [P. W. M. Jacobs (1990)]. The determina-
tion of Frenkel pair energies is, in principle, quite analogous. An additional amount
of energy must be expended in order to squeeze the ions into the interstices of the
interstitial sublattice and therefore Frenkel disorder will be preferred when the inter-
stitial ions are small and/or the (static) dielectric constant ¢ is high so that a large
polarization energy is gained. A calculation of point defect formation energies is
methodologically quite different for each of the different types of solids: metals,
covalent crystals, ionic crystals, and van der Waals crystals [P. Flynn (1972)]. The
computation of entropies [P. W.M. Jacobs (1990); J. Harding (1990)] requires an
understanding of the changes in the vibrational spectrum of the crystal caused by
point defects.

Defect clustering is the result of defect interactions. Pair formation is the most
common mode of clustering. Let us distinguish the following situations: a) two point
defects of the same sort form a defect pair (B+B =B, = [B,B]; V+V =V, = [V, V])
and b) two different point defects form a defect pair (electronic defects can be in-
cluded here). The main question concerns the (relative) concentration of pairs as a
function of the independent thermodynamic variables (P, 7, ;). Under isothermal,
isobaric conditions and given a dilute solution of B impurities, the equilibrium con-
dition for the pair formation reaction B+B = B, is 2-up = pp,- The mass balance
reads Np+2-Ny, = NY, where N9 denotes the overall B content in the matrix
crystal. It follows considering Eqns. (2.39) and (2.40), that
No, S S g2 (S

B

= " RT = RT
2 0
Ng  Jp, /B,

The activity coefficients fj, etc., and the interaction parameters e(BB), etc. were de-
fined at the end of Section 2.1. Inserting Eqn. (2.66) into the mass balance for B, it
is found that

N [ Uy (e

NBZ-sgz)—zNB-eg’)

(2.66)

5B

This equation for Ny (and thus NB) as a function of the impurity content NB can
be solved numerlcally In the limit of NB<1 Ny is approximately equal to NB, and
NBz to (N ).

{
+2 NO 5(B> Ny (Zegi +— 5%52))>:| +NB :N% (267)
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If we analyze the vacancy pairing V+V =V, in crystal A, the situation is ap-
preciably simpler since at equilibrium, gy = 0 throughout. It follows that Ky, is in-
dependent of the divacancy concentration, which means that divacancies have the
same (Arrhenius) temperature dependence as monovacancies (see Eqn. (2.57)) except
for a factor 2 in the exponent,

Following a similar line of reasoning, we find from the equilibrium condition of
the pairing reaction B+V = [B, V] for the pairing of vacancies with impurities B in
the A matrix

AG, o +AGY
e RT
Ny =Ny f(T) , A(T)=

AG?B v+ AGY (2.68)

1+e¢ RT

where N§ = N + N, v is the overall fraction of B. Thus, f(T) is not a simple func-
tion of temperature and Gibbs energy of defect formation.

Let us also consider the pairing reaction B} +V’, = [B, V] in an ionic crystal AX,
where the dopant Bj is a heterovalent cation and Vi, is the compensating cation
vacancy. We define the degree of pairing to be Np = Ny y/Ng. From the mass
balance equation NB =Np+Npy and the condition of electroneutrality Ny, +
Ng; = Ny,, one finds for the case that the undoped AX crystal exhibits Schottky
type disorder (which means that Ny, "Ny, = Ky)

A/p _KsK%
WNp—1  Np

=Ny Kp (2.69)

where Kp is the equilibrium constant for the pairing reaction as given by its Gibbs
energy. Figures 2-2a and 2-2b show Np as a function of (normalized) T for a given

al
Figure 2-2. a) Fraction Np of defect pairs (e.g.,
[B, V] in Schottky-disordered AX) as a function
b) of the normalized temperature (R/|AGY|)-T

for various dopant concentrations N§. b) Np
as a function of N% at given 7. The parameter
K denotes the Schottky equilibrium constant
{NVAN\’Q)
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N% (doping concentration), and as a function of N% for a given temperature respec-
tively. It is seen that Np rapidly increases with doping concentration, the more so
the higher Kp. On the other hand, Np decreases drastically with temperature if the
thermal energy R T approaches the pairing Gibbs energy.

Let us finally include higher clusters in the discussion. In kinetics, they are mainly
relevant because the mobility of clustered point defects is quite different from the
mobility of single defects. We shall treat the simplest possible situation. A matrix
crystal A contains impurities B which form associates B,, n = 2,3, ... . The total
impurity content N is given by Y. n-Npg . The formation equation of B, is

n'B=B, (2.70)

Obviously, the evaluation of Ny as a function of N% depends decisively on the
assumptions we make concerning the interactions between B neighbors or, more
generally, those concerning K, (n). If we let K, = k", which means that each incre-
ment Ag in the Gibbs energy is the same if one B is added to B, independent of
n, then

ag = (krag)" , k>1 (2.71)

For dilute solutions of B, which obey Henry’s law, we therefore have

Ng+ Y n-(k-Ng)" = N (2.72)

n=2

from which the cluster fractions Ny can be calculated numerically as a function of
N% (see also Fig. 2-3).

Ng,
NS 10fg ——mmm e e

05}

— Ng

Figure 2-3. Fraction Ny of B, clusters (schematic), as a function of the N% doping level. The
system contains B, B,, B; (n =1,2,3).
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2.4 Point Defects in Solid Solutions

We have discussed point defects in elements (A) and in nearly stoichiometric com-
pounds having narrow ranges of homogeneity. Let us extend this discussion to the
point defect thermodynamics of alloys and nonmetallic solid solutions. This topic
is of particular interest in view of the kinetics of transport processes in those solid
solutions which predominate in metallurgy and ceramics. Diffusion processes are
governed by the concentrations and mobilities of point defects and, although in in-
homogeneous crystals the components may not be in equilibrium, point defects are
normally very close to local equilibrium.

We wish to determine under isothermal and isobaric conditions the concentration
of defects as a function of the solid solution composition (e.g., Ny in alloy (A, B)).
Consider a vacancy, the formation Gibbs energy of which is now a function of Nj.
In ideal (A, B) solutions, we may safely assume that the local composition in the
vicinity of the vacancy does not differ much from Ny and N, in the undisturbed
bulk. Therefore, we may write the vacancy formation Gibbs energy G%(NB) (see
Eqn. (2.50)) as a series expansion G%(NB) =GO+ AG%-NB+higher order terms,
so that AGY = GY (Vg = 1)= G (Ng = 0). It is still true (as was shown in Section
2.3) that the vacancy chemical potential yy in the homogeneous equilibrium alloy
is zero. Thus, we have (see Eqn. (2.57))

AGY L GRO)  ACY
Ny=e¢ RT ‘¢ RT =e RT "Ny(0) 2.73)

Figure 2-4 iliustrates the validity of Eqn. (2.73) and also the linear approximation of
GY(Ng) for (Co,Mg)O.

In the case of nonideal solid solutions, the vacancies (or other point defects) by
necessity interact differently with components A and B in their immediate surround-
ings. Therefore, the alloy composition near a vacancy differs from the bulk composi-
tion Np. This is analogous to the problem of energies and concentrations of gas
atoms dissolved in alloys under a given gas vapor pressure [H. Schmalzried, A.
Navrotsky (1975)]. Let us briefly indicate the approach to its solution and transfer
it to the formulations in defect thermodynamics.

For pure metal A, Eqn. (2.57) (or Eqn. (2.73) with Ny = 0) represents Ny (G%),
which we can write in this form

AHS, 1 AHY T,
Ny=Coe mr = Cole T RT | 274)
C contains the formation entropy and r is the coordination number of the vacancy.
Thus, AHY/r is the enthalpy per V—A bond in the sense of the thermodynamics of
regular solutions [H. Schmalzried, A. Navrotsky (1975)]. For random A—B distribu-
tions, the probability of the configuration (r,,rg) in the nearest neighbor shell of
the vacancy V is
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Figure 2-4. Vacancy fraction Ny in
| (Co,Mg),_50 as a function of composition
Co0 05 Mg0 (Nmgo) and oxygen potential at 7= 1100°C
—— Nygo [R. Dieckmann, H. Schmalzried (1975)].
r Ia s
W(ra,rp) = { } ‘N Ny (2.75)
s

The mole fraction of vacancies with all possible A—B configurations (of the same
energy) is therefore

_ AH (rg)

,
Ny=C- Y w(ra,rg)e RT (2.76)
~0

Let us formulate AHy (rg) up to second order in rg(=r—ry) as
AHy(rg) = (ra/r)  AHy(A)+(rg/r)- AHy(B) =L ra-rg- Ah .77

The introduction of Eqn. (2.77) into Eqgn. (2.76) and forming Ny/Ny(A) with the
help of Eqn. (2.73) eventually yields

NeAB) & (r) o @\
vAB) ¢ NN (DB T e 2.78)
Ny (A) rg=0 (/B Ny(A)

Equation (2.78) expresses the vacancy fraction in the alloy, My (A, B), in terms of
the vacancy fractions Ny of the pure end members of the solid solution, of the
coordination number r, and of the parameter Ak, which designates the enthalpy
change when the vacancy is transferred from configuration (ra, ) into ((ra +1),
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Figure 2-5. Relative defect (vacancy) fraction
as a function of alloy composition Ny (see
Eqn. (2.78)), if defects interact differently
with nearest neighbors A and B. (1) Ah =0;
0 7 (2) AR =0.6-RT (for definition of Al see
—= N text).

(rg—1)). Figure 2-5 shows an illustration and compares the linear approach of
Eqn. (2.73) with the regular solution approach of Eqn. (2.78), if Ah is arbitrarily
chosen to be 0.6-RT.

For dilute solid solutions A (+B,, B,, . ..) the interaction parameter formalism as
outlined in Section 2.2 is adequate.

2.5 Conclusions

The basis of defect thermodynamics is the concept of regular and irregular SE’s and
the constraints which crystallography and electroneutrality (in the case of ionic
crystals) impose on the derivation of the thermodynamic functions. Thermodynamic
potential functions are of particular interest, since one derives the driving forces for
the chemical processes in the solid state from them.

Defect thermodynamics, as outlined in this chapter, is to a large extent thermody-
namics of dilute solutions. In this situation, the theoretical calculation of individual
defect energies and defect entropies can be helpful. Numerical methods for their
calculation are available, see [A. R. Allnatt, A.B. Lidiard (1993)]. If point defects in-
teract, idealized models are necessary in order to find the relations between defect
concentrations and thermodynamic variables, in particular the component poten-
tials. We have briefly discussed the ideal pair (cluster) approach and its phenomeno-
logical extension by a series expansion formalism, which corresponds to the virial
coefficient expansion for gases.

Theoretical point defect calculations for solid solutions are difficult because the
defect surroundings are not isotropic. This is particularly true for metals considering
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the delocalized nature of the metallic bond. The phenomenological series expansion
as outlined in the last section offers an acceptable formalism for the solution of prac-
tical problems, and the linearized approach has been justified for many nearly-ideal
solutions by experimental results. Of course, statistical modeling is far more sophisti-
cated, but verification by experiment remains ambiguous.
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3 One- and Two-Dimensional Defects
in Crystals

3.1 Introduction

The regular structure elements of perfect crystals having ideal order are immobile.
Mobility of SE’s and consequently chemical processes in the solid state thus depend
upon crystal imperfections. In Chapter 2, it was shown that atomic imperfections in
an equilibrium crystal exist in the form of point defects. Non-equilibrium, higher
dimensional defects such as dislocations, grain boundaries, or macroscopic inclu-
sions can exist. Dislocations (one-dimensional imperfections of the crystal lattice)
are catalysts for plastic deformation. Two-dimensional defects are interfaces such as
phase boundaries or stacking faults. Their structures and some relevant properties
of these non-equilibrium defects will be briefly described. Two properties are of
special interest in the context of solid state kinetics: 1) they can act as sites of
repeatable growth within a crystal and 2) they offer paths of increased mobility for
atomic particles. They are also locations where preferential nucleation of new phases
can take place. The physics of dislocations and interfaces is well covered in pertinent
monographs [J. P. Hirth, J. Lothe (1982); H. Gleiter (1983); D. Wolf, S. Yip (1992),
D.J. Bacon (1993); R.W. Balluffi, A.P. Sutton (1993)]. In the following we will
underline their role and importance in the kinetics of solid state processes.

3.2 Dislocations

3.2.1 Strain, Stress, and Energy

Dislocations are line defects. They bound slipped areas in a crystal and their motion
produces plastic deformation. They are characterized by two geometrical parame-
ters: 1) the elementary slip displacement vector b (Burgers vector) and 2) the unit vec-
tor that defines the direction of the dislocation line at some point in the crystal, s.
Figures 3-1 and 3-2 show the two limiting cases of a dislocation. If b is perpendicular
to s, the dislocation is named an edge dislocation. The screw dislocation has b
parallel to s. Often one finds mixed dislocations. Dislocation lines close upon them-
selves or they end at inner or outer surfaces of a solid.

The edge dislocation moves easily on its glide plane perpendicular to s under the
influence of a shearing force. This force is well below the theoretical shear strength
of a perfect crystal since not all of the atoms of a glide plane perform their slip at
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Figure 3-1. a) Edge dislocation model; b) Burgers vector b with Burgers circuit and glide plane in-
dicated. Dislocation motion during plastic deformation under the action of force F. Jog and kink.

the same time (conservative dislocation motion). An edge dislocation moves normal
to the glide plane when atoms (ions, molecules) are added or taken away from the
half-plane that is bounded by the dislocation line (non-conservative motion). This
mode of motion is called climb. The climbing edge dislocation is the (moving) source
or sink for vacancies or interstitials and thus plays a prominent role in the establish-
ment of internal point defect equilibria. Also, since the crystal is compressed above
the glide plane (where a half-plane has been shoved in), atomic defects of volume
V<V, (A =matrix crystal) tend to segregate. The reverse is true for the dilated
region below the glide plane (Fig.3-1). Mobile SE’s will redistribute around a
dislocation line until their chemical potentials are constant throughout. In this way,
the dislocation can be anchored (by the so-called Cottrell atmosphere), and shear
stress is increased after this SE redistribution takes place.

The glide plane of an edge dislocation (Fig. 3-1b) is defined by the vector product
[6xs]. Obviously, the screw dislocation has no particular glide plane ([pxs] = 0).
Gliding and climbing of dislocations often starts locally from so-called kinks or jogs
which are elementary breaks on the dislocation line. The motion of a kink occurs
in the glide plane, whereas a jog brings a dislocation line to the next lattice plane
perpendicular to the glide plane. In particular, a jog on a screw dislocation has edge
character. Its movement perpendicular to s occurs by climb. Therefore, if two perpen-
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Figure 3-2. Screw dislocation; Burgers vector
b with Burgers circuit. s = direction of screw
disiocation line.

dicularly oriented screw dislocations cut each other, jogs are created which move fur-
ther in a non-conservative manner. All these processes are responsible for the crea-
tion of vacancies and interstitials during plastic deformation.

Next, let us compile some quantitative relations which concern the stress field and
the energy of dislocations. Using elastic continuum theory and disregarding the
dislocation core, the elastic energy, Eyy, of a screw dislocation per unit length for
isotropic crystals is found to be

2

EdiSIEG: 'lnr*/rc (31)

where G in this context denotes the shear modulus. Typical values of G for metallic
(ceramic) solids range between 40 and 600 GPa (400—6000 kbar). »* is the radius of
the cylindrical elastic distortion. It is approximately given by the distance from the
dislocation core (r¢) either to the crystal surface, or to the surrounding dislocations
(as r* = (Qdisl)_l/z, where 04 is the dislocation density). The strain energy per unit
length of the edge dislocation is Egy(edge) = 1/(1—v)- Egq(screw), where v is
Poisson’s ratio (~ 0.2, ...,0.45).

Since screw and edge components of a mixed dislocation have no common stress
components, one can add the respective strain energies in order to obtain the line
energy of a mixed dislocation. The strain and stress fields of a screw dislocation (in
direction s) are respectively

e =b/An-r) (3.2)
o, =G b/Qar) (3.3)

ris the distance from the dislocation line. These fields are more complicated for edge
dislocations. If, in a Cartesian coordinate system, x—y designates the glide plane,
y||s, and z (Lx—y) points into the extra half-plane, one has

_ Gb(3x*+2Y) _ Gb (=2
2n(l—v) (x2+zz)2’ “

Ox Tan(-v) 42y
(3.4)
Gb  (x?-2%)

Tanl—v) (1)

O-XZ
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For sufficiently large r = ()(2+22)1/2

dominates (Eqn. (3.3)).

Let us derive the force F which is exerted by an externally applied stress field o
(or rather &) on a unit length segment of a dislocation. If this segment is differential-
ly displaced by dr, the (surface) force is o-dA (dA4 = s-dr), and by this displacement
the shift, b, of atoms on opposite sides of d4 extracts an amount of work

and small x values, the 1/r dependence again

dW=F-dr=>b-(0-dA) (3.5
which yields for the (virtual) force F (sometimes called the Peach-Koehler force)
F=0b-(oxs) (3.6)

One may conclude from Eqn. (3.6) that an (arbitrary) stress ¢ exerts both a glide
force and a climb force on edge dislocations, but no climb force on screw dislocations
(s||b; F = 0). Equation (3.6) can also be used to calculate the interaction between
two dislocations, that is, the force which the stress field of one dislocation exerts on
the unit length of another dislocation at a given coordinate. For parallel dislocations,
this force can be written as [J. P. Hirth, J. Lothe (1982)]

G

T T

Fimer =

'f(b],Sl,bz,Sz) (37)

where r|, is the distance between the dislocations. The force is repulsive between
edge dislocations of like sign and attractive between those of opposite sign. By in-
tegration we obtain the interaction energy for two equal screw dislocations

G-b?
Einer = 7 Inry,/re (3.8)

In the case of edge dislocations, E;,., additionally depends on the angle between b
and r;,. We note that the interaction forces are inversely proportional to the dis-
tance ry, and that a dislocation is surrounded (on the average) by dislocations of
opposite sign. Their stress fields tend to cancel over distances >r,,. Neglecting the
dislocation core energy, the elastic energy per unit length is then equivalent to a line
tension force of the same numerical value, and thus

dE/AL =E/L=F~g-G-b? (3.9)

where g (approximately 1/2) is a numerical factor, and L is the length of the disloca-
tion line. A dislocation line therefore strives to minimize its length. Setting
O4iq = 108 ecm ™2 and re = 107" cm, the energy Eg is ca. 170 kJ per mole of atomic
particles on the dislocation line. Note that point defect energies are of the same order
of magnitude. Nevertheless, in view of their low fractions, neither dislocations nor
point defects normally contribute noticeably to the total energy of a crystal. Yet the
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in a Frank-Read dislocation source under stress g.

f * Figure 3-3. Representation of dislocation movement
g Multiplication of dislocation pinned at a distance /.

fact that (equilibrium) point defects and atomic particles on a dislocation line have
comparable energies suggests that kinks and jogs do occur at thermal equilibrium,
although the dislocation itself is a non-equilibrium defect. Thus, kinks and jogs have
a (thermally activated) mobility and can move under internal or external forces
(stresses).

Under the action of a local shear stress, g, a straight dislocation line that is fixed
at two points will bend out. The bending radius is inversely proportional to g. The
dislocation becomes unstable if the bending radius is <//2, where / is the distance
between the anchor points (Fig. 3-3). Dislocation loops can be formed and macro-
scopic plastic deformation can continuously occur under stress if

F .
a>a-—=a-G—b (3.10)
b

where a is a numerical factor which depends on the geometry of the surrounding
dislocation network.

If a dislocation line moves on the glide plane, an energy barrier has to be overcome
in order to bring the dislocation to its next equivalent lattice position. The periodic
potential felt by the moving dislocation line is modeled as E = Ep-sin® (n-x/b)
whereby Ep is called the Peierl’s energy. Although the barrier is usually overcome by
kink motion, atomistic calculations of Ep often correctly predict the slip systems.
The calculation of Ep gives [F.R.N. Nabarro (1967)]

G-p? _ 2md
e B-v) (3.11)

P i —v)

where d defines the glide plane spacing. The corresponding force (maximum slope
of E(x) per unit length) is

. _2nd
26D 50—y (3.12)
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Accordingly, glide planes are those planes which have the shortest b vectors: a/2
(110) for fcc, a/2 {111) for bee, and a/3 (211.0) for hep lattices. Dislocations can split
into so-called Shockley partials: b = b, +b,, if b>>b7+b3. Since b, and b, are not
translational vectors of the crystal lattice, they induce a stacking fault. The partial
dislocation therefore bounds the stacking fault.

If a (full) dislocation has passed through a crystal, its surface shape is affected.
If a partial dislocation has passed through a crystal, the stacking sequence is dis-
turbed across the glide plane. If bundles of partial dislocations pass through a crystal
in a certain order, they may change the crystal structure by correlated atomic dis-
placements, for example, from fcc to hep.

3.2.2 Kinetic Effects Due to Dislocations

We see from Figure 3-1 that edge dislocations possess a compressed region above, and
a dilated region below the glide plane. Therefore, in the dilated area around the
dislocation line, the transport coefficients will be larger than in the bulk crystal.
Thus, dislocations can serve as fast diffusion pipes for atomic transport.

In one dimensional diffusion experiments (e.g., starting with a thin film source of
A on a B crystal surface) one often finds an exponential decrease in the A concentra-
tion at the far tail of the concentration profile. This behavior has been attributed
to ‘pipe diffusion’ along dislocation lines running perpendicular to the surface.
Models have been introduced which assume a (constant) pipe radius, r,, inside
which DX =f-D%, b and p denoting here bulk and dislocation respectively.
S values of 10° have been obtained in this way. It is difficult to assess the validity
of these observations. The model considerably simplifies the real situation. During
diffusion annealing, the structure of the dislocation networks is likely to change
because of self-stress (see Chapter 14) and chemical interactions.

Transport and reactions change the local state variables. In single-phase systems,
lattice parameters change. Symmetry and lattice parameters change during hetero-
geneous reactions. Many intercalation reactions in layered structures (layer silicates,
MoS,, bronzes) are pertinent examples. In principle, each diffusion process in in-
homogeneous single-phase systems builds up a (self) stress field. If stresses caused
by transport exceed a critical value (yield strength), dislocations are formed in and/or
near the diffusion zone. This is exemplified in Figure 3-4, where the dislocation den-
sity (made visible by a decoration technique) in the interdiffusion couple AgBr/NaCl
[H. Haefke, H. Stenzel (1989)] is shown. The dislocation density parallels the con-
centration profile perfectly. Indeed, the experimental results allowed the determina-
tion of the cation interdiffusion coefficient from the dislocation density vs. distance
curve. Although this phenomenon is expected to occur frequently in interdiffusion
experiments, the implications with respect to matter transport kinetics are complex
and hard to quantify. The reason is a cycle of effects. Firstly, transport creates
dislocations in the self-stress field of the interdiffusion zone. The dislocations in-
teract with the stress field and each other. These interactions make them move with
the diffusion zone, and their motion leads to the formation of point defects. Point
defects, however, enhance transport since they increase the transport coefficients. In
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AgBr 200°C 250°C = Ny

NaCi

£ Figure 3-4. Dislocation decoration in an AgBr-
NaCl interdiffusion zone. Dislocations formed by
self-stress due to lattice parameter changes. The
decoration density indicates the dislocation den-
sity [after H. Haefke, H. Stenzel (1989)].

addition, transport is directly affected by the dislocations in that they serve as fast
diffusion paths (pipe diffusion). In consequence, the moving dislocation network,
whose structure is changing with time, may strongly influence the kinetic parameters
in the diffusion zone and thereby the overall transport kinetics.

Another moving dislocation network is illustrated in Figure 3-5. The dislocations
formed and moved during the course of a heterogeneous solid state reaction in which
cobaltspinel (Co;0,4) grew inside cobaltous oxide (CoQO) by the condensation of
supersaturated cation vacancies. Despite the fact that the oxygen ion sublattice is the
same for the two oxides, the lattice mismatch creates a dislocation network which
accompanies the moving Co0O/Co0,0, interface and influences the transport proper-
ties of the cation vacancies in front of it. We note that the climbing of edge disloca-
tions (coupled with the formation or annihilation of point defects) can be treated

Figure 3-5. Co;0, spinel precipitate in a CoO
matrix due to cooling. Dislocation network in
the matrix stems from the misfit between CoO
and Co;0, [T. Pfeiffer (1990), unpublished].
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1) as a diffusion controlled process with well defined boundary conditions [J.P.
Hirth (1983)] in which the source (sink) is moving, and 2) as a reaction-limited pro-
cess in which the (moving) line source (sink) is characterized by a kinetic parameter
(e.g., sticking coefficient for vacancies or interstitials at the dislocation line).

With these examples, we conclude the introduction of line defects and turn to non-
equilibrium defects of higher dimension.

3.3 Grain Boundaries

Grain boundaries (and boundaries between phases) are elements of the microstruc-
ture of crystalline solids, being characterized by their number, shape, and topological
arrangement. The microstructure is a non-equilibrium property. In the next section
we discuss grain boundaries.

3.3.1 Structure and Energy of Grain Boundaries

Dislocations interact and tend to order if they can move. Consider the arrangement
shown in Figure 3-6a. This is called an edge dislocation tilt boundary. 1t is seen that
the number of lattice planes terminating at the boundary is n = (2/b)-sin ©/2, from
which the (mean) spacing between the dislocations is found to be

I=na=(b/2)sinBG/2=b/O (3.13)

The approximate equality of the last term in Eqn. (3.13) holds for small-angle grain
boundaries. The elastic interaction is such that regions of tension and compression
overlap and partly cancel their stress, bringing the tilt boundary into an energy mini-
mum. According to [W.T. Read, W. Shockley (1950)], the elastic tilt boundary energy
is given by

2
: 9
O 9 umey . e<oi (3.14)
4n-(1—-v) b

where ®@/b = 1// is seen to be the number of dislocations per unit area and A4 is a
term that takes into account the fraction of energy due to the dislocation core.
Tilt boundaries occur if the axis of rotation between the two grains is located in
the boundary (interface). In contrast, if the axis of rotation is perpendicular to the
boundary, the boundary is called a twist boundary and consists of a collection of
screw dislocations (Fig.3-6b). An equation similar to Eqn. (3.14) holds for twist
(and mixed) boundaries. Since dislocation theory is well understood, it is possible
to quantitatively treat small-angle grain boundaries [J. P. Hirth, J. Lothe (1982)].
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Figure 3-6. a) Small-angle tilt boundary with edge dislocations. b) Small-angle twist boundary;
formation of a screw dislocation network.

The small-angle grain boundary is a special dislocation model. In general, the
grain boundary is characterized phenomenologically by eight geometrical parame-
ters which determine the relative orientation and distance of one (planar) crystal sur-
face with the Miller indices (#, k,/) to a second crystal surface with indices (4’, k', I')
(see also [D. Wolf, S. Yip (1992)] and Fig. 10-2). There is but one position and inter-
face structure at any given P, T,u, with a minimum Gibbs energy for the joint
system. One notes that this joining requires unrestricted mobility of the interface SE.

Since both grain sizes and orientations influence many properties of crystalline
solids, it is of practical interest to know the structure and energy of large-angle grain
boundaries. Two types of models have been favored: dislocation (and disclination)
models and atomic matching models. The large-angle grain boundary dislocation
model is an extension of the small-angle grain boundary model. (Disclination models
replace the Burgers vector of boundary dislocations by a known rotation along the
common axis of the two crystals.) Atomic matching models utilize a crystallographic
approach in essence.

It is known from experiment that the boundary energy and diffusivity are a func-
tion of the grain boundary orientation angle and often show minima at certain
specific orientations [Q. Ma, R. W. Balluffi (1993); A.N. Aleshin, ef al. (1977)]. This
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can be understood for those rotations which lead to a coherent twin boundary (e.g.,
(111) for fcc) and to an overlap of the twin lattice points. However, there are other
orientations for which a certain fraction of the lattice points of the overlapping lat-
tices of the two crystals which form the boundary (almost) coincide. These points
are called O-points and can be recognized in Figure 3-6b. One can construct a purely
geometrical theory of O-point coincidence lattices [W. Bollmann (1970)] and max-
imize the number of O-points per volume in order to rationalize the cusps of the
boundary energy vs. boundary orientation plots. In contrast, however, calculations
[D. Wolf (1980); D.M. Duffy, P.W. Tasker (1985)] have shown that the boundary
energy for simple oxides is a smooth function of the twist angle with only one broad
maximum. For completeness sake, let us mention that deviations from coincidence
site lattice orientations yield additional (secondary) dislocations. An overview on the
relevant questions and results is found in [D. Wolf, K.L. Merkle (1992)].

Other proposals for boundary structure models include the mixing of islands of
good atomic fit along the boundary with others of poor fit. Good fit can either mean
microfaceting or that atomic polyhedra are embedded in rather amorphous sur-
roundings along the boundary. Although narrow boundaries comprising a few lattice
distances is the rule, wide boundaries have been reported. As an example, we mention
the interphase boundary (~ 0.3 um) in the system «/f-quartz [J. G. van Landuyt ef
al. (1981)].

Grain boundary models were developed primarily for metals. We can assume that
the above mentioned ideas on the structure and energy of grain boundaries also hold,
in essence, for ionic, covalent, and van der Waals crystals as well [M.W. Finnis,
M. Rihle (1993)].

Since we are considering equilibrium boundaries and interfaces, let us introduce
some phenomenological thermodynamics. If & symbolizes the orientation (location)
of two crystal parts (phases) relative to each other, and § designates a structure pa-
rameter that symbolizes the atomic structure of the boundary (composition and
structural details), then

b
<ﬁ> Wb (P T50) (3.15)

6]7/‘,

is the chemical potential of component &k at the interface. Since it is constant
throughout crystals [ and II under equilibrium conditions

ui=up=uiorny=ni=ny (3.16)

and we have
§=f(L T u,0) (3.17)

We conclude that the isothermal, isobaric interface structure is a function of 1)
the orientation and 2) the component chemical potentials in the adjacent crystals.
The first point has been exploited explicitly in calculations of boundary energies,
E° (= E —E'— E'™, using appropriate interatomic potentials and relaxation pro-
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cedures, e.g. in [D. Wolf, S. Yip (1992)]. The second point can be viewed analogous
to the aforementioned Cottrell atmosphere surrounding dislocations. The effect is
called boundary segregation, and size effects play a dominant role in lowering the
boundary Gibbs energy. The following experiment demonstrates the importance of
Eqn. (3.17) for nearly stoichiometric line compounds.

The S-a-f transformation (at 176°C) of a single crystal of Ag,S introduces a
variety of additional internal interfaces (mosaic structure) into the crystal bulk. This
has been verified by X-ray investigations. The newly formed interfaces adsorb point
defects from the bulk crystal (the coexisting phase, so to say) in a similar way as ex-
ternal surfaces adsorb species (i) from an adjacent gas phase. We know that the sur-
face structure is a function of the degree of coverage, ¥;, which in turn is a function
of the chemical potential of the components (i) (Gibbs adsorption isotherm).
Figure 3-7 shows the proportion &° of point defects which are adsorbed at the new-
ly formed dislocations and small-angle grain boundaries in Ag,S. The linear
dependence of log (5"—58) vs. Ua, indicates that boundary defects behave ideally
in a thermodynamic sense. We further expect that the individual mobilities (diffusion
coefficients) of the atomic constituents at the boundary depend on u, and, accord-
ing to Eqn. (3.17), also on § and the concentrations of the segregated point defects.
(For external oxide surfaces, this has been verified by [V. Stubican, et al. (19837)])

log (6°-62)
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Figure 3-7. Fraction of point defects in

1 1 a-Ag,S adsorbed on grain boundaries and
100 200 dislocations as a function of the chemical
= pg ImeV] potential of Ag (7 = 168°C).

-6.5

In semiconductors and ionic crystals, one deals with electrically charged SE’s. The
equilibrium condition states that the electrochemical potential of each of the charged
species is constant throughout (Eqn. (3.16)). This has two major consequences: 1) the
electrical potential ¢ changes near the grain boundary and 2) the space charge
responsible for the change in ¢ spreads into the adjacent grains. The spatial extent
of the space charge (Debye length) depends on the concentration of point defects
(~ c,-‘l/z). If (mobile) interface charges exceed a certain fraction of the interface
sites, ordering and formation of distinct interface structures (equivalent to phase
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transformations) can be expected due to the gain in electrostatic energy. Consequent-
ly, the change in ¢ may occur non-monotonically if g, is monotonically changed in
adjacent grains.

3.3.2 Phase Boundaries in Solids

In Section 3.3.1 we dealt with homophase interfaces. Heterophase interfaces (bound-
aries between different phases) are more complex, but their geometrical description
again uses the concepts applied to grain boundaries. Let us first introduce the so-
called Wulff construction of equilibrium surfaces (the adjacent ‘phase’ of the crystal
is vacuum). Low index lattice planes normally have the highest numbers of nearest
neighbors (bonds). If the surface deviates from such a low index plane by an angle
©, it forms facets of low index planes and steps between them. By counting the num-
ber of broken bonds, one finds the specific boundary energy to be

Ebzﬁ-(cos@+sin|@|) (3.18)
-a

where ¢ is the single bond energy and & the nearest neighbor distance. From
Eqn. (3.18), one obtains cusp-like curves in the plots of boundary energy vs. ©. En-
tropy effects will smooth the sharp cusps to some extent; the relevant energy is the
surface Gibbs energy v. If A} is the surface area of plane i, the total surface Gibbs
energy of a crystal is Y, A}y, Wulff has shown that from the y; plot in Figure 3-8,
one can derive the equilibrium shape of a surface for which Y, 43-y; is a minimum.
To this end, one constructs the inner envelope of the y; plot. As can be seen from
Figure 3-8, it is the sharp y; cusp (minimum of the surface energy) which essentially
determines the equilibrium shape of a crystal.

{001

(110)

equilibrium
shape

Figure 3-8. Wulff-plot: (110) section of a fcc crystal. y, (= AO) represents the surface energy of a
plane with the normal vector AO.
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What are the differences when we deal with internal surfaces (ie., interfaces) in-
stead of free surfaces? Although more complex in detail, ‘wrong’ bonds are again
responsible for internal surface Gibbs energies. Therefore, we normally expect cusps
to occur in E® vs. @ (y vs. ©) plots (Fig. 3-9).

N w
T T

relative boundary energy

| | | Figure 3-9. Grain boundary energies in aluminum. Rota-
50° 100°  150° tion axis of the (symmetric) tilt boundary is (110} [after
misorientation @ G. Hasson, C. Goux (1971)].

Stress builds up at a coherent interface between two phases, a and £, which have a
slight lattice mismatch. For a sufficiently large misfit (or a large enough interfacial
area), misfit dislocations (= localized stresses) become energetically more favorable
than the coherency stress whereby a semicoherent interface will form. The lattice
plane matching will be almost perfect except in the immediate neighborhood of the
misfit dislocation. Usually, misfits exist in more than one dimension. Sets (i) of non-
parallel misfit dislocations occur at distances

d=b/8; 6="""% (= misfit) (3.19)

The energy of a semicoherent interface can be split into two parts: £, (broken bond
(chemical) energy) and Ej (dislocation energy, proportional to dislocation density).
E, is proportional to J; as long as J; is small. Analogous to the large-angle grain
boundary energy, £, levels out with increasing . For 9, = 0.25, dislocation cores
begin to overlap. The interface becomes incoherent and behaves essentially as a high-
angle grain boundary.

A precipitate surface which separates the matrix from a precipitated second phase
particle is an example of an internal interface. A fully coherent precipitate in a metal
is named a Guinier-Preston zone. If the size of the atoms in the matrix and the
precipitate are noticeably different, strain energy will determine the precipitate shape
at equilibrium. If the matrix and precipitate have no planes that match, the interface
will be an incoherent high-energy type. By and large, disc-shape precipitates are
found for which the ratio of the axis lengths is determined by the particular surface
Gibbs energies, being small for coherent and semicoherent, but large for incoherent
boundaries. When misfit cannot be neglected, the function (Y, 4}-y,+Es) has to
be minimized in order to find the equilibrium shape of the precipitate. Ey is the
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elastic strain energy. If the matrix and precipitate have the same elastic moduli (G)
and are elastically isotropic (Poisson’s ratio v = 1/3), then Eg is given by

Eq=4-G-62-V (3.20)

and is independent of the shape of the inclusion (¥ is the unconstrained hole volume
of the matrix after removal of the precipitate particle). Anisotropic matrices allow
the precipitate to grow preferentially in elastically soft directions. Incoherent inclu-
sions have no coherency strain. If they are incompressible, the volume misfit can be
defined as 4 = AV/V (V' is the unconstrained hole volume in the matrix and (V— AYV)
the inclusion volume). The following expression for Eg is obtained in an isotropic
medium

Es=2/3-G-A* f(c/a) (3.21)

f(c/a) takes into account the shape of the ellipsoidal inclusion. f(c/@)—0 as c/a—0
(disc); f(c/a) = | for ¢/a =1 (sphere). f(c/a) ranges between 0 and 1 for ¢/a =
(needle).

Let us estimate the particle size at which a precipitate loses coherency. The
(isotropic) coherent Gibbs energy is approximately

Geon = Es+Gliom =4-G- 02 ((4/3) 1Y)+ y-(dn-r?) (3.22)
whereas after the breakdown of coherency we have
Gine = Eo+Eq= (7 +7q) (471 (3.23)

since Ey, = G . ¥ is the specific surface Gibbs energy, y4 the specific energy of in-
terface dislocations (~ d;). From Eqns. (3.22) and (3.23) we estimate the critical
radius for coherency breakdown as

3 v 1
Fay = o~ (3.24)
crit 4 G'&IZ 51‘

Since a loss of coherency requires the formation of dislocation loops around the
growing particle, and the formation of a loop may be rather difficult to achieve, r.;
is sometimes larger than the value calculated from Eqn. (3.24).

Let us add a few comments on boundaries between phases in nonmetals. Since the
boundary in a nonmetallic heterogencous system is chemically unsymmetric, its elec-
tric charge distribution is dipolar, in contrast to a (symmetric) grain boundary. A
force can therefore be exerted on this interface by an externally applied electric field.

To be more specific, consider an ionic crystal with the following characteristics:
o, =107%Qcem)™Y; D, =10 °cm?/s; ¥V, =20cm’; £=10; T=1000K. These
numbers lead to a bulk point defect fraction N;= 107> and a Debye length L, of
80 A. If an interface is formed inside the crystal, the necessary charge transfer per
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em® is g+€y- Ag/Lp = 107" mole/cm?. A one volume-% dispersion of heterophase
particles with » = 1000 A thus attracts a fraction of 6x 1077 of the defects into the
space charge cloud of the interfaces. In obtaining this number, it is assumed that a
potential change (ey A @) of 1€V occurs across the interface. Note that this fraction
of charged SE’s at the interfaces is only about one order of magnitude less than the
bulk defect fraction of N;=10"". Therefore, the boundaries of finely dispersed
particles influence all those properties of the crystal which depend on point defect
concentrations. Wagner [C. Wagner (1972)] and others have explained electrical con-
ductivity changes in semiconductors and ionic crystals with heterophase dispersions
on this basis.

Interfaces may behave differently if they have formed in different ways. For exam-
ple, Ag/Ag,S boundaries formed either by welding the two solid phases at elevated
temperature or by reducing Ag,S with the consequent formation of Ag/Ag,S
boundaries by chemical reaction, differ considerably in their electrical resistivities.
This indicates that there are different interface structures despite the fact that the ap-
plied pressure was ca. 10 bar. Pressures of about 1 kbar will increase the conductivity
of the welded interface several orders of magnitude. Dislocations and voids of atomic
dimension along an interface suggest that its electric structure (interface charge) is
not solely determined by the thermodynamics of irregular SE’s being attracted to (or
repelled from) the boundary at the two adjacent phases, but depends also on disloca-
tion density and other non-equilibrium faults.

3.4 Mobility of Dislocations, Grain Boundaries,
and Phase Boundaries

Dislocations move when they are exposed to a stress field. At stresses lower than the
critical shear stress, the conservative motion is quasi-viscous and is based on thermal
activation that overcomes the obstacles which tend to pin the individual dislocations.
At very high stresses, > g, the dislocation velocity is limited by the (transverse)
sound velocity. Damping processes are collisions with lattice phonons.

Of particular interest in kinetics is the non-conservative dislocation motion
(climb). The net force on a dislocation line in the climb direction (per unit length)
consists of two parts: K, is the force due to elastic interactions (Peach-Koehler
force), K.pem is the force due to the deviation from SE equilibrium in the disloca-
tion-free bulk relative to the established equilibrium at the dislocation line. Sites of
repeatable growth (kinks, jogs) allow fast equilibration at the dislocation., For exam-
ple, if ¢y is the supersaturated concentration and c9 is the equilibrium concentra-
tion of vacancies, Kqpem (in the sense of an osmotic pressure) is

b
Keper = kT-—+1In (cy/c%) (3.25)

Uy
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Figure 3-10. Strain geometry of an edge dislocation.

where vy is the atomic volume of a vacancy. In comparison to the vield strength
(~ G/10), Kem 18 Often quite large, particularly after a quench from high tempera-
tures.

The interaction energy between a solute particle (impurity atom, point defect) and
an edge dislocation (screw dislocations do not interact, to first order) is

AE: G-b-&§V-(1+v)-sinf
3n-(l=v)-r

(3.26)

® and r are explained in Figure 3-10. 8V is the local volume change due to the solute
atom. The interaction energy, AE, leads to an equilibrium distribution of solute S,
which for concentrations cg<€1 is approximately

sin 6

cs(@,r)=ce VT (3.27)

where f comprises terms which do not contain & and r. The build-up of the solute
atmosphere around a dislocation at rest is a diffusion problem. If a moving disloca-
tion is surrounded by a solute atmosphere (Cottrell cloud), it suffers a solute drag.
This drag of a moving dislocation is a diffusion problem as well, which can be solved
in a moving reference frame [J. P. Hirth, J. Lothe (1983)]. For small forces K, the (ap-
proximate) result is (Fig. 3-11)

D _ 082 -1
v = Ko | 7S gy (3.28)
RT Cg

where D is the solute diffusivity and cg is given by Eqn. (3.27). For large K values
(e.g., stresses), Ugig (> Vs Fig. 3-11) is

D 0 )
Vi = ———{ 2 (Y W)V (3.29)
dis! K~RT§S( )
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crit

Figure 3-11. Velocity v vs. drag force K for a dislocation
K with a Cottrell cloud (schematic).

where V W is the applied potential gradient. Beyond v, = 4-D-(k T/f3), the dislo-
cation breaks away from its solute atmosphere and is accelerated until a different
damping mechanism controls its motion (e.g., phonon damping).

The atomic structure around the moving dislocation thus depends on its velocity.
This is true for moving grain boundaries and phase boundaries as well. The equilib-
rium structure of an interface at rest has some atomic roughness, and occurs analo-
gous to the formation of either equilibrium point defects in the bulk or kinks and
jogs on a dislocation line. This atomic roughness can be visualized if we consider
the random motion of point defects (vacancies) as they fluctuate in dynamic equilib-
rium across the interface. Each crossing causes the interface to locally bend out on
an atomic scale.

Since small-angle grain boundaries are built from dislocations, we may anticipate
their conservative motion as a coupled motion of dislocation bundles. In the
simplest case, a small-angle tilt boundary is a mobile interface and the result of its
motion is a rotation of the crystal (Fig. 3-12). However, the elementary steps of the
boundary motion are thermally activated atomic jumps, because not only do misfit
dislocations have Burgers vectors parallel to the interface and thus have to climb dur-
ing the movement of the interface, but also because regular SE’s dissolve on one side
and reconstruct the lattice on the other side of the moving boundary. From
geometrical considerations, we expect that the frequencies of these activated jumps
parallel to the interface are different from those perpendicular to it. This is one rea-
son why it is not possible to draw immediate conclusions from atomic mobilities

<

Figure 3-12. Rotation of a grain, induced by the migration of a low-angle tilt boundary.
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within the boundary plane about the boundary mobility along a normal vector
perpendicular to it when under the action of a driving force.

The Gibbs interface energy acts as a tension on curved interfaces and causes them
to move and attain the Gibbs energy minimum shape. Recrystallization of polycry-
stalline material is, among others, a result of the acting interface tension. Electrical
field forces can also act on interfaces. In ionic crystals or semiconductors, interfaces
carry an electrical charge. If the (chemical) surroundings of the interface is sym-
metric, the interface charge is balanced by a symmetrical space charge. If the sur-
roundings are unsymmetric, as is true for boundaries in heterogeneous systems, the
interface carries an unsymmetrical space charge and an eclectrical field will exert a
force on it analogous to the force acting on a dipole.

In heterogeneous solid state reactions, the phase boundaries move under the
action of chemical (electrochemical) potential gradients. If the Gibbs energy of reac-
tion is dissipated mainly at the interface, the reaction is named an interface con-
trolled chemical reaction. Sometimes a ‘thermodynamic’ pressure (AG/AV) is in-
voked to formalize the movement of the phase boundaries during heterogeneous
reactions. This force, however, is a virtual thermodynamic force and must not be con-
fused with mechanical (electrical) forces.
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4 Basic Kinetic Concepts and Situations

4.1 Introduction

We will introduce basic kinetic concepts that are frequently used and illustrate them
with pertinent examples. One of those concepts is the idea of dynamic equilibrium,
as opposed to static (mechanical) equilibrium. Dynamic equilibrium at a phase
boundary, for example, means that equal fluxes of particles i, j?, are continuously
crossing the boundary in both directions so that the (macroscopic) net flux is always
zero. This concept enables us to understand the non-equilibrium state of a system
as a monotonic deviation from the equilibrium state. Driven by the deviations from
equilibrium of certain functions of state, a change in time for such a system can then
be understood as the return to equilibrium. We can select these functions of state
according to the imposed constraints. If the deviations from equilibrium are suffi-
ciently small, the result falls within a linear theory of process rates. As long as the
kinetic coefficients can be explained in terms of the dynamic equilibrium properties,
the reaction rates are directly proportional to the deviations. The thermodynamic
equilibrium state is chosen as the reference state in which the driving forces X;
vanish, but not the random thermal motions of structure elements i Therefore,
systems which we wish to study kinetically must first be understood at equilibrium,
where the SE fluxes vanish individually both in the interior of all phases and across
phase boundaries. This concept will be worked out in Section 4.2.1 after fluxes of
matter, charge, etc. have been introduced through the formalism of irreversible ther-
modynamics.

Following the introduction of basic kinetic concepts, some common kinetic situa-
tions will be discussed. These will be referred to repeatedly in later chapters and in-
clude 1) diffusion, particularly chemical diffusion in different solids (metals, semi-
conductors, mixed conductors, ionic crystals), 2) electrical conduction in solids (giv-
ing special attention to inhomogeneous systems), 3) matter transport across phase
boundaries, in particular in electrochemical systems (solid electrode/solid elec-
trolyte), and 4) relaxation of structure elements.

4.1.1 Systematics of Solid State Chemical Processes

Let us first give a systematic bird’s eye view of the different subjects which will be
treated later. One may subdivide processes primarily according to the physico-
chemical nature of the systems involved (the chemist’s approach), or according to
the acting driving forces (the physicist’s view). In the latter case, we can choose the
corresponding forces according to such basic fields of physics as mechanics, electro-
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dynamics, and thermodynamics. For chemical processes, thermodynamic forces (Ze.,
gradients of thermodynamic potentials) play the prominent role. In addition, pro-
cesses as treated in electrochemistry, photochemistry, and mechanochemistry will be
discussed in due course.

Chemical systems are commonly subdivided into homogeneous, inhomogeneous,
and heterogeneous phases. We will therefore distinguish chemical processes in the
following systems.

a) Single-phase homogeneous systems. Homogeneous processes in solids can oc-
cur with two limiting cases. 1) All particles of the homogeneous assembly keep their
(average) position during the process. This means that we deal with vibrational,
librational, and rotational motions. In essence, these processes define the field of
crystal dynamics (the understanding of which is prerequisite for an interpretation of
kinetic rate parameters). 2) The particles of the homogeneous non-equilibrium
assembly are not individually fixed at their (average) position during the process.
This means that either ‘Umklappvorginge’ take place cooperatively and simulta-
neously, or we deal with homogeneous reactions involving atomic diffusional steps
(analogous to the dissociation of water after a sudden temperature or pressure
change). We mention two examples: a) the formation of Frenkel defects
(As+V; = Al +V,) and b) the exchange of SE’s between two ordered sublattices of
a crystal (A +Bg = Ag+B,), resulting in exchange disorder.

b) Single-phase inhomogeneous systems. Mainly the field of chemical transport
governed by diffusion. Diffusion is a process that ultimately leads to an equalization
of concentrations through nonconvective component fluxes, these being driven by
chemical potential gradients. The first mathematical formulations were the (local)
diffusion laws given by [A. Fick (1855)] in analogy to Fourier’s law of heat conduc-
tion. Since diffusion in inhomogeneous crystals occurs by the thermally activated
motion of point defects, it is true that local (homogeneous) point defect formation
(annihilation) processes are normally superimposed on component transport.

¢) Heterogeneous systems. Classical heterogeneous solid state reactions (e.g.,
spinel formation), phase nucleation and growth, phase transformation, electrode
reactions, metal oxidation, and internal reactions belong to this category, among
others. The common feature of these processes is the existence of interfaces (phase
boundaries), across which matter is transported into the adjacent phases. In view of
the sluggishness of matter transport in solids (as compared to heat transport), most
heterogeneous solid state reactions take place isothermally. However, there are excep-
tions, for example, the self-heating combustion reactions of compressed reactive
powder mixtures. These occur if the reaction enthalpies are very negative, see, e.g.
[Z. Munir, U. Anselmi-Tamburini (1989)].

The above classification of chemical processes was based on the system’s physical
chemistry. A similar classification can be applied to electronic processes if we con-
sider the effectively charged structure elements and assume that we can determine
extremely small component concentrations or deviations from the stoichiometric
composition. The well-known p-n junction process can serve as an example since it
is a transport process (including local relaxation) in a single phase, inhomogeneous
system.
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4.2 The Concepts of Irreversible Thermodynamics

The fundamental question in transport theory is: Can one describe processes in non-
equilibrium systems with the help of (local) thermodynamic functions of state (ther-
modynamic variables)? This question can only be checked experimentally. On an
atomic level, statistical mechanics is the appropriate theory. Since the entropy, S, is
the characteristic function for the formulation of equilibria (in a closed system), the
deviation, &S, from the equilibrium value, Sy, is the function which we need to use
for the description of non-equilibria. Since we are interested in processes (ie.,
changes in a system over time), the entropy production rate o = &S is the relevant
function in irreversible thermodynamics. Irreversible processes involve linear reac-
tions (rates ~ 8S) as well as nonlinear ones. We will be mainly concerned with pro-
cesses that occur near equilibrium and so we can linearize the kinetic equations. The
early development of this theory was mainly due to the Norwegian Lars Onsager. Let
us regard the entropy S(e,f,...) as a function of the (extensive) state variables
a,pB, ...,which are either constant (f3, ...) or can be controlled and measured («).
In terms of the entropy production rate, we have (8a/0f=a)

2
g 05 0a_ {a—i-(a—ao)-k..}-d (4.1)

where o, designates the equilibrium state. The linear approach introduces a linear
relation between & and the deviation from equilibrium. If we therefore write

& =k-8S (4.2)

we obtain for the entropy production

_ .. (8’ 2 2
a a,

In generalizing, we conclude that the rate of entropy production is the product of
a flux, L+ X, with the corresponding force X. For illustration, let us consider isother-
mal, diffusional transport. A closed, inhomogeneous multicomponent system can
change its entropy through internal reaction (diffusion) and by heat transfer across
its bounding surface. Accordingly, one formulates the entropy change as &S =
5S;+8S,,. Explicitly this is

8§S;=-(1/T)- QU+P-8V-T-868)= —-(1/T)-6G (4.4)
Rewriting 8 G in terms of the system’s chemical potentials and concentrations yields

8S;= —(1/D8| ¥ pircrdV (4.5)

v
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For a one dimensional isothermal sample of (fixed) unit area cross section, the rate
of entropy production ¢ is therefore

o=~/ | L uredé (4.6)
4
which, in combination with the continuity equation ¢, = —Vj;, gives
o=+(/D Y udji 4.7
4

If both ends of the one-dimensional system are still unaffected by the diffusion pro-
cess, partial integration of Eqn. (4.7) yields

o= -/ (E jrzig'dé (4.8)

By comparing Eqn. (4.8) with Eqn. (4.3), we conclude that the (local) entropy pro-
duction rate is the sum of the products of the fluxes and conjugate forces. The appro-
priate diffusional force is seen to be —(1/7-Vu;). We further conclude that the
conjugate flux, j;, of species / can be written as —L;*(Vu/T).

In deriving Eqn. (4.8) it was assumed that the flux of species / stems only from
the force X, not from forces X (j # i). If this is not true, let us take the mutual in-
teractions into account by writing in the linear approach

Ji= Z LU'Xj (4.9)

The bilinear formulation of the entropy production rate obtained in a practical form
is

Lo

where the L;; are generalized conductances. If fluxes are not linearly related to each
other, then

2

V= 4.11)
Equation (4.11) expresses the central Onsager theorem. It states the symmetry of the
phenomenological coefficients (the L matrix) in the absence of magnetic fields. The
foundation of this theorem is discussed elsewhere [J.H. Kreuzer (1981); S.R. de
Groot, P. Mazur (1962)].
According to the second law of thermodynamics, ¢ is a positive definite function
of X; which means that
L[iéo 5 L”'L//—LULJ,,QO (412)
These relations limit the extent of the flux coupling and reflect the tendency to
reduce the entropy production. Thus, instead of dissipating the Gibbs energy com-
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pletely into random motion (heat), finite cross coefficients induce other fluxes (ie.,
order).

In a linear theory, the kinetic coefficients L;; are independent of the forces. They
are, however, functions of the thermodynamic variables. In view of the Onsager rela-
tions, not only is the L matrix of the transport coefficients symmetric, but the
transformed matrix is symmetric as well if the new fluxes are linearly related to the
original ones. This also means that the new L; (i # /) contain diagonal components
of the original set.

Let us discuss an L matrix transformation for isothermal and isobaric atomic
fluxes when there is one additional electronic species present. We start with the flux
equations in which the index j denotes the atomic species and ¢ denotes the electric
charge carriers (e.g., electrons).

1

J
n

Jo= L Loy X+ Loy X, (4.14)
J

Let us define the quantities o} as follows

whereupon
= © Ly (e Xy (.10
Je= Ea;’k'/‘j'*'([fee# Z Lje‘aj()'Xe (4.17)

One concludes that a}" *Jj is the electron flux which is induced by the flux of atomic
species j, provided that X,=0 (no force acting on the electrons). Also, from
Eqgn. (4.16) it follows that in a homogeneous solid, if an external electric field is
applied (ie., X;=z;-ey'E and X, = —e¢; E), then (z,— aj‘) represents the effective
(drift) charge of species ;j in the field E.

Equations (4.16) and (4.17) are examples of the so-called cross effects whereby a
force X, can induce fluxes j; despite that X; = 0. Another example of a cross effect
is thermotransport in which temperature gradients (fluxes of heat) induce fluxes of
atomic species, j;. An application of this concept is the steady state demixing of a
(closed solid) solution system, which has been exposed to a temperature gradient
(heat flux). This is the Ludwig-Soret effect originally observed with fluid systems.

Irreversible thermodynamics thus accomplishes two things. Firstly, the entropy
production rate Y. j;-X; allows the appropriate thermodynamic forces X; to be
deduced if we start with well defined fluxes (e.g., TV («;/T) for the isobaric trans-
port of species i, or (1/7T)-V T for heat flow). Secondly, through the Onsager rela-
tions, the number of transport coefficients can be reduced in a system of n fluxes
to 1/2-(n—1)-n. Finally, it should be pointed out that reacting solids are (due to the
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slowness of transport) normally in mechanical equilibrium. Thus, Y. N;-X; =0,
which is the Gibbs-Duhem equation if X; = V.

4.2.1 Structure Element Fluxes

In the foregoing section, the bilinear form of the entropy production rate was ex-
pressed in terms of the fluxes of chemical components and electrons (or heat)
together with the conjugate driving forces. From Chapter 2, we know that there are
properly defined constituents of a crystal known as structure elements and these can
possess (virtual) chemical potentials. We denote the general SE as S; .. In line with
the foregoing and using the notation of Section 2.2, the thermodynamic force (at
constant P and T) acting upon S, is

Kiw= =Vt F ) (4.18)

where i designates the chemical species (i =1, .. .,/; including vacancies). x is the
sublattice index (x = 1 ... K). The linear relations between SE fluxes and forces are
of the form

Ji= = XX 4.19)

The total flux J, of SE’s in sublattice » and the total flux J of SE’s in the whole
crystal are given by

J)(zzji,x; J:Z Zji,)(:Z‘/}t (420)
ix x i x

If all fluxes vanish and the number of lattice sites is conserved, only two types of
homogeneous reactions between SE’s are possible

ki+iy=k34i, , x=1,2,...,4,... (4.21)
and

ki+V, =k9+V, , x=1,2,...,A ... (4.22)
In view of the assumed site conservation in each sublattice we then have

3 Fiy=0 (4.23)
i,

where 7; , is the local production rate of S, ,,.
The structural conditions of a crystal lattice are, in accordance with Eqn. (2.12)

Ty =My )" %) (4.24)

where z denotes the number of sublattice sites. The equivalent kinetic condition (pro-
vided that the number of lattice sites is conserved) reads

JX = I’f’l,{’/\M'J;t (425)
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or, using Eqn. (4.20),
J=Y m,J, 5 J=J/Y m,, (4.26)
X X

J =0 in the lattice reference frame. Then, with Eqns. (4.20) and (4.26), we find the
structural flux coupling condition to be

Yjix=0; x=1,...,K (4.27)
i

Electroneutrality imposes a further condition on the fluxes, namely
Y X Giniin=0 (4.28)
x i

From Eqns. (4.27) and (4.28), one concludes that from a total number L of SE fluxes,
only L—(K+1) fluxes are independent, at most.

Let us apply the conditions in Egns. (4.27) and (4.28) in order to eliminate the
fluxes j,, Gc=1,...,K). If V. is chosen as the corresponding structure element
S, »» one obtains for the rate of entropy production

I " q.,‘/u v
7-g= Z Z /i,x'<Xi,X_ I 'X(/,X)—I,l(') (4.29)
x o

qu,0)-1,K

where X is the force acting upon the building elements (iZ -V ) and (V¢—V)). The

summation Y.’ goes to (/,x)—1. Since )?(,YK)_],K and q k-1, x can be chosen
i

arbitrarily, we select them in such a way that )?(,,K),l’,( acts upon (VZ-V ), and
qu k)1, 1S G, Equation (4.29) then reduces to

T-c=Y ji X, (4.30)

where k denotes the components of the crystal. Let us restate these important results.
The same entropy production can be written in terms of SE’s, building elements, or
components. This is in complete accordance with the conclusions concerning the
(phenomenological) thermodynamics of SE’s, building elements, and components
which we arrived at in Chapter 2. We note, however, that internal equilibration be-
tween the various SE’s is implicit in these derivations.

If there are n components transported by diffusion, then we have from Eqn. (4.10)

n
Jr= Z Ly Vi, (4.30)
{

If we take the Gibbs-Duhem equation, ), ¢,-dy = 0, into account, the rate of en-
tropy production is
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T-o= Z'(J'k*&'jn)V,uk ;o k=1,2,...,n—1 (4.32)
k C'I

Selecting, for example, an immobile component for which j, = 0 (e.g., oxygen in
transition metal oxides) as number n, one has instead of Eqn. (4.31)

jk:z:’l:ki-v:ui; i:1a2)"-an_1 (433)
i

The remaining fluxes and forces are independent and thus the Onsager relations
Ly = L;; hold. The number of independent transport coefficients is 1/2-n-(n—1).
With the help of the above conditions, it is possible to verify the symmetry of both
matrices L and £ [M. Martin, et al. (1988)]

Lk['—_—ljk,'(l':h...,fl—l); L,1,':1:,1i:0 (434)

In the following, we will often be concerned with ternary systems. Heterogeneous
binary systems have two phases in equilibrium and are nonvariant (at given P and
7). When two ternary phases are in contact, the system still has one (thermo-
dynamic) degree of freedom. A ternary phase has three independent transport coeffi-
cients (e.g., Ly, Ly, and Lyy).

4.3 Diffusion

4.3.1 Introduction

Consider a macroscopically inhomogeneous system of linear geometry. If the num-
ber of particles z between coordinate £ and (£+d¢&) at time ¢ = 0 is z(&,0), what is
the number of particles z(&, 1) at a predetermined coordinate &’ between ¢’ and
(&'+dé&) after time 7 has elapsed? In order to answer this question, we define a func-
tion f, (&'—¢&) as the probability of finding the particle at a distance (&'—¢) after
time 7. With this definition, one has

+ o

2(&, 1) = § 2(&0) [l &) de (4.35)

-

Letting (¢'—¢) =y, Eqn. (4.35) becomes

+

&= § 2@ =y,0)-f.(0)dy (4.36)

— 0
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In an isotropic system, f,(v) = f;(—»). Also, f,(y) decreases with increasing y. If we
now perform the following series expansions in 7 and y

z@ﬁﬂ:z@:m+<%> T (4.37)
3t/ e

2
z(é'—y,0)=z(é’,0)—<%> Y+ <§—Zz> LRI (4.38)
dy &0 ay &0

and combine Eqns. (4.37) and (4.38) with Eqgn. (4.36), the immediate result is

and

— = — 4.39
o 2t 82 39
provided that f;(y) decays sufficiently fast.
JE— -+ oo
2 _ 2
y = § ¥ f0)dy (4.40)

— o

If we define D =y?/2-1 as the quotient between the mean square displacement
y? and the time span 2-7 and name it the diffusion coefficient, we have derived
Fick’s second law
. 0>
i=D—~ (4.41)
a¢

as long as the quotient D is constant. In terms of the specific quantity ¢, Eqn. (4.41)
reads

d%¢
ae?

¢=D- (4.42)

The following conditions have been introduced in order to arrive at Eqn. (4.41). 1)
Sf(y)'dy = 1 (normalization), 2) f(y) decreases sufficiently fast with increasing y, 3)
the system is isotropic, and 4) t is not too small in order to avoid memory. This last
condition ensures that y? is proportional to .

Fick’s second law, Eqn. (4.42), is a partial differential equation for matter trans-
port. Equations which describe the equilibration in space and time of heat, electrical
charge, or momentum (dissipative processes) are of the same type and reflect the ac-
tion of a local field.

In Eqgns. (4.41) and (4.42), we should have marked z and ¢ with an index %,
designating the chemical nature of the diffusing particles (components). This is
necessary since diffusion of particles of the sort k occurs in a solvent and the system
consists of at least two components. In the previous section, we showed that under
isothermal and isobaric conditions, the diffusive flux of particles of type k in the
solvent is
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Je= —Ly Vi (4.43)
if cross coefficients L, are neglected. Equation (4.43) is equivalent to

€= VL Vi) (4.44)

if no sources and sinks (ie., internal reactions) are operating. Comparing Eqn. (4.44)
with Eqn. (4.42), we find that

L 9 L
k:ﬂ.&:ﬂ.fk (4.45)
¢, O0lne, ¢
where
O /RT
7, = Q/RD) (4.46)
dlnc,

is the (dimensionless) thermodynamic factor of the binary system represented by
component k/solvent.

4.3.2 Fickian Transport

Diffusional transport is the nonconvective flow that tends to equilibrate the concen-
trations in inhomogeneous non-equilibrium systems. From Eqns. (4.43) and (4.45),
we have

Jk= =LV = =DV (4.47)

Equation (4.47) is incomplete for 1) it neglects cross terms (this point is dealt with
later) and 2) it does not specify the reference frame for transport. Since the flux is
a product of concentration times velocity, this can be expressed by writing

Ji = ¢ (v —w) (4.48)
where w defines the reference velocity. Substituting into Eqn. (4.47) we thus obtain
G (=) = =, Ly (Ve + X5) (4.49)

The additional force X, has been introduced to account for any other possible
forces. Equation (4.49) shows that a transport coefficient actually corresponds to the
product of the concentration (¢, ) times the mobility (b,) and thus represents a con-
ductance. The mobility is the (local average) velocity of &, driven by the unit force.
Therefore
(=)= —¢p o, b (Vi + X5) (4.50)
or
vk_(w+wbk.Xk): _wbk'vl/lk (451)
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Setting v’ = v, (Vu, = 0), we can see that the velocity of k& due to the diffusional
force Vuy is

v,—v0= — bV (4.52)

Let us multiply Eqn. (4.52) by ¢, and define j7 = ck-(vk—vo) as the purely diffu-
sional flux (relative to a general drift). By forming its divergence, we find

C"k: —ij# :V(Ck'wbk'Vuk)=V(ka'VC‘k) (453)

For constant ,D,, this is Fick’s second law as derived in Eqn. (4.41).

In many cases of transport in solids, the atoms (ions) of one sublattice of the
crystal are (almost) immobile. Here, we can identify the crystal lattice with the exter-
nal (laboratory) frame and define the fluxes relative to this immobile sublattice
(w=0).v%is by X (Eqn. (4.51)) where X, is the sum of all local forces which can
be applied externally (e.g., an electric field), or which may stem from fields induced
by the (Fickian) diffusion process itself (e.g., self-stresses). An example of such a dif-
fusion process that leads to internal forces is the chemical interdiffusion of A—B.
If the lattice parameter of the solid solution changes noticeably with concentration,
an elastic stress field builds up and acts upon the diffusing particles. It depends not
only on the concentration distribution, but on the geometry of the bounding crystal
surfaces as well.

4.3.3 Chemical Diffusion

Let us now consider the equalization of the component concentrations in an in-
homogeneous multicomponent system. We may start with Eqn. (4.33) which relates
the component fluxes, j,, to the (n—1) independent forces, Vu,, of the n-compo-
nent solid solution. In local equilibrium, the chemical potentials are functions of
state. Hence, at any given P and T

V,u,- = Z (Bui/acm)-ch (454)

m

We now introduce the thermodynamic factors (f},,) in accordance with Eqn. (4.46)
and define

_Ou;/RT)
dlnec,,

Sim (4.55)

We can rewrite Vu; accordingly and obtain an analogous expression for the flux j,
as Eqn. (4.33),

jk == Z Z Lki'fim.(R T/Cm)'VCm (456)

i

The sequence of the summation can be changed to give
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jk == Z D~km Ve, (4.57)
where "

D~km = Z Lki'ﬁm'(R T/Cm) (4.58)
Each component £ obeys the continuity equation

¢ =— Vi (4.59)

In order to solve this set of (coupled) differential equations, we have to formulate
the proper boundary conditions. Let us define the conditions of the simplest (one-
dimensional) interdiffusion experiment as follows

GE=—o,0)=¢}
(& =+ 00,1) =C5 (4.60)
i (£,0) =cR(E<0) and R(E>0)

With these boundary conditions, the solution can be expressed in terms of one single
variable (= C/VT). Let us write Egn. (4.57) in matrix form

S

i=-DVe (4.61)

where j and V¢ are (column) vectors, D is the (symmetric) matrix of diffusion coeffi-

cients given in Eqn. (4.58). Let us furthermore transform D in its diagonal form. The
transformation matrix B is given by the eigenvectors v; of D, which can be found
from (4, = eigenvalues)

D-v, = Ay v (4.62)
The A, values are obtained from the solution of the secular equation
det(D—-1)=0 (4.63)
Application of B to Eqn. (4.61) yields
Bj=-B-D-B"-BVc (4.64)
or, equivalently (with 2= B-j, Vu = B-V¢, ) = diagonal diffusivity matrix)
h= -1V (4.65)

and also
u=»A4Au (4.66)
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First of all, we note that through the B transformation we have decoupled the set
of differential equations (4.59) since now

L'{kzikk'Auk » k:1,2,...,f7—1 (4.67)
The transformations of the boundary conditions yield

u=-o,n=B¢"=u’

0

ui¢=+o0w,0=B¢=q (4.68)
u(&,0) =a°(¢<0) and #°(¢>0)
A general solution of Eqns. (4.67) and (4.68) is
u(E ) =4 F@+a%)+ L F@®-a° (4.69)

with

1 ¢
Fpy = Opsverf | ——r— 4.70
=t () o

Since ¢ (= B“-y) can be obtained from u, which is known by Eqns. (4.69) and
(4.70), the real concentrations c,,(&,¢) = ¢, (5/1/7) can be found in this way. A plot
of cm(f/]/t—) in the (n dimensional) composition phase diagram is called the dif-
fusion (reaction) path. It is a unique curve between ¢y and .

As an illustration, the diffusion path in a ternary system is given in Figure 4-1. It
can be shown that the following general conclusions hold. a) The diffusion path has
a sigmoidal shape between the boundary values ¢® and ¢°. b) The diffusion path
cuts the straight line connecting ¢° and ¢° only once. ¢) The course of the diffusion
path is embedded in a parallelogram, the basis of which is spanned by the eigenvec-
tors v, and v,. For (é/l/t—) = * oo, the tangent to the diffusion path is the eigen-
vector v, which belongs to the largest eigenvalue A,.

Figure 4-1. Chemical diffusion of a (ternary) couple with
linear geometry. Initial compositions are ¢° and &2,
Schematic diffusion (reaction) path.
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This formalism has been applied to quasi-ternary oxides (glasses) [A.R. Cooper
(1974)]. Often, the transport problem can be simplified by structural restrictions. For
example, in the system Fe—Si—C, carbon is found in the interstitial sublattice only.
Therefore, in the Fe sublattice, one has jg. +/g; = 0. Details of simplified evaluations
can be found in [H. Schmalzried (1981); J.S. Kirkaldy, D.J. Young (1987)].

After this formal discussion of chemical diffusion, let us now turn to some more
practical aspects. In order to compare the formal theory with experiment, we have
to carefully define the reference frame for the diffusion process, which is not trivial
in the case of binary or multicomponent diffusion. To become acquainted with the
philosophy of this problem, we deal briefly with defining a suitable reference frame
in a binary system. Since only one (independent) transport coefficient is needed to
describe chemical diffusion in a binary system, then according to Eqn. (4.57) we have
in a one-dimensional system

Ji=—D;(dc,/8¢) (4.71)

D, represents the (individual) chemical diffusion coefficient of component 1. Since
the flux is defined in a reference frame which, in general, moves with reference veloci-
ty w, Eqn. (4.71) is incomplete. It should be properly written as

Ji= =D (0c,/38) = ¢, (v, - w) (4.72)

For example, we may choose w as the average volume velocity, @ = Y. (¢; V;) v;. In
more general terms, we may define w by Y Bv;, with Y B;=1. The B/’s are
weighting factors. If we formulate Eqn. (4.72) for two different reference velocities,
o' and w”, and take into account the partial molar volumes (V;) which are not in-
dependent of each other (Gibbs-Duhem relation), we obtain after some algebraic
rearrangements [H. Schmalzried (1981)] the quite general expression

Cr V] ‘wa~2+C2' VZ.(L)'D] =Cp V1 'w/rD~2+C2' Vz'w”D1 (473)

For the volume velocity reference system (which is also called Fick’s reference sys-
tem), we find for ¢, V,+¢, ¥, =1 (from Eqn. (4.72)) that

phi=c vy —wp)=c-[v = (¢ Vitvy+ ¢ Vyroy)] (4.74)

and consequently
i VitejaVa=0 (4.75)

From Eqns. (4.72), (4.74) and (4.75), we can conclude that in Fick’s reference system
FD1 = FDZ = D (476)

This result is important in practice since chemical diffusion experiments are normal-
ly analyzed with the help of concentration profile measurements in the volume
reference frame. Thus, we obtain directly the only chemical diffusion coefficient D
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of the binary system. For other reference frames, we can derive from Eqns. (4.73) and
(4.76)

D~:(C2'VZ)'wl§1+(cl'V1)'wD~2 (477)

If the molar volume of the solid solution does not depend on composition, this rela-
tion then yields
D~:N2'wD~1+N1'wD~2 (478)

Equation (4.78) is named a ‘Darken-type’ equation because it was first derived by
Darken for a special situation [L.S. Darken (1948)].

Chemical diffusion has been treated phenomenologically in this section. Later, we
shall discuss how chemical diffusion coefficients are related to the atomic mobilities
of crystal components. However, by introducing the crystal lattice, we already aban-
don the strict thermodynamic basis of a formal treatment. This can be seen as
follows. In the interdiffusion zone of a binary (A, B) crystal having a single sublat-
tice, chemical diffusion proceeds via vacancies, V. The local site conservation condi-
tion requires that j, +jg +jyv = 0. From the definition of the fluxes in the lattice (L),
we have

v = —(a+1ds) = (L Da—(Va/ V) L. Dg) Vea 4.79)

which, in the case of constant molar volume of the solid solution, yields for the lat-
tice velocity wyp = V-1 jv

(.UL = (LD~A_LD~B)'VNA (480)

The flux j,, relative to an external marker which we may fix outside the diffusion
Zone, is then

Ja=riatearwp = — 1 DaVey o = —(Ng- 1 Dy +Np- 1 Dg)-Ve,  (481)

From Eqn. (4.81), we see that if one adopts the lattice as the reference frame (which
also is Fick’s frame for constant molar volume), then

D =Dp=Dg=(NgLDy+Nx 1 Dp) (4.82)

in agreement with Eqn. (4.78). We note again that this result was obtained by the in-
troduction of a non-thermodynamic concept: the crystal lattice.

4.4 Transport in Ionic Solids

4.4.1 Introduction

In ionic solids, there are normally local electric fields which act on the jons during
transport. These fields are induced externally and/or internally, that is, as a result
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of the chemical transport itself. The framework of irreversible thermodynamics can
handle these cases through the introduction of (local) thermodynamic forces X, as
was shown in Section 4.2. In our analysis of chemical diffusion in Section 4.3.3, we
have tacitly assumed that our systems were composed of neutral constituents (e.g.,
metals) since we neglected any action of electric field forces, X;=z;,F*Vo =V,

In chemically homogeneous ionic crystals, V@; may be the only driving force. In
inhomogeneous systems, the electrochemical potential gradient Vg, = Vu;+z,F- Vo
acts upon the mobile charged species /. The additivity of Vu; and V @, stems from
the very small electric charge number needed to establish the internal electric field,
which is on the order of 1 [V/cm]. These charges are too small to interfere with the
concentrations that determine the chemical potentials ;.

We begin our discussion by characterizing the electrical conduction in solid elec-
trolytes. These are solids with predominantly ionic transference, at least over a cer-
tain range of their component activities. This means that the electronic transference
number, defined as

fy=—Jd = 7 (4.83)
Ocl t Ojon Tion

is <1 for electrolytes. The electronic conductivity stems from electrons and electron
holes, the ionic conductivity from all ionic constituents. In terms of concentrations
and mobilities, the condition that the crystal be a solid electrolyte is therefore

Ce'ue+ch'uh<z |z,-|-c,--u,-(= Z lzp,|'cp,'up,) (4.84)

where the subscript p; designates those point defects that render the corresponding
i ions mobile. The mobilities of electronic defects are much higher than those of ionic
defects. This allows us to formulate the condition for the predominance of elec-
trolytic conduction as ¢y <c,, which means that ionic point defects must be majori-
ty defects whose origin can be intrinsic or extrinsic.

lonic crystals are compounds by necessity. Let us regard a binary compound
(A _sX) and derive the electronic conductivity (transference) as a function of its
component activity. From Eqn. (4.84) and the necessarily prevailing ionic defects, we
can conclude that the ionic conductivity is independent of the component activities
which, however, does not mean that the total conductivity is also constant. Let us
first formulate the equilibrium between crystal A,_ ;X and component X,

T Xy +As+e = Vi +AX (4.85)
It follows that
due = —5-dux, (4.86)

because ¢, <c,, where p= V), and A{. The mass action law of electronic defects
reads (provided that e’ and h* obey Boltzmann statistics in the limit of ideal dilution)

NNy = Ky (4.87)
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The difference (V- —N,), that is, the excess charge fraction, is by necessity com-
pensated through the nonstoichiometry ¢ of the crystal A;_;X. Therefore,

§=(Ny—N,) (4.88)

and, with some algebra, one can derive from Eqns. (4.86)—(4.88)
17 _ b
6 =2-VK,-sinh 4% (4.89)
2‘RT

with 4%, = ux, for & = 0. Since Ny(d = 0) = Ny (6 = 0) = N* = VK, we also find

that
)
N*=RT- ( 0 > (4.90)
Oux,/s-0

One could easily extend these relations to crystals in which the electron distribution
is degenerate by using Fermi statistics instead of Boltzmann statistics.

If we introduce Eqns. (4.86) and (4.87) into Eqns. (4.83) and (4.84) and note that
ux, = ,ug)(z—!—R T-In Dx,» the conductivity ratio becomes

172 -1
G _ _la _ <%> + <%> 4.91)
Oion 1=t Pa Po

where pg and pg comprise all parameters which are independent of Px, (the
superscript * indicates ¢ = 0).

Y zicu\
Po =p§‘<2'<—*’ : ) (4.92)
C™ Uy
c*u :
Po = PX <— > (4.93)
A\ Y ey
and

Pe =Dx, (Ih=1/2) and pg = px, (1e = 1/2) as long as pg/pg> 1. We can again
rearrange Eqn. (4.91) to yield

1/4 _
Tl _ 5. <p—@> -cosh (’M) (4.95)
Tion Pae 2'RT

fix, = 4%, +(RT/2) In(pg pe/(°)) (4.96)

where

p? refers to the standard potential 4% (normally 1 bar).
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txlpe!  pylpg)
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Figure 4-2. Transference number of electronic carriers, 7., for AX as a function of the chemical
potential of X (X3). @) pgy/Pe>1, b) pg/Pg> | (see text).

Equations (4.94) and (4.95) provide examples of the fundamental equations which
describe the electronic conduction in ionic solids. Figure 4-2 shows the electronic
transference number ¢, as a function of the chemical potential of component X.

4.4.2 Transport in Binary Ionic Crystals AX

Conceptually it is often convenient to formulate transport only in terms of point
defect fluxes since point defects are the primary mobile species. Regular SE’s in ionic
crystals are then rendered mobile by point defect jumps. We assume (in accordance
with many systems of practical importance) that the X anions are (almost) immobile
and refer the fluxes to the X sublattice. At sufficiently low concentrations of point
defects, their individual elementary jumps are independent. Thus

Jp= —Lpp X (4.97)
and since X, = V7, one derives by inserting V#, explicitly into Eqn. (4.97)

_ cp-Dp 0,
RT  (z,°F)

o (4.98)

which shows again that the transport coefficients L; are generalized conductances.
The balance of jumps requires that N,-D,=N,-D, and since N, =1,
N, Dy, = Dy. Therefore,



4.4 Transport in lonic Solids 79

. Dy-ca N
jo= —Palag, o9 .y, (4.99)
A RT A Cn F) A
and equally (el =¢’, h")
. Del‘Cel_ _ Te |
Joi = TTRT Vg = T Ve (4.100)

Gy (or Ly and D) depend on component chemical potentials (Eqn. (4.95)). If
anions are mobile as well, we have (in the lattice reference frame) a flux equation
for X~ which is analogous to Eqn. (4.99).

In order to solve the transport problem we have to complete the set of necessary
equations and, therefore, boundary conditions must be formulated. Depending on
the boundary conditions we impose, quite different transport situations will arise.
Let us analyze the one-dimensional transport in a binary electrolyte as an illustra-
tion. Two different boundary conditions will be introduced. 1) AX is brought be-
tween different chemical potentials relative to one of its component (open electrical
circuit). 2) AX is brought between two inert electrodes to which a voltage AU is
applied. Figures 4-3a and 4-3b show the experimental schemes. Let us examine them
separately.

Boundary condition 1). In the absence of an external electrical circuit, current can-
not flow, that is, Y. z;/;, = 0. Inserting ionic and electronic fluxes (Eqns. (4.99) and
(4.100)) into this condition, one obtains

—Fdg =5 dups — 1 dux- — L due (4.101)
b -
-~ Ap—
A - >
X, | e — | X,02)
-— -X~
a) L |
reduction ‘}\ AX T‘ oxidation
AX:%X2(1)+A‘+_G,' 5+§+%X2(2)=AX

S Ag

AX
L%iq__}
i
Figure 4-3. Device (schematic) for the study of transport in AX. a) AX in chemical potential
gradient of X, open circuit; b) closed electrical circuit and inert electrodes attached to AX.
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which is equivalent to
—F-dg =15 duy —tx dux —dug (4.102)

Equation (4.102) follows from Eqn. (4.101) since A = A" +¢/, etc. and by definition
ty=1—(fs +1x). ua and ux are (neutral) component potentials. If one eliminates
the electrical potential gradient from the flux equations, it is found that

. , . gat0o
Jion =Ja+ Lix] =2 ZX'[el'V:uXZ (4.103)
2+F
Slightly modified, Eqn. (4.103) reads
: Oion _ - _A;UX
Jion:2.F2' el Aé2 (4104)

where f is the average of ¢, over the thickness A¢ of AX, and Apx, is the X,

potential difference. #,; must be calculated from Eqn. (4.91).

—=ybl2!
Le AE - -
A - >
ALV X, (2)
e - —
- ) Ay
Va+ A=A e Apve's 3X,(2) = AX 4V,

Figure 4-4. Metal oxidation scheme: A+1/2 X, = AX. V, = cation vacancy in AX.

For a finite flux j,, there is a (steady state) shift of the AX crystal towards the
side with the higher U, Jx does not lead to such a shift. The shift velocity is
ja* Vi (AX). Equation (4.104) can also be used to quantify the basic (one dimen-
sional) metal oxidation experiment A+1/2X, = AX shown in Figure 4-4. In terms
of thickness growth, one obtains from Eqn. (4.104) the expression

. Tion" [
Aé = Jion" Vm(AX) = LF,;I' Vm(AX)'

AGax (4.105)

which gives, after integration, the parabolic growth rate law A ¢2 = 2-kt. The para-
bolic rate constant, k, is found to be

k=25, (AX) A Ga (4.106)
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where AG is the Gibbs energy of formation of AX from A and X,. Chapter 7 is
devoted to a detailed discussion of metal oxidation.

Although the parabolic rate law has the same form as the mean square displace-
ment (see Section 4.3.1), its physical background is quite different. Parabolic growth
is always observed in a one dimensional experiment when due to a gradient-driven
flux and where the boundaries are kept at constant potentials.

R, H o4 ‘ g ‘ Y ‘ Hr R,
#.,i(':1'2"') ‘ ‘ | di=1,2..}
nilel=eth) [N lel=€ h)

S | S . 1 I, PSS .

Figure 4-5. Schematic plot of a multiphase reaction layer. R, = reservoir left; R, = reservoir right.

For the sake of completeness, Figure 4-5 illustrates the more general situation of
isothermal, isobaric matter transport in a multiphase system (e.g., Fe/FeO/Fe;0,/
0,). A sequence of phases a, f, y,...1is bounded by two reservoirs which contain
both neutral components (/) and electronic carriers (el). The boundary conditions
imply that the buffered chemical potentials (¢;(R)) and the electrochemical poten-
tials (17,(R)) are predetermined in R, and R,. Depending on the concentrations and
mobilities (¢}, b}, ¢k, by) in the various phases v, metallic conduction, semicon-
duction, or ionic conduction will prevail. As long as the various phases are ther-
modynamically stable and no decomposition occurs, the transport equations (in-
cluding the boundary conditions) are well defined and there is normally a unique
solution to the transport problem.

Boundary condition 2). Let us now fix two inert electrodes with a voltage dif-
ference, A U, across AX (Fig. 4-3b). Since inert electrodes are reversible for electrons
(electron holes) only,

nq (electrode) = n, (electrolyte) (4.107)

on both the sides 1 and 2 of AX. Since the electrodes are made of the same metal
(say Pt), we also have

U (electrode 1) = u, (electrode 2) (4.108)
At sufficiently small A U, the inert electrodes block the ionic current through AX,
that is, ja =0, jx = 0. If #,,>1,, which is the condition for AX being an elec-
trolyte, then dp(AX) =0 as well since a) Vu,- =0 (A" is the main cationic SE
when N,- = 1) and b) ji,, = 0, which implies that V#,,, = 0. From Eqn. (4.107)
M (Eqy) = ny(AX(y) and 7y (E) = 1,(AX2) (4.109)
follows. Subtracting n7, (AX(y)) from 7, (AX(y) yields

Auy (AX) = RT-1n (¢, (2)/c, (1)) = F-AU (4.110)
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An electron hole flux in AX is driven by A yy,. If the hole mobility is constant, then
V¢, is also constant and

(D) +¢,(2) =2-ch (@.111)

where Cﬁ is the electron hole concentration in AX before AU was applied. Inserting
Eqgns. (4.110) and (4.111) into the flux equation corresponding to Egn. (4.100), we
find

| —eAUF/RT

Jn=—2-Dy-cp-

T AUFIRT (4.112)

This relationship is shown in Figure 4-6. The saturation flux for AU= + o is equal
to (+) 2-Dy-cp.

/‘h‘ '
20, cq

Figure 4-6. Normalized electron hole flux in crystal AX located between inert electrodes
(Figure 4-3b), as a function of the applied voltage A U. Non-ohmic characteristic.

In Section 4.4.2 some concepts were developed which allow us to quantitatively
treat transport in ionic crystals. Quite different kinetic processes and rate laws exist
for ionic crystals exposed to chemical potential gradients with different electrical
boundary conditions. In a closed system (Fig. 4-3a), the coupled fluxes are determin-
ed by the species with the smaller transport coefficient (c;b;), and the crystal as a
whole may suffer a shift. If the external electrical circuit is closed, inert (polarized)
electrodes will only allow the electronic (minority) carriers to flow across AX,
whereas ions are blocked. Further transport situations will be treated in due course.

4.5 Transport Across Phase Boundaries

4.5.1 Introduction. Equilibrium Phase Boundaries

This section is devoted to the basic kinetics of interfaces in solids. In Chapter 10 we
shall work out some ideas in more detail and introduce atomic models for the deter-
mination of kinetic parameters.
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Interfaces are necessarily narrow, their smallest width being of atomic dimension.
Therefore, thermodynamic potential gradients or potential changes across interfaces
are often large compared with corresponding quantities in the bulk crystal. As a con-
sequence, the linear regime of transport rates across interfaces is readily exceeded.

The experimental determination of a potential change across a solid/solid inter-
face is a most difficult task since it means that potential probes have to be placed
very near the interface. Electrochemists face a similar problem when they study elec-
trode kinetics, but the handling of fluids in this respect is much easier. Nevertheless,
we will exploit their concepts and methods to some extent in what follows.

Let us begin with the analysis of dynamic equilibrium. For the interior of phase
« to be in dynamic equilibrium, all the particle fluxes must vanish. We can formulate
these fluxes explicitly as

Ji=ct bl (Y Vpl,+ ¥ Biif] (4.113)
n k+1i

where ¢7-b¢ is the transport coefficient of 7/ in @. The first summation in the
bracket describes the action of » (thermodynamic) potential gradients. The second
summation takes into account the friction between particles / and the fluxes ji; B; «
are friction (cross) coefficients. Since the fluxes j, vanish individually at equilib-
rium, the equilibrium condition requires that

Ji=ci-bi- Yy, Vpl,=0, ie, ), Vpi, =0 4.114)
n

1

It follows that the gradients Vp{, vanish individually if one deals with independent
potentials and therefore extended equilibrium phases must be homogeneous.

If a heterogeneous system consists of two phases, @ and £, and we treat the phase
boundary conceptually as a separate (interface) phase with thickness AEP we can
derive the equilibrium condition as before and obtain

1 .
=Y Apl,=0, ie, ¥ Ap{,=0 (4.115)
AE” n

A denotes the difference across boundary b. Since our system consists of various
chemical species, at least one Apf’,,, term is Auf’(: ut -uf}). Other potential differ-
ences may be electric, elastic, etc. For charged particles 7, the interface equilibrium
is established if

Aul+Ap? =0 (4.116)

where §; = z;- F* . Due to chemical affinity differences, Au? is of the order of 1 eV.
The amount of electrical charge necessary to build up the corresponding electric
field is negligible compared to the number of atomic particles / in macroscopic (even
two dimensional) systems. Therefore, Eqn. (4.116) is equivalent to

An?=0 (4.117)
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where #; is the electrochemical potential. Since Auf’ does not vanish across the in-
terface of a heterogeneous system, Eqgn. (4.116) states that there is always an elec-
trical potential drop A ¢? across an equilibrium phase boundary.

If several (n) charged species /7 equilibrate across the phase boundary, the set of
Eqgns. (4.116) has to be solved simultaneously for i = 1,2, ...,n. This does not lead
to an over-determination of A@” but ensures that the chemical potentials of the
electroneutral combinations of the ions (= neutral components of the system) are
constant across the interface. The electric structure (space charge) of interfaces will
be discussed later.

4.5.2 Non-Equilibrium Phase Boundaries

When a dynamic equilibrium prevails at the «/f phase boundary, the exchange
fluxes /%% and j%° occur across the interface and cancel each other individually.

Jleqy=jrl=jrr =0, jPr=jd"(=;]) (4.118)

Let us consider ionic systems. In non-equilibrium state, the potential drop across the
interface differs from the equilibrium value A ¢” (eq). If the adjacent phases a and
/2 chemically buffer the interface on their respective sides, as is normally true con-
sidering the large number of particles in the bulk relative to the small number of in-
terface particles, the overall potential drop, An,[-’, is only due to the electric poten-
tial change 8¢”. Let us then expand J? (AI?,b) in a series and linearize

, 8,7 > . i 8, N

b { b i b

Ji= . (AP —A@ey) = - 53¢ (4.119)
<8A(ﬂb « A"/

Equation (4.119) reflects the dynamic situation at the interface. For higher order ap-
proximations we have to introduce kinetic interface models. This will be done for dif-
ferent phase boundaries in Chapter 10. At this point we introduce the most simple
assumption: the interface is a kinetic barrier which must be overcome by the in-
dividual ions through thermal activation. In such a model, the externally applied
electric field increases the activation barrier in one direction and decreases it in the
reverse direction. Letting « denote the asymmetry factor of the barrier, we can then

formulate
T IR -1
j,b:j?'<ea Foe U9 RT> (4.120)

which, when linearized with (8/7/0A%") = (j{/RT), again yields Eqn. (4.119).
Figure 4-7 gives an illustration. This is a fundamental model in electrochemistry, and
particularly if one wishes to calculate the electrode overpotential under a load
assuming charge transfer to be rate controlling. (The corresponding equation is
named after Butler and Volmer.)

Pl
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Figure 4-7. Normalized flux density vs. normalized driving force (overpotential) across a solid/solid
interface. —— — gives the sum of j and y. @ >0.5 (see text).

In conclusion, we observe that the crossing of crystal phase boundaries by matter
means the transfer of SE’s from the sublattices of one phase () into the sublattices
of another phase (f). Since this process disturbs the equilibrium distribution of the
SE’s, at least near the interface, it therefore triggers local SE relaxation processes.
In more elaborated kinetic models of non-equilibrium interfaces, these relaxations
have to be analyzed in order to obtain the pertinent kinetic equations and transfer
rates. This will be done in Chapter 10.

4.6 Transport in Semiconductors; Junctions

4.6.1 Introduction

We have discussed transport in the bulk and transport across interfaces and phase
boundaries (i.e., discontinuities). In this section, we shall mainly treat an intermedi-
ate transport situation, the so-called junction. At junctions, the atomistic processes
that occur under a load have much in common with interface processes, such as the
relaxation behavior of the SE’s which are swept across them.

In solid state technology, some of the most important transport processes occur
at junctions. Junctions are zones in which the disorder type changes. The best known
junction is the (p-n) junction in a semiconductor, which is basic to the operation of
a transistor. In Figure 4-8, the main features of a junction zone are presented.
Although it illustrates the situation in a semiconductor, as we shall see later, its essen-
tial features explain other junctions as well.
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Figure 4-8. p-n junction zone. Concentrations and electric potential without load (A U = 0) and
with load (AU # 0) as a function of space coordinate & (see text).

Semiconductors, like metals, carry electric charge by electrons and electron holes,
but in contrast to metals the conductivity of electronic carriers is thermally activated.
If we neglect cross effects, the electric current does not alter the semiconducting
crystal, since no matter transport is involved. This makes these crystals ideal ele-
ments for electric devices. The electrons (electron holes) in semiconductors are the
building elements which obey crystal thermodynamics as outlined in Chapter 2.
Their concentrations can be influenced by doping (donors and acceptors). It is essen-
tially the electronic defect reactions in the junction zone which determine the unique
kinetic behavior of semiconductors. For its understanding, we introduce the concept
of internal relaxation reactions. Combined with extended space charges, we then ex-
plain the kinetics at a junction in which the electron hole (p) conduction changes
to electron (n) conduction: the (p-n) junction.

4.6.2 The (p-n) Junction

As Figure 4-8 shows, the junction zone can be divided into space-charge sections and
recombination (R) sections (of widths &, and &g, respectively; the index D refers to
the Debye length). The two disorder zones that are in contact at £ =0 are (D™, /)
and (D ~,/). We assume that D" and D™, the (heterovalent) dopants, are immobile.
At (p-n) junctions, { =e¢’(n) and j = h"* (p).

Fick’s second law states the conservation of the diffusing species it no { is pro-
duced (or annihilated) in the diffusion zone by chemical reaction. If, however, pro-
duction (annihilation) occurs, we have to add a (local) reaction term #; to the
generalized version of Fick’s second law: ¢, = —Vj,+ /. In Section 1.3.1, we in-
troduced the kinetics of point defect production if regular SE’s are thermally ac-
tivated to become irregular SE’s (ie., point defects). These concepts and rate equa-
tions can immediately be used to formulate electron-hole formation and annihilation
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kinetics. Accordingly, the rate of the (local) concentration change for species 7 (and
correspondingly /) reads

¢= =Vji+k (Y =crc) (4.121)

The second term on the right hand side accounts for the bimolecular recombination
reaction (see, for example, Eqn. (1.2) ff.).

As Figure 4-8 shows, outside the space charge region &5 (£ ), the concentration
¢;(c;) is very small, if i(j) is the respective minority point defect ¢’ (h*). This follows
from the equilibrium condition ¢;-¢; = (c®)? (= K) and the electroneutrality condi-
tion outside &p: ¢;((<&p) =cp+, and ¢; (¢E>¢0) = cp-. Here, the Vg driven flux
of the minority carriers can always be neglected.

Thus, if the length of the one dimensional recombination zone &i> &p, the
steady state condition in Eqn. (4.121) for the minority species in this zone simplifies

to
2

Di-%w,-((cof—c,-cj) =0 (4.122)

with only the diffusional flux term. Rewriting Eqn. (4.122) in a dimensionless form,
one finds the characteristic recombination width &z to be

D, 1
CR: L /Z'DI'TR , Tp= (4123)

ek 2:¢%k;

where 1 is the recombination (relaxation) time.
In equilibrium, V#; = 0. This explicitly means that R 7 In ¢;(&)—F- ¢ (&) = const,
and we can conclude that in the space charge region

Fvy

cl(é5)=clp)e RT (4.124)

where Vp is the so-called diffusion potential. When the junction is under load and
a voltage A U is applied, we still have V#; = 0 in the space charge region, provided
that &gl > [€p]. Therefore

_F(VptAU)
() =clEp)e  RT (4.125)
and we obtain with Eqn. (4.124)
_FAU
c(Ef)=clEd) e RT (4.126)

In the linear approximation, the (blocking) flux of species i is j;(bl) = —D;-(¢;(¢])
—c; (R )/ &R, and so with Eqns. (4.123) and (4.126)

PR _FAU
Ji(bl) = —%-(e RT —1> (4.127)
Doy
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which, in the limit of AU— o0, gives the saturation flux of / as

Qe 042
jl’(bl)sa[:D[ G (CD):(C ) 'l/D,"k,"CO (4.128)
‘/Z'D,"TR Cp+

Use has been made of the fact that C?(§<f,§) = (CO)Z/CD+, which is the law of
mass action for minority species. An analogous equation can be derived for j;(b/).
The sum of the fluxes (;(b/)+/;(bl)), multiplied by Faraday’s constant, gives the
overall steady state blocking current

1 1
%61y = F- (%) <—-VD,--k['COJr—-VDJ--kj-cO) (4.129)
Cp+ Cp-

Equation (4.129) gives the current, J° (b/), under the condition that Er»&p. The
rate constants k,;(k;) for the (homogeneous) defect reactions, and thus g, can be
determined with the help of the saturation blocking current for A U— o since

ki = @I°WN/B(1/ep ) (F- (") YD’ (4.130)

This is an interesting result. We cannot always neglect the space-charge width &y
compared to the recombination length &,. Transport and internal reactions in
crystals with varying disorder types will be further discussed in Chapter 9.

In summary, junctions are more or less extended zones in crystals in which the
disorder type changes and transport occurs along with simultaneous (local) reactions
of the SE’s. Junctions exhibit complex kinetic behavior due to the coupling of fluxes
and reactions. The (p-n) junction is an interesting limiting case but has served to in-
troduce the fundamental concepts of junctions.

4.7 Basic Rate Equations for Homogeneous Reactions

4.7.1 Introduction

Kinetics deals with many-particle systems (thermodynamic ensembles). The proper-
ties measured as a function of time depend on the scale of observation, and this scale
is chosen in relation to the question we wish to ask. The smaller the scale, the more
inhomogeneous and fluctuating the homogeneous systems appear to be. For exam-
ple, we describe the activated atomic jump frequency v as

y=yl.e EVRD (4.131)

where E® is the saddle point energy (Fig. 4-9). Although neither the attempt fre-
quency v° nor £° are constant for individual jumps, macroscopic transport and
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Figure 4-9. Scheme of saddle point configurations, that is, energy vs. reaction path coordinate .
7y conforms to different states of atomic particles in a crystal, for example, sublattices in
homogeneous crystals or lattice planes in inhomogeneous crystals.

reactions are well represented by Eqn. (4.131). Here, both v% and E* are functions of
state as will be discussed in Section 5.1.3. The e “®T) term can be interpreted as
the probability of having local energy fluctuations with sufficient amplitude to over-
come a saddle. Fluctuations in space and time are the essence of a homogeneous dy-
namic system, and we will return to this point repeatedly.

4.7.2 Rate Equations

Transport plays the overwhelming role in solid state kinetics. Nevertheless, homoge-
neous reactions occur as well and they are indispensable to establishing point defect
equilibria. Defect relaxation in the (p-n) junction, as discussed in the previous sec-
tion, illustrates this point, and similar defect relaxation processes occur, for example,
in diffusion zones during interdiffusion [G. Kutsche, H. Schmalzried (1990)].

Irreversible thermodynamics asserts that the affinity, — A G, is the driving force
for (homogeneous) chemical reactions. Linear rate laws, however, are observed only
near equilibrium. Reaction partners in homogeneous crystals are SE’s. In a crystal
with no thermodynamic potential gradients, we may induce ‘instantaneous’ changes
of temperature (or pressure) since the conduction of heat (or sound) is so much faster
than the transport of point defects by diffusion. SE’s obey Boltzmann (or Fermi)
statistics and so will redistribute over the available energy states (lattice sites) after
a temperature change. This equilibration of the homogeneous system is equivalent
to reactions between SE’s that are normally coupled because of the crystal lattice
constraints.

Let us first analyze the dynamic equilibrium with the help of a simple model.
Atomic particles of crystal A are distributed over two sublattices, each of which has
7Y sites. P(N;) is the probability that z; A atoms occupy i lattice sites ( = 1,2). The
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total number of A atoms is 2z,, and the total number of sites is 2z°% 1t follows
from N; = z;/z° that

P(N;) = (g(z;)/Z) e "L &/RT) (N E 4N, By)) (4.132)

where g(z;) is the degree of degeneracy and Z is the normalizing partition function.
E; is the (molar) energy of particle A on sublattice i. g(zg;) can be derived from the
number of permutations of vacant and occupied lattice sites, that is,

0y

77! oy

A

glz) = g (4.133)
Tt @t Cra-z) R0 Qza-2)!
With E(N;) = N\E +N,E,, Eqns. (4.132) and (4.133) can be rewritten
1 -2 Ny -T-SIN A _px
P(N[) - _.e RT(E(N,) T-S(N)) — e ®RT (F(N)-F*) (4.134)
Z
where F* = —kT-In Z, and S(V,) is calculated from the configuration degeneracy

(ie., Eqn. (4.133)) according to Boltzmann. From Eqn. (4.134), we can draw the
following conclusions. 1) Since P(N;) is positive and finite, irrespective of z°,
F(N;)>F* 2) The maximum value of P(N;) is found if F(N;) = F* which
therefore denotes the equilibrium distribution of A. 3) The smaller the system (zo),
the larger is (F(N;)—F*) for the same P(/V,;), which means the fluctuations are
larger.

Instead of explicitly evaluating the equilibrium distribution by setting (3F/0N;)
=0, let us evaluate the equilibrium condition (mass action law) from a kinetic ap-
proach. The basic kinetic equation is

Ny= =vi Ny (1= N+ vy Ny (1= Ny) (4.135)

It describes the in- and outflow of A atoms into and out of each sublattice in analogy
to Figure 4-9. The elementary exchange can take place if an empty site is neighboring
the jumping particle A. The steady state condition is V, = 0, which immediately

gives

- AE

Yai _ (Ll_/\@) —¢ RT (4.136)
Viz 1_1\71 NZ eq

The second part of Eqn. (4.136) is true if the attempt frequency v° (Eqn. (4.131)) is
independent of the composition. This kinetic steady state condition is obviously
equivalent to the thermodynamic equilibrium condition.

Finally, we establish kinetic equations which can deal with homogeneous solid
state reactions in more general terms. The rate at which vacancies V, on sublattice
x exchange sites with (neighboring) atomic structure elements of sort /7 (with charge
@) on sublattice x' is designated as vy (x,i% x"). The rate of increase of i? is found
by formulating the detailed exchange
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NGELY == Y v, i%x' )y NGLY NV, )= vy (', i% %) NGED) N(V,.)
xFEx (4137)

Equation (4.137) exists for each SE. Additionally, one has the following constraints

Y N(@i9) = N°i) conservation of matter (4.138)
*q

Y NG9 = N° conservation of sites (4.139)
g

Y ¢N@iH=0 conservation of charge; (4.140)
iq electroneutrality

Finally, the crystal structure condition (Eqn. (2.12)) requires
NL /NG =m, (4.141)

where m, . is a rational number. This system of coupled kinetic differential equa-
tions is, in general, extremely complicated and cannot be solved analytically. It may
even have decaying (quasi) periodic solutions. Simplified solutions are given later in
order to illustrate special applications. In the limit of very long (relaxation) times and
when close to equilibrium, one exponential relaxation process will predominate, be-
ing that which is governed by the slowest exchange rate v (s, 9,5'). Let us refer the
SE concentrations to their equilibrium fractions No(iz). By writing

NG9 = N GD+3G) 5 N(V,) =N (V,)+6(V,) (4.142)
one obtains from Eqn. (4.137)

SULy="Y v, i%x) [6G%)-NO(V,)+3(V,) N°(i)]

nEX

— vy 06,07, ) [6(i5) NV, )+ 6(V,) N ()] (4.143)

In deriving Eqns. (4.137) and (4.143) we have assumed that only neutral vacancies
are present. Charged vacancies can easily be included if necessary. For each of the
individual reaction steps, which were already formulated in Eqn. (4.22) (viz. i2+V Y,
=i7.+V1), the dynamic equilibrium condition requires that

v, %00 - NOGE) NO(V,) = v, i9, %) -NO (i) -NO (V) (4.144)
and should simplify the relations (4.143) further.

Let us apply Eqn. (4.143) to the homogeneous Frenkel defect formation reaction
Ap+V;= Al +V/,, which describes the formation of intrinsic majority defects in
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silver halides. With if. = Ag,, V,,=VYy, i7=Ag’ and V, =V, we obtain from
Eqn. (4.143)

Org = Oy » 0= [2VNA, =27 (1=N},)] (4.145)
Equation (4.145) represents a first order relaxation. We found the same result in Sec-

tion 1.3.1 by linearizing the kinetic equations of the bimolecular point defect reac-
tion (Eqgn. (1.7)).
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Figure 4-10. Model of the flux of A atoms across lattice planes in a concentration gradient. z =2
for the hexagonal planar array. ® = A,; [J=V,.

In closing, we observe that the rate equations for jumps between successive lattice
planes in inhomogeneous crystals can be treated analogously to a particle exchange
between different sublattices in homogeneous crystals. Master equations similar to
Eqn. (4.135) or Eqgn. (4.137) will result. With appropriate linearization they yield the
familiar transport equations (Fick’s second law). For example, if we designate
P(z,, 1) as the probability of finding z, A particles on sites of the p™ lattice plane

of crystal A, the rate of change of P (Fig.4-10) is given by the master Equa-
tion (4.146),

P(zp,[): =Pz, 1) (Wp por1 T Wp p_i) (4.146)

+P(zp—rrl)‘wp—l,p +P(Zp+ ls t)'wp+ Lp

which is formally equivalent to Eqn. (4.137). w denotes the frequency of the ex-
change jump as indicated in Figure 4-10. The modeling of w could be done in the
following way

wp,p+1 :vp,p+l'Np'(1_]\7p+I) (4147)

-E

Vppor =2V e Erp/RT (4.148)
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Equation (4.147) sets the jump frequency proportional to the fraction of particles A
on lattice plane p, and of vacancies (1 —/N,, ) on the adjacent plane (p+1). z is the
coordination number in direction (p,p+1), and v° is the vibrational frequency in
the potential wells.
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5 Kinetics and Dynamics. Local Equilibrium

5.1 Introduction

The aim of this chapter is to clarify the conditions for which chemical kinetics can
be correctly applied to the description of solid state processes. Kinetics describes the
evolution in time of a non-equilibrium many-particle system towards equilibrium (or
steady state) in terms of macroscopic parameters. Dynamics, on the other hand, de-
scribes the local motion of the individual particles of this ensemble. This motion can
be uncorrelated (single particle vibration, jump) or it can be correlated (e.g., through
non-localized phonons). Local motions, as described by dynamics, are necessary
prerequisites for the thermally activated jumps responsible for the movements over
macroscopic distances which we ultimately categorize as transport and solid state
reaction.

The time evolution of a system may also be characterized according to the degree
of perturbation from its equilibrium state. Linear theories hold if local equilibrium
prevails, that is, each volume element of the non-equilibrium system can still be
unambiguously defined by the usual set of (local) thermodynamic state variables.
Often, a crystal is in (partial) equilibrium with respect to externally predetermined
P and 7, but not with external component chemical potentials u;. Although P, T,
and p, are all intensive functions of state, AP relaxes with sound velocity, AT by
heat conduction, and Ay, by matter transport. In solids, matter transport is nor-
mally much slower than the other modes of relaxation.

As an illustration, consider the isothermal, isobaric diffusional mixing of two
elemental crystals, A and B, by a vacancy mechanism. Initially, A and B possess dif-
ferent vacancy concentrations ¢%(A) and ¢ (B). During interdiffusion, these con-
centrations have to change locally towards the new equilibrium values ¢% (A, B),
which depend on the local (A, B) composition. Vacancy relaxation will be slow if the
external surfaces of the crystal, which act as the only sinks and sources, are far away.
This is true for large samples. Although linear transport theory may apply for all
structure elements, the (local) vacancy equilibrium is not fully established during the
interdiffusion process. Consequently, the (local) transport coefficients (Dg,Dy),
which are proportional to the vacancy concentration, are no longer functions of state
(ie., dependent on composition only) but explicitly dependent on the diffusion time
and the space coordinate. Non-linear transport equations are the result.

Since our particle ensemble exists in the form of a crystal, the individual particles
are located in periodically arranged potential wells (see, for example, Figure 5-3 as
a two dimensional analogue). Their energy minima are normally deep compared to
the available thermal energy associated with a (motional) degree of freedom (k 7/2).
The macroscopic mobility of the (average) particle is therefore related to the prob-
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ability of reaching the saddle point between two neighboring wells. This probability,
in turn, is related to the attempt frequency of the particles to overcome the saddle,
and also to the height of the saddle and the momentum vector of the particles. (The
saddle form also plays a role if quantum effects cannot be neglected.)

Experience tells us that kinetic coefficients normally show Arrhenius (thermally
activated) behavior. The transition state theory, as used in chemical kinetics, is the
simplest model connecting dynamics and kinetics and has been adopted for crystals
(see, for example, [W. Jost (1955); G. Vineyard (1957)]). The rate at which particles
arrive at the transition saddle is given by v,-e”2Ea/R T the product of the attempt
frequency (to be found from particle mass and curvature of the potential well) and
the Boltzmann factor of the saddle height, AE,. Dynamics, however, is not only
concerned with uncorrelated vibrations of the individual particle in the potential
wells, but deals with the correlated motions (coupling to the phonon spectrum) as
well. These correlated motions have lower frequencies since larger masses are in-
volved. They periodically diminish and dilate the distances between the wells, which
results in changes in both the AE, energies and the form of the saddle. Therefore,
the analysis of the (average) particle mobility is a complex problem. The fact that
particle motion is possible only if a neighboring (equivalent) lattice site is vacant
adds to the complexity. Vacancies destroy the periodicity of the lattice as well as the
local symmetry. _

Before continuing with the discussion on the dynamics of SE’s in crystals and their
kinetic consequences, let us introduce the elementary modes of SE motion. In a
periodic lattice, a vacant neighboring site is a necessary condition for transport since
it allows the site exchange of individual atomic particles to take place. Rotational
motion of molecular groups can also be regarded as an individual motion, but it has
no macroscopic transport component. It may, however, promote (translational) dif-
fusion of other SE’s [M. Jansen (1991)].

In addition to the individual and uncorrelated particle motions, we also have col-
lective ones. In a strict sense, the hopping of an individual vacancy is already coupled
to the correlated phonon motions. Harmonic lattice vibrations are the obvious exam-
ple for a collective particle motion. Fixed phase relations exist between the vibrating
particles. The harmonic case can be transformed to become a one-particle problem
[A. Weiss, H. Witte (1983)]. The anharmonic collective motion is much more dif-
ficult to treat theoretically. Correlated many-particle displacements, such as those
which occur during phase transformations, are further non-trivial examples of col-
lective motions.

Before beginning a quantitative discussion, let us recall the classical equation of
one dimensional motion of a single particle (n) in the crystal

m-&+(m-p)-&,+(m-wj)-&, = F(r) (5.1

where F(t) denotes the applied force. The coupling to the other particles occurs by
elastic interaction through the displacement (g—fﬁ) from the minimum 52 of the
assumed harmonic potential.

Several limiting cases are noteworthy. If there is (virtually) no coupling with other
particles (e.g., small cations in the interstices of a stiff anion sublattice), we have the
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]

Figure 5-1. Harmonic (damped) oscillator: amplitude s; and phase ¢ as a function of the frequen-
cy w of the exciting force F(/).

zirey E e E
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m w3 m frwg

one-particle problem of Eqn. (5.1). The well-known solution for a periodic electric
field force F(t) = (z;-ey Ep)-e"' " for long times is (Fig. 5-1)

_%i'€y Ey

.ei'(w'f—(/?):SO.ef'(w‘f—(ﬂ) (5.2)

Here, ¢ is the phase shift and tang = B w/(wi— w?), where w, = J/f/m with f be-
ing the curvature of the harmonic potential. sy (max) (= (z,-eq/m) - Ey/ (8- wg)) oc-
curs at w,. Note that & is proportional to the (complex) electrical conductivity if the
particles bear electric charge as, for example, in solid electrolytes (see Section 5.2.3).

The formal solution of Eqn. (5.1) for short times requires a term to be added to
the right hand side of Eqgn. (5.2). It contains the vibration frequency wg and is pro-
portional to e #7. In other words, the time ¢ to attain the long-time solution
(Eqn. (5.2)) depends on the friction coefficient # and equals

T=1/0 (5.3)
If there is elastic coupling to the other particles, but no friction (§ = 0) and no ap-

plied force F(¢), the phonon states of a crystal can be derived. For each particle
(n=1,2,...) we have (in a linear lattice) from Eqgn. (5.1)

Et g (28, — (i1 + &) =0 (5.4)

if the elastic forces are proportional to the deviations (£, —¢,.;) = A&, from the
equilibrium distance, a, of the minima of the harmonic potentials. It is seen by inser-
tion of Eqn. (5.5) in (5.4) that



98 5 Kinetics and Dynamics. Local Equilibrium

Ly = Gprel @ k:%n (5.5)

satisfies Eqn. (5.4), from which we derive

W =2+ wy-sin <¥> (5.6)

We conclude that w = w(k), that is, the lattice vibrational frequencies show disper-
sion and change (periodically) with k& (or 4). In particular, w(k =0)=0;
w (k= tn/a) =2-w,. Furthermore, w(ka/2) = w(ka/2+h-2 ), which gives iden-
tical vibrations for k = k+h-dn)/a; h=0,1,2,...

The number of vibrating states between w and (w+dw) is determined by the
length L of the system. Since L = z-@ = g-4 (if z = total number of particles », and
g = number of waves in L), we have

dg = <ﬂl> -dk .7)
2n

from which the density of states can be calculated

d 2
e _ LA ad (5.8)
daw ka nVwi-w?

7'['(,00'(3057

We did not differentiate between the various modes of vibration (longitudinal,
transversal, acoustical, optical) for the sake of simplicity. The vibrational states in
a crystal are called phonons. Figure 5-2 illustrates the collective, correlated transver-
sal vibrational motion of a linear elastic chain of particles.

Figure 5-2. Phonon in a crystal, schematic. Transversal motion of a linear atomic chain, described
by two different waves with wavelength >2¢ and wavelength <2a, ¢ = (average) distance of atoms.

Kinetics is a macroscopic theory. Dynamics is particle physics. Statistical theory
relates both fields and goes beyond statistical thermodynamics. It is not the aim of
this book to enter the field of statistical theory. However, a number of its concepts
are needed for a correct understanding of kinetic parameters and for constructing
appropriate models. In this sense, the following sections will be presented.
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5.1.1 Linear Response

Equation (5.1) described the vibrational response of a single particle to an applied
force F(¢). In a (crystalline) system of many mobile particles (ensemble), the problem
is analogous but the question now is how the whole system responds to an external
force or perturbation? Let us define the system’s state (@) as a particular configura-
tion of its particles and the probability of this state as p,. In a thermodynamic
system, transitions from an o to a £ configuration occur as thermally activated
events. If the transition frequency a—p is wp, and depends only on « and g
(Markovian), the time evolution of the system is given by a ‘master equation’ which
links atomic and macroscopic parameters (dynamics and kinetics)

d
% =Y wuppp- Y Wpaba i BECQ (5.9)

In matrix form, this equation reads

p=—-W-p (5.10)
with the definitions
Wep= —wup@#f) 5 Weg= % wga (B # ) (5.11)
Formal integration gives
p@)=p°HWO ; H@o)=e"" (5.12)

The ‘propagator’ Hg,(¢) is the (conditional) probability that the system will be
found in state £ at time ¢, given that it was in ¢ at ¢ = 0.

If the (equilibrium) system (upper index 0) is disturbed by an externally applied
field E, we then assume that the (first order) changes of the system’s thermodynamic
(p) and kinetic (w) parameters are given by

I

Pa=po+E-pY (5.13)

Wpo = W +E @) (5.14)
At equilibrium, we have the detailed balance
Do g =Pl wop (5.15)

Let us assume (in accordance with transition state theory, see Section 5.1.2) that in
a linearized version

o 8G,—-8Gf,

why=wh, 7 (5.16)
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where G, is the Gibbs energy of the a-state, G, the Gibbs energy of the activation
saddle for the process a—f, and & designates the change due to the applied field.
With these definitions, p"(s) becomes

0 8Gy(t")—8G, (1t
p(1)(t): ij'HO(f‘t,)'WO' ﬂ( )IQT ( )

-de’ (5.17)

if the field was applied at r = — o« [see, for example, A.R. Allnatt, A.B. Lidiard
(1993)]. 1t is noteworthy that those terms related to the saddle energy vanish as a
result of the detailed balance. The main result, however, concerning the conceptual
understanding of processes in the solid state is that thermodynamic equilibria func-
tions (p°, H°, W° G) can be used to describe the time evolution p(¢) of the
disturbed system.

Let us illustrate the simplest response approach by an example representing the
many-particle system counterpart of Eqn. (5.1). Let F(¢) stem from an (periodic)
electric field E(f) acting upon an electric charge. The response of a dielectric with
permittivity ¢ to the field £ is the displacement

D=¢FE (5.18)
and the polarization
P=D—-¢gyE=(c—¢y)E (5.19)
If E = E(¢), we can split D into one part that follows E(¢) instantaneously and a sec-
ond part that contains the response due to relaxation processes, that is,
!

D(t)=¢o,-E@)+ | H@e—t')-E@t')-dt’ (5.20)

oo

We can substitute (z—s) for ¢ and (gy— &, ) /i (s) for H(¢t—t"), where H({~t') and
h(s) are functions that specify the system’s response. If E = E,-e" “’, then one ob-
tains from Eqn. (5.20)

D(t) = Ey-e'@l {em + (80—em)'11(s)-e_i'w'5-ds} = (g —i"&)) Eye @’
0 (5.21)

or, equivalently,

£, =&, tRe {(80—8&,)-0{h(s)-e""w's.dsg
o O (5.22)
0

where Re and Im designate the real and imaginary part of the complex function,
respectively.
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One notes the similar forms of Eqns. (5.21) and (5.17). The simplest response func-
tions are exponential, for example

1
h(s)=——e ", Ae=¢p(w=0)—e,(r=0) (5.23)
AegT

The pre-exponential factor has been chosen so that Debye’s equations for the dielec-
tric loss are obtained if one evaluates Eqns. (5.22) using Eqn. (5.23)

Ag
81 :800 +ﬁ (524)
l+w* T
Aegw-T
& =——— (5.25)
2 1+ w?7?

For large enough w, ¢, is formally equivalent to s, in Eqn. (5.2). Also, ¢&,/€, = tan ¢,
is equivalent to the tan ¢ derived from Eqn. (5.2). Therefore, Figure 5-1 also repre-
sents the course of &g, (w>w?) and ?; -

5.1.2 Transition State

The kinetic rate parameters, k, of many chemical processes obey the Arrhenius rela-
tion
AE,
k=kye RT (5.26)

where AE, is the activation energy. k, is related to the attempt frequency of the
particle in its potential well. Various efforts have been made to explain the ensemble
average AE, through statistical models and particle dynamics. Important steps in
the theoretical evaluation were Eyring’s transition state concept [S. Glasstone, K. J.
Laidler, H. Eyring (1941)] and Kramers’ model [H. A. Kramers (1940)]. The latter
calculates the escape rate of a (classical) particle trapped in a potential well when
exposed to a random force F,(¢). The basic assumption is that the course of the
system (ensemble) follows a reaction coordinate (path) in high dimensional energy
space. The probability of being at the saddle point position (transition state) is de-
fined according to Boltzmann statistics. From the transition state, the system falls
into the stable ‘product’ state with an assumed ad hoc probability.

Since thermodynamic concepts are used to calculate the transition state probabili-
ty, and the entropy varies along the reaction path, it is more correct to formulate

Eqn. (5.26) as
AG,

k=kye RT (5.27)

where A G, is a change of free enthalpy.
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There were several early discussions on the application of transition state theory
to activated diffusional transport in crystals [W. Jost (1955)]. The Vineyard treat-
ment [G. Vineyard (1957)] adapts Eyring’s concept to the case of vacancy diffusion
in a (elemental) crystal and clarifies it by taking into account the many-body features
of this diffusion process.

Eyring’s theory is well explained in textbooks on kinetics. It is analogous to the
statistical mechanics approach that gives the probability of a particle with total
energy H=p2/2mA+¢(é) to be found in the interval & to (£+d&) and p to
(p+dp), that is,

dp-dé-e *T /[ dp-dg-e~H/KT (5.28)

where p = m4- & and ¢ (£) is the (periodic) potential energy. In order to convert the
probability of a saddle point occupation into a jump frequency, two crucial assump-
tions are made. 1) If a particle reaches the saddle point, it crosses it with an ad hoc
probability. 2) All particles, A, having an average thermal energy (1/2-mA-v2
= 1/2-kT) will reach the saddle point in the time interval d¢ if they are located
within a distance Vk 7/m,-dt from the saddle.

Extensive discussions of this problem are given in pertinent monographs (e.g.,
[A.R. Allnatt, A.B. Lidiard (1993)]). We will instead present Vineyard’s version and
add a few comments which are relevant to diffusional transport in crystals. This ver-
sion yields for the vacancy (V,) hopping rate in crystal A at a given temperature

[eme@/T. g
1 kT S

VV = *
* Vo ma | e POKT.g,
14

(5.29)

where S is the dividing hypersurface in energy space (equivalent to the saddle point
configuration in the one dimensional model). Once atom A reaches it (in configura-
tional space) at a finite velocity, it will react, that is, it will exchange sites with the
neighboring vacancy. The integral in the denominator goes over the crystal volume,
V, which comprises that side of the dividing surface S on which the hopping vacancy
does not reside. In the harmonic approximation, we can immediately evaluate the in-
tegrals of Eqn. (5.29). If the energy difference between the saddle surface and the lat-
tice potential well is (¢ (S)— ¢ (A))> kT, then

_0(S)-0(A)
vy, =Vv-e kT (5.30)
where
H(Z)
g Vv (5.31)
%"y

vy are the (Z) normal frequencies in the bulk, vg are the normal frequencies when
the system is constrained to the dividing hypersurface S. By assuming that all fre-
quencies are the same (= Einstein frequencies vg), the isotope effect of diffusion
will be correctly predicted (v ~ 1/1/@).
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Attention should be drawn to the fact that thermal energy randomization occur-
ring after a particle has crossed the activation barrier is not perfect, so that return
jumps may not be neglected. This can be taken into account by introducing a curved
dividing hypersurface S which the jumping particle crosses more than once. Correc-
tions (backjumps) of up to 10% are predicted [C.P. Flynn (1987)].

The statistical procedures of Vineyard and others thus confirm the experimentally
observed Arrhenius behavior of transport in solids. There are many details which
have not been fully treated in this discussion but can be studied in the pertinent
literature [P. Hanngi, P. Talkner, M. Borkavec (1990)]. Our aim was to rationalize
the activated jump concept and to point out its basic assumptions.

5.1.3 Brownian Motion

The stochastic motion of particles in condensed matter is the fundamental concept
that underlies diffusion. We will therefore discuss its basic ideas in some depth. The
classical approach to Brownian motion aims at calculating the number of ways in
which a particle arrives at a distinct point m steps from the origin while performing
a sequence of z° random steps in total. Consider a linear motion in which the prob-
ability of forward and backward hopping is equal (= 1/2). The probability for any
sequence is thus (1/2)°. Point m can be reached by (z%+m)/2 forward plus
(z"~m)/2 backward steps. The number of distinct sequences to arrive at m is
therefore

Al

(1/2-@+mn1-(1/2-°—m)!

(5.32)

By using Stirling’s formula (see, for example, [S. Chandrasekhar (1943)]), the prob-
ability of this special sequence is

0 0 172 m?
W(m,zo): 1 Z. z! — 2 e 220
2/ (1/2-@ 4+ m)t-(1/2-@°-m)! \n-2° (5.33)

In order to adapt Eqn. (5.33) to diffusion, we introduce the jump time 7 = 1/z° and
the distance coordinate & =m-a, with & being the jump length. Since
Wm,z%)-AE/2a = W(E 2% A& Eqn. (5.33) yields, after setting D = a%/2-,

W) AE= e TP A g (5.34)

1
2-(n-D-1)"?

for the probability of finding the particle at &, (¢+ A &) after time £ W has the form
of a normal distribution. _

The simplest derivation of the mean square displacement (&2 ~ ¢) assumes a reg-
ular lattice (elementary length @) and a fixed jump frequency (1/7). This model,
however, is obviously oversimplified even in the case of tracer diffusion in an elemen-
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Figure 5-3. Stochastic equidistant potential wells and saddles.

tal crystal since it disregards the stochastic phonons (= thermal fluctuations).
Glasses are geometrically and energetically random systems, and alloy crystals can
be random systems as well, that is, there is a distribution of saddle point potentials,
&g, and regular site potential wells, ey, as indicated in Figure 5-3.

It has been established that geometrical disorder has only a small effect on Brown-
ian motion [S. Havlin, D. Ben Avraham (1987)]. Also, for thermally activated jumps,
if the distribution of &5 and &y in a geometrically regular lattice is chosen to
be Gaussian, as characterized by the variances g5 and oy, it has been ascertained
[Y. Limoge, J.L. Bocquet (1990)] that there are two limiting diffusion coefficients:

1) in the high temperature limit (R7— )

s _¢ 2_g2
_EsTEw O5~ 0w

D=D"¢ "RT -¢ 2-RT) (5.35)

2) in the low temperature limit (R 7—0)

f-6y  [lol-od)

& Ey
D=D%¢ "RT ‘¢ 2(RT: (5.36)

In Eqn. (5.36), f varies slowly with (g¢/R T) and the coordination number, and it is
nearly one. & and &y are average values. From Eqns. (5.35) and (5.36), we conclude
that, with respect to diffusion, the two kinds of disorder (in S and W) compensate
each other. The disorder effects would cancel each other exactly if ogg/ow =1
(Eqn. (5.35)) or og/0oyw = V?(Eqn. (5.36)). Therefore, the normally observed Arrhe-
nius behavior of diffusion coefficients is indeed to be expected unless gg/gw> 1 or
og/0w <1, which is obviously not the case for real systems.

A limiting case of particle motion is the stochastic hopping of an interstitial atom.
It receives the necessary energy for the saddle point crossing from the spectrum of
phonon energies. The coupling of the particle jump with the phonons determines at
least part of the correlation between successive jumps. If this coupling is weak, a for-
ward correlation might develop. However, backward correlations occur as well, as
will be shown below. The real motion of the particles, however, occurs on an energy
surface which is continuously changing its form. In view of the lattice defects which
are responsible for the macroscopic (Brownian) motion, even the time-averaged form
of the energy surface is not strictly periodic. Therefore, the motion of atomic par-
ticles in crystals can also be seen as somewhat analogous to atomic motion in fluids.
In this limiting case, the particies follow a reduced equation of motion
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m-E+(m-B)-&=F() (5.37)

which is to be contrasted to Eqn. (5.1). Note that 1/8 (Eqn. (5.3)) has the dimension
of time. When &'= 0, Eqn. (5.37) yields ¢ (stat) = F°- b for the steady state velocity,
where b = 1/(m-f8). F(z) has now been replaced by F° for > 1/B. Let us use this
concept to understand the essence of a diffusion coefficient. For a linear geometry,
Fick’s first law gives (for constant D)

§ ¢j-de=-D- | é'z_z'dé:D' { c-de (5.38)

On the other hand, if we set j =c¢-(b-Vu) =c-v(¢), then

[ &v@&)-cde=D | c-de¢ (5.39)
and so
[€o)ed  ——
D=2"2""— 2= ((0)= (¢ 5.40
Tear  ~C0=(E0 (5.40)

Equation (5.40) reveals the essence of the diffusion coefficient. Since d(&>)dt =
2-¢-¢, then &2 =2-Dr. The same conclusion was reached in Section 4.3 where we
used an ensemble averaging procedure instead of introducing F°, the time average
of the stochastic force, F(t), acting upon a single particle.

Furthermore, since v? =k 7T/m = £? in thermal equilibrium, we find from the
equation of motion (Eqn. (5.37)) for t> 1/f that D = b-k T This is the Nernst-Ein-
steir21 equation and is achieved by setting F° = 0 and noting that &-& = (d(&-&)/d¢
-¢9).

For short times, that is, <1/, we have to consider the fluctuating energy surface
for which F(¢) # F°. Let us investigate the meaning of F(¢) (in atomic dimensions)
and see whether v is still given by (F-b). After all, F(¢) reflects the dynamics of the
particles. If we multiply Eqn. (5.37) by & we obtain

d ; : . F(t
—<5-5>—52= —peéretO (5.41)
d¢ m
Integrating Eqn. (5.41) and averaging over many particles yields, if ? =k T/m and
¢ F(1) =0,

EE=A+CeH (5.42)

where A is an integration constant determined to be C = —A4 for ¢ = 0. Integrating
once again gives .

Er=2-A-(t—(1/B)-(1—e Py (5.43)
which, for r<1/f becomes

P=AB 1 = (1) (5.44)
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Figure 5-4. Mean square displacement of many particles as a function of time f.

Figure 5-4 illustrates Eqns. (5.40) and (5.44) by plotting the mean square displace-
ment of many particles as a function of #. We can distinguish the Brownian from
the pre-Brownian regime and correlate 4 with the diffusion coefficient D.

Let us further analyze the stochastic force F(¢) with respect to the dynamics of
the system in the pre-Brownian regime (< 1/4). Before we introduce models, let us
clarify the role of F(¢) by averaging the particle velocities v. To this end, we rewrite
Eqgn. (5.37) in the following form

b= —fv+B(t); B(t)=F()/m (5.45)

Remember that in thermal equilibrium, v =kT/m. B(¢) is the stochastic accelera-
tion. Integration of Eqn. (5.45) results in

v(t) = v(0) e P re P B() P dr (5.46)
0

as can be verified by inserting Eqn. (5.46) into Eqn. (5.45). After multiplying of
Eqn. (5.46) by v(0) and averaging over many particles, we find

0000 = 0o H i =K e s
m
or

m:v(z')z-e'ﬁ":ﬂ-e*ﬂ‘f (5.47)
m
Equation (5.47) shows that the ‘velocity autocorrelation function’, v(¢')-v(¢), decays
exponentially with time. The rate of decay is determined by the friction coefficient
B(= 1/b-m), that is, by particle mass and mobility.

Let us finally examine the relation between f (or the mobility b) and the stochastic
force F(¢) (or B(t)). We assume that the (‘force’) autocorrelation function ¢ (1) =
B(t")-B(¢) depends only on 7, where 7 = (f—t'). We note that ¢(r) is a symmetric
and fast decaying function of 7. Taking the square of Eqn. (5.37) and averaging over
many particles, it is seen that by using Eqn. (5.47)
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o 2kT , 2-kT 1 2-kT
(r)-dr = 8= -, b= 57— 5.48)
_500(/) m m* b m?-§¢-dr (

Equation (5.48) relates the mobility b of the moving particles to the stochastic force
F(t)y = B(?)-m. In essence, it states that the larger the correlation in F(¢) (or B(f)),
the lower is the particle mobility &.

If we regard B(f) over a time 7 long enough to ensure that e 77«1, we can
define B(¢) = 0 for <0 and ¢>7. We can then express B(¢) for — oo <f< + o in
terms of a Fourier integral

+ oo

B(z):L- { Aw)-e"*'"dw (5.49)

V27

Using the definition of ¢ (7) and Eqn. (5.49), it can be shown [R. Becker (1966)] that

C/’(T)=E'°§0 |A(w)|* cos (wt)-dw (5.50)
T 0

or, equivalently,
+ oo

[A(w)[zzz%- [ (1) cos (r)-dr (5.51)

— oo

We mention this result here in order to assert that the spectral distribution of
B()* is the Fourier transform of the (force) autocorrelation function ¢ (7). In view
of Eqn. (5.45), we can restate this result in terms of the velocity v(¢). The spectral
distribution of the velocity autocorrelation function is directly related to the Fourier
transform of ¢ (1), the force autocorrelation function. Thus, we see that the classical
equation of motion when properly averaged over many particles provides insight into
the relation between transport kinetics and particle dynamics [R. Becker (1966)].

5.2 Kinetic Parameters and Dynamics

5.2.1 Phenomenological Coefficients and Kinetic Theory

Atoms taking part in diffusive transport perform more or less random thermal mo-
tions superposed on a drift resulting from field forces (Vu;, V#,;, VT, etc.). Since
these forces are small on the atomic length scale, kinetic parameters established
under equilibrium conditions (ie., vanishing forces) can be used to describe the
atomic drift and transport. The movements of atomic particles under equilibrium
conditions are Brownian motions. We can measure them by mean square displace-
ments of tagged atoms (often radioactive isotopes) which are chemically identical
but different in mass. If this difference is relatively small, the kinetic behavior is
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almost identical. A measure of the mean square displacement is the diffusion coeffi-
cient D;, which for tagged particles i * is denoted D,.. We wish to know the relation
between D;, D;«, and the phenomenological transport coefficients L;. Kinetic
theory describes D, through the elementary jump frequencies v;.

In a zeroth order treatment, D;. is often equated with D;. Closer inspection
shows that this is often incorrect. If, for example, transport occurs by a vacancy (V)
mechanism, /* can jump only if V and /* have an encounter. The jump pattern be-
tween V and i* during the encounter, however, is by no means random. Therefore,
let us set D;s = f;-D;, where /; is the so-called correlation factor.

In order to investigate the relation between the phenomenological transport coeffi-
cients L; and D;, we formulate for the isotope (tracer) diffusion of A* in A

Ia= mLan Vs —Lapa Vg
(5.52)
Jar= —Lan Vs =L pope Vil s

Since transport occurs solely by the exchange of A and A% it follows that
Jar +ja = 0. The isotope tracer solution is also ideal with Ny+Na =1, so
Eqn. (5.52) yields

LAA: .(LA”AX—’—LAA*) (5.53)

A*

Inserting Eqn. (5.53) into Eqn. (5.52) yields (Ny = 1)

. Lo ax
Jja=—RT- Vm-<LAA— AA)-WA* = —DpVeu (5.54)
A*
so that
RT L a
Dy =Lpgp— (1——AA ) =Dy fa (5.55)
CA NA*.LAA
where

Ja=1

- ) = (1=fa) Laa (3.56)
NA*'LAA NA*

Equation (5.56) relates the correlation factor f, with the cross coefficient L a s«
From the Nernst-Einstein relation we know that Ly, = b ca = Dacy/RT. For a
tracer experiment with a negligible fraction of A* the jump conservation requires
that Dy = Dy* Ny, so that instead of Eqn. (5.56) we have

L aa ; Ny-Dy ¢y Dy
——==(1-fa)car =(1-fa)-
N AMTTATRT Ry

(5.57)

Conclusion: the self-diffusion coefficient D, cannot be determined solely by tracer
experiments (mean square tracer displacement). Either information from non-equi-
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librium measurements (Dy - Ny ) or additional information from theory (f4) is need-
ed to calculate Dy from D ax.

For very dilute solid solutions of B in A, the basic physics of diffusional mixing
is the same as for (A, A¥). An encounter between V, and B, is necessary to render
the B atoms mobile. But B will alter the jump frequencies of V in its surroundings
and therefore numerical values of the correlation factor and cross coefficient are dif-
ferent from those of tracer A* diffusion. Since the jump frequency changes also in-
volve solvent A atoms, in addition to fg, the numerical value of f, must be recon-
sidered (see next section).

It is a straightforward but rather lengthy exercise to write down and evaluate the
flux equations ja, J ax, /g, /g« under the assumption of local (vacancy) equilibrium
(Xy = 0). We find that five independent L, are needed to fully describe the trans-
port in such a system. However, only four experimental parameters Dy, Dy, Das,
and Dg-« are available from flux measurements. Since D, # Dy, jo # jg in the solid
solution crystal. Lattice site conservation requires that the sum of the fluxes
ja+jg+jv =0, that is, jy # 0, despite Xy = 0. The external observer of the A-B in-
terdiffusion process therefore sees the fluxes

JX =Ja+Natjv=Ja—Na Ua+Jjp)

(5.58)
J& =Jjp+Npjv =Jp—Ng (s +Jp)
With jX = —j§, the (common) chemical interdiffusion coefficient is then
calculated to be (j = —D-Vc,)
- N N
D=RT-V," <_B'LAA+_A'LBB—2LAB> “Jin (5.59)

If one inserts the tracer coefficients from Eqn. (5.55), the result is

. Lo Lgge 2L
D= (Ng-Dys+Ny*Dp)+RT-V,,Ns-Ng* AAT BB o ZRAB Mg
NA.NA* ]\/B.NB* ]\]/-\.NB
(5.60)

The Darken-type equation (D = [Ng*Dax+Ny-Dy-]-fu,, see Section 4.3.3) is ob-
tained only if cross coefficients are zero. In order to evaluate these cross coefficients,
kinetic theory beyond the phenomenological approach is needed [A.R. Allnatt, A.B.
Lidiard (1993)].

5.2.2 Correlation of Atomic Jumps

We have seen that the elementary steps of atomic particles in crystals are normally
correlated. In one way or the other, particles have not lost all memory about a previ-
ous step when they go on to the next one. This point was already addressed in Sec-
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tion 5.1.3. One possible reason for correlation is geometrical in nature, It is based
on a nonrandom sequence of activated jumps in space and specific to the prevailing
transport mechanism (e.g., the vacancy diffusion mechanism). We will outline the
principles of correlation here since the identification of a distinct diffusion mecha-
nism often relies on this understanding. A concise and lucid survey of the leading
ideas in this area can be found in [S.W. Kelly, C.A. Sholl (1987)]. Although the
numerical evaluation of correlation factors can be done with Monte Carlo calcula-
tions, it is not a very accurate way in practice. A pertinent report is given by [G.E.
Murch (1984)]. Correlation factors have been computed for many (simple) struc-
tures.

Correlation diminishes the effectiveness of atomic jumps in diffusional random
motion. For example, when an atom has just moved through site exchange with a
vacancy, the probability of reversing this jump is much higher than that of making
a further vacancy exchange step in one of the other possible jump directions. Indeed,
if z is the coordination number of equivalent atoms in the lattice, the fraction of inef-
fective jumps is approximately 2/z (for sufficiently diluted vacancies as carriers)
[C.A. Sholl (1992)].

This fraction is determined by the step-dance between a specified vacancy and the
(tagged) atom during their encounter, which does not end before the atom-vacancy
pair has definitely separated. Normally, a new and independently moving vacancy
comes along much later and begins the next encounter with the tagged atom.

The mean square displacement R2 of a particle after correlated or uncorrelated
jumps is given as the mean vector sum

. n n n—1 4
R} = < ) "?> =Lri+2 L L nn (.61

i=1 i=1 i=1j=i+1

which, for jumps of equal length a, becomes

P n—1 n
Ri=na’+2a>> Y Y cosO; (5.62)

i=1j=i+1

where ©, ; is the angle between jump vectors i and j. Using Eqn. (5.62) to define the
correlation factor, f,, after n jumps and rearranging, one obtains

R—2 o A=l n=i
fn:n ;2: 1+;' Z Z cos @i,k+l (5.63)
: i=1k=1

Setting ¢, = cos O, x,;, which is independent of i, we have
9 n—1
fu=1+=Y (m—k)c (5.64)
n k=1

As n— o, f= limf, and so

n—oo
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f=1+2-Y ¢ (5.65)

Comparing with Eqns. (5.63) and (5.64), it follows that

F o 2 n—1
f:n (;12‘1‘2 Z Ck+;' Z k'Ck (566)
: k=n k=1

Equation (5.66) holds for all values of n>1. For n = 1, Eqn. (5.65) applies.

Up to this point we have assumed implicitly that each defect responsible for the
atomic motion has an infinite lifetime. In real crystals, however, this lifetime is finite
because of the dynamic nature of the point defect equilibria. This means that only
m consecutive jumps are correlated (corresponding to the defect lifetime). It has been
shown [R. Kutner (1985)] that under these conditions

m—1
2 Z Cy
k=1

f=t1+—Kz1 (5.67)
1_Cm—l

This important result modifies the description of encounters between tagged atoms
and vacancies. If the fraction Ny is sufficiently low, then the encounters of a
specified atom with different vacancies are independent of each other. In this case,
the correlation factor depends only on the properties of a single encounter

R:
f:z o (5.68)

where z. is the mean number of jumps per encounter, and Rﬁ is the mean square
displacement per encounter. Also, if certain symmetry requirements are met, then for
the independent encounters ¢, = c’f. This gives with Eqn. (5.65)

_1+¢  1+cos®
1-c¢; l—cos®

(5.69)

where cos @ is the mean cosine between successive jumps. Together with Eqn. (5.66)
one then obtains
l—ci 2-¢

n (1—c1)2

Sa=J- (5.70)

Equation (5.70) contains the convergence that f,,—f as the number of jumps for in-
dependent encounters increases.

Let us finally derive some practical relations. Cos © can be determined for the
tracer diffusion (A, A*) if the frequency of backward jumps during an encounter
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(V, A*) is known. The probability P, of an (ineffective) backward jump can be ex-
pressed in terms of the exchange frequency (va-=v,) between A(A*) and a
neighboring vacancy as

|
P=—A - (=1-¢) (5.71)
vate vy l+4e

where ¢-v, designates the escape frequency of the vacancy from the encounter
(V, A*). Since a backward jump yields cos 180° = —1, the average cos ® becomes
— Py,,. Consequently, by combining Eqns. (5.69) with (5.71)

£ 1
Sae =

C24e 142/

(5.72)

If a vacancy definitely leaves the encounter (V, A*) after the first exchange jump
(with frequency (z—1)-v4, € = (z— 1), 2 = coordination number), one would obtain
\ = 1—2/7 from Eqn. (5.72). Thus, 2/7 is the fraction of ineffective jumps by A.

Let us now replace A* by a solute atom B. Instead of Eqn. (5.71), the backward
jump probability is then

py=—"B (5.73)
Ve +E Vs
so instead of Eqn. (5.72) we have
gv
fo=——"— (5.74)
[ VA +2'VB

We note that f3—0 if vg>v,, and fg— 1 if vg<v,. More powerful methods have
been devised to calculate correlation factors. A survey can be found in [A. R. Allnatt,
A.B. Lidiard (1993)]. Historically, the so-called five-frequency model introduced by
[A.B. Lidiard (1956); R.E. Howard, A.B. Lidiard (1964)] played an important role
in the understanding and quantitative treatment of correlation effects and is still
widely used today.

5.2.3 Conductivity of Ionic Crystals: Frequency Dependence

In this section, we will model the motion of point defects in an ionic crystal using
its dynamic properties. Normally, point defects in ionic crystals are effectively
charged, relative to the corresponding regular structure elements. The main interac-
tion is therefore coulombic, which facilitates the modeling. An early model [H.
Schmalzried (1977)] was later quantitatively worked out in much more detail. The
underlying concept is similar to that of the dynamics of ion motion in liquid elec-
trolytes. Transport theory in liquid electrolytes was initially formulated by [P. Debye,
E. Hiickel (1923); L. Onsager (1926), (1927); P. Debye, H. Falkenhagen (1928)] in a
model which yields the frequency-dependent electrical conductivity (i.e., the spectral
distribution of the velocity autocorrelation function).
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a)

b)

Figure 5-5. a) Point defect potential in an ionic
crystal: superposition of the periodic lattice poten-
tial and the individual defect potential valley.

b) Change of potential with time after a defect
jump (see text).

Let us introduce the atomistic model of stochastic and activated point defect hop-
ping with the help of Figure 5-5a [K. Funke, I. Riess (1984)]. The interaction between
oppositely charged point defects in the overall electrically neutral crystal results in
potential wells for the individual defects, these being superposed on the otherwise
periodic potential. In the harmonic approach, an irregular structure element vibrates
in a parabolic potential well at position (4) at a frequency vy. At time ¢ = 0, it hops
from this (relaxed) position (A4) into position (B) where a many-particie relaxation
process immediately begins which can proceed in two ways: 1) the (almost unrelaxed)
point defect at (B) returns to (4) by an activated jump. 2) The point defect stays
in the relative minimum (B) while the surrounding mobile point defects relax. Thus,
the energy minimum at (B) deepens until it eventually becomes the relaxed absolute
minimum. This relaxation process can be described by a continuous shift of the
potential well from (A4 ) to (B) (Fig. 5-5b). Following the quantitative description by
Funke [K. Funke,LRiess (1984)], we define two functions: the probability W (r) that
the return hop (BA) has not yet occurred (note that W(0) =1, W(ew)<1(#0))
and the relative shift of the potential well g(¢) = £(B)//fy. £(B) is the distance be-
tween the well minimum and the location of (B) during the defect cloud relaxation,
and [, is the distance (4)—(B), that is, the length of the lattice periodicity.
gty=1,...,0for t=0, ..., 0.

Since j = c v, the electrical current density autocorrelation function and the
velocity autocorrelation function are proportional to each other. The latter function,
however, can be expressed with the help of the time derivative of the decaying pro-
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bability function W (¢) (which is the rate of backward jumps and therefore related
to the correlation factor)

v(0)-v(t) ~ (6()+ W (1)) (5.75)

Using linear response theory and noting (according to the results at the end of Sec-
tion 5.1.3) that the (complex) electrical conductivity o is the Fourier transform of the
current density autocorrelation function, we obtain from Eqn. (5.75) (see the equiva-
lent Eqn. (5.21))

o(w)=o(w): {Hf W(t)~e"'"""-dt} (5.76)
0
where g (o) is the conductivity due to thermally activated jumps. Accordingly,
5.77

with z representing the defect number density, ¢ the dimensionality of the transport
path, and g the defect charge. We note in passing that one can derive Eqn.
(5.76) by starting from Eqgn. (5.45), introducing an (athermal) periodic force
F=ey Eye @' and adding the harmonic force —w%-é (which stems from the
parabolic potential) to the right hand side of Eqn. (5.45).

Equation (5.76) suggests that the essential point for the calculation of the kinetic
transport coefficient (i.e., the frequency-dependent conductivity) would be an appro-
priate dynamic modeling of W (¢). From Figure 5-5b, we can infer that, to a first
order,

W= W-vg, (5.78)
where v, can be approximated by

vpa = vor (e Fu /KT —e ~Fac/kT) (5.79)
Ep, and Egc (Fig. 5-5b) are functions of time while the point defects in the sur-
roundings relax and the (Coulombic) potential well shifts from (A)—(B). This shift
is represented by g(¢) as defined above. Designating the initial activation energies at
t=0 as E, z(0) and Eg, (0), one sees from Figure 5-5b that

Egp (1) = Exp(0) =g (1) (Eap(0) — Eps (0)) (5.80)
Epc(t) = Exp(0)+g (1) (Eap(0)—Epa(0)) (5.81)
If one uses the abbreviation Vj-/3 = (E,p(0)—Eps (0)) in accordance with the har-

monic (parabolic) potential approximation, then inserting Eqns. (5.79)—(5.81) into
Eqn. (5.78) gives
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w -2
—— =2-yyre Eas AT ginp Vo—lo-g(t) (5.82)
w kT

Equation (5.82) yields W(¢) after integration. The electrical conductivity g(w) in
Eqgn. (5.76) can now be calculated if g(7), the relaxation function of the (Debye-
Hiickel) defect cloud, is known. In a first order approach let us assume that g(¢)
relaxes with a single relaxation time 7, that is, g(¢) = e 7 (7 is roughly given by
T= g e()/g()). Integration of Eqn. (5.82) then results in

.72 72
In W(t) = vy 7-e B @/KT. ) Ej M-e—’/f _Ei Vol
kT kT
.J2 g2
gl Y lo_e—l/‘r gl W /o (5.83)
kT kT

where Ei denotes the error integral. Funke [K. Funke (1987), (1989), (1993)] has
discussed g (w) in depth and has also given numerical solutions to Eqn. (5.76). For
the set of parameters vy, E,p(0), Ega(0), and (o0 ), Figure 5-6a shows an example
and depicts the real part of the electrical conductivity as a function of frequency.
It compares well with the experimental data for Na-f-alumina as illustrated in
Figure 5-6b.

-1
€ g
(6] = [ .
& 2 300 K o
5 L
g g2
- 150 K ]
_3,_ _3
calculated = experimental
-4 | 1 1 J
7 9 " 7 9 1
a) loglv-sl} b) — loglv-s)

Figure 5-6. Frequency dependence of electrical conductivity of Na-f-alumina at different tempera-
tures [U. Strom, K. L. Ngai (1981); D.P. Almond et a/. (1982)]. Caiculation [K. Funke (1984)] with
the following parameters: v, = 20 GHz, E,5(0) = k-800 K, Ep, (0) = k- 200 K.
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An interesting feature can be read from Figure 5-6. If the temperature is sufficient-
ly low, a power-law behavior is found, the exponent being < 1. This power-law
behavior has been denoted in the literature as the ‘universal dielectric response’. It
is equivalent to a nearly circular arc in the complex conductivity and impedance
plane.

Let us summarize: by modeling the velocity autocorrelation function using Debye-
Hiickel type interactions between charged point defects in ionic crystals, one can
evaluate the frequency-dependent conductivity and give an interpretation of the
universal dielectric response.

5.2.4 Diffusive Motion and Phonons

The Arrhenius behavior of diffusion was explained in Section 5.1.2. However,
sometimes transport can be observed which is not of an Arrhenius type, even though
the transport mechanism or the disorder type has not changed with temperature.
This observation is normally attributed to the anharmonicity of lattice vibrations.
As examples, some bce metals may be mentioned. Whereas in many fcc metals the
diffusion coefficient scales with the melting temperature T, this is not always true
for bec metals. Their Arrhenius plots of log D; vs. 1/T are curved. f-Zr and §-Ti, in
particular, have diffusivities which exhibit both very small pre-exponential factors
D, and small activation energies E, near the transition temperature to the close-
packed structure. Lattice dynamics allows us to rationalize this behavior. The nearest
neighbor jump of the bee structure occurs in the (111) direction. Phonon dispersion
reveals that the longitudinal acoustic branch in this material softens strongly along
the (111) direction. As a consequence, an atom sitting on site (000), and having a
neighboring vacancy at (4 1 1), is pushed by the phonon in the jump direction.
The phonon driven displacement increases with the softening of this mode, in accor-
dance with the observed low E,. However, we stress that it is the spectrum of
phonon frequencies and not just the one single mode that couples with the hopping
particle. Therefore, other correlated motions of neighboring SE’s may additionally
influence the hopping frequency, for example, if atoms on the saddle surface move
simultaneously in such a way that a free path for the jumping atom is created.

In spite of the Vineyard (harmonic) approach to explaining the activated jump rate
being rather an approximation which can, in principle, be augmented by anharmonic
terms, his treatment does not address the problem of energy randomization after the
jumping particle has crossed the saddle surface. This suggests that accurate experi-
mental diffusion data are ‘better’ than todays existing theories. Flynn [C.P. Flynn
(1987)] drew attention to this fact when he pointed out that an adequate theory for
thermally activated hopping diffusion (as it occurs in crystals) needs, in addition to
the characteristic hopping frequency, a further characteristic time to take into ac-
count the randomization of the translational energy. This is the time in which the
hopping SE loses its memory about the previous jump. This problem has been assess-
ed by taking into account the nonplanar nature of the saddle surface, which allows
multiple crossings by the jump trajectories. Estimates from molecular dynamics
calculations have led to corrections on the order of 10%.
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5.3 Relaxation of Irregular Structure Elements

5.3.1 Introduction

The equilibrium concentrations of irregular structure elements (point defects) are
functions of state, in contrast to the densities of dislocations or grain boundaries.
If independent (intensive) state variables are changed, the establishment of a new
equilibrium needs time. In a crystal, matter transport takes place during equilibra-
tion. This can be visualized, for example, by heating or cooling a perfect single
crystal of A. Although its equilibrium vacancy concentration, ¢y, is a function of
T and changes accordingly, the vacancy production (annihilation) can only take
place at surfaces. Thus, diffusional vacancy transport is involved which requires a
conjugate transport of A in the opposite direction. Such matter transport in
compounds occurs even if the majority SE’s are intrinsic and equilibrate under
the conservation of lattice sites (e.g., Frenkel disorder A, +V;=V)+A;
A'+B* = A* +B". In this case, the minority point defects must nevertheless
equilibrate at the surface, resulting again in a small but time consuming macroscopic
transport.

In Section 4.7, we discussed the relaxation process of SE’s in a closed system where
the number of lattice sites is conserved (see Eqn. (4.137)). A set of coupled differen-
tial equations was established, the kinetic parameters (v(x,i%,x’)) of which
describe the rate at which particles (i) change from sublattice x’ to ». We will
discuss rate parameters in closed systems in Section 5.3.3 where we deal with diffu-
sion controlled homogeneous point defect reactions, a type of reaction which is well
known in chemical kinetics.

Here, let us regard the crystal as an open system in which defect equilibration oc-
curs in a non-stoichiometric compound after an intensive thermodynamic variable
has changed. The standard example is the re-equilibration of a transition-metal ox-
ide, A,_;0, after a (isothermal) change in the oxygen partial pressure of its gaseous
surroundings. Although the oxygen ions (O%‘) are (almost) immobile, equilibration
of all components and SE’s with respect to the new oxygen potential takes place
readily. We will discuss the corresponding relaxation processes in Section 5.3.2.

The main part of our discussion here, however, concerns defect relaxation pro-
cesses during ongoing transport of components in inhomogeneous solids and reac-
ting heterogeneous solids. In those non-equilibrium crystals, the local concentrations
of components change with time. The local point defect concentrations are functions
of state and have to adjust themselves accordingly through relaxation processes. This
adjustment is most relevant to solid state kinetics because point defect concentra-
tions in turn determine the magnitudes of the transport coefficients and of other
kinetic parameters. If relaxation is slow so that local point defect equilibrium is not
attained, the kinetic coefficients are no longer functions of state and the kinetic
problems have no single-valued solutions.

In physical and chemical metallurgy, the Kirkendall effect, which is closely related
to point defect relaxation during interdiffusion, has been studied extensively. It can
be quantitatively defined as the internal rate of production or annihilation of vacan-
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cies (and lattice molecules in general) for the purpose of maintaining local point
defect equilibrium. This definition is straightforward only for crystals which do not
have different sublattices and in which the product jy- V,, is therefore equivalent to
a (local) lattice velocity v;. Sometimes v; can be observed by the insertion of ap-
propriate markers. For a marker shift to occur in crystals with different sublattices,
whole lattice molecules (see Section 2.2.1) must be produced or annihilated. In non-
metallic crystals composed of different component sublattices, this is most unlikely.
Since here the disorder type comprises two different sorts of mobile point defects
(majority defects), it is only in exceptional cases that they constitute the lattice
molecule which then could be added to or subtracted from the crystal at internal sites
of repeatable growth. For example, in interdiffusing oxide solid solutions AO-BO
which possess an immobile oxygen ion sublattice, any cation vacancy supersaturation
stemming from interdiffusion cannot relax internally. The cation vacancies can
equilibrate only at the crystal surface, which is kept at a fixed oxygen potential. Thus,
a local lattice flow, sometimes regarded as the Kirkendall effect, is impossible. In
metal systems that do not have different sublattices, however, it is asserted that the
supersaturation of vacancies caused by component interdiffusion is normally small
and due to effectively operating local defect sources and sinks (dislocation climb).
We will resume the quantitative discussion of the Kirkendall effect in Section 5.4.2.

Following these introductory remarks, the next sections are devoted to a detailed
discussion of defect relaxation phenomena.

5.3.2 Relaxation of Structure Elements
in Nonstoichiometric Compounds (A;_;0)

Let us refer to Figure 5-7 and start with a homogeneous sample of a transition-metal
oxide, the state of which is defined by 7, P, and the oxygen partial pressure Po,- At
time ¢ = 0, one (or more) of these intensive state variables is changed instantaneous-
ly. We assume that the subsequent equilibration process is controlled by the transport
of point defects (cation vacancies and compensating electron holes) and not by
chemical reactions at the surface. Thus, the new equilibrium state corresponding to
the changed variables is immediately established at the surface, where it remains con-
stant in time. We therefore have to solve a fixed boundary diffusion problem.

In order to do so we must first evaluate the chemical diffusion coefficients of the
pair of majority defects (e.g., VX and h®) in the semiconducting oxide A,_5O. The
coupling of the defect fluxes (j,- —2/y» = 0) to maintain electroneutrality results in
a chemical diffusion coefficient D,,. This controls the change in nonstoichiometry,
0 (&, 1), through defect transport and reads

Dy =a-RT-by (5.84)

where RT-by = Dy and a = (zy+1). a is called the enhancement factor and zy is
the (effective) charge of the cation vacancy. The origin of a lies in the diffusion
potential which builds up in the inhomogeneous oxide during chemical diffusion.
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n Figure 5-7. Vacancy concentration distribution (a)
TV“ and fluxes of h® and V" in A,_;0 (b) after a
b change of u,_at the crystal surface. Phase bound-
) - — Ay —— ary reaction is +0, = O +V4+2h'.

Let us assume that the oxide sample exists in the form of a parallelepiped. The
solution to Fick’s second law under the given boundary conditions gives for the
change in time of the integral number of vacancies 7y

% - (nv(m)—nv(O))'ﬁv'ég'H- Y, e @imhnH Dy (5.85)
! n i=1

where H = (1/Au’+1/Av*+1/Aw?-7? (Au,Av,Aw being the sample dimen-
sions, Fig. 5-7). We can therefore define a relaxation time, 7, for the extrinsic point
defect equilibration as

1

T=—=
Dv'H

(5.86)

Since these considerations are independent of the nature of the sample, the results
are valid for all crystals which are exposed to a sudden change of intensive state vari-
ables. The meaning of the chemical diffusion coefficient D must, however, be care-
fully investigated in each case (see Section 5.4.4). At 1000°C, Dy for simple transi-
tion-metal oxides is on the order of 107’ cm?/s. This gives for cubic samples of
107* cm? a defect relaxation time of approximately 1 h according to Eqn. (5.86).

5.3.3 Relaxation of Intrinsic Disorder

Point defects which are not in equilibrium react either with each other or they react
with components or lattice molecules at sites of repeatable growth (normally sur-
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faces) in order to equilibrate. The latter situation was discussed in the previous sec-
tion and the first case will be treated now. Examples include the annihilation of in-
terstitials by vacancies, the formation of divacancies or other defect associates, and
the trapping of intrinsic point defects by homogeneously distributed impurities.
There is a close analogy between the homogeneous reaction kinetics of point defects
in crystals and the familiar diffusion controlled kinetics of chemical reactions in
aqueous solutions. The crystal acts as the solvent. The dimensionality of the system,
the anisotropy of mobilities, and the specific interactions between the defects have
a major influence on the reaction kinetics. We dealt with this problem phenomeno-
logically in Section 4.7.

Smoluchowski [M. v. Smoluchowski (1917)] treated the problem of diffusion con-
trolled homogeneous reactions in which the reacting particles were initially distribut-
ed at random and were non-interacting (except for the collision process). If reaction
occurs during the first encounter of the diffusing partners, it is diffusion controlled.
If many encounters of the diffusing partner are needed before they eventually react
with each other, the process is reaction controlled. If the particles interact already
at some distance, one can nevertheless use the concept of diffusion controlled en-
counters. In this case, one has to carefully define an extended reaction volume as will
be outlined later.

ulrt

1.0

0.5

1 5 10

———»ring

Figure 5-8. Relative concentration dependence on distance and time of A particles around sinks B
for the bimolecular diffusion controlled reaction A+B = AB (rog = 74 +73).

We start with a bimolecular diffusion controlled point defect reaction of the form
A +B = C and assume that the immobile B’s are (unsaturated) sinks for A. If we then
project each B with its surrounding A’s onto the coordinate origin at » =0, and
define the individual reaction volume as (4-7/3)-r}p, the time dependence of the
(projected) A-concentration in space is given by the solution to Fick’s second law
with the following boundary conditions (setting u = c5 (1; £)/ca(r, 0)): u(r,0) =1 for
r>rap; U(oo,t) =1 (normalized); u(rap,¢) = 0. The solution reads (Fig. 5-8)

r I'—rag
u(r,t) =1—-2B.erfe —> (5.87)
r v4DAt
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which yields for the steady state (r>rag,>rip/Da)

u(r)=1-"28 (5.88)
r
If one compares the rate equation for a bimolecular reaction, ¢, = k*cg-cy, with
the A-flux arriving at the reaction volume surface (= 4-7-r43), one obtains in a
straightforward way
k=4n-Dp rpp (5.89)

For this three dimensional diffusion problem, we note that k& is proportional to rap
(to first order) and not to the reaction surface nor the reaction volume. If the reac-
tion volume is not spherical, 7,5 can be approximated by the largest linear dimen-
sion of the sink.

If the interaction energy, E(r,p), between A and B cannot be neglected, one
defines a reaction radius 7,g with the equation E(Fyp) = kT. For coulombic interac-
tions, this is explicitly

_ a9 _ (5.90)
47 E 8y Fap
and, instead of Eqn. (5.89), it is found that
= INg =
k=4n-D-———"——; D=D,+D 5.91)
dm-egq kT A B (

Setting D = Dy + Dy, it is assumed that both A and B are now mobile. g, and gy
are the electrical charges of the components.

Reaction control can be formally introduced by loosening the local equilibrium
condition at the surface of the reaction volume and replacing it with a kinetic condi-
tion. Instead of u(rag,?) = 0, we therefore formulate the continuity equation

Dp-Vu(rag) = % u(rap,t) (5.92)

where » describes the reaction rate at the surface of the reaction volume. x— oo if
an immediate reaction occurs at rnp (ie., diffusion control). »—0 if the surface
reaction rate at rsg is slow (ie., rate control by (chemical) surface reaction). x
[em/s] can be interpreted as the product A L-v, where A L is the thickness of the sur-
face reaction zone (boundary b) and v is the frequency of successful encounters in
this zone (= vy-e~¢"/4T),

Analogous to the procedure leading to Eqn. (5.89) we obtain with the boundary
condition of Eqgn. (5.92) (reaction control)

k=4n-D-reff-<1+Lff (5.93)
n-D-t

where regr = riB-}f-(rAB-}er D)y . ]Equation (5.93)_ holds under (quasi) steady state
conditions, that is, for t>(rig/D)-(1+rap-#/D) % We see that Fegp = Fag fOr
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Figure 5-9. The atomic potential of A approaching sink B (r>r,3). €,, = activation energy for dif-
fusional motion, see text.

rap *>D which means diffusion control. For rag-x<D, which means reaction
control, the rate parameter & for sufficiently large ¢ is

k=4n-rig-x=4mnrig-AL-v (5.94)

Here, & can be visualized as the number of successful jumps per unit time across the
surface energy barrier £° into the reaction volume (Fig.5-9). A particularly useful
form for & is found if one regards 1/k to be a generalized resistivity obtained by add-
ing together the diffusional and the reactional resistivities

1 1 1
- = - + 5 (5.95)
k 4n-D-rag 4m rag'x

Our neglect of the discreteness of the crystal lattice does not introduce noticeable
discrepancies. Continuum theory, based on the original concept by Smoluchowski,
is quite acceptable for the description of diffusion controlled relaxation of irregular
structure elements in crystals.

The influence of diffusion anisotropy on the reaction rate constant k is illustrated
in Figure 5-10. In accordance with the fact that lower dimensionality increases the
fraction of sites that are encountered more than once by the diffusing particles, the

1-dimensional

— t|{z)

Figure 5-10. Concentration decrease for one-, two- and three-dimensional diffusion controlled reac-
tions. z = number of particle jumps.
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reaction rate will decrease with decreasing dimensionality. In other words, for a given
(Dy+D,+D,), we expect the highest reaction rate to occur if D, = D, = D,, and the
diffusion coefficient tensor is spherical (see, for example, [U. Gosele (1980)]).

Let us finally estimate the relaxation times of homogeneous defect reactions. To
this end, we analyze the equilibration course of a silver halide crystal, AX, with
predominantly intrinsic cation Frenkel disorder. The Frenkel reaction is

Ap+V,=AT+VY (5.96)

A, and V, are regular SE’s, A and V/, are irregular SE’s. The rate equation for the
bimolecular reaction (5.96) reads

o =Cy, = —kcarey +Kca ey (5.97)
which can be rearranged, if small fractions of the intrinsic point defects and site con-
servation (c, = ch) are taken into account.

¢ = —ki(ch—eR) = —2:k e} (ea—ch) (5.98)

where COA (= C(\)/A) denotes the equilibrium concentration derived from Eqn. (5.97)
by settiné Cp, = Cy, = 0. Integrating the non-linearized second order reaction equa-
tion yields a relaxation time which is not a constant. However, when close enough
to equilibrium, we can safely linearize Eqn. (5.98) and the (time independent) relaxa-
tion time becomes

T=Q k)" (5.99)

When the point defect relaxation is diffusion controlled, we can use Eqn. (5.89) to
determine k. After setting rop = @ax (= unit cell dimension), it is found that at even
moderate temperatures (= 100°C), 7 is on the order of a millisecond or less. This
7 is many orders of magnitude shorter than relaxation times for nonstoichiometric
compounds where the point defect pairs equilibrate at external surfaces (Sec-
tion 5.3.2). In other words, intrinsic defects equilibrate much faster than extrinsic
defects if, during the defect equilibration, the number of lattice sites is conserved.

5.4 Defect Equilibration During Interdiffusion

5.4.1 The Atomistics of Interdiffusion

Diffusion in crystals means site-exchange of different SE’s, If the SE’s are chemically
different, as in binary or multicomponent inhomogeneous systems, the concentra-
tion equalization is called chemical (inter-)diffusion.
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Let us consider the atomic processes that take place during chemical diffusion on
three neighboring lattice planes. As in Figure 4-10, we label these planes p—1, p, and
p+1. (’) (— n,(i)) designates the number density of species / on plane p such that
):n(’) = n . The total number of nearest neighbor sites of i, on plane p—1 (p+1) is
z. Conservatlon of particles / during transport requires that

Ay (D) =750 =T S)pe s (5.100)

where j denotes the net flux. Neglecting correlation effects, the net flux, 7§,
can be specified as

() ()

_ 0
Jpiip=np2 -

(n=ny v ez—n D —n{? ) vz (5.101)
In a similar way we find j_g)pﬂ. Note that vg)p_l is the (activated) jump frequency
for the exchange of i with other component atoms (e.g., B, if i = A). Let us express
Eqgn. (5.101) in terms of volume concentrations and assume that the concentration

differences between adjacent planes are small enough so that v,_,,, =v,,, ; is a
valid assumption. If @ is the distance between the planes, then
- zv() . i ; i
i, = V( )-a-(Ngll-u—Ng))—Ng)-m NGO D) (5.102)
m
which yields (V;/V,, = ¢;)
J) = —zv(i)-a*ve@) (5.103)

if we replace AN(i)/(a-V,,) by the concentration gradient V¢ (/). Equation (5.103)
is equivalent to Fick’s first law of diffusion, so that the individual chemical diffusion
coefficient D (i) = z-v(i)-@*. One recognizes that the diffusion coefficient contains
a geometrical factor, a frequency factor, and a (squared) ]lep length.

Since for larger inhomogeneities, vé) 1/p 18 not exactly vp/p 1, let us apply the
condition of a (quasi) steady state (d/df = 0) and use Eqn. (5.101) to write

. 0 o
ngli-(n°=nPy v,
D 0D ) (5.104)
np “(n —”p—1) Yoii/p

Equation (5.104) expresses the detailed balance in the closed lattice system. If the
crossing from one plane to the next is thermally activated, so that
v = vye € 8YKT "Eqn. (5.104) takes on the following form

) N(i) N )
) +h T In =2 = el +kTIn 11# (5.105)
—iYp T4V p-1

This equation tells us that under the conditions implicit in Eqn. (5.104), the steady
state is in fact the (dynamic) equilibrium state in which the thermodynamic functions
u(@)=e(@)+kT In(N(i)/1—N(i)) are constant in space, that is, Vu(i) =0
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Net fluxes occur at off-equilibrium which are (to a first order) driven by Vu (i).
This statement is analogous to the identification of the driving force X; = Vyu; in
irreversible component transport (see Section 4.2.1).

In formulating Eqn. (5.101) and the following flux equations we tacitly assumed
that they suffer no restrictions and so lead to the individual chemical diffusion coef-
ficients D (7). If we wish to write equivalent equations for j(A) and j(B), and allow
that v(A) # v(B), then according to Eqn. (5.103), |/(A)| * |j(B)| since |Vc(A)]
= |Ve(B)|. However, the conservation of lattice sites requires that |/(A)| = |/(B)],
which contradicts the previous statement. We conclude that in addition to the coupl-
ing of the individual fluxes, defect fluxes and point defect relaxation must not only
also be considered but are the key problems in the context of chemical diffusion. Let
us therefore reconsider in more detail the Kirkendall effect which was introduced
qualitatively in Section 5.3.1. It was already mentioned that this effect played a pro-
minent role in understanding diffusion in crystals [A. Smigelskas, E. Kirkendall
(1947); L.S. Darken (1948)].

5.4.2 The Kirkendall Effect

Before we discuss point defect relaxation phenomena which occur during matter
transport in inhomogeneous crystals with different sublattices, let us resume the
quantitative treatment of diffusional transport in an inhomogeneous single sublat-
tice crystal occupied with components A and B as well as vacancies.

In a single sublattice crystal (A, B) with a fixed number of lattice sites and a
negligible fraction of vacancies, the sum of the fluxes of A and B has to vanish if
the number of sites is to be conserved. We just noted that if we formulate the A and
B fluxes in the binary system as usual, they will not be equal in opposite directions
because of the differing mobilities (b, * bg). However, if we have a local produc-
tion (annihilation) of lattice sites which operates in such a way as to compensate for
any differences in the two fluxes by the local lattice shift velocity, v, we then obtain

jA= _CA'bA'VMA+CA'vL 5 jB: _CB.bB.V:uB-{_CB.vL (5106)

For the external observer, ji +/g = 0. From this condition and the Gibbs-Duhem
relation, the local lattice velocity becomes

vp = (ba—0p) Na-Vus = (bg—bs) Ny-Vug (5.107)
Inserting Eqn. (5.107) into Eqn. (5.106), the flux j =/, (= —j) becomes

J= =i (N bpa+Np-bg)-'Vu, ; i=AB (5.108)
or, written in terms of diffusion coefficients,

Ji= —(Ng*Dp+Np-Dg) finVe; = —D'Vci ; D= (Ng*Dp+Na-Dp)fin (5.109)
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where fi;, =0In ¢;/81n ¢;. A vacancy mechanism was assumed to be responsible for
the atomic transport. In this case, the vacancy flux induces the local lattice velocity
vy =jyv°V,, and from Eqgn. (5.107) it can be seen that

Jv =ca(ba=bp) Vs = cp (bg—ba) Vg (5.110)

The vacancy flux and the corresponding lattice shift vanish if b5 = bg. In agree-
ment with the irreversible thermodynamics of binary systems (i.e., if local equilib-
rium prevails), there is only one single independent kinetic coefficient, D, necessary
for a unique description of the chemical interdiffusion process. Information about
individual mobilities and diffusivities can be obtained only from additional
knowledge about v;, which must include concepts of the crystal lattice and point
defects.

Let us analyze these results one step further and ask about a quantitative measure
of the Kirkendall effect. This effect had been detected by placing inert markers in
the interdiffusion zone. Thus, the lattice shift was believed to be observable for an
external observer. If we assume that V/,, does not depend on concentration and local
defect equilibrium is established, the lattice site number density remains constant
during interdiffusion. Let us designate 7y as the production (annihilation) rate of
the vacancies. We can derive from c, +cg+cy = 1/V,, and js +jg+/jy = 0 that

Viv+rv=0 (5.111)
Inserting Eqn. (5.110) into Eqn. (5.111), the production rate 7y is found to be
Fy = —V[(ba—bp) RT fi,-Vec;1 = —(ba—bg) RTfi," V¢, (5.112)

The second part of Eqn. (5.112) holds as long as (b, —bg) and f,, are essentially
composition independent. If we recall that /y = —jy = —V,,-v;, and if we realize
that Vo, describes the shift of inert markers relative to each other, the curvature of
the concentration profile of the interdiffusing species determines quantitatively the
(positive or negative) magnitude of the Kirkendall effect according to Eqn. (5.112).

Several points are to be noted. Firstly, pores and changes of sample dimension
have been observed at and near interdiffusion zones [R. Busch, V. Ruth (1991)]. Pore
formation is witness to a certain point defect supersaturation and indicates that sinks
and sources for point defects are not sufficiently effective to maintain local defect
equilibrium. Secondly, it is not necessary to assume a vacancy mechanism for atomic
motion in order to invoke a Kirkendall effect. Finally, external observers would still
see a marker movement (markers connected by lattice planes) in spite of by = by
(no Kirkendall effect) if V,, depends on composition. The consequences of a vari-
able molar volume for the determination of diffusion coefficients in binary systems
have been thoroughly discussed [F. Sauer, V. Freise (1962); C. Wagner (1969);
H. Schmalzried (1981)].
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5.4.3 Local Defect Equilibration During Interdiffusion

In crystals, non-steady state component transport locally alters the number, and
sometimes even the kind, of point defects (irregular SE’s). As a consequence, the
relaxation of defect concentrations takes place continuously during chemical inter-
diffusion and solid state reactions. The rate of these relaxation processes determines
how far local defect equilibrium can be established during transport.

The Kirkendall effect in metals shows that during interdiffusion, the relaxation
time for local defect equilibration is often sufficiently short (compared to the charac-
teristic time of macroscopic component transport) to justify the assumption of local
point defect equilibrium. In those cases, the (isothermal, isobaric) transport coeffi-
clents {e.g., D;, b;) are functions only of composition. Those quantitative methods
introduced in Section 4.3.3 which have been worked out for multicomponent diffu-
sion can then be applied.

In other cases, however, and in particular when sublattices are occupied by rather
immobile components, the point defect concentrations may not be in local equilib-
rium during transport and reaction. For example, in ternary oxide solutions, compo-
nent transport (at high temperatures) occurs almost exclusively in the cation sublat-
tices. It is mediated by the predominant point defects, which are cation vacancies.
The nearly perfect oxygen sublattice, by contrast, serves as a rigid matrix. These ox-
ides can thus be regarded as models for closed or partially closed systems. These
characteristic features make an AO-BO (or rather A;_; O-B,_;.0) interdiffusion
experiment a critical test for possible deviations from local point defect equilibrium.
We therefore develop the concept and quantitative analysis using this inhomoge-
neous model solid solution.

Figure 5-11 illustrates the results of an oxide interdiffusion experiment. Clearly,
the transport coefficients are not single valued functions of composition. From the
data, one concludes that for a given composition, the chemical diffusion coefficients
depend both on time and location in the sample [G. Kutsche, H. Schmalzried
(1990)]. Let us analyze this interdiffusion process in the ternary solid solution
Co,_sO-Ni,_4-0O, which contains all the elements necessary for a phenomenologi-
cal treatment of chemical transport in crystals. The large oxygen ions are almost im-
mobile and so interdiffusion occurs only in the cation sublattice of the fcc crystal.
When we consider the following set { } of structure elements

_ nX X 0 X
{ }_ OO’ AMes AMes BMe’ !,\I/le
we have assumed, in accordance with experience, that Ay, and Vy,. are the extrinsic

majority defects. Agj. is oxidized to A}, for the sake of charge compensation, but
not B (6’>d"). The crystal structure condition reads

NAQC+NA;\'IC+NB‘\>:IC+NV:\:M:NOS (5113)
In view of the oxygen ion immobility, the anion sublattice serves as the natural

reference frame for the fluxes. In this coordinate system jo = 0, and the conserva-
tion of Me sites requires that
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L ent interdiffusion times: ¢ = 45 min; #, = 81 min;
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—* Neoo H. Schmalzried (1990)].

Jag tiay, Ty Tivy, =0 (3.114)

:\I4e
In addition, electroneutrality couples the fluxes of Af;. and Vi, so

J'A‘;,c = 2'J'v"\'46 (5.115)
The flux j, of component A is given by the sum (jax +/a; ), the flux /g of compo-
nent B by Joy.- In Section 2.2, we showed that the component-driving forces are
composed of the chemical potential gradients of those combinations of SE’s which

constitute the corresponding building units. Thus, in the present case, we have

XA = - (XVI\I/IC ﬂXAN\ic) ~2 (XA;{e _XAx\XIc) (5.1 16)
Xp= = Ky —Xpg) =2+ (Xaj ~Xag) (5.117)
Xo = —(Na-Xa +Np-Xg) (5.118)

Equation (5.118) is the condition of mechanical equilibrium. Only two fluxes are in-
dependent in the isothermal ternary system. If we choose them to be j, and jg, and
the independent forces to be X, and X, we obtain by inserting Eq. (5.118) into the
flux equations for A and B
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. Ny LAB
=| Laa——20L - X - X, 5.119
Ja < AA N, AB) AT N, o ( )

. Ny Lpg
Jp=| Ly ——2+Lpg |- X, — =28 X, (5.120
B ( BA Ny BB> A N, o )

Site conservation (Eqn. (5.114)) yields
Jv=—({atJp) (5.121)

for the vacancy flux. In an isothermal, isobaric system, X,(= —Vu,) and X,
(= —Vug) are functions of two independent variables. This can be inferred from
the Gibbs-Duhem equation. We may choose N, and Ny as the independent vari-
ables and accordingly transform Eqns. (5.119) and (5.120) into

jA: —D_AA.VNA.—DAV'VNV: _DAA’VCA_DAV'VCV (5122)
jV = _D_VA'VNA—DVV'VNV = -DVA‘VCA_DVV‘VCV (5123)

It is important to understand that we are now treating AO-BO as a ternary system,
not as a quasi-binary one. Thus, the vacancies are an independent species and their
concentration is not determined by local defect equilibria.

In the next step, we express the parameters Dj; of Eqns. (5.122) and (5.123) in
terms of measurable quantities. To do so we write Vy; as a function of VAN, and
compare Eqns. (5.122) and (5.123) with Eqns. (5.119) and (5.120). Abbreviating the
thermodynamic factor (8(u,/RT)/81n N,) by f;,, we obtain (with £ = A, V)

RT Ny
Doy =Sl ([ Ly =DA L ) fy — 0B (5.124)
Ak Ny (( AA Ny AB) Ak NB Ok>
_ RT Ny Lg
Dy, = — . L,.—2A.L . —-—=. , [=AB 5.125
Vi N, ) (( A Ny IB) Sak N, Jok ( )

Both L coefficients and f factors can, in principle, be calculated from microscopic
models. For the evaluation of L, the random-alloy model [J.R. Manning (1968);
A.R. Allnatt, A.B. Lidiard (1987)] is sometimes used. For the evaluation of ther-
modynamic factors, one takes advantage of the empirical rule that in extended solid
solutions AO-BO, the cation vacancy concentration and the oxygen potential are
related to each other as

U opo—ud | Ny
— =—-lnag=In—+4"N (5.126)
m RT m © NY 5o

where m and £ are experimentally determined parameters which can be interpreted
on the basis of defect models. One sees from Eqn. (5.126), for example, that the for-
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mation Gibbs energy of point defects varies linearly with the mole fraction N, in
the (ideal) solid solution (A, B)O, that is, Ny (ug) &< N (up) e # 1 =Nao),

We now can solve the AO-BO interdiffusion problem when the boundary condi-
tions are defined. In addition to external boundaries, internal sinks and sources for
vacancy equilibration may exist. With Ry = (Ny (&, 1) —NY (N4 (é),uoo))/r represent-
ing the annihilation (production) strength, where NQ,(NA (é),uoo) is the local equi-
librium vacancy fraction, the continuity equations for A and V read (V,, = const.)

Na==V(V,ja) (5.127)
Ny = =V (V, jv)—Ry (5.128)

The vacancy relaxation time, 7, depends on the (average) distance, A/, between the
vacancy sinks as

7= Al?/2-Dyy(Na, Ny) (5.129)

Figure 5-12. Vacancy concentration distribution and the course of oxygen potential during interdif-
fusion in the AO-BO couple [T. Pfeiffer (1987), T. Pfeiffer, K. Winters (1990)]. The (A, B)O solid
solution is characterized by the following parameters: D,/Dp=3; dRTInNy/d1n Nyo = I
Ouog/ORTINNy =2;t= 56X 10%s. I',, I, T’y are external surfaces with fixed oxygen potential. I’
is a hypothetical internal surface far away from I'; (i = 1,...,3). N indicates a normalized frac-
tion.
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By modeling 7 in this way, we have tacitly assumed that the atomic oxygen has free
access to the vacancy sinks which are the internal sites of repeatable growth for the
lattice molecules. Properly spaced dislocations with fast oxygen diffusion could be
a prototype of those sinks.

In Figure 5-12, graphs of numerical solutions to the AO-BO interdiffusion pro-
blem are presented. The vacancy concentration and the oxygen potential in the sam-
ple are plotted. It was assumed that both external surfaces as well as internal sources
and sinks operate to equilibrate the vacancies [T. Pfeiffer, K. Winters (1990)].

M os
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o5t
MR | | L L —_
0 200 400 600 800
NiO i CoO — f/um

Figure 5-13. Experimental vacancy distribution in the diffusion zone of the couple CoO-NiO, mea-
sured after increasing annealing times: £, = 16 min; f, =45min; ¢#;=75min; ¢, = 180 min.
T=1300°C, in air [G. Kutsche, H. Schmalzried (1990)]. Ny = %-fraction.

Vacancy distributions in a CoO-NiO sample determined at different times during
an interdiffusion experiment are presented in Figure 5-13 and confirm the calcula-
tions. The majority point defects (V*,h*) are not in equilibrium with the external
oxygen potential as can be seen from the time-dependent defect wave. Since the
vacancy concentration ¢y determines the transport coefficients of both the cobalt
and nickel ions, D¢, and Dy; are no longer single valued functions of composition
and the externally predetermined oxygen potential as illustrated by Figure 5-11. The
interdiffusion coefficient D has been derived from concentration profiles according
to the ‘Boltzmann-Matano’ method and depends explicitly on time (and also on the
distance from the sample surface), stressing the fact that the vacancies are not in
equilibrium with the external oxygen potential during interdiffusion. Their
super(under)-saturation depends upon the geometry of the sample.

In order to clarify the meaning of D in the case of incomplete (local) defect
equilibration, let us consider a linear diffusion geometry and assume that the
equilibration of the defects with the external oxygen buffer occurs only at one end
of the sample. The fluxes of the components can then be expressed as

®JIA = —EJs =JatNatJy (5.130)
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where the lower index (F) indicates Fick’s reference frame. Two limiting cases for the
evaluation of the fluxes j, and jy can be visualized: 1) uy is constant in the sample
(duy = 0) and 2) ug is constant in the sample (dug = 0). Each of these conditions
renders the ternary crystal monovariant so that

BN
VNy = ( NV> ‘VNs=0a;VNy, i=Vand O (5.131)
A/ g,

From Eqgns. (5.122), (5.123), (5.130), and (5.131), one derives after some algebra
Fia= —D'Vey 5 D= (Dya+Ny-Dys+0; (Day+NayDyy))  (5.132)

D thus depends on «; which, according to Eqn.(5.131), is determined by the
assumptions which govern the equilibration of oxygen (dus = 0) or the vacancies
(duy = 0). In other words, the interdiffusion coefficient D depends directly on the
mode and extent of the point defect equilibration.

Let us present D explicitly for the condition dug = 0, omitting all details of the
lengthy derivation. By application of Manning’s random-alloy model [A. R. Allnatt,
A.B. Lidiard (1987)], and by inserting Eqns. (5.126) and (5.131) into Eqn. (5.132), for
a constant oxygen potential across the diffusion zone, a Darken type equation is ob-
tained

2 9 . 2N, Ny D*_D:kz
D:(NA'DE+NB'DZ)'fAO'<1+ . AV £ A B)* *>
My (NaDx+Ng Dg) (Na-Dg+Np-D3)

(5.133)

M, is a numerical factor that is specific for the crystal structure. The second term
in brackets stems from what is called the ‘vacancy wind’ effect. We note that D for
AO-BO (oxide) interdiffusion under the condition dug = 0 is analogous to D for A-
B (alloy) interdiffusion when duy = 0 and vacancy equilibrium prevails throughout
the alloy.

In summarizing, we assert that transport and reaction in crystals occur by point
defect carriers. Their equilibrium concentrations (at any given P and 7)) are unique
functions of the local component concentrations. The local changes in composition
during transport and reaction perturb the local point defect equilibria. Consequent-
ly, defect relaxation processes take place. Since transport coefficients depend on
defect concentrations, they are no longer functions of state unless the defect relaxa-
tion processes are sufficiently fast. Intrinsic and extrinsic types of point defects have
different relaxation modes and times. In general, intrinsic defects have much shorter
relaxation times. The relaxation times of extrinsic point defects (the concentrations
of which depend on component activities) are much longer, especially if their equi-
libration sites (Le., sites of repeatable growth for lattice molecules) are far apart. In
these cases of sluggish relaxation, the transport coefficients become explicitly depen-
dent on time and location in the sample, resulting in nonlinear transport equations.
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5.4.4 Interdiffusion of Heterovalent Compounds

In discussing AQ-BO interdiffusion, we saw that the two independent fluxes of this
ternary system can lead to different chemical diffusion coefficients D. They depend
upon the constraints which define the physical situation (e.g., Vi = 0 or Vuy = 0).
The analysis of this relatively simple and fundamental situation is already rather
complex. The complexity increases further if diffusion occurs between heterovalent
components of compound crystals. This diffusion process is important in practice
(e.g., heterovalent doping) and its treatment in the literature is not always adequate.
We therefore add a brief outline of the relevant ideas for a proper evaluation of D.

Interdiffusion of AX-BX, in the dilute limit (AX is the solvent) has been dis-
cussed by [A. B. Lidiard (1957); R. E. Howard, A.B. Lidiard (1964)]. Lidiard propos-
ed to equate the fluxes jg:+ and j;,, where { } = {B, V} is the (neutral) associate be-
tween B} and VY. The argument goes that B2" is only mobile in form of the pair
{], when B} and V), are nearest neighbors and can exchange sites. Formally, this
means

Js=—DyVeg=jj;= =Dy V(p-cp) (5.134)
where p is the degree of {B, V] association. From Eqn. (5.134), one infers that

0
Dy :Dn'g([?'cg) (5.135)
B

In very dilute AX-BX, solutions, for example, p ~ cg and, thus, Dy ~ cg, whereas if
p=1, Dy= D, = const.

However, in view of the ambiguities that occur if Eqn. (5.135) is naively applied
to systems such as AO-B,Os, let us approach the heterovalent diffusion problem
more generally. We define AO,, as the solvent. BO, must dissolve in AO,, in the
form of corresponding (solvent structure) lattice molecules. By starting in the most
general way with A, O,, and B, O, (m<n; m=mqg/my, n= no/ng), interdiffu-
sion between the A- and B-lattice molecules can occur through the oxygen ion lattice
only if, by definition, they comprise the same number of oxygen ions. Therefore

[A] (= [AmAOmO] 'flo) = [AmA-nOOmo-nO] ; [B]= [BnB~171OOmO'nO]
For each [A]-lattice molecule we have my ng cation lattice sites. Thus,
My Ao —HNg* Mg is the number of cation vacancies which rng ions of type B bring in-

to the cation sublattice when [B] dissolves in [A]. We can now formulate Vu[B] in
terms of the individual SE potentials as

u[Bl =V Y viuj=V(ng mg-ug, +(ma-no—ng-mo)-iy,) (5.136)
SE

Here it is assumed that the irregular SE’s B, and 'V, are unassociated. If associates
were present, v; would designate the number of independent SE’s in the lattice
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molecule, including associates. If N[B]< 1, that is, for dilute solutions of the hetero-
valent dopant BO,, we can rewrite Eqn. (5.136) by noting that

Vug =Vuy =RT-VIinNg (5.137)
which then yields for the driving force on BO, diffusing into AO,,

‘RT-VinNg= (2L~
m  HAg- Mo

Vu(BO,) = Malo =%

)-R T-VInNg  (5.138)
ng Mo

where x denotes the number of distinct associates.

Having established the driving force for the dissolution of crystalline BO,, in
crystalline AO,,, we can now formulate jp and j, by using Vz; as the driving force
for the individual ionic fluxes. The flux coupling

. n .
JA= ——"Jp (5.139)
m

expresses the conservation of lattice sites. From Eqn. (5.139), the electrical potential
gradient Vg can be determined as usual. Note that it is not essential to omit the cross
terms L. Inserting Vg in the B flux equation jp = —Lp Vg, we obtain

Jo= —Ly (1+Ng)-Vu(BO,) = —Ly-Vu(BO,) (5.140)

When Eqgns. (5.138) and (5.140) are combined, the result is

Jg=— <ﬁ— % >-R—T-LB-VCB (5.141)
m nB'mo CB
so that the chemical diffusion coefficient becomes
Dy = R—T.LB.<£_ * ) (5.142)
Cp m  ng- Mg

Setting RTLyg/cyg = Dy, we finally have

~ n .4 Mo — X
Dy/Dy = —— =ATO
m  ng-Mg ng Mo

(5.143)

For example, if the interdiffusing system is AO-B,0O;, Dg/Dy= (3—x)/2 =3/2,
2/2,1/2 for x = 0,1, and 2 respectively. In the case of AO-BO,, we obtain Dy /Dy
=2—x=2,1 for »x =0,1 respectively [A.B. Lidiard, H. Schmalzried (1993)].

The foregoing results are valid for ionic crystals without electronic transference.
However, many crystals with a high degree of ionicity are semiconductors due to the
high mobility of the electronic defects, even if their concentrations are much lower
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than those of the ionic majority defects. Semiconducting compounds such as transi-
tion-metal oxides are slightly nonstoichiometric. Therefore, interdiffusion can occur
between two nonstoichiometric crystals such as A,_5O,, and B,_s-0O,. Since ¢’
and 0" <Ng, Vu(BO,) in Eqn. (5.138) is normally not influenced by the electronic
minority defects. Also, it can be verified that Vu,= F-V¢ because the transport
coefficient L. in j.(= —L.-Vn.) is » L4, Lg. This restriction together with the flux
coupling through Eqn. (5.139) allows the evaluation to yield jg again in the form of
Eqn. (5.141). The ratio Dp/Dy in interdiffusing semiconducting crystals should
therefore be the same as in ion conducting crystals.

The foregoing results have been derived with the tacit assumption that there are
neither internal nor external redox reactions that may influence the majority defect
concentrations. Internal reactions could be, for example,

A9r* 1 BYer = AWAED+ | Bl@pF D+ (5.144)

or a transfer of electric charge to the vacancies which then would change their effec-
tive charge. External reactions could be, for example,

1
AL +20y@) = +VA+ALTDT 105 (5.145)

or similar reactions which affect the electrical state of B%* or that of the vacan-
cies. All these reactions are coupled through the electroneutrality condition. Clearly,
if all these defect reactions had to be considered, including association between the
defects, the interdiffusion problem as posed here could not be handled in practical
terms. If, however, the dissolution of BO, in AO,, adds (by Eqn. (5.144)) » * elec-
tronic (majority) defects to the crystal, we have to replace » in Eqn. (5.143) by
(¢r—x*) in order to obtain Dy/Dg.
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6 Heterogeneous Solid State Reactions

6.1 Introduction

Heterogeneous solid state reactions occur when two phases, A and B, contact and
react to form a different product phase C. A and B may be either chemical elements
or compounds. We have already introduced this type of solid state reaction in Section
1.3.4. The rate law is parabolic if the reacting system is in local equilibrium and the
growth geometry is linear. The characteristic feature of this type of reaction is the
fact that the product C separates the reactants A and B and that growth of the
product proceeds by transport of A and/or B through the product layer.

Classical examples of heterogeneous solid state reactions are the formation of dou-
ble salts (e.g.,, 2KCl+SrCl, = K,SrCly), intermetallic compounds (e.g., Al+Sb =
AlSb), carbides, silicides (e.g., Ni, +Si,, = Ni, Si,,), etc. The kinetics of these reac-
tions is quite similar, in spite of the diversity of their atomic reaction mechanisms.
A heterogeneous reaction starts with nucleation and the subsequent growth of the
nucleus. The kinetics of the early stages is quite different from the later quasi-steady
state growth and will receive special attention in Section 6.2.

Let us begin with some general statements on heterogeneous solid state reactions.
The overall driving force for these reactions is the difference in Gibbs energy between
the reactants and the reaction product. Reaction entropies are relatively small if only
crystalline phases are involved. As a consequence, heat is liberated. If the interface
area between the reactants and the product is sufficiently small (which excludes many
powder reactions), the rate of heat production is low in view of the small solid state
reaction rates. Thus, the assumption of isothermal conditions is normally valid. In
contrast, strongly exothermic reactions between fine powders of reactants can lead
to self-heating.

Quantitative investigations of solid state reaction kinetics are confined essentially
to binary or quasi-binary systems (e.g., oxides forming spinel structures). If local
equilibrium prevails in the binary systems, the phase boundaries are invariant and
the chemical potentials of components are constant at the interfaces during the reac-
tion. This is the simplest possible boundary condition, leading to the parabolic rate
law. In systems with more than two components, the phase boundaries are not in-
variant. The isothermal, isobaric single-phase system needs (n—1) chemical poten-
tials in order to unambiguously define the system and to determine the concentra-
tions of all the structure elements. Therefore, during the spinel formation,
AO+B,0; = AB,0,, the AO/AB,0O, interface, for example, is not properly defined
unless, in addition to the activity of component AO, a second component’s activity
has been predetermined (e.g., a02).
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Spinel formation has been studied extensively as a prototype of heterogencous
solid state reactions. The close similarity of the crystal structures of the reactants and
product avoids many complications which have been named ‘topochemical’ and
which often obscure transport kinetics. Yet even if we can neglect effects due to
misfit, self-stress, plastic deformation, transport along dislocations, etc. the local
thermodynamic equilibrium assumption necessary for a quantitative treatment is
never absolutely true during the course of a reaction. The implications of the
assumption were discussed in Section 5.4. In this chapter, however, we normally
assume that local equilibrium is established and deal with the basic principles of
heterogeneous solid state reactions rather than working out such details as transport
across interfaces or growth morphologies (these will be done in later chapters). Also,
a monograph on these types of reaction is available [H. Schmalzried (1981)] which
justifies the more fundamental approach here.

6.2 Nucleation and Initial Growth

6.2.1 Introductory Remarks

A heterogeneous reaction of the type A+ B = AB necessarily begins with the nuclea-
tion of AB. Nucleation and early growth are different from the later stages of reac-
tion as long as the number of atomic particles in the boundary region is similar to
the number of those in the bulk. This means that the chemical potential of the com-
ponents and the growth kinetics depend explicitly on the size and form of the nuclei.

Since the interface (surface) excess Gibbs energy is positive, u;(r)> u;(r;) if the
radius of nucleus ry<r,. As a consequence, for the Gibbs energy, g(r\)>g(r,) as
well (where g = Y. mju; = n- Y, N;u;). Therefore, in order to nucleate a new phase,
some supersaturation is required. Most nucleation studies have been performed on
single-phase systems that have been brought into two-phase fields by changing 7 (or
P) (undercooling, superheating). Figures 6-1 and 6-2 show typical phase diagrams
which illustrate the reaction paths and their corresponding (partial and integral)
Gibbs energies.

Obviously, phase a, with composition N at temperature 7, is not stable. Let us ask
for the gain in Gibbs energy if an infinitesimal precipitate (nucleus) of composition
N, is formed. In the binary system 1-2 (A-B), all points on the tangent (8G%/0N,)5
connect systems with constant y;, that is, equilibrium systems. One sees in Figure
6-1 that considering the negative curvature of G(IV), as long as N> N, (inflection),
all fluctuations will result in a lowering of the precipitate Gibbs energy (AZ) if one
neglects interfacial energies. Stated differently: inside the spinodal curve given by
(®* G/8N*) = 0 in Figure 6-1, the system is absolutely unstable and will decompose
towards ¢’(V)) and o’ (N,). However, outside the spinodal curve between N; and
N, the tangent line for composition N will intersect the G curve, and not until a
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fluctuation has reached the value N, (intersection) can the precipitate (o) lower its
energy. From here on the precipitate a” and matrix o’ evolve towards the equilibrium
compositions N, and N, respectively, where eventually the lowest possible Gibbs
energy for the whole two-phase system is attained.

In Figure 6-2, the same situation is explained for a simple eutectic system. Starting
again with composition N, the fluctuation must go beyond N, before Gibbs energy
is gained by forming nuclei of the S-phase. Figures 6-1 and 6-2 allow one to im-
mediately formulate

- - - [ Og
AN )= —| g(N)—g(N)—(N, —N)- | —= 6.1
EN,) <g( ) —8IN)—(N,—N) <6N>N> (6.1)

These g values are defined per unit volume. Let us now put in the interface energy
previously left out. If V, = 4/3-7-r? is the volume of the nucleus, the net Gibbs
energy change is (neglecting elastic misfit energies)
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AG=(4/3) m-r* Ag(N,, T)+4-m-r* y(N,, T) (6.2)

with y as the interface Gibbs energy per interface unit. Note that y is a function of
N, . From Eqn. (6.2) we see that a minimum radius of the nucleus is necessary
before BAG (r)/dr becomes negative and the nucleus can spontaneously grow fur-
ther. This critical radius r* depends on N,. Figure 6-1 shows that the magnitude of
Ag(N,) increases with N,. We expect that y(N,) does the same. Since Ag is
negative, the difference between the two terms in Eqn. (6.2) (i.e., AG) is therefore less
affected by composition changes than Ag and y individually. An increase in 7 lowers
both |Ag| and y. The ratio 2-y/|Ag|, which is the critical radius r*, increases with
temperature.

The above thermodynamic considerations are fundamental to the kinetics of phase
nucleation to be outlined in the next section.

6.2.2 Nucleation Kinetics

The probability, £; ,, of finding an atom (ion) / within a nucleus of critical size (+*)
can be obtained from Eqn. (6.2). One first calculates the critical Gibbs energy AG*

167-y° . . . . . .

<: ; A*/z by inserting r* Then, if ¢ is the average number density of atoms
‘Ag

(assumed to be the same for matrix (m) and nucleus (n)), one finds the average criti-

cal Gibbs energy per atom / in the nucleus to be

Agf=AG*+(@'N;, (4/3)mr**)" (6.3)
If P}, <1 we therefore have
Agl
Pl =e «T (6.4)

and the number density of critical nuclei becomes

____ Pl
@/3)m-r*-N, ,

(6.5)

Qn

The rate, R,, of random nucleation is therefore obtained from Eqgns. (6.4) and (6.5)
by recognizing that the addition of one more particle / to the critical nucleus makes
it supercritical, which means that it will grow further. A simple way to represent the
transfer frequency v; ; of i across the surface of a critical nucleus is as follows

ép
vis=vl-0,dnr*i-e RT (6.6)

where v? is the vibrational frequency of particles i, o, ; their number per unit sur-
face area, and e, the activation energy for the diffusion of i. In the sense of transi-
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tion state theory (Section 5.1.2), by neglecting any return jumps from the nucleus in-
to the matrix (Zeldovich factor), one finds the quasi-steady state nucleation rate R,
to be
Agl+eg 0,
R,=0fvi,=a-e kT a:i-—vi Qis 6.7)
’ r¥ Ni,n

R, (through Ag*) is sensitive to y and 7. It reaches a maximum as a function of
temperature: at low 7, the v, frequencies are frozen in, and at high 7, r* (AG*)
becomes too large.

Up to this point we have dealt with random nucleation processes in a homoge-
neous phase. However, in solids with many structural imperfections, it is very likely
that nonrandom, heterogeneous nucleation takes place. The basic idea of this mode
of nucleation is that the energy of the imperfection is brought into the energy
balance of the critical nucleus. Let us demonstrate the basic idea with a dislocation
line as the preferred nucleation site. We assume that a cylindrical precipitate (p)
forms along the dislocation line and, in the spirit of Eqn. (6.2), we obtain per unit
length of the nucleus

AG,=mnr*Ag,+2m-ry,—A-lnr (6.8)

where the last term on the right hand side accounts for the relaxation of the elastic
self-energy of the dislocation (see Eqn. (3.1)) due to the formation of precipitate. As
before, the condition that (8AG,/0r) = 0 yields a critical radius r* If we reintro-
duce r* into Eqn. (6.8), it is found that for A-Agp<(n/2)-y§ there is no nucleation
barrier whatsoever.

Although this line of reasoning shows one of the principal features of heteroge-
neous nucleation, the real situation of nucleation near a dislocation line is much
more complex [S.Q. Xiao, P. Haasen (1989)]. The stress field of the dislocation
changes the composition of both the matrix and the precipitate, which in turn in-
fluences both y, and Ag,. In view of this fact, one has to determine whether nucle-
ation near the dislocation occurs before or after the Cottrell atmosphere around the
dislocation had sufficient time to form.

With respect to the rate of nonrandom nucleation, the essence of the rate equation
(6.7) is unchanged. However, we may have a spectrum of preferential nucleation sites
p, with number density o,(p). Therefore, R, becomes

R,(p) =Y 0,(p)vis(p) (6.9)
P

Since AG;‘<AG* for random homogeneous nucleation, normally R,(p)>R,,
even though the pre-exponential factor is much greater for homogeneous than for
heterogeneous nucleation (N;(p) < N;(m)).

Most nucleation processes are accompanied by a net volume change. In these
cases, AG* is altered by the strain energy AE,,,. The dilatational part of this
energy term can be expressed as
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2
- [ AV
East = (2/3)' G- <7>

o <f> (6.10)
.

Here, G denotes the shear modulus, and f{(c/r) is a function of the ratio ¢/r in which
c and r are the spheroidal semiaxes of the precipitate. For spheres, f(c/r=1) =1
= frax- For discs as well as for rods, f<1. In principle, shear stress energies and
energies arising from misfit dislocation networks also have to be added. They in-
fluence AG* by additional energy terms.

Temperature induced nucleation in homogeneously undercooled systems has
mainly been evaluated in the field of metallurgy and materials science. For a survey,
see, for example, [K. C. Russel (1970); V. Raghavan, M. Cohen (1975)]. In solid state
chemistry, however, not only the precipitation of ¢” (or £#) from undercooled «, but
equally the nucleation of y at the start of the isothermal reaction a + £ = y has to
be studied. Figure 6-3 illustrates this situation with the phase diagram and cor-
responding Gibbs energies. The solid state reaction A+B = AB (a +f = y) starts by
contacting the pure reactants A and B as shown in Figure 6-4. The mutual interdiffu-
sion of A and B (over the time interval 0<¢<¢)) leads to mutual saturation as
indicated in Figure 6-3 by tangent (1) between G? and G”. We see that this
(metastable) equilibrium at the a/f interface, with composition N%(8) and N?(a),
is supersaturated with respect to phase y(AB) in the same way as a was super-
saturated with respect to S(a’) in Figures 6-1 and 6-2, at composition N. Each fluc-
tuation on the a-side of the boundary when N becomes <N,, or on the £-side of
the boundary when N becomes <N, will lead to a nucleation of y(#,). Thereafter,

'
L~ | Figure 6-3. 2) T-N, and b) G-N, diagram of
N¥Hal iN’(B): NB(u)I ! a binary system with (nonstoiciliometric)
Nyl N, Naly) Ny NPBlyl compound y. The reaction path .for isother-
(A) 8) mal compound formation is indicated by
N ~-—— arrows (see text).
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Start Nucleation Earty growth Nu(“bNu(B)

b Nyl < Na

Figure 6-4. Nucleation and early growth stages of the heterogeneous reaction o +f = p, in accor-
dance with Figure 6-3.

the a/y(y/f) interface evolves (with a sharp decrease in local Gibbs energy) towards
the composition N¢ (y)(Nﬂ(y)). N%y) and N®(y) are eventually reached when
local interface equilibrium is established. Interface kinetics, morphology, and fur-
ther growth of y (#3, £, of Fig. 6-4) are treated in later chapters. However, we can
assert that the considerations which led to the kinetic equations (6-4)—(6-7) apply
as well to the y nucleation which starts the heterogeneous reaction A+B = AB. Ac-
cording to Figure 6-4, we have to replace the surface energy term in Eqn. (6.2) by the
difference between the energies of the new surfaces a/y and /7, and the original sur-
face a/p.

6.2.3 Early Growth

Let us now discuss the post-nucleation stage. The further course of a heterogeneous
reaction depends decisively on the time evolution of the boundary conditions. In
most cases, the problem is extremely complex because nucleation continues to occur
simultaneously as component transport to the previously formed nuclei. Thus, all the
parameters in Eqn. (6.7) and, in particular, the critical values of AG*(Ag*) become
explicitly time-dependent while varying locally. The supersaturation near a growing
nucleus is diminished. Thus, AG * increases with time while Ag decreases, as can be
seen in Figures 6-1 and 6-2. For illustration, let us inspect Figure 6-2. After the
nucleation and growth of 3, the average composition of the o phase evolves towards
N,. This lowers |Ag| until it finally becomes zero.

For reactions of the type A+B = AB (or a -+ = y), the situation is different. If
one has a linear reaction geometry and the y product forms at different times and
locations on the A/B interface, the patches of y eventually merge by fast lateral (in-
terface) transport. Eventually, a full y layer is formed between o and 3. At first, this
layer has a non-uniform thickness (Fig. 6-4). In Chapter {1 we will show, however,
that the uneven a/y and y/f interfaces are morphologically stable and become
smooth during further growth. This leads to constant boundary conditions for the
y formation after some time of reaction and eventually results in a parabolic rate law,
as will be discussed later.

In summary, the nucleation rate R,(¢) is difficult to assess and kinetic theories
for transforming systems often assume (ad hoc) R,(¢) dependencies. In contrast,
the growth kinetics of an individual particle of S precipitate in the supersaturated
matrix (&) is a transport problem with well defined boundary conditions, as long as
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other nuclei do not interfere. If the problem is spherical, isotropic, and the kinetics
are diffusion controlled, the boundary conditions are: ¢; = ¢%(a/8) at r = rg, and
¢ = c?(oo) at r = oo. With a boundary velocity v® =j%Ac(a/B)atr= rg, one ob-
tains (after some algebra) a parabolic rate law for the growth of the £ particles

cd—ci(a/B) V2
o= | 2.po.Cd ‘ . 6.11
G < . ©10

Equation (6.11) is valid for the initial particle growth. Interface control of the growth
kinetics would lead to a linear rate law. Details can be found, for example, in [H.
Schmalzried (1981)].

In contrast to the growth of individual (isolated) particles, the overall kinetics of
heterogeneous reactions in the early stages cannot be assessed in a straightforward
way. Let us therefore inspect some empirical and semi-empirical relations which are
in use. The most stringent simplification assumes that the nucleation rate R, (f) =
R%at =0, and R,(t) = 0 for £>0. Other assumptions are also in use: 1) R,(t) =
RY for all times =0 and 2) R, (1) = R%-¢~"". We can apply these R, (¢) functions
to derive the general kinetic expressions for reacting (transforming) systems.

Let us define X = X” as the portion of the system that has already transformed
into # and X% = (1 -X) as the untransformed fraction. The reaction rate as referred
to untransformed a is

%{: —dIn(1-X) = f(t)-dt (6.12)

Integration yields
1—X = Wroya (6.13)

Unless we deal with autocatalytical reactions, the function f(¢#) must decrease with

time. From Eqn. (6.12) it can be seen that f(¢) is the (normalized) increase of the
product at time ¢. For spherical product particles, this means

S =

I ey (]

! : , dr
dt R, (1) <4nr -—) (6.14)
0 di -1

Equation (6.14) weights the increase of the product particles according to the time
(t— 1) that has elapsed since nucleation took place. »(— 1) has to be evaluated by
transport theory. Let us apply Eqn. (6.14) to the simplest possible situation in which
R,(t=0)=R° R,(t>0)=0, and r = v°- (¢~ 7). With these assumptions we obtain

Lp0.,.03\ 13
X=1—e a0 . k3:<w> © m=3 (6.15)

If the nucleation rate at =0 is R° and constant in time, we obtain in place of
Eqgn. (6.15)
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t

| ey |

T
S@)=R% | de-@nr®p),_ .= (f‘i31>~1é2-v°3-z3 (6.16)
T

0

which, after insertion into Eqn. (6.13), results in

.0, .03 174
X=1-e k0" s j, = <E%_> C m=4 (6.17)

Equations (6.15) and (6.17) phenomenologically describe the overall growth kinetics
after the initial nucleation took place and further nucleation is still occurring. In-
deed, the sigmoidal form of the X (¢) curve represents a wide variety of transforma-
tion reactions. Equation (6.13) is named after Johnson, Mehl, and Avrami [W. A.
Johnson, R.F. Mehl (1939); M. Avrami (1939)]. Let us finally mention two points.
1) Plotting }In (1 —X) vs. ¢ should give a straight line with slope £,,. 2) The time ¢,
of the inflection point (8°X/8:2 = 0) on X (¢) is suitable to derive either m or k,,,

namely
1 —
Kp=1—]" m_l (6.18)

The activities of precipitate particle components depend explicitly on their size and
form. The quantitative relation which describes this fact is the so-called Gibbs-
Thomson equation

1 1
#i("1)—ui(’2):2')"<‘—*> (6.19)

N

which can be rewritten in terms of solubilities, ¢, in the o matrix as

2-V5-y 1 1
C:.I r)—c;z(r :C? o Loom 7, _—— 620
() =efry) = ef (o) = 2= (6.20)

in a linearized version. fo, is the molar volume of the precipitate f, and it was
assumed that component 7 is ideally dissolved in a. r, and r, are the main radii of
curvature of the f particle. From Eqns. (6.19) and (6.20) we conclude that a driving
force exists for the transport of species 7 between a small and a large particle which
were nucleated at different times. Obviously, the large particles grow at the expense
of the small ones. This process (which already takes place during the nucleation
period) is named coarsening or Ostwald ripening. It has been treated quantitatively
by [C. Wagner (1961); 1. M. Lifshitz, V. V. Slyozov (1961); I. M. Lifshitz (1962)]. A
simplified treatment has been outlined by [G. W. Greenwood (1956)]. Of course, the
growth kinetics of a particle (with average radius r) depends on the mechanism of
transport. For diffusion control, one derives
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8.y A (eq):D 173
f:< Vo Vm Citeq > _tl/3 (621)

O9RT

where the average particle radius 7 is defined as

co

§fry-r-dr
Fol (6:22)
| fr)-dr
0

where f(r) is the (quasi-steady state) particle size distribution function. The main

conclusion is that r ~ ¢, that is, the average particle grows proportional to the cube
root of the time. The solubility of component / in the o matrix influences the growth
rate.

These brief remarks on Ostwald ripening conclude the discussion of nucleation
and early growth stages of heterogeneous reactions at this point. Some of the con-
cepts are deepened in Chapter 12 on phase transformations [see also R. Wagner,
R. Kampmann (1991)].

6.3 Compound Formation

6.3.1 Formation Kinetics of Double Salts

The kinetics of spinel formation (AO+B,0; = AB,0,) was first explained quan-
titatively by [C. Wagner (1938)]. A and B can represent quite a variety of different
elements such as Mg, Fe, Ni, Co and Al, Ga, Cr respectively. Other reactions that
belong to this category include the formation of silicates (e.g., 2MgO +Si0, =
Mg,Si0,), of double sulfides (e.g., Ag,S+Sb,S; = Ag,Sb,S,), or of double halides
(e.g., 2Agl+Hgl, = Ag,Hgl,). In Figure 6-5, the reaction mechanism according to
Wagner is shown for spinel formation. It encompasses the counterdiffusion of cat-

[Mg0 [Mgo - AL,0,] A1263j
3Mg?*

cation - 3+ >
counterditfusion 2 Al

-—

4 MgO 4L Al,04

reactions at - 2+ _ 3-
boundaries 3Mg3, 2 Al 3. Figure 6-5. Reaction mechanism and phase
+2 A . *3MgT boundary reactions for the spinel formation
1Mg0-Al,04 3MgQ- Al,0, MgO+Al,0; = MgAlO,.
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ions and assumes that the mobility of oxygen ions in the reaction product is small
in comparison with the mobility of both cations. This is true since the large oxygen
ions are almost close-packed and consequently diffuse slowly. Figure 6-5 shows the
central problem of heterogeneous solid state reactions. When the product separates
the reactants, in which way and in what form does the reactant (say A) dissolve in
the product phase AB so as to cross it and eventually meet the other reactant (B)
in order to form AB?

In accordance with the reaction scheme of Figure 6-5, it is found experimentally
that while one quarter of the spinel forms at the MgO/MgAl,O, interface, three
quarters are formed at the MgAl,0,/Al,04 boundary. This ratio provides us with
information on the cation counterdiffusion mechanism. In order to meet the re-
quirements of the product compound stoichiometry, the cation fluxes are coupled,
that is, 3-jye = —2+ja1- One may also interpret this coupling as the condition of
(local) electroneutrality during reaction. In the frame of immobile anions, AI** and
Mg?* ions have to carry equivalent electrical charges in opposite directions. Conse-
quently, the slower moving cation essentially determines the rate of reaction. We then
expect cation counterdiffusion in the product and the B** cations to be rate deter-
mining when the sequence of diffusivities is D, <Dg<D,. For other sequences,
other reaction mechanisms become operative, for example, unidirectional transport
of A** and 0%~ ions (= AO) from the AO/AB,O, boundary to the AB,0,/B,0;
boundary where the new spinel forms.

Since both the oxide reactant and the spinel are ternary (nonstoichiometric) com-
pounds when equilibrated with each other, at a given P and 7, the boundaries
(A, B)O/spinel and spinel/(B, A),O; are not invariant. They become invariant (and
thus provide unique boundary conditions for the reaction) only if an additional in-
tensive thermodynamic variable can be predetermined. This is a consequence of
Gibbs’ phase rule.

Spinel formation is usually treated under some tacit assumptions which do not
always hold. For example, it is tacitly assumed that the oxygen potential of the sur-
rounding gas atmosphere prevails throughout the reaction product during reaction.
In other words, it is assumed that dug = 0. Although this inference reduces the
number of variables by one and simplifies the formal treatment, the subsequent
analysis will show that the assumption is normally not adequate.

Let us systematize the possible boundary conditions for cation diffusion in a
spinel. Since in the ternary system (at a given P and 7') the chemical potentials of
two components are independent, we may distinguish between three different trans-
port situations. If A denotes a change across the product layer and O and AO are
chosen as the independent components, the possibilities are

1) Atiao(Aupo) 0, Aug=0
2) Aupo(Aupo) =0, Aug=*0 (6.23)
3) Aupo(Alpo) #0 , Auo*0

These systematics should be supplemented by appropriate boundary conditions as
illustrated in Figure 6-6. In principle, this includes the definition of the rate of reac-
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tion between the surrounding oxygen, O, (g), and the cations at the boundaries (€9).
Here, spinel molecules can be added to the product by the reaction 2-O;(g)+ A,
+2:Bp = AB,0,+V, +2-Vy. Let us define ry;(£%,¢) as the interface reaction rate
due to oxygen uptake. Then we have (letting volume Vy = Vap,0)

&0 =iV (6.24)

The different boundary conditions given in Eqns. (6.23) thus have to be supple-
mented according to the magnitude of £y (A = 0 or =+ 0) in order to evaluate the
growth of the spinel. This has been done for the different coupling conditions of
the ionic and electronic fluxes in the product according to Figure 6-6 [T. Pfeiffer,
H. Schmalzried (1989); H. Schmalzried, T. Pfeiffer (1986)].

We begin the quantitative discussion on the kinetics of double salt formation as
shown in Figure 6-6a by introducing the familiar flux equations for charged particles
and neglect the cross terms. The evaluation will be done with the assumption of a
semiconducting spinel product (¢, = 1). In this case, dy.=0 in the product, or
du. = F-de and dnaz+ = dus. Thus,

jA: "CA'bA'VﬂA2+ = —CA'bA'Vqu _CA'bA'(VNAO_VﬂO) (625)
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An analogous equation holds for jg:+. The Gibbs-Duhem equation requires that
Vitgo,, = —1/2-Vu,o for compounds with a sufficiently narrow range of homo-
geneity.

In the classical cation counterdiffusion experiment, oxygen gas is excluded from
the interfaces and #y; = 0 (Fig. 6-6a). Thus the coupling condition is simply

z'jA2+ +3’j83+ :0 (626)

From this condition, we can eliminate Vu,o in Eqn. (6.25) and obtain for the flux
of A% in the spinel product

Dy-D 12
Jar=———0 "B .y Ho (6.27)
2-Dy+9-Dg V,, \RT

Equating Eqns. (6.27) and (6.25), the oxygen potential gradient in the growing spinel
can be calculated as

Vi = —+ Vo s B=— (6.28)

In contrast to the individual diffusivities, often the ratio Dy/D, is not very sen-
sitive to changes of the chemical potentials. From Eqn. (6.28), we find that
Vo = Vo if —0, and Vg = —1/3-Vuag if S 1. We also infer that it is possi-
ble to achieve very high oxygen potentials (corresponding to pressures in the kbar
range) at one boundary if one predetermines, for example, the standard pressure to
be 1 bar at the other boundary. Furthermore, no oxygen potential gradient will build
up in the product during reaction if Dg/D, = 2/3. From Eqn. (6.27), we see again
that the slower of the two cation sorts determines the fluxes and thus the rate of
spinel growth. In accordance with the reaction stoichiometry of Figure 6-6a, we
calculate the (parabolic) growth rate as

Dp-Dg Aupo

AE-AE =16
2:Dy+9-Dg RT

(6.29)

The bar over the diffusivity term indicates the product layer average. Au o is equal
to the standard value of the formation Gibbs energy of the spinel, AGAB o,” One
finds from Eqn. (6.29) that the (parabolic) reaction rate constant (A&> = =2 kz) is

DDy AGS
k=g A TB AN (6.30)

Equations (6.27) and (6.28) tell us that both the oxygen potential and the AO compo-
nent potential vary linearly in the product layer as long as D, and Dy are constant.
All these conclusions are related to the scheme in Figure 6-5 and the boundary condi-
tions as depicted in Figure 6-6a where phase boundaries are not exposed to ambient
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oxygen. However, if oxygen has unhindered access to the phase boundaries as shown
in Figure 6-6b, there is no coupling of the cation fluxes. The growth of the spinel
layer is then given by simply adding the contributions of j,:+ and jg:- to the com-
pound formation, which results in

. S 3
N <DA+E-DB>-V <’;—A;>— <DA—£-DB>-V <;—OT> (6.31)

The corresponding parabolic rate constant obtains

1/ 1\ AGLso
k== Do+ Dy |2 (6.32)
2 ( A2 B) RT

The availability of oxygen at the phase boundaries therefore determines decisively
the value of the reaction rate constant. Since interfaces are often regions of high dif-
fusivity, it may be difficult in practice to decide whether Eqn. (6.30) or Eqn. (6.32)
applies.

If, in contrast, there is unhindered access of AO to both spinel interfaces (uxo =
U ao) as illustrated in Figure 6-64d, the spinel sample shifts as a whole (provided that
an oxygen potential gradient exists). The interface reactions which lead to this shift
are indicated in Figure 6-6d. Such a shift is also found if neither AO nor B,O; have
access to the spinel, but the interfaces are exposed to different oxygen potentials
(Fig. 6-6¢). In this case, the spinel may even be decomposed (but not reduced!) if
Aug exceeds a limiting value (decomposition potential). We observe that the shift of
the spinel sample in an oxygen potential gradient occurs if the sample crystal is clos-
ed for one or two sorts of cations.

In these shift experiments, the coupling condition for the unidirectional flow of
cations is 2 ja2+ = jgi+, which can be understood as the steady state condition for
equal cation velocities in the reference frame of the anions: ja2/Caze = jgs«/Cpse = V.
From this coupling condition, one obtains using Eqn. (6.25)

2+5 Dy
Apo=0"Apo ; A= ; f=— (6.33)
0 AO 2-3p D,
The shift velocity is therefore
+(5)
v= Dyl N (6.34)
o AéE

We conclude that the spmel will decompose as soon as Aug exceeds the value
a- AGABO because AGABO is the maximum value of the AO potential change
(= AuAO) which the spmel AO- B,O; can take without decomposing [W. Laqua,
H. Schmalzried (1981)]. Kinetic decomposition of compounds in chemical potential
gradients is treated in greater depth in Section 8.3.
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For the last case as shown in Figure 6-6e, the boundary conditions are: one com-
pound surface is accessible to both B,O5 and oxygen. The other interface is in ideal
contact with AO and oxygen is excluded. Under these conditions, we have flux
coupling according to Eqn. (6.26), which leads again to the oxygen potential gradient
calculated in Eqn. (6.28). A very high oxygen activity is to be expected at the
AO/AB,0, interface if D> Dy and AG(}\BZO4>RT Indeed, as Figure 6-7 shows,
the corresponding oxygen pressure is able to lift the reaction layer from the binary
oxide substrate and form bursting craters in the layer.

NiCFZOA
surface

NiCr, O,
surface

Figure 6-7. SEM-graph of reaction in Figure 6-6e. AO = NiO, B,0; = Cr,0;, po, =0.21 bar,
T=1400°C, ¢t =3.5h. a) View on the NiCr,0, product at the Cr,O; boundary. b) Cross section
NiO/NiCr,0, with pores.

The foregoing concerned the formal kinetics of various situations of double salt
formation. The quantitative relations become more complicated if reactants and
product exhibit a noticeable range of nonstoichiometry. If only the transport proper-
ties of the reaction product are of interest, it is advisable to start the reaction not
with pure reactants but with reactants which are already saturated with the com-
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Figure 6-8. The course of N5 —¢&, ug—¢&,
and N,o— o during spinel formation.
Nyo—&: ——~ Reaction of the first kind,
\ starting with AO and B,O;. Reac-
L tion of the second kind, starting with
- = ¢ saturated oxide reactants.

ponents of the reaction product, as illustrated in Figure 6-8. When we start with pure
reactants, transport occurs in the reaction product as well as in the reactants. The
(parabolic) rate constants k differ from those obtained with presaturated reactants.
The latter are determined by the thermodynamic and kinetic parameters of the prod-
uct only. This suggests making the distinction between parabolic rate constants of
the first and the second kind (¥, £®). k" denotes the rate constant for the reac-
tion between pure reactants and is always smaller than k®. £V and k® are equal
if the solubilities in the reactants are negligible. Quantitative relationships between
reaction rate constants of the first and second kind are available [T. Pfeiffer,
H. Schmalzried (1989)].

Before concluding this section, we should briefly explain the averaging procedure
which is implicit in the derivation of parabolic rate constants. In order to simplify
without [oss of generality, we assume that D, > Dj. Integration of Eqn. (6.27) yields

. 4 1 8

AE=—V, jare =—+——\ Dy-du (6.35)
3 m JA? A RT AS B AO

The factor 4/3 appears since the transport of 6 equivalents leads to the formation

of 4 AB,O, (see Fig. 6-5). In generalizing Eqn. (6.35), we can calculate the parabolic

rate constant as

Vi virzireir V
= . 2;7¢ Ve Dprdppo ==——— D;-du (6.36)
RT Ag i AO RT A;\LO i AO

where y; is a numerical factor on the order of one. z; and ¢; are the electrical charge
and molar concentration of the rate determining cation respectively. V' is the volume
increase resulting from the passage of one equivalent of cations through the reaction
product. We evaluate the integral in Eqn. (6.36) using point defect thermodynamics.
In accordance with Section 2.3, the fraction of point defects in AB,O, as a function
of u,o can always be written as (N?J = N,(agp0=1))
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1 (Uao—H#%)

N,=Ny-ako=NS-e RT (6.37)

if the disorder type does not change in the Au,go range of the product. # is a num-
ber which is indicative of the disorder type. Since diffusion coefficients depend
equally on point defect concentrations, we can thus evaluate the integral in
Eqn. (6.36) and obtain

n'AG%BZO4

k:yi'zi'ci'V_<1_eT>.D? (6.38)

RT

where D? is the diffusivity of the rate determining species in the reaction product
if its AO activity = 1.

Finally, let us comment briefly on the formation of binary metal compounds
(A,,B,). The main difference to the double salts is the decoupling of the fluxes of
A and B in the A/A,, B,/B reaction couple. The (parabolic) reaction rate constant
k (if local thermodynamic equilibrium prevails throughout the couple) conforms to
Eqn. (6.32) if we disregard stoichiometric factors. The pertinent rate constant is then

5. D\ AGY
k= (PayDPs) 20 (6.39)
m n RT

Further details concerning compound formation can be found in [H. Schmalzried
(1981)].

6.3.2 Formation of Multiphase Products

We deal in this section with quasi-binary systems in which more than one product
phase A,, B, forms between the reactants A(= AX) and B(= BX) (Fig. 6-9). The
more interfaces separating the different product phases, the more likely it is that
deviations from local equilibrium occur (the interfaces become ‘polarized’ during
transport as indicated in Fig. 6-9, curve b). Polarization of interfaces is the theme
of Chapter 10. If, however, we assume that local equilibrium is established during
reaction, the driving force of each individual phase (p) in the product is inversely

- AX  |A;BXsiss)|AByXalss|  BX

|
|
|
|
\
|

Figure 6-9. Activity vs. location for a quasi-
binary system AX-—BX during reaction.

a) Local equilibrium is established. b) At inter-
— ¢ faces local equilibrium is not established.

|
!
\
|
!
i
1
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proportional to A¢,. Thus, each individual phase (p) in the reaction layer grows

parabolically
A, =12k, t (6.40)

Adding the different A¢,’s together, one obtains the total thickness

A=Y A=Y Qk) Ve k2= X k)2 (6.41)
14 14

P

Equation (6.41) states that the parabolic growth law also applies to the total thick-
ness, and the relative thickness Aép/z A¢, of compound p is independent of time.

With these relations, we can perform quantitative calculations of the reaction
kinetics. We start with Eqns. (6.35) and (6.36), which now contain V), (= volume in-
crease if one mole — or one equivalent — of species / is transported across the reac-
tion layer p). In contrast to the growth of a single phase layer, however, transport
occurs now in the two adjacent phases (p—1) and (p+ 1). This additional transport
moves the interfaces (p—1)/p and p/(p+ 1) in addition to their shift due to the trans-
port in p itself. Therefore, the kinetic differential equation for the growth of phase
p has the following form

Agjp = /;pfl' p=1/p | gp' Vo T /;p+l' Vorp+1 (6.42)
Aép~l Aép Aép+1

where l?(z k/V) is the so-called rational reaction rate constant and refers to a flux,
whereas k refers to a thickness increase. For each phase p, there exists an equation
of the form in Eqn. (6.42). Depending on the atomic transport mechanisms in the
phases p—1, p, and p+1, the corresponding ‘reaction volumes’ V,_,,, and V),
can be either positive or negative. Since the differential equations for the growth of
phases p are coupled, the growth rate of each individual phase depends on the dif-
fusivities and thermodynamic parameters of all the other phases which form simul-
taneously. If, however, certain interfaces dissipate Gibbs energy and local interface
equilibrium is not established, the phases which exist in equilibrium may not all
form. This is sometimes observed in the early stages of a reaction. Also, nucleation
barriers can inhibit the formation of some phases p in a multiphase reaction layer.

In this context, it is again advisable to distinguish between rate constants of the
first and second kind. k,, as introduced in Eqn.(6.41), obviously is the rate
constant kg) of the first kind. It describes the growth of phase p when all the other
phases form simultaneously. The rate constant kf,z’ of the second kind describes the
growth of phase p from phases (p—1) and (p+1) only.

Explicit expressions for the ratio (k’/k\”) of a multiphase reaction product layer
have been presented in the literature, see, for example, [H. Schmalzried (1981)]. If
/E[(f) of the second kind, which depends only on the properties of phase p, is calcu-
lated or measured for every phase p individually, it is possible to derive (from all
Nip» Ay, and the molar volumes V) the rational rate constant /?f,” of the first
kind, and thus eventually k in Eqn. (6.41).



6.4 Displacement Reactions 155

6.4 Displacement Reactions

Displacement reactions are heterogeneous solid state reactions of the type A+B =
C+D. Whereas in previous sections, all reactions could be reduced to the general
scheme A+ B = C, despite the distinction between reactions of the first and second
kind, in this section the different phases (reactants and reaction products) are no lon-
ger located on a binary section of the A—B—C(—D) phase diagram. Displacement
reactions occur in ternary and higher systems. The simultaneous formation of two
(C and D) or even more phases raises questions concerning the reaction morphology.
Thus, in which way are the products arranged with respect to the (initially contac-
ting) reactants and how does their morphology evolve? Figure 6-10 shows two possi-
ble product arrangements. The simplest examples of this type of reaction are metal
displacement (or so-called thermite) reactions in which at least three components are
involved: A+BO = B+AO.

]_'THI|\I: e p—
al \ |E
an D T =
T ¢
A LTI B Figure 6-10. Phase arrangements for displacement
b) c T reactions A+B = C+D (AX+BY = BX+AY;
b = AO+B = BO+A).

As depicted in Figure 6-10, two limiting types of displacement reactions can be
visualized. The corresponding mechanisms, as proposed by Jost and Wagner [W.
Jost (1937); C. Wagner (1938)], can be treated semiquantitatively if a few assump-
tions are made. Jost suggested that the product layers C and D will be arranged se-
quentially between the reactants. Wagner questioned the morphological stability of
such a sequence. He proposed that the product phases arrange themselves perpen-
dicular to the initial boundary of the reactants as seen in Figure 6-10b. In Chapter
11, we will analyze the modes of phase distributions in displacement reactions. Here,
we just mention without proof that if an interface moves against the flux of the rate
determining component, it is morphologically unstable. Therefore, the Wagner
mechanism rather than the Jost mechanism should normally predominate. This ex-
pectation is supported by experimental results obtained for two rather similar reac-
tions: 1) Co+Cu,O =2Cu+CoO and 2) Fe+Cu,O = “FeO”+2Cu (“FeO”
indicates the extended nonstoichiometry of the oxide). In the first case, which is
illustrated in Figure 6-11a, the Jost mechanism is observed. The reason is that in the
metallic product Cu, the transport coefficient of (dissolved) oxygen is appreciably
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larger than the transport coefficient of the Co®* cations in the non-metallic pro-
duct CoO. These cations are therefore rate determining and so the CoO/Cu interface
moves with and not against the rate determining cation flux in the product phase
CoO. We come to the same conclusion by recognizing that the CoO/Cu interface is
essentially an oxygen isoactivity surface. It has (almost) the same oxygen potential
as the Cu/Cu,0 interface because of the high oxygen diffusivity in Cu. Thus, in
complete analogy to the oxidation of Co metal, CoO forms on cobalt with two
planar and stable interfaces. The growth kinetics are parabolic, that is, the product

thickness increases as A& =2k t, as will be derived in Chapter 7. The affinity
(— AG) of the reaction corresponds to the oxygen potential difference between the
Co/Co0O and CoO/Cu (or Cu/Cu,0) phase boundaries, and thus AG(= Aug) =
AG(():LIZO - AG%OO .

For the second displacement reaction Fe+Cu,O = “FeO” +Cu as depicted in
Figure 6-11b, the Wagner mechanism has been observed [G. J. Yurek et al. (1973)].
The “FeO”/Cu interface is morphologically unstable because the oxygen flux in Cu,
which is again directed against the moving “FeQ”/Cu interface, is now slower than
the Fe (Fe?* +2h") migration in “FeO”. The morphology shown in Figure 6-11b en-
sures that the less noble iron ions find the oxygen supply in the fastest possible way.
The reaction rate is determined by diffusion of the Fe ions along the “FeO” slab
under the action of the driving force |Aug|= Auy, where Aug is given by
AG = AG%UZO— AGY%o. The fundamental problem, however, which is the
theoretical description for the evolving interface geometry taking place during the
displacement reactions with unstable boundaries, has not yet been solved for such
practical situations as Wagner type displacement reactions.

Displacement reactions are quite common in solid state chemistry. The classical
reactions of this type were already investigated many years ago by Tammann as
powder reactions (e.g., PbS+CdO = PbO+CdS or ZnS+CdO =ZnO+CdS [G.
Tammann (1925)]). Systematic kinetic studies in this field of research are scarce
because the complex morphology adds to all the other complications of solid state
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reactions and makes the quantitative interpretation of displacement reactions most
difficult.

6.5 Powder Reactions

6.5.1 General

Fundamental kinetic studies of solid state reactions should be performed with single
crystals. Transport processes in the solid state, however, are sluggish and time con-
suming. Technology is most interested in speeding up heterogeneous solid state reac-
tions by using small crystallites (i.e., powders) with larger surface areas to enhance
contact between reactants. The complexity of the kinetic problem, and in particular
with respect to the boundary conditions, increases considerably for powder reac-
tions. Some of the parameters which influence powder reaction kinetics are average
grain size, grain size distribution, grain shape, contact arca between grains, kind and
geometry of interfaces forming at the contact (as a function of time), pores between
grains, vapor pressure and rate of vaporization, diffusion coefficients of surfaces
and interfaces, and impurity segregation at surfaces and interfaces. Since the ratio
of the reacting surface area to the volume is large, the heat of reaction often cannot
be neglected. Heat conductivity and the boundary conditions of heat transport
ought to be considered in addition to matter transport in order to properly account
for the temperature dependent transport parameters of small grains. In the early
stages of heterogeneous reactions, interface control may predominate and so is of
special importance for powder reactions.

In spite of the complexity of these boundary conditions which impede a general
and strictly quantitative treatment, it is nevertheless useful to work out some approx-
imations which can help to estimate reaction rates of practically relevant powder
reactions. Two frequently applied relations will be quoted. Both assume that isother-
mal conditions prevail. The first equation is named the Jander equation [W. Jander
(1927)]. It is based on the idea of having equal sized spheres of reactant A embedded
in a quasi-homogeneous (powder) medium of reactant B. In practice, this means that
the grain size of A is much larger than the grain size of B and/or that the diffusivity
of B on the surface of A is large compared to the bulk diffusivity in the product.
A shell of the product grows on reactant A, for which Jander assumed a parabolic
growth rate. The Jander equation reads

(- —a)"2rd =2kt (6.43)

where ry is the initial radius of the A particles, ¢ is the relative amount of A trans-
formed into the product, and k denotes the parabolic reaction rate constant. In the
derivation of Eqn. (6.43), two assumptions are questionable: 1) the parabolic growth
of the product shell thickness A& can only hold if Aé/r, <1 and 2) the ratio of the
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molar volumes Fp/V, of product and reactant differs from unity and should be
taken into account in deriving Eqn. (6.43). An equation which considers these objec-
tions has been worked out [R.E. Carter (1961)] and reads

[(I+@-Da) P +@-D(1-a)?-z)ri=2-(1-2)-kt (6.44)

where z = Vp/V,. If the above mentioned conditions are fulfilled, experiments
show that the Carter equation adequately describes the kinetics of powder reactions,
even if the a values come close to one.

In the literature, one can find other empirical or semi-empirical equations repre-
senting the kinetics of powder reactions. One can certainly take into account grain
size distribution, contact probability, deviations from the spherical shape, etc. in a
better way than Carter has done. Even more important are parameters such as evapo-
ration rate, gas transport, surface diffusion, and interface transport in this context.
As long as these parameters are neglected in quantitative work, the kinetic equations
are inadequate. Nevertheless, considering its technological relevance, a particular
type of powder reaction will be discussed in the next section.

6.5.2 Self-Propagating Exothermic Powder Reactions

Self-propagating powder reactions can be used to synthesize high-temperature mate-
rials by combustion. Powder mixtures of components which react highly exother-
mically (e.g., Ti+C) are able to sustain a high temperature combustion front that
propagates rapidly (with velocities as high as 25 ¢cms™!) through the compacted
powder mixture. Behind the front, one finds the solid reaction product (e.g., TiC).
The reaction starts by sufficient heating of one end of the sample, and after ignition
it will proceed on its own. Estimated temperatures at the reaction front may be as
high as 5000 K. In order to obtain the steady state temperature, one calculates the
heating of the product due to the available reaction enthalpy AH. Under the assump-
tion of an adiabatic process, one has

Ta d

AH = | ¢, (T)-dT (6.45)

Ty

where Ty is the ignition temperature and ¢, the heat capacity of the product. Equa-
tion (6.45) yields T,y = f(AH, ¢, Tj), which means that 7,4 depends not only on the
ignition temperature T, but also the validity of the assumed adiabatic condition.
The situation is depicted schematically in Figure 6-12 where, in addition to tempera-
ture, two more phenomenological parameters have been plotted. These parameters
are o, the relative degree of reaction (0, ...,1) and ¢, the rate of heat evolution.
These characterize the combustion reaction as a function of the space coordinate ¢.

The calculation of the rate of propagation of the reaction front is possible by solv-
ing a set of coupled differential equations which describe t) the rate o of the
chemical reaction (A+B = C; strongly dependent on temperature), 2) the heat pro-
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Figure 6-12. Adiabatic temperature
(T,q), degree of reaction (a) and rate
of heat evolution (¢) as a function
of £ during a self-heating combus-

g tion reaction (schematic).
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duction at the reaction front, and 3) the heat loss into the sample (powder compact)
and to the surroundings (by radiation and conduction). This is a complex engineer-
ing task. In essence, solid state reaction kinetics concern the heterogeneous reaction
rate a, which causes the heat production. The heat balance gives

AH(T)

T=xV?T+y-
cp(T)

(6.46)

where x is the heat transfer parameter, y is a geometrical parameter that includes
grain size, grain shape, and the powder compact packing density. The first term on
the right hand side of Eqn. (6.46) describes the divergence of the heat flux. The sec-
ond term accounts for the heat production by chemical reaction. The main difficulty
lies in the appropriate description and modeling of this second term. Obviously,
a(&,¢) itself is a function of the form and size of the reactant grains. For example,
we may assume the particles A to be spherical (r, > rg) and analyze the rate @ using
the Carter equation (6.44). However, we have also to consider the (approximately)
exponential temperature dependence of the parabolic rate constant & (or of the diffu-
sion coefficient in the reaction product layer). Explicit expressions have been derived
under simplifying assumptions, see, for example, [Z. Munir, U. Anselmi-Tamburini
(1989)1.

Figure 6-13. Surface of a combusted Ni-Si rod
T I A o S ) which shows a spiraling combustion mode
N S A AN T R [courtesy of Z.Munir, Davis {Cal.)).
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We will not pursue this theme further since combustion reactions give little insight
into the basic kinetics of solid state reactions. These types of reaction do, however,
offer interesting possibilities for new ways of synthesizing materials. In view of the
set of coupled differential equations, one may expect periodic, pulsating, or even
spiraling combustion modes to occur. The evidence for spin combustion can be seen
in Figure 6-13 where the view is on the surface of a (Ni, Si) sample after reacting
Ni+Si in compacted powder.

6.6 Interface Rate Control

Chapter 10 is devoted to the kinetics of interfaces. Nevertheless it may be appropriate
in the context of heterogeneous reactions to outline the influence of the phase
boundaries on the kinetics of heterogeneous reactions. This will be done in this
section, whereas the detailed discussion of the interface kinetics proper is postponed
until Chapter 10.

In Section 6.3.1, we derived the parabolic rate law of product growth with the
assumption of local equilibrium throughout, including the phase boundaries. If a
part of the Gibbs energy change in a solid state reaction is dissipated at the phase
boundaries, the reaction kinetics is partly interface controlled. Growth rates of
products then deviate from the parabolic rate law. Let us reformulate the kinetic
equations for a multiphase, non-equilibrium system with linear geometry and planar
interfaces as depicted in Figure 6-14. From the conservation of each species k, we
have at the a —1/¢a interface
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Figure 6-14, Course of component & chemical potential during a heterogeneous multiphase reaction
which is partly interface controlled.
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. Aj
Eai/g= <J> (6.47)
ACy) o— 1/

¢ designates the boundary velocity, A indicates the change across the boundary.
Adding &,_,,, and the corresponding &,,, ., we obtain the increase in thickness of
the a layer

(a

) o) s(a—1)  la+l) _ o(a)
Ack(a/!/a) Ack(a/aH)

with v = a—1, a, and o + 1. Equation (6.48) is equivalent to Eqn. (6.42). In order to
be more explicit, let us introduce the fluxes in the form j{ = — /%) (Aul/AEM),
However, in contrast to Eqn. (6.42), where local equilibrium was assumed to prevail
at the boundaries, Au{’ is now different from the value Au%") which could be
calculated from the thermodynamics of the quasi-binary equilibrium system. The
potential change Au 5(”’ can be obtained only if we know the potential change across
the phase boundaries during reaction. To this end, let us formulate phenomeno-
logical relations which, for example, state that the potential drop duj across the
phase boundary (b) is proportional to the flux j? crossing this boundary. Other
assumptions are also possible (e.g., du S(b) is proportional to the boundary velocity
£%). Those assumptions are first order approximations and indicate that the inter-
face conductance is independent of the flux density. Explicitly, we can read from
Figure 6-14 that

. Au?
0 = —12"’;% (6.49)
with
Al = M@ —Bu (- 10y + S8 s ) (6.50)
and
Jkta-1/a) = 2kia-1vay Sulia ey + 8UEL 1w (6.51)

where A, are the interface conductances. Equations (6.48), (6.49) and (6.51) con-
stitute a set of coupled (differential) equations which have to be integrated simulta-
neously for all phases and phase boundaries in order to calculate A& (r). This
must be done numerically. We will not pursue this problem further, but point out
that 8u!® (max) = Au2®), which follows from the above equations. Therefore, the
maximum driving force across interface a —1/a is (Au2“~V + Au{®@), and if it is
attained, the reaction is fully interface controlled and a linear rate law holds in accor-
dance with Eqn. (6.51).

Some experimental verifications of linear growth in time can be found. In Chapter
10, we will discuss the formation of ZnAl,O, from binary oxides according to a
linear rate law. The same rate law has been found for the initial growth of CoAl,O,,
and here it was observed that the rate depended on the orientation of the single
crystalline Al,O; substrate. A similar observation has been reported [D. Hesse, ef al.
(1993)] for the growth of Ni,Si on a Si substrate. Ni,Si grew on the same substrate
with two different orientations and growth rates. It was suggested that the rate deter-
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mining process is the thermally activated nucleation of ledges in the boundary and
that the nucleation barrier differs for different orientations of the nuclei.

6.7 Thermal Decomposition of Solids

Thermal decomposition reactions constitute an extended class of solid state reac-
tions. The dehydration of Mg(OH), according to Mg(OH), = MgO+ H,0 is an ex-
ample of such a reaction. Other examples include the decomposition of carbonates,
azides, and perchlorates. In general terms, we have A(s) = B(s)+ X (g), which seems
to be the inverse of a tarnishing reaction. However, the mechanism of tarnishing
reactions is the atomic transport across a product layer driven by the chemical poten-
tial gradient, whereas the decomposition of A(s) is a surface reaction. Normally, the
product B(s) is porous and X (g) escapes through the pores into the surrounding gas
phase. Sometimes, the B atoms on the surface of the reactant A are mobile enough
to form a dense layer. In this case, the decomposition can continue only if X is solu-
ble and can diffuse across the B layer.

Decomposition reactions are solid-gas reactions which do not involve diffusional
transport through the solid. Their reaction rates are determined by surface kinetics
and possibly pore diffusion. The assumption of local equilibrium is not valid. The
course of an isothermal decomposition is schematically illustrated in Figure 15-15.
There is often an induction period followed by a rapid increase in relative yield until,
after the inflection point, the reaction eventually ceases (the yield will not always be
100%). Since atomic transport in crystals is normally not involved in these decom-
position reactions, we shall restrict ourselves to a few comments only.

There is no generally accepted theory for these reactions. Empirically, one learns
that B is often formed extremely fine-grained with an energy which is higher than
the standard value, once again indicating the deviations from local equilibrium and
the preponderance of surface effects. Morphological instability (see Chapter 11) is
the rule rather than the exception, and the key question therefore concerns the mor-
phological evolution of the A/B interface. This morphological evolution of a phase
boundary under local equilibrium conditions will be treated extensively in Chapter
11, but this treatment is hardly applicable to decomposition reactions. Rather, the
formation and multiplication of non-equilibrium defects such as dislocations and
microcracks (see Chapter 14) under the action of reaction volume changes and
coherency stresses play a decisive role. These defects can move from the surface into
the interior of the decomposing crystal A and are the potential centers of further
decomposition. The corresponding kinetic models make assumptions on nucleation
rates and growth rates which are quite analogous to the Johnson-Mehl-Avrami model
discussed in Section 6.2.3. Preferred directions of dislocation and crack propagation
result in pronounced anisotropies of decomposition.

A major drawback in decomposition studies is the lack of in-situ observations on
an atomic or submicroscopic scale. The available body of data concerns the relative
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advancement of the reaction as a function of time. Attempts have been made to
explain the initial incubation period (see Fig. 15-15). A common hypothesis is that
the growth rate of the B nuclei depends on their size: the larger the grown particles,
the larger is the rate of the boundary reaction. This assumption is in line with the
increasing distortions in the matrix crystal caused by the growing B nuclei. The
autocatalytic part of the decomposition curve can be understood as long as the
decomposing regions do not overlap and the sample is sufficiently large. The growth
of B occurs in the form of branches with a constant splitting rate. The origin of this
branching model is of course the above mentioned formation and multiplication of
dislocations, cracks, etc. and resulting in a tree-like product.

It is a characteristic feature of reactions which occur out of local equilibrium that
their course be markedly affected by the preparation and handling of the sample as
well as by the surrounding gas atmosphere. For example, the morphology of MgO
produced by the decomposition of magnesite definitely depends on the deviation of
the CO, partial pressure from its equilibrium value. The greater this deviation, the
finer-grained is the reaction product, probably due to an increased rate of nucleation.
However, the complexity of these solid state decomposition processes becomes
apparent if we also consider the simultaneous recrystallization and sintering of the
extremely fine-grained reaction product.

Finally, we observe that the eventual decrease in the decomposition rate is related
to the exhaustion of the reactant. An inhibition of the decomposition process which
is sometimes found before the yield has reached 100% may be ascribed to strain and
surface energy which is stored in the reactant and the product. If the increase in these
energies as a function of the advancement of the reaction surpasses the available
driving force (e.g., the X (g) pressure deviation from the equilibrium pressure), the
reaction comes to a stop. A pertinent discussion of decomposition reactions is given
in [F.C. Tompkins (1976)].
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7 Oxidation of Metals

7.1 Introduction

The subject of this chapter is the reaction Me(s)+v-X = MeX, (s), where the oxi-
dant X (e.g., halogen, chalcogen) can occur in solid, liquid, or gaseous form. The
pertinent point is the reactive growth of a solid product on the metal surface and
the reactants Me and X are separated by this product. This was already discussed in
Chapter 6 under classical heterogeneous solid state reactions. Transport of the com-
ponents across the growing product and across its boundaries is necessary for reac-
tive growth. Point defect thermodynamics and point defect mobilities determine the
transport properties of the oxidation product. The transport equations are identical
to those used for the quantitative treatment of heterogeneous reactions in the previ-
ous chapter. Boundary conditions at the reaction product-fluid interface are in a
sense less complex than at solid-solid interfaces. For example, normal stresses vanish
at a solid-gas interface. Details will be presented in Section 7.3. The simpler bound-
ary conditions render the experimental determination of reaction kinetics more ac-
curate. In metal oxidation, a greater number of distinct rate laws have been recogniz-
ed than in other heterogeneous reactions, and an atomic interpretation of the reac-
tion kinetics is correspondingly easier. Nevertheless, difficulties which occur when
different crystals (with coherent, semicoherent, or incoherent boundaries) take part
in the chemical reactions impede the atomic interpretation. This is particularly true
for alloy oxidation.

An appreciable number of special monographs on metal oxidation are available.
These presentations normally start with Wagner’s theory of scale formation [C.
Wagner (1933), (1951)], which represented the first consistent and quantitative treat-
ment of a solid state reaction model. As Figure 7-1 shows, metal oxidation has quite
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Figure 7-1. Possible oxidation mechanisms related to oxide film thicknesses, overview.
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a number of different reaction modes depending on the thickness of the oxide film.
If the oxide layer is sufficiently thin, the influence of electrical space and surface
charge in the product can no longer be neglected, as was done in Wagner’s oxidation
model. Less is known about the transport across the Me/MeO and MeO/O,(g) in-
terfaces, and about the atomic reaction steps involved.

The technical importance of metal oxidation is paramount. Corrosion, and in par-
ticular high temperature corrosion of metals, alloys, intermetallics, ceramics, etc.,
often limits the use of these materials in technology. This is obvious for their applica-
tion in jet turbines, gas turbines, heat vessels, in many plants of the chemical and
particularly the petrochemical industry, for example. Fundamental investigations in
the field of metal oxidation are thus of direct relevance to materials science. Most
construction materials, especially metals and alloys, are thermodynamically unstable
in ambient atmosphere at high temperatures. Their protection with respect to high
temperature corrosion relies mainly on the formation of a dense, adherent, and ex-
tremely slow growing thin oxide film, such as that on stainless steel. Passivation of
metals in aqueous media is the formation of thin oxide films at a certain (anodic)
electrode potential (Flade potential). The oxide layer appreciably diminishes the cor-
rosion current density (passivation); for details see [K. J. Vetter (1967)]. We will not
discuss metal film formation in aqueous electrolytes here. Although some elemen-
tary reaction steps are analogous in oxidizing gases and in aqueous media, elec-
trochemistry is mainly concerned with the electron transfer across solid-liquid inter-
faces (electrode reactions), a theme which we will take up in Chapter 10. We should
emphasize that this chapter is not meant to give a complete account on the numerous
aspects of metal oxidation. Rather, important points will be stressed and unsettled
problems are commented upon critically.

7.2 Wagner’s Theory of Metal Oxidation

Although somewhat different in terminology, the basic conceptual frame outlined in
previous chapters to describe diffusive transport in crystals, and particularly in
semiconducting and ionic crystals, is essentially the same as that used by Wagner in
his theory of metal oxidation [C. Wagner (1933), (1951)]. It is based on (linear) trans-
port theory (irreversible thermodynamics) and assumes that (local) functions of state
exist even if the system is exposed to thermodynamic potential gradients and is not
in thermodynamic equilibrium. The Wagner theory was first published more than
fifty years ago. In the meantime, physical chemists have become familiar with such
concepts as local equilibrium, partial equilibrium, metastable equilibrium, etc.,
although there are still authors questioning the validity and appropriateness of these
concepts in the given context [A.T. Fromhold (1976)].

Before the theory of metal oxidation had been formulated, a large number of ex-
periments showed that, at sufficiently high temperatures, metals and alloys react with
oxidizing gases and liquids by forming more or less adherent (protective) product lay-
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ers on their surfaces. Reaction rates often conform to the parabolic rate law, which
requires adherency and compactness of the surface oxide layer, a condition that is
not always met in real systems. We have seen in previous chapters that the parabolic
rate law follows if transport occurs in one dimensional systems and the component
chemical potentials are fixed at the two boundaries of the reaction layer. In this case,
the local driving forces become inversely proportional to the product layer thickness.
Since the reactants A and X,(g) are neutral and the reacting system is (electrically)
isolated (no electrodes, no external circuit), no net electric current can flow through
the product during reaction, even if the various transported species do carry electric
charges. This condition automatically leads to the coupling of ionic and electronic
fluxes in the product layer. We have already used similar coupling conditions of
fluxes before. They allow us to eliminate the electrical diffusion potential from the
flux equations. An electrical diffusion potential is built up if charge carriers move
in inhomogeneous systems, and their mobilities differ from each other. It is not
necessary to repeat all the formal derivations here, since they are fully analogous to
the derivations given in Section 6.3, where the parabolic rate constant was calculated
as a function of the driving forces (AG) and the product’s transport parameters
(D). Let us note, however, that it is the product of transport parameters like Dy - Dy
or g0, (subscript el indicating electronic carriers) which determines the flux of
matter across the product layer and thus the reaction rate. This means that the slower
partner is rate determining. Figure 7-2a shows the atomic processes that take place
during metal oxidation, and Figure 7-2b gives the equivalent electric circuit which
explains the rate law in a straightforward way [W. Jost (1937)]. In the i em? surface
area product layer, the electric potential drop U stems from two ohmic contributions,
electronic and ionic

A A
_é + /- _é
Oe) Oion

U=1I- 7.1)
The rate of increase in sample thickness (A&) in terms of the current density 7 is

Aé = Vi (7.2)
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Figure 7-2. a) Atomic processes during the oxidation reaction Me+‘702 = MeOQ, thick film regime
and b) its equivalent electrical circuit [W. Jost (1937)].
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If we express the driving force by the Gibbs energy of formation, that is,
U= AGup/2+F, Eqns. (7.1) and (7.2) yield

Vit AG 1 AG 1
PP = (Dat Do)t =2 (73)

Aé=0a 1t (ta+10)
£ alfa+1o) Y. RT A

with ¢ denoting the transference number. Integration of Eqn. (7.3) results in a
parabolic rate law. The transport coefficients in the corresponding rate constant k
are averages taken over the oxide layer

k=(Dpy+Do) ty-

0
A 1 ha
Gro_ L. (Dy+Do)ta-dua (7.4)

RT RT #, (surface)

Some limiting cases are noteworthy. 1) The most frequent case is the oxidation of
metals leading to semiconducting oxides with dense anion packing, that is, £, =1
and Dg = 0. This gives

s AGpo

k=D (1.5)
A RT

AG,p is the Gibbs energy of formation of AO from metal A and oxygen gas at am-
bient atmosphere with partial pressure Po, (AGxo = AGOAO+(R 7/2)-In (poz/pooz)).
2) If products with predominantly ionic conduction are formed, the tarnishing layer
is very thin in view of 7, < 1. From Eqn. (7.3), one has with £, =1

0a Vi AGao _ 5 5 AGao

k= Dy N,
4-F? U 4RT

(1.6)

There are no conceptual difficulties if the oxidizing system conforms to the condi-
tions stated earlier. The only detail which needs to be discussed and clarified is the
averaging procedure which has been performed in order to arrive at Eqns. (7.5) or
(7.6). By definition

1
D;=——- | Di(u)duy (1.7)
A:uk Apy

We have to evaluate the diffusion coefficient or any other transport coefficient with
the help of point defect thermodynamics. This can easily be done for reaction prod-
ucts in which one type of point defect disorder predominates. Since we have shown
in Chapter 2 that the concentration of ideally diluted point defects depends on the
chemical potential of component & as d In cyepee, = 1+ dity, We obtain quite generally

_/‘k_ﬂ2

D;=D%¢" "rRT (7.8)

where » is a number which characterizes the disorder type and / refers to the rate
determining ion. Equation (7.8) is in agreement with Section 2.3. Integration of
Eqn. (7.7) with D; according to Eqn. (7.8) and A, =uk—u2 yields
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< D° (B
D,:—'-<e” <Rr>—1 : (7.9)
e [ Bl
RT
Let us apply this result to two cases of metal oxidation. 1) If we oxidize Cu metal,
then semiconducting Cu,O will form at sufficiently low oxygen potentials. The

point defect formation reaction including the copper ion vacancies responsible for
the copper transport in semiconducting Cu,O reads

$0,+4Cug, =2V, +2h"+Cu,O (7.10)
Equation (7.10) implies that at equilibrium (since Ny. = N,-) we have
duy, = (1/8)-duo, 7.11)

Therefore, the number which characterizes the disorder type, #, is 1/8. If we now
(B

insert Eqn. (7.9) into Eqn. (7.5) and note that ¢ \R7/ = (poz/pgz)’“» 1, where pg,

characterizes the low oxygen potential at the Cu/Cu,O interface, we obtain for the

parabolic rate constant

1/8

p

k54‘DCu=4-Dé‘u-<—oj> (7.12)
Po,

D¢, is the diffusion coefficient of copper in Cu,O at the Cu,0/0,(g) interface. We
can generalize by stating that the rate constant, &, depends definitely on the oxidizing
gas pressure when the oxide layer is a p-type semiconductor. 2) The oxidation of Zn

metal to ZnO is different. In the #-type semiconducting regime, the point defect for-
mation reaction including interstitial zinc can be written as follows

1
EOZ+Zn{+e’=ZnO (7.13)
ey . 1 .
From Eqn. (7.13) and the equilibrium condition for 502+Zn = ZnQO, we obtain

duzn = —%'dﬂo2 (7.14)

Insertion of Eqns. (7.14) and (7.9) into Eqn. (7.5) yields, in contrast to Eqn. (7.12),

k=4-D (7.15)

We conclude that the (practical) rate constant £ for #-type tarnishing layers is essen-
tially independent of the applied oxygen pressure in the ambient atmosphere.

From Eqn. (7.7), we further conclude that the explicit calculation of the reaction
rate constant £ is much more difficult if the disorder type changes within the range
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of the component chemical potential in the product oxide (for example from as- to
p-type). Diffusion coefficients of the form

”'(,Uk_»“g)
D,= Y D" &T (7.16)
J

then have to be used instead of Eqn. (7.8). This leads to the following average diffu-
sion coefficient for the oxide product layer

_ RT 0 [/, We=rD
D,-:—-Z&(e"/ RT —1 (7.17)
Awe j n

Equation (7.17) reflects the fact that different point defects (e.g., vacancies and in-
terstitials) may simultaneously contribute to the motion of ions of sort i. An example
of a change of disorder type in the reaction product layer is found during the oxida-
tion of FeO to Fe;0, (magnetite). The disorder in the semiconducting Fe;O, layer,
growing on FeO, changes from interstitial cations to cation vacancies. In conse-
quence, the rate determining diffusion coefficient of Fe exhibits a minimum as a
function of the oxygen potential in the Fe;0, layer. In view of Eqn. (7.4), this leads
to a rate constant & which does not change over an appreciable oxygen potential
range in the oxidizing gas. This unexpected behavior is due to the decreasing trans-
port coefficient while the driving force AG increases. Figure 7-3 shows the result of
an experiment illustrating self-inhibition where the rate does not increase upon in-
creasing the driving force.

_, Fe0" Fe,0, (Fe,0,)
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Figure 7-3. Calculated parabolic rate
. constant & for the oxidation of wiistite
-10}- 4 1200 °C (“FeO”) to magnetite (Fe;O,4) as a func-
7/ tion of the oxygen activity of the sur-
L £l L L rounding gas. Proportions due to in-
-1z -10 -8 -6 "4 ferstitial and vacancy transport are in-
— log ag, dicated.

Wagner’s theory of metal oxidation is phenomenological. Many questions con-
cerning atomic aspects of the oxidation process cannot be answered within the frame
of this phenomenological theory. Since atomic aspects are important when we
analyze the boundary conditions, this will be exemplified by two pertinent problems.
Firstly, let us ask about the coherence of the metal/oxide interface during the oxida-
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tion process. Thin films often grow epitaxially. This means that the near-interface
region is strained. Eventually, misfit dislocations form in both the metal and the ox-
ide and will be found at and near the interface. The flux of metal ions away from
the coherent A/AO interface towards the surface means an injection of vacancies into
the metal A [H. Fischbach (1980)]. If the mobility in the boundary itself is sufficient-
ly high, these vacancies could be accommodated at interface ledges, kinks, etc. If
not, they diffuse into the metal where they become supersaturated and annihilate at
dislocations, thus, for example, including dislocation climb. Since the dislocation
lines interact elastically while they are climbing, a structured dislocation network
forms. Both its motion and the boundary motion have to match. A detailed analysis
of this complex process is available in the literature [B. Pieraggi, R. A. Rapp (1988)].
If the mobility of SE’s in the metal/oxide interface is not high enough and if, in addi-
tion, the sink strength of the dislocation network for supersaturated vacancies is not
sufficient, then pores will form in the near-interface region. Pore formation, however,
means that local equilibrium is appreciably disturbed at the boundary. This is at
variance with the assumptions of the Wagner theory.

Secondly, let us consider dislocations in the oxide layer, formed at the moving
phase boundary during oxidation, as fast diffusion paths (pipes) for the oxide com-
ponents, and in particular for atomic or molecular oxygen stemming from the oxidiz-
ing atmosphere. If these dislocations are connected to the external surface, and thus
to the high oxygen potential, they can also act as internal surfaces with a relatively
high oxygen activity. Outward diffusing metal cations (and compensating electronic
defects) will then form new oxide molecules along these dislocations. This internal
oxide formation does not mean that the dislocation pipes will be blocked. It does,
however, mean that a lateral pressure builds up. Creep or even cracking could be the
result of this internal reaction, which is also not accounted for by the Wagner theory
[A. Atkinson (1985)].

7.3 Non-Parabolic Rate Laws

Distinct reaction rate laws have been empirically found in metals oxidation research.
In thick-film oxidation, deviations from parabolic growth (given one-dimensional
reaction geometries) are due to insufficient adherency, crack and pore formation in
the oxide layer, spalling, etc. Yet non-parabolic rate laws of various kinds are mainly
discussed in connection with the formation of thin and ultra-thin oxide films
(Fig. 7-1). Although various explanations have been offered, their experimental
verification is difficult. Not very much is known about the atomic structure of thin
oxide films from experiments under in-situ conditions [R. A. Rapp (1984)]. Thin film
oxidation is characterized by high electrical field strengths in the product, perpen-
dicular to the film surface. Since the formation Gibbs energies are on the order of
1 6V, the electrical field can easily be as high as 10° V/em if the film thickness is on
the order of 10~%cm.
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Metal oxidation is a heterogeneous solid state reaction and starts in the same way
as other heterogeneous reactions with nucleation and initial growth. This was dis-
cussed in Chapter 6. A time-dependent nucleation rate may dominate the overall
growth kinetics of thin films. Even under an optical microscope (i.e., in macroscopic
dimensions), preferential sites of growth can still be discerned [J. Bénard (1971)].
This indicates that lateral transport on the surface (e.g., at sites where screw disloca-
tions emerge) can possibly be more important for the initial reactive growth than
transport across thin oxide layers.

To be more specific, let us begin with the linear rate law (A& ~ ¢). One immediate
explanation for a linear rate law is the rate determining phase boundary reaction.
Parabolic growth would mean that the growth rate is Aé = o for A& — 0. If the in-
corporation of SE’s from the boundary into the lattice of the growing oxide (at
A/AO or AO/O,(g)) is a thermally activated process, the phonon frequency sets an
upper limit to this incorporation. Other mechanisms such as ledge or kink nuclea-
tion may also limit the incorporation rate at the boundaries. As long as the bound-
aries of the oxide do not change with time during growth, the rate of interface cross-
ing and incorporation of the SE’s will not depend on the layer thickness. If the Gibbs
energy of reaction is then dissipated primarily at the boundaries and not in the bulk
of the oxide film through component diffusion, a linear rate law will result. Atomic
models for solid/solid interface reactions will be presented in Chapter 10. Consider-
ing the necessary structural accommodations (e.g., dislocation formation and mo-
tion, see Fig. 3-5) which must take place at a moving boundary between heteroge-
neous solids, one may ask if the structure of an advancing interface can ever be time-
independent. Regarding the topochemical and structural implications that have to go
along with heterogeneous reactions in the solid state, it is amazing that distinct rate
laws are nevertheless found in many cases.

In electrode kinetics, interface reactions have been extensively modeled by electro-
chemists [K.J. Vetter (1967)]. Adsorption, chemisorption, dissociation, electron
transfer, and tunneling may all be rate determining steps. At crystal/crystal inter-
faces, one expects the kinetic parameters of these steps to depend on the energy levels
of the electrons (Fig. 7-4) and the particular conformation of the interface, and thus
on the crystal’s relative orientation. It follows then that a polycrystalline, that is, a
(structurally) inhomogeneous thin film, cannot be characterized by a single rate law.

Meta! (Me)|Oxide (MeD)] 0-Gas
| 6
Dy
l 7(‘% gt
X € | |Xo
TR - SRR
g8 \ t Figure 7-4. Schematic electron energy level
diagram in the system metal-oxide-oxygen gas.
’— €9 C = conduction band, V = valence band,
G = gap, ¢ = work function, ¢ = Fermi energy.
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An in-situ characterization of the interface structure of the growing oxide film
appears to be necessary for an appropriate modeling, but this is most difficult to
achieve [B. Pieraggi, R.A. Rapp (1988)].

Let us distinguish between essential elements of the oxidation kinetics as repre-
sented by the differential equations for transport and reaction, and the conditions
which the boundaries of the reacting system dictate (these are, for example, implicit
in Fig. 7-1). The driving forces discussed so far have been the electrical and chemical
potential gradients, both of which are strongly influenced by the boundary geometry.
Therefore, one must not overemphasize the various empirical thin film rate laws.
They often reflect the boundary conditions and not the basic physics of the oxidation
process (ie., driving forces and transport types). One also notes that in thin film
kinetic work, the phenomenological approach predominates, whereas in thick film
oxidation, which is based on the assumption of local equilibrium, the understanding
of atomic details (point defect models) is stressed. This can be seen by comparing
some relevant monographs [A.T. Fromhold (1976), (1980); P. Kofstad (1966),
(1988)].

A few remarks on the phenomenological approach should be made. It is always
possible to solve the phenomenological transport equations either analytically or
numerically (provided the correct boundary conditions are known) and compare
these solutions with sufficiently accurate experimental observations. This has been
done extensively, for example, in [A. T. Fromhold (1976), (1980)]. Yet one of the fun-
damental conceptual questions has received less discussion than it deserves. Can
chemical potential gradients (or concentration gradients) still be used as driving
forces in ultra-thin film oxidation theory? Likewise, is it justified to introduce the
phenomenologically defined atomic mobility? After all, a thin film grown on a metal
surface is normally (structurally) inhomogeneous due to heterogeneous nucleation
and coherency stress phenomena. Thermodynamic forces are conceptually based on
particle ensembles. If the film thickness, A¢, is too small, the gradient (du;/d¢) in
the direction perpendicular to the surface looses its meaning, whereas the field force
(dp/d&) may still be defined.

In a simplified phenomenological treatment of thin film oxidation, one solves the
usual transport equations by taking into account the space charges by means of the
Poisson equation (Ag = —o/(e-¢&y), where ¢ = net electric charge density). If the
temperature is low enough and the oxide layer thin enough, electron tunneling (in-
stead of ion transport) may be rate determining, as has been proposed by Mott [N. F.
Mott (1940)]. By this tunneling, chemisorbed oxygen ions are formed at the oxide/
gas surface. They subsequently react with metal ions which are dragged by the elec-
tric field across the layer to the surface. The tunneling probability and thus the elec-
tron flux is of the form

Jo~ e HAs (7.18)

where § is a reciprocal length (approximately (1/4)- (8 me)(M)”zg XM = metal/oxide
work function, see Fig.7-d4; m, = effective electron mass). This reasoning leads,
after integration of Eqn. (7.18), to a logarithmic rate law in accordance with experi-
mental observations. The existence of a temperature regime in which electron tunnel-
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ing is rate determining and slower than the transfer of ions across the film is, how-
ever, just an assumption.

Another proposal of similar quality has been put forward by Mott and Cabrera
[N. Cabrera, N.F. Mott (1949)]. This time (and in contrast to the above assumption)
either electron tunneling or thermal electron emission from the metal into the oxide
conduction band is assumed to be so fast that the equilibrium concentration of oxy-
gen ions at the film surface (e'+4 X, = X7) establishes a (constant) electric poten-
tial jump AU? across the film. Therefore, one has a time-dependent local electric
field Vo = AU®/AE(¢) which drags the cations across the film. If the work which a
moving particle extracts from the field between two adjacent potential minima
(= eyra-Vo; a = distance between minima) is not small compared with the hopping
activation energy, then the flux equation can no longer be linearized (in the force
ey Vo). With nonlinear transport equations, the growth rate is found to be

N
A = constsinh | — %AV "4 (7.19)
KT A&

where Aé/a is the number of activated jumps in the thin film, eo- AU%/(AE/a) is
thus the potential drop per jump, and AU?, as outlined in Figure 7-4, is the dif-
ference between the metal Fermi energy level and the X 4 level. From Eqn. (7.19),
logarithmic as well as parabolic growth rates can be obtained as limiting cases.

If the thickness, A¢Z, of an oxide layer is on the order of the Debye-Hiickel length
((1/2)-a-eO-kT-z,-'e%)l/z, the electric field strength is influenced by the space charge
and is no longer constant inside the film. Let us, for the sake of illustration, assume
that local equilibrium for the electronic defects is established at the Me/MeX inter-
face of an MeX film during film growth. In other words, a constant concentration
of electrons cg (¢ = 0) is maintained at this interface during the oxidation process.
Let us further assume that the electronic carriers are non-degenerate and in local
equilibrium inside the film (0 < &< A¢&). We then have, according to the Boltzmann
distribution,

F-9(@)
N(é)=NQ-e RT (7.20)

With this electric potential ¢ (&), we can integrate the Poisson equation (Ag =
— 04/ (€ €p); 0 = net charge density) to eventually obtain the concentration of elec-
trons at the film surface (A&). It further follows that N,(A¢) varies with the film
layer thickness as A& ~2. If we now assume that the (catalyzed) rate of dissociation
of the adsorbed X, molecules is proportional to the surface concentration of elec-
trons, and that this dissociation process is rate determining, a cubic rate law for the
film growth can be expected (A& ~ AE ™% A& ~ 1), In fact, during the oxidation
of Ni at temperatures between 250 and 400°C, an approximately cubic rate law has
been experimentally observed. We emphasize, however, that the observed cubic
oxidation rate does not prove the validity of the proposed reaction mechanism. Dif-
ferent models and assumptions concerning the atomic reaction mechanism may lead
to the same or similar dependences of the growth rate on thickness.
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7.4 Alloy Oxidation

Alloy oxidation is of utmost importance in technology. Whereas oxidation of
metallic elements as discussed in Section 7.2 is a uniquely defined process, if local
thermodynamic equilibrium prevails, this is no longer true for the oxidation of (even
binary) alloys. One reason for ambiguity is the fact that boundaries between the alloy
and the (A-B-...0) product layer are thermodynamically variant, in contrast to
A/AO boundaries, which are invariant according to the Gibbs phase rule. As Figure
7-3 shows, this invariance is the reason for the morphological stability during growth
of AO layers on A-metal surfaces. Oxidation of higher than binary alloys has many
special aspects which we cannot treat in any detail. We will therefore discuss only
some basic aspects of (A, B) alloy oxidation. This means that we will confine our-
selves to the ternary A—B—O system. The mode of oxidation depends on the alloy
composition N, and on the number and type of compounds and solid solutions
which exist in the ternary A— B — O system. Basic parameters of the oxidation process
are the Gibbs energies (chemical potentials) and the mobilities of the alloy compo-
nents in all the phases of the product layer. The general (A, B) oxidation problem can
not be solved in a straightforward way, either because of morphological instabilities
or because of mathematical complexity. Therefore, it is advisable to consider limiting
cases characterized by the predominance of certain kinetic and/or thermodynamic
parameters.

AO
B Var o e N
Par e Figure 7-5. Explanation of morphological stability of the in-
variant boundaries (interfaces) of AO during the oxidation
process. fi'>ji, i=A",¢e.

Let us illustrate two limiting cases with the help of phase diagrams of the second
kind (intensive/extensive) as shown in Figures 7-6 and 7-7. In Figure 7-6 we deal with
alloy (A, B) and nearly stoichiometric compound products. In Figure 7-7 we assume
that only complete oxide solid solution series occur. The oxidation process starts by
exposing the surface of the alloy to oxygen with a chemical potential yq (o), as in-
dicated. If we now trace the composition variable (NV,) through the reaction layer(s)
and plot it in a phase diagram of the second kind, we obtain the ‘reaction path’.
Theoretically, it follows from the transport equations and (neglecting morphological
aspects) depends only on the (local) thermodynamic functions and the component
mobilities. Further conditions are the mass balances of A and B. They ensure that
the reaction path is not located only on one side of the initial alloy composition.
Also dug/dr (r =reaction path coordinate) is never negative. Some interesting
features can immediately be read from these schematic reaction paths. For example,
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Ho | o o e
AQ «+ A, BOs rAB;Og ﬂf °
A,B0, ) 1/_\_8'2_(_)_3__ +BO
BO
AU.O
| _
BJ
- — L ugo
a)
NB

\(A,B) AB,0, | A,BO; | 0,lg)

Ny L& Figure 7-6. a) Schematic A-B-O
— R phase diagram of the second kind
1 ~ (1o /Npg) and possible oxidation
_____ reaction paths involving (A, B) alloy
(A.B) | A,BO;| [A.B) | AB,0, Oz(g)—‘ and oxide compounds. b) Cor-
b) responding reaction paths (Ny(¢))
—= in real space at time ¢.

a quasi-stationary sequence of layers such as (A, B)' | A,BO;| (A, B)’|AB,0;|0,(g)
(or (A, B)|(A,B),0;]|(A, B);0,) is possible. Those sequences and similar ones do
not look very plausible at first sight, but they are perfectly consistent with the ther-
modynamic and kinetic premises.

A calculation of a reaction path is available for the simplest case. (A, B) and
(A, B)O are the only phases to be considered and both solid solutions are complete
(0=N,=<1)[C. Wagner (1969); D. P. Whittle, et al. (1975)]. However, since the theo-
retical problem (i.e., steady-state transport in an oxygen potential gradient acting on
(A,B)O, with moving boundaries) resembles the demixing problem in a chemical
potential gradient, and this will be discussed extensively in the next chapter, we post-
pone the quantitative treatment of the reaction paths given in Figure 7-7.

7.4.1 The Morphological Stability of Boundaries
During Metal Oxidation

Although Chapter 11 is especially devoted to the morphological stability of solid-
solid interfaces during reaction, it is necessary in the context of alloy oxidation to
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Ng
== ,/”/ ;.»<\'"* Figure 7-7. a) Schematic A-B-O
- I R ~--e phase diagram of the second kind
- e (4o /Np) and possible oxidation reac-
tion paths involving (A, B) alloy and
b) F(A'B) (A.BJO |(A,B);05]1A.BIO, OzlgT‘ oxide solid solutions. b) Reaction

—_— path (Ng(&)) in real space at time /.

briefly discuss this question. How do the boundaries of a ternary oxide layer behave
morphologically in an oxygen potential gradient during alloy oxidation? Let us first
note that the slope of the phase boundaries in chemical potential equilibrium
diagrams, that is, (Ouo/Oupp)eqs reflect generalized Clausius-Clapeyron equations
[H. Schmalzried, A. Pelton (1973)]. We have seen from Figures 7-2a and 7-5 that if
one oxidizes elemental metal A and maintains local equilibrium, the interfaces are
morphologically stable. Any geometrical disturbance of the interface form is self-
stabilizing or self-healing. This has been concluded from analyzing the driving forces
(potential gradients) in Figure 7-5. The situation can be markedly different during
alloy oxidation. Figure 7-8 shows some possible oxidation reaction paths (schematic)
in ternary A-B-O systems. They are plotted in phase diagrams of the third kind (in-
tensive vs. intensive variable). The particular diagram in Figure 7-8 (ug vs. up at
given P and T) corresponds to the diagrams of the second kind in Figures 7-6 and
7-7.

A reaction path can proceed in two principally different directions after it has
crossed a phase boundary: 1) (Quo /8go )parh > (Bto /OUpo Jeq a0d 2) (B /Buupo dparn
< (Bug /Bupo)eq - In the second case, the reaction path will re-enter the field of the
reduced phase which it just left and can then oscillate along the phase boundary line
in Figure 7-8 for some length. A morphologically stable interface between the oxidiz-
ed and the reduced phase can not develop in this case, and a part of the oxide layer
is expected to consist of a mixture of two phases.
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a)

Figure 7-8. a) A-B-O phase diagram of
the third kind (#o/up) and a possible
oxidation reaction path involving (A, B)
alloy and oxide compounds. b) A-B-O
phase diagram of the third kind (uq/ug)
and possible oxidation reaction paths in-
volving (A, B) alloy and oxide solid solu-
tions.

b)

Let us try to quantify these ideas by formulating the flux equations for the (semi-
conducting) oxide (A, B)O,, namely (see Eqn. (6.25))

Ja= —¢aba(Vupo, —n- Vo) 5 jp= —cp by (Vupo, —n-Vio)  (7.21)

where we have assumed that the anions are immobile. At the phase boundaries (inter-
faces), the fluxes of A and B are coupled by the interface velocity

o _ B o _ il
vb:/A Ja _JBTJB (1.22)
cd—ch  c8—ch

We can replace Vugo by Viao with the help of the Gibbs-Duhem equation.
At the a/f boundary (mtelface) it is therefore possible to express (Oug /dus)” and
(3!10/8MA0) in terms of (Suo/auA)ﬂ and (Gyo/ayAO) respectively. If we then
find that (auo/aqu ¥ < (8/10/6/1,,@ )eq, morphologlcally unstable interfaces will
occur. A pertinent example of a reaction layer in a ternary A-B-O system which
develops morphological instability and a two phase assemblage in an oxidation ex-
periment is discussed in Section 8.7. The general discussion of morphological in-
stabilities in alloy oxidation processes is given in Chapter 11.
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Systematically speaking, so-called internal oxidation reactions of alloys (A, B) are
extreme cases of morphological instabilities in oxidation. Internal oxidation occurs
if oxygen dissolves in the alloy crystal and the (diffusional) transport of atomic oxy-
gen from the gas/crystal surface into the interior of the alloy is faster than the
countertransport of the base metal component (B) from the interior towards the sur-
face. In this case, the oxidation product BO,, does not form a stable oxide layer on
the alloy surface. Rather, BO,, is internally precipitated in the form of small oxide
particles. The internal reaction front moves parabolically (~1/t_) into the alloy.
Examples of internal reactions are discussed quantitatively in Chapter 9.

7.5 Some Practical Aspects
of High Temperature Corrosion

We have dealt with the basic concepts that have been developed to understand those
reactions between metals and gases which result in more or less dense and coherent
layers of oxidized products formed on or near the metal surface. In this section, we
shall briefly mention some of the practical problems which are important in high
temperature corrosion. The requirement of technology is the production of an
adherent, dense, slow growing metal oxide layer that shields the underlying metal
from further attack by the oxidizing gases. The main task is to find the composition
which reflects an optimal compromise between the wanted mechanical and the need-
ed chemical (reactive) properties of the material. Since we understand the basic reac-
tion mechanisms, we know, in principle, how to attain a minimum reaction rate.
However, the achievement of crack-free and slow-growing reaction layers showing op-
timal adherence to the metal surfaces is still based to a large extent on empirical
knowledge, as documented in relevant reviews [R.A. Rapp (1981); N. Birks, G. H.
Meier (1983)]. In order to minimize the reaction rates of the protective oxide layers,
which, for the sake of mechanical stability, are normally carried into the regime of
transport controlled (parabolic) growth, let us inspect Eqn. (7.4). From this inspec-
tion, we learn that we have to minimize 1) the electronic transference number (ie.,
the electronic leak current) and/or 2) the diffusion coefficients of the rate determin-
ing ions. The first requirement can be met by adding those components to the metal
or the alloy which form very stable oxides with negligible electronic conduction, such
as ALOj;, MgO, SiO,. Often, however, alloy oxidation does not lead to simple
binary protective oxides. Rather, ternary or even higher semiconducting oxide layers
are formed with £, = 1 so that the electron (hole) flux is no longer rate determining.
Obviously, the task is to minimize the transport coefficients of the rate determining
cations (or anions) in the oxide product layers.

Defect thermodynamics provide the guidelines for the solution of this practical
problem. In Chapter 2, the basic ideas on how to influence point defect concentra-
tions by doping with (heterovalent) additions were presented. Due to the electro-
neutrality condition and the laws of mass action, we can control the point defect
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fractions. Since ionic point defects are directly responsible for the mobility, 5, of the
diffusing components, the heterovalent doping has to be performed in such a way
that the transport coefficient (ie., ¢;-b;, the index /i denotes the rate determining
component) is minimized. By and large, one can formulate the following rules. The
addition of a lower-valent solute to a p-type oxide decreases the cation vacancy con-
centration. A higher-valent solute addition has the opposite effect. The converse is
true if the scale consists of an n-type oxide.

One has to admit, however, that the beneficial operation of protecting oxide scales
is often not limited by the (bulk) transport properties, but rather by the mechanical
properties {(creep, adherence) of the scales. In this respect, metal oxidation once
again reflects the general situation in our understanding of solid state reaction
kinetics: to what extent are physical properties other than diffusional transport and
thermodynamics responsible for reaction rates? We may discuss this question with
regard to metal oxidation in some more detail. We can neglect the growth of multi-
layers (which has been addressed in Section 6.3.2) and the change of the disorder
type in the oxide product (an example was given in Fig.7-3). Although these
phenomena increase the complexity of the metal oxidation problem, they can never-
theless be handled by classic transport theory. However, if the ratio of oxide product
volume to original metal volume differs from unity (Pilling-Bedworth ratio + 1), a
continuous oxidation process is only possible if sufficient plastic flow at and near
the interfaces is guaranteed. Otherwise the formation of cracks, voids, and pores oc-
curs and the growth rate of the scale becomes irregular.

Let us distinguish between two modes of oxidation: 1) the oxide grows (by cation
transport) at the surface to the gas and 2) the oxide grows below its surface to the
gas. This latter mode requires the oxidant to be transported into the scale, which can
occur in a variety of ways such as by molecular (atomic) transport along cracks,
pores, grain boundaries or dislocations, or (relatively seldom) in the form of a simul-
taneous transport of anionic and electronic defects. At very high temperatures
(>($)" Thep ), mechanism 1) is often observed. At low temperatures (<(3): T ),
however, calculated reaction rates (according to Wagner, see Section 7.2) and the
much larger experimental values differ sometimes by orders of magnitude [A. Atkin-
son (1983)].

The main difficulty with the first mode of oxidation mentioned above is explain-
ing how the cation vacancies that arrive at the metal/oxide interface are accommo-
dated. This problem has already been addressed in Section 7.2. Distinct patterns of
dislocations in the metal near the metal/oxide interface and dislocation climb have
been invoked to support the continuous motion of the adherent metal/oxide inter-
face in this case [B. Pieraggi, R. A. Rapp (1988)]. If experimental rate constants are
moderately larger than those predicted by the Wagner theory, one may assume that
internal surfaces such as dislocations {(and possibly grain boundaries) in the oxide
layer contribute to the cation transport. This can formally be taken into account by
defining an effective diffusion coefficient Dy = (1 —f) - Dy + /- Dy, where Dy is the
lattice diffusion coefficient, Dy is the diffusion coefficient of the internal surfaces,
and f is the site fraction of cations located on these internal surfaces.

However, the observation of existing duplex scales (and breakaway scales) during
metal oxidation rather points to the second oxidation mode. The duplex morphology
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is characterized by columnar grains in the outer oxide layer and fine-grained oxide
crystals in the inner layer near the metal/oxide interface. Breakaway scales are
porous, often laminated, and their name stems from the fact that the parabolic ox-
idation rate can suddenly increase to a fast linear growth law (e.g., during oxidation
of steel, with CO, formation). The rationalization of these processes assumes that
because Vqe/ Ve > 1, the necessary deformation of the scale during its growth
generates microcracks, along which the oxidant has some degree of access to the
metal/oxide interface. If no free space is available at this interface (because of
coherency or easy interface shearing), the single layer scale is formed by outward cat-
ion diffusion, as has been assumed by the Wagner theory of oxidation. If some free
space, however, is available, for example, by loss of adhesion due to outward diffu-
sion of metal (= cation+electron) without sufficient plastic flow, then duplex (or
breakaway) scales result. As a consequence, one expects that both the growth rate
and the growth morphology will depend on the geometry of the sample. For example,
adherence of receding metal/oxide interfaces at a sample corner where two flat scales
meet each other is not possible: stresses and cracks will be created. It was empirically
found that small additions of certain alloying elements (e.g., Ca, Y, Hf) are most
beneficial for improving the oxidation resistance of metals. Since these elements
form very stable oxides and exhibit normally low diffusivities, they may preferential-
ly form at fast diffusion paths of the matrix and block these paths for further oxi-
dant transport. Another hypothesis maintains that their influence is due to their
ability to change the creep properties of the matrix (e.g., by ‘wetting’ the grain
boundaries), or by improving the self-healing of microcracks which form during
layer growth [J. Jedlinski (1992)].

A further field of practical interest is the high temperature corrosion of metals in
atmospheres which include sulfur, carbon, hydrogen, and halogen. The starting
point for an understanding of these corrosion processes is the construction of phase
diagrams of the second kind analogous to those in Figures 7-6 and 7-7 but to include
the chemical potentials of S, C, H, Cl, etc. Most of these diagrams are not yet avail-
able. If these nonmetals are already components of the alloy to be oxidized by O,
(e.g., steel containing sulfur and other impurities), internal oxidation products can
form with very high activities (SO,, CO,, H,0, etc.) which may be responsible for
building up high pressures in pores, cracks, and along interfaces, eventually leading
to the spalling of oxide scales.
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8 Solids in Thermodynamic Potential
Gradients

8.1 Introduction

The content of this chapter is closely related to permeation, which is the transport
of a solute across a layer of solvent (or membrane) under the action of a difference
in activity. For example, the permeation of hydrogen through a metal foil has been
studied, particularly for palladium [F. A. Lewis (1967)] and iron [J. P. Hirth (1980);
H.H. Johnson (1988)]. One reason for studying the permeation of hydrogen through
iron is to understand the hydrogen embrittlement of steel.

The subject of the following sections is the transport of irregular structure ele-
ments (= point defects) in crystals, as driven by different thermodynamic potentials
applied to opposite crystal surfaces. Although this seems to interrupt the sequence
of chapters on reactions, we then have the opportunity to investigate in detail the in-
fluence of point defect fluxes on the phase boundaries and multicomponent butk of
inhomogeneous crystals. For illustration we mention several simple problems. How
does a slab of metal A or of homogeneous alloy (A, B) behave if a (steady state) flux
of vacancies flows across it? How does the crystal of oxide solution (A, B)O react
if it is brought between two different oxygen potentials? If point defect fluxes are
driven across a polyphase solid, what is the result? What will be different if tempera-
ture gradients or inhomogeneous stresses instead of chemical potential gradients are
the driving forces?

Problems of this type depend essentially on the transport coefficients and the
boundary conditions and less on the chemical nature of the crystal. We prefer to il-
lustrate our investigations using oxide systems and do so for the following reasons.
At temperatures where the mobility of SE’s allows the oxides to react and equilibrate,
most of them are either mixed conductors or semiconductors. This means that both
ionic and electronic carriers take part in the transport process, and we thus deal with
a fairly general situation. In addition, many oxides play an important role in materi-
als engineering, such as in ceramics. In practice, materials are often not in equilib-
rium with their immediate surroundings. In other words, gradients of intensive ther-
modynamic functions of state (such as temperature, stress, chemical or elec-
trochemical potential) act as driving forces on the SE’s of crystalline materials. Ther-
mally activated SE’s will then drift in the acting gradients. For example, a flux of
vacancies which flows across an initially homogeneous (A, B) solid solution tends to
separate the components A and B if they have different mobilities. Even decomposi-
tion and the formation of new phases are possible. Under practical aspects, this may
mean the degradation of multicomponent materials. Therefore, the following discus-
sion concerning crystals in thermodynamic potential gradients has many implica-
tions in materials science and technology.
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8.2 Multicomponent Solids in Chemical Potential
Gradients

Let us analyze the experimental situation shown schematically in Figure 8-1 and
which resembles the situation depicted in Figure 4-5. A (closed) multicomponent,
multiphase system is bounded by two reservoirs R, and R, which impose a predeter-
mined Ay, on the n'h component upon the system. Strictly, the system is closed for
k = n—1 components and is open for the n'" component. Local equilibrium will be
assumed to prevail throughout. We further assume that decomposition does not take
place and that the phase boundaries are morphologically stable. We wish to know
the distribution of the components in the steady state, which is attained as long as
the driving forces are not excessive (relative to R T'). Let us perform the analysis first
for a single phase system which is exposed to thermodynamic potential gradients. In
Section 8.7, we will return to the more general problem of multiphase systems.

e
R1 o B ¥ | RZ
—
Figure 8-1. Schematic plot of a linearly arranged multicomponent (k = 1,2, ... n), multiphase

(a,B,...) system with a prefixed chemical potential difference Ay, across it. R,,R, = buffer reser-
voirs.

We begin with the simplest case. A vacancy flux j° (driven, for example, by
inhomogeneous particle radiation) flows across a multicomponent crystal
(k=1,2,...,n) and the component fluxes are restricted to one sublattice. We
assume no other coupling between the fluxes except the lattice site conservation,
which means that we neglect cross terms in the formulation of SE fluxes. (An exam-
ple of coupling by cross terms is analyzed in Section 8.4.) The steady state condition
requires then that the velocities of all the components are the same, independent of
which frame of reference has been chosen, that is,

v, (&) =v(8), k=1,...,n-1 8.1
Explicitly, this is
.0 bn -0 bk
by Ny +(G V) —————=bp Ve + (Vi) ——— (8.2)
Ny by Y Niby
k k

where the first terms on both sides of Eqn. (8.2) are diffusion terms, the second terms
are the drift proportions due to the vacancy flux. Equation (8.2) yields

__brz'v;un _bk'vﬂk, z N, by (8.3)

J . ]/ —
m ! Ek B
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There are (n—1) equations of type (8.3). Along with the Gibbs-Duhem equation,
they can be solved for the unknown chemical potential gradients Vu, . In combina-
tion with the (n—1) mass conservation equations

Aé
§ Ne-de=NO-AE, k=1,...,n—1 (8.4)
0

one can (after integration) determine the (27 —2) chemical potentials at the two sur-
faces.

A system which can easily be treated in this way is a single phase binary alloy. For
preparation, however, let us consider an A crystal with a vacancy flux driven across
it. In view of the fact that j, +/jy = 0 in the steady state lattice system, the vacancy
flux induces a counterflux of A, which shifts the whole crystal in the direction of
the surface where the vacancy source is located. The shift velocity v” is jy- Va.

For the slab of a binary alloy (A, B) across which the vacancy flux jy = /° flows,
we derive from Egn. (8.3)

ﬂAff) , (Na+ B0 =N (! —NA)+:B'NA).d A

1A (0) A (I_NA)'(l_ﬁ)'Vm

=j%¢ (8.5)

by utilizing the Gibbs-Duhem equation and setting § = bg/b,. If the solid solution
(A, B) is thermodynamically ideal so that du, = R7T-d In N4, Eqn. (8.5) reads

NG| 0.y

[ oy WatBU=ND U=ND+BN) g I Viry (g
NA(©) Na-(1=Ny)-(1-8) RT
Along with the conservation of mass, namely
AL
{ Na-dé=NS-AE (8.7)

0

Eqn. (8.6) describes the steady state concentration profile of an (A, B) alloy which
has been exposed to the stationary vacancy flux j. The result is particularly simple
if the mobilities, b;, are independent of composition, that is, if § = constant. From
Eqn. (8.6), we infer that, depending on the ratio of the mobilities 5, demixing can
occur in two directions (either A or B can concentrate at the surface acting as the
vacancy source). The demixing strength is proportional to j°+(1—£)/R T, and thus
directly proportional to the vacancy flux density j°, and to the reciprocal of the ab-
solute temperature, 1/7. For § =1, there is no demixing.

We proceed by considering a slab of an oxide crystal AO and assume that a cation
vacancy flux is driven across it. In contrast to the single sublattice alloy discussed
above, where the vacancies have been introduced into the lattice as an independent
component, the vacancy flux j% in AO can be induced by different oxygen activities
at the two opposite surfaces. At the oxidizing surface, the defect reaction is +-O, =
04 +V4+2-h". In semiconducting AO, the flux of ionized A vacancies is compen-
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sated for by a simultaneous and unidijrectional flux of electron holes. At the reducing
surface, the defect reaction is reversc.d. The result is an addition of AO lattice mole-
cules on the oxidizing surface, while they are subtracted from the reducing surface.
Hence, the crystal is shifted as a whole toward the cation vacancy source (v’ =
Jv* Vao), although the oxygen ions in AO are (almost) immobile.

However, a shift of the AO crystal does not always occur in gradients. If, for exam-
ple, in the oxygen potential gradient, cations are immobile and anions are the mobile
species (e.g., in UO,), the cation sublattice is a closed subsystem and thus cannot be
shifted. Therefore, if oxygen is transported via anionic (plus electronic) defects across
the AO slab, the whole crystal is stationary. Likewise, if the solid solution (A,B)O
is exposed to an oxygen potential gradient and transport is by way of anionic point
defects, there is again no crystal shift.

(1) . R
uo) Jun g e———— | kel ugth

MeQ+Vyp, + 2h =
et 4T

> y , Figure 8-2. Steady state fluxes, compo-
MeMs +30,lg) MeO+Vy +2h nent concentrations and phase boundary
Me:= A B reactions for (A, B)O exposed to A#oz~

In the next step, we discuss the demixing of semiconducting oxide solid solutions
(A,B)O as illustrated in Figure 8-2. Instead of formulating the constant cation
vacancy flux as in the steady state condition of Eqn. (8.1), let us express this condi-
tion explicitly and note that the frame connected to the oxide sample surface moves
with the same velocity as the components so that the composition does not change
with time

In I8y (8.8)
CA OB

The cation fluxes can be expressed as usual using Eqn. (4.49). If we consider the
simplest case by neglecting all flux couplings other than those through site conserva-
tion and electroneutrality, Eqn. (8.8) yields (see Eqn. (4.99))



8.2 Multicomponent Solids in Chemical Potential Gradients 187
bA'Vf]A2+ = bB'VﬂB2+ (89)
Let us insert the definitions Vy; = Vu,+z;-F- ¢, noting that Vuaer = Vo — V-

and Vuge+ = Vugo — V. If we then replace Vug:- by Vug+2-Vu, and recognize
that in a semiconductor Vz. = 0, we obtain from Eqn. (8.9)

ba(Vuso = Vo) = bg(Vugo — Vo) (8.10)

Equation (8.10) can be further simplified by the Gibbs-Duhem equation for the solid
solution (A, B)O. As a result, the differential equation for the steady state demixing
profile is found to be

Nao-(1=Nao) (1 =B, { o b
AN,q = RO AO d 22} p=2B 8.11
A0 T T T Nao) + - Nao <RT> S ®10

In many cases, 8 is rather insensitive to the composition (N,q) because both A**
and B> are rendered mobile by the same vacancies in the same sublattice. In deriv-
ing Eqn. (8.11), we have assumed that (A, B)O is an ideal quasi-binary solid solution.
Analogous to Eqn. (8.6), Eqn. (8.11) has to be integrated under the restricting condi-
tion of the conservation of cation species A and B. There is no analytical solution
to this problem, but a numerical solution has been presented in [H. Schmalzried, et
al. (1979)].

The physical reason for the (A, B)O demixing process is always the difference in
the mobilities of the cations. This is reflected in Eqn. (8.11) where £ is the only
kinetic parameter, and dN,o =0 for = 1. Let us emphasize this fact by a
somewhat different argument. The cation flux equation jf{r = —Cp DAV can
be rewritten as

Jare = —Caba Vi 8.12)

where Vi, is the chemical potential gradient of component A. Equation (8.12) is
valid because (b, Cion) <€(bn*cy) in a semiconducting crystal, which implies that
under open circuit conditions, Vu,—0 or, equivalently, Vi, = — F-Vg. Therefore, if
local equilibrium has been attained in the steady state, Vi, = Viuso — Vg, and thus

Jare = —Catba (Vuao—Vio) (8.13)

However, since jy = —by oy Vyy = —by ¢y Vg, where Viy = Vug follows from
the equilibrium condition of the defect reaction J O, = 0% +V/, +h", and further-
more since by cy = (bg-ca+ba-cp) in essence states the equivalence of counting
diffusive jumps in the cation sublattice in two different ways, we can immediately
rewrite Eqn. (8.13) as

. bac .
Jare = — <bA'CA'V:uAO+L'JV> (8.14)
bA'CA+bB'CB
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Equation (8.14) demonstrates once more that the cation flux caused by the oxygen
potential gradient consists of two terms: 1) the well known diffusional term, and 2)
a drift term which is induced by the vacancy flux and weighted by the cation
transference number. We note the equivalence of the formulations which led to
Eqns. (8.2) and (8.14). Since v” = j,- V,,, we may express the drift term by the shift
velocity v? of the crystal. Let us finally point out that this segregation and demixing
effect is purely kinetic. Its magnitude depends on = by /by, the cation mobility
ratio. It is in no way related to the thermodynamic stability (AG%O, AG%O) of the
component oxides AO and BO. This will become even clearer in the next section
when we discuss the kinetic decomposition of stoichiometric compounds.

The result of a particular demixing experiment on (Mg, Co)O is shown in Figure
8-3a [H. Schmalzried, W. Laqua (1981)]. We sce that an oxygen partial pressure ratio
of only three (P6Z/sz = 3) for the two opposite surfaces of the crystal results in a
15-20% demixing of (Mg, Co)O. The mobility ratio be,/bpng is ca. 10. Also, the
corresponding (schematic) reaction path in a ug vs. composition diagram of the
A-B-O system is shown in Figure 8-3b.
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Finally, we mention that the (Mg,Co)O crystal surface with the lower oxygen
potential is morphologically unstable. Therefore, in a strict sense the boundary con-
ditions (which have been tacitly assumed to be stationary) are not time-independent.
This phenomenon will be discussed further in Chapter {1.

In concluding, let us comment on the time needed to attain the steady state after
establishing the surface activities. Two transient processes having different relaxation
times occur: 1) the steady state vacancy concentration profile builds up and 2) the
component demixing profile builds up until eventually the system becomes truly sta-
tionary. Even if the vacancies have attained a (quasi-) steady state, their drift flux
is not stationary until the demixing profile has also reached its steady state. This time
dependence of the vacancy drift is responsible for the difficulties that arise when the
transient transport problem must be solved explicitly, see, for example, [G. Petot-Er-
vas, et al. (1992)].

If we could arrange the demixing experiment (Fig. 8-2) such that the vacancy flux
(caused by the activity difference at opposite surfaces) remains constant and the
crystal therefore shifts with constant velocity, we could calculate the time required
to attain the steady state with

AET
2:Dy Ny(&")

(8.15)

where y is a numerical factor which depends on £ and composition N, and is of
the order of unity. Since Dy Ny = D ;0n, We can see that the characteristic time t
is essentially the time which a cation needs for a diffusional displacement corre-
sponding to the sample thickness A¢.

Kinetic demixing stems from activity differences established between the opposite
surfaces. These differences can be produced in various ways. In this section, we ap-
plied buffers with different chemical potentials. Other possibilities are activity
changes through temperature gradients and activity changes through stress gradients.
These situations will be discussed in Sections 8.5 and 8.6.

8.3 Kinetic Decomposition of Compounds
in Chemical Potential Gradients

We continue the discussion of multicomponent crystals placed in the potential
chemical gradient of a component. Let us investigate what happens when a nearly
stoichiometric compound crystal is brought between different potentials of its
nonmetallic component (e.g., AO-B,0; between two different oxygen potentials).
These two potentials are chosen to fall inside the stability field of the spinel phase
so that the spinel will be neither reduced nor oxidized thermodynamically. We will
demonstrate that the spinel can nevertheless decompose in the oxygen potential gra-
dient. This decomposition is a purely kinetic effect and has therefore been named
kinetic decomposition.



190 8 Solids in Thermodynamic Potential Gradients
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The kinetic decomposition process is illustrated in Figure 8-4. In order to define
the transport coefficients, we assume that the spinel is a semiconducting oxide with
immobile oxygen ions. As before, the flux equations will then have the following
forms

Jare =ja= —caba Va0 — Vi) (8.13)
Je =Jjpg= —cg by (3 Vg o, — 5 Vio) (8.16)

Here we have chosen AO, B,O;, and oxygen O as components of the ternary com-
pound AB,O, (or rather (A,B);O4, ). Since uupo +u32035,u9\B204 (which is the
Gibbs-Duhem equation integrated under the assumption that the spinel is strictly
stoichiometric and stress effects can be neglected), we obtain from the cation fluxes
and the steady state condition j,/ca = jg/cp = v®

=44,
1+3-8

This relation is analogous to Eqns. (8.10) and (8.11). In contrast to solid solutions,
however, stoichiometric compounds cannot demix since their composition is fixed.
Instead, they may decompose. In order to find the Aﬂo(A#o) at which decom-
position begins, we integrate Eqn. (8.17) and note again that £ is often rather insen-
sitive to changes in uo. For constant 5, we have

Vitao = Vg (8.17)

1—%,8_A/~lo2
1+38 2

Ating = (8.18)

which is the AO component activity change induced by the oxygen potential dif-
ference across the spinel. The spinel decomposes into its component AO and B,O;
if Apso exceeds the spinel stability limit, which is its Gibbs energy of formation.
Consequently,

Attpo (max) = AG g o, (8.19)
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In combination with Eqn. (8.18), we can now calculate the oxygen potential dif-
ference across the sample at which kinetic decomposition of the spinel AB,O, sup-
posedly takes place

0
ps, . 1+5B AGaso,
Po -4 RT

2

In

(8.20)

Here, sz and p’(’)z are the oxygen pressures at the opposite surfaces of the spinel
sample. If by>2-bp, the decomposed binary reactant AO will be formed at the
high oxygen potential side (Fig. 8-4), whereas if by <Z:-bp, AO will be formed at
the low oxygen potential side, provided that Au02>AuO2 (max). B,O; will be
formed at the respective opposite sides. Experiments have been performed that con-
firm this mode of decomposition [W. Laqua, H. Schmalzried (1983)]. In concluding,
we point out that, in principle, kinetic decomposition occurs in all semiconducting
compounds for which b, # bg, independent of their anionic transference.

8.4 Cross Effects

The phenomena described in the previous sections have been formally analyzed
under the assumption that no direct coupling exists between the fluxes j; and the
forces X, (k # {). Flux coupling only arose from site and electric charge conserva-
tion. In other words, we have neglected all the off-diagonal elements in the matrix
of transport coefficients (L). Let us now give up this simplifying assumption and
consider thermoelectric effects (the Seebeck effect, the Peltier effect) or the Ludwig-
Soret effect (demixing due to heat flow), since they belong to this category of cross
phenomena. Since we are mainly concerned with the transport of matter and elec-
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trical charge, we will exemplify cross effects by the coupling of ionic to electronic
fluxes. To this end, we not only impose a component chemical potential difference
upon the crystal, but an electrochemical potential difference for the electrons as well.
The driving forces for the matter and the electronic carriers are then both predeter-
mined and the flux coupling through cross effects can be investigated under steady
state conditions. A suitable experiment is illustrated in Figure 8-5.

However, before going into this problem, let us briefly extend the treatment on
steady state demixing given in Section 8.2 and depicted in Figure 8-2 by including
cross effects. We denote the transport coefficients by L; and replace the fluxes
ji=LiVn; by ji=L;Vn+Y;L;Vn(i,j = A,B) in the steady state condition
(Eqn. (8.8)). In contrast to Eqn.(8.10), the result is [H.Schmalzried, W. Laqua
(1981); M. Martin (1991)]

V(ltao—Uo) = O V{(Uugo—tp) ; O = (8.21)

For ideal solid solutions which demix in an oxygen potential gradient we obtain from
Eqn. (8.21)

Vu
VN/-\O: _w'R;Z 5 l?z'NBo'NAo'<01
. _NBO
9—1>

Equation (8.22) is the extended version of Eqn.(8.11). Manning’s random alloy
model [J. R. Manning (1968)] can be used to evaluate the transport coefficient L g
in terms of tracer diffusion coefficients D% and D3 (see also Section 5.4.3). If (i,/)

= (A, B), then
L D* _ . D*
=Pl (s 1 D] (8.23)
RT fo C,"D?'f’Cj'Df

(8.22)

where J;; is the Kronecker symbol and f, the geometrical (Bardeen-Herring) correla-
tion factor for self-diffusion in the cation sublattice (see Section 5.2.2). The influence
of cross terms on the demixing profiles can then be explicitly calculated as illustrated
in Figure 8-6 [M. Martin (1991)]. The ratio of the jump frequencies (r = v,/vp) in
Figure 8-6 can be obtained from the tracer diffusion coefficients D} = g-a*-v;f;
(see Section 5.1.4).

Let us now turn to cross effects proper between electronic and ionic fluxes. Con-
sidering the general nature of cross effects in crystals, our analysis will be performed
in some depth. It gives us the tools for a correct application of SE transport theory
(see Section 4.2.2) and explains to some extent the physical meaning of the cross
coefficients. Let us illustrate the problem using a semiconducting binary compound
such as a transition-metal oxide. In A;_sO crystals with the B1 structure, oxygen
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ions in the dense packed fce sublattice are effectively immobile. The mobile irregular
SE’s to be considered in the transport processes are therefore V4, Vi, and V5 as
the atomic point defects, and hg, e, as the equivalent electronic elements in the
valence (v) and conduction (c) bands. The regular SE’s are AZ, OF, e, h, cor-
responding to A** on A-sites, O*~ on O-sites, filled states in the valence band and
empty states in the conduction band. Regular and irregular SE’s may interact with
each other to form associates. A localized electron hole (ie., a cation A’ on a
cation lattice site) is formed, for example, when a delocalized electron hole h; is
self-trapped at AZ

AZ+h =A% +el (8.24)

Singly ionized and necutral cation vacancies can form in a similar way
Athy = Vi +e/ (8.25)
A+hy = V3 +e (8.26)

Thus, nine SE’s constitute the relevant set {} needed for the description of macro-
scopic transport in this system

{1=AX, AL VX, Vi, Vi, i e e, h (8.27)

We label these SE’s as i=1,2,...,9.
The transport coefficients /;, (i, k = 1,2, ...,9) define the linear relationships be-
tween the forces and the fluxes

9
Ji= X L Xy (8.28)

i=1

Equation (8.28) states that a flux of SE / can be driven by any force X,
(k=1,2,...,9). However, the elements of the transport matrix / are not independent
due to the constraints acting on the fluxes j;. The derivation of the independent
relations was originally given for the case of linearly dependent fluxes by [S.R.
de Groot (1952); S.R. de Groot, P. Mazur (1962)] and will be adopted here.
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The conservation of lattice sites requires that
Y =0 (8.29)

Equation (8.29) implies that the fluxes are defined in the lattice reference frame.
Inserting Eqn. (8.28) into Eqn. (8.29) and noting that, in principle, the forces X,
(k=1,2,...,9) can be varied independently, the following relations are obtained

The fluxes of electrons and holes in the valence and conduction band respectively,
are not independent either (number of states conservation)

YJi=0; YJi=0 (8.31)
from which we derive additional relations for the transport coefficients

7 9
Y le=0; Y 1,=0; k=1...9 (8.32)
i=6 i=8

Equations (8.30) and (8.32) constitute 27 relations for the transport coefficients /.

Further relations can be obtained by eliminating the three fluxes /s, j7, and jy from
the entropy production equation (4.10) by using Eqns. (8.29) and (8.31)

4
o= Y Ji'(X;=X5)+js (Xe—X7)+Js* (Xg—Xo) (8.33)

i=1

For X;=Xs (i=1,2,3,4), X¢=X,; and X;= Xy, the entropy production g
vanishes, which is only possible if the fluxes

7 9

5
ji: Z l[k'X5+ Z lik'X7+ Z [ik'X9 (834)
k=1 k=6 k=38

(i=1,2,...,9) vanish as well, leading to (i =1,2,...,9)
5 9
Y k=05 Y =05 Y lx=0 (8.35)
k=1 =

Equations (8.30), (8.32), and (8.35) constitute 54 relations between the transport
coefficients /;;, but not all of them are independent. In summary, 36 elements of the
transport matrix / remain unaffected by the constraints formulated in Eqns. (8.30),
(8.32), and (8.35). Consequently, the reduced 6 X 6 matrix corresponds to six indepen-
dent fluxes j;. Let us choose them by setting /i =1,2,3,4,6,8. The vacancy fluxes
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(V%, i = 5), the electron fluxes in the valence band (e, i = 7), and the electron hole
fluxes in the conduction band (h, i = 9) are thus eliminated. We now can apply the
Onsager relations

Iik = Iki H i’k = 1, 29 3’ 49 69 8 (8.36)
which provide us with 21 independent transport coefficients /; .
Equally, the number of forces X; (i =1,2,...,9) can be reduced if local equilib-
rium prevails (see also [R.A. Allnatt, A.B. Lidiard (1993), Chapts. 3 and 5]). The
electronic equilibrium e +h = hy +e/, yields

X7 +X9 =X6+X8 (8.37)

while the ionization equilibria formulated in Eqgns. (8.24)—(8.26) yield

X1 +X6 = X2 +X7 (8.38)
XS +X6 =X4+X7 (8.39)
X4 +X6 = X3 +X7 (8.40)

Therefore, Eqn. (8.28) can be written as
Ji= Ui +H) (X = X) + (i +2- i3 +Hjy +ig = 1i5) (X —X7) (8.41)

which means that only two force combinations exist for the six independent fluxes
Ji(i=1,2,3,4,6,8). These new forces act on two building units: the cation A% and
the electron hole h*. They are defined via the following SE reactions

A = AX-Vi; X(AY™)=X,—X; (8.42)
h*=hj—eX ; X(h")=Xs—X; (8.43)

A?* and h* are combinations of SE’s which satisfy the constraints of Eqns. (8.29)
and (8.31). The forces X(A%*) and X (h") are the negative gradients of the corre-
sponding electrochemical potentials. The electronic building unit h*® can also be
defined as Ay —AS and has been chosen because the AO oxide in question is nor-
mally a p-type semiconductor.

In a macroscopic transport experiment, only certain combinations of fluxes can
be determined. This is the (ionic) flux of A

Ja=Ji1+iz (8.44)
and the electron hole flux

Jn=J2+2J3+js+Jjs—Js (8.45)
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From Eqns. (8.41), (8.44), and (8.45), we have

jAzLAA.XA+LAh.Xh (8.46)
jh = LhA.XA +th.Xh (847)
with ,
Laa= Y (i +1p) (8.48)
i=1
2 9
Lin=Y Y lx'Be=Lay (8.49)
i=1k=1
9 9
Lin=Y Y Bl B (8.50)

i=1k=1

B; are weighting factors (By=fs=p7=P=0, Br=Ps=Bs= —Bs=1, B3=2)
which count the number of positive electric charges carried by the structure element
i during transport. Eqn. (8.49) follows from Eqn. (8.36).

Equations (8.48)—(8.50) define three independent transport coefficients for the
two building units (A,h), namely L,4, Lay, and Ly, in terms of the 21 indepen-
dent transport coefficients of the SE set. They are sufficient to describe the transport
in A;_;0. The cross coefficient L,; expresses the coupling between the ionic and
electronic fluxes. If X(h*) = 0, the electronic flux is due only to the cross effect and
given by L

Jn="2a s X, =0 (8.51)
La

If X(A?*) =0, then the cation flux is due only to the cross effect given by
., Lap .
Ja=T7 Xy=0 ‘ (8.52)

Since the entropy production is positive, the transport coefficients L; must satisfy
the relation Lpa Ly > Ly Lay, [S.R. de Groot, P. Mazur (1962)]. This restricts the
range for the charges of transport to a4 -a, < 1, see Eq. (8.56) ff. We should also add
that whereas the L;; are phenomenological coefficients appropriate for the descrip-
tion of the experiments on transport, the /; relate directly to the SE’s (Eqn. (8.28))
and can be derived from lattice dynamics based theoretical calculations.
Experimentally, we can apply to the A;_;O crystal one independent chemical
potential gradient (Vu, or Vug) and a voltage U. U corresponds to a difference in
the electrochemical potential of electron holes: U:F = An(h®). The force X 4:+ can
be written in terms of Vo, and Vn (h®) with the help of the following reactions

A¥ =A+2:h"; A= AO—%OZ (8.53)
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Equations (8.46) and (8.47) vyield, along with the equilibrium conditions of
Eqﬂ. (8.53), (jA =jA2+),

) 1
Jar = LAA'E'V.HOZ ~Q2-Laa+Lan) Vi (8.54)

) 1
Jn= LhA'E'V.uOZ-(th+2'LhA)'V77h (8.55)

Setting Vup, =0 and U = —E-A{, we obtain for a homogeneous crystal of length
A
Jarr = Laa 2+ ap)-F-E (8.56)

Jo=Lpn-(1+2-ay)-F-E (8.57)

We see that both the ions and the electron holes carry an apparent charge resulting
from a combination of their formal charge and their charge of transport. The ratio
ap = (Lya/Laa) might be called the charge of transport since it is analogous to the
heat of transport [see, for example, A.R. Allnatt, A.B. Lidiard (1987)] which quan-
tifies the coupling between fluxes of matter and energy. Equally, a;, = (Lan/Lyy) is
the charge of transport of the electron holes. Relations between the transport coeffi-
cients and experimentally measurable quantities have been worked out [C. Wagner
1975)].

From Eqns. (8.56) and (8.57), we can obtain the electrical conductivity of the
crystal and also the ionic transference number.

o= Y 0,=F*Q2:Lop-Q+ap)+Ly,-(1+2-ap) (8.58)

~ 2-Las Q+ay)
th’(1 +2-ah)+2-LAA-(2+aA)

f ion

(8.59)

~ Of the four coefficients Laa, Ly, @4, and ay,, only three are independent. In order

to determine them, we need a third experimental transport parameter which is chosen

to be the tracer diffusion coefficient of the cations. The transport coefficient L,,,
in terms of D} is (see Section 5.2)

_D ACa

fRT

(8.60)

where f'is the geometrical (Bardeen-Herring) correlation factor (f = 0.781 for the fcc
lattice). A thorough experimental study of cross effects between electronic and ionic
carriers in the transition metal oxide CoO has been made [J. Janek (1992); H. 1. Yoo,
et al. (1993)]. CoO served as a prototype material because its point defect ther-
modynamics is very well known [R. Tetot, ef al. (1994); R. Dieckmann (1977)]. The
charge of transport, ac,, was determined to be on the order of —1, which clearly
shows that these cross effects are not at all negligible. Cross effects in metals (elec-
trotransport, thermotransport) have been treated in [H. Wever (1973)].
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8.5 Demixing Under Non-Hydrostatic Stress

Let us investigate the steady state behavior of multicomponent crystals exposed to
uniform but non-hydrostatic stresses. We first introduce some ideas on the thermo-
dynamics of such solids (which will be discussed in more detail in Chapter 14). Solid
state galvanic cells can be used to perform the appropriate experiments.

Gibbs [J. W. Gibbs (1878)] showed that a non-hydrostatically stressed solid sur-
rounded (Fig. 8-7) by a fluid (in which it is soluble) is ‘entirely determined by the
nature and state of the solid’ through the relation

Uy =u;—Ts;+ 0, v (8.61)

where y; is the chemical potential of the solid with respect to its tendency to dis-
solve in the fluid; u,, s,, and v, are the molar internal energy, entropy, and volume
respectively, of the solid, and o, is the normal stress on the surface (compressive
stress is positive). The value of g, may vary over the surface of the solid. The solid
is (formally) in a state of equilibrium. It may deform elastically, but plastic deforma-
tion is, of course, excluded because this is irreversible.

Ly
-0 = L2 %% L2|<Z=0,;
Ly
Figure 8-7. Solids under non-hydrostatic stress
-0y and the surrounding Gibbs-fluids L.

The surrounding fluid (Fig. 8-7) serves two purposes: 1) it transmits the pressure
to stress-load the surface and 2) it allows the surface to equilibrate chemically and
thus provides u; in Eqn. (8.61) with physical meaning. Ideally, the ‘Gibbs fluid’ has
a vanishing buffer capacity for the solid so that after a change in o, the fluid
becomes resaturated with respect to the solid before a noticeable amount of the solid
or its surface dissolves. The key to verify Gibbs’ relation for solids under non-hydro-
static stress is therefore the existence of such an idealized fluid.

Solid electrolytes may have the requisite properties of a ‘Gibbs fluid’ [W. Durham,
H. Schmalzried (1987)] if 1) their conducting ion corresponds to an atomic compo-
nent of the solid under stress and 2) they exhibit significant mechanical strength.
Typical stress energy densities correspond to electrical potentials in the millivolt
range. In order to establish them, only a small fraction of a surface monolayer of
the electrolyte needs to dissolve during its equilibration with the stressed solid and




8.5 Demixing Under Non-Hydrostatic Stress 199

thus the electrolyte acts analogous to an ideal ‘Gibbs fluid’. Electrochemical
equilibrium allows us to measure (partial) Gibbs energies by the EMF of an appro-
priate galvanic cell. Since it is (thermodynamically) equivalent to the equilibrium be-
tween the crystal surface and a contacting fluid, the chemical potential probed by
solid electrolytes is determined by the (chemical) nature and the (stress) state of the
solid. Thus, Eqn. (8.61) can be applied.

In order to derive the relation between EMF and the chemical potential difference
probed at different surfaces of the stressed solid, we formulate the reversible work
and its electrical equivalent. If z,-F-dn, electric charges are transported across the
electrolyte between the two surfaces labeled 1 and 2 in Figure 8-8, the electrical work
is

dW,.=(E|—E,) 25 F-dny (8.62)

Figure 8-8. Galvanic cell (schematic) for the deter-
mination of the chemical potential difference be-
tween surfaces 1 and 2 of non-hydrostatically stress-
ed solids. Cross hatched: solid electrolyte.

:I\\\\ NN

The corresponding mechanical work is
dW,, =(0;—a;)  Va-dny 8.63)

where V, is the molar volume of A (under stress). Since the two terms must be
equal in equilibrium, it follows that

=00 Va

8.64
zaF) ©69

where AE = E, —F, and Ao = 0,— 0.

The Nabarro-Herring creep in solids is related to Eqn. (8.61). This creep involves
the transport of atomic species from regions of higher (compressive) stress to regions
of lower stress by means of (lattice) diffusion and has, at first sight, nothing to do
with the dissolution of solids into fluids. Creep requires a state of non-equilibrium.
The energy change by which it is driven (i.e., the mechanical work derived from mov-
ing a volume element of the solid between two points that are differently stressed),
however, may be calculated from Eqn. (8.61). To this end, we assume that the trans-
port occurs via a surrounding fluid phase rather than by diffusion across the solid.

We are now able to analyze the demixing of a solid solution (A, B)O (= MeO) ex-
posed to a non-hydrostatic, uniaxial stress as shown in Figure 8-9. If transport occurs
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Figure 8-9. Demixing of a solid solution (A, B)O ex-
posed to uniaxial stress. Cross hatched: solid elec-
trolytes.

via the cation vacancies at constant Ho,» the difference in the vacancy chemical po-
tential between the loaded and the unloaded surfaces of the (homogeneous) solid is

Auy= —Ac'V, (8.65)

since Ag:V,, = Aliyeo = Alime = — Auy since Me+Vy, = Mey,. Furthermore, Auy
induces a vacancy flux as illustrated in Figure 8-9. From jy = —cy-by-(Auy/A&),
we obtain

Ac-V,,

AL

Jv=cy by (8.66)
where A¢ is the characteristic distance for the vacancy transport between the loaded
and the unloaded surface.

If we identify j, in Eqn. (8.66) with j° in Eqn. (8.3), we can use Eqn. (8.3) to
calculate the (steady state) demixing when a stress driven vacancy flux flows across
the solid solution (A, B)O. At a fixed oxygen potential, we obtain from the steady
state condition
:!

(caba+cp-bg)-(cg ba+ca*bp)

Vuso =Jjv'(bg—ba)- (8.67)

Equation (8.67) can be integrated. If demixing is sufficiently small, a linearized ver-
sion can be used. jy is found by measuring the electrical current in the solid state
galvanic cell depicted in Figure 8-9. Experiments in this area are scarce. For recent
reports see [D. Dimos et al. (1988); C. Reinke (1995)].

8.6 Demixing in Temperature Gradients
(Ludwig-Soret Effect)

In Chapter 4, we introduced transport equations that apply when there are fluxes
other than those of matter that contribute to the entropy production. Assuming that
both matter and electrons take part in the transport, Eqns. (4.16)—(4.17) have been
derived. In non-isothermal systems, we can use the same set of equations but replace
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the electron flux, je, by the heat flux, j, [see, for example, B. Baranowski (1954); H.
Wever (1973); A.R. Allnatt, A. B. Lidiard (1987)]. Instead of Eqns. (4.16) and (4.17),
we then have

Ji= L' Ly (X;+Qf - Xy (8.68)
J
Ja= L' QF Ji+Lag= L Lig" @D X, (8.69)
J

Y./ indicates that the summation is over (n—1) independent fluxes in the n-compo-
nent crystal (see Eqn. (4.29)). Qf-j; is the (isothermal) energy flux due to the flux
of species j. In an isobaric but non-isothermal system, X;= —T-V(u;—u,)/T,
X, = VT/T. Inserting these forces into Eqn. (8.68), one finds

. ou,— 9 vT
Ji= =YLy | L' YN+ (QF — (B~ b)) —— (8.70)
J r ON; T

where h; and h, denote the corresponding (partial) enthalpies. Let us redefine
Q} —(hj—h,) as Qj. In a matter-closed system exposed to a temperature gradient
V7, the steady state condition requires that j; = 0. Therefore, from Eqn. (8.70), we
obtain the (steady state) demixing condition

18U — 1tn) 5. VT
vl ‘YN, e 8.71
Ek ON, , 9 T @70

Eqn. (8.71) constitutes (n—1) differential equations for the spatial distribution of n
components in the crystal. The set of equations is complete if the conservation of
matter is taken into account. For a binary system (1 —2), Eqn. (8.71) is particularly
simple to handle since it reduces to

VN. ~
o VN ‘Q1‘E (8.72)
dln N; N;-N, T

or, in the case of ideal solutions,

O VT
VN,= -N;*(1—-N)-—-— 8.73
1 1°( )] RT T (8.73)
which becomes in the dilute limit
N, = -N- 2. YT (8.74)
RT T

Qj can be determined experimentally where upon Q} can then be calculated from
Q;—(h;j—h,). Both positive and negative ‘heats of transport’ have been found (in
analogy to ‘charges of transport’). Q; reflects the interaction between the phonons
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and the moving components. Thus, the situation is analogous to the coupling of elec-
trical fluxes and component fluxes as discussed in Section 8.4 (see, in particular,
Eqn. (8.52)).

8.7 Demixing in Multiphase Systems

Let us return to Figure 8-1 and ask about the nature of the steady state in a multi-
component, multiphase system when we establish different (constant) intensive ther-
modynamic functions of state at the end reservoirs (R; and R,). Hereby, we
generalize the situations which have been discussed so far. Without working out the
solutions in any detail, let us nevertheless consider the necessary conditions and
equations for a quantitative treatment and visualize the multiphase demixing with
the help of reaction paths in the pertinent phase diagrams. The nomenclature is given
in Figure 8-1.

If a steady state exists, both the stationary thicknesses A& ®) and the chemical
potential differences Au ("’ established in reservoirs R, and R, are time-independent
v=a,pB,...). It follows that V(&™) for the other components i # n in all phases
v are also time-independent as long as the phase boundaries are morphologically
stable. Furthermore, the fluxes j ,(-") are constant and, therefore, the velocity

Bol2] Hol2)
Ho Ho
Ho 1) [.lon ]

A — = Ng B

a)l b)

Figure 8-10. Schematic reaction path for a multiphase A-B-O system exposed to an oxygen potential
difference (Apug = up(2)—pup (1)) at opposite sites of the sample. a) Diagram of the second kind,
b) diagram of the third kind.
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v=" (8.75)

is the same for all phase boundaries b(= a/8, §/7, ...) and components i. A com-
ponent, k"), present only in phase v'(v’ includes R, and R,) has to be mobile in
this phase v’ in view of Eqn. (8.75). Otherwise, no steady state can be established over
the whole phase assembly, and no kinetic demixing can occur. Any immobile compo-
nent, k), which is not present in the neighboring phases inhibits kinetic demixing
since it prevents the lattice molecules from being displaced. The latter is a necessary
condition for interface motion and thus kinetic demixing.

Figure 8-10 presents a schematic reaction path in a ternary multiphase A-B-O
system. It illustrates some possible complications. The reaction path may re-enter the

pc;z spinel 6'2
- +wistite
10 {Fe.Mn)0 = wustite 7\\;
N, |
0.8} :
? | N
s N
|
o L
— |
0.2}, &,
0 L (] 1 1 | !

] i
0 01 02 03 04 0S5 06 07 08 09 10
—_— gIAg

a)

Po R

[Fe.MnlO i {Fe,Mn); 0, I oxidizing
| «lFeMnlO | gas

b

Figure 8-11. Results of a demixing experiment for (Mn, Fe)O,,. a) Theoretical steady state concen-
tration profile and b) phase sequence photograph. pg = 3.3x107%bar; p{ = 4.6X 10! bar;
T =1200°C; sp = spinel (Fe,Mn);0,, w = wiistite (Fe, Mn30 [Y. Ueshima, et al (1989)].
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phase which it just traversed depending on the magnitude of the transport coeffi-
cients, thermodynamic factors, and the concentrations in the neighbor phases. In
such a case, morphological instability of the interface develops and a two-phase
assemblage is found in the sample at the same position £. The kinetics of such a reac-
tion can hardly be treated quantitatively since nucleation, growth of new phases, and
the evolution of growth morphologies all have to be taken into account. An illustra-
tion can be seen in Figure 8-11, where the theoretical and experimental results on
transport in the Mn-Fe-O system are compared [Y. Ueshima, et al. (1989)].

8.8 Multiphase Systems in Electric Fields

In Section 8.2, we discussed multiphase systems exposed to chemical potential gra-
dients and saw that internal electric fields build up if the transference number
t. # 1. In this section, we investigate the influence of an external electric field and
distinguish two situations: 1) electrodes are attached to the system so that an electric
current can flow and 2) no electrodes are attached to the system so that no electric
current can flow (except for a small, transient, polarization current). Although it has
been reported [e.g., Z. Munir, H. Schmalzried (1993)] that, under both conditions,
dislocations and grain boundaries move provided the electric field is sufficiently high
(>1kV/cm), a convincing explanation is not yet available. Let us restrict ourselves
here mainly to case 1) and consider the influence of an electric field on reacting
multiphase systems to which electrodes are attached.

Electrodes can be reversible for chemical components and/or reversible for elec-
trons. The case of electron reversible electrodes has already been treated in Section
4.4.2 (polarization cell). If the decomposition voltage of the phases located between
inert electrodes is surpassed, their inertness is lost and they behave as if both elec-
trons and components are available. This will be discussed further below. Let us first
refer to Figure 8-12. If the electrodes are detached from the reacting system, the con-

al ~

—4_@1__ Figure 8-12. Reaction couple in an electric field. a) Elec-
b) U I trodes detached, b) electrodes attached; --------- : field lines.
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1 2 3 4
a ¥y B
© A|AX | ABX2 |BX |B G?,
Pt' Pt
a) —aE—~
Ja JB
© e ax| ABX, |BX [Me—EL.  Figure8-13. Reaction couple AX/ABX,/BX in an
Pt Pt electric field. a) Reversible electrodes attached,
b] - b) inert electrodes attached.

dition of electrical neutrality, ¥ z;-F-j; =0, is still valid. This allows us to eliminate
the electric potential gradient Vg, so that the individual flux equations can be written
in terms of electronically neutral components. In other words, under this condition,
an external electric field plays no role in the chemical transport and the transport
controlled reactions.

However, for attached electrodes in a closed electric circuit which includes the
reacting system, the constraining condition is VI =0, or ¥ z;*F+j; =1 0. This equa-
tion has to be integrated by using the transport equations of Section 8.2 and taking
into account the appropriate boundary conditions. To be more specific, let us refer
to recent experiments with regard to the situation depicted in Figure 8-13. The reac-
tion AX+BX = ABX, is taking place while the phases involved are part of the
closed electric circuit. We assume that Dx<D, and Dg. Since there can be no
sources or sinks of electric charge at the interfaces, the constraint VI = 0 gives us

r° . By .
7o & =J%=ji+ih (8.76)

where y denotes the reaction product ABX,. In order to calculate the fluxes, let us
write Eqn. (8.76) explicitly. With F-Vo=V@, we obtain (noting that L, = L,,
LBB = LB and LAB = 0)

0

” J

—Vp=1t,- <L—+V(,UAX",UBX)> + Vug-+ ®.77)
A

Inserting Eqn. (8.77) into the flux equations we find

o 2LaLg AG®

i’ =t (042 LoV =f," (8.78)
Ja=1ta"U B Vipx) = 15"/ La+Ls AZ

2-Ln-Ly AG®

b= tg (O +2-La-Viupx) = t5-j%+
Jb=1t A Vuax) =tg°Jj Ia+Lly AZ

8.79)
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These equations show that the A and B fluxes are composed of both a drift term
and a reaction term. The drift term stems from the electric field. The reaction term
was already deduced in the kinetics of heterogeneous reactions. From Eqns. (8.78)
and (8.79), we obtain the reaction product’s rate of thickness increase to be

1 VY AN 0
dA¢ Ou(tp+ 1)+ T LA Ls, [AG?|

Vamx, df La+Ly A£

=+ (8.80)

where Fy refers to the first and 7y to the second term. From Eqn. (8.80) and the fact
that j°(J% depends on the (externally) applied voltage U°, we conclude that the
reaction rate depends on U° as well. By expressing the total voltage drop U° as
U®+U®+ AU?, we find that Fy, the field dependent reaction rate, can be explicitly
expressed as

O°—(¢s—t5)- AG®
g ¢&F A&

a® of (F-(La+Lyp)

P = (ta—tg)*

(8.81)

Thus, 7y vanishes as soon as £, = fy (Ds = Dg) and is essentially proportional to
0% =F-U% if the applied voltage is high enough. The correction term
(ta—1g)* AG? accounts for the diffusion potential which arises in the reaction prod-
uct. Also, from Eqns. (8.80) and (8.81), we can see that the growth of ABX, is
parabolic only for long times.

The foregoing analysis has been concerned with ionic conducting crystals. In
metal systems, to a first order, the applied voltage has no influence on the reaction
rate of the a/y /B system. In a semiconducting reaction couple, the electric current
(under the same conditions as before) is

I 0 e B B v e
- =ja—je=jb—if = ji+it~i? (8.82)

Equation (8.82) can be compared with Eqn. (8.76) for ionic crystals. After eliminat-
ing V@, we obtain for j4

2ty Jj°
PO <1+_>-v Vi ) - 8.83)

Since L,/Y L;<1 and f, =1, we infer from Eqn.(8.83) for a semiconducting
product that

AG - Auy
A¢

n

Jh=—L, (8.89)
If the electrodes are reversible for X (++X,), and the reacting system is surrounded
by X,(g), then Aux vanishes. Since j, (and similarly jg) is responsible for the
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growth of the reaction layer, there is thus no influence of the electric field on Aé.
The semiconduction has decoupled the fluxes j, and jg.

Experimental studies in the literature are not always conclusive [see, for example,
A.Y. Neimann, et al. (1985), (1986)]. They work with polycrystalline, porous samples
in which quite a number of possible side effects (e.g., at necks) render the results am-
biguous. In addition, the theoretical analysis is partly inadequate. Nevertheless, the
equations and conclusions which have been worked out here are fundamental to the
understanding of many muitiphase, multicomponent systems under electric loads.
Those systems are common elements in modern electrical technologies.
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9 Internal Reactions

9.1 Introduction

Heterogeneous reactions of the type A+B = AB can, in principle, occur in two ways.
1) The product molecule AB is formed from A and B in the surrounding solvent or
immediately at the surface of the AB crystal. These AB molecules are then added
to the crystal on its external surface. This is additive crystal growth. 2) The solid
product AB forms between A and B and separates the reactants spatially. Further
reaction is possible only via (diffusional) transport across the reaction layer AB. This
is reactive crystal growth [H. Schmalzried (1993)]. The moving AB interfaces in addi-
tive crystal growth are inherently unstable morphologically (see Chapter 11).

Chapters 6 and 7 dealt with solid state reactions in which the product separates
the reactants spatially. For binary (or quasi-binary) systems, reactive growth is the
only mode possible for an isothermal heterogeneous solid state reaction if local
equilibrium prevails and phase transitions are disregarded. In ternary (and higher)
systems, another reactive growth mode can occur. This is the ‘internal reaction’
mode. The reaction product does not form at the contacting surfaces of the two reac-
tants as discussed in Chapters 6 and 7, but instead forms within the interior of one
of the reactants or within a solvent crystal.

By a change of temperature or pressure, it is often possible to cross the phase limits
of a homogeneous crystal. It supersaturates with respect to one or several of its com-
ponents, and the supersaturated components eventually precipitate. This is an addi-
tive reaction. It occurs either externally at the surfaces, or in the crystal bulk by
nucleation and growth. Reactions of this kind from initially homogeneous and
supersaturated solid solutions will be discussed in Chapter 12 on phase transforma-
tions. Internal reactions in the sense of the present chapter occur after crystal A has
been brought into contact with reactant B, and the product AB forms isothermally
in the interior of A or B. Point defect fluxes are responsible for the matter transport
during internal reactions, and local equilibrium is often established throughout.

Several types of internal solid state reactions may be distinguished. One type that
has been carefully studied both experimentally and theoretically is the internal oxida-
tion of metal alloys. By investigating tarnishing processes during the hot corrosion
of alloys, it was found that under certain conditions (to be specified later), the oxide
product did not form as an external layer on the metal surface. Rather, it formed as
a fine grained precipitate in the interior of the bulk metal. The product particles
nucleated at an advancing front which was more or less sharp. The front sometimes
moves periodically in space and time, analogous to the Liesegang phenomenon
[C. Wagner (1950)]. Internal metal oxidation has been widely studied in the past in
view of its technological importance (e.g., dispersion hardening). Modern experimen-
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tal in-situ methods of solid state physics, as outlined in Chapter 16, are used for the
analysis of the product’s composition, structure, and morphology.

Recently, internal reactions have been observed during the oxidation and reduction
of nonmetallic crystalline compounds (e.g., ternary oxides and oxide glasses). Al-
though apparently similar, the underlying transport processes in the reacting oxide
systems are shown to be quite different from those that occur during the internal
oxidation of alloys. The phenomenological observations on ternary oxides are as
follows. The internal precipitation front advances (~}/7) into the bulk after a
change in the oxidation (reduction) potential of the nonmetallic component at the
external surface of the solid solution (e.g., (A, B) X). The internal oxidation (reduc-
tion) process takes place even if the mobility of the nonmetallic component (or rather
the anions, e.g., oxygen ions) in the solid solution is vanishingly small. Since it is a
neutral component that must be transported to the reaction front (in form of ions
plus electrons), internal oxidation (reduction) can only occur in semiconducting and
mixed conducting matrix crystals, but not in purely ionic conductors.

A third type of internal solid state reaction (see later in Fig. 9-12) is characterized
by two (solid) reactants A and B which diffuse into a crystal C from opposite sides.
C acts as a solvent for A and B. If the reactants form a stable compound AB with
each other (but not with the solvent crystal C), an internal solid state reaction even-
tually takes place. It occurs in the solvent crystal at the location of maximum super-
saturation of AB by internal precipitation and subsequent growth of the AB par-
ticles. Similar reactions can be observed on a crystal surface which, in this case, plays
the role of the solvent matrix C. Surface transport of the reactants leads to a product
band precipitated on the surface at some distance from each of the two reactants and
completely analogous to the internal reactions described before. In addition, internal
reactions have also been observed if (viscous) liquids are chosen as the reaction
media (C).

There is still another type of internal solid state reaction which we will discuss and
it is electrochemical in nature. It occurs when an electrical current flows through a
mixed conductor in which the point defect disorder changes in such a way that the
transference of electronic charge carriers predominates in one part of the crystal,
while the transference of ionic charge carriers predominates in another part of it. Ob-
viously, in the transition zone (junction) a (electrochemical) solid state reaction must
occur. It leads to an internal decomposition of the matrix crystal if the driving force
(electric field) is sufficiently high. The immobile ionic component is internally pre-
cipitated, whereas the mobile ionic component is carried away in the form of electri-
cally charged point defects from the internal reaction zone to one of the electrodes.

Internal nucleation and growth can occur coherently or incoherently while the
reaction volume can be negative or positive. The severe constraints which the matrix
crystal exerts on the internal reaction can lead to the formation of metastable (or
even unstable) phases, which do not exist outside the matrix. Often, heavy plastic
flow and anisotropic growth has been found.

In Chapter 11, growth morphologies are dealt with and the question is raised as
to which conditions make the moving phase boundaries morphologically stable or
unstable during solid state reactions. One criterion for instability is met if the inter-
face moves against the flux direction of the rate determining (slow) reaction partner.
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Under this criterion, an internal solid state reaction is the extreme of a reaction with
morphologically unstable boundaries. In the following sections, the different types
of internal solid state reactions will be discussed and treated quantitatively [H.
Schmalzried, M. Backhaus-Ricoult (1993)].

9.2 Internal Oxidation of Metals

Alloy oxidation processes are far more complex than the oxidation of metallic ele-
ments. Let us also distinguish between external and internal oxidation. In external
oxidation, a layer forms by way of a heterogeneous reaction as discussed in Chapter
7. In this section, however, we are concerned with the internal oxidation of alloys.
Pure metal A can only be oxidized externally. The simplest system for the study of
internal oxidation is the binary metal alloy (A, B), to which we shall confine our
discussion.

The basic parameters which determine the kinetics of internal oxidation processes
are: 1) alloy composition (in terms of the mole fraction Ny = (1—N,)), 2) the num-
ber and type of compounds or solid solutions (structure, phase field width) which
exist in the ternary A-B-O system, 3) the Gibbs energies of formation and the compo-
nent chemical potentials of the phases involved, and last but not least, 4) the in-
dividual mobilities of the components in both the metal alloy and the product deter-
mine the (quasi-steady state) reaction path and thus the kinetics. A complete set of
the parameters necessary for the quantitative treatment of internal oxidation Kinetics
is normally not at hand. Nevertheless, a predictive phenomenological theory will be
outlined.

An alloy oxidizes internally if the less noble solute B, which has been dissolved
in the more noble metal A, is oxidized to BO (BO,) in the interior of the metal
matrix before it has time to diffuse to the surface (where oxygen is available with suf-
ficiently high activity). In other words, oxygen is transported into the crystal faster
than B diffuses from the interior to the surface. The situation is illustrated in Figure
9-1. Internal oxidation is observed, for example, if Ag alloyed with small additions
of Al, Cd, or Cu is exposed to air. When the Gibbs energy of BO (BO,) formation

02 (poz) A‘E)

Figure 9-1. Internal oxidation of an (A, B) alloy. B and
O are dilute solutes in the solvent matrix A.
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is strongly negative, the equilibrium condition for the reaction B+ O = BO results in
a negligibly small concentration of B in the (A, B) solid solution immediately behind
the internal reaction front (£g), where the dissolved oxygen (O) is in excess. Since
both B and O diffuse to the front of their respective concentration gradients to fur-
ther form BO, this diffusion controls the reaction kinetics. Since the component ac-
tivities are fixed at £ = 0 and & = &, the reaction front &g in the crystal advances
parabolically, that is,

éF=2'a'l‘Do't (9.1)

where «a is the growth parameter. It will be defined below and depends on both the
composition and the mobilities of A and B. Equation (9.1) holds for a linear and
(semi-)infinite diffusion geometry because it satisfies the differential equations of
transport and all the boundary conditions (Fig. 9-1). The explicit solution to Fick’s
second law is [C. Wagner (1959)]

No 2
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The growth parameter & can be readily calculated provided the diffusivities (D, and
Dpg) of O and B in the matrix are known and can be assumed constant at sufficient
dilution. From the condition of continuity at &g (jo = —n-jg, if BO,, is formed) an
implicit equation for the determination of & is obtained. Thus, with N =N,

(¢ =0) and N = N (¢ = )

N3 -VDo/Dy-e® " Po/Pv.(1 —erf a-Y Dy /Dy) = N3 e®’ 94)
If Do Ng®» DgNp, Eqn. (9.4) can be simplified to yield
N° 1/2
a=|—2 ©9.5)
2Ny

whereupon the parabolic rate law becomes

No
Ep = \/2-1)0- <N—‘§> .t (9.6)




9.3 Internal Reactions in Nonmetallic Systems 213

In this particular case, there is no transport of component B towards the surface. BO
is homogeneously precipitated in the region £ < &g, and the BO fraction corresponds
to the concentration of B in the initially homogeneous alloy. Although the BO frac-
tion is spatially constant in this case, the size of the BO particles is not. The increase
in supersaturation becomes slower as the reaction front &; advances. Thus, the
number of precipitating particles becomes smaller with increasing time and, conse-
quently, their volumes become larger since the local product of number times volume
remains constant.

Even if the transport product cg* Dy of component B in the alloy (A, B) cannot
be neglected in comparison to that of oxygen, internal oxidation may still occur. The
amount of BO precipitates will then be enhanced toward the alloy surface. In this
way, a transition from internal to external oxidation becomes more and more likely.
This transition (i.e., the formation of a dense external BO layer) is expected to occur
if

0
NOBEEN_(?&_V”LA* 9.7
2 Ny Dy Vgo

where 4* denotes a critical volume fraction of BO (ca. 0.5), and V,, is the molar
volume of the alloy. Thus, the relative initial values of the product N%-DB and
N%-Do of dissolved oxygen near the alloy surface together determine whether ex-
ternal or internal oxidation will take place. Recently, the very early stages of internal
alloy oxidation have gained special attention since modern nuclear spectroscopy
techniques (e.g., PAC, see Section 16.4) could be applied to observe their evolution
[W. Bolse, et al. (1987); W. Bolse, et al. (1989)].

Sometimes, periodic precipitation bands of internal reaction products have been
found during the course of oxidation. This phenomenon originates from the interplay
between diffusional transport, component supersaturation, and the nucleation (and
growth) process in which a Gibbs energy barrier must be overcome. The underlying
‘Liesegang phenomenon’ was first treated quantitatively by [C. Wagner (1950)].

In many investigations, & (= width of the oxidation zone) has been measured
and the results have been compared with theoretical reaction rates [E. Verfurth, R. A.
Rapp (1964)]. In technical applications, the internal oxidation zone sometimes forms
below an external oxide scale. Analytical solutions for these cases are also available
[C. Wagner (1968)].

9.3 Internal Reactions in Nonmetallic Systems

9.3.1 Internal Oxidation in Nonmetallic Solid Solutions

While the internal oxidation of metal alloys has long been known and likewise inten-
sively studied, the internal oxidation of nonmetallic inorganic compounds and solid
solutions is only a recent field of research [H. Schmalzried (1983)]. Figure 9-2 helps
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Figure 9-2. Schematic A-B-O phase diagram (Gibbs
triangle) with tie lines between the following phases of
complete solubility: (A,B), (A,B)O, (A,B);0,, (A, B),0,.
B-oxides are more stable than A-oxides. I, II, 1II denote
two-phase fields.

to classify the various internal oxidation (and reduction) processes. It shows a sche-
matic Gibbs A-B-O phase diagram with complete solid solution series A-B, AO-BO,
and A;O,-B;0,. Internal metal alloy oxidation can occur in field I. What about the
oxidation processes that take place in field I1? We start with an oxide solid solution
and oxidize it to a higher oxide. If the product is precipitated internally instead of
forming an external layer, the reaction may be classified as an ‘internal oxidation of
the oxide’. It is the result of an increase in the oxygen chemical potential Mo, at the
surface of the reactant oxide.

In evaluating the course of internal oxidation reactions, phase diagrams of the sec-
ond kind (as already applied in previous chapters) are preferred over the Gibbs
triangle in Figure 9-2. As can be seen in Figure 9-3, one essentially replaces the mole
fraction of oxygen, Ny, in Figure 9-2 by its chemical potential (40, In this way,
one can easily visualize the reaction path after changing the oxygen potential into
the stability range of the higher oxide.

We can formulate the kinetic equations for (A, B) O oxide solutions. If it is assum-
ed that the oxygen component (or rather the oxygen ion sublattice) is immobile
(which, in the case of metal alloy oxidation, would forbid any internal reaction) and,
furthermore, that |AGap|> |AGgo|, then the oxidation product is essentially
AB,0, as indicated in Figure 9-3. Let us, for the moment, disregard 1) the influence

”02
(togpy,) A30,
Por W.B); 0,
o B;0,
-y ____
{A.BIO
BO
A A
AB) B
A B
NgIW, + Np) —o= Nol{Np +Ng) —

Figure 9-3. Two schematic phase diagrams of the second kind (log pg_vs. yg = Ng/(N, +Np) for
an A-B-O system. Reaction paths for internal oxidation are indicated.
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of a possible lattice mismatch and 2) the influence any coherency of the precipitates
will have on nucleation and growth, and thus on the initial solid state reaction
kinetics. The reaction scheme is given in Figure 9-4. At the reaction front &g, the
(chemical) reaction comprises the local rearrangement from the B1 structure of
(A, B)O to the spinel structure of the product as driven by the influx of cation vacan-
cies (= outflux of cations) and a charge compensating flux of electronic defects. This
reaction can be written in the form of a quasi-chemical (SE) equation as

v.+2+h*+2-A0+2-BO = AB,0, + A%; (9.8)

—_— -—

The arrows denote ingoing (—) and outgoing (<) (Fig. 9-4). It is implicit in Eqn. (9.8)
that the B, ions of the wiistite (W) are oxidized to B3}, when they form the spinel
(Sp) lattice. If we neglect any lattice mismatch, ¥y = 1- V3P, Let us designate the
volume fraction of the spinel product in the (internal) reaction zone as A. The rate
of advance of the front ({z) can then be written as

4y

="

Jv 0.9

This equation says that if the advance corresponds to 1 mole of oxygen, (1/4) moles

of vacancies arrived at the reaction front (4- (A, B)O—(A,B);0,). As long as 4 at-

tains a constant (= steady state) value, the balance of B cations yields (with respect

to the local reaction A,_noBnoeO = (1—4)*A;_yByO+(4/4)- AB,O, + A*ions)
-
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2:(N°-N) 0 o 0
A=———"2=2-(N"—-N(1-2:NY)=2:N 9.10
N ( ( ) (9.10)

For the last part of Eqn. (9.10), we have assumed that N< 1, corresponding to a high
thermodynamic stability of the (spinel) product phase. A semi-quantitative, and by
no means strict, discussion of the internal reaction kinetics is as follows. As long as
div jy = 0 in the region £5< ¢ < &, we can formulate the cation vacancy flux as

(9.11)

From Eqn. (9.11), we can eventually evaluate A¢ (= &g+ |&g|) as the width of the
internal (spinel) precipitate region, as a function of time. &g is the coordinate of the
surface (Fig. 9-4). It moves towards the oxidizing gas at a velocity of V,,*jy, where
jy corresponds to the A** cation counterflux arriving at the surface (&s) and being
oxidized by O,(g) to AO (and the compensating electron holes which flow with the
vacancies to the reaction front). We thus obtain

1+4/4

L 2+N° <5 cy—c¥
Aé = +E) = fue 4-VV = yW.pS.IV TV 9.12

é ( | éS | éF) Jv m NO m A" Af ( )
If we now assume that Dy is constant and c§<c¥, Eqn. (9.12) can be integrated to
yield a parabolic rate law

_2+N°

A& =2-kp't; kp 0

~ 2 .
(D3 NY) =F-(D%-N%) (9.13)

We note that (DY-N%) is proportional to the self-diffusion coefficient of the cat-
ions in AO near the surface.

These assumptions, however, oversimplify the problem. The parent (A, B) O phase
between the surface and the reaction front coexists with the precipitated (A, B);0,
particles. These particles are thus located within the oxygen potential gradient. They
vary in composition as a function of Ho,(&) since they coexist with (A,B)O
(Np<1; see Fig. 9-3). In the A¢ region, the point defect thermodynamics therefore
become very complex [F. Schneider, H. Schmalzried (1990)]. Furthermore, Dy, is not
constant since it is the ‘chemical’ diffusion coefficient and as such it contains the
thermodynamic factor fy = (Buy/8In cy). In most cases, one cannot quantify these
considerations because the point defect thermodynamics are not available. A para-
bolic rate law for the internal oxidation processes of oxide solid solutions is expected,
however, if the boundary conditions at the surface (£5) and at the reaction front (¢g)
become time-independent. This expectation is often verified by experimental obser-
vations [K. Ostyn, et al. (1984); H. Schmalzried, M. Backhaus-Ricoult (1993)].

Let us now compare the internal oxidation of nonmetallic (oxide) solid solutions
with the internal oxidation of metal alloys. The role of the (neutral) point defect
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pairs (e.g., cation vacancies and electron holes) in the oxidation process of the oxide
solution is similar to the role of dissolved atomic oxygen in the metal matrix during
alloy oxidation. This becomes obvious if we consider the equilibrium condition of
the defect reaction £-0;, = (V ¢y +2-h")+0% and note that 1) (VZ,+2-h") are the
mobile point defects which act as the oxidizing agent and 2) Og builds up the
anion sublattice throughout the whole crystal. A criterion for the transition from an
external to an internal oxidation of oxide solid solutions has been derived in analogy
to Eqn. (9.7), which describes this transition for metal alloys. The non-metal criteri-
on reads [H. Schmalzried (1983)]

Dy Ny(&s)za-(Dg*N3) (9.14)

where a is a numerical factor of the order of unity. Since Dy is always large com-
pared to Dy (because B is rendered mobile through the individual activated jumps
of V, and Nj is > Ny), one may predict that the internal oxidation of nonmetallic
solid solutions (A, B)O (or (A, B)X) should be even more common than the internal
oxidation of metal alloys. These general modes of internal oxidation can play an im-
portant role in metallurgy, materials science, and geochemistry. They alter the prop-
erties of the matrix crystals, and in particular the mechanical properties, by disper-
sion hardening. Internal oxidation may also be seen in the context of the morpholog-
ical evolution of reaction patterns in higher than two-component systems. It con-
stitutes a limiting case of multicomponent, multiphase, transport controlled
chemical reaction processes. In contrast to other systems with morphologically un-
stable phase boundaries (for example, systems with interwoven phases), the products
of internal oxidation are found to be spatially isolated and dispersed in the solid
solution matrix.

9.3.2 Internal Reduction in Nonmetallic Solutions

We have discussed the oxidation kinetics of metal alloys and of oxide solutions.
These reactions lead to dispersed internal products rather than to external product
layers. In the present section, let us pose a different question: can the reduction of
(nonmetallic) solid solutions (e.g., (A,B),0; to (A,B);0,, (A,B);0,, to (A,B)O,
or (A,B)O to (A, B)) similarly lead to internally precipitated particles of the reduced
product? If so, then do these reactions occur in field III, II, or I of the Gibbs triangle
plotted in Figure 9-2? We further note that the reaction (A,B)O—(A, B) is the fun-
damental process of ore reduction.

We observe once more that the morphological instability of phase boundaries,
which eventually leads to isolated internal precipitates, can only occur in ternary and
higher systems. Figure 9-5 illustrates the reaction path of an internal reduction reac-
tion. Practically speaking, after the external surface of an appropriate oxide (or
other) solid solution has been exposed to sufficiently reducing potentials, the prod-
uct forms eithers externally on this surface or in the bulk of the solid as internal
precipitates. Figure 9-6 shows the mechanism of the internal reduction schematically.
For the sake of simplicity, we once again assume that the anions are immobile. If
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|AGgo| » |AGao), almost pure metal A is precipitated in the internal reduction
zone. The reaction at the front &g is induced by a point defect flux which stems
from the difference in oxygen potentials (point defect concentration) between the in-
ternal reaction front and the external surface. The reaction front and surface act as
source and sink for the point defect flux. For example, when we assume that (A,B)O
contains transition-metal ions (e.g., (Ni,Mg)O), the defects are cation vacancies and
compensating electron holes. The (reducing) external surface acts as a vacancy sink
according to the reaction

1
VK{C+2.h.+_BQ=B]2VI-;+-2_.02 (9.15)

«— —_
whereas the (internal) front acts as a source for Vi and h* as follows

B+ A% = A+ Vi +2-h"+B¥, (9.16)
— -— .
From Eqn. (9.16), we see that the metal A is precipitated within the rigid, dense-
packed oxygen ion sublattice of the oxide matrix. The local volume at the reaction
front is thus increased by the molar volume ¥, per mole of vacancies. Large strains
and stresses are the immediate result. In contrast, if (A, B); O, is internally reduced
to yield (A, B) O, the oxygen ion sublattice remains essentially undistorted, except for
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those minor lattice parameter changes which deform the oxygen planes of the two
coherent structures. After the reduced product particles have grown large enough,
the lattice misfit is eventually taken up by misfit dislocations.

In this picture, which is in contrast to internal oxidation, the concentration of
point defects is lowest at the (reducing) external surface. As a consequence, the cat-
ionic bulk transport coefficients are lowest at this surface and the internal reduction
process is thus self-inhibiting. During the course of the internal reduction of the ox-
ide solid solutions, grain boundaries and dislocations may therefore become opera-
tive as fast diffusion paths in the internal reduction zone. In these cases, the subse-
quent formal treatment will require modification. In fact, very special morphologies
reflecting pipe diffusion have been observed under inhibiting circumstances during
the internal reduction of oxides [D. Ricoult, H. Schmalzried (1987)].

The quantitative discussion of internal reduction kinetics follows the discussion
presented in the previous section on internal oxidation. The fundamental kinetic
problem to be solved is again the calculation of the rate of advance of the reaction
front ¢p (Fig. 9-6). To this end we note that

. A
Rp=Jy= 7-€F 9.17)
A

Equation (9.17) balances the vacancy production and the amount of reduced,
dispersed A metal which forms with the volume fraction A. The essential point is
therefore the determination of cy(£g) in order to establish the vacancy flux. When
a quasi-steady state has been reached and if cy(£g)<cy(&r), one can rewrite
Eqn. (9.17) as _

1 Dy-Ny(@r), VA

A A¢ Via,Byo

ép= (9.18)

Ny (&) can be determined by the application of point defect thermodynamics at &g,
where the equilibrium defect concentrations are found from the following reaction

AO+3-Bif. = A+BO+2-BY. (= h")+ Vi 9.19)

The corresponding equilibrium condition (with a, = 1 for the activity of metallic A
and 2+ Ny~ = Ny-) reads

NY(Ep) = K+ Nao (Ep) (1 =Npo (¢p))* = K Nao (&) (9.20)

However, the calculation of N,o(&p), which is the matrix composition at &g,
requires an explicit solution to the coupled diffusion equations of the components
before and behind the reaction front. Since the transport coefficients in these mixed
crystals depend on local composition, one therefore cannot find analytical solutions.
Only if the A%* ions are almost immobile (DA <Dg) do we have Nyo(ép) = N?\o.
This specific case has been discussed in the literature [H. Schmalzried (1984)].

A few investigations on internal reduction reactions have been reported [D. Ri-
coult, H. Schmalzried (1987); M. Backhaus-Ricoult, ef al. (1991)]. Metallic iron has
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been observed to precipitate internalily in (Fe, Mn)O after a sufficient lowering of the
surface oxygen potential. This reaction is of technical relevance. It illustrates the
basic reduction process for the production of iron from ore. Internal reactions also
occur under geochemical conditions, such as when mineral solid solutions (in par-
ticular silicates like (Fe,Mg),Si0,) are exposed to the low chemical potentials of the
respective non-metal component in the surroundings. Furthermore, ceramic materi-
als are often multicomponent solids which, under operating conditions, are exposed
to reducing metalloid potentials. We therefore expect (for appropriate point defect
concentrations and transport coefficients) internal reduction reactions to occur
which can alter the physical properties of ceramic materials considerably.

There is another type of internal reduction reaction which differs in kind from
those we have already discussed. As an example, let us consider the reduction of
(Co, A1),0; in hydrogen. Hydrogen is soluble and mobile in this oxide. During its
inward diffusion, it can reduce the Co’* ions to a lower valence state and even to
metal. In this way, atomic hydrogen is trapped as a proton at or near the reduced
cations (which are often color centers). The advancement of the reaction front thus
becomes visible by the color change or bleaching of higher valent cations (Co**).
This internal reduction is analogous to the internal oxidation of alloys where the
gaseous reactant (O,(g)) was also soluble and mobile in the crystal matrix. Similar
observations have been made in the ternary system Na-Ag-Cl. Here, Ag* ions
dissolved in the NaCl matrix were reduced by inward diffusing color centers and
precipitated as colloidal silver [G. Sauthoff (1971)]. Further examples of internal
reduction reactions have been discussed in {H. Schmalzried, M. Backhaus-Ricoult
(1993); M. Backhaus-Ricoult; S. Hagége (1992)].

9.4 Internal Reactions Driven by Other
than Chemical Potential Gradients

As pointed out in previous sections, the point defect fluxes during internal reaction
are induced by chemical potential gradients. When the point defect concentration
(and thus the component activity) at the internal reaction front &z becomes high
enough, new phases precipitate. Of course, it is possible to induce defect fluxes by
other than chemical potential gradients, and similar internal reactions should then
occur under the appropriate conditions. In this section, we will analyze internal reac-
tions in ionic crystals when the driving force for transport is an electric field. Internal
reactions are expected to take place if Vjgr # 0, that is, if the individual ionic and
electronic defect fluxes (j4) are not spatially constant. This means that we are deal-
ing with inhomogeneous systems in which the transport coefficients change with &.
Quite a number of interesting phenomena can be found in this category of internal
reactions, yet they are waiting to be studied more thoroughly.
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9.4.1 Internal Reactions in Heterophase Assemblages

Heterophase assemblages of mixed ionic/electronic conductors of the type
A/AX/AY/A under an electric load are the simplest inhomogeneous electrochemical
systems that can serve to exemplify our problem. Let us assume that the transport
of cations and electrons across the various boundaries occurs without interface
polarization and that the transference of anions is negligible. For the other trans-
ference numbers we then have

IANAX)+E(AX) = 1; 14 (AY)+4(AY) = 1; £, (AX) # t4(AY)  (9.21)

Since the total electric current obeys the condition VI =0 (I = I, +1.), we have, in
addition to Eqn. (9.21),

I, (AX)+I,(AX) = I, (AY)+1,(AY) (9.22)

From these equations we can derive

t
Al = I, (AX)— I, (AY) = I, (AY)" Ala ) =1-Aty 9.23)
A

Therefore, if A¢, # 0, the cation flux changes its density at the AX/AY interface.
This means that this interface (by application of a sufficiently strong electric field)
acts either as an A sink or as an A source depending on the direction of the A flux.
In the first case, metallic A will be precipitated at the AX/AY interface. Since
At = At,, the difference in electric current, Al,, will supply the necessary electrons
for the (internal) reduction of the A cations. In the second case, the AX/AY interface
operates as an A source and the lattice molecules AX or AY will be decomposed.
Consequently, either X(Y) atoms or X,(Y,) molecules are formed and the corre-
sponding reactions read

1 1
AX = Xy (X)+ AT +¢; AY =V, ()+A* +e’ 9.24)
2 —> - 2 —> -

In principle, the field-driven decomposition can already take place at very small ap-
plied voltages in the galvanic cell. In practice, however, a certain supersaturation of
A (= e'-supersaturation, considering A* +e’ = A and u,+ = constant) is necessary
to nucleate the newly forming A or X, (Y,). The course of the chemical potential
and several other thermodynamic potentials are plotted in Figure 9-7 for a given
supersaturation of A. They can be calculated in a straightforward manner by using
the explicit flux equations and coupling conditions (ie., Eqns. (9.21)—(9.23)).

In any case, crystal lattices are destroyed by the field-driven decomposition. If the
original AX/AY interface remains coherent, stresses develop which will consume
some driving force. In other words, the AX/AY interface is then polarized. A deter-
mination of the amount (= SAIA-dt) of decomposed AX(AY) at the interface
should give a very sensitive method to measure extremely small differences in the elec-
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tronic transference numbers. If the ¢, of the one ionic compound (e.g., AX) is
known, one can then determine the unknown ¢, value of the other compound (AY).

9.4.2 Internal Reactions in Inhomogeneous Systems
with Varying Disorder Types

In Section 9.4.1, we introduced internal electrochemical reactions by considering
heterophase AX/AY assemblages. We now discuss the more general case of internal
electrochemical reactions which occur in inhomogeneous systems having various
types of disorder. From the foregoing discussion, we expect internal reactions to oc-
cur in a crystal matrix whenever the condition Vj;,, = 0 is not met. The extreme is
a transition from n- (or p-) type conduction to ionic conduction (which for brevity
we shall call a (n-i) junction).

Transport of electronic charge carriers in solids with varying electronic disorder
types (p-n) is the basic feature of semiconductor technology. A change in the type
of disorder is usually achieved by doping with donors or acceptors. The basic quan-
titative relations are the flux equations (j; = —c;*b;*Vn;), the Poisson equation
(Ap = —(1/&-gy)- 0, where g is the net charge density), and the definition of the
electrochemical potential #; (= u;+z;"F-¢). Doping establishes the spatial bound-
ary conditions. Assuming that one may deal with non-equilibrium systems within the
framework of linear irreversible thermodynamics (so that the local u; are well de-
fined as long as electrons and holes obey Boltzmann statistics), we must add the rate
of production (or annihilation) of the electronic defects, that is, the continuity equa-
tion. This set of differential equations then quantitatively describes the electric trans-
port in semiconductors. In a linear approach, the rate is directly proportional to the
deviation from the equilibrium concentrations. With time-dependent or time-inde-
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pendent driving forces (electric fields), one can now either analytically or numerical-
ly cover the wealth of phenomena which constitute semiconductor science and
technology. In the classical approach (i.e., neglecting quantum effects and applying
Boltzmann or Fermi-Dirac statistics), the best known example is the (p-n) junction
previously discussed in Chapter 4.

Atomic defects in ionic crystals obey the same formal relationships (kinetic and
thermodynamic) as their electronic counterparts. One may therefore anticipate that
phenomena similar to those found in semiconductors will occur in ionic materials.
Special kinetic effects are to be expected if crystals (or amorphous solids) are brought
into predetermined chemical and electrical potential gradients so that one part of the
sample becomes electronic conducting while the other part exhibits ionic or mixed
conduction (ie., if they strongly change their electronic transference number spatial-
ly). A change in the (majority) disorder type in the crystal from electronic to ionic,
or rather a change in the mode of electrical transport from electronic (n or p-type)
to ionic (i-type), induces internal solid state reactions if an electric current is driven
across the sample by an external voltage.

Such electrically induced internal reactions have not yet been investigated exten-
sively. However, some interesting observations are available which emphasize their
relevance. (n-i) type reactions allow one to place new phases into the internal transi-
tion zone without otherwise manipulating or disturbing the crystal. Since there is no
source (sink) for the electric current, the transition from electronic to ionic defect
fluxes necessarily requires an electrochemical reaction within the crystal. Kinetically,
this is governed by transport, defect relaxation, nucleation, and growth (eventually
also the evolution of the precipitate morphology), quite analogous to other internal
reactions. Since these processes take place in the matrix of the host crystal, elastic
and plastic deformations in both matrix and precipitate are the result. Crystal defor-
mations influence the reaction kinetics and, in particular, the growth morphology.
Here is an essential difference to the electronic phenomena in semiconductors.
Whereas the site number of the host lattice is not affected by electronic processes
alone, electric field driven reactions in internal (n-i) junctions destroy the crystal
matrix.

Let us point out some prerequisites for the occurrence of internal junctions. In the
accessible range of component activities, the compound under study should exhibit
both electronic and ionic conductances. The transference numbers of electrons and
ions (¢, f;,,) should change noticeably with the activity of the components. Extrin-
sic electronic defects accompany nonstoichiometry. Since the electron mobility is
much higher than that of ionic point defects, (n-i) junctions will be found in com-
pound crystals which have a relatively high intrinsic ionic disorder (e.g., AgBr) or in
ionic crystals which have been heavily doped (e.g., ZrO, (Ca0)). By applying high
(or low) component chemical potentials to one side of these crystals (e.g., by polariz-
ing one electrode in a galvanic cell containing this compound, see Fig. 9-8), one can
inject electronic defects (along with a small degree of nonstoichiometry). In this way,
the crystal is exposed to a chemical potential gradient. In addition, the (external)
electric field is the driving force for the electric current 7, which may now be elec-
tronic in one part of the (inhomogeneous) crystal, but ionic in the other part. For
experimental investigations, one can use galvanic double cells as illustrated in
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Figure 9-9. These devices establish not only both the chemical potential gradient and
the electric field, but allow us to control both experimental parameters indepen-
dently.

The kinetics of electrochemically driven internal solid state reactions depend not
only on point defect mobilities, but also on the production (annihilation) rate of
these defects, that is, on the point defect equilibration relaxation time in the (n-i)
transition zone, For the quantitative discussion, AgBr will serve as an example. An
ionic junction can be made by doping two adjoining parts of a AgBr crystal with
CdBr, and Ag,S respectively. The small electronic transference number necessarily
differs in the differently doped parts of the AgBr crystal. Therefore, we deal again
with the situation discussed in the previous section.
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Here, however, we can also use the electrochemical polarization method [C.
Wagner (1955); M. H. Hebb (1952)] in order to establish a (n-i) junction within the
AgBr crystal as shown in Figure 9-8. At the (inert) Pt anode, one establishes a high
bromine activity through the applied voltage. From the literature [D. Raleigh (1967)],
we know that under these conditions AgBr transports electrical charge via electron
holes. The equilibrium between atomic Br and the AgBr structure elements reads
Br = V), +h*+Brj; where the vacancies V', are majority defects of the intrinsic
Frenkel equilibrium Ag,, +V; = Agi +V,. The following observations are made if
the cell in Figure 9-8 is polarized at a sufficiently high voltage (> decomposition
voltage). A dark cloud of fine precipitates advances from the Pt anode towards the
Ag cathode. This effect is explained by an internal reaction as illustrated in
Figure 9-10. Considering the high Br activity, the electric current near the anode is
essentially carried by electron holes h®. While they are driven towards the cathode,
they penetrate into a region where ap, <(or <) ag;(anode). Consequently, Frenkel
disorder prevails in this region. The Ag* transference number is approximately uni-
ty and the electric current is carried here by Ag; and V. The supersaturated elec-
tron holes react with Agj, to form the Frenkel defects

decomposition |
Zone [

Br’f;r+Ag’f\g+ h* +V; = [Vng+h'+Br’1§,] +Agi = [Br]+ Ag; (9.25)
— —_— —_—
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Figure 9-10. Mechanism of an electrochemically driven internal decomposition reaction in AgBr:
h' +AgBr = Br+ Ag;.
—> —

The combination of the SE’s in the brackets of Eqn. (9.25) is a (neutral) bromine
atom sitting on the site of a missing lattice molecule of AgBr, this being the smallest
possible pore. Equation (9.25) formulates the overall internal reaction in the (p-i)
junction, where the incoming (high activity) electron holes h*® are transformed into

atomic [Br] and outgoing Ag;. If the neutral bromine atoms cluster and eventually
—
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grow (Ostwald ripening), they give rise to the visible cloud seen in the polarized AgBr
cell. In addition to the (brownish) clouds in the anodic region of AgBr, pit formation
at the crystal surface near this p-zone (and growth of silver dendrites from the
cathode) clearly indicates the existence of supersaturated component activities inside
the crystal. It seems as if high nucleation barriers in the crystal matrix inhibit inter-
nal reactions, so that the supersaturated components take refuge in the closest sur-
face where nucleation energies are smaller (Fig.9-11).

AgBr  1Br,lg]
/ 2t

(-) Ag Ag: h | Pt (+)

Figure 9-11. Surface pitting of AgBr due to supersaturation of electron holes near the polarized
anode [T. Grofle (1991)] and schematic mechanism of surface pitting.

9.4.3 Formal Treatment of Electrochemical Internal Reactions

Let us first introduce the polarization cell Pt/AgBr/Ag at low voltages without inter-
nal reactions, following the original ideas of Wagner and Hebb [C. Wagner (1955);
M. H. Hebb (1952)]. The point defect concentrations and transference numbers of
electronic and ionic charge carriers are depicted in Figure 9-8. The chemical potential
gradient is established in the electrolyte by application of a voltage between the inert
Pt anode and the reversible Ag cathode. At sufficiently low voltages, only a diffusive
flux of electron holes is permitted. The ion flux is blocked by the anodically polar-
ized Pt electrode. The h* concentration gradient is determined by the following con-
ditions. At the reversible electrode, the h® chemical potential is established by the
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equilibrium condition of the reaction AgKg = Ag+h"+ Vi, Upg+ = ,qug Tl
Note that ua.+ and My, are constant, the latter in view of predominating intrinsic
Frenkel defects. At the polarized Pt electrode, n,-(Pt) = 7,-(AgBr). Since
- (Pt) = 4l (Pt) and F-¢(AgBr) = F-p°(AgBr), the change in ¢ (Pt) between the
electric leads (= AU) corresponds in total to the change in u,-(AgBr) at the
Pt/AgBr interface (~In Ny (AgBr)).

If local point defect equilibrium prevails and space charge effects can be neglected,
one finds from the condition of electroneutrality that

(ci+ep)—(cy+c)=0;i=Agf, v=Vj,, h=h" (9.26)

Equation (9.26) can be rewritten by defining c;*c, = (c®)? and Cp'Ce= (cg)2 from the

Frenkel and electron-hole product relations as

.0 0
O (S-S )4l (2_Ce) =0 (9.27)
4 (& Ce ©Cn

¢%-sinh (In ¢;/¢%)+c%-sinh (In ¢, /%) = 0 (9.28)

or

The steady state condition of the polarized cell provides two kinetic equations:
ji(=—-jy)=0and I/'F = jo=1/F- Y z4*ji. From the first condition, one derives
immediately

F _F(e)-¢())
Ve/e; = —E'V(ﬂ, ¢i(§) =¢(0)-e RT (5.29)

From the second condition, it is found that

:0 De Cg 2
J = —Dycy 1+F- = -V(nc+Incy) (9.30)

h \Ch

Equation (9.30), in combination with Eqn. (9.28), describes the charge transport in
the polarized Pt/AgBr/Ag cell if no internal reactions occur. Limiting cases can be
solved analytically. If, for example, c’»c? and ¢;=c,=c% it follows that
= —~Dy (Ac,/A&). In combination with the equilibrium conditions at the two
electrodes which require that A ¢ between the two electrodes is AU = (Au,/F) =
(RT/F)-In ¢, /c, (A £), one obtains

0
jO = _Dh.ChA_(g).(l_e—(F/Rn-AU) , (9.31)

where c2(0) is the electron hole concentration at the reversible (Ag) cathode.

If the anodic potential of the polarized electrode is now increased until a
(h*—Ag]) junction zone is formed in the interior of the electrolyte, AgBr will
decompose internally provided the nucleation barrier can be overcome. This is shown
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in Figure 9-10. To qualitatively picture the overall (n-i) junction reaction, Eqn. (9.25)
is split into 1) the Frenkel formation reaction V;+Ags, = Vi, +Ag;, in which two
regular SE’s are transformed into a pair of intrinsic point defects, and 2) the forma-
tion reaction of atomic Br according to Brg, +Vi,+h® = [Br].

In view of the appreciable number of SE’s involved in reaction (9.25), distinct
serial reaction steps can be anticipated. Steps in which the electron hole is involved
are assumed to be fast compared to steps involving ionic SE’s (in line with the fact
that D, > D). Thus, the (locally homogeneous) Frenkel reaction becomes rate deter-
mining for the overall internal process described by Eqn. (9.25). The Frenkel reaction
is bimolecular. The rate equation for the formation of Frenkel defects is, according
to standard kinetics,

- ki ¢ ¢
- IV 2 IR T S
&=k (1 e c°> ©9.32)

If necessary, Eqn. (9.32) can be linearized. In view of Eqn. (9.32), the ionic defect
flux of the polarization cell is

j0=séi'df=k-;'(co)2's<1_%'Ci'cv)'df 9.33)

(¥
and in the limit of saturation
j%(max) = K- (c®)*- & (9.34)

where the integrals of Eqn. (9.33) go over the width &; of the junction zone. The
determination of the quantity £y in Eqn. (9.34) in terms of transport coefficients,
rate constants k;, and the applied voltage A U uses the following differential equa-
tions under steady state conditions

Vin =r; Vi =F
(9.35)
VGnt+i) =05 jutii=j°

This set of equations balances the electric current. Inserting the fluxes explicitly and
eliminating the potential gradient V¢, one obtains the rate 7, which can then be
equated with Eqn. (9.32). We note that the concentration ¢, is <¢; (and c,) since the
hole mobility is far greater than the mobility of the ionic point defects. In addition,
we assume that ¢, ~ 1/c,, which is consistent with the assumption of a fast (partial)
reaction Brj, +V)y,+h* = [Br] in the internal reaction zone where small bubbles of
[Br] exist already. Space charge effects are neglected, and local electroneutrality is
assumed to hold. With all these assumptions, the given set of equations describes
the kinetics of electrochemical internal decomposition reactions. However, to ex-
plicitly solve them we have to define the Br activity in the junction zone. This activity
depends on the crystal’s ability to withstand the internal pressure corresponding to
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ay, in the micropores, and which in turn depends on the plasticity of the crystal and
the external constraints of the evolving stress. Without sufficient knowledge on the
experimental (boundary) conditions, it is rather academic to pursue the solution of
the complex system of differential equations, although it has been done numerically
[U. Stilkenbohmer (1994)]. Such situations occur repeatedly in our discussions of
chemical processes taking place in crystals: we have gained a qualitative understand-
ing, but it is hardly not possible to quantify the real systems.

9.5 Internal Reactions A+B = AB in Crystal C as Solvent

The common feature of the internal reactions discussed so far is the participation
of electronic defects. In other words, we have been dealing with either oxidation or
reduction. We now show that reactions of the type A+B = AB can take place in a
solvent crystal matrix as, for example, the formation of double oxides
(Ca0 +TiO, = CaTi0;) in which atomic (ionic) but no electronic point defects are
involved. Although many different solvent crystal matrices can be thought of (e.g.,
metals, semiconductors, glasses, and even viscous melts and surfaces), we will deal
here mainly with ionic crystal matrices in order to illustrate the basic features of this
type of solid state reaction.

9.5.1 The Internal Reaction AO+BO, = ABO,

Let us analyze the following specific reaction [H. Schmalzried, et. al. (1990); T. Frick
(1993)]. A single crystal of NiO is used as a solvent for the solid reactants CaO and
TiO,, both being moderately soluble in NiO. They isothermally diffuse into NiO
from opposite sides (Fig. 9-12a). Solutes for this type of reaction do not form stable
compounds with the solvent crystal, but must form at least one stable compound
with each other.

NiO is a cation deficient semiconductor. The fraction of its cation vacancies and
compensating electron holes depends on the oxygen potential as discussed in Sec-
tion 2.3. The isovalent Ca?* ions can replace Ni’* ions in the cationic sublattice of
the fcc matrix by chemical interdiffusion. TiO, and NiO form NiTiO; which
dissolves to some extent in the fcc matrix of NiO as Tiyf, and Vi The counterdif-
fusion of TiO, and CaO in the NiO solvent leads to the encounter of the different
solute cations (Fig. 9-12a). With increasing overlap of their concentration profiles,
the concentration of the product will eventually surpass the solubility limit (and the
nucleation barrier). Precipitation of the rather stable CaTiO; compound as an inter-
nal reaction product in the NiO matrix is the result.

The question of nucleation was discussed generally in Chapter 6. In contrast to
nucleation in liquids, the nucleation of AB in the solvent crystal matrix C is often
hampered by structural constraints imposed on the newly forming AB phase by the
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Figure 9-12. a) Scheme of the internal
solid state reaction CaO +TiO, = CaTiO,
in the matrix crystal NiO. Concentration
profiles and precipitate are indicated.

b) Photograph of cross section with in-
ternal reaction zone (7 = 1340°C,

t = 413 h reaction time).

solvent crystal matrix. It is therefore conceivable that at the beginning coherent,
metastable phases with non-equilibrium structures are formed before semi-coherency
and/or incoherency of the AB/C matrix interfaces lead to a stable reaction product.
Figure 9-13 shows the schematic concentration profiles of A and B in C along with
the solubility product N, - Ng. The maximum of the solubility product (or rather of
a, - ap) determines the site of homogeneous nucleation of the first AB precipitates.
The course of the further reaction can be treated quantitatively if the ther-
modynamics of the A-B-C system, as well as the transport properties of A and B in
AB and C, are known. Explicitly, Fick’s second law has to be solved for the transport
of both A and B in C, under the given boundary and flux coupling conditions. They

Figure 9-13. Concentration profiles and solubility
product L,y = N, N of solutes A and B in the
matrix crystal C.
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require that j, = —/p at the location of AB precipitation. Numerical solutions to
this kinetic problem are available [M. Backhaus-Ricoult, et al. (1991)]. In a linear
reaction geometry, the locus of the first internal precipitation band is determined
almost exclusively by the ratio, D,/Dg, of the diffusivities in the C crystal. Other
kinetic and thermodynamic parameters are of minor importance. If D /Dy < (>)1,
no internal precipitation occurs and the reaction product forms at the interface of
the less mobile reactant.

During the internal formation of CaTiO; in the NiO matrix, several distinct pre-
cipitation bands have been observed at different locations. They indicate that the
reaction mechanism is not as simple as illustrated in Figure 9-12. Generally speaking,
the internal formation of products AB is a special case of the combined diffusion-
reaction problem, which in view of its nonlinearity has recently gained widespread
interest [S. Havlin (1992)]. In our context, it may suffice to observe that, if a steady
state solution exists, the locus of the steady state AB precipitates does not coincide
with the locus of the first nuclei (= maximum of solubility product). Rather, the
reaction front moves continuously or discontinuously to its final steady state loca-
tion. Yet even at this stage, the growth of the AB precipitates is not strictly stationary
since the morphology of the product particles changes with further growth. This
morphological evolution of the AB precipitates depends on the transport coefficients
of A and B in the C matrix as well as in the reaction product AB. If diffusion within
AB is fast compared to diffusion in the matrix, the AB/C interface is a surface of
constant activity. The precipitate will then elongate symmetrically towards the reac-
tants A and B and becomes needle-like. If, in contrast, diffusion within the precipi-
tate is slow compared to the diffusion in the C matrix, and if D, and Dy do not dif-
fer too much, the precipitate particles grow preferentially as plates parallel to the
A/C (and B/C) interface. These product plates eventually grow together to form a
continuous barrier which inhibits further reaction.

It is evident from this brief discussion that there are many possible modes of inter-
nal reaction in a crystal matrix, although we have not yet included the influence of
stresses on growth kinetics and morphology. The reacting system is necessarily
strained if V,,(A) # V,,,(B) # V,,(C). The resulting stress fields are long range, and if
the stresses exceed the yield strength, plastic flow and dislocation formation will
begin. Not only is the driving force affected by the stress, but kinetic coefficients are
changed as well, mainly by pipe diffusion along dislocations.

The types of internal solid state reactions discussed in this section can have in-
teresting technical applications. Since these reactions are localized, the introduction
of AB precipitates into a C matrix can strongly influence such local properties as
the mechanical, electrical, or optical properties inside a crystal.

9.6 Internal Reactions During Interdiffusion

Let us refer to Figure 9-3, but which we replot as Figure 9-14 to illustrate possible
reaction paths in the AO-BO interdiffusing system. We assume that D, > (or>») Dy,
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Figure 9-14. a) Possible reaction path during interdiffusion in the quasi-binary AO-BO system, plot-
ted into a phase diagram of the second kind. The initial couple is (A,B)O’ and (A, B)O”. b) Real-
space presentation of the processes occurring at different times during interdiffusion.

and also that the dense-packed anions are immobile in the semiconducting oxide
solid solution. With these assumptions, a diffusion potential for the oxygen compo-
nent builds up. The faster A2* cations tend to deplete the AO-rich side of the diffu-
sion couple of metal ions, thereby slightly increasing the nonstoichiometry & of this
side of the solid solution (A, B),_;O. The increase in J corresponds to a steep in-
crease in the oxygen activity of the almost stoichiometric crystal. The opposite effect
is found at the BO-rich side as depicted in Figure 9-14. When the reaction path enters
a two-phase field and nucleation is possible, internal reaction products precipitate
temporarily inside the crystal matrix [H. Schmalzried (1992)]. Solution thermody-
namics and the kinetic parameter § = D,/Dg will determine the course of the reac-
tion path and thus decide whether oxidized products ((A, B);0,4), reduced products
((A, B)), or both will form in the interdiffusion zone.

However, a major influence on the formation of internal reaction products is the
geometry of the diffusion couple. The reason is that external surfaces are the main
sources and sinks for point defects (e.g., Ve +h"). These defects determine the non-
stoichiometry d (= Ny) and are supersaturated (undersaturated) during interdiffu-
sion relative to the constant external oxygen potential. The defect relaxation process
at the surface conforms to 1-O,(g) = Vie+2-h*+03% . The transport of defects
from the interior of the diffusion zone to the crystal surface (and vice versa) depends
on the geometry of the sample. Thus, large samples need long equilibration times
which cause large supersaturations (undersaturations) and explain the observed for-
mation of internal products during interdiffusion (as, for example, in the system
Ag,S-Cu,S [B. Gries, H. Schmalzried (1989)]). After a sufficiently long diffusion
time, when the component concentration gradients flatten out and the driving forces
(ie., oxygen potential gradients) decrease again, the internal oxidation and reduction
products redissolve. In conclusion, interdiffusion in multicomponent solid solutions
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with narrow ranges of homogeneity (Ad) is prone to internal product formation. In
the spirit of Figure 9-14, the reaction path (temporarily) leaves the single-phase field
and penetrates into multi-phase fields.
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10 Reactions At and Across Interfaces

10.1 Introduction

The kinetics of heterogeneous systems always involve transport both across and in
interfaces as well as interface reactions. In non-equilibrium systems, interfaces can
move or be static, while the interface morphology of moving boundaries may be
stable or unstable. Interfaces have to be characterized structurally (on both micro-
scopic and macroscopic scale) and thermodynamically. A thermodynamic approach
is appropriate in the context of solid state kinetics since the temperature must be high
enough to induce thermally activated jumps of the atomic SE’s. A recent survey on
the defect chemistry at interfaces has been given by [J. Maier (1994)]. Interfaces are
regions of increased energy. Therefore, SE’s are particularly mobile at, near, and
across interfaces.

The equilibrium interfaces of fluid systems possess one variant chemical potential
less than isolated bulk phases with the same number of components. This is due to
the additional condition of heterogeneous equilibrium and follows from Gibbs’
phase rule. As a result, the equilibrium interface of a binary system is invariant at
any given P and 7, whereas the interface between the phases a and £ of a ternary
system is (mono-) variant. However, we will see later that for multiphase crystails with
coherent boundaries, the situation is more complicated.

Since the equilibrium state is uniquely defined, there is only a single equilibrium
interface structure. However, since SE’s on different sublattices can have mobilities
of very different magnitude, we expect to often find metastable interface structures.
Interfaces have been classified according to their degree of coherency, namely fully
coherent, semicoherent, or incoherent. The incoherent interface is characterized by
a minimal elastic strain energy (long range) and a maximal interface energy proper.
The coherent interface implies the existence of a single lattice or network to which
all the SE’s of the two adjacent phases may be referred to. Interfaces in (dynamic)
equilibrium necessarily contain imperfections and are thus not perfectly flat on an
atomic scale. The atomic structure of moving interfaces depends on their velocity,
that is, on driving force and mobility. Furthermore, since we expect the mobility to
depend on the interface structure, nonlinear kinetic behavior is therefore likely to
occur.

Chemical kinetics concerns the evolution in time of a system which deviates from
equilibrium. The acting driving forces are the gradients of thermodynamic potential
functions. Before establishing the behavior and kinetic laws of interfaces, we need
to understand some basic interface thermodynamics. The equilibrium interface is
characterized by equal and opposite fluxes of components (or building elements) in
the direction normal to the boundary. Ternary systems already reflect the general
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kinetic behavior of heterogeneous multicomponent systems, the phases of which are
separated by phase boundaries (interfaces). Considering the multitude of possible
kinetic situations, we shall concentrate on only a few prototypes, restricting the dis-
cussion essentially to the two interfaces presented in Figure 10-1.

As long as the diffusivities Dy and Dy are much smaller than D, in AX and AY,
the interface of the AX/AY couple remains stationary when component A is
transported across it. In contrast, the interface between AX/BX (or AX/BY) will
move if Dy (and Dy)<D, (and Dg), while A or B is transported across it. This is
shown in Figures 10-1b and c.

10.2 Some Fundamental Aspects
of Interface Thermodynamics

Let us consider the system illustrated in Figure 10-2. Two large crystals (a and g) with
sufficient buffer capacity are in equilibrium (uf = u? ) and possess surfaces of equal
size. These surfaces are lattice planes characterized by their Miller (hkl) indices
(h%,) and (hg,) (m = 1,2,3). Construction of an arbitrary interface can be achieved
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{hkl)®  (hk1)P

Figure 10-2. The defining parameters of a (con-
b strained) interface b.

by 1) decreasing the distance rgﬁ between the origins of both surface lattices and 2)
changing their mutual orientation (¢ (¢¢)). Denoting the ‘interface phase’ as b, we
have

G =G-(G*+G*) (10.1)

where G® and G” are the respective Gibbs energies if 7§#— o and G is the Gibbs
energy of the system with the interface. Thus, G® is defined as an excess function.
Let us denote the set of geometrical parameters (rgﬁ and ¢ (¢9)) by 6. If, for given
(h,,), the interface construction is performed reversibly, the molar Gibbs interface
energy would be given by

G®= Y NP-u;=f(P,T;5) (10.2)

By changing &, the surface planes (h,,) may become strained or even reconstruct.
We conclude that, given P and 7, the boundary composition N? depends on a) the
chemical potential of the components in the adjacent phases and b) the orientation
6. In equilibrium, 86 G = &G"® = 0 which determines, at any given P, T, and u;, the
set 6 (equ). In other words, we can formally express the equilibrium interface state
(i.e., structure, strain, composition) as

§ (equ) = f(P, T, 11, 6(equ)) (10.3)

The dependence of § on & for a stationary interface can be calculated explicitly. The
calculations involve the introduction of appropriate interatomic potentials and relax-
ation procedures for the energy determination (E® = E—(E® + E?)). E® (min) speci-
fies the equilibrium structure at 0 K in this approximation. Energy calculations have
been made for example, on Me/AX interfaces [D. Wolf, K.L. Merkle (1992)]. The
calculation starts with a given (h4X) surface and derives the equilibrium configura-
tion and energy for Me on AX, This is normally not the lowest energy interface,
which has to be found by varying (hﬁx). Also, interface energies for multicompo-
nent crystals cannot strictly be defined at an atomic level uniess the dependence on
u; has been incorporated into the theory.

As has already been mentioned in Chapter 3, we may discuss the interface ther-
modynamics and in particular the degrees of freedom of the interface from a purely
phenomenological point of view, We then introduce instead of the Miller indices in
addition to the three ‘microscopic’ degrees of freedom related to the vector r,5 two
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additional unit vectors. These specify 1) the normal to the interface and 2) the axis
of rotation, rotating crystal a relative to . The two unit vectors represent four
‘macroscopic’ degrees of freedom. The fifth one is the rotation angle ¢ [J. W. Cahn
(1982)]. In conclusion, eight geometrical parameters (degrees of freedom) are suffi-
cient for the phenomenological description of interfaces.

Equation (10.3) states that (given P, T') the boundary state, §, and the composition
N}’ depend on u;, the chemical potential of the components in the system, which
has already been illustrated in Figure 3-7. The & (us,) change in Ag,, ;S after the
(8— a) transformation at 176 °C indicates that point defects are adsorbed at the new-
ly formed internal surfaces introduced into the crystal by this transformation, quite
analogous to a Gibbs adsorption isotherm. For (isotropic) internal surfaces, the
isotherm is
_Bab

10.4
o, (10.4)

k=

where n}-’, ¢ denotes the specific excess number of moles of i(Ag) in the interface
relative to component k (here sulfur) and a® is the interfacial energy. Equa-
tion (10.4) follows from the (isotropic) interface energy density

a®=u-T-5s°- Y nb-y, (10.5)
and the combined first and second laws of thermodynamics

du®=T-ds°+ ¥ y;-dn? (10.6)
so that Eqn. (10.5) yields the differential form

do® = —s°-d7T- ¥ nP-dy (10.7)

which, for constant 7, is the Gibbs adsorption isotherm (10.4). The incoherent inter-
face, thermodynamically characterized by Eqns. (10.5) —(10.7), has two neighboring
phases a and f. At equilibrium, we therefore have, in addition to Eqn. (10.7), two
Gibbs-Duhem equations for a and # which constrain the compositional (or chemical
potential) variations.

Let us extend these relations to the equally important case of coherent interfaces.
To do so, it is necessary to include the strain energy of the @ and 8 phases. To this
end, we formulate the thermodynamic relations in terms of SE’s (k',V) [W.C.
Johnson, H. Schmalzried (1992)]. Under the condition of coherency, the number of
lattice sites is conserved. Instead of Eqn. (10.7), we obtain

dg®= —s*-dT- ¥ n}-du,+al-dej (10.8)
where u; = (U —Hy) is now the chemical potential of building element k£ in the

coherent interface. o} is the (interfacial) stress tensor and & the strain tensor. This
interfacial strain has to be coupled to the strain in the contiguous a and 8 phases.
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We note that g, is sometimes called the diffusion potential of component & in the
metal physics literature.

In order to determine the equilibrium state of systems including coherent inter-
faces, the conditions of thermal, chemical, and mechanical equilibrium have to be
met, that is, for the first two

T®=Tf=T" (thermal equilibrium) (10.9)

ul=uf=u% (chemical equilibrium) (10.10)
For ionic crystals, electrochemical potentials have to be used in place of Eqn. (10.10).
Mechanical equilibrium (in the absence of body forces) is attained if for the stress
tensor

Vé=0 (10.11)

The continuity of traction across the interface requires that
§%-n°+8%-nf=0 (10.12)

where n designates the normal vector. This complicated system of equations has been
solved for some limiting cases by [P.W. Voorhees, W.C. Johnson (1989); W.C.
Johnson, W. H. Miiller (1991)]. Without going into detail, let us summarize a few
important conclusions. In coherent heterogeneous solids, the contiguous equilibrium
phases need not be chemically homogeneous. The inhomogeneity depends on the
geometry of the system (i.e., on the elastic boundary conditions). Thus, the usual
Gibbs-Duhem relationship for individual phases no longer holds. Also, in this case,
Gibbs’ phase rule is no longer valid in its well known form f= k+2—p (f = vari-
ances, kK = number of components, p = number of phases) [W.C. Johnson (1987)].
The independent thermodynamic variables in the contiguous phases a and f are now
coupled through the coherent interface. As a consequence, the differential de® in
Eqn. (10.7) for the interface energy of incoherent boundaries can be re-evaluated to
yield

do®=A°-dT+B°-dP+ ¥ CP-du, (10.13)
where
b b, b, (0E5
A’= —s’+ay | L (10.14)
oT
B®=¢? L 10.15
=0y 3P (10.15)
b b b 35}"
Ck= —nk+0','j‘ — (10.16)
Bk

The substitute for the Gibbs-Duhem equation (Y}, N;-dy; = 0) is

Y Cy-duy = 0; P, T = constant (10.17)
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where C, is a function of N¢, N%, g ag, € t-:?j and their derivatives, see [P. W.
Voorhees, W.C. Johnson (1989)].

We have seen that coherent, semicoherent, and even incoherent equilibrium inter-
faces change their state § when y; is changed. Therefore, the partial derivative
80°/8y; is strictly defined only if the orientation 6 has been kept constant. Further-
more, adsorption and desorption of SE’s change the composition N? and the state
§ of the interface. A discontinuous change in § with y; is equivalent to an interface
(structure) transformation and reveals itself by abrupt changes in the kinetic and dy-
namic interface parameters. In particular, the mobility of the atomic constituents
depends on y;, that is, on N? and §. An example for an external surface has been
provided by [V. Stubican (1993)] (Fig. 10-3). We note, however, that the experiment
first gives us the product 8- DP®, & being the boundary width. Also, segregation at
the boundary influences the concentration profiles during heterodiffusion. There-
fore, the quantity which can be finally obtained from these experiments is a &+ D°,
where a is the segregation factor [G.B. Gibbs (1966)]. The main feature of
Figure 10-3 is the fact that the surface transport coefficient goes through a minimum
as a function of the chemical potential u;. The experiments were performed with
Fe;04 where similar dependencies have been observed for bulk transport. These re-
sults are conceptually important for the following reason. If transport of compo-
nents in the surface or interface (grain boundary) is found to be a function of the
chemical potential (as exemplified in Fig. 10-3), then this is indicative of the existence
of atomic defects in a more or less ordered boundary phase b. Thus, the defect
chemistry of this boundary b should be analogous to the bulk defect chemistry de-
rived by Wagner and Schottky in their theory of ordered mixed phases (Section 2.2).
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Figure 10-3. Surface diffusion product of Co* tracer on Fe;O, (110), as a function of the (relative)
oxygen potential. 7= 750°C [V. Stubican (1993)]. a = Segregation factor, § = width of surface lay-
er. Insert: bulk Df, and D¢, in Fe,O, at T=1200°C [R. Dieckmann, et al. (1978)].
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In other words, we can expect long range order in the boundary to occur and
therefore it seems to be appropriate to distinguish between the regular and irregular
SE’s of an interface. For other systems, see [R. Kirchheim (1992)].

A convenient experimental method to establish a component chemical potential
at an interface is based on the application of a solid state galvanic cell as depicted
in Figure 10-4. It shows how to predetermine the oxygen chemical potential at the
Me/ZrO, interface through the voltage U applied to the Pt,Me/ZrO,(+Ca0)/
Pt(O,) cell. The interface structure, including the interface defects, depends on
Ilo(ﬂoz) and thus on U.

v
Pt 41 Me | Zr0, Pt, u0°2

Hg,
Figure 10-4. Solid state galvanic cell which establishes the
‘—_—_L oxygen potential at the metal/oxide interface b.
U = ub,~ud =4-F-U.

Figure 10-5. Multicomponent spherical inclusion (#) in matrix a with
exchange of i component.

Up to this point we have dealt with the thermodynamics of planar boundaries. Let
us add several relations for curved interfaces. First, we have to establish an equivalent
to the Gibbs-Thomson equation which holds for curved external surfaces in a multi-
component system. For incoherent (fluid-like) interfaces, this can be done by con-
sidering Figure 10-5. From the equilibrium condition at constant P and 7, one has

2
dG(r,N?) = <8nr-ab+4iV;—°E N?’W?“ﬂ?))'d’=0 (10.18)
so that 2. YP.gb
Y NB-ub-poy= 22" (10.19)
r

and the individual ,uf? (N? ) can be derived from the mass balance and the individual
phase equilibria (Gibbs-Duhem equations for @ and £). For semicoherent or fully
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coherent interfaces, we have to additionally solve the elastic problem. This has been
done with some restrictive assumptions for a binary system [W. C. Johnson (1987)]
and means, in essence, that the chemical potentials have to be complemented by
elastic energy terms (ie., L+ (€-6)).

Further complications emerge if the interface Gibbs energy ¢ is not isotropic but
depends on the Miller indices (h,,) of the surface (mterface) This means that
8G® =0 (min) in Eqn.(10.18) has to be evaluated for G =Y Ap a(h y+ES,
where A(h y is the area of interface with indices (h,,), a(h y is the correspondmg
specific interfacial energy, and E is the elastic contribution to the Gibbs energy. In
metals and van der Waals crystals, a}’hm) may be estimated by counting broken
bonds across the interface.

Gibbs’ concept of an (infinitely thin) dividing surface lends itself to the determina-
tion of interfacial energies, in accordance with the regular solution model which
takes into account the bonds of nearest neighbors only. If species A and B are ran-
domly distributed in phases a and B, it follows from merely counting bonds that

Eb= <§) (NG — N2 ) (10.20)

with &€ = g5,5 — 1 (€aa + &pp) as the excess bond energy and a? as the interface area
per bond. This procedure can be extended to the partially ordered phases a and S.

Often, however, it is more realistic to abandon the model of a discontinuous inter-
face. Segregation of impurities and other point defects, as well as elastic and electric
fields, broaden the interface region. For this extended boundary, we can formulate
the Gibbs energy of Eqn. (10.1) as (i = A, B)

2
AN,
6= | | e@-1-E(AE) +g@)+x -d¢ (10.21)
Ag 2 64‘
where g is the local Gibbs energy density and x the (specific) gradient energy as in-
troduced by Cahn [J. W. Cahn (1959)]. The gradient energy term in Eqgn. (10.21) is
the equivalent of E® in Eqn.(10.20) when the composition varies continuously.
Equilibrium is attained if 8 G® = 0 (min) and mass conservation of the components
is observed. Variational calculus yields

32N,
u? = u® (chem)+u? (elast)—2-x- (ac > =uf=pub (10.22)
as the equilibrium condition.
After discussing the thermodynamic properties of the boundary, let us concentrate
on the change in thermodynamic potentials across the boundary. For this, we for-
mulate the Gibbs energy for the bulk phase a of an ionic crystal as the sum

G% =G’ (chem)+G%(6)+G°(p) (10.23)
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where G%(6) indicates the part of G due to the elastic potential, and G*(¢) that
due to the electric potential. It follows that

ui = uji (chem)+ui(G)+ui(p) (10.24)

Equations (10.23) and (10.24) hold for the #-phase as well and could be inserted into
Eqn. (10.22). The additivity of u; with respect to the elastic and electric potential is
based on 1) the assumption of linear elastic theory (which is an approximation) and
2) the low energy density of the electric field (resulting from the low value of the ab-
solute permittivity ¢, = 8.8x10~2C/Vm). In equilibrium, V4; = 0 and A"Bui =
u? —u® = 0. Therefore, in an ionic system with uniform hydrostatic pressure, the
explicit equilibrium condition reads (A*?=A)

_Aw

Apui+z,FAp=0; Ap=
Zi'F

(10.25)

The electric potential jump A ¢ across the boundary is due to some separation of
positive and negative electrical charge. Thus, the interface corresponds to a capacitor
for which we have (o5 = surface charge density)

A
A¢_ _ 8 (10.26)
A é €&
{1} I b} 191]
N L ~
e \\\
N\,
\\
n
- L z
-|-2- *:: M ::: -l Figure 10-6. Various thermodynamic poten-
et - tials and the electric charge distribution at

and near an equilibrium interface (schematic).
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where A is the boundary thickness. As a result of thermal activation, the mobile
charges are smeared out into the adjacent bulk as a so-called space charge. Let us
denote the effectively charged point defects of the space charge as d* and d ~. They
can combine to neutral building elements, the concentrations of which are determin-
ed by the chemical equilibrium conditions.

The space charge density is o = (F/V,,) (Ng+ —Ny-), and their characteristic
width (ie., the Debye-Hiickel length, which is an equilibrium property and indepen-
dent of the d-mobilities) is obtained as

/a-s *V,,'RT ]/——
AéD = ﬁ s Ng = Nd*"Nd’ (10-27)
-F*-Ny

By and large, the interface structure of an ionic system resembles the scheme shown
in Figure 10-6. A similar concept can explain the concentration distribution in the
elastic field of a coherent (or semicoherent) phase boundary (see Chapter 14).

10.3 Static Interfaces

In Chapter 3 we described the structure of interfaces and in the previous section we
described their thermodynamic properties. In the following, we will discuss the
kinetics of interfaces. However, kinetic effects due to interface energies (e.g., Ostwald
ripening) are treated in Chapter 12 on phase transformations, whereas Chapter 14 is
devoted to the influence of elasticity on the kinetics. As such, we will concentrate
here on the basic kinetics of interface reactions. Stationary, immobile phase bound-
aries in solids (e.g., A/B, A/AX, AX/AY, etc.) may be compared to two-phase hetero-
geneous systems of which one phase is a liquid. Their kinetics have been extensively
studied in electrochemistry and we shall make use of the concepts developed in that
subject. For electrodes in dynamic equilibrium, we know that charged atomic par-
ticles are continuously crossing the boundary in both directions. This transfer is ther-
mally activated. At the stationary equilibrium boundary, the opposite fluxes of both
electrons and ions are necessarily equal. Figure 10-7 shows this situation
schematically for two different crystals bounded by the (b) interface. This was al-
ready presented in Section 4.5 and we continue that preliminary discussion now in
more detail.

When SE’s cross phase boundaries or other interfaces, they are normally trans-
formed and change their identity. For example, interstitial A{) (subscript t indicates
tetrahedral coordination) may become Agf,) (octahedral coordination) after cros-
sing the interface from phase (I) to (II). Let us formulate this transfer in terms of
building elements, namely

AD+VI) = AD VD 5 AR-VD) = AT -vID) (10.28)
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(1) (b} (11)
____________ M
~———
RS I IS
1S K—\o RS
| >
Rs & | o IS
______ el L_.I_______
IS : 3 RS
Figure 10-7. Schematics of possible atomic
R @ IS steps of SE/ at boundary b. ® =SE in
___—I——-;(;-_—_:;;: ———————— p_hase I, 8 = S(IEl)i in phase II. Regular sublat-
is RS tices (RSY, RS™) and interstitial sublattices
o | ™o ISP, 1S™) are indicated. More details are
given in Figure 10-9.

We can see that two SE’s on each side of the interface are involved in the transfer.
Matter transport across the interfaces and, in particular, the dynamic equilibrium ex-
change fluxes j 2 therefore concern the building elements or components k. At
equilibrium,

Jk=7t-Jt=0 (10.29)

The principle of microscopic reversibility across a boundary is thus applicable to
building elements. Since boundary crossing by particles is a thermally activated pro-
cess, the net flux of building element A across the interface exposed to an external
field can be formulated as

a-AE, —(1—a)-AE‘h]

jA=j‘2\-[e RT —e RT (10.30)

where AEy, is the change in the thermodynamic potential across the interface and
a is an asymmetry coefficient called the transfer coefficient in electrode kinetics
(O<a<1). If an electric potential change Ag is the driving force, then Eqn. (10.30)
becomes for charged particles in a linearized version

. .0 ZA'F‘A(/)
=ja 10.31
JATJA RT ( )
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so that the interface resistance, that is, L, becomes
|za*F-jal
A= R—Tzio (10.32)
(zaF) Jja
One notes that R, is inversely proportional to the exchange flux (%) of the dy-
namic equilibrium interface.

It has been shown for Ag/Ag,S that the interface polarization A¢ stems from the
transfer of Ag™® ions and not of electrons, which implies that the transfer of elec-
trons and ions across the Ag/Ag,S interface are independent processes [H. Rickert
(1973)]. If so, then they are kinetically decoupled and can be characterized by their
individual exchange fluxes jC and j,. If Ap>50 meV, we are no longer in the linear
regime and the flux of silver ions depends exponentially on Ag [H. Corish, J. Warde
(1978)]. We note, however, that the preparation of boundaries by contacting different
crystals is ambiguous. Caution is necessary if experimental results are compared,
especially in view of a possible impurity segregation at the interface. The most dif-
ficult problem in this context is the experimental determination of the potential drop
AE,; (e.g., Ap) across a boundary. Obviously it is not possible to insert potential
probes in the bulk close to the interface without disturbing or even destroying the
crystal. This is in contrast to the experimental possibilities at hand in surface science
[e.g., H-D. Wiemhofer, ef al. (1990)].

Depending on the type of boundary and field, a force may act on the static inter-
face. This can be seen from Figure 10-8. For the analysis, let us place the crystal be-
tween asymmetric capacitor plates. Without the field, the boundary (b) is surround-
ed by a symmetric (AX/AX) or an asymmetric (AX/AY) space charge. Thus, an in-
homogeneous electric field exerts a force on the (dipolar) interface. The boundary

a)
p AX
Me /%—_’
7 | Me
b) _ . - .
Figure 10-8. Schematic diagram of a device for the deter-

mination of interface mobility in an inhomogeneous electric
field. The motion due to electric (and frictional) forces

/ |— occurs a) without, b) with galvanic contact (inducing ionic
iy fluxes and decomposition of AX).
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(provided it is mobile) will move until a force equilibrium is attained and the restor-
ing interface tension equals the electric field force. If the interface tension is known,
one could determine the amount of space charge. In Figure 10-8a, the crystal has
no (electrical) contact with the capacitor plates. If such contact is established
(Fig. 10-8b), a flux of charged particles flows across the interface and exerts an addi-
tional (frictional) force which may also lead to a boundary displacement. The fric-
tion stems from a momentum exchange between the drifting particles and the inter-
face. Its calculation requires a detailed knowledge of the local particle dynamics at
or near the boundary which is not yet available. A rough estimate shows that fric-
tional pressures may be in the range of millibars. Similar considerations hold for
driving forces other than electric ones. For example, if an elastic stress field is applied
to a sample containing coherent boundaries, the elastic interaction of the applied
field with the coherency stress field can cause the boundaries to move depending on
their mobilities [J.R. Dryden, G.R. Purdy (1990)]. We note in passing that
Au}’/ AP across the boundary b conforms to a ‘chemical’ virtual force with no im-
mediate mechanical effect.

Let us now construct an atomic model for the interface reactions and particle
transfer across boundaries in order to interpret such kinetic parameters introduced
before as the exchange current or the interface resistance. To this end, we replot
Figure 10-7 as shown in Figure 10-9a. This scheme allows us to quantify the pro-
cesses occurring at a stationary interface in an electric field under load. Let us fur-
ther simplify the model and consider crystals with immobile anions and the interface
AY/AX as shown in Figure 10-9b. AY merely serves as a source for the injection of
atomic particles (SE’s) into the sublattices of AX, or as a sink for SE’s arriving from

® AY b ax O

—A s —>A; i-lattice
A
R ﬁ{[ . A -regular cation
— V% esps <V, lattice
v X" X.Y -regular anion
al lattice, immobile

® A P & ©

e ] i - lattice
\ « A -regular
Va < YA \attice

Figure 10-9. a) The elementary transfer

steps of a static interface AY/AX under

load (D, » Dy, Dy). b) Static interface

AV T AY/AX under load. Concentrations of

b) irA g irregular SE’s (A], V}) in the relaxation
— &= —£ zone (&g) are indicated.

'
'
|
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AX at the AY/AX boundary. The main feature of this interface reaction (i.e., the
transport of building elements across b) is the injection of mobile point defects into
available vacant sites and the subsequent local relaxation towards equilibrium
distributions. According to Figure 10-9b, two different modes of cation injection can
take place in the relaxation zone &;. 1) Cations are injected into the sublattice of
predominant ionic transference in AX by the applied field. In this case, no further
defect reaction is necessary for the continuation of cation transport. 2) Cations are
injected into the ‘wrong’ sublattice which does not contribute noticeably to the cat-
ion transport in AX. Defect reactions (relaxation) will occur subsequently to ensure
continuous charge transport. This is the situation depicted in Figure 10-9b, and, in
view of its model character, we briefly outline the transport formalism.

If we denote the point defect injected by the applied field into the ‘wrong’ sublat-
tice of AX by i (e.g., A{), and the conjugate defect that carries the flux in AX by
j (e.g., V}), then the steady state condition for both fluxes (i, j) in the defect recom-
bination zone &y is

Ji—ji=Jos Vi=Vjj=F=r (10.33)

in accordance with Figure 10-9b, where jj is the constant total flux (= —j; at &> &p)
and r; and F; are recombination (production) rates. Furthermore, we have at the
interface (£ = 0)

Ji=Jo (10.34)
The second condition for bulk transport in AX is D;> D, in accordance with our

assumptions. The point defects relax by a bimolecular reaction mode (see Section
5.3.3). In order to simplify the formal treatment, we linearize the recombination rate

(10.35)

We have tacitly assumed that space charge effects can be neglected in the present con-
text, which is justified for sufficiently high fields. Inserting the explicit flux equa-
tions for i and j into Eqn. (10.33) we obtain

F-Vo=-R T.M (10.36)

(Di+Dj)-¢

and therefore the flux of i becomes

D.-D. D.
ji=—2-2 T .y Lo (10.37)

With Eqn. (10.37) it follows from Egns. (10.33) and (10.35) that
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Vi(Ac)- &g (Ac) =0, (10.38)

The relaxation time g is ¢®/(2-k;) and D is defined as D;-D;/(D;+D;). Solving
Eqn. (10.38) with the boundary conditions of Figure 10-9b we obtain

. &
Ac=12L§—)R-e & (10.39)
and D D ¢
iimie-2 (118 (10.40)
D;+D;, D,

_£
Between £ =0 and & = &g, j; diminishes approximately as € ¢z. Only a small frac-

tion of the total flux jj, is carried into the bulk of AX (£» &R) by the interstitials,
Their transference number is given by D;/(D;+D)).

In a zeroth order approach, integration of Eqn. (10.36) gives j, as a function of
the electrical potential drop AU in the recombination zone

. F AU
= ——— % (D;+D)— 10.41
Jo RT 1T & ( )

AU is known as the overpotential in the electrode kinetics of electrochemistry. Let
us summarize the essence of this modeling. If we know the applied driving forces,
the mobilities of the SE’s in the various sublattices, and the defect relaxation times,
we can derive the fluxes of the building elements across the interfaces. We see that
the interface resistivity R® = AU/(F" Jo) stems, in essence, from the relaxation pro-
cesses of the SE’s (point defects). R® depends on the relaxation time Tp of the
(chemical) processes that occur when building elements are driven across the bound-
ary. In accordance with Eqn. (10.33), the flux j, can be understood as the integral
of the relaxation (recombination, production) rate 7;(s;), taken over the width &g.

Jo=4i©@—ji() = § 7;-d¢ (10.42)
19

The width of the relaxation zone &g, which is the thickness of the ‘kinetic interface’,
may differ considerably from other lengths characterizing other properties of an in-
terface (e.g., space charge width, elastic deformation width).

Transport of Ag* across the Agl/Ag,S boundary has been studied experimentally
as a function of Angg (which was determined with the help of microsensors of the
type Ag/AgBr) [H. Schmalzried, et al. (1992)]. From flux wvs. driving force curves,
the exchange flux j° has been evaluated and found to be ca. 1 A/cm?® at 260°C.
Introducing this high value of j° into Eqn. (10.41) and noting that the boundary
resistance is ‘

RT RT-¢
b _ R
R°= 2.0 2. 0., ' (10.43)
& F)*j" (' F)c-(Di+Dp
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we can determine the defect relaxation time 7z by using Eqn.(10.38). For this
Agl/Ag,S interface, 7y is calculated .0 be ca. 1077 s, suggesting that the relaxation
is a diffusion controlled reaction between point defects.

10.4 Moving Interfaces

10.4.1 General Remarks

In a foregoing section, we mentioned that field forces (e.g., of the electric or elastic
field) can cause an interface to move. If they are large enough so that inherent
counterforces (such as interface tension or friction) do not bring the boundary to a
stop, the interface motion would continue and eventually become uniform. In this
section, however, we are primarily concerned with boundary motions caused by
chemical potential changes. From irreversible thermodynamics, we know that the
dissipated Gibbs energy of the discontinuous system is T-¢°, where o here is the
entropy production (see Section 4.2). Since dG/dV =dG/dV =g’ T/(A4-&), we
have with Eqn. (4.8) at the boundary b

Y Jjr-Au? _ ¥ NP-Aup _ AGH
v® Vi |

(10.44)

where A is the unit area. AG® is the Gibbs energy dissipated at the interface during
the reaction (e.g., A+B = AB). What are the physical processes which are responsi-
ble for the dissipation of AG®?

Boundaries between solids transmit shear stress, particularly if they are coherent
or semicoherent. Therefore, the strain energy density near boundaries changes over
the course of solid state reactions. Misfit dislocation networks connected with mov-
ing boundaries also change with time. They alter the transport properties at and near
the interface. Even if we neglect all this, boundaries between heterogeneous phases
are sites of a discontinuous structural change, which may occur cooperatively or by
individual thermally activated steps.

In order to quantify AG® as a fraction of the available Gibbs energy AG, let us
first introduce a phenomenological approach. In Figure 10-10, a solid state reaction
for a binary (or quasi-binary) system is illustrated and shows the variation in the
chemical potential for different conditions. We assume without loss of generality
that D, » Dg. We then define Auy (AB) and Auf’x in such a way that Au, (AB)+
Aul = AG,p as the overall driving force. In Figure 10-10, it was tacitly assumed
that j°(1)»j°(2), with ;° denoting the exchange fluxes as discussed in the previous
section. The steady state condition is

jA=jg,AﬂR= Dp'ca  Aua(AB)
RT A(AB) RT

(1045)
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Figure 10-10. Representation of the
chemical potential of A during the
heterogeneous solid state reaction
A+B = AB. a) Diffusion control,

b) interface control at b,, c) rate
control by rearrangement (relaxation)
of A in B in zone &, (B), d) simulta-
neous diffusion and interface control

(by).

if D, is independent of the activity of A in AB. Defining a length A& = (D -¢A/j%),
we obtain from Eqn. (10.45)
AL Au} Ap3
AE+AE(AB) AGap  Aul+Aus(AB)

(10.46)

For AZ(AB)—0, Aul = AG ., and the reaction is interface controlled. This can be
seen in Figure 10-10b. If A¢(AB)> AZ, then Au};—>0 and the reaction is controlled
by diffusion through the product AB. If A{(AB)= A, one half of AG,y is
dissipated in the product AB and the other half in the boundary b.

Experiments have shown that A£ for oxide spinel formation is on the order of
10™*cm at ca. 1000°C [C.A. Duckwitz, H. Schmalzried (1971)]. Using
Eqns. (10.45) and (10.46) with the accepted cation diffusivities (on the order of
10~1°cm?/s), one can estimate from ;4 that each A particle crosses the boundary
about ten times per second each way. In other words, quenching cannot preserve the
atomistic structure of a moving interface which developed during the motion by
kinetic processes. This also means that heat conduction is slower than a structural
change on the atomic scale, unless one quenches extremely small systems.

If a phase boundary is reaction rate determining, the chemical potential curve of
component A conforms to the schematic plots in Figure 10-10b or c. Figure 10-10¢
indicates that A, when in front of the moving interface AB/B, is supersaturated to
some extent in a thin layer of B. Thus, component A drags the interface along while
it overshoots. (An interface drag of a different nature will be treated later in Section
10.4.4.) In this situation, the moving AB/B interface is normally morphologically
unstable since the supersaturated segment of the solid solution exists in front of it.
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AB can then grow either by nucleation in the supersaturated segment, by continuous
addition at sites of repeatable growth on the boundary, or by recurring AB nuclea-
tion on the interface plane. In view of the commonly occurring misfit at most bound-
aries, it is probable that sufficient growth sites are normally available.

Let us conclude this section with a few general remarks. If we assume phase
boundary rate control, the rate of advance is co-determined by the interface mobility,
which in turn is related to the mobilities of the atoms in the interface. We note that
1) the directional dependence of mobilities or diffusivities in the interface may be
quite pronounced (depending on 0) and 2) the mobilities or diffusivities depend on
u}’, the component chemical potentials, which change over time at the interface un-
til diffusion control eventually becomes rate determining.

Finally, we observe that two distinct processes always occur at the moving bound-
ary: 1) a change in crystal structure and 2) a change in the density of all structure
elements. At low 7, where the mobilities of bulk SE’s are very small, and a sufficient-
ly high driving force is acting, the change in lattice structure and the transport of
SE’s can decouple. In that instance, one observes the limiting case of diffusionless
transformations into metastable states.

10.4.2 Interface Motion During Phase Transformation

Phase transformations in elemental solids or line compounds are the simplest hetero-
geneous solid state reactions with a moving interface. In the language of thermody-
namics, the interface is the location where extensive state variables change discon-
tinuously. Point defect concentrations (c4.) are normalized extensive functions of
state. Therefore, phase transformations of even elemental crystals are accompanied
by defect concentration relaxation at and near the moving interface. Figure 10-11
depicts the a-B transformation of an elemental crystal. The distribution and strength
of point defect sinks determine the defect concentration profile in space as a func-
tion of time. The following basic assumptions define the kinetic problem. 1) As long
as Ny;<1, the Gibbs energy change for the structural transformation AG is in-
dependent of cy.¢(= c¢), and the transformation velocity v® is, to first order, a linear
function of AG(~ (T-T,)). 2) v°, which is thus determined by the undercooling
(T-T,,), has to match the transformation velocity defined through the conservation

t=0

t>0

Figure 10-11. Distribution of point defects near
a moving interface during transformation a—g8.
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of the point defects, that is, v®-(c?®—c®?) = (j#°—j*?), given that the boundary

does not act as a defect sink. 3) If no other defect sinks but the ends of the (linear)

sample are available for defect relaxation, then V=0, Vj#=0, and

5 c?-dé+ 5 cP-de = &% - &Py 0 are the local and integral equations of point defect
B

a
conservation in space and time. 4) The kinetic problem, however, is not fully defined
unless we specify the kinetic properties (for defect transfer) of the boundary proper.
In the simplest case, we may assume local equilibrium to prevail, that is,
(c®/cP)® = v (constant). The mathematical solution to this problem is closely
related to the calculation of the redistribution of solutes in a solidifying solvent
[M.C. Flemings (1974)].

If we next consider the a-f transformation of a binary compound (e.g., A;_sB)
with a narrow range of homogeneity instead of an elemental crystal A, we encounter
a general problem which is illustrated in Figure 10-12. From the relevant thermody-
namic function, it can be seen that for a given undercooling (corresponding to
AG(t = 0)), the chemical potential uﬁ (¢ = 0) is much higher than 4§ (¢ = 0) and it
depends much more strongly on J than does u%. As a consequence, component A
will be transported across the moving a-8 boundary from the transformed £ into the
untransformed a. It follows that during the transformation d% and u%, on the aver-
age, should increase with time.

uft=0) |

Figure 10-12. The Gibbs energy vs. non-
stoichiometry & for binary compounds (e.g.,
Ag,, 58). Nucleation of § at 6% needs activa-
tion, in contrast to nucleation of g at &9.

The Gibbs energies of compounds a and § depend parabolically on the nonstoi-
chiometry J (ie., ~ 9 2 [H. Schmalzried (1978))) if their ranges of homogeneity are
narrow. The curvature at J =0 is inversely proportional to yK, where K is the
equilibrium constant of the intrinsic defect disorder. Therefore, in keeping with
Figure 10-12, AG and Ayg can be written for a given undercooling AT (= T-T,) as

AG—AG (0 = 0) = &, (67°) — g, (6¥P)? (10.47)

AUl = AG+ (g, 67" —¢,-6%%) (10.48)
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where ¢; and &, are known functions of the equilibrium constants K(7") for phases
a and B.

Before we continue our analysis of the first-order A, _;B transformation, let us
first describe some illustrative results obtained for Ag,, ;X; X =S, Se. Crystals of
Ag,S are semiconductors and transform at ca. 176 °C. They are bee in the high tem-
perature (a) form, with a homogeneity range (65,,) on the order of 1073. The low
temperature (8) form is monoclinic, its homogeneity range (65,,,) is on the order of
1075 [H. Schmalzried (1980)]. With a sufficient driving force (ie., undercooling
AT), the a— f transformation therefore involves matter transfer in the form of point
defects across the boundary b. Phase a is enriched in silver during this transforma-
tion. The Ag potential in the a-phase increases in front of the moving boundary.
This increase will be larger the higher the initially established nonstoichiometry &°
(c®) (Fig.10-11). The Ag potential increases until the Ag supersaturation is suffi-
cient to precipitate point defects as metallic Ag in the Ag,S matrix. The super-
saturation necessary for the nucleation of silver has been determined with
miniaturized u,, sensors in the form of solid state galvanic cells (= 15 meV). The
variation in time of the Ag chemical potential is not monotonic during the a-§
transformation. Several minima and maxima of usg(f) are found in front of the
moving boundary (Fig.10-13). Various explanations have been offered for this
pulsating interface motion. Firstly, since there is a slight difference in the molar
volumes of a and B, misfit dislocations will be created and move along with the mov-
ing boundary. If they form networks which can then interact with the moving bound-
ary, the resulting elastic effects may be oscillatory. Secondly, impurities segregate at
the boundary and will also be dragged along. If they cannot follow, the boundary
frees itself from the impurity cloud (see Fig. 3-11) in a similar way as it may free itself
from the dislocation network. Thus, one again anticipates oscillatory behavior, since
the boundary velocity depends on the amount and distribution of dragged im-
purities. However, there is a more fundamental possible explanation for this mode

lan]

Bppg

,20mV,

Figure 10-13. The measured Ag
potential difference Au,, between a
and B during transformation of
Ag,, sSe. 6°=1.95%x10"%,

v® = 1.3 cm/min.
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of boundary velocity. It may be recognized if we resume the previous discussion of
moving interfaces during solid state reactions. When silver is driven in the form of
point defects (ie., irregular ionic and compensating electronic defects) across the
phase boundary, point defects of the f-phase are injected into the a-phase as mobile
irregular SE’s. This injection upsets local point defect equilibria near the boundary
and induces relaxation processes involving both regular and irregular SE’s.

The reaction scheme at and near the phase boundary during the phase transforma-
tion is depicted in Figure 10-14. The width of the defect relaxation zone around the
moving boundary is A&y, it designates the region in which the relaxation processes
take place. The boundary moves with velocity vb(t) and establishes the boundary
conditions for diffusion in the adjacent phases @ and f. The conservation of mass
couples the various processes. This is shown schematically in Figure 10-14b where
the thermodynamic conditions illustrated in Figure 10-12 are also taken into account.
The transport equations (Fick’s second laws) have to be solved in both the a and 8

L34
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phases where the boundary conditions at £ =0 and &= o are j;=0 and 6% =
6 %(t = 0) respectively.

The main problem of the boundary motion, however, remains the description of
relaxation processes that take place when supersaturated point defects are pumped
into the boundary region A&g. Outside the relaxation zone Ay, diffusion without
reaction takes place. A simple model of a ‘relaxation box’ is shown in Figure 10-14¢.
The four exchange reactions 1) between the crystals @ and f, and 2) between their
sublattices are

Af+VE= A Ve
(10.49)

Af+VE = AL +VE

The fractions N‘\’,i, N¢ N ZA, and N',’;A are =~ 1. If we assume for simplicity that A
is transported in a via interstitials and in p via vacancies, as indicated in Figure
10-14¢, we have the following system of differential equations for the ‘relaxation
box’ (denoting ¢ by x;, ¢4 by x,, ¢y, by x3 and c§_by x,)

d=A-Ge+Ryx) x +kixy 5 A=05"+k)

X.z = B—(l?i +k2'X3)’X2+k1 ‘X, B= iéz
R (10.50)
X3 = C—(RKy+hkyx) x5+ kyoxy ;3 C=(AP+ky)

X4 = D—()E3+I-€4-x1)-x4+133-x3 ; D= k4

To complete the set of kinetic equations we observe that v® = (Aj/Ac)® where Ac®
can be expressed in terms of %°. Finally, the requirement of mass conservation
yields a further equation. Considering the inherent nonlinearities, this problem con-
tains the possibility of oscillatory solutions as has been observed experimentally. Let
us repeat the general conclusion. Reactions at moving boundaries are relaxation pro-
cesses between regular and irregular SE’s. Coupled with the transport in the un-
transformed and the transformed phases, the nonlinear problem may, in principle,
lead to pulsating motions of the driven interfaces.

Proceeding systematically, diffusion controlled a-# transformations of binary A-B
systems should be discussed next when a and f are phases with extended ranges of
homogeneity. Again, defect relaxations at the moving boundary and in the adjacent
bulk phases are essential for their understanding (see, for example, [F.J.J. van Loo
(1990)]). The morphological aspects of this reaction type are dealt within the next
chapter.




10.4 Moving Interfaces 257

We have mentioned that coherent and semicoherent transformations create stress
in the phases a and £ while the boundary moves. The stress field, the origin of which
is the (semi-) coherent boundary, extends over the crystal with sound velocity. The
local stress depends on the geometry of the sample and the momentary location of
the boundary. The stress gradient can be included in the driving force, if necessary.
Normally, however, it does not seem possible to quantify the influence of stress,
although it is noticeable both in the kinetics and morphology at small undercoolings.
After reversing the thermodynamic driving force A7, hysteresis is to be observed as
a result of the asymmetry of the stress state [B. Baranowski (1993)].

10.4.3 Interface Movement During the Heterogeneous Reaction
A+B=AB

Interface control of the solid state reaction A+B = AB (e.g., at the AB/B boundary)
means inter alia that the chemical potential of reactant A in AB is u?\ instead of
qu+ AGOAB at the AB/B interface (Fig. 10-10). It thus seems as if a negative virtual
pressure AG%B/ V., is dragging the interface into the A supersaturated region of B
(Fig. 10-10¢). From the steady state condition of the moving AB/B interface, we have

v® = v =%/c%(B), which gives

n'80

ba(Vup—Kp)+0v3=0; Ky=—————
A" (Vua—Kp)+va A EaB)

(10.51)

where £%/(¢ A(B))” is an assumed interaction potential between solute A in B and
the advancing AB/B interface with £° and »n as phenomenological parameters.
Equation (10.51) yields
0 . o0 0
AGap, " N (10.52)
{a(B) ¢a(B) ba

and relates £, (B) to AG%y, bs, and vQ. Let us define a characteristic time 7 such
that £, (B) = vOA-r. From Eqn. (10.52), we can then determine vOA (or v®) as a func-
tion of 7, which is the essential parameter for understanding the movement of the
reaction controlled interface. In the simplest case (n = 1),

0, 0.
(vb)3+AGAB bA.vb+3 ba _y (10.53)
T

1.2

This shows how the steady state velocity of the interface is related to some character-
istic parameters of the reacting solids if interface control prevails.

Sometimes, one has independent information on 7. Let us consider an interface
controlled spinel formation (AO+ B,0; = AB,0,). We assume that the rate limiting
interface is AB,04/A0 and also that the spinel product is a so-called normal spinel
in which the A cations are situated on tetrahedral sites. Therefore, in the super-
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saturated AO front region (where the B,O; component possesses a chemical poten-
tial 4p o0, >up0,+AGRp o). the cations rearrange themselves between octahedral
and tetrahedral sites in the fcc sublattice of the oxygen ions. The relaxation time, 7,
for this process is known from experiment. A rough estimate for v° can be obtained
by setting ¢°=0 and AG%,/RT =1, whereupon Eqn. (10.53) reduces to v®=

VD4 (B)/7. Inserting T as ca. 1s at 1000°C and D, (B) = 102 cm?/s [K.D. Becker
(1987); C. A. Duckwitz (1971)], we see that the estimated theoretical values of v?\
compare favorably with the experimental values of ca. 10™% cm/min. We also note
that this interface reaction is once more interpreted in terms of relaxation processes
of structure elements.

10.4.4 The Dragged Boundary (Generalized Solute Drag)

Let us once again inspect Eqn. (10.51). Both Vu, (= AG?\B/C A(B)) and K, could be
the cause of the boundary (interface) motion (Fig. 10-10). Yet whereas Vu, is a (vir-
tual) thermodynamic force, K, is an actual (elastic, electric) field force acting
directly on the boundary. This fact sometimes causes difficulties in defining the in-
terface mobility. We obtain the interface velocity if the adjacent phases are chemical-
ly equilibrated and thus homogeneous as the product of the mobility and the field
force, v® = m®-K®. However, an independent determination of K is most difficult.
A straightforward situation is the curved boundary in a chemically homogeneous
system (e.g., grain boundary, bicrystal) which moves under the action of the interface
tension (no external force!). If the magnitude of the interface tension is known, then
the interface mobility is a quantity that can be determined unequivocally by experi-
ment. Externally applied field forces act on both the boundary and the bulk. Nor-
mally, the interface is mobile only if SE’s of the bulk crystal are mobile as well.
Therefore, atomic fluxes cross the interface while it moves and exert additional fric-
tional forces. Such a situation is difficult to analyze. A limiting case, which has been
treated in physical metallurgy, will be outlined below.

Every one-, two- or three-dimensional crystal defect gives rise to a potential field
in which the various lattice constituents (building elements) distribute themselves so
that their thermodynamic potential is constant in space. From this equilibrium con-
dition, it is possible to determine the concentration profiles, provided that the partial
enthalpy and entropy quantities #;(¢) and s;(£) of the building units i are known.
Let us consider a simple limiting case and assume that the potential field around an
(planar) interface is symmetric as shown in Figure 10-15, and that the constituent
i dissolves ideally in the adjacent lattices, that is, it obeys Boltzmann statistics. In
this case we have

= Ve 8O = 0.e-8-0 , g i (10.54)

Since K; = —0E; /8¢, the force KR! is constant in the region of interaction —A¢. . .0,
and is — K ? between 0... + A{ By Eqn. (10.54), the pressure P; on the interface
due to its interaction with species i is
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Figure 10-15. Interaction potential between the
(moving) grain boundary (interface) and solute
species ¢, and its spatial distribution c; at ¢ = 0.

+o0 +A¢ _ )
Pi= | ¢Kpdé=—c} § e’5(5)~<%>-dé (10.55)

At equilibrium, it vanishes. Let us now assume that an external force K, (P,) has
shifted the interface by an amount &, and that the i particles were not able to follow
this shift. The potential field E;(£) is now perturbed relative to the cloud of i par-
ticles as indicated in Figure 10-15. From Eqn. (10.54), one calculates the restoring
pressure on the interface, —P,, as
E 5
—P,=2-c%E%e¢ RT-— (10.56)
AL

where J is the displacement (assumed to be small in comparison to A¢). Note that
no interface tension operates on the planar interface.

However, when particles i are mobile in the crystal lattice, and the interface mobili-
ty is m®, the steady state condition for this more realistic case is

(P —P;)-m® = ® (10.57)

The ‘internal’ pressure, P;, is no longer given by Eqn. (10.55) because the / particles
redistribute during their steady state motion. Only if the interface mobility m® is
very small and D;/A¢ > v° will ¢;(£) come close to the equilibrium distribution
given by Eqn. (10.54).

In order to calculate this new steady state, one requires the / particle velocity, which
vanishes in a reference system that is attached to the interface. In the external labora-
tory system the interface moves with constant velocity v°. A steady state is attained
if the velocity of the i particles is equal to v®, that is,

v° = by (- Vu; + K;) (10.58)

which gives for K; = _%

BEi v®
¢ +Vu, = —— 10.59
' (35) ' b; ( )
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Equation (10.59), in combination with Eqns. (10.55) and (10.57), can be used to
determine c;(¢) as a function of v® and E;(£), and v as a function of the drag force
K; (see Fig.3-11). Solutions have been worked out, for example, by [K. Liicke
(1972); M. Hillert (1978)] for a moving grain boundary at which impurity atoms or
other point defects segregate. The defects are dragged during recrystallization of the
polycrystalline material driven by the grain boundary energy (tension). A similar
problem is met if (charged) dislocation lines, with their impurity cloud, are exposed
to an electric field force.

10.4.5 Diffusion Induced Grain Boundary Motion

A special case of interface movement apparently driven by a ‘chemical pressure’ is
the diffusion induced (grain) boundary motion (DIGM). From Chapter 3, we know
that diffusivities at interfaces are much larger than in the bulk. Therefore, we nor-
mally build up large differences in the chemical potential of components between the
boundary and the adjacent bulk when an external source (or sink) for these com-
ponents exists at the surface of the solid. A corresponding experimental situation is
illustrated in Figure 10-16 whereby gaseous B diffuses into the initially straight grain
boundary of a thin foil of A. Any fluctuation will render the B potential change un-
symmetric with respect to the adjacent bulk phase. Consequently, a net (virtual)
‘chemical pressure’ will act on the boundary which, if mobile, starts to move. Since
the sweeping boundary is filled with the high activity B, it also fills that part of the
bulk crystal with B that has been crossed during the diffusion induced grain bound-
ary motion. Therefore, DIGM enhances both the diffusional solution of B into sol-
vent A and the corresponding Gibbs energy dissipation. The (virtual) ‘chemical
pressure’ asymmetry is self-sustaining. The boundary will continue to move in accor-
dance with its mobility and with any restoring forces which may develop during the
sweep (e.g., by misfit dislocation formation). Sweeping boundaries have been ab-
served in-situ both in metallic and in nonmetallic solid solution crystals [R. Balluffi,
J.W. Cahn (1981)].

Source
Big) b(¢=0)
/,;,’7}‘\'\;; b{t=0)
oo
[ 0 == thin foil A

v e

Figure 10-16. DIGM: Solute B diffuses from gas (g) into grain boundary b of solvent foil A, causing
b to move.
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10.5 Morphological Questions

Although morphological problems related to moving solid/solid interfaces are
treated in depth in the next chapter, some basic aspects of the boundary motion dur-
ing heterogeneous solid state reactions will be introduced in the context of this
chapter. If the heterogeneous reaction A+B = AB is transport controlled, we can
verify by inspecting Figure 10-17 that in a one-dimensional reaction geometry, a
planar interface is stable during product growth. Every perturbation of the planar
interface changes the potential gradients in such a way that the diffusive fluxes will
restore its planarity. Interface stability requires, in essence, that the boundary veloci-
ty vector and the matter flow vector (which is responsible for the interface reaction
and thus for the interface velocity) have the same direction. If these vectors were op-
posing, then the moving interface would be morphologically unstable, as Figure
10-18 shows, in which v® is directed towards the high potential side.

A somewhat different situation is depicted in Figure 10-19. A flux of A* cations
is driven (e.g., by an electric field) across the boundary of the phase combination
AX(a)/BX(8). Since the AX side is anodic, the boundary shifts into BX. Two cases
can be distinguished with respect to the cation mobilities: 1) b"A>b§ and 2)
bZ<b’§. In the first case, the planar boundary is morphologically unstable since

A
M 1< jat2)
20 vP1<v®(2)  Figure 10-17. Morphological stability of interface
AB/B during the heterogeneous reaction
b A+B = AB. Since v°(1)<v°(2)
(Vu, (1) <Vu, (2)), the interface is mor-
phologically stable.
. "
0,i9'l AO{sl | 0,1lg")
Jal1) —g ________ vo(1)
ja 12) ’
Al o vP(2)
ial3)
>L. -vh(3)
Ja
— Figure 10-18. Crystal AO in an oxygen potential
Ny dy gradient and the morphological stability of its in-
T 4 terfaces. Since VuA(1)<V/1€‘(2)<Vb/1A(3), .
Vi + b (AO}y A 10,1g) Ja(1)<ja(@)<ja3), and v°’ 1) <v’2)<v°(3).

, Conclusion: boundary b” is morphologically
= Ap +30, =Va «h + |AQ)y stable, boundary b’ is morphologically unstable.
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©
B

>©®

AN

Figure 10-19. Cations A* driven by an electric field
across interface AX/BX (Dyx <Dy <D,). Since
Dg<D,, j3(1)(=i(1)<j§@)(=§(2) and
v?°(1)<v®(2). Conclusion: interface AX/BX is mor-
! phologically unstable, if the A electrode is anodic.

any perturbation of the boundary geometry will cause the electrical resistance of the
system to decrease with time. The increasing disturbance autocatalytically accelerates
the resistance decrease, as can be seen from Figure 10-19. The opposite is true for
the second case. One can quantify the situation depicted in Figure 10-19 and obtain,
with the help of a little algebra and noting that j§ = jﬁ at boundary positions (1)
and (2),

o =% | 1- bp—ba .
bg A% +by-ALP

dé] ; ba=bS, by=hbf (10.60)

This means that v®(1) <v®(2) if %> b4. In this case, the moving boundary is mor-
phologically unstable. If, however, bj’i<b§, then one finds from Eqn. (10.60) that
v°(1)>v®(2), which says that the interface is morphologically stable because the
perturbations of the boundary decay with time. In one way or the other, possible
changes in the interface morphology which occur in heterogeneous reacting systems
can always be reduced to the situations depicted in Figures 10-18 and 10-19.

10.6 The Atomic Structure of Moving Interfaces

In the previous section, we introduced the concept of macroscopic morphological
stability. Let us now ask what the interface structure is on an atomic scale. The struc-
ture of the equilibrium interface is that which makes the Gibbs energy a minimum
(see Section 10.2). The purpose of the moving interface, which separates the two non-
equilibrium phases a and B, is to perform the structural transformation. The
transformation process selects the atomic structure of the moving interface such that
it eventually allows the fastest steady state transformation kinetics. Coherent
(semicoherent) interfaces often achieve this goal by the motion of ledges and kinks.
Other mechanisms, however, may operate as well. For the sake of illustration, let us
consider a specific example. The spinel formation reaction AB+B,0;=
AB,O, requires (in addition to the above mentioned cation rearrangement) the
dense packed oxygen ion sublattice to transform from hep (B,0O,) into fcc (AB,O,)
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at the AB,0,/B,0; moving boundary. This structural transformation could, for ex-
ample, be performed by bundles of partial (edge) dislocations gliding on the densest
packed oxygen ion planes and changing the ABAB packing into an ABC packing.
Therefore, the basal oxygen planes in the product and the reactant should remain
parallel. However, experiments show that this is often not so, and that the (111) plane
of the product is not strictly parallel to the (000.1)g o, plane of the reactant. Figure
10-20 gives the interface structure as suggested by electron microscopy studies [B. C.
Carter, H. Schmalzried (1985)]. The benefit of the experimentally determined small
rotation about a close-packed direction is that 1) it can accommodate the misfit be-
tween reactant and product at the interface and, more importantly from a kinetic
standpoint, 2) the necessary voids and steps along the interface between the sesquiox-
ide and the spinel resulting from the rotation can obviously accomplish the structural
transformation sufficiently fast without the need to create and move Shockley partial
dislocations. The atomic rearrangement occurs basically through the increased
mobility of the ions in these voids. Anions leave the hcp structure lattice and are pro-
perly added to the fcc surface of the void. This ‘pore movement’ differs considerably
from the well known interface movement by the motion of ledges along an interface
[D. Hesse, et al. (1993)].

Figure 10-20. Schematic structure of the moving AB,0,/B,0; interface with a small rotation
about a close-packed direction, accommodated by voids.

We have pointed out before that during reaction, interfaces may act as sources and
sinks for point defects. Therefore, dislocations associated with these interfaces have
to climb. The coupling of dislocation climb, ledge motion, and the creation (anni-
hilation) of point defects at moving boundaries have been discussed for isomor-
phous, diffusion controlled a-8 transformations. In cases where the contiguous a-
and B-phases are structurally dissimilar, the corresponding coupled processes at the
moving boundary are less well understood [B. Pieraggi, ef al. (1990)].

To summarize: the structure of a moving interface on the atomic scale depends on
the atomic mechanism which operates in the structure transformation. The mode
selection depends on the driving force and thus on the interface velocity. The inter-
face mobility itself is determined by its structure and depends therefore on the driv-
ing force. This means that interface controlled reactions are normally nonlinear
functions of the driving force.
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11 Morphology

11.1 Introduction

This chapter discusses the evolution of boundaries during solid state reactions. A
reacting heterogeneous system is morphologically unstable if the initially planar
equipotential surfaces or interfaces become nonplanar (f(z)—f(z,»,x)) and the
potential gradients VP;(z) become dependent on (z,y,x), where y,x are the coor-
dinates perpendicular to the initial normal vector of the boundary and growth direc-
tion z. There are many causes for the instabilities of moving boundaries in isother-
mally reacting solids. The large composition gradients near the boundaries and the
corresponding changes of the mobilities and mechanical properties normally result
in severe distortions of the structure (cracks, dislocations, etc.). Even if we neglect
these (secondary) effects on morphological stability, the moving boundaries can
nevertheless become unstable. This inherent instability is a mere transport phenome-
non and derives immediately from the continuum flux equations and the boundary
conditions. Morphological instability is found if the perturbation amplitudes of the
initially planar equipotential surfaces increase instead of decrease. Thus, the bound-
ary conditions of the reaction become time-dependent. The solidification of a simple
melt by heat transport is an analogous problem, and here the velocity v® of the
solid/liquid boundary is determined by the rate at which the released latent heat
diffuses away from this boundary. The resulting dendritic growth shows a unique
parabolic tip and an oscillatory side branching mode. The theory of this unstable
growth is highly mathematical. Surface tension plays a decisive role. It destroys
whole families of possible solutions, selecting out a unique structure and controlling
the process pattern [J.S. Langer (1980), H. Miiller-Krumbhaar, W. Kurz (1990)].
In this chapter, we will present examples of morphological instabilities during solid
state reactions. Alloy oxidation, the dissolution of a crystalline solution into a liquid
or solid solvent, compound crystals brought into motion in chemical potential gra-
dients, interdiffusion in multicomponent systems with miscibility gaps, and other
situations will be considered. The formal discussion is meant to outline the basic
features of the mathematical stability analysis. The results will enable us to formu-
late rules which can help to distinguish between morphologically stable and unstable
boundaries in reacting systems. Finally, a reaction path analysis for a non-equilib-
rium, multicomponent system is presented which gives additional information about
morphological stability. For a multicomponent, inhomogeneous or heterogeneous
system, the reaction path can be found if the experimental composition vs. distance
curve is replotted in terms of the compositional or chemical potential coordinates
in a corresponding phase diagram. We will see that pertinent conclusions can be
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drawn if we realize that the boundary is morphologically unstable when its motion
is directed towards supersaturated regions.

It helps to clarify the concepts if we distinguish between two principally different
reaction modes of the heterogeneous reaction A+B = AB. 1) The reaction A+B =
AB occurs, on an atomic scale, outside the product crystal (normally in an adjacent
solvent). AB molecules are then added to the surface of the AB crystal to make it
grow (= additive growth). 2) The solid product AB is formed from the very beginn-
ing between A and B such that AB separates the reactants. Further growth is possible
only by transport of the A and B reactants across the product layer (= reactive
growth), These two possible growth modes are depicted in Figure 11-1.

A+B= AB .8
4/ A % ABE B
i A
I
solvent
a) b)

Figure 11-1. Scheme of a) additive and b) reactive crystal growth.

The addition of AB molecules to the crystal (reaction mode 1)) means that the
growth is by precipitation from the (supersaturated) surroundings. It will be unim-
peded as long as there are repeatable sites of growth available on the surface of the
AB product. This mode of growth is shown to be morphologically unstable unless
stabilizing factors are operative. In reactive growth defined as mode 2), the growing
product retards the advancement of the reaction (unless paths other than that of dif-
fusion across the product layer become rate determining). In mode 1), the atomic
reaction A+B = AB took place before the growth could occur by the addition of AB
molecules to the crystal. In mode 2), reaction and growth define the same process.
The distinction between additive and reactive growth is important when we study
morphological stability. The additive growth is morphologically unstable because the
crystal surface moves towards a region of increased AB activity. We will not pursue
this any further since many textbooks on crystal growth deal with this subject [K. A.
Jackson (1975)].

In the following, we assume the reactions to occur essentially in one dimension.
Although spherical, cylindrical, and other common reaction geometries complicate
the mathematics, they do not significantly alter the conclusions on boundary stabili-
ty. The question then is whether or not a planar boundary (e.g., A/AB or AB/B in
Fig. 11-1) remains planar when it moves in the course of a reaction, and why it does
so. Formally, we have to investigate the evolution of the boundary geometry over
time, when matter is diffusing in the two adjacent phases and across the boundary
b. To this end, one must solve the transport problem in the contiguous phases while
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the moving interface establishes the conditions of the flux coupling. A theoretical
stability analysis can be made if we assume that the moving interface is in local
equilibrium. The real situation, however, is often more complex. The assumption of
local equilibrium defines a limiting case. In general, the interfacial reaction kinetics
must be explicitly taken into account when the coupling conditions are formulated
(as discussed in Section 10.4.2). Also, the structure of the a/f interface, and thus the
interfacial kinetic parameters, change with time since there is never full coherency
between the contiguous a- and fS-phases during reaction. Depending on the degree
of coherency, the mechanical properties of a and £, and the ability of the interface
to transmit shear, far reaching stresses, dislocations, cracks, and fractures evolve.
Furthermore, interface tensions influence the activities of the components near the
interface, in particular if morphological instability leads to the formation of high-
curvature tips. We therefore anticipate, in agreement with common experience, that
very seldom will the boundaries of crystals remain stable during growth, be it addi-
tive or reactive.

The definition of a solid state reaction implies that the reaction product is a solid.
If, for example, one of the reactants is a fluid, no deviatoric stresses are transmitted
across the common interface. This situation simplifies the mechanical boundary con-
dition significantly and explains why studies on boundary morphology are often per-
formed with solid/fluid systems.

11.2 Interface Stability

11.2.1 Qualitative Discussion

In the following, we will analyze the fluxes and transport at the moving boundary
b. For inhomogeneous single phase solids, the one dimensional mass transport
balance in the z-direction (without a reaction term) reads

B _ % (11.1)
ot 0z

At the a/f phase boundary, an equivalent mass balance condition in terms of the
boundary velocity is

v =—= 2L (11.2)

where A denotes the change across b and v is the velocity vector perpendicular
(1) to the interface. Equation (11.2) implies that the diffusional transport in b itself
can be neglected, which is true if D® and DV are of the same order of magnitude.
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Let us generalize and consider three dimensional transport and introduce the ex-
plicit fluxes j; = —L;-Vu;in a and g into Eqn. (11.2). Since y; is a potential function
and thus Vu; | = Vui | = Va;, at the boundary b (Fig. 11-2b), we immediately find
that

ja a
iﬁﬁJl> L (11.3)
i)/v  Li

where L; is the transport coefficient. If L‘,—B > L7, we can conclude from Eqn. (11.3)
that ji| < j‘f |- Therefore, j{ is perpendicular to the boundary if L%s LY. Further
conclusions can then be drawn with the help of Figures 11-2a and b. From Figure
11-2a, we see that the density of flux lines arriving at the (sinusoidally) perturbed
boundary in region y, is larger than the flux line density arriving in the valley of
region y,. If this flux determines the advancement of the boundary in the sense of
Eqn. (11.2), then two cases must be distinguishable. 1) The (average) velocity v°
and the flux j¢ point in the same direction. In this case z°(y;)>%°(y,). Thus, the
perturbation decays with time and the boundary is morphologically stable. If v°
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and ji, however, have opposite directions, then the perturbation amplitude in-
creases with time and the moving interface is morphologically unstable.

These considerations are the physical essence of any stability analysis. We may
quantify somewhat further by considering Figure 11-2b, from which, with the help
of Eqn. (11.2), we can infer that

JE =it =0 A== -G-8 ) (11.4)
or after rearrangement
JE=if-@F-LF)Vy | +0% -Ac (11.5)

which gives, with j;= —L;-Vu;,

)7 L? Ac
Vul==Lvuf+ [ 1-=L ) vy, =08 - — 11.6)
M L;-I M < L?) Iul,” L L? ( )

Since |Vy; | = |V,uf’ | (Fig.11-2b) and assuming that L#>L¢, the sum of the first
two terms on the right hand side of Eqn. (11.6) is negative, that is, the flux points
in the positive direction of z. The last term can be positive or negative, but it cannot
override the first two terms (otherwise we have uphill transport). We also note that
the larger L? is, the smaller L%/L% and Vi are.

With these relations in mind, we can read from Figure 11-2b that if the perturba-
tion is sinusoidal, then the interface will have a slope of —45° and vbl will have a
slope of +45° at z=0. (We will later Fourier synthesize a general perturbation
¢(z,5,t) from sinusoidal components.) The two semicircles in Figure 11-2b represent
the absolute values of Vu? and Vu? respectively. We can see again that for L4/L¢
>1, V,uf’ | =0 and the slope of Vu{ is 45° (as is the slope of vbl). For smaller ratios
of L¥/L?, |Vu?| increases and this turns the slope of Vu? (j¢) to smaller values.
As long as this slope is positive, the flux density in the tip region y, is larger than
in the valley region y,.

Thus, we conclude that the interface is morphologically unstable for negative v
if the flux of i indeed causes the boundary motion. (This flux, however, is not
necessarily the rate determining one since all fluxes in the multicomponent system
are coupled in one way or the other.)

A distinction between solid/fluid and solid/solid boundaries is irrelevant from the
point of view of transport theory. Solid/fluid boundaries in reacting systems are, for
example, (A,B)/A*,B*,X ™ (aq) or (A, B)/X,(g). More important is the distinction
according to the number of components. In isothermal binary systems, the boundary
is invariant if local equilibrium prevails. In higher than binary systems, the state of
the a/f interface is, in principle, variable and will be determined by the reaction
kinetics, including the diffusion in the adjacent bulk phases.

In practice, it is often feasible to reduce the multicomponent crystal in respect of
its transport behavior to a quasi-binary system. Let us assume that the diffusion
coefficients are D, >Dp® D¢, Dp, etc. The quasi-binary approach considers C, D,
etc. as practically immobile, which means that A and B are interdiffusing in the im-

b
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Figure 11-3. a) Schematic binary T-N; phase
diagram with miscibility gap. b) Composition
(N,) profile and fluxes during the annealing
of an AX/BX couple for interdiffusion.

mobile frame of C, D, etc. and B is then the rate determining component. This rule
has been used, for example, to interpret the reactions between compounds of the sort
AO/AB,0,/B,0; (where D, >Dg» Dg), or A,SiO,/(A,B),Si0,/B,Si0O, (where
Dy > Dg» Dg, Dg;).

In line with the foregoing, we consider the moving boundary in a binary system.
The pertinent phase diagram is depicted in Figure 11-3a. A corresponding concentra-
tion profile near the a/g interface is given in Figure 11-3b. Figure 11-3a may repre-
sent a true binary A-B system, or the quasi-binary section of a multicomponent
system. Transport can be induced 1) by chemical driving forces Vu; and/or 2) by ex-
ternal field forces VP; (electrical, gravitational, etc.). An example of case 2) is the
electric field driven transport in the AgCl/KCl couple. Transport by the simultaneous
action of both chemical (Vy;) and other (VP;) forces characterizes the general case.

Let us inspect more closely the inhomogeneous binary system in Figure 11-3
without external forces. At ¢ = 0, the two crystals A and B (AX and BX) are brought
in contact. As ¢— oo, the crystals ¢ and £ have equilibrated. This means that
either the a/f boundary has been shifted to its final position or one of the reactant
crystals has been consumed (which only depends on the initial volume ratio
Va(t=0)/Vg(t = 0)).

The morphology of the moving a/f interface can evolve in one of the three dif-
ferent ways shown in Figure 11-4. Let us investigate, in accordance with the previous
discussion (see Fig. 11-2) when these growth modes will occur. From Eqn. (11.2), we

have for a binary system
a _ ﬂ
L. (f—Ayi f;A) (11.7)
CA—CA Jb
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a B t>0
b) |
@ .«
2 @
o % o t>0 Figure 11-4. Possible growth morphologies in a one-
o B
? 00 dimensional A-B diffusion couple with a miscibility gap.
C) Figure 11-4a corresponds to Figure 11-3b.

Since (c% —c4), = Ac® is positive (see Fig.11-3b), and both j% and j4 are also
positive (downhill diffusion), the motion of the boundary in the negative direction
requires that j& >j4. It is the dissolution of A in § which causes the boundary to
move. Therefore, v‘i and the flux that causes the boundary shift have opposite
directions. From our previous discussion, we conclude that in this case the boundary
moves in a morphologically stable way. Since A and B are chosen arbitrarily, the
same argument holds for a possible motion of v‘i in the positive direction of Figure
11-3b. Figure 11-5 illustrates the four possible cases for interface movement. In a tru-
ly binary system, only case d) would occur and therefore the planar boundary is
stable. These conclusions are strictly valid only for short reaction times. When the
system comes close to equilibrium at a far later stage, it may happen that j%>j#
because the driving forces decrease faster in £ than in a. This may lead to a reversal
in the direction of v® if the transport coefficients are strongly composition depen-
dent. With respect to the question of initial morphological stability, these later com-
plications are irrelevant.

In a true binary system, the transport problem, which includes the boundary mor-
phology, is completely defined by 1) the continuity equation (11.2) at the moving

GA ) lj/f ) a | B x| B
[ ! - b j
1 [} 1 . .
i l o )
vb vb
unstable stable

a) b) c) d)

Figure 11-5. Boundary velocity v° and the direction of fluxes (responsible for the boundary mo-
tion) in the contiguous phases a and 8. Figure 11-5b corresponds to Figure 11-2a.

je! j

i
vb vb



272 11 Morphology

boundary, 2) the assumed equilibrium at the boundary (|Acs| = |Acg| = AcY, 3)
the flux coupling in the a and B phases, and 4) the Gibbs-Duhem equation for both
phases & and 8. These six relations for the six unknowns v®, j%, j&, j&, j§, and Ac
allow us to calculate

a
(ZZ,,) =f@LiLf), i=AB (11.8)
i/ b .

and thus to predict the morphological boundary stability in the sense of Figure 11-2.
Of course, in a strict quantitative treatment, the fluxes have to be determined by in- -
tegrating the continuity equations within the given boundary conditions. However,
our qualitative rules are appropriate and will be confirmed by a more rigorous treat-
ment. The boundary stability for the A-B system (case d), Fig. 11-5) was based on
the fact that in (local) equilibrium, AN? (Ac?) is invariant and determined by ther-
modynamics and that j; ~ —V¢; (or —Vy;). In ternary and higher component sys-
tems, those conditions are generally not valid and it is in these systems that mor-
phological instabilities are found.

b
@) {A.B)X (B.AIX @
elel) i jgelel)
Jarle : Jele ;
JB‘(di‘f_ﬂ_ | Jgrldiff) Figure 11-6. Superposition of diffusive (j(diff))
A i B and electrically driven (j(el)) transport in the
Jar i | | Jeldiff) 7 (A,B)X/(B,A)X couple of the binary system
| 4 AX-BX in analogy to Figure 11-3a, For L#>L¢
} and sufficient driving force, the boundary b is
o et 0 p . morphologically unstable.

Figure 11-6 defines the transport problem in a quasi-binary ionic system (A, B)X
with a miscibility gap, if both chemical (Vy;) and electrical (Vg) driving forces act
simultaneously (case 3)). If the chemical force is negligible, we are dealing with case
2) and the electrical drift flux of the cations shifts the boundary b in the direction
of the flux. We can conclude that, in agreement with Figure 11-5a, the boundary
morphology is unstable if L>L2.

Let us finally comment on the morphological stability of the boundaries during
metal oxidation (A+10,= AO) or compound formation (A+B = AB) as dis-
cussed in the previous chapters. Here it is characteristic that the reaction product
separates the reactants. Two interfaces are formed and move. The reaction resistance
increases with increasing product layer thickness (reaction rate ~ 1/A¢). The bound-
aries of these reaction products are inherently stable since the reactive flux and the
boundary velocity point in the same direction. The flux which causes the boundary
motion ‘pushes’ the boundary (see case c) in Fig. 11-5). If instabilities are occasional-
ly found, they are not primarily related to diffusional transport. The very fact that
the rate of the diffusion controlled reaction is inversely proportional to the product
layer thickness immediately stabilizes the moving planar interface in a one-
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dimensional reaction geometry (see Fig. 10-17). This holds for true binary systems
(A+10; = AO) as well as for quasi-binary systems (e.g., AO+B,03; = AB,0,). For
multicomponent systems in which heterogeneous products are formed, it is difficult
to predict boundary stabilities unless the reaction path is known. This path, however,
can be theoretically determined only with the assumption of stable boundaries. We
return to this question in Section 11.2.5.

11.2.2 Examples of Unstable Moving Interfaces

Let us discuss some pertinent examples of the instability of moving interfaces in
order to illustrate the conclusions of the previous section. The given stability criteria
can only answer the question of whether or not a perturbation grows or decays. No
immediate answer as to the subsequent growth patterns is available, It is therefore
possible that initial growth is morphologically unstable whereas later growth stages
can be stabilized. Let us be aware, however, that boundary motion in solids entails
many secondary effects (formation of dislocations, cracks, etc.) which may change
the mode of reaction and thus the stability conditions.

b' b"
Oz(P(;z) | Co0 |02(p32)
V.H
r—ﬁ
Co
vb — > yb
Figure 11-7. CoO crystal exposed to an oxygen potential
gradient: its motion and the boundary stability
|<—— 'Y (schematic).

The simplest possible transport situation is shown in Figure 11-7. A binary transi-
tion-metal oxide is placed in an oxygen potential gradient. This gradient sets up a
cation vacancy flux (electrically compensated for by a flux of electron holes) as was
discussed in Chapter 7. In the present context, we need to know the change in the
boundary geometry which the vacancy flux provokes at the surfaces. At the oxidizing
side, where the vacancy flux originates, we have the following reaction: 1O, + Co ?;3
= Co0+ Vi, +h°. For each vacancy that forms, one CoO lattice molecule is added
to the surface. At the reducing surface, where the vacancy flux arrives, we have in-
stead h*+ Vi, +Co0 = C_p?;f, +30,, which means that one CoO is subtracted for
each vacancy that arrives. Thus, the overall reaction is the transport of oxygen from
the high to the low activity side coupled with the opposite transport of CoO. In other
words, the crystal boundaries are shifted in the oxygen potential gradient towards the
side of high activity. According to the rules given in the preceding section, the flux
of vacancies which induces the boundary motion is directed opposite to v° at the
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Figure 11-8. Single crystal of CoO after
exposure (30 h) to an oxygen potential
gradient at 7= 1200°C. a) SEM picture
looking onto the initially flat reducing
(100) surface. b) Computer simulation;
w = 0.05; € = 0.5; w: dimensionless force
(= increase of jump probability in for-
ward direction); e: surface energy, nor-
malized to RT. Cross section of the
crystal represented in Figure 11-7

[M. Martin (1991)].

a) fA

b)

reducing side (Fig. 11-5b). This boundary should therefore exhibit morphological in-
stability. The stable boundary at the high oxygen potential side can be recognized
in Figure 11-5d. All these predictions are borne out by experiment and computer
simulations as seen in Figure 11-8 [G. Yurek, H. Schmalzried (1975); H. Schmalzried,
W. Laqua (1981); M. Martin, H. Schmalzried (1985); M. Martin (1991)].

This type of surface instability has also been observed if an oxide crystal (e.g.,
Co,_z0) is equilibrated at a high oxygen potential (po,,8",¢cv) and subsequently
brought into a more reducing surrounding (sz,5 " ey(<cy)), although on a lesser
scale. The subsequent vacancy flux towards the surface results in its roughening and
pitting, an effect which corresponds to the morphological instability of the previous
paragraph.

b p
| H*laq), A’laq)

Figure 11-9. Dissolution of alloy a = (A,B) in an
equipotential aqueous solution 8. A is the base metal. The interface
surface b (solid/liquid) is morphologically unstable.
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The next example is concerned with the wet corrosion of a metal alloy, the reaction
scheme of which is 4 (in alloy (A,B))+2Hg,, = A(za;)+H2. It is depicted in
Figure 11-9. In view of L“_<Lﬁ, the interface between the alloy and the aqueous
solution is an isoactivity surface. In the alloy, isoactivity surfaces in front of the per-
turbation tip at y, are thus denser and the boundary initially moves towards this
steep gradient region due to the increased transport during dissolution. It is therefore
morphologically unstable (see Figs. 11-2 and 11-5b). A practical situation of alloy
dissolution has been analyzed by [J. D. Harrison, C. Wagner (1959)]. Considering the
preferential dissolution of the lesser noble component A, the fraction of nobler B
increases near the a/pf interface and eventually inhibits further reaction. It is this
stage where the system tries to find other and faster reaction paths. This will become
evident in our next example.

Let us consider the high temperature reduction of oxide solid solutions as dis-
cussed in Chapter 9. The overall reaction reads (A,B)O+H, = A+BO+H,0. We
conclude from Figure 11-10a that the receding phase boundary is always morpholog-
ically unstable, in accordance with Figure 11-5b (see also [D.P. Whittle (1983)]).
There is yet a second kind of instability involved in the oxygen activity change at the
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Figure 11-10. a) Reduction of an oxide crystal, (A,B)O, resulting in internal precipitation of A
(schematic). b) Cross section of a (Ni,Mg)O single crystal, reduced in H,/H,0. Typical mor-
phology of the reaction product if Ny;o> 10%. Pores connect the reaction front with the external
reducing gas.
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oxide surface. Since Dy, Dy > Dy, Dg, this change spreads much faster into the solid
by point defect diffusion than any change in component composition (N,g). We
therefore have morphology changes on two levels: 1) surface instability and roughen-
ing, and 2) internal reduction accompanied by precipitation as described in
Chapter 9. Change 1) is analogous to the surface roughening of Co,_sO by the
cation vacancy flux arriving at the reducing boundary (Fig. 11-8). By change 2), the
internal reduction zone of the solid solution (A,B)O is depleted of A%* and thus
has a correspondingly low concentration of point defects. Low defect numbers entail
small transport coefficients, which then inhibit further reduction. However, the
parent lattice will be heavily disturbed by the reduction product A considering the
large volume changes associated with its internal precipitation. Only for small frac-
tions of N,o will a coherent internal reaction zone without fissures exist. For larger
Nyo fractions, the structural perturbations of the lattice after reduction are extreme.
New and fast reaction paths (Fig. 11-10b) become available, leading to very porous
samples which are reminiscent of the CoO surfaces exposed to an oxygen potential
gradient (Fig. 11-8). The inhibiting effect of a small transport coefficient in the inter-
nal reduction zone on reduction rates is thus completely lost.

In the foregoing, the S-phase was fluid (Fig. 11-9). The preferential evaporation of
one component from the surface of a solid solution is another example of this type
of boundary motion. The oxidation of an alloy consisting of the base metal A and
a noble metal B is also of interest, partly for historical reasons. Component A is
preferentially oxidized and forms an oxide layer on the surface. If the transport coef-
ficient L (AQO)> L (A,B), then the AO/(A, B) boundary is essentially an isoactivity
surface. Thus, the fluxes in the alloy are directed towards the valleys of the boundary.
The moving interface is then morphologically unstable for the same reason as is the
alloy surface during its dissolution in aqueous acid. However, the AO/(A, B) bound-
ary is stable if L (AO)<L (A, B) since now its A-activity is fixed (a5 < 1) and the ox-
idation process occurs analogous to the morphologically stable A-metal oxidation.
C. Wagner discussed this problem [C. Wagner (1956)] and gave the first formal
stability analysis of the boundary during a heterogeneous chemical reaction along
with the pertinent concepts of morphological stability. Questions that go beyond
stability (e.g., pattern formation) are very complicated, see for example
[H. Miiller-Krumbhaar, ef al. (1992)]. The eventual enrichment of the nobler B com-
ponent near the boundary inhibits further oxidation. It is remarkable that (Pt, Ni)
alloys oxidize with a stable metal/oxide interface, but (Au, Cu) and (Ag, Cu) develop
morphologically unstable boundaries.

Very little quantitative work has been done in the past on solid-solid boundaries.
Early examples of unstable boundaries are the so-called displacement reactions
AX+BY = AY+BX (Fig. 11-11a). They have been discussed for more than 50 years.
The first interpretation by W. Jost suggested that the reactants should be separated
by layered products. If a reaction is proceeding in such a way (with D, Dg> Dy, Dy),
there must be a slight solubility of A* in BX and of B* in AY. After all, these ions
have to diffuse through the respective product phases. However, since the transport
coefficients L, (BX) and Lg(AY) are small by necessity (N;<1), the BX/AY inter-
face is morphologically unstable according to the stability rules (Fig. 11-11b). There-
fore, we expect a faster growing columnar structure to develop, as shown in Figure
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B* a)

AX BX | AY BY
i
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—

: Figure 11-11. Displacement reactions of the
type AX+BY = AY+BX. a) Jost mechanism,
T schematic. b) Equipotential surfaces p, (ug)

5
AY A c) and the evolution of phase boundary in-
B* «— BX——— stability, Jost mechanism. c) Wagner
mechanism of displacement reactions,
I ! ! schematic.

11-11c. It leads to a ‘circular’ cation flow carried by A* in AY and by B in BX.
This displacement reaction mechanism was proposed by C. Wagner without the ap-
plication of stability criteria. Later, metal displacement reactions were studied in
much greater detail. The principle of ‘maximum reaction rate’ has been invoked to
explain the layered or columnar growth morphologies [R.A. Rapp, et al. (1973)].
Beside the fact that this principle cannot be a universal one (it cannot explain self-
inhibition, for example), one may show that the layered or columnar product struc-
tures follow immediately from the application of the stability rules. For more details
we refer to Section6.4, where the reactions Fe+Cu,0=FeO+2Cu and
Co+Cu,0 = CoO+2Cu have been discussed.

A still more general transport situation is illustrated in Figure 11-12, with (A, B)
and C as starting materials. This problem has been treated both experimentally and
theoretically by [M. Backhaus-Ricoult, H. Schmalzried (1985)]. Figure 11-12a shows
the ternary counterpart of a binary phase diagram as given in Figure 11-3a. In
Figure 11-12b, possible reaction paths are indicated analogous to Figure 11-3b. After
the phases (A, B) and C have been brought into contact at an initially planar inter-
face and the reaction proceeds (again analogous to Fig. 11-3b for the binary system),
we can document the observed interface morphologies as shown in Figure 11-13.
They depend on the initial (A, B) composition in the a-f reaction couple since the
component fractions determine the transport coefficients L;(a) and L;(#), which in
turn determine the morphological stability of the phase boundary. We will return to
the quantitative discussion of this problem in Section 11.2.5.

11.2.3 Formal Stability Analysis

Neglecting all secondary influences, the problem of the morphological stability of
moving interfaces is, in essence, a transport problem comprising two contiguous
phases. Coupling occurs by mass conservation (and perhaps interface kinetics). If we
adopt this simplifying point of view, we will have disregarded all possible structural
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Figure 11-12. a) Gibbs phase diagram for a
ternary system with a miscibility gap. Tie
lines and reaction path between (A, B) and
C are indicated. b) Possible reaction paths
near and across the miscibility gap. Starting
compositions of the reaction couple are in-
dicated (o) in Figure a. (Stable and unstable
morphologies see text.)
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and mechanical implications including the interface tension (which is often small).
The simplest boundary condition assumes prevailing local equilibrium.

Let us briefly outline the main concepts of a (linear) stability analysis and refer
to the situation illustrated in Figure 11-7. If we artificially keep the moving boundary
morphologically stable, we can immediately calculate the steady state vacancy flux,
jv, across the crystal. The boundary velocity relative to the laboratory reference
system (crystal lattice) is

v=—jv'Vao = ljv'cV cv__1_
AE  ca

(11.9)

If we attach a new reference frame (z) to the moving (stable planar) boundary,
z=E&—v-t. The transport equation (Fick’s second law) reads in the z-system

ey, 8oy
at az? az

(11.10)

Note that we have assumed the vacancies to be ideally diluted. We can then in-
troduce a perturbation of the planar boundary, z=A&+¢(x,y¢t), and define
¢°(x,y) = ¢ (x,»,t = 0). In order to simplify the following treatment, we assume
that ¢ does not depend on x, but only on y, where x and y are the Cartesian coor-
dinates perpendicular to z. In this way, the morphological stability becomes a two-
dimensional problem. Since we also assume that local equilibrium prevails at both
interfaces (surfaces), the boundary conditions are

cvOxy.t)y=cy; cv(Al+ont)) =cy (11.11)

At t =0, we start with a steady state vacancy distribution

cv(Z,0,0) = ¢y(2) (11.12)

The last condition we need concerns the coupling between the flux and the boundary
velocity v. If e is the unit vector in the z direction and 7 is the vector normal to the
boundary, this coupling condition yields

—njy(Al+¢) Vao = D_(‘,/‘"'VCV(Z,y,t) = <v+%> ‘e'n (11.13)
CA

This system of (nonlinear) differential equations cannot be solved analytically. It
does, however, contain the answer to our basic question of whether or not 8¢/9¢ is
positive or negative, which means whether the perturbation ¢ decreases or increases
with time. Thus, the negative sign on ¢ defines the (initial) morphological stability.

We can work out the answer on three different levels of sophistication. 1) One con-
structs a steady state solution of Eqn. (11.10) (d¢y/9d¢ = 0) and even neglects the in-
fluence of the slow moving interface. According to Eqn. (11.10), this condition yields
v/Dy<2-7/4. Equivalently, we have A/v (= 7,)» A%/Dy (= T4¢), where 4 is the
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wavelength of the (sinusoidal) perturbation. 7, T4 thus means that the time
necessary to shift the boundary a distance A is much larger than the time a diffusing
vacancy needs to go the same length. In this way, we have neglected v-(dcy/dz) in .
Eqn. (11.10), and therefore we take into account only the Laplace concentration field
(Acy = 0) with its corresponding flux pattern. This is the approach we have basical- -
ly used in the foregoing illustrations (e.g., in Fig. 11-2b). 2) One constructs a steady- |
state solution (dcy/d¢ = 0), but takes into consideration the (slow) interface mo-
tion. 3) One makes full use of Eqn. (11.10). In any case, the diffusion equation and :
the boundary conditions (Eqn. (11.13)) are linearized. ‘

All three approaches have been worked out. It has been demonstrated [R.F.
Sekerka (1967)] that they lead to the same conclusions concerning the initial mor- ;
phological stability. However, they must differ with respect to the morphological :
evolution and the selection of growth modes at later times. :

In order to quantify these general conclusions, let us linearize the set of equations |
by 1) allowing only small perturbations (¢/A é <1) and 2) assuming that the local
concentrations on z-surfaces do not deviate much from their average values !

vz 1) =ey(R)+8cy(z,0,0)+. .. (11.14)

where &cy is of first order in ¢. Techniques of handling these equations can be -
found, for example, in [W. W. Mullins, R.F. Sekerka (1964); R.F. Sekerka (1967)].
There is one more conceptual step involved in the formal treatment. The perturba-
tion ¢ is Fourier analyzed, which means that it is constructed from the Fourier com-
ponents ¢ (k,¢) with wavelength A =2-n/k. dcy is transformed in the same way.
Explicitly,
+ oo
1. { 0% (k,t)-e"*7-dk (1115

V2n e

As may be expected, one finds for ¢* (k,¢) and 8¢f (z,k,¢) from the linearized
equations (after some reaction time ¢) expressions of the following form

o0 t) =

o* (k1) = p°(k)-e"®! (11.16)
8¢ (z,k,t) = 8%z, k) e” @ (11.17)

The only function of interest in the given context is w(k). The stability question is
then answered if the rate, w(k), has been found to be positive or negative at any value
of k or wavelength A of the perturbation. The validity of this argument is due to the
linearized differential equations, for which we know their solutions can be super-
posed. Negative w(k) means that ¢ >0 for 1— . Insertion of Eqns. (11.16) and
(11.17) into the transport equation and the boundary condition yields an implicit
equation for w(k). If we use the following transformations to express w and X in
terms of the characteristic parameters Dy and v of the system, namely

In=2Dy/v; p=(Up/v)w; q=Ipk (11.18)
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then the implicit equation has the form

p=V1+¢g*+2p-coth (E-V1+q2+2p)—1 (11.19)

Ip

An analysis of Eqn. (11.19) reveals that w is positive for all values of k. Therefore,
under the given boundary conditions, all perturbations grow with time. Thus, the
result of the formal stability analysis agrees with the conclusions drawn in Sec-
tion 11.2.1. The slab of oxide AO at the reducing surface is morphologically unstable
as it moves under the action of an oxygen potential gradient (see Fig. 11-7).

Finally, let us briefly point out some essential features of the stability analysis for
a more general transport problem. It can be exemplified by the moving a/f phase
boundary in the ternary system of Figure 11-12. Referring to Figure 11-7 and
Eqn. (11.10), it was a single independent (vacancy) flux that caused the motion of
the boundary. In the case of two or more independent components, we have to for-
mulate the transport equation (Fick’s second law) for each component, both in the
a- and B-phase. Each of the fluxes j¥ couples at the boundary b with jf’,
i=A,B,...(see, for example, Eqn. (11.2)). Furthermore, in the bulk, the fluxes are
also coupled (e.g., by electroneutrality or site conservation).

The mathematical evaluation of the stability problem in multicomponent systems
is most complicated, even if we assume that local equilibrium prevails at the bound-
aries. The result is a relation for the concentrations at the boundary of the following
form

cf(b) = f(c2(®),cE®),cf(®)); n=A,B,... (11.20)

stating that ¢ (b) depends on all the other concentrations ¢,(b) in a and # at the
boundary b. The transport problem has been solved in a linearized version. The
answer to the question of the boundary stability is similar to the answer in the case
of a binary system with one independent flux, as has been discussed before. In par-
ticular, Eqn. (11.16) is still valid, although the explicit form for the spectrum w(k)
of growth parameters is different from the binary case. Details are given in [M.
Backhaus, H. Schmalzried (1985)]. We emphasize, however, that the formal solution
has been obtained under quite restricting assumptions, namely that the (molar) vol-
umes, V%= V¥ = V° are constant and that the ﬁij coefficients are independent of
composition (V;) as well.

Computer experiments may be performed in order to gain insight into the mor-
phological evolution of phase boundaries in non-equilibrium systems (Fig. 11-8b).
The driving forces for the components have been simulated by increasing the jump
probability in the direction of negative concentration gradients. If necessary, inter-
face tensions can be taken into account. Interesting examples of growth mor-

_phologies obtained by Monte Carlo simulations have been worked out in [M. Martin
(1991); P. Tigelmann, M. Martin (1992)].
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11.2.4 Stabilizing Factors

It has not always been possible to experimentally verify a stability analysis predicted
morphological instability (see, for example, the oxidation of (Pt,Ni) alloys). Some-
times, the later stages of morphological evolution are beyond the scope of a linear
analysis. Even in the linear regime, there are some influences which we have not pro-
perly taken into account when formulating the transport equations. For example, the
influence of surface (energy) tension (solid-gas, solid-liquid, and solid-solid) cannot
always be disregarded. Surface tension alters the chemical potential change across
the interface due to the curvature of the local perturbations in the boundary
(= capillarity effects, see Section 10.2). Since surface energies tend to minimize the
surface area, they are always stabilizing. For solid-solid interfaces, capillarity effects
are often less important than the energy densities deriving from coherency stress.
Lateral transport along surfaces and interfaces is another factor to be considered. If
the component mobility in the interface is much larger than in the adjacent bulk,
and a driving force exists between the (unstable) protruding regions and the valleys
of the boundary, for example, due to capillarity, a corresponding component flux is
induced along the interface. It will retard the protrusion growth and consequently
stabilize the boundary morphology.

Concentration gradients near interfaces generate stresses. In particular, stress
fields are generated by coherent or semicoherent interfaces. The local chemical
potential gradient is affected by the stress gradient and thereby matter transport is
influenced. There are no general rules of when these inherent stresses will or will not
stabilize the boundary morphology. Among other factors, the relationships between
composition, lattice parameter, lattice misfit at the interface, elastic coefficients, and
the sample geometry are to be considered in this context. Yet more important than
elastic effects are probably the plastic deformation and the formation of dislocations
and dislocation networks at moving boundaries (see Fig. 3-5). They can drastically
change the local transport behavior. Since dislocations are fast diffusion paths, they
tend to decrease chemical potential gradients along interfaces and we may therefore
expect that they normally enhance morphological interface stability.

11.2.5 Stability and the Reaction Path

In Section 4.3.3, it was explained how to construct the ‘reaction (diffusion) path’ for
ternary and higher solid solution systems. In practice, one plots, for example, in a
ternary system, the composition variables (measured along the pertinent space coor-
dinate of the reacting solid) into a Gibbs phase triangle, noting that the spatial infor-
mation is thereby lost. For certain boundary conditions, such a reaction path is in-
dependent of reaction time and therefore characterizes the diffusion process. For a
one dimensional ternary system with stable interfaces, these boundary conditions
are: (=t o0,1) = c?(i ®); ¢;(£<0,0) = c?(— ®©); ¢;(£>0,0) = c?(+ o).

In the context of the morphological evolution of non-equilibrium systems, let us
then ask whether the reaction path, when constructed for a system with stable inter-
faces, can tell us something about the instability of moving boundaries. For this we
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consider a ternary system with a miscibility gap as presented in Figure 11-12a. In-
stead of the fractions Nz and N, we will introduce up and uc as the independent
variables. This is a simple transformation if the Gibbs energy is known since
80G/dn;=u; = u?+RT-Inf;-N;. (f;= f(Ng,N¢) is the activity coefficient.) In the
Up-Uc representation, the boundary between the a and 8 phase is a curved line and
reflects the miscibility gap (Fig.11-14). It can easily be calculated from the
equilibrium conditions (uf = uf’ ), taking into account the Gibbs-Duhem equations
(X N;-dy; = 0) and the fact that ¥ N; = 1.

al

b)

Figure 11-14, a) Phase boundary b, reflecting the miscibility gap in the system A-B-C, plotted in
terms of u® = f(u3) (phase diagram of the third kind). b) Possible reaction paths crossing the
phase boundary b of Figure 11-14a, in analogy to Figure 11-12b.

In local equilibrium, the phase boundary in a binary system is invariant which
follows from the Gibbs phase rule. This is no more true for ternary (higher) systems.
Thus, if a unique solution exists for the transport problem, there is also a unique
reaction path in the uc vs. ug diagram and the crossover point on the phase bound-
ary line is determined by kinetics (Fig. 11-14). This point corresponds to a tie-line in
Figure 11-12a. There are at least four possibilities for the reaction path to cross the
boundary line. They are illustrated in Figure 11-14b. The formal solution to the
transport problem conforms to one of these four possibilities. Note that we do not
disobey thermodynamic stability, that is, the condition (8x;/8N;>0). Possibilities
2—4 in Figure 11-14b infer that the slope (Buc/8ug) of the reaction path is less
than (Quc/0ugp )®, which means that the component transport towards the boundary
occurs from a supersaturated solution. In ternary and higher systems, the perturbed
phase boundary is not invariant and is thus normally not an isoactivity surface.
Transport in and along the boundary may therefore stabilize it morphologically. This
means that the transport towards the moving a/8, as indicated in Figure 11-14b
(cases 2—4), does not necessarily lead to morphological instability. For the question
of initial stability it is irrelevant if in the further course of the reaction the two (three)
crossover points later merge into one point on the boundary line.
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Normally, it is not possible to obtain analytical solutions for this transport prob-
lem and so we cannot a priori calculate the reaction path. Kirkaldy [J.S. Kirkaldy,
D.J. Young (1985)] did pioneering work on metal systems, based on investigations
by C. Wagner and the later work of Mullins and Sekerka. They used the diffusion
path concept to formulate a number of stability rules. These rules can explain the
facts and are predictive within certain limits if applied properly. One of Kirkaldy’s
results is this. The moving interface in a ternary system is morphologically stable if

VO (|VE-Veh| - Vet -Ved|)>0 (11.21)

Although this equation is reminiscent of the rules given earlier in this chapter, there
are differences. In Eqn. (11.21), the two independent concentration gradients of the
ternary system are introduced instead of real driving forces, which are the chemical
potential gradients. Also, other simplifying assumptions have been made in order to
arrive at Eqn. (11.21), assumptions which hardly pertain to real systems.

To conclude, we present an application of the reaction path concept and investi-
gate the evolution of the phase boundaries in the ternary oxide system Fe-Mn-O
[Y. Ueshima, et al. (1989)]. Let us start with the a-crystal (Fe, Mn) O which then is
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Figure 11-15. a) Phase boundary b reflecting the miscibility gap between the phases (Fe, Mn)O and
(Fe,Mn);0, in the system Fe-Mn-O. Reaction path is plotted in terms of ug = f(ipmno). Dotted
lines (almost) parallel to b indicate the supersaturation for nucleation. b) Unstable interface b and
two-phase region between (Fe,Mn)O and (Fe,Mn);0,, after (Fe, Mn)O has been exposed to an
oxygen potential gradient [Y. Ueshima, et al. (1989)] (see text).
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partly oxidized to f = (Fe,Mn);0, (Fig. 11-15). Two different oxygen potentials uo,
and uo, are established at the two opposite surfaces of the oxide crystal in such a
way that a is stable at u, and f§ at uo, The experimentally determined reaction
path in the steady state is szhown in Figure 11-15a. We can interpret it as follows. In
a((Fe,Mn)O), Dg.> Dy, and consequently the Fe component is enriched at the
higher oxygen potential side (see Section 8.2) until eventually the oxidized S-phase
(Fe,Mn),0, forms there. In B, Dg. <Dy, and therefore the slope of the reaction
path is reversed. If now the kinetically determined (8 uo/8tnu0) is smaller than the
thermodynamically given (Quo/dupmo)°, the reaction path will reenter the a-phase
as illustrated in Figure 11-15. Thereafter, in the a-phase, the slope is again reversed,
etc. As a result, there is no single transition from a to f along the oxide sample plac-
ed in the oxygen potential gradient. Rather, depending on Mo, MO, and the ratio
Dr./Dypy, in a and f, a sequence of phases and interfaces will be formed. Since the
formation of a new phase needs some supersaturation (as indicated in Fig. 11-15a)
and the nucleation is a stochastic event, one even finds an extended zone of randomly
distributed a- and S-phases (Fig. 11-15b) instead of an orderly sequence.

11.3 Moving Boundaries in Other Than Chemical Fields

A gradient of electrical potential constitutes the classic (external) force field for ionic
solids. Let us study the effect of this electric field on the interface morphology and
stability. The thermodynamic driving force in ionic crystals is V#;(=V(u;+ @,);
@; = z;F- @), which is the gradient of the electrochemical potential. This is the driv-
ing force governing the flux equations in ionic crystals, instead of the chemical
potential gradient we have previously used. Since #; is a potential function as well,
the earlier conclusions remain valid as long as we apply equivalent boundary condi-
tions.

For the formal treatment, we note that the divergence of the total electric current
vanishes, that is, V ) z;-j; = 0. In a closed system, the condition of (local) electro-
neutrality can be used to eliminate the electric potential. Since in a linearized ap-
proach the potentials as well as their gradients are additive (as are the solutions), the
stability analysis remains the same as before.

With an open system to which electrodes are attached, we can study the stability
of interface morphology in an external electric field. A particularly simple case is
met if the crystals involved are chemically homogeneous. In this case, Vu; = 0, and
the ions are essentially driven by the electric field. Also, this is easy to handle ex-
perimentally. The counterpart of our basic stability experiment (Fig. 11-7) in which
the AO crystal was exposed to an oxygen chemical potential gradient is now the ex-
posure of AX to an electric field from the attached electrodes. In order to define the
thermodynamic state of AX, it is necessary to apply electrodes with a predetermined
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Figure 11-16. Unstable interface (cathode) in a
| solid state electrolysis cell A/AX/A (e.g.,
Ag/AgBr/Ag).

and well-buffered A-activity. The simplest electrodes for this purpose are electrodes
composed of the metal A (a5 = 1). Figure 11-16 shows the arrangement. If this cell
is under load, A is dissolved at the anode into the crystal as mobile A; and is
precipitated as metallic A at the cathode. Therefore, the anodic A/AX interface is
receding while the cathodic AX/A interface (which is obviously an isoactivity sur-
face) is moving against the incoming flux. The reducing AX/A interface is therefore
morphologically unstable, quite analogous to the instability of the O,(g)/AO inter-
face at the reducing oxide surface (Fig. 11-7). Experimentally, one finds needlelike
protrusions of A growing into AX from the cathode and which sometimes branch
in a fractal fashion. The fractal dimension should be dependent on the field strength.
Needles are the preferred form since they minimize the elastic energy. After all, the
A precipitate grows into the AX matrix by deforming it elastically and plastically.
This energy expenditure stabilizes the planar growth of the A metal deposited on the
cathode if low fields are applied.

A similar process occurs if we electrolyze the phase sequence AX/AY, using A-
metal electrodes. AX and AY are immiscible ionic crystals. This time we focus on
the AX/AY interface. Since there is always a finite electronic partial conductivity and
the very small transference numbers ¢, (AX) and ¢, (AY) are normally different, the
AX side of the AX/AY interface serves either as an anode (oxidizing) or as a cathode
(reducing). The difference (¢, (AY)—?.(AX)) is proportional to the anodic (cathodic)
current in AX. The cathodic interface is expected to obtain similar morphologies as
have been described for the A-metal cathode in the previous paragraph. It is immo-
bile as long as Dy, Dy <D,. The morphological instability is therefore due to the A
precipitates which cause the perturbations.

Next, we discuss a (quasi-)binary system in an electric potential gradient. The
phase diagram of the system in question corresponds to that in Fig. 11-3a. At suffi-
ciently low temperature, the miscibility gap is quite wide. Thus, AX and BX are
(almost) stoichiometric compounds without any noticeable mutual solubility as il-
lustrated in Figure 11-17a. Figure 11-17b shows the atomic steps occurring at the in-
terface when the electric field is driving only cations. Although the morphological
stability of the AX/BX interface is independent of the particular atomic transport
mechanism, let us visualize the advancement of the interface with the help of a
vacancy mechanism. If a cation vacancy in BX is field-driven towards the anode and
arrives at the AX/BX interface, it performs a site exchange with a neighboring A*
cation in AX. Hereafter, the BX vacancy is now an AX vacancy and the boundary
has shifted so that one lattice molecule is added to the AX volume (Fig. 11-17b).
Without internal defect reactions, the electric potential obeys the Laplace equation.
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Figure 11-17. a) Phase diagram of the quasi-binary system AX-BX with an extended miscibility gap.
b) Schematic electrolysis cell A/AX/BX/B. Cation vacancy drift and the mechanism of interface
motion are indicated.

Conceptually, we thus have the same situation as introduced in Figure 11-2.
Therefore, we conclude again that (since v® is directed towards the cathode) the
moving interface is morphologically unstable if Ly (BX) <L, (AX), and it is stable
if Ly(BX)>Ls(AX), in accordance with Figures 11-5a and ¢. These predictions
have been confirmed experimentally [S. Schimschal (1993)].

If we repeat this experiment at higher temperatures where AX and BX are partially
soluble in each other, we can conduct the field-driven transport in two ways. 1) The
starting substances are pure AX and BX. 2) The starting substances AX (BX) and
BX (AX) have been equilibrated with each other, which means that their initial con-
centrations are located on the miscibility gap (Fig. 11-17b). If we then adjust the ac-
tivities of the metals A and B in the respective electrodes in such a way. that no
chemical gradients evolve in a and £ during the field-driven transport, the situation
is analogous to that with pure AX and BX (Fig. 11-17b). Case 1) is different. An elec-
trical and a chemical potential gradient act simultaneously upon the migrating cat-
ions. Since both forces are additive and the differential equations are linear, the flux
due to V¢ does not depend on the flux due to Vu;. This leads to the following con-
clusion. Irrespective of the (stable) boundary motion arising from chemical transport
as illustrated in Figure 11-3, the a/f boundary is morphologically unstable if
L%>L*? and a contacts the anode. However, the boundary is stable if the anode and
cathode are reversed, analogous to the AX/BX electrolysis couple without mutual
solubility.

A final remark concerns field-driven transport in the AX-BX system at tempera-
tures above the miscibility gap. We start with a reaction couple of pure AX and BX
and apply the electric field as in Figure 11-17. Instead of the discontinuity in concen-
tration, we now have a more or less steep interdiffusion profile dependent on diffu-
sion time and the ratio (D,/Dg). As pointed out in the previous paragraph, diffu-
sional transport and field transport can be superposed. The dissipated Gibbs energy
from the interdiffusion is on the order of R T in systems with complete miscibility.
At the same time, the dissipated energy arising from the electric field is (z;- F- A ¢).
Therefore, if A@>or> (R T/z;' F), field-driven transport by far outweighs diffusion-
al mixing, and the steepening concentration profile eventually becomes equivalent to
a discontinuity with respect to the (morphological) profile stability. Thus, with suffi-
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Figure 11-18. a) Morphological instability of the AgCl/KCl phase boundary in the electric field-
driven transport couple. b) Morphological instability of the concentration profile of the AgCi-NaCl
interdiffusion couple under the action of an electric field (see text) [S. Schimschal (1993)].

ciently high applied voltages to the phase sequence A/AX-BX/B (where AX-BX
denotes the interdiffusing solid solution), we find similar geometrical instabilities as
with A/AX/BX/B at the AX/BX interface, provided that A is the anode and
La(a)>Lg(S) (Fig. 11-18) [S. Schimschal (1993)].

11.4 Non-Monotonous Behavior in Time

This chapter has been devoted to morphological, that is, geometrical instabilities.
There is a second class of instabilities which may or may not be related to morpho-
logical instabilities. These instabilities occur in time (and space) and derive from
nonlinear kinetics. They happen in two ways: either as non-monotonous (periodic)
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or as catastrophic reactions. The rate of advancement of catastrophic reactions in-
creases (over-)exponentially with time.

Periodic reactions of this kind have been mentioned before, for example, the Liese-
gang type phenomena during internal oxidation. They take place in a solvent crystal
by the interplay between transport in combination with supersaturation and nuclea-
tion. The transport of two components, A and B, from different surfaces into the
crystal eventually leads to the nucleation of a stable compound in the bulk after suf-
ficient supersaturation. The collapse of this supersaturation subsequent to nucleation
and the repeated build-up of a new supersaturation at the advancing reaction front
is the characteristic feature of the Liesegang phenomenon. Its formal treatment is
quite complicated, even under rather simplifying assumptions [C. Wagner (1950)].
Other non-monotonous reactions occur in driven systems, and some were mentioned
in Section 10.4.2, where we discussed interface motion during phase transformations.

Let us conclude this chapter by illustrating the non-monotonous behavior in time
of a driven system. Let us inspect such phase sequences as A/AX/A or Me/AX/A
under a (electric) load where A = Ag, AX = AgBr, and Me = Pt, for example. We
then polarize these cells by sending a constant (galvanostatic) electric current across
them and register the potential drop across the anodic electrode. For A/AX/A, it is
found that pulsations start whereby the pulse frequency depends on the current den-
sity and the applied contact pressure (Fig. 11-19). Various explanations for this type
of phenomena have been brought forward. The most likely one assumes that the ef-
fect is essentially mechanical in nature. The anodic A* current perturbs the metallic
lattice of A at the receding A/AX interface. The perturbations occur preferentially
at dislocations or other non-equilibrium lattice defects. Consequently, the contact
area between the metal A and the crystal AX changes with time. The interface region
becomes porous until it collapses or at least relaxes because of mechanical instability.
Even geometrical pattern formation of pores in the interface region is possible.
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Figure 11-19. Temporal instabilities of the Ag/Agl interface under anodic load and galvanostatic
conditions. T = 260°C. This plot represents a) the periodic voltage drop across the interface and
b) the change in coordinate A¢ of the pulsating receding interface [J. Janek, S. Majoni (1994)].
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Similar periodicities in the anodic potential drop across the Me/AX interface have
been monitored with the solid-state cell Me/AX/A. The cell was presented in
Figure 9-8. We discussed in Section 9.4.3 that the activity of component X increases
at the Me/AX interface proportional to e Y7 if we polarize the cell. The activity
increase is equivalent to an increasing electron hole concentration in AX, which
eventually leads to either an adsorbed surface film of X(X,) or the formation of a
surface film of MeX,,. There are now several possible reasons for non-monotonous
or periodic behavior at the (driven) anodic electrode interface. 1) If by decomposing
AX the X, pressure builds up to a critical value necessary for X, to escape into the
surroundings, this may occur discontinuously. 2) The isolation of the MeX,, film
which forms anodically can be destroyed by an electrical discharge and subsequently
healed. 3) Nonlinear point defect relaxation processes (in the sense of Section 10.4.2)
occur at and near the interface while AX decomposes. 4) As pointed out for the
A/AX interface under load, decomposition of AX may result in regions of good and
bad contact. An increasing flux density at the shrinking regions of good contact can
lead to local heating and possibly melting, which in turn will improve the contact
and reduce the heat production so that another cycle can start. By and large, and
corresponding to many other reactions in the solid state, the temporal instabilities
at solid/solid boundaries under load probably result from a number of different and
complex causes. Conclusive investigations in this field are still to be made.
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12 Phase Transformations

12.1 Introduction

Phase transitions are processes where small causes have large effects. Small changes
in intensive variables (P, T,4;) can result in large changes of the extensive macro-
scopic properties of a system. Some specific quantities exhibit singularities at the
transition point.

Heterogeneous gaseous phases do not exist at ambient pressure. Heterogeneous li-
quids exist. The number of different phases in the solid state, however, is enormous,
and their existence reflects the increasing influence of directional interactions be-
tween atomic particles with decreasing temperature. In thermodynamic terms, this
indicates that the Gibbs energy of a solid phase is dominated at sufficiently low tem-
perature by the internal energy of the crystal. These internal energies are not very
different for different packing orders (i.e., crystal structures) at fixed composition.
The multitude of solid phases in turn leads to a host of phase transitions. Crystal
growth from the melt or from the gas phase are examples of phase transitions, while
metallurgy is to a large extent concerned with phase transformations and their conse-
quences. The large number of transitions makes an unambiguous classification quite
difficult. Consequently, we present here only a limited selection of types of transfor-
mations which focus on solid state chemistry. Solid state chemists often restrict
themselves to phase transitions which occur in crystals. Since we cannot here treat
the field of phase transformations comprehensively and in depth, we aim to under-
stand the leading principles and some of the consequences for practical applications
in solid state kinetics.

The isothermal heterogeneous solid state reaction of type A+B = AB already pro-
vides an example of a phase transformation. However, the topic of this chapter is
the evolution towards equilibrium of an initially homogeneous non-equilibrium
(supersaturated) solid solution. Since the transport of heat or stress in solids is so
much faster than that of matter by diffusion, in most cases, the homogeneous super-
saturation can be induced by changes in temperature or pressure. Starting from a
homogeneous, disordered non-equilibrium state, there are, in principle, two ways to
increase the order of a single-phase system (e.g., the system (A, B)). 1) Clustering: the
separation of components into regions which are rich in either A or B. 2) Ordering:
order A and B homogeneously in a structurally well defined pattern. To increase the
order means to arrange the particles of the system in such a way that at any later
time their exact spatial distribution is determined by a decreasing (minimum) num-
ber of geometrical parameters.

These two different ways of ordering require different driving forces. In case 1),
macroscopic transport occurs. The driving force is therefore the chemical potential
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gradient including contributions from any concentration gradients, stresses, electric
fields, etc. In case 2), no transport over macroscopic distances is required. The
homogeneous ordering process occurs by a few site exchanges of A and B on their
atomic scale. In this way, ordered domains form first; these then grow and thereby
lower the system’s Gibbs energy. Obviously, there are two length parameters involved
in the physics of ordering. The length, £, describes the extension of concentration
modulations and the correlation length, & describes the extension of the (restoring)
forces originating from an ordered domain. For the first case (clustering), £./&=1,
whereas for the second case (ordering), &./&=0.

Most chemical reactions occur by a change in the configurational order (A S # 0).
Compared to fluids, crystalline reactants already have a low entropy and thus solid
state reactions are normally exothermic. In this sense, order-disorder reactions are in
no way special, except that they occur in homophase crystals.

From a practical point of view it may not be advisable to formulate a single kinetic
theory to describe all kinds of ordering, that is, separation (demixing) and homo-
geneous ordering. Interactions between the different SE’s of a transforming crystal
and impurities, dislocations, grain boundaries and other non-equilibrium defects
may influence the correlation lengths £ and £, and can therefore alter the ordering
path in space and time, This is particularly true since the phase transformations of
interest here occur close to equilibrium (e.g., near critical points or near the state of
phase coexistence). Therefore, the thermodynamic forces driving the ordering pro-
cess, which (to first order) are proportional to the deviations from equilibrium, are
normally small compared to the driving forces acting on most compound forming
heterogeneous solid state reactions. This has a number of consequences which are
worth mentioning. Since the crystal is a system of tightly coupled atoms, diffusional
transport (which largely decouples correlated motions by the Brownian motion of
point defects) does not occur over large distances during a phase transformation.
Thus, the subtleties of cooperative effects play the dominant role. Furthermore, sta-
tistical theory of ordering becomes rather complicated as soon as the correlated mo-
tions concern a sizeable fraction of atomic constituents in the crystal. Finally, if
crystal structure changes are involved in the transformations, they are generally
coupled with matter transport, as will be discussed in Section 12.3.1. After nuclea-
tion, the coupled motions of the SE’s at and near the moving interface comprise
displacive and diffusive steps on different length scales. This inherent complexity of
correlated steps makes the field of phase changes a domain of statistical physics. In
view of the mechanical properties which can be brought about by transformation
processes, materials science is strongly involved in the technical applications.

It is always convenient to use intensive thermodynamic variables for the formula-
tion of changes in energetic state functions such as the Gibbs energy G. Since G is
a first order homogeneous function in the extensive variables ¥, S, and n,, it fol-
lows that [H. Schmalzried, A.D. Pelton (1973)]

Ygi-de?=0 (12.1)

where ¢; are the conjugate intensive variables to the extensive variables g; (e.g.,
¢;=P, T,u; q; =V, S,n;). The superscript a is a phase index. Let us assume for the
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moment that our crystals are hydrostatically stressed. The equilibrium conditions
then tell us that each phase is homogeneous throughout, and that any coexisting
phases possess the same values of the intensive variables. Heterogeneous crystals
which are not homogeneously stressed and which have coherent (semicoherent)
phase boundaries behave differently [W. J. Johnson, H. Schmalzried (1992)]. Under
hydrostatic conditions we can write for each coexisting phase a

Yqi-de;=0 (12.2)

without a phase index on ¢,;. From Eqn. (12.2) it follows that if the number (n) of
intensive variables (¢;) is equal to the number (v) of phases a, the system is in-
variant (Gibbs phase rule). However, we can also use the set of Eqns. (12.2) to deter-
mine ¢; in terms of ¢;,;, for the coexisting phases if v<n, which means that we
can determine the bounding curves of the various phase fields. For example, keeping
D4s D55 s - - -, O, constant and setting @, = P, ¢, = T, ¢5 = ug (solid), so that g, = ¥,
g> = — 8, q3 = ng, it follows immediately from the set of Eqns. (12.2)

= 5= (12.3)

which is the well known Clausius-Clapeyron equation. Written in terms of com-
ponent chemical potentials at constant P and 7, Eqns. (12.2) yield [H. Schmalzried,
A. Navrotsky (1975)]

%_ _ Anz/n3 .

: An;=n?-n? (12.4)
dﬂz An1/n3

One can then determine the phase field boundaries by integration as schematically
shown in Figure 12-1.

Figure 12-1. Phase diagram of first kind. Phase
boundaries are schematically plotted for the intensive
variable ¢, as a function of ¢,. ¢;
(i=4,5,...)=const. Arrow indicates a phase transi-
tion a;—aj;.
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When a boundary is crossed by changing ¢; (Fig. 12-1), a phase transformation
will take place if the atomic mobilities allow. By identifying the various ¢,’s, we can
categorize the transformations. For example, if we place the system in an unstable
state by a change of temperature, the subsequent transformation is temperature in-
duced, etc. There are two limiting types of transformations. 1) The crystal structure
is conserved but the composition changes. 2) The crystal structure changes but not
the composition. Spinodal decomposition in the early stage belongs to the first
category, whereas order-disorder, displacive, and rotational transformations belong
to the second one. Often, both the composition and the structure change during a
phase transformation.

The foregoing classification is not without ambiguity. For example, it is common
practice to call the reaction A®—B%+C” (see Fig. 6-1) induced by decreasing the
temperature a phase transformation. The similar (peritectoid) reaction C=a+f
(Fig. 12-2) induced by a temperature increase, however, is named a decomposition
reaction. In addition, the isothermal reaction AO = A+10,, which occurs if the
intensive variable Ho, is decreased so that AO decomposes, is called a metal oxide
reduction. It is thus categorized as a genuine heterogeneous solid state reaction (the
reverse of metal oxidation) and not as a phase transformation.

A c 8  Figure 12-2, Peritectic decomposition C = a + 8 in an A-B
—= Nj phase diagram.

In this chapter, we will only be concerned with temperature or pressure induced
reactions. Let us first become acquainted with the usage of some specific terms. If
transport on a macroscopic scale does not occur during the non-diffusive transfor-
mation and the process is heterogeneous, we call the transformation polymorphic if
(line) compounds are concerned. If we consider solid solutions under those same
conditions, we are dealing with massive transformations. A further distinction is
made between transformations which give rise to elastic strain energies (lattice
distortive) and those without lattice strain (shuffle transformations). If lattice
displacements dominate the macroscopic changes of sample shape (morphology)
and transformation kinetics, we call this first-order transformation martensitic, and
the product martensite. Martensite can form in numerous materials (e.g., carbon
steels, superconductors, zirconia, polymers).

If the transformation process occurs homogeneously and can be quantified by one
or several time-dependent parameters, the transformation is called a second-order
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transformation. A continuous, single-phase diffusional transformation like the
above mentioned spinodal decomposition represents an inhomogeneous process on
a rather small scale. If macroscopic transport is involved in the transformation, the
extent of the compositional changes can be very different. Compounds with very
narrow ranges of nonstoichiometry (Ag,.sS) transform by inducing very small
fluxes of components on both sides of the moving phase boundary (quasi-polymor-
phic transformation). If the compositional changes are larger, the transformation
can occur with a moving boundary that is either sharp or that spreads over a certain
width where more or less discontinuous local nucleation and growth processes take
place. Strictly speaking, discontinuous precipitation occurs in supersaturated ter-
minal solutions. The precipitating region develops behind a moving grain boundary
which serves simultaneously as a preferred nucleation site and a fast transport path.
Nucleation and early growth have already been treated in Chapter 6. The concepts
involved in nucleation differ fundamentally from those that govern the phase
transformations of this chapter.

om -

|
|

! B-stable |a-stable [ - stable i a-stable
H

A T T
TP —=T{P) —= T{P)
a) b) c)

Figure 12-3. Gibbs energy (G) and Gibbs energy change of reaction (AG) as a function of T (or P).
a) A+B = AB, b) a—f (6—a), first order reaction, ¢) a— 8, second order reaction.

Homogeneous phase transformations take place either by continuously ordering
the SE’s on one or several (sub-)lattices, or by correlated displacive movements of
the SE’s eventually leading to a modified crystal structure. As long as the order
parameter, and thus the entropy change, is smooth, there is no finite AS
(=0AG/0T, or AV=0AG/0P) and so, by definition, no first-order transforma-
tion. This also explains why order-disorder transformations are named second (or
higher) order transformations. The first derivatives vanish, the second derivatives
*AG/dT? do not. The situation is illustrated in Figure 12-3. It shows three dif-
ferent types of Gibbs energy curves and Gibbs energy changes of reaction correspon-
ding to the following solid state reactions: a) the heterogeneous reaction A+B = AB;
b) a first-order transformation; c) a second-order transformation.



296 12 Phase Transformations

12.2 Nondiffusive Transformations

12.2.1 Martensitic Transformations

Let us regard a binary A-B system that has been quenched sufficiently fast from the
B-phase field into the two phase region (a + 8) (see, for example, Fig. 6-2). If the
cooling did not change the state of order by activated atomic jumps, the crystal is
now supersaturated with respect to component B, When further diffusional jumping
is frozen, some crystals then undergo a diffusionless first-order phase transition,
BB, into a different crystal structure. This is called a martensitic transformation
and the product of the transformation is martensite.

Such transformations have been extensively studied in quenched steels, but they
can also be found in nonferrous alloys, ceramics, minerals, and polymers. They have
been studied mainly for technical reasons, since the transformed material often has
useful mechanical properties (hard, stiff, high damping (internal friction), shape
memory). Martensitic transformations can occur at rather low temperature
(~ 100 K) where diffusional jumps of atoms are definitely frozen, but also at much
higher temperature. Since they occur without transport of matter, they are not of
central interest to solid state kinetics. However, in view of the crystallographic as well
as the elastic and even plastic implications, diffusionless transformations may in-
form us about the principles involved in the structural part of heterogeneous solid
state reactions, and for this reason we will discuss them.

We have seen in previous chapters that most (diffusional) heterogeneous solid state
reactions are accompanied by changes in the crystal structure. Since the geometrical
arrangement of the atoms in a crystal reflects the existence of energy minima, we
understand that, in many cases, the atomic particles aim to preserve their coordina-
tion as much as possible through structure transformations. In addition, a change
in coordination normally means a correlated motion of more than one atom with
a correspondingly high activation energy. Martensitic transformations thus exempli-
fy that, in some cases, the undercooled B crystal (A, B) can lower its Gibbs energy
in a diffusionless way by shear deformations without a major change in coordina-
tion. Structure elements of the unit cells of the parent structure are almost instan-
taneously shifted into the positions of the necessarily metastable martensite struc-
ture.

Let us consider the so-called Bain-deformation transformation as an example of
a martensite reaction (Fig. 12-4). The transformation changes the lattice from fcc to
bee and induces a 20% contraction of the cell along one axis and a 12% expansion
along the other two axes. Since the shape change of the whole crystal is finite but
small, the question is how the large displacements can be accommodated during the
macroscopic transformation by elastic and plastic deformations. The discontinuous
change in lattice parameters and molar volume is indicative of a first-order phase
transition which starts with nucleation and continues with growth. The martensite
product is often found to be plate- or needle-like, indicating that the minimization
of stress energy influences the growth morphology. The role of stress is also shown
by the occurrence of hysteresis in the transformation when the system undergoes
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(B (p"
Figure 12-4. Bain f—f’ transformation.

temperature cycles. That an external deformation of the sample decreases the area
of the hysteresis loop is thus to be expected.

Let us assume that the martensite particle has grown in the form of an oblate
spheroid, the volume of which is (4-7/3)-c-r?, with ¢ as the semi-thickness of the
spheroid. The total Gibbs energy change for the formation of this particle includes
a chemical, an elastic, and an interface energy term. It can be appropriately written
as

AG, = (@ 71/3) - r? [Agcpem +Cotast M +2° 1120 (12.5)

where e, is the specific elastic energy of the spheroid per unit volume, namely

Cotast = ["-%-G‘-u,?j+(n/4)-c‘;-uﬁ] -(c/r) (12.6)

oo |

G denotes the shear modulus and ¢ is the specific interfacial energy. In the sense of
Eqn. (6.8), we can use Eqn. (12.5) to calculate the activation energy for the nucleation
of martensite. Normally, AG,; » R7, which implies that martensite nucleation is
unlikely to be induced by thermal fluctuations. We conclude that the nucleation is
heterogeneous and dislocation arrays are the nucleation sites.

We have mentioned above the tendency of atoms to preserve their coordination in
solid state processes. This suggests that the diffusionless transformation tries to
preserve close-packed planes and close-packed directions in both the parent and the
martensite structure. For the example of the Bain-transformation this then means
that {111}5—{011}5. (8’ = martensite) and <101)4|[<111)4.. Obviously, the main ques-
tion in this context is how to conduct the transformation (= advancement of the 8/8’
boundary) and ensure that on a macroscopic scale the growth (habit) plane is un-
distorted (invariant). In addition, once nucleation has occurred, the observed high
transformation velocity (nearly sound velocity) has to be explained. Isothermal
martensitic transformations may well need a long time before significant volume
fractions of § are transformed into 8'. This does not contradict the high interface
velocity, but merely stresses the sluggish nucleation kinetics. The interface velocity
is essentially temperature-independent since no thermal activation is necessary.
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The deformation of a martensitic transformation in a given volume can be taken
in by two types of plastic shearing: a) dislocation glide, b) twinning. In this way, the
strain which #' exerts on f# is largely reduced. In order for the habit plane to remain
undistorted during advancement, the 8-8’ volume change must take place by a
homogeneous shear parallel to the habit plane. The necessary dilation is then normal
to it. It is understood that the macroscopic habit plane is build up from coherent
and semicoherent highly mobile -8’ interfaces selected according to the structure
rules (coordination preservation) as discussed. This explains why the habit plane,
derived from an averaging over many f-f' twin interfaces, can not possess simple
{hkl} indices as the individual 8-8’ interfaces do. In fact, the indices for a habit plane
are normally irrational.

Diffusionless transformations have been sometimes called ‘military’, in contrast to
the more ‘civilian’ diffusion controlled transformations. Considering their technical
relevance, the crystallographic theory of martensite transformation has been worked
out in much detail, and particularly for the habit plane selection of the given 8-8’
lattice structural change. The reader is referred to the corresponding metallurgical
literature [D.A. Porter, K.E. Easterling (1990); D.S. Liebermann (1970); C.M.
Wayman (1983)].

12.2.2 Second-Order Transformations

Martensitic transformations, although they do not involve matter transport, are ac-
companied by a change in the extensive state functions (A S, A V; A H, etc.), and are
thus first-order transformations. Second-order transformations are also diffusionless
but, in contrast to first-order transformations in which G changes discontinuously
and thus A S, # 0 at the transition temperature T,, (Fig. 12-3b), there is no transfor-
mation entropy for second-order transformations (Fig.12-3¢). Second-order
transformations occur without the nucleation and growth of a new phase, and the
changes of the system are continuous. Three types of second-order transformations
can be distinguished: 1) order-disorder, 2) displacive (i.e., by continuously shifting
atoms in a coordinated way to their proper positions in the new structure), and 3)
a combination of 1) and 2). The G° and G”-curves are tangent at T, as illustrated
in Figure 12-3¢. Since the symmetry of the f crystal is necessarily lost at 7= T7,, an
extension of the GP-curve for T> T, is physically unmeaningful. However, at
T< T, the states between G® and G” are accessible to the crystal. The existence of
this continuity of accessible states is a fundamental assumption of the theory as
outlined in the following.

Symmetry is represented by the elements of a (mathematical) group and thus can-
not change continuously. The a-f phase transition therefore occurs at a distinct tem-
perature. Let us now assume that we have identified an extensive thermodynamic
variable which can distinguish states between the a and S phases. We call it an order
parameter (7). For a quantitative description of order-disorder or continuous
displacive processes, the order parameter is normalized (0<#<1). For example, if
we regard the classic S-f' brass transition, # is defined as (2 fc, — 1), where f¢, is the
fraction of Cu atoms which occupy the (0,0,0) sites of the (Cu,Zn) bce structure.



12.2 Nondiffusive Transformations 299

If all Cu atoms occupy (0,0, 0) sites, fo, = 1, consequently n = 1, and we have the
completely ordered g brass. The symmetry is broken when f, = 1/2 or n =0, and
thus # and B’ become indistinguishable. Other (normalized) order parameters are in
use: lattice dimension, density, magnetization, polarization, or some function that
describes the orientation of the molecular axes. Since the order parameter is a nor-
malized extensive function (or a specific function, as for example, the mole fraction)
and we are dealing with either an open or a closed system (i.e., constant chemical
potential or constant number of particles), # can be a non-conserved or a conserved
quantity.

In decreasing the temperature below the critical point (7},), ordering begins con-
tinuously. The first derivatives of the Gibbs energy are smooth, but the second
derivatives (e.g., molar heats) change discontinuously from a to 8. A distinction be-
tween first- and second-order transformations is not helpful if AS; becomes so
small that it falls within the range of the thermal fluctuations. In view of the struc-
tural complexities of crystals with more than one sublattice, ‘multicomponent’ order
parameters of higher dimensionality may be needed in order to adequately describe
a second-order transition.

It is common to begin the discussion of second-order phase transitions, including
their symmetry aspects, by a concept whose basic idea is a series expansion of the
Gibbs energy in terms of the order parameter

G=G"+A*n+A-n*+B-n’+Cn*+... 12.7)

A* A,B,C, ... are phenomenological coefficients that are functions of the indepen-
dent intensive variables P, 7, . .. In order to meet the equilibrium condition at # = 0,
A* must vanish. Furthermore, for stable phases, 4 (7, P)>0 and C(7, P) is also >0,
otherwise G would become excessively negative for larger values of 7. (G—G?) vs.
n is depicted in Figure 12-5a. If B?=4-AC, the minima for (G-G°) at =
—2YAC and —4VAC have the same value G. This means that here two phases
would coexist in equilibrium, which is characteristic of a first-order phase transition.

The situation is different if we set B = 0. The (G—G°) curve as a function of #
for this case is shown in Figure 12-5b. From (0G/d7n) = 0, we derive 7, as

fleg = /% and G = G°-4%4-C (12.8)

For A(T,P) =0, G has one minimum. For A (7, P) <0, there are two minima. If we
linearize at constant P, with A being a function of T as (a/2)-(T-T,;), we can ex-
press G, in terms of the deviation from the critical temperature 7}, as

2 2
a“-(T-T,)
Gog=G'————Uu~ 12.9
eq 6C (12.9)
From Eqn. (12.9), it follows that A S, = 0 as required for a second-order phase tran-
sition. The finite molar heat Acp (= T0AS/dT) at the transition temperature is
obtained as ‘
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G-G°
a)
—= N
_ /0
GGl a0 A<
b) i n Figure 12-5. Gibbs energy as a function of the (scalar)
- - order parameter.
Neq a) G—-G°=An2+Bn*+Cn* b) G-G°=An?+Cn*.
2
a- T,
Acp=2—""U; T-T, (12.10)
8C

If the transforming system is inhomogeneous, the G-functional replaces Eqn. (12.7)
G=G’+{A@*n(r)+A-n*(")+B-n*(@)+...+D-(Vn)*)-dr®  (12.11)
14

Note that a gradient term as introduced in Section 10.2 has been included. As before,
the essential feature of the second-order phase transition is based on a (linear) expan-
sion of A (= a/2-(T-T,,)).

The relations given in Eqns. (12.7)—(12.10) are purely phenomenological. If we
consider the crystallographic conditions for second-order transitions, it is necessary
that the space groups of the a and g structures both before and after the second-
order transition (ie., above and below the transition temperature) be related to each
other: the § symmetry (low T) is a subgroup of the a symmetry (high T') group. This
follows from the fact that the structure change of a second-order transition is con-
tinuous. In other words, all the symmetry elements of the (low symmetry) structure
must already be present in the (high symmetry) a structure.

Let us now turn to some aspects of the kinetic theory and follow the transition
process from an arbitrary unstable state with a given 7, We ask for the path which
is taken by the system and the rate to reach equilibrium, in other words, the approach
t0 7. Possible reaction paths for a second-order phase transition are schematically
illustrated in Fig. 12-6. It shows a Gibbs energy vs. n diagram with T as the curve
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Figure 12-6. Potential valleys for

(G—GY) as a function of the order
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disordering
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parameter. From this figure, we can read the variation in 7., during cooling as well
as the pathways of ordering (and disordering) below the critical temperature.

If we formally identify # with the reaction coordinate for a normal homogeneous
chemical reaction, we would expect that 7 (¢) exhibit the pronounced nonlinearity of
most homogeneous chemical reactions considering both the complicated Gibbs
energy surfaces G(n) and the nonlinear kinetics of atomic encounters. However,
close to equilibrium and for small driving forces, we can set the reaction rates pro-
portional to the chemical affinities (—9G/d#). Therefore, for those second-order
phase transitions which can be described by a single (scalar) order parameter #, we
have a rate equation in this regime of the form

. o [G@)
= -y — | == 12.12
1 Y on <RT> ( )

where y is a rate constant. It contains the atom’s elementary (activated) jump fre-
quencies and their interactions at the different positions of the crystal lattice.

One can derive Eqn. (12,12) in a more fundamental way by starting the statistical
approach with the (Markovian) master equation, assuming that the jump probabili-
ties obey Boltzmann statistics on the activation saddle points. Salje [E. Salje (1988)]
has discussed the following general form of a kinetic equation for solid state pro-
cesses

2
7= —Y'[i_(@ 'f(c,vz)]'% <%"> ; fEV) =D (12.13)

which obviously includes Eqn. (12.12) as a limiting case. The form of Eqn. (12.13)
stresses again the importance of the two correlation lengths ¢ and &, introduced in
Section 12.1. £ represents the length of concentration modulations if the total num-
ber of particles is conserved. £ can then be understood as the distance over which
a change of 7 in an ordering domain of the crystal influences # in other regions, for
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example, by stress fields. In the case that (£./£)—0 or > £, which describes order-
disorder reactions, Eqn. (12.13) reduces to the form of Eqn.(12.12) and has been
referred to as the Ginzburg-Landau rate equation. Obviously, —(@(G/RT)/8n)
represents the normalized affinity of the homogeneous order-disorder reaction.
However, Eqn. (12.13) also comprises a second limiting case of ordering which will
be discussed in depth in Section 12.3.2. For ¢./¢ = 1, we know from Section 12.1
that ordering occurs in the form of concentration modulations (ie., diffusional
transport). The appropriate order parameter in this case is the concentration, and
(8 G/8n) can be identified with the chemical potential. In the limit of small concen-
tration gradients, we can expand f(£, V?) in Eqn. (12.13) into a series, and obtain

after linearizing
i=Y.g2.v2 (2GRD (12.14)
2 on

In this line of reasoning, Eqn. (12.14) is the basic differential equation for ordering
by component separation (the so-called spinodal decomposition) to be discussed in
Section 12.3.2,

The correlation length & corresponds to the spatial extent of the restoring force
originating from an ordered region. When the temperature approaches the critical
temperature 7., the restoring force vanishes. This can be formalized by letting &

diverge as
T v
&=¢0 <——T “T> © o (12.15)
tr—

where v is the critical exponent. It can be derived theoretically by a mean-field
approach [see, for example, K. Binder (1991)] and typically amounts to v = 1/2. The
mean-field allows us to replace the (atomistic) Hamiltonian of statistical theory by
a Gibbs energy function with an appropriate correlation length (‘coarse grained’).
In framework silicates (see Section 15.2), for example, the interaction occurs via elas-
tic strains by bending the semiflexible network of T- O —T-bonds (T = Al Si; O = O).
&0 is then relatively large since it conforms to elastic interaction lengths. In contrast,
magnetic phase transitions have £° values of atomic dimensions.

The calculation of G(7) using appropriate models has been the subject of much
effort [K. Binder (1991)]. If we make the ad-hoc assumption that G(n) is explicitly
given by Landau’s Gibbs energy expansion, Eqn. (12.7), we conclude that for second-
order transitions

1 1
G= G°+5-a(T—Tt,)-n2+Zb-n4(+...) (12.16)

and after substitution into Eqn. (12.12)

, Y 3
= - [a(T-T,) n+b- 12.17
n p la(T=Ty) n+b-n’] ( )

or, after integration,
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_RT dn

t—t0= 3
Y n@(T-Ty) n+b'n

(12.18)

Two limiting cases for the rate laws of second-order transformations can easily be
distinguished. If (7—17,y) is small and the higher order terms are neglected,

N =T o €20 (12.19)

which describes the expected exponential relaxation behavior near equilibrium.
Alternatively, if T'is close to Ty, G = (1/4)-b-n*. After substitution of Eqn. (12.16)
into Eqn. (12.12) and integration, one obtains

1
(_2_12) o t— 1, (12.20)
n- ny

Experimental kinetic data are scarce for second-order transitions in inorganic com-
pounds. They normally do not fit the simple models reflected in Eqns. (12.19) and
(12.20). An experimental example is shown in Figure 12-7. It has been explained by
integrating Eqn. (12.12), setting G—-G°= 1/2-a-(T—Ttr)-n2+1/6-c-n6, and by
assuming a certain dependency of the rate constant ¥ on 7 [see M. A. Carpenter, E.
Salje (1989)]. It is difficult, however, to assess the physical reality in these relations.

Figure 12-7, X-ray intensities as d function of
6 time ¢ for omphacite according to [M. A.
—= In{t-h™ Carpenter, ef al. (1989)].

Obviously, in systems with more than one order parameter, when the different
ordering modes are coupled in one way or the other, the ordering kinetics are appre-
ciably more complicated. In order to produce mismatched periodic patterns in a
crystal (incommensurate structures), Landau and Lifshitz [L.D. Landau, E.M.
Lifshitz (1980)] proposed a G expansion of the form

1 1
G=<a(T-T,) (i +n3)+—b-(ni+n3)+...
2 4 (12.21)

+d (V= ny V) +e-(Vni+Vnd)
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which once again includes gradient terms. From (8 G/8#;) = 0, one derives sinusoi-
dal 7 functions in space. Integration of Eqn. (12.12) after inserting Eqn. (12.21)
would yield the kinetic behavior. We conclude that phases with incommensurate
structures can even occur at certain time intervals during the transformation process.
Relevant systems are silicates. Their order parameters (e.g., Al/Si ordering in cor-
dierite or orthopyroxene) are important indicators for the evolution in time of
minerals and thus for geological history. Transforming silicate minerals often seem
to require more than one order parameter [E. Salje (1985), (1990)], and some of the
modulated structures found in silicate crystals are presumably frozen in and of
kinetic origin. Elastic interactions between regions of different degree of order (do-
mains) in transforming crystals move their boundaries until the system eventually ar-
rives in the Gibbs energy minimum. Recent studies on mobile domain boundaries
have been published by [E. Salje (1994)].

12.3 Diffusive Transformations

In this section, we discuss phase transformations involving the macroscopic trans-
port of components. They can occur in a single phase or by heterogeneous reaction.
Heterogeneous transformations are first-order reactions which start with nucleation
as discussed in Chapter 6. We distinguish between three principally different situa-
tions. 1) a—a’+a’”. This process is depicted in Figure 6-1. The crystallographic
structure is conserved, but composition changes may be large. 2) a—f + y. This pro-
cess is analogous to the peritectic reaction depicted in Figure 12-2. The crystallo-
graphic structure changes and composition changes are large. 3) a—f+ y. All phases
have different structures and narrow ranges of homogeneity. The compositional
change between a and £ is very small (Fig. 12-8). The polymorphic transformation
represents a limiting case with vanishing y.

Diffusive transformations (including polymorphic transitions) abound in solid
state chemistry. Component diffusion is always involved. However, the kinetics of a

Figure 12-8. Schematic A-B phase diagram with com-
., bound A, ;B, which exhibits a narrow range of
Alyl ABn BY)  homogeneity (e.g., Ag-S).
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decomposition process such as a— f+ y can hardly be discussed in general and quan-
titatively given the fact that the nucleation of two distinct phases and the coupled
transport in three different phases has to be accounted for. We will therefore treat
only two diffusive transformation processes in some detail, a first-order transforma-
tion with small changes in composition (case 3)) and a transformation of the type
a—a’'+a” (spinodal decomposition, case 1)) which occurs continuously in space
and time.

12.3.1 First-Order Transformation
with Small Composition Changes

All transformations of compounds with relatively narrow ranges of homogeneity
(‘geordnete Mischphasen’ according to Wagner and Schottky [C. Wagner, W. Schott-
ky (1931)]) belong to this category. They are characterized by structure changes and,
in addition, by small or very small changes in composition. In the above classifica-
tion, they belong to case 3), that is, a—8(+ y), and are illustrated in Figure 12-8.
Transport takes place by component diffusion in the compounds a and B, and
chemical processes occur immediately at the moving a/f interface during the phase
transformation (e.g., @ —A . 5 X—2>8—A - X (+A)). First-order phase transforma-
tions of line compounds (i.e., compounds with a very narrow range of homogeneity)
and elemental solids are the simplest heterogeneous solid state reactions. All the ex-
tensive thermodynamic functions of state change discontinuously at the a/8 bound-
ary. Since the number of point defects in local equilibrium is such a function of state,
the transformation process of even elemental crystals and line compounds must
therefore adjust the defect concentrations by diffusion and relaxation at and near the
moving interface.

In a compound, the change in the chemical potential y; of component k£ as a
function of point defect concentrations (i.e., nonstoichiometry) is larger the narrower
the range of homogeneity. Therefore, if the relaxation of the defect concentrations
during the a-£ transformation is slow, drastic changes in the component chemical
potentials may result. These changes occur, in particular, at and near the moving a/f8
phase boundary and are the driving forces for the fluxes across the interface and in
the adjacent bulk. They can be inferred from the Gibbs energy diagram of the binary
compound A,, ;X (6<1) as shown in Figure 10-12.

From point defect thermodynamics, we know that the Gibbs energy of compounds
with narrow ranges of homogeneity (small & values) is proportional to &2. The cur-
vature x of the parabola at é = 0 is essentially given by the equilibrium constant X
of the intrinsic electronic or ionic majority type of disorder (ie., »x = 1/1/E, [H.
Schmalzried (1983)]). Therefore, for a given undercooling, we may quantitatively
assess the driving forces of transport in the transforming crystal, provided that we
can control the boundary conditions as well. We note that it is far more difficult to
understand the thermodynamics when the phases (a, £, y) involved in the first-order
transformation have broad ranges of homogeneity.

Figure 12-9 shows in-situ measurements with local probes for the Ag chemical
potential of Ag,, sS during the a—f transformation induced by undercooling. In
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Figure 12-9. Chemical potential of silver dur-
ing a— f phase transformation of Ag,, S,

" measured at various locations along the
transforming sample with electrochemical sen-
sors, as a function of time.

%t = 0) = 1.5%1073; cooling

rate = 7°C/min. ¢ indicates time when the
a/f boundary passes the corresponding
Sensor.

accordance with Figure 10-12, u,, is appreciably higher behind the moving interface
(ie., u§g>uaAg). Therefore, silver, in form of Ag* ions, and electrons are driven
across the interface. The result is a wave of mobile point defects and an ever increas-
ing Ag activity in the as yet untransformed 8 crystal.

Since at any given P and T the chemical potential u,, is the only other indepen-
dent thermodynamic variable, G%(£,¢) and G#(¢,¢) can be determined by integra-
tion and, therefore, Figure 12-9, in principle, contains the temporal and spatial evolu-
tion of the transforming crystal’s Gibbs energy. We again draw attention to its non-
monotonic behavior, which has already been discussed in Section 10.4.2 and ex-
plained by the nonlinear transport and reaction kinetics of SE’s crossing the a/f in-
terface. We can read from Figure 12-9 that before Ag (i.e., phase y in the reaction
scheme a = B+ ) precipitates, ua,> ,u%g and the supersaturation amounts to ap-
proximately 50% near the moving interface. Also, the sudden activity decrease after
nucleation spreads out in the form of a chemical potential wave across the remaining
crystal. The rate of advancement of this wave is given by the chemical diffusion coef-
ficient D in f-Ag,S (~2x 10~ cm?/s, [H. Schmalzried (1980)]) and is thus much
faster than the transformation velocity.

In the present discussion on the kinetics of first-order phase transformations, our
main concern is the coupling of the structure change at the advancing phase bound-
ary with the simultaneous matter transport. Phenomenologically, we can formulate
the problem as follows. If we know quantitatively the (defect) thermodynamics and
can thus quantitatively treat diffusion, we are able to determine by integration over
the whole sample that part of the Gibbs energy which is dissipated by diffusion
(AG(diff), see Section 4.2). From Figure 10-12, we see that the total Gibbs energy
change available for the transformation process is A*?G(= G(a)—G(8)). There-

ot
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fore, (A% G- AG (diff)) is the Gibbs energy to drive the structure change alone
(AG (struct)). Furthermore, we can represent the boundary velocity in terms of
the boundary mobility m® and the appropriate driving forces AG (diff) and
AG (struct).

Let us assume that m® is independent of the non-stoichiometry 6% and o7 at the
boundary, since 6% and 6 <1. The rate of structure change 7#° has to match the
boundary velocity v° while the boundary velocity establishes the boundary condi-
tion for the diffusion. The driving forces A y}’ (here AubAg) or rather (Au}’/A &%)
across the interface a/8 are thereby fully determined. These kinetic conditions may
be written in a linearized version (see also Eqn. (10.31)) as

b
v° = (- V)" j?.i_;" (transport) (12.22)

v, A G (struct)

b_ b b
vio=n"-A&E =
g ¢ Y RT

-A&®  (structure change) (12.23)

i? is the dynamic (equilibrium) exchange flux across the boundary as defined in
Section 10.3. v; is a stoichiometric factor which describes the increase of the volume
of a when one mole of component i crosses the boundary. »® is a rate constant and
(A G (struct)/R T) the normalized driving force for the change of structure, which
may occur displacively or by reconstruction. Equation (12.23) has been formulated
in the spirit of the linear Ginzburg-Landau equation (Eqn.(12.12)). Equations
(12.22) and (12.23) are based on models, whereas the following equation defining the
mobility m® is purely phenomenological

b b.Aa/ﬂG
AE®

(12.24)

Let us remember that Eqns. (12.22) and (12.23) have to be coupled to the diffusion
equations in the a and 8 phases in order to complete the total set of kinetic equations
for the phase transformation (i.e., the advancement of the interface). This set is very
complicated and nonlinear and may lead to non-monotonic behavior of v® and the
chemical potentials of the components in space and time, as has been observed ex-
perimentally (Figs. 10-13 and 12-9). Coherency stresses and other complications such
as plastic flow have been neglected in this discussion.

If the ranges of homogeneity of the phases taking part in the transformation are
wider than those of line compounds, the kinetic coefficients in Eqns. (12.22) and
(12.23), that is v;, j9, ¥°, and A¢&®, are certainly not composition independent. It
may then be questionable if transport across the boundary (Eqn. (12.22)) and the si-
multaneous structure change (Eqn. (12.23)) are independent processes as was tacitly
assumed by formulating the kinetic relations in Eqns. (12.22) and (12.23). Let us em-
phasize that the foregoing analysis is meant to clarify the physico-chemical concep-
tual frame in which first-order transitions which include matter transport should be
discussed. Pertinent experiments are still rare,
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12.3.2 Spinodal Decomposition

If a solid solution, A-B, is quenched into the two phase field (Fig. 12-10) and the
phase coordinates (7, Ng) are inside the spinodal curve determined by the condition
82G/dN% = 0, the lowering of the Gibbs energy can be achieved coherently and
continuously. The process starts as a clustering of like atoms and eventually leads
to the decomposition of the alloy. In this case, even small fluctuations in composi-
tion are inherently unstable, They tend to grow, as can be inferred from Figure 12-11,
and for some time no sharp boundary will be found between the (A, B) matrix and
those coherent regions which are enriched with the supersaturated component. Gibbs
called this process a transformation that is small in degree but large in extent. As
Figure 12-11 illustrates, at the beginning of the spinodal decomposition, long range
concentration fluctuations occur with small concentration gradients. The (gradient)
energy associated with the transition zone (which is analogous to the interfacial
energy, see Eqns. (10.20), (10.21)) has no significant influence on the energetics of
the component separation in the very early stages. The gain in volume Gibbs energy
by this separation predominates. However, the composition gradients become steeper
with time, and therefore the gradient energy increases and has to be considered in
the quantitative formulation of the process of spinodal decomposition. In addition,
if the lattice parameter depends noticeably on composition, strain energy evolves.
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11 . A\ Figure 12-10, Gibbs energy vs. composition of a
binary system with miscibility gap, and the cor-
A B responding 7— Ng phase diagram. Arrow in-

dicates quenching path for subsequent spinodal
B decomposition.
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coherent

incoherent

"86<0

Figure 12-11. Gibbs energy vs. composition curve
I explaining metastable and unstable conditions in-
Nep Nglc) side and outside the (coherent and incoherent)

Ng spinodal during a local composition fluctuation.

If this strain energy of the coherent a-a’ system is added to the other Gibbs energy
contributions, both the total Gibbs energy and the spinodal curve are shifted as
shown schematically in Figure 12-10.

From this descriptive introduction, it follows that the coherent spinodal decom-
position is a continuous transport process occurring in a supersaturated matrix. It
is driven by chemical potential gradients. Strain energy and concentration gradient
energy have to be adequately included in the component chemical potentials. We ex-
pect that the initial stages of decomposition are easier to treat quantitatively than
the later ones. The basic result will be the (directional) build-up of periodic varia-
tions in concentration [J, W, Cahn (1959), (1961), (1968)].

Let us first work out the chemical potentials, u;, needed for the kinetic analysis.
y; is constructed from three contributions. The first part represents the chemical
potential as attributed to a homogeneous solid solution (). The second part is
attributed to local concentration gradients. When the composition of a crystal
changes, one has different average numbers of A- and B-nearest neighbors in subse-
quent lattice planes along the direction of transport. Therefore, the number of A-A,
B-B, and A-B pairs are different from those in a homogeneous solution of the same
composition. It has been discussed (see Section 10.2) that the energy change due to
this asymmetry is, to first order, proportional to the curvature of the concentration
profile. .

The third contribution to the chemical potential is due to strain. If A and B atoms
(ions) have different size, clustering results in elastic lattice distortions. By making
a Fourier transformation, one can decompose the concentration profile into har-
monic plane waves [D. DeFontaine (1975)]. The elastic energy contributions of these
concentration waves are additive in the linear elastic regime and yield E,. Therefore,
we may write

Ee1=%-n' Y etk) |Ck)|* (12.25)

where n is the number of lattice sites per unit volume, C(k) the Fourier transform
of the concentration profile, and ¢(k) the elastic energy of a harmonic concentration
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wave with unit amplitude and wave vector k. For cubic systems, £ (k) can be expressed
in terms of the distortion of the lattice parameter a, namely dp = (0 In a/8¢;), and
the elasticity constants. For the simplest case of isotropic solids, this gives

AN
-d3 (12.26)

where £ is Young’s modulus and v is Poisson’s ratio. We thus obtain the chemical
potential by back-transformation of £ into composition coordinates and then add-
ing the terms due to the homogeneous crystal and the gradient energy

2 -
w=ut -2k 29y <ﬂ> a3 (i) (1227
o¢s 1—
where c? refers to the initial concentration of the homogeneous supersaturated solu-
tion.

The following remark on the foregoing evaluation may be appropriate. As in ir-
reversible thermodynamics (see Section 4.2), chemical potentials have again been in-
troduced for non-equilibrium systems, but this time the gradients evolve on a rather
small microscopic scale. In addition, the separate introduction of strain energy and
gradient energy on this scale may be somewhat artificial. However, if we disregard
these conceptual difficulties, we can derive (Qu;/8¢) from Eqn.(12.27) and in-
troduce it as the driving force into the flux equation. We then obtain the continuity
equation from the mass conservation of component i (= A, B)

. 82
C; =A1'¥21—A2'

9’G 2E ,
A, = _+__-d -b.
: (Bn,2 1—y '

0 4 C; .
a—g +nonlinear terms (12.28)

with

(12.29)
Ay = (2-K/V,)"b;

(02G/9n?) is negative inside the spinodal, the other terms are positive. b; is the
mobility of the atomic particles of species i. One can show that Eqn. (12.28) is for-
mally equivalent to Eqn. (12.13). Neglecting the nonlinear terms, Eqn. (12.28) can be

satisfied by
ct)-c0) =¢” 4 () +2: () ]"-cos (?) y (12.30)

Equations of type (12.30) can be used to describe the kinetics of the spinodal decom-
position process. If an arbitrary, spontaneous concentration fluctuation is Fourier
analyzed, one finds that for
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A,

A>Apn=2'm:
min 'All

(12.31)

the term in brackets in Eqn. (12.30) becomes negative. Thus, all Fourier components
of the arbitrary, spontaneous concentration fluctuation for which A > A_;, will grow
in amplitude with time. This is the spinodal decomposition. However, if A <A,
the energy contained in both the concentration gradient and the elastic energy terms
is too large to be overcome by the gain in chemical energy on clustering. Such con-
centration fluctuation modes do not grow.

Furthermore, for A = ﬁ-lmin, the term in brackets in Eqn. (12.30) has a maxi-
mum. Therefore, after a sufficient time of continuous spinodal decomposition,
zones with the A.,, periodicity will predominate. With other words, the decom-
posed solid solution exhibits periodicity in the & direction, and the period length is
Amax- Amin @nd Ap,, increase with strain, as can be seen from Eqns. (12.29) and
(12.31). If the strain energy is high enough, 4,,, may become sufficiently large so
that spinodal decomposition does not take place any more.

According to Eqn. (12.30), 7= [ ], is the characteristic relaxation time of the
decomposition process ([ ] represents the term in brackets). Let us assume D; =
(b;/RT) to be on the order of 10~ cm?/s. 7 is then on the order of a second or less.
This means that in-situ observations of the spinodal process are hardly possible.
If the sample has been quenched to room temperature, the decomposition has often
already reached its final stage. The continuous spinodal decomposition for which the
early stages are the pertinent ones cannot be verified in this way.

The discussion up to this point has been concerned essentially with metal alloys
in which the atoms are necessarily electrically neutral. In ionic systems, an electric
diffusion potential builds up during the spinodal decomposition process. The local
gradient of this potential provides an additional driving force, which acts upon the
diffusing species and this has to be taken into account in the derivation of the
equivalents of Eqns. (12.28) and (12.30). The formal treatment of this situation has
not yet been carried out satisfactorily [A. V. Virkar, M.R. Plichta (1983)]. We can
expect that the spinodal process is governed by the slower cation, for example, in a
ternary AX-BX crystal. The electrical part of the driving force is generally nonlinear
so that linearized kinetic equations cannot immediately be applied.

Spinodal decomposition has been investigated with semiconducting oxides. An ex-
ample is shown in Figure 12-12. It is observed that the Co,TiO,-CoAl,O, spinel
which has been undercooled into the region of its coherent spinodal (located 300 K
below the critical temperature of ca. 1700 K) exhibits spinodal decomposition. Upon
prolonged annealing, the concentration wavelength A,, increases with time. This
behavior resembles in some respects the Ostwald ripening of heterogeneously
precipitated particles. Their linear dimensions grow as ¢/”, where n = 3 for diffu-
sion controlled Ostwald ripening. Similar numbers for n have been reported for the
growth of spinodal decomposition zones. For Co,TiO4 — CoAl,O4, however, it is ob-
served that n = 1. The coupling of component separation with the simultaneous
ordering of cations or other correlations in this ionic multicomponent, multisublat-
tice system may account for the unusual behavior.
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Figure 12-12. Spinodal demixing in the system Co,TiO,-CoAl,O4 at T =973 K for 2 days. Bright
field TEM; 4 = 5.5 nm [N. Burkert, et al. (1992)].

With this example, we will conclude the discussion of phase transformations. The
field is immense regarding structure changes, local ordering, clustering, and diffu-
sional component separation which all may couple by short range (e.g., magnetic)
and long range (e.g., clastic or electric) interactions on a single sublattice or on
various sublattices in the transition process. This is why we have introduced some
leading concepts and exemplified them by discussing limiting cases. There are inten-
sive theoretical activities in this field these days [E.C. Aifantis, J. Gittus (1986)].
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13 Reactions in Solids Under Irradiation

13.1 Introduction

Photochemical reactions in gases and liquids are a central point of research in
chemical kinetics. The absorption of photons changes the distribution of electrons
in the available molecular states and thus initiates reactions. Analogous processes oc-
cur in crystals exposed to radiation. However, we have to take into account the
specific constraints of the crystal structure. 1) Most atomic SE’s which have been
electronically excited by radiation are immobile. 2) Excitation into the conduction
band results in delocalized electrons, and a possible charge transport over large
distances. Cosmic radiation continuously irradiates solids. The traces and tracks of
radiation induced processes can therefore be used to obtain information on the geo-
logical history of minerals. The photographic process is another example of a solid
state reaction which is initially triggered by the absorption of photons.

hv ~~+| ——>» phonons —— -J"'hv

N A

SE,<=SE, == SE, —~>SE, Figure 13-1. Processes due to photon and

/' ) 3 \ particle irradiation of a crystal

m-v; &—> | —— phonons —— | & (schematic). SE} = n™ structure element
M;-Vi  in an excited state.

Particle irradiation of solids is of equal importance. The bombardment with
atomic particles of construction materials in nuclear reactors and the evidence that
the structure and microstructure of solids can undergo changes during particle ir-
radiation is the immediate cause of many investigations on irradiation effects nowa-
days. Crystals isolated from heat and work exchange can gain energy by irradiation
with particles or photons. The energy transfer is local and initiates various relaxation
processes. In our context, we discuss mainly the interaction of particles and photons
with SE’s and how this affects solid state kinetics and dynamics. The ingoing and
outcoming radiation defines the boundary conditions of the photon and particle in-
duced physical and chemical reactions (Fig. 13-1). The basic problem is the transfor-
mation of the injected energy into the energy of phonons, structural defects, and
chemical reaction products and their redistribution in space and time, In essence, we
will treat two different situations. The first one is the disturbance of an equilibrium
crystal by irradiation. The second one is the change in the reaction kinetics of a non-
equilibrium system under irradiation. Systematically, we have to distinguish between
reactions in homogeneous, inhomogeneous, and heterogeneous solids.
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Photons (electromagnetic wave packets) have a wide energy spectrum (see Table
16-1) but negligible masses (momenta). Their interaction with matter thus primarily
results in a change in the electron states and not in a noticeable momentum transfer
to the absorbing SE’s. Only with a sufficiently high photon energy will structural
radiation damage be found. In an ionic crystal with absorbing point defects (= color
centers), for example, the absorbed photon excites the color center electron. Ioniza-
tion of the center transfers the electron into delocalized (band) states. Thermaliza-
tion of the excited electron occurs by radiation and/or interaction with the vibra-
tional spectrum of the crystal (photon and/or phonon emission). In contrast, the ir-
radiation of solids by neutral particles results in atomic collisions and a subsequent
displacement of the SE’s from their regular lattice sites. The displaced SE’s are
found either on regular lattice sites or in the interstitial lattice, leaving behind a cor-
responding number of vacancies. Subsequent secondary effects may be quite com-
plex and will be discussed later. Ion irradiation of solids involves both atomic colli-
sions and the excitation of electrons.

A number of processes follows the absorption of photon or particle energy which
are important in technology. Let us mention several examples. 1) Sputtering is used
for surface preparation. It can be combined with atomic analysis (mass spectro-
scopy) to obtain concentration profiles normal to the crystal surface with high
spatial resolution (Secondary Ion Mass Spectroscopy, SIMS). 2) Ion implantation is
performed in order to prepare crystals with predetermined compositions and thus
properties in the near-surface region on a very small scale [T. Corts, ef al. (1990)].
After particle irradiation, the product may be amorphous or metastable. 3) Silver
halide photography has already been mentioned. It is the result of photon absorp-
tion. There are other solid state photochromic processes that can be used for imaging
as well. 4) Secondary electron multipliers amplify a photon signal exciting primary
electrons in a crystal. Multipliers are used for detecting and counting X-ray and y-ray
photons.

Surveys on radiation induced solid state reactions [e.g., F. V. Nolfi (1983); W.
Hayes, A.M. Stoneham (1985); C. Abromeit, H. Wollenberger (1987)] illustrate a
variety of effects in various chemical systems. Parameters such as dose, temperature,
stress state, and, in particular, the type of irradiation determine both the mode and
the kinetics of radiation induced reactions. We will concentrate on some fundamen-
tal considerations and discuss mainly the implications which radiation has on the
kinetics of solid state reactions. We are especially interested in the occurrence of
point defects in a crystal due to irradiation. Radiation induced non-equilibrium
point defects either diffuse to sinks or react with each other in recombination, an-
nihilation, or formation of associates, aggregates, and clusters. Reactions with im-
purities may also take place. Formally, we are dealing with a combined transport-
reaction problem of several distinct species. The corresponding partial differential
equations are coupled by mass and charge conservation and by quasi-chemical reac-
tions. The boundary conditions are established by the strength and geometry of the
radiation resulting in homogeneously or inhomogeneously distributed defect
sources, and also by the spatial distribution of sinks. Formal problems of this kind
are often highly nonlinear.
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13.2 Particle Irradiation

13.2.1 Basic Concepts

The conservation of energy and momentum is the fundamental requirement which
determines the behavior of the SE’s in metals, semiconductors, and ionic compounds
irradiated by particles. Although we shall not deal with the basic physics of elemen-
tary collision processes in our context of chemical kinetics, let us briefly summarize
some important results of collision dynamics which we need for the further discus-
sion. If a particle of mass mp and (kinetic) energy Ep collides with a SE of mass m;
in a crystal, the fraction of Ep which is transferred in this collision process to the

SE is given by
£=4'_mp'_m52.sin2 9 13.1)
Ep (mp+my 2

where O is the scattering angle determined with reference to the center of mass. Ob-
viously, the maximum energy transfer will occur if mp = m; and © = 7. In this case
E = Ep, independent of the scattering mechanism. The scattering mechanism, how-
ever, tells us what fraction of the knocked-on particles can be found between angle
O and (@ + d@®) after the collision took place. The relevant quantity is the scattering
cross section g (®). If ¢ is independent of @, we name the process ‘hard sphere scat-
tering’. Examples of this type of scattering are the collisions of fast neutrons with
atoms and ions in the crystal. If instead of neutral particles, electrons and ions col-
lide whereby the interaction is coulombic, this collision mechanism is named
‘Rutherford scattering’. For g (®) we can derive

RZ

o(®)= @-sin (6/2))°

(13.2)

where the length R is determined by the balance between electrostatic and kinetic
energy, that is,

2
e m
gp ds'| = | =Ep—— (13.3)
R (mp +my)
E% is the initial energy in the laboratory frame and g denotes the electric charge

nn
number. The integrated total cross section g, =§ 5 (@) sin ©-d@-d¢ is larger
00

for Rutherford scattering than for neutral particle scattering due to the influence of
long range interactions with correspondingly low energy transfers. Depending on the
details of the momentum and energy exchange, the knocked-on SE particles may be
focused or spread. Channeling is found if the incoming particles are fast and move
within the empty channels of the crystal structure along distinct directions. The colli-
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sions then occur with small deflections only, unless a channel is blocked. From
Eqn. (13.1) we can conclude that the maximal energy transfer of a 1 MeV electron
—Cu collision is less than 100 €V. The energy transfer of a 1 MeV neutron (positron)
—Cu collision is 61 keV, and, of course, the Cu—Cu collision transfers 1 MeV.

Subsequent to the collision, the most important event concerning kinetics is the
displacement of regular SE’s and the formation of Frenkel-type point defects. The
corresponding formation reaction is

PE®)+As+V, =V, +AX+p(E¥) ; E*—E* = AE, (13.4)

where p(E*) indicates the incoming, and p(E *) the outgoing particle. The basic
assumption introduces a threshold energy E4. If AEp> E,4, reaction (13.4) can take
place. If AEp>2-E,, the displaced A¥ may possess sufficient kinetic energy to
bring about secondary processes. Threshold energies for MgO and CaO are ca. 50 €V,
both for cation and anion displacement. For Al;O;, the numbers are 18 eV and
75 eV respectively. If the incoming particle is an electron for which m,<mgg, its
kinetic energy must be high in order to form the Frenkel pair (A;+V,). In this case,
however, it is quite seldom that A* induces secondary displacements or other defect
reactions. If the incoming particle is a fast neutron, large energy transfers AEp
dominate through hard-sphere scattering. The high energy AF point defects can
then move long distances in the crystal lattice (~ 1000 A), eventually knocking more
A, structure elements off the regular sites. The result is a strongly damaged region
with many secondary A particles. Shortly after this primary energy exchange
(AEp = E}), the damaged region may contain ca. 10? Frenkel pairs. Heavy ion par-
ticles can produce even larger radiation damaged regions (ca. 10 umy). Electrically
charged primary or secondary particles traversing the crystal can excite electrons into
the conduction band. Whereas photons with energies in the eV range are needed to
excite electrons across band gaps, charged atomic particles need energies of a few keV
in order to bring about the same effect.

We conclude that a crystal which is continuously irradiated with particles of suffi-
cient kinetic energy and in which no further reactions (e.g., phase formations) take
place becomes more and more supersaturated with point defects. Recombination
starts if the defects can move fast enough by thermal activation. A steady state is
reached when the rates of defect production and annihilation (by recombination) are
equal. In the homogeneous crystal, the change in local defect concentration (cy)
over time is given by (see Section 5.3.3)

c"d=l_c.-cAA-cvi—)é-ch-cAi=K‘—-/€-ch-cAi (13.5)

The second term on the right hand side of Eqn. (13.5) describes the rate of recom-
bination. In the case of diffusion controlled recombination, k¥ and k may be
calculated in terms of defect diffusivities and steady state concentrations. Without
radiation, ¢; =0, and the Frenkel equilibrium, requires that &y Cp = K/k. If a
steady state is attained under irradiation, the rate of radiation produced defects (¢;)
add to the thermal production rate, and the sum is equal to the recombination rate.
Therefore,
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Ac .
Va - 1+§ZL1; Acy, =cy —év, (13.6)

where Acy, is the steady state increase in Frenkel defect concentration due to
homogeneous irradiation. However, the assumption of homogeneity cannot hold if
the production of defects results in radiation damaged regions as mentioned above.
In these regions, interstitials and vacancies are spatially separated and the local
Ach values are often much larger than if calculated by Eqn. (13.6). From Section
5.3.3, we can estimate that the diffusion controlled relaxation (recombination) time
for Frenkel defects in silver halides is ca. 107 %s at 100°C and so we can estimate
the parameter K in Eqn. (13.6). In metals, the point defect concentrations are not
coupled by the condition of electroneutrality. Therefore, cy can differ from c; if the
point defects annihilate at sinks and their mobilities are not the same. Figure 13-2
plots the defect concentrations as a function of time. For #; <t <{,, the steady state
is achieved by homogeneous defect reaction. For ¢>¢;, a new steady state is
achieved. Now, distinct sinks become operative, the number of which remains con-
stant.
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Figure 13-2. Concentration of point defects (cy,c))
t t, ty —== { due to irradiation as a function of time (schematic).

For elemental solids and stoichiometric compound crystals, the primary influence
of irradiation on their kinetic behavior is due to the increase in Acy(= Ac;). We
would expect the enhancement in the component diffusion to be in proportion to
the increase in the (average) defect concentrations, thus influencing all homo-
geneous, inhomogeneous, and heterogeneous solid state reactions.

Structural inhomogeneities due to dislocations, grain boundaries, or concentra-
tion fluctuations lead to spatial differences in point defect production rates during
irradiation. Similarly, defect sinks are inhomogeneously distributed. Therefore, ir-
radiation of solid solution crystals results in segregation and demixing of the com-
ponents. The formal description is given by diffusion-reaction equations containing
transport and reactive terms. The coupling conditions for the various fluxes and ap-
propriate boundary conditions have to be taken into account. For example, in the
case of a binary alloy (A, B), we have a rate equation of the following form

(,",' = _Vji+’:i,p_’:i,a ; i= AMe’ VMe’ BMe’Ai’ Bi (13.7)

Here, B are solute atoms, a and p indicate annihilation and production respectively.
The concentrations of the different SE’s () are not independent, but are related to
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each other through site balance and mass conservation (N4 +Ng = 1). If during ir-
radiation a quasi-steady state is established, the fluxes of vacancies and interstitials
are equal. The simplest situation is met if the distribution of sources is homogeneous
and the external surfaces of the crystal are the only defect sinks, where the equilib-
rium concentrations are assumed to prevail.

Solutions for this type of kinetics can only be achieved numerically. Model calcu-
lations with constant kinetic parameters have been made [H. Wiedersich, et al.
(1979)], however, the modeling of realistic transport (diffusion) coefficients which
enter into the flux equations is most difficult since the jump rate v, =+ vg. Also, the
individual point defects have limited lifetimes which determine the magnitude of cor-
relation factors (see Section 5.2.2). Explicit modeling for dilute or non-dilute alloys
can be found in [A.R. Alinatt, A.B. Lidiard (1993)].

Let us also mention an effect which does not occur in metals but does in con-
tinuously irradiated semiconducting and mixed conducting compounds such as AO
or (A,B)O. Initially, supersaturated irregular SE’s (A;, V4;0;, V) are produced.
The most mobile electroneutral pair (e.g., A;, O;) will be transported to the appro-
priate defect sink, driven by their concentration gradient. Since the mobilities of the
various sorts of point defects are different, a diffusion potential builds up when they
are electrically charged. In the semiconducting oxide, this diffusion potential cor-
responds to an internal oxygen potential gradient. At a large enough gradient (ie.,
for sufficient radiation intensity) local oxidation or reduction eventually takes place.
For AQ, this means the formation of A;0, or A. Here we have an example of phase
instability due to irradiation that does not immediately stem from a segregation of
components. Component segregation will, of course, occur if the mobilities of the
drifting components are different in (A, B)O. An initially homogeneous solid solu-
tion may even decompose. These demixing processes (although with different bound-
ary conditions) are identical to those thoroughly discussed in Chapter 8.

13.2.2 Radiation Effects in Halides (Radiolysis)

Particle irradiation effects in halides and especially in alkali halides have been inten-
sively studied. One reason is that salt mines can be used to store radioactive waste.
Alkali halides in thermal equilibrium are Schottky-type disordered materials. Defects
in NaCl which form under electron bombardment at low temperature are neutral
anion vacancies (V%) and a corresponding number of anion interstitials (X'). Even
at liquid nitrogen temperature, these primary radiation defects are still somewhat
mobile. Thus, they can either recombine (X{+V% = X%) or form clusters. First,
clusters will form according to n-X{ = X} ;. Also, X{ and X}, ; may be trapped at
impurities. Later, vacancies Vi will cluster as well. If X3 ; is trapped by a vacancy
pair [V4 Vx] (which is, in other words, an empty site of a lattice molecule, ie., the
smallest possible ‘pore’) we have the smallest possible halogen molecule ‘bubble’.
Further clustering of these defects may lead to dislocation loops. In contrast,
aggregates of only anion vacancies are equivalent to small metal colloid particles.

At sufficiently high temperatures, the radiation damage will recover by recombina-
tion of the point defects and their aggregates. The various annealing steps have been
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followed by optical spectroscopy (identification of the color centers), by volume (lat-
tice parameter) changes, by thermal analysis, and by yield strength measurements.
The yield stress reflects the effect of the different defects and their aggregates on the
dislocation motion.

13.2.3 Radiation Effects in Metals

Displacement, Frenkel defect formation, and cascade production are the primary
processes when impinging particles (¢, n, p*, ions, atoms) knock into atoms in
metal crystals. The impinging high energy particle looses its energy in a very small
volume fraction of the crystal, at time scales that are smaller than that of a lattice
vibration. The resulting defect cascade (Fig. 13-3) consists of a vacancy-rich core that
is surrounded by a shell of interstitials (b;> by). Let us not be concerned with the
initial hot stage of the cascade but note that right after thermalization, the number,
Za, of produced point defects can be estimated according to the modified Kinchin-
Pease equation [H. G. Kinchin, R.S. Pease (1955)] as '

z4=0.8" <2> -Ef! (13.8)

where E; denotes the defect formation energy. When Ep> 1 keV, the experimentally
determined number of defects is smaller than the number calculated from
Eqn. (13.8). A survey on defect cascades in metals has been presented by [R.S. Aver-
back, D.N. Seidman (1987)].
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Figure 13-3. Defect cascade formation under
irradiation (schematic).

After thermalization, the defects begin to migrate, recombine, cluster, or precipi-
tate provided the temperature is high enough to activate the motion of point defects.
The various possible processes depend on defect concentration and their spatial dis-
tribution as well as on defect mobility and their interaction energies. As in non-
metallic crystals, internal and external surfaces act as sinks for at least a part of the
radiation induced defects in metals.
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Let us now consider effects which are specific for solid solutions (A, B). The
homogeneous and heterogeneous precipitation of new phases, ordering and disorder-
ing, amorphization, void formation, and formation of dislocation networks (growth
of dislocation loops) have all been observed. When we begin with an ordered (A-B)
compound, atom displacements during irradiation result in increasing disorder. Not
only does the radiation cause disorder, but it also produces point defects which
mobilize the atoms of components A and B. Since the ordered (equilibrium) state
has the lowest Gibbs energy, disordered A and B tend to order themselves. Eventual-
ly, the system will reach a partially disordered steady state. If s indicates the (long
range) order parameter and the rate of disordering is § = — k-5, whereas the rate of
ordering is § = — k(1—s), the total change in time of s is (§+5) and we obtain for
the steady state

Sg = = ; §=0 (13.9)

The problem then is the determination of the rate coefficients k and k. They depend
on the concentrations and jump frequencies of point defects, that is, on the radiation
intensity. Their detailed analysis and the calculation of the steady state order param-
eter is most complicated due to the finite lifetime of defects and the different hop-
ping frequencies of the interstitials and vacancies which exchange with either A or B.

The second mode of increasing the order of a multicomponent solid is the demix-
ing by diffusional transport as treated in the previous chapter. During irradiation,
local demixing occurs due to the point defect fluxes to the heterogeneous sinks. We
have learned from Eqn. (13.6) that particle irradiation increases the point defect con-
centration above the thermal equilibrium value. A part of the supersaturated defects
(V, A;, B;) recombines homogeneously, while the other part will annihilate at sites of
repeatable growth (dislocations, etc.). Eventually, a steady state flux of point defects
to the sinks, and a conjugate flux of the components A and B, is observed. Since
the jump frequencies of the components A and B of the alloy normally differ, the
steady state flux of point defects transports the components A and B at different
rates. This leads to a demixing of the solid solution (see Fig. 8-2), in particular, near
the dislocation core because of the axial transport symmetry. We quantitatively
treated the demixing induced by defect fluxes in Section 8.2. The direction and extent
of this demixing depends in a linearized approach on the fraction N, and the
mobility ratio D,/Dg. However, demixing during irradiation is complicated by the
simultaneous recombinations of V and A;(B;), which are determined by the number
of encounters leading to complex jump correlations. The extent of component
segregation depends on the flux density of defects and thus on the intensity of radia-
tion (= defect supersaturation). If the flux density is sufficiently large, the alloy com-
position near a dislocation line may shift (due to segregation) into a different phase
field. The subsequent formation of a new phase involves nucleation, but the nuclea-
tion energy is expected to be small at the dislocation line (see Section 6.2.2). In
conclusion, thermodynamically stable alloys may become unstable during particle
irradiation because of component demixing (segregation) and heterogeneous decom-
position at sinks (= sites of repeatable growth) in the crystal. These effects occur
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preferentially at elevated temperatures where appreciable defect fluxes can be sus-
tained under irradiation.

Next, we may ask whether non-equilibrium defects such as dislocations, etc. are
necessary for the demixing and decomposition under irradiation? We note that, in
principle, a homogeneous alloy exposed to a steady supersaturation of point defects
is unstable if the defect recombination rates depend on composition (component
concentration). In modeling this idea, Martin and coworkers [G. Martin, R. Cauvin
(1981)] have shown that the equilibrium distribution of normal concentration fluc-
tuations (clusters) is disturbed by radiation induced point defects, provided they
recombine preferentially at those clusters. This concept can be reformulated in terms
of the above demixing model. Local concentration fluctuations influence the local
defect recombination rates. If the lifetime of a fluctuation or cluster is longer than
the average time between subsequent recombinations, point defect fluxes are directed
towards clusters having the highest recombination rate. In this way, a (macroscopical-
ly) homogeneous alloy is destabilized by irradiation. It becomes inhomogeneous by
self-sustaining demixing. This process also explains the experimental observation of
stable single-phase solid solutions which become two-phase mixtures under irradia-
tion (e.g., (Al,Zn), (Cu,Be), or (W, Re) alloys). In other words, particle radiation
shifts the critical temperature for decomposition, and an undersaturated alloy is able
to demix. Synergetic effects may even lead to pattern formation in irradiated alloys.

A different approach to analyze the ordering of solid solutions by macroscopic
transport of components during irradiation will also be presented [G. Martin, G.
Bellon (1987)]. It is based on the idea of spinodal decomposition (see Section 12.3.2).
Generalizing their results may be interesting and useful for other types of stochastic
energy input into a given system on a microscopic scale (e.g., mechanical energy in-
put by ball milling). The kinetic theory starts with the usual diffusion equation for
the solid solution (A, B) and redefines the chemical diffusion coefficient during ir-
radiation with respect to the ‘ballistic’ part of diffusional mixing. The ballistically
and chemically driven fluxes are assumed to be additive in the inhomogeneous
crystal. In analogy to a Darken-type chemical diffusion coefficient (see Eqn. (4.78)),
the ‘ballistic interdiffusion coefficient’ is defined as

D*=N,-Df +Ng-D} (13.10)
The individual ballistic coefficients are given by

1
Di# =E.¢.ai.f% (13.11)

where ¢ is the radiation flux density, g; and r; are the cross section and ballistic
jump length after a replacement of the SE of sort i respectively. Analogous to
Eqn. (12.25) f, one can derive the condition of a stationary state by minimizing the
following functional F [G. Martin, G. Bellon (1987)]

2 ’ S #
F=| (f(NA(c))+K-aa;A+R7T-f<NA, %)) dE (13.12)

m
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The first two terms in the bracket correspond to the customary chemical free energy
density and the gradient energy respectively. The third term takes into account the
ballistic flux. D is the Darken interdiffusion coefficient (Eqn. (4.78)), but adapted to
the radiation induced increased defect concentration of the alloy.

An interesting result has been obtained after the introduction of the regular solu-
tion model [C. Wagner (1952)] into Eqn. (13.12). The free energy (N4, 7). Of the
alloy under irradiation equals the free energy f of the alloy without irradiation but
at an increased temperature, that is, f(N, T = f(N4, T+ AT). AT is found to be

S #
A—TT=% (13.13)

Equation (13.13) suggests that the steady state of the alloy under irradiation is the
same as that of the non-irradiated alloy at 7+ AT. Explicitly, one obtains
EV
AT = const-)/ ¢-e2RT (13.14)

where Ey is the activation energy for the vacancy migration. The higher T is, the
less the irradiated alloy differs from the non-irradiated one. Conversely, the higher
Ey is, the more the irradiated and non-irradiated alloys differ. The foregoing result
is remarkable. If energies other than thermal energies are pumped into a system on
an atomic scale, its kinetic coefficients behave ‘as if’ the system had been heated to
a higher temperature (7+ AT). If one could generalize this result, one would be able
to formally handle other energy inputs (e.g., mechanical) into a crystal. Similar ques-
tions will be resumed in Chapter 14.

13.3 Photon Irradiation

13.3.1 Basic Concepts

Photons have a wide spectrum of energies ranging from hard y-rays to radiowaves
(see Table 16-1). A thermalization of absorbed photon energy which directly in-
creases the (average) temperature is not of interest to us. Energies of ca. 0.1 €V and
more are needed in order to induce structure elements to change sites and move. This
limit leads us to neglect individual absorption phenomena beyond the IR region
(> 10 um) since they can not immediately influence atomic transport. Photochemi-
cal reactions with photons of low energy can be observed in solids which do not re-
sult in the formation of atomic point defects. The photon induced isomerization of
a crystal of [Co(NH;)sNO,]-Cl, is such an example. This crystal strongly absorbs
photons in the visible region and forms only a thin surface layer of the isomer. Since
the isomers differ in their lattice parameters, the crystal is stressed and will bend.
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Compared with the momentum of impinging atoms or ions, we may safely neglect
the momentum transferred by the absorbed photons and thus we can neglect direct
knock-on effects in photochemistry. The strong interaction between photons and the
electronic system of the crystal leads to an excitation of the electrons by photon ab-
sorption as the primary effect. This excitation causes either the formation of a
localized exciton or an (e'+h*) defect pair. Non-localized electron defects can be de-
scribed by planar waves which may be scattered, trapped, etc. Their behavior has
been explained with the electron theory of solids [A.H. Wilson (1953)]. Electrons
which are trapped by their interaction with impurities or which are self-trapped by
interaction with phonons may be localized for a long time (in terms of the reciprocal
Debye frequency) before they leave their potential minimum in a hopping type of
process activated by thermal fluctuations.

Let us formulate the various photon absorption processes in chemical shorthand
as follows

AV +(AX)qrys = €/ +h° (13.15)
hv+AX = [AL +€* > Al +€ (13.16)
hv+AX = [A4 +h]*—>AL +h° (13.17)
hv+X% = [Xk+h]*>Xx+h* (13.18)
hv+X% = [Xx+eT* > Xk +¢ (13.19)

Since recombination occurs as well, Eqns. (13.15)—(13.19) indicate that under (con-
stant) photon irradiation, a steady state concentration of new species (excitons, A},
A, etc.) is eventually established in the crystal. These defects can recombine or
undergo reactions to form other irregular SE’s, thus changing the whole equilibrium
defect chemistry. Since the defect chemistry is responsible for the reactivity in the
solid state, it is not surprising that photon irradiation affects the reaction kinetics.
If excited electronic defects return to the ground state, the corresponding energy
change can be converted into phonon energy which may cause the formation of other
atomic defects. In inhomogeneous and heterogeneous nonmetallic crystals with
prevailing electronic equilibrium and mobile electronic charge carriers, electric
potential gradients exist of necessity. If by photon absorption (e’ +h®)-pairs are form-
ed in these crystals (see Eqn. (13.15)), the e’ and h® will be separated from each other
by the action of the electric field. Given an external electric circuit, a photocurrent
can thus flow. This basic photochemical reaction is the fundamental process of the
photovoltaic conversion of solar energy into electric energy (Fig. 13-4).

Mobile electronic defects may be understood as more or less localized reducing or
oxidizing agents. They can react with other structure elements S7,, as follows

e+S7,=S%', h'+Sy, =84 (13.20)

However, in order to perform intracrystalline chemical reactions that affect the com-
ponents and not just the SE’s, empty lattice sites (vacancies) constituting a complete
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Figure 13-4. Scheme of a
photovoltaic cell. v = photon;
(e’,h*) = photoinduced electron-hole
pair; &, ¢, = conduction and

& valence band edge respectively.
Ae:(p} &p = Fermi energy (electrochemical
electron potential). Agg(p),

Agg(n) = change in Fermi energy
due to steady state electron-hole
separation in the diffusion poten-
tial zone of a p-n junction.

lattice molecule must be involved. Otherwise, photolytic reactions (decomposition)
can occur only at internal or external surfaces as sites of repeatable growth for the
lattice molecules M (see Section 2.2.1, Eqn. (2.23)). Let us discuss an example. If X%
has been formed during photon irradiation by reaction (13.19), the formation of a
molecule X, of component X can take place as follows

Xx+Xx+[Va+Vx]l =X,[ 1+2Vx (13.21)
or, equivalently,
2Xx+Vy=X,[ 1+Vx (13.22)

where the symbol [ ] denotes the vacant site of a lattice molecule. By adding
Eqn. (13.19) to Eqgn. (13.22) or, equivalently, by using the modified photoreaction
hv+AX = A} + X% +e' for that purpose, one obtains

2RV+2AX+V) = X,[ 142A, +Vi+2¢’ (13.23)

which describes the photolytic decomposition of a crystal AX with Schottky dis-
order (V,, Vy) in terms of the SE’s. The subsequent reactions between electrons,
electron holes, and atomic point defects can be registered using color center spectro-
scopy, particularly in halides. As an example, annealing of irradiated crystals leads
to a time-dependent bleaching which reflects the kinetics of point defect reactions,
e.g., [J.Z. Damm, F.C. Tompkins (1961)].

13.3.2 Radiation Effects in Halides (Photolysis)

When AX (e.g., KCl) is irradiated with X-rays (or electrons), pairs of anionic Frenkel
defects (ie., XI, V) are formed. Most of them recombine, but a small fraction sep-
arates and becomes so-called H(X}) and F(VY) centers. Depending on the tempera-
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ture, various subsequent reactions between these primary irradiation products and
other SE’s take place. 1) X}, ; clusters (V, centers) form according to n-X{ = X}, ;. 2)
2X{ or Xj; are trapped by a lattice anion Xx to become Xj. 3) n: Vi =V} «,
which is the formation of an anion vacancy cluster. 4) X} and V¥ structure elements
aggregate as dislocation loops. This has been postulated to occur when X,
molecules are arranged on V¥ sites. 5) The aggregation of initially separated anion
vacancies may lead to metal colloids. The aggregation of XJ, ; clusters can destroy
the crystal lattice with small X, gas bubbles as a result. After a sufficient rise in
temperature and length of relaxation time, the products of the radiation damage are
eventually healed by continuous recombination. Healing can occur internally and ex-
ternally, unless the surroundings of the irradiated crystal have already reacted irrever-
sibly with the products of photolysis. The kinetics of photolysis has been registered
by optical and other spectroscopies (e.g., ESR), by thermal analysis (calorimetry), by
volumetry, or by observing mechanical properties (e.g., yield stress). The relaxation
kinetics in homogeneous crystals can be analyzed in terms of (diffusion controlled)
chemical kinetics as described in Section 5.3.3. If, however, dislocation loops, colloid
particles, or bubbles act as sites (surfaces) or repeatable growth, transport as repre-
sented by Eqns. (4.99) and (4.100) is the formal frame and can be used with the ap-
propriate boundary conditions to obtain explicit solutions.

Most of the irregular SE’s formed by irradiation interact with impurities that are
the native irregular SE’s of the crystal. Impurities interact with the irradiation prod-
ucts either by their stress field or, if heterovalent, by the electrostatic (Coulomb)
field. Photolysis (radiolysis) is found in other than halide crystals as well. In oxides,
the production of Frenkel pairs under photon irradiation is negligible. This has been
ascribed to the fact that the reaction O*~ +O~ = 03~ is endothermic, whereas the
reaction X~ + X* = X; is exothermic.

13.3.3 Ag Based Photography

An instructive example of the complex solid state processes following photon irradia-
tion are the various stages of photographic imaging with photosensitive Ag-halides
[see, for example, H. Schmalzried (1981)]. In the following, the basic explanation of
the main reaction steps is briefly outlined. The different stages of the photographic
process are 1) the primary process of radiation absorption, 2) the formation of the
latent image, and 3) the developing of the latent image by an externally applied redox
buffer with a sufficiently high electron potential able to reduce the silver ions. We
will discuss only those aspects which deal with radiation effects proper and solid
state photochemistry.

Optical absorption by small AgBr crystallites results primarily in the formation of
pairs of free electronic carriers (¢'+h°®). The quantum efficiency of this photoreac-
tion is high. Electron holes are likely to be trapped by impurities (e.g., Cu;:g, Sﬁ; -
Cu,z,j;, Sg;). Electrons, in contrast, are trapped by Ag] to yield neutral Ag inter-
stitials. If the crystallites of AgBr are embedded in a properly chosen emulsion
gelatine, a large part of them and, in particular, their surface region are exposed to
a high internal electric field which originates from surface charges. This electric field
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causes the separation of electrons and electron holes formed by the primary
photoreaction. Thus, the electric field and the subsequent trapping of ¢’ and h*
reduce their recombination rate. :

Even at room temperature, the neutral interstitial point defects Ag} are sufficient-
ly mobile to cluster at appropriate places, preferentially at internal or external sur-
faces. To this end, AgBr (Ag(Brl)) crystals with dimensions of 0.1—1um are
emulgated in the customary photographic films. Their growth is carefully controlled
in order to make sure that the aggregation of Agf structure elements into clusters
occurs mainly at the surface and photoelectrons are not trapped by internal im-
purities. Under these circumstances, small Ag metal clusters (Ag,, n>3) will form
on the surface of the silver-halide crystallites, and as long as the electron holes can
be kept in deep traps, the Ag clusters remain stable enough to preserve the latent im-
age.

Later, this latent image can be made visible by the chemical process which is
named developing. Developers (= appropriate redox buffers) are substances which
reduce AgBr only in the presence of Ag clusters acting as catalysts when they are
located at the surface of the AgBr grain. Non-irradiated grains remain unaffected.
If the latent image grain (ca. 10° Ag atoms) with a single Ag, catalyst (n> 3) is fully
reduced and we assume that 10— 100 photons were needed in order to form the Ag,
speck (n>3) on the surface, the enhancement factor is calculated to be 10" —10°.
The recombination of electrons and electron holes reduces the efficiency of the
photographic process. The continuous growth of the silver nuclei on the crystallite
surface, which has easy access to the developer, is considerably facilitated if the
nucleation took place at a kink site. If the lattice site at the end of a surface kink
is occupied by a Br~ ion, the effective charge of this site is — 1. When the Ag;" ion
is attracted and placed at the kink site, its effective charge becomes +4. Thus, a
new photoelectron can be attracted and another sequence of additions can begin.

Reactions of photoelectrons with cation defects as described here have also been
found for mercury halides or for oxalates of Fe and Pd. Lead halides, in contrast,
possess mobile anions which can trap photoelectron holes. In this case, the absorp-
tion of photons leads immediately to a positive image, where the illuminated areas
appear light.
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14 Influence of Mechanical Stress

14.1 Introduction

This chapter is concerned with the influence of mechanical stress upon the chemical
processes in solids. The most important properties to consider are elasticity and
plasticity. We wish, for example, to understand how reaction kinetics and transport
in crystalline systems respond to homogeneous or inhomogeneous elastic and plastic
deformations [A.P. Chupakhin, et al. (1987)]. An example of such a process in-
fluenced by stress is the photoisomerization of a [Co(NH;)sNO,ICIl, crystal set
under a (uniaxial) chemical load [E.V. Boldyreva, A.A. Sidelnikov (1987)]. The
kinetics of the isomerization of the NO, group is noticeably different when the
crystal is not stressed. An example of the influence of an inhomogeneous stress field
on transport is the redistribution of solute atoms or point defects around disloca-
tions created by plastic deformation.

The influence of plastic deformation on the reaction kinetics is twofold. 1) Plastic
deformation occurs mainly through the formation and motion of dislocations. Since
dislocations provide one dimensional paths (pipes) of enhanced mobility, they may
alter the transport coefficients of the structure elements, with respect to both magni-
tude and direction. 2) They may thereby decisively affect the nucleation rate of super-
saturated components and thus determine the sites of precipitation. However, there
is a further influence which plastic deformations have on the kinetics of reactions.
If moving dislocations intersect each other, they release point defects into the bulk
crystal. The resulting increase in point defect concentration changes the atomic
mobility of the components. Let us remember that supersaturated point defects may
be annihilated by the climb of edge dislocations (see Section 3.4). By and large, one
expects that plasticity will noticeably affect the reactivity of solids.

If local stresses exceed the forces of cohesion between atoms or lattice molecules,
the crystal cracks. Micro- and macrocracks have a pronounced influence on the
course of chemical reactions. We mention three different examples of technical im-
portance for illustration. 1) The spallation of metal oxide layers during the high tem-
perature corrosion of metals, 2) hydrogen embrittlement of steel, and 3) transforma-
tion hardening of ceramic materials based on energy consuming phase transforma-
tions in the dilated zone of an advancing crack tip.

So far, we have tacitly assumed that the stresses were applied externally. However,
stresses which are induced by local changes in component concentrations and the
corresponding changes in the lattice parameters during transport and reaction are
equally important. These self-stresses can strongly influence the course of a solid
state reaction. Similarly, coherent, semicoherent, and even incoherent interfaces dur-
ing heterogeneous solid state reactions are sources of (local and nonlocal) stress, The
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stress distribution in solids therefore depends decisively on the type and geometry
of the internal and external boundaries. The stress component normal to an external
surface necessarily vanishes. We will see in Section 14.3 that transport equations also
contain, in addition to the normal (local) gradient terms, integrals over the whole
crystal of the driving forces if we assimilate transport theory and the theory of elas-
ticity. This may result in interesting feedback effects.

Mechanochemistry is often understood more specifically as the study of structural
and compositional changes of solids resulting from the input of mechanical energy,
for example, by ‘friction’ in a milling process. The oldest experience and a striking
example of this kind is probably the use of flints to light a fire and, in particular,
when more recently medieval guns (flintlock weapons) were fired. Similarly, geo-
chemists know about the modifications of transformation reactions under the in-
fluence of tectonic movements. Tammann observed that not all the mechanical ener-
gy input (if a solid is treated accordingly) transforms into heat. Several percent of
the input can be stored as (potential) energy and can subsequently enhance solid
state reactions if they take place with or in these solids. Today, we can say that the
activation of solid state reactions by mechanical energy input is rather common. The
corresponding subjects are called mechanochemistry and tribochemistry. The diver-
sity of possible reaction steps during the dissipation of locally injected mechanical
energy render most of the proposed models and their experimental verification am-
biguous. Before we discuss examples in the later sections of this chapter, let us first
introduce some basic relations concerning stressed solids.

14.2 Thermodynamic Considerations

14.2.1 Thermodynamics of Stressed Solids

A defining characteristic of a solid is the ability to resist shear. Therefore, stress is
an additional feature which has to be taken into account when the physical chemistry
of solids is at issue. Gibbs treated the thermodynamics of stressed solids a century
ago in his classic work Equilibrium of Heterogeneous Substances under the title
“The Conditions of Internal and External Equilibrium for Solids in Contact with
Fluids with Regard to all Possible States of Strain of the Solid”. We have already
mentioned in the introduction that stress is an unavoidable result of chemical pro-
cesses in solids. Let us therefore briefly discuss the basic concepts of the ther-
modynamics of stressed solids.

To this end, we consider the thermodynamic functions of a homogeneously stressed
solid, e.g., [L.D. Landau, E. M. Lifshitz (1989); W. W. Mullins, R. Sekerka (1985)]. In
contrast to the unstressed solid, the internal energy of which is U(S, ¥, n;), the inter-
nal energy of a stressed solid is given as U(S, Vuy,n;). For the total differential of
the internal energy one has'

! The convention for the summation of repeated vector and tensor indices is followed here. The
summation goes over 1,2,3.
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dU=TdS+ Vajk'dujk-" E ,u,-dni (14.1)
where u;, are the components of the strain tensor # and gj; are the components of

the stress tensor &, both of which are symmetric tensors [J.F. Nye (1985)]. From
Eqn. (14.1), it follows that

F
O =L (ﬂ) =1, (_a_) (14.2)
V Bujk S,n, V Bujk T,n;

where F is the Helmholtz free energy. The generalized Gibbs-Duhem relation reads
(Vuj-day, instead of VdP in the hydrostatically stressed system)

SdT+ Vuj'k'da'jk',' E n,-dui= 0 (14.3)
and thus
Vujk = — (a—G-> (144)
Ba'jk T,n

From Eqn. (14.3), one can easily derive the cross relations between extensive and in-
tensive state variables as, for example,

dui (B9 (14.5)
&IJ Bn,-

By expanding the Helmholtz free energy F at constant 7 in an arithmetic series in
terms of u;, we see that the linear terms vanish in view of the equilibrium condi-
tion (6, = 0 for unstressed crystals). Thus, from the Euler relation for homoge-
neous functions of second order, F is given as

F(@)-F(0)=w= ; T i (14.6)

For a uniaxial load along the principal axis, we have according to Hooke’s law
du; = (1/E)do, (du, = du; = —(v/E)day). Thus, the change in F due to this defor-
mation is

1

% w 2
S (14.7
E’ v 2" )

W=

where E is Young’s modulus and v is Poisson’s ratio. In the context of transport
theory the most important thermodynamic quantity, however, is the chemical poten-
tial and its gradient. Chemical potential gradients occur in inhomogeneous solids so
that in our context here, the inhomogeneity is related to the inhomogeneous stress.
As long as there is a mobile component in the crystal, its chemical potential (which
at equilibrium is constant throughout) can always be defined and is measurable, It
is defined as the reversible work needed to isothermally add dn; moles of compo-
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nent i at constant stress to the volume V, divided by dn;. In view of Eqn. (14.1), the
chemical potential u;(g, T) can be written as ,

oG oF
ui(o,T) = <—> = <—> —Vojduy (14.8)
ani nj.a,T ani nj,a,T

Therefore, by introducing Eqn. (14.6)

oV
ui(e, T)—p;(0,7) = 5 (E 0'jk'“jk> — 0 Vduy, (14.9

i

The first term on the right hand side of Eqn. (14.9) is w;, the partial free energy dif-
ference between stressed and unstressed solutions. For uniaxial stress along a princi-

pal axis (1),
2(v, dF
w=2i(Y_ YO8 (14.10)
2 \E E°on

The second term is the reversible work done at a given stress by the volume expansion
(contraction) V'duj if one adds dn; to the system under stress. For uniaxial stress,
this is (g = cross section area; A&; = crystal length)

oy (Vduy) = oy gag, B2 _ g Vi (14.11)
an,- 3

if the crystal is isotropic. Accordingly, for stress along the three principal axes,

0'=0'1+0'2+0'3 (=0'11+0'22+0'33) r
o-(Vdu)=oV, (14.12)

Considering w; can normally be neglected relative to (¢ V;) because (¢/E)<1, one
finally obtains for the chemical potential

(o, T) = (0, )~ o V; (14.13)

The term u;(0, T) (= u;(0, T, N,)) plays the role of a standard potential with respect
to the stressed state. For practical applications of Eqn. (14.12) one assumes that V;,
the partial molar volume of component i/, does not noticeably depend on con-
centration nor on stress. In the case of hydrostatic pressure, o V; is then Sa-dV,-
=3 SPdV,- = —3PYV,. In equilibrium, it follows from Eqn. (14.13) that

Vu;(0, TNy) = V;Va (14.14)

For a binary dilute solution of ideal behavior, Eqn. (14.13) or (14.14) yields

E
N, = N(c =0)eRT (14.15)
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From Eqn. (14.15), we conclude that particles i segregate to regions of increased ten-
sile stress if their partial molar volume is positive (and vice versa in both possible
senses). o

We can estimate the order of magnitude of (elastic) stress effects on particle distri-
bution using Eqn. (14.15). We assume V; to be on the order of 3 cm®, which is
typical of some solutions of H in metals, and o(= o, + 0, +03) is on the order of
the yield strength (= 10° Pa). At room temperature, V;o is then less than +'RT so
that N;(0)/N;(0) = 1.6, which indicates a 60% increase in i concentration due to the
applied stress.

Elastic strains due to the applied stresses are usually less than 1%. Although the
structure of the crystal is distorted, the atomic positions and unit cells are still well
defined. If larger strains occur, the solid deforms plastically or transforms to another
crystal structure.

14.2.2 Thermodynamics of Stressed Solids
with Only Immobile Components

Let us consider a homogeneously, but not hydrostatically, stressed solid which is
deformed in the elastic regime and whose structure elements are altogether immobile.
If we now isothermally and reversibly add lattice molecules to its different surfaces
(with no shear stresses) from the same reservoir, the energy changes are different.
This means that the chemical potential of the solid is not single valued, or, in other
words, a non-hydrostatically stressed solid with only immobile components does not
have a unique measurable chemical potential [J. W. Gibbs (1878)].

However, as Gibbs showed, one can equilibrate the different surfaces of the solid
with contacting fluids (or other bodies) to dissolve the stressed solid in question.
This implies only that the components of the stressed solid are mobile in the fluids.
Obviously, if one mole of the stressed solid is isothermally and reversibly transported
from surface 1 (normal stress o) to surface 2 (normal stress g,), one has gained the
Gibbs energy V,,*(0,—0y). As has been shown in experiments [W. Durham, H.
Schmalzried (1987)], this energy difference can be measured, for example, by a solid
state galvanic cell applied to the different surfaces. The emf of two galvanic cells
adds up to E = ¥V, (g,—a{)/n-F, if n moles of electrons are involved in the virtual
cell reaction for the transport of one lattice molecule. We note in passing that the
stressed solid is always supersaturated with respect to a solid nucleus that forms in
the contacting fluids at any of the three pressures. In each of these fluids, one has
by necessity hydrostatic conditions. However, the supersaturation is usually too small
to overcome the nucleation energy of a hydrostatically stressed solid in one of the
contacting fluids.

A transport situation in which this concept plays a main role is Nabarro-Herring
creep [C. Herring (1950)]. This creep reshapes the crystal grains of a polycrystalline
solid under non-hydrostatic stress. The disordered grain boundaries with their rela-
tively high component mobilities can play the role of the Gibbs surrounding fluid.
Transport takes place from areas of high (normal) stress to those of low (normal)
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stress which leads to stress relaxation and a change in the shape of the grains,
Another example was discussed in Section 8.5, where V- Vo was the driving force
for the demixing process of a ternary solid, one sublattice of which is filled with the
immobile component (e.g., (A, B)O, see Fig. 8-9).

Let us summarize the concepts presented in the last two sections. Chemical poten-
tials can be ascribed to mobile components in inhomogeneously stressed solids. The
important additional (thermodynamic) energy term is o-¥,. This situation is
analogous to the electrochemical equilibria in ionic crystals where the electrical
potential gradient plays the same role as the elastic potential gradient, and the com-
position (in equilibrium systems) is non-uniform if the electrical potential is non-
uniform. We note, however, that the chemical potential is changed by straining the
crystal, but not by adding extremely small amounts of electrical charge for the sake
of establishing the electrical potentials.

When all the SE’s of a solid with non-hydrostatic (deviatoric) stresses are im-
mobile, no chemical potential of the solid exists, although transport between differ-
ently stressed surfaces takes place provided external transport paths are available.
Attention should be given to crystals with immobile SE’s which contain an
{equilibrium) network of mobile dislocations. In these crystals, no bulk diffusion
takes place although there may be gradients of the chemical free energy density and,
in multicomponent systems, composition gradients (e.g., Cottrell atmospheres [A. H.
Cottrell (1953)]).

14.3 Transport in Stressed Solids

14.3.1 Introductory Remarks

We have pointed out that one reason for the complexity of solid state processes is
the direct influence of elasticity and plasticity, especially in inhomogeneous and
coherent multiphase systems. It has been shown that Gibbs’ phase rule, as derived
for fluid systems, cannot be applied in the same way for coherent multiphase crystals
[W.C. Johnson (1986); W.C. Johnson, H. Schmalzried (1992)]. The local elastic
energy density is normally inhomogeneous and depends strongly on the nature and
geometry of the internal and external boundaries. As a result, multicomponent
heterophase systems are already inhomogeneous in equilibrium. Only limiting cases
can be treated quantitatively.

Let us first ask to what extent homogeneous stresses influence the mobilities of
structure elements. We know that the temperature dependence of mobilities is ade-
quately described by an Arrhenius equation, which reflects the applicability of the
Boltzmann distribution for atoms in their activated states (Section 5.1.2). Let us
therefore reformulate the question and ask in which way the activated states of
mobile SE’s are influenced by externally applied stresses and self-stresses. If we take
into account the periodicity of the crystal and assume its SE’s to reside in harmonic

3
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potential wells, we may conclude that to first order the relative change of the activa-
tion energy is a-(6/E). a is a numerical factor on the order of one, and E is Young’s
modulus. As long as a-(6/E)<1, we may therefore expand the Arrhenius type
mobility in a series and observe that the mobility change is proportional to (¢/E).
In so far as other kinetic parameters are related to the SE mobilities, these are then
equally dependent on the (local) stress state. In a higher order treatment, the model-
ing of the mobilities as a function of stress is quite complicated and we will not pur-
sue this question further. Let us rather investigate now the influence of stress on driv-
ing force and transport during reaction.

14.3.2 The Influence of Stress
on Heterogeneous Reactions A+B = AB

Stress fields are long range. Therefore, one has to specify carefully the conditions at
the boundaries of the system for a quantitative discussion of the influence of stress
on solid state kinetics. Let us consider the situation depicted in Figure 14-1. The AB
reaction product has grown coherently on A (e.g., by the counterdiffusion of A and
B). If, for example, B has been supplied across a fluid-like interface or via a small
gas gap by evaporation, the AB/B interface does not engender any stress in the sur-
roundings. In the absence of external pressure, there is no normal stress on the free
surface. If now the AB layer grows epitaxially (coherently) on A and is sufficiently
thin, the lattice spacings of AB are forced to be the same as those of the substrate,
even if V5 =+ V,. Ultra-thin AB grows without creating any noticeable stress in the
bulk of reactant A.

Als}) ABIs] Bls)

Figure 14-1. Coherent product layer AB forming on
substrate A (reactant) during the reaction
b, b, A(s)+B(g) = AB(5).

Let us then estimate the influence of stress energy on the kinetics of AB formation
due to the change of both the driving force and the component mobilities in AB.
The latter change was addressed in the previous section. The influence of the elastic
energy on the driving force is under many circumstances relatively small. We have
seen before that the maximum energy densities are on the order of 10 !-R T per
mole. They can often be neglected if AG%5>10-RT. For a zeroth-order treatment
of the influence of stress on the AB formation, we note that the AB layer, under the
given conditions, possesses a stress energy density which, according to Eqn. (14.7), is

_ 2
W_Ess (Vas_ (14.16)
v 8 \ 1
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If we neglect the stress energy of the substrate, the standard reaction Gibbs energy
AG%B (per mole) has to be reduced by V,5-(w/V) in order to obtain the available
Gibbs energy for the formation of the stressed AB. The remaining driving force (ie.,
gradient) therefore is

_ 2
AGY,—YanEan (Vap_ 1) ). pp-t (14.17)
8 Vs

Since this driving force is proportional to A& ', it again leads to a parabolic rate
law. The AB formation rate is always decreased compared to a stress-free reaction
as long as the layer adheres and does not form cracks. However, if the evolving stress
energy contained in the A substrate is also taken into account, the overall stress
energy depends on the thickness of the reaction layer, which invalidates the parabolic
growth and slows down the reaction rate. In principle, this can stop the reaction
before A or B are consumed.

A study illustrating the basic ideas has been performed by [D. Hesse, J. Heyden-
reich (1993)]. They reacted MgO single crystals with thin films of TiO, to form
Mg,TiO, and MgTiO;. On thick MgO crystals, only MgTiO; was found, although
the coexisting phase with MgO is Mg,TiO,. Since the Gibbs energy of formation of
Mg,TiO, is small and the volume change is 7.5%, if the product grows coherently
on the MgO substrate, the necessary strain energy obviously does not permit nuclea-
tion of Mg,TiO,. However, if the reactant MgO is used in the form of very thin
crystals (<0.5 um), Mg,TiO, forms readily at temperatures below 1600 K. The reac-
tion induced stress is relaxed, at least in part by bending the thin substrate. Another
observation is of interest. The Mg,TiO,/MgO interface is found to be coherent, but
the MgTiO;/Mg,TiO, interface is semicoherent. The interface dislocations rear-
range the hcp oxygen sublattice of MgTiO; into the fcc oxygen sublattice of
Mg,TiO, during the reaction.

14.3.3 Transport in Inhomogeneously Stressed Crystals

In this section, we consider the influence of inhomogeneous stress on matter trans-
port. To illustrate the problem, let us formulate a simple transport equation: diffu-
sion of an interstitial component / in an otherwise immobile solid (e.g., H in Pd).
Furthermore, we neglect cross effects. For an electrically neutral species i (Le., H) we

then have
. dlnf; V:-Vo
= —L;Vu;= —D; | [ 1+—Z }-Ve—¢; | = 14.18
/ YA [( alnc,-) ! ’(RT)] ( )

where f; is the activity coefficient. The second term within the brackets represents
the elastic part of the chemical potential. Without sinks and sources for i, we find
from Eqn. (14.18) for a strictly one dimensional experiment
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g 2
¢=p| (142001).&q_, Vi 8o Vi 880 (14.19)
dinc; ag “RT o0& RT 0¢ o

In Eqn. (14.19), which is the fundamental equation for transport in systems with in-
homogeneous stresses, it is assumed that D; does not depend on concentration. This
is obviously true for our dilute solution of species i in the matrix crystal. Corre-
spondingly, we may also assume that f; is independent of the concentration of i.

It was mentioned in Section 14.1 that internal (self-) stresses build up if lattice
parameter changes occur during interdiffusion. This will be the case if V; =+ V.
We note that for substitutional interdiffusion in (A, B), the condition for the change
in lattice parameters is ¥, (or V) + V,,. For the integration of Eqn. (14.19), it is
therefore necessary to introduce the quantitative relation between c; and g. ¢ is the
(chemical) self-stress due to the lattice expansion (or contraction) in the diffusion
zone. A strict theory is not available. Some of the difficulties stem from the fact that
the elastic parameters are functions of ¢; (as are the transport parameters). If we
neglect this concentration dependence, the problem of self-stress during chemical
diffusion is completely analogous to the problem of stress induced by lattice parame-
ter changes arising from an inhomogeneous temperature distribution. This problem
has been treated in the literature [S. Prussin (1961); J. C.M. Li (1978); F.C. Larché,
J.W. Cahn (1982, 1988); B. Baranowski (1989)]. Let us introduce the g(c;) relation
for the one dimensional problem (o; = ¢; = 0) when / diffuses into the sample at
¢ =0 in the form used by Baranowski

()
ek [(,— ?)——I(c O-dg-— 2/

Gy=03=
27T T 3-w) INE
I(c C°)< ) é] (14.20)
where ¢? is the (homogeneous) initial concentration of i. In the following, we

assume that c? = 0. The second and the third terms in Eqn. (14.20) are seen to be
non-local (integral) contributions. If ¢; changes with time due to the diffusion pro-
cess, the associated stresses are transmitted across the crystal with sound velocity. We
observe that self-stresses cause diffusion outside the immediate interdiffusion zone.

From Eqn. (14.20), one obtains the stress gradient in the & direction of transport as

V.- E A
Vo = 2.8_0'2 = _”—iE. [8_0 123 I c’,.< é) dé:| (14.21)
14 31-v) | 8¢ A¢ 2

With the given assumptions, we introduce Eqn. (14.21) into the transport equation
(14.18) and obtain

2, V2E o A
jim _D’_[(Hg ViE >ac+ 8-Vi Ea.i.j ci< Aé) dé] (14.22)
3 (1—v) RT) 8¢ (1—v)-AE RT o
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There is a local (Fickian transport) and a non-local (stress induced) term in this flux
equation. In the local term, the stress acts in the same way as an activity coefficient
does. It always increases local diffusion since V% is positive and independent of the
sign of the partial molar volume of i.

0 05 10 -
' ! L/
P
{Pd.Pt) b
H,0.H* A H,0,H' A
{ I
{ 1
| (2H< O
= I
| cylt=0] I
| - |
| lx ] [k
E 7
a) U°+ AU lanodic) u°

H;0.H". A (Pd,Pt] [HO.H* A

Figure 14-2. a) Schematic plot of a permeation experi-

T’ f_ t ment: H dissolves in a (Pd, Pt) sheet. Surface activities
_________ Ho_ ‘Ml ay (cy) are established electrochemically. 1) ¢,>0, 2)
— -

j ty» by t,— . b) Hydrogen fluxes jy across both interfaces of
bl H u the sheet at times ¢, and ¢, (f; <t,).

The non-local term is negative in the beginning of the diffusion of i into the plate
when ¢;(£) = 0 for £ = A&/2 (Fig. 14-2a). According to Eqn. (14.19), we can express
the time dependence of c; using Eqn. (14.21) as

2.5 o , 2.5 \?2
éi=D; 1+2V' E .82‘;+2V' E 1 (8
3(1—v) RT/) 8¢° 3(1-v) RT \o¢&

VL.E A
- (ﬂf‘%_i_ S Ci( _A_é>.d¢> %:l (14.23)
(1-v)'AE° RT o 2 o

This is a second order (partial) nonlinear integro-differential equation. If during
interdiffusion the lattice parameters of the crystal change, this equation should
always be used. However, the complexity of the mathematics in solving Eqn. (14.23)
forbids its general use, especially since the boundary conditions at the surface (at
¢ = 0 and A¢) are necessarily time-dependent due to the evolving stresses. This is true
even if the chemical potential of i is kept constant in the adjacent phases. From
Eqn. (14.21), however, one can immediately show that d¢/8¢ vanishes if (dc;/9¢€) is
constant, which is the steady state condition. If the concentration gradient is con-

stant, Eqn. (14.20) tells us that ¢, and &3 also vanish.
Let us discuss briefly the solution to the stress induced transport problem for short
times after loading one side of the specimen at & =0 with species i (c;(¢ = 0)).
Under the given initial and boundary conditions, the non-local transport term in
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Eqgn. (14.22) can be neglected compared to the Fickian transport term in a zeroth
order approach. The reason is that the gradient of c; at &£ = 0 is high at the begin-
ning of the diffusion process, whereas the integral over the concentration in the non-
local term is still small. Therefore, c; = c?-erf &/72 (D,-t)“ 2). The stress induced part
of the flux can now be calculated for short times in a first order approach and yields

) 8:V}E Djyc ci(¢=0)
= — St Bl B -VD;-t 14.24
/ Vr-1-v) RT A& (1424

By using Eqn. (14.20), the stress o,(g;) at the unloaded side of the specimen at
& = A& becomes

4V-E 1
— = _—1-_-1. =O . D’-'t 14.25
=0y = o A €= 0 (14.25)

Permeation experiments (Fig.14-2b) conducted with hydrogen as the interstitial
component / diffusing across a (Pd, Pt) alloy plate are in agreement with the above
conclusions [B. Baranowski (1989)].

We mentioned before that Nabarro-Herring creep is another example of transport
of matter induced by inhomogeneous stress in crystals. If a mechanical load is acting
on a polycrystalline sample, the individual grains (with different sizes and orienta-
tions) are necessarily stressed inhomogeneously. Figure 14-3 describes the situation
and the notation. Let us assume that the sample consists of metallic grains of A.
Transport of A can be described in two ways: 1) We assume A to be immobile in the
sense of Section 14.2.2. We further consider the grain boundaries as fluid-like and
in equilibrium with the A grains. Since A atoms are mobile at grain boundaries, we
expect a flux j, from sites of high normal stress o, (¢ '1’) to sites of low normal stress
az(é'z’) (Ag =0,—0,). The flux density in the grain boundary is (DR/R T)-
(Aa/AEY). 2) Considering the D, = Ny- Dy (Ny <1) relation, we may consider A to
be the (almost) immobile component, as before. Nevertheless, A vacancies are highly
mobile and we can derive a vacancy flux from site 1 (o) to site 2 (g,) as shown in
Figure 14-3. It carries the corresponding A counterflux from site 2 to site 1 across
the grain of width A¢,,, the flux density of which is (Dy*Ny/RT):(Aa/A&,).

Figure 14-3. Nabarro-Herring creep in a grain of a

polycrystalline sample which is (inhomogeneously)

stressed (g,<a,). Flow of A from 1—2 and the reverse

/} external vacancy flow are indicated along the grain boundary
force and through the bulk.
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(DyNy-AE")
(D} ALy
Although the flux equations for grain boundary and volume transport are of the
same type, the creep kinetics are different because the boundary conditions of the
transport differ for the two models (Fig. 14-3). Finally, we observe that creep in com-
pound crystals requires the simultaneous motion of all components [R.L. Coble

(1963)] so that the slow ones necessarily determine the creep rate.

The predominant creep mechanism thus depends on the ratio

14.4 Creep and Fracture

14.4.1 Introductory Remarks

Creep and fracture in crystals are important mechanical processes which often deter-
mine the limits of materials’ application. Consequently, they have been widely
studied and analyzed in physical metallurgy [J. Weertmann, J. R. Weertmann (1983);
R.M. Thomson (1983)]. In solid state chemistry and outside the field of metallurgy,
much less is known about these mechanical processes [F. Ernst (1995)]. This is true
although the atomic mechanisms of creep and fracture are basically independent of
the crystal type. Dislocation formation, annihilation, and motion play decisive roles
in this context. We cannot give an exhaustive account of creep and fracture in this
chapter. Rather, we intend to point out those aspects which strongly influence
chemical reactivity and reaction kinetics. Illustrations are mainly from the field of
metals and metal alloys.

14.4.2 Creep

If a crystal is exposed to stress in such a way that the strain is kept constant, the stress
will decrease with time as shown in Figure 14-4. One concludes that stress relaxation
has occurred. Conversely, strain does not remain constant under constant load. Time
dependent (i.e., plastic) strain in stressed crystals is called creep. It was already men-
tioned that elastic strain due to the applied stress is usually less than 1%. Plastic
strain definitely dominates beyond the elastic limit which, to a large extent, is due
to dislocation formation and motion. Since the crystal lattice is conserved during this

stress

strain = const

Figure 14-4. Stress relaxation at constant strain. Plastic strain
0 ¢ increases with time, elastic strain (and stress) decreases.
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deformation process, dislocations (as well as disclinations, twin boundaries, etc.) act
as catalysts for plastic deformation which leave the lattice structure invariant. They
are localized, dilute, and mobile. Dislocations may form (see Chapter 3) if their line
energy (~ Gb? per unit length) is smaller than the elastic energy (~ Gu? per unit
volume) in the region of the crystal where a dislocation line of length / is found.

If one measures temperature in terms of the crystal melting temperature 7,, and
the applied stress o in terms of its shear modulus G, one finds three different types
of creep in the field of these variables (neglecting Nabarro-Herring(-Coble) type of
creep in polycrystalline materials as discussed in Section 14.3.3). 1) At stresses
smaller than the critical shear stress, no long range motion of dislocations occurs.
Plastic straining is due to mechanisms other than dislocation motion. 2) If (6/G)
is higher than (o..;/G) and at low temperatures (7/ T, <0.5), dislocations can move
relatively easy on their slip planes. 3) At 7/T,>0.5, diffusion of the structure
elements allows the dislocations to climb sufficiently fast so that they can move in
all directions and are not bound to slip planes. Let us discuss these types of creep
in more detail.
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1) Figure 14-5 defines the creep below the critical shear stress. It is called anelastic
creep and is to a large extent recoverable. The anelastic strain for a given stress below
G approaches its equilibrium value u, as

U= uo-(l —e ‘1) (14.26)

By removing the load, the anelastic strain recovers (Fig. 14-5). When cyclic stresses
are applied, internal friction occurs which means that stress and strain are out of
phase and energy is dissipated in the damping process. From an atomic point of view,
equivalent lattice positions (ny) become unequivalent (n,, ny;no = n,+n,) by the
applied stress and the Boltzmann distribution of site occupancy is disturbed. 7 is
therefore the relaxation time to attain the new Boltzmann distribution of site
occupancy for a given stress. To a first order, the strain is proportional to
n = (n,—n,). Damping is largest if the frequency of the cyclic stress is in resonance
with the elementary jump frequency of the atomic particles which redistribute. For
example, in the case of iron containing carbon located on interstitial sites, it was
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found that the activation energy of the relaxation time for anelastic creep, 7, and of
interstitial carbon diffusion are the same. Thus, the assumption is confirmed that the
anelastic creep is due to a redistribution of interstitial carbon on sites which the ap-
plied stress rendered non-equivalent. It also shows us how to use creep experiments
in order to obtain information on fundamental kinetic parameters. By and large, the
formal way to treat these mechanical relaxation processes is conceptually identical
with the treatment of the Debye-type dielectric relaxation phenomena introduced in
Section 5.1.1. A pertinent discussion can be found in [A. S. Nowick, B.S. Berry
(1972)]. Figure 14-6 shows an experimental illustration of internal friction. The loss
as a function of temperature is given at two predetermined excitation frequencies v,
and v,. Temperature is used as the independent variable since it determines the in-
trinsic jump frequency between x and y sites (v ~e~2Ea’RT) At resonance, that is,
when the excitation frequency and the inherent frequency of the jumping atomic par-
ticles are the same, the loss has a maximum value.
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Figure 14-6. Internal friction. Carbon reorienting in tantalum at two frequencies as a function of
temperature. v,/v; = 3.81 [T. Ke (1948)].

2) Low temperature creep, 7<0.5 T,,. When the applied stress exceeds the critical
shear stress it can trigger dislocation multiplication (see Section 3.2.1) and subse-
quently move the dislocations over long distances on their respective slip planes.
Mutual interaction between dislocations will eventually cause the multiplication to
cease. This phenomenon is called work-hardening in physical metallurgy. As long as
the stress-strain curve has a finite slope and a small increase in stress results in a fur-
ther small plastic deformation, thermal fluctuations will also cause additional
(creep) strain. Then, by increasing the deformation through fluctuations, hardening
of the crystal continues and consequently the creep rate decreases. Instead of
Eqn. (14.26), a low temperature creep relation is observed which is logarithmic in
time

u=uylog(1+t/7) (14.27)

1/7 is proportional to the vibrational frequency of the dislocation line (which is
necessarily lower than the vibrational frequencies of atoms in the lattice). If a
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dislocation is sufficiently activated by thermal fluctuation and applied stress, it can
cut through the dislocation forest and increase the plastic deformation. We note that
the activation energy in low temperature creep increases with temperature, thus il-
lustrating the above mentioned feedback situation.

3) High temperature creep. The creep strain occurring at elevated temperatures
>0.5 T, can amount to 100—300% without specimen failure. It starts with a tran-
sient creep and eventually becomes a steady-state deformation, which means that the
initial creep rate decelerates and approaches a constant value. The activation energy
of steady-state creep is identical with that of self-diffusion in an elemental crystal.
In compound crystals, complete lattice molecules must be transported when a full
dislocation climbs. Therefore, one expects that the diffusion activation energy of the
slowest regular SE determines the activation of the creep. In the transient period, the
structure of the dislocation network forms. Since moving dislocations suffer from
energy dissipation due to friction caused by various mechanisms (point defect forma-
tion, impurity drag, phase transformations, order-disorder processes), it is difficult
to predict the detailed time dependence of the strain in the transient period.

- g,
®

—> fe——— ®

— > <— Ao A ooV, vo
i Figure 14-7. Model of a steady-state
-> < . dislocation climb. Flow of A and the
P reverse vacancy flow from more to
BN -— 0, less compressed regions of the
dislocation are indicated.

[N.F. Mott (1956)] suggested that the rate controlling step in steady-state high tem-
perature creep is the climb of dislocations with an edge component. Dislocations are
then created and annihilated at the same rate. Annihilation takes place when disloca-
tions of opposite sign meet. To do this, they have to climb if they are located on dif-
ferent slip planes. Dislocations climb by emitting vacancies (destroying interstitials)
or by destroying vacancies (emitting interstitials). Thus, steady-state creep rates are
controlled by the diffusion of vacancies (or interstitials) between dislocation lines
(Fig. 14-7). Rates can be estimated if, for example, the vacancy gradient, that is, the
different vacancy concentrations between the climbing dislocations and their (aver-
age) distance, a, is known. Acy can be approximated as follows. The stress, o, does
the work (o'b:L) upon a dislocation line of unit length which during its lifetime
moves a distance L parallel to the slip plane. If, for that same time, the climb distance
perpendicular to the slip plane is d, then about d/b? lattice defects per unit length
are created (or destroyed). Thus, the stress o changes the defect formation energy by
(6-b3-L/d) per defect. Let us take this term into account in the Boltzmann factor
of the equilibrium (or steady-state) number of defects. We obtain for the difference
in vacancy concentrations between the two steadily moving dislocation lines during
creep, to a first order,
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cy=2'n L e kT —ZCOV' b’ (14.28)
* kT-d .

Here, n, is the number of lattice sites per unit crystal volume and A g% the forma-
tion Gibbs energy of defects without the applied stress.

To solve the vacancy flux equation between dislocations of opposite sign we have
to know the dislocation geometry (distance and orientation) in the lattice as the
boundary condition. If we consider as a zeroth order approach only the average dis-
tance, a, between the dislocations, even this quantity depends on the applied stress
and the functioning of dislocation multiplication. Nevertheless, since about 1/b%
vacancies are needed for a climb shift of unit length, we may conclude from
Eqgn. (14.28) and the vacancy flux that the steady-state climb velocity, v, of a dislo-
cation with edge character is

vd~Dv-c°v-k—-—-b (14.29)

that is, v, is on the average proportional to the applied stress. The proportionality
factor depends on the model assumptions and has been worked out [J. Weertmann,
J.R. Weertmann (1983)].

Two remarks, however, seem appropriate. 1) If the distance, @, between individual
dislocations is very small on an atomic scale, diffusion coefficients obtained from
macroscopic experiments can not be used in Egn. (14.29) (as explained in Sec-
tion 5.1.3). 2) Since diffusional transport takes place in the stress field of disloca-
tions, in principle, fluxes in the form of Eqn. (14.18) should be used. This, however,
would complicate the formal treatment appreciably. In the zeroth order approach,
one therefore neglects the influence of the stress gradient, which can partly be
justified by the symmetry of the transport problem.

Let us finally mention that in polycrystalline samples, Nabarro-Herring(-Coble)
creep occurs as already introduced in Section 14.3.2. The Nabarro-Herring creep rate
is inversely proportional to the square of the average grain size, 12, if volume diffu-
sion of point defects prevails. It is inversely proportional to /3 if grain boundary dif-
fusion determines the transport.

We have pointed out before that during creep, demixing of solid solutions is to be
expected. Creep in compounds, however, occurs in such a way that the rate is deter-
mined by the slowest constituent since complete lattice molecules have to be dis-
placed and the various constituent fluxes are therefore coupled. If extra fast diffu-
sion paths operate for one (or several) of the components in the compound crystal,
the coupling is cancelled. Therefore, if creep takes place in an oxide semiconductor
surrounded by oxygen gas, it is not necessarily the slow oxygen diffusion that deter-
mines the creep rate. Rather, the much faster cations may determine it if oxygen can
be supplied to or taken away from the external surfaces via dislocation pipes.
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14.4.3 Fracture

Dislocations as introduced in Section 3.2 have been postulated in order to explain the
low yield strength of a crystal (if we compare it to the theoretical shear strength).
Likewise, cracks are postulated in order to explain fracturing of crystals well below
the theoretical tensile strength of the atomic bonds. Pre-existing cracks can easily
magnify low applied stresses at their tips to the maximal atomic bond strength.

Fracture often determines the reliability of a material in its practical applications.
Brittle fracture of a material is the reason for a sudden catastrophe. The mechanical
property ‘ductile’ or ‘brittle’ determines, in essence, whether or not a tool can be
made from a given material. Let us identify the imperfections of a crystal and the
chemical processes which cause ductility and brittleness. We distinguish two limiting
cases of failure: 1) A crystal, under external stress, deforms by forming a narrowing
neck until eventually ductile rupture occurs. Dislocations are the only imperfections
involved in this process of failure. 2) Crystals fracture suddenly. A sharp crack propa-
gates and causes the failure.

Figure 14-8. Two dimensional model of a
crack in a square lattice. (Nonlinear) forces
at the crack tips are indicated by }.

Figure 14-8 shows a two dimensional atomic model of a microcrack. The stress
concentrates at the crack tip, the radius of which is of atomic size. In contrast to
dislocations and pores, microcracks do not exist without an external stress field.
They can be formed in various ways, for example, by the accumulation of disloca-
tions to a high density, by sufficiently high local stresses due to strain incompatibility
between different crystals, at grain boundary triple points, etc. By solving the differ-
ential equations of elasticity under the boundary conditions of a crack of length 2-a
and assuming the stress to be shearing the &; — &, plane, one finds [R.M. Thomson
(1983)] for the stress field

K e

g = W.e ; K= am-(n"a)vz (14.30)
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where r = V&2 + &% and @ = &, /¢,. K, which is a measure of the stress singularity at
the crack tip, is called the stress intensity factor. o, is the externally applied stress.
One notes that the stress intensity factor is a characteristic function of the crack
length.

The force that moves the crack on the cleavage plane has been deduced from
Eqn. (14.30) as

K2

F=—
2G

(14.31)

In equilibrium, that is if the crack does not move, the force F has to be balanced
by the surface tension y of the crystal. From this equilibrium condition, one obtains

Kyt =2-VG-y (14.32)

K. is the so-called fracture toughness parameter. It was first discussed by Griffith
[A. A. Griffith (1920)] and describes the mechanical equilibrium of the crack, but
not the thermodynamic equilibrium of the unstable crystal. Rewriting the criterion
given by Eqn. (14.32) in terms of Eqn. (14.30) one finds

=\ 1/2
4y-G
acrit=< Y ) (14.33)

n-a

where o is the externally applied critical Griffith stress. The quantitative descrip-
tion of cracking has thus been based entirely on macroscopic quantities, all of which
are combined in the single parameter K. Grain boundaries or precipitates which
would alter the stress field were assumed to be absent. Also, the stress intensity factor
does not take into consideration the plastic work which a moving crack stores in its
surroundings, mainly by emitting dislocations. In a local and atomic approach, the
surface tension y may therefore not be adequate to describe the force balance ex-
pressed by Eqn. (14.32), especially considering the quasi-periodic lattice structure
around the crack tip. Thermal fluctuations are able to promote (slow) crack growth
if we assume the force F to vary periodically with crack length. This would lead to
an Arrhenius-type temperature dependence of the crack propagation velocity v..
In any case, the stretched bonds at the crack tip are sensitive to neighboring foreign
atoms, be they supplied from the surrounding gas atmosphere or from the impurity
content of the bulk crystal. This follows from the change in surface tension (surface
energy) arising from adsorbed species which, according to the Gibbs adsorption iso-
therm, lowers the (local) K; value. Consequently, the material becomes more brit-
tle. From a chemical point of view, an adsorbed atom or molecule located near the
crack tip interacts and reacts with the stretched bond atoms. These chemical effects
influence the crack propagation. Stress corrosion and hydrogen embrittlement are
examples of this. It was found by [R. A. Oriani and P. Josephic (1974)] that the frac-
ture toughness parameter is proportional to In Dy, (g) for high-strength steel, con-
firming the idea that, in the cracks, the surface tension y changes according to the
Gibbs adsorption isotherm. This reflects the decohesion of atoms at the crack tip.
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Hydrogen, however, may also react with other impurities such as dissolved oxygen,
sulphur, carbon, etc. and form high activity products. Therefore, the effect of
hydrogen on the mechanical properties of a crystal is ambiguous. A discussion of
fracture at metal/oxide boundaries has been given recently by [F. Ernst (1995)].

Let us return to the reduction of shear stress at the crack tip due to the emission
of dislocations. Figure 14-9 illustrates a possible stress reduction mechanism. It can
be seen that the tip of a crack is no longer atomically sharp after a dislocation has
been emitted. It is the interaction of the external stress field with that of the newly
formed dislocations which creates the local stress responsible for further crack
growth. Thus, the plastic deformation normally impedes embrittlement because the
dislocations screen the crack from the external stress. Theoretical calculations are
difficult because the lattice distortions of both tension and shear near the crack tip
are large so that nonlinear behavior is expected. In addition, surface effects have to
be included.

[1

L] tE is

Figure 14-9, A crack tip shears by dislocation emission.

14.4.4 Toughening of Crystals by Phase Transformations

We have discussed the failure of materials under load due to crack formation and
subsequent fracture. Materials can be improved in this respect by toughening, which
means by the initiation of processes absorbing strain energy around the advancing
crack tip. Phase transformation of a fine grained dispersed second phase in the
matrix crystal induced by the stress from the crack is such an energy absorbing pro-
cess. The transformation zone around the moving crack tip can be seen as being
analogous to the region of plastic deformation discussed in the previous section.
A well studied example of transformation toughening is the enhancement of
strength and toughness of a ceramic material by the stress induced tetragonal—
monoclinic phase transition in ZrO, particles embedded in a ceramic matrix [N.
Claussen, M. Riihle (1981)]. At least two mechanisms improve the toughness. 1) Mi-
crocracks and residual stresses which have been introduced during the cooling of the
two-phase sample (matrix + dispersed ZrO,) impede the crack propagation. The size
of the finely dispersed and energy consuming particles is 0.1 —1 pm. 2) The (tensile)
stress induced martensitic transformation of ZrO, absorbs the strain energy localiz-
ed at the moving crack tip. Martensitic transformation is the structural conversion
by a diffusionless process discussed in Section 12.2.1. Here, the parent tetragonal
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ZrO, dilates to the monoclinic structure. Shear and dilational components of this
transformation change the strain state of the matrix. External stress can either im-
pede or enhance the transformation, depending on its sign and orientation. Tensile
stresses have the greatest effect since both dilational and shear components of the
transformational displacements are assisted. Therefore, if the samples are subjected
to an external tensile load, large stresses are generated near the crack tips which begin
to move and extend. At fixed grip, the strain energy of the two-phase solid decreases
because the ZrO, transformation reduces the available strain energy and thus
counteracts the propagation of cracks. This is the essence of the mechanism of
transformation toughening.
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Figure 14-10. Stress tensor at the crack tip, crack propagation, and the transformation of a dis-
persed second phase B in the surrounding matrix.

Figure 14-10 illustrates the crack propagation and shows schematically that the
stressed zone is essentially unaltered during the advancement of the tip. Thus, we
conclude that the resistence to crack growth stems from the Gibbs energy difference
between the untransformed region (in front and remote from the tip) and the trans-
formed region behind the tip with almost zero stress level. If we consider only the
transformation and neglect any elastic energies stored in either the ceramic matrix
or the zirconia grains, the dissipated Gibbs energy per unit cross section of the sam-
ple and unit time becomes

AG=vT |Agy| (14.34)
Vz

where v is the crack propagation velocity and # (<1) the volume fraction of trans-
formable zirconia in the matrix. ¥, (= V) denotes the molar volume of zirconia
and A g, the molar Gibbs energy of transformation (Z—Z'). Since A G = v* F;, with
F; being a (virtual) frictional force, we conclude from Eqn. (14.34) that the (Z—Z')
transformation exerts a force

Fp=-1|Ag,| (14.35)
V2
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per unit cross section that impedes the propagation of the cracks. A quantitative
determination of A g5 is difficult since it depends both on the size and the shape of
the zirconia particle embedded in the crystal matrix. Furthermore, we have to con-
sider other ‘frictional’ forces arising from point defects, dislocations, and new sur-
faces generated in the wake of the crack motion.

14.5 Tribochemistry

Chemical processes induced by the input of mechanical energy into crystallites in the
form of impacts are categorized as tribochemical. In contrast to the earlier under-
standing, it is now generally accepted that chemical effects due to the input of me-
chanical energy can only be partially ascribed to the conversion into heat. Triboreac-
tors are mainly mills: ball mills, vibrating mills, planetary mills, jet mills, and others.
However, tribochemical processes are not restricted to mills only, they are in fact far
more common. A special field in this context is the forming of materials by means
of cutting, grinding, and polishing.

There are many ways to supply solids with mechanical energy. Their response to
the transmitted energy has the following common features: first elastic and then
plastic deformation. Further changes in the solid depend on the magnitude, length,
and localization of the impact. Crack propagation and fracture are the most obvious
effects. The mode of energy dissipation after an impact depends decisively on the
steepness of the pulse rise and its length. Linear theories and the assumption of local
equilibria (i.e., irreversible thermodynamics approach) are often not valid in the early
stages of the energy input. Obviously, the scaling speed is the velocity of sound.
Elastic energy dissipates into the surroundings of the impact spot with the velocity
of sound. If the impact lasts for 107, the elastic deformation spreads ca. 10~ ' cm
during this time. The maximal velocity of moving dislocations is again the velocity
of sound. Thus, the dissipation of the energy transferred from an impact as plastic
energy also occurs at the velocity of sound, at most.

If the main part of the impact energy is converted into heat, phonons are dissi-
pated into the surroundings. Other forms of energy dissipation are, for example, the
increase in surface area (crack formation and growth, spreading much slower than
sound), chemical reaction (e.g., phase transformation), or the formation of a local
plasma zone by breaking a sufficient number of chemical bonds. In this case, the
result is a heavily defective or even amorphous material, in analogy to the heavily
defective zones (hot spots, defect spikes) after the bombardment of crystals with ions
or atoms. In the literature on tribochemistry [G. Heinicke (1984)], it is pointed out
that the quantitative treatment is in essence phenomenological. The reason for this
is that many of the above mentioned modes of energy dissipation take place simulta-
neously, whereas the boundary conditions in space and time are necessarily complex.
We therefore describe several tribochemical processes in some detail, rather than to
introduce phenomenological relations without the specification of physical models.
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Let us -assert, however, that the input of mechanical energy into solids in the sense
of tribochemistry always results in a change of their kinetic behavior. The change
in point defect concentration, dislocation or crack density, and structure influences
the transport coefficients and reactive properties (e.g., catalytic activity, nucleation
rate, etc.).

Let us begin with a special mechanochemical effect known as mechanical alloying.
Mechanical alloying in a mill is a processing technique for the synthesis of materials
with possibly metastable or even unstable structures. It is defined as a dry, high
energy ball milling process which produces powders of composite metal alloy with
extremely fine grained microstructures. It has been suggested that localized melting
may occur during high energy milling due to the extensive plastic deformation. Since
10~2—-1072 Joules per impact are dissipated during collision, it was concluded that
the average bulk temperature might be raised to ca. 600 K. Alloying is assisted by an
increase of temperature, by an enhanced diffusion due to the formation of lattice
defects, and due to shorter and shorter diffusion paths as the grains become smaller
and smaller. Many different materials have been synthesized in this way. We just
mention the synthesis of ZnFe,0,4 from ZnO and Fe,0;. The remarkable feature of
this synthesis is that the ferrite, which under equilibrium conditions exhibits the
structure of a normal spinel, occurs as a partly inversed spinel. This indicates that
atomic size effects may override preferential chemical bonding under these extremely
high local pressures. We note that even homogeneous mixtures of two immiscible
phases can be metastably produced.

Another interesting aspect of high energy ball milling is the amorphization by
mechanical alloying. An early and conclusive study of this problem was carried out
by Koch [C.C. Koch (1990)] in the glass forming alloy system Ni-Nb. It has been
argued that the formation of an amorphous alloy from the elements occurs in the
sequence A+B—A, B, (cryst)—A, B, (amor). Since amorphization is the most ex-
treme mode of structural transformation, other structural transformations can be ex-
pected and have been reported to occur under the action of milling: order-disorder,
disorder-order, order-order. PbO,, for example, exists in the stable f-form (tetra-
gonal) at room temperature and normal pressure, but transforms into the a-form
(rhombic) at high pressure. It also turns into a 90%-a, 10%-8 mixture, irrespective
of the starting material after sufficiently long milling. It is understood that the a/8
ratio depends on the milling conditions. Similar observations concerning the
‘mechanochemical equilibrium’ have been made with other solid compounds (e.g.,
CaCOj: aragonite-calcite). One concludes that both high local temperatures and
pressures occur in the milling procedure, and the rate of structural relaxation pro-
cesses determines the steady-state condition of the phase distribution [R. Schrader,
B. Hoffmann (1973)].

By and large, ball milling is an efficient tool for the promotion of all sorts of
solid state reactions. The composition and structure of the products depend deci-
sively on such milling conditions as milling intensity, temperature, atmosphere, time,
filling, and ball to powder ratio. One is far from understanding all the details,
but the specific power injected into the reactant powders (Watt/gr) seems to be an
important control parameter for the phase stability during milling [Y. Chen, ef al.
(1990)].
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In the previous chapter we discussed the steady-state conformation of an alloy
during the continuous input of ballistic energy (irradiation). We saw that the confor-
mation under irradiation is the same as that without radiation, but at an elevated
temperature (7+ A T). Can we generalize this concept and apply it to other forms
of energy input like the input of mechanical energy during the ball milling process?
Thermally activated jump processes occur on the atomic scale, while the elementary
ballistic events occur on a much less fine grained scale. Martin and coworkers {G.
Martin, P. Bellon (1987)], however, gave a positive answer to the posed question.
Without repeating their argumentation, one may say that the input of ballistic energy
is assumed to increase the jump frequencies across the activated transition state by
Av and in a distinct way. AT and Av are shown to be proportional to each other,
and the relevant control parameter is the specific power injected into the solid.
Analogous to the flux density ¢ of irradiation in Eqn. (13.14), it determines the fac-
tor of proportionality between Av and AT,
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15 Transport and Reactions in Special Systems

15.1 Introduction

In previous chapters, the basic and formal structure of solid state kinetics was em-
phasized. This was advisable considering the inherent complexity of almost all reac-
tions in the solid state. Although we occasionally illustrated the deductions and
derivations with experimental observations and data, it seems appropriate to
strengthen the chemical aspects of solid state kinetics in a special chapter, The pur-
pose of this chapter then is to acquaint us with the kinetic complications which
emerge if a solid undergoes a chemical process. Kinetic situations will be presented
along with available experimental data for some important types of solids, and we
will try not to oversimplify when constructing tractable models for limiting cases. In
spite of a remarkable increase in research in solid state chemistry, basic kinetic data
are often incomplete. One reason is that chemists are primarily concerned with syn-
thesis and structure whereas physicists are mainly interested in dynamics. Thermody-
namics and kinetics are generally worked out by a relatively smail number of physical
chemists and recently by material scientists.

In selecting the different types of solids for a discussion in this chapter, their impor-
tance in science and technology was as decisive as the availability of kinetic data.
Silicates, fast conductors, hydrides (mainly of transition metals), and some organic
crystals were thus chosen. Silicates are the most important solids in geochemistry. Fast
solid ionic conductors are a prerequisite for solid state electrochemistry. They have an
increasing influence on some technologies and a bridging function to the biosciences.
Metal hydrides are studied in the context of hydrogen catalysis, energy storage, and
energy production (fuel cells), whilst the impact of organic solids on our daily life is
obvious. The solids we will consider, however, are special from a more fundamental
point of view. They all represent an extreme characteristic property. Silicates are char-
acterized by their abundance and the wealth of distinct structural features which stem
from the variability with which [SiO4]*~ tetrahedra can be interlinked. Fast solid
ionic conductors have conductances which compare with those of ionic liquids. The
activation energy of their conductivity is normally quite low. Hydrides are compounds
in which one of the components is the lightest of all elements. Therefore, one may ex-
pect quantum effects to influence the motion of hydrogen. If we consider the organic
molecules which form molecular crystals, the question is whether these molecules can
move translationally in a crystal lattice or whether they first dissociate in order to
release mobile (atomic) structural elements.

In what follows, we will not repeat the formal discussions. Rather we exemplify
specific and relevant kinetic problems as they are met in practical situations. Reference
will be made to previous chapters for the more formal aspects.
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15.2 Silicates

15.2.1 Introductory Remarks

Silicates are major constituents of the earth’s crust (e.g., feldspars) and mantle (e.g.,
olivine). For a long time, silicates served as the most important construction materi-
als for buildings, and in many ores they predominate. Most of the silicates are
aluminosilicates, which reflects the easiness of isomorphous substitution of silicon
by aluminium. The basic structural unit of all silicates is the silicon-oxygen tetra-
hedron. The Si—O bond length in silicates is about 1.62 A (1.57—1.7). In the ortho-
silicates, there are isolated SiO, tetrahedra and no vertex-sharing of these units takes
place ([Si203]8_ = 2[SiO4*7). In another type of orthosilicate, there are [Si207]6_
groups which share one (vertex) oxygen ion. [81206]4' units share two oxygen ions
and thus may form chain- or cyclo-silicates. [Si,Os]>~ units share three oxygen ions
and are thus able to form layered structures. In Si,O, (SiO,), all the vertices are in-
terlinked. The higher the SiO, content of a silicate, the more vertex sharing takes
place. Correspondingly, the linkage goes from one dimensional chains to two dimen-
sional (layer) structures and finally to three dimensional networks (e.g., feldspars,
zeolites). Well known chain structure minerals are pyroxenes and amphiboles
(Mg, [Siz0,,] (OH),). Clay minerals and micas are layer structured.

Orthosilicates are of composition Me,SiO4 = 2MeO-SiO,. The Me cation may
occur with coordination number 4 as in Be,SiO, (phenacite). In the olivines,
(Mg, Fe),Si0,, the Me cation has the coordination number 6. The highest Me coor-
dination number is 8 as, for example, in ZrSiO, (zircon). These ‘island’ silicates
possess an almost close-packed oxygen ion sublattice. In the ideal olivine structure,
it is hexagonal.

Pyroxenes (e.g., Mg, [Si,04] = 2MgSiO,, enstatite) and amphiboles (double chain
silicates containing OH groups) form chains of SiO, tetrahedra. By interlinking the
chains we arrive at layer silicates.

A multitude of layered minerals exist. Since the hexagonal arrangemenf of the
oxygen ions in the silicate layers and in Mg(OH),, for example, are almost the same,
and furthermore since Si** ions can be substituted by AI** in the networks of
the SiO, tetrahedra, it is understandable that Mg(OH),, Al1(OH),, and layered
(Si, A1),O; sheets can be combined in many ways. Thus, in mica, AP replaces Si**
in the network layers, which are interlinked by AlQOg layers and interleaved with K*
ions (muscovite, KAl, [(Si;Al)O;0](OH),). Each K* ion is surrounded by as much
as 12 0% jons, and the bond strength between the layers of alkaline ions and the
network oxygen is correspondingly small (cleavage). In vermiculites, the interleaved
layers are easily hydrated and the interlayer cations may even exchange with organic
cations. Obviously, many variants can be constructed by a proper combination of
the different sheets.

The arrangement of SiO, tetrahedra in three dimensions, and thus the degree of
Si—O-Si interlinkage, determines the diffusivity tensor of the components to a
large extent. If, in the network of tetrahedra, Si** is replaced by a cation of lower
valence (e.g., Al3+), a corresponding amount of ‘network modifying’ cations is
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found between the SiO, tetrahedra to compensate the missing charge. These net-
work modifying cations (e.g., Na*,Ca®*) are much more mobile than the network
forming Si** and AP,

The basic knowledge we need in order to understand the kinetics of silicates is,
first of all, the thermodynamics of silicates, and, in particular, their point defect
thermodynamics. Although the chemical thermodynamics of silicates has been given
some attention, we know very little from experiment about the thermodynamics of
point defects, even in the most common silicates. Some computer simulations by
Catlow and associates [S.C. Parker, ef al. (1984)] are available. However, there can
be no doubt that the majority defects in equilibrium are the point defects of the
network modifying cations. The reason is the high cohesion energy of the Si—O
bond. One concludes that Frenkel disorder outside the SiO4 network prevails in
stoichiometric silicate compounds. For the same reason, one concludes that the non-
stoichiometry of simple ternary compounds, such as Na,O:SiO,, is extremely
small. As long as the ions cannot change their valence state, a surplus of the binary
constituents (Na,O or SiO,) must affect either the O?~ or the Si** sublattice. This,
in turn, breaks Si—O bonds, a most energetically unfavorable situation.

Point defect disorder becomes much more complicated when we incorporate APt
ions because they can be placed in the SiO, network tetrahedra as well as out of
them. A surplus of cations outside the network can always be charge compensated
through a substitution of Si** by AP in the network. In this way, point defect con-
centrations are balanced with respect to charge neutrality, and no cations with vari-
able valence states (e.g., Fe?* /Fe*") are necessary for this balance. If, however, cat-
ions with variable valencies are present (even as impurities), redox reactions with the
oxygen component (e.g., with O, gas) can take place. We know from our former
discussion (see Section 2.3) that redox reactions lead to the formation of pairs of
electronic and ionic point defects which mutually compensate their effective electric
charge. The compensating defects are essentially those with the lowest formation
energy for the pair (majority point defects). Therefore, ionic defects in the network
do not take part in the compensation. Without redox systems, the kinetic parameters
of silicates do not depend on the oxygen potential.

15.2.2 Transport in Silicates

Investigations on transport and reaction can hardly be performed without an under-
standing of the basic defect thermodynamics. Therefore, only a limited number of
relevant investigations on transport and reaction in silicates are known. We have a fair-
ly good understanding of the defect thermodynamics of orthosilicates and, in par-
ticular, of olivine (Fe,Mg),SiO,. Here, the mobility of the divalent cations in their
slightly distorted octahedral coordination shows a similar behavior to that found in
other close-packed ternary oxides [H. Schmalzried, C. Wagner (1962)]. This is par-
ticularly true with regard to the influence of the oxygen potential and reflects the ma-
jority defect disorder of the divalent cations [A. Nakamura, H. Schmalzried (1983)].

Solid state reactions and creep deformation are important processes in the earth’s
mantle. They occur only if at least two ionic species migrate simultaneously in order
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to satisfy the conditions which crystal structure and electroneutrality impose. In
other words, either silicon or oxygen ions or perhaps both will take part in silicate
reactions. The data on mobility, however, are contradictory. High Si—O bond ener-
gies and the correspondingly low defect concentrations in combination with high
thermal activation energies result in very low mobilities of both the Si** and 0%~
ions. Measurements of low mobilities are very difficult. Also, formation of or-
thosilicates from the individual binary oxides at high temperatures is extremely slug-
gish [H. Schmalzried (1978)]. The available data on Si and O tracer diffusion suggest
that Si** is the slowest moving ion, in accordance with the fact that it is bonded to
four oxygen ions [O. Jaoul (1980), (1981); B. Houlier, et al. (1988)].

We remember that minority point defect concentrations in compounds depend on
the activity of their components. This may be illustrated by the solubility of hydro-
gen in olivine since it depends on the oxygen potential in a way explained by the asso-
ciation of the dissolved protons with O{ and Of as minority defects [Q. Bai, D.L.
Kohlstedt (1993)]. Similarly, tracer diffusion coefficients and mobilities of Si and O
are expected to depend on the activity of SiO,. The value (8In D;/81n asj0,), i = Si
and O, should give information on the disorder type as discussed in Section 2.3.

Heterogeneous solid state reactions of the type 2MeO +SiO, = Me,SiO,4 have not
yet been fully exploited in order to derive kinetic parameters. The experimental reac-
tion rate constant reflects the oxygen ion mobility in the orthosilicate, if Si** is in-
deed the slowest moving ion, as discussed in Section 6.3. In this case, the orthosili-
cate should form at the Me,SiO,/SiO, or Me,Si0,/MeSiO;, interface by simulta-
neous diffusion of Me?* and O®  across the reaction product. According to
Eqn. (6.30) we have Dg = kp/(A G}/RT) where kp is the parabolic reaction rate
constant. Marker experiments can therefore support the reaction mechanism. Some
experimental data exist [H. Schmalzried (1978)], but they are not sufficient to lead
to firm conclusions. In crystals with very slow lattice diffusion, fast diffusion along
non-equilibrium defects (dislocations, grain boundaries) may become rate determin-
ing.

To illustrate the complications associated with these relatively simple quasi-binary
reactions, let us regard Figure 15-1. In agreement with the phase diagram, the MgO-
SiO, reaction couple shows the following sequence of phases after some reaction
time: MgO/Mg,Si0,/MgSi0O;/Si0,. However, the initially planar interface between
5i0O, and metasilicate becomes morphologically unstable during the course of the
reaction. We saw in Chapter 11 that morphological stability is to be expected in a
reacting (quasi-) binary system if volume diffusion prevails and defect equilibrium
is established. We conclude therefore that during the MgO-SiO, reaction, other and
faster transport mechanisms predominate. The growth morphology as illustrated in
Figure 15-1 suggests that the grain boundary between MgSiO; and SiO, develops
more and more stress and provides a fast diffusion path, most likely for Mg?* and
O?~ ions. However, it is the inhomogeneous stress which seems to be important
here since high diffusivity interfaces alone tend to stabilize the planar morphology
(see Chapter 11).

Olivine and other orthosilicates have been exposed to oxygen potential gradients
in order to investigate the demixing of solid solutions and internal reactions (oxida-
tion, decomposition). The corresponding formalism was outlined in Chapters 8 and
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Figure 15-1. Solid state reactions between MgO or CoO and SiO, [H. Schmalzried, G. Borchardt,
unpublished]. Instability of the reaction product boundaries. SiO, has been crystallized from SiO,
glass. MgO (CoO) are single crystals. a) T = 1514°C, t = 102 h in air; b) T = 1300°C, t =ca. 1h
in air.

9. Two conclusions can be drawn from the experimental results. 1) Reaction modes
found in other ternary and higher oxide systems exposed to potential gradients of
oxygen are indeed observed with silicates. They confirm the ion mobility in semicon-
ducting orthosilicates. 2) The slowness of the Si** and O?~ volume diffusion, and
the fact that olivine is really a quaternary system, add appreciably to the complexity
of the reaction patterns. Again, low Dg; and Dg values in the bulk channel the
transport of silicon and oxygen ions along other, faster reaction paths. Dislocations,
for example, are observed to be heavily decorated with internal reaction products
(Fe;0,4) after internal oxidation (Fig. 15-2). These product crystals enhance further
transport along the decorated, that is, disturbed dislocation lines. Furthermore, they
alter the internal structure of the matrix and thus complicate the overall reaction.
Thus, the different kinetic steps can hardly be analyzed in a quantitative fashion
[R. Weghoft, H. Schmalzried (1986); T. Wu, D.L. Kohlstedt (1988)].

Whereas we now begin to understand solid state kinetics in orthosilicates, this
understanding is still unsatisfactory for other silicates with interlinked tetrahedra.
Let us turn to the discussion of chemical kinetics in layered silicates since they play
a prominent role in soil chemistry. For illustration we will concentrate on transport
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Figure 15-2. Decoration of dislocations in olivine by internal oxidation. Precipitates are Fe,Oy
[by courtesy of D. Kohlstedt, University of Minnesota].

and transport related processes (e.g., in vermiculites). Generally speaking, sheets of
a rigid (Si, Al) O, network (T) alternate with octahedral sheets (O) and interleaved,
more open-structured interlayers (I) in which mobile cations and neutral species are
able to move. Consequently, these species can be exchanged from external surfaces,
provided the layers terminate at these surfaces and the structural and electro-
neutrality conditions are not violated.

The molecular unit of vermiculite can be formulated as (Ca, Mg), (Mg, Fe, Al),
[(A],S1),0,0] (OH),,. The basic structural features are shown in Figure 15-3. If we
replace Si** in the tetrahedral framework by A", the site carries a net negative
charge. Charge compensation is then possible by placing Fe**, A", etc. on the oc-
tahedral sites normally occupied by the divalent ions, and/or by setting compen-
sating cations into the interlayer. These cations can be hydrated with the result that
the crystal swells. In addition to water, other polar molecules (organic molecules)
may also be taken up. The possible variations of this intercalation chemistry are ob-
viously numerous. If we take into account that in addition to OH™ and H,O the

Figure 15-3. Structure of vermiculite, schematic.
T = tetrahedral coordination sheet; O = octahedral
coordination sheet; [ = interlayer.
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redox cations Fe?*/Fe** are present, and that both protons and electrons are
mobile, we see that it is necessary to unambiguously define not only the proton and
electron activities but also the activities of the neutral chemical components if we
are to perform meaningful kinetic experiments.

If the cations of variable valency (e.g., Fe** /Fe3*) are present in not too low con-
centrations, the crystals will be semiconductors. In non-equilibrium vermiculites, the
internal electric field is then strongly influenced by their electronic conductivity, as
explained in Section 4.4.2. If we start with an equilibrium crystal and change either
PH> @, Gy,0, OT 4; (where i designates any other component), coupled transport
processes are induced. The coupling is enforced firstly by the condition of elec-
troneutrality, secondly by the site conservation requirements in the T-O-T blocks
(Fig. 15-3), and thirdly by the available free volume in the (van der Waals) interlayer.
It is in this interlayer that the cations and the molecules are the more mobile species.
However, local ion exchange between the interlayer and the relatively rigid T-O-T
blocks is also possible.

Furthermore, during transport and local reaction, the crystal is inhomogeneous by
necessity and thus suffers from a (inhomogeneous) swelling, which results in the
build-up of self-stress. A visible indication of internal stress is the bending of the
layered crystals during (exchange) reactions. From the foregoing, it follows that the
conservation equation for species / is composed of a flux term and a reaction term.
The driving force for transport contains the stress gradient in form of (V-Va), see
Section 14.2.1. Thus, the exchange reaction is unambiguously defined, but it is clear
from the detailed discussions in Chapters 4 and 5 that its rigorous formal treatment
is almost out of reach. Nevertheless, in view of the practical implications which these
processes have in soil chemistry, global kinetic measurements have been performed
on quite a large scale using gravimetry, DTA, X-ray and neutron spectroscopy, VIS
and IR spectroscopy, NMR spectroscopy, and electron microscopy. Most of the
kinetic measurements, however, were not unambiguously defined thermodynamical-
ly and electrochemically with the result that any interpretation remains uncertain.

Let us continue by discussing examples of the kinetic aspects of silicates with three
dimensional networks such as feldspars and zeolites. Feldspars are found in the
quasi-ternary system K[AISi;Og] (K-feldspar, Or)—Na[AlSi;Og] (Na-feldspar,
Ab)—Ca[Al,Si,04] (Ca-feldspar, An). These framework silicates deserve special in-
terest because they form the major part of the earth’s crust. The feldspar structure
consists of linked rings made up of four corner-sharing SiO, and AlO, tetrahedra.
There are cavities in this network that may be occupied by the large K, Na, Ca, or
by others such as Ba ions which we will designate as A sites. They may differ in sym-
metry depending on the portion of neighboring AI**, A small excess or deficiency
in SiO, resulting in a small deviation from the strict stoichiometric composition of
the feldspar solid solution is most difficult to verify. Also, impurities may be incor-
porated in the feldspar structure. The solution of iron ions, for example, allows a
change in the valencies of this redox system by an appropriate oxygen potential
change. A relatively fast charge compensation is then possible by adapting the num-
ber of A site vacancies (V,) or alkali interstitials. The change in the valence in-
fluences the distribution of iron between the tetrahedral (Fe3*) and A (Fe%") sites,
which in turn influences the iron diffusivity since D¥, = Nge.+ * Do+ + Nggs+ * Dggs+.
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We know from Section 6.3 that the most important species for chemical diffusion
in multicomponent systems is not the one with the lowest mobility. Rather, the next
to lowest one essentially determines the interdiffusion process. If, however, the
(Si, ADO, network of tetrahedra remains unperturbed, chemical diffusion can only
consist of a cation exchange. The K-Na exchange is certainly the fastest, while the
other exchanges are controlled by the much lower mobilities of Ca®* or even Al**
jons. Well defined tracer (**Na, “°Ca, and *Fe) diffusion data are available for
natural plagioclase crystals (= Ab-An solid solutions) [H. Behrens, et al. (1990)].
Several observations are worth mentioning. 1) Na diffusivities are about three orders
of magnitude faster than Ca diffusivities. 2) Diffusivities are nearly isotropic. 3)
Whereas the diffusivity of Fe?* is some ten times higher than that of Ca?*, the dif-
fusivity of Fe* is about ten times lower, which implies that the (tracer) diffusion
coefficient of iron in plagioclase depends strongly on the oxygen activity. 4) The ex-
periment shows that whereas D¢, does not depend on uo,, Dy, decreases slightly
with increasing oxygen potential. The following conclusions can therefore be drawn.
By increasing uo,, Fe?* and Na) is replaced by Fe’* and V,. Since Na* ion
Frenkel defects (Na;, V,) are the majority defects, an increase in Dy, with decreasing
Ho, indicates that Na diffusion is essentially interstitial. Schottky disorder is ex-
cluded because of the high formation energy of oxygen vacancies. The relatively low
mobility of Fe’* suggests that it replaces T-site AI** in the network.

Let us now turn to zeolites as another example of silicates having three
dimensional network structures. Their composition can be expressed as
M, D, (Al, 2,51, (x12)) O2n°mH,0, where M and D are mono- and divalent
metals respectively. Zeolites are aluminosilicates linked together in network forming
channels and cages on a molecular level (Fig. 15-4). The framework is negatively
charged. The M and D cations in the channels and cages are quite mobile and may
be exchanged and interchanged. The lowest channel size is 2.6 A, the largest one is
7.4 A and consists of 12-membered rings. Both natural (e.g., sodalite, faujasite) and
synthetic zeolites exist.

Figure 15-4. Structures of some zeolites:
a) basket-like unit (truncated octahedron)
of linked SiO, tetrahedra; b) framework
of baskets as in a), joined at square faces;
¢) space-filling framework of truncated

a) b} c) octahedra and cubooctahedra.

In principle, all the kinetic concepts of intercalation introduced for layer-struc-
tured silicates hold for zeolites as well. Swelling, of course, is not found because of
the rigidity of the three dimensional frame. The practical importance of zeolites as
molecular sieves, cation exchangers, and catalysts (cracking and hydrocracking in
petroleum industry) is enormous. Molecular shape-selective transport (large differ-
ences in diffusivities) and micro-environmental catalysis (in cages and channels)
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favors crystal directed synthetic engineering, and particularly it favors the engineer-
ing of organic substances. Although tracer diffusion mobility and NMR mobility
have been measured in zeolites, they usually do not agree. This is not surprising con-
sidering the prominent role that correlation effects play when, on an atomic scale,
the diffusion paths are highly anisotropic and locally inhomogeneous. Still more
complicated is the interpretation of chemical diffusion coefficients which describe
the transport of components in concentration gradients. The construction of D from
the individual diffusivities associated with the Darken type equation (as can be
found in the literature) certainly does not fulfill the coupling requirements of elec-
troneutrality and site (volume) preservation in the channels.

Since the fraction of empty sites in a zeolite channel determines the correlation
factor (Section 5.2.2), as is well known from single-file diffusion in the pores of a
membrane, the strong dependence of the diffusion coefficients on concentration can
be understood. This is why a simple Nernst-Planck type coupling of the diffusive
fluxes (see, for example, [H. Schmalzried (1981)]) is also not adequate. Therefore, we
should not expect that sorption and desorption are symmetric processes having iden-
tical kinetics. Surveys on zeolite kinetics can be found in [A. Dyer (1988); J. Kérger,
D. M. Ruthven (1992)].

15.2.3 Order-Disorder Reactions

Order-disorder reactions lower the Gibbs energy by a change in the local order on
an atomic scale. Order-disorder reactions do not change the local composition in a
strict sense. If composition changes are involved on a mesoscale, we deal with either
spinodal decomposition or diffusional transport and precipitation. Silicates illustrate
all of these reaction modes. The slowness of the silicon and oxygen motions com-
monly leaves a system in a metastable state after sudden changes in 7 or P Then,
according to Ostwald’s rule, the system’s first response is often a change in its local
order.

Various modes of ordering are feasible. In systems with amphoteric cations (e.g.,
A", the fraction of A" in tetrahedral or octahedral sites is a possible order
parameter. Strain may lead to a bending of Si-O bonds. Periodic distributions of the
components in space, along with elastic and/or electrostatic interactions, indicate
spinodal ordering (demixing). Some examples will illustrate these general features.

Cordierite, (Mg,Al;) [AlISisO;], is a silicate with isolated rings of six tetrahedra
and occurs in two polymorphic forms. At 7> 1450°C, the high temperature hex-
agonal form () is stable. The low temperature form is slightly distorted orthorhom-
bic (¢). In the B-form, there are two sorts of tetrahedral sites, T, and T,, occupied
by A" and Si** ions (3T, by 2Al and 1Si, 6T, by 2Al and 4Si) in a random way.
In the a-form, the T, sites are divided into two and the T, sites into three non-
equivalent types of sites. In this a¢-form, the Si and Al ions can structurally order.
The ordering kinetics are extremely sluggish at low temperature because of low jump
frequencies, and at temperatures close to the f— ¢ transition because of the low driv-
ing force. Although this transition has been asserted to be first order, the splitting
of the X-ray diffraction peaks is continuous and requires hundreds of hours at
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T = 1300°C. Thus, a real understanding of the transition and ordering mechanism
has still not been achieved [A. Putnis (1986)].

The second example concerns the separation of Na and K in (Na,K) [AlSi;Og]
feldspars [R. A. Yund (1984)]. When homogeneous samples are annealed at tempera-
tures between 450°C and 525°C, they decompose until they reach the coherent
binodal solvus after 70 and 7 days respectively. In the beginning, the process is a
spinodal decomposition. The product consists of 100—500 A spaced Na and K rich
lamellae that are coherently intergrown. The common interface is approximately
parallel to (601). During the decomposition reaction these lamellae change composi-
tion in a continuous way in the spinodal regime. The incoherent solvus can hardly
be reached in laboratory times. Composition dependent displacive transformations
(K rich monoclinic and Na rich triclinic) may complicate the ordering processes in
feldspars since more than one order parameter has to be introduced in order to
describe the equilibration kinetics [E. Salje (1990)].

15.2.4 The Role of Hydrogen in Silicates

Hydrogen can be incorporated into silicates in the form of water, H, molecules,
H atoms, H*, OH ™, and other ways. Since oxygen is one component of a silicate,
both the oxygen and hydrogen potentials (uo,> 1) must be defined in order to fix
the thermodynamic state of the hydrogen containing silicates. Furthermore, the pro-
ton activity must be defined by an additional external (electrode) or internal redox
buffer (e.g., Fe** /Fe*™).

It has been repeatedly observed that small amounts of H,O dissolved in non-
equilibrium silicates catalyze their equilibration (e.g., homogenization of plagioclase
with initially periodic lamellae by increasing the temperature). Also, plastic deforma-
tion under stress is enhanced (hydrogen weakening). The form in which H,O
dissolves is still under discussion. It may dissolve as molecules or by dissociating into
H™* and OH~ when the proton is likely to become associated with the oxygen ions
of the silicate. A further question concerns 